Wlog — Without Loss of Generality

Dominique Unruh
RWTH Aachen, University of Tartu

March 17, 2025

Abstract

We introduce a new command wlog in Isabelle/HOL that allows us to (soundly)
assume facts without loss of generality inside a proof.

Contents

1 Introduction 1
2 Wilog — Setting up the command 3
3 Wilog-Eramples — Examples how to use wlog 4

1 Introduction

We introduce a command wlog for assuming facts without loss of generality inside a
proof in Isabelle/HOL. The wlog command makes sure this is sound by requiring us to
prove that the assumption is indeed made without loss of generality.

A simple example is the following:

lemma card_nth_roots_strengthened:
assumes "c # 0"
shows "card {z::complex. z ~n = c} = n"
proof -
wlog n_pos: "n > 0"
using negation by (simp add: infinite_UNIV_char_0)
have "card {z. z ~ n = ¢} = card {z::complex. z ~ n = 1}"
by (rule sym, rule bij_betw_same_card, rule bij_betw_nth_root_unity) fact+
also have "... = n" by (rule card_roots_unity_eq) fact+
finally show 7thesis .

ged

This proof is exactly like the proof of Complex.card_nth_roots in the Isabelle/HOL
library, except that the latter uses the additional assumption n > 0 in the theorem
statement. We omit this assumption and instead state that it can be assumed without
loss of generality. (wlog n_pos: "n > 0") The next line then shows that this can be
assumed without loss of generality.

Of course, we could have shown this theorem also, e.g., by doing a case distinction on
whether n = 0. But this would additionally clutter the proof; the case n = 0 is almost
trivial, yet in the proof it will be a separate case on the same level as the main proof. So
doing a wlog improves readability here by allowing us to focus on the important parts
of the proof and reducing boilerplate.

In other cases, a wlog argument cannot easily be done as a case distinction. E.g., if we
say that we can assume w.l.o.g. that a > b because the case a < b can be easily reduced
to the a > b case. (This is common in symmetric situations.) We give an example of
this in the proof of lemma schur_ineq below.

The full syntax of the wlog command is roughly as follows:

wlog wlogassmname: wlogassml wlogassm2
goal G generalizing x y z keeping factl fact2
[... your proof ...]

(The defaults being: The goal is ?thesis. And empty lists of variables and facts for
generalizing and keeping.)

This means that we assume w.l.o.g. that the facts wlogassml and wlogassm2 hold when
proving the goal G. We say that the assumptions factl and fact2 (made prior to the
wlog command) should still be available afterwards. (If we include less assumptions here,
the justification for the wlog command becomes easier.) And we wish to generalize the
variables x, y, z; that is, inside the justification of the wlog, we want to be allowed
to use the theorem that we are proving for other values of x, y, z (needed, e.g., in
symmetry arguments). And [... your proof ...] isa proof of the fact that we can
make the w.l.o.g.-assumption, either as an apply-script or as an Isar subproof.

The wlog command is realized by translation to existing Isar commands. The above
translates roughly to:

presume hypothesis:
A\x vy z. wlogassm —> factl — fact2 — G
have G if negation: fi (wlogassml A wlogassm2)
[... your proof ...]
then show G

!The argument is basically: If =(n > 0), then n = 0 (since n is a natural number). Then {z. 2™ = c}
is infinite, and for infinite sets, the cardinality card is defined to be 0 in Isabelle/HOL. Thus that
cardinality is 0. This reasoning is done almost automatically by Isabelle.

[... autogenerated proof ...]
next
fix xy =z
assume factl: factl and fact2: fact2
assume wlogassmname: wlogassml wlogassm2

(There are more steps and additional convenience definitions, but this is the main part.)

More examples of how to use wlog are given in the theory Wlog_Examples below.

2 Wlog — Setting up the command

theory Wiog
imports Main
keywords wlog :: prf-goal % proof
and generalizing and keeping and goal
begin

ML-file wlog. ML

For symmetric predicates involving 3-5 variables on a linearly ordered type, the following
lemmas are very useful for wlog-proofs.

