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Abstract

In complex analysis, the winding number measures the number
of times a path (counterclockwise) winds around a point, while the
Cauchy index can approximate how the path winds. This entry pro-
vides a formalisation of the Cauchy index, which is then shown to be
related to the winding number. In addition, this entry also offers a
tactic that enables users to evaluate the winding number by calculat-
ing Cauchy indices. The connection between the winding number and
the Cauchy index can be found in the literature [1] [2, Chapter 11].

1 Some useful lemmas in topology

theory Missing-Topology imports HOL— Analysis. Multivariate- Analysis
begin

1.1 Misc

lemma open-times-image:
fixes S::’a::real-normed-field set
assumes open S ¢£0
shows open (((x) ¢) *9)
proof —
let 9f = Az. z/c and ?g=((%) ¢)
have continuous-on UNIV ?f using <c#£0> by (auto intro:continuous-intros)
then have open (?f —*S) using <open S» by (auto elim:open-vimage)
moreover have %g ‘S = 7f —¢ S using «c#0»
using image-iff by fastforce
ultimately show #¢thesis by auto
qed

lemma image-linear-greaterThan:

fixes z::'a::linordered-field

assumes c#(

shows ((Az. cxz+b) ‘{z<..}) = (if ¢>0 then {cxz+b <.} else {..< cxz+b})
using (c#0»

apply (auto simp add:image-iff field-simps)

subgoal for y by (rule bezl[where z=(y—0b)/c|,auto simp add:field-simps)



subgoal for y by (rule bexl[where z=(y—0b)/c|,auto simp add:field-simps)
done

lemma image-linear-lessThan:

fixes z::'a::linordered-field

assumes c#(

shows ((Az. cxz+b) ‘{..<z}) = (if ¢>0 then {.<cxz+b} else {cxz+b<..})
using «c#0»

apply (auto simp add:image-iff field-simps)

subgoal for y by (rule bexI[where x=(y—b)/c],auto simp add:field-simps)

subgoal for y by (rule bexI[where x=(y—b)/c],auto simp add:field-simps)
done

lemma continuous-on-neq-split:

fixes f :: 'a:linear-continuum-topology = 'b::linorder-topology

assumes YV z€s. f x#y continuous-on s f connected s

shows (Vzes. fz>y) V (Vz€es. fr<y)

by (smt (verit) assms connectedD-interval connected-continuous-image imageE
image-eql lel)

lemma
fixes f::’a::linorder-topology = 'b::topological-space
assumes continuous-on {a..b} fa<b
shows continuous-on-at-left:continuous (at-left b) f
and continuous-on-at-right:continuous (at-right a) f
using assms continuous-on-Icc-at-leftD continuous-within apply blast
using assms continuous-on-Icc-at-rightD continuous-within by blast

1.2 More about eventually

lemma eventually-comp-filtermap:
eventually (P o f) F' <— eventually P (fillermap f F')
unfolding comp-def using eventually-filtermap by auto

lemma eventually-at-infinityl:
fixes P::'a::real-normed-vector = bool
assumes A\z. ¢ < normz = Pz
shows eventually P at-infinity
unfolding eventually-at-infinity using assms by auto

lemma eventually-at-bot-linorderl:
fixes c::'a::linorder
assumes A\z. 2 < ¢c= Pz
shows eventually P at-bot
using assms by (auto simp: eventually-at-bot-linorder)

1.3 More about filtermap

lemma filtermap-linear-at-within:
assumes bij f and cont: isCont f a and open-map: \S. open S = open (f*S)



shows filtermap f (at a within S) = at (f a) within fS
unfolding filter-eq-iff
proof safe
fix P
assume eventually P (filtermap f (at a within S))
then obtain T where open T a € T and impP:Vz€T. z#£a — z€S— P (f

7)
by (auto simp: eventually-filtermap eventually-at-topological)
then show eventually P (at (f a) within f *S)
unfolding eventually-at-topological
apply (intro exI[of - f*T])
using «bij f> open-map by (metis bij-pointE imageE imagel)
next
fix P
assume eventually P (at (f a) within f ¢ .S)
then obtain 77 where open T1 f a € T1 and impP:NzeTI. z#£f a —
zefS— P (z)
unfolding eventually-at-topological by auto
then obtain T2 where open T2 a € T2 (Vz'eT2. fz' € T1)
using cont[unfolded continuous-at-open,rule-format,of T1] by blast
then have VzeT2. z#£a — 2z€S— P (f 1)
using impP by (metis assms(1) bij-pointE imagel)
then show eventually P (filtermap f (at a within S))
unfolding eventually-filtermap eventually-at-topological
apply (intro exI[of - T2])
using <open T2»> <a € T2) by auto
qged

lemma filtermap-at-bot-linear-eq:
fixes c::'a::linordered-field
assumes c#0
shows filtermap (Az. z * ¢ + b) at-bot = (if ¢>0 then at-bot else at-top)
proof (cases ¢>0)
case True
then have filtermap (Az. z * ¢ + b) at-bot = at-bot
apply (intro filtermap-fun-inverse[of Az. (z—b) / c])
subgoal unfolding eventually-at-bot-linorder filterlim-at-bot
by (auto simp add: field-simps)
subgoal unfolding eventually-at-bot-linorder filterlim-at-bot
by (metis mult.commute real-affinity-le)
by auto
then show ?thesis using «¢>0» by auto
next
case Fulse
then have c<(0 using «c#0> by auto
then have filtermap (Az. z * ¢ + b) al-bot = at-top
apply (intro filtermap-fun-inverse[of Az. (z—b) / c])
subgoal unfolding eventually-at-top-linorder filterlim-at-bot
by (meson le-diff-eq neg-divide-le-eq)



subgoal unfolding eventually-at-bot-linorder filterlim-at-top
using <c¢ < 0» by (meson False diff-le-eq le-divide-eq)
by auto
then show ?thesis using «c<0» by auto
qed

lemma filtermap-linear-at-left:
fixes c::'a::{linordered-field,linorder-topology,real-normed-field}
assumes c#0
shows filtermap (Az. cxx+b) (at-left ©) = (if ¢>0 then at-left (cxax+b) else
at-right (cxz+b))
proof —
let 2f = \z. cxz+b
have filtermap (Az. cxx+b) (at-left ©) = (at (2f x) within ?f  {..<z})
proof (subst filtermap-linear-at-within)
show bij ?f using <c#0»
by (auto introl: o-bijlof Ax. (z—b)/c])
show isCont ?f x by auto
show AS. open S = open (7f * 5)
using open-times-image[OF - <c£0y, THEN open-translation,of - b
by (simp add:image-image add.commute)
show at (7f z) within ?f ‘ {.<z} = at (?f z) within ?f ‘ {..<z} by simp
qed
moreover have ?f ‘ {.<z} = {..<?fz} when ¢>0
using image-linear-lessThan|OF <c#0>,0f b z] that by auto
moreover have ?f ‘ {.<z} = {9 z<..} when — ¢>0
using image-linear-lessThan[OF <c#0»,0f b z] that by auto
ultimately show ?thesis by auto
qed

lemma filtermap-linear-at-right:
fixes c::'a::{linordered-field,linorder-topology,real-normed-field}
assumes c#(
shows filtermap (Az. cxz+b) (at-right x) = (if ¢>0 then at-right (cxz+0b) else
at-left (cxz+b))
proof —
let ?f = Az. cxz+b
have filtermap ?f (at-right x) = (at (?f z) within ?f ‘ {z<..})
proof (subst filtermap-linear-at-within)
show bij ?f using <c#0)
by (auto introl: o-bijlof Ax. (z—b)/c])
show isCont ?f x by auto
show AS. open S = open (?f * S)
using open-times-image[OF - «¢£0y, THEN open-translation,of - b
by (simp add:image-image add.commute)
show at (7f z) within ?f ‘ {z<..} = at (?f z) within ?f ‘ {x<..} by simp
qed
moreover have ?f ‘ {z<.} = {%f z<..} when ¢>0
using image-linear-greater Than[OF <c¢#05,0f b z] that by auto



moreover have ?f ‘ {z<..} = {..<?fz} when — ¢>0
using image-linear-greater Than[OF <c#05,0f b z] that by auto
ultimately show #¢thesis by auto
qed

lemma filtermap-at-top-linear-eq:
fixes c::’a:linordered-field
assumes c#(
shows filtermap (Az. z * ¢ + b) at-top = (if ¢>0 then at-top else at-bot)
proof (cases ¢>0)
case True
then have filtermap (Az. z x ¢ + b) at-top = at-top
apply (intro filtermap-fun-inverse[of Az. (z—b) / c])
subgoal unfolding eventually-at-top-linorder filterlim-at-top
by (meson le-diff-eq pos-le-divide-eq)
subgoal unfolding eventually-at-top-linorder filterlim-at-top
apply auto
by (metis mult.commute real-le-affinity)
by auto
then show ?thesis using «¢>0» by auto
next
case Fulse
then have c<(0 using (c#0> by auto
then have filtermap (Az. z x ¢ + b) al-top = at-bot
apply (intro filtermap-fun-inverse[of Az. (z—b) / c])
subgoal unfolding eventually-at-bot-linorder filterlim-at-top
by (auto simp add: field-simps)
subgoal unfolding eventually-at-top-linorder filterlim-at-bot
by (meson le-diff-eq neg-divide-le-eq)
by auto
then show ?thesis using «c<0» by auto
qed

1.4 More about filterlim

lemma filterlim-at-top-linear-iff:

fixes f::’a::linordered-field = 'b

assumes c#(

shows (LIM z at-top. f (x x ¢ + b) :> F2) +— (if ¢>0 then (LIM z at-top. f x
> F2)

else (LIM z at-bot. fx :> F2))

unfolding filterlim-def

apply (subst filtermap-filtermap[of f Ax.  * ¢ + b,symmetric])

using assms by (auto simp add:filtermap-at-top-linear-eq)

lemma filterlim-at-bot-linear-iff:
fixes f::’a::linordered-field = 'b
assumes c#(
shows (LIM z at-bot. f (z x ¢ + b) :> F2) <— (if ¢>0 then (LIM z at-bot. f x



> F2)
else (LIM z at-top. fz :> F2))
unfolding filterlim-def
apply (subst filtermap-filtermap|of f Az. x * ¢ + b,symmetric])
using assms by (auto simp add:filtermap-at-bot-linear-eq)

lemma filterlim-tendsto-add-at-top-iff:
assumes f: (f —— ¢) F
shows (LIM z F. (fx + g x :: real) :> at-top) «— (LIM = F. g x :> at-top)
proof
assume LIM z F. fx 4+ g x :> at-top
moreover have (\z. — fz) —— — ¢) F
using f by (intro tendsto-intros,simp)
ultimately show filterlim g at-top F using filterlim-tendsto-add-at-top
by fastforce
qed (auto simp add:filterlim-tendsto-add-at-top| OF f])

lemma filterlim-tendsto-add-at-bot-iff:
fixes c::real
assumes f: (f —— ¢) F
shows (LIM z F. fx + gz :> at-bot) +— (LIM z F. g x :> at-bot)
proof —
have (LIM z F. fz 4+ g = :> at-bot)
+— (LIMz F. — fz + (— gx) > at-top)
apply (subst filterlim-uminus-at-top)
by (rule filterlim-cong,auto)
also have ... = (LIM ¢ F. — g x > at-top)
apply (subst filterlim-tendsto-add-at-top-iff [of - —c])
by (auto intro:tendsto-intros simp add:f)
also have ... = (LIM z F. g © :> at-bot)
apply (subst filterlim-uminus-at-top)
by (rule filterlim-cong,auto)
finally show ?thesis .
qed

lemma tendsto-inverse-0-at-infinity:

LIM z F. fx :> at-infinity = ((Az. inverse (f ) :: real) —— 0) F
by (metis filterlim-at filterlim-inverse-at-iff)

end

2 Some useful lemmas in algebra

theory Missing-Algebraic imports
HOL— Computational-Algebra. Polynomial-Factorial



HOL— Computational-Algebra. Fundamental- Theorem-Algebra
HOL— Complex-Analysis. Complex-Analysis
Missing-Topology
Budan-Fourier. BF-Misc
begin

2.1 Misc

lemma poly-holomorphic-on[simp]: (poly p) holomorphic-on s
by (meson field-differentiable-def has-field-derivative-at-within holomorphic-onl
poly-DERIV)

lemma order-zorder:
fixes p::complex poly and z::complex
assumes p#(
shows order z p = nat (zorder (poly p) z)
proof —
define n where n=nat (zorder (poly p) z)
define h where h=zor-poly (poly p) z
have Jw. poly p w # 0 using assms poly-all-0-iff-0 by auto
then obtain r where 0 < r cball z v C UNIV and
h-holo: h holomorphic-on cball z r and
poly-prod:(Y wecball z r. polyp w =hw* (w—2) “nAhw#0)
using zorder-exist-zero|of poly p UNIV z,folded h-def] poly-holomorphic-on
unfolding n-def by auto
then have h holomorphic-on ball z r
and (Yweball zr. polyp w =hw * (w — 2)
and h z#£0
by auto
then have order z p = n using «p#0>
proof (induct n arbitrary:p h)
case (
then have poly p z=h z using «r>0» by auto
then have poly p z#0 using «h 270 by auto
then show ?case using order-root by blast
next
case (Suc n)
define sn where sn==Suc n
define b’/ where h'= Aw. deriv h w * (w—z)+ sn * h w
have (poly p has-field-derivative poly (pderiv p) w) (at w) for w
using poly-DERIV[of p w] .
moreover have (poly p has-field-derivative (h' w)*(w—z)"n ) (at w) when
weball z r for w
proof (subst DERIV-cong-ev[of w w poly p Aw. h w * (w — 2z) ~ Suc n
],sitmp-all)
show V p z in nhds w. poly px = hz * ((z — 2) * (x — 2) " n)
unfolding eventually-nhds using Suc(3) <w€ball z >
by (metis Elementary-Metric-Spaces.open-ball power-Suc)
next

o~

n)



have (h has-field-derivative deriv h w) (at w)
using <h holomorphic-on ball z ry <weball z ry holomorphic-on-imp-differentiable-at

by (simp add: holomorphic-derivl)
then have ((Aw. h w x ((w — 2) ~ sn))
has-field-derivative ' w x (w — 2) ~ (sn — 1)) (at w)
unfolding h’-def
apply (auto intro!: derivative-eg-intros simp add:field-simps)
by (auto simp add:field-simps sn-def)
then show ((Aw. hw * ((w — 2) * (w — 2) " n))
has-field-derivative ' w * (w — z) ~ n) (at w)
unfolding sn-def by auto
qed
ultimately have YV weball z r. poly (pderivp) w=h" w= (w— 2) " n
using DERIV-unique by blast
moreover have h’' holomorphic-on ball z r
unfolding h’-def using <h holomorphic-on ball z
by (auto intro!: holomorphic-intros)
moreover have h’ 270 unfolding h’-def sn-def using <h z # 0) of-nat-neq-0
by auto
moreover have pderiv p # 0
proof
assume pderiv p = 0
obtain ¢ where p=[:c:] using (pderiv p = 0) using pderiv-iszero by blast
then have c=0
using Suc(3)[rule-format,of z] «r>0» by auto
then show False using «p#£0> using «p=[:c:]> by auto
qed
ultimately have order z (pderiv p) = n by (auto elim: Suc.hyps)
moreover have order z p # 0
using Suc(3)[rule-format,of z] «r>0s order-root <p#£0» by auto
ultimately show ?case using order-pderiv|OF <pderiv p # 0)] by auto
qed
then show ?thesis unfolding n-def .
qed

lemma pcompose-pCons-0:pcompose p [:a:] = [:poly p a:]
by (metis (no-types, lifting) coeff-pCons-0 pcompose-0' pcompose-assoc poly-0-coeff-0
poly-pcompose)

lemma pcompose-coeff-0:

coeff (pcompose p q) 0 = poly p (coeff q 0)
by (metis poly-0-coeff-0 poly-pcompose)

lemma poly-field-differentiable-at[simp):
poly p field-differentiable (at x within s)
using field-differentiable-at-within field-differentiable-def poly-DERIV by blast

lemma deriv-pderiv:



deriv (poly p) = poly (pderiv p)
by (meson ext DERIV-imp-deriv poly-DERIV)

lemma lead-coeff-map-poly-nz:

assumes | (lead-coeff p) #0 f 0=0

shows lead-coeff (map-poly f p) = f (lead-coeff p)

by (metis (no-types, lifting) antisym assms coeff-0 coeff-map-poly le-degree lead-
ing-coeff-0-iff)

lemma filterlim-poly-at-infinity:
fixes p::'a::real-normed-field poly
assumes degree p>0
shows filterlim (poly p) at-infinity at-infinity
using assms
proof (induct p)
case (
then show ?case by auto
next
case (pCons a p)
have ?case when degree p=0
proof —
obtain ¢ where c-def:p=[:c:] using <degree p = 0) degree-eq-zeroE by blast
then have ¢#0 using <0 < degree (pCons a p)) by auto
then show ?thesis unfolding c-def
apply (auto introl:tendsto-add-filterlim-at-infinity)
apply (subst mult.commute)
by (auto introl:tendsto-mult-filterlim-at-infinity filterlim-ident)
qed
moreover have ?case when degree p#0
proof —
have filterlim (poly p) at-infinity at-infinity
using that by (auto intro:pCons)
then show ?thesis
by (auto introl:tendsto-add-filterlim-at-infinity filterlim-at-infinity-times filter-
lim-ident)
qed
ultimately show ?case by auto
qged

lemma poly-divide-tendsto-aux:

fixes p::'a::real-normed-field poly

shows ((Az. poly p x/x (degree p)) —— lead-coeff p) at-infinity
proof (induct p)

case (

then show ?case by (auto intro:tendsto-eq-intros)
next

case (pCons a p)

have ?case when p=0

using that by auto



moreover have ?case when p#0
proof —
define g where g=(Az. a/(zxz degree p))
define f where f=(\z. poly p z/x degree p)
have V px in at-infinity. poly (pCons a p) © / x ~ degree (pCons a p) = g = +
fx
proof (rule eventually-at-infinityI[of 1])
fix z::'a assume norm z>1
then have z#0 by auto
then show poly (pCons a p) x / x ~ degree (pCons ap) =gz + fz
using that unfolding g-def f-def by (auto simp add:field-simps)
qed
moreover have ((Az. g z+f z) —— lead-coeff (pCons a p)) at-infinity
proof —
have (¢ —— 0) at-infinity
unfolding g-def using filterlim-poly-at-infinity[of monom 1 (Suc (degree
p))]
apply (auto introl:tendsto-intros tendsto-divide-0 simp add: degree-monom-eq)
apply (subst filterlim-cong[where g=poly (monom 1 (Suc (degree p)))])
by (auto simp add:poly-monom)
moreover have (f —— lead-coeff (pCons a p)) at-infinity
using pCons <p#£0> unfolding f-def by auto
ultimately show ?thesis by (auto intro:tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)
qged
ultimately show ?case by auto
qed

lemma filterlim-power-at-infinity:
assumes n#0
shows filterlim (A\z::'a::real-normed-field. ™n) at-infinity at-infinity
using filterlim-poly-at-infinity[of monom 1 n] assms
apply (subst filterlim-cong[where g=poly (monom 1 n)])
by (auto simp add:poly-monom degree-monom-eq)

lemma poly-divide-tendsto-0-at-infinity:
fixes p::'a::real-normed-field poly
assumes degree p > degree q
shows ((A\z. poly q z / poly p ©) —— 0 ) at-infinity
proof —
define pp where pp=(Az. z (degree p) / poly p x)
define ¢q where gg=(A\z. poly q x/z (degree q))
define dd where dd=(\z::'a. 1/x(degree p — degree q))
have V gz in at-infinity. poly q x / poly p x = qqx * pp x * dd =
proof (rule eventually-at-infinityI[of 1])
fix z::'a assume norm x> 1
then have z#0 by auto
then show poly gz / poly px = qqz * pp x * dd x
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unfolding qq-def pp-def dd-def using assms
by (auto simp add:field-simps divide-simps power-diff)
qed
moreover have ((Az. gq z * pp z * dd ) —— 0) at-infinity
proof —
have (q¢ —— lead-coeff q) at-infinity
unfolding ¢g¢-def using poly-divide-tendsto-auz|of ¢q| .
moreover have (pp —— 1 /lead-coeff p) at-infinity
proof —
have p#0 using assms by auto
then show ?thesis
unfolding pp-def using poly-divide-tendsto-auz|of p]
apply (drule-tac tendsto-inverse)
by (auto simp add:inverse-eq-divide)
qed
moreover have (dd —— 0) at-infinity
unfolding dd-def
apply (rule tendsto-divide-0)
by (auto introl: filterlim-power-at-infinity simp add:assms)
ultimately show ?thesis by (auto intro:tendsto-eg-intros)
qged
ultimately show ?thesis by (auto dest:tendsto-cong)
qed

lemma lead-coeff-list-def:
lead-coeff p= (if coeffs p=[] then 0 else last (coeffs p))
by (simp add: last-coeffs-eq-coeff-degree)

lemma poly-linepath-comp:
fixes a::'a::{real-normed-vector,comm-semiring-0,real-algebra-1}
shows poly p o (linepath a b) = poly (p o, [:a, b—a:]) o of-real
by (force simp add:poly-pcompose linepath-def scaleR-conv-of-real algebra-simps)

lemma poly-eventually-not-zero:
fixes p::real poly
assumes p#(
shows eventually (Az. poly p ©#0) at-infinity
proof (rule eventually-at-infinityI[of Maz (norm ‘ {z. poly p x=0}) + 1))
fix x::real assume asm:Maz (norm ‘ {z. poly p z=0}) + 1 < norm x
have Fulse when poly p x=0
proof —
define S where S=norm {z. poly p z = 0}
have norm z€S using that unfolding S-def by auto
moreover have finite S using <p#£0> poly-roots-finite unfolding S-def by
blast
ultimately have norm t<Maz S by simp
moreover have Mazx S + 1 < norm z using asm unfolding S-def by simp
ultimately show Fulse by argo
qed

11



then show poly p © # 0 by auto
qed

2.2 More about degree

lemma map-poly-degree-eq:
assumes | (lead-coeff p) #0
shows degree (map-poly f p) = degree p
using assms
unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly lead-coeff-list-def
by (metis (full-types) last-conv-nth-default length-map no-trailing-unfold nth-default-coeffs-eq

nth-default-map-eq strip-while-idem)

lemma map-poly-degree-less:
assumes | (lead-coeff p) =0 degree p#0
shows degree (map-poly f p) < degree p
proof —
have length (coeffs p) >1
using <degree p£0» by (simp add: degree-eg-length-coeffs)
then obtain zs  where zs-def:coeffs p=zsQ[z] length zs>0
by (metis One-nat-def add-0 append-Nil length-greater-0-conv list.size(4) nat-neg-iff
not-less-zero rev-exhaust)
have f z=0 using assms(1) by (simp add: lead-coeff-list-def xs-def(1))
have degree (map-poly f p) = length (strip-while ((=) 0) (map f (zsQ[z]))) — 1
unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly
by (subst zs-def,auto)
also have ... = length (strip-while ((=) 0) (map f xs)) — 1
using «f x=0> by simp
also have ... < length xs —1
using length-strip-while-le by (metis diff-le-mono length-map)
also have ... < length (zsQ[z]) — 1
using zs-def(2) by auto
also have ... = degree p
unfolding degree-eg-length-coeffs rs-def by simp
finally show ?thesis .
qed

lemma map-poly-degree-leq[simp):
shows degree (map-poly f p) < degree p
unfolding map-poly-def degree-eq-length-coeffs
by (metis coeffs-Poly diff-le-mono length-map length-strip-while-le)

2.3 roots / zeros of a univariate function

definition roots-within::('a = 'b::zero) = ’a set = 'a set where
roots-within f s = {z€s. fz = 0}

abbreviation roots:(‘a = 'b::zero) = ‘a set where
roots f = roots-within f UNIV

12



2.4 The argument principle specialised to polynomials.

lemma argument-principle-poly:
assumes p#0 and valid:valid-path g and loop: pathfinish g = pathstart g
and no-proots:path-image g C — proots p
shows contour-integral g (A\z. deriv (poly p) x / poly p ) = 2 x of-real pi * i *
(5" zeproots p. winding-number g x x of-nat (order x p))
proof —
have contour-integral g (Az. deriv (poly p) x / poly p x) = 2 % of-real pi x 1 *
>z | poly p x = 0. winding-number g x x of-int (zorder (poly p) x))
apply (rule argument-principle[of UNIV poly p {} A-. 1 g,simplified,OF - valid
loop)
using no-proots[unfolded proots-def] by (auto simp add:poly-roots-finite[OF
p#00])
also have ... = 2 x of-real pi x 1 % (> x€proots p. winding-number g x * of-nat
(order z p))
proof —
have nat (zorder (poly p) x) = order x p when z€proots p for x
using order-zorder[OF «p#£0>] that unfolding proots-def by auto
then show ?thesis unfolding proots-def
apply (auto intro!: sum.cong)
by (metis assms(1) nat-eg-iff2 of-nat-nat order-root)
qed
finally show ?thesis .
qed

end

3 Some useful lemmas about transcendental func-
tions

theory Missing-Transcendental imports
Missing-Topology
Missing-Algebraic

begin

3.1 Misc

lemma exp- Arg2pi2pi-multivalue:
assumes ezp (i * of-real T) = 2
shows Jk:int. © = Arg2pi z + 2xkxpi
proof —
define k where k=floor( z/(2x*pi))
define z’ where z'= © — (2xkxpi)
have z'/(2xpi) >0 unfolding z'-def k-def by (simp add: diff-divide-distrib)
moreover have z'/(2xpi) < 1
proof —
have z/(2xpi) — k < 1 unfolding k-def by linarith
thus ?thesis unfolding k-def x’-def by (auto simp add:field-simps)
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qed
ultimately have x>0 and z'<2xpi by (auto simp add:field-simps)
moreover have exp (i x complez-of-real z') = 2z
using assms z'-def by (auto simp add:field-simps )
ultimately have Arg2pi z = z' using Arg2pi-unique|of 1 ' z,simplified] by auto
hence z = Arg2pi z + 2xkxpi unfolding z’-def by auto
thus ?thesis by auto
qed

lemma uniform-discrete-tan-eq:
uniform-discrete {z::real. tan © = y}
proof —
have z1=22 when dist:dist 1 2<pi/2 and tan z1=y tan 2=y for z1 x2
proof —
obtain kI::int where z1:x1 = arctan y + kiIxpi V (21 = pi/2 + kixpi A
y=0)
using tan-eq-arctan-FEx <tan x1=y> by auto
obtain k2::int where z2:22 = arctan y + k2xpi V (22 = pi/2 + k2xpi A
y=0)
using tan-eq-arctan-FEx <tan x2=1y> by auto
let ?zki=x1 = arctan y + ki1xpi and ?zkl'=xl = pi/2 + kixpi A y=0
let 22k2=x2 = arctan y + k2xpi and 22k2'=x2 = pi/2 + k2xpi A\ y=0
have ?thesis when (?zk1 A %zk2) Vv (%2k1’ A 22k2)
proof —
have z1—22= (k1 — k2) *pi when ?zk1 ?zk2
using arg-cong2[where f=minus,OF «?xkl> «?xk2)]
by (auto simp add:algebra-simps)
moreover have z1—22= (kI — k2) *pi when ?%2k1’ ?2k2’
using arg-cong2|where f=minus,OF conjunct1[OF <?zk1"] conjunctl|OF
«2xk2])
by (auto simp add:algebra-simps)
ultimately have z1 —z2= (kI — k2) xpi using that by auto
then have k1 — k2| < 1/2
using dist[unfolded dist-real-def] by (auto simp add:abs-mult)
then have k1=k2 by linarith
then show ?thesis using that by auto
qged
moreover have ?thesis when ?zk1 ?zk2’
proof —
have z1 = kixpi z2 = pi / 2 + k2 * pi using <?zk2"y <22kl by auto
from arg-cong2[where f=minus,OF this] have =1 — 22 = (k1 — k2) * pi
—pi/2
by (auto simp add:algebra-simps)
then have |(kI — k2) % pi —pi/2| < pi/2 using dist[unfolded dist-real-def]
by auto
then have 0<k1—-k2 ki1—-k2<1
unfolding abs-less-iff by (auto simp add: zero-less-mult-iff)
then have Fulse by simp
then show ?thesis by auto
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qed
moreover have ?thesis when ?zk1’ ?zk2
proof —
have 21 = pi / 2 + klxpi 22 = k2 x pi using <?zk2> <?zk1"» by auto
from arg-cong2[where f=minus,OF this] have z1 — 22 = (k1 — k2) * pi
+ pi/2
by (auto simp add:algebra-simps)
then have |(kI — k2) * pi + pi/2| < pi/2 using dist[unfolded dist-real-def]
by auto
then have |(k1 — k2 + 1/2)xpi| < pi/2 by (auto simp add:algebra-simps)
then have |(kI — k2 + 1/2)] < 1/2 by (auto simp add:abs-mult)
then have —1<ki—k2 N k1—-k2<0
unfolding abs-less-iff by linarith
then have Fulse by auto
then show ?thesis by auto
qed
ultimately show ?thesis using z1 z2 by blast
qed
then show ?thesis unfolding uniform-discrete-def
apply (intro exI[where z=pi/2])
by auto
qed

lemma get-norm-value:
fixes a::'a::{floor-ceiling}
assumes pp> (0
obtains k::int and al where a=(of-int k)xpp+al a0<al al<alO+pp
proof —
define k where k=floor ((a—a0)/pp)
define a! where al=a—(of-int k)xpp
have of-int |(a — a0) / pp| * pp < a— a0
using assms by (meson le-divide-eq of-int-floor-le)
moreover have a—al < of-int (|[(a — a0) / pp|+1) x pp
using assms by (meson divide-less-eq floor-correct)
ultimately show ?thesis
apply (intro that[of k al])
unfolding k-def al-def using assms by (auto simp add:algebra-simps)
qed

lemma filtermap-tan-at-right:
fixes a::real
assumes cos a#0
shows filtermap tan (at-right a) = at-right (tan a)
proof —
obtain k::int and al where aal:a=kxpi+al and pi-al: —pi/2<al al<pi/2
using get-norm-value[of pi a —pi/2] by auto
have —pi/2 < al
using assms
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by (smt (verit, ccfo-SIG) pi-al aal cos-2pi-minus cos-diff cos-pi-half cos-two-pi
divide-minus-left mult-of-int-commute sin-add sin-npi-int sin-pi-half sin-two-pi)
have eventually P (at-right (tan a))
when eventually P (filtermap tan (at-right o)) for P
proof —
obtain b1 where b1>a and bl-imp: Vy>a. y < bl — P (tan y)
by (metis Sturm-Tarski.eventually-at-right <eventually P (filtermap tan (at-right
a))> eventually-filtermap)
define b2 where b2=min bl (k«pi+pi/4+al/2)
define b3 where b3=02 — kxpi
have —pi/2 < b3 b3<pi/2
proof —
have al<b3
using <bI>a> aal <(al<pi/2> unfolding b2-def b3-def by (auto simp
add: field-simps)
then show —pi/2 < b3 using <—pi/2<al> by auto
show b3 < pi/2
using b2-def b3-def pi-a1(2) by linarith
qed
have tan 02 > tan a
proof —
have tan a = tan al
using aal by (simp add: add.commute)
also have ... < tan b3
proof —
have a1 <b3
using «bI1>a> aal <al<pi/2) unfolding b2-def b3-def by (auto simp
add:field-simps)
then show ?thesis
using tan-monotone <—pi/2 < aly <b3 < pi/2) by simp
qed
also have ... = tan 02 unfolding b3-def
by (metis Groups.mult-ac(2) add-uminus-conv-diff mult-minus-right of-int-minus

tan-periodic-int)
finally show ?thesis .

qged
moreover have P y when y>tan a y < tan b2 for y
proof —

define y1 where yI=arctan y+ k * pi

have a<y1

proof —

have arctan (tan a) < arctan y using <y>tan a> arctan-monotone by auto
then have a1 <arctan y
using arctan-tan <—pi/2 < al) <al<pi/2> unfolding aal by (simp add:
add.commute)
then show ?thesis unfolding y1-def aal by auto
qed
moreover have y1<b2
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proof —
have arctan y < arctan (tan b2)
using <y < tan b2 arctan-monotone by auto
moreover have arctan (tan b2) = b3
using arctan-tan[of b3] «—pi/2 < b3» «b3<pi/2> unfolding b3-def
by (metis add.inverse-inverse diff-minus-eg-add divide-minus-left mult.commute

mult-minus-right of-int-minus tan-periodic-int)
ultimately have arctan y < b3 by auto
then show ?thesis unfolding y1-def b3-def by auto
qed
moreover have Vy>a. y < b2 — P (tan y)
using b1-imp unfolding b2-def by auto
moreover have tan yI=y unfolding yI-def by (auto simp add:tan-arctan)
ultimately show ?thesis by auto
qed
ultimately show eventually P (at-right (tan a))
unfolding eventually-at-right by (metis eventually-at-right-field)
qed
moreover have eventually P (filtermap tan (at-right a))
when eventually P (at-right (tan a)) for P
proof —
obtain b1 where b1>tan a and bI-imp:V y>tan a. y < b1 — Py
using <eventually P (at-right (tan a))» unfolding eventually-at-right
by (metis eventually-at-right-field)
define b2 where b2=arctan bl + kxpi
have al < arctan b1
by (metis «<— pi / 2 < al» <al < pi [/ 2» <tan a < bl» aal add.commute
arctan-less-iff
arctan-tan divide-minus-left tan-periodic-int)
then have b2>a unfolding aal b2-def by auto
moreover have P (tan y) when y>a y < b2 for y
proof —
define y1 where yI = y — kxpi
have a1 < y! y1 < arctan bl unfolding y1-def
subgoal using <y>a) unfolding aal by auto
subgoal using b2-def that(2) by linarith
done
then have tan al < tan y1 tan y1< bl
subgoal using <al>—pi/2>
apply (intro tan-monotone,simp,simp)
using arctan-ubound less-trans by blast
subgoal
by (metis <— pi / 2 < al> <al < yl» <yl < arctan bl> arctan-less-iff
arctan-tan
arctan-ubound divide-minus-left less-trans)
done
have tan y>tan a
by (metis <tan al < tan yl» aal add.commute add-uminus-conv-diff
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mult.commute
mult-minus-right of-int-minus tan-periodic-int y1-def)
moreover have tan y<bi
by (metis <tan yI < bl> add-uminus-conv-diff mult.commute mult-minus-right

of-int-minus tan-periodic-int y1-def)
ultimately show ?thesis using bI-imp by auto
qed
ultimately show ?thesis unfolding eventually-filtermap eventually-at-right
by (metis eventually-at-right-field)
qed
ultimately show ?thesis unfolding filter-eq-iff by blast
qed

lemma filtermap-tan-at-left:
fixes a::real
assumes cos a#£0
shows filtermap tan (at-left a) = at-left (tan a)
proof —
have filtermap tan (at-right (— a)) = at-right (tan (— a))
using filtermap-tan-at-right[of —a] assms by auto
then have filtermap (uminus o tan) (at-left a) = filtermap uminus (at-left (tan
2)
unfolding at-right-minus filtermap-filtermap comp-def by auto
then have filtermap uminus (filtermap (uminus o tan) (at-left a))
= filtermap uminus (filtermap uminus (at-left (tan a)))
by auto
then show ?thesis
unfolding filtermap-filtermap comp-def by auto
qed

lemma filtermap-tan-at-right-inf:
fixes a::real
assumes cos a=0
shows filtermap tan (at-right a) = at-bot
proof —
obtain k::int where ak:a=kxpi + pi/2
using cos-zero-iff-int2 assms by auto
have eventually P at-bot when eventually P (filtermap tan (at-right a)) for P
proof —
obtain b/ where b1>a and bi-imp:Vy>a. y < bl — P (tan y)
using <eventually P (filtermap tan (at-right a))»
unfolding eventually-filtermap eventually-at-right
by (metis eventually-at-right-field)
define b2 where b2=min (kxpi+pi) b1
have P y when y<tan b2 for y
proof —
define y! where yI=(k+1)xpitarctan y
have a < yI
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unfolding ak yI-def using arctan-lbound|of y)
by (auto simp add:field-simps)
moreover have yI < b2
proof —
define b3 where b3=02—(k+1) * pi
have —pi/2 < b3 b3<pi/2
using <bI>a» unfolding b3-def b2-def ak
by (auto simp add:field-simps min-mult-distrib-left introl:min.strict-coboundedl1)
then have arctan (tan b3) = b3
by (simp add: arctan-tan)
then have arctan (tan b2) = b3
unfolding b3-def by (metis diff-eq-eq tan-periodic-int)
then have arctan y < b3
using arctan-monotone|OF (y<tan b2)] by simp
then show ?thesis
unfolding yI-def b3-def by auto
qed
then have y1<b! unfolding b2-def by auto
ultimately have P (tan y!) using bi-imp[rule-format,of y1,simplified] by
auto
then show ?thesis unfolding y1-def by (metis add.commute arctan tan-periodic-int)
qed
then show ¢thesis unfolding eventually-at-bot-dense by auto
qed
moreover have cventually P (filtermap tan (at-right a)) when eventually P
at-bot for P
proof —
obtain b1 where bi-imp:V n<bl. P n
using <eventually P at-bot> unfolding eventually-at-bot-dense by auto
define b2 where b2=arctan b1 + (k+1)xpi
have b2>a unfolding ak b2-def using arctan-lbound[of b1]
by (auto simp add:algebra-simps)
moreover have P (tan y) when a < y y < b2 for y
proof —
define y! where y1=y—(k+1)xpi
have tan y1 < tan (arctan b1)
apply (rule tan-monotone)
subgoal using (a<y> unfolding y1-def ak by (auto simp add:algebra-simps)
subgoal using <y < 2> unfolding yI-def b2-def by (auto simp add:algebra-simps)
subgoal using arctan-ubound by auto
done
then have tan y1<bl by (simp add: arctan)
then have tan y < b1 unfolding yI-def
by (metis diff-eq-eq tan-periodic-int)
then show ?thesis using bI-imp by auto
qed
ultimately show eventually P (filtermap tan (at-right a))
unfolding eventually-filtermap eventually-at-right
by (metis eventually-at-right-field)
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qed
ultimately show ?thesis unfolding filter-eq-iff by auto
qed

lemma filtermap-tan-at-left-inf:
fixes a::real
assumes cos a=0
shows filtermap tan (at-left a) = at-top
proof —
have filtermap tan (at-right (— a)) = at-bot
using filtermap-tan-at-right-inflof —a] assms by auto
then have filtermap (uminus o tan) (at-left a) = at-bot
unfolding at-right-minus filtermap-filtermap comp-def by auto
then have filtermap uminus (filtermap (uminus o tan) (at-left a)) = filtermap
umainus at-bot
by auto
then show ?thesis
unfolding filtermap-filtermap comp-def using at-top-mirror[where ‘a=real]
by auto
qed

3.2 Periodic set

definition periodic-set:: real set = real = bool where
periodic-set S 6 «— (I B. finite B A (Vz€S. 3beB. Fkint. x =b + k * J))

lemma periodic-set-multiple:
assumes k#(
shows periodic-set S § «— periodic-set S (of-int kxd)
proof
assume asm:periodic-set S §
then obtain B! where finite Bl and Bi-def:Vz€S. 3b€B1. (Jk:int. x = b
+ k x 0)
unfolding periodic-set-def by metis
define B where B = B1 U {b+ixd | b i. be B1 A ic{0..<|k|}}
have 3beB. 3k’ = b + real-of-int k' x (real-of-int k x §) when z€S for x
proof —
obtain b7 and kI::int where b1€B! and x-6:x = bl + kI %6
using B1-def[rule-format, OF <z€S)] by auto
define r d where r= kI mod |k| and d = kI div |k|
define b kk where b=0b1+r+6 and kk = (if k>0 then d else —d)
have = = b1 + (r+|k|xd)*0 using 2-6 unfolding r-def d-def by auto
then have z = b + kkx(k+0) unfolding b-def kk-def using <k#0>
by (auto simp add:algebra-simps)
moreover have beB
proof —
have r € {0..<|k|} unfolding r-def by (simp add: <k#£0»)
then show ?thesis unfolding b-def B-def using «<b1€B1» by blast
qed
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ultimately show ¢thesis by auto
qed
moreover have finite B unfolding B-def using «finite B1)»
by (simp add: finite-image-set2)
ultimately show periodic-set S (real-of-int k * §) unfolding periodic-set-def
by auto
next
assume periodic-set S (real-of-int k * §)
then show periodic-set S § unfolding periodic-set-def
by (metis mult.commute mult.left-commute of-int-mult)
qed

lemma periodic-set-empty[simp|: periodic-set {} §
unfolding periodic-set-def by auto

lemma periodic-set-finite:
assumes finite S
shows periodic-set S §
unfolding periodic-set-def using assms mult.commute by force

lemma periodic-set-subset|elim]:
assumes periodic-set S 0 T C §
shows periodic-set T 0
using assms unfolding periodic-set-def by (meson subsetCE)

lemma periodic-set-union:
assumes periodic-set S § periodic-set T §
shows periodic-set (S U T) ¢
using assms unfolding periodic-set-def by (metis Un-iff infinite-Un)

lemma periodic-imp-uniform-discrete:
assumes periodic-set S §
shows uniform-discrete S
proof —
have ?thesis when S#{} §#0
proof —
obtain B g where finite B and g-def:Vz€S. g t€B A (Fkuint. © = gz + k
% 0)
using assms unfolding periodic-set-def by metis
define P where P = ((x) J) ¢ Ints
define B-diff where B-diff = {|z—y| | x y. z€B A yeB} — P
have finite B-diff unfolding B-diff-def using «finite B>
by (simp add: finite-image-set2)
define e where e = (if setdist B-diff P = 0 then || else min (setdist B-diff P)
(13)))
have e>0
unfolding e-def using setdist-pos-le[unfolded order-class.le-less] <6#£0»
by auto
moreover have r=y when z€§ yeS dist © y<e for z y
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proof —
obtain kI::int where kl:x = gz + kI * § and g z€B using g-def <z€S)
by auto
obtain k2::int where k2:y = g y + k2 % 0 and ¢ yeB using g-def (y€S»
by auto
have ?thesis when |gz — g y| € P
proof —
obtain k::int where k:gx — gy =k *
proof —
obtain k£’ where k'€Ints and x|gz — g y| = * &k’
using «|g z — g y| € P> unfolding P-def image-iff by auto
then obtain k& where *x:k’ = of-int k using Ints-cases by auto
show ?thesis
apply (cases gz — gy > 0)
subgoal using that[of k] * *x by simp
subgoal using that[of —k| * ** by (auto simp add:algebra-simps)
done
qed
have dist v y = [(g v — g y)+(kI—k2)x*d|
unfolding dist-real-def by (subst k1,subst k2,simp add:algebra-simps)

also have ... = |(k+k1—k2)x*d|
by (subst k,simp add:algebra-simps)
also have ... = |k+k1—k2|*|0| by (simp add: abs-mult)

finally have x:dist x y = |k+k1—k2|*|d| .
then have |k+k1—k2|%|d| < e using «dist z y<e> by auto
then have |k+k1—k2|*|d] < |
by (simp add: e-def split: if-splits)
then have |k+kI—k2| = 0 unfolding e-def using 5#£0)> by force
then have dist x y=0 using * by auto
then show ?thesis by auto
qed
moreover have ?thesis when |[gz — g y| ¢ P
proof —
have |g z — g y| € B-diff unfolding B-diff-def using g z€B)> <g yeB>»
that by auto
have e < ||lgz — g y| — |(kI—k2)=0||
proof —
have |g © — g y| € B-diff unfolding B-diff-def using «g z€B> <g yeB»
that by auto
moreover have |(kI —k2)x0| € P unfolding P-def
apply (intro rev-image-eql[of (if §>0 then |of-int(k1—Fk2)| else —
|of-int(k1—k2)|)])
apply (metis Ints-minus Ints-of-int of-int-abs)
by (auto simp add:abs-mult)
ultimately have ||g z — g y| — |[(k1—k2)%6|| > setdist B-diff P
using setdist-le-dist[of - B-diff - P] dist-real-def by auto
moreover have setdist B-diff P # 0
proof —
have compact B-diff using «finite B-diff> using finite-imp-compact by
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blast
moreover have closed P
unfolding P-def using closed-scaling[OF closed-Ints[where 'a=real],
of 4] by auto
moreover have P # {} using Ints-0 unfolding P-def by blast
moreover have B-diff N P = {} unfolding B-diff-def by auto
moreover have B-diff #{} unfolding B-diff-def using «g z€B> «g
yE€DB) that by auto
ultimately show ?thesis using setdist-eq-0-compact-closed|of B-diff P)]

by auto
qed
ultimately show ¢thesis unfolding e-def by argo
qged
also have ... < |(gz — g y) + (kI—k2)x0|
proof —

define t1 where ti1=gz — gy
define ¢2 where t2 = of-int (kI — k2) % 0
show ?thesis
apply (fold t1-def t2-def)
by linarith
qged
also have ... = dist z y
unfolding dist-real-def
by (subst (2) k1,subst (2) k2,simp add:algebra-simps)
finally have dist © y>e .
then have Fulse using (dist z y<e» by auto
then show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
ultimately show ?thesis unfolding uniform-discrete-def by auto
qed
moreover have ?thesis when S={} using that by auto
moreover have ?thesis when 6=0
proof —
obtain B g where finite B and g-def:Vz€S. g t€B A (k:int. © = gz + k
* 0)
using assms unfolding periodic-set-def by metis
then have Vz€S. g z€B A (z = g z) using that by fastforce
then have S C g ‘ B by auto
then have finite S using «finite By by (auto elim:finite-subset)
then show %thesis using uniform-discrete-finite-iff by blast
qed
ultimately show ?thesis by blast
qed

lemma periodic-set-tan-linear:

assumes a#0 c#0
shows periodic-set (roots (Az. axtan (x/c) + b)) (cxpi)
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proof —
define B where B = { cxarctan (— b / a), cxpi/2}
have 3beB. Fk::int. £ = b + k x (cxpi) when z€roots (Az. a x tan (z/c) + b)
for z
proof —
define C1 where C1 = (Fk::int. © = cxarctan (— b / a) + k = (cxpi))
define C2 where C2 = (Fkint. x = cxpi / 2 + k x (cxpi) A — b/ a=0)
have tan (z/c) = — b/a using that <a#0> unfolding roots-within-def
by (auto simp add:field-simps)
then have C1 VvV C2 unfolding CI-def C2-def using tan-eg-arctan-Ex[of z/c
—b/a] <c£0»
by (auto simp add:field-simps)
moreover have ?thesis when C1 using that unfolding C1-def B-def by blast
moreover have ?thesis when C2 using that unfolding C2-def B-def by blast
ultimately show ?thesis by auto
qged
moreover have finite B unfolding B-def by auto
ultimately show ?thesis unfolding periodic-set-def by auto
qed

lemma periodic-set-cos-linear:
assumes a#0 c#0
shows periodic-set (roots (Ax. axcos (x/c) + b)) (2xcxpi)
proof —
define B where B = { cxarccos (— b / a), — cxarccos (— b / a)}
have 3b€B. Fk:int. x = b + k * (2xc*pi)
when z€roots (Az. a * cos (z/c) + b) for x
proof —
define C1 where C1 = (k::int. x = cxarccos (— b / a) + k * (2xcxpi))
define C2 where C2 = (Fk:int. x = — cxarccos (— b / a) + k * (2xcxpi))
have cos (z/c) = — b/a using that <a#0> unfolding roots-within-def
by (auto simp add:field-simps)
then have C1 Vv C2
unfolding cos-eq-arccos-Ex ex-disj-distrib C1-def C2-def using <c#£0>»
apply (auto simp add:divide-simps)
by (auto simp add:algebra-simps)
moreover have ?thesis when C1 using that unfolding C1-def B-def by blast
moreover have ?thesis when C2 using that unfolding C2-def B-def by blast
ultimately show ¢thesis by auto
qed
moreover have finite B unfolding B-def by auto
ultimately show “thesis unfolding periodic-set-def by auto
qed

lemma periodic-set-tan-poly:
assumes p#0 c#0
shows periodic-set (roots (Az. poly p (tan (z/c)))) (cxpi)
using assms

proof (induct rule:poly-root-induct-alt)
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case (
then show ?case by simp
next
case (no-proots p)
then show ?case unfolding roots-within-def by simp
next
case (root a p)
have roots (Az. poly ([:— a, 1:] * p) (tan (z/c))) = roots (A\z. tan (z/c) — a)
U roots (Az. poly p (tan (z/c)))
unfolding roots-within-def by auto
moreover have periodic-set (roots (Az. tan (z/c) — a)) (cxpi)
using periodic-set-tan-linear[OF - <c£0» ,of 1 —a,simplified] .
moreover have periodic-set (roots (Az. poly p (tan (z/c)))) (cxpi) using root
by fastforce
ultimately show ?case using periodic-set-union by simp
qed

lemma periodic-set-sin-cos-linear:
fixes a b ¢ ::real
assumes a#£0 V b#0 V c£0
shows periodic-set (roots (Az. a * cos © + b * sin x + ¢)) (4x*p7)
proof —
define f where fx= a *x cos x + b x sin x + ¢ for =
have roots f = (roots f N {z. cos (x/2) = 0}) U (roots f N {x. cos (x/2) # 0})
by auto
moreover have periodic-set (roots f N {x. cos (x/2) = 0}) (4xpi)
proof —
have periodic-set ({z. cos (x/2) = 0}) (4xp7)
using periodic-set-cos-linear[of 1 2 0,unfolded roots-within-def simplified] by
stmp
then show %thesis by auto
qed
moreover have periodic-set (roots f N {z. cos (x/2) # 0}) (4*pi)
proof —
define p where p=[:a+c,2%b,c—a]
have poly p (tan (z/2)) = 0 +— f2=0 when cos (z/2) #0 for x
proof —
define t where t=tan (z/2)
define it where tt = 1+t72
have cos z = (1—¢"2) / tt unfolding tt-def t-def
using cos-tan-half[OF that,simplified] by simp
moreover have sin ¢ = 2xt / tt unfolding tt-def t-def
using sin-tan-half[of ©/2,simplified] by simp
moreover have tt#(0 unfolding tt-def
by (metis power-one sum-power2-eq-zero-iff zero-neg-one)
ultimately show ?Zthesis
unfolding f-def p-def
apply (fold t-def)
apply simp
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apply (auto simp add:field-simps)
by (auto simp add:algebra-simps tt-def power2-eq-square)
qed
then have roots f N {z. cos (x/2) # 0} = roots (Az. poly p (tan (z/2))) N
{z. cos (z/2) # 0}
unfolding roots-within-def by auto
moreover have periodic-set (roots (A\x. poly p (tan (z/2))) N {z. cos (x/2) #
0}) (4xpi)
proof —
have p#0 unfolding p-def using assms by auto
then have periodic-set (roots (Ax. poly p (tan (x/2)))) (4*pi)
using periodic-set-tan-poly[of p 2,simplified)
periodic-set-multiple[of 2 - 2xpi,simplified]
by auto
then show ?thesis by auto
qed
ultimately show ¢thesis by auto
qed
ultimately show periodic-set (roots f) (4*pi) using periodic-set-union by metis
qed

end

4 Some useful lemmas in analysis

theory Missing-Analysis
imports HOL— Complex-Analysis. Complex-Analysis
begin

4.1 More about paths

lemma pathfinish-offset[simpl:
pathfinish (At. g t — z) = pathfinish g — z
unfolding pathfinish-def by simp

lemma pathstart-offset[simp):
pathstart (At. g t — z) = pathstart g — z
unfolding pathstart-def by simp

lemma pathimage-offset]simp):

fixes g :: - = 'b::topological-group-add

shows p € path-image (At. g t — 2) <— p+z € path-image g
unfolding path-image-def by (auto simp:algebra-simps)

lemma path-offset[simp]:

fixes g :: - = 'b::topological-group-add
shows path (At. gt — z) «— path g
unfolding path-def

proof
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assume continuous-on {0..1} (At. gt — 2)
hence continuous-on {0..1} (At. (gt — z) + 2)
using continuous-on-add continuous-on-const by blast
then show continuous-on {0..1} g by auto
qed (auto intro:continuous-intros)

lemma not-on-circlepathl:
assumes cmod (z—20) # |r|
shows z ¢ path-image (part-circlepath z0 r st tt)
using assms
by (auto simp add: path-image-def image-def part-circlepath-def norm-mult)

lemma circlepath-inj-on:
assumes >0
shows inj-on (circlepath z r) {0..<1}
proof (rule inj-onlI)
fix z y assume asm: z € {0..<1} y € {0..<1} circlepath z r x = circlepath z r
)
define ¢ where c=2 * pi * i
have c#0 unfolding c-def by auto
from asm(8) have exp (¢ * x) =exp (¢ * y)
unfolding circlepath c-def using «r>0> by auto
then obtain n where ¢ x © =c x (y + of-int n)
by (auto simp add:exp-eq c-def algebra-simps)
then have z=y+n using «c#0>
by (meson mult-cancel-left of-real-eq-iff)
then show z=y using asm(1,2) by auto
qed

