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1 Introduction

This mechanisation of the worker/wrapper theory of Gill and Hutton (2009)
was carried out in Isabelle/HOLCF (Müller et al. 1999; Huffman 2009). It
accompanies Gammie (2011). The reader should note that oo stands for
function composition, Λ_._ for continuous function abstraction, _ · _ for
continuous function application, domain for recursive-datatype definition.
〈ML〉

2 Fixed-point theorems for program transforma-
tion

We begin by recounting some standard theorems from the early days of
denotational semantics. The origins of these results are lost to history; the
interested reader can find some of it in Bekić (1984); Manna (1974); Greibach
(1975); Stoy (1977); de Bakker et al. (1980); Harel (1980); Plotkin (1983);
Winskel (1993); Sangiorgi (2009).

2.1 The rolling rule

The rolling rule captures what intuitively happens when we re-order a re-
cursive computation consisting of two parts. This theorem dates from the
1970s at the latest – see Stoy (1977, p210) and Plotkin (1983). The following
proofs were provided by Gill and Hutton (2009).
lemma rolling-rule-ltr : fix·(g oo f ) v g·(fix·(f oo g))
〈proof 〉

lemma rolling-rule-rtl: g·(fix·(f oo g)) v fix·(g oo f )
〈proof 〉

lemma rolling-rule: fix·(g oo f ) = g·(fix·(f oo g))
〈proof 〉
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2.2 Least-fixed-point fusion

Least-fixed-point fusion provides a kind of induction that has proven to be
very useful in calculational settings. Intuitively it lifts the step-by-step cor-
respondence between f and h witnessed by the strict function g to the fixed
points of f and g:

• •

• •

-h

6
g

-
f

6
g =⇒

fix h

fix f

6
g

Fokkinga and Meijer (1991), and also their later Meijer, Fokkinga, and Pa-
terson (1991), made extensive use of this rule, as did Tullsen (2002) in his
program transformation tool PATH. This diagram is strongly reminiscent
of the simulations used to establish refinement relations between imperative
programs and their specifications (de Roever and Engelhardt 1998).
The following proof is close to the third variant of Stoy (1977, p215). We
relate the two fixpoints using the rule parallel_fix_ind:

adm (λx. ?P (fst x) (snd x)) ?P ⊥ ⊥
∧

x y.
?P x y

?P (?F ·x) (?G·y)
?P (fix·?F) (fix·?G)

in a very straightforward way:
lemma lfp-fusion:

assumes g·⊥ = ⊥
assumes g oo f = h oo g
shows g·(fix·f ) = fix·h

〈proof 〉

This lemma also goes by the name of Plotkin’s axiom (Pitts 1996) or uni-
formity (Simpson and Plotkin 2000).
〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉〈proof 〉

3 The transformation according to Gill and Hut-
ton

The worker/wrapper transformation and associated fusion rule as formalised
by Gill and Hutton (2009) are reproduced in Figure 1, and the reader is
referred to the original paper for further motivation and background.
Armed with the rolling rule we can show that Gill and Hutton’s justification
of the worker/wrapper transformation is sound. There is a battery of these
transformations with varying strengths of hypothesis.
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For a recursive definition comp = fix body for some body :: A → A
and a pair of functions wrap :: B → A and unwrap :: A → B where
wrap ◦ unwrap = idA, we have:

comp = wrap work
work :: B
work = fix (unwrap ◦ body ◦ wrap)

(the worker/wrapper

transformation)
Also:

(unwrap ◦ wrap) work = work (worker/wrapper fusion)

Figure 1: The worker/wrapper transformation and fusion rule of Gill and
Hutton (2009).

The first requires wrap oo unwrap to be the identity for all values.
lemma worker-wrapper-id:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: wrap oo unwrap = ID
assumes comp-body: computation = fix·body
shows computation = wrap·(fix·(unwrap oo body oo wrap))

〈proof 〉

The second weakens this assumption by requiring that wrap oo wrap only
act as the identity on values in the image of body.
lemma worker-wrapper-body:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: wrap oo unwrap oo body = body
assumes comp-body: computation = fix·body
shows computation = wrap·(fix·(unwrap oo body oo wrap))

〈proof 〉

This is particularly useful when the computation being transformed is strict
in its argument.
Finally we can allow the identity to take the full recursive context into
account. This rule was described by Gill and Hutton but not used.
lemma worker-wrapper-fix:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: fix·(wrap oo unwrap oo body) = fix·body
assumes comp-body: computation = fix·body
shows computation = wrap·(fix·(unwrap oo body oo wrap))
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〈proof 〉

Gill and Hutton’s worker-wrapper-fusion rule is intended to allow the trans-
formation of (unwrap oo wrap)·R to R in recursive contexts, where R is
meant to be a self-call. Note that it assumes that the first worker/wrapper
hypothesis can be established.
lemma worker-wrapper-fusion:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: wrap oo unwrap = ID
assumes work: work = fix·(unwrap oo body oo wrap)
shows (unwrap oo wrap)·work = work

〈proof 〉

The following sections show that this rule only preserves partial correctness.
This is because Gill and Hutton apply it in the context of the fold/unfold
program transformation framework of Burstall and Darlington (1977), which
need not preserve termination. We show that the fusion rule does in fact
require extra conditions to be totally correct and propose one such sufficient
condition.

3.1 Worker/wrapper fusion is partially correct

We now examine how Gill and Hutton apply their worker/wrapper fusion
rule in the context of the fold/unfold framework.
The key step of those left implicit in the original paper is the use of the
fold rule to justify replacing the worker with the fused version. Schemati-
cally, the fold/unfold framework maintains a history of all definitions that
have appeared during transformation, and the fold rule treats this as a set
of rewrite rules oriented right-to-left. (The unfold rule treats the current
working set of definitions as rewrite rules oriented left-to-right.) Hence as
each definition f = body yields a rule of the form body =⇒ f , one can al-
ways derive f = f . Clearly this has dire implications for the preservation
of termination behaviour.
Tullsen (2002) in his §3.1.2 observes that the semantic essence of the fold
rule is Park induction:

f ·?x = ?x
fix·f v ?x

fix_least

viz that f x = x implies only the partially correct fix f v x , and not the
totally correct fix f = x . We use this characterisation to show that if
unwrap is non-strict (i.e. unwrap ⊥ 6= ⊥) then there are programs where
worker/wrapper fusion as used by Gill and Hutton need only be partially
correct.
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Consider the scenario described in Figure 1. After applying the worker/wrap-
per transformation, we attempt to apply fusion by finding a residual expres-
sion body ′ such that the body of the worker, i.e. the expression unwrap oo
body oo wrap, can be rewritten as body ′ oo unwrap oo wrap. Intuitively this
is the semantic form of workers where all self-calls are fusible. Our goal is
to justify redefining work to fix·body ′, i.e. to establish:

fix·(unwrap oo body oo wrap) = fix·body ′

We show that worker/wrapper fusion as proposed by Gill and Hutton is
partially correct using Park induction:
lemma fusion-partially-correct:

assumes wrap-unwrap: wrap oo unwrap = ID
assumes work: work = fix·(unwrap oo body oo wrap)
assumes body ′: unwrap oo body oo wrap = body ′ oo unwrap oo wrap
shows fix·body ′ v work

〈proof 〉

The next section shows the converse does not obtain.

