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1 Introduction

This mechanisation of the worker/wrapper theory of Gill and Hutton (2009)
was carried out in Isabelle/HOLCF (Müller et al. 1999; Huffman 2009). It
accompanies Gammie (2011). The reader should note that oo stands for
function composition, Λ_._ for continuous function abstraction, _ · _ for
continuous function application, domain for recursive-datatype definition.

2 Fixed-point theorems for program transforma-
tion

We begin by recounting some standard theorems from the early days of
denotational semantics. The origins of these results are lost to history; the
interested reader can find some of it in Bekić (1984); Manna (1974); Greibach
(1975); Stoy (1977); de Bakker et al. (1980); Harel (1980); Plotkin (1983);
Winskel (1993); Sangiorgi (2009).

2.1 The rolling rule

The rolling rule captures what intuitively happens when we re-order a re-
cursive computation consisting of two parts. This theorem dates from the
1970s at the latest – see Stoy (1977, p210) and Plotkin (1983). The following
proofs were provided by Gill and Hutton (2009).
lemma rolling-rule-ltr : fix·(g oo f ) v g·(fix·(f oo g))
proof −

have g·(fix·(f oo g)) v g·(fix·(f oo g))
by (rule below-refl) — reflexivity

hence g·((f oo g)·(fix·(f oo g))) v g·(fix·(f oo g))
using fix-eq[where F=f oo g] by simp — computation

hence (g oo f )·(g·(fix·(f oo g))) v g·(fix·(f oo g))
by simp — re-associate (oo)

thus fix·(g oo f ) v g·(fix·(f oo g))
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using fix-least-below by blast — induction
qed

lemma rolling-rule-rtl: g·(fix·(f oo g)) v fix·(g oo f )
proof −

have fix·(f oo g) v f ·(fix·(g oo f )) by (rule rolling-rule-ltr)
hence g·(fix·(f oo g)) v g·(f ·(fix·(g oo f )))

by (rule monofun-cfun-arg) — g is monotonic
thus g·(fix·(f oo g)) v fix·(g oo f )

using fix-eq[where F=g oo f ] by simp — computation
qed

lemma rolling-rule: fix·(g oo f ) = g·(fix·(f oo g))
by (rule below-antisym[OF rolling-rule-ltr rolling-rule-rtl])

2.2 Least-fixed-point fusion

Least-fixed-point fusion provides a kind of induction that has proven to be
very useful in calculational settings. Intuitively it lifts the step-by-step cor-
respondence between f and h witnessed by the strict function g to the fixed
points of f and g:

• •

• •

-h

6
g

-
f

6
g =⇒

fix h

fix f

6
g

Fokkinga and Meijer (1991), and also their later Meijer, Fokkinga, and Pa-
terson (1991), made extensive use of this rule, as did Tullsen (2002) in his
program transformation tool PATH. This diagram is strongly reminiscent
of the simulations used to establish refinement relations between imperative
programs and their specifications (de Roever and Engelhardt 1998).
The following proof is close to the third variant of Stoy (1977, p215). We
relate the two fixpoints using the rule parallel_fix_ind:

adm (λx. ?P (fst x) (snd x)) ?P ⊥ ⊥
∧

x y.
?P x y

?P (?F ·x) (?G·y)
?P (fix·?F) (fix·?G)

in a very straightforward way:
lemma lfp-fusion:

assumes g·⊥ = ⊥
assumes g oo f = h oo g
shows g·(fix·f ) = fix·h

proof(induct rule: parallel-fix-ind)
case 2 show g·⊥ = ⊥ by fact
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For a recursive definition comp = fix body for some body :: A → A
and a pair of functions wrap :: B → A and unwrap :: A → B where
wrap ◦ unwrap = idA, we have:

comp = wrap work
work :: B
work = fix (unwrap ◦ body ◦ wrap)

(the worker/wrapper

transformation)
Also:

(unwrap ◦ wrap) work = work (worker/wrapper fusion)

Figure 1: The worker/wrapper transformation and fusion rule of Gill and
Hutton (2009).

case (3 x y)
from ‹g·x = y› ‹g oo f = h oo g› show g·(f ·x) = h·y

by (simp add: cfun-eq-iff )
qed simp

This lemma also goes by the name of Plotkin’s axiom (Pitts 1996) or uni-
formity (Simpson and Plotkin 2000).

3 The transformation according to Gill and Hut-
ton

The worker/wrapper transformation and associated fusion rule as formalised
by Gill and Hutton (2009) are reproduced in Figure 1, and the reader is
referred to the original paper for further motivation and background.
Armed with the rolling rule we can show that Gill and Hutton’s justification
of the worker/wrapper transformation is sound. There is a battery of these
transformations with varying strengths of hypothesis.
The first requires wrap oo unwrap to be the identity for all values.
lemma worker-wrapper-id:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: wrap oo unwrap = ID
assumes comp-body: computation = fix·body
shows computation = wrap·(fix·(unwrap oo body oo wrap))

proof −
from comp-body have computation = fix·(ID oo body)

by simp
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also from wrap-unwrap have . . . = fix·(wrap oo unwrap oo body)
by (simp add: assoc-oo)

also have ... = wrap·(fix·(unwrap oo body oo wrap))
using rolling-rule[where f=unwrap oo body and g=wrap]
by (simp add: assoc-oo)

finally show ?thesis .
qed

The second weakens this assumption by requiring that wrap oo wrap only
act as the identity on values in the image of body.
lemma worker-wrapper-body:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: wrap oo unwrap oo body = body
assumes comp-body: computation = fix·body
shows computation = wrap·(fix·(unwrap oo body oo wrap))

proof −
from comp-body have computation = fix·(wrap oo unwrap oo body)

using wrap-unwrap by (simp add: assoc-oo wrap-unwrap)
also have ... = wrap·(fix·(unwrap oo body oo wrap))

using rolling-rule[where f=unwrap oo body and g=wrap]
by (simp add: assoc-oo)

finally show ?thesis .
qed

This is particularly useful when the computation being transformed is strict
in its argument.
Finally we can allow the identity to take the full recursive context into
account. This rule was described by Gill and Hutton but not used.
lemma worker-wrapper-fix:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: fix·(wrap oo unwrap oo body) = fix·body
assumes comp-body: computation = fix·body
shows computation = wrap·(fix·(unwrap oo body oo wrap))

proof −
from comp-body have computation = fix·(wrap oo unwrap oo body)

using wrap-unwrap by (simp add: assoc-oo wrap-unwrap)
also have ... = wrap·(fix·(unwrap oo body oo wrap))

using rolling-rule[where f=unwrap oo body and g=wrap]
by (simp add: assoc-oo)

finally show ?thesis .
qed

Gill and Hutton’s worker-wrapper-fusion rule is intended to allow the trans-
formation of (unwrap oo wrap)·R to R in recursive contexts, where R is
meant to be a self-call. Note that it assumes that the first worker/wrapper
hypothesis can be established.
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lemma worker-wrapper-fusion:
fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: wrap oo unwrap = ID
assumes work: work = fix·(unwrap oo body oo wrap)
shows (unwrap oo wrap)·work = work

proof −
have (unwrap oo wrap)·work = (unwrap oo wrap)·(fix·(unwrap oo body oo wrap))

using work by simp
also have . . . = (unwrap oo wrap)·(fix·(unwrap oo body oo wrap oo unwrap oo

wrap))
using wrap-unwrap by (simp add: assoc-oo)

also have . . . = fix·(unwrap oo wrap oo unwrap oo body oo wrap)
using rolling-rule[where f=unwrap oo body oo wrap and g=unwrap oo wrap]
by (simp add: assoc-oo)

also have . . . = fix·(unwrap oo body oo wrap)
using wrap-unwrap by (simp add: assoc-oo)

finally show ?thesis using work by simp
qed

The following sections show that this rule only preserves partial correctness.
This is because Gill and Hutton apply it in the context of the fold/unfold
program transformation framework of Burstall and Darlington (1977), which
need not preserve termination. We show that the fusion rule does in fact
require extra conditions to be totally correct and propose one such sufficient
condition.

3.1 Worker/wrapper fusion is partially correct

We now examine how Gill and Hutton apply their worker/wrapper fusion
rule in the context of the fold/unfold framework.
The key step of those left implicit in the original paper is the use of the
fold rule to justify replacing the worker with the fused version. Schemati-
cally, the fold/unfold framework maintains a history of all definitions that
have appeared during transformation, and the fold rule treats this as a set
of rewrite rules oriented right-to-left. (The unfold rule treats the current
working set of definitions as rewrite rules oriented left-to-right.) Hence as
each definition f = body yields a rule of the form body =⇒ f , one can al-
ways derive f = f . Clearly this has dire implications for the preservation
of termination behaviour.
Tullsen (2002) in his §3.1.2 observes that the semantic essence of the fold
rule is Park induction:

f ·?x = ?x
fix·f v ?x

fix_least

viz that f x = x implies only the partially correct fix f v x , and not the
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totally correct fix f = x . We use this characterisation to show that if
unwrap is non-strict (i.e. unwrap ⊥ 6= ⊥) then there are programs where
worker/wrapper fusion as used by Gill and Hutton need only be partially
correct.
Consider the scenario described in Figure 1. After applying the worker/wrap-
per transformation, we attempt to apply fusion by finding a residual expres-
sion body ′ such that the body of the worker, i.e. the expression unwrap oo
body oo wrap, can be rewritten as body ′ oo unwrap oo wrap. Intuitively this
is the semantic form of workers where all self-calls are fusible. Our goal is
to justify redefining work to fix·body ′, i.e. to establish:

fix·(unwrap oo body oo wrap) = fix·body ′

We show that worker/wrapper fusion as proposed by Gill and Hutton is
partially correct using Park induction:
lemma fusion-partially-correct:

assumes wrap-unwrap: wrap oo unwrap = ID
assumes work: work = fix·(unwrap oo body oo wrap)
assumes body ′: unwrap oo body oo wrap = body ′ oo unwrap oo wrap
shows fix·body ′ v work

proof(rule fix-least)
have work = (unwrap oo body oo wrap)·work

using work by (simp add: fix-eq[symmetric])
also have ... = (body ′ oo unwrap oo wrap)·work

using body ′ by simp
also have ... = (body ′ oo unwrap oo wrap)·((unwrap oo body oo wrap)·work)

using work by (simp add: fix-eq[symmetric])
also have ... = (body ′ oo unwrap oo wrap oo unwrap oo body oo wrap)·work

by simp
also have ... = (body ′ oo unwrap oo body oo wrap)·work

using wrap-unwrap by (simp add: assoc-oo)
also have ... = body ′·work

using work by (simp add: fix-eq[symmetric])
finally show body ′·work = work by simp

qed

The next section shows the converse does not obtain.