4.2 More lemmas related to winding-number

lemma winding-number-comp:
assumes open s f holomorphic-on s path-image v C s
valid-path v z ¢ path-image (f o )
shows winding-number (f o v) z = 1/(2xpixi)x contour-integral v (Aw. deriv f
w/ (fw- 2)
proof —
obtain spikes where finite spikes and ~y-diff: v Cl1-differentiable-on {0..1} —
spikes
using <wvalid-path v> unfolding valid-path-def piecewise-C1-differentiable-on-def
by auto
have valid-path (f o ~)
using valid-path-compose-holomorphic assms by blast
moreover have contour-integral (f o v) (Aw. 1 / (w — 2))
= contour-integral v (Aw. deriv fw / (fw — 2))
unfolding contour-integral-integral
proof (rule integral-spike[rule-format, OF negligible-finite[OF «finite spikes»]])
fix t::real assume t:t € {0..1} — spikes
then have ~ differentiable at t
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using v-diff unfolding C1-differentiable-on-eq by auto
moreover have f field-differentiable at (v t)
proof —
have v t € s using <path-image v C sy ¢t unfolding path-image-def by auto
thus ?thesis
using <open s> <f holomorphic-on s> holomorphic-on-imp-differentiable-at
by blast
qed
ultimately show deriv f (v t) / (f (v t) — 2) * vector-derivative v (at t) =
1/ ((f o)t — z) * vector-derivative (f o ) (at t)
by (simp add: vector-derivative-chain-at-general)
qed
moreover note <z ¢ path-image (f o v)»
ultimately show ?thesis
using winding-number-valid-path by presburger
qed

lemma winding-number-uminus-comp:
assumes valid-path v — z ¢ path-image ~y
shows winding-number (uminus o ) z = winding-number v (—z)
proof —
define ¢ where c= 2 * pi * i
have winding-number (uminus o ) z = 1/c¢ x contour-integral v (Aw. deriv
uminus w / (—w—2z))
proof (rule winding-number-complof UNIV, folded c-def])
show open UNIV uminus holomorphic-on UNIV path-image v C UNIV valid-path
Y
using <walid-path > by (auto intro:holomorphic-intros)
show z ¢ path-image (uminus o )
unfolding path-image-compose using <— z ¢ path-image v> by auto
qed

also have ... = I/c % contour-integral v (Aw. 1 / (w— (—2)))
by (auto intro!:contour-integral-eq simp add:field-simps minus-divide-right)
also have ... = winding-number v (—2z)
using winding-number-valid-path| OF <valid-path v <— z & path-image v»,folded
c-def)
by simp
finally show ?thesis by auto
qed

lemma winding-number-comp-linear:

assumes c#0 valid-path v and not-image: (2—b)/c ¢ path-image ~y

shows winding-number ((Az. cxx+b) o ) z = winding-number v ((z—b)/c) (is
?L = ?R)
proof —

define cc where cc=1 / (complex-of-real (2 * pi) * i)

define zz where zz=(z—b)/c

have ?L = cc x contour-integral v (Aw. deriv (Az. ¢ x z + b) w / (¢ x w + b —

z))
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apply (subst winding-number-complof UNIV simplified))
subgoal by (auto intro:holomorphic-intros)
subgoal using <valid-path > .
subgoal using not-image <c#0> unfolding path-image-compose by auto
subgoal unfolding cc-def by auto
done
also have ... = cc * contour-integral v (Aw.1 / (w — 22))
proof —
have deriv (Az. ¢ * z + b) = (A\z. ¢)
by (auto intro:derivative-intros)
then show ?thesis
unfolding zz-def cc-def using <c#£0)»
by (auto simp:field-simps)
qed
also have ... = winding-number v zz
using winding-number-valid-path[OF <valid-path ~» not-image,folded zz-def
ce-def]
by simp
finally show winding-number ((Az. ¢ x z + b) o ) z = winding-number v zz .
qed

end

5 Cauchy’s index theorem

theory Cauchy-Index-Theorem imports
HOL— Complex-Analysis. Complex-Analysis
Sturm-Tarski.Sturm-Tarski
HOL- Computational-Algebra. Fundamental- Theorem-Algebra
Missing-Transcendental
Missing-Algebraic
Missing-Analysis

begin

This theory formalises Cauchy indices on the complex plane and relate
them to winding numbers

5.1 Misc

lemma atMostAtLeast-subset-convex:
fixes C :: real set
assumes conver C

and x € Cye C

shows {z .. y} C C

proof safe
fix z assume z: z € {7 .. y}
have z e Cif xx z < zz< y
proof —

let 2= (y —2)/ (y — )
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have 0 < %u u < 1
using assms * by (auto simp: field-simps)
then have comb: uxx + (I — %u) xy € C
using assms iffD1[OF convez-alt, rule-format, of C'y x ?u]
by (simp add: algebra-simps)
have Zuxaz+ (1 — ) xy=(@y—2)*z/(y—-—2)+I - (y—2)/(y -

z)) * y
by (auto simp: field-simps)
alsohave ... = ((y —2)x2+ (y—z— (y—2) xy) / (y — z)

using * by (simp only: add-divide-distrib) (auto simp: field-simps)
also have ... = 2
using assms * by (auto simp: field-simps)
finally show ?thesis
using comb by auto
qed
then show z € C
using z assms by (auto simp: le-less)
qed

lemma arg-elim:
fe=2=y= fy
by auto

lemma arg-elim2:
fal 22 = z1= yl —=22=y2 = fyl y2
by auto

lemma arg-elim3:
[f z1 22 28;21= y1;22=y2;23=y3 | = [yl y2 y3
by auto

lemma IVT-strict:
fixes [ :: 'a::linear-continuum-topology = 'b::linorder-topology
assumes (fa>yAy>fb)V (fa<yAy<fb) a<b continuous-on {a .. b} f
shows Jz. a <z ANz <bAfzx=y
by (metis IVT' IVT2’' assms(1) assms(2) assms(3) linorder-neg-iff order-le-less
order-less-imp-le)

lemma (in dense-linorder) atLeastAtMost-subseteq-greaterThanLess Than-iff:
{a..0}C{e<.<d}ée—(a<b—c<aANb<d)
using dense[of a min ¢ b] dense[of maz a d b
by (force simp: subset-eq Ball-def not-less[symmetric])

lemma Re-winding-number-half-right:
assumes V pEpath-image . Re p > Re z and valid-path v and z¢path-image ~y
shows Re(winding-number v z) = (Im (Ln (pathfinish v — 2)) — Im (Ln
(pathstart v — 2)))/(2xpi)
proof —
define g where g=(\t. v t — 2)

30



define st fi where st=pathstart g and fi=pathfinish g
have wvalid-path g 0¢path-image g and pos-img:V pEpath-image g. Re p > 0
unfolding g-def
subgoal using assms(2) by auto
subgoal using assms(3) by auto
subgoal using assms(1) by fastforce
done
have (inverse has-contour-integral Ln fi — Ln st) g
unfolding fi-def st-def
proof (rule contour-integral-primitive] OF - <valid-path ¢>,0f — R<g])
fix z::compler assume z € — R<g
then have (Ln has-field-derivative inverse z) (at ) using has-field-derivative-Ln
by auto
then show (Ln has-field-derivative inverse x) (at x within — R<g)
using has-field-derivative-at-within by auto
next
show path-image g C — R<q using pos-img <0¢path-image ¢
by (metis Compll antisym assms(3) complez-nonpos-Reals-iff complex-surj
subsetl zero-complex.code)
qed
then have winding-eq: 2xpixixwinding-number g 0 = (Ln fi — Ln st)
using has-contour-integral-winding-number|OF <valid-path ¢ <0¢ path-image g
,simplified,folded inverse-eq-divide] has-contour-integral-unique
by auto
have Re(winding-number g 0)
= (Im (Ln fi) — Im (Ln st))/(2xpi)
(is /L=7R)
proof —
have ?L = Re((Ln fi — Ln st)/(2xpixi))
using winding-eq[symmetric] by auto
also have ... = 7R
by (metis Im-divide-of-real Im-i-times complex-i-not-zero minus-complex.simps(2)

mult. commute mult-divide-mult-cancel-left-if times-divide-eq-right)
finally show ?thesis .
qed
then show f¢thesis unfolding g-def fi-def st-def using winding-number-offset
by simp
qed

lemma Re-winding-number-half-upper:
assumes pimage:V p€path-image . Im p > Im z and valid-path v and z¢ path-image
Y
shows Re(winding-number v z) =
(Im (Ln (ixz — ixpathfinish 7)) — Im (Ln (ixz — ixpathstart v )))/(2%pi)
proof —
define v’ where y'=(At. —i*x (y t — 2) + 2)
have Re (winding-number ~' z) = (Im (Ln (pathfinish v — 2)) — Im (Ln
(pathstart v' — 2))) / (2 * pi)
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unfolding ~’'-def
apply (rule Re-winding-number-half-right)
subgoal using pimage unfolding path-image-def by auto
subgoal
apply (rule valid-path-compose-holomorphic|OF <valid-path vy,of Az. —i *
(z—z) + z UNIV
, unfolded comp-def])
by (auto introl:holomorphic-intros)
subgoal using (z¢path-image > unfolding path-image-def by auto
done
moreover have winding-number v' z = winding-number ~y z
proof —
define f where f=(\z. —1 * (z—2) + 2)
define ¢ where c= 1 / (complez-of-real (2 * pi) * i)
have winding-number v’ z = winding-number (f o v) z
unfolding ~'-def comp-def f-def by auto
also have ... = ¢ x contour-integral v (Aw. deriv fw / (f w — z)) unfolding
c-def
proof (rule winding-number-complof UNIV])
show z ¢ path-image (f o «) using <zépath-image ) unfolding f-def
path-image-def by auto
qed (auto simp add:f-def <wvalid-path > intro':holomorphic-intros)

also have ... = ¢ * contour-integral v (Aw. 1 / (w — 2))
proof —
have deriv f x = —i for z

unfolding f-def
by (auto intro!:derivative-eg-intros DERIV-imp-deriv)
then show ?thesis
unfolding f-def c-def
by (auto simp add:field-simps divide-simps introl:arg-cong2[where f=contour-integral])
qed
also have ... = winding-number v z
using winding-number-valid-path|OF <valid-path ) <z¢path-image ~»,folded
c-def] by simp
finally show ?thesis .
qed
moreover have pathfinish v’ = z+ ixz —ix pathfinish v pathstart v' = z+ ixz
—ixpathstart
unfolding ~’-def path-defs by (auto simp add:algebra-simps)
ultimately show #¢thesis by auto
qed

lemma Re-winding-number-half-lower:
assumes pimage:V pEpath-image . Im p < Im z and valid-path v and 2¢ path-image
Y
shows Re(winding-number v z) =
(Im (Ln ( ixpathfinish v — ixz)) — Im (Ln (ixpathstart v — ixz)))/(2xp1)
proof —
define v’ where yv'=(At. i * (y t — 2) + 2)
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have Re (winding-number v’ z) = (Im (Ln (pathfinish v' — z)) — Im (Ln
(pathstart v' — 2))) / (2 * pi)
unfolding ~’'-def
apply (rule Re-winding-number-half-right)
subgoal using pimage unfolding path-image-def by auto
subgoal
apply (rule valid-path-compose-holomorphic|OF <valid-path > ,of Az.1* (z—z)
+ z UNIV
, unfolded comp-def])
by (auto introl:holomorphic-intros)
subgoal using <z¢path-image > unfolding path-image-def by auto
done
moreover have winding-number v’ z = winding-number v z
proof —
define f where f=(\z. 1 % (z—2) + 2)
define ¢ where ¢c= 1 / (complex-of-real (2 * pi) * i)
have winding-number v’ z = winding-number (f o ) z
unfolding ~'-def comp-def f-def by auto
also have ... = ¢ * contour-integral v (Aw. deriv fw / (f w — z)) unfolding
c-def
proof (rule winding-number-complof UNIV])
show z ¢ path-image (f o v) using <z¢path-image ) unfolding f-def
path-image-def by auto
qed (auto simp add:f-def <wvalid-path > introl:holomorphic-intros)
also have ... = ¢ x contour-integral v (Aw. 1 / (w — 2))
proof —
have deriv fz =i for z
unfolding f-def
by (auto intro!:derivative-eg-intros DERIV-imp-deriv)
then show ?thesis
unfolding f-def c-def
by (auto simp add:field-simps divide-simps introl:arg-cong2[where f=-contour-integral])
qed
also have ... = winding-number v z
using winding-number-valid-path|OF <valid-path > <z¢&path-image 7»,folded
c-def] by simp
finally show ?thesis .
qed
moreover have pathfinish v/ = z+ ix pathfinish v — ixz pathstart v/ = z+
ixpathstart v — ixz
unfolding ~'-def path-defs by (auto simp add:algebra-simps)
ultimately show ¢thesis by auto
qed

lemma Re-winding-number-half-left:

assumes neg-img:V pEpath-image y. Re p < Re z and valid-path v and z¢ path-image
Y

shows Re(winding-number v z) = (Im (Ln (z — pathfinish v)) — Im (Ln (z —
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pathstart v )))/(2%pi)
proof —

define v’ where y'=(\t. 2%z — v 1)
have Re (winding-number v’ z) = (Im (Ln (pathfinish v' — z)) — Im (Ln
(pathstart v' — 2))) / (2 * pi)
unfolding ~’-def
apply (rule Re-winding-number-half-right)
subgoal using neg-img unfolding path-image-def by auto
subgoal
apply (rule valid-path-compose-holomorphic|OF <valid-path vy,of A\t. 2xz—t
UNIV,
unfolded comp-def])
by (auto intro:holomorphic-intros)
subgoal using (z¢path-image > unfolding path-image-def by auto
done
moreover have winding-number ' z = winding-number ~y z
proof —
define f where f=(\t. 2xz—1)
define ¢ where c= 1 / (complez-of-real (2 x pi) * i)
have winding-number v’ z = winding-number (f o v) z
unfolding ~’'-def comp-def f-def by auto
also have ... = ¢ x contour-integral v (Aw. deriv fw / (f w — 2)) unfolding
c-def
proof (rule winding-number-complof UNIV])
show z ¢ path-image (f o ~) using <zépath-image ) unfolding f-def
path-image-def by auto
qed (auto simp add:f-def <wvalid-path > intro:holomorphic-intros)
also have ... = ¢ * contour-integral v (Aw. 1 / (w — 2))
unfolding f-def c-def
by (auto simp add:field-simps divide-simps introl:arg-cong2[where f=contour-integral])
also have ... = winding-number v z
using winding-number-valid-path|OF <valid-path s <z¢path-image ~»,folded
c-def] by simp
finally show ?thesis .
qed
moreover have pathfinish v' = 2%z — pathfinish v pathstart v' = 2%z — pathstart
Y
unfolding ~’-def path-defs by auto
ultimately show ?thesis by auto
qed

lemma continuous-on-open-Collect-neq:
fixes f g :: 'a::topological-space = 'b::t2-space
assumes f: continuous-on S f and g: continuous-on S g and open S
shows open {z€S. fz # gz}
proof (rule topological-space-class.openl)
fix t
assume ¢ € {z€S. fz # gz}
then obtain U0 V0 where open U0 open VO ft € U0gt e VO UO N VO ={}
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tes
by (auto simp add: separation-t2)
obtain Ul where open Ul t € Ul Vye(S N Ul). fy e U0
using flunfolded continuous-on-topological,rule-format,OF <t€S» <open UO»> «f
t €U0y by auto
obtain V1 where open Vit € VI Vye(SN VI). gy e VO
using g[unfolded continuous-on-topological,rule-format,OF (t€S» <open V0> <g
t €V0»] by auto
define T where T=VI N Ul NS
have open T unfolding T-def using <open Ul <open V1) <open S» by auto
moreover have ¢t € T unfolding T-def using <te Ul <te V1 «t€S» by auto
moreover have T C {z € S. fz # g 2} unfolding T-def
using <U0 N VO ={}p ~VyeSN UL fye Ul VyeSN V1. gy € V0> by
auto
ultimately show 3 7. open TAt € T AT C{z € S. fz # gz} by auto
qed

5.2 Sign at a filter

definition has-sgnx::(real = real) = real = real filter = bool
(infixr <has’-sgnz> 55) where
(f has-sgnz ¢) F= (eventually (Az. sgn(f z) = ¢) F)

definition sgnz-able (infixr <sgnz’-able) 55) where
(f sgnz-able F) = (Jc. (f has-sgnz ¢) F)

definition sgnz where
sgnz f F = (SOME c. (f has-sgnz c) F)

lemma has-sgnz-eg-rhs: (f has-sgnz ) F = = = y = (f has-sgnz y) F
by simp

named-theorems sgnz-intros introduction rules for has-sgnz
setup <«
Global-Theory.add-thms-dynamic (Q{binding sgnz-eq-intros},
fn context =>
Named-Theorems.get (Context.proof-of context) Q{named-theorems sgnx-intros}
|> map-filter (try (fn thm => Q{thm has-sgnx-eq-rhs} OF [thm])))
)

lemma sgnz-able-sgnz:f sgnz-able F = (f has-sgnz (sgnx f F)) F
unfolding sgnz-able-def sgnx-def using somel-ex by metis

lemma has-sgnaz-imp-sgnz-able[elim]:
(f has-sgnz ¢) F = f sgna-able F
unfolding sgnaz-able-def by auto

lemma has-sgnz-unique:
assumes F#bot (f has-sgnz c¢1) F (f has-sgnz c2) F
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shows c1=c2
proof (rule ccontr)
assume cl # ¢2
have eventually (Az. sgn(fz) = ¢1 A sgn(fz) = ¢2) F
using assms unfolding has-sgnz-def eventually-conj-iff by simp
then have eventually (A-. ¢ = ¢2) F by (elim eventually-mono,auto)
then have eventually (A-. False) F using <c1 # ¢2> by auto
then show Fulse using «F # bot) eventually-False by auto
qed

lemma has-sgnz-imp-sgnx]elim):
(f has-sgnz ¢) F = F#bot = sgnz f F = ¢
using has-sgnz-unique sgnz-def by auto

lemma has-sgni-const|simp,sgna-intros|:
((A\-. ¢) has-sgnz sgn ¢) F
by (simp add: has-sgna-def)

lemma finite-sgnz-at-left-at-right:
assumes finite {t. ft=0 N a<t A t<b} continuous-on ({a<..<b} — s) f finite s
and z:ze{a<..<b}
shows [ sgnz-able (at-left ) sgnz f (at-left x)#£0
f sgna-able (at-right x) sgnzx f (at-right x)#0
proof —
define Is where Is = {t. (ft=0 V t€s) A a<t Ni<z }
define [ where [=(if Is = {} then (a+x)/2 else (Max Is + x)/2)
have finite Is
proof —
have {t. ft=0 A a<t A t<z} C {t. ft=0 A a<t A t<b} using z by auto
then have finite {t. f t=0 A a<t A t<z} using assms(1)
using finite-subset by blast
moreover have finite {t. t€s A a<t A t<z} using assms(3) by auto
moreover have Is = {t. ft=0 N a<t A t<z} U {t. t€s N a<t A t<z}
unfolding Is-def by auto
ultimately show ?thesis by auto
qed
have [simp]: I<z a<l I<b
proof —
have I<z A a<l A I<b when Is = {}
using that r unfolding I-def by auto
moreover have [<z A a<l A I<b when Is #{}
proof —
have Max Is € Is using assms(1,3) that <finite ls)
apply (intro linorder-class. Max-in)
by auto
then have a<Max Is A Mazx Is < x unfolding Is-def by auto
then show ?thesis unfolding I-def using that x by auto
qed
ultimately show [<z a<l [<b by auto
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qed
have noroot:f t#0 when t:te{l..<z} for ¢
proof (cases Is = {})
case True
have Fulse when f t=0
proof —
have t>a using ¢ «>a> by (meson atLeastLessThan-iff less-le-trans)
then have t€ls using that t unfolding Is-def by auto
then show Fulse using True by auto
qed
then show ?thesis by auto
next
case Fulse
have t>Mazx Is using that Fuolse <I<x)> unfolding [-def by auto
have Fulse when f t=0
proof —
have t>a using t <[> by (meson atLeastLess Than-iff less-le-trans)
then have t€ls using that t unfolding Is-def by auto
then have t<Mazx Is using (finite ls> by auto
then show Fulse using «t>Max ls» by auto
qed
then show ?thesis by auto
qed
have (f has-sgnz sgn (f 1)) (at-left ) unfolding has-sgna-def
proof (rule eventually-at-leftI[OF - <I<m»])
fix ¢t assume t:te{l<..<z}
then have [simp|:t>a t<b using (>a> z
by (meson greater ThanLess Than-iff less-trans)+
have Fualse when ft = 0
using noroot t that by auto
moreover have Fulse when f [=0
using noroot t that by auto
moreover have False when fI>0 A ft<0 V fl <0 N ft >0
proof —
have False when {I..t} N s #{}
proof —
obtain ¢’ where t":t'e{l..t} t'es
using «({l..t} N s # {}P by blast
then have a<t’ A t'<z
by (metis <a < > atLeastAtMost-iff greater ThanLess Than-iff le-less less-trans
t)
then have t’els unfolding Is-def using <t’'es» by auto
then have t'<Maz Is using (finite s> by auto
moreover have Max [s<l
using (l<z» <t’€ls) «finite ls» unfolding I-def by (auto simp add:ls-def )
ultimately show Fulse using t'(1) by auto
qed
moreover have {l..t} C {a<..<b}
by (intro atMostAtLeast-subset-convex,auto)
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ultimately have continuous-on {l..t} f using assms(2)
by (elim continuous-on-subset,auto)
then have Jz>l. 2 <t AN fz =10
apply (intro IVT-strict)
using that t assms(2) by auto
then obtain ¢’ where I<t’ t'<t f t'=0 by auto
then have t’e{l..<z} unfolding Is-def using ¢t by auto
then show Fulse using noroot <f t'=0) by auto
qed
ultimately show sgn (ft) = sgn (f 1)
by (metis le-less not-less sgn-if)
qed
then show [ sgnz-able (at-left x) by auto
show sgnz f (at-left z)#0
using noroot[of I,simplified] «(f has-sgnz sgn (f 1)) (at-left x)»
by (simp add: has-sgnx-imp-sgnz sgn-if )
next
define rs where rs = {t. (ft=0 V t€s) A x<t A t<b}
define r where r=(if rs = {} then (z+b)/2 else (Min rs + z)/2)
have finite rs
proof —
have {t. ft=0 A xz<t A t<b} C {t. ft=0 A a<t A t<b} using z by auto
then have finite {t. ft=0 A z<t A t<b} using assms(1)
using finite-subset by blast
moreover have finite {t. t€s A z<t A t<b} using assms(3) by auto
moreover have rs = {t. ft=0 A z<t A t<b} U {¢t. t€s A z<t A t<b}
unfolding rs-def by auto
ultimately show ¢thesis by auto
qed

have [simp]: r>z a<r r<b
proof —
have r>z A a<r A r<b when rs = {}
using that x unfolding r-def by auto
moreover have r>z A a<r A r<b when rs #{}
proof —
have Min rs € rs using assms(1,3) that <finite rs
apply (intro linorder-class. Min-in)
by auto
then have x<Min rs A Min rs < b unfolding rs-def by auto
then show ?thesis unfolding r-def using that © by auto
qed
ultimately show r>z a<r r<b by auto
qed
have noroot:f t#0 when t:te{z<..r} for ¢
proof (cases rs = {})
case True
have Fulse when f t=0
proof —
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have t<b using t «r<b»
using greaterThanAtMost-iff by fastforce
then have ters using that t unfolding rs-def by auto
then show Fulse using True by auto
qed
then show ?thesis by auto
next
case Fulse
have t<Min rs using that False <r>z> unfolding r-def by auto
have Fulse when f t=0
proof —
have t<b using t <r<by by (metis greaterThanAtMost-iff le-less less-trans)
then have te€rs using that t unfolding rs-def by auto
then have t>Min rs using <finite rs» by auto
then show Fulse using <t<Min rs» by auto
qed
then show ?thesis by auto
qed
have (f has-sgnz sgn (f r)) (at-right ) unfolding has-sgnz-def
proof (rule eventually-at-rightI[OF - <r>m»])
fix ¢ assume t:te{z<..<r}
then have [simp]:t>a t<b using r<b) z
by (meson greater ThanLess Than-iff less-trans)+
have Fualse when ft = 0
using noroot t that by auto
moreover have Fulse when f r=0
using noroot t that by auto
moreover have False when fr>0 N ft<0 V fr <O N ft >0
proof —
have False when {t..r} N s #{}
proof —
obtain ¢’ where t":it'e{t..r} t'es
using «{t..r} N s # {}» by blast
then have z<t’' A t'<b
by (meson «r < by atLeastAtMost-iff greaterThanLessThan-iff less-le-trans
not-le t)
then have t’ers unfolding rs-def using t (t’e€s> by auto
then have t'>Min rs using «finite rs» by auto
moreover have Min rs>r
using «r>mz> <t'€rsy «finite rs» unfolding r-def by (auto simp add:rs-def

ultimately show Fulse using t'(1) by auto
qed
moreover have {t..r} C {a<..<b}
by (intro atMostAtLeast-subset-convez,auto)
ultimately have continuous-on {t..r} f using assms(2) by (elim continu-
ous-on-subset,auto)
then have Jaz>t. z < r A fz =0
apply (intro IVT-strict)
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using that t assms(2) by auto
then obtain t’ where i<t’ t'<r f t'=0 by auto
then have t'e{z<..r} unfolding rs-def using t by auto
then show Fualse using noroot «f t'=0> by auto
qed
ultimately show sgn (ft) = sgn (f )
by (metis le-less not-less sgn-if)
qed
then show f sgnz-able (at-right x) by auto
show sgnz f (at-right ©)#0
using noroot|of r,simplified] «(f has-sgnz sgn (f r)) (at-right z)»
by (simp add: has-sgnx-imp-sgnz sgn-if )
qed

lemma sgnz-able-poly[simp]:
(poly p) sgnx-able (at-right a)
(poly p) sgnx-able (at-left a)
(poly p) sgnz-able at-top
(poly p) sgna-able at-bot
proof —
show (poly p) sgnz-able at-top
using has-sgnz-def poly-sgn-eventually-at-top sgnz-able-def by blast
show (poly p) sgnz-able at-bot
using has-sgnz-def poly-sgn-eventually-at-bot sgnz-able-def by blast
show (poly p) sgnz-able (at-right a)
proof (cases p=0)
case True
then show ?thesis unfolding sgnz-able-def has-sgnz-def eventually-at-right
using linordered-field-no-ub by force
next
case False
obtain ub where ub>a and ub:V z. a<zAz<ub—poly p 2#£0
using next-non-root-interval| OF False] by auto
have V z. a<zAz<ub—ssgn(poly p z) = sgn (poly p ub)
proof (rule ccontr)
assume - (Vz. a < z A z < ub — sgn (poly p z) = sgn (poly p ub))
then obtain z where a<z z<ub sgn(poly p z) # sgn (poly p ub) by auto
moreover then have poly p 2#£0 poly p ub#0 z£ub using ub <ub>a> by
blast+
ultimately have (poly p 2>0 A poly p ub<0) V (poly p 2<0 A poly p ub>0)
by (metis linorder-neqE-linordered-idom sgn-neg sgn-pos)
then have Jx>z. © < ub A poly px = 0
using poly-IVT-neglof z ub p| poly-IVT-pos|of z ub p] <z<ubs <z#ub> by
argo
then show Fulse using ub <a < 2> by auto
qed
then show %thesis unfolding sgnz-able-def has-sgnz-def eventually-at-right
apply (rule-tac exl[where z=sgn(poly p ub)])
apply (rule-tac exl[where z=ub])
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using less-eq-real-def <ub>ay by blast
qed
show (poly p) sgnz-able (at-left a)
proof (cases p=0)
case True
then show ?thesis unfolding sgnz-able-def has-sgna-def eventually-at-right
using linordered-field-no-ub by force
next
case Fulse
obtain /b where [b<a and ub:V z. b<zAz<a—poly p z#£0
using last-non-root-interval| OF False] by auto
have V z. Ib<zAz<a—>sgn(poly p z) = sgn (poly p Ib)
proof (rule ccontr)
assume — (Vz. b<zAz<a —> sgn (poly p z) = sgn (poly p b))
then obtain z where b<z z<a sgn(poly p z) # sgn (poly p Ib) by auto
moreover then have poly p 2£0 poly p Ib#0 27£1b using ub <Ib<a) by blast+
ultimately have (poly p 2>0 A poly p 1b<0) V (poly p 2<0 A poly p 1b>0)
by (metis linorder-neqE-linordered-idom sgn-neg sgn-pos)
then have Ja>1b. ¢ < z A poly pz = 0
using poly-I1VT-neglof Ib z p] poly-IVT-pos[of Ib z p] «Ib<z) <z#£Ib> by argo
then show Fulse using ub <z < a» by auto
qed
then show ?thesis unfolding sgnz-able-def has-sgnz-def eventually-at-left
apply (rule-tac exl[where z=sgn(poly p 1b)])
apply (rule-tac exl[where z=[b])
using less-eq-real-def <lb<a> by blast
qed
qed

lemma has-sgnz-identity|intro,sgna-intros|:
shows >0 = ((Az. ) has-sgnz 1) (at-right x)
<0 = ((\z. z) has-sgnz —1) (at-left z)
proof —
show 2>0 = ((Az. ) has-sgnz 1) (at-right x)
unfolding has-sgnz-def eventually-at-right
apply (intro exI[where z=z+1])
by auto
show z<0 = ((Az. z) has-sgnz —1) (at-left z)
unfolding has-sgna-def eventually-at-left
apply (intro exl[where z=z—1])
by auto
qged

lemma has-sgna-divide[sgnz-intros:
assumes (f has-sgnz c¢1) F (g has-sgnz c2) F
shows ((A\z. fz / g ) has-sgnz ¢l | ¢2) F
proof —
have Vi zin F. sgn (fx) = ¢ A sgn (g x) = ¢2
using assms unfolding has-sgnz-def by (intro eventually-conj,auto)
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then have Vp zin F. sgn (fz / gx) = ¢l / c2
apply (elim eventually-mono)
by (simp add: sgn-mult sgn-divide)
then show ((Az. fz / g z) has-sgnz ¢l / ¢2) F unfolding has-sgna-def by auto
qed

lemma sgnz-able-divide[sgnz-intros]:
assumes | sgnz-able F' g sgnx-able F
shows (A\z. fz / g z) sgnz-able F
using has-sgnz-divide by (meson assms(1) assms(2) sgna-able-def)

lemma sgnz-divide:
assumes F'#bot f sgnz-able F' g sgnz-able F
shows sgnx (A\z. fo / gz) F =sgnz f F | sqnz g F
proof —
obtain cI ¢2 where c!:(f has-sgnz c¢1) F and c2:(g has-sgnx c2) F
using assms unfolding sgnz-able-def by auto
have sgnz f F=cl sgnz g F=c2 using c1 c2 «(F#boty by auto
moreover have ((Az. fz / g ) has-sgnz c1 | c2) F
using has-sgnz-divide[OF c1 c2] .
ultimately show ?thesis using assms(1) has-sgnz-imp-sgnz by blast
qged

lemma has-sgnz-times|sgna-intros|:
assumes (f has-sgnz c¢1) F (g has-sgnz c2) F
shows ((A\z. f zx g x) has-sgnz ¢l * c2) F
proof —
have Vy zin F. sgn (fz) = c1 N sgn (g x) = c2
using assms unfolding has-sgnz-def by (intro eventually-conj,auto)
then have Vp zin F. sgn (fz x gx) = ¢l * c2
apply (elim eventually-mono)
by (simp add: sgn-mult)
then show ((Az. fz* g z) has-sgnz c1 * ¢2) F unfolding has-sgnz-def by auto
qed

lemma sgnz-able-times|sgna-intros|:
assumes f sgnz-able F g sgnx-able F
shows (Az. fz * g z) sgnz-able F
using has-sgnaz-times by (meson assms(1) assms(2) sgna-able-def)

lemma sgnz-times:
assumes F#bot f sgnz-able F g sgnz-able F
shows sgnx (A\z. fz x gx) F =sgnx f F * sgnz g F
proof —
obtain cI ¢2 where cI:(f has-sgnz c1) F and c2:(g has-sgnz c2) F
using assms unfolding sgnz-able-def by auto
have sgnz f F=cl sgnx g F=c2 using c1 c2 <F#bot> by auto
moreover have ((\z. fzx g x) has-sgnx ¢l * ¢2) F
using has-sgnz-times|OF c1 c2] .
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ultimately show ?thesis using assms(1) has-sgnz-imp-sgnz by blast
qed

lemma tendsto-nonzero-has-sgnz:
assumes (f —— ¢) F ¢#£0
shows (f has-sgnx sgn c¢) F
proof (cases rule:linorder-cases[of ¢ 0])
case less
then have Vg zin F. fz<0
using order-topology-class.order-tendstoD[OF assms(1),0f 0] by auto
then show ?thesis
unfolding has-sgnx-def
apply (elim eventually-mono)
using less by auto
next
case equal
then show ?thesis using «c#£0» by auto
next
case greater
then have Vg zin F. fz>0
using order-topology-class.order-tendstoD[OF assms(1),0f 0] by auto
then show ?thesis
unfolding has-sgnx-def
apply (elim eventually-mono)
using greater by auto
qged

lemma tendsto-nonzero-sgnz:
assumes (f —— ¢) F F#bot ¢#0
shows sgnz f F = sgn ¢
using tendsto-nonzero-has-sgnx

by (simp add: assms has-sgnz-imp-sgnx)

lemma filterlim-divide-at-bot-at-top-iff:
assumes (f —— ¢) F ¢#£0
shows
(LIMz F. fz | gz :> at-bot) «— (9 — 0) F
A ((Az. g z) has-sgnz — sgn ¢) F
(LIMz F. fz [/ gz :> at-top) «— (9 —— 0) F
A ((Az. g x) has-sgnz sgn ¢) F
proof —
show (LIMz F. fx / g x :> at-bot) «— ((¢9 —— 0) F)
A (Az. g z) has-sgnz — sgn ¢) F
proof
assume asm:LIM ¢ F. fz / g x :> at-bot
then have filterlim g (at 0) F
using filterlim-at-infinity-divide-iff[OF assms(1,2),0f g]
at-bot-le-at-infinity filterlim-mono by blast
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then have (¢ —— 0) F using filterlim-at by blast
moreover have (g has-sgnz — sgn ¢) F
proof —
have ((Az. sgn ¢ * inverse (f ©)) —— sgn ¢ * inverse ¢) F
using assms(1,2) by (auto intro:tendsto-intros)
then have LIM z F. sgn ¢ * inverse (fx) x (fx / g x) :> at-bot
apply (elim filterlim-tendsto-pos-mult-at-bot|OF - - asm])
using (c#£0» sgn-real-def by auto
then have LIM z F. sgn ¢ / g x :> al-bot
apply (elim filterlim-mono-eventually)
using eventually-times-inverse-1[OF assms] by (auto elim:eventually-mono)
then have Vp zin F. sgnc / gz < 0
using filterlim-at-bot-dense[of A\z. sgn ¢/g x F| by auto
then show ?thesis unfolding has-sgna-def
apply (elim eventually-mono)
by (metis add.inverse-inverse divide-less-0-iff sgn-neg sgn-pos sgn-sgn)
qed
ultimately show (9 —— 0) F A (g has-sgnz — sgn ¢) F by auto
next
assume (g —— 0) F A (g has-sgnz — sgn c¢) F
then have asm:(9 —— 0) F (g has-sgnz — sgn ¢) F by auto
have LIM z F. inverse (g x * sgn c) :> at-bot
proof (rule filterlim-inverse-at-bot)
show ((Az. gz * sgn ¢) —— 0) F
apply (rule tendsto-mult-left-zero)
using asm(1) by blast
next
show Vp zin F. gz x sgn ¢ < 0 using asm(2) unfolding has-sgna-def
apply (elim eventually-mono)
by (metis add.inverse-inverse assms(2) linorder-neqE-linordered-idom mult-less-0-iff

neg-0-less-iff-less sgn-greater sgn-zero-iff)
qed
moreover have ((Az. fx x sgn ¢) —— ¢ * sgn ¢) F
using «(f —— ¢) F» <«c#0»
apply (intro tendsto-intros)
by (auto simp add:sgn-zero-iff)
moreover have ¢ * sgn ¢ >0 using <c£0> by (simp add: sgn-real-def)
ultimately have LIM = F. (f x * sgn c) xinverse (g © * sgn c) :> at-bot
using filterlim-tendsto-pos-mult-at-bot by blast
then show LIM x F. fz [/ g z :> at-bot
using «¢£0> by (auto simp add:field-simps sgn-zero-iff)
qed
show (LIM z F. fz [/ gz :> at-top) «— ((¢ —— 0) F)
A ((Az. g z) has-sgnz sgn ¢) F
proof
assume asm:LIM z F. fz / g x :> at-top
then have filterlim g (at 0) F
using filterlim-at-infinity-divide-iff[OF assms(1,2),0f g|
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at-top-le-at-infinity filterlim-mono by blast
then have (9§ —— 0) F using filterlim-at by blast
moreover have (g has-sgnz sgn c) F
proof —
have ((Az. sgn ¢ * inverse (f ©)) —— sgn ¢ * inverse c¢) F
using assms(1,2) by (auto intro:tendsto-intros)
then have LIM z F. sgn ¢ x inverse (fz) = (fz / g x) :> at-top
apply (elim filterlim-tendsto-pos-mult-at-top| OF - - asm])
using <c#0> sgn-real-def by auto
then have LIM z F. sgn ¢ / g x :> at-top
apply (elim filterlim-mono-eventually)
using eventually-times-inverse-1[OF assms] by (auto elim:eventually-mono)
then have Vp zin F. sgnc / gz > 0
using filterlim-at-top-dense[of Az. sgn ¢/g x F] by auto
then show ?thesis unfolding has-sgna-def
apply (elim eventually-mono)
by (metis sgn-greater sgn-less sgn-neg sgn-pos zero-less-divide-iff)
qed
ultimately show (9 —— 0) F' A (g has-sgnz sgn ¢) F' by auto
next
assume (g —— 0) F A (g has-sgnz sgn c¢) F
then have asm:(¢9 —— 0) F (g has-sgnz sgn ¢) F by auto
have LIM z F. inverse (g x * sgn c) :> at-top
proof (rule filterlim-inverse-at-top)
show ((Az. gz % sgn ¢) —— 0) F
apply (rule tendsto-mult-left-zero)
using asm(1) by blast
next
show Vp zin F. gz x sgn ¢ > 0 using asm(2) unfolding has-sgna-def
apply (elim eventually-mono)
by (metis assms(2) sgn-1-neg sgn-greater sgn-if zero-less-mult-iff)
qed
moreover have ((Az. fz * sgn ¢) —— ¢ * sgn ¢) F
using «(f —— ¢) F» <«c£0»
apply (intro tendsto-intros)
by (auto simp add:sgn-zero-iff)
moreover have ¢ * sgn ¢ >0 using <c£0> by (simp add: sgn-real-def)
ultimately have LIM z F. (f x % sgn ¢) xinverse (g z * sgn c) :> at-top
using filterlim-tendsto-pos-mult-at-top by blast
then show LIM z F. fz / g x :> at-top
using <c#0» by (auto simp add:field-simps sgn-zero-iff)
qed
qed

lemma poly-sgnz-left-right:
fixes c a::real and p::real poly
assumes p#()
shows sgnz (poly p) (at-left a) = (if even (order a p)
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then sgnz (poly p) (at-right a)
else —sgnz (poly p) (at-right a))
using assms
proof (induction degree p arbitrary: p rule: less-induct)
case less
have ?case when poly p a#0
proof —
have sgnz (poly p) (at-left a) = sgn (poly p a)
by (simp add: has-sgnz-imp-sgnx tendsto-nonzero-has-sgnx that)
moreover have sgnz (poly p) (at-right a) = sgn (poly p a)
by (simp add: has-sgnx-imp-sgnx tendsto-nonzero-has-sgnz that)
moreover have order a p = 0 using that by (simp add: order-0I)
ultimately show ?thesis by auto

qed
moreover have ?case when poly p a=0
proof —

obtain ¢ where pg:p= [:—a,1:] * ¢

using <poly p a=0> by (meson dvdE poly-eq-0-iff-dvd)
then have ¢#0 using (p#0> by auto
then have degree ¢ < degree p unfolding pg by (subst degree-mult-eq,auto)
have sgnz (poly p) (at-left a) = — sgnz (poly q) (at-left a)
proof —
have sgnz (\z. poly p z) (at-left a)
= sgnz (poly q) (at-left a) * sgnz (poly [:—a,1:]) (at-left a)
unfolding pq
apply (subst poly-mult)
apply (subst sgnz-times)
by auto
moreover have sgnz (Az. poly [:—a,1:] z) (at-left a) = —1
apply (intro has-sgnz-imp-sgnz)
unfolding has-sgnz-def eventually-at-left
by (auto simp add: linordered-field-no-1b)
ultimately show ?thesis by auto
qed
moreover have sgnz (poly p) (at-right a) = sgnz (poly q) (at-right a)
proof —
have sgnz (A\z. poly p x) (at-right a)
= sgnz (poly q) (at-right a) * sgnz (poly [:—a,1:]) (at-right a)
unfolding pq
apply (subst poly-mult)
apply (subst sgna-times)
by auto
moreover have sgnz (Az. poly [:—a,1:] z) (at-right a) = 1
apply (intro has-sgnz-imp-sgnz)
unfolding has-sgnz-def eventually-at-right
by (auto simp add: linordered-field-no-ub)
ultimately show ?thesis by auto
qed
moreover have even (order a p) «— odd (order a q)
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unfolding pq
apply (subst order-mult|OF <p # 0>[unfolded pql])
using «q#£0» by (auto simp add:order-power-n-n|of - 1, simplified])
moreover note less.hyps|OF <degree q < degree py <q#0>]
ultimately show ?thesis by auto
qed
ultimately show ?case by blast
qed

lemma poly-has-sgnz-left-right:
fixes ¢ a::real and p::real poly
assumes p#(0
shows (poly p has-sgnz c) (at-left a) «— (if even (order a p)
then (poly p has-sgnz c) (at-right a)
else (poly p has-sgnx —c) (at-right a))
using poly-sgnz-left-right
by (metis (no-types, opaque-lifting) add.inverse-inverse assms has-sgnz-unique
sgna-able-poly sgnz-able-sgnx trivial-limit-at-left-real trivial-limit-at-right-real)