3.2 A non-strict unwrap may go awry

If unwrap is non-strict, then it is possible that the fusion rule proposed by
Gill and Hutton does not preserve termination. To show this we take a small
artificial example. The type A is not important, but we need access to a
non-bottom inhabitant. The target type B is the non-strict lift of A.
domain A = A
domain B = B (lazy A)

The functions wrap and unwrap that map between these types are routine.
Note that wrap is (necessarily) strict due to the property ∀ x. ?f ·(?g·x) = x
=⇒ ?f ·⊥ = ⊥.
fixrec wrap :: B → A
where wrap·(B·a) = a
〈proof 〉
fixrec unwrap :: A → B
where unwrap = B

Discharging the worker/wrapper hypothesis is similarly routine.
lemma wrap-unwrap: wrap oo unwrap = ID
〈proof 〉

The candidate computation we transform can be any that uses the recursion
parameter r non-strictly. The following is especially trivial.
fixrec body :: A → A
where body·r = A
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The wrinkle is that the transformed worker can be strict in the recursion
parameter r, as unwrap always lifts it.
fixrec body ′ :: B → B
where body ′·(B·a) = B·A〈proof 〉

As explained above, we set up the fusion opportunity:
lemma body-body ′: unwrap oo body oo wrap = body ′ oo unwrap oo wrap
〈proof 〉

This result depends crucially on unwrap being non-strict.
Our earlier result shows that the proposed transformation is partially cor-
rect:
lemma fix·body ′ v fix·(unwrap oo body oo wrap)
〈proof 〉

However it is easy to see that it is not totally correct:
lemma ¬ fix·(unwrap oo body oo wrap) v fix·body ′

〈proof 〉

This trick works whenever unwrap is not strict. In the following section we
show that requiring unwrap to be strict leads to a straightforward proof of
total correctness.
Note that if we have already established that wrap oo unwrap = ID, then
making unwrap strict preserves this equation:
lemma

assumes wrap oo unwrap = ID
shows wrap oo strictify·unwrap = ID

〈proof 〉

From this we conclude that the worker/wrapper transformation itself cannot
exploit any laziness in unwrap under the context-insensitive assumptions of
worker-wrapper-id. This is not to say that other program transformations
may not be able to.
〈proof 〉

4 A totally-correct fusion rule

We now show that a termination-preserving worker/wrapper fusion rule can
be obtained by requiring unwrap to be strict. (As we observed earlier, wrap
must always be strict due to the assumption that wrap oo unwrap = ID.)
Our first result shows that a combined worker/wrapper transformation and
fusion rule is sound, using the assumptions of worker-wrapper-id and the
ubiquitous lfp-fusion rule.
lemma worker-wrapper-fusion-new:
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For a recursive definition comp = body of type A and a pair of func-
tions wrap :: B → A and unwrap :: A → B where wrap ◦ unwrap = idA
and unwrap ⊥ = ⊥, define:

comp = wrap work
work = unwrap (body [wrap work/comp])

(the worker/wrapper

transformation)
In the scope of work , the following rewrite is admissable:

unwrap (wrap work) =⇒ work (worker/wrapper fusion)

Figure 2: The syntactic worker/wrapper transformation and fusion rule.

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
fixes body ′ :: ′b → ′b
assumes wrap-unwrap: wrap oo unwrap = (ID :: ′a → ′a)
assumes unwrap-strict: unwrap·⊥ = ⊥
assumes body-body ′: unwrap oo body oo wrap = body ′ oo (unwrap oo wrap)
shows fix·body = wrap·(fix·body ′)

〈proof 〉

We can also show a more general result which allows fusion to be optionally
performed on a per-recursive-call basis using parallel_fix_ind:
lemma worker-wrapper-fusion-new-general:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: wrap oo unwrap = (ID :: ′a → ′a)
assumes unwrap-strict: unwrap·⊥ = ⊥
assumes body-body ′:

∧
r . (unwrap oo wrap)·r = r

=⇒ (unwrap oo body oo wrap)·r = body ′·r
shows fix·body = wrap·(fix·body ′)

〈proof 〉

This justifies the syntactically-oriented rules shown in Figure 2; note the
scoping of the fusion rule.
Those familiar with the “bananas” work of Meijer, Fokkinga, and Paterson
(1991) will not be surprised that adding a strictness assumption justifies an
equational fusion rule.
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5 Naive reverse becomes accumulator-reverse.

5.1 Hughes lists, naive reverse, worker-wrapper optimisa-
tion.

The “Hughes” list type.
type-synonym ′a H = ′a llist → ′a llist

definition
list2H :: ′a llist → ′a H where
list2H ≡ lappend

lemma acc-c2a-strict[simp]: list2H ·⊥ = ⊥
〈proof 〉

definition
H2list :: ′a H → ′a llist where
H2list ≡ Λ f . f ·lnil

The paper only claims the homomorphism holds for finite lists, but in fact
it holds for all lazy lists in HOLCF. They are trying to dodge an explicit
appeal to the equation ⊥ = (Λ x. ⊥), which does not hold in Haskell.
lemma H-llist-hom-append: list2H ·(xs :++ ys) = list2H ·xs oo list2H ·ys (is ?lhs
= ?rhs)
〈proof 〉

lemma H-llist-hom-id: list2H ·lnil = ID 〈proof 〉

lemma H2list-list2H-inv: H2list oo list2H = ID
〈proof 〉

Gill and Hutton (2009, §4.2) define the naive reverse function as follows.
fixrec lrev :: ′a llist → ′a llist
where

lrev·lnil = lnil
| lrev·(x :@ xs) = lrev·xs :++ (x :@ lnil)

