Evaluate Winding Numbers through Cauchy Indices

Wenda Li

March 17, 2025

Abstract

In complex analysis, the winding number measures the number
of times a path (counterclockwise) winds around a point, while the
Cauchy index can approximate how the path winds. This entry pro-
vides a formalisation of the Cauchy index, which is then shown to be
related to the winding number. In addition, this entry also offers a
tactic that enables users to evaluate the winding number by calculat-
ing Cauchy indices. The connection between the winding number and
the Cauchy index can be found in the literature [1] [2, Chapter 11].

1 Some useful lemmas in topology

theory Missing-Topology imports HOL— Analysis. Multivariate- Analysis
begin

1.1 Misc

lemma open-times-image:
fixes S::’a::real-normed-field set
assumes open S ¢£0
shows open (((x) ¢) *9)
proof —
let 9f = Az. z/c and ?g=((%) ¢)
have continuous-on UNIV ?f using <c#£0> by (auto intro:continuous-intros)
then have open (?f —*S) using <open S» by (auto elim:open-vimage)
moreover have %g ‘S = 7f —¢ S using «c#0»
using image-iff by fastforce
ultimately show #¢thesis by auto
qed

lemma image-linear-greaterThan:

fixes z::'a::linordered-field

assumes c#(

shows ((Az. cxz+b) ‘{z<..}) = (if ¢>0 then {cxz+b <.} else {..< cxz+b})
using (c#0»

apply (auto simp add:image-iff field-simps)

subgoal for y by (rule bezl[where z=(y—0b)/c|,auto simp add:field-simps)

subgoal for y by (rule bexl[where z=(y—0b)/c|,auto simp add:field-simps)
done

lemma image-linear-lessThan:

fixes z::'a::linordered-field

assumes c#(

shows ((Az. cxz+b) ‘{..<z}) = (if ¢>0 then {.<cxz+b} else {cxz+b<..})
using «c#0»

apply (auto simp add:image-iff field-simps)

subgoal for y by (rule bexI[where x=(y—b)/c],auto simp add:field-simps)

subgoal for y by (rule bexI[where x=(y—b)/c],auto simp add:field-simps)
done

lemma continuous-on-neq-split:

fixes f :: 'a:linear-continuum-topology = 'b::linorder-topology

assumes YV z€s. f x#y continuous-on s f connected s

shows (Vzes. fz>y) V (Vz€es. fr<y)

by (smt (verit) assms connectedD-interval connected-continuous-image imageE
image-eql lel)

lemma
fixes f::’a::linorder-topology = 'b::topological-space
assumes continuous-on {a..b} fa<b
shows continuous-on-at-left:continuous (at-left b) f
and continuous-on-at-right:continuous (at-right a) f
using assms continuous-on-Icc-at-leftD continuous-within apply blast
using assms continuous-on-Icc-at-rightD continuous-within by blast

1.2 More about eventually

lemma eventually-comp-filtermap:
eventually (P o f) F' <— eventually P (fillermap f F')
unfolding comp-def using eventually-filtermap by auto

lemma eventually-at-infinityl:
fixes P::'a::real-normed-vector = bool
assumes A\z. ¢ < normz = Pz
shows eventually P at-infinity
unfolding eventually-at-infinity using assms by auto

lemma eventually-at-bot-linorderl:
fixes c::'a::linorder
assumes A\z. 2 < ¢c= Pz
shows eventually P at-bot
using assms by (auto simp: eventually-at-bot-linorder)

1.3 More about filtermap

lemma filtermap-linear-at-within:
assumes bij f and cont: isCont f a and open-map: \S. open S = open (f*S)

shows filtermap f (at a within S) = at (f a) within fS
unfolding filter-eq-iff
proof safe
fix P
assume eventually P (filtermap f (at a within S))
then obtain T where open T a € T and impP:Vz€T. z#£a — z€S— P (f

7)
by (auto simp: eventually-filtermap eventually-at-topological)
then show eventually P (at (f a) within f *S)
unfolding eventually-at-topological
apply (intro exI[of - f*T])
using «bij f> open-map by (metis bij-pointE imageE imagel)
next
fix P
assume eventually P (at (f a) within f ¢ .S)
then obtain 77 where open T1 f a € T1 and impP:NzeTI. z#£f a —
zefS— P (z)
unfolding eventually-at-topological by auto
then obtain T2 where open T2 a € T2 (Vz'eT2. fz' € T1)
using cont[unfolded continuous-at-open,rule-format,of T1] by blast
then have VzeT2. z#£a — 2z€S— P (f 1)
using impP by (metis assms(1) bij-pointE imagel)
then show eventually P (filtermap f (at a within S))
unfolding eventually-filtermap eventually-at-topological
apply (intro exI[of - T2])
using <open T2»> <a € T2) by auto
qged

lemma filtermap-at-bot-linear-eq:
fixes c::'a::linordered-field
assumes c#0
shows filtermap (Az. z * ¢ + b) at-bot = (if ¢>0 then at-bot else at-top)
proof (cases ¢>0)
case True
then have filtermap (Az. z * ¢ + b) at-bot = at-bot
apply (intro filtermap-fun-inverse[of Az. (z—b) / c])
subgoal unfolding eventually-at-bot-linorder filterlim-at-bot
by (auto simp add: field-simps)
subgoal unfolding eventually-at-bot-linorder filterlim-at-bot
by (metis mult.commute real-affinity-le)
by auto
then show ?thesis using «¢>0» by auto
next
case Fulse
then have c<(0 using «c#0> by auto
then have filtermap (Az. z * ¢ + b) al-bot = at-top
apply (intro filtermap-fun-inverse[of Az. (z—b) / c])
subgoal unfolding eventually-at-top-linorder filterlim-at-bot
by (meson le-diff-eq neg-divide-le-eq)

subgoal unfolding eventually-at-bot-linorder filterlim-at-top
using <c¢ < 0» by (meson False diff-le-eq le-divide-eq)
by auto
then show ?thesis using «c<0» by auto
qed

lemma filtermap-linear-at-left:
fixes c::'a::{linordered-field,linorder-topology,real-normed-field}
assumes c#0
shows filtermap (Az. cxx+b) (at-left ©) = (if ¢>0 then at-left (cxax+b) else
at-right (cxz+b))
proof —
let 2f = \z. cxz+b
have filtermap (Az. cxx+b) (at-left ©) = (at (2f x) within ?f {..<z})
proof (subst filtermap-linear-at-within)
show bij ?f using <c#0»
by (auto introl: o-bijlof Ax. (z—b)/c])
show isCont ?f x by auto
show AS. open S = open (7f * 5)
using open-times-image[OF - <c£0y, THEN open-translation,of - b
by (simp add:image-image add.commute)
show at (7f z) within ?f ‘ {.<z} = at (?f z) within ?f ‘ {..<z} by simp
qed
moreover have ?f ‘ {.<z} = {..<?fz} when ¢>0
using image-linear-lessThan|OF <c#0>,0f b z] that by auto
moreover have ?f ‘ {.<z} = {9 z<..} when — ¢>0
using image-linear-lessThan[OF <c#0»,0f b z] that by auto
ultimately show ?thesis by auto
qed

lemma filtermap-linear-at-right:
fixes c::'a::{linordered-field,linorder-topology,real-normed-field}
assumes c#(
shows filtermap (Az. cxz+b) (at-right x) = (if ¢>0 then at-right (cxz+0b) else
at-left (cxz+b))
proof —
let ?f = Az. cxz+b
have filtermap ?f (at-right x) = (at (?f z) within ?f ‘ {z<..})
proof (subst filtermap-linear-at-within)
show bij ?f using <c#0)
by (auto introl: o-bijlof Ax. (z—b)/c])
show isCont ?f x by auto
show AS. open S = open (?f * S)
using open-times-image[OF - «¢£0y, THEN open-translation,of - b
by (simp add:image-image add.commute)
show at (7f z) within ?f ‘ {z<..} = at (?f z) within ?f ‘ {x<..} by simp
qed
moreover have ?f ‘ {z<.} = {%f z<..} when ¢>0
using image-linear-greater Than[OF <c¢#05,0f b z] that by auto

moreover have ?f ‘ {z<..} = {..<?fz} when — ¢>0
using image-linear-greater Than[OF <c#05,0f b z] that by auto
ultimately show #¢thesis by auto
qed

lemma filtermap-at-top-linear-eq:
fixes c::’a:linordered-field
assumes c#(
shows filtermap (Az. z * ¢ + b) at-top = (if ¢>0 then at-top else at-bot)
proof (cases ¢>0)
case True
then have filtermap (Az. z x ¢ + b) at-top = at-top
apply (intro filtermap-fun-inverse[of Az. (z—b) / c])
subgoal unfolding eventually-at-top-linorder filterlim-at-top
by (meson le-diff-eq pos-le-divide-eq)
subgoal unfolding eventually-at-top-linorder filterlim-at-top
apply auto
by (metis mult.commute real-le-affinity)
by auto
then show ?thesis using «¢>0» by auto
next
case Fulse
then have c<(0 using (c#0> by auto
then have filtermap (Az. z x ¢ + b) al-top = at-bot
apply (intro filtermap-fun-inverse[of Az. (z—b) / c])
subgoal unfolding eventually-at-bot-linorder filterlim-at-top
by (auto simp add: field-simps)
subgoal unfolding eventually-at-top-linorder filterlim-at-bot
by (meson le-diff-eq neg-divide-le-eq)
by auto
then show ?thesis using «c<0» by auto
qed

1.4 More about filterlim

lemma filterlim-at-top-linear-iff:

fixes f::’a::linordered-field = 'b

assumes c#(

shows (LIM z at-top. f (x x ¢ + b) :> F2) +— (if ¢>0 then (LIM z at-top. f x
> F2)

else (LIM z at-bot. fx :> F2))

unfolding filterlim-def

apply (subst filtermap-filtermap[of f Ax. * ¢ + b,symmetric])

using assms by (auto simp add:filtermap-at-top-linear-eq)

lemma filterlim-at-bot-linear-iff:
fixes f::’a::linordered-field = 'b
assumes c#(
shows (LIM z at-bot. f (z x ¢ + b) :> F2) <— (if ¢>0 then (LIM z at-bot. f x

> F2)
else (LIM z at-top. fz :> F2))
unfolding filterlim-def
apply (subst filtermap-filtermap|of f Az. x * ¢ + b,symmetric])
using assms by (auto simp add:filtermap-at-bot-linear-eq)

lemma filterlim-tendsto-add-at-top-iff:
assumes f: (f —— ¢) F
shows (LIM z F. (fx + g x :: real) :> at-top) «— (LIM = F. g x :> at-top)
proof
assume LIM z F. fx 4+ g x :> at-top
moreover have (\z. — fz) —— — ¢) F
using f by (intro tendsto-intros,simp)
ultimately show filterlim g at-top F using filterlim-tendsto-add-at-top
by fastforce
qed (auto simp add:filterlim-tendsto-add-at-top| OF f])

lemma filterlim-tendsto-add-at-bot-iff:
fixes c::real
assumes f: (f —— ¢) F
shows (LIM z F. fx + gz :> at-bot) +— (LIM z F. g x :> at-bot)
proof —
have (LIM z F. fz 4+ g = :> at-bot)
+— (LIMz F. — fz + (— gx) > at-top)
apply (subst filterlim-uminus-at-top)
by (rule filterlim-cong,auto)
also have ... = (LIM ¢ F. — g x > at-top)
apply (subst filterlim-tendsto-add-at-top-iff [of - —c])
by (auto intro:tendsto-intros simp add:f)
also have ... = (LIM z F. g © :> at-bot)
apply (subst filterlim-uminus-at-top)
by (rule filterlim-cong,auto)
finally show ?thesis .
qed

lemma tendsto-inverse-0-at-infinity:

LIM z F. fx :> at-infinity = ((Az. inverse (f) :: real) —— 0) F
by (metis filterlim-at filterlim-inverse-at-iff)

end

2 Some useful lemmas in algebra

theory Missing-Algebraic imports
HOL— Computational-Algebra. Polynomial-Factorial

HOL— Computational-Algebra. Fundamental- Theorem-Algebra
HOL— Complex-Analysis. Complex-Analysis
Missing-Topology
Budan-Fourier. BF-Misc
begin