lemma sign-r-pos-sgnz-iff:
sign-r-pos p a +— sgnz (poly p) (at-right a) > 0
proof
assume asm:0 < sgnz (poly p) (at-right a)
obtain ¢ where c-def:(poly p has-sgnz ¢) (at-right a)
using sgnz-able-poly(1) sgnz-able-sgnz by blast
then have c¢>0 using asm
using has-sgna-imp-sgnx trivial-limit-at-right-real by blast
then show sign-r-pos p a using c-def unfolding sign-r-pos-def has-sgnz-def
apply (elim eventually-mono)
by force
next
assume asm:sign-r-pos p a
define ¢ where ¢ = sgnz (poly p) (at-right a)
then have (poly p has-sgnz ¢) (at-right a)
by (simp add: sgnz-able-sgnz)
then have (V¢ z in (at-right a). poly p x>0 A sgn (poly p ) = c)
using asm unfolding has-sgnx-def sign-r-pos-def
by (simp add:eventually-conj-iff)
then have V p = in (at-right a). ¢ > 0
apply (elim eventually-mono)
by fastforce
then show c¢>0 by auto
qed

lemma sgnz-values:

assumes f sgnz-able F' F # bot
shows sgnx fF = —1 Vsgnz fF =0V sgnx fF = 1
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proof —
obtain ¢ where c-def:(f has-sgnz c) F
using assms(1) unfolding sgnz-able-def by auto
then obtain z where sgn(fz) = ¢
unfolding has-sgnz-def using assms(2) eventually-happens
by blast
then have c=—1 V ¢=0 V c=1 using sgn-if by metis
moreover have sgnz f F' = c using c-def by (simp add: assms(2) has-sgnz-imp-sgnz)
ultimately show #¢thesis by auto
qed

lemma has-sgnz-poly-at-top:
(poly p has-sgnz  sgn-pos-inf p) at-top
using has-sgnz-def poly-sgn-eventually-at-top by blast

lemma has-sgnz-poly-at-bot:
(poly p has-sgnx  sgn-neg-inf p) at-bot
using has-sgnz-def poly-sgn-eventually-at-bot by blast

lemma sgnz-poly-at-top:

sgnz (poly p) at-top = sgn-pos-inf p
by (simp add: has-sgna-def has-sgnz-imp-sgnx poly-sgn-eventually-at-top)

lemma sgnax-poly-at-bot:
sgnz (poly p) at-bot = sgn-neg-inf p
by (simp add: has-sgna-def has-sgnz-imp-sgnz poly-sgn-eventually-at-bot)

lemma poly-has-sgnz-values:
assumes p#0
shows
(poly p has-sgnz 1) (at-left a) V (poly p has-sgnx — 1) (at-left a)
(poly p has-sgnz 1) (at-right a) V (poly p has-sgnz — 1) (at-right a)
(poly p has-sgnz 1) at-top V (poly p has-sgnz — 1) at-top
(poly p has-sgnz 1) at-bot V (poly p has-sgnz — 1) at-bot
proof —
have sgn-pos-inf p = 1 V sgn-pos-inf p = —1
unfolding sgn-pos-inf-def by (simp add: assms sgn-if)
then show (poly p has-sgnz 1) at-top V (poly p has-sgnz — 1) at-top
using has-sgna-poly-at-top by metis
next
have sgn-neg-inf p = 1 V sgn-neg-inf p = —1
unfolding sgn-neg-inf-def by (simp add: assms sgn-if)
then show (poly p has-sgnx 1) at-bot V (poly p has-sgnz — 1) at-bot
using has-sgnz-poly-at-bot by metis
next
obtain ¢ where c-def:(poly p has-sgnz ¢) (at-left a)
using sgna-able-poly(2) sgnz-able-sgnx by blast
then have sgnz (poly p) (at-left a) = ¢ using assms by auto
then have c=—1 V ¢=0 V c¢=1
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using sgna-values sgnz-able-poly(2) trivial-limit-at-left-real by blast
moreover have Fualse when c=0
proof —
have (poly p has-sgnz 0) (at-left a) using c-def that by auto
then obtain /b where lb<a Vy. (lb<y A y < a) — poly p y = 0

unfolding has-sgnz-def eventually-at-left sgn-if
by (metis one-neq-zero zero-neq-neg-one)

then have {lb<..<a} C proots p unfolding proots-within-def by auto

then have infinite (proots p)
apply (elim infinite-super)
using «b<a> by auto

moreover have finite (proots p) using finite-proots|OF <p#£0>] by auto
ultimately show Fulse by auto
qed

ultimately have c=—1 V c=1 by auto

then show (poly p has-sgnx 1) (at-left a) V (poly p has-sgnx — 1) (at-left a)

using c-def by auto

next

obtain ¢ where c-def:(poly p has-sgnz ¢) (at-right a)
using sgna-able-poly(1) sgnz-able-sgnx by blast

then have sgnz (poly p) (at-right a) = ¢ using assms by auto
then have ¢c=—1 V ¢=0 V c¢=1

using sgna-values sgnz-able-poly(1) trivial-limit-at-right-real by blast
moreover have Fualse when c=0
proof —

have (poly p has-sgnz 0) (at-right a) using c-def that by auto

then obtain ub where ub>a Vy. (a<y Ay < ub) — poly py = 0
unfolding has-sgna-def eventually-at-right sgn-if
by (metis one-neg-zero zero-neq-neg-one)

then have {a<..<ub} C proots p unfolding proots-within-def by auto
then have infinite (proots p)
apply (elim infinite-super)
using (ub>a> by auto

moreover have finite (proots p) using finite-proots|OF <p#£0>] by auto

ultimately show Fulse by auto
qed
ultimately have c=—1 V ¢=1 by auto

qed

then show (poly p has-sgnz 1) (at-right a) V (poly p has-sgnz — 1) (at-right a)
using c-def by auto

lemma poly-sgnx-values:
assumes p#(0

shows sgnz (poly p) (at-left a) = 1 V sgnz (poly p) (at-left a) = —1

sgnz (poly p) (at-right a) = 1 V sgnz (poly p) (at-right a) = —1

using poly-has-sgnz-values|OF <p#£0»] has-sgna-imp-sgnz trivial-limit-at-left-real
trivial-limit-at-right-real by blast+
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lemma has-sgnz-inverse: (f has-sgnz ¢) F «— ((inverse o f) has-sgnz (inverse c))
F

unfolding has-sgnz-def comp-def

apply (rule eventually-subst)

apply (rule always-eventually)

by (metis inverse-inverse-eq sgn-inverse)

lemma has-sgnz-derivative-at-left:
assumes g-deriv:(g has-field-derivative ¢) (at z) and g =0 and c#0
shows (g has-sgnz — sgn ¢) (at-left )
proof —
have (g has-sgnz —1) (at-left ) when ¢>0
proof —
obtain dI where d1>0 and dI-defVh>0. h < dl — g(z —h) < gz
using DERIV-pos-inc-left|OF g-deriv <¢>0>] <g z=0» by auto
have (g has-sgnz —1) (at-left )
unfolding has-sgna-def eventually-at-left
apply (intro exI[where z=z—d1])
using «d1>0) di-def
by (metis (no-types, opaque-lifting) add.commute add-uminus-conv-diff assms(2)
diff-add-cancel
diff-strict-left-mono diff-zero minus-diff-eq sgn-neg)
thus ?thesis by auto
qed
moreover have (g has-sgnz 1) (at-left ) when ¢<0
proof —
obtain dI where d1>0 and dI-def:Vh>0. h < dl — g(z —h) > gz
using DERIV-neg-dec-left[OF g-deriv <c<0>] <g z=0> by auto
have (g has-sgnz 1) (at-left x)
unfolding has-sgnz-def eventually-at-left
apply (intro exI[where x=x—d1])
using «d1>0> di-def
by (metis (no-types, opaque-lifting) add.commute add-uminus-conv-diff
assms(2) diff-add-cancel
diff-zero less-diff-eq minus-diff-eq sgn-pos)
thus ?thesis using «¢c<0> by auto
qed
ultimately show %thesis using <c#0) using sgn-real-def by auto
qed

lemma has-sgnz-derivative-at-right:
assumes g-deriv:(g has-field-derivative ¢) (at z) and g z=0 and c¢#£0
shows (g has-sgnz sgn ¢) (at-right x)
proof —
have (g has-sgnz 1) (at-right ) when ¢>0
proof —
obtain d2 where d2>0 and d2-defVh>0. h < d2 — gz < g (z + h)
using DERIV-pos-inc-right|OF g-deriv <¢>05] <g x=0> by auto
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have (g has-sgnz 1) (at-right )
unfolding has-sgnz-def eventually-at-right
apply (intro exl[where z=xz+d2])
using «d2>0> d2-def
by (metis add.commute assms(2) diff-add-cancel diff-less-eq less-add-same-cancell

$gn-pos)
thus ?thesis using <«c¢>0» by auto
qed
moreover have (g has-sgnx —1) (at-right z) when c¢<0
proof —

obtain d2 where d2>0 and d2-defVh>0. h < d2 — gz > g (z + h)
using DERIV-neg-dec-right]|OF g-deriv <¢<0>] <g x=0> by auto
have (g has-sgnz —1) (at-right z)
unfolding has-sgnz-def eventually-at-right
apply (intro exI[where z=1+d2])
using «d2>0> d2-def
by (metis (no-types, opaque-lifting) add.commute add.right-inverse add-uminus-conv-diff
assms(2)
diff-add-cancel diff-less-eq sgn-neg)
thus ?thesis using <«c<0» by auto
qged
ultimately show %thesis using <c#£0) using sgn-real-def by auto
qed

lemma has-sgnz-split:
(f has-sgnz ¢) (at ) <— (f has-sgnz ¢) (at-left ) A (f has-sgnz ¢) (at-right x)
unfolding has-sgnz-def using eventually-at-split by auto

lemma sgnz-at-top-IVT:
assumes sgnz (poly p) (at-right a) # sgnz (poly p) at-top
shows Jz>a. poly p z=0
proof (cases p=0)
case True
then show %thesis using gt-ex[of a] by simp
next
case Fulse
from poly-has-sgnz-values|OF this]
have (poly p has-sgnz 1) (at-right a) V (poly p has-sgnz — 1) (at-right a)
(poly p has-sgnz 1) at-top V (poly p has-sgnz — 1) at-top
by auto
moreover have ?thesis when has-r:(poly p has-sgnz 1) (at-right a)
and has-top:(poly p has-sgnz —1) at-top
proof —
obtain b where b>a poly p b>0
proof —
obtain a’ where a’>a and a’-def:Vy>a. y < a’ — sgn (poly p y) = 1
using has-r{unfolded has-sgna-def eventually-at-right] by auto
define b where b=(a+a’)/2
have a<b b<a’ unfolding b-def using <a’>a> by auto
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moreover have poly p b>0
using a’-def[rule-format,OF <b>a) <b<a’»] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain ¢ where ¢>b poly p c<0
proof —
obtain b’ where b’-def:¥n>b". sgn (poly p n) = — 1

using has-top[unfolded has-sgnz-def eventually-at-top-linorder| by auto
define ¢ where c=1+maz b b’
have c¢>b ¢>b’ unfolding c-def using <b>a> by auto
moreover have poly p c<0
using b’-def[rule-format, OF «b'<¢)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately show ?thesis using poly-IVT-neg[of b ¢ p] not-less by fastforce
qged
moreover have ?thesis when has-r:(poly p has-sgnz —1) (at-right a)
and has-top:(poly p has-sgnx 1) at-top
proof —
obtain b where b>a poly p b<0
proof —
obtain a’ where a">a and a’-def:Vy>a. y < a’ — sgn (poly p y) = —1
using has-r[unfolded has-sgnz-def eventually-at-right] by auto
define b where b=(a+a’)/2
have a<b b<a’ unfolding b-def using <a’>a> by auto
moreover have poly p b<0
using a’-def[rule-format,OF <b>a> <b<a’»] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
moreover obtain ¢ where c¢>b poly p ¢>0
proof —
obtain b’ where b'-def:¥ n>b". sgn (poly p n) = 1
using has-toplunfolded has-sgnz-def eventually-at-top-linorder] by auto
define ¢ where c=1+maz b b’
have c¢>b ¢>b’ unfolding c-def using <b>a> by auto
moreover have poly p ¢>0
using b’-def[rule-format,OF <b'<c)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately show ?thesis using poly-IVT-pos[of b ¢ p] not-less by fastforce
qed
moreover have ?thesis when
(poly p has-sgnz 1) (at-right a) A (poly p has-sgnz 1) at-top
V (poly p has-sgnx — 1) (at-right a) A (poly p has-sgnz —1) at-top
proof —
have sgnz (poly p) (at-right a) = sgnz (poly p) at-top
using that has-sgnz-imp-sgnz by auto
then have Fulse using assms by simp
then show ?thesis by auto
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qed
ultimately show ?thesis by blast
qed

lemma sgnz-at-left-at-right-1VT:
assumes sgnz (poly p) (at-right a) # sgnz (poly p) (at-left b) a<b
shows Jz. a<z A z<b A poly p x=0
proof (cases p=0)
case True
then show ?thesis using <a<bs by (auto intro:exI[where x=(a+b)/2])
next
case Fulse
from poly-has-sgnz-values|OF this)
have (poly p has-sgnz 1) (at-right a) V (poly p has-sgnz — 1) (at-right a)
(poly p has-sgnz 1) (at-left b) V (poly p has-sgnz — 1) (at-left b)
by auto
moreover have ?thesis when has-r:(poly p has-sgnz 1) (at-right a)
and has-l:(poly p has-sgnz —1) (at-left b)
proof —
obtain ¢ where a<c c¢<b poly p c>0
proof —
obtain o’ where a’>a and a’-def:Vy>a. y < a’ — sgn (poly p y) = 1
using has-r[unfolded has-sgnz-def eventually-at-right] by auto
define ¢ where c=(a+min a’ b)/2
have a<c c<a’ ¢c<b unfolding c-def using <a’>a> <b>a> by auto
moreover have poly p ¢>0
using a’-def[rule-format,OF (c>ay <c<a’] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain d where c<dd<b poly p d<0
proof —
obtain b’ where b'<b and b’-def:Vy>b". y < b — sgn (poly p y) = — 1

using has-l[unfolded has-sgnz-def eventually-at-left] by auto
define d where d=(b+maz b’ ¢)/2
have b'<d d<b d>c
unfolding d-def using <b>b" <b>c> by auto
moreover have poly p d<0
using b’-def[rule-format, OF <b’<d) <d<b)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately obtain z where c<z x<d poly p z=0
using poly-IVT-neg[of ¢ d p] by auto
then show ?thesis using <c>a> «d<b» by (auto intro: exl[where z=z))
qed
moreover have ?thesis when has-r:(poly p has-sgnz —1) (at-right a)
and has-l:(poly p has-sgnz 1) (at-left b)
proof —
obtain ¢ where a<c ¢<b poly p c<0
proof —
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obtain a’ where a">a and a’-def:Vy>a. y < a’ — sgn (poly p y) = —1
using has-r[unfolded has-sgnz-def eventually-at-right] by auto
define ¢ where c=(a+min a’ b)/2
have a<c c<a’ c<b unfolding c-def using (a’>a> <b>a> by auto
moreover have poly p c<0
using a’-def[rule-format,OF <c>a) <c<a"»] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
moreover obtain d where c<dd<b poly p d>0
proof —
obtain b’ where b'<b and b’-def:Vy>b". y < b — sgn (poly p y) = 1
using has-l[unfolded has-sgnz-def eventually-at-left] by auto
define d where d=(b+maz b’ ¢)/2
have b'<d d<b d>c
unfolding d-def using <b>b" <b>c> by auto
moreover have poly p d>0
using b’-def[rule-format, OF <b’'<ds «d<b>] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately obtain z where c<z x<d poly p z=0
using poly-IVT-pos|of ¢ d p] by auto
then show ?thesis using «¢>a> «d<b> by (auto intro: exl[where r=x])
qed
moreover have ?thesis when
(poly p has-sgnz 1) (at-right a) A (poly p has-sgnz 1) (at-left b)
V (poly p has-sgnx — 1) (at-right a) A (poly p has-sgnz —1) (at-left b)
proof —
have sgnz (poly p) (at-right a) = sgnz (poly p) (at-left b)
using that has-sgnz-imp-sgnz by auto
then have Fulse using assms by simp
then show %thesis by auto
qed
ultimately show ?thesis by blast
qed

lemma sgnz-at-bot-IVT:

assumes sgnz (poly p) (at-left a) # sgnz (poly p) at-bot

shows Fz<a. poly p z=0

proof (cases p=0)

case True

then show ?thesis using lt-ex|[of a] by simp

next

case Fulse

from poly-has-sgnz-values|OF this]

have (poly p has-sgnz 1) (at-left a) V (poly p has-sgnz — 1) (at-left a)
(poly p has-sgnz 1) at-bot V (poly p has-sgnz — 1) at-bot
by auto

moreover have ?thesis when has-1:(poly p has-sgnz 1) (at-left a)

and has-bot:(poly p has-sgnz —1) at-bot
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proof —
obtain b where b<a poly p b>0
proof —
obtain a’ where a'<a and a’-def:Vy>a’. y < a — sgn (poly p y) = 1
using has-l[unfolded has-sgna-def eventually-at-left] by auto
define b where b=(a+a’)/2
have a>b b>a’ unfolding b-def using <a'<a> by auto
moreover have poly p b>0
using a’-def[rule-format,OF <b>a"y <b<a)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain ¢ where c¢<b poly p c<0
proof —
obtain b’ where b'-def:V n<b’. sgn (poly p n) = — 1

using has-bot[unfolded has-sgnz-def eventually-at-bot-linorder] by auto
define ¢ where c=min b b'— 1
have c<b ¢<b’ unfolding c-def using <b<a) by auto
moreover have poly p c<0
using b’-def[rule-format,OF <b">¢)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately show ?thesis using poly-IVT-pos[of ¢ b p] using not-less by
fastforce
qed
moreover have ?thesis when has-l:(poly p has-sgnz —1) (at-left a)
and has-bot:(poly p has-sgnz 1) at-bot
proof —
obtain b where b<a poly p b<0
proof —
obtain a’ where a'<a and a’-def:Vy>a’. y < a — sgn (poly p y) = —1
using has-l[unfolded has-sgna-def eventually-at-left] by auto
define b where b=(a+a’)/2
have a>b b>a’ unfolding b-def using (a'<a> by auto
moreover have poly p b<0
using a’-def[rule-format,OF <b>a’y <b<a)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qged
moreover obtain ¢ where c¢<b poly p ¢>0
proof —
obtain b’ where b’-def:V n<b’. sgn (poly p n) = 1
using has-bot[unfolded has-sgnz-def eventually-at-bot-linorder] by auto
define ¢ where c=min b b'— 1
have c<b c<b’ unfolding c-def using <b<a> by auto
moreover have poly p ¢>0
using b’-def[rule-format,OF <b">¢)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately show ?thesis using poly-IVT-neglof ¢ b p] using not-less by
fastforce
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qed
moreover have ?thesis when
(poly p has-sgnz 1) (at-left a) A (poly p has-sgnz 1) at-bot
V (poly p has-sgnx — 1) (at-left a) A (poly p has-sgnx —1) at-bot
proof —
have sgnz (poly p) (at-left a) = sgnz (poly p) at-bot
using that has-sgnz-imp-sgnz by auto
then have Fulse using assms by simp
then show ?thesis by auto
qged
ultimately show ¢thesis by blast
qed

lemma sgnx-poly-nz:
assumes poly p T£0
shows sgnz (poly p) (at-left x) = sgn (poly p x)
sgnz (poly p) (at-right x) = sgn (poly p x)
proof —
have (poly p has-sgnz sgn(poly p z)) (at x)
apply (rule tendsto-nonzero-has-sgnz)
using assms by auto
then show sgnz (poly p) (at-left x) = sgn (poly p x)
sgnz (poly p) (at-right x) = sgn (poly p x)
unfolding has-sgna-split by auto
qed

5.3 Finite predicate segments over an interval

inductive finite-Psegments::(real = bool) = real = real = bool for P where
emptyl: a>b = finite-Psegments P a b|
insertl-1: [s€{a..<b};s=aVP s;¥Vte{s<..<b}. P t; finite-Psegments P a s]
= finite-Psegments P a b|
insertl-2: [s€{a..<b};s=aVP s;(Vte{s<..<b}. =P t);finite-Psegments P a ]
= finite-Psegments P a b

lemma finite- Psegments-pos-linear:
assumes finite-Psegments P (bxlb+c) (bxub+c) and b>0
shows finite-Psegments (P o (A\t. bxt+c)) Ib ub
proof —
have [simp]:b#0 using <b>0» by auto
show ?thesis
proof (rule finite-Psegments.induct|OF assms(1),
of Ab’' ub’. finite-Psegments (P o (At. bxt+c)) ((Ib'—c)/b) ((ub'—c)/b),simplified))

fix b ub f assume (lb::real)<ub

then have (Ib — ¢) / b < (ub—¢) / b
using «b>0) by (auto simp add:field-simps)

then show finite-Psegments (f o (At. b x t + ¢)) ((ub — ¢) / b) ((Ib — ¢) / b)
by (rule finite-Psegments.emptyl)
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next
fix slbub P
assume asm: b < s A s < ub
Vie{s<.<ub}. Pt
finite-Psegments (P o (At. bxt + ¢)) ((Ib—2¢) / b) ((s —¢)/ b)
s=1IVPs
show finite-Psegments (P o (At. bx t + ¢)) (b —¢) / b) ((ub — ¢) / b)
apply (rule finite-Psegments.insertl-1[of (s—c)/b])
using asm «b>0> by (auto simp add:field-simps)
next
fix slbub P
assume asm: b < s A s < ub
Vie{s<.<ub}. = Pt
finite-Psegments (P o (At. bt + ¢)) ((Ib—2¢) / b) ((s —¢)/ b)
s=lbV Ps
show finite-Psegments (P o (At. bxt + ¢)) (Ib — ¢) / b) ((ub — ¢) / b)
apply (rule finite-Psegments.insertl-2[of (s—c)/b])
using asm «b>0> by (auto simp add:field-simps)
qed
qed

lemma finite-Psegments-congkE:
assumes finite-Psegments @) Ib ub
Nt [lb<tit<ub] = Q¢ +— Pt
shows finite-Psegments P lb ub using assms
proof (induct rule:finite- Psegments.induct)
case (emptyl a b)
then show ?case using finite-Psegments.emptyl by auto
next
case (insertl-1 s a b)
show ?Zcase
proof (rule finite-Psegments.insertl-1[of s])
have P s when s#a
proof —
have se{a<..<b} using (s € {a..<b}> that by auto
then show ?thesis using insertl-1 by auto
qged
then show s = a V P s by auto
next
show s € {a..<b} Vie{s<..<b}. Pt finite-Psegments P a s using insertl-1
by auto
qed
next
case (insertl-2 s a b)
show ?Zcase
proof (rule finite-Psegments.insertl-2[of s])
have P s when s#a
proof —
have sc{a<..<b} using (s € {a..<b}» that by auto
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then show ?thesis using insertl-2 by auto
qed
then show s = a V P s by auto
next
show s € {a..<b} Vie{s<..<b}. = Pt finite-Psegments P a s using insertl-2
by auto
qed
qed

lemma finite- Psegments-constl:
assumes At. [a<t;i<b] = Pt =c
shows finite-Psegments P a b
proof —
have finite-Psegments (A-. ¢) a b
proof —
have ?thesis when a>0b
using that finite- Psegments.emptyl by auto
moreover have ?thesis when a<b ¢
apply (rule finite-Psegments.insertl-1[of a))
using that by (auto intro: finite-Psegments.emptyl)
moreover have ?thesis when a<b —c
apply (rule finite-Psegments.insertl-2[of a])
using that by (auto intro: finite-Psegments.emptyl)
ultimately show ?thesis by argo
qed
then show ?thesis
apply (elim finite-Psegments-congE)
using assms by auto
qed

context
begin

private lemma finite- Psegments-less-eql:
assumes finite-Psegments P a ¢ b<c
shows finite-Psegments P a b using assms
proof (induct arbitrary: b rule:finite- Psegments.induct)
case (emptyl a c)
then show ?case using finite-Psegments.emptyl by auto
next
case (insertl-1 s a c)
have ?case when b<s using insertl-1 that by auto
moreover have ?case when b>s
proof —
have s € {a..<b} using that <s € {a..<c}» <b < ¢ by auto
moreover have Vte{s<..<b}. Pt using «Vit€{s<..<c}. P t» that <b < ¢) by
auto
ultimately show ?case
using finite-Psegments.insertl-1[OF - - - «finite-Psegments P a $)] < s = a V
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P sy by auto
qed
ultimately show ?case by fastforce
next
case (insertl-2 s a c)
have ?case when b<s using insertl-2 that by auto
moreover have ?case when b>s
proof —
have s € {a..<b} using that <s € {a..<c} b < © by auto
moreover have Vite{s<..<b}. = P ¢ using «Vit€{s<..<c}. = P t» that <b <
¢» by auto
ultimately show ?case
using finite-Psegments.insertl-2[OF - - - «finite-Psegments P a )] < s = a V
P sy by auto
qed
ultimately show ?case by fastforce
qed

private lemma finite-Psegments-less-eq2:
assumes finite-Psegments P a ¢ a<b
shows finite-Psegments P b ¢ using assms
proof (induct arbitrary: rule:finite- Psegments.induct)
case (emptyl a c)
then show “case using finite-Psegments.emptyl by auto
next
case (insertl-1 s a c)
have ?case when s<b
proof —
have Vite{b<..<c}. P t using insertl-1 that by auto
then show ?thesis by (simp add: finite-Psegments-constl)
qed
moreover have ?case when s>b
apply (rule finite-Psegments.insertl-1[where s=s|)
using insertl-1 that by auto
ultimately show ?case by linarith
next
case (insertl-2 s a c)
have ?case when s<b
proof —
have Vite{b<..<c}. = P ¢ using insertl-2 that by auto
then show ?thesis by (metis finite-Psegments-constl greaterThanLess Than-iff)
qed
moreover have ?case when s>b
apply (rule finite-Psegments.insertl-2[where s=s|)
using insertl-2 that by auto
ultimately show ?case by linarith
qed
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lemma finite- Psegments-included:

assumes finite-Psegments P a d a<b c¢<d

shows finite-Psegments P b ¢

using finite- Psegments-less-eq2 finite- Psegments-less-eql assms by blast
end

lemma finite- Psegments-combine:
assumes finite-Psegments P a b finite-Psegments P b ¢ be{a..c} closed ({z. P
z} N {a..c})
shows finite-Psegments P a ¢ using assms(2,1,3,4)
proof (induct rule:finite- Psegments.induct)
case (emptyl b c)
then show ?case using finite-Psegments-included by auto
next
case (insertl-1 s b c)
have P s
proof —
have s<c using insertl-1 by auto
define S where S = {z. Pz} N {s..(s+¢)/2}
have closed S
proof —
have closed ({a. P a} N {a..c}) using insertl-1(8) .
moreover have S = ({a. P a} N {a..c}) N {s..(s+¢)/2}
using insertl-1(1,7) unfolding S-def by (auto simp add:field-simps)
ultimately show ?thesis
using closed-Int[of {a. P a} N {a..c} {s..(s+c)/2}] by blast
qed
moreover have Fy€S. dist y s < e when e>0 for e
proof —
define y where y = min ((s+c¢)/2) (e/2+s)
have yeS$
proof —
have ye{s..(s+c)/2} unfolding y-def
using <e>0) «s<c¢» by (auto simp add:min-mult-distrib-left algebra-simps)
moreover have P y
apply (rule insertl-1(3)[rule-format])
unfolding y-def
using <e>0> «s<c»
by (auto simp add:algebra-simps min-mult-distrib-left min-less-iff-disj)
ultimately show ?thesis unfolding S-def by auto
qed
moreover have dist y s <e
unfolding y-def using <e>0) <s<c)
by (auto simp add:algebra-simps min-mult-distrib-left min-less-iff-disj dist-real-def)
ultimately show ?thesis by auto
qed
ultimately have s€S using closed-approachable by auto
then show ?thesis unfolding S-def by auto
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qed
show ?Zcase
proof (rule finite-Psegments.insertl-1[of s])
show s € {a.<c} s=aV PsVie{s<.<c}. Pt
using insertl-1 <P s» by auto
next
have closed ({a. P a} N {a..s})
using closed-Int[OF <closed ({a. P a} N {a..c})»,of {a..s},simplified]
apply (elim arg-elim[of closed))
using «s € {b..<c}» <b € {a..c}) by auto
then show finite-Psegments P a s using insertl-1 by auto
qed
next
case (insertl-2 s b c)
have ?case when P s
proof (rule finite-Psegments.insertl-2[of s])
show s € {a..<c} s = a V P s Vte{s<..<c}. = Pt using that insertl-2 by
auto
next
have closed ({a. P a} N {a..s})
using closed-Int[OF <closed ({a. P a} N {a..c})»,of {a..s},simplified]
apply (elim arg-elim[of closed))
using <s € {b..<c}» b € {a..c}» by auto
then show finite-Psegments P a s using insertl-2 by auto
qed
moreover have ?case when — P s s=b using «finite-Psegments P a b
proof (cases rule:finite- Psegments.cases)
case emptyl
then show ?thesis using insertl-2 that
by (metis antisym-conv atLeastAtMost-iff finite-Psegments.insertl-2)
next
case (insertl-1 s0)
have P s
proof —
have s0<s using insertl-1 atLeastLessThan-iff that(2) by blast
define S where S = {z. Pz} N {(s0+s)/2..s}
have closed S
using closed-Int[OF «closed ({a. P a} N {a..c})r,of {(s0+s)/2..s},simplified]

apply (elim arg-elim[of closed))
unfolding S-def using (s0 € {a..<b}> « s € {b..<c}» <b € {a..c}> by auto

moreover have Fye€S. dist y s < e when e>0 for e
proof —
define y where y = maz ((s+s0)/2) (s—e/2)
have yesS
proof —
have ye{(s0+s)/2..s} unfolding y-def
using <e>0) «s0<s» by (auto simp add:field-simps min-mult-distrib-left)
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moreover have P y
apply (rule insertl-1(3)[rule-format])
unfolding y-def
using <e>0) s0<s» <s=b
by (auto simp add:field-simps maz-mult-distrib-left less-max-iff-disj)
ultimately show #thesis unfolding S-def by auto
qged
moreover have dist y s <e
unfolding y-def using <e>0)> <s0<s»
by (auto simp add:algebra-simps max-mult-distrib-left less-maz-iff-disj
dist-real-def
maz-add-distrib-right)
ultimately show ?thesis by auto
qed
ultimately have s€S using closed-approachable by auto
then show ?thesis unfolding S-def by auto
qed
then have Fulse using <= P s» by auto
then show ?thesis by simp
next
case (insertl-2 s0)
have «: Vie{s0<..<c}. - Pt
using « Vie{s<..<c}. = P t» that Vte{s0<..<b}. = P b
by force
show ?thesis
apply (rule finite-Psegments.insertl-2[of s0])
subgoal using insertl-2.prems(2) local.insertl-2(1) by auto
subgoal using «s0 = a V P s0> .
subgoal using * .
subgoal using «finite-Psegments P a s0» .
done
qed
moreover note <s =56V P s
ultimately show ?case by auto
qed

5.4 Finite segment intersection of a path with the imaginary
axis

definition finite-ReZ-segments::(real = complex) = complex = bool where
finite-ReZ-segments g z = finite-Psegments (At. Re (gt — z) = 0) 0 1

lemma finite-ReZ-segments-joinpaths:
assumes ¢I:finite-ReZ-segments g1 z and ¢2: finite-ReZ-segments g2 z and
path g1 path g2 pathfinish g1 =pathstart g2
shows finite-ReZ-segments (g1 +++92) z
proof —
define P where P = (At. (Re ((g1 +++ g2)t — 2) = 0 AN 0<t AN t<1) V t=0
Vv t=1)
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have finite-Psegments P 0 (1/2)
proof —
have finite-Psegments (At. Re (91t — 2z) = 0) 0 1
using g1 unfolding finite-ReZ-segments-def .
then have finite-Psegments (At. Re (g1 (2 xt) — 2) = 0) 0 (1/2)
apply (drule-tac finite-Psegments-pos-linear[of - 2 0 0 1/2,simplified])
by (auto simp add:comp-def)
then show ?thesis
unfolding P-def joinpaths-def
by (elim finite-Psegments-congE,auto)
qed
moreover have finite-Psegments P (1/2) 1
proof —
have finite-Psegments (At. Re (92t — z) = 0) 0 1
using ¢2 unfolding finite-ReZ-segments-def .
then have finite-Psegments (At. Re (g2 (2 x t—1) — 2) = 0) (1/2) 1
apply (drule-tac finite-Psegments-pos-linear|of - 2 1/2 —1 1,simplified])
by (auto simp add:comp-def)
then show ?thesis
unfolding P-def joinpaths-def
apply (elim finite-Psegments-congE)
by auto
qed
moreover have closed {z. P z}
proof —
define @ where Q=(\t. Re ((g1 +++ ¢2) t — 2) = 0)
have continuous-on {0<..<1} (g1+++g¢2)
using path-join-imp[OF <path g15 <path g2 <pathfinish g1=pathstart g2>]
unfolding path-def by (auto elim:continuous-on-subset)
from continuous-on-Re[OF this] have continuous-on {0<..<1} (Az. Re ((g1
+++ g2) 1)) .
from continuous-on-open-Collect-neq| OF this,of A-. Re z,OF continuous-on-const,simplified)
have open {t. Re ((g1 +++ ¢g2) t — z) # 0 N 0<t A t<1}
by (elim arg-elim[where f=open],auto)
from closed-Diff[of {0::real..1},0F - this,simplified]
show closed {z. P x}
apply (elim arg-elim[where f=closed])
by (auto simp add:P-def)
qed
ultimately have finite-Psegments P 0 1
using finite- Psegments-combinelof - 0 1/2 1] by auto
then show ?thesis
unfolding finite-ReZ-segments-def P-def
by (elim finite-Psegments-congE auto)
qed

lemma finite-ReZ-segments-congF:

assumes finite-ReZ-segments pl z1
Nt [0<t;t<1] = Re(pl t— z1) = Re(p2t — 22)
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shows finite-ReZ-segments p2 z2

using assms unfolding finite- ReZ-segments-def
apply (elim finite-Psegments-congE)

by auto

lemma finite-ReZ-segments-constl:
assumes Vit. 0<itANt<l — gt =—c
shows finite-ReZ-segments g z
proof —
have finite-ReZ-segments (A-. ¢) z
unfolding finite-ReZ-segments-def
by (rule finite-Psegments-constl ,auto)
then show ?thesis using assms
by (elim finite-ReZ-segments-congE,auto)
qed

lemma finite- ReZ-segment-cases [consumes 1, case-names subEq subNEq,cases pred:finite- ReZ-segments]:
assumes finite-ReZ-segments g z
and subEq:(As. [s € {0..<1};s=0VRe (g s) = Re z;
Vie{s<..<1}. Re (g t) = Re z;finite-ReZ-segments (subpath 0 s g) z] =
P)
and subNEq:(\s. [s € {0..<1};s=0VRe (g s) = Re z;
Vie{s<..<1}. Re (g t) # Re z;finite-ReZ-segments (subpath 0 s g) z] =
P)
shows P
using assms(1) unfolding finite- ReZ-segments-def
proof (cases rule:finite-Psegments.cases)
case emptyl
then show ?thesis by auto
next
case (insertl-1 s)
have finite-ReZ-segments (subpath 0 s g) z
proof (cases s=0)
case True
show ?thesis
apply (rule finite-ReZ-segments-constl)
using True unfolding subpath-def by auto
next
case Fulse
then have s>0 using «s€{0..<1}» by auto
from finite-Psegments-pos-linear|OF - this,of - 0 0 1] insertl-1(4)
show finite-ReZ-segments (subpath 0 s g) z
unfolding finite- ReZ-segments-def comp-def subpath-def by auto
qed
then show ?thesis using subEq insertl-1 by force
next
case (insertl-2 s)
have finite-ReZ-segments (subpath 0 s g) z
proof (cases s=0)
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case True
show ?thesis
apply (rule finite-ReZ-segments-constl)
using True unfolding subpath-def by auto
next
case Fulse
then have s>0 using «s€{0..<1}» by auto
from finite-Psegments-pos-linear|OF - this,of - 0 0 1] insertl-2(4)
show finite-ReZ-segments (subpath 0 s g) z
unfolding finite- ReZ-segments-def comp-def subpath-def by auto
qed
then show ?thesis using subNEq insertl-2 by force
qed

lemma finite- ReZ-segments-induct [case-names sub0 subEq subNEq, induct pred:finite- ReZ-segments:
assumes finite-ReZ-segments g z
assumes sub0:\g z. (P (subpath 0 0 g) z)
and subEq:(A\s g z. [s € {0..<1};s=0VRe (g s) = Re z;
Vie{s<..<1}. Re (g t) = Re z;finite-ReZ-segments (subpath 0 s g) z;
P (subpath 0 s g) z] = P g z)
and subNEq:(\s g z. [s € {0..<1};s=0VRe (g s) = Re z;
Vite{s<..<1}. Re (g t) # Re z;finite-ReZ-segments (subpath 0 s g) z;
P (subpath 0 s g) z] = P g z)
shows P g z
proof —
have finite-Psegments (At. Re (gt — z) = 0) 0 1
using assms(1) unfolding finite- ReZ-segments-def by auto
then have (0::real)<1 — P (subpath 0 1 g) z
proof (induct rule: finite-Psegments.induct[of - 0 1 Aa b. b>a — P (subpath a
bg) 2] )
case (emptyl a b)
then show ?case using sub0]of subpath a b g] unfolding subpath-def by auto

next
case (insertl-1 s a b)
have ?7case when a=b
using sub0[of subpath a b g] that unfolding subpath-def by auto
moreover have ?case when a#b
proof —
have b>a using that <s € {a..<b}» by auto
define s”:real where s'=(s—a)/(b—a)
have P (subpath a b g) z
proof (rule subEq[of s’ subpath a b g])
show Vie{s'<..<1}. Re (subpath a b g t) = Re z
proof
fix t assume t € {s'<..<1}
then have (b — a) * ¢ + a€{s<..<b}
unfolding s’-def using <b>a) <s € {a..<b}»
apply (auto simp add:field-simps)
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by (sos ((((A<0 * (A<1 * A<2)) x R<1) + (((A<=1 * (A<0 % R<1))
x (R<1 % [1]72))
+ ((A<=0 * (A<0 * (A<1 % R<1))) * (R<1 % [1]72))))))
then have Re (g (b — a) xt +a) — 2) =0
using insertl-1(3)[rule-format,of (b — a) x t + a] by auto
then show Re (subpath a b g t) = Re z
unfolding subpath-def by auto
qed
show finite-ReZ-segments (subpath 0 s’ (subpath a b g)) z
proof (cases s=a)
case True
then show ?thesis unfolding s’-def subpath-def
by (auto intro:finite-ReZ-segments-constl)
next
case Fulse
have finite-Psegments (At. Re (¢t — 2) = 0) a s
using insertl-1(4) unfolding finite-ReZ-segments-def by auto
then have finite-Psegments ((At. Re (gt — z) = 0) o (Mt. (s — a) x t +
a)) 01
apply (elim finite-Psegments-pos-linear|of - s—a 0 a 1,simplified])
using False <s€{a..<b}» by auto
then show ?thesis
using «b>a> unfolding finite- ReZ-segments-def subpath-def s'-def comp-def
by auto
qed
show s’ € {0..<1}
using <b>a> «s€{a..<b}> unfolding s’-def
by (auto simp add:field-simps)
show P (subpath 0 s’ (subpath a b g)) z
proof —
have P (subpath a s g) z using insertl-1(1,5) by auto
then show ?thesis
using «b>a> unfolding s’-def subpath-def by simp
qed
show s’ = 0 V Re (subpath a b g s') = Re z
proof —
have ?thesis when s=a
using that unfolding s’-def by auto
moreover have ?thesis when Re (g s — z) = 0
using that unfolding s’-def subpath-def by auto
ultimately show ?thesis using (s = a V Re (g s — z) = 0» by auto
qged
qed
then show ?thesis using <b>a> by auto
qed
ultimately show ?case by auto
next
case (insertl-2 s a b)
have ?case when a=b
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using sub0[of subpath a b g] that unfolding subpath-def by auto
moreover have ?case when a#b
proof —
have b>a using that <s € {a..<b}» by auto
define s”:real where s'=(s—a)/(b—a)
have P (subpath a b g) z
proof (rule subNEq[of s’ subpath a b g])
show Vite{s'<..<1}. Re (subpath a b g t) # Re z
proof
fix t assume t € {s'<..<1}
then have (b — a) x t + ac{s<..<b}
unfolding s’-def using «b>a> <s € {a..<b}
apply (auto simp add:field-simps)
by (sos ((((A<0 x (A<l x A<2)) x R<1) + (((A<=1 * (A<0 * R<1))
x (R<1 % [1]72)) +
((A<=0 % (A<0 * (A<I % R<1))) * (R<I % [1]72))))))
then have Re (g (b — a) x t + a) — 2) # 0
using insertl-2(3)[rule-format,of (b — a) *
then show Re (subpath a b g t) # Re z
unfolding subpath-def by auto
qged
show finite-ReZ-segments (subpath 0 s’ (subpath a b g)) z
proof (cases s=a)
case True
then show ?thesis unfolding s’-def subpath-def
by (auto intro:finite- ReZ-segments-constl)
next
case Fulse
have finite-Psegments (At. Re (g9t — z) = 0) a s
using insertl-2(4) unfolding finite-ReZ-segments-def by auto
then have finite-Psegments ((At. Re (gt — z) = 0) o (At. (s — a) x t +
a)) 01

t + a] by auto

apply (elim finite- Psegments-pos-linear|of - s—a 0 a 1,simplified])
using False <s€{a..<b}» by auto
then show ?thesis
using «b>a) unfolding finite- ReZ-segments-def subpath-def s'-def comp-def
by auto
qed
show s’ € {0..<1}
using «b>a> <s€{a..<b}> unfolding s’-def
by (auto simp add:field-simps)
show P (subpath 0 s’ (subpath a b g)) z
proof —
have P (subpath a s g) z using insertl-2(1,5) by auto
then show ?thesis
using <b>a) unfolding s’-def subpath-def by simp
qed
show s’ = 0 V Re (subpath a b g ') = Re z
proof —
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have ?thesis when s=a
using that unfolding s’-def by auto
moreover have ?thesis when Re (g s — z) = 0
using that unfolding s’-def subpath-def by auto
ultimately show ?thesis using (s = a V Re (g s — z) = 0» by auto
qged
qed
then show ?thesis using «b>a> by auto
qed
ultimately show ?case by auto
qed
then show ?thesis by auto
qed

lemma finite- ReZ-segments-shiftpah:
assumes finite-ReZ-segments g z s€{0..1} path g and loop:pathfinish g = path-
start g
shows finite-ReZ-segments (shiftpath s g) z
proof —
have finite-Psegments (At. Re (shiftpath s gt — 2z) = 0) 0 (1—3s)
proof —
have finite-Psegments (At. Re (g t) = Re 2) s 1
using assms finite- Psegments-included|of - 0 1 s] unfolding finite- ReZ-segments-def

by force
then have finite-Psegments (At. Re (g (s +t) — 2) = 0) 0 (1—s)
using finite-Psegments-pos-linear[of \t. Re (gt — z) =01 0 s 1—s,simplified]
unfolding comp-def by (auto simp add:algebra-simps)
then show ?thesis unfolding shiftpath-def
apply (elim finite-Psegments-congE)
using «s€{0..1}> by auto
qed
moreover have finite-Psegments (At. Re (shiftpath s gt — z) = 0) (1—s) 1
proof —
have finite-Psegments (At. Re (g t) = Re z) 0's
using assms finite- Psegments-included unfolding finite- ReZ-segments-def
by force
then have finite-Psegments (At. Re (g (s +t — 1) — 2) = 0) (1—s) 1
using finite- Psegments-pos-linear[of At. Re (gt — 2z) =01 1—s s—1 1,simplified)
unfolding comp-def by (auto simp add:algebra-simps)
then show ?thesis unfolding shiftpath-def
apply (elim finite-Psegments-congE)
using <s€{0..1}> by auto
qed
moreover have I — s € {0..1} using <s€{0..1}> by auto
moreover have closed ({z. Re (shiftpath s gz — z) = 0} N {0..1})
proof —
let 2f = A\x. Re (shiftpath s g x — 2)
have continuous-on {0..1} ?f
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using path-shiftpath|OF <path g» loop <s€{0..1}>] unfolding path-def
by (auto intro: continuous-intros)
from continuous-closed-preimage-constant| OF this,of 0,simplified]
show ?thesis
apply (elim arg-elim[of closed))
by force
qed
ultimately show ?thesis unfolding finite-ReZ-segments-def
by (rule finite-Psegments-combine[where b=1—s|)
qed

lemma finite-imp-finite- ReZ-segments:
assumes finite {t. Re (gt — 2) =0 AN 0 <t AN t<1}
shows finite-ReZ-segments g z
proof —
define P where P = (A\t. Re (gt — 2) = 0)
define rs where rs=(\b. {t. Pt A 0 < t A t<b})
have finite-Psegments P 0 b when finite (rs b) b>0 for b
using that
proof (induct card (rs b) arbitrary:b rule:nat-less-induct)
case ind:1
have ?case when rs b= {}
apply (rule finite-Psegments.intros(3)[of 0])
using that <0 < by unfolding rs-def by (auto intro:finite- Psegments.intros)

moreover have ?case when rs b£{}
proof —
define [j where lj = Max (s b)
have 0<lj lj<b P lj
using Maz-in[OF <finite (rs b)» <rs b£{}>,folded lj-def]
unfolding rs-def by auto
show ?Zthesis
proof (rule finite-Psegments.intros(3)[of lj])
show [j € {0.<b} lj =0V Plj
using <0<lj> <lj<by <P lj> by auto
show Vte{lj<..<b}. - Pt
proof (rule ccontr)
assume - (Vie{lj<.<b}. = Pt)
then obtain ¢t where t:P ¢t [j < tt < b by auto
then have ters b unfolding rs-def using «j>0) by auto
then have t<[j using Maz-ge|OF «finite (rs b)»,of t] unfolding lj-def by
auto
then show Fulse using «t>1lj> by auto
qed
show finite-Psegments P 0 lj
proof (rule ind.hyps[rule-format,of card (rs lj) lj,simplified))
show finite (rs lj)
using <finite (rs b)) unfolding rs-def using <lj<b
by (auto elim!:rev-finite-subset )
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show card (rs lj) < card (rs b)
apply (rule psubset-card-mono[OF «finite (rs b)»])
using Maz-in <finite (rs lj)y <lj < by lj-def rs-def that by fastforce
show 0 < lj using <0<lj> .
qged
qed
qed
ultimately show ?case by auto
qed
moreover have finite (rs 1)
using assms unfolding rs-def P-def
by (auto elim:rev-finite-subset)
ultimately have finite-Psegments P 0 1 by auto
then show ?thesis unfolding P-def finite-ReZ-segments-def .
qed

lemma finite- ReZ-segments-poly-linepath:
shows finite-ReZ-segments (poly p o linepath a b) z
proof —
define P where P=map-poly Re (pcompose (p—|[:z:]) [:a,b—a:])
have *:Re ((poly p o linepath a b) t — z) = 0 +— poly P t=0 for t
unfolding inner-complex-def P-def linepath-def comp-def
apply (subst Re-poly-of-real[symmetric])
by (auto simp add: algebra-simps poly-pcompose scaleR-conv-of-real)
have ?thesis when P+#0
proof —
have finite {t. poly P t=0} using that poly-roots-finite by auto
then have finite {t. Re ((poly p o linepath a b) t — 2) =0 N0 <t ANt <1}
using *
by auto
then show ?thesis
using finite-imp-finite- ReZ-segments[of poly p o linepath a b z] by auto
qed
moreover have ?thesis when P=0
unfolding finite-ReZ-segments-def
apply (rule finite-Psegments-constl [where c¢=True])
apply (subst x)
using that by auto
ultimately show ?thesis by auto
qed