3.2 A non-strict unwrap may go awry

If unwrap is non-strict, then it is possible that the fusion rule proposed by
Gill and Hutton does not preserve termination. To show this we take a small
artificial example. The type A is not important, but we need access to a
non-bottom inhabitant. The target type B is the non-strict lift of A.
domain A = A
domain B = B (lazy A)
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The functions wrap and unwrap that map between these types are routine.
Note that wrap is (necessarily) strict due to the property ∀ x. ?f ·(?g·x) = x
=⇒ ?f ·⊥ = ⊥.
fixrec wrap :: B → A
where wrap·(B·a) = a

fixrec unwrap :: A → B
where unwrap = B

Discharging the worker/wrapper hypothesis is similarly routine.
lemma wrap-unwrap: wrap oo unwrap = ID

by (simp add: cfun-eq-iff )

The candidate computation we transform can be any that uses the recursion
parameter r non-strictly. The following is especially trivial.
fixrec body :: A → A
where body·r = A

The wrinkle is that the transformed worker can be strict in the recursion
parameter r, as unwrap always lifts it.
fixrec body ′ :: B → B
where body ′·(B·a) = B·A

As explained above, we set up the fusion opportunity:
lemma body-body ′: unwrap oo body oo wrap = body ′ oo unwrap oo wrap

by (simp add: cfun-eq-iff )

This result depends crucially on unwrap being non-strict.
Our earlier result shows that the proposed transformation is partially cor-
rect:
lemma fix·body ′ v fix·(unwrap oo body oo wrap)

by (rule fusion-partially-correct[OF wrap-unwrap refl body-body ′])

However it is easy to see that it is not totally correct:
lemma ¬ fix·(unwrap oo body oo wrap) v fix·body ′

proof −
have l: fix·(unwrap oo body oo wrap) = B·A

by (subst fix-eq) simp
have r : fix·body ′ = ⊥

by (simp add: fix-strict)
from l r show ?thesis by simp

qed

This trick works whenever unwrap is not strict. In the following section we
show that requiring unwrap to be strict leads to a straightforward proof of
total correctness.
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Note that if we have already established that wrap oo unwrap = ID, then
making unwrap strict preserves this equation:
lemma

assumes wrap oo unwrap = ID
shows wrap oo strictify·unwrap = ID

proof(rule cfun-eqI )
fix x
from assms
show (wrap oo strictify·unwrap)·x = ID·x

by (cases x = ⊥) (simp-all add: cfun-eq-iff retraction-strict)
qed

From this we conclude that the worker/wrapper transformation itself cannot
exploit any laziness in unwrap under the context-insensitive assumptions of
worker-wrapper-id. This is not to say that other program transformations
may not be able to.

4 A totally-correct fusion rule

We now show that a termination-preserving worker/wrapper fusion rule can
be obtained by requiring unwrap to be strict. (As we observed earlier, wrap
must always be strict due to the assumption that wrap oo unwrap = ID.)
Our first result shows that a combined worker/wrapper transformation and
fusion rule is sound, using the assumptions of worker-wrapper-id and the
ubiquitous lfp-fusion rule.
lemma worker-wrapper-fusion-new:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
fixes body ′ :: ′b → ′b
assumes wrap-unwrap: wrap oo unwrap = (ID :: ′a → ′a)
assumes unwrap-strict: unwrap·⊥ = ⊥
assumes body-body ′: unwrap oo body oo wrap = body ′ oo (unwrap oo wrap)
shows fix·body = wrap·(fix·body ′)

proof −
from body-body ′

have unwrap oo body oo (wrap oo unwrap) = (body ′ oo unwrap oo (wrap oo
unwrap))

by (simp add: assoc-oo)
with wrap-unwrap have unwrap oo body = body ′ oo unwrap

by simp
with unwrap-strict have unwrap·(fix·body) = fix·body ′

by (rule lfp-fusion)
hence (wrap oo unwrap)·(fix·body) = wrap·(fix·body ′)

by simp
with wrap-unwrap show ?thesis by simp

qed
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We can also show a more general result which allows fusion to be optionally
performed on a per-recursive-call basis using parallel_fix_ind:
lemma worker-wrapper-fusion-new-general:

fixes wrap :: ′b::pcpo → ′a::pcpo
fixes unwrap :: ′a → ′b
assumes wrap-unwrap: wrap oo unwrap = (ID :: ′a → ′a)
assumes unwrap-strict: unwrap·⊥ = ⊥
assumes body-body ′:

∧
r . (unwrap oo wrap)·r = r

=⇒ (unwrap oo body oo wrap)·r = body ′·r
shows fix·body = wrap·(fix·body ′)

proof −
let ?P = λ(x, y). x = y ∧ unwrap·(wrap·x) = x
have ?P (fix·(unwrap oo body oo wrap), (fix·body ′))
proof(induct rule: parallel-fix-ind)

case 2 with retraction-strict unwrap-strict wrap-unwrap show ?P (⊥, ⊥)
by (bestsimp simp add: cfun-eq-iff )

case (3 x y)
hence xy: x = y and unwrap-wrap: unwrap·(wrap·x) = x by auto
from body-body ′ xy unwrap-wrap
have (unwrap oo body oo wrap)·x = body ′·y

by simp
moreover
from wrap-unwrap
have unwrap·(wrap·((unwrap oo body oo wrap)·x)) = (unwrap oo body oo wrap)·x

by (simp add: cfun-eq-iff )
ultimately show ?case by simp

qed simp
thus ?thesis

using worker-wrapper-id[OF wrap-unwrap refl] by simp
qed

This justifies the syntactically-oriented rules shown in Figure 2; note the
scoping of the fusion rule.
Those familiar with the “bananas” work of Meijer, Fokkinga, and Paterson
(1991) will not be surprised that adding a strictness assumption justifies an
equational fusion rule.

5 Naive reverse becomes accumulator-reverse.

5.1 Hughes lists, naive reverse, worker-wrapper optimisa-
tion.

The “Hughes” list type.
type-synonym ′a H = ′a llist → ′a llist

definition
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For a recursive definition comp = body of type A and a pair of func-
tions wrap :: B → A and unwrap :: A → B where wrap ◦ unwrap = idA
and unwrap ⊥ = ⊥, define:

comp = wrap work
work = unwrap (body [wrap work/comp])

(the worker/wrapper

transformation)
In the scope of work , the following rewrite is admissable:

unwrap (wrap work) =⇒ work (worker/wrapper fusion)

Figure 2: The syntactic worker/wrapper transformation and fusion rule.

list2H :: ′a llist → ′a H where
list2H ≡ lappend

lemma acc-c2a-strict[simp]: list2H ·⊥ = ⊥
by (rule cfun-eqI , simp add: list2H-def )

definition
H2list :: ′a H → ′a llist where
H2list ≡ Λ f . f ·lnil

The paper only claims the homomorphism holds for finite lists, but in fact
it holds for all lazy lists in HOLCF. They are trying to dodge an explicit
appeal to the equation ⊥ = (Λ x. ⊥), which does not hold in Haskell.
lemma H-llist-hom-append: list2H ·(xs :++ ys) = list2H ·xs oo list2H ·ys (is ?lhs
= ?rhs)
proof(rule cfun-eqI )

fix zs
have ?lhs·zs = (xs :++ ys) :++ zs by (simp add: list2H-def )
also have . . . = xs :++ (ys :++ zs) by (rule lappend-assoc)
also have . . . = list2H ·xs·(ys :++ zs) by (simp add: list2H-def )
also have . . . = list2H ·xs·(list2H ·ys·zs) by (simp add: list2H-def )
also have . . . = (list2H ·xs oo list2H ·ys)·zs by simp
finally show ?lhs·zs = (list2H ·xs oo list2H ·ys)·zs .

qed

lemma H-llist-hom-id: list2H ·lnil = ID by (simp add: list2H-def )

lemma H2list-list2H-inv: H2list oo list2H = ID
by (rule cfun-eqI , simp add: H2list-def list2H-def )

Gill and Hutton (2009, §4.2) define the naive reverse function as follows.
fixrec lrev :: ′a llist → ′a llist
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where
lrev·lnil = lnil

| lrev·(x :@ xs) = lrev·xs :++ (x :@ lnil)

Note “body” is the generator of lrev-def.
lemma lrev-strict[simp]: lrev·⊥ = ⊥
by fixrec-simp

fixrec lrev-body :: ( ′a llist → ′a llist) → ′a llist → ′a llist
where

lrev-body·r ·lnil = lnil
| lrev-body·r ·(x :@ xs) = r ·xs :++ (x :@ lnil)

lemma lrev-body-strict[simp]: lrev-body·r ·⊥ = ⊥
by fixrec-simp

This is trivial but syntactically a bit touchy. Would be nicer to define
lrev-body as the generator of the fixpoint definition of lrev directly.
lemma lrev-lrev-body-eq: lrev = fix·lrev-body

by (rule cfun-eqI , subst lrev-def , subst lrev-body.unfold, simp)