For two variables, we already have linorder-wlog.

lemma linorder-wlog-3:
fixes z y z :: <'a :: linorder>
assumes Az yz. Pryz=— PyzzANPzzy
assumes Nz yz. 2 <yAy<z= Pzy2»
shows (P z y 2»
using assms
by (metis linorder-le-cases)

lemma linorder-wlog-4:
fixes z y z w :: <'a :: linorder»
assumes Az yzw. Pryzw=— PyzzwAPzzywAPzywz
assumes Nz yzw. z<yAy<zAz<w=— Pzyzw
shows <P z y z w»
using assms
by (metis linorder-le-cases)

lemma linorder-wlog-5-:
fixes z y z w v :: <'a :: linorders
assumes Az yzwv. Pryzwv=— PyzxzwvAPzzywvANPzywzvAPzyzvw
assumes </\xyzwv.a:§y/\ygz/\zgw/\wgvSPwyzww
shows <Pz y z w v
using assms
by (smt (verit) linorder-le-cases)

end

3 Wlog-Examples — Examples how to use wlog

theory Wlog-FExamples
imports Wilog Complex-Main
begin

The theorem Complex.card-nth-roots has the additional assumption 0 < n. We use
exactly the same proof except for stating that w.l.o.g., 0 < n.

lemma card-nth-roots-strengthened:
assumes ¢ # 0
shows card {z::complex. z "n=c} =n
proof —
wlog n-pos: n > 0
using negation by (simp add: infinite-UNIV-char-0)
have card {z. z " n = ¢} = card {z::complex. z "n = 1}
by (rule sym, rule bij-betw-same-card, rule bij-betw-nth-root-unity) fact+

also have ... = n by (rule card-roots-unity-eq) fact+
finally show ?thesis .
qed

This example very roughly follows Harrison [1]:

lemma schur-ineq:
fixes a b ¢ :: ¢'a :: linordered-idom» and k :: nat
assumes a0: <a > 0> and b0: 0> and c0: <¢ > 0»
shows «ak*x (a—b)x(a—¢c)+bhx(b—a)x(b—c)+ ck*x(c—a)x(c—0b >0
(is «%lhs > 0>)
proof —
wlog ordered[simp]: <a < b» <b < ¢» generalizing a b ¢ keeping a0 b0 c0
apply (rule rev-mp[OF c0]; rule rev-mp[OF b0]; rule rev-mp|OF a0])
apply (rule linorder-wlog-3[of - a b c])
apply (simp add: algebra-simps)
by (simp add: hypothesis)

from ordered have [simp]: <a < ¢
by linarith

have «(?lhs = (¢ = b) * (¢ k* (¢ —a) = bk x(b—a)) + ak*x(c—a)*(b—a)p
by (simp add: algebra-simps)
also have (... > 0»
by (auto intro!: add-nonneg-nonneg mult-nonneg-nonneg mult-mono power-mono zero-le-power
stmp: a0 b0 c0)
finally show «?%lhs > 0>
by —
qed

The following illustrates how facts already proven before a wlog can be still be used
after the wlog. The example does not do anything useful.

lemma <A — B — A AN B)

proof —
have testl: <1=1> by simp
assume a: (A
then have test2: <AV 1#£2> by simp
— Isabelle marks this as being potentially based on assumption a. (Note: this is not done
by actual dependency tracking. Anything that is proven after the assume command can depend
on the assumption.)
assume b: «<B»
with a have test3: <A A By by simp
— Isabelle marks this as being potentially based on assumption a, b
wlog true: < True> generalizing A B keeping b
— A pointless wlog: we can wlog assume True. Notice: we only keep the assumption b around.
using negation by blast

The already proven theorems cannot be accessed directly anymore (wlog starts a new
proof block). Recovered versions are available, however:

thm wlog-keep.test]
— The fact is fully recovered since it did not depend on any assumptions.
thm wlog-keep.test2
— This fact depended on assumption a which we did not keep. So the original fact might
not hold anymore. Therefore, wlog-keep.test2 becomes A = A V 1 # (2::'a). (Note the added
A premise.)
thm wlog-keep.test3
— This fact depended on assumptions a and b. But we kept b. Therefore, wlog-keep.test2
becomes A => A A B. (Note that only A is added as a premise.)
oops
— Aborting the proof here because we cannot prove A A B anymore since we dropped
assumption a for demonstration purposes.

end

References

[1] J. Harrison. Without loss of generality. In S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, editors, Theorem Proving in Higher Order Logics, pages 43-59, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg. Eprint available at https://www.cl.
cam.ac.uk/~jrh13/papers/wlog.pdf.

https://www.cl.cam.ac.uk/~jrh13/papers/wlog.pdf
https://www.cl.cam.ac.uk/~jrh13/papers/wlog.pdf

	Introduction
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Wlog – Setting up the command
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Wlog-Examples – Examples how to use wlog