lemma part-circlepath-half-finite-inter:

assumes st£tt r£0 c£0

shows finite {t. part-circlepath 20 r st ttt « ¢ = d AN 0< t N t<1} (is finite ?T)
proof —

let 25 = {9. (20+r*exp (i *x 9 )) - ¢ = d N9 € closed-segment st tt}

define S where S = {0. (20+r*exp (1 x ¥ )) - ¢ = d ANV € closed-segment st
tt}

have S = linepath st tt < ¢T
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proof
define g where g=(\t. (t—st)/(tt —st))
have 0<g t g t<1 when t € closed-segment st tt for ¢
using that <st#tty closed-segment-eq-real-ivl unfolding g-def real-scaleR-def
by (auto simp add:divide-simps)
moreover have linepath st tt (g t) =t g (linepath st tt t) = t for ¢
unfolding linepath-def g-def real-scaleR-def using <st#tt»
apply (simp-all add:divide-simps)
by (auto simp add:algebra-simps )
ultimately have z€linepath st tt < T when z€S§ for z
using that unfolding S-def
by (auto introl:image-eql [where z=g x| simp add:part-circlepath-def)
then show S C linepath st tt * ?T by auto
next
have z€S when z€linepath st tt < ?T for z
using that unfolding part-circlepath-def S-def
by (auto simp add: linepath-in-path)
then show linepath st tt < ¢T C S by auto
qed
moreover have finite S
proof —
define a’ b’ ¢’ where a’=r * Re cand b’ = r* Im c and c¢'=Im ¢ x Im 20 +
Re 20 x Re ¢ — d
define f where f Y= a’ * cos ¥ + b’ * sin ¥ + ¢’ for ¥
have (z0+r*exp (i*x ¥ )) - c=d +— f 9 =0 for ¢
unfolding ezp-Euler inner-complex-def f-def a’-def b’-def c¢'-def
by (auto simp add:algebra-simps cos-of-real sin-of-real)
then have *:5 = roots f N closed-segment st tt
unfolding S-def roots-within-def by auto
have uniform-discrete S
proof —
have a’ A0V b’ £ 0V c'# 0
using assms complex-eq-iff unfolding a’-def b’-def c’-def
by auto
then have periodic-set (roots f) (4 * pt)
using periodic-set-sin-cos-linear[of a’ b' ¢’ folded f-def] by auto
then have uniform-discrete (roots f) using periodic-imp-uniform-discrete by
auto
then show ?thesis unfolding * by auto
qed
moreover have bounded S unfolding *
by (simp add: bounded-Int bounded-closed-segment)
ultimately show %thesis using uniform-discrete-finite-iff by auto
qed
moreover have inj-on (linepath st tt) ¢T
proof —
have inj (linepath st tt)
unfolding linepath-def using assms inj-segment by blast
then show ?2thesis by (auto elim:subset-inj-on)
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qed
ultimately show ?thesis by (auto elim!: finite-imageD)
qed

lemma linepath-half-finite-inter:
assumes a - c A dVb-c#d
shows finite {t. linepath a bt - ¢ = d N 0< t N t<1} (is finite 25)
proof (rule ccontr)
assume asm:infinite 25
obtain ¢! t2 where ulu2:t1#£t2 t1€?5 t2€?S
proof —
obtain t! where t1€%S using not-finite-existsD asm by blast
moreover have Ju2. u2e€?5—{t1}
using infinite-remove[OF asm,of t1]
by (meson finite.emptyl rev-finite-subset subsetl)
ultimately show %thesis using that by auto
qed
have t1:(1—tl)x(a-c) + t1 x(b-c)=d
using «t1€ 2S5y unfolding linepath-def by (simp add: inner-left-distrib)
have t2:(1—t2)x(a - ¢) + t2 % (b-c¢) = d
using «t2€ 25y unfolding linepath-def by (simp add: inner-left-distrib)
have a - c=d
proof —
have t2x((1—t1)x(a - ¢) + t1 x (b - ¢)) = t2+d using tI by auto
then have x:(t2—t1xt2)x(a - ¢) + tI1*t2 x (b - ¢) = t2+d by (auto simp
add:algebra-simps)
have t1x((1—t2)*x(a - ¢) + t2 % (b - ¢)) = tI1xd using t2 by auto
then have xx:(t1—t1xt2)x(a + ¢) + t1xt2 x (b - ¢) = t1*xd by (auto simp
add:algebra-simps)
have (t2—t1)x(a - ¢) = (t2—t1)*d using arg-cong2[OF x sx,of minus]
by (auto simp add:algebra-simps)
then show ?thesis using «t1#t2» by auto
qed
moreover have b - ¢ = d
proof —
have (1—t2)x((1—t1)*(a - ¢) + t1 * (b - ¢)) = (I —1t2)xd using tI by auto
then have x:(1—t1)x(1—t2)x(a - ¢) + (t1—t1*t2) * (b - ¢) = (1—t2)*d by
(auto simp add:algebra-simps)
have (1—t1)+((1—t2)x(a - ¢) + t2 * (b - ¢)) = (1—t1)+d using t2 by auto
then have sx:(1—¢1)x(1—t2)x(a - ¢) + (t2—t1%t2) = (b« ¢) = (1 —t1)*d by
(auto simp add:algebra-simps)
have (t2—t1)x(b - ¢) = (t2—t1)xd using arg-cong2[OF *x x,of minus]
by (auto simp add:algebra-simps)
then show ?thesis using «t1#t2» by auto
qed
ultimately show Fulse using assms by auto
qed

lemma finite-half-joinpaths-inter:
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assumes finite {t. l1t-c=d AN 0< t AN t<1} finite {t. 12t -c=d AN O T A
t<1}
shows finite {t. (lI1+++12)t-c=d N 0< t N tI<1}
proof —
let 211s = {t. 11 (2%t) - c=d A 0< t A t<1/2}
let 212s ={t. 12 (2xt—1)-c=dAN1/2<tANtl1}
let 2is =M. {t. lt-c=dANO0<tANt<1}
have {t. (l14+++12) t-c=d N 0< t N t<I1} = ?l1s U 212s
unfolding joinpaths-def by auto
moreover have finite ?l1s
proof —
have ?l1s = ((x) (1/2)) * ?ls l1 by (auto intro:rev-image-eql )
thus ?thesis using assms by simp
qed
moreover have finite ?12s
proof —
have ?12s C (Az. z/2 + 1/2) ‘ ?ls 12 by (auto intro:rev-image-eql simp
add:field-simps)
thus ?thesis using assms
by (auto elim:finite-subset)
qged
ultimately show ?thesis by simp
qed

lemma finite- ReZ-segments-linepath:
finite-ReZ-segments (linepath a b) z
proof —
have ?thesis when Re a#Re z V Re b #Re z
proof —
let 251={t. Re (linepath a bt—2) = 0 N0 <t ANt < 1}
have finite 251
using linepath-half-finite-inter[of a Complex 1 0 Re z b] that
using one-complex.code by auto
from finite-imp-finite- ReZ-segments| OF this] show ?thesis .
qed
moreover have ?thesis when Re a=Re z Re b=Re z
unfolding finite- ReZ-segments-def
apply (rule finite-Psegments.intros(2)[of 0])
using that unfolding linepath-def by (auto simp add:algebra-simps intro: finite- Psegments.intros)
ultimately show ?thesis by blast
qed

lemma finite- ReZ-segments-part-circlepath:
finite-ReZ-segments (part-circlepath 20 r st tt) z
proof —
have %thesis when st # tt r # 0
proof —
let 2S1={t. Re (part-circlepath 20 r st tt t—z) = 0 N 0 < t At < 1}
have finite 751
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using part-circlepath-half-finite-inter|of st tt r Complex 1 0 20 Re 2] that
one-complex.code
by (auto simp add:inner-complezx-def )
from finite-imp-finite- ReZ-segments[OF this] show ?thesis .
qed
moreover have ?thesis when st =tt V r=0
proof —
define ¢ where ¢ = 20 + 7 % exp (i * )
have part-circlepath z0 r st tt = (At. ¢)
unfolding part-circlepath-def c-def using that linepath-refl by auto
then show ?thesis
using finite- ReZ-segments-linepath[of ¢ ¢ 2| linepath-refl[of ¢
by auto
qed
ultimately show ¢thesis by blast
qed

lemma finite- ReZ-segments-poly-of-real:
shows finite-ReZ-segments (poly p o of-real) z
using finite- ReZ-segments-poly-linepath[of p 0 1 z] unfolding linepath-def
by (auto simp add:scaleR-conv-of-real)

lemma finite-ReZ-segments-subpath:
assumes finite-ReZ-segments g z
0<u uv v<]
shows finite-ReZ-segments (subpath u v g) z
proof (cases u=v)
case True
then show ?thesis
unfolding subpath-def by (auto intro:finite-ReZ-segments-constl)
next
case Fulse
then have u<v using (u<v» by auto
define P where P=(At. Re (gt — z) = 0)
have finite-ReZ-segments (subpath v v g) z
= finite-Psegments (P o (At. (v — u) * t + u)) 0 1
unfolding finite-ReZ-segments-def subpath-def P-def comp-def by auto
also have ...
apply (rule finite-Psegments-pos-linear)
using assms False unfolding finite- ReZ-segments-def
by (fold P-def,auto elim:finite-Psegments-included)
finally show ?thesis .
qed

5.5 jump and jumpF

definition jump::(real = real) = real = int where
Jump f a = (if
(LIM z (at-left a). fx > at-bot) A (LIM z (at-right a). fx :> at-top)
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then 1 else if
(LIM z (at-left a). fx :> at-top) A (LIM z (at-right a). f x :> at-bot)
then —1 else 0)

definition jumpF::(real = real) = real filter = real where
JumpF [ F = (if filterlim f at-top F then 1/2 else
if filterlim f at-bot F then —1/2 else (0::real))

lemma jumpF-const[simp]:
assumes F=#£bot
shows jumpF (A-. ¢) F =0
proof —
have Fulse when LIM x F. ¢ :> at-bot
using filterlim-at-bot-nhds[OF that - <F#bot)] by auto
moreover have Fulse when LIM x F. ¢ :> at-top
using filterlim-at-top-nhds[OF that - <F#bot)] by auto
ultimately show ¢thesis unfolding jumpF-def by auto
qed

lemma jumpF-not-infinity:
assumes continuous F g F#bot
shows jumpF g F = 0
proof —
have — filterlim g at-infinity F
using not-tendsto-and-filterlim-at-infinity| OF «F #bot> assms(1)[unfolded con-
tinuous-def])
by auto
then have — filterlim g at-bot F — filterlim g at-top F
using at-bot-le-at-infinity at-top-le-at-infinity filterlim-mono by blast+
then show ?thesis unfolding jumpF-def by auto
qed

lemma jumpF-linear-comp:
assumes c#(
shows
jumpF (f o (A\z. cxx+0b)) (at-left x) =
(if ¢>0 then jumpF f (at-left (cxz+Db)) else jumpF f (at-right (cxxz+D)))
(is ?casel)
JumpF (f o (Az. cxx+D)) (at-right z) =
(if ¢>0 then jumpF f (at-right (cxz+Db)) else jumpF f (at-left (cxx+D)))
(is ?case2)
proof —
let 29 = A\z. cxa+b
have ?casel ?case2 when — ¢>0
proof —
have ¢<0 using <c#0> that by auto
have filtermap ?g (at-left x) = at-right (?g x)
filtermap ?g (at-right x) = at-left (?g x)
using <c<0>
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filtermap-linear-at-left[OF <c#£0y, of b 1]
filtermap-linear-at-right[OF «c#0>, of b z] by auto
then have
JumpF (f o 2g) (at-left x) = jumpF f (at-right (%9 x))
JumpF (f o 2g) (at-right ©) = jumpF f (at-left (%9 ))
unfolding jumpF-def filterlim-def comp-def
by (auto simp add: filtermap-filtermaplof [ ?g,symmetric])
then show ?casel ?case2 using <«c<0) by auto
qed
moreover have ?casel ?case2 when c¢>0
proof —
have filtermap ?g (at-left ©) = at-left (g x)
filtermap %g (at-right x) = at-right (?g z)
using that
filtermap-linear-at-left{ OF <c#£0>, of b x]
filtermap-linear-at-right[OF <c#£05, of b z] by auto
then have
JumpE (f o %g) (at-left ) = jumpF [ (at-left (%9 x))
JumpE (f o %9) (at-right x) = jumpF [ (at-right (%9 z))
unfolding jumpF-def filterlim-def comp-def
by (auto simp add: filtermap-filtermap|of f ?g,symmetric])
then show ?casel ?case2 using that by auto
qed
ultimately show ?casel ?case2 by auto
qed

lemma jump-const[simp):jump (A-. ¢) a = 0
proof —
have False when LIM z (at-left a). ¢ :> at-bot
apply (rule not-tendsto-and-filterlim-at-infinity[of at-left a A-. ¢ c])
apply auto
using at-bot-le-at-infinity filterlim-mono that by blast
moreover have Fulse when LIM z (at-left a). ¢ :> at-top
apply (rule not-tendsto-and-filterlim-at-infinity|of at-left a A-. ¢ c])
apply auto
using at-top-le-at-infinity filterlim-mono that by blast
ultimately show ¢thesis unfolding jump-def by auto
qged

lemma jump-not-infinity:
isCont f a = jump fa =0
by (meson at-bot-le-at-infinity at-top-le-at-infinity filterlim-at-split
filterlim-def isCont-def jump-def not-tendsto-and-filterlim-at-infinity
order-trans trivial-limit-at-left-real)

lemma jump-jump-poly-auz:

assumes p#£0 coprime p q

shows jump (\z. poly q = / poly p x) a = jump-poly q p a
proof (cases q=0)
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case True
then show ?thesis by auto
next
case Fulse
define f where f = (Az. poly ¢ x / poly p x)
have ?thesis when poly ¢ a = 0
proof —
have poly p a#0 using coprime-poly-0[OF <coprime p ¢ that by blast
then have isCont f a unfolding f-def by simp
then have jump f a=0 using jump-not-infinity by auto
moreover have jump-poly ¢ p a=0
using jump-poly-not-root|OF <poly p a#0>] by auto
ultimately show ?thesis unfolding f-def by auto
qed
moreover have ?thesis when poly q a#0
proof (cases even(order a p))
case True
define ¢ where c=sgn (poly q a)
note
filterlim-divide-at-bot-at-top-iff
[OF - that,of poly q at-left a poly p,folded f-def c-def,simplified]
filterlim-divide-at-bot-at-top-iff
[OF - that,of poly q at-right a poly p,folded f-def c-def ,simplified)
moreover have (poly p has-sgnz — c¢) (at-left a) = (poly p has-sgnz — c)
(at-right a)
(poly p has-sgnz ¢) (at-left a) = (poly p has-sgnz c¢) (at-right a)
using poly-has-sgnz-left-right| OF «p#£0>] True by auto
moreover have c¢£0 by (simp add: c-def sgn-if that)
then have Fulse when
(poly p has-sgnx — c) (at-right a)
(poly p has-sgnz ¢) (at-right a)
using has-sgnz-unique[OF - that] by auto
ultimately have jump fa = 0
unfolding jump-def by auto
moreover have jump-poly ¢ p a = 0 unfolding jump-poly-def
using True by (simp add: order-0I that)
ultimately show ?thesis unfolding f-def by auto
next
case Fulse
define ¢ where c=sgn (poly q a)
have (poly p —— 0) (at a) using False
by (metis even-zero order-0I poly-tendsto(1))
then have (poly p —— 0) (at-left a) and (poly p —— 0) (at-right a)
by (auto simp add: filterlim-at-split)
moreover note
filterlim-divide-at-bot-at-top-iff
[OF - that,of poly q - poly p,folded f-def c-def]
moreover have (poly p has-sgnz c) (at-left a) = (poly p has-sgnx — c) (at-right

a)
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(poly p has-sgnx — ¢) (at-left a) = (poly p has-sgnz ¢) (at-right a)
using poly-has-sgna-left-right|OF <p#0>]| False by auto
ultimately have jump f a = (if (poly p has-sgnz c) (at-right a) then 1
else if (poly p has-sgnz — c) (at-right a) then —1 else 0)
unfolding jump-def by auto

also have ... = (if sign-r-pos (q * p) a then 1 else — 1)

proof —
have (poly p has-sgnz ¢) (at-right a) «— sign-r-pos (¢ * p) a
proof

assume (poly p has-sgnz ¢) (at-right a)
then have sgnz (poly p) (at-right a) = ¢ by auto
moreover have sgnz (poly q) (at-right a) = ¢
unfolding c-def using that by (auto intro!: tendsto-nonzero-sgnz)
ultimately have sgnz (Az. poly (qxp) z) (at-right a) = ¢ * ¢
by (simp add:sgnz-times)
moreover have c¢£0 by (simp add: c-def sgn-if that)
ultimately have sgnz (Az. poly (qxp) z) (at-right a) > 0
using not-real-square-gt-zero by fastforce
then show sign-r-pos (¢ * p) a using sign-r-pos-sgnz-iff
by blast
next
assume asm:sign-r-pos (q * p) a
let %c1 = sgnz (poly p) (at-right a)
let ?c2 = sgnz (poly q) (at-right a)
have 0 < sgnz (Az. poly (q * p) z) (at-right a)
using asm sign-r-pos-sgnz-iff by blast
then have ?¢2 % ?¢c1 >0
apply (subst (asm) poly-mult)
apply (subst (asm) sgna-times)
by auto
then have 2c2>0 A 2c1>0 V 2c¢2<0 N ?c1<0
by (simp add: zero-less-mult-iff)
then have ?c1=72c2
using sgna-values| OF sgnz-able-poly(1), of a,simplified]
by (metis add.inverse-neutral less-minus-iff less-not-sym)
moreover have sgnz (poly q) (at-right a) = ¢
unfolding c-def using that by (auto introl: tendsto-nonzero-sgnzx)
ultimately have ?c1 = ¢ by auto
then show (poly p has-sgnz c) (at-right a)
using sgna-able-poly(1) sgnz-able-sgnz by blast
qed
then show ?thesis
unfolding jump-poly-def using poly-has-sgnz-values|OF <p#£0))
by (metis add.inverse-inverse c-def sgn-if that)
qed
also have ... = jump-poly q p a
unfolding jump-poly-def using False order-root that by (simp add: order-root
assms(1))
finally show %thesis unfolding f-def by auto
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qed
ultimately show ?thesis by auto
qed

lemma jump-jumpF:
assumes cont:isCont (inverse o f) a and
sgnal:(f has-sgnz 1) (at-left a) and sgnzr:(f has-sgnz 1) (at-right a) and
I#0 r#0
shows jump f a = jumpF f (at-right a) — jumpF f (at-left a)
proof —
have ?thesis when filterlim f at-bot (at-left a) filterlim f at-top (at-right a)
unfolding jump-def jumpF-def
using that filterlim-at-top-at-bot[OF - - trivial-limit-at-left-real]
by auto
moreover have ?thesis when filterlim f at-top (at-left a) filterlim f at-bot
(at-right a)
unfolding jump-def jumpF-def
using that filterlim-at-top-at-bot[OF - - trivial-limit-at-right-real]
by auto
moreover have ?thesis when
- filterlim f at-bot (at-left a) vV — filterlim f at-top (at-right a)
= filterlim f at-top (at-left a) V — filterlim f at-bot (at-right a)
proof (cases f a=0)
case Fulse
have jumpF f (at-right o) = 0 jumpF [ (at-left a) = 0
proof —
have isCont (inverse o inverse o f) a using cont False unfolding comp-def
by (rule-tac continuous-at-within-inverse, auto)
then have isCont f a unfolding comp-def by auto
then have (f —— fa) (at-right a) (f —— f a) (at-left a)
unfolding continuous-at-split by (auto simp add:continuous-within)
moreover note trivial-limit-at-left-real trivial-limit-at-right-real
ultimately show jumpF f (at-right a) = 0 jumpF f (at-left a) = 0
unfolding jumpF-def using filterlim-at-bot-nhds filterlim-at-top-nhds
by metis+
qed
then show %thesis unfolding jump-def using that by auto
next
case True
then have tends0:((Az. inverse (f z)) —— 0) (at a)
using cont unfolding isCont-def comp-def by auto
have jump f a = 0 using that unfolding jump-def by auto
have r-lim:if r> 0 then filterlim f at-top (at-right a) else filterlim f at-bot (at-right
a
)
proof (cases r>0)
case True
then have Vr z in (at-right a). 0 < fx
using sgnzr unfolding has-sgnz-def
by (auto elim:eventually-mono)
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then have filterlim f at-top (at-right a)
using filterlim-inverse-at-top[of Ax. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto
then show ?thesis using True by presburger
next
case Fulse
then have YV z in (at-right a). 0 > fx
using sgnar «r#0> False unfolding has-sgnz-def
apply (elim eventually-mono)
by (meson linorder-neqE-linordered-idom sgn-less)
then have filterlim f at-bot (at-right a)
using filterlim-inverse-at-bot[of Az. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto
then show ?thesis using Fualse by simp
qed
have [-lim:if I>0 then filterlim f at-top (at-left a) else filterlim f at-bot (at-left

proof (cases [>0)
case True
then have V z in (at-left a). 0 < fz
using sgnzl unfolding has-sgnz-def
by (auto elim:eventually-mono)
then have filterlim f at-top (at-left a)
using filterlim-inverse-at-top[of Az. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto
then show ?thesis using True by presburger
next
case Fulse
then have Vp z in (at-left a). 0 > fx
using sgnxl <I#0> Fualse unfolding has-sgnz-def
apply (elim eventually-mono)
by (meson linorder-neqE-linordered-idom sgn-less)
then have filterlim f at-bot (at-left a)
using filterlim-inverse-at-bot[of Az. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto
then show ?thesis using Fulse by simp
qged

have ?thesis when [>0 r>0
using that I-lim r-lim <jump f a=0> unfolding jumpF-def by auto
moreover have ?thesis when - >0 — r>0
proof —
have filterlim f at-bot (at-right a) filterlim f at-bot (at-left a)
using r-lim [-lim that by auto
moreover then have — filterlim f al-top (at-right a) — filterlim f at-top
(at-left a)
by (auto elim: filterlim-at-top-at-bot)
ultimately have jumpF f (at-right a) = —1/2 jumpF f (at-left a) = —1/2
unfolding jumpF-def by auto
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then show ?thesis using Gjump f a=0> by auto

qed

moreover have ?thesis when >0 — r>0

proof —
note «— filterlim f at-top (at-left a) vV — filterlim f at-bot (at-right a)»
moreover have filterlim f at-bot (at-right a) filterlim f at-top (at-left a)

using r-lim [-lim that by auto

ultimately have Fulse by auto
then show ?thesis by auto

qed

moreover have ?thesis when — >0 r>0

proof —
note «— filterlim f at-bot (at-left a) V = filterlim f at-top (at-right a)»
moreover have filterlim f at-bot (at-left a) filterlim f at-top (at-right a)

using r-lim [-lim that by auto

ultimately have Fulse by auto
then show ?thesis by auto

qed

ultimately show ?thesis by auto

qed
ultimately show ?thesis by auto
qged

lemma jump-linear-comp:
assumes c#0
shows jump (f o (Az. cxa+b)) © = (if ¢>0 then jump f (cxz+Dd) else —jump f
(cxz+b))
proof (cases ¢>0)
case Fulse
then have c<(0 using «c#0> by auto
let g = A\z. cxz+b
have filtermap ?g (at-left ©) = at-right (?g x)
filtermap ?g (at-right x) = at-left (?g x)
using <c<0>
filtermap-linear-at-left[OF <c#£0>, of b x
filtermap-linear-at-right[OF <c#£05, of b z] by auto
then have jump (f o %9) © = — jump f (¢ x ¢ + b)
unfolding jump-def filterlim-def comp-def
apply (auto simp add: filtermap-filtermap[of | ?g,symmetric])
apply (fold filterlim-def)
by (auto elim:filterlim-at-top-at-bot)
then show ?thesis using (c<0» by auto
next
case True
let 29 = A\z. cxz+b
have filtermap ?g (at-left ) = at-left (?g x)
filtermap ?g (at-right ) = at-right (%9 x)
using True
filtermap-linear-at-left[OF <c#£0y, of b 1]
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filtermap-linear-at-right[OF «c#£0>, of b z] by auto
then have jump (f o %9) z = jump f (¢ x z + b)
unfolding jump-def filterlim-def comp-def
by (auto simp add: filtermap-filtermap|of f ?g,symmetric])
then show ?thesis using True by auto
qed

lemma jump-divide-derivative:
assumes isCont fx gz = 0 f 2#£0
and g-deriv:(g has-field-derivative ¢) (at z) and c¢#0
shows jump (A\t. ft/gt) x = (if sgn ¢ = sgn ( fx) then 1 else —1)
proof —
have g-tendsto:(¢ —— 0) (at-left z) (9 —— 0) (at-right z)
by (metis DERIV-isCont Lim-at-imp-Lim-at-within assms(2) assms(4) contin-
uous-at)+
have f-tendsto:(f —— fx) (at-left z) (f —— f ) (at-right z)
using Lim-at-imp-Lim-at-within assms(1) continuous-at by blast+

have ?thesis when ¢>0 f x>0
proof —
have (g has-sgnz — sgn (f ©)) (at-left x)
using has-sgna-derivative-at-left[OF g-deriv <g =0>] that by auto
moreover have (g has-sgnz sgn (f z)) (at-right x)
using has-sgnz-derivative-at-right| OF g-deriv <g z=0>] that by auto
ultimately have (LIM t at-left x. ft / g t :> at-bot) A (LIM t at-right x. f t
/ g t:> at-top)
using filterlim-divide-at-bot-at-top-iff [OF - <f x#0>, of f]
using f-tendsto(1) f-tendsto(2) g-tendsto(1) g-tendsto(2) by blast
moreover have sgn ¢ = sgn (f z) using that by auto
ultimately show ?thesis unfolding jump-def by auto
qed
moreover have ?thesis when ¢>0 f x<0
proof —
have (g has-sgnz sgn (f z)) (at-left x)
using has-sgnz-derivative-at-left|OF g-deriv <g x=0>] that by auto
moreover have (g has-sgnz — sgn (f z)) (at-right x)
using has-sgnz-derivative-at-right| OF g-deriv <g x=0>] that by auto
ultimately have (LIM t at-left x. ft / gt :> at-top) A (LIM t at-right x. ft
/ gt :> at-bot)
using filterlim-divide-at-bot-at-top-iff [OF - <f z#0), of f]
using f-tendsto(1) f-tendsto(2) g-tendsto(1) g-tendsto(2) by blast
moreover from this have - (LIM t at-left x. ft / g t :> at-bot)
using filterlim-at-top-at-bot by fastforce
moreover have sgn ¢ # sgn (f z) using that by auto
ultimately show ?thesis unfolding jump-def by auto
qed
moreover have ?thesis when c¢<0 f x>0
proof —
have (g has-sgnz sgn (f x)) (at-left )
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using has-sgna-derivative-at-left[OF g-deriv <g =0>] that by auto
moreover have (g has-sgnz — sgn (f z)) (at-right z)
using has-sgnz-derivative-at-right| OF g-deriv <g x=0>] that by auto
ultimately have (LIM t at-left x. ft / g t :> at-top) A (LIM t at-right x. f t
/ gt :> at-bot)
using filterlim-divide-at-bot-at-top-iff [OF - <f £0>, of f]
using f-tendsto(1) f-tendsto(2) g-tendsto(1) g-tendsto(2) by blast
moreover from this have - (LIM ¢t at-left x. ft / g t :> at-bot)
using filterlim-at-top-at-bot by fastforce
moreover have sgn ¢ # sgn (f z) using that by auto
ultimately show ?thesis unfolding jump-def by auto
qed
moreover have ?thesis when c¢<0 f x<0
proof —
have (g has-sgnz — sgn (f ©)) (at-left x)
using has-sgnz-derivative-at-left|OF g-deriv <g x=0>] that by auto
moreover have (g has-sgnz sgn (f z)) (at-right x)
using has-sgna-derivative-at-right|OF g-deriv <g =0>] that by auto
ultimately have (LIM ¢ at-left x. ft / g t :> at-bot) N (LIM t at-right z. ft
/ g t:> at-top)
using filterlim-divide-at-bot-at-top-iff [OF - <f x#0>, of f]
using f-tendsto(1) f-tendsto(2) g-tendsto(1) g-tendsto(2) by blast
moreover have sgn ¢ =sgn (f ) using that by auto
ultimately show ?thesis unfolding jump-def by auto
qed
ultimately show “thesis using «c#£0> «f t#0> by argo
qged

lemma jump-jump-poly: jump (Az. poly q z / poly p ) a = jump-poly q p a
proof (cases p=0)

case True

then show ?thesis by auto
next

case Fulse

obtain p’ ¢’ where p’:p= p’*ged p q and q’:q=q"*gcd p q

using gcd-dvd1 ged-dvd2 dvd-def|of ged p q, simplified mult.commute] by metis
then have coprime p’ q’ p'#0 gcd p q#0 using gcd-coprime <p#£0> by auto

define f where f = (Az. poly ¢’ z / poly p' x)
define g where g = (\z. if poly (ged p q) x = 0 then 0::real else 1)

have g-tendsto:(¢ —— 1) (at-left a) (9 —— 1) (at-right a)
proof —
have
(poly (ged p q) has-sgnz 1) (at-left a)
V (poly (gcd p q) has-sgnx — 1) (at-left a)
(poly (ged p q) has-sgnx 1) (at-right a)
V (poly (ged p q) has-sgnz — 1) (at-right a)
using <p#£0> poly-has-sgnz-values by auto

83



then have Vp zin at-left a. go =1 Vp xin at-right a. g = 1
unfolding has-sgnz-def g-def by (auto elim:eventually-mono)
then show (g —— 1) (at-left a) (9 —— 1) (at-right a)
using tendsto-eventually by auto
qed

have poly gz / polyp x = gz * fz for
unfolding f-def g-def by (subst p’,subst q’,auto)
then have jump (Az. poly q z / poly p x) a = jump (A\z. gz * fz) a
by auto
also have ... = jump fa
unfolding jump-def
apply (subst (1 2) filterlim-tendsto-pos-mult-at-top-iff)
prefer 5
apply (subst (1 2) filterlim-tendsto-pos-mult-at-bot-iff)
using g-tendsto by auto
also have ... = jump-poly ¢’ p’ a
using jump-jump-poly-auz|OF <p'#0> <coprime p’ ¢"»] unfolding f-def by auto
also have ... = jump-poly ¢ p a
using jump-poly-mult|OF «ged p q¢ # 0», of ¢'] p’ ¢’
by (metis mult.commute)
finally show ?thesis .
qed

lemma jump-Im-divide-Re-0:
assumes path g Re (g 2)#0 0<z z<1
shows jump (At. Im (gt) / Re (gt)) z =0
proof —
have isCont g z
using «path g»[unfolded path-def] «0<zy x<1>
apply (elim continuous-on-interior)
by auto
then have isCont (At. Im(g t)/Re(g t)) = using «Re (g z)#0»
by (auto intro:continuous-intros isCont-Re isCont-Im)
then show jump (At. Im(g t)/Re(g t)) z=0
using jump-not-infinity by auto
qged

lemma jumpF-im-divide-Re-0:
assumes path g Re (g x)#£0
shows [0<z;x<1] = jumpF (\t. Im (g t) /
[0<z;2<1] = jumpF (At. Im (g t) / Re
proof —
define g’ where g’ = (At. Im (g t) / Re (g 1))

Re (g t)) (at-right z) = 0
(g t) (at-left x) = 0

show jumpF g’ (at-right ) = 0 when 0<z z<1
proof —
have (¢’ —— ¢’ z) (at-right z)
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proof (cases x=0)
case True
have continuous (at-right 0) g
using <path ¢> unfolding path-def
by (auto elim:continuous-on-at-right)
then have continuous (at-right x) (At. Im(g t)) continuous (at-right z) (At.
Re(g 1))
using continuous-Im continuous-Re True by auto
moreover have Re (g (netlimit (at-right x))) # 0
using assms(2) by (simp add: Lim-ident-at)
ultimately have continuous (at-right ) (At. Im (g t)/Re(g t))
by (auto intro:continuous-divide)
then show ?thesis unfolding g¢’-def continuous-def
by (simp add: Lim-ident-at)
next
case Fulse
have isCont (Az. Im (g z)) x isCont (Az. Re (g z)) z
using <path ¢» unfolding path-def
by (metis False atLeastAtMost-iff at-within-Icc-at continuous-Im continu-
ous-Re
continuous-on-eq-continuous-within less-le that)+
then have isCont ¢’ =
using assms(2) unfolding ¢'-def
by (auto intro:continuous-intros)
then show ?thesis unfolding isCont-def using filterlim-at-split by blast
qged
then have — filterlim g’ at-top (at-right x) — filterlim g’ at-bot (at-right )
using filterlim-at-top-nhds|of g’ at-right x] filterlim-at-bot-nhds[of g’ at-right
7
by auto
then show ?thesis unfolding jumpF-def by auto
qed

show jumpF ¢’ (at-left ) = 0 when 0<z z<1
proof —
have (¢ —— ¢’ z) (at-left )
proof (cases z=1)
case True
have continuous (at-left 1) g
using <path ¢> unfolding path-def
by (auto elim:continuous-on-at-left)
then have continuous (at-left x) (At. Im(g t)) continuous (at-left x) (At. Re(yg

t))
using continuous-Im continuous-Re True by auto
moreover have Re (g (netlimit (at-left z))) # 0
using assms(2) by (simp add: Lim-ident-at)
ultimately have continuous (at-left ) (At. Im (g t)/Re(g t))
by (auto intro:continuous-divide)
then show ?thesis unfolding g¢’-def continuous-def
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by (simp add: Lim-ident-at)
next
case Fulse
have isCont (Az. Im (g z)) x isCont (Az. Re (g z)) z
using <path ¢> unfolding path-def
by (metis False atLeastAtMost-iff at-within-Icc-at continuous-Im continu-
ous-Re
continuous-on-eq-continuous-within less-le that)+
then have isCont ¢' =
using assms(2) unfolding g’-def
by (auto)
then show ?thesis unfolding isCont-def using filterlim-at-split by blast
qed
then have - filterlim g’ at-top (at-left x) — filterlim g’ at-bot (at-left )
using filterlim-at-top-nhds|of ¢’ at-left z] filterlim-at-bot-nhds[of g’ at-left x]
by auto
then show ?thesis unfolding jumpF-def by auto
qed
qed

lemma jump-cong:
assumes z=y and eventually (A\z. f z=g x) (at z)
shows jump fx = jump g y
proof —
have left:eventually (A\z. f =g z) (at-left x)
and right:eventually (\z. f x=g x) (at-right z)
using assms(2) eventually-at-split by blast+
from filterlim-cong|OF - - this(1)] filterlim-cong[OF - - this(2)]
show ?thesis unfolding jump-def using assms(1) by fastforce
qed

lemma jumpF-cong:
assumes F=G and eventually (A\z. fz=g z) F
shows jumpF f F = jumpF g G
proof —
haveVp rin G. fr=gr
using assms(1) assms(2) by force
then show ?thesis
by (simp add: assms(1) filterlim-cong jumpF-def)
qed

lemma jump-at-left-at-right-eq:

assumes isCont f z and fz # 0 and sgnz-eq:sgnz g (at-left x) = sgnx g (at-right
x

)

shows jump (A\t. ft/gt) z =0
proof —

define ¢ where ¢ = sgn (f z)

then have ¢#£0 using «f 1£0> by (simp add: sgn-zero-iff)

have f-tendsto:(f —— fz) (at-left ©) (f —— fz) (at-right x)
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using <isCont f x> Lim-at-imp-Lim-at-within isCont-def by blast+
have Fulse when (g has-sgnz — ¢) (at-left x) (g has-sgnz c) (at-right x)
proof —
have sgnz g (at-left ©) = —c using that(1) by auto
moreover have sgnz g (at-right ) = c using that(2) by auto
ultimately show Fulse using sgna-eq <c#0> by force
qed
moreover have False when (g has-sgnz c¢) (at-left ©) (g has-sgnz — c) (at-right

z)

proof —
have sgnz g (at-left ) = ¢ using that(1) by auto
moreover have sgnz g (at-right ) = — ¢ using that(2) by auto
ultimately show Fulse using sgna-eq <c#0> by force

qed

ultimately show “thesis
unfolding jump-def
by (auto simp add:f-tendsto filterlim-divide-at-bot-at-top-iff [OF - <f © # 0)]
c-def)
qed

lemma jumpF-pos-has-sgnx:
assumes jumpF fF > 0
shows (f has-sgnx 1) F
proof —
have filterlim f at-top F using assms unfolding jumpF-def by argo
then have eventually (Az. f £>0) F using filterlim-at-top-dense[of f F] by blast
then show ?thesis unfolding has-sgna-def
apply (elim eventually-mono)
by auto
qed

lemma jumpF-neg-has-sgnx:
assumes jumpF fF < 0
shows (f has-sgnz —1) F
proof —
have filterlim f at-bot F using assms unfolding jumpF-def by argo
then have eventually (Az. f £<0) F using filterlim-at-bot-denselof f F] by blast
then show ?thesis unfolding has-sgnz-def
apply (elim eventually-mono)
by auto
qed

lemma jumpF-IVT:
fixes f::real = real and a b::real
defines right=(\(R::real = real = bool). R (jumpF f (at-right a)) 0
V (continuous (at-right a) f A R (f a) 0))
and
left=(A(R::real = real = bool). R (jumpF f (at-left b)) 0
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V (continuous (at-left b) f A R (fb) 0))
assumes a<b and cont:continuous-on {a<..<b} f and
right-left:right greater A left less \V right less A left greater
shows Jz. a<z A z<b A fz =0
proof —
have ?thesis when right greater left less
proof —
have (f has-sgnz 1) (at-right a)
proof —
have ?thesis when jumpF [ (at-right a)>0 using jumpF-pos-has-sgnz|OF
that] .
moreover have ?thesis when fa > 0 continuous (at-right a) f
proof —
have (f —— f a) (at-right a) using that(2) by (simp add: continu-
ous-within)
then show ?thesis
using tendsto-nonzero-has-sgnz[of f f a at-right a] that by auto
qed
ultimately show ?thesis using that(1) unfolding right-def by auto
qed
then obtain a’ where a<a’ and a’-def:Vy. a<y ANy <a’' — fy >0
unfolding has-sgnz-def eventually-at-right using sgn-1-pos by auto
have (f has-sgnxz — 1) (at-left b)
proof —
have ?thesis when jumpF f (at-left b)<0 using jumpF-neg-has-sgnz|OF that]

moreover have ?thesis when fb < 0 continuous (at-left b) f
proof —
have (f —— fb) (at-left b)
using that(2) by (simp add: continuous-within)
then show ?thesis
using tendsto-nonzero-has-sgnz[of f f b at-left b] that by auto
qed
ultimately show ?thesis using that(2) unfolding left-def by auto
qed
then obtain b’ where b'<b and b’-def:Vy. b'<y ANy <b— fy <0
unfolding has-sgnz-def eventually-at-left using sgn-1-neg by auto
have o’ < b’
proof (rule ccontr)
assume — a’ < b’
then have {a<..<a’} N {b'<..<b} # {}
using <a<a’s «b'<b> <a<b> by auto
then obtain ¢ where ce{a<..<a'} ce{b'<..<b} by blast
then have f ¢>0 f c<0
using a’-def b’-def by auto
then show Fulse by auto
qed
define a0 where a0=(a+a’)/2
define b0 where b0=(b+b")/2
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have [simp]:a<a0 a0<a’ a0<b0 b'<b0 bO<b
unfolding a0-def b0-def using <a<a’> <b’<b> «a’<b"» by auto
have f a0>0 f b0<0 using a’-def[rule-format,of a0] b’-def [rule-format,of b0)]
by auto
moreover have continuous-on {a0..b0} f
using cont <a < al0» b0 < b
by (meson atLeastAtMost-subseteq-greater ThanLess Than-iff continuous-on-subset)
ultimately have 3x>a0. £ < b0 A fz = 0
using IVT-strict[of 0 f a0 b0] by auto
then show %thesis using <a < a0> b0 < b»
by (meson lessThan-strict-subset-iff psubsetE subset-psubset-trans)

qed
moreover have ?thesis when right less left greater
proof —
have (f has-sgnz —1) (at-right a)
proof —
have ?thesis when jumpF f (at-right a)<0 using jumpF-neg-has-sgnz[OF
that] .
moreover have ?thesis when f a < 0 continuous (at-right a) f
proof —
have (f —— fa) (at-right a)
using that(2) by (simp add: continuous-within)
then show ?thesis
using tendsto-nonzero-has-sgnz|of f f a at-right a] that by auto
qed
ultimately show ?thesis using that(1) unfolding right-def by auto
qed

then obtain o’ where a<a’ and a’-def:Vy. a<y ANy < a' — fy <0
unfolding has-sgnz-def eventually-at-right using sgn-1-neg by auto

have (f has-sgnz 1) (at-left b)

proof —

have ?thesis when jumpF f (at-left b)>0 using jumpF-pos-has-sgnz|[OF that]

moreover have ?thesis when f b > 0 continuous (at-left b) f
proof —
have (f —— fb) (at-left b)
using that(2) by (simp add: continuous-within)
then show ?thesis
using tendsto-nonzero-has-sgnz[of f f b at-left b] that by auto
qed
ultimately show ?thesis using that(2) unfolding left-def by auto
qed
then obtain b’ where b'<b and b'-def:Vy. b'<y ANy <b— fy >0
unfolding has-sgnz-def eventually-at-left using sgn-1-pos by auto
have ¢’ < b/
proof (rule ccontr)
assume — a’ < b’
then have {a<..<a’} N {b'<..<b} # {}
using <a<a’y b'<b> <a<b> by auto
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then obtain ¢ where ce{a<..<a'} ce{b'<..<b} by blast
then have f ¢>0 f ¢c<0
using a’-def b’-def by auto
then show Fulse by auto
qed
define a0 where a0=(a+a’)/2
define b0 where b0=(b+b")/2
have [simp|:a<a0 a0<a' a0<b0 b'<b0 bO<b
unfolding a0-def b0-def using <a<a’» <b’<b> <a'<b"» by auto
have f a0<0 f b0>0 using a’-def[rule-format,of a0] b’-def [rule-format,of b0]
by auto
moreover have continuous-on {a0..b0} f
using cont <a < a0 b0 < by
by (meson atLeastAtMost-subseteq-greater ThanLess Than-iff continuous-on-subset)

ultimately have 3x>a0. 2 < b0 A fz = 0
using [V T-strict[of 0 f a0 b0] by auto
then show ?thesis using <a < a0> b0 < b
by (meson lessThan-strict-subset-iff psubsetE subset-psubset-trans)
qed
ultimately show %thesis using right-left by auto
qged

lemma jumpF-eventually-const:
assumes eventually (Az. f x=c) F F#bot
shows jumpF f F = 0
proof —
have jumpF f F = jumpF (\-. ¢) F
apply (rule jumpF-cong)
using assms(1) by auto

also have ... = 0 using jumpF-const|OF «F#bot)] by simp
finally show ?thesis .
qed

lemma jumpF-tan-comp:
JjumpF (f o tan) (at-right ) = (if cos x = 0
then jumpF f at-bot else jumpF f (at-right (tan x)))
JumpF (f o tan) (at-left x) = (if cos © =0
then jumpF f at-top else jumpF f (at-left (tan x)))
proof —
have filtermap (f o tan) (at-right x) =
(if cos x = 0 then filtermap f at-bot else filtermap f (at-right (tan z)))
unfolding comp-def
apply (subst filtermap-filtermap|of f tan,symmetric])
using filtermap-tan-at-right-inf filtermap-tan-at-right by auto
then show jumpF' (f o tan) (at-right x) = (if cos © = 0
then jumpF f at-bot else jumpF f (at-right (tan x)))
unfolding jumpF-def filterlim-def by auto
next
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have filtermap (f o tan) (at-left ) =
(if cos © = 0 then filtermap f at-top else filtermap f (at-left (tan x)))
unfolding comp-def
apply (subst filtermap-filtermap|of f tan,symmetric])
using filtermap-tan-at-left-inf filtermap-tan-at-left by auto
then show jumpF (f o tan) (at-left z) = (if cos x = 0
then jumpF f at-top else jumpF f (at-left (tan x)))
unfolding jumpF-def filterlim-def by auto
qed

5.6 Finite jumpFs over an interval

definition finite-jumpFs::(real = real) = real = real = bool where

finite-jumpFs f a b = finite {x. (jumpF [ (at-left ) #£0 V jumpF f (at-right x)

#0) N a<z A z<b}

lemma finite-jumpFs-linear-pos:
assumes c>(

shows finite-jumpFs (f o (Az. ¢ *x & + b)) Ib ub <— finite-jumpFs f (¢ * b +b)

(¢ * ub + b)
proof —

define left where left = (Af Ib ub. {x. jumpF [ (at-left z) # 0 AN Ib < x Az <

ub})

define right where right = (\f Ib ub. {z. jumpF f (at-right ) # 0 AN Ib < z A

x < ub})
define g where g=(\z. cxz+b)
define gi where ¢gi = (Az. (z—b)/c)
have finite-jumpFs (f o (Az. ¢ x x + b)) Ib ub
= finite (left (f o g) b ub U right (f o g) Ib ub)
unfolding finite-jumpFs-def
apply (rule arg-cong[where f=finite])
by (auto simp add:left-def right-def g-def)
also have ... = finite (gi ‘ (left f (g Ib) (g ub) U right f (g b) (g ub)))
proof —
have j-rw:
jumpF (f o g) (at-left x) = jumpF [ (at-left (g z))
jumpF (f o g) (at-right x) = jumpF f (at-right (g x))
for z
using jumpF-linear-complof ¢ f b z] <¢>0> unfolding g-def by auto
then have
left (fog)lbub=gi‘leftf (gib) (g ub)
right (f o g) lb ub = gi ‘ right f (g Ib) (g ub)
unfolding left-def right-def gi-def
using <¢>0) by (auto simp add:g-def field-simps)
then have left (f o g) Ib ub U right (f o g) b ub
= gi “(left f (g 1b) (g ub) U right f (g Ib) (g ub))
by auto
then show ?thesis by auto
qed
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also have ... = finite (left f (g Ib) (g ub) U right f (g 1b) (g ub))
apply (rule finite-image-iff)
unfolding gi-def using <c¢ >0) inj-on-def by fastforce

also have ... = finite-jumpFs f (¢ * Ib +b) (¢ * ub + b)
unfolding finite-jumpFs-def
apply (rule arg-cong[where f=finite])
by (auto simp add:left-def right-def g-def)

finally show ?thesis .