Wrap / unwrap functions.
definition

unwrapH :: ( ′a llist → ′a llist) → ′a llist → ′a H where
unwrapH ≡ Λ f xs . list2H ·(f ·xs)

lemma unwrapH-strict[simp]: unwrapH ·⊥ = ⊥
unfolding unwrapH-def by (rule cfun-eqI , simp)

definition
wrapH :: ( ′a llist → ′a H ) → ′a llist → ′a llist where
wrapH ≡ Λ f xs . H2list·(f ·xs)

lemma wrapH-unwrapH-id: wrapH oo unwrapH = ID (is ?lhs = ?rhs)
proof(rule cfun-eqI )+

fix f xs
have ?lhs·f ·xs = H2list·(list2H ·(f ·xs)) by (simp add: wrapH-def unwrapH-def )
also have . . . = (H2list oo list2H )·(f ·xs) by simp
also have . . . = ID·(f ·xs) by (simp only: H2list-list2H-inv)
also have . . . = ?rhs·f ·xs by simp
finally show ?lhs·f ·xs = ?rhs·f ·xs .

qed

5.2 Gill/Hutton-style worker/wrapper.
definition

lrev-work :: ′a llist → ′a H where
lrev-work ≡ fix·(unwrapH oo lrev-body oo wrapH )
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definition
lrev-wrap :: ′a llist → ′a llist where
lrev-wrap ≡ wrapH ·lrev-work

lemma lrev-lrev-ww-eq: lrev = lrev-wrap
using worker-wrapper-id[OF wrapH-unwrapH-id lrev-lrev-body-eq]
by (simp add: lrev-wrap-def lrev-work-def )

5.3 Optimise worker/wrapper.

Intermediate worker.
fixrec lrev-body1 :: ( ′a llist → ′a H ) → ′a llist → ′a H
where

lrev-body1 ·r ·lnil = list2H ·lnil
| lrev-body1 ·r ·(x :@ xs) = list2H ·(wrapH ·r ·xs :++ (x :@ lnil))

definition
lrev-work1 :: ′a llist → ′a H where
lrev-work1 ≡ fix·lrev-body1

lemma lrev-body-lrev-body1-eq: lrev-body1 = unwrapH oo lrev-body oo wrapH
apply (rule cfun-eqI )+
apply (subst lrev-body.unfold)
apply (subst lrev-body1 .unfold)
apply (case-tac xa)
apply (simp-all add: list2H-def wrapH-def unwrapH-def )
done

lemma lrev-work1-lrev-work-eq: lrev-work1 = lrev-work
by (unfold lrev-work-def lrev-work1-def ,

rule cfun-arg-cong[OF lrev-body-lrev-body1-eq])

Now use the homomorphism.
fixrec lrev-body2 :: ( ′a llist → ′a H ) → ′a llist → ′a H
where

lrev-body2 ·r ·lnil = ID
| lrev-body2 ·r ·(x :@ xs) = list2H ·(wrapH ·r ·xs) oo list2H ·(x :@ lnil)

lemma lrev-body2-strict[simp]: lrev-body2 ·r ·⊥ = ⊥
by fixrec-simp

definition
lrev-work2 :: ′a llist → ′a H where
lrev-work2 ≡ fix·lrev-body2

lemma lrev-work2-strict[simp]: lrev-work2 ·⊥ = ⊥
unfolding lrev-work2-def
by (subst fix-eq) simp

13



lemma lrev-body2-lrev-body1-eq: lrev-body2 = lrev-body1
by ((rule cfun-eqI )+

, (subst lrev-body1 .unfold, subst lrev-body2 .unfold)
, (simp add: H-llist-hom-append[symmetric] H-llist-hom-id))

lemma lrev-work2-lrev-work1-eq: lrev-work2 = lrev-work1
by (unfold lrev-work2-def lrev-work1-def

, rule cfun-arg-cong[OF lrev-body2-lrev-body1-eq])

Simplify.
fixrec lrev-body3 :: ( ′a llist → ′a H ) → ′a llist → ′a H
where

lrev-body3 ·r ·lnil = ID
| lrev-body3 ·r ·(x :@ xs) = r ·xs oo list2H ·(x :@ lnil)

lemma lrev-body3-strict[simp]: lrev-body3 ·r ·⊥ = ⊥
by fixrec-simp

definition
lrev-work3 :: ′a llist → ′a H where
lrev-work3 ≡ fix·lrev-body3

lemma lrev-wwfusion: list2H ·((wrapH ·lrev-work2 )·xs) = lrev-work2 ·xs
proof −

{
have list2H oo wrapH ·lrev-work2 = unwrapH ·(wrapH ·lrev-work2 )

by (rule cfun-eqI , simp add: unwrapH-def )
also have . . . = (unwrapH oo wrapH )·lrev-work2 by simp
also have . . . = lrev-work2

apply −
apply (rule worker-wrapper-fusion[OF wrapH-unwrapH-id, where body=lrev-body])
apply (auto iff : lrev-body2-lrev-body1-eq lrev-body-lrev-body1-eq lrev-work2-def

lrev-work1-def )
done

finally have list2H oo wrapH ·lrev-work2 = lrev-work2 .
}
thus ?thesis using cfun-eq-iff [where f=list2H oo wrapH ·lrev-work2 and g=lrev-work2 ]

by auto
qed

If we use this result directly, we only get a partially-correct program trans-
formation, see Tullsen (2002) for details.
lemma lrev-work3 v lrev-work2

unfolding lrev-work3-def
proof(rule fix-least)

{
fix xs have lrev-body3 ·lrev-work2 ·xs = lrev-work2 ·xs
proof(cases xs)

case bottom thus ?thesis by simp
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next
case lnil thus ?thesis

unfolding lrev-work2-def
by (subst fix-eq[where F=lrev-body2 ], simp)

next
case (lcons y ys)
hence lrev-body3 ·lrev-work2 ·xs = lrev-work2 ·ys oo list2H ·(y :@ lnil) by simp
also have . . . = list2H ·((wrapH ·lrev-work2 )·ys) oo list2H ·(y :@ lnil)

using lrev-wwfusion[where xs=ys] by simp
also from lcons have . . . = lrev-body2 ·lrev-work2 ·xs by simp
also have . . . = lrev-work2 ·xs

unfolding lrev-work2-def by (simp only: fix-eq[symmetric])
finally show ?thesis by simp

qed
}
thus lrev-body3 ·lrev-work2 = lrev-work2 by (rule cfun-eqI )

qed

We can’t show the reverse inclusion in the same way as the fusion law doesn’t
hold for the optimised definition. (Intuitively we haven’t established that it
is equal to the original lrev definition.) We could show termination of the
optimised definition though, as it operates on finite lists. Alternatively we
can use induction (over the list argument) to show total equivalence.
The following lemma shows that the fusion Gill/Hutton want to do is com-
pletely sound in this context, by appealing to the lazy list induction princi-
ple.
lemma lrev-work3-lrev-work2-eq: lrev-work3 = lrev-work2 (is ?lhs = ?rhs)
proof(rule cfun-eqI )

fix x
show ?lhs·x = ?rhs·x
proof(induct x)

show lrev-work3 ·⊥ = lrev-work2 ·⊥
apply (unfold lrev-work3-def lrev-work2-def )
apply (subst fix-eq[where F=lrev-body2 ])
apply (subst fix-eq[where F=lrev-body3 ])
by (simp add: lrev-body3 .unfold lrev-body2 .unfold)

next
show lrev-work3 ·lnil = lrev-work2 ·lnil

apply (unfold lrev-work3-def lrev-work2-def )
apply (subst fix-eq[where F=lrev-body2 ])
apply (subst fix-eq[where F=lrev-body3 ])
by (simp add: lrev-body3 .unfold lrev-body2 .unfold)

next
fix a l assume lrev-work3 ·l = lrev-work2 ·l
thus lrev-work3 ·(a :@ l) = lrev-work2 ·(a :@ l)

apply (unfold lrev-work3-def lrev-work2-def )
apply (subst fix-eq[where F=lrev-body2 ])
apply (subst fix-eq[where F=lrev-body3 ])
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apply (fold lrev-work3-def lrev-work2-def )
apply (simp add: lrev-body3 .unfold lrev-body2 .unfold lrev-wwfusion)
done

qed simp-all
qed

Use the combined worker/wrapper-fusion rule. Note we get a weaker lemma.
lemma lrev3-2-syntactic: lrev-body3 oo (unwrapH oo wrapH ) = lrev-body2

apply (subst lrev-body2 .unfold, subst lrev-body3 .unfold)
apply (rule cfun-eqI )+
apply (case-tac xa)

apply (simp-all add: unwrapH-def )
done

lemma lrev-work3-lrev-work2-eq ′: lrev = wrapH ·lrev-work3
proof −

from lrev-lrev-body-eq
have lrev = fix·lrev-body .
also from wrapH-unwrapH-id unwrapH-strict
have . . . = wrapH ·(fix·lrev-body3 )

by (rule worker-wrapper-fusion-new
, simp add: lrev3-2-syntactic lrev-body2-lrev-body1-eq lrev-body-lrev-body1-eq)

finally show ?thesis unfolding lrev-work3-def by simp
qed

Final syntactic tidy-up.
fixrec lrev-body-final :: ( ′a llist → ′a H ) → ′a llist → ′a H
where

lrev-body-final·r ·lnil·ys = ys
| lrev-body-final·r ·(x :@ xs)·ys = r ·xs·(x :@ ys)

definition
lrev-work-final :: ′a llist → ′a H where
lrev-work-final ≡ fix·lrev-body-final

definition
lrev-final :: ′a llist → ′a llist where
lrev-final ≡ Λ xs. lrev-work-final·xs·lnil

lemma lrev-body-final-lrev-body3-eq ′: lrev-body-final·r ·xs = lrev-body3 ·r ·xs
apply (subst lrev-body-final.unfold)
apply (subst lrev-body3 .unfold)
apply (cases xs)
apply (simp-all add: list2H-def ID-def cfun-eqI )
done

lemma lrev-body-final-lrev-body3-eq: lrev-body-final = lrev-body3
by (simp only: lrev-body-final-lrev-body3-eq ′ cfun-eqI )
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lemma lrev-final-lrev-eq: lrev = lrev-final (is ?lhs = ?rhs)
proof −

have ?lhs = lrev-wrap by (rule lrev-lrev-ww-eq)
also have . . . = wrapH ·lrev-work by (simp only: lrev-wrap-def )
also have . . . = wrapH ·lrev-work1 by (simp only: lrev-work1-lrev-work-eq)
also have . . . = wrapH ·lrev-work2 by (simp only: lrev-work2-lrev-work1-eq)
also have . . . = wrapH ·lrev-work3 by (simp only: lrev-work3-lrev-work2-eq)
also have . . . = wrapH ·lrev-work-final by (simp only: lrev-work3-def lrev-work-final-def

lrev-body-final-lrev-body3-eq)
also have . . . = lrev-final by (simp add: lrev-final-def cfun-eqI H2list-def wrapH-def )
finally show ?thesis .