Note “body” is the generator of lrev-def.
lemma lrev-strict[simp]: lrev·⊥ = ⊥
〈proof 〉

fixrec lrev-body :: ( ′a llist → ′a llist) → ′a llist → ′a llist
where

lrev-body·r ·lnil = lnil
| lrev-body·r ·(x :@ xs) = r ·xs :++ (x :@ lnil)

lemma lrev-body-strict[simp]: lrev-body·r ·⊥ = ⊥
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〈proof 〉

This is trivial but syntactically a bit touchy. Would be nicer to define
lrev-body as the generator of the fixpoint definition of lrev directly.
lemma lrev-lrev-body-eq: lrev = fix·lrev-body
〈proof 〉

Wrap / unwrap functions.
definition

unwrapH :: ( ′a llist → ′a llist) → ′a llist → ′a H where
unwrapH ≡ Λ f xs . list2H ·(f ·xs)

lemma unwrapH-strict[simp]: unwrapH ·⊥ = ⊥
〈proof 〉

definition
wrapH :: ( ′a llist → ′a H ) → ′a llist → ′a llist where
wrapH ≡ Λ f xs . H2list·(f ·xs)

lemma wrapH-unwrapH-id: wrapH oo unwrapH = ID (is ?lhs = ?rhs)
〈proof 〉

5.2 Gill/Hutton-style worker/wrapper.
definition

lrev-work :: ′a llist → ′a H where
lrev-work ≡ fix·(unwrapH oo lrev-body oo wrapH )

definition
lrev-wrap :: ′a llist → ′a llist where
lrev-wrap ≡ wrapH ·lrev-work

lemma lrev-lrev-ww-eq: lrev = lrev-wrap
〈proof 〉

5.3 Optimise worker/wrapper.

Intermediate worker.
fixrec lrev-body1 :: ( ′a llist → ′a H ) → ′a llist → ′a H
where

lrev-body1 ·r ·lnil = list2H ·lnil
| lrev-body1 ·r ·(x :@ xs) = list2H ·(wrapH ·r ·xs :++ (x :@ lnil))

definition
lrev-work1 :: ′a llist → ′a H where
lrev-work1 ≡ fix·lrev-body1

lemma lrev-body-lrev-body1-eq: lrev-body1 = unwrapH oo lrev-body oo wrapH
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〈proof 〉

lemma lrev-work1-lrev-work-eq: lrev-work1 = lrev-work
〈proof 〉

Now use the homomorphism.
fixrec lrev-body2 :: ( ′a llist → ′a H ) → ′a llist → ′a H
where

lrev-body2 ·r ·lnil = ID
| lrev-body2 ·r ·(x :@ xs) = list2H ·(wrapH ·r ·xs) oo list2H ·(x :@ lnil)

lemma lrev-body2-strict[simp]: lrev-body2 ·r ·⊥ = ⊥
〈proof 〉

definition
lrev-work2 :: ′a llist → ′a H where
lrev-work2 ≡ fix·lrev-body2

lemma lrev-work2-strict[simp]: lrev-work2 ·⊥ = ⊥
〈proof 〉

lemma lrev-body2-lrev-body1-eq: lrev-body2 = lrev-body1
〈proof 〉

lemma lrev-work2-lrev-work1-eq: lrev-work2 = lrev-work1
〈proof 〉

Simplify.
fixrec lrev-body3 :: ( ′a llist → ′a H ) → ′a llist → ′a H
where

lrev-body3 ·r ·lnil = ID
| lrev-body3 ·r ·(x :@ xs) = r ·xs oo list2H ·(x :@ lnil)

lemma lrev-body3-strict[simp]: lrev-body3 ·r ·⊥ = ⊥
〈proof 〉

definition
lrev-work3 :: ′a llist → ′a H where
lrev-work3 ≡ fix·lrev-body3

lemma lrev-wwfusion: list2H ·((wrapH ·lrev-work2 )·xs) = lrev-work2 ·xs
〈proof 〉

If we use this result directly, we only get a partially-correct program trans-
formation, see Tullsen (2002) for details.
lemma lrev-work3 v lrev-work2
〈proof 〉

We can’t show the reverse inclusion in the same way as the fusion law doesn’t
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hold for the optimised definition. (Intuitively we haven’t established that it
is equal to the original lrev definition.) We could show termination of the
optimised definition though, as it operates on finite lists. Alternatively we
can use induction (over the list argument) to show total equivalence.
The following lemma shows that the fusion Gill/Hutton want to do is com-
pletely sound in this context, by appealing to the lazy list induction princi-
ple.
lemma lrev-work3-lrev-work2-eq: lrev-work3 = lrev-work2 (is ?lhs = ?rhs)
〈proof 〉

Use the combined worker/wrapper-fusion rule. Note we get a weaker lemma.
lemma lrev3-2-syntactic: lrev-body3 oo (unwrapH oo wrapH ) = lrev-body2
〈proof 〉

lemma lrev-work3-lrev-work2-eq ′: lrev = wrapH ·lrev-work3
〈proof 〉

Final syntactic tidy-up.
fixrec lrev-body-final :: ( ′a llist → ′a H ) → ′a llist → ′a H
where

lrev-body-final·r ·lnil·ys = ys
| lrev-body-final·r ·(x :@ xs)·ys = r ·xs·(x :@ ys)

definition
lrev-work-final :: ′a llist → ′a H where
lrev-work-final ≡ fix·lrev-body-final

definition
lrev-final :: ′a llist → ′a llist where
lrev-final ≡ Λ xs. lrev-work-final·xs·lnil

lemma lrev-body-final-lrev-body3-eq ′: lrev-body-final·r ·xs = lrev-body3 ·r ·xs
〈proof 〉

lemma lrev-body-final-lrev-body3-eq: lrev-body-final = lrev-body3
〈proof 〉

lemma lrev-final-lrev-eq: lrev = lrev-final (is ?lhs = ?rhs)
〈proof 〉

6 Unboxing types.

The original application of the worker/wrapper transformation was the un-
boxing of flat types by Peyton Jones and Launchbury (1991). We can model
the boxed and unboxed types as (respectively) pointed and unpointed do-
mains in HOLCF. Concretely UNat denotes the discrete domain of naturals,
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UNat⊥ the lifted (flat and pointed) variant, and Nat the standard boxed
domain, isomorphic to UNat⊥. This latter distinction helps us keep the
boxed naturals and lifted function codomains separated; applications of un-
box should be thought of in the same way as Haskell’s newtype constructors,
i.e. operationally equivalent to ID.
The divergence monad is used to handle the unboxing, see below.