2.1 Misc

lemma poly-holomorphic-on[simp]: (poly p) holomorphic-on s
by (meson field-differentiable-def has-field-derivative-at-within holomorphic-onl
poly-DERIV)

lemma order-zorder:
fixes p::complex poly and z::complex
assumes p#(
shows order z p = nat (zorder (poly p) z)
proof —
define n where n=nat (zorder (poly p) z)
define h where h=zor-poly (poly p) z
have Jw. poly p w # 0 using assms poly-all-0-iff-0 by auto
then obtain r where 0 < r cball z v C UNIV and
h-holo: h holomorphic-on cball z r and
poly-prod:(Y wecball z r. polyp w =hw* (w—2) “nAhw#0)
using zorder-exist-zero|of poly p UNIV z,folded h-def] poly-holomorphic-on
unfolding n-def by auto
then have h holomorphic-on ball z r
and (Yweball zr. polyp w =hw * (w — 2)
and h z#£0
by auto
then have order z p = n using «p#0>
proof (induct n arbitrary:p h)
case (
then have poly p z=h z using «r>0» by auto
then have poly p z#0 using «h 270 by auto
then show ?case using order-root by blast
next
case (Suc n)
define sn where sn==Suc n
define b’/ where h'= Aw. deriv h w * (w—z)+ sn * h w
have (poly p has-field-derivative poly (pderiv p) w) (at w) for w
using poly-DERIV[of p w] .
moreover have (poly p has-field-derivative (h' w)*(w—z)"n) (at w) when
weball z r for w
proof (subst DERIV-cong-ev[of w w poly p Aw. h w * (w — 2z) ~ Suc n
],sitmp-all)
show V p z in nhds w. poly px = hz * ((z — 2) * (x — 2) " n)
unfolding eventually-nhds using Suc(3) <w€ball z >
by (metis Elementary-Metric-Spaces.open-ball power-Suc)
next

o~

n)

have (h has-field-derivative deriv h w) (at w)
using <h holomorphic-on ball z ry <weball z ry holomorphic-on-imp-differentiable-at

by (simp add: holomorphic-derivl)
then have ((Aw. h w x ((w — 2) ~ sn))
has-field-derivative ' w x (w — 2) ~ (sn — 1)) (at w)
unfolding h’-def
apply (auto intro!: derivative-eg-intros simp add:field-simps)
by (auto simp add:field-simps sn-def)
then show ((Aw. hw * ((w — 2) * (w — 2) " n))
has-field-derivative ' w * (w — z) ~ n) (at w)
unfolding sn-def by auto
qed
ultimately have YV weball z r. poly (pderivp) w=h" w= (w— 2) " n
using DERIV-unique by blast
moreover have h’' holomorphic-on ball z r
unfolding h’-def using <h holomorphic-on ball z
by (auto intro!: holomorphic-intros)
moreover have h’ 270 unfolding h’-def sn-def using <h z # 0) of-nat-neq-0
by auto
moreover have pderiv p # 0
proof
assume pderiv p = 0
obtain ¢ where p=[:c:] using (pderiv p = 0) using pderiv-iszero by blast
then have c=0
using Suc(3)[rule-format,of z] «r>0» by auto
then show False using «p#£0> using «p=[:c:]> by auto
qed
ultimately have order z (pderiv p) = n by (auto elim: Suc.hyps)
moreover have order z p # 0
using Suc(3)[rule-format,of z] «r>0s order-root <p#£0» by auto
ultimately show ?case using order-pderiv|OF <pderiv p # 0)] by auto
qed
then show ?thesis unfolding n-def .
qed

lemma pcompose-pCons-0:pcompose p [:a:] = [:poly p a:]
by (metis (no-types, lifting) coeff-pCons-0 pcompose-0' pcompose-assoc poly-0-coeff-0
poly-pcompose)

lemma pcompose-coeff-0:

coeff (pcompose p q) 0 = poly p (coeff q 0)
by (metis poly-0-coeff-0 poly-pcompose)

lemma poly-field-differentiable-at[simp):
poly p field-differentiable (at x within s)
using field-differentiable-at-within field-differentiable-def poly-DERIV by blast

lemma deriv-pderiv:

deriv (poly p) = poly (pderiv p)
by (meson ext DERIV-imp-deriv poly-DERIV)

lemma lead-coeff-map-poly-nz:

assumes | (lead-coeff p) #0 f 0=0

shows lead-coeff (map-poly f p) = f (lead-coeff p)

by (metis (no-types, lifting) antisym assms coeff-0 coeff-map-poly le-degree lead-
ing-coeff-0-iff)

lemma filterlim-poly-at-infinity:
fixes p::'a::real-normed-field poly
assumes degree p>0
shows filterlim (poly p) at-infinity at-infinity
using assms
proof (induct p)
case (
then show ?case by auto
next
case (pCons a p)
have ?case when degree p=0
proof —
obtain ¢ where c-def:p=[:c:] using <degree p = 0) degree-eq-zeroE by blast
then have ¢#0 using <0 < degree (pCons a p)) by auto
then show ?thesis unfolding c-def
apply (auto introl:tendsto-add-filterlim-at-infinity)
apply (subst mult.commute)
by (auto introl:tendsto-mult-filterlim-at-infinity filterlim-ident)
qed
moreover have ?case when degree p#0
proof —
have filterlim (poly p) at-infinity at-infinity
using that by (auto intro:pCons)
then show ?thesis
by (auto introl:tendsto-add-filterlim-at-infinity filterlim-at-infinity-times filter-
lim-ident)
qed
ultimately show ?case by auto
qged

lemma poly-divide-tendsto-aux:

fixes p::'a::real-normed-field poly

shows ((Az. poly p x/x (degree p)) —— lead-coeff p) at-infinity
proof (induct p)

case (

then show ?case by (auto intro:tendsto-eq-intros)
next

case (pCons a p)

have ?case when p=0

using that by auto

moreover have ?case when p#0
proof —
define g where g=(Az. a/(zxz degree p))
define f where f=(\z. poly p z/x degree p)
have V px in at-infinity. poly (pCons a p) © / x ~ degree (pCons a p) = g = +
fx
proof (rule eventually-at-infinityI[of 1])
fix z::'a assume norm z>1
then have z#0 by auto
then show poly (pCons a p) x / x ~ degree (pCons ap) =gz + fz
using that unfolding g-def f-def by (auto simp add:field-simps)
qed
moreover have ((Az. g z+f z) —— lead-coeff (pCons a p)) at-infinity
proof —
have (¢ —— 0) at-infinity
unfolding g-def using filterlim-poly-at-infinity[of monom 1 (Suc (degree
p))]
apply (auto introl:tendsto-intros tendsto-divide-0 simp add: degree-monom-eq)
apply (subst filterlim-cong[where g=poly (monom 1 (Suc (degree p)))])
by (auto simp add:poly-monom)
moreover have (f —— lead-coeff (pCons a p)) at-infinity
using pCons <p#£0> unfolding f-def by auto
ultimately show ?thesis by (auto intro:tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)
qged
ultimately show ?case by auto
qed

lemma filterlim-power-at-infinity:
assumes n#0
shows filterlim (A\z::'a::real-normed-field. ™n) at-infinity at-infinity
using filterlim-poly-at-infinity[of monom 1 n] assms
apply (subst filterlim-cong[where g=poly (monom 1 n)])
by (auto simp add:poly-monom degree-monom-eq)

lemma poly-divide-tendsto-0-at-infinity:
fixes p::'a::real-normed-field poly
assumes degree p > degree q
shows ((A\z. poly q z / poly p ©) —— 0) at-infinity
proof —
define pp where pp=(Az. z (degree p) / poly p x)
define ¢q where gg=(A\z. poly q x/z (degree q))
define dd where dd=(\z::'a. 1/x(degree p — degree q))
have V gz in at-infinity. poly q x / poly p x = qqx * pp x * dd =
proof (rule eventually-at-infinityI[of 1])
fix z::'a assume norm x> 1
then have z#0 by auto
then show poly gz / poly px = qqz * pp x * dd x

10

unfolding qq-def pp-def dd-def using assms
by (auto simp add:field-simps divide-simps power-diff)
qed
moreover have ((Az. gq z * pp z * dd) —— 0) at-infinity
proof —
have (q¢ —— lead-coeff q) at-infinity
unfolding ¢g¢-def using poly-divide-tendsto-auz|of ¢q| .
moreover have (pp —— 1 /lead-coeff p) at-infinity
proof —
have p#0 using assms by auto
then show ?thesis
unfolding pp-def using poly-divide-tendsto-auz|of p]
apply (drule-tac tendsto-inverse)
by (auto simp add:inverse-eq-divide)
qed
moreover have (dd —— 0) at-infinity
unfolding dd-def
apply (rule tendsto-divide-0)
by (auto introl: filterlim-power-at-infinity simp add:assms)
ultimately show ?thesis by (auto intro:tendsto-eg-intros)
qged
ultimately show ?thesis by (auto dest:tendsto-cong)
qed

lemma lead-coeff-list-def:
lead-coeff p= (if coeffs p=[] then 0 else last (coeffs p))
by (simp add: last-coeffs-eq-coeff-degree)

lemma poly-linepath-comp:
fixes a::'a::{real-normed-vector,comm-semiring-0,real-algebra-1}
shows poly p o (linepath a b) = poly (p o, [:a, b—a:]) o of-real
by (force simp add:poly-pcompose linepath-def scaleR-conv-of-real algebra-simps)

lemma poly-eventually-not-zero:
fixes p::real poly
assumes p#(
shows eventually (Az. poly p ©#0) at-infinity
proof (rule eventually-at-infinityI[of Maz (norm ‘ {z. poly p x=0}) + 1))
fix x::real assume asm:Maz (norm ‘ {z. poly p z=0}) + 1 < norm x
have Fulse when poly p x=0
proof —
define S where S=norm {z. poly p z = 0}
have norm z€S using that unfolding S-def by auto
moreover have finite S using <p#£0> poly-roots-finite unfolding S-def by
blast
ultimately have norm t<Maz S by simp
moreover have Mazx S + 1 < norm z using asm unfolding S-def by simp
ultimately show Fulse by argo
qed

11

then show poly p © # 0 by auto
qed

2.2 More about degree

lemma map-poly-degree-eq:
assumes | (lead-coeff p) #0
shows degree (map-poly f p) = degree p
using assms
unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly lead-coeff-list-def
by (metis (full-types) last-conv-nth-default length-map no-trailing-unfold nth-default-coeffs-eq

nth-default-map-eq strip-while-idem)

lemma map-poly-degree-less:
assumes | (lead-coeff p) =0 degree p#0
shows degree (map-poly f p) < degree p
proof —
have length (coeffs p) >1
using <degree p£0» by (simp add: degree-eg-length-coeffs)
then obtain zs where zs-def:coeffs p=zsQ[z] length zs>0
by (metis One-nat-def add-0 append-Nil length-greater-0-conv list.size(4) nat-neg-iff
not-less-zero rev-exhaust)
have f z=0 using assms(1) by (simp add: lead-coeff-list-def xs-def(1))
have degree (map-poly f p) = length (strip-while ((=) 0) (map f (zsQ[z]))) — 1
unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly
by (subst zs-def,auto)
also have ... = length (strip-while ((=) 0) (map f xs)) — 1
using «f x=0> by simp
also have ... < length xs —1
using length-strip-while-le by (metis diff-le-mono length-map)
also have ... < length (zsQ[z]) — 1
using zs-def(2) by auto
also have ... = degree p
unfolding degree-eg-length-coeffs rs-def by simp
finally show ?thesis .
qed

lemma map-poly-degree-leq[simp):
shows degree (map-poly f p) < degree p
unfolding map-poly-def degree-eq-length-coeffs
by (metis coeffs-Poly diff-le-mono length-map length-strip-while-le)