qed

6 Unboxing types.

The original application of the worker/wrapper transformation was the un-
boxing of flat types by Peyton Jones and Launchbury (1991). We can model
the boxed and unboxed types as (respectively) pointed and unpointed do-
mains in HOLCF. Concretely UNat denotes the discrete domain of naturals,
UNat⊥ the lifted (flat and pointed) variant, and Nat the standard boxed
domain, isomorphic to UNat⊥. This latter distinction helps us keep the
boxed naturals and lifted function codomains separated; applications of un-
box should be thought of in the same way as Haskell’s newtype constructors,
i.e. operationally equivalent to ID.
The divergence monad is used to handle the unboxing, see below.

6.1 Factorial example.

Standard definition of factorial.
fixrec fac :: Nat → Nat
where

fac·n = If n =B 0 then 1 else n ∗ fac·(n − 1 )

declare fac.simps[simp del]

lemma fac-strict[simp]: fac·⊥ = ⊥
by fixrec-simp

definition
fac-body :: (Nat → Nat) → Nat → Nat where
fac-body ≡ Λ r n. If n =B 0 then 1 else n ∗ r ·(n − 1 )

lemma fac-body-strict[simp]: fac-body·r ·⊥ = ⊥
unfolding fac-body-def by simp
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lemma fac-fac-body-eq: fac = fix·fac-body
unfolding fac-body-def by (rule cfun-eqI , subst fac-def , simp)

Wrap / unwrap functions. Note the explicit lifting of the co-domain. For
some reason the published version of Gill and Hutton (2009) does not discuss
this point: if we’re going to handle recursive functions, we need a bottom.
unbox simply removes the tag, yielding a possibly-divergent unboxed value,
the result of the function.
definition

unwrapB :: (Nat → Nat) → UNat → UNat⊥ where
unwrapB ≡ Λ f . unbox oo f oo box

Note that the monadic bind operator (>>=) here stands in for the case
construct in the paper.
definition

wrapB :: (UNat → UNat⊥) → Nat → Nat where
wrapB ≡ Λ f x . unbox·x >>= f >>= box

lemma wrapB-unwrapB-body:
assumes strictF : f ·⊥ = ⊥
shows (wrapB oo unwrapB)·f = f (is ?lhs = ?rhs)

proof(rule cfun-eqI )
fix x :: Nat
have ?lhs·x = unbox·x >>= (Λ x ′. unwrapB·f ·x ′ >>= box)

unfolding wrapB-def by simp
also have . . . = unbox·x >>= (Λ x ′. unbox·(f ·(box·x ′)) >>= box)

unfolding unwrapB-def by simp
also from strictF have . . . = f ·x by (cases x, simp-all)
finally show ?lhs·x = ?rhs·x .

qed

Apply worker/wrapper.
definition

fac-work :: UNat → UNat⊥ where
fac-work ≡ fix·(unwrapB oo fac-body oo wrapB)

definition
fac-wrap :: Nat → Nat where
fac-wrap ≡ wrapB·fac-work

lemma fac-fac-ww-eq: fac = fac-wrap (is ?lhs = ?rhs)
proof −

have wrapB oo unwrapB oo fac-body = fac-body
using wrapB-unwrapB-body[OF fac-body-strict]
by − (rule cfun-eqI , simp)

thus ?thesis
using worker-wrapper-body[where computation=fac and body=fac-body and

wrap=wrapB and unwrap=unwrapB]
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unfolding fac-work-def fac-wrap-def by (simp add: fac-fac-body-eq)
qed

This is not entirely faithful to the paper, as they don’t explicitly handle the
lifting of the codomain.
definition

fac-body ′ :: (UNat → UNat⊥) → UNat → UNat⊥ where
fac-body ′ ≡ Λ r n.

unbox·(If box·n =B 0
then 1
else unbox·(box·n − 1 ) >>= r >>= (Λ b. box·n ∗ box·b))

lemma fac-body ′-fac-body: fac-body ′ = unwrapB oo fac-body oo wrapB (is ?lhs =
?rhs)
proof(rule cfun-eqI )+

fix r x
show ?lhs·r ·x = ?rhs·r ·x

using bbind-case-distr-strict[where f=Λ y. box·x ∗ y and g=unbox·(box·x −
1 )]

bbind-case-distr-strict[where f=Λ y. box·x ∗ y and h=box]
unfolding fac-body ′-def fac-body-def unwrapB-def wrapB-def by simp

qed

The up constructors here again mediate the isomorphism, operationally do-
ing nothing. Note the switch to the machine-oriented if construct: the test
n = (0 :: ′a) cannot diverge.
definition

fac-body-final :: (UNat → UNat⊥) → UNat → UNat⊥ where
fac-body-final ≡ Λ r n.

if n = 0 then up·1 else r ·(n −# 1 ) >>= (Λ b. up·(n ∗# b))

lemma fac-body-final-fac-body ′: fac-body-final = fac-body ′ (is ?lhs = ?rhs)
proof(rule cfun-eqI )+

fix r x
show ?lhs·r ·x = ?rhs·r ·x

using bbind-case-distr-strict[where f=unbox and g=r ·(x −# 1 ) and h=(Λ b.
box·(x ∗# b))]

unfolding fac-body-final-def fac-body ′-def uMinus-def uMult-def zero-Nat-def
one-Nat-def

by simp
qed

definition
fac-work-final :: UNat → UNat⊥ where
fac-work-final ≡ fix·fac-body-final

definition
fac-final :: Nat → Nat where
fac-final ≡ Λ n. unbox·n >>= fac-work-final >>= box
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lemma fac-fac-final: fac = fac-final (is ?lhs=?rhs)
proof −

have ?lhs = fac-wrap by (rule fac-fac-ww-eq)
also have . . . = wrapB·fac-work by (simp only: fac-wrap-def )
also have . . . = wrapB·(fix·(unwrapB oo fac-body oo wrapB)) by (simp only:

fac-work-def )
also have . . . = wrapB·(fix·fac-body ′) by (simp only: fac-body ′-fac-body)
also have . . . = wrapB·fac-work-final by (simp only: fac-body-final-fac-body ′

fac-work-final-def )
also have . . . = fac-final by (simp add: fac-final-def wrapB-def )
finally show ?thesis .

qed

6.2 Introducing an accumulator.

The final version of factorial uses unboxed naturals but is not tail-recursive.
We can apply worker/wrapper once more to introduce an accumulator, sim-
ilar to §5.
The monadic machinery complicates things slightly here. We use Kleisli
composition, denoted (>=>), in the homomorphism.
Firstly we introduce an “accumulator” monoid and show the homomor-
phism.
type-synonym UNatAcc = UNat → UNat⊥

definition
n2a :: UNat → UNatAcc where
n2a ≡ Λ m n. up·(m ∗# n)

definition
a2n :: UNatAcc → UNat⊥ where
a2n ≡ Λ a. a·1

lemma a2n-strict[simp]: a2n·⊥ = ⊥
unfolding a2n-def by simp

lemma a2n-n2a: a2n·(n2a·u) = up·u
unfolding a2n-def n2a-def by (simp add: uMult-arithmetic)

lemma A-hom-mult: n2a·(x ∗# y) = (n2a·x >=> n2a·y)
unfolding n2a-def bKleisli-def by (simp add: uMult-arithmetic)

definition
unwrapA :: (UNat → UNat⊥) → UNat → UNatAcc where
unwrapA ≡ Λ f n. f ·n >>= n2a

lemma unwrapA-strict[simp]: unwrapA·⊥ = ⊥
unfolding unwrapA-def by (rule cfun-eqI ) simp
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definition
wrapA :: (UNat → UNatAcc) → UNat → UNat⊥ where
wrapA ≡ Λ f . a2n oo f

lemma wrapA-unwrapA-id: wrapA oo unwrapA = ID
unfolding wrapA-def unwrapA-def
apply (rule cfun-eqI )+
apply (case-tac x·xa)
apply (simp-all add: a2n-n2a)
done

Some steps along the way.
definition

fac-acc-body1 :: (UNat → UNatAcc) → UNat → UNatAcc where
fac-acc-body1 ≡ Λ r n.

if n = 0 then n2a·1 else wrapA·r ·(n −# 1 ) >>= (Λ res. n2a·(n ∗# res))

lemma fac-acc-body1-fac-body-final-eq: fac-acc-body1 = unwrapA oo fac-body-final
oo wrapA

unfolding fac-acc-body1-def fac-body-final-def wrapA-def unwrapA-def
by (rule cfun-eqI )+ simp

Use the homomorphism.
definition

fac-acc-body2 :: (UNat → UNatAcc) → UNat → UNatAcc where
fac-acc-body2 ≡ Λ r n.