qed

lemma finite-jumpFs-consts:
finite-jumpFs (A- . ¢) b ub
unfolding finite-jumpFs-def using jumpF-const by auto

lemma finite-jumpFs-combine:
assumes finite-jumpFs f a b finite-jumpFs f b ¢
shows finite-jumpFs f a c
proof —
define P where P=(Az. jumpF [ (at-left ©) # 0 V jumpF f (at-right x) # 0)
have {z. Pz Aha<zAz<c}C{e. Pz Aha<zAz<b}U{z. PxAb<z
A z<c}
by auto
moreover have finite ({z. Pz A a <z Az<b} U{z. Pz A b <z A z<c})
using assms unfolding finite-jumpFs-def P-def by auto
ultimately have finite {. Pz A a <z Az < ¢}
using finite-subset by auto
then show ?thesis unfolding finite-jumpFs-def P-def by auto
qed

lemma finite-jumpFs-subE:
assumes finite-jumpFs fa b a<a’ b'<b
shows finite-jumpFs f a’ b’

using assms unfolding finite-jumpFs-def
apply (elim rev-finite-subset)
by auto

lemma finite- Psegments-Re-imp-jumpFs:
assumes finite-Psegments (At. Re (gt — 2) = 0) a b continuous-on {a..b} g
shows finite-jumpFs (At. Im (gt — z)/Re (gt — 2)) a b
using assms
proof (induct rule:finite- Psegments.induct)
case (emptyl a b)
then show ?case unfolding finite-jumpFs-def
by (auto intro:rev-finite-subset[of {a}])
next
case (insertl-1 s a b)
define f where f=(\t. Im (gt — 2z) / Re (gt — 2))
have finite-jumpFs f a s
proof —
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have continuous-on {a..s} g using <continuous-on {a..b} ¢» «s € {a..<b}
by (auto elim:continuous-on-subset)
then show ?thesis using insertl-1 unfolding f-def by auto
qed
moreover have finite-jumpFs f s b
proof —
have jumpF [ (at-left ) =0 jumpF [ (at-right ) = 0 when ze{s<..<b} for z
proof —
show jumpF f (at-left x) =0
apply (rule jumpF-eventually-const[of - 0])
unfolding eventually-at-left
apply (rule exI[where x=s])
using that insertl-1 unfolding f-def by auto
show jumpF f (at-right z) = 0
apply (rule jumpF-eventually-const[of - 0])
unfolding eventually-at-right
apply (rule exI[where z=b])
using that insertl-1 unfolding f-def by auto
qed
then have {z. (jumpF [ (at-left ) # 0 V jumpF [ (at-right ) # 0) A s < z
Az < b}
= {z. (jumpF f (at-left ) # 0 V jumpF f (at-right ) # 0) A (z=s V z
-

using <(s€{a..<b}» by force
then show ?thesis unfolding finite-jumpFs-def by auto
qged
ultimately show ?Zcase using finite-jumpFs-combine[of - a s b] unfolding f-def
by auto
next
case (insertl-2 s a b)
define f where f=(\t. Im (gt — z) / Re (gt — 2))
have finite-jumpFs f a s
proof —
have continuous-on {a..s} g using <continuous-on {a..b} ¢» «s € {a..<b}
by (auto elim:continuous-on-subset)
then show %thesis using insertl-2 unfolding f-def by auto
qged
moreover have finite-jumpFs f s b
proof —
have jumpF [ (at-left ) =0 jumpF [ (at-right ) = 0 when ze{s<..<b} for z
proof —
have isCont f z
unfolding f-def
apply (intro continuous-intros isCont-Im isCont-Re
continuous-on-interior| OF <continuous-on {a..b} ¢])
using insertl-2.hyps(1) that
apply auto[2]
using insertl-2.hyps(3) that by blast
then show jumpF f (at-left ) =0 jumpF [ (at-right ) = 0
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by (simp-all add: continuous-at-split jumpF-not-infinity)
qed
then have {z. (jumpF [ (at-left z) # 0 V jumpF [ (at-right ) # 0) A s < z
Az < b}
= {z. (jumpF f (at-left ©) # 0 V jumpF f (at-right ) # 0) A (x=s V z
=b)}

using <(s€{a..<b}» by force
then show ?thesis unfolding finite-jumpFs-def by auto
qed
ultimately show ?Zcase using finite-jumpFs-combine[of - a s b] unfolding f-def
by auto
qed

lemma finite- ReZ-segments-imp-jumpFs:
assumes finite-ReZ-segments g z path g
shows finite-jumpFs (At. Im (gt — 2)/Re (gt — 2)) 0 1
using assms unfolding finite-ReZ-segments-def path-def
by (rule finite-Psegments-Re-imp-jumpF's)

5.7 jumpF at path ends

definition jumpF-pathstart::(real = complex) = complex = real where
JumpF-pathstart g z= jumpF (At. Im(g t— z)/Re(g t — z)) (at-right 0)

definition jumpF-pathfinish::(real = complex) = complex = real where
JumpF-pathfinish g z= jumpF (At. Im(g t — z)/Re(g t —2)) (at-left 1)

lemma jumpF-pathstart-eq-0:
assumes path g Re(pathstart g)#Re z
shows jumpF-pathstart g z = 0
unfolding jumpF-pathstart-def
apply (rule jumpF-im-divide-Re-0)
using assms[unfolded pathstart-def] by auto

lemma jumpF-pathfinish-eq-0:
assumes path g Re(pathfinish g)#Re z
shows jumpF-pathfinish g z = 0
unfolding jumpF-pathfinish-def
apply (rule jumpF-im-divide-Re-0)
using assms[unfolded pathfinish-def] by auto

lemma

shows jumpF-pathfinish-reversepath: jumpF-pathfinish (reversepath g) z = jumpF-pathstart
gz

and jumpF-pathstart-reversepath: jumpF-pathstart (reversepath g) z = jumpF-pathfinish
gz
proof —

define f where f=(\t. Im (gt — z) / Re (gt — 2))

define f’ where f'=(\t. Im (reversepath g t — z) / Re (reversepath g t — z))
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have fo (At. 1 — t) = f'
unfolding f-def f'-def comp-def reversepath-def by auto
then show jumpF-pathfinish (reversepath g) z = jumpF-pathstart g z
JumpF-pathstart (reversepath g) z = jumpF-pathfinish g z
unfolding jumpF-pathstart-def jumpF-pathfinish-def
using jumpF-linear-comp(2)[of —1 f 1 0,simplified] jumpF-linear-comp(1)[of
—1f1 1,simplified]
apply (fold f-def f'-def)
by auto
qed

lemma jumpF-pathstart-joinpaths|simp):
JumpF-pathstart (g1+++92) z = jumpF-pathstart g1 z
proof —
let h=(At. Im (g1 t — z) / Re (g1 t — 2))
let 2f=XAt. Im ((g1 +++ g2) t — 2) / Re ((g1 +++ ¢2) t — 2)
have jumpF-pathstart g1 z = jumpF ?h (at-right 0)
unfolding jumpF-pathstart-def by simp
also have ... = jumpF (?h o (At. 2xt)) (at-right 0)
using jumpF-linear-complof 2 ?h 0 0,simplified] by auto
also have ... = jumpF ?f (at-right 0)
proof (rule jumpF-cong)
show VYV p xin at-right 0. (?ho (x) 2) z =%z
unfolding ecventually-at-right
apply (intro exI[where z=1/2])
by (auto simp add:joinpaths-def)
qged simp
also have ... =jumpF-pathstart (g1+++92) z
unfolding jumpF-pathstart-def by simp
finally show ?thesis by simp
qed

lemma jumpF-pathfinish-joinpaths|simp):
JumpF-pathfinish (g1+++g2) z = jumpF-pathfinish g2 z
proof —
let 2h=(At. Im (g2t — z) / Re (g2t — 2))
let 2f=XAt. Im ((g1 +++ g2) t — 2) / Re ((g1 +++ ¢2) t — 2)
have jumpF-pathfinish g2 z = jumpF ?h (at-left 1)
unfolding jumpF-pathfinish-def by simp
also have ... = jumpF (?h o (At. 2xt—1)) (at-left 1)
using jumpF-linear-complof 2 - —1 1,simplified] by auto
also have ... = jumpF ?f (at-left 1)
proof (rule jumpF-cong)
show Vg xzinatleft 1. (?ho (M. 2t — 1)) z=%zx
unfolding eventually-at-left
apply (intro exl[where z=1/2])
by (auto simp add:joinpaths-def)
qged simp
also have ... =jumpF-pathfinish (g1+++g2) z
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unfolding jumpF-pathfinish-def by simp
finally show ?thesis by simp
qed

5.8 Cauchy index
definition cindex::real = real = (real = real) = int where

cinder a b f = (3 z€{z. jump fx£0 N a<z A z<b}. jump fz)

definition cindezE::real = real = (real = real) = real where
cindezE a b f = (O xe{x. jumpF [ (at-right ) £0 N a<z A z<b}. jumpF f
(at-right x))

z))

— (O ze{z. jumpF f (at-left ©) #0 A a<z A z<b}. jumpF f (at-left

definition cindexE-ubd::(real = real) = real where
cindexE-ubd f = (> z€{x. jumpF f (at-right ) #£0 }. jumpF [ (at-right x))
— (O- ze{x. jumpF f (at-left x) #0}. jumpF f (at-left x))

lemma cindexFE-empty:
cindexE a a f = 0
unfolding cindexE-def by (simp add: sum.neutral)

lemma cindezx-const: cindex a b (A-. ¢) = 0
unfolding cindex-def
apply (rule sum.neutral)
by auto

lemma cindex-eq-cindez-poly: cindex a b (Az. poly q x/poly p x) = cindex-poly a
bqp
proof (cases p=0)
case True
then show ?thesis using cindez-const by auto
next
case Fulse
have cindex-poly a b ¢ p =
-z [jump-poly ¢ p x A0 N a < x A z < b. jump-poly q p z)
unfolding cindex-poly-def
apply (rule sum.mono-neutral-cong-right)
using jump-poly-not-root by (auto simp add: <p#£0> poly-roots-finite)
also have ... = cindex a b (Az. poly q z/poly p x)
unfolding cindex-def
apply (rule sum.cong)
using jump-jump-poly[of ¢q] by auto
finally show ?thesis by auto
qed

lemma cindex-combine:
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assumes finite:finite {z. jump f 2£0 N a<z A z<c} and a<b b<c
shows cindex a ¢ f = cindex a b f + jump fb + cindex b ¢ f
proof —
define ssum where ssum = (As. sum (jump f) ({z. jump f2#£0 N a<z A z<c}
N s))
have ssum-union:ssum (A U B) = ssum A + ssum B when A N B ={} for A
B
proof —
define C where C={z. jump fz # 0 N a<z A z<c}
have finite C using finite unfolding C-def .
then show ?thesis
unfolding ssum-def
apply (fold C-def)
using sum-Un[of C N A C N B that
by (simp add: inf-assoc inf-sup-aci(8) inf-sup-distrib1 sum.union-disjoint)
qged
have cindex a ¢ f = ssum ({a<..<b} U {b} U {b<..<c})
unfolding ssum-def cindex-def
apply (rule sum.cong|of - - jump [ jump f,simplified])
using <a<by «b<c» by fastforce
moreover have cindex a b f = ssum {a<..<b}
unfolding cindex-def ssum-def using <a<b> <b<c»
by (intro sum.cong,auto)
moreover have jump f b = ssum {b}
unfolding ssum-def using <a<b <b<c» by (cases jump f b=0,auto)
moreover have cindex b ¢ f = ssum {b<..<c}
unfolding cindez-def ssum-def using <a<by <b<c» by (intro sum.cong,auto)
ultimately show ?thesis
apply (subst (asm) ssum-union,simp)
by (subst (asm) ssum-union,auto)
qed

lemma cindexE-combine:
assumes finite:finite-jumpFs f a ¢ and a<b b<c
shows cindexzE a ¢ f = cindexE a b f + cindexE b ¢ f
proof —
define S where S={z. (jumpF f (at-left x) # 0 V jumpF f (at-right ) # 0) A
a<zAz<c}
define A0 where A0={z. jumpF f
define A1 where A1={z. jumpF f
define A2 where A2={z. jumpF f
define B0 where BO={z. jumpF [ (at-left z) # 0 N a < z Az < ¢}
define B! where Bi={z. jumpF [ (at-left z) # 0 N a < z A z < b}
define B2 where B2={z. jumpF f (at-left ) # 0 N b < z Az < ¢}
have [simp]:finite A1 finite A2 finite Bl finite B2
proof —
have finite S using finite unfolding finite-jumpFs-def S-def by auto
moreover have A1 C S A2 C SB1 C SB2CS
unfolding A1-def A2-def Bi-def B2-def S-def using <a<b> <b<c> by auto

at-right ) # 0 AN a <z ANz < c}
at-right ©) # 0 AN a < z Az < b}
at-right ) # 0 AN b <z Az < c}
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ultimately show finite A1 finite A2 finite B1 finite B2 by (auto elim:finite-subset)
qed
have cindezE a ¢ f = sum (Az. jumpF f (at-right x)) A0
— sum (Az. jumpF f (at-left x)) BO
unfolding cindexE-def A0-def BO-def by auto
also have ... = sum (Az. jumpF f (at-right z)) (A1 U A2)
— sum (Az. jumpF f (at-left z)) (B1 U B2)
proof —
have A0=A1UA2 unfolding A0-def Al-def A2-def using assms by auto
moreover have B0=B1UB2 unfolding B0-def Bi1-def B2-def using assms
by auto
ultimately show ¢thesis by auto
qed
also have ... = cindexF a b f + cindexE b ¢ f
proof —
have A1 N A2 = {} unfolding AI-def A2-def by auto
moreover have B! N B2 = {} unfolding BI-def B2-def by auto
ultimately show #thesis
unfolding cindexE-def
apply (fold A1-def A2-def Bi-def B2-def)
by (auto simp add:sum.union-disjoint)
qed
finally show ?thesis .
qed

lemma cindez-linear-comp:
assumes c#(
shows cindex Ib ub (f o (Az. cxa+bd)) = (if ¢>0
then cindex (cxlb+bd) (cxub+bd) f
else — cindex (cxub+b) (cxlb+b) f)
proof (cases ¢>0)

case Fulse
then have c<(0 using (c#0> by auto
have cindex Ib ub (f o (A\z. cxz+b)) = — cindex (cxub+b) (cxlb+d) f

unfolding cindex-def
apply (subst sum-negf[symmetric])
apply (intro sum.reindex-cong[of Az. (z—b)/c])
subgoal by (simp add: inj-on-def)
subgoal using Fulse
apply (subst jump-linear-comp[OF <c#£0>))
by (auto simp add:<c<0> «c£0> field-simps)
subgoal for x
apply (subst jump-linear-comp[OF <c#£0»))
by (auto simp add:<c<0) <c£0> False field-simps)
done
then show ?thesis using Fulse by auto
next
case True
have cindex Ib ub (f o (Az. cxz+Db)) = cindex (cxlb+b) (cxub+d) f
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unfolding cindex-def

apply (intro sum.reindex-cong[of Ax. (z—0b)/c])

subgoal by (simp add: inj-on-def)

subgoal
apply (subst jump-linear-comp[OF <c#£0>))
by (auto simp add: True «c£0> field-simps)

subgoal for z
apply (subst jump-linear-comp[OF <c#£0>))
by (auto simp add: <c£0> True field-simps)

done

then show ?thesis using True by auto
qed

lemma cindexFE-linear-comp:
assumes c#0
shows cindezE b ub (f o (Az. exa+b)) = (if ¢>0
then cindezE (cxlb+b) (cxub+b) f
else — cindezE (cxub+b) (cxlb+b) f)
proof —
define cright where cright = (Alb ub f. (3  z | jumpF f (at-right x) # 0 A 1b <
T Nz < ub.
JjumpF [ (at-right z)))
define cleft where cleft = (Alb ub f. (O z | jumpF f (at-left x) # 0 N 1b < z A
z < ub.
jumpF f (at-left x)))
have cindexFE-unfold:cindexE lb ub f = cright Ib ub f — cleft Ib ub f
for Ib ub f unfolding cindexE-def cright-def cleft-def by auto
have ?thesis when c<0
proof —
have cright Ib ub (f o (Az. ¢ x z + b)) = cleft (¢ x ub + b) (cx b+ b) f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of Az. (z—b)/c])
subgoal by (simp add: inj-on-def)
subgoal using that
by (subst jumpF-linear-comp|OF <c#£0>],auto simp add:field-simps)
subgoal for z using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add: field-simps)
done
moreover have cleft Ib ub (f o (Az. ¢ *  + b)) = cright (cxub+b) (cxlb + b)
f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of Az. (z—b)/c])
subgoal by (simp add: inj-on-def)
subgoal using that
by (subst jumpF-linear-comp[OF <c#0>],auto simp add:field-simps)
subgoal for z using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add: field-simps)
done
ultimately show #thesis unfolding cindexFE-unfold using that by auto
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qed
moreover have ?thesis when ¢>0
proof —
have cright Ib ub (f o (Az. ¢ x © + b)) = cright (¢ *x b + b) (¢ x ub+ b) f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of Ax. (x—0b)/c])
subgoal by (simp add: inj-on-def)
subgoal using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add:field-simps)
subgoal for z using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add: field-simps)
done
moreover have cleft Ib ub (f o (Az. ¢ x © + b)) = cleft (cxlb+b) (cxub + b) f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of Az. (z—b)/c])
subgoal by (simp add: inj-on-def)
subgoal using that
by (subst jumpF-linear-comp[OF <c#0>],auto simp add:field-simps)
subgoal for z using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add: field-simps)
done
ultimately show #thesis unfolding cindexFE-unfold using that by auto
qed
ultimately show ?thesis using <c#0> by auto
qed

lemma cindexE-cong:
assumes finite s and fg-eq: \z. [a<z;z<bia¢s] = fz =gz
shows cindexE o b f = cindezE a b g
proof —
define left where
left=(\f. Oz | jumpF f (at-left ) # 0 AN a < z Az < b. jumpF f (at-left
2)))

define right where
right=\f. (3. z | jumpF f (at-right z) # 0 AN a < z Az < b. jumpF f (at-right
z)))
have left f = left g
proof —
have jumpF f (at-left ) = jumpF g (at-left £) when a<z 2<b for x
proof (rule jumpF-cong)
define cs where cs = {y€s. a<y A y<z}
define ¢ where c= (if cs = {} then (z+a)/2 else Maz cs)
have finite cs unfolding cs-def using assms(1) by auto
have c<z A (Vy. c<y A y<z — fy=g y)
proof (cases cs={})
case True
then have Vy. c<y A y<z — y ¢ s unfolding cs-def c-def by force
moreover have c=(z+a)/2 using True unfolding c-def by auto
ultimately show ?thesis using fg-eq using that by auto
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next

case Fulse

then have ce€cs unfolding c-def using Fulse <finite csy by auto

moreover have Vy. c<y A y<z — y ¢ s

proof (rule ccontr)
assume - (Vy. c < yANy<z—y¢s)
then obtain y’ where c<y’ y'<z y'es by auto
then have y’ccs using (c€cs) unfolding cs-def by auto
then have y'<c unfolding c-def using Fulse (finite cs» by auto
then show False using (c<y’» by auto

ged

ultimately show ?thesis unfolding cs-def using that by (auto intro!:fg-eq)

qed
then show Vg z in at-left x. fx = g x
unfolding eventually-at-left by auto
qed simp
then show ?thesis
unfolding left-def
by (auto intro: sum.cong)
qed
moreover have right f = right g
proof —
have jumpF f (at-right x) = jumpF ¢ (at-right ) when a<z z<b for z
proof (rule jumpF-cong)
define cs where cs = {y€s. z<y A y<b}
define ¢ where c= (if cs = {} then (z+b)/2 else Min cs)
have finite cs unfolding cs-def using assms(1) by auto
have z<c A (Vy. z<y A y<c — fy=g y)
proof (cases cs={})
case True
then have Vy. z<y A y<c — y ¢ s unfolding cs-def c-def by force
moreover have ¢=(z+b)/2 using True unfolding c-def by auto
ultimately show ?thesis using fg-eq using that by auto
next
case Fulse
then have c€cs unfolding c-def using Fulse «finite cs» by auto
moreover have Vy. z<y A y<c — y ¢ s
proof (rule ccontr)
assume - Vy. 2 <yAy<c—yé¢s)
then obtain y’ where z<y’ y’<c y’es by auto
then have y’'ecs using (c€cs» unfolding cs-def by auto
then have y’>c unfolding c-def using Fulse (finite cs» by auto
then show False using (¢>y"> by auto
qed

ultimately show ?thesis unfolding cs-def using that by (auto intro!:fg-eq)

qed
then show Vg z in at-right z. fz =g
unfolding eventually-at-right by auto
qed simp
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then show ?thesis
unfolding right-def
by (auto intro: sum.cong)
qed
ultimately show ?thesis unfolding cindexE-def left-def right-def by presburger

qed

lemma cindexE-constl:
assumes A¢. [a<t;t<b] = fi=c
shows cindexE a b f = 0
proof —
define left where
left=(Af. O_x | jumpF f (at-left x) # 0 N a < z Az < b. jumpF f (at-left

z)))

define right where
right=(\f. (O« | jumpF f (at-right ) # 0 A a < x A x < b. jumpF f (at-right
)
have left f = 0
proof —
have jumpF f (at-left ) = 0 when a<z z<b for z
apply (rule jumpF-eventually-const[of - c])
unfolding eventually-at-left using assms that by auto
then show ?thesis unfolding left-def by auto
qed
moreover have right f = 0
proof —
have jumpF f (at-right ) = 0 when a<z z<b for z
apply (rule jumpF-eventually-const|of - c])
unfolding cventually-at-right using assms that by auto
then show ?thesis unfolding right-def by auto
qed
ultimately show ¢thesis unfolding cindexE-def left-def right-def by auto

qed

lemma cindez-eq-cinderFE-divide:
fixes f g::real = real
defines h = (A\z. fz/g 1)
assumes a<b and
finite-fg: finite {z. (f z=0Vg z=0) N a<zAz<b} and
g-tmp-f:¥V z€{a..b}. g z=0 — f2#0 and
f-cont: continuous-on {a..b} f and
g-cont:continuous-on {a..b} g
shows cindexE a b h = jumpF h (at-right a) + cindex a b h — jumpF h (at-left
b)
proof —
define R where R=(\S.{z. jumpF h (at-right ) # 0 N z€S})
define L where L=(\S.{x. jumpF h (at-left z) # 0 N x€S})
define right where right = (AS. (3_z€R S. jumpF h (at-right x)))
define left where left = (A\S. (O x€L S. jumpF h (at-left z)))
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have jump-gnz:jumpF h (at-left ) = 0 jumpF h (at-right £) = 0 jump h =0
when a<z z<b g z#0 for z
proof —
have isCont h ¢ unfolding h-def using f-cont g-cont that
by (auto intro!:continuous-intros elim:continuous-on-interior)
then show jumpF h (at-left ) = 0 jumpF h (at-right £) = 0 jump h =0

using jumpF-not-infinity jump-not-infinity unfolding continuous-at-split
by auto

qed

have finite-jFs:finite-jumpFs h a b
proof —
define S where S=(\s. {z. (jumpF h (at-left ©) # 0 V jumpF h (at-right x)
# 0) N z€s})
note jump-gnz
then have S {a<..<b} C {z. (fz=0Vg 2=0) N a<zAz<b}
unfolding S-def by auto
then have finite (S {a<..<b})
using rev-finite-subset| OF finite-fg] by auto
moreover have finite (S {a,b}) unfolding S-def by auto
moreover have S {a..b} = S {a<..<b} U S {a,b}
unfolding S-def using <a<b» by auto
ultimately have finite (S {a..b}) by auto
then show ?thesis unfolding S-def finite-jumpFs-def by auto
qed
have cindezE a b h = right {a..<b} — left {a<..b}
unfolding cindexE-def right-def left-def R-def L-def by auto
also have ... = jumpF h (at-right a) + right {a<..<b} — left {a<..<b} — jumpF
h (at-left b)
proof —
have right {a..<b} = jumpF h (at-right a) + right {a<..<b}
proof (cases jumpF h (at-right a) =0)
case True
then have R {a..<b} = R {a<..<b}
unfolding R-def using less-eq-real-def by auto
then have right {a..<b} = right {a<..<b}
unfolding right-def by auto
then show ?thesis using True by auto
next
case Fulse
have finite (R {a..<b})
using finite-jF's unfolding R-def finite-jumpFs-def
by (auto elim:rev-finite-subset)
moreover have a € R {a..<b} using Fulse (a<b> unfolding R-def by auto
moreover have R {a..<b} — {a} = R {a<..<b} unfolding R-def by auto
ultimately show right {a..<b}= jumpF h (at-right a)
+ right {a<..<b}
using sum.removelof R {a..<b} a Az. jumpF h (at-right z)]
unfolding right-def by simp
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qed
moreover have left {a<..b} = jumpF h (at-left b) + left {a<..<b}
proof (cases jumpF h (at-left b) =0)
case True
then have L {a<..b} = L {a<..<b}
unfolding L-def using less-eq-real-def by auto
then have left {a<..b} = left {a<..<b}
unfolding left-def by auto
then show ?Zthesis using True by auto
next
case Fulse
have finite (L {a<..b})
using finite-jF's unfolding L-def finite-jumpFs-def
by (auto elim:rev-finite-subset)
moreover have b € L {a<..b} using Fulse <a<by unfolding L-def by auto
moreover have L {a<..b} — {b} = L {a<..<b} unfolding L-def by auto
ultimately show left {a<..b}= jumpF h (at-left b) + left {a<..<b}
using sum.removelof L {a<..b} b Az. jumpF h (at-left x))
unfolding left-def by simp

qed

ultimately show ¢thesis by simp
qed
also have ... = jumpF h (at-right a) + cindex a b h — jumpF h (at-left b)
proof —

define S where S={z. g2=0 A a < z A z < b}
have right {a<..<b} = sum (Az. jumpF h (at-right x)) S
unfolding right-def S-def R-def
apply (rule sum.mono-neutral-left)
subgoal using finite-fg by (auto elim:rev-finite-subset)
subgoal using jump-gnz by auto
subgoal by auto
done
moreover have left {a<..<b} = sum (Az. jumpF h (at-left x)) S
unfolding left-def S-def L-def
apply (rule sum.mono-neutral-left)
subgoal using finite-fg by (auto elim:rev-finite-subset)
subgoal using jump-gnz by auto
subgoal by auto
done
ultimately have right {a<..<b} — left {a<..<b}
= sum (Az. jumpF h (at-right z) — jumpF h (at-left z)) S
by (simp add: sum-subtractf)
also have ... = sum (\z. of-int(jump h x)) S
proof (rule sum.cong)
fix z assume z€S5
define hr where hr = sgnz h (at-right z)
define hl where hl = sgnz h (at-left x)
have h sgna-able (at-left x) hr#0 h sgnz-able (at-right x) hi£0
proof —
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have finite {t. ht =0 N a <t At < b}
using finite-fg unfolding h-def by (auto elim!:rev-finite-subset)
moreover have continuous-on ({a<..<b} —{z. gz =0ANa <z Az <
b}) h
unfolding h-def using f-cont g-cont
by (auto intro!: continuous-intros elim:continuous-on-subset)
moreover have finite {z. gz = 0 N a <z Az < b}
using finite-fg by (auto elim!:rev-finite-subset)
moreover have z € {a<..<b}
using (zx€S» unfolding S-def by auto
ultimately show h sgnz-able (at-left x) hi£0 h sgnz-able (at-right ) hr#£0

using finite-sgnz-at-left-at-right[of h a b {z. g z=0 N a<zAz<b} x|
unfolding hl-def hr-def by blast+
qed
then have (h has-sgnx hl) (at-left x) (h has-sgnz hr) (at-right )
unfolding hl-def hr-def using sgna-able-sgnz by blast+
moreover have isCont (inverse o h) x
proof —
have f z#£0 using <z€S) g-imp-f unfolding S-def by auto
then show ?%thesis using f-cont g-cont <z€S) unfolding h-def S-def
by (auto simp add:comp-def intro!:continuous-intros elim:continuous-on-interior)

qed
ultimately show jumpF h (at-right ©) — jumpF h (at-left x) = real-of-int
(jump h 2)
using jump-jumpF|of © h] <hr#£0> <hl£0> by auto
qed auto
also have ... = cindez a b h

unfolding cindex-def of-int-sum S-def
apply (rule sum.mono-neutral-cong-right)
using jump-gnz finite-fg by (auto elim:rev-finite-subset)
finally show ?thesis by simp
qed
finally show ?thesis .
qed

5.9 Cauchy index along a path

definition cindex-path::(real = complex) = complex = int where
cindez-path g z = cindex 0 1 (At. Im (gt — z) / Re (gt — 2))

definition cindez-pathE::(real = complex) = complex = real where
cindex-pathE g z = cindezE 01 (A\t. Im (gt — 2) / Re (gt — 2))

lemma cindez-pathE-point: cindez-pathE (linepath a a) b = 0
unfolding cindex-pathE-def by (simp add:cindexE-constl)

lemma cindez-path-reversepath:
cindez-path (reversepath g) z = — cindex-path g z
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proof —
define f where f=(\t. Im (gt — z) / Re (gt — 2))
define f’ where f'=(At. Im (reversepath g t — z) / Re (reversepath g t — z))
have fo (At. 1 — t) = f’
unfolding f-def f’-def comp-def reversepath-def by auto
then have cindex 0 1 f' = — cindex 0 1 f
using cindez-linear-complof —1 0 1 f 1,simplified] by simp
then show ?thesis
unfolding cindex-path-def
apply (fold f-def f'-def)
by simp
qed

lemma cindez-pathE-reversepath: cindex-pathE (reversepath g) z = —cindez-pathE
gz

using cindezE-linear-complof —1 01 At. (Im (gt) — Im z) / (Re (g t) — Re 2)
1]

by (simp add: cindex-pathE-def reversepath-def o-def)

lemma cindex-pathE-reversepath’: cindex-pathE g z = —cindez-pathE (reversepath
9) 2

using cindexE-linear-complof —1 0 1 Xt. (Im (g t) — Im 2) / (Re (g t) — Re 2)
1]

by (simp add: cindez-pathE-def reversepath-def o-def)

lemma cindex-pathE-joinpaths:
assumes ¢1:finite-ReZ-segments g1 z and g¢2: finite-ReZ-segments g2 z and
path g1 path g2 pathfinish g1 = pathstart g2
shows cindez-pathE (g14+++¢2) z = cindez-pathE g1 z + cindez-pathE g2 z
proof —
define f where f = (\g (t:real). Im (gt — 2z) / Re (gt — z))
have cindez-pathE (g1 +++ ¢2) z = cindexE 0 1 (f (g1+++92))
unfolding cindex-pathE-def f-def by auto
also have ... = cindexE 0 (1/2) (f (91+++4g2)) + cindexE (1/2) 1 (f (91+++g2))
proof (rule cindexE-combine)
show finite-jumpFs (f (g1 +++ ¢g2)) 0 1
unfolding f-def
apply (rule finite-ReZ-segments-imp-jumpFs)
subgoal using finite-ReZ-segments-joinpaths|OF g1 g2] assms(3—5) .
subgoal using path-join-imp[OF <path g1 <path g2 <pathfinish g1 =pathstart
9] .
done
qed auto
also have ... = cindex-pathE g1 z + cindez-pathE g2 z
proof —
have cindexE 0 (1/2) (f (91+++92)) = cindex-pathE g1 z
proof —
have cindexE 0 (1/2) (f (9g1+++g2)) = cindexE 0 (1/2) (f g1 o ((x) 2))
apply (rule cindexE-cong)
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unfolding comp-def joinpaths-def f-def by auto

also have ... = cindexE 0 1 (f g1)
using cindezE-linear-complof 2 0 1/2 - 0,simplified] by simp
also have ... = cindez-pathE g1 z

unfolding cindex-pathE-def f-def by auto
finally show ?thesis .
qed
moreover have cindexE (1/2) 1 (f (¢91+++92)) = cindex-pathE g2 z
proof —
have cindexE (1/2) 1 (f (g1+++g2)) = cindexE (1/2) 1 (f 92 0 (Az. 2xx
— 1))
apply (rule cindexE-cong)
unfolding comp-def joinpaths-def f-def by auto

also have ... = cindexE 0 1 (f 92)
using cindexE-linear-complof 2 1/2 1 - —1,simplified] by simp
also have ... = cindez-pathE g2 z

unfolding cindex-pathE-def f-def by auto
finally show ?thesis .
qed
ultimately show ¢thesis by simp
qged
finally show ?thesis .
qed

lemma cindez-pathFE-constl:
assumes At. [0<t;i<1] = g t=c
shows cindex-pathE g z = 0
unfolding cindex-pathE-def
apply (rule cindexzE-constl)
using assms by auto

lemma cindez-pathE-subpath-combine:
assumes g¢:finite-ReZ-segments g zand path g and
0<a a<b b<c c<1I
shows cindez-pathE (subpath a b g) z + cindex-pathE (subpath b ¢ g) z
= cindex-pathE (subpath a ¢ g) z
proof —
define f where f = (At. Im (gt — 2z) / Re (gt — z))
have ?thesis when a=b
proof —
have cindex-pathE (subpath a b g) z = 0
apply (rule cindexr-pathE-constl)
using that unfolding subpath-def by auto
then show ¢thesis using that by auto
qed
moreover have ?thesis when b=c
proof —
have cindex-pathE (subpath b ¢ g) z = 0
apply (rule cindex-pathE-constI)
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using that unfolding subpath-def by auto
then show ¢thesis using that by auto
qed
moreover have ?thesis when a#b b#c
proof —
have [simp]:a<b b<c a<c
using that <a<b» <b<c» by auto
have cindex-pathE (subpath a b g) z = cindezE a b f
proof —
have cindex-pathE (subpath a b g) z = cindexE 0 1 (f o (Az. (b — a) x z +
a))

unfolding cindez-pathE-def f-def comp-def subpath-def by auto
also have ... = cindezF a b f
using cindezE-linear-complof b—a 0 1 f a,simplified] that(1) by auto
finally show ?thesis .
qed
moreover have cindex-pathE (subpath b ¢ g) z = cindexE b ¢ f
proof —
have cindex-pathE (subpath b ¢ g) z = cindezE 0 1 (f o (Az. (¢ — b) x = +
b))

unfolding cindex-pathE-def f-def comp-def subpath-def by auto
also have ... = cindezE b c f
using cindexE-linear-complof c—b 0 1 f b,simplified] that(2) by auto
finally show ?thesis .
qed
moreover have cindex-pathE (subpath a ¢ g) z = cindexE a ¢ f
proof —
have cindex-pathE (subpath a ¢ g) z = cindezE 0 1 (f o (Az. (¢ — a) x z +
2)

unfolding cindex-pathE-def f-def comp-def subpath-def by auto
also have ... = cindezF a c f
using cindezE-linear-complof c—a 0 1 f a,simplified] <a<c) by auto
finally show ?thesis .
qed
moreover have cindexE a b f + cindexE b ¢ f = cindexE a ¢ f
proof —
have finite-jumpFs f a c
using finite-ReZ-segments-imp-jumpFs[OF g <path ¢»] <0<a> <¢<1) unfold-
ing f-def
by (elim finite-jumpFs-subE auto)
then show ?thesis using cindexE-linear-comp cindexE-combine[OF - (a<b)
b<ey] by auto
qed
ultimately show ¢thesis by auto
qed
ultimately show ¢thesis by blast
qed

lemma cindex-pathE-shiftpath:
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assumes finite-ReZ-segments g z s€{0..1} path g and loop:pathfinish g = path-
start g
shows cindez-pathE (shiftpath s g) z = cindex-pathE g z
proof —
define f where f=(\g t. Im (g (t::real) — z) / Re (gt — z))
have cindez-pathE (shiftpath s g) z = cindezE 0 1 (f (shiftpath s g))
unfolding cindex-pathE-def f-def by simp
also have ... = cindezE 0 (1—s) (f (shiftpath s g)) + cindezE (1—s) 1 (f
(shiftpath s g))
proof (rule cindexE-combine)
have finite-ReZ-segments (shiftpath s g) z
using finite- ReZ-segments-shiftpah| OF assms] .
from finite- ReZ-segments-imp-jumpFs|OF this] path-shiftpath|OF <path g» loop
(s€{0..1}p]
show finite-jumpFs (f (shiftpath s g)) 0 1 unfolding f-def by simp
show 0 < 1 — s 1 — s < 1 using ¢s€{0..1}» by auto
qed
also have ... = cindezE 0 s (f g) + cindezE s 1 (f g)
proof —
have cindexE 0 (1—s) (f (shiftpath s g)) = cindexE s 1 (f g)
proof —
have cindezE 0 (1—s) (f (shiftpath s g)) = cindexE 0 (1—s) ((f g) o (At
t+s))
apply (rule cindezE-cong)
unfolding shiftpath-def f-def using «s€{0..1}» by (auto simp add:algebra-simps)
also have ...= cindezE s 1 (f g)
using cindezE-linear-complof 1 0 1—s f g s,simplified] .
finally show ?thesis .
qed
moreover have cindexE (1 — s) 1 (f (shiftpath s g)) = cindezE 0 s (f g)
proof —
have cindexE (1 — s) 1 (f (shiftpath s g)) = cindexE (1—s) 1 ((f g) o (At.
t+s—1))
apply (rule cindexzE-cong)
unfolding shiftpath-def f-def using «s€{0..1}» by (auto simp add:algebra-simps)
also have ... = cindexF 0 s (f g)
using cindexE-linear-complof 1 1—s 1 f g s—1,simplified)
by (simp add:algebra-simps)
finally show ?thesis .

qed

ultimately show ?thesis by auto
qed
also have ... = cindezE 0 1 (f g)

proof (rule cindexzE-combine[symmetric])
show finite-jumpF's (f g) 0 1
using finite-ReZ-segments-imp-jumpFs[OF assms(1,3)] unfolding f-def by
simp
show 0 < s s<I using «s€{0..1} by auto
qed
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also have ... = cindez-pathE g z
unfolding cindex-pathE-def f-def by simp
finally show ?thesis .
qed

5.10 Cauchy’s Index Theorem

theorem winding-number-cindex-pathFE-auz:
fixes g::real = complex
assumes finite-ReZ-segments g z and wvalid-path g z ¢ path-image g and
Re-ends:Re (g 1) = Re z Re (g 0) = Re 2
shows 2 % Re(winding-number g z) = — cindex-pathE g z
using assms
proof (induct rule:finite-ReZ-segments-induct)
case (sub0 g z)
have winding-number (subpath 0 0 g) z = 0
using <z ¢ path-image (subpath 0 0 g)> unfolding subpath-refl
by (auto intro!: winding-number-trivial)
moreover have cindez-pathE (subpath 0 0 g) z = 0
unfolding subpath-def by (auto intro:cindez-pathE-constl)
ultimately show ?case by auto
next
case (subEq s g z)
have Re-winding-0:Re(winding-number h z) = 0
when Re-const:V t€{0..1}. Re (h t) = Re z and wvalid-path h z¢path-image h
for h
proof —
have Re (winding-number (At. h t — z) 0) = (Im (Ln (pathfinish (A\t. h ¢t —
2)))
— Im (Ln (pathstart (At. h t — 2)))) / (2 * pi)
apply (rule Re-winding-number-half-right[of - 0,simplified])
using Re-const <valid-path hy <z ¢ path-image h>
apply auto
by (metis (no-types, opaque-lifting) add.commute imageFE le-add-same-cancell
order-refl
path-image-def plus-complex.simps(1))
moreover have Im (Ln (h 1 — 2)) = Im (Ln (h 0 — 2))
proof —
define z0 where 20 = h 0 — 2
define z1 where z1 = h 1 — 2
have [simp]: 200 z1#0 Re z0=0 Re z1=0
using <z ¢ path-image hy that(1) unfolding zI-def 20-def path-image-def
by auto
have ?thesis when [simp]: Im 20>0 Im z1>0
apply (fold z1-def z0-def)
using I'm-Ln-eq-pi-half|of z1] Im-Ln-eq-pi-half|of 20] by auto
moreover have ?thesis when [simp]: Im 20<0 Im z1<0
apply (fold z1-def z0-def)
using Im-Ln-eq-pi-half|of z1] Im-Ln-eq-pi-half|of 20] by auto
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moreover have Fualse when Im 20>0 Im 21<0
proof —
define f where f=(\t. Im (ht — 2))
have 3z>0. < I AN fzx =10
apply (rule IVT2'of f 1 0 0])
using that valid-path-imp-path|OF <valid-path hy]
unfolding f-def 20-def z1-def path-def
by (auto intro:continuous-intros)
then show Fulse using Re-const <z ¢ path-image h)> unfolding f-def
by (metis atLeastAtMost-iff complex-surj image-eql minus-complex.simps(2)

path-defs(4) right-minus-eq)
qed
moreover have Fualse when Im 20<0 Im z1>0
proof —
define f where f=(\t. Im (h t — 2))
have 3z>0. 2 < 1 A fz =0
apply (rule IVT’)
using that valid-path-imp-path[OF <valid-path h)]
unfolding f-def z0-def z1-def path-def
by (auto intro:continuous-intros)
then show Fulse using Re-const <z ¢ path-image h) unfolding f-def
by (metis atLeastAtMost-iff complex-surj image-eql minus-complex.simps(2)

path-defs(4) right-minus-eq)
qed
ultimately show ?thesis by argo
qed
ultimately have Re (winding-number (At. ht — z) 0) = 0
unfolding pathfinish-def pathstart-def by auto
then show %thesis using winding-number-offset by auto
qed
have ?case when s = 0
proof —
have x: Vte{0..1}. Re (g t) = Re z
using Vte{s<..<1}. Re (gt) = Re z» <Re (9 1) = Re z» <Re (g 0) = Re »»
<s=0)»
by force
have Re(winding-number g z) = 0
by (rule Re-winding-0[OF * <wvalid-path ¢> <z & path-image g>])
moreover have cindezx-pathFE g z = 0
unfolding cindex-pathE-def
apply (rule cindexE-constI)
using * by auto
ultimately show ?thesis by auto
qed
moreover have ?case when s#0
proof —
define g1 where g1 = subpath 0 s g
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define g2 where g2 = subpath s 1 g
have path g s>0
using valid-path-imp-path|OF <valid-path ¢] that «s€{0..<1}» by auto
have 2 x Re (winding-number g z) = 2xRe (winding-number g1 z) + 2xRe
(winding-number g2 z)
apply (subst winding-number-subpath-combine[OF <path ¢» <z¢path-image
g,0f 0s 1
,simplified,symmetric])
using (s€{0..<1}> unfolding gI-def g2-def by auto

also have ... = — cindex-pathE g1 z — cindez-pathE g2 z
proof —
have 2+«Re (winding-number g1 z) = — cindezx-pathE g1 z

unfolding gI-def
apply (rule subEq.hyps(5))
subgoal using subEq.hyps(1) subEq.prems(1) valid-path-subpath by fastforce

subgoal by (meson Path-Connected.path-image-subpath-subset atLeastAt-
Most-iff
atLeastLess Than-iff less-eq-real-def subEq(7) subEq.hyps(1) subEq.prems(1)

subsetCFE wvalid-path-imp-path zero-le-one)
subgoal by (metis Groups.add-ac(2) add-0-left diff-zero mult.right-neutral
subEq(2)
subEq(9) subpath-def)
subgoal by (simp add: subEq.prems(4) subpath-def)

done
moreover have 2xRe (winding-number g2 z) = — cindez-pathE g2 z
proof —

have x: Vt€{0..1}. Re (92t) = Re z

proof

fix t::real assume te{0..1}
have Re (g2t) = Re z when =0 V t=1
using that unfolding g¢2-def
by (metis <s # 0> add.left-neutral diff-add-cancel mult.commute
mult.left-neutral
mult-zero-left subEq.hyps(2) subEq.prems(8) subpath-def)
moreover have Re (g2 t) = Re z when te{0<..<1}
proof —
define t’ where t'=(1 — s) x t + s
then have t'e{s<..<I}
using that <s€{0..<1}> unfolding t’-def
apply auto
by (sos ((((A<0 x (A<1 % A<2)) *x R<1) + ((A<=1 * (A<0 * R<1))
« (R<1 * [1]72)))))
then have Re (g t') = Re z
using «Vte{s<..<I1}. Re (g t) = Re » by auto
then show ?thesis
unfolding ¢2-def subpath-def t'-def .
qed
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ultimately show Re (g2 t) = Re z using <t€{0..1}» by fastforce
qged
have Re(winding-number g2 z) = 0
apply (rule Re-winding-0[OF x])
subgoal using ¢2-def subEq.hyps(1) subEq.prems(1) wvalid-path-subpath
by fastforce
subgoal by (metis (no-types, opaque-lifting) Path-Connected.path-image-subpath-subset

atLeastAtMost-iff atLeastLess Than-iff g2-def less-eq-real-def subEq.hyps(1)

subEq.prems(1) subEq.prems(2) subsetCE wvalid-path-imp-path
zero-le-one)
done
moreover have cindez-pathE g2 z = 0
unfolding cindex-pathE-def
apply (rule cindexE-constl)
using * by auto
ultimately show ?thesis by auto

qed

ultimately show ?thesis by auto
qed
also have ... = — cindex-pathFE g z
proof —

have finite-ReZ-segments g z
unfolding finite- ReZ-segments-def
apply (rule finite-Psegments.insertl-1[of s])
subgoal using (s € {0..<1}» by auto
subgoal using <s = 0 V Re (g s) = Re 2> by auto
subgoal using «Vte{s<..<1}. Re (¢ t) = Re 2> by auto
subgoal
proof —
have finite-Psegments (At. Re (g (s x t)) = Re z) 0 1
using «finite-ReZ-segments (subpath 0 s g) 2
unfolding subpath-def finite-ReZ-segments-def by auto
from finite-Psegments-pos-linear|[of - 1/s 0 0 s,simplified, OF this]
show finite-Psegments (At. Re (gt — z) = 0) 0°s
using <s>0» unfolding comp-def by auto
qed
done
then show ?thesis
using cindex-pathE-subpath-combine[OF - <path g»,of z 0 s 1,folded g1-def
g2-def ,simplified]
«se{0..<1}» by auto
qed
finally show ?thesis .
qed
ultimately show ?case by auto
next
case (subNEq s g z)
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have Re-winding:2x Re(winding-number h z) = jumpF-pathfinish h z — jumpF-pathstart
h z
when Re-neq:Vte{0<..<1}. Re (ht) # Re z and Re (h 0) = Re z Re (h 1)
= Re z
and valid-path h z¢path-image h for h
proof —
have Re-winding-pos:
2% Re(winding-number h0 0) = jumpF-pathfinish h0 0 — jumpF-pathstart h0

when Re-gt:Vte{0<..<1}. Re (h0t) > 0 and Re (h0 0) = 0 Re (h0 1) = 0
and wvalid-path h0 0¢path-image h0 for h0
proof —
define f where f = (A\(¢::real). Im(h0 t) / Re (hO t))
define In0 where n0 = Im ( (h0 0)) / pi
define In! where In1 = Im (Ln (h0 1)) / pi
have path h0 using <valid—path h0> valid-path-imp-path by auto
have h0 040 ho 10
using path-defs(4) that(5) by fastforce+
have In1 = jumpF-pathfinish h0 0
proof —
have sgnz-at-left:((Az. Re (h0 x)) has-sgnz 1) (at-left 1)
unfolding has-sgnz-def eventually-at-left using «Vpe{0<..<1}. Re (h0
p) > 0>
by (intro exzl[where z=0],auto)
have cont:continuous (at-left 1) (At. Im (hO t))
continuous (at-left 1) (At. Re (h0 t))
using <path h0)> unfolding path-def
by (auto intro:continuous-on-at-left[of 0 1] continuous-intros)
have ?thesis when Im (h0 1) > 0
proof —
have Inl = 1/2
using Im-Ln-eq-pi-half[OF <h0 1#0>] that <Re (h0 1) = 0> unfolding
In1-def by auto
moreover have jumpF-pathfinish h0 0 = 1/2
proof —
have filterlim f at-top (at-left 1) unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff[of - Im (h0 1)])
using «Re(h0 1) = 0> sgna-at-left cont that unfolding continuous-within

by auto
then show ?thesis unfolding jumpF-pathfinish-def jumpF-def f-def by
auto
ged
ultimately show #thesis by auto
qed
moreover have ?thesis when Im (h0 1) < 0
proof —
have Inl = - 1/2

using Im-Ln-eq-pi-half[OF <h0 1#0>] that <Re (h0 1) = 0> unfolding
In1-def by auto
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moreover have jumpF-pathfinish h0 0 = — 1/2
proof —
have ((Az. Re (h0 z)) has-sgnx — sgn (Im (h0 1))) (at-left 1)
using sgnz-at-left that by auto
then have filterlim f at-bot (at-left 1)
unfolding f-def using cont that
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 1)])
unfolding continuous-within using <Re(h0 1) = 0> by auto
then show ?thesis unfolding jumpF-pathfinish-def jumpF-def f-def by

auto
qed
ultimately show ¢thesis by auto
qged
moreover have Im (h0 1)#0 using <h0 1#0> <Re (h0 1) = 0>
using complex.expand by auto
ultimately show ?thesis by linarith
qed
moreover have n0 = jumpF-pathstart h0 0
proof —

have sgnz-at-right:((Az. Re (h0 z)) has-sgnx 1) (at-right 0)
unfolding has-sgnz-def eventually-at-right using <V pe{0<..<1}. Re (h0
p) > 0»
by (intro exl[where z=1],auto)
have cont:continuous (at-right 0) (At. Im (h0 t))
continuous (at-right 0) (At. Re (h0 t))
using <path h0)> unfolding path-def
by (auto intro:continuous-on-at-right[of 0 1] continuous-intros)
have ?thesis when Im (h0 0) > 0
proof —
have In0 = 1/2
using Im-Ln-eq-pi-half[OF <h0 0#£0>] that <Re (h0 0) = 0> unfolding
In0-def by auto
moreover have jumpF-pathstart h0 0 = 1/2
proof —
have filterlim f at-top (at-right 0) unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 0)])
using <Re(h0 0) = 0> sgnx-at-right cont that unfolding continuous-within
by auto
then show ?thesis unfolding jumpF-pathstart-def jumpF-def f-def by

auto
qed
ultimately show ?thesis by auto
qged
moreover have ?thesis when Im (h0 0) < 0
proof —
have In0 = — 1/2

using Im-Ln-eq-pi-half[OF <h0 0#0>] that <Re (h0 0) = 0> unfolding
In0-def by auto
moreover have jumpF-pathstart h0 0 = — 1/2
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proof —
have filterlim f at-bot (at-right 0) unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 0)])
using (Re(h0 0) = 0» sgnz-at-right cont that unfolding continuous-within
by auto
then show ?thesis unfolding jumpF-pathstart-def jumpF-def f-def by
auto
qed
ultimately show ?thesis by auto
qged
moreover have Im (h0 0)#£0 using <h0 0#£0> <Re (h0 0) = 0>
using complex.expand by auto
ultimately show ?thesis by linarith
qed
moreover have 2xRe(winding-number h0 0) = Inl — In0
proof —
have V pepath-image h0. 0 < Re p
proof
fix p assume p € path-image h0
then obtain ¢ where #:t€{0..1} p = h0 ¢t unfolding path-image-def by
auto
have 0 < Re p when t=0 V t=1
using that t <Re (h0 0) = 0> <Re (h0 1) = 0» by auto
moreover have 0 < Re p when te{0<..<1}
using that t Re-gt[rule-format, of t| by fastforce
ultimately show 0 < Re p using t(1) by fastforce
ged
from Re-winding-number-half-right[of - 0,simplified, OF this <valid-path h0»
<0 ¢ path-image h0»]
show ?thesis unfolding InI-def In0-def pathfinish-def pathstart-def
by (auto simp add:field-simps)
qed
ultimately show ?thesis by auto
qed

have ?thesis when Vite{0<..<1}. Re (ht) < Re z
proof —
let ?hu= At. z — h t
have 2xRe(winding-number ?hu 0) = jumpF-pathfinish ?hu 0 — jumpF-pathstart
Zhu 0
apply(rule Re-winding-pos)
subgoal using that by auto
subgoal using <Re (h 0) = Re 2> by auto
subgoal using <Re (h 1) = Re 2> by auto
subgoal using <wvalid-path h> valid-path-offset valid-path-uminus-comp
unfolding comp-def by fastforce
subgoal using (z¢path-image hy by (simp add: image-iff path-defs(4))
done
moreover have winding-number ?hu 0 = winding-number h z
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using winding-number-offset[of h 2|
winding-number-uminus-complof \t. h t— z 0,unfolded comp-def ,simplified]