6.1 Factorial example.

Standard definition of factorial.
fixrec fac :: Nat → Nat
where

fac·n = If n =B 0 then 1 else n ∗ fac·(n − 1 )

declare fac.simps[simp del]

lemma fac-strict[simp]: fac·⊥ = ⊥
〈proof 〉

definition
fac-body :: (Nat → Nat) → Nat → Nat where
fac-body ≡ Λ r n. If n =B 0 then 1 else n ∗ r ·(n − 1 )

lemma fac-body-strict[simp]: fac-body·r ·⊥ = ⊥
〈proof 〉

lemma fac-fac-body-eq: fac = fix·fac-body
〈proof 〉

Wrap / unwrap functions. Note the explicit lifting of the co-domain. For
some reason the published version of Gill and Hutton (2009) does not discuss
this point: if we’re going to handle recursive functions, we need a bottom.
unbox simply removes the tag, yielding a possibly-divergent unboxed value,
the result of the function.
definition

unwrapB :: (Nat → Nat) → UNat → UNat⊥ where
unwrapB ≡ Λ f . unbox oo f oo box

Note that the monadic bind operator (>>=) here stands in for the case
construct in the paper.
definition

wrapB :: (UNat → UNat⊥) → Nat → Nat where
wrapB ≡ Λ f x . unbox·x >>= f >>= box

lemma wrapB-unwrapB-body:
assumes strictF : f ·⊥ = ⊥

13



shows (wrapB oo unwrapB)·f = f (is ?lhs = ?rhs)
〈proof 〉

Apply worker/wrapper.
definition

fac-work :: UNat → UNat⊥ where
fac-work ≡ fix·(unwrapB oo fac-body oo wrapB)

definition
fac-wrap :: Nat → Nat where
fac-wrap ≡ wrapB·fac-work

lemma fac-fac-ww-eq: fac = fac-wrap (is ?lhs = ?rhs)
〈proof 〉

This is not entirely faithful to the paper, as they don’t explicitly handle the
lifting of the codomain.
definition

fac-body ′ :: (UNat → UNat⊥) → UNat → UNat⊥ where
fac-body ′ ≡ Λ r n.

unbox·(If box·n =B 0
then 1
else unbox·(box·n − 1 ) >>= r >>= (Λ b. box·n ∗ box·b))

lemma fac-body ′-fac-body: fac-body ′ = unwrapB oo fac-body oo wrapB (is ?lhs =
?rhs)
〈proof 〉

The up constructors here again mediate the isomorphism, operationally do-
ing nothing. Note the switch to the machine-oriented if construct: the test
n = 0 cannot diverge.
definition

fac-body-final :: (UNat → UNat⊥) → UNat → UNat⊥ where
fac-body-final ≡ Λ r n.

if n = 0 then up·1 else r ·(n −# 1 ) >>= (Λ b. up·(n ∗# b))

lemma fac-body-final-fac-body ′: fac-body-final = fac-body ′ (is ?lhs = ?rhs)
〈proof 〉

definition
fac-work-final :: UNat → UNat⊥ where
fac-work-final ≡ fix·fac-body-final

definition
fac-final :: Nat → Nat where
fac-final ≡ Λ n. unbox·n >>= fac-work-final >>= box

lemma fac-fac-final: fac = fac-final (is ?lhs=?rhs)
〈proof 〉

14



6.2 Introducing an accumulator.

The final version of factorial uses unboxed naturals but is not tail-recursive.
We can apply worker/wrapper once more to introduce an accumulator, sim-
ilar to §5.
The monadic machinery complicates things slightly here. We use Kleisli
composition, denoted (>=>), in the homomorphism.
Firstly we introduce an “accumulator” monoid and show the homomor-
phism.
type-synonym UNatAcc = UNat → UNat⊥

definition
n2a :: UNat → UNatAcc where
n2a ≡ Λ m n. up·(m ∗# n)

definition
a2n :: UNatAcc → UNat⊥ where
a2n ≡ Λ a. a·1

lemma a2n-strict[simp]: a2n·⊥ = ⊥
〈proof 〉

lemma a2n-n2a: a2n·(n2a·u) = up·u
〈proof 〉

lemma A-hom-mult: n2a·(x ∗# y) = (n2a·x >=> n2a·y)
〈proof 〉

definition
unwrapA :: (UNat → UNat⊥) → UNat → UNatAcc where
unwrapA ≡ Λ f n. f ·n >>= n2a

lemma unwrapA-strict[simp]: unwrapA·⊥ = ⊥
〈proof 〉

definition
wrapA :: (UNat → UNatAcc) → UNat → UNat⊥ where
wrapA ≡ Λ f . a2n oo f

lemma wrapA-unwrapA-id: wrapA oo unwrapA = ID
〈proof 〉

Some steps along the way.
definition

fac-acc-body1 :: (UNat → UNatAcc) → UNat → UNatAcc where
fac-acc-body1 ≡ Λ r n.

if n = 0 then n2a·1 else wrapA·r ·(n −# 1 ) >>= (Λ res. n2a·(n ∗# res))
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lemma fac-acc-body1-fac-body-final-eq: fac-acc-body1 = unwrapA oo fac-body-final
oo wrapA
〈proof 〉

Use the homomorphism.
definition

fac-acc-body2 :: (UNat → UNatAcc) → UNat → UNatAcc where
fac-acc-body2 ≡ Λ r n.

if n = 0 then n2a·1 else wrapA·r ·(n −# 1 ) >>= (Λ res. n2a·n >=> n2a·res)

lemma fac-acc-body2-body1-eq: fac-acc-body2 = fac-acc-body1
〈proof 〉

Apply worker/wrapper.
definition

fac-acc-body3 :: (UNat → UNatAcc) → UNat → UNatAcc where
fac-acc-body3 ≡ Λ r n.

if n = 0 then n2a·1 else n2a·n >=> r ·(n −# 1 )

lemma fac-acc-body3-body2 : fac-acc-body3 oo (unwrapA oo wrapA) = fac-acc-body2
(is ?lhs=?rhs)
〈proof 〉

lemma fac-work-final-body3-eq: fac-work-final = wrapA·(fix·fac-acc-body3 )
〈proof 〉

definition
fac-acc-body-final :: (UNat → UNatAcc) → UNat → UNatAcc where
fac-acc-body-final ≡ Λ r n acc.

if n = 0 then up·acc else r ·(n −# 1 )·(n ∗# acc)

definition
fac-acc-work-final :: UNat → UNat⊥ where
fac-acc-work-final ≡ Λ x. fix·fac-acc-body-final·x·1

lemma fac-acc-work-final-fac-acc-work3-eq: fac-acc-body-final = fac-acc-body3 (is
?lhs=?rhs)
〈proof 〉

lemma fac-acc-work-final-fac-work: fac-acc-work-final = fac-work-final (is ?lhs=?rhs)
〈proof 〉