if n = 0 then n2a·1 else wrapA·r ·(n −# 1 ) >>= (Λ res. n2a·n >=> n2a·res)

lemma fac-acc-body2-body1-eq: fac-acc-body2 = fac-acc-body1
unfolding fac-acc-body1-def fac-acc-body2-def
by (rule cfun-eqI )+ (simp add: A-hom-mult)

Apply worker/wrapper.
definition

fac-acc-body3 :: (UNat → UNatAcc) → UNat → UNatAcc where
fac-acc-body3 ≡ Λ r n.

if n = 0 then n2a·1 else n2a·n >=> r ·(n −# 1 )

lemma fac-acc-body3-body2 : fac-acc-body3 oo (unwrapA oo wrapA) = fac-acc-body2
(is ?lhs=?rhs)
proof(rule cfun-eqI )+

fix r n acc
show ((fac-acc-body3 oo (unwrapA oo wrapA))·r ·n·acc) = fac-acc-body2 ·r ·n·acc

unfolding fac-acc-body2-def fac-acc-body3-def unwrapA-def
using bbind-case-distr-strict[where f=Λ y. n2a·n >=> y and h=n2a, sym-

metric]
by simp

qed
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lemma fac-work-final-body3-eq: fac-work-final = wrapA·(fix·fac-acc-body3 )
unfolding fac-work-final-def
by (rule worker-wrapper-fusion-new[OF wrapA-unwrapA-id unwrapA-strict])
(simp add: fac-acc-body3-body2 fac-acc-body2-body1-eq fac-acc-body1-fac-body-final-eq)

definition
fac-acc-body-final :: (UNat → UNatAcc) → UNat → UNatAcc where
fac-acc-body-final ≡ Λ r n acc.

if n = 0 then up·acc else r ·(n −# 1 )·(n ∗# acc)

definition
fac-acc-work-final :: UNat → UNat⊥ where
fac-acc-work-final ≡ Λ x. fix·fac-acc-body-final·x·1

lemma fac-acc-work-final-fac-acc-work3-eq: fac-acc-body-final = fac-acc-body3 (is
?lhs=?rhs)

unfolding fac-acc-body3-def fac-acc-body-final-def n2a-def bKleisli-def
by (rule cfun-eqI )+

(simp add: uMult-arithmetic)

lemma fac-acc-work-final-fac-work: fac-acc-work-final = fac-work-final (is ?lhs=?rhs)
proof −

have ?rhs = wrapA·(fix·fac-acc-body3 ) by (rule fac-work-final-body3-eq)
also have . . . = wrapA·(fix·fac-acc-body-final)

using fac-acc-work-final-fac-acc-work3-eq by simp
also have . . . = ?lhs

unfolding fac-acc-work-final-def wrapA-def a2n-def
by (simp add: cfcomp1 )

finally show ?thesis by simp
qed

7 Memoisation using streams.

7.1 Streams.

The type of infinite streams.
domain ′a Stream = stcons (lazy sthead :: ′a) (lazy sttail :: ′a Stream) (infixr
&& 65 )

fixrec smap :: ( ′a → ′b) → ′a Stream → ′b Stream
where

smap·f ·(x && xs) = f ·x && smap·f ·xs

lemma smap-smap: smap·f ·(smap·g·xs) = smap·(f oo g)·xs
fixrec i-th :: ′a Stream → Nat → ′a
where

22



i-th·(x && xs) = Nat-case·x·(i-th·xs)

abbreviation
i-th-syn :: ′a Stream ⇒ Nat ⇒ ′a (infixl !! 100 ) where
s !! i ≡ i-th·s·i

The infinite stream of natural numbers.
fixrec nats :: Nat Stream
where

nats = 0 && smap·(Λ x. 1 + x)·nats

7.2 The wrapper/unwrapper functions.
definition

unwrapS ′ :: (Nat → ′a) → ′a Stream where
unwrapS ′ ≡ Λ f . smap·f ·nats

lemma unwrapS ′-unfold: unwrapS ′·f = f ·0 && smap·(f oo (Λ x. 1 + x))·nats
fixrec unwrapS :: (Nat → ′a) → ′a Stream
where

unwrapS ·f = f ·0 && unwrapS ·(f oo (Λ x. 1 + x))

The two versions of unwrapS are equivalent. We could try to fold some
definitions here but it’s easier if the stream constructor is manifest.
lemma unwrapS-unwrapS ′-eq: unwrapS = unwrapS ′ (is ?lhs = ?rhs)
proof(rule cfun-eqI )

fix f show ?lhs·f = ?rhs·f
proof(coinduct rule: Stream.coinduct)

let ?R = λs s ′. (∃ f . s = f ·0 && unwrapS ·(f oo (Λ x. 1 + x))
∧ s ′ = f ·0 && smap·(f oo (Λ x. 1 + x))·nats)

show Stream-bisim ?R
proof

fix s s ′ assume ?R s s ′

then obtain f where fs: s = f ·0 && unwrapS ·(f oo (Λ x. 1 + x))
and fs ′: s ′ = f ·0 && smap·(f oo (Λ x. 1 + x))·nats

by blast
have ?R (unwrapS ·(f oo (Λ x. 1 + x))) (smap·(f oo (Λ x. 1 + x))·nats)

by ( rule exI [where x=f oo (Λ x. 1 + x)]
, subst unwrapS .unfold, subst nats.unfold, simp add: smap-smap)

with fs fs ′

show (s = ⊥ ∧ s ′ = ⊥)
∨ (∃ h t t ′.

(∃ f . t = f ·0 && unwrapS ·(f oo (Λ x. 1 + x))
∧ t ′ = f ·0 && smap·(f oo (Λ x. 1 + x))·nats)
∧ s = h && t ∧ s ′ = h && t ′) by best

qed
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show ?R (?lhs·f ) (?rhs·f )
proof −

have lhs: ?lhs·f = f ·0 && unwrapS ·(f oo (Λ x. 1 + x)) by (subst un-
wrapS .unfold, simp)

have rhs: ?rhs·f = f ·0 && smap·(f oo (Λ x. 1 + x))·nats by (rule un-
wrapS ′-unfold)

from lhs rhs show ?thesis by best
qed

qed
qed

definition
wrapS :: ′a Stream → Nat → ′a where
wrapS ≡ Λ s i . s !! i

Note the identity requires that f be strict. Gill and Hutton (2009, §6.1) do
not make this requirement, an oversight on their part.
In practice all functions worth memoising are strict in the memoised argu-
ment.
lemma wrapS-unwrapS-id ′:

assumes strictF : (f ::Nat → ′a)·⊥ = ⊥
shows unwrapS ·f !! n = f ·n

using strictF
proof(induct n arbitrary: f rule: Nat-induct)

case bottom with strictF show ?case by simp
next

case zero thus ?case by (subst unwrapS .unfold, simp)
next

case (Suc i f )
have unwrapS ·f !! (i + 1 ) = (f ·0 && unwrapS ·(f oo (Λ x. 1 + x))) !! (i + 1 )

by (subst unwrapS .unfold, simp)
also from Suc have . . . = unwrapS ·(f oo (Λ x. 1 + x)) !! i by simp
also from Suc have . . . = (f oo (Λ x. 1 + x))·i by simp
also have . . . = f ·(i + 1 ) by (simp add: plus-commute)
finally show ?case .

qed

lemma wrapS-unwrapS-id: f ·⊥ = ⊥ =⇒ (wrapS oo unwrapS)·f = f
by (rule cfun-eqI , simp add: wrapS-unwrapS-id ′ wrapS-def )

7.3 Fibonacci example.
definition

fib-body :: (Nat → Nat) → Nat → Nat where
fib-body ≡ Λ r . Nat-case·1 ·(Nat-case·1 ·(Λ n. r ·n + r ·(n + 1 )))

definition
fib :: Nat → Nat where
fib ≡ fix·fib-body
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Apply worker/wrapper.
definition

fib-work :: Nat Stream where
fib-work ≡ fix·(unwrapS oo fib-body oo wrapS)

definition
fib-wrap :: Nat → Nat where
fib-wrap ≡ wrapS ·fib-work

lemma wrapS-unwrapS-fib-body: wrapS oo unwrapS oo fib-body = fib-body
proof(rule cfun-eqI )

fix r show (wrapS oo unwrapS oo fib-body)·r = fib-body·r
using wrapS-unwrapS-id[where f=fib-body·r ] by simp

qed

lemma fib-ww-eq: fib = fib-wrap
using worker-wrapper-body[OF wrapS-unwrapS-fib-body]
by (simp add: fib-def fib-wrap-def fib-work-def )

Optimise.
fixrec

fib-work-final :: Nat Stream
and

fib-f-final :: Nat → Nat
where

fib-work-final = smap·fib-f-final·nats
| fib-f-final = Nat-case·1 ·(Nat-case·1 ·(Λ n ′. fib-work-final !! n ′ + fib-work-final !!
(n ′ + 1 )))

declare fib-f-final.simps[simp del] fib-work-final.simps[simp del]

definition
fib-final :: Nat → Nat where
fib-final ≡ Λ n. fib-work-final !! n

This proof is only fiddly due to the way mutual recursion is encoded: we
need to use Bekić’s Theorem (Bekić 1984)1 to massage the definitions into
their final form.
lemma fib-work-final-fib-work-eq: fib-work-final = fib-work (is ?lhs = ?rhs)
proof −

let ?wb = Λ r . Nat-case·1 ·(Nat-case·1 ·(Λ n ′. r !! n ′ + r !! (n ′ + 1 )))
let ?mr = Λ (fwf :: Nat Stream, fff ). (smap·fff ·nats, ?wb·fwf )
have ?lhs = fst (fix·?mr)

by (simp add: fib-work-final-def split-def csplit-def )
1The interested reader can find some historical commentary in Harel (1980); Sangiorgi