2.3 roots / zeros of a univariate function

definition roots-within::('a = 'b::zero) = ’a set = 'a set where
roots-within f s = {z€s. fz = 0}

abbreviation roots:(‘a = 'b::zero) = ‘a set where
roots f = roots-within f UNIV

12

2.4 The argument principle specialised to polynomials.

lemma argument-principle-poly:
assumes p#0 and valid:valid-path g and loop: pathfinish g = pathstart g
and no-proots:path-image g C — proots p
shows contour-integral g (A\z. deriv (poly p) x / poly p) = 2 x of-real pi * i *
(5" zeproots p. winding-number g x x of-nat (order x p))
proof —
have contour-integral g (Az. deriv (poly p) x / poly p x) = 2 % of-real pi x 1 *
>z | poly p x = 0. winding-number g x x of-int (zorder (poly p) x))
apply (rule argument-principle[of UNIV poly p {} A-. 1 g,simplified,OF - valid
loop)
using no-proots[unfolded proots-def] by (auto simp add:poly-roots-finite[OF
p#00])
also have ... = 2 x of-real pi x 1 % (> x€proots p. winding-number g x * of-nat
(order z p))
proof —
have nat (zorder (poly p) x) = order x p when z€proots p for x
using order-zorder[OF «p#£0>] that unfolding proots-def by auto
then show ?thesis unfolding proots-def
apply (auto intro!: sum.cong)
by (metis assms(1) nat-eg-iff2 of-nat-nat order-root)
qed
finally show ?thesis .
qed

end

3 Some useful lemmas about transcendental func-
tions

theory Missing-Transcendental imports
Missing-Topology
Missing-Algebraic

begin

3.1 Misc

lemma exp- Arg2pi2pi-multivalue:
assumes ezp (i * of-real T) = 2
shows Jk:int. © = Arg2pi z + 2xkxpi
proof —
define k where k=floor(z/(2x*pi))
define z’ where z'= © — (2xkxpi)
have z'/(2xpi) >0 unfolding z'-def k-def by (simp add: diff-divide-distrib)
moreover have z'/(2xpi) < 1
proof —
have z/(2xpi) — k < 1 unfolding k-def by linarith
thus ?thesis unfolding k-def x’-def by (auto simp add:field-simps)

13

qed
ultimately have x>0 and z'<2xpi by (auto simp add:field-simps)
moreover have exp (i x complez-of-real z') = 2z
using assms z'-def by (auto simp add:field-simps)
ultimately have Arg2pi z = z' using Arg2pi-unique|of 1 ' z,simplified] by auto
hence z = Arg2pi z + 2xkxpi unfolding z’-def by auto
thus ?thesis by auto
qed

lemma uniform-discrete-tan-eq:
uniform-discrete {z::real. tan © = y}
proof —
have z1=22 when dist:dist 1 2<pi/2 and tan z1=y tan 2=y for z1 x2
proof —
obtain kI::int where z1:x1 = arctan y + kiIxpi V (21 = pi/2 + kixpi A
y=0)
using tan-eq-arctan-FEx <tan x1=y> by auto
obtain k2::int where z2:22 = arctan y + k2xpi V (22 = pi/2 + k2xpi A
y=0)
using tan-eq-arctan-FEx <tan x2=1y> by auto
let ?zki=x1 = arctan y + ki1xpi and ?zkl'=xl = pi/2 + kixpi A y=0
let 22k2=x2 = arctan y + k2xpi and 22k2'=x2 = pi/2 + k2xpi A\ y=0
have ?thesis when (?zk1 A %zk2) Vv (%2k1’ A 22k2)
proof —
have z1—22= (k1 — k2) *pi when ?zk1 ?zk2
using arg-cong2[where f=minus,OF «?xkl> «?xk2)]
by (auto simp add:algebra-simps)
moreover have z1—22= (kI — k2) *pi when ?%2k1’ ?2k2’
using arg-cong2|where f=minus,OF conjunct1[OF <?zk1"] conjunctl|OF
«2xk2])
by (auto simp add:algebra-simps)
ultimately have z1 —z2= (kI — k2) xpi using that by auto
then have k1 — k2| < 1/2
using dist[unfolded dist-real-def] by (auto simp add:abs-mult)
then have k1=k2 by linarith
then show ?thesis using that by auto
qged
moreover have ?thesis when ?zk1 ?zk2’
proof —
have z1 = kixpi z2 = pi / 2 + k2 * pi using <?zk2"y <22kl by auto
from arg-cong2[where f=minus,OF this] have =1 — 22 = (k1 — k2) * pi
—pi/2
by (auto simp add:algebra-simps)
then have |(kI — k2) % pi —pi/2| < pi/2 using dist[unfolded dist-real-def]
by auto
then have 0<k1—-k2 ki1—-k2<1
unfolding abs-less-iff by (auto simp add: zero-less-mult-iff)
then have Fulse by simp
then show ?thesis by auto

14

qed
moreover have ?thesis when ?zk1’ ?zk2
proof —
have 21 = pi / 2 + klxpi 22 = k2 x pi using <?zk2> <?zk1"» by auto
from arg-cong2[where f=minus,OF this] have z1 — 22 = (k1 — k2) * pi
+ pi/2
by (auto simp add:algebra-simps)
then have |(kI — k2) * pi + pi/2| < pi/2 using dist[unfolded dist-real-def]
by auto
then have |(k1 — k2 + 1/2)xpi| < pi/2 by (auto simp add:algebra-simps)
then have |(kI — k2 + 1/2)] < 1/2 by (auto simp add:abs-mult)
then have —1<ki—k2 N k1—-k2<0
unfolding abs-less-iff by linarith
then have Fulse by auto
then show ?thesis by auto
qed
ultimately show ?thesis using z1 z2 by blast
qed
then show ?thesis unfolding uniform-discrete-def
apply (intro exI[where z=pi/2])
by auto
qed

lemma get-norm-value:
fixes a::'a::{floor-ceiling}
assumes pp> (0
obtains k::int and al where a=(of-int k)xpp+al a0<al al<alO+pp
proof —
define k where k=floor ((a—a0)/pp)
define a! where al=a—(of-int k)xpp
have of-int |(a — a0) / pp| * pp < a— a0
using assms by (meson le-divide-eq of-int-floor-le)
moreover have a—al < of-int (|[(a — a0) / pp|+1) x pp
using assms by (meson divide-less-eq floor-correct)
ultimately show ?thesis
apply (intro that[of k al])
unfolding k-def al-def using assms by (auto simp add:algebra-simps)
qed

lemma filtermap-tan-at-right:
fixes a::real
assumes cos a#0
shows filtermap tan (at-right a) = at-right (tan a)
proof —
obtain k::int and al where aal:a=kxpi+al and pi-al: —pi/2<al al<pi/2
using get-norm-value[of pi a —pi/2] by auto
have —pi/2 < al
using assms

15

by (smt (verit, ccfo-SIG) pi-al aal cos-2pi-minus cos-diff cos-pi-half cos-two-pi
divide-minus-left mult-of-int-commute sin-add sin-npi-int sin-pi-half sin-two-pi)
have eventually P (at-right (tan a))
when eventually P (filtermap tan (at-right o)) for P
proof —
obtain b1 where b1>a and bl-imp: Vy>a. y < bl — P (tan y)
by (metis Sturm-Tarski.eventually-at-right <eventually P (filtermap tan (at-right
a))> eventually-filtermap)
define b2 where b2=min bl (k«pi+pi/4+al/2)
define b3 where b3=02 — kxpi
have —pi/2 < b3 b3<pi/2
proof —
have al<b3
using <bI>a> aal <(al<pi/2> unfolding b2-def b3-def by (auto simp
add: field-simps)
then show —pi/2 < b3 using <—pi/2<al> by auto
show b3 < pi/2
using b2-def b3-def pi-a1(2) by linarith
qed
have tan 02 > tan a
proof —
have tan a = tan al
using aal by (simp add: add.commute)
also have ... < tan b3
proof —
have a1 <b3
using «bI1>a> aal <al<pi/2) unfolding b2-def b3-def by (auto simp
add:field-simps)
then show ?thesis
using tan-monotone <—pi/2 < aly <b3 < pi/2) by simp
qed
also have ... = tan 02 unfolding b3-def
by (metis Groups.mult-ac(2) add-uminus-conv-diff mult-minus-right of-int-minus

tan-periodic-int)
finally show ?thesis .

qged
moreover have P y when y>tan a y < tan b2 for y
proof —

define y1 where yI=arctan y+ k * pi

have a<y1

proof —

have arctan (tan a) < arctan y using <y>tan a> arctan-monotone by auto
then have a1 <arctan y
using arctan-tan <—pi/2 < al) <al<pi/2> unfolding aal by (simp add:
add.commute)
then show ?thesis unfolding y1-def aal by auto
qed
moreover have y1<b2

16

proof —
have arctan y < arctan (tan b2)
using <y < tan b2 arctan-monotone by auto
moreover have arctan (tan b2) = b3
using arctan-tan[of b3] «—pi/2 < b3» «b3<pi/2> unfolding b3-def
by (metis add.inverse-inverse diff-minus-eg-add divide-minus-left mult.commute

mult-minus-right of-int-minus tan-periodic-int)
ultimately have arctan y < b3 by auto
then show ?thesis unfolding y1-def b3-def by auto
qed
moreover have Vy>a. y < b2 — P (tan y)
using b1-imp unfolding b2-def by auto
moreover have tan yI=y unfolding yI-def by (auto simp add:tan-arctan)
ultimately show ?thesis by auto
qed
ultimately show eventually P (at-right (tan a))
unfolding eventually-at-right by (metis eventually-at-right-field)
qed
moreover have eventually P (filtermap tan (at-right a))
when eventually P (at-right (tan a)) for P
proof —
obtain b1 where b1>tan a and bI-imp:V y>tan a. y < b1 — Py
using <eventually P (at-right (tan a))» unfolding eventually-at-right
by (metis eventually-at-right-field)
define b2 where b2=arctan bl + kxpi
have al < arctan b1
by (metis «<— pi / 2 < al» <al < pi [/ 2» <tan a < bl» aal add.commute
arctan-less-iff
arctan-tan divide-minus-left tan-periodic-int)
then have b2>a unfolding aal b2-def by auto
moreover have P (tan y) when y>a y < b2 for y
proof —
define y1 where yI = y — kxpi
have a1 < y! y1 < arctan bl unfolding y1-def
subgoal using <y>a) unfolding aal by auto
subgoal using b2-def that(2) by linarith
done
then have tan al < tan y1 tan y1< bl
subgoal using <al>—pi/2>
apply (intro tan-monotone,simp,simp)
using arctan-ubound less-trans by blast
subgoal
by (metis <— pi / 2 < al> <al < yl» <yl < arctan bl> arctan-less-iff
arctan-tan
arctan-ubound divide-minus-left less-trans)
done
have tan y>tan a
by (metis <tan al < tan yl» aal add.commute add-uminus-conv-diff

17

mult.commute
mult-minus-right of-int-minus tan-periodic-int y1-def)
moreover have tan y<bi
by (metis <tan yI < bl> add-uminus-conv-diff mult.commute mult-minus-right

of-int-minus tan-periodic-int y1-def)
ultimately show ?thesis using bI-imp by auto
qed
ultimately show ?thesis unfolding eventually-filtermap eventually-at-right
by (metis eventually-at-right-field)
qed
ultimately show ?thesis unfolding filter-eq-iff by blast
qed

lemma filtermap-tan-at-left:
fixes a::real
assumes cos a#£0
shows filtermap tan (at-left a) = at-left (tan a)
proof —
have filtermap tan (at-right (— a)) = at-right (tan (— a))
using filtermap-tan-at-right[of —a] assms by auto
then have filtermap (uminus o tan) (at-left a) = filtermap uminus (at-left (tan
2)
unfolding at-right-minus filtermap-filtermap comp-def by auto
then have filtermap uminus (filtermap (uminus o tan) (at-left a))
= filtermap uminus (filtermap uminus (at-left (tan a)))
by auto
then show ?thesis
unfolding filtermap-filtermap comp-def by auto
qed

lemma filtermap-tan-at-right-inf:
fixes a::real
assumes cos a=0
shows filtermap tan (at-right a) = at-bot
proof —
obtain k::int where ak:a=kxpi + pi/2
using cos-zero-iff-int2 assms by auto
have eventually P at-bot when eventually P (filtermap tan (at-right a)) for P
proof —
obtain b/ where b1>a and bi-imp:Vy>a. y < bl — P (tan y)
using <eventually P (filtermap tan (at-right a))»
unfolding eventually-filtermap eventually-at-right
by (metis eventually-at-right-field)
define b2 where b2=min (kxpi+pi) b1
have P y when y<tan b2 for y
proof —
define y! where yI=(k+1)xpitarctan y
have a < yI