7 Memoisation using streams.

7.1 Streams.

The type of infinite streams.
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domain ′a Stream = stcons (lazy sthead :: ′a) (lazy sttail :: ′a Stream) (infixr
‹&&› 65 )
〈proof 〉
fixrec smap :: ( ′a → ′b) → ′a Stream → ′b Stream
where

smap·f ·(x && xs) = f ·x && smap·f ·xs
〈proof 〉
lemma smap-smap: smap·f ·(smap·g·xs) = smap·(f oo g)·xs〈proof 〉
fixrec i-th :: ′a Stream → Nat → ′a
where

i-th·(x && xs) = Nat-case·x·(i-th·xs)

abbreviation
i-th-syn :: ′a Stream ⇒ Nat ⇒ ′a (infixl ‹!!› 100 ) where
s !! i ≡ i-th·s·i

〈proof 〉〈proof 〉〈proof 〉〈proof 〉

The infinite stream of natural numbers.
fixrec nats :: Nat Stream
where

nats = 0 && smap·(Λ x. 1 + x)·nats

7.2 The wrapper/unwrapper functions.
definition

unwrapS ′ :: (Nat → ′a) → ′a Stream where
unwrapS ′ ≡ Λ f . smap·f ·nats

lemma unwrapS ′-unfold: unwrapS ′·f = f ·0 && smap·(f oo (Λ x. 1 + x))·nats〈proof 〉
fixrec unwrapS :: (Nat → ′a) → ′a Stream
where

unwrapS ·f = f ·0 && unwrapS ·(f oo (Λ x. 1 + x))

The two versions of unwrapS are equivalent. We could try to fold some
definitions here but it’s easier if the stream constructor is manifest.
lemma unwrapS-unwrapS ′-eq: unwrapS = unwrapS ′ (is ?lhs = ?rhs)
〈proof 〉

definition
wrapS :: ′a Stream → Nat → ′a where
wrapS ≡ Λ s i . s !! i

Note the identity requires that f be strict. Gill and Hutton (2009, §6.1) do
not make this requirement, an oversight on their part.
In practice all functions worth memoising are strict in the memoised argu-
ment.
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lemma wrapS-unwrapS-id ′:
assumes strictF : (f ::Nat → ′a)·⊥ = ⊥
shows unwrapS ·f !! n = f ·n

〈proof 〉

lemma wrapS-unwrapS-id: f ·⊥ = ⊥ =⇒ (wrapS oo unwrapS)·f = f
〈proof 〉

7.3 Fibonacci example.
definition

fib-body :: (Nat → Nat) → Nat → Nat where
fib-body ≡ Λ r . Nat-case·1 ·(Nat-case·1 ·(Λ n. r ·n + r ·(n + 1 )))

〈proof 〉
definition

fib :: Nat → Nat where
fib ≡ fix·fib-body

〈proof 〉

Apply worker/wrapper.
definition

fib-work :: Nat Stream where
fib-work ≡ fix·(unwrapS oo fib-body oo wrapS)

definition
fib-wrap :: Nat → Nat where
fib-wrap ≡ wrapS ·fib-work

lemma wrapS-unwrapS-fib-body: wrapS oo unwrapS oo fib-body = fib-body
〈proof 〉

lemma fib-ww-eq: fib = fib-wrap
〈proof 〉

Optimise.
fixrec

fib-work-final :: Nat Stream
and

fib-f-final :: Nat → Nat
where

fib-work-final = smap·fib-f-final·nats
| fib-f-final = Nat-case·1 ·(Nat-case·1 ·(Λ n ′. fib-work-final !! n ′ + fib-work-final !!
(n ′ + 1 )))

declare fib-f-final.simps[simp del] fib-work-final.simps[simp del]

definition
fib-final :: Nat → Nat where
fib-final ≡ Λ n. fib-work-final !! n
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This proof is only fiddly due to the way mutual recursion is encoded: we
need to use Bekić’s Theorem (Bekić 1984)1 to massage the definitions into
their final form.
lemma fib-work-final-fib-work-eq: fib-work-final = fib-work (is ?lhs = ?rhs)
〈proof 〉

lemma fib-final-fib-eq: fib-final = fib (is ?lhs = ?rhs)
〈proof 〉

8 Tagless interpreter via double-barreled continu-
ations

type-synonym ′a Cont = ( ′a → ′a) → ′a

definition
val2cont :: ′a → ′a Cont where
val2cont ≡ (Λ a c. c·a)

definition
cont2val :: ′a Cont → ′a where
cont2val ≡ (Λ f . f ·ID)

lemma cont2val-val2cont-id: cont2val oo val2cont = ID
〈proof 〉

domain Expr =
Val (lazy val::Nat)

| Add (lazy addl::Expr) (lazy addr ::Expr)
| Throw
| Catch (lazy cbody::Expr) (lazy chandler ::Expr)

fixrec eval :: Expr → Nat Maybe
where

eval·(Val·n) = Just·n
| eval·(Add·x·y) = mliftM2 (Λ a b. a + b)·(eval·x)·(eval·y)
| eval·Throw = mfail
| eval·(Catch·x·y) = mcatch·(eval·x)·(eval·y)

fixrec eval-body :: (Expr → Nat Maybe) → Expr → Nat Maybe
where

eval-body·r ·(Val·n) = Just·n
| eval-body·r ·(Add·x·y) = mliftM2 (Λ a b. a + b)·(r ·x)·(r ·y)
| eval-body·r ·Throw = mfail
| eval-body·r ·(Catch·x·y) = mcatch·(r ·x)·(r ·y)

1The interested reader can find some historical commentary in Harel (1980); Sangiorgi
(2009).
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lemma eval-body-strictExpr [simp]: eval-body·r ·⊥ = ⊥
〈proof 〉

lemma eval-eval-body-eq: eval = fix·eval-body
〈proof 〉

8.1 Worker/wrapper
definition

unwrapC :: (Expr → Nat Maybe) → (Expr → (Nat → Nat Maybe) → Nat Maybe
→ Nat Maybe) where

unwrapC ≡ Λ g e s f . case g·e of Nothing ⇒ f | Just·n ⇒ s·n

lemma unwrapC-strict[simp]: unwrapC ·⊥ = ⊥
〈proof 〉

definition
wrapC :: (Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe) → (Expr