<valid-path hy <z¢path-image hy by auto
moreover have jumpF-pathfinish ?hu 0 = jumpF-pathfinish h z
unfolding jumpF-pathfinish-def
apply (auto intro!:jumpF-cong eventuallyl)
by (auto simp add:divide-simps algebra-simps)
moreover have jumpF-pathstart ?hu 0 = jumpF-pathstart h z
unfolding jumpF-pathstart-def
apply (auto intro':jumpF-cong eventuallyl)
by (auto simp add:divide-simps algebra-simps)
ultimately show ?thesis by auto
qed
moreover have ?thesis when Vite{0<..<1}. Re (ht) > Re z
proof —
let ?hu= Mt. ht — 2
have 2xRe(winding-number ?hu 0) = jumpF-pathfinish ?hu 0 — jumpF-pathstart
Zhu 0
apply(rule Re-winding-pos)
subgoal using that by auto
subgoal using <Re (h 0) = Re 2> by auto
subgoal using <Re (h 1) = Re 2> by auto
subgoal using <wvalid-path h> valid-path-offset valid-path-uminus-comp
unfolding comp-def by fastforce
subgoal using (z¢path-image h> by simp
done
moreover have winding-number ?hu 0 = winding-number h z
using winding-number-offset|[of h z] <valid-path hy <z¢path-image h) by auto
moreover have jumpF-pathfinish ?hu 0 = jumpF-pathfinish h z
unfolding jumpF-pathfinish-def by auto
moreover have jumpF-pathstart ?hu 0 = jumpF-pathstart h z
unfolding jumpF-pathstart-def by auto
ultimately show ?thesis by auto
qed
moreover have (Vie{0<..<1}. Re (ht) > Re z) V (Vte{0<..<1}. Re (h t)
< Re z)
proof (rule ccontr)
assume — ((Vte{0<..<1}. Rez < Re (ht)) V (Vte{0<..<I1}. Re (ht) <
Re z))
then obtain ¢! t2 where t:t1e{0<..<1} t2€{0<..<1} Re (h t1)<Re z Re
(h t2)>Re z
unfolding path-image-def by auto
have Fulse when t1<t2
proof —
have continuous-on {t1..t2} (At. Re (h t))
using valid-path-imp-path[OF <valid-path hy] t unfolding path-def
by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-
ous-on-subset
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eucl-less-le-not-le greaterThanLess Than-iff)
then obtain ¢’ where t":.t'>t1 t'<t2 Re (h t') = Re z
using IVT'[of At. Re (ht) t1 - t2] t <t1<t2) by auto
then have t'€{0<..<1} using t by auto
then have Re (h t') # Re z using Re-neq by auto
then show Fulse using «Re (h t') = Re 2> by simp
qed
moreover have Fualse when t1>t2
proof —
have continuous-on {t2..t1} (At. Re (h t))
using valid-path-imp-path[OF <valid-path hy] t unfolding path-def
by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-
ous-on-subset
eucl-less-le-not-le greaterThanLess Than-iff)
then obtain ¢’ where t":.t'<t1 t">t2 Re (h t') = Re z
using IVT2'[of At. Re (h t) t1 - t2] t <t1>t2» by auto
then have t'€{0<..<1} using t by auto
then have Re (h t') # Re z using Re-neq by auto
then show False using (Re (h t') = Re 2> by simp
qed
ultimately show Fulse by linarith
qed
ultimately show ¢thesis by blast
qed

have indez-ends:cindez-pathE h z = jumpF-pathstart h z — jumpF-pathfinish h z
when Re-neq:Vte{0<..<1}. Re (ht) # Re z and valid-path h for h
proof —
define f where f = (At. Im (ht — 2) / Re (h t — 2))
define Ri where Ri = {z. jumpF [ (at-right z) 2 0N 0 < x ANz < 1}
define Le where Le = {z. jumpF f (at-leftx) # 0 N0 <z Az < 1}
have path h using <valid-path hy valid-path-imp-path by auto
have jumpF-eq0: jumpF f (at-left ) = 0 jumpF f (at-right £) = 0 when
ze{0<..<1} for x
proof —
have Re (h z) # Re z
using «Vte{0<..<1}. Re (ht) # Re 2> that by blast
then have isCont f x
unfolding f-def using continuous-on-interior|OF <path h)[unfolded path-def]]
that
by (auto introl: continuous-intros isCont-Im isCont-Re)
then show jumpF f (at-left ©) = 0 jumpF f (at-right x) = 0
unfolding continuous-at-split by (auto intro: jumpF-not-infinity)
qed
have cindez-pathE h z = cindexFE 0 1 f
unfolding cindex-pathE-def f-def by simp
also have ... = sum (A\x. jumpF f (at-right z)) Ri — sum (\z. jumpF [ (at-left
x)) Le
unfolding cindexE-def Ri-def Le-def by auto
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also have ... = jumpF f (at-right 0) — jumpF f (at-left 1)
proof —
have sum (Az. jumpF f (at-right x)) Ri = jumpF f (at-right 0)
proof (cases jumpF f (at-right 0) = 0
case True
hence Fulse if x € Ri for z using that
by (cases x = 0) (auto simp: jumpF-eq0 Ri-def)
hence Ri = {} by blast
then show ?thesis using True by auto
next
case Fulse
hence z € Ri <— z = 0 for z using that
by (cases x = 0) (auto simp: jumpF-eq0 Ri-def)
hence Ri = {0} by blast
then show ?thesis by auto
qed
moreover have sum (Az. jumpF f (at-left x)) Le = jumpF f (at-left 1)
proof (cases jumpF f (at-left 1) = 0)
case True
then have Le = {}
unfolding Le-def using jumpF-eq0(1) greaterThanLessThan-iff by
fastforce
then show ?thesis using True by auto
next
case Fulse
then have Le = {1}
unfolding Le-def using jumpF-eq0(1) greaterThanLessThan-iff by

fastforce
then show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
also have ... = jumpF-pathstart h z — jumpF-pathfinish h z

unfolding jumpF-pathstart-def jumpF-pathfinish-def f-def by simp
finally show ?thesis .
qed

have ?case when s=0
proof —
have 2 x Re (winding-number g z) = jumpF-pathfinish g z — jumpF-pathstart
gz
apply (rule Re-winding)
using subNEq that by auto
moreover have cinder-pathE g z = jumpF-pathstart g z — jumpF-pathfinish g

apply (rule indez-ends)
using subNFEq that by auto
ultimately show ?thesis by auto
qed
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moreover have ?case when s#£0
proof —
define g1 where g1 = subpath 0 s g
define g2 where g2 = subpath s 1 g
have path g s>0
using valid-path-imp-path[OF <valid-path ¢] that <s€{0..<1}> by auto
have 2 % Re (winding-number g z) = 2xRe (winding-number g1 z) + 2xRe
(winding-number g2 z)
apply (subst winding-number-subpath-combine[OF <path ¢ <z¢path-image
gr,0f 0s 1
,simplified,symmetric])
using (s€{0..<1}> unfolding gI-def g2-def by auto

also have ... = — cindex-pathE g1 z — cindez-pathE g2 z
proof —
have 2xRe (winding-number g1 z) = — cindez-pathE g1 z

unfolding g1-def
apply (rule subNEq.hyps(5))
subgoal using subNEq.hyps(1) subNEq.prems(1) valid-path-subpath by
fastforce
subgoal by (meson Path-Connected.path-image-subpath-subset atLeastAt-
Most-iff
atLeastLess Than-iff less-eq-real-def subNEq(7) subNEq.hyps(1) sub-
NEq.prems(1)
subsetCFE valid-path-imp-path zero-le-one)

subgoal by (metis Groups.add-ac(2) add-0-left diff-zero mult.right-neutral
subNEq(2)
subNEq(9) subpath-def)
subgoal by (simp add: subNEq.prems(4) subpath-def)
done
moreover have 2xRe (winding-number g2 z) = — cindez-pathE g2 z
proof —
have x:Vte{0<..<1}. Re (g2 t) # Re z
proof
fix t::real assume ¢ € {0<..<1}
define ¢’ where t'=(1 — s) x t + s
have t'e{s<..<1} unfolding t’-def using «sc{0..<1}> <t € {0<..<1}
apply (auto simp add:algebra-simps)
by (sos ((((A<0 x (A<1 % A<2)) * R<1) + ((A<=1 * (A<1 % R<1))
« (R<1 + [1]2)))))
then have Re (g t') # Re z using «Vt€{s<..<I}. Re (g t) # Re z» by
auto
then show Re (g2 t) # Re z unfolding g¢2-def subpath-def t’-def by auto
qged
have 2xRe (winding-number g2 z) = jumpF-pathfinish g2 z — jumpF-pathstart
g2 z
apply (rule Re-winding[OF «])
subgoal by (metis add.commute add.right-neutral g2-def mult-zero-right
subNEq.hyps(2)
subpath-def that)
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subgoal by (simp add: <g2 = subpath s 1 ¢» subNEq.prems(8) subpath-def)
subgoal using ¢2-def subNEq.hyps(1) subNEq.prems(1) valid-path-subpath
by fastforce
subgoal by (metis (no-types, opaque-lifting) Path-Connected.path-image-subpath-subset

<path ¢> atLeastAtMost-iff atLeastLessThan-iff g2-def less-eq-real-def
subNEq.hyps(1)
subNEq.prems(2) subsetCE zero-le-one)
done
moreover have cindex-pathE g2 z = jumpF-pathstart g2 z — jumpF-pathfinish
92 z
apply (rule indez-ends|OF x])
using ¢2-def subNEq.hyps(1) subNEq.prems(1) valid-path-subpath by
fastforce
ultimately show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
also have ... = — cindez-pathFE g z
proof —
have finite-ReZ-segments g z
unfolding finite- ReZ-segments-def
apply (rule finite-Psegments.insertl-2[of s|)
subgoal using <s € {0..<1}> by auto
subgoal using «<s = 0 V Re (g s) = Re 2> by auto
subgoal using Vte{s<..<I1}. Re (g t) # Re 2> by auto
subgoal
proof —
have finite-Psegments (At. Re (g (s x t)) = Re z) 0 1
using «finite-ReZ-segments (subpath 0 s g) 2
unfolding subpath-def finite-ReZ-segments-def by auto
from finite-Psegments-pos-linear[of - 1/s 0 0 s,simplified, OF this)]
show finite-Psegments (At. Re (gt — z) = 0) 0's
using ¢s>0)> unfolding comp-def by auto
qed
done
then show ?thesis
using cindex-pathE-subpath-combine[OF - <path g>,of z 0 s 1,folded g1-def
g2-def ,simplified]
«se{0..<1}» by auto
qed
finally show ?thesis .
qed
ultimately show ?case by auto
qed

theorem winding-number-cindex-pathE:

fixes g::real = complex
assumes finite-ReZ-segments g z and wvalid-path g z ¢ path-image g and
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loop: pathfinish g = pathstart g
shows winding-number g z = — cindex-pathE g z | 2
proof (rule finite-ReZ-segment-cases|OF assms(1)])
fix s assume s € {0..<1} s=0V Re(gs) = Re z
and const:Vte{s<..<1}. Re (g t) = Re z
and finite: finite-ReZ-segments (subpath 0 s g) z
have Re (g 1) = Re z
apply(rule continuous-constant-on-closure[of {s<..<1} At. Re(g t)])
subgoal using valid-path-imp-path|OF <valid-path g>,unfolded path-def] <s€{0..<1}»
by (auto intro!:continuous-intros continuous-Re elim:continuous-on-subset)
subgoal using const by auto
subgoal using <s€{0..<1}» by auto

done
moreover then have Re (g 0) = Re z using loop unfolding path-defs by auto
ultimately have 2 x Re (winding-number g z) = — cindez-pathE g z

using winding-number-cindez-pathE-auz|of g z] assms(1—3) by auto
moreover have winding-number g z € Z
using integer-winding-number| OF - loop <z¢ path-image ¢] valid-path-imp-path[OF
<valid-path ¢»]
by auto
ultimately show winding-number g z = — cindex-pathE g 2z | 2
by (metis add.right-neutral complez-eq complex-is-Int-iff mult-zero-right
nonzero-mult-div-cancel-left of-real-0 zero-neg-numeral)
next
fix s assume s € {0..<1} s=0V Re (gs) = Re z
and Re-neq:Vte{s<..<I1}. Re (g t) # Re z
and finite: finite-ReZ-segments (subpath 0 s g) z
have path g using <valid-path g) valid-path-imp-path by auto

let ?goal = 2 * Re (winding-number g z) = — cindex-pathE g z
have ?goal when s=0
proof —

have indez-ends:cindex-pathE h z = jumpF-pathstart h z — jumpF-pathfinish h

when Re-neq:Vte{0<..<1}. Re (h t) # Re z and valid-path h for h
proof —
define f where f = (A\t. Im (ht — 2) / Re (h t — 2))
define Ri where Ri = {z. jumpF f (at-right x) # 0 N 0 <z Az < 1}
define Le where Le = {z. jumpF f (at-leftz) # 0 N0 <z ANz <1}
have path h using <valid-path h) valid-path-imp-path by auto
have jumpF-eq0: jumpF f (at-left ©) = 0 jumpF f (at-right ) = 0 when
ze{0<..<1} for z
proof —
have Re (h x) # Re 2
using «Vte{0<..<1}. Re (h t) # Re z> that by blast
then have isCont f x
unfolding f-def using continuous-on-interior|OF <path h)[unfolded
path-def]] that
by (auto intro!: continuous-intros isCont-Im isCont-Re)
then show jumpF f (at-left x) = 0 jumpF f (at-right ) = 0
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unfolding continuous-at-split by (auto intro: jumpF-not-infinity)
qed
have cindez-pathE h z = cindexE 0 1 f
unfolding cindex-pathE-def f-def by simp
also have ... = sum (Az. jumpF f (at-right x)) Ri — sum (\z. jumpF f (at-left
x)) Le
unfolding cindexE-def Ri-def Le-def by auto
also have ... = jumpF f (at-right 0) — jumpF f (at-left 1)
proof —
have sum (Az. jumpF f (at-right x)) Ri = jumpF f (at-right 0)
proof (cases jumpF f (at-right 0) = 0)
case True
hence Fulse if © € Ri for x using that
by (cases x = 0) (auto simp: jumpF-eq0 Ri-def)
hence Ri = {} by blast
then show ?thesis using True by auto
next
case Fulse
hence z € Ri +— z = 0 for z using that
by (cases x = 0) (auto simp: jumpF-eq0 Ri-def)
then have Ri = {0} by blast
then show ?thesis by auto
qged
moreover have sum (Az. jumpF f (at-left z)) Le = jumpF' [ (at-left 1)
proof (cases jumpF f (at-left 1) = 0)
case True
then have Le = {}
unfolding Le-def using jumpF-eq0(1) greaterThanLessThan-iff by
fastforce
then show #?thesis using True by auto
next
case Fulse
then have Le = {1}
unfolding Le-def using jumpF-eq0(1) greaterThanLessThan-iff by

fastforce
then show %thesis by auto
qged
ultimately show ?thesis by auto
qed
also have ... = jumpF-pathstart h z — jumpF-pathfinish h z

unfolding jumpF-pathstart-def jumpF-pathfinish-def f-def by simp
finally show ?thesis .
qed
define fI where fI=(\t. Im (g t — 2))
define fR where fR=(At. Re (g t — 2))
have fI: (fI —— fI 0) (at-right 0) (fIl —— fI 1) (at-left 1)
proof —
have continuous (at-right 0) fI
apply (rule continuous-on-at-right[of - 1])
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using «path ¢» unfolding fI-def path-def by (auto intro:continuous-intros)
then show (fI —— fI 0) (at-right 0) by (simp add: continuous-within)
next
have continuous (at-left 1) fI
apply (rule continuous-on-at-left[of 0])
using «path ¢» unfolding fI-def path-def by (auto intro:continuous-intros)
then show (fI —— fI 1) (at-left 1) by (simp add: continuous-within)
qed
have fR: (fR —— 0) (at-right 0) (fR —— 0) (at-left 1) when Re (g 0) =
Re z
proof —
have continuous (at-right 0) fR
apply (rule continuous-on-at-right[of - 1])
using <path ¢» unfolding fR-def path-def by (auto intro:continuous-intros)

then show (fR —— 0) (at-right 0) using that unfolding fR-def by (simp
add: continuous-within)
next
have continuous (at-left 1) fR
apply (rule continuous-on-at-left[of 0])
using ¢path ¢» unfolding fR-def path-def by (auto intro:continuous-intros)

then show (fR —— 0) (at-left 1)
using that loop unfolding fR-def path-defs by (simp add: continuous-within)
qed
have (Vte{0<..<1}. Re (gt) > Re z) V (Vte{0<..<1}. Re (g t) < Re z)
proof (rule ccontr)
assume - ((Vie{0<..<1}. Rez < Re (g t)) V (Vte{0<..<1}. Re (g t) <
Re z))
then obtain ¢1 t2 where t:t1€{0<..<1} t2€{0<..<1} Re (g t1)<Re z Re
(g t2)>Re z
unfolding path-image-def by auto
have Fulse when t1<t2
proof —
have continuous-on {t1..t2} (At. Re (g t))
using valid-path-imp-path[OF <valid-path ¢»] t unfolding path-def
by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-
ous-on-subset
eucl-less-le-not-le greaterThanLess Than-iff)
then obtain ¢’ where t":.t'>¢1 t'<t2 Re (g t') = Re z
using IVT'[of At. Re (g t) t1 - t2] t <t1<t2» by auto
then have t'€{0<..<1} using t by auto
then have Re (g t’) # Re z using Re-neq <s=0) by auto
then show Fulse using <Re (g t') = Re 2> by simp
qed
moreover have Fulse when t1>t2
proof —
have continuous-on {t2..t1} (At. Re (g t))
using valid-path-imp-path[OF <valid-path ¢>] ¢t unfolding path-def
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by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-
ous-on-subset
eucl-less-le-not-le greaterThanLess Than-iff)
then obtain ¢’ where t":.t'<t1 t">t2 Re (g t') = Re z
using IVT2'[of At. Re (g t) t1 - t2] t <t1>t2) by auto
then have t'€{0<..<1} using t by auto
then have Re (g t') # Re z using Re-neq <s=0> by auto
then show Fulse using (Re (g t') = Re 2> by simp
qed
ultimately show Fualse by linarith
qed
moreover have ?thesis when Re-pos:Vte{0<..<1}. Re (g t) > Re z
proof —
have Re (winding-number g z) = 0
proof —
have V pepath-image g. Re z < Re p
proof
fix p assume p € path-image g
then obtain ¢ where 0<t t<1 p = g ¢t unfolding path-image-def by auto
have Re z < Re (g t)
apply (rule continuous-ge-on-closure[of {0<..<1} At. Re (g t) t Re
z,simplified))
subgoal using valid-path-imp-path[OF <valid-path g),unfolded path-def]
by (auto intro:continuous-intros)
subgoal using «0<t» «t<1» by auto
subgoal for z using that[rule-format,of x] by auto
done
then show Re z < Re p using <p = g t» by auto
qed
from Re-winding-number-half-right| OF this <valid-path ¢> <z¢path-image ¢]
loop
show ?thesis by auto
qed
moreover have cindex-pathE g z = 0
proof —
have cindez-pathE g z = jumpF-pathstart g z — jumpF-pathfinish g z
using index-ends[OF - <valid-path ¢3] Re-neq <s=0> by auto
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
0) # Re z
proof —
have jumpF-pathstart g z = 0
using jumpF-pathstart-eq-0|OF <path ¢] that unfolding path-defs by
auto
moreover have jumpF-pathfinish g z=0
using jumpF-pathfinish-eq-0[OF <path ¢>] that loop unfolding path-defs
by auto
ultimately show ?thesis by auto
qged
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
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0) = Re z
proof —

have [simpl:(fR has-sgnz 1) (at-right 0)
unfolding fR-def has-sgnz-def eventually-at-right
apply (rule exI[where z=1])
using Re-pos by auto

have [simp]:(fR has-sgnz 1) (at-left 1)
unfolding fR-def has-sgna-def eventually-at-left
apply (rule exI[where z=0])
using Re-pos by auto

have fI 00

proof (rule ccontr)
assume - fI 0 # 0
then have g 0 =z using (Re (g 0) = Re 2>

unfolding fI-def by (simp add: complex.expand)

then show Fulse using <z ¢ path-image ¢» unfolding path-image-def

by auto
qed
moreover have ?thesis when fI 0>0
proof —
have jumpF-pathstart g 2 = 1/2
proof —

have (LIM z at-right 0. flx / fR z :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0])
using that fI fR[OF <Re (g 0) = Re 2] by simp-all
then show #“thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto
qed
moreover have jumpF-pathfinish g z = 1/2
proof —
have fI 1>0 using loop that unfolding path-defs fI-def by auto
then have (LIM z at-left 1. fTx | fR x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1])
using that fI fR{OF <Re (g 0) = Re 2] by simp-all
then show ?thesis unfolding jumpF-pathfinish-def fl-def fR-def
JumpF-def by auto
qed
ultimately show ¢thesis by simp
qed
moreover have ?thesis when fI 0<0
proof —
have jumpF-pathstart g z = — 1/2
proof —
have (LIM z at-right 0. fl = | fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0])
using that fI fR[OF <Re (g 0) = Re 2)] by simp-all
then show ?thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto
qed
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moreover have jumpF-pathfinish g z = — 1/2
proof —
have fI 1 <0 using loop that unfolding path-defs fI-def by auto
then have (LIM z at-left 1. flx | fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1])
using that fI fR{OF <Re (g 0) = Re 23] by simp-all
then show ?thesis unfolding jumpF-pathfinish-def fl-def fR-def
jumpF-def by auto

qed
ultimately show ?thesis by simp
qed
ultimately show ¢thesis by linarith
qged
ultimately show ?thesis by auto
qed
ultimately show %thesis by auto
qed
moreover have ?thesis when Re-neg:Vt€{0<..<1}. Re (g t) < Re z
proof —
have Re (winding-number g z) = 0
proof —
have V pepath-image g. Re z > Re p
proof

fix p assume p € path-image g
then obtain ¢t where 0<t t<1 p = g ¢t unfolding path-image-def by auto
have Re z > Re (g t)
apply (rule continuous-le-on-closure[of {0<..<1} At. Re (g t) t Re
z,simplified))
subgoal using valid-path-imp-path[OF <valid-path g),unfolded path-def]
by (auto intro:continuous-intros)
subgoal using «0<t» «(t<1» by auto
subgoal for z using that[rule-format,of x] by auto

done
then show Re z > Re p using <p = g t» by auto
qed
from Re-winding-number-half-left[OF this <valid-path ¢> <z¢path-image ¢]
loop
show ?thesis by auto
qed
moreover have cindex-pathE g z = 0
proof —
have cindez-pathE g z = jumpF-pathstart g z — jumpF-pathfinish g z
using index-ends[OF - <valid-path ¢3] Re-neq <s=0> by auto
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
0) # Re z
proof —
have jumpF-pathstart g z = 0
using jumpF-pathstart-eq-0|OF <path ¢] that unfolding path-defs by
auto
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moreover have jumpF-pathfinish g z=0
using jumpF-pathfinish-eq-0[OF <path ¢>] that loop unfolding path-defs

by auto
ultimately show ?thesis by auto
qged
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
0) = Re z
proof —

have [simpl:(fR has-sgnz — 1) (at-right 0)
unfolding fR-def has-sgnz-def eventually-at-right
apply (rule exI[where z=1])
using Re-neg by auto

have [simp]:(fR has-sgnz — 1) (at-left 1)
unfolding fR-def has-sgnz-def eventually-at-left
apply (rule exI[where z=0])
using Re-neg by auto

have fI 00

proof (rule ccontr)
assume — fI 0 # 0
then have g 0 =z using <Re (g 0) = Re »»

unfolding fI-def by (simp add: complex.expand)
then show Fulse using <z ¢ path-image ¢» unfolding path-image-def

by auto
qed
moreover have ?thesis when fI 0>0
proof —
have jumpF-pathstart g 2 = — 1/2
proof —

have (LIM z at-right 0. fl z / fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0])
using that fI fR[OF <Re (g 0) = Re 2)] by simp-all
then show ?thesis unfolding jumpF-pathstart-def fl-def fR-def
jumpF-def by auto
qed
moreover have jumpF-pathfinish g z = — 1/2
proof —
have fI 1>0 using loop that unfolding path-defs fI-def by auto
then have (LIM z at-left 1. fTx | fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1])
using that fI fR[OF <Re (g 0) = Re 2] by simp-all
then show ?thesis unfolding jumpF-pathfinish-def fI-def fR-def
jumpF-def by auto
qed
ultimately show ¢thesis by simp
qed
moreover have ?thesis when fI 0<0
proof —
have jumpF-pathstart g z = 1/2
proof —
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have (LIM z at-right 0. fl z / fR x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0])
using that fI fR[OF <Re (g 0) = Re 2] by simp-all
then show ?thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto
qed
moreover have jumpF-pathfinish g z = 1/2
proof —
have fI 1<0 using loop that unfolding path-defs fI-def by auto
then have (LIM z at-left 1. flx | fR x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1])
using that fI fR[OF <Re (g 0) = Re 2] by simp-all
then show ?thesis unfolding jumpF-pathfinish-def fl-def fR-def
JumpF-def by auto
qed
ultimately show ¢thesis by simp
qed
ultimately show ¢thesis by linarith
qed
ultimately show ?thesis by auto
qed
ultimately show %thesis by auto
qed
ultimately show ?thesis by auto
qed
moreover have ?goal when s#£(
proof —
have Re (g s) = Re z using <s = 0 V Re (g s) = Re 2z that by auto
define ¢’ where g’ = shiftpath s g
have 2 x Re (winding-number g’ z) = — cindez-pathE g’ z
proof (rule winding-number-cindez-pathE-auz)
show Re (¢’ 1) = Re z Re (¢’ 0) = Re 2
using (Re (g s) = Re 2> «s€{0..<1}> <s£0»
unfolding ¢’-def shiftpath-def by simp-all
show wvalid-path g’
using valid-path-shiftpath| OF <valid-path g» loop,of s,folded g'-def] <s€{0..<1}
by auto
show z ¢ path-image g’
using s € {0..<1}) assms(3) g'-def loop path-image-shiftpath by fastforce
show finite-ReZ-segments g’ 2
using finite- ReZ-segments-shiftpah| OF «finite-ReZ-segments g 2> - <path g
loop] «<se{0..<1}>
unfolding ¢’-def by auto
qed
moreover have winding-number ¢’ z = winding-number g z
unfolding g’-def
apply (rule winding-number-shiftpath|OF <path ¢» <z ¢ path-image g» loop])
using «s€{0..<1}> by auto
moreover have cindex-pathE g’ z = cindex-pathE g z

129



unfolding g’-def
apply (rule cindex-pathE-shiftpath[OF «finite-ReZ-segments g z» - <path g»
loop))
using «s€{0..<1}» by auto
ultimately show ?thesis by auto
qed
ultimately have ?goal by auto
moreover have winding-number g z € Z
using integer-winding-number[OF - loop <z¢ path-image ¢»] valid-path-imp-path[OF
walid-path ¢]
by auto
ultimately show winding-number g z = — cindex-pathE g z | 2
by (metis add.right-neutral complez-eq complez-is-Int-iff mult-zero-right
nonzero-mult-div-cancel-left of-real-0 zero-neg-numeral)
qed

REMARK: The usual statement of Cauchy’s Index theorem (i.e. An-
alytic Theory of Polynomials (2002): Theorem 11.1.3) is about the equal-
ity between the number of polynomial roots and the Cauchy index, which
is the joint application of [finite-ReZ-segments ?q ?z; valid-path %g; ?z ¢
path-image ?g; pathfinish ?g = pathstart ?g9] = winding-number ?g ?z =
complex-of-real (— cindex-pathE ?g ?z / 2) and [open ?S; connected ?S; ?f
holomorphic-on 2S5 — ?poles; ?h holomorphic-on 2S; valid-path ?g; pathfin-
ish 29 = pathstart ?g; path-image g C 25 — {w € 2S. o%fw =0V w €
Zpoles}; ¥V z. z ¢ 25 — winding-number ?q z = 0; finite {w € 25. ?f w
= 0 V w € ?poles}; ¥V pe?S N Zpoles. is-pole ?f p] = contour-integral ?g
(Az. deriv ?f x % ?h x | ?f ) = complex-of-real (2 * pi) x 1 * (>, pe{w €
2S. 2fw =0V w € ?poles}. winding-number ?g p x ?h p * complezx-of-int
(zorder 2f p)).

end

6 Evaluate winding numbers by calculating Cauchy
indices

theory Winding-Number-Eval imports
Cauchy-Index-Theorem
HOL— Eisbach. Eisbach-Tools

begin

6.1 Misc

lemma not-on-closed-segmentI:
fixes z::'a::euclidean-space
assumes norm (z — a) xg (b — z) # norm (b — z) xr (z — a)
shows z ¢ closed-segment a b
using assms by (auto simp add:between-mem-segment|[symmetric] between-norm)
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lemma not-on-closed-segmentI-complex:
fixes z::complex
assumes (Re b — Re z) x (Im z — Im a) # (Im b — Im z) x (Re z — Re a)
shows z ¢ closed-segment a b
proof (cases z#a A z#£b)
case True
then have cmod (z — a)#0 cmod (b — 2)#0 by auto
then have (Re b — Re z) x (Imz — Im a) = (Im b — Im z) x (Re z — Re a)
when
emod (z — a) x (Re b — Re z) = cmod (b — z) x (Re 2 — Re a)
emod (z — a) x (Imb — Im z) = cmod (b — 2) x (Im z — Im a)
using that by algebra
then show ?thesis using assms
apply (intro not-on-closed-segment)
by (auto simp add:scaleR-complex.ctr simp del: Complez-eq)
next
case Fulse
then have (Re b — Re z) * (Imz — Im a) = (Im b — Im 2) x (Re z — Re a)
by auto
then have Fulse using assms by auto
then show ?thesis by auto
qged

6.2 finite intersection with the two axes

definition finite-azes-cross::(real = complex) = complex = bool where
finite-azes-cross g z = finite {t. (Re (9t—2) =0V Im (gt—2) =0) AN 0 <t A
t<1}

lemma finite-cross-intros:
[Re a#Re z V Re b #Re z; Im a#Im z V Im b#Im z]=>finite-axes-cross (linepath
ab)z
[st # tt; r # 0] = finite-azes-cross (part-circlepath 20 r st tt) z
[finite-axes-cross g1 z;finite-axes-cross g2 z]| = finite-axes-cross (g1 +++92) z
proof —
assume asm:Re a#Re z V Re b #Re z Im a#Im z V Im b#Im z
let 251={t. Re (linepath a bt—2) =0 N0 <t ANt <1}
and 252={t. Im (linepath a bt—2) = 0 N 0 <t Nt < 1}
have finite 751
using linepath-half-finite-inter[of a Complex 1 0 Re z b] asm(1)
by (auto simp add:inner-complex-def)
moreover have finite 952
using linepath-half-finite-inter[of a Complez 0 1 Im z b] asm(2)
by (auto simp add:inner-complez-def)
moreover have {t. (Re (linepath a b t—z) = 0 V Im (linepath a b t—z) = 0) A
0<tAt<1}
= 9251 U 252
by fast
ultimately show finite-azes-cross (linepath a b) z
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unfolding finite-azes-cross-def by force
next
assume asm: st #tt r#£0
let 2S1={t. Re (part-circlepath 20 r st tt t—z) = 0 AN 0 < t ANt < 1}
and ?52={t. Im (part-circlepath z0 r st tt t—z) = 0 N 0 < t ANt < 1}
have finite 251
using part-circlepath-half-finite-inter|of st tt r Complex 1 0 20 Re z| asm
by (auto simp add:inner-complez-def Complex-eq-0)
moreover have finite 252
using part-circlepath-half-finite-inter|of st tt r Complex 0 1 z0 Im z] asm
by (auto simp add:inner-complex-def Complex-eq-0)
moreover have {t. (Re (part-circlepath 20 r st tt t—z) = 0
V Im (part-circlepath 20 v st tt t—z) = 0) N 0 < t ANt < 1} = 251 U 252
by fast
ultimately show finite-azxes-cross (part-circlepath 20 r st tt) z
unfolding finite-azes-cross-def by auto
next
assume asm:finite-axes-cross gl z finite-axes-cross g2 z
let ?g1R={¢. Re (91 t—2)=0AN0<tANt< 1}
and %g11={t. Im (g1 t—2) = 0 N0 <t ANt < 1}
and ?g2R={t. Re (¢2t—2)=0N0<tANt< 1}
and 2g2I={t. Im (g2t—2) =0 N0 < tANt< 1}
have finite ?g1R finite ?g11
proof —
have {t. (Re (g1t —2) =0V Im (glt—2)=0)AN0<tANt<1}= %IR
U g1l
by force
then have finite (?g1R U ?¢11)
using asm(1) unfolding finite-azes-cross-def by auto
then show finite ?g1R finite ?g11 by blast+
qed
have finite ?92R finite 2921
proof —
have {t. (Re (g2t —2) =0V Im (g2t —2)=0) N0 <t ANt <1} = %2R
U 2g2I
by force
then have finite (?g2R U 292I)
using asm(2) unfolding finite-azes-cross-def by auto
then show finite ?g2R finite 2921 by blast+
qed
let 251 = {t. Re ((91 +++ g2)t —2)=0AN0<tANt< 1}
and 252 = {t. Im ((91 +++ g2)t —2)=0AN0 <t ANt <1}
have finite 251
using finite-half-joinpaths-inter[of g1 Complex 1 0 Re z g2,simplified]
finite 2g1R> <finite 2g2R)»
by (auto simp add:inner-complez-def)
moreover have finite 252
using finite-half-joinpaths-inter|of g1 Complex 0 1 Im z ¢2,simplified)
<finite 2g11> <finite 721>
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by (auto simp add:inner-complex-def)
moreover have {t. (Re ((91 +++ g2)t — 2z) =0V Im ((91 +++ g2) t — 2)
—O)ANO<tAL< I}
= 951 U 252
by force
ultimately show finite-azes-cross (g1 +++ g2) =z
unfolding finite-azxes-cross-def
by auto
qed

lemma cindex-path-joinpaths:
assumes finite-azes-cross g1 z finite-axes-cross g2 z
and path g1 path g2 pathfinish g1 = pathstart g2 pathfinish g1+#z
shows cindez-path (g1+++g2) z = cindex-path g1 z + jumpF-pathstart g2 z
— jumpF-pathfinish g1 z + cindex-path g2 z
proof —
define h12 where h12 = (At. Im ((g1+++¢2) t — 2) / Re ((g1+++g2) t —
2)
let 2h =Xg. A\t. Im (gt — 2) / Re (gt — 2)
have cindex-path (g1+++g2) z = cindex 0 1 h12
unfolding cindex-path-def h12-def by simp
also have ... = cindex 0 (1/2) h12 + jump h12 (1/2) + cindex (1/2) 1 h12
proof (rule cindex-combine)
have finite-azes-cross (¢1+++9¢2) z using assms by (auto intro:finite-cross-intros)
then have finite {t. Re ((g14+++g2) t — 2) = 0 N 0<t A t<1}
unfolding finite-axes-cross-def by (auto elim:rev-finite-subset)
moreover have jump h12t = 0 when Re ((g1 +++ g2)t —2) £ 00 < tt
< 1 fort
apply (rule jump-Im-divide-Re-0[of At. (g1 +++g2) t— z,folded h12-def,OF
- that])
using assms by (auto intro:path-offset)
ultimately show finite {z. jump h12x # 0N 0O <z ANz <1}
apply (elim rev-finite-subset)

by auto

qged auto

also have ... = cindex-path g1 z + jumpF-pathstart g2 z
— jumpF-pathfinish g1 z + cindex-path g2 z

proof —

have jump h12 (1/2) = jumpF-pathstart g2 z — jumpF-pathfinish g1 z
proof —
have jump h12 (1 / 2) = jumpF hi12 (at-right (1 / 2)) — jumpF h12 (at-left
(1/2)
proof (cases Re ((g1+++¢2) (1/2) — 2z) = 0)
case Fulse
have jump h12 (1 / 2) =0
unfolding hi2-def
apply (rule jump-Im-divide-Re-0)
using assms False by (auto intro:path-offset)
moreover have jumpF h12 (at-right (1/2)) = 0
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unfolding hi2-def
apply (intro jumpF-im-divide-Re-0)
subgoal using assms by (auto intro:path-offset)
subgoal using assms(5—6) False unfolding joinpaths-def pathfinish-def
pathstart-def by auto
by auto
moreover have jumpF h12 (at-left (1/2)) = 0
unfolding hi2-def
apply (intro jumpF-im-divide-Re-0)
subgoal using assms by (auto intro:path-offset)
subgoal using assms(5—6) False unfolding joinpaths-def pathfinish-def
pathstart-def by auto
by auto
ultimately show ?thesis by auto
next
case True
then have Im ((g1 +++¢2) (1 / 2) — 2) # 0
using assms(5,6)
by (metis (no-types, opaque-lifting) Re-divide-numeral complez-Re-numeral
complez-eq
divide-self-if joinpaths-def minus-complex.simps mult.commute
mult.left-neutral
numeral-One pathfinish-def pathstart-def right-minus-eq times-divide-eq-left
zero-neg-numeral)
show ?thesis
proof (rule jump-jumpF|of - h12 sgnxz h12 (at-left (1/2)) sgnx h12 (at-right
(1/2))
define g where g=(At. (g1 +++ ¢g2) t — 2)
have hi2-def:h12 = (At. Im(g t)/Re(g t)) unfolding hi12-def g-def by
stmp
have path g using assms unfolding g-def by (auto introl:path-offset)
then have isCont (At. Im (g t)) (I / 2) isCont (At. Re (g t)) (1 / 2)
unfolding path-def by (auto intro!:continuous-intros continuous-on-interior)
moreover have Im (g (1/2)) #0
using m ((g1 +++ ¢2) (1 / 2) — z) # 0> unfolding g-def .
ultimately show isCont (inverse o h12) (1 / 2)
unfolding hi12-def comp-def
by (auto introl: continuous-intros)

define [ where | = sgnz h12 (at-left (1/2))
define r where r = sgnz h12 (at-right (1/2))
have x:continuous-on ({0<..<1}— {t. hiI2t=0AN0 <t ANt < 1}) h12
using <path g>[unfolded path-def] unfolding h12-def
apply (auto introl: continuous-intros)
by (auto elim:continuous-on-subset)
have sx:finite {t. h12t=0AN0 <t ANt < 1}
proof —
have finite-azes-cross (g1 +++ g2) z
using assms(1,2) finite-cross-intros(3)[of g1 z g2] by auto
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then have finite {t. (Re (9t) =0V Im(gt)=0)N0<tANt <1}
unfolding finite-azes-cross-def g-def
apply (elim rev-finite-subset)
by auto
then show ?thesis unfolding hi2-def
by (simp add:disj-commute)
qed
have h12 sgnz-able at-left (1/2) 1 # 0 h12 sgnz-able at-right (1/2) r # 0
unfolding I-def r-def using finite-sgna-at-left-at-right|OF sx % xx]
by auto
then show (h12 has-sgnz 1) (at-left (1/2)) (h12 has-sgnz r) (at-right
(1/2)) I£0 r#0
unfolding [-def r-def by (auto elim:sgna-able-sgnz)
qed
qed
moreover have jumpF h12 (at-right (1/2)) = jumpF-pathstart g2 z
proof —
have jumpF hi12 (at-right (1 / 2)) = jumpF (h12 o (Az.z / 2 + 1/ 2))
(at-right 0)
using jumpF-linear-complof 1/2 h12 1/2 0,simplified] by simp
also have jumpF (h12 o (Az.z / 2 + 1 / 2)) (at-right 0) = jumpF-pathstart
92 z
unfolding hi12-def jumpF-pathstart-def
proof (rule jumpF-cong)
show V p z in at-right 0. (A\t. Im ((g1 +++ g2) t — 2z) / Re ((g1 +++
92) t — z))
oM.z /2+1/2)x=1In(g2x — 2)/ Re (92 — 2)
unfolding cventually-at-right
apply (intro exI[where z=1/2])
unfolding joinpaths-def by auto
qed simp
finally show ?thesis .
qed
moreover have jumpF hi12 (at-left (1 / 2)) = jumpF-pathfinish g1 z
proof —
have jumpF h12 (at-left (1 / 2)) = jumpF (h12 o (Az. z / 2)) (at-left 1)
using jumpF-linear-complof 1/2 h12 0 1,simplified] by simp
also have jumpF (h12 o (Az. z / 2)) (at-left 1) = jumpF-pathfinish g1 z
unfolding hi12-def jumpF-pathfinish-def
proof (rule jumpF-cong)
show Vg zin at-left 1. (At. Im ((g1 +++ ¢2) t — z) / Re ((91 +++
g2) t — 2))
oM.z / 2)x=1Im (gl x— 2)/ Re (g1 z — 2)
unfolding cventually-at-left
apply (intro exI[where z=1/2])
unfolding joinpaths-def by auto
qed simp
finally show ?thesis .
qed
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ultimately show ?thesis by auto
qed
moreover have cindex 0 (1 / 2) h12 = cindex-path g1 z
proof —
have cindex 0 (1 / 2) h12 = cindex 0 1 (h12 o (\z. z / 2))
using cindez-linear-complof 1/2 0 1 h12 0,simplified,symmetric] .
also have ... = cindex-path g1 z
proof —
let 2g = (At. Im (g1 ¢t — 2)
have x:jump (h12 o (Az. z /
unfolding hi12-def
proof (rule jump-cong)
show V p zin at z. (At. Im ((g1 +++ g2) t — 2) / Re ((g1 +++ g2) t
- 2))

/ Re (g1t — 2))
2)) © = jump ?g x when 0<z z<1 for z

oM.z /2)x=1Im (gl z—2)/ Re (gl z— 2)
unfolding eventually-at joinpaths-def comp-def using that
apply (intro exI[where x=(1—1)/2])
by (auto simp add: dist-norm)
qed simp
then have {z. jump (hi2 0o (Az. 2z / 2)) 2 A0 N0 <z Az <1}
={z. jump gz £ O0N0O<zxANz<Il1}
by auto
then show ?thesis
unfolding cindex-def cindex-path-def
apply (elim sum.cong)
by (auto simp add:*)
qed
finally show ?thesis .
qed
moreover have cindex (1 / 2) 1 h12 = cindez-path g2 z
proof —
have cindex (1 / 2) 1 h12 = cindex 01 (hi2 0 (Nz.z / 2+ 1/ 2))
using cindez-linear-complof 1/2 0 1 h12 1/2,simplified,symmetric] .
also have ... = cindez-path g2 z
proof —
let 2g = (At. Im (g2t — 2) / Re (92t — 2))
have x:jump (h12 o (A\z. x / 2+1/2)) x = jump ?g © when 0<z z<1 for

unfolding hi12-def
proof (rule jump-cong)
show V r zin at z. (At. Im ((g1 +++ g2) t — 2) / Re ((91 +++ g2) ¢
- 2))

oM.z [/ 241/2) x=1Im (g2x — 2) / Re (g2 2 — 2)
unfolding cventually-at joinpaths-def comp-def using that
apply (intro exI[where z=1x/2])
by (auto simp add: dist-norm)
qed simp
then have {z. jump (hi2 0 (Az. z / 2+1/2) s A 0N 0 <z ANz <1}
={z.jump gz AO0NO<zANz<I1}
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by auto
then show ?thesis
unfolding cindex-def cindex-path-def
apply (elim sum.cong)
by (auto simp add:*)
qed
finally show ?thesis .
qed
ultimately show ?thesis by simp
qged
finally show ?thesis .
qed