18

unfolding ak yI-def using arctan-lbound|of y)
by (auto simp add:field-simps)
moreover have yI < b2
proof —
define b3 where b3=02—(k+1) * pi
have —pi/2 < b3 b3<pi/2
using <bI>a» unfolding b3-def b2-def ak
by (auto simp add:field-simps min-mult-distrib-left introl:min.strict-coboundedl1)
then have arctan (tan b3) = b3
by (simp add: arctan-tan)
then have arctan (tan b2) = b3
unfolding b3-def by (metis diff-eq-eq tan-periodic-int)
then have arctan y < b3
using arctan-monotone|OF (y<tan b2)] by simp
then show ?thesis
unfolding yI-def b3-def by auto
qed
then have y1<b! unfolding b2-def by auto
ultimately have P (tan y!) using bi-imp[rule-format,of y1,simplified] by
auto
then show ?thesis unfolding y1-def by (metis add.commute arctan tan-periodic-int)
qed
then show ¢thesis unfolding eventually-at-bot-dense by auto
qed
moreover have cventually P (filtermap tan (at-right a)) when eventually P
at-bot for P
proof —
obtain b1 where bi-imp:V n<bl. P n
using <eventually P at-bot> unfolding eventually-at-bot-dense by auto
define b2 where b2=arctan b1 + (k+1)xpi
have b2>a unfolding ak b2-def using arctan-lbound[of b1]
by (auto simp add:algebra-simps)
moreover have P (tan y) when a < y y < b2 for y
proof —
define y! where y1=y—(k+1)xpi
have tan y1 < tan (arctan b1)
apply (rule tan-monotone)
subgoal using (a<y> unfolding y1-def ak by (auto simp add:algebra-simps)
subgoal using <y < 2> unfolding yI-def b2-def by (auto simp add:algebra-simps)
subgoal using arctan-ubound by auto
done
then have tan y1<bl by (simp add: arctan)
then have tan y < b1 unfolding yI-def
by (metis diff-eq-eq tan-periodic-int)
then show ?thesis using bI-imp by auto
qed
ultimately show eventually P (filtermap tan (at-right a))
unfolding eventually-filtermap eventually-at-right
by (metis eventually-at-right-field)

19

qed
ultimately show ?thesis unfolding filter-eq-iff by auto
qed

lemma filtermap-tan-at-left-inf:
fixes a::real
assumes cos a=0
shows filtermap tan (at-left a) = at-top
proof —
have filtermap tan (at-right (— a)) = at-bot
using filtermap-tan-at-right-inflof —a] assms by auto
then have filtermap (uminus o tan) (at-left a) = at-bot
unfolding at-right-minus filtermap-filtermap comp-def by auto
then have filtermap uminus (filtermap (uminus o tan) (at-left a)) = filtermap
umainus at-bot
by auto
then show ?thesis
unfolding filtermap-filtermap comp-def using at-top-mirror[where ‘a=real]
by auto
qed

3.2 Periodic set

definition periodic-set:: real set = real = bool where
periodic-set S 6 «— (I B. finite B A (Vz€S. 3beB. Fkint. x =b + k * J))

lemma periodic-set-multiple:
assumes k#(
shows periodic-set S § «— periodic-set S (of-int kxd)
proof
assume asm:periodic-set S §
then obtain B! where finite Bl and Bi-def:Vz€S. 3b€B1. (Jk:int. x = b
+ k x 0)
unfolding periodic-set-def by metis
define B where B = B1 U {b+ixd | b i. be B1 A ic{0..<|k|}}
have 3beB. 3k’ = b + real-of-int k' x (real-of-int k x §) when z€S for x
proof —
obtain b7 and kI::int where b1€B! and x-6:x = bl + kI %6
using B1-def[rule-format, OF <z€S)] by auto
define r d where r= kI mod |k| and d = kI div |k|
define b kk where b=0b1+r+6 and kk = (if k>0 then d else —d)
have = = b1 + (r+|k|xd)*0 using 2-6 unfolding r-def d-def by auto
then have z = b + kkx(k+0) unfolding b-def kk-def using <k#0>
by (auto simp add:algebra-simps)
moreover have beB
proof —
have r € {0..<|k|} unfolding r-def by (simp add: <k#£0»)
then show ?thesis unfolding b-def B-def using «<b1€B1» by blast
qed

20

ultimately show ¢thesis by auto
qed
moreover have finite B unfolding B-def using «finite B1)»
by (simp add: finite-image-set2)
ultimately show periodic-set S (real-of-int k * §) unfolding periodic-set-def
by auto
next
assume periodic-set S (real-of-int k * §)
then show periodic-set S § unfolding periodic-set-def
by (metis mult.commute mult.left-commute of-int-mult)
qed

lemma periodic-set-empty[simp|: periodic-set {} §
unfolding periodic-set-def by auto

lemma periodic-set-finite:
assumes finite S
shows periodic-set S §
unfolding periodic-set-def using assms mult.commute by force

lemma periodic-set-subset|elim]:
assumes periodic-set S 0 T C §
shows periodic-set T 0
using assms unfolding periodic-set-def by (meson subsetCE)

lemma periodic-set-union:
assumes periodic-set S § periodic-set T §
shows periodic-set (S U T) ¢
using assms unfolding periodic-set-def by (metis Un-iff infinite-Un)

lemma periodic-imp-uniform-discrete:
assumes periodic-set S §
shows uniform-discrete S
proof —
have ?thesis when S#{} §#0
proof —
obtain B g where finite B and g-def:Vz€S. g t€B A (Fkuint. © = gz + k
% 0)
using assms unfolding periodic-set-def by metis
define P where P = ((x) J) ¢ Ints
define B-diff where B-diff = {|z—y| | x y. z€B A yeB} — P
have finite B-diff unfolding B-diff-def using «finite B>
by (simp add: finite-image-set2)
define e where e = (if setdist B-diff P = 0 then || else min (setdist B-diff P)
(13)))
have e>0
unfolding e-def using setdist-pos-le[unfolded order-class.le-less] <6#£0»
by auto
moreover have r=y when z€§ yeS dist © y<e for z y

21

proof —
obtain kI::int where kl:x = gz + kI * § and g z€B using g-def <z€S)
by auto
obtain k2::int where k2:y = g y + k2 % 0 and ¢ yeB using g-def (y€S»
by auto
have ?thesis when |gz — g y| € P
proof —
obtain k::int where k:gx — gy =k *
proof —
obtain k£’ where k'€Ints and x|gz — g y| = * &k’
using «|g z — g y| € P> unfolding P-def image-iff by auto
then obtain k& where *x:k’ = of-int k using Ints-cases by auto
show ?thesis
apply (cases gz — gy > 0)
subgoal using that[of k] * *x by simp
subgoal using that[of —k| * ** by (auto simp add:algebra-simps)
done
qed
have dist v y = [(g v — g y)+(kI—k2)x*d|
unfolding dist-real-def by (subst k1,subst k2,simp add:algebra-simps)

also have ... = |(k+k1—k2)x*d|
by (subst k,simp add:algebra-simps)
also have ... = |k+k1—k2|*|0| by (simp add: abs-mult)

finally have x:dist x y = |k+k1—k2|*|d| .
then have |k+k1—k2|%|d| < e using «dist z y<e> by auto
then have |k+k1—k2|*|d] < |
by (simp add: e-def split: if-splits)
then have |k+kI—k2| = 0 unfolding e-def using 5#£0)> by force
then have dist x y=0 using * by auto
then show ?thesis by auto
qed
moreover have ?thesis when |[gz — g y| ¢ P
proof —
have |g z — g y| € B-diff unfolding B-diff-def using g z€B)> <g yeB>»
that by auto
have e < ||lgz — g y| — |(kI—k2)=0||
proof —
have |g © — g y| € B-diff unfolding B-diff-def using «g z€B> <g yeB»
that by auto
moreover have |(kI —k2)x0| € P unfolding P-def
apply (intro rev-image-eql[of (if §>0 then |of-int(k1—Fk2)| else —
|of-int(k1—k2)|)])
apply (metis Ints-minus Ints-of-int of-int-abs)
by (auto simp add:abs-mult)
ultimately have ||g z — g y| — |[(k1—k2)%6|| > setdist B-diff P
using setdist-le-dist[of - B-diff - P] dist-real-def by auto
moreover have setdist B-diff P # 0
proof —
have compact B-diff using «finite B-diff> using finite-imp-compact by

22

blast
moreover have closed P
unfolding P-def using closed-scaling[OF closed-Ints[where 'a=real],
of 4] by auto
moreover have P # {} using Ints-0 unfolding P-def by blast
moreover have B-diff N P = {} unfolding B-diff-def by auto
moreover have B-diff #{} unfolding B-diff-def using «g z€B> «g
yE€DB) that by auto
ultimately show ?thesis using setdist-eq-0-compact-closed|of B-diff P)]

by auto
qed
ultimately show ¢thesis unfolding e-def by argo
qged
also have ... < |(gz — g y) + (kI—k2)x0|
proof —

define t1 where ti1=gz — gy
define ¢2 where t2 = of-int (kI — k2) % 0
show ?thesis
apply (fold t1-def t2-def)
by linarith
qged
also have ... = dist z y
unfolding dist-real-def
by (subst (2) k1,subst (2) k2,simp add:algebra-simps)
finally have dist © y>e .
then have Fulse using (dist z y<e» by auto
then show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
ultimately show ?thesis unfolding uniform-discrete-def by auto
qed
moreover have ?thesis when S={} using that by auto
moreover have ?thesis when 6=0
proof —
obtain B g where finite B and g-def:Vz€S. g t€B A (k:int. © = gz + k
* 0)
using assms unfolding periodic-set-def by metis
then have Vz€S. g z€B A (z = g z) using that by fastforce
then have S C g ‘ B by auto
then have finite S using «finite By by (auto elim:finite-subset)
then show %thesis using uniform-discrete-finite-iff by blast
qed
ultimately show ?thesis by blast
qed

lemma periodic-set-tan-linear:

assumes a#0 c#0
shows periodic-set (roots (Az. axtan (x/c) + b)) (cxpi)

23

proof —
define B where B = { cxarctan (— b / a), cxpi/2}
have 3beB. Fk::int. £ = b + k x (cxpi) when z€roots (Az. a x tan (z/c) + b)
for z
proof —
define C1 where C1 = (Fk::int. © = cxarctan (— b / a) + k = (cxpi))
define C2 where C2 = (Fkint. x = cxpi / 2 + k x (cxpi) A — b/ a=0)
have tan (z/c) = — b/a using that <a#0> unfolding roots-within-def
by (auto simp add:field-simps)
then have C1 VvV C2 unfolding CI-def C2-def using tan-eg-arctan-Ex[of z/c
—b/a] <c£0»
by (auto simp add:field-simps)
moreover have ?thesis when C1 using that unfolding C1-def B-def by blast
moreover have ?thesis when C2 using that unfolding C2-def B-def by blast
ultimately show ?thesis by auto
qged
moreover have finite B unfolding B-def by auto
ultimately show ?thesis unfolding periodic-set-def by auto
qed

lemma periodic-set-cos-linear:
assumes a#0 c#0
shows periodic-set (roots (Ax. axcos (x/c) + b)) (2xcxpi)
proof —
define B where B = { cxarccos (— b / a), — cxarccos (— b / a)}
have 3b€B. Fk:int. x = b + k * (2xc*pi)
when z€roots (Az. a * cos (z/c) + b) for x
proof —
define C1 where C1 = (k::int. x = cxarccos (— b / a) + k * (2xcxpi))
define C2 where C2 = (Fk:int. x = — cxarccos (— b / a) + k * (2xcxpi))
have cos (z/c) = — b/a using that <a#0> unfolding roots-within-def
by (auto simp add:field-simps)
then have C1 Vv C2
unfolding cos-eq-arccos-Ex ex-disj-distrib C1-def C2-def using <c#£0>»
apply (auto simp add:divide-simps)
by (auto simp add:algebra-simps)
moreover have ?thesis when C1 using that unfolding C1-def B-def by blast
moreover have ?thesis when C2 using that unfolding C2-def B-def by blast
ultimately show ¢thesis by auto
qed
moreover have finite B unfolding B-def by auto
ultimately show “thesis unfolding periodic-set-def by auto
qed

lemma periodic-set-tan-poly:
assumes p#0 c#0
shows periodic-set (roots (Az. poly p (tan (z/c)))) (cxpi)
using assms

proof (induct rule:poly-root-induct-alt)