(2009).
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also have . . . = (µ fwf . fst (?mr ·(fwf , µ fff . snd (?mr ·(fwf , fff )))))
using fix-cprod[where F=?mr ] by simp

also have . . . = (µ fwf . smap·(µ fff . ?wb·fwf )·nats) by simp
also have . . . = (µ fwf . smap·(?wb·fwf )·nats) by (simp add: fix-const)
also have . . . = ?rhs
unfolding fib-body-def fib-work-def unwrapS-unwrapS ′-eq unwrapS ′-def wrapS-def
by (simp add: cfcomp1 )

finally show ?thesis .
qed

lemma fib-final-fib-eq: fib-final = fib (is ?lhs = ?rhs)
proof −

have ?lhs = (Λ n. fib-work-final !! n) by (simp add: fib-final-def )
also have . . . = (Λ n. fib-work !! n) by (simp only: fib-work-final-fib-work-eq)
also have . . . = fib-wrap by (simp add: fib-wrap-def wrapS-def )
also have . . . = ?rhs by (simp only: fib-ww-eq)
finally show ?thesis .

qed

8 Tagless interpreter via double-barreled continu-
ations

type-synonym ′a Cont = ( ′a → ′a) → ′a

definition
val2cont :: ′a → ′a Cont where
val2cont ≡ (Λ a c. c·a)

definition
cont2val :: ′a Cont → ′a where
cont2val ≡ (Λ f . f ·ID)

lemma cont2val-val2cont-id: cont2val oo val2cont = ID
by (rule cfun-eqI , simp add: val2cont-def cont2val-def )

domain Expr =
Val (lazy val::Nat)

| Add (lazy addl::Expr) (lazy addr ::Expr)
| Throw
| Catch (lazy cbody::Expr) (lazy chandler ::Expr)

fixrec eval :: Expr → Nat Maybe
where

eval·(Val·n) = Just·n
| eval·(Add·x·y) = mliftM2 (Λ a b. a + b)·(eval·x)·(eval·y)
| eval·Throw = mfail
| eval·(Catch·x·y) = mcatch·(eval·x)·(eval·y)
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fixrec eval-body :: (Expr → Nat Maybe) → Expr → Nat Maybe
where

eval-body·r ·(Val·n) = Just·n
| eval-body·r ·(Add·x·y) = mliftM2 (Λ a b. a + b)·(r ·x)·(r ·y)
| eval-body·r ·Throw = mfail
| eval-body·r ·(Catch·x·y) = mcatch·(r ·x)·(r ·y)

lemma eval-body-strictExpr [simp]: eval-body·r ·⊥ = ⊥
by (subst eval-body.unfold, simp)

lemma eval-eval-body-eq: eval = fix·eval-body
by (rule cfun-eqI , subst eval-def , subst eval-body.unfold, simp)

8.1 Worker/wrapper
definition

unwrapC :: (Expr → Nat Maybe) → (Expr → (Nat → Nat Maybe) → Nat Maybe
→ Nat Maybe) where

unwrapC ≡ Λ g e s f . case g·e of Nothing ⇒ f | Just·n ⇒ s·n

lemma unwrapC-strict[simp]: unwrapC ·⊥ = ⊥
unfolding unwrapC-def by (rule cfun-eqI )+ simp

definition
wrapC :: (Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe) → (Expr

→ Nat Maybe) where
wrapC ≡ Λ g e. g·e·Just·Nothing

lemma wrapC-unwrapC-id: wrapC oo unwrapC = ID
proof(intro cfun-eqI )

fix g e
show (wrapC oo unwrapC )·g·e = ID·g·e

by (cases g·e, simp-all add: wrapC-def unwrapC-def )
qed

definition
eval-work :: Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe where
eval-work ≡ fix·(unwrapC oo eval-body oo wrapC )

definition
eval-wrap :: Expr → Nat Maybe where
eval-wrap ≡ wrapC ·eval-work

fixrec eval-body ′ :: (Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe)
→ Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe

where
eval-body ′·r ·(Val·n)·s·f = s·n

| eval-body ′·r ·(Add·x·y)·s·f = (case wrapC ·r ·x of
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Nothing ⇒ f
| Just·n ⇒ (case wrapC ·r ·y of

Nothing ⇒ f
| Just·m ⇒ s·(n + m)))

| eval-body ′·r ·Throw·s·f = f
| eval-body ′·r ·(Catch·x·y)·s·f = (case wrapC ·r ·x of

Nothing ⇒ (case wrapC ·r ·y of
Nothing ⇒ f

| Just·n ⇒ s·n)
| Just·n ⇒ s·n)

lemma eval-body ′-strictExpr [simp]: eval-body ′·r ·⊥·s·f = ⊥
by (subst eval-body ′.unfold, simp)

definition
eval-work ′ :: Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe where
eval-work ′ ≡ fix·eval-body ′

This proof is unfortunately quite messy, due to the simplifier’s inability to
cope with HOLCF’s case distinctions.
lemma eval-body ′-eval-body-eq: eval-body ′ = unwrapC oo eval-body oo wrapC

apply (intro cfun-eqI )
apply (unfold unwrapC-def wrapC-def )
apply (case-tac xa)

apply simp-all
apply (simp add: wrapC-def )
apply (case-tac x·Expr1 ·Just·Nothing)
apply simp-all

apply (case-tac x·Expr2 ·Just·Nothing)
apply simp-all

apply (simp add: mfail-def )
apply (simp add: mcatch-def wrapC-def )
apply (case-tac x·Expr1 ·Just·Nothing)
apply simp-all

done

fixrec eval-body-final :: (Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe)
→ Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe

where
eval-body-final·r ·(Val·n)·s·f = s·n

| eval-body-final·r ·(Add·x·y)·s·f = r ·x·(Λ n. r ·y·(Λ m. s·(n + m))·f )·f
| eval-body-final·r ·Throw·s·f = f
| eval-body-final·r ·(Catch·x·y)·s·f = r ·x·s·(r ·y·s·f )

lemma eval-body-final-strictExpr [simp]: eval-body-final·r ·⊥·s·f = ⊥
by (subst eval-body-final.unfold, simp)

lemma eval-body ′-eval-body-final-eq: eval-body-final oo unwrapC oo wrapC = eval-body ′

apply (rule cfun-eqI )+
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apply (case-tac xa)
apply (simp-all add: unwrapC-def )

done

definition
eval-work-final :: Expr → (Nat → Nat Maybe) → Nat Maybe → Nat Maybe

where
eval-work-final ≡ fix·eval-body-final

definition
eval-final :: Expr → Nat Maybe where
eval-final ≡ (Λ e. eval-work-final·e·Just·Nothing)

lemma eval = eval-final
proof −

have eval = fix·eval-body by (rule eval-eval-body-eq)
also from wrapC-unwrapC-id unwrapC-strict have . . . = wrapC ·(fix·eval-body-final)

apply (rule worker-wrapper-fusion-new)
using eval-body ′-eval-body-final-eq eval-body ′-eval-body-eq by simp

also have . . . = eval-final
unfolding eval-final-def eval-work-final-def wrapC-def
by simp

finally show ?thesis .
qed

9 Backtracking using lazy lists and continuations

To illustrate the utility of worker/wrapper fusion to programming language
semantics, we consider here the first-order part of a higher-order backtrack-
ing language by Wand and Vaillancourt (2004); see also Danvy et al. (2001).
We refer the reader to these papers for a broader motivation for these lan-
guages.
As syntax is typically considered to be inductively generated, with each
syntactic object taken to be finite and completely defined, we define the
syntax for our language using a HOL datatype:
datatype expr = const nat | add expr expr | disj expr expr | fail

The language consists of constants, an addition function, a disjunctive choice
between expressions, and failure. We give it a direct semantics using the
monad of lazy lists of natural numbers, with the goal of deriving an an
extensionally-equivalent evaluator that uses double-barrelled continuations.
Our theory of lazy lists is entirely standard.
default-sort predomain

domain ′a llist =
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lnil
| lcons (lazy ′a) (lazy ′a llist)

By relaxing the default sort of type variables to predomain, our polymorphic
definitions can be used at concrete types that do not contain ⊥. These
include those constructed from HOL types using the discrete ordering type
constructor ′a discr, and in particular our interpretation nat discr of the
natural numbers.
The following standard list functions underpin the monadic infrastructure:
fixrec lappend :: ′a llist → ′a llist → ′a llist where

lappend·lnil·ys = ys
| lappend·(lcons·x·xs)·ys = lcons·x·(lappend·xs·ys)

fixrec lconcat :: ′a llist llist → ′a llist where
lconcat·lnil = lnil

| lconcat·(lcons·x·xs) = lappend·x·(lconcat·xs)

fixrec lmap :: ( ′a → ′b) → ′a llist → ′b llist where
lmap·f ·lnil = lnil

| lmap·f ·(lcons·x·xs) = lcons·(f ·x)·(lmap·f ·xs)

We define the lazy list monad S in the traditional fashion:
type-synonym S = nat discr llist

definition returnS :: nat discr → S where
returnS = (Λ x. lcons·x·lnil)

definition bindS :: S → (nat discr → S) → S where
bindS = (Λ x g. lconcat·(lmap·g·x))

Unfortunately the lack of higher-order polymorphism in HOL prevents us
from providing the general typing one would expect a monad to have in
Haskell.
The evaluator uses the following extra constants:
definition addS :: S → S → S where

addS ≡ (Λ x y. bindS ·x·(Λ xv. bindS ·y·(Λ yv. returnS ·(xv + yv))))

definition disjS :: S → S → S where
disjS ≡ lappend

definition failS :: S where
failS ≡ lnil

We interpret our language using these combinators in the obvious way. The
only complication is that, even though our evaluator is primitive recursive,
we must explicitly use the fixed point operator as the worker/wrapper tech-
nique requires us to talk about the body of the recursive definition.
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definition
evalS-body :: (expr discr → nat discr llist)