6.3 More lemmas related cindex-pathE | jumpF-pathstart | jumpF-pathfinish

lemma cindez-pathE-linepath:
assumes z¢ closed-segment a b
shows cindez-pathE (linepath a b) z = (
let c1 = Re a — Re z;
¢2 = Re b — Re z;
c3=ImaxReb+ RezxImb+ Imzx Rea— Imzx Reb— Imbx
Re a — Re z x Im a;
dl =Ima— Im z
d2=Imb—Imz
inif (c1>0 A c2<0)V (c1<0 A ¢2>0) then
(if ¢3>0 then 1 else —1)
else
(if (c1=0 +— c2#£0) A (c1=0 —d1#£0) A (c2=0 — d2#0) then
if (e1=0 A (c2 >0 +— d1>0))V (c2=0 A (c1 >0 +— d2<0)) then
1/2 else —1/2
else 0))
proof —
define c1 ¢2 where c1=Re a — Re z and c2=Re b — Re z
define dI d2 where di=Im a — Im z and d2=Im b — Im z
let ?g = linepath a b
have ?thesis when = ((c1>0 A ¢2<0) V (c1<0 A ¢2>0))
proof —
have Re a= Re z A Re b=Re 2
when 0<t t<1 and asm:(1—t)xRe a + t x Re b = Re z for t
unfolding cI-def c2-def using that
proof —
have ?thesis when c1<0 c1>0
proof —
have Re a=Re z using that unfolding ci-def by auto
then show ?thesis using <0<t» <t<1)> asm
apply (cases Re b Re z rule:linorder-cases)
apply (auto simp add:field-simps)
done
qed
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moreover have ?thesis when c1<0 ¢2<0
proof —
have Fulse when c1<0
proof —
have (I — t) *x Rea < (I — t) * Re z
using («t<1» «c1<0> unfolding ci-def by auto
moreover have ¢t x Re b < tx Re z using «t>0» «¢2<0> unfolding c2-def

by auto
ultimately have (1 — t) *x Rea+ t* Reb< (I —t)*x Rez+ t* Rez
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qed
moreover have Fualse when c2<0
proof —

have (I — t) *x Rea < (I — t) * Re z
using «t<1» <cI1<0> unfolding ci-def by auto
moreover have ¢t x Re b < tx Re z using «t>0» «c2<0> unfolding c2-def

by auto
ultimately have (I — t) * Rea+ t+* Reb < (I —t) x Rez + t x Re 2
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qged
ultimately show ?thesis using that unfolding ci-def c2-def by argo
qed
moreover have ?thesis when ¢2<0 ¢2>0
proof —

have Re b=Re z using that unfolding c2-def by auto
then have (I — t) * Re a = (1—t)xRe z using asm by (auto simp
add:field-simps)
then have Re a= Re z using (t<1) by auto
then show ?thesis using <Re b=Re z» by auto
qed
moreover have ?thesis when c1>0 c2>0
proof —
have Fulse when c1>0
proof —
have (I — t) *x Rea > (1 — t) * Re z
using (t<1» <c1>0> unfolding ci1-def by auto
moreover have t x« Re b > tx Re z using <t>0» «c2>0> unfolding c2-def

by auto
ultimately have (I — t) x Rea+ t* Reb> (I —t)*x Rez+ t * Re z
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qed
moreover have Fualse when c2>0
proof —

have (I — t) * Rea > (1 — t) * Re z
using «t<1» <c1>0> unfolding ci-def by auto
moreover have t x« Re b > tx Re z using <t>0» «c2>0> unfolding c2-def
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by auto
ultimately have (I — t) * Rea+ t+* Reb> (1 —t) x Rez + ¢ x Re z
by auto
thus False using asm by (auto simp add:algebra-simps)
qged
ultimately show ?thesis using that unfolding ci-def c2-def by argo
qed
moreover have c1<0 V ¢2>0c¢1>0 V ¢2<0 using — ((cI1>0 A c2<0) V
(c1<0 A ¢2>0)) by auto
ultimately show ?thesis by fast
qed
then have (Vi. 0<t A t<1 —> Re(linepath a bt — 2) # 0) V (c1=0 A c2=0)

using that unfolding linepath-def c1-def c2-def by auto
moreover have ?thesis when asm:Vt. 0<t A t<1 — Re(linepath a b t — 2)
#* 0
and - (c1=0 A c2=0)
proof —
have cindez-ends: cindex-pathE ?qg z = jumpF-pathstart 2g z — jumpF-pathfinish
%9 z
proof —
define f where f=(\t. Im (linepath a bt — 2) / Re (linepath a b t — 2))
define left where left = {x. jumpF [ (at-leftz) # 0 N0 <z ANz < 1}
define right where right = {z. jumpF [ (at-right ) # 0 AN 0 <z Az <

1}
have jumpF-nz:jumpF f (at-left ) = 0 jumpF f (at-right ) = 0
when 0<z z<1 for z
proof —
have isCont f x unfolding f-def
using asm|[rule-format,of z| that
by (auto intro!:continuous-intros isCont-Im isCont-Re)
then have continuous (at-left x) f continuous (at-right x) f
using continuous-at-split by blast+
then show jumpF f (at-left x) = 0 jumpF f (at-right =) = 0
using jumpF-not-infinity by auto
qed
have cindex-pathE %9 z = sum (Az. jumpF [ (at-right x)) right
— sum (Az. jumpF [ (at-left x)) left
unfolding cindex-pathE-def cindexE-def right-def left-def
by (fold f-def ,simp)
moreover have sum (Az. jumpF f (at-right x)) right = jumpF-pathstart ?g
z

proof (cases jumpF f (at-right 0) = 0)
case True
hence Fulse if © € right for x using that
by (cases x = 0) (auto simp: jumpF-nz right-def)
then have right = {} by blast
then show ?thesis
unfolding jumpF-pathstart-def using True
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apply (fold f-def)
by auto
next
case Fulse
hence z € right +— z = 0 for z using that
by (cases x = 0) (auto simp: jumpF-nz right-def)
then have right = {0} by blast
then show ?thesis
unfolding jumpF-pathstart-def using False
apply (fold f-def)
by auto
qed
moreover have sum (Az. jumpF [ (at-left z)) left = jumpF-pathfinish ?g z
proof (cases jumpF f (at-left 1) = 0)
case True
then have left = {}
unfolding left-def using jumpF-nz by force
then show ?thesis
unfolding jumpF-pathfinish-def using True
apply (fold f-def)
by auto
next
case Fulse
then have left = {1}
unfolding left-def using jumpF-nz by force
then show ?thesis
unfolding jumpF-pathfinish-def using Fualse
apply (fold f-def)
by auto
qed
ultimately show ?thesis by auto
qed
moreover have jF-start:jumpF-pathstart ?g z =
(if c1=0 N c2 #0 N d1 #0 then
if 2 >0 <— dl > 0 then 1/2 else —1/2
else
0)
proof —
define f where f=(\t. (Im b — Im a )x t + dI)
define g where g=(\t. (Re b — Re a )x t + c1)
have jump-eq:jumpF-pathstart (linepath a b) z = jumpF (At. ft/gt) (at-right
0)
unfolding jumpF-pathstart-def f-def linepath-def g-def d1-def c1-def
by (auto simp add:algebra-simps)
have ?thesis when — (c1 =0 A ¢2 #0 A dI #0)
proof —
have c2=0 — ¢1#0 using - (c1=0 A ¢2=0)) by auto
moreover have dI =0 — cl1#0
proof (rule ccontr)
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assume - (dI = 0 — ¢l # 0)
then have a=z unfolding dI-def c1-def by (simp add: complex-eql)
then have ze€path-image (linepath a b) by auto
then show False using «z¢closed-segment a by by auto
qed
moreover have ?thesis when c1#£0
proof —
have jumpF (At. ft/g t) (at-right 0) = 0
apply (rule jumpF-not-infinity)
apply (unfold f-def g-def)
using that by (auto intro!: continuous-intros)
then show ¢thesis using jump-eq using that by auto
qed
ultimately show #thesis using that by blast
qed
moreover have ?thesis when c1=0 c2 #0 d1 #0 c¢2 >0 «— d1 > 0
proof —
have (LIM z at-right 0. fz / g x :> al-top)
proof —
have (f —— d1) (at-right 0)
unfolding f-def by (auto intro!: tendsto-eg-intros)
moreover have (9§ —— 0) (at-right 0)
unfolding g-def using <c1=0> by (auto intro!: tendsto-eg-intros)
moreover have (g has-sgnz sgn d1) (at-right 0)
proof —
have (g has-sgnz sgn (c2—cl)) (at-right 0)
unfolding g-def
apply (rule has-sgnz-derivative-at-right)
subgoal unfolding c2-def c1-def di-def by (auto intro!: deriva-
tive-eg-intros)
subgoal using «c1=0) by auto
subgoal using <c1=0> «c2#0» by auto
done
moreover have sgn (c2—cl) = sgn d1 using that by fastforce
ultimately show ?thesis by auto
qed
ultimately show ?thesis
using filterlim-divide-at-bot-at-top-iff [of f d1 at-right 0 g] <d1#0> by
auto
qed
then have jumpF (\t. ft/g t) (at-right 0) = 1/2 unfolding jumpF-def
by auto
then show ?thesis using that jump-eq by auto

qed
moreover have ?thesis when c1=0c2 #0 dl #0 — ¢c2 >0 +— d1l > 0
proof —

have (LIM z at-right 0. fx / g x :> at-bot)

proof —

have (f —— d1) (at-right 0)
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unfolding f-def by (auto introl: tendsto-eq-intros)
moreover have (¢ —— 0) (at-right 0)
unfolding g-def using <c1=0> by (auto intro!: tendsto-eg-intros)
moreover have (g has-sgnz — sgn d1) (at-right 0)
proof —
have (g has-sgnz sgn (c2—c1)) (at-right 0)
unfolding g-def
apply (rule has-sgnz-derivative-at-right)
subgoal unfolding c2-def c1-def di-def by (auto introl: deriva-
tive-eg-intros)
subgoal using «c1=0) by auto
subgoal using <c1=0> «c2#0» by auto
done
moreover have sgn (c2—cl) = — sgn d1 using that by fastforce
ultimately show ?thesis by auto
qed
ultimately show ¢thesis
using filterlim-divide-at-bot-at-top-iff[of f d1 at-right 0 g] <d1#0> by
auto
qed
then have jumpF (At. ft/gt) (at-right 0) = — 1/2 unfolding jumpF-def
by auto
then show ?thesis using that jump-eq by auto
qed
ultimately show ?thesis by fast
qed
moreover have jF-finish:jumpF-pathfinish ?g z =
(if c2=0 N c1 #0 N d2 #0 then
if c1 >0 <— d2 > 0 then 1/2 else —1/2
else
0)
proof —
define f where f=(\t. (Im b — Im a )x t + (Im a — Im 2))
define g where g=(At. (Re b — Re a )x t + (Re a — Re z))
have jump-eq:jumpF-pathfinish (linepath a b) z = jumpE (At. ft/gt) (at-left
1)
unfolding jumpF-pathfinish-def f-def linepath-def g-def d1-def c1-def
by (auto simp add:algebra-simps)
have ?thesis when — (¢2 =0 A ¢l #0 A d2 #0)
proof —
have c1=0 — ¢2+#0 using - (c1=0 A ¢2=0)) by auto
moreover have d2 =0 — c2#0
proof (rule ccontr)
assume - (d2 = 0 — ¢2 # 0)
then have b=z unfolding d2-def c2-def by (simp add: complez-eql)
then have ze€path-image (linepath a b) by auto
then show False using <z¢closed-segment a by by auto
qed
moreover have ?thesis when c2#0
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proof —
have jumpF (At. ft/gt) (at-left 1) = 0
apply (rule jumpF-not-infinity)
apply (unfold f-def g-def)
using that unfolding c2-def by (auto intro!: continuous-intros)
then show ?thesis using jump-eq using that by auto
qed
ultimately show ¢thesis using that by blast
qed
moreover have ?thesis when c2=0 cl #0 d2 #0 cl >0 +— d2 > 0
proof —
have (LIM z at-left 1. fz / g x :> al-top)
proof —
have (f —— d2) (at-left 1)
unfolding f-def d2-def by (auto intro!: tendsto-eg-intros)
moreover have (g —— 0) (at-left 1)
using «¢2=0> unfolding g-def c2-def by (auto intro!: tendsto-eg-intros)
moreover have (g has-sgnz sgn d2) (at-left 1)
proof —
have (g has-sgnz — sgn (c2—cl)) (at-left 1)
unfolding g-def
apply (rule has-sgnz-derivative-at-left)
subgoal unfolding c2-def c1-def di-def by (auto intro!: deriva-
tive-eg-intros)
subgoal using «c2=0) unfolding c2-def by auto
subgoal using «c2=0) «c1#0> by auto
done
moreover have — sgn (¢2—cl1) = sgn d2 using that by fastforce
ultimately show ?thesis by auto
qed
ultimately show ?thesis
using filterlim-divide-at-bot-at-top-iff [of f d2 at-left 1 g] «d2#0> by

auto
qed
then have jumpF (At. ft/g t) (at-left 1) = 1/2 unfolding jumpF-def
by auto
then show “thesis using that jump-eq by auto
qed
moreover have ?thesis when c¢2=0 c1 #0 d2 #0 — c1 >0 +— d2 > 0
proof —
have (LIM z at-left 1. fz | g x :> at-bot)
proof —

have (f —— d2) (at-left 1)
unfolding f-def d2-def by (auto intro!: tendsto-eq-intros)
moreover have (¢ —— 0) (at-left 1)
using «c2=0> unfolding g-def c2-def by (auto intro!: tendsto-eg-intros)
moreover have (g has-sgnz — sgn d2) (at-left 1)
proof —
have (g has-sgnz — sgn (c2—cl1)) (at-left 1)
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unfolding g-def
apply (rule has-sgnz-derivative-at-left)
subgoal unfolding c2-def c1-def di-def by (auto intro!: deriva-
tive-eg-intros)
subgoal using «c2=0) unfolding c2-def by auto
subgoal using «c2=0> «c1#0» by auto
done
moreover have sgn (c2—cl) = sgn d2 using that by fastforce
ultimately show ?thesis by auto
qed
ultimately show ?Zthesis
using filterlim-divide-at-bot-at-top-iff [of [ d2 at-left 1 g] «d2#0> by
auto
qed
then have jumpF (At. ft/g t) (at-left 1) = — 1/2 unfolding jumpF-def
by auto
then show ?thesis using that jump-eq by auto
qed
ultimately show ?thesis by fast
qed
ultimately show ?thesis using - ((cI>0 A ¢2<0) V (c1<0 A ¢2>0))»
apply (fold c1-def c2-def d1-def d2-def)
by auto
qed
moreover have ?thesis when c1=0 c2=0
proof —
have (At. Re (linepath a bt — z)) = (A-. 0)
using that unfolding linepath-def c1-def c2-def
by (auto simp add:algebra-simps)
then have (At. Im (linepath a bt — z) / Re (linepath a bt — 2)) = (A-. 0)
by (metis div-by-0)
then have cindex-pathE (linepath a b) z = 0
unfolding cindez-pathE-def
by (auto intro: cindexE-constI)
thus ?thesis using - ((c1>0 A ¢2<0) V (c1<0 A ¢2>0))> that
apply (fold c1-def c2-def di-def d2-def)
by auto
qed
ultimately show ¢thesis by fast
qed
moreover have ?thesis when c1c2-diff-sgn:(c1>0 N ¢2<0) V (c1<0 A ¢2>0)
proof —
define f where f=(\t. (Im b — Im a )x t + (Im a — Im 2))
define g where g=(\t. (Re b — Re a )x t + (Re a — Re 2))
define h where h=(A\t. ft/ g t)
define ¢3 where c3=Im(a)xRe(b)+Re(z)xIm(b)+Im(z)xRe(a) —Im(z)*Re(b)
— Im(b)xRe(a) — Re(z)xIm(a)
define u where u = (Re z — Re a) / (Re b — Re a)
let ?g = At. linepath a bt — 2z
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have 0<u u<1 Re b — Re a#0 using that unfolding u-def c1-def c2-def by
(auto simp add:field-simps)

have Re(%g u) = 0 g u=0 unfolding linepath-def u-def g-def

apply (auto simp add:field-simps)

using <Re b — Re a#0» by (auto simp add:field-simps)
moreover have u! = u2 when Re(?g ul) = 0 Re(?g u2) = 0 for ul u2
proof —

have (ul — u2) * (Re b — Re a) = Re(?g ul) — Re(%g u2)

unfolding linepath-def by (auto simp add:algebra-simps)

also have ... = 0 using that by auto

finally have (uf — u2) * (Reb — Rea) = 0 .

thus ?thesis using (Re b — Re a#0> by auto
qed
ultimately have re-g-iff:Re(?g t) = 0 +— t=u for t by blast

have cindex-pathE (linepath a b) z = jumpF h (at-right u) — jumpF h (at-left
U
)
proof —
define left where left = {z. jumpF h (at-left ) # 0 N0 <z ANz < 1}
define right where right = {z. jumpF h (at-right x) # 0 AN 0 <z ANz < 1}
have jumpF-nz:jumpF h (at-left ) = 0 jumpF h (at-right ) = 0
when 0<z z<1 z#u for x
proof —
have g z#0
using re-g-iff «x#w> unfolding g-def linepath-def
by (metis <Re b — Re a # 05 add-diff-cancel-left’ diff-diff-eq2 diff-zero
nonzero-mult-div-cancel-left u-def)
then have isCont h x
unfolding h-def f-def g-def
by (auto introl:continuous-intros)
then have continuous (at-left ) h continuous (at-right ) h
using continuous-at-split by blast+
then show jumpF h (at-left ) = 0 jumpF h(at-right x) = 0
using jumpF-not-infinity by auto
qed
have cindex-pathE (linepath a b) z = sum (Az. jumpF h (at-right x)) right
— sum (A\z. jumpF h (at-left x)) left
proof —
have cindex-pathE (linepath a b) z = cindexE 0 1 (At. Im (%9 t) / Re (%g

t))
unfolding cindex-pathE-def by auto
also have ... = cindexE 0 1 h
proof —

have (At. Im (?gt) / Re (%9 t)) =h
unfolding h-def f-def g-def linepath-def
by (auto simp add:algebra-simps)
then show #%thesis by auto
qged
also have ... = sum (Az. jumpF h (at-right z)) right — sum (Az. jumpF h
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(at-left x)) left
unfolding cindexE-def left-def right-def by auto
finally show ?thesis .
qed
moreover have sum (Az. jumpF h (at-right x)) right = jumpF h (at-right u)
proof (cases jumpF h (at-right u) = 0)
case True
then have right = {}
unfolding right-def using jumpF-nz by force
then show ?thesis using True by auto
next
case Fulse
then have right = {u}
unfolding right-def using jumpF-nz <0<u» <u<l1> by fastforce
then show ?thesis by auto
qed
moreover have sum (Az. jumpF h (at-left x)) left = jumpF h (at-left u)
proof (cases jumpF h (at-left u) = 0)
case True
then have left = {}
unfolding left-def
apply safe
apply (case-tac z=u)
using jumpF-nz <0<u) <u<1) by auto
then show ?thesis using True by auto
next
case Fulse
then have left = {u}
unfolding left-def
apply safe
apply (case-tac x=u)
using jumpF-nz «0<w «u<I1» by auto
then show ?thesis by auto

qed

ultimately show ?Zthesis by auto
qed
moreover have jump h u = (if ¢3>0 then 1 else —1)
proof —

have Re b— Re a#0 using c1c2-diff-sgn unfolding cI-def c2-def by auto
have jump (At. Im(%?g t) / Re(%g t)) u = jump h u
apply (rule arg-cong2[where f=jump])
unfolding linepath-def h-def f-def g-def by (auto simp add:algebra-simps)
moreover have jump (\t. Im(%g t) / Re(%g t)) u
= (if sgn (Re b —Re a) = sgn (Im(%g u)) then 1 else — 1)
proof (rule jump-divide-derivative)
have path ?g using path-offset by auto
then have continuous-on {0..1} (At. Im(%g t))
using continuous-on-Im path-def by blast
then show isCont (At. Im (%9 t)) u
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unfolding path-def
apply (elim continuous-on-interior)
using <0<w> (u<1» by auto

next

show Re(?g u) = 0 Re b — Re a # 0 using <Re(?g u) = 0> <Re b — Re a

# 0>
by auto
show Im(%g u) # 0
proof (rule ccontr)
assume — Im (linepath a b u — z) # 0
then have ?g u = 0 using (Re(%g u) = 0
by (simp add: complex-eq-iff)
then have z € closed-segment a b using «0<u) <u<1>
by (auto intro:linepath-in-path)
thus Fulse using <z ¢ closed-segment a by by simp
qged
show ((At. Re (linepath a b t — 2z)) has-real-derivative Re b — Re a) (at u)
unfolding linepath-def by (auto introl:derivative-eg-intros)

qed
moreover have sgn (Re b — Re a) = sgn (Im(%g u)) «— ¢3 > 0
proof —

have Im(%g u) = ¢3/(Re b—Re a)

proof —

define ba where ba = Re b—Re a
have ba#0 using <Re b — Re a # 0)> unfolding ba-def by auto
then show ?thesis
unfolding linepath-def u-def c3-def
apply (fold ba-def)
apply (auto simp add:field-simps)
by (auto simp add:algebra-simps ba-def)
qed
then have sgn (Re b — Re a) = sgn (Im(%g u)) <— sgn (Re b — Re a) =
sgn (c3/(Re b—Re a))
by auto
also have ... <— ¢3>0
using «Re b—Re a#0>»
apply (cases 0::real ¢8 rule:linorder-cases)
by (auto simp add:sgn-zero-iff)
finally show ?thesis .
qed
ultimately show ?Zthesis by auto
qed
moreover have jump h u = jumpF h (at-right v) — jumpF h (at-left u)
proof (rule jump-jumpF’)
have f u#0
proof (rule ccontr)
assume - fu # 0
then have z€path-image (linepath a b)
unfolding path-image-def
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apply (rule-tac rev-image-eql[of u])
using re-g-iff[of u,simplified] <0<w <u<1)
unfolding f-def linepath-def
by (auto simp add:algebra-simps complex.expand)
then show Fulse using (z¢ closed-segment a by by simp
qed
then show isCont (inverse o h) u
unfolding h-def comp-def f-def g-def
by (auto introl: continuous-intros)
define hs where hs = sgn ((f u) / (¢2 —cl))
show (h has-sgnz —hs) (at-left u) (h has-sgnz hs) (at-right u)
proof —
have ff:(f has-sgnz sgn (f u)) (at-left u) (f has-sgnz sgn (f u)) (at-right )
proof —
have (f —— fu) (at u)
unfolding f-def by (auto intro!:tendsto-intros)
then have (f has-sgnz sgn (f u)) (at u)
using tendsto-nonzero-has-sgnz[of f, OF - <f u#0>] by auto
then show (f has-sgnx sgn (f v)) (at-left u) (f has-sgnz sgn (f w)) (at-right
u)
using has-sgnz-split by blast+
qged
have gg:(g has-sgnz — sgn (c2 — c1)) (at-left u) (g has-sgnz sgn (c2 — c1))
(at-right w)
proof —
have (g has-real-derivative c2 — c1) (at u) unfolding g-def cI-def c2-def
by (auto intro!:derivative-eg-intros)
moreover have c2 — ¢l # ( using that by auto
ultimately show (g has-sgnz sgn (c¢2 — c1)) (at-right u)
(g has-sgnz — sgn (c2 — c1)) (at-left u)
using has-sgnz-derivative-at-right[of g c2—cl u]
has-sgnz-derivative-at-left[of g c2—cl u] <g u=0>
by auto
qed
show (h has-sgnz — hs) (at-left u)
using has-sgnz-divide[OF [f(1) gg(1)] unfolding h-def hs-def
by auto
show (h has-sgnz hs) (at-right u)
using has-sgna-divide[OF ff(2) gg(2)] unfolding h-def hs-def
by auto
qed
show hs#0 —hs#0
unfolding hs-def using «f u#0» that by (auto simp add:sgn-if)
qed
ultimately show ¢thesis using that
apply (fold c1-def c2-def c3-def)
by auto
qged
ultimately show ?thesis by fast
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qed

lemma cindez-path-linepath:
assumes z¢path-image (linepath a b)
shows cindez-path (linepath a b) z = (
let c1=Re(a)—Re(z) ; c2=Re(b)—Re(2) ;
c8 = Im(a)*Re(b)+Re(z)xIm(b)+Im(z)xRe(a) —Im(z)*Re(b) — Im(b)xRe(a)
— Re(z)xIm(a)
inif (c1>0 A c2<0)V (cI<0 A c2>0) then (if c3>0 then 1 else —1) else 0)

proof —
define cI c2 where cl1=Re(a)—Re(z) and c2=Re(b)—Re(z)
let ?g = linepath a b
have ?thesis when — ((c1>0 A ¢2<0) V (c1<0 A ¢2>0))
proof —
have Re a= Re z N Re b=Re z
when 0<t t<1 and asm:(1—t)xRe a + t x Re b = Re z for t
unfolding cI-def c2-def using that
proof —
have ?thesis when c1<0 c1>0
proof —
have Re a=Re z using that unfolding ci-def by auto
then show ?thesis using <0<ty «t<1)> asm
apply (cases Re b Re z rule:linorder-cases)
apply (auto simp add:field-simps)
done
qed
moreover have ?thesis when c1<0 ¢2<0
proof —
have Fulse when c1<0
proof —
have (I — t) * Rea < (I — t) * Re z
using «t<1» <cI1<0> unfolding cI-def by auto
moreover have t x Re b < tx Re z using «t>0» «¢2<0> unfolding c2-def

by auto
ultimately have (I — t) x Rea+ t* Reb< (I —t)*x Rez+ tx Re z
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qed
moreover have Fualse when c2<0
proof —

have (I — t) *x Rea < (I — t) * Re z
using «t<1» <c1<0» unfolding ci-def by auto
moreover have t x Re b < tx Re z using «t>0» «c2<0> unfolding c2-def

by auto
ultimately have (I — t) * Rea + t* Reb < (1 —t) x Rez + ¢ x Re 2
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qged
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ultimately show ?thesis using that unfolding ci-def c2-def by argo
qed
moreover have ?thesis when ¢2<0 ¢2>0
proof —
have Re b=Re z using that unfolding c2-def by auto
then have (I — t) * Re a = (I—t)*Re z using asm by (auto simp
add:field-simps)
then have Re a= Re z using «t<1) by auto
then show ?thesis using <Re b=Re z» by auto
qed
moreover have ?thesis when c1>0 c2>0
proof —
have Fulse when c1>0
proof —
have (I — ¢) * Rea > (I — t) * Re z
using (t<1» <c1>0> unfolding ci1-def by auto
moreover have t x Re b > tx Re z using <t>0» «c2>0> unfolding c2-def

by auto
ultimately have (I — t) * Rea+ t+* Reb> (1 —t) x Rez + t x Re 2
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qged
moreover have Fulse when c2>0
proof —

have (I — ¢t) *x Rea > (1 — t) * Re z
using <t<1» <c1>0> unfolding ci-def by auto
moreover have t x Re b > tx Re z using «t>0» «c2>0> unfolding c2-def
by auto
ultimately have (I — t) * Rea+ t+* Reb> (1 —t) x Rez + t x Re z
by auto
thus False using asm by (auto simp add:algebra-simps)
ged
ultimately show ?thesis using that unfolding ci-def c2-def by argo
qed
moreover have c1<0 V ¢2>0c1>0 V ¢2<0 using — ((cI1>0 A c2<0) V
(c1<0 A ¢2>0))> by auto
ultimately show %thesis by fast
qed
then have (V. 0<t A t<1 —> Re(linepath a bt — z) # 0) V (Re a= Re z A
Re b=Re z)
using that unfolding linepath-def by auto
moreover have ?thesis when asm:Vt. 0<t A t<1 — Re(linepath a b t — 2)
# 0
proof —
have jump (At. Im (linepath a bt — z) / Re (linepath a bt — 2)) t = 0
when 0<t t<1 for ¢
apply (rule jump-Im-divide-Re-0[of At. linepath a bt — z,
OF - asm]rule-format]])
by (auto simp add:path-offset that)
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then have cindez-path (linepath a b) z = 0
unfolding cindez-path-def cindex-def by auto
thus ?thesis using <— ((c1>0 A c2<0) V (c1<0 A ¢2>0))»
apply (fold c1-def c2-def)
by auto
qed
moreover have ?thesis when Re a= Re z Re b=Re 2
proof —
have (\t. Re (linepath a bt — z)) = (A-. 0)
unfolding linepath-def using <Re a= Re 2> (Re b=Re z»
by (auto simp add:algebra-simps)
then have (At. Im (linepath a bt — z) / Re (linepath a bt — z)) = (A-. 0)
by (metis div-by-0)
then have jump (At. Im (linepath a bt — z) / Re (linepath a bt — 2)) t =
0 for t
using jump-const by auto
then have cindez-path (linepath a b) z = 0
unfolding cindezx-path-def cindex-def by auto
thus ?thesis using <= ((c1>0 A ¢2<0) V (c1<0 A ¢2>0))»
apply (fold c1-def c2-def)
by auto
qed
ultimately show ¢thesis by auto
qed
moreover have ?thesis when c1c2-diff-sgn:(c1>0 N ¢2<0) V (c1<0 A ¢2>0)
proof —
define ¢3 where c3=Im(a)xRe(b)+Re(z)xIm(b)+Im(z)xRe(a) —Im(z)*Re(b)
— Im(b)*Re(a) — Re(z)*Im(a)
define u where u = (Re z — Re a) / (Re b — Re a)
let ?2g = At. linepath a bt — 2
have 0<u u<1 Re b — Re a#0 using that unfolding u-def cI1-def c2-def by
(auto simp add:field-simps)
have Re(?g u) = 0 unfolding linepath-def u-def
apply (auto simp add:field-simps)
using <Re b — Re a#0> by (auto simp add:field-simps)
moreover have u! = u2 when Re(?g ul) = 0 Re(?g u2) = 0 for ul u2
proof —
have (ul — u2) * (Re b — Re a) = Re(?g ul) — Re(%g u2)
unfolding linepath-def by (auto simp add:algebra-simps)
also have ... = 0 using that by auto
finally have (uf — u2) x (Reb — Rea) = 0 .
thus “thesis using «Re b — Re a#0> by auto
qed
ultimately have re-g-iff:Re(?g t) = 0 +— t=u for t by blast
have cindex-path (linepath a b) z = jump (At. Im (?g t)/Re(%g t)) u
proof —
define f where f=(\t. Im (linepath a bt — z) / Re (linepath a b t — 2))
have jump ft =0 when t#u 0<t t<1 for t
unfolding f-def
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apply (rule jump-Im-divide-Re-0)
using that re-g-iff by (auto simp add: path-offset)
then have {z. jump fz # 0 AN 0 <z A x < 1} = (if jump f u=0 then {}
else {u})
using <0<uy <u<l»
apply auto
by fastforce
then show ?thesis
unfolding cindex-path-def cindex-def
apply (fold f-def)
by auto
qed
moreover have jump (At. Im (%9 t)/Re(?g t)) u = (if c3>0 then 1 else —1)
proof —
have Re b—Re a#0 using clc2-diff-sgn unfolding ci-def c2-def by auto
have jump (At. Im(?g t) / Re(?gt)) u
= (if sgn (Re b —Re a) = sgn (Im(%g u)) then 1 else — 1)
proof (rule jump-divide-derivative)
have path ?g using path-offset by auto
then have continuous-on {0..1} (At. Im(%g t))
using continuous-on-Im path-def by blast
then show isCont (At. Im (%9 t)) u
unfolding path-def
apply (elim continuous-on-interior)
using <0<w> <u<I1» by auto
next

show Re(?g u) = 0 Re b — Re a # 0 using «Re(?g u) = 0> <Re b — Re a

# 0>
by auto
show Im(%g u) # 0
proof (rule ccontr)
assume — Im (linepath a b u — 2) # 0
then have ?g u = 0 using «Re(%g u) = 0>
by (simp add: complez-eq-iff)
thus Fualse using assms «0<uy <u<I1) unfolding path-image-def by
fastforce
qged
show ((At. Re (linepath a b t — 2)) has-real-derivative Re b — Re a) (at u)
unfolding linepath-def by (auto intro!:derivative-eg-intros)

qed
moreover have sgn (Re b — Re a) = sgn (Im(%g u)) <— ¢8 > 0
proof —

have Im(%g u) = ¢3/(Re b—Re a)

proof —

define ba where ba = Re b—Re a
have ba#0 using <Re b — Re a # 0» unfolding ba-def by auto
then show ?thesis

unfolding linepath-def u-def c3-def

apply (fold ba-def)
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apply (auto simp add:field-simps)
by (auto simp add:algebra-simps ba-def)
qed
then have sgn (Re b — Re a) = sgn (Im(?g u)) +— sgn (Re b — Re a) =
sgn (c3/(Re b—Re a))
by auto
also have ... <— ¢3>0
using «Re b—Re a#0>»
apply (cases 0::real ¢8 rule:linorder-cases)
by (auto simp add:sgn-zero-iff)
finally show ?thesis .
qed
ultimately show ?thesis by auto
qed
ultimately show “thesis using c1c2-diff-sgn
apply (fold c1-def c2-def c3-def)
by auto
qed
ultimately show ¢thesis by blast
qed

lemma cindez-pathFE-part-circlepath:
assumes cmod (z—20) #r and >0 0<st st<tt tt<2%pi
shows cindez-pathE (part-circlepath z r st tt) 20 = (
if |Re z — Re 20| < r then

(let
9 = arccos ((Re 20 — Re z)/r);
B = 2xpi — 9

m

JumpF-pathstart (part-circlepath z r st tt) 20
_l’_
(if st<d A 9<it then if r x sin 9 + Im z > Im 20 then —1 else 1 else 0)
_|_

(if st<B A B < tt then if r x sin B + Im z > Im 20 then 1 else —1 else 0)

JumpF-pathfinish (part-circlepath z r st tt) z0

else
if |Re z — Re 20| = r then
JumpF-pathstart (part-circlepath z r st tt) 20
— jumpF-pathfinish (part-circlepath z v st tt) z0
else 0

)

proof —
define f where f=(\i. 7 x sin i + Im z — Im 20)
define g where g=(\i. 7 * cos i + Re z — Re 20)
define h where h=(\t. ft / g t)

have indez-eq: cindex-pathE (part-circlepath z v st tt) 20 = cindexE st tt h
proof —
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have cindex-pathE (part-circlepath z r st tt) 20
= cindexE 0 1 ((Ni. fi/g %) o (linepath st tt))
unfolding cindezx-pathE-def part-circlepath-def exp-Euler f-def g-def comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = cindexE st tt (\i. fi/g 1)
unfolding linepath-def using cindexE-linear-complof tt—st 0 1 - st] <st<tt»
by (simp add:algebra-simps)
also have ... = cindezF st tt h unfolding h-def by simp
finally show ?thesis .
qged
have jstart-eq:jumpF-pathstart (part-circlepath z r st tt) 20 = jumpF h (at-right
st)
proof —
have jumpF-pathstart (part-circlepath z r st tt) 20
= jumpF ((\i. fi/g %) o (linepath st tt)) (at-right 0)
unfolding jumpF-pathstart-def part-circlepath-def exp- Euler f-def g-def comp-def

by (simp add:cos-of-real sin-of-real algebra-simps)

also have ... = jumpF (X\i. fi/g i) (at-right st)
unfolding linepath-def using jumpF-linear-comp(2)[of tt—st - st 0] <st<tt»
by (simp add:algebra-simps)

also have ... = jumpF h (at-right st) unfolding h-def by simp
finally show ?thesis .
qed
have jfinish-eq:jumpF-pathfinish (part-circlepath z r st tt) 20 = jumpF h (at-left
tt)
proof —

have jumpF-pathfinish (part-circlepath z r st tt) 20
= jumpF ((Ai. fi/g i) o (linepath st tt)) (at-left 1)
unfolding jumpF-pathfinish-def part-circlepath-def exp-Euler f-def g-def comp-def

by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = jumpF (\i. fi/g i) (at-left tt)
unfolding linepath-def using jumpF-linear-comp(1)[of tt—st - st 1] <st<tt»
by (simp add:algebra-simps)
also have ... = jumpF h (at-left tt) unfolding h-def by simp
finally show ?thesis .
qed
have finite-jFs:finite-jumpFs h st tt
proof —
note finite- ReZ-segments-imp-jumpFs|OF finite- ReZ-segments-part-circlepath
,of zr sttt 20,simplified)
then have finite-jumpFs ((\i. fi/g i) o (linepath st tt)) 0 1
unfolding h-def f-def g-def part-circlepath-def exp-Euler comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)
then have finite-jumpFs (Xi. fi/g i) sttt
unfolding linepath-def using finite-jumpFs-linear-pos|of tt—st - st 0 1] <st<tt>

by (simp add:algebra-simps)
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then show ?thesis unfolding h-def by auto
qed
have g-imp-f:g ¢ = 0 = fi#0 for ¢
proof (rule ccontr)
assume gi =0 - fi# 0
then have r x sin i = Im (20 — z) r % cos i = Re (20 — 2)
unfolding f-def g-def by auto
then have (r % sin @) "2 4+ (r* cosi) 2 =1Im (20 — 2) ~ 2+ Re (20 — 2)
-2
by auto
then have 772 % (sini "2 + cosi 2) =1Im (20 — z) ~2 4+ Re (20 — 2) "2
by (auto simp only:algebra-simps power-mult-distrib)
then have 172 = c¢mod (20—2) ~ 2
unfolding cmod-def by auto
then have r = cmod (20—2z)
using «r>0) power2-eq-imp-eq by fastforce
then show Fulse using (cmod (2—20) #r) using norm-minus-commute by
blast
qed
have ?thesis when |Re z — Re 20| > r
proof —
have jumpF h (at-right x) = 0 jumpF h (at-left ) = 0 for z
proof —
have g z #0
proof (rule ccontr)
assume - gz #
then have cos z = (Re 20 — Re z) / r unfolding g¢-def using «r>0»
by (auto simp add:field-simps)
then have |(Re 20 — Re z)/r| < 1
by (metis abs-cos-le-one)
then have |Re 20 — Re z| < r
using «r>0» by (auto simp add:field-simps)
then show Fulse using that by auto
qed
then have isCont h x
unfolding h-def f-def g-def by (auto intro:continuous-intros)
then show jumpF h (at-right x) = 0 jumpF h (at-left z) = 0
using jumpF-not-infinity unfolding continuous-at-split by auto
qed
then have cindezE st tt h = 0 unfolding cindexE-def by auto
then show %thesis using indezx-eq that by auto
qed
moreover have ?thesis when |Re z — Re 20| = r
proof —
define R where R=(AS.{z. jumpF h (at-right ) # 0 N z€S})
define L where L=(\S.{z. jumpF h (at-left z) # 0 N z€S})
define right where
right = (AS. O_xz€R S. jumpF h (at-right z)))
define left where
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left = (AS. (O_z€L S. jumpF h (at-left z)))
have cindex-pathE (part-circlepath z r st tt) 20 = cindexE st tt h
using indezx-eq by simp

also have ... = right {st..<tt} — left {st<..tt}
unfolding cindexE-def right-def left-def R-def L-def by auto
also have ... = jumpF h (at-right st) + right {st<..<tt} — left {st<..<tt} —
jumpF h (at-left tt)
proof —

have right {st..<tt} = jumpF h (at-right st) + right {st<..<tt}
proof (cases jumpF h (at-right st) =0)
case True
then have R {st.<tt} = R {st<..<tt}
unfolding R-def using less-eg-real-def by auto
then have right {st..<tt} = right {st<..<tt}
unfolding right-def by auto
then show ?thesis using True by auto
next
case Fulse
have finite (R {st..<tt})
using finite-jF's unfolding R-def finite-jumpFs-def
by (auto elim:rev-finite-subset)
moreover have st € R {st..<tt} using Fualse (st<it) unfolding R-def by
auto
moreover have R {st..<tt} — {st} = R {st<..<it} unfolding R-def by
auto
ultimately show right {st..<tt}= jumpF h (at-right st)
+ right {st<..<tt}
using sum.removelof R {st..<tt} st Az. jumpF h (at-right z)]
unfolding right-def by simp
qed
moreover have left {st<..tt} = jumpF h (at-left tt) + left {st<..<tt}
proof (cases jumpF h (at-left tt) =0)
case True
then have L {st<..tt} = L {st<..<tt}
unfolding L-def using less-eq-real-def by auto
then have left {st<..tt} = left {st<..<tt}
unfolding left-def by auto
then show ?thesis using True by auto
next
case Fulse
have finite (L {st<..tt})
using finite-jF's unfolding L-def finite-jumpFs-def
by (auto elim:rev-finite-subset)
moreover have tt € L {st<..tt} using False <st<tt) unfolding L-def by
auto
moreover have L {st<..tt} — {tt} = L {st<..<tt} unfolding L-def by
auto
ultimately show left {st<..tt}= jumpF h (at-left tt) + left {st<..<tt}
using sum.removelof L {st<..tt} tt Az. jumpF h (at-left )]
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unfolding left-def by simp

qed

ultimately show ?thesis by simp
qed
also have ... = jumpF h (at-right st) — jumpF h (at-left tt)
proof —

define S where S={z. (jumpF h (at-left ©) # 0 V jumpF h (at-right ©) #
0) N st <z Aaz<tt}
have right {st<..<tt} = sum (A\z. jumpF h (at-right z)) S
unfolding right-def S-def R-def
apply (rule sum.mono-neutral-left)
subgoal using finite-jF's unfolding finite-jumpF's-def by (auto elim:rev-finite-subset)
subgoal by auto
subgoal by auto
done
moreover have left {st<..<tt} = sum (Az. jumpF h (at-left z)) S
unfolding left-def S-def L-def
apply (rule sum.mono-neutral-left)
subgoal using finite-jF's unfolding finite-jumpF's-def by (auto elim:rev-finite-subset)
subgoal by auto
subgoal by auto
done
ultimately have right {st<..<tt} — left {st<..<tt}
= sum (Az. jumpF h (at-right ©) — jumpF h (at-left )) S
by (simp add: sum-subtractf)

also have ... = 0
proof —
have jumpF h (at-right i) — jumpF h (at-left i) = 0 when ¢ i=0 for i
proof —
have (LIM z ati. fz / g x > at-bot) V (LIM z at i. fz / g x :> at-top)
proof —

have x: f —i— fig—i— 0fi# 0

using g-imp-f[OF <g i=0>] <g i=0> unfolding f-def g-def

by (auto introl:tendsto-eg-intros)
have ?thesis when Re z > Re 20
proof —

have g-alt:g = (At. 7 * cos t + r) unfolding g-def using <|Re z — Re

20| = 1 that by auto
have (g has-sgnz 1) (at 7)

proof —
have sgn (g t) = 1 when ¢t # i dist t i < pi for t
proof —
have cos i = — 1 using <g i =0 «r>0> unfolding g-alt

by (metis add.inverse-inverse less-numeral-extra(3) mult-cancel-left

mult-minus1-right real-add-minus-iff)
then obtain k::int where k-def:i = (2 x k + 1) * pi
using cos-eg-minusl [of i] by auto
show ?thesis
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proof (rule ccontr)
assume sgn (g t) # 1
then have cos t + 1<0 using «r>0) unfolding g-alt
by (metis (no-types, opaque-lifting) add-le-same-cancell
add-minus-cancel
mult-le-cancel-left1 mult-le-cancel-rightl mult-minus-right
mult-zero-left
sgn-pos zero-le-one)
then have cos t = —1
by (metis add.commute cos-ge-minus-one le-less not-less
real-add-le-0-iff)
then obtain k”:int where k'-def:t = (2 * k' + 1) * pi
using cos-eq-minusl [of t| by auto
then have ¢t — i = 2 x pix(k’ — k)
using k-def by (auto simp add:algebra-simps)
then have 2 * pi x| (k' — k)| < pi
using «dist t i < pi» by (simp add:dist-norm abs-mult)
from divide-strict-right-mono| OF this, of 2xpi,simplified] have |k’
—k|l<1/2
by auto
then have k=k’ by linarith
then have t=i using k-def k’-def by auto
then show Fulse using <t#i> by auto
qed
qed
then show “thesis unfolding has-sgnz-def eventually-at
apply(intro exl[where z=pi])

by auto
qed
then show ?thesis using * filterlim-divide-at-bot-at-top-iff [of f f i at i
)
by (simp add: sgn-if)

qed
moreover have ?thesis when Re z < Re 20
proof —

have g-alt:g = (At. © x cos t — r) unfolding g-def using (|Re z —
Re 20| = r» that by auto
have (g has-sgnz — 1) (at 7)
proof —
have sgn (gt) = — 1 when t # ¢ dist t i < pi for t
proof —
have cos i = 1 using <g i =0» «r>0> unfolding g-alt by simp
then obtain k::int where k-def:i = (2 x k * pi)
using cos-one-2pi-int[of i] by auto
show ?thesis
proof (rule ccontr)
assume sgn (g t) # — 1
then have cos t — 1>0 using <r>0> unfolding g-alt
using mult-le-cancel-left1 by fastforce
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then have cos t = 1
by (meson cos-le-one diff-ge-0-iff-ge le-less not-less)
then obtain k’:int where k'-def:t = 2 * k'x pi
using cos-one-2pi-int[of t] by auto
then have ¢t — i = 2 x pix(k' — k)
using k-def by (auto simp add:algebra-simps)
then have 2 x pi x| (k' — k)| < pi
using «dist t i < pi» by (simp add:dist-norm abs-mult)
from divide-strict-right-mono| OF this, of 2xpi,simplified] have
|k — k| < 1/2
by auto
then have k=k’ by linarith
then have t=i using k-def k'-def by auto
then show Fulse using (t#i» by auto
qed
qed
then show ?thesis unfolding has-sgna-def eventually-at
apply (intro exI[where z=pi))

by auto
qed
then show ?thesis using * filterlim-divide-at-bot-at-top-iff [of f f i at
ig]
by (simp add: sgn-if)
qed
moreover have Re z# Re 20 using <|Re z — Re 20| = r» <r>0» by
fastforce
ultimately show %thesis by fastforce
qed
moreover have ?thesis when (LIM z at i. fz / g x :> at-bot)
proof —
have jumpF h (at-right i) = — 1/2 jumpF h (at-left i) = —1/2
using that unfolding jumpF-def h-def filterlim-at-split by auto
then show ?thesis by auto
qed
moreover have ?thesis when (LIM z at i. fz [/ g © :> at-top)
proof —
have jumpF h (at-right i) = 1/2 jumpF h (at-left i) = 1/2
using that unfolding jumpF-def h-def filterlim-at-split by auto
then show ?thesis by auto
qed
ultimately show ?thesis by auto
qged
moreover have jumpF h (at-right i) — jumpF h (at-left i) = 0 when ¢
1#0 for 4
proof —

have isCont h i using that unfolding h-def f-def g-def
by (auto intro!:continuous-intros)

then have jumpF h (at-right i) = 0 jumpF h (at-left i) = 0
using jumpF-not-infinity unfolding continuous-at-split by auto
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then show ?thesis by auto

qged
ultimately show ?thesis by (intro sum.neutral,auto)
qed
finally show ?thesis by simp
qed
also have ... = jumpF-pathstart (part-circlepath z r st tt) 20