24

case (
then show ?case by simp
next
case (no-proots p)
then show ?case unfolding roots-within-def by simp
next
case (root a p)
have roots (Az. poly ([:— a, 1:] * p) (tan (z/c))) = roots (A\z. tan (z/c) — a)
U roots (Az. poly p (tan (z/c)))
unfolding roots-within-def by auto
moreover have periodic-set (roots (Az. tan (z/c) — a)) (cxpi)
using periodic-set-tan-linear[OF - <c£0» ,of 1 —a,simplified] .
moreover have periodic-set (roots (Az. poly p (tan (z/c)))) (cxpi) using root
by fastforce
ultimately show ?case using periodic-set-union by simp
qed

lemma periodic-set-sin-cos-linear:
fixes a b ¢ ::real
assumes a#£0 V b#0 V c£0
shows periodic-set (roots (Az. a * cos © + b * sin x + ¢)) (4x*p7)
proof —
define f where fx= a *x cos x + b x sin x + ¢ for =
have roots f = (roots f N {z. cos (x/2) = 0}) U (roots f N {x. cos (x/2) # 0})
by auto
moreover have periodic-set (roots f N {x. cos (x/2) = 0}) (4xpi)
proof —
have periodic-set ({z. cos (x/2) = 0}) (4xp7)
using periodic-set-cos-linear[of 1 2 0,unfolded roots-within-def simplified] by
stmp
then show %thesis by auto
qed
moreover have periodic-set (roots f N {z. cos (x/2) # 0}) (4*pi)
proof —
define p where p=[:a+c,2%b,c—a]
have poly p (tan (z/2)) = 0 +— f2=0 when cos (z/2) #0 for x
proof —
define t where t=tan (z/2)
define it where tt = 1+t72
have cos z = (1—¢"2) / tt unfolding tt-def t-def
using cos-tan-half[OF that,simplified] by simp
moreover have sin ¢ = 2xt / tt unfolding tt-def t-def
using sin-tan-half[of ©/2,simplified] by simp
moreover have tt#(0 unfolding tt-def
by (metis power-one sum-power2-eq-zero-iff zero-neg-one)
ultimately show ?Zthesis
unfolding f-def p-def
apply (fold t-def)
apply simp

25

apply (auto simp add:field-simps)
by (auto simp add:algebra-simps tt-def power2-eq-square)
qed
then have roots f N {z. cos (x/2) # 0} = roots (Az. poly p (tan (z/2))) N
{z. cos (z/2) # 0}
unfolding roots-within-def by auto
moreover have periodic-set (roots (A\x. poly p (tan (z/2))) N {z. cos (x/2) #
0}) (4xpi)
proof —
have p#0 unfolding p-def using assms by auto
then have periodic-set (roots (Ax. poly p (tan (x/2)))) (4*pi)
using periodic-set-tan-poly[of p 2,simplified)
periodic-set-multiple[of 2 - 2xpi,simplified]
by auto
then show ?thesis by auto
qed
ultimately show ¢thesis by auto
qed
ultimately show periodic-set (roots f) (4*pi) using periodic-set-union by metis
qed

end

4 Some useful lemmas in analysis

theory Missing-Analysis
imports HOL— Complex-Analysis. Complex-Analysis
begin

4.1 More about paths

lemma pathfinish-offset[simpl:
pathfinish (At. g t — z) = pathfinish g — z
unfolding pathfinish-def by simp

lemma pathstart-offset[simp):
pathstart (At. g t — z) = pathstart g — z
unfolding pathstart-def by simp

lemma pathimage-offset]simp):

fixes g :: - = 'b::topological-group-add

shows p € path-image (At. g t — 2) <— p+z € path-image g
unfolding path-image-def by (auto simp:algebra-simps)

lemma path-offset[simp]:

fixes g :: - = 'b::topological-group-add
shows path (At. gt — z) «— path g
unfolding path-def

proof

26

assume continuous-on {0..1} (At. gt — 2)
hence continuous-on {0..1} (At. (gt — z) + 2)
using continuous-on-add continuous-on-const by blast
then show continuous-on {0..1} g by auto
qed (auto intro:continuous-intros)

lemma not-on-circlepathl:
assumes cmod (z—20) # |r|
shows z ¢ path-image (part-circlepath z0 r st tt)
using assms
by (auto simp add: path-image-def image-def part-circlepath-def norm-mult)

lemma circlepath-inj-on:
assumes >0
shows inj-on (circlepath z r) {0..<1}
proof (rule inj-onlI)
fix z y assume asm: z € {0..<1} y € {0..<1} circlepath z r x = circlepath z r
)
define ¢ where c=2 * pi * i
have c#0 unfolding c-def by auto
from asm(8) have exp (¢ * x) =exp (¢ * y)
unfolding circlepath c-def using «r>0> by auto
then obtain n where ¢ x © =c x (y + of-int n)
by (auto simp add:exp-eq c-def algebra-simps)
then have z=y+n using «c#0>
by (meson mult-cancel-left of-real-eq-iff)
then show z=y using asm(1,2) by auto
qed

4.2 More lemmas related to winding-number

lemma winding-number-comp:
assumes open s f holomorphic-on s path-image v C s
valid-path v z ¢ path-image (f o)
shows winding-number (f o v) z = 1/(2xpixi)x contour-integral v (Aw. deriv f
w/ (fw- 2)
proof —
obtain spikes where finite spikes and ~y-diff: v Cl1-differentiable-on {0..1} —
spikes
using <wvalid-path v> unfolding valid-path-def piecewise-C1-differentiable-on-def
by auto
have valid-path (f o ~)
using valid-path-compose-holomorphic assms by blast
moreover have contour-integral (f o v) (Aw. 1 / (w — 2))
= contour-integral v (Aw. deriv fw / (fw — 2))
unfolding contour-integral-integral
proof (rule integral-spike[rule-format, OF negligible-finite[OF «finite spikes»]])
fix t::real assume t:t € {0..1} — spikes
then have ~ differentiable at t

27

using v-diff unfolding C1-differentiable-on-eq by auto
moreover have f field-differentiable at (v t)
proof —
have v t € s using <path-image v C sy ¢t unfolding path-image-def by auto
thus ?thesis
using <open s> <f holomorphic-on s> holomorphic-on-imp-differentiable-at
by blast
qed
ultimately show deriv f (v t) / (f (v t) — 2) * vector-derivative v (at t) =
1/ ((f o)t — z) * vector-derivative (f o) (at t)
by (simp add: vector-derivative-chain-at-general)
qed
moreover note <z ¢ path-image (f o v)»
ultimately show ?thesis
using winding-number-valid-path by presburger
qed

lemma winding-number-uminus-comp:
assumes valid-path v — z ¢ path-image ~y
shows winding-number (uminus o) z = winding-number v (—z)
proof —
define ¢ where c= 2 * pi * i
have winding-number (uminus o) z = 1/c¢ x contour-integral v (Aw. deriv
uminus w / (—w—2z))
proof (rule winding-number-complof UNIV, folded c-def])
show open UNIV uminus holomorphic-on UNIV path-image v C UNIV valid-path
Y
using <walid-path > by (auto intro:holomorphic-intros)
show z ¢ path-image (uminus o)
unfolding path-image-compose using <— z ¢ path-image v> by auto
qed

also have ... = I/c % contour-integral v (Aw. 1 / (w— (—2)))
by (auto intro!:contour-integral-eq simp add:field-simps minus-divide-right)
also have ... = winding-number v (—2z)
using winding-number-valid-path| OF <valid-path v <— z & path-image v»,folded
c-def)
by simp
finally show ?thesis by auto
qed

lemma winding-number-comp-linear:

assumes c#0 valid-path v and not-image: (2—b)/c ¢ path-image ~y

shows winding-number ((Az. cxx+b) o) z = winding-number v ((z—b)/c) (is
?L = ?R)
proof —

define cc where cc=1 / (complex-of-real (2 * pi) * i)

define zz where zz=(z—b)/c

have ?L = cc x contour-integral v (Aw. deriv (Az. ¢ x z + b) w / (¢ x w + b —

z))

28

apply (subst winding-number-complof UNIV simplified))
subgoal by (auto intro:holomorphic-intros)
subgoal using <valid-path > .
subgoal using not-image <c#0> unfolding path-image-compose by auto
subgoal unfolding cc-def by auto
done
also have ... = cc * contour-integral v (Aw.1 / (w — 22))
proof —
have deriv (Az. ¢ * z + b) = (A\z. ¢)
by (auto intro:derivative-intros)
then show ?thesis
unfolding zz-def cc-def using <c#£0)»
by (auto simp:field-simps)
qed
also have ... = winding-number v zz
using winding-number-valid-path[OF <valid-path ~» not-image,folded zz-def
ce-def]
by simp
finally show winding-number ((Az. ¢ x z + b) o) z = winding-number v zz .
qed

end

5 Cauchy’s index theorem

theory Cauchy-Index-Theorem imports
HOL— Complex-Analysis. Complex-Analysis
Sturm-Tarski.Sturm-Tarski
HOL- Computational-Algebra. Fundamental- Theorem-Algebra
Missing-Transcendental
Missing-Algebraic
Missing-Analysis

begin

This theory formalises Cauchy indices on the complex plane and relate
them to winding numbers

5.1 Misc

lemma atMostAtLeast-subset-convex:
fixes C :: real set
assumes conver C

and x € Cye C

shows {z .. y} C C

proof safe
fix z assume z: z € {7 .. y}
have z e Cif xx z < zz< y
proof —

let 2= (y —2)/ (y —)

29

have 0 < %u u < 1
using assms * by (auto simp: field-simps)
then have comb: uxx + (I — %u) xy € C
using assms iffD1[OF convez-alt, rule-format, of C'y x ?u]
by (simp add: algebra-simps)
have Zuxaz+ (1 —) xy=(@y—2)*z/(y—-—2)+I - (y—2)/(y -

z)) * y
by (auto simp: field-simps)
alsohave ... = ((y —2)x2+ (y—z— (y—2) xy) / (y — z)

using * by (simp only: add-divide-distrib) (auto simp: field-simps)
also have ... = 2
using assms * by (auto simp: field-simps)
finally show ?thesis
using comb by auto
qed
then show z € C
using z assms by (auto simp: le-less)
qed

lemma arg-elim:
fe=2=y= fy
by auto

lemma arg-elim2:
fal 22 = z1= yl —=22=y2 = fyl y2
by auto

lemma arg-elim3:
[f z1 22 28;21= y1;22=y2;23=y3 | = [yl y2 y3
by auto

lemma IVT-strict:
fixes [:: 'a::linear-continuum-topology = 'b::linorder-topology
assumes (fa>yAy>fb)V (fa<yAy<fb) a<b continuous-on {a .. b} f
shows Jz. a <z ANz <bAfzx=y
by (metis IVT' IVT2’' assms(1) assms(2) assms(3) linorder-neg-iff order-le-less
order-less-imp-le)

lemma (in dense-linorder) atLeastAtMost-subseteq-greaterThanLess Than-iff:
{a..0}C{e<.<d}ée—(a<b—c<aANb<d)
using dense[of a min ¢ b] dense[of maz a d b
by (force simp: subset-eq Ball-def not-less[symmetric])

lemma Re-winding-number-half-right:
assumes V pEpath-image . Re p > Re z and valid-path v and z¢path-image ~y
shows Re(winding-number v z) = (Im (Ln (pathfinish v — 2)) — Im (Ln
(pathstart v — 2)))/(2xpi)
proof —
define g where g=(\t. v t — 2)

30

define st fi where st=pathstart g and fi=pathfinish g
have wvalid-path g 0¢path-image g and pos-img:V pEpath-image g. Re p > 0
unfolding g-def
subgoal using assms(2) by auto
subgoal using assms(3) by auto
subgoal using assms(1) by fastforce
done
have (inverse has-contour-integral Ln fi — Ln st) g
unfolding fi-def st-def
proof (rule contour-integral-primitive] OF - <valid-path ¢>,0f — R<g])
fix z::compler assume z € — R<g
then have (Ln has-field-derivative inverse z) (at) using has-field-derivative-Ln
by auto
then show (Ln has-field-derivative inverse x) (at x within — R<g)
using has-field-derivative-at-within by auto
next
show path-image g C — R<q using pos-img <0¢path-image ¢
by (metis Compll antisym assms(3) complez-nonpos-Reals-iff complex-surj
subsetl zero-complex.code)
qed
then have winding-eq: 2xpixixwinding-number g 0 = (Ln fi — Ln st)
using has-contour-integral-winding-number|OF <valid-path ¢ <0¢ path-image g
,simplified,folded inverse-eq-divide] has-contour-integral-unique
by auto
have Re(winding-number g 0)
= (Im (Ln fi) — Im (Ln st))/(2xpi)
(is /L=7R)
proof —
have ?L = Re((Ln fi — Ln st)/(2xpixi))
using winding-eq[symmetric] by auto
also have ... = 7R
by (metis Im-divide-of-real Im-i-times complex-i-not-zero minus-complex.simps(2)

mult. commute mult-divide-mult-cancel-left-if times-divide-eq-right)
finally show ?thesis .
qed
then show f¢thesis unfolding g-def fi-def st-def using winding-number-offset
by simp
qed

lemma Re-winding-number-half-upper:
assumes pimage:V p€path-image . Im p > Im z and valid-path v and z¢ path-image
Y
shows Re(winding-number v z) =
(Im (Ln (ixz — ixpathfinish 7)) — Im (Ln (ixz — ixpathstart v)))/(2%pi)
proof —
define v’ where y'=(At. —i*x (y t — 2) + 2)
have Re (winding-number ~' z) = (Im (Ln (pathfinish v — 2)) — Im (Ln
(pathstart v' — 2))) / (2 * pi)