→ (expr discr → nat discr llist)
where

evalS-body ≡ Λ r e. case undiscr e of
const n ⇒ returnS ·(Discr n)

| add e1 e2 ⇒ addS ·(r ·(Discr e1 ))·(r ·(Discr e2 ))
| disj e1 e2 ⇒ disjS ·(r ·(Discr e1 ))·(r ·(Discr e2 ))
| fail ⇒ failS

abbreviation evalS :: expr discr → nat discr llist where
evalS ≡ fix·evalS-body

We aim to transform this evaluator into one using double-barrelled contin-
uations; one will serve as a "success" context, taking a natural number into
"the rest of the computation", and the other outright failure.
In general we could work with an arbitrary observation type ala Reynolds
(1974), but for convenience we use the clearly adequate concrete type nat
discr llist.
type-synonym Obs = nat discr llist
type-synonym Failure = Obs
type-synonym Success = nat discr → Failure → Obs
type-synonym K = Success → Failure → Obs

To ease our development we adopt what Wand and Vaillancourt (2004, §5)
call a "failure computation" instead of a failure continuation, which would
have the type unit → Obs.
The monad over the continuation type K is as follows:
definition returnK :: nat discr → K where

returnK ≡ (Λ x. Λ s f . s·x·f )

definition bindK :: K → (nat discr → K ) → K where
bindK ≡ Λ x g. Λ s f . x·(Λ xv f ′. g·xv·s·f ′)·f

Our extra constants are defined as follows:
definition addK :: K → K → K where

addK ≡ (Λ x y. bindK ·x·(Λ xv. bindK ·y·(Λ yv. returnK ·(xv + yv))))

definition disjK :: K → K → K where
disjK ≡ (Λ g h. Λ s f . g·s·(h·s·f ))

definition failK :: K where
failK ≡ Λ s f . f

The continuation semantics is again straightforward:
definition

evalK-body :: (expr discr → K ) → (expr discr → K )
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where
evalK-body ≡ Λ r e. case undiscr e of

const n ⇒ returnK ·(Discr n)
| add e1 e2 ⇒ addK ·(r ·(Discr e1 ))·(r ·(Discr e2 ))
| disj e1 e2 ⇒ disjK ·(r ·(Discr e1 ))·(r ·(Discr e2 ))
| fail ⇒ failK

abbreviation evalK :: expr discr → K where
evalK ≡ fix·evalK-body

We now set up a worker/wrapper relation between these two semantics.
The kernel of unwrap is the following function that converts a lazy list into
an equivalent continuation representation.
fixrec SK :: S → K where

SK ·lnil = failK
| SK ·(lcons·x·xs) = (Λ s f . s·x·(SK ·xs·s·f ))

definition
unwrap :: (expr discr → nat discr llist) → (expr discr → K )

where
unwrap ≡ Λ r e. SK ·(r ·e)

Symmetrically wrap converts an evaluator using continuations into one gen-
erating lazy lists by passing it the right continuations.
definition KS :: K → S where

KS ≡ (Λ k. k·lcons·lnil)

definition wrap :: (expr discr → K ) → (expr discr → nat discr llist) where
wrap ≡ Λ r e. KS ·(r ·e)

The worker/wrapper condition follows directly from these definitions.
lemma KS-SK-id:

KS ·(SK ·xs) = xs
by (induct xs) (simp-all add: KS-def failK-def )

lemma wrap-unwrap-id:
wrap oo unwrap = ID
unfolding wrap-def unwrap-def
by (simp add: KS-SK-id cfun-eq-iff )

The worker/wrapper transformation is only non-trivial if wrap and unwrap
do not witness an isomorphism. In this case we can show that we do not
even have a Galois connection.
lemma cfun-not-below:

f ·x 6v g·x =⇒ f 6v g
by (auto simp: cfun-below-iff )

lemma unwrap-wrap-not-under-id:
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unwrap oo wrap 6v ID
proof −

let ?witness = Λ e. (Λ s f . lnil :: K )
have (unwrap oo wrap)·?witness·(Discr fail)·⊥·(lcons·0 ·lnil)

6v ?witness·(Discr fail)·⊥·(lcons·0 ·lnil)
by (simp add: failK-def wrap-def unwrap-def KS-def )

hence (unwrap oo wrap)·?witness 6v ?witness
by (fastforce intro!: cfun-not-below)

thus ?thesis by (simp add: cfun-not-below)
qed

We now apply worker_wrapper_id:
definition eval-work :: expr discr → K where

eval-work ≡ fix·(unwrap oo evalS-body oo wrap)

definition eval-ww :: expr discr → nat discr llist where
eval-ww ≡ wrap·eval-work

lemma evalS = eval-ww
unfolding eval-ww-def eval-work-def
using worker-wrapper-id[OF wrap-unwrap-id]
by simp

We now show how the monadic operations correspond by showing that SK
witnesses a monad morphism (Wadler 1992, §6). As required by Danvy et al.
(2001, Definition 2.1), the mapping needs to hold for our specific operations
in addition to the common monadic scaffolding.
lemma SK-returnS-returnK :

SK ·(returnS ·x) = returnK ·x
by (simp add: returnS-def returnK-def failK-def )

lemma SK-lappend-distrib:
SK ·(lappend·xs·ys)·s·f = SK ·xs·s·(SK ·ys·s·f )
by (induct xs) (simp-all add: failK-def )

lemma SK-bindS-bindK :
SK ·(bindS ·x·g) = bindK ·(SK ·x)·(SK oo g)
by (induct x)

(simp-all add: cfun-eq-iff
bindS-def bindK-def failK-def
SK-lappend-distrib)

lemma SK-addS-distrib:
SK ·(addS ·x·y) = addK ·(SK ·x)·(SK ·y)
by (clarsimp simp: cfcomp1

addS-def addK-def failK-def
SK-bindS-bindK SK-returnS-returnK )

lemma SK-disjS-disjK :
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SK ·(disjS ·xs·ys) = disjK ·(SK ·xs)·(SK ·ys)
by (simp add: cfun-eq-iff disjS-def disjK-def SK-lappend-distrib)

lemma SK-failS-failK :
SK ·failS = failK
unfolding failS-def by simp

These lemmas directly establish the precondition for our all-in-one worker/wrap-
per and fusion rule:
lemma evalS-body-evalK-body:

unwrap oo evalS-body oo wrap = evalK-body oo unwrap oo wrap
proof(intro cfun-eqI )

fix r e ′ s f
obtain e :: expr

where ee ′: e ′ = Discr e by (cases e ′)
have (unwrap oo evalS-body oo wrap)·r ·(Discr e)·s·f

= (evalK-body oo unwrap oo wrap)·r ·(Discr e)·s·f
by (cases e)

(simp-all add: evalS-body-def evalK-body-def unwrap-def
SK-returnS-returnK SK-addS-distrib
SK-disjS-disjK SK-failS-failK )

with ee ′ show (unwrap oo evalS-body oo wrap)·r ·e ′·s·f
= (evalK-body oo unwrap oo wrap)·r ·e ′·s·f

by simp
qed

theorem evalS-evalK :
evalS = wrap·evalK
using worker-wrapper-fusion-new[OF wrap-unwrap-id unwrap-strict]

evalS-body-evalK-body
by simp

This proof can be considered an instance of the approach of Hutton et al.
(2010), which uses the worker/wrapper machinery to relate two algebras.
This result could be obtained by a structural induction over the syntax of the
language. However our goal here is to show how such a transformation can
be achieved by purely equational means; this has the advantange that our
proof can be locally extended, e.g. to the full language of Danvy et al. (2001)
simply by proving extra equations. In contrast the higher-order language of
Wand and Vaillancourt (2004) is beyond the reach of this approach.

10 Transforming O(n2) nub into an O(n lg n) one

Andy Gill’s solution, mechanised.
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10.1 The nub function.
fixrec nub :: Nat llist → Nat llist
where

nub·lnil = lnil
| nub·(x :@ xs) = x :@ nub·(lfilter ·(neg oo (Λ y. x =B y))·xs)

lemma nub-strict[simp]: nub·⊥ = ⊥
by fixrec-simp

fixrec nub-body :: (Nat llist → Nat llist) → Nat llist → Nat llist
where

nub-body·f ·lnil = lnil
| nub-body·f ·(x :@ xs) = x :@ f ·(lfilter ·(neg oo (Λ y. x =B y))·xs)

lemma nub-nub-body-eq: nub = fix·nub-body
by (rule cfun-eqI , subst nub-def , subst nub-body.unfold, simp)

10.2 Optimised data type.

Implement sets using lazy lists for now. Lifting up HOL’s ′a set type causes
continuity grief.
type-synonym NatSet = Nat llist

definition
SetEmpty :: NatSet where
SetEmpty ≡ lnil

definition
SetInsert :: Nat → NatSet → NatSet where
SetInsert ≡ lcons

definition
SetMem :: Nat → NatSet → tr where
SetMem ≡ lmember ·(bpred (=))

lemma SetMem-strict[simp]: SetMem·x·⊥ = ⊥ by (simp add: SetMem-def )
lemma SetMem-SetEmpty[simp]: SetMem·x·SetEmpty = FF

by (simp add: SetMem-def SetEmpty-def )
lemma SetMem-SetInsert: SetMem·v·(SetInsert·x·s) = (SetMem·v·s orelse x =B

v)
by (simp add: SetMem-def SetInsert-def )