→ Nat Maybe) where
wrapC ≡ Λ g e. g·e·Just·Nothing

lemma wrapC-unwrapC-id: wrapC oo unwrapC = ID
〈proof 〉

definition
eval-work :: Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe where
eval-work ≡ fix·(unwrapC oo eval-body oo wrapC )

definition
eval-wrap :: Expr → Nat Maybe where
eval-wrap ≡ wrapC ·eval-work

fixrec eval-body ′ :: (Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe)
→ Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe

where
eval-body ′·r ·(Val·n)·s·f = s·n

| eval-body ′·r ·(Add·x·y)·s·f = (case wrapC ·r ·x of
Nothing ⇒ f

| Just·n ⇒ (case wrapC ·r ·y of
Nothing ⇒ f

| Just·m ⇒ s·(n + m)))
| eval-body ′·r ·Throw·s·f = f
| eval-body ′·r ·(Catch·x·y)·s·f = (case wrapC ·r ·x of

Nothing ⇒ (case wrapC ·r ·y of
Nothing ⇒ f

| Just·n ⇒ s·n)
| Just·n ⇒ s·n)

lemma eval-body ′-strictExpr [simp]: eval-body ′·r ·⊥·s·f = ⊥
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〈proof 〉

definition
eval-work ′ :: Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe where
eval-work ′ ≡ fix·eval-body ′

This proof is unfortunately quite messy, due to the simplifier’s inability to
cope with HOLCF’s case distinctions.
lemma eval-body ′-eval-body-eq: eval-body ′ = unwrapC oo eval-body oo wrapC
〈proof 〉

fixrec eval-body-final :: (Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe)
→ Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe

where
eval-body-final·r ·(Val·n)·s·f = s·n

| eval-body-final·r ·(Add·x·y)·s·f = r ·x·(Λ n. r ·y·(Λ m. s·(n + m))·f )·f
| eval-body-final·r ·Throw·s·f = f
| eval-body-final·r ·(Catch·x·y)·s·f = r ·x·s·(r ·y·s·f )

lemma eval-body-final-strictExpr [simp]: eval-body-final·r ·⊥·s·f = ⊥
〈proof 〉

lemma eval-body ′-eval-body-final-eq: eval-body-final oo unwrapC oo wrapC = eval-body ′

〈proof 〉

definition
eval-work-final :: Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe

where
eval-work-final ≡ fix·eval-body-final

definition
eval-final :: Expr → Nat Maybe where
eval-final ≡ (Λ e. eval-work-final·e·Just·Nothing)

lemma eval = eval-final
〈proof 〉

9 Backtracking using lazy lists and continuations

To illustrate the utility of worker/wrapper fusion to programming language
semantics, we consider here the first-order part of a higher-order backtrack-
ing language by Wand and Vaillancourt (2004); see also Danvy et al. (2001).
We refer the reader to these papers for a broader motivation for these lan-
guages.
As syntax is typically considered to be inductively generated, with each
syntactic object taken to be finite and completely defined, we define the
syntax for our language using a HOL datatype:
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datatype expr = const nat | add expr expr | disj expr expr | fail〈proof 〉〈proof 〉〈proof 〉

The language consists of constants, an addition function, a disjunctive choice
between expressions, and failure. We give it a direct semantics using the
monad of lazy lists of natural numbers, with the goal of deriving an an
extensionally-equivalent evaluator that uses double-barrelled continuations.
Our theory of lazy lists is entirely standard.
default-sort predomain

domain ′a llist =
lnil

| lcons (lazy ′a) (lazy ′a llist)

By relaxing the default sort of type variables to predomain, our polymorphic
definitions can be used at concrete types that do not contain ⊥. These
include those constructed from HOL types using the discrete ordering type
constructor ′a discr, and in particular our interpretation nat discr of the
natural numbers.
The following standard list functions underpin the monadic infrastructure:
fixrec lappend :: ′a llist → ′a llist → ′a llist where

lappend·lnil·ys = ys
| lappend·(lcons·x·xs)·ys = lcons·x·(lappend·xs·ys)

fixrec lconcat :: ′a llist llist → ′a llist where
lconcat·lnil = lnil

| lconcat·(lcons·x·xs) = lappend·x·(lconcat·xs)

fixrec lmap :: ( ′a → ′b) → ′a llist → ′b llist where
lmap·f ·lnil = lnil

| lmap·f ·(lcons·x·xs) = lcons·(f ·x)·(lmap·f ·xs)〈proof 〉〈proof 〉〈proof 〉

We define the lazy list monad S in the traditional fashion:
type-synonym S = nat discr llist

definition returnS :: nat discr → S where
returnS = (Λ x. lcons·x·lnil)

definition bindS :: S → (nat discr → S) → S where
bindS = (Λ x g. lconcat·(lmap·g·x))

Unfortunately the lack of higher-order polymorphism in HOL prevents us
from providing the general typing one would expect a monad to have in
Haskell.
The evaluator uses the following extra constants:
definition addS :: S → S → S where

addS ≡ (Λ x y. bindS ·x·(Λ xv. bindS ·y·(Λ yv. returnS ·(xv + yv))))
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definition disjS :: S → S → S where
disjS ≡ lappend

definition failS :: S where
failS ≡ lnil

We interpret our language using these combinators in the obvious way. The
only complication is that, even though our evaluator is primitive recursive,
we must explicitly use the fixed point operator as the worker/wrapper tech-
nique requires us to talk about the body of the recursive definition.
definition

evalS-body :: (expr discr → nat discr llist)
→ (expr discr → nat discr llist)

where
evalS-body ≡ Λ r e. case undiscr e of

const n ⇒ returnS ·(Discr n)
| add e1 e2 ⇒ addS ·(r ·(Discr e1 ))·(r ·(Discr e2 ))
| disj e1 e2 ⇒ disjS ·(r ·(Discr e1 ))·(r ·(Discr e2 ))
| fail ⇒ failS

abbreviation evalS :: expr discr → nat discr llist where
evalS ≡ fix·evalS-body

We aim to transform this evaluator into one using double-barrelled contin-
uations; one will serve as a "success" context, taking a natural number into
"the rest of the computation", and the other outright failure.
In general we could work with an arbitrary observation type ala Reynolds
(1974), but for convenience we use the clearly adequate concrete type nat
discr llist.
type-synonym Obs = nat discr llist
type-synonym Failure = Obs
type-synonym Success = nat discr → Failure → Obs
type-synonym K = Success → Failure → Obs

To ease our development we adopt what Wand and Vaillancourt (2004, §5)
call a "failure computation" instead of a failure continuation, which would
have the type unit → Obs.
The monad over the continuation type K is as follows:
definition returnK :: nat discr → K where

returnK ≡ (Λ x. Λ s f . s·x·f )

definition bindK :: K → (nat discr → K ) → K where
bindK ≡ Λ x g. Λ s f . x·(Λ xv f ′. g·xv·s·f ′)·f