— jumpF-pathfinish (part-circlepath z r st tt) 20
using jstart-eq jfinish-eq by auto
finally have cindex-pathE (part-circlepath z r st tt) 20 =
JumpF-pathstart (part-circlepath z r st tt) 20
— jumpF-pathfinish (part-circlepath z r st tt) 20

then show %thesis using that by auto
qed
moreover have ?thesis when |Re z — Re 20| < r
proof —
define zr where zr= (Re 20 — Re z)/r
define ¥ where 9 = arccos zr
define 8 where 8 = 2xpi — ¥
have 0<9 d<pi
proof —
have — 1 < zrazr < 1
using that <r>0> unfolding zr-def by (auto simp add:field-simps)
from arccos-lt-bounded[OF this] show 0<v ¥<pi
unfolding V-def by auto
qed
have g9 =0¢g 68 =10
proof —
have |2r|<1 using that unfolding zr-def by auto
then have cos ¢ = zr cos 8 = cos ¢
unfolding -def[folded zr-def] B-def by auto
then show ¢ ¥ = 0 g f = 0 unfolding zr-def g-def using «r>0> by auto
qed
have g-sgnz-0:(g has-sgnz 1) (at-left ¥) (g has-sgnx —1) (at-right )
proof —
have (g has-real-derivative — r x sin 9) (at )
unfolding g-def by (auto intro!:derivative-eg-intros)
moreover have — r x sin ¥ <0
using sin-gt-zero[OF <0< 9<pi>] <r>0) by auto
ultimately show (g has-sgnz 1) (at-left ©¥) (g has-sgnz —1) (at-right )
using has-sgnz-derivative-at-leftjof g — r x sin ¥, OF - <g ¥=0»]
has-sgnz-derivative-at-right[of g — r * sin ¥, OF - «g 9=0)]
by force+
qed
have g-sgnaz-f:(g has-sgnx —1) (at-left ) (g has-sgnz 1) (at-right B)
proof —
have (g has-real-derivative — r x sin 3) (at 3)
unfolding g-def by (auto intro!:derivative-eg-intros)
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moreover have pi<f [<2xpi unfolding S-def using «(0<¥» «(JI<pi> by
auto
from sin-lt-zero|OF this| <r>0» have — r x sin § >0 by (simp add:
mult-pos-neg)
ultimately show (g has-sgnx —1) (at-left 8) (g has-sgnx 1) (at-right )
using has-sgna-derivative-at-leftof g — r x sin 8, OF - <g 5=0)]
has-sgnz-derivative-at-right[of g — r x sin B, OF - <g f=0>]
by force+
qed
have f-tendsto: (f —— f 1) (at-left i) (f —— f1i) (at-right 7)
and g-tendsto: (¢ —— g 1) (at-left i) (9 —— g 1) (at-right i) for i
proof —
have (f —— f1) (at Q)
unfolding f-def by (auto introl:tendsto-eg-intros)
then show (f —— f 1) (at-left i) (f —— f1i) (at-right 7)
by (auto simp add: filterlim-at-split)
next
have (9§ —— ¢ %) (at Q)
unfolding g-def by (auto introl:tendsto-eg-intros)
then show (g —— ¢ i) (at-left i) (9 —— g 1) (at-right @)
by (auto simp add: filterlim-at-split)
qed

define ¥-if::real where 0-if = (if r x sin 9 + Im z > Im 20 then —1 else 1)
define §-if::real where B-if = (if r x sin 8 + Im z > Im z0 then 1 else —1)
have jump (A\i. fi/g i) O = 9-if
proof —
have ?thesis when r x sin 9 + Im z > Im 20
proof —
have f ¥ > 0 using that unfolding f-def by auto
have (LIM z (at-left ). fz / g © :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f ¥ - ¢])
using «f ¥ > 0> <g 9 =0» f-tendsto g-tendsto[of U] g-sgna-¥ by auto
moreover then have — (LIM z (at-left 9). fz / g z :> at-bot) by auto
moreover have (LIM z (at-right 9). fz / g x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f ¥ - g])
using «f ¥ > 0y <g 9 =0> f-tendsto g-tendsto[of 9] g-sgna-9 by auto
ultimately show ?thesis using that unfolding jump-def 9-if-def by auto
qed
moreover have ?thesis when r x sin ¢ + Im z < Im 20
proof —
have f ¢ < 0 using that unfolding f-def by auto
have (LIM z (at-left 9). fz | g  :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f ¥ - g])
using «f ¥ < 0> <g 9 =0» f-lendsto g-tendsto[of V] g-sgna-¥ by auto
moreover have (LIM z (at-right ¥). fz / g x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f ¥ - ¢])
using «f ¥ < 0y <g 9 =0> f-tendsto g-tendsto[of J] g-sgna-9 by auto
ultimately show ?thesis using that unfolding jump-def 9-if-def by auto
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qed
moreover have r x sin 9 + Im z # Im 20

using g-imp-f[OF «g 9=0>] unfolding f-def by auto
ultimately show ?thesis by fastforce

qed
moreover have jump (\i. fi/g i) 8 = B-if
proof —
have ?thesis when r *x sin 8 + Im z > Im 20
proof —

have f 8 > 0 using that unfolding f-def by auto
have (LIM z (at-left B). fz / g x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f B - g])
using «f 8 > 0> <g 8 =0) f-tendsto g-tendsto[of B] g-sgnz-f by auto
moreover have (LIM z (at-right 8). fz / g © :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f B - g])
using «f 8 > 0» <g B =0 f-tendsto g-tendstolof B] g-sgnz-f by auto
ultimately show ?thesis using that unfolding jump-def 5-if-def by auto
qed
moreover have ?thesis when r % sin 8 + Im z < Im 20
proof —
have f 8 < 0 using that unfolding f-def by auto
have (LIM z (at-left B). fx / g x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f B - g])
using «f 8 < 0» <g B =0 f-tendsto g-tendstolof ] g-sgnz-§ by auto
moreover have (LIM z (at-right 8). fx / g x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff[of f f B - g])
using «f 8 < 0» <g B =0 f-tendsto g-tendstolof B] g-sgnz-f by auto
ultimately show ?thesis using that unfolding jump-def B-if-def by auto
qed
moreover have r x sin 8 + Im z # Im 20
using g-imp-f[OF «g f=0>] unfolding f-def by auto
ultimately show ¢thesis by fastforce
qed
moreover have jump (\i. fi / gi) © # 0 «— z=U V 2= when st<z z<it
for z
proof
assume z =9 V=0
then show jump (\i. fi / gi) z # 0
using <jump (A\i. fi/g i) 9 = 9-if> Gump (Ni. fi/g i) 8 = B-if>
unfolding ¥-if-def [-if-def
by (metis add.inverse-inverse add.inverse-neutral of-int-0 one-neg-zero)
next
assume asm:jump (Ni. fi / gi) z # 0
let ?thesis=x =9V z =0
have g z=0
proof (rule ccontr)
assume g x # 0
then have isCont (\i. fi / gi) z
unfolding f-def g-def by (auto intro:continuous-intros)
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then have jump (M\i. fi / g i) z = 0 using jump-not-infinity by simp
then show Fulse using asm by auto
qed
then have cos © = zr unfolding g-def zr-def using <r>0> by (auto simp
add:field-simps)
have ?thesis when z<pi
proof—
have >0 using <st<x) <st>0» by auto
then have arccos (cos x) = z using arccos-cos|of x| that by auto
then have =19 unfolding ¥-def <cos x==zr» by auto
then show ?thesis by auto
qed
moreover have ?thesis when — z<pi

proof —
have z—2xpi<0 —pi<z—2xpi using that «x<tt> <tt<2xpi> by auto

from arccos-cos2[OF this] have arccos (cos (x — 2 x pi)) = 2xpi—z by
auto

then have arccos (cos x) = 2xpi—z
by (metis arccos cos-2pi-minus cos-ge-minus-one cos-le-one)

then have z=( unfolding S-def ¥-def using <cos x =zr» by auto
then show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
then have {z. jump (Mi. fi/ gi)xz# 0 A st <z Az <ttt} ={06}N
{st<..<tt}

by force
moreover have 9#£f using §-def <9 < pi> by auto

ultimately have cindex st tt h =
(if st<¥ A O<it then V-if else 0)
_l’_
(if st<B A B < tt then B-if else 0)
unfolding cindex-def h-def by fastforce
moreover have cindezE st tt h = jumpF h (at-right st) + cindex st tt h —

JumpE h (at-left tt)
proof (rule cindex-eq-cindexE-divide[of st tt f g,folded h-def])

show st < tt using «st < tt> .

show Vze{st..tt}. gz = 0 — fz # 0 using g-imp-f by auto

show continuous-on {st..tt} f continuous-on {st..tt} g
unfolding f-def g-def by (auto introl:continuous-intros)

next

let 2S1={t. Re (part-circlepath z r st tt t—20) = 0 AN 0 < t Nt < 1}

let 252={t. Im (part-circlepath z r st tt t—2z0) = 0 N 0 < t ANt < 1}

define G where G={t. g (linepath st ttt) =0 N0 <t ANt < 1}
ONO<tAL< I}

define F where F={t. [ (linepath st tt t) =
define vl where vl=(\z. (z—st)/(tt—st))
have finite G finite F'

proof —
have finite {t. Re (part-circlepath z r st tt t—20) = 0 N 0 <t Nt < 1}
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finite {t. Im (part-circlepath z r st tt t—20) = 0 AN 0 < t ANt < 1}
using part-circlepath-half-finite-inter|of st tt r Complex 1 0 z Re 20]
part-circlepath-half-finite-inter|of st tt r Complex 0 1 z Im 20] <st<tt
<r>0)»
by (auto simp add:inner-complex-def Complex-eq-0)
moreover have
Re (part-circlepath z r st tt t—20) = 0 <— g (linepath st tt t) = 0
Im (part-circlepath z r st tt t—20) = 0 <— f (linepath st tt t) = 0
for ¢
unfolding cindex-pathE-def part-circlepath-def exp-Euler f-def g-def comp-def
by (auto simp add:cos-of-real sin-of-real algebra-simps)
ultimately show finite G finite F' unfolding G-def F-def
by auto
qed
then have finite (linepath st tt * F) finite (linepath st tt * G)
by auto
moreover have
{z. fr =0 AN st <z Azx<it} C linepath st tt ‘ F
{z. gz =0AN st <z Ax<it} C linepath st tt * G
proof —
have *: linepath st tt (vl t) = t vl t>0 +— t>st vl t<1 «—t<tt for t
unfolding linepath-def vl-def using «tt>st»
apply (auto simp add:divide-simps)
by (simp add:algebra-simps)
then show
{z. fe=0 AN st <z Az <ttt} C linepath st tt ‘F
{z. gz =0 N st <x Az <ttt} C linepath sttt ‘G
unfolding F-def G-def
by (clarify|rule-tac z=vl z in rev-image-eql ,auto)+
qed
ultimately have
finite {z. fr =0 N st <z Azx<tt}
finite {z. gz = 0 N st <z Az < it}
by (auto elim:rev-finite-subset)
from finite-UnI[OF this| show finite {z. (fz =0V gx =0)Ast <z Az
<t}
by (elim rev-finite-subset,auto)
qed
ultimately show ¢thesis
unfolding Let-def
apply (fold zr-def V-def B-def 9-if-def B-if-def)+
using jstart-eq jfinish-eq indezr-eq that by auto
qed
ultimately show ?thesis by fastforce
qed

lemma jumpF-pathstart-part-circlepath:

assumes st<tt r>0 cmod (z—20) #r
shows jumpF-pathstart (part-circlepath z r st tt) 20 = (
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if r % cos st + Re z — Re z0 = 0 then
(let
A = rx sin st + Im z — Im 20
n
if (sinst> 0V cosst=1)NA<O0
V (sin st < 0V cos st=—1 ) ANA >0 then
1/2
else
—-1/2)
else 0)
proof —
define f where f=(\i. r * sin i + Im z — Im 20)
define g where g=(\i. 7 * cos i + Re z — Re 20)
have jumpF-eq:jumpF-pathstart (part-circlepath z r st tt) 20 = jumpF (Ai. fi/g
i) (at-right st)
proof —
have jumpF-pathstart (part-circlepath z r st tt) 20
= jumpF ((Xi. fi/g 1) o linepath st tt) (at-right 0)
unfolding jumpF-pathstart-def part-circlepath-def exp- Euler f-def g-def comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = jumpF (\i. fi/g 1) (at-right st)
using jumpF-linear-comp(2)[of tt—st (Ai. fi/g i) st 0,symmetric] <st<it)
unfolding linepath-def by (auto simp add:algebra-simps)
finally show ?thesis .
qed
have g¢-has-sgnzl:(g has-sgnz 1) (at-right st) when g st=0 sin st < 0 V cos
st=—1
proof —
have ?thesis when sin st<0
proof —
have (g has-sgnx sgn (— r * sin st)) (at-right st)
apply (rule has-sgnz-derivative-at-right[of g — r * sin st st])
subgoal unfolding g-def by (auto intro!:derivative-eg-intros)
subgoal using <«g st=0) .
subgoal using <r>0) ¢sin st<0> by (simp add: mult-pos-neg)
done
then show ?thesis using «<r>0> that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos st = —1
proof —
have ¢ ¢ > 0 when st<i i<st+pi for i
proof —
obtain k where k-def:st = 2 x of-int k * pi+ pi
using (cos st = —1» by (metis cos-eqg-minusl distrib-left mult.commute
mult.right-neutral)
have cos (i—st) < 1 using cos-monotone-0-pi[of 0 i—st | that by auto
moreover have cos (i—st) = — cos i
apply (rule cos-eq-neg-periodic-intro|of - - —k—1])
unfolding k-def by (auto simp add:algebra-simps)
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ultimately have cos i>—1 by auto
then have cos st<cos i using <cos st=—1» by auto
have 0 = r % cos st + Re z — Re 20
using ¢g st = 0> unfolding g-def by auto
also have ... < r x cos i + Re z — Re 20
using <cos st < cos 0> <r>0> by auto
finally show ?thesis unfolding g-def by auto
qed
then show ?thesis
unfolding has-sgnz-def eventually-at-right
apply (intro exI[where x=st+pi])
by auto
qed
ultimately show ?thesis using that(2) by auto
qed
have g-has-sgnz2:(g has-sgnz —1) (at-right st) when g st=0 sin st > 0 V cos
st=1

proof —
have ?thesis when sin st>0
proof —
have (g has-sgnz sgn (— r * sin st)) (at-right st)
apply (rule has-sgnz-derivative-at-right[of - —  * sin st])

subgoal unfolding g-def by (auto intro!: derivative-eg-intros)
subgoal using <«g st=0» .
subgoal using «r>0) ¢sin st>0> by (simp add: mult-pos-neg)
done
then show ?thesis using «r>0» that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos st=1
proof —
have ¢ ¢ < 0 when st<i i<st+pi for i
proof —
obtain k where k-def:st = 2 x of-int k * pi
using <cos st=1» cos-one-2pi-int by auto
have cos (i—st) < 1 using cos-monotone-0-pi[of 0 i—st | that by auto
moreover have cos (i—st) = cos i
apply (rule cos-eq-periodic-intro[of - - —k])
unfolding k-def by (auto simp add:algebra-simps)
ultimately have cos i<1 by auto
then have cos st>cos i using <cos st=1» by auto
have 0 = r % cos st + Re z — Re 20
using ¢g st = 0> unfolding g-def by auto
also have ... > r x cos i + Re z — Re 20
using <cos st > cos ©» <r>0)> by auto
finally show ?thesis unfolding g-def by auto
qed
then show ?thesis
unfolding has-sgnz-def eventually-at-right
apply (intro exl[where z=st+pi])
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by auto
qed
ultimately show ?thesis using that(2) by auto
qed

have ?thesis when r x cos st + Re z — Re 20 # 0
proof —
have g st #0 using that unfolding g-def by auto
then have continuous (at-right st) (Xi. fi / g i)
unfolding f-def g-def by (auto introl:continuous-intros)
then have jumpF (\i. fi/g i) (at-right st) = 0
using jumpF-not-infinity[of at-right st (Ai. fi/g i)] by auto
then show ?thesis using jumpF-eq that by auto
qed
moreover have ?thesis when r % cos st + Re z — Re 20 = 0
(sin st > 0 V (cos st=1) ) A fst < 0
V (sin st < 0V (cos st=—1)) N fst>0
proof —
have g st = 0 f st0 and g-cont: continuous (at-right st) g and f-cont:continuous
(at-right st) f
using that unfolding g-def f-def by (auto intro!:continuous-intros)
have (g has-sgnz sgn (f st)) (at-right st)
using g-has-sgnzl[OF <g st=0)] g-has-sgnz2[OF <g st=0>] that(2) by auto
then have LIM z at-right st. fz / g x :> at-top
apply (subst filterlim-divide-at-bot-at-top-iff [of f f st at-right st g])
using «f st£0) <g st = 0> g-cont f-cont by (auto simp add: continuous-within)
then have jumpF (\i. fi/g 1) (at-right st) = 1/2
unfolding jumpF-def by auto
then show ?thesis using jumpF-eq that unfolding f-def by auto
qed
moreover have ?thesis when r % cos st + Re z — Re 20 = 0
= ((sin st > 0 V cos st=1 ) N fst <0
V (sin st < 0V cos st=—1 ) A fst> 0)
proof —
define neq! where neql! = (Vk:int. st # 2xk«+pt)
define neq2 where neq2 = (Vk:int. st # 2xkxpi+pi)
have g st = 0 and g-cont: continuous (at-right st) g and f-cont:continuous
(at-right st) f
using that unfolding g-def f-def by (auto introl:continuous-intros)
have f st#0
proof (rule ccontr)
assume — f st # 0
then have f st = 0 by auto
then have Im (20 — z) =r % sin st Re (20 — z) = r * cos st using g st=0»
unfolding f-def g-def by (auto simp add:algebra-simps)
then have cmod (20 — z) = sqrt((r x sin st) "2 + (r * cos st)"2)
unfolding cmod-def by auto
also have ... = sqrt (72 x ((sin st) "2 + (cos st)"2))
by (auto simp only:algebra-simps power-mult-distrib)
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also have ... = r
using <r>0> by simp
finally have cmod (20 — z) = .
then show False using <cmod (z—2z0) #r> by (simp add: norm-minus-commaute)
qed
have (sin st > 0 V (cos st=1) ) A fst > 0V (sin st < 0V (cos st=—1) ) A
fst<0
proof —
have sin st = 0 <— cos st=—1 V cos st=1
by (metis (no-types, opaque-lifting) add.right-neutral cancel-comm-monoid-add-class. diff-cancel

cos-diff cos-zero mult-eq-0-iff power2-eq-1-iff power2-eq-square sin-squared-eq)
moreover have ((sin st < 0 A cos st #1 )V fst > 0) A ((sin st > 0 N cos
st£E—1) V fst < 0)
using that(2) «f st#0» by argo
ultimately show ?thesis by (meson linorder-neqE-linordered-idom not-le)
qed
then have (g has-sgnz — sgn (f st)) (at-right st)
using g-has-sgnz1[OF <g st=0)] g-has-sgnz2[OF <g st=0>] by auto
then have LIM x at-right st. fx / g x :> at-bot
apply (subst filterlim-divide-at-bot-at-top-iff [of f f st at-right st g])
using «f st£0) <g st = 0> g-cont f-cont by (auto simp add: continuous-within)
then have jumpF (Xi. fi/g i) (at-right st) = —1/2
unfolding jumpF-def by auto
then show ?thesis using jumpF-eq that unfolding f-def by auto
qged
ultimately show ¢thesis by fast
qed

lemma jumpF-pathfinish-part-circlepath:
assumes st<tt r>0 cmod (z—20) #r
shows jumpF-pathfinish (part-circlepath z r st tt) 20 = (
if r % cos tt + Re z — Re z0 = 0 then
(let
A=rxsintt+ Imz— Im 20
in

if (sintt> 0V costt=—1 )ANA<O0
V (sintt < 0V costt=1)ANA>0 then
—-1/2
else
1/2)
else 0)

proof —
define f where f=(\i. 7 * sin i + Im z — Im 20)
define g where g=(\i. 7 * cos i + Re z — Re 20)
have jumpF-eq:jumpF-pathfinish (part-circlepath z v st tt) 20 = jumpF (Xi. fi/g
i) (at-left tt)
proof —
have jumpF-pathfinish (part-circlepath z r st tt) 20
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= jumpF ((Mi. fi/g ©) o linepath st tt) (at-left 1)
unfolding jumpF-pathfinish-def part-circlepath-def exp-Euler f-def g-def comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = jumpF (\i. fi/g i) (at-left tt)
using jumpF-linear-comp(1)[of tt—st (Ni. fi/g i) st 1,symmetric] <st<tt»
unfolding linepath-def by (auto simp add:algebra-simps)
finally show ?thesis .
qed
have g-has-sgnx1:(g has-sgnz —1) (at-left tt) when g tt=0 sin tt < 0 V cos tt=1

proof —
have ?thesis when sin tt<0
proof —
have (g has-sgnz — sgn (— r * sin tt)) (at-left tt)
apply (rule has-sgnz-derivative-at-leftlof - — r * sin tt])
subgoal unfolding g-def by (auto intro!:derivative-eg-intros)
subgoal using «g tt=0> .
subgoal using <r>0» ¢sin tt<0» by (simp add: mult-pos-neg)
done
then show ?thesis using <r>0) that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos tt=1
proof —
have g i < 0 when tt—pi<i i<tt for i
proof —
obtain k where k-def:tt = 2 x of-int k * pi
using <cos tt=1> cos-one-2pi-int by auto
have cos (i—tt) < 1
using cos-monotone-0-pilof 0 tt—i | that cos-minus|[of tt—i,simplified] by
auto
moreover have cos (i—tt) = cos i
apply (rule cos-eq-periodic-intro[of - - —k])
unfolding k-def by (auto simp add:algebra-simps)
ultimately have cos i<I by auto
then have cos tt>cos i using <cos tt=1» by auto
have 0 = r % cos tt + Re z — Re 20
using <g tt = 0> unfolding g-def by auto
also have ... > r x cos i + Re z — Re 20
using <cos tt > cos ©» <r>0)> by auto
finally show ?thesis unfolding g-def by auto
qed
then show ?thesis
unfolding has-sgnz-def eventually-at-left
apply (intro exl[where z=tt—pi))
by auto
qed
ultimately show ?thesis using that(2) by auto
qged
have g-has-sgnxz2:(g has-sgnz 1) (at-left tt) when g tt=0 sin tt > 0 V cos tt=—1
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proof —
have ?thesis when sin tt>0
proof —
have (g has-sgnx — sgn (— r * sin tt)) (at-left tt)
apply (rule has-sgna-derivative-at-left[of - — r * sin tt])
subgoal unfolding g-def by (auto intro!: derivative-eg-intros)
subgoal using <g tt=0> .
subgoal using <r>0) (sin tt>0» by (simp add: mult-pos-neg)
done
then show ?thesis using «r>0» that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos tt = —1
proof —
have ¢g ¢ > 0 when tt—pi<i i<tt for ¢
proof —
obtain k where k-def:tt = 2 * of-int k x pi+ pi
using (cos tt = —1» by (metis cos-eqg-minusl distrib-left mult.commaute
mult.right-neutral)
have cos (i—tt) < 1
using cos-monotone-0-pi[of 0 tt—1i | that cos-minus|of tt—1i,simplified)
by auto
moreover have cos (i—tt) = — cos i
apply (rule cos-eq-neg-periodic-intro|of - - —k—1])
unfolding k-def by (auto simp add:algebra-simps)
ultimately have cos i>—1 by auto
then have cos tt<cos i using <cos tt=—1> by auto
have 0 = r % cos tt + Re z — Re 20
using «g tt = 0> unfolding g-def by auto
also have ... < r % cos ¢ + Re z — Re 20
using <cos tt < cos ©» «r>0»> by auto
finally show ?thesis unfolding g-def by auto
qed
then show ?thesis
unfolding has-sgnz-def eventually-at-left
apply (intro exI[where x=tt—pi])
by auto
qed
ultimately show ?thesis using that(2) by auto
qed

have ?thesis when r % cos tt + Re z — Re 20 # 0
proof —
have g tt #0 using that unfolding g-def by auto
then have continuous (at-left tt) (Ai. fi / g 1)
unfolding f-def g-def by (auto introl:continuous-intros)
then have jumpF (Xi. fi/g i) (at-left tt) = 0
using jumpF-not-infinity|of at-left tt (Mi. fi/g 7)] by auto
then show ?thesis using jumpF-eq that by auto
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qed
moreover have ?thesis when r x cos tt + Re z — Re 20 = 0
(sintt > 0V cos tt=—1 ) N ftt < 0
V (sintt < 0V costt=1)Nftt>0
proof —
have g tt = 0 f tt0 and g-cont: continuous (at-left tt) g and f-cont:continuous
(at-left tt) f
using that unfolding g-def f-def by (auto introl:continuous-intros)
have (g has-sgnz — sgn (f tt)) (at-left tt)
using g-has-sgnz1[OF <g tt=0>] g-has-sgnz2[OF <g tt=0>] that(2) by auto
then have LIM z at-left tt. fz / g z :> at-bot
apply (subst filterlim-divide-at-bot-at-top-iff [of f f tt at-left tt g))
using «f tt#£0» <g tt = 0> g-cont f-cont by (auto simp add: continuous-within)
then have jumpF (Xi. fi/g i) (at-left tt) = — 1/2
unfolding jumpF-def by auto
then show ?thesis using jumpF-eq that unfolding f-def by auto
qed
moreover have ?thesis when r x cos tt + Re z — Re 20 = 0
S ((sintt > 0V cos tt=—1 ) N fit < 0
V (sintt < 0V costt=1 )N fitt> 0)
proof —
have ¢ tt = 0 and g-cont: continuous (at-left tt) g and f-cont:continuous
(at-left tt) f
using that unfolding g-def f-def by (auto introl:continuous-intros)
have f tt£0
proof (rule ccontr)
assume - f it # 0
then have f it = 0 by auto
then have Im (20 — z) =r * sin tt Re (20 — z) = r * cos tt using (g tt=0»
unfolding f-def g-def by (auto simp add:algebra-simps)
then have cmod (20 — z) = sqrt((r * sin tt) "2 + (r * cos tt) " 2)
unfolding cmod-def by auto

also have ... = sgrt (r72 * ((sin tt) "2 + (cos tt) "2))
by (auto simp only:algebra-simps power-mult-distrib)
also have ... = r

using «<r>0> by simp

finally have cmod (20 — z) = .
then show Fulse using <cmod (z—20) #r» by (simp add: norm-minus-commute)
qed
have (sin tt > 0 V cos tt=—1 ) A ftt > 0 V (sintt < 0V cos tt=1 ) A f it

<0

proof —

have sin tt = 0 +— cos tt=—1 V cos tt=1

by (metis (no-types, opaque-lifting) add.right-neutral cancel-comm-monoid-add-class. diff-cancel

cos-diff cos-zero mult-eq-0-iff power2-eq-1-iff power2-eq-square sin-squared-eq)
moreover have ((sin tt < 0 A cos tt #—1 )V fit > 0) A ((sin tt > 0 A
cos tt£1) V fit < 0)
using that(2) «f tt£0> by argo
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ultimately show ¢thesis by (meson linorder-neqE-linordered-idom not-le)
qed
then have (g has-sgnz sgn (f tt)) (at-left tt)
using g-has-sgnz1[OF <g tt=0>] g-has-sgnz2[OF <g tt=0>] by auto
then have LIM x at-left tt. fx / g z > at-top
apply (subst filterlim-divide-at-bot-at-top-iff [of [ f tt at-left tt g])
using «f tt£0»> <g tt = 0> g-cont f-cont by (auto simp add: continuous-within)
then have jumpF (Ai. fi/g i) (at-left tt) = 1/2
unfolding jumpF-def by auto
then show %thesis using jumpF-eq that unfolding f-def by auto
qed
ultimately show ?thesis by fast
qed

lemma
fixes 20 z::compler and r:real
defines upper = cindez-pathE (part-circlepath z v 0 pi) 20
and lower = cindez-pathE (part-circlepath z v pi (2%pi)) 20
shows cindex-pathE-circlepath-upper:

[emod (20—2) < 1] = upper = —1
[Im (20—z) > r; |Re (20 — z)| < r] = upper = 1
[Im (20—2) < —r; |Re (20 — z)| < r] = upper = —1

[|Re (20 — 2)| > r; r>0] = upper = 0
and cindex-pathE-circlepath-lower:
[emod (20—2) < 1] = lower = —1
[Im (20—z) > r; |Re (20 — 2)| < r] = lower = —1
[Im (20—2z) < —r; |Re (20 — z)| < r] = lower = 1
[|Re (20 — 2)| > r; r>0] = lower = 0
proof —
assume assms:cmod (20—z) < r
have zz-facts:—r<Re z — Re z0 Re z — Re z0<r r>0
subgoal using assms complex-Re-le-cmod le-less-trans by fastforce
subgoal by (metis assms complex-Re-le-cmod le-less-trans minus-complex.simps(1)
norm-minus-commaute)
subgoal using assms le-less-trans norm-ge-zero by blast
done
define ¥ where ¢ = arccos ((Re z0 — Re z) / r)
have ¥-bound:0 < 9 AN 9 < pi
unfolding 9-def
apply (rule arccos-lt-bounded)
using zz-facts by (auto simp add:field-simps)
have Im-sin:abs (Im 20 — Im z) < r % sin ¥
proof —
define zz where zz=20—=z
have sqrt ((Re 2z)? + (Im zz)?) < r
using assms unfolding zz-def cmod-def .
then have (Re 22)? + (Im 22)? < 772
by (metis cmod-power2 dvd-refl linorder-not-le norm-complex-def power2-le-imp-le
real-sqrt-power zero-le-power-eq-numeral)
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then have (Im 22)> < r"2 — (Re 22) "2 by auto
then have abs (Im 2zz) < sqrt (r"2 — (Re 2z) " 2)
by (simp add: real-less-rsqrt)
then show ?thesis
unfolding V-def zz-def
apply (subst sin-arccos-abs)
subgoal using zz-facts by auto
subgoal using «r>0) by (auto simp add:field-simps divide-simps real-sqrt-divide)
done
qged
show upper = — 1
proof —
have jumpF-pathstart (part-circlepath z r 0 pi) 20 = 0
apply (subst jumpF-pathstart-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commaute)
moreover have jumpF-pathfinish (part-circlepath z r 0 pi) 20 = 0
apply (subst jumpF-pathfinish-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commute)
ultimately show ?thesis using assms zz-facts ¥-bound Im-sin unfolding
upper-def
apply (subst cindex-pathE-part-circlepath)
by (fold 9-def,auto simp add: norm-minus-commaute)
qed
show lower = — 1
proof —
have jumpF-pathstart (part-circlepath z r pi (2xpi)) 20 = 0
apply (subst jumpF-pathstart-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commute)
moreover have jumpF-pathfinish (part-circlepath z r pi (2+pi)) 20 = 0
apply (subst jumpF-pathfinish-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commaute)
ultimately show ?2thesis using assms zz-facts ¥-bound Im-sin unfolding
lower-def
apply (subst cindez-pathE-part-circlepath)
by (fold ¥-def,auto simp add: norm-minus-commaute)
qed
next
assume assms:|Re (20 — z)| > r r>0
show upper = 0 using assms unfolding upper-def
apply (subst cindez-pathE-part-circlepath)
apply auto
by (metis abs-Re-le-cmod abs-minus-commute eucl-less-le-not-le minus-complex.simps(1))
show lower = 0
using assms unfolding lower-def
apply (subst cindez-pathE-part-circlepath)
apply auto
by (metis abs-Re-le-cmod abs-minus-commute eucl-less-le-not-le minus-complex.simps(1))
next
assume assms:|Re (20 — z)| < r
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then have >0 by auto

define ¥ where ¥ = arccos ((Re 20 — Re z) / r)
have ¥-bound:0 < ¢ AN ¥ < pi
unfolding J-def
apply (rule arccos-lt-bounded)
using assms by (auto simp add:field-simps)
note norm-minus-commaute[simp)
have jumpFs:
JjumpF-pathstart (part-circlepath z v 0 pi) 20 = 0
JjumpF-pathfinish (part-circlepath z v 0 pi) 20 = 0
JjumpF-pathstart (part-circlepath z r pi (2xpi)) 20 = 0
JumpF-pathfinish (part-circlepath z r pi (2xpi)) 20 = 0
when cmod (20 — z) # r
subgoal by (subst jumpF-pathstart-part-circlepath,use assms that in auto)
subgoal by (subst jumpF-pathfinish-part-circlepath,use assms that in auto)
subgoal by (subst jumpF-pathstart-part-circlepath,use assms that in auto)
subgoal by (subst jumpF-pathfinish-part-circlepath,use assms that in auto)
done
show upper = 1 lower = —1 when Im (20—2) > r
proof —
have cmod (20 — 2) # r
using that assms abs-Im-le-cmod abs-le-D1 not-le by blast
moreover have Im 20 — Im z > r * sin 0
proof —
have r x sin ¥ < r
using «r>0> by auto
also have ... < Im 20 — Im z using that by auto
finally show ?thesis .
qed
ultimately show upper = 1 using assms jumpFs ¥-bound that unfolding
upper-def
apply (subst cindex-pathE-part-circlepath)
by (fold ¥-def,auto)
have Im z — Im 20 < r * sin ¥
proof —
have Im z — Im 20 <0 using that <r>0) by auto
moreover have r x sin 9>0 using <r>0» 9-bound by (simp add: sin-gt-zero)
ultimately show ?thesis by auto

qed
then show lower = —1 using <cmod (20 — z) # m <Im 20 — Im z > T * sin
P
assms jumpFs ¥-bound that unfolding lower-def
apply (subst cindex-pathE-part-circlepath)
by (fold ¥-def,auto)
qed
show upper = — 1 lower = 1 when Im (20—z) < —r
proof —

have cmod (20 — z) # r
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using that assms
by (metis abs-Im-le-cmod abs-le-D1 minus-complex.simps(2) minus-diff-eq
neg-less-iff-less
norm-minus-cancel not-le)
moreover have Im z — Im 20 > r * sin 0
proof —
have r x sin ¥ < r
using «r>0> by auto
also have ... < Im z — Im 20 using that by auto
finally show ?thesis .
qed
moreover have Im 20 — Im z < r * sin ¥
proof —
have Im 20 — Im 2<0 using that <r>0)> by auto
moreover have r x sin 9>0 using «r> 0> J-bound by (simp add: sin-gt-zero)
ultimately show ?thesis by auto
qed
ultimately show upper = — 1 using assms jumpFs 9-bound that unfolding
upper-def
apply (subst cindex-pathE-part-circlepath)
by (fold ¥-def,auto)
show lower = 1
using <Im 20 — Im z < r x sin > Im z — Im 20 > r x sin & <cmod (20 —
z) # 1
assms jumpFs ¥-bound that unfolding lower-def
apply (subst cindex-pathE-part-circlepath)
by (fold ¥-def,auto)
qed
qed

lemma jumpF-pathstart-linepath:
jumpF-pathstart (linepath a b) z =
(if Re a = Re z A Im a£Im z N\ Re b # Re a then
if (Im a>Im z A Reb> Rea)V (Ima<Im z A Reb < Re a) then 1/2 else
—-1/2
else 0)
proof —
define f where f=(\t. (Im b — Im a )x t + (Im a — Im 2))
define g where g=(\t. (Re b — Re a )x t + (Re a — Re z))
have jump-eq:jumpF-pathstart (linepath a b) z = jumpF (At. ft/g t) (at-right 0)
unfolding jumpF-pathstart-def f-def linepath-def g-def
by (auto simp add:algebra-simps)
have ?thesis when Re a#Re z
proof —
have jumpF-pathstart (linepath a b) z = 0
unfolding jumpF-pathstart-def
apply (rule jumpF-im-divide-Re-0)
apply auto
by (auto simp add:linepath-def that)
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then show ¢thesis using that by auto
qed
moreover have ?thesis when Re a=Re z Im a = Im z
proof —
define ¢ where c=(Im b — Im a) / (Re b — Re a)
have jumpF (At. ft/g t) (at-right 0) = jumpF (A-. ¢) (at-right 0)
proof (rule jumpF-cong)
show V p z in at-right 0. fz / gz = ¢
unfolding eventually-at-right f-def g-def c-def using that
apply (intro exI[where z=1])
by auto
qed simp
then show ?thesis using jump-eq that by auto
qed
moreover have ?thesis when Re a=Re z Re b = Re a
proof —
have (At. ft/gt) = (A-. 0) unfolding f-def g-def using that by auto
then have jumpF (At. ft/g t) (at-right 0) = jumpF (A-. 0) (at-right 0) by
auto
then show %thesis using jump-eq that by auto
qged
moreover have ?thesis when Re a = Re z (Im a>Im 2z A Re b > Re a) V (Im
a<Im z A Re b < Re a)
proof —
have LIM z at-right 0. fx / g x :> at-top
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im a — Im z])
unfolding f-def g-def using that
by (auto introl:tendsto-eq-intros sgnx-eq-intros)
then have jumpF' (At. ft/gt) (at-right 0) = 1/2
unfolding jumpF-def by simp
then show %thesis using jump-eq that by auto
qed
moreover have %thesis when Re a = Re z Im a#Im z Re b # Re a
= ((Im a>Im z A Re b > Re a) V (Im a<Im z A Re b < Re a))
proof —
have (Im a>Im z A Re b < Re a) V (Im a<Im z A Re b > Re a)
using that by argo
then have LIM z at-right 0. fx / g  :> at-bot
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im a — Im z])
unfolding f-def g-def using that
by (auto introl:tendsto-eq-intros sgna-eq-intros)
moreover then have — (LIM x at-right 0. fx / g x :> at-top)
using filterlim-at-top-at-bot by fastforce
ultimately have jumpF (At. ft/g t) (at-right 0) = — 1/2
unfolding jumpF-def by simp
then show ?thesis using jump-eq that by auto
qed
ultimately show ¢thesis by fast
qed
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lemma jumpF-pathfinish-linepath:
JumpF-pathfinish (linepath a b) z =
(if Re b= Re z A Im b #Im z A Re b # Re a then
if (Im b>Im z A Re a > Reb)V (Im b<Im z A Re a < Reb) then 1/2 else
—-1/2
else 0)
proof —
define f where f=(At. (Im b — Im a )x t + (Im a — Im 2))
define g where g=(\t. (Re b — Re a ) t + (Re a — Re 2))
have jump-eq:jumpF-pathfinish (linepath a b) z = jumpF (At. ft/gt) (at-left 1)
unfolding jumpF-pathfinish-def f-def linepath-def g-def
by (auto simp add:algebra-simps)
have ?thesis when Re b#Re z
proof —
have jumpF-pathfinish (linepath a b) z = 0
unfolding jumpF-pathfinish-def
apply (rule jumpF-im-divide-Re-0)
apply auto
by (auto simp add:linepath-def that)
then show %thesis using that by auto
qed
moreover have ?thesis when Re z=Re b Im z = Im b
proof —
define ¢ where c=(Im a — Im b) / (Re a — Re b)
have jumpF (At. ft/g t) (at-left 1) = jumpF (A-. ¢) (at-left 1)
proof (rule jumpF-cong)
have fz / g x = ¢ when z<1 for x
proof —
have fz / gz = ((Im a — Im b)x(1—x))/((Re a — Re b)*x(1—zx))
unfolding f-def g-def
by (auto simp add:algebra-simps «Re z=Re by <Im z = Im b»)
also have ... = ¢
using that unfolding c-def by auto
finally show ?thesis .
qed
then show Vg zin at-left 1. fz [ gz = ¢
unfolding eventually-at-left using that
apply (intro exI[where z=0])
by auto
qed simp
then show %thesis using jump-eq that by auto
qed
moreover have ?thesis when Re a=Re z Re b = Re a
proof —
have (\t. ft/g t) = (A-. 0) unfolding f-def g-def using that by auto
then have jumpF (At. ft/g t) (at-left 1) = jumpF (X-. 0) (at-left 1) by auto
then show ?thesis using jump-eq that by auto
qed
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moreover have ?thesis when Re b = Re z (Im b>Im z A Re a > Re b) V (Im
b<Im z A Re a < Re b)
proof —
have LIM x at-left 1. fz / g x :> at-top
proof —
have (g has-real-derivative Re b — Re a) (at 1)
unfolding g-def by (auto intro!:derivative-eg-intros)
from has-sgnz-derivative-at-left| OF this]
have (g has-sgnz sgn (Im b — Im z)) (at-left 1)
using that unfolding g-def by auto
then show ?thesis
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im b — Im z])
unfolding f-def g-def using that by (auto introl:tendsto-eg-intros)
qed
then have jumpF (At. ft/gt) (at-left 1) = 1/2
unfolding jumpF-def by simp
then show ?thesis using jump-eq that by auto
qed
moreover have ?thesis when Re b = Re z Im b#Im z Re b # Re a
= ((Im b>Im z A Re a > Re b) V (Im b<Im z A\ Re a < Re b))
proof —
have (Im b>Im z A Re a < Re b) V (Im b<Im z A Re a > Re b)
using that by argo
have LIM z at-left 1. fz |/ g x :> at-bot
proof —
have (g has-real-derivative Re b — Re a) (at 1)
unfolding g-def by (auto intro!:derivative-eg-intros)
from has-sgna-derivative-at-left[ OF this]
have (g has-sgnz — sgn (Im b — Im 2)) (at-left 1)
using that unfolding g-def by auto
then show ?thesis
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im b — Im z])
unfolding f-def g-def using that by (auto intro!:tendsto-eg-intros )
qed
moreover then have = (LIM z at-left 1. fz [/ g x :> al-top)
using filterlim-at-top-at-bot by fastforce
ultimately have jumpF (A\t. ft/g t) (at-left 1) = — 1/2
unfolding jumpF-def by simp
then show ?thesis using jump-eq that by auto
qed
ultimately show #¢thesis by argo
qed

6.4 Setting up the method for evaluating winding numbers

lemma pathfinish-pathstart-partcirclepath-simps:
pathstart (part-circlepath 20 v (3xpi/2) tt) = 20 — Complezx 0 r
pathstart (part-circlepath 20 v (2xpi) tt) = 20 + r
pathfinish (part-circlepath z0 r st (8xpi/2)) = 20 — Complex 0 r
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pathfinish (part-circlepath 20 r st (2xpi)) = 20 + r

pathstart (part-circlepath z0 v 0 tt) = 20 + r

pathstart (part-circlepath z0 v (pi/2) tt) = 20 + Complex 0 r

pathstart (part-circlepath 20 v (pi) tt) = 20 — r

pathfinish (part-circlepath 20 r st 0) = 20+

pathfinish (part-circlepath z0 r st (pi/2)) = 20 + Complex 0 r

pathfinish (part-circlepath 20 r st (pi)) = 20 — r

unfolding part-circlepath-def linepath-def pathstart-def pathfinish-def exp-Euler

subgoal
apply (simp, subst sin.minus-1[symmetric],subst cos.minus-1[symmetric])
by (simp add: complez-of-real-i)

subgoal
by (simp add: complez-of-real-i)

subgoal
apply (simp, subst sin.minus-1[symmetric],subst cos.minus-1[symmetric])
by (simp add: complez-of-real-i)

by (simp-all add: complex-of-real-i)

lemma winding-eq-intro:
finite-ReZ-segments g z =
valid-path g =
z ¢ path-image g =
pathfinish g = pathstart g —>
— of-real(cindex-pathE g z) =2xn —>
winding-number g z = (n::complex)
apply (subst winding-number-cindez-pathE]of g z])
by (auto simp add:field-simps)

named-theorems winding-intros and winding-simps

lemmas [winding-intros| =
finite-ReZ-segments-joinpaths
valid-path-join
path-join-imp
not-in-path-image-join

lemmas [winding-simps] =
finite-ReZ-segments-linepath
finite- ReZ-segments-part-circlepath
JumpF-pathfinish-joinpaths
JumpF-pathstart-joinpaths
pathfinish-linepath
pathstart-linepath
pathfinish-join
pathstart-join
valid-path-linepath
valid-path-part-circlepath
path-part-circlepath
Re-complex-of-real
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Im-complex-of-real
of-real-linepath
pathfinish-pathstart-partcirclepath-simps

method rep-subst =
(subst cindex-pathE-joinpaths; rep-subst) ?

The method "eval winding" 1 will try to simplify of the form wind-
ing-number g z = n where n is an integer and ¢ is a closed path comprised
of linepath, part-circlepath and (+++).

Suppose g = 1 +++ [2, usually, the key behind the success of this
framework is whether we can prove z ¢ path-image 11, z ¢ path-image (2
and calculate cindex-pathE 11 z and cindex-pathFE (2 z.

method eval-winding =
((rule-tac winding-eq-intro;
rep-subst
)
, auto simp only:winding-simps del:notl introl:winding-intros
, tactic <distinct-subgoals-tacy)

end

7 Some examples of applying the method wind-
ing eval

theory Winding-Number-FEval-Examples imports Winding-Number-Eval
begin

lemma examplel:
assumes R>1
shows winding-number (part-circlepath 0 R 0 pi +++ linepath (—R) R) i = 1
proof (eval-winding,simp-all)
define CR where CR =part-circlepath 0 R 0 pi
define L where L= linepath (— (complex-of-real R)) R
show i ¢ path-image CR unfolding CR-def using <R>1>
by (intro not-on-circlepathl ,auto)
show x:i ¢ closed-segment (— (of-real R)) R using <R>1) complex-eq-iff
by (intro not-on-closed-segmentl ,auto)
from cindex-pathE-linepath[OF this] have cindez-pathE L i = —1
unfolding L-def using <(R>1> by auto
moreover have cindex-pathE CR i = —1
unfolding CR-def using (R>1)
apply (subst cindez-pathE-part-circlepath)
by (simp-all add:jumpF-pathstart-part-circlepath jumpF-pathfinish-part-circlepath)
ultimately show — complez-of-real (cindex-pathE CR i) — cindez-pathE L i =
2
unfolding L-def CR-def by auto
qed
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lemma example2:
assumes R>1
shows winding-number (part-circlepath 0 R 0 pi +++ linepath (—R) R) (—i) =
0
proof (eval-winding,simp-all)
define CR where CR =part-circlepath 0 R 0 pi
define L where L= linepath (— (complex-of-real R)) R
show —i ¢ path-image CR unfolding CR-def using <R>1)
by (intro not-on-circlepathl ,auto)
show x:—1 ¢ closed-segment (— (of-real R)) R using <R>1) complez-eq-iff
by (intro not-on-closed-segmentI ;auto)
from cindex-pathE-linepath|OF this| have cindez-pathE L (—i) = 1
unfolding L-def using <(R>1> by auto
moreover have cindez-pathE CR (—i) = —1
unfolding CR-def using (R>1)
apply (subst cindex-pathE-part-circlepath)
by (simp-all add:jumpF-pathstart-part-circlepath jumpF-pathfinish-part-circlepath)
ultimately show —cindez-pathE CR (—i) = cindes-pathE L (—i)
unfolding L-def CR-def by auto
qed

lemma example3:
fixes Ib ub z :: complex
defines rec = linepath Ib (Complex (Re ub) (Im b)) +++ linepath (Complex
(Re ub) (Im b)) ub
+++ linepath ub (Complex (Re Ib) (Im ub)) +++ linepath (Complex
(Re Ib) (Im ub)) b
assumes order-asms:Re Ib < Re z Re z < Re ub Im lb < Im z Im z < Im ub
shows winding-number rec z = 1
unfolding rec-def
proof (eval-winding)
let 211 = linepath b (Complex (Re ub) (Im b))
and ?12 = linepath (Complex (Re ub) (Im b)) ub
and ?13 = linepath ub (Complex (Re Ib) (Im ub))
and ?l = linepath (Complex (Re Ib) (Im ub)) Ib
show [1: z ¢ path-image ?l1
apply (auto introl: not-on-closed-segmentI-complezx)
using order-asms by (simp add: algebra-simps crossproduct-eq)
show [2:2 ¢ path-image 712
apply (auto introl: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)
show [3:2 ¢ path-image ?13
apply (auto intro!: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)
show l4:z ¢ path-image ?1}
apply (auto introl: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)
show — complez-of-real (cindex-pathE ?l1 z + (cindez-pathE ?12 z + (cindex-pathE
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218 2 +
cindex-pathE 214 z))) = 2 * 1
proof —
have (Im z — Im ub) * (Re ub — Re Ib) < 0
using mult-less-0-iff order-asms(1) order-asms(2) order-asms(4) by fastforce
then have cindex-pathE ?13 z = —1
apply (subst cindez-pathE-linepath)
using [3 order-asms by (auto simp add:algebra-simps)
moreover have (Im b — Im z) x (Re ub — Re Ib) <0
using mult-less-0-iff order-asms(1) order-asms(2) order-asms(3) by fastforce
then have cindex-pathE 211 z = —1
apply (subst cindex-pathE-linepath)
using 1 order-asms by (auto simp add:algebra-simps)
moreover have cindex-pathE ?12 z = 0
apply (subst cindex-pathE-linepath)
using 12 order-asms by (auto simp add:algebra-simps)
moreover have cindez-pathE ¢l z = 0
apply (subst cindez-pathE-linepath)
using 4 order-asms by (auto simp add:algebra-simps)
ultimately show ?thesis by auto
qged
qed

end
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