AndyG’s new type.
domain R = R (lazy resultR :: Nat llist) (lazy exceptR :: NatSet)

definition
nextR :: R → (Nat ∗ R) Maybe where
nextR = (Λ r . case ldropWhile·(Λ x. SetMem·x·(exceptR·r))·(resultR·r) of
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lnil ⇒ Nothing
| x :@ xs ⇒ Just·(x, R·xs·(exceptR·r)))

lemma nextR-strict1 [simp]: nextR·⊥ = ⊥ by (simp add: nextR-def )
lemma nextR-strict2 [simp]: nextR·(R·⊥·S) = ⊥ by (simp add: nextR-def )

lemma nextR-lnil[simp]: nextR·(R·lnil·S) = Nothing by (simp add: nextR-def )

definition
filterR :: Nat → R → R where
filterR ≡ (Λ v r . R·(resultR·r)·(SetInsert·v·(exceptR·r)))

definition
c2a :: Nat llist → R where
c2a ≡ Λ xs. R·xs·SetEmpty

definition
a2c :: R → Nat llist where
a2c ≡ Λ r . lfilter ·(Λ v. neg·(SetMem·v·(exceptR·r)))·(resultR·r)

lemma a2c-strict[simp]: a2c·⊥ = ⊥ unfolding a2c-def by simp

lemma a2c-c2a-id: a2c oo c2a = ID
by (rule cfun-eqI , simp add: a2c-def c2a-def lfilter-const-true)

definition
wrap :: (R → Nat llist) → Nat llist → Nat llist where
wrap ≡ Λ f xs. f ·(c2a·xs)

definition
unwrap :: (Nat llist → Nat llist) → R → Nat llist where
unwrap ≡ Λ f r . f ·(a2c·r)

lemma unwrap-strict[simp]: unwrap·⊥ = ⊥
unfolding unwrap-def by (rule cfun-eqI , simp)

lemma wrap-unwrap-id: wrap oo unwrap = ID
using cfun-fun-cong[OF a2c-c2a-id]
by − ((rule cfun-eqI )+, simp add: wrap-def unwrap-def )

Equivalences needed for later.
lemma TR-deMorgan: neg·(x orelse y) = (neg·x andalso neg·y)

by (rule trE [where p=x], simp-all)

lemma case-maybe-case:
(case (case L of lnil ⇒ Nothing | x :@ xs ⇒ Just·(h·x·xs)) of

Nothing ⇒ f | Just·(a, b) ⇒ g·a·b)
=
(case L of lnil ⇒ f | x :@ xs ⇒ g·(fst (h·x·xs))·(snd (h·x·xs)))
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apply (cases L, simp-all)
apply (case-tac h·a·llist)
apply simp
done

lemma case-a2c-case-caseR:
(case a2c·w of lnil ⇒ f | x :@ xs ⇒ g·x·xs)
= (case nextR·w of Nothing ⇒ f | Just·(x, r) ⇒ g·x·(a2c·r)) (is ?lhs = ?rhs)

proof −
have ?rhs = (case (case ldropWhile·(Λ x. SetMem·x·(exceptR·w))·(resultR·w) of

lnil ⇒ Nothing
| x :@ xs ⇒ Just·(x, R·xs·(exceptR·w))) of Nothing ⇒ f | Just·(x,

r) ⇒ g·x·(a2c·r))
by (simp add: nextR-def )

also have . . . = (case ldropWhile·(Λ x. SetMem·x·(exceptR·w))·(resultR·w) of
lnil ⇒ f | x :@ xs ⇒ g·x·(a2c·(R·xs·(exceptR·w))))

using case-maybe-case[where L=ldropWhile·(Λ x. SetMem·x·(exceptR·w))·(resultR·w)
and f=f and g=Λ x r . g·x·(a2c·r) and h=Λ x xs. (x,

R·xs·(exceptR·w))]
by simp

also have . . . = ?lhs
apply (simp add: a2c-def )
apply (cases resultR·w)

apply simp-all
apply (rule-tac p=SetMem·a·(exceptR·w) in trE)

apply simp-all
apply (induct-tac llist)

apply simp-all
apply (rule-tac p=SetMem·aa·(exceptR·w) in trE)

apply simp-all
done

finally show ?lhs = ?rhs by simp
qed

lemma filter-filterR: lfilter ·(neg oo (Λ y. x =B y))·(a2c·r) = a2c·(filterR·x·r)
using filter-filter [where p=Tr .neg oo (Λ y. x =B y) and q=Λ v. Tr .neg·(SetMem·v·(exceptR·r))]
unfolding a2c-def filterR-def
by (cases r , simp-all add: SetMem-SetInsert TR-deMorgan)

Apply worker/wrapper. Unlike Gill/Hutton, we manipulate the body of the
worker into the right form then apply the lemma.
definition

nub-body ′ :: (R → Nat llist) → R → Nat llist where
nub-body ′ ≡ Λ f r . case a2c·r of lnil ⇒ lnil

| x :@ xs ⇒ x :@ f ·(c2a·(lfilter ·(neg oo (Λ y. x =B

y))·xs))

lemma nub-body-nub-body ′-eq: unwrap oo nub-body oo wrap = nub-body ′

unfolding nub-body-def nub-body ′-def unwrap-def wrap-def a2c-def c2a-def
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by ((rule cfun-eqI )+
, case-tac lfilter ·(Λ v. Tr .neg·(SetMem·v·(exceptR·xa)))·(resultR·xa)
, simp-all add: fix-const)

definition
nub-body ′′ :: (R → Nat llist) → R → Nat llist where
nub-body ′′ ≡ Λ f r . case nextR·r of Nothing ⇒ lnil

| Just·(x, xs) ⇒ x :@ f ·(c2a·(lfilter ·(neg oo (Λ y. x
=B y))·(a2c·xs)))

lemma nub-body ′-nub-body ′′-eq: nub-body ′ = nub-body ′′

proof(rule cfun-eqI )+
fix f r show nub-body ′·f ·r = nub-body ′′·f ·r

unfolding nub-body ′-def nub-body ′′-def
using case-a2c-case-caseR[where f=lnil and g=Λ x xs. x :@ f ·(c2a·(lfilter ·(Tr .neg

oo (Λ y. x =B y))·xs)) and w=r ]
by simp

qed

definition
nub-body ′′′ :: (R → Nat llist) → R → Nat llist where
nub-body ′′′ ≡ (Λ f r . case nextR·r of Nothing ⇒ lnil

| Just·(x, xs) ⇒ x :@ f ·(filterR·x·xs))

lemma nub-body ′′-nub-body ′′′-eq: nub-body ′′ = nub-body ′′′ oo (unwrap oo wrap)
unfolding nub-body ′′-def nub-body ′′′-def wrap-def unwrap-def
by ((rule cfun-eqI )+, simp add: filter-filterR)

Finally glue it all together.
lemma nub-wrap-nub-body ′′′: nub = wrap·(fix·nub-body ′′′)
using worker-wrapper-fusion-new[OF wrap-unwrap-id unwrap-strict, where body=nub-body]

nub-nub-body-eq
nub-body-nub-body ′-eq
nub-body ′-nub-body ′′-eq
nub-body ′′-nub-body ′′′-eq

by simp

end

11 Optimise “last”.

Andy Gill’s solution, mechanised. No fusion, works fine using their rule.

11.1 The last function.
fixrec llast :: ′a llist → ′a
where

llast·(x :@ yys) = (case yys of lnil ⇒ x | y :@ ys ⇒ llast·yys)
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lemma llast-strict[simp]: llast·⊥ = ⊥
by fixrec-simp

fixrec llast-body :: ( ′a llist → ′a) → ′a llist → ′a
where

llast-body·f ·(x :@ yys) = (case yys of lnil ⇒ x | y :@ ys ⇒ f ·yys)

lemma llast-llast-body: llast = fix·llast-body
by (rule cfun-eqI , subst llast-def , subst llast-body.unfold, simp)

definition wrap :: ( ′a → ′a llist → ′a) → ( ′a llist → ′a) where
wrap ≡ Λ f (x :@ xs). f ·x·xs

definition unwrap :: ( ′a llist → ′a) → ( ′a → ′a llist → ′a) where
unwrap ≡ Λ f x xs. f ·(x :@ xs)

lemma unwrap-strict[simp]: unwrap·⊥ = ⊥
unfolding unwrap-def by ((rule cfun-eqI )+, simp)

lemma wrap-unwrap-ID: wrap oo unwrap oo llast-body = llast-body
unfolding llast-body-def wrap-def unwrap-def
apply (rule cfun-eqI )+
apply (case-tac xa)
apply (simp-all add: fix-const)
done

definition llast-worker :: ( ′a → ′a llist → ′a) → ′a → ′a llist → ′a where
llast-worker ≡ Λ r x yys. case yys of lnil ⇒ x | y :@ ys ⇒ r ·y·ys

definition llast ′ :: ′a llist → ′a where
llast ′ ≡ wrap·(fix·llast-worker)

lemma llast-worker-llast-body: llast-worker = unwrap oo llast-body oo wrap
unfolding llast-worker-def llast-body-def wrap-def unwrap-def
apply (rule cfun-eqI )+
apply (case-tac xb)
apply (simp-all add: fix-const)
done

lemma llast ′-llast: llast ′ = llast (is ?lhs = ?rhs)
proof −

have ?rhs = fix·llast-body by (simp only: llast-llast-body)
also have . . . = wrap·(fix·(unwrap oo llast-body oo wrap))

by (simp only: worker-wrapper-body[OF wrap-unwrap-ID])
also have . . . = wrap·(fix·(llast-worker))

by (simp only: llast-worker-llast-body)
also have ... = ?lhs unfolding llast ′-def by simp
finally show ?thesis by simp
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qed

end

12 Concluding remarks

Gill and Hutton provide two examples of fusion: accumulator introduction
in their §4, and the transformation in their §7 of an interpreter for a lan-
guage with exceptions into one employing continuations. Both involve strict
unwraps and are indeed totally correct.
The example in their §5 demonstrates the unboxing of numerical compu-
tations using a different worker/wrapper rule and does not require fusion.
In their §6 a non-strict unwrap is used to memoise functions over the natu-
ral numbers using the rule considered here. It should in fact use the same
rule as the unboxing example as the scheme only correctly memoises strict
functions. We can see this by considering a base case missing from their
inductive proof, viz that if f :: Nat → a is not strict – in fact constant, as
Nat is a flat domain – then f ⊥ 6= ⊥ = (map f [0..]) !! ⊥, where xs !! n is
the nth element of xs.
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