Our extra constants are defined as follows:
definition addK :: K → K → K where
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addK ≡ (Λ x y. bindK ·x·(Λ xv. bindK ·y·(Λ yv. returnK ·(xv + yv))))

definition disjK :: K → K → K where
disjK ≡ (Λ g h. Λ s f . g·s·(h·s·f ))

definition failK :: K where
failK ≡ Λ s f . f

The continuation semantics is again straightforward:
definition

evalK-body :: (expr discr → K ) → (expr discr → K )
where

evalK-body ≡ Λ r e. case undiscr e of
const n ⇒ returnK ·(Discr n)

| add e1 e2 ⇒ addK ·(r ·(Discr e1 ))·(r ·(Discr e2 ))
| disj e1 e2 ⇒ disjK ·(r ·(Discr e1 ))·(r ·(Discr e2 ))
| fail ⇒ failK

abbreviation evalK :: expr discr → K where
evalK ≡ fix·evalK-body

We now set up a worker/wrapper relation between these two semantics.
The kernel of unwrap is the following function that converts a lazy list into
an equivalent continuation representation.
fixrec SK :: S → K where

SK ·lnil = failK
| SK ·(lcons·x·xs) = (Λ s f . s·x·(SK ·xs·s·f ))

definition
unwrap :: (expr discr → nat discr llist) → (expr discr → K )

where
unwrap ≡ Λ r e. SK ·(r ·e)〈proof 〉〈proof 〉

Symmetrically wrap converts an evaluator using continuations into one gen-
erating lazy lists by passing it the right continuations.
definition KS :: K → S where

KS ≡ (Λ k. k·lcons·lnil)

definition wrap :: (expr discr → K ) → (expr discr → nat discr llist) where
wrap ≡ Λ r e. KS ·(r ·e)〈proof 〉〈proof 〉

The worker/wrapper condition follows directly from these definitions.
lemma KS-SK-id:

KS ·(SK ·xs) = xs
〈proof 〉

lemma wrap-unwrap-id:
wrap oo unwrap = ID
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〈proof 〉

The worker/wrapper transformation is only non-trivial if wrap and unwrap
do not witness an isomorphism. In this case we can show that we do not
even have a Galois connection.
lemma cfun-not-below:

f ·x 6v g·x =⇒ f 6v g
〈proof 〉

lemma unwrap-wrap-not-under-id:
unwrap oo wrap 6v ID

〈proof 〉

We now apply worker_wrapper_id:
definition eval-work :: expr discr → K where

eval-work ≡ fix·(unwrap oo evalS-body oo wrap)

definition eval-ww :: expr discr → nat discr llist where
eval-ww ≡ wrap·eval-work

lemma evalS = eval-ww
〈proof 〉

We now show how the monadic operations correspond by showing that SK
witnesses a monad morphism (Wadler 1992, §6). As required by Danvy et al.
(2001, Definition 2.1), the mapping needs to hold for our specific operations
in addition to the common monadic scaffolding.
lemma SK-returnS-returnK :

SK ·(returnS ·x) = returnK ·x
〈proof 〉

lemma SK-lappend-distrib:
SK ·(lappend·xs·ys)·s·f = SK ·xs·s·(SK ·ys·s·f )
〈proof 〉

lemma SK-bindS-bindK :
SK ·(bindS ·x·g) = bindK ·(SK ·x)·(SK oo g)
〈proof 〉

lemma SK-addS-distrib:
SK ·(addS ·x·y) = addK ·(SK ·x)·(SK ·y)
〈proof 〉

lemma SK-disjS-disjK :
SK ·(disjS ·xs·ys) = disjK ·(SK ·xs)·(SK ·ys)
〈proof 〉

lemma SK-failS-failK :
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SK ·failS = failK
〈proof 〉

These lemmas directly establish the precondition for our all-in-one worker/wrap-
per and fusion rule:
lemma evalS-body-evalK-body:

unwrap oo evalS-body oo wrap = evalK-body oo unwrap oo wrap
〈proof 〉

theorem evalS-evalK :
evalS = wrap·evalK
〈proof 〉

This proof can be considered an instance of the approach of Hutton et al.
(2010), which uses the worker/wrapper machinery to relate two algebras.
This result could be obtained by a structural induction over the syntax of the
language. However our goal here is to show how such a transformation can
be achieved by purely equational means; this has the advantange that our
proof can be locally extended, e.g. to the full language of Danvy et al. (2001)
simply by proving extra equations. In contrast the higher-order language of
Wand and Vaillancourt (2004) is beyond the reach of this approach.

10 Transforming O(n2) nub into an O(n lg n) one

Andy Gill’s solution, mechanised.

10.1 The nub function.
fixrec nub :: Nat llist → Nat llist
where

nub·lnil = lnil
| nub·(x :@ xs) = x :@ nub·(lfilter ·(neg oo (Λ y. x =B y))·xs)

lemma nub-strict[simp]: nub·⊥ = ⊥
〈proof 〉

fixrec nub-body :: (Nat llist → Nat llist) → Nat llist → Nat llist
where

nub-body·f ·lnil = lnil
| nub-body·f ·(x :@ xs) = x :@ f ·(lfilter ·(neg oo (Λ y. x =B y))·xs)

lemma nub-nub-body-eq: nub = fix·nub-body
〈proof 〉
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10.2 Optimised data type.

Implement sets using lazy lists for now. Lifting up HOL’s ′a set type causes
continuity grief.
type-synonym NatSet = Nat llist

definition
SetEmpty :: NatSet where
SetEmpty ≡ lnil

definition
SetInsert :: Nat → NatSet → NatSet where
SetInsert ≡ lcons

definition
SetMem :: Nat → NatSet → tr where
SetMem ≡ lmember ·(bpred (=))

lemma SetMem-strict[simp]: SetMem·x·⊥ = ⊥ 〈proof 〉
lemma SetMem-SetEmpty[simp]: SetMem·x·SetEmpty = FF
〈proof 〉

lemma SetMem-SetInsert: SetMem·v·(SetInsert·x·s) = (SetMem·v·s orelse x =B

v)
〈proof 〉

AndyG’s new type.
domain R = R (lazy resultR :: Nat llist) (lazy exceptR :: NatSet)

definition
nextR :: R → (Nat ∗ R) Maybe where
nextR = (Λ r . case ldropWhile·(Λ x. SetMem·x·(exceptR·r))·(resultR·r) of