31

unfolding ~’'-def
apply (rule Re-winding-number-half-right)
subgoal using pimage unfolding path-image-def by auto
subgoal
apply (rule valid-path-compose-holomorphic|OF <valid-path vy,of Az. —i *
(z—z) + z UNIV
, unfolded comp-def])
by (auto introl:holomorphic-intros)
subgoal using (z¢path-image > unfolding path-image-def by auto
done
moreover have winding-number v' z = winding-number ~y z
proof —
define f where f=(\z. —1 * (z—2) + 2)
define ¢ where c= 1 / (complez-of-real (2 * pi) * i)
have winding-number v’ z = winding-number (f o v) z
unfolding ~'-def comp-def f-def by auto
also have ... = ¢ x contour-integral v (Aw. deriv fw / (f w — z)) unfolding
c-def
proof (rule winding-number-complof UNIV])
show z ¢ path-image (f o «) using <zépath-image) unfolding f-def
path-image-def by auto
qed (auto simp add:f-def <wvalid-path > intro':holomorphic-intros)

also have ... = ¢ * contour-integral v (Aw. 1 / (w — 2))
proof —
have deriv f x = —i for z

unfolding f-def
by (auto intro!:derivative-eg-intros DERIV-imp-deriv)
then show ?thesis
unfolding f-def c-def
by (auto simp add:field-simps divide-simps introl:arg-cong2[where f=contour-integral])
qed
also have ... = winding-number v z
using winding-number-valid-path|OF <valid-path) <z¢path-image ~»,folded
c-def] by simp
finally show ?thesis .
qed
moreover have pathfinish v’ = z+ ixz —ix pathfinish v pathstart v' = z+ ixz
—ixpathstart
unfolding ~’-def path-defs by (auto simp add:algebra-simps)
ultimately show #¢thesis by auto
qed

lemma Re-winding-number-half-lower:
assumes pimage:V pEpath-image . Im p < Im z and valid-path v and 2¢ path-image
Y
shows Re(winding-number v z) =
(Im (Ln (ixpathfinish v — ixz)) — Im (Ln (ixpathstart v — ixz)))/(2xp1)
proof —
define v’ where yv'=(At. i * (y t — 2) + 2)

32

have Re (winding-number v’ z) = (Im (Ln (pathfinish v' — z)) — Im (Ln
(pathstart v' — 2))) / (2 * pi)
unfolding ~’'-def
apply (rule Re-winding-number-half-right)
subgoal using pimage unfolding path-image-def by auto
subgoal
apply (rule valid-path-compose-holomorphic|OF <valid-path > ,of Az.1* (z—z)
+ z UNIV
, unfolded comp-def])
by (auto introl:holomorphic-intros)
subgoal using <z¢path-image > unfolding path-image-def by auto
done
moreover have winding-number v’ z = winding-number v z
proof —
define f where f=(\z. 1 % (z—2) + 2)
define ¢ where ¢c= 1 / (complex-of-real (2 * pi) * i)
have winding-number v’ z = winding-number (f o) z
unfolding ~'-def comp-def f-def by auto
also have ... = ¢ * contour-integral v (Aw. deriv fw / (f w — z)) unfolding
c-def
proof (rule winding-number-complof UNIV])
show z ¢ path-image (f o v) using <z¢path-image) unfolding f-def
path-image-def by auto
qed (auto simp add:f-def <wvalid-path > introl:holomorphic-intros)
also have ... = ¢ x contour-integral v (Aw. 1 / (w — 2))
proof —
have deriv fz =i for z
unfolding f-def
by (auto intro!:derivative-eg-intros DERIV-imp-deriv)
then show ?thesis
unfolding f-def c-def
by (auto simp add:field-simps divide-simps introl:arg-cong2[where f=-contour-integral])
qed
also have ... = winding-number v z
using winding-number-valid-path|OF <valid-path > <z¢&path-image 7»,folded
c-def] by simp
finally show ?thesis .
qed
moreover have pathfinish v/ = z+ ix pathfinish v — ixz pathstart v/ = z+
ixpathstart v — ixz
unfolding ~'-def path-defs by (auto simp add:algebra-simps)
ultimately show ¢thesis by auto
qed

lemma Re-winding-number-half-left:

assumes neg-img:V pEpath-image y. Re p < Re z and valid-path v and z¢ path-image
Y

shows Re(winding-number v z) = (Im (Ln (z — pathfinish v)) — Im (Ln (z —

33

pathstart v)))/(2%pi)
proof —

define v’ where y'=(\t. 2%z — v 1)
have Re (winding-number v’ z) = (Im (Ln (pathfinish v' — z)) — Im (Ln
(pathstart v' — 2))) / (2 * pi)
unfolding ~’-def
apply (rule Re-winding-number-half-right)
subgoal using neg-img unfolding path-image-def by auto
subgoal
apply (rule valid-path-compose-holomorphic|OF <valid-path vy,of A\t. 2xz—t
UNIV,
unfolded comp-def])
by (auto intro:holomorphic-intros)
subgoal using (z¢path-image > unfolding path-image-def by auto
done
moreover have winding-number ' z = winding-number ~y z
proof —
define f where f=(\t. 2xz—1)
define ¢ where c= 1 / (complez-of-real (2 x pi) * i)
have winding-number v’ z = winding-number (f o v) z
unfolding ~’'-def comp-def f-def by auto
also have ... = ¢ x contour-integral v (Aw. deriv fw / (f w — 2)) unfolding
c-def
proof (rule winding-number-complof UNIV])
show z ¢ path-image (f o ~) using <zépath-image) unfolding f-def
path-image-def by auto
qed (auto simp add:f-def <wvalid-path > intro:holomorphic-intros)
also have ... = ¢ * contour-integral v (Aw. 1 / (w — 2))
unfolding f-def c-def
by (auto simp add:field-simps divide-simps introl:arg-cong2[where f=contour-integral])
also have ... = winding-number v z
using winding-number-valid-path|OF <valid-path s <z¢path-image ~»,folded
c-def] by simp
finally show ?thesis .
qed
moreover have pathfinish v' = 2%z — pathfinish v pathstart v' = 2%z — pathstart
Y
unfolding ~’-def path-defs by auto
ultimately show ?thesis by auto
qed

lemma continuous-on-open-Collect-neq:
fixes f g :: 'a::topological-space = 'b::t2-space
assumes f: continuous-on S f and g: continuous-on S g and open S
shows open {z€S. fz # gz}
proof (rule topological-space-class.openl)
fix t
assume ¢ € {z€S. fz # gz}
then obtain U0 V0 where open U0 open VO ft € U0gt e VO UO N VO ={}

34

tes
by (auto simp add: separation-t2)
obtain Ul where open Ul t € Ul Vye(S N Ul). fy e U0
using flunfolded continuous-on-topological,rule-format,OF <t€S» <open UO»> «f
t €U0y by auto
obtain V1 where open Vit € VI Vye(SN VI). gy e VO
using g[unfolded continuous-on-topological,rule-format,OF (t€S» <open V0> <g
t €V0»] by auto
define T where T=VI N Ul NS
have open T unfolding T-def using <open Ul <open V1) <open S» by auto
moreover have ¢t € T unfolding T-def using <te Ul <te V1 «t€S» by auto
moreover have T C {z € S. fz # g 2} unfolding T-def
using <U0 N VO ={}p ~VyeSN UL fye Ul VyeSN V1. gy € V0> by
auto
ultimately show 3 7. open TAt € T AT C{z € S. fz # gz} by auto
qed

5.2 Sign at a filter

definition has-sgnx::(real = real) = real = real filter = bool
(infixr <has’-sgnz> 55) where
(f has-sgnz ¢) F= (eventually (Az. sgn(f z) = ¢) F)

definition sgnz-able (infixr <sgnz’-able) 55) where
(f sgnz-able F) = (Jc. (f has-sgnz ¢) F)

definition sgnz where
sgnz f F = (SOME c. (f has-sgnz c) F)

lemma has-sgnz-eg-rhs: (f has-sgnz) F = = = y = (f has-sgnz y) F
by simp

named-theorems sgnz-intros introduction rules for has-sgnz
setup <«
Global-Theory.add-thms-dynamic (Q{binding sgnz-eq-intros},
fn context =>
Named-Theorems.get (Context.proof-of context) Q{named-theorems sgnx-intros}
|> map-filter (try (fn thm => Q{thm has-sgnx-eq-rhs} OF [thm])))
)

lemma sgnz-able-sgnz:f sgnz-able F = (f has-sgnz (sgnx f F)) F
unfolding sgnz-able-def sgnx-def using somel-ex by metis

lemma has-sgnaz-imp-sgnz-able[elim]:
(f has-sgnz ¢) F = f sgna-able F
unfolding sgnaz-able-def by auto

lemma has-sgnz-unique:
assumes F#bot (f has-sgnz c¢1) F (f has-sgnz c2) F

35

shows c1=c2
proof (rule ccontr)
assume cl # ¢2
have eventually (Az. sgn(fz) = ¢1 A sgn(fz) = ¢2) F
using assms unfolding has-sgnz-def eventually-conj-iff by simp
then have eventually (A-. ¢ = ¢2) F by (elim eventually-mono,auto)
then have eventually (A-. False) F using <c1 # ¢2> by auto
then show Fulse using «F # bot) eventually-False by auto
qed

lemma has-sgnz-imp-sgnx]elim):
(f has-sgnz ¢) F = F#bot = sgnz f F = ¢
using has-sgnz-unique sgnz-def by auto

lemma has-sgni-const|simp,sgna-intros|:
((A\-. ¢) has-sgnz sgn ¢) F
by (simp add: has-sgna-def)

lemma finite-sgnz-at-left-at-right:
assumes finite {t. ft=0 N a<t A t<b} continuous-on ({a<..<b} — s) f finite s
and z:ze{a<..<b}
shows [sgnz-able (at-left) sgnz f (at-left x)#£0
f sgna-able (at-right x) sgnzx f (at-right x)#0
proof —
define Is where Is = {t. (ft=0 V t€s) A a<t Ni<z }
define [where [=(if Is = {} then (a+x)/2 else (Max Is + x)/2)
have finite Is
proof —
have {t. ft=0 A a<t A t<z} C {t. ft=0 A a<t A t<b} using z by auto
then have finite {t. f t=0 A a<t A t<z} using assms(1)
using finite-subset by blast
moreover have finite {t. t€s A a<t A t<z} using assms(3) by auto
moreover have Is = {t. ft=0 N a<t A t<z} U {t. t€s N a<t A t<z}
unfolding Is-def by auto
ultimately show ?thesis by auto
qed
have [simp]: I<z a<l I<b
proof —
have I<z A a<l A I<b when Is = {}
using that r unfolding I-def by auto
moreover have [<z A a<l A I<b when Is #{}
proof —
have Max Is € Is using assms(1,3) that <finite ls)
apply (intro linorder-class. Max-in)
by auto
then have a<Max Is A Mazx Is < x unfolding Is-def by auto
then show ?thesis unfolding I-def using that x by auto
qed
ultimately show [<z a<l [<b by auto

36

qed
have noroot:f t#0 when t:te{l..<z} for ¢
proof (cases Is = {})
case True
have Fulse when f t=0
proof —
have t>a using ¢ «>a> by (meson atLeastLessThan-iff less-le-trans)
then have t€ls using that t unfolding Is-def by auto
then show Fulse using True by auto
qed
then show ?thesis by auto
next
case Fulse
have t>Mazx Is using that Fuolse <I<x)> unfolding [-def by auto
have Fulse when f t=0
proof —
have t>a using t <[> by (meson atLeastLess Than-iff less-le-trans)
then have t€ls using that t unfolding Is-def by auto
then have t<Mazx Is using (finite ls> by auto
then show Fulse using «t>Max ls» by auto
qed
then show ?thesis by auto
qed
have (f has-sgnz sgn (f 1)) (at-left) unfolding has-sgna-def
proof (rule eventually-at-leftI[OF - <I<m»])
fix ¢t assume t:te{l<..<z}
then have [simp|:t>a t<b using (>a> z
by (meson greater ThanLess Than-iff less-trans)+
have Fualse when ft = 0
using noroot t that by auto
moreover have Fulse when f [=0
using noroot t that by auto
moreover have False when fI>0 A ft<0 V fl <0 N ft >0
proof —
have False when {I..t} N s #{}
proof —
obtain ¢’ where t":t'e{l..t} t'es
using «({l..t} N s # {}P by blast
then have a<t’ A t'<z
by (metis <a < > atLeastAtMost-iff greater ThanLess Than-iff le-less less-trans
t)
then have t’els unfolding Is-def using <t’'es» by auto
then have t'<Maz Is using (finite s> by auto
moreover have Max [s<l
using (l<z» <t’€ls) «finite ls» unfolding I-def by (auto simp add:ls-def)
ultimately show Fulse using t'(1) by auto
qed
moreover have {l..t} C {a<..<b}
by (intro atMostAtLeast-subset-convex,auto)

37

ultimately have continuous-on {l..t} f using assms(2)
by (elim continuous-on-subset,auto)
then have Jz>l. 2 <t AN fz =10
apply (intro IVT-strict)
using that t assms(2) by auto
then obtain ¢’ where I<t’ t'<t f t'=0 by auto
then have t’e{l..<z} unfolding Is-def using ¢t by auto
then show Fulse using noroot <f t'=0) by auto
qed
ultimately show sgn (ft) = sgn (f 1)
by (metis le-less not-less sgn-if)
qed
then show [sgnz-able (at-left x) by auto
show sgnz f (at-left z)#0
using noroot[of I,simplified] «(f has-sgnz sgn (f 1)) (at-left x)»
by (simp add: has-sgnx-imp-sgnz sgn-if)
next
define rs where rs = {t. (ft=0 V t€s) A x<t A t<b}
define r where r=(if rs = {} then (z+b)/2 else (Min rs + z)/2)
have finite rs
proof —
have {t. ft=0 A xz<t A t<b} C {t. ft=0 A a<t A t<b} using z by auto
then have finite {t. ft=0 A z<t A t<b} using assms(1)
using finite-subset by blast
moreover have finite {t. t€s A z<t A t<b} using assms(3) by auto
moreover have rs = {t. ft=0 A z<t A t<b} U {¢t. t€s A z<t A t<b}
unfolding rs-def by auto
ultimately show ¢thesis by auto
qed

have [simp]: r>z a<r r<b
proof —
have r>z A a<r A r<b when rs = {}
using that x unfolding r-def by auto
moreover have r>z A a<r A r<b when rs #{}
proof —
have Min rs € rs using assms(1,3) that <finite rs
apply (intro linorder-class. Min-in)
by auto
then have x<Min rs A Min rs < b unfolding rs-def by auto
then show ?thesis unfolding r-def using that © by auto
qed
ultimately show r>z a<r r<b by auto
qed
have noroot:f t#0 when t:te{z<..r} for ¢
proof (cases rs = {})
case True
have Fulse when f t=0
proof —

38

have t<b using t «r<b»
using greaterThanAtMost-iff by fastforce
then have ters using that t unfolding rs-def by auto
then show Fulse using True by auto
qed
then show ?thesis by auto
next
case Fulse
have t<Min rs using that False <r>z> unfolding r-def by auto
have Fulse when f t=0
proof —
have t<b using t <r<by by (metis greaterThanAtMost-iff le-less less-trans)
then have te€rs using that t unfolding rs-def by auto
then have t>Min rs using <finite rs» by auto
then show Fulse using <t<Min rs» by auto
qed
then show ?thesis by auto
qed
have (f has-sgnz sgn (f r)) (at-right) unfolding has-sgnz-def
proof (rule eventually-at-rightI[OF - <r>m»])
fix ¢ assume t:te{z<..<r}
then have [simp]:t>a t<b using r<b) z
by (meson greater ThanLess Than-iff less-trans)+
have Fualse when ft = 0
using noroot t that by auto
moreover have Fulse when f r=0
using noroot t that by auto
moreover have False when fr>0 N ft<0 V fr <O N ft >0
proof —
have False when {t..r} N s #{}
proof —
obtain ¢’ where t":it'e{t..r} t'es
using «{t..r} N s # {}» by blast
then have z<t’' A t'<b
by (meson «r < by atLeastAtMost-iff greaterThanLessThan-iff less-le-trans
not-le t)
then have t’ers unfolding rs-def using t (t’e€s> by auto
then have t'>Min rs using «finite rs» by auto
moreover have Min rs>r
using «r>mz> <t'€rsy «finite rs» unfolding r-def by (auto simp add:rs-def

ultimately show Fulse using t'(1) by auto
qed
moreover have {t..r} C {a<..<b}
by (intro atMostAtLeast-subset-convez,auto)
ultimately have continuous-on {t..r} f using assms(2) by (elim continu-
ous-on-subset,auto)
then have Jaz>t. z < r A fz =0
apply (intro IVT-strict)

39

using that t assms(2) by auto
then obtain t’ where i<t’ t'<r f t'=0 by auto
then have t'e{z<..r} unfolding rs-def using t by auto
then show Fualse using noroot «f t'=0> by auto
qed
ultimately show sgn (ft) = sgn (f)
by (metis le-less not-less sgn-if)
qed
then show f sgnz-able (at-right x) by auto
show sgnz f (at-right ©)#0
using noroot|of r,simplified] «(f has-sgnz sgn (f r)) (at-right z)»
by (simp add: has-sgnx-imp-sgnz sgn-if)
qed

lemma sgnz-able-poly[simp]:
(poly p) sgnx-able (at-right a)
(poly p) sgnx-able (at-left a)
(poly p) sgnz-able at-top
(poly p) sgna-able at-bot
proof —
show (poly p) sgnz-able at-top
using has-sgnz-def poly-sgn-eventually-at-top sgnz-able-def by blast
show (poly p) sgnz-able at-bot
using has-sgnz-def poly-sgn-eventually-at-bot sgnz-able-def by blast
show (poly p) sgnz-able (at-right a)
proof (cases p=0)
case True
then show ?thesis unfolding sgnz-able-def has-sgnz-def eventually-at-right
using linordered-field-no-ub by force
next
case False
obtain ub where ub>a and ub:V z. a<zAz<ub—poly p 2#£0
using next-non-root-interval| OF False] by auto
have V z. a<zAz<ub—ssgn(poly p z) = sgn (poly p ub)
proof (rule ccontr)
assume - (Vz. a < z A z < ub — sgn (poly p z) = sgn (poly p ub))
then obtain z where a<z z<ub sgn(poly p z) # sgn (poly p ub) by auto
moreover then have poly p 2#£0 poly p ub#0 z£ub using ub <ub>a> by
blast+
ultimately have (poly p 2>0 A poly p ub<0) V (poly p 2<0 A poly p ub>0)
by (metis linorder-neqE-linordered-idom sgn-neg sgn-pos)
then have Jx>z. © < ub A poly px = 0
using poly-IVT-neglof z ub p| poly-IVT-pos|of z ub p] <z<ubs <z#ub> by
argo
then show Fulse using ub <a < 2> by auto
qed
then show %thesis unfolding sgnz-able-def has-sgnz-def eventually-at-right
apply (rule-tac exl[where z=sgn(poly p ub)])
apply (rule-tac exl[where z=ub])

40

using less-eq-real-def <ub>ay by blast
qed
show (poly p) sgnz-able (at-left a)
proof (cases p=0)
case True
then show ?thesis unfolding sgnz-able-def has-sgna-def eventually-at-right
using linordered-field-no-ub by force
next
case Fulse
obtain /b where [b<a and ub:V z. b<zAz<a—poly p z#£0
using last-non-root-interval| OF False] by auto
have V z. Ib<zAz<a—>sgn(poly p z) = sgn (poly p Ib)
proof (rule ccontr)
assume — (Vz. b<zAz<a —> sgn (poly p z) = sgn (poly p b))
then obtain z where b<z z<a sgn(poly p z) # sgn (poly p Ib) by auto
moreover then have poly p 2£0 poly p Ib#0 27£1b using ub <Ib<a) by blast+
ultimately have (poly p 2>0 A poly p 1b<0) V (poly p 2<0 A poly p 1b>0)
by (metis linorder-neqE-linordered-idom sgn-neg sgn-pos)
then have Ja>1b. ¢ < z A poly pz = 0
using poly-I1VT-neglof Ib z p] poly-IVT-pos[of Ib z p] «Ib<z) <z#£Ib> by argo
then show Fulse using ub <z < a» by auto
qed
then show ?thesis unfolding sgnz-able-def has-sgnz-def eventually-at-left
apply (rule-tac exl[where z=sgn(poly p 1b)])
apply (rule-tac exl[where z=[b])
using less-eq-real-def <lb<a> by blast
qed
qed

lemma has-sgnz-identity|intro,sgna-intros|:
shows >0 = ((Az.) has-sgnz 1) (at-right x)
<0 = ((\z. z) has-sgnz —1) (at-left z)
proof —
show 2>0 = ((Az.) has-sgnz 1) (at-right x)
unfolding has-sgnz-def eventually-at-right
apply (intro exI[where z=z+1])
by auto
show z<0 = ((Az. z) has-sgnz —1) (at-left z)
unfolding has-sgna-def eventually-at-left
apply (intro exl[where z=z—1])
by auto
qged

lemma has-sgna-divide[sgnz-intros:
assumes (f has-sgnz c¢1) F (g has-sgnz c2) F
shows ((A\z. fz / g) has-sgnz ¢l | ¢2) F
proof —
have Vi zin F. sgn (fx) = ¢ A sgn (g x) = ¢2
using assms unfolding has-sgnz-def by (intro eventually-conj,auto)

41

then have Vp zin F. sgn (fz / gx) = ¢l / c2
apply (elim eventually-mono)
by (simp add: sgn-mult sgn-divide)
then show ((Az. fz / g z) has-sgnz ¢l / ¢2) F unfolding has-sgna-def by auto
qed

lemma sgnz-able-divide[sgnz-intros]:
assumes | sgnz-able F' g sgnx-able F
shows (A\z. fz / g z) sgnz-able F
using has-sgnz-divide by (meson assms(1) assms(2) sgna-able-def)

lemma sgnz-divide:
assumes F'#bot f sgnz-able F' g sgnz-able F
shows sgnx (A\z. fo / gz) F =sgnz f F | sqnz g F
proof —
obtain cI ¢2 where c!:(f has-sgnz c¢1) F and c2:(g has-sgnx c2) F
using assms unfolding sgnz-able-def by auto
have sgnz f F=cl sgnz g F=c2 using c1 c2 «(F#boty by auto
moreover have ((Az. fz / g) has-sgnz c1 | c2) F
using has-sgnz-divide[OF c1 c2] .
ultimately show ?thesis using assms(1) has-sgnz-imp-sgnz by blast
qged

lemma has-sgnz-times|sgna-intros|:
assumes (f has-sgnz c¢1) F (g has-sgnz c2) F
shows ((A\z. f zx g x) has-sgnz ¢l * c2) F
proof —
have Vy zin F. sgn (fz) = c1 N sgn (g x) = c2
using assms unfolding has-sgnz-def by (intro eventually-conj,auto)
then have Vp zin F. sgn (fz x gx) = ¢l * c2
apply (elim eventually-mono)
by (simp add: sgn-mult)
then show ((Az. fz* g z) has-sgnz c1 * ¢2) F unfolding has-sgnz-def by auto
qed

lemma sgnz-able-times|sgna-intros|:
assumes f sgnz-able F g sgnx-able F
shows (Az. fz * g z) sgnz-able F
using has-sgnaz-times by (meson assms(1) assms(2) sgna-able-def)

lemma sgnz-times:
assumes F#bot f sgnz-able F g sgnz-able F
shows sgnx (A\z. fz x gx) F =sgnx f F * sgnz g F
proof —
obtain cI ¢2 where cI:(f has-sgnz c1) F and c2:(g has-sgnz c2) F
using assms unfolding sgnz-able-def by auto
have sgnz f F=cl sgnx g F=c2 using c1 c2 <F#bot> by auto
moreover have ((\z. fzx g x) has-sgnx ¢l * ¢2) F
using has-sgnz-times|OF c1 c2] .

42

ultimately show ?thesis using assms(1) has-sgnz-imp-sgnz by blast
qed

lemma tendsto-nonzero-has-sgnz:
assumes (f —— ¢) F ¢#£0
shows (f has-sgnx sgn c¢) F
proof (cases rule:linorder-cases[of ¢ 0])
case less
then have Vg zin F. fz<0
using order-topology-class.order-tendstoD[OF assms(1),0f 0] by auto
then show ?thesis
unfolding has-sgnx-def
apply (elim eventually-mono)
using less by auto
next
case equal
then show ?thesis using «c#£0» by auto
next
case greater
then have Vg zin F. fz>0
using order-topology-class.order-tendstoD[OF assms(1),0f 0] by auto
then show ?thesis
unfolding has-sgnx-def
apply (elim eventually-mono)
using greater by auto
qged

lemma tendsto-nonzero-sgnz:
assumes (f —— ¢) F F#bot ¢#0
shows sgnz f F = sgn ¢
using tendsto-nonzero-has-sgnx

by (simp add: assms has-sgnz-imp-sgnx)

lemma filterlim-divide-at-bot-at-top-iff:
assumes (f —— ¢) F ¢#£0
shows
(LIMz F. fz | gz :> at-bot) «— (9 — 0) F
A ((Az. g z) has-sgnz — sgn ¢) F
(LIMz F. fz [/ gz :> at-top) «— (9 —— 0) F
A ((Az. g x) has-sgnz sgn ¢) F
proof —
show (LIMz F. fx / g x :> at-bot) «— ((¢9 —— 0) F)
A (Az. g z) has-sgnz — sgn ¢) F
proof
assume asm:LIM ¢ F. fz / g x :> at-bot
then have filterlim g (at 0) F
using filterlim-at-infinity-divide-iff[OF assms(1,2),0f g]
at-bot-le-at-infinity filterlim-mono by blast

43

then have (¢ —— 0) F using filterlim-at by blast
moreover have (g has-sgnz — sgn ¢) F
proof —
have ((Az. sgn ¢ * inverse (f ©)) —— sgn ¢ * inverse ¢) F
using assms(1,2) by (auto intro:tendsto-intros)
then have LIM z F. sgn ¢ * inverse (fx) x (fx / g x) :> at-bot
apply (elim filterlim-tendsto-pos-mult-at-bot|OF - - asm])
using (c#£0» sgn-real-def by auto
then have LIM z F. sgn ¢ / g x :> al-bot
apply (elim filterlim-mono-eventually)
using eventually-times-inverse-1[OF assms] by (auto elim:eventually-mono)
then have Vp zin F. sgnc / gz < 0
using filterlim-at-bot-dense[of A\z. sgn ¢/g x F| by auto
then show ?thesis unfolding has-sgna-def
apply (elim eventually-mono)
by (metis add.inverse-inverse divide-less-0-iff sgn-neg sgn-pos sgn-sgn)
qed
ultimately show (9 —— 0) F A (g has-sgnz — sgn ¢) F by auto
next
assume (g —— 0) F A (g has-sgnz — sgn c¢) F
then have asm:(9 —— 0) F (g has-sgnz — sgn ¢) F by auto
have LIM z F. inverse (g x * sgn c) :> at-bot
proof (rule filterlim-inverse-at-bot)
show ((Az. gz * sgn ¢) —— 0) F
apply (rule tendsto-mult-left-zero)
using asm(1) by blast
next
show Vp zin F. gz x sgn ¢ < 0 using asm(2) unfolding has-sgna-def
apply (elim eventually-mono)
by (metis add.inverse-inverse assms(2) linorder-neqE-linordered-idom mult-less-0-iff

neg-0-less-iff-less sgn-greater sgn-zero-iff)
qed
moreover have ((Az. fx x sgn ¢) —— ¢ * sgn ¢) F
using «(f —— ¢) F» <«c#0»
apply (intro tendsto-intros)
by (auto simp add:sgn-zero-iff)
moreover have ¢ * sgn ¢ >0 using <c£0> by (simp add: sgn-real-def)
ultimately have LIM = F. (f x * sgn c) xinverse (g © * sgn c) :> at-bot
using filterlim-tendsto-pos-mult-at-bot by blast
then show LIM x F. fz [/ g z :> at-bot
using «¢£0> by (auto simp add:field-simps sgn-zero-iff)
qed
show (LIM z F. fz [/ gz :> at-top) «— ((¢ —— 0) F)
A ((Az. g z) has-sgnz sgn ¢) F
proof
assume asm:LIM z F. fz / g x :> at-top
then have filterlim g (at 0) F
using filterlim-at-infinity-divide-iff[OF assms(1,2),0f g|

44

at-top-le-at-infinity filterlim-mono by blast
then have (9§ —— 0) F using filterlim-at by blast
moreover have (g has-sgnz sgn c) F
proof —
have ((Az. sgn ¢ * inverse (f ©)) —— sgn ¢ * inverse c¢) F
using assms(1,2) by (auto intro:tendsto-intros)
then have LIM z F. sgn ¢ x inverse (fz) = (fz / g x) :> at-top
apply (elim filterlim-tendsto-pos-mult-at-top| OF - - asm])
using <c#0> sgn-real-def by auto
then have LIM z F. sgn ¢ / g x :> at-top
apply (elim filterlim-mono-eventually)
using eventually-times-inverse-1[OF assms] by (auto elim:eventually-mono)
then have Vp zin F. sgnc / gz > 0
using filterlim-at-top-dense[of Az. sgn ¢/g x F] by auto
then show ?thesis unfolding has-sgna-def
apply (elim eventually-mono)
by (metis sgn-greater sgn-less sgn-neg sgn-pos zero-less-divide-iff)
qed
ultimately show (9 —— 0) F' A (g has-sgnz sgn ¢) F' by auto
next
assume (g —— 0) F A (g has-sgnz sgn c¢) F
then have asm:(¢9 —— 0) F (g has-sgnz sgn ¢) F by auto
have LIM z F. inverse (g x * sgn c) :> at-top
proof (rule filterlim-inverse-at-top)
show ((Az. gz % sgn ¢) —— 0) F
apply (rule tendsto-mult-left-zero)
using asm(1) by blast
next
show Vp zin F. gz x sgn ¢ > 0 using asm(2) unfolding has-sgna-def
apply (elim eventually-mono)
by (metis assms(2) sgn-1-neg sgn-greater sgn-if zero-less-mult-iff)
qed
moreover have ((Az. fz * sgn ¢) —— ¢ * sgn ¢) F
using «(f —— ¢) F» <«c£0»
apply (intro tendsto-intros)
by (auto simp add:sgn-zero-iff)
moreover have ¢ * sgn ¢ >0 using <c£0> by (simp add: sgn-real-def)
ultimately have LIM z F. (f x % sgn ¢) xinverse (g z * sgn c) :> at-top
using filterlim-tendsto-pos-mult-at-top by blast
then show LIM z F. fz / g x :> at-top
using <c#0» by (auto simp add:field-simps sgn-zero-iff)
qed
qed

lemma poly-sgnz-left-right:
fixes c a::real and p::real poly
assumes p#()
shows sgnz (poly p) (at-left a) = (if even (order a p)

45

then sgnz (poly p) (at-right a)
else —sgnz (poly p) (at-right a))
using assms
proof (induction degree p arbitrary: p rule: less-induct)
case less
have ?case when poly p a#0
proof —
have sgnz (poly p) (at-left a) = sgn (poly p a)
by (simp add: has-sgnz-imp-sgnx tendsto-nonzero-has-sgnx that)
moreover have sgnz (poly p) (at-right a) = sgn (poly p a)
by (simp add: has-sgnx-imp-sgnx tendsto-nonzero-has-sgnz that)
moreover have order a p = 0 using that by (simp add: order-0I)
ultimately show ?thesis by auto

qed
moreover have ?case when poly p a=0
proof —

obtain ¢ where pg:p= [:—a,1:] * ¢

using <poly p a=0> by (meson dvdE poly-eq-0-iff-dvd)
then have ¢#0 using (p#0> by auto
then have degree ¢ < degree p unfolding pg by (subst degree-mult-eq,auto)
have sgnz (poly p) (at-left a) = — sgnz (poly q) (at-left a)
proof —
have sgnz (\z. poly p z) (at-left a)
= sgnz (poly q) (at-left a) * sgnz (poly [:—a,1:]) (at-left a)
unfolding pq
apply (subst poly-mult)
apply (subst sgnz-times)
by auto
moreover have sgnz (Az. poly [:—a,1:] z) (at-left a) = —1
apply (intro has-sgnz-imp-sgnz)
unfolding has-sgnz-def eventually-at-left
by (auto simp add: linordered-field-no-1b)
ultimately show ?thesis by auto
qed
moreover have sgnz (poly p) (at-right a) = sgnz (poly q) (at-right a)
proof —
have sgnz (A\z. poly p x) (at-right a)
= sgnz (poly q) (at-right a) * sgnz (poly [:—a,1:]) (at-right a)
unfolding pq
apply (subst poly-mult)
apply (subst sgna-times)
by auto
moreover have sgnz (Az. poly [:—a,1:] z) (at-right a) = 1
apply (intro has-sgnz-imp-sgnz)
unfolding has-sgnz-def eventually-at-right
by (auto simp add: linordered-field-no-ub)
ultimately show ?thesis by auto
qed
moreover have even (order a p) «— odd (order a q)

46

unfolding pq
apply (subst order-mult|OF <p # 0>[unfolded pql])
using «q#£0» by (auto simp add:order-power-n-n|of - 1, simplified])
moreover note less.hyps|OF <degree q < degree py <q#0>]
ultimately show ?thesis by auto
qed
ultimately show ?case by blast
qed

lemma poly-has-sgnz-left-right:
fixes ¢ a::real and p::real poly
assumes p#(0
shows (poly p has-sgnz c) (at-left a) «— (if even (order a p)
then (poly p has-sgnz c) (at-right a)
else (poly p has-sgnx —c) (at-right a))
using poly-sgnz-left-right
by (metis (no-types, opaque-lifting) add.inverse-inverse assms has-sgnz-unique
sgna-able-poly sgnz-able-sgnx trivial-limit-at-left-real trivial-limit-at-right-real)

lemma sign-r-pos-sgnz-iff:
sign-r-pos p a +— sgnz (poly p) (at-right a) > 0
proof
assume asm:0 < sgnz (poly p) (at-right a)
obtain ¢ where c-def:(poly p has-sgnz ¢) (at-right a)
using sgnz-able-poly(1) sgnz-able-sgnz by blast
then have c¢>0 using asm
using has-sgna-imp-sgnx trivial-limit-at-right-real by blast
then show sign-r-pos p a using c-def unfolding sign-r-pos-def has-sgnz-def
apply (elim eventually-mono)
by force
next
assume asm:sign-r-pos p a
define ¢ where ¢ = sgnz (poly p) (at-right a)
then have (poly p has-sgnz ¢) (at-right a)
by (simp add: sgnz-able-sgnz)
then have (V¢ z in (at-right a). poly p x>0 A sgn (poly p) = c)
using asm unfolding has-sgnx-def sign-r-pos-def
by (simp add:eventually-conj-iff)
then have V p = in (at-right a). ¢ > 0
apply (elim eventually-mono)
by fastforce
then show c¢>0 by auto
qed

lemma sgnz-values:

assumes f sgnz-able F' F # bot
shows sgnx fF = —1 Vsgnz fF =0V sgnx fF = 1

47

proof —
obtain ¢ where c-def:(f has-sgnz c) F
using assms(1) unfolding sgnz-able-def by auto
then obtain z where sgn(fz) = ¢
unfolding has-sgnz-def using assms(2) eventually-happens
by blast
then have c=—1 V ¢=0 V c=1 using sgn-if by metis
moreover have sgnz f F' = c using c-def by (simp add: assms(2) has-sgnz-imp-sgnz)
ultimately show #¢thesis by auto
qed

lemma has-sgnz-poly-at-top:
(poly p has-sgnz sgn-pos-inf p) at-top
using has-sgnz-def poly-sgn-eventually-at-top by blast

lemma has-sgnz-poly-at