lnil ⇒ Nothing
| x :@ xs ⇒ Just·(x, R·xs·(exceptR·r)))

lemma nextR-strict1 [simp]: nextR·⊥ = ⊥ 〈proof 〉
lemma nextR-strict2 [simp]: nextR·(R·⊥·S) = ⊥ 〈proof 〉

lemma nextR-lnil[simp]: nextR·(R·lnil·S) = Nothing 〈proof 〉

definition
filterR :: Nat → R → R where
filterR ≡ (Λ v r . R·(resultR·r)·(SetInsert·v·(exceptR·r)))

definition
c2a :: Nat llist → R where
c2a ≡ Λ xs. R·xs·SetEmpty

definition
a2c :: R → Nat llist where

27



a2c ≡ Λ r . lfilter ·(Λ v. neg·(SetMem·v·(exceptR·r)))·(resultR·r)

lemma a2c-strict[simp]: a2c·⊥ = ⊥ 〈proof 〉

lemma a2c-c2a-id: a2c oo c2a = ID
〈proof 〉

definition
wrap :: (R → Nat llist) → Nat llist → Nat llist where
wrap ≡ Λ f xs. f ·(c2a·xs)

definition
unwrap :: (Nat llist → Nat llist) → R → Nat llist where
unwrap ≡ Λ f r . f ·(a2c·r)

lemma unwrap-strict[simp]: unwrap·⊥ = ⊥
〈proof 〉

lemma wrap-unwrap-id: wrap oo unwrap = ID
〈proof 〉

Equivalences needed for later.
lemma TR-deMorgan: neg·(x orelse y) = (neg·x andalso neg·y)
〈proof 〉

lemma case-maybe-case:
(case (case L of lnil ⇒ Nothing | x :@ xs ⇒ Just·(h·x·xs)) of

Nothing ⇒ f | Just·(a, b) ⇒ g·a·b)
=
(case L of lnil ⇒ f | x :@ xs ⇒ g·(fst (h·x·xs))·(snd (h·x·xs)))
〈proof 〉

lemma case-a2c-case-caseR:
(case a2c·w of lnil ⇒ f | x :@ xs ⇒ g·x·xs)
= (case nextR·w of Nothing ⇒ f | Just·(x, r) ⇒ g·x·(a2c·r)) (is ?lhs = ?rhs)

〈proof 〉

lemma filter-filterR: lfilter ·(neg oo (Λ y. x =B y))·(a2c·r) = a2c·(filterR·x·r)
〈proof 〉

Apply worker/wrapper. Unlike Gill/Hutton, we manipulate the body of the
worker into the right form then apply the lemma.
definition

nub-body ′ :: (R → Nat llist) → R → Nat llist where
nub-body ′ ≡ Λ f r . case a2c·r of lnil ⇒ lnil

| x :@ xs ⇒ x :@ f ·(c2a·(lfilter ·(neg oo (Λ y. x =B

y))·xs))

lemma nub-body-nub-body ′-eq: unwrap oo nub-body oo wrap = nub-body ′
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〈proof 〉

definition
nub-body ′′ :: (R → Nat llist) → R → Nat llist where
nub-body ′′ ≡ Λ f r . case nextR·r of Nothing ⇒ lnil

| Just·(x, xs) ⇒ x :@ f ·(c2a·(lfilter ·(neg oo (Λ y. x
=B y))·(a2c·xs)))

lemma nub-body ′-nub-body ′′-eq: nub-body ′ = nub-body ′′

〈proof 〉

definition
nub-body ′′′ :: (R → Nat llist) → R → Nat llist where
nub-body ′′′ ≡ (Λ f r . case nextR·r of Nothing ⇒ lnil

| Just·(x, xs) ⇒ x :@ f ·(filterR·x·xs))

lemma nub-body ′′-nub-body ′′′-eq: nub-body ′′ = nub-body ′′′ oo (unwrap oo wrap)
〈proof 〉

Finally glue it all together.
lemma nub-wrap-nub-body ′′′: nub = wrap·(fix·nub-body ′′′)
〈proof 〉

end

11 Optimise “last”.

Andy Gill’s solution, mechanised. No fusion, works fine using their rule.

11.1 The last function.
fixrec llast :: ′a llist → ′a
where

llast·(x :@ yys) = (case yys of lnil ⇒ x | y :@ ys ⇒ llast·yys)

lemma llast-strict[simp]: llast·⊥ = ⊥
〈proof 〉

fixrec llast-body :: ( ′a llist → ′a) → ′a llist → ′a
where

llast-body·f ·(x :@ yys) = (case yys of lnil ⇒ x | y :@ ys ⇒ f ·yys)

lemma llast-llast-body: llast = fix·llast-body
〈proof 〉

definition wrap :: ( ′a → ′a llist → ′a) → ( ′a llist → ′a) where
wrap ≡ Λ f (x :@ xs). f ·x·xs
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definition unwrap :: ( ′a llist → ′a) → ( ′a → ′a llist → ′a) where
unwrap ≡ Λ f x xs. f ·(x :@ xs)

lemma unwrap-strict[simp]: unwrap·⊥ = ⊥
〈proof 〉

lemma wrap-unwrap-ID: wrap oo unwrap oo llast-body = llast-body
〈proof 〉

definition llast-worker :: ( ′a → ′a llist → ′a) → ′a → ′a llist → ′a where
llast-worker ≡ Λ r x yys. case yys of lnil ⇒ x | y :@ ys ⇒ r ·y·ys

definition llast ′ :: ′a llist → ′a where
llast ′ ≡ wrap·(fix·llast-worker)

lemma llast-worker-llast-body: llast-worker = unwrap oo llast-body oo wrap
〈proof 〉

lemma llast ′-llast: llast ′ = llast (is ?lhs = ?rhs)
〈proof 〉

end

12 Concluding remarks

Gill and Hutton provide two examples of fusion: accumulator introduction
in their §4, and the transformation in their §7 of an interpreter for a lan-
guage with exceptions into one employing continuations. Both involve strict
unwraps and are indeed totally correct.
The example in their §5 demonstrates the unboxing of numerical compu-
tations using a different worker/wrapper rule and does not require fusion.
In their §6 a non-strict unwrap is used to memoise functions over the natu-
ral numbers using the rule considered here. It should in fact use the same
rule as the unboxing example as the scheme only correctly memoises strict
functions. We can see this by considering a base case missing from their
inductive proof, viz that if f :: Nat → a is not strict – in fact constant, as
Nat is a flat domain – then f ⊥ 6= ⊥ = (map f [0..]) !! ⊥, where xs !! n is
the nth element of xs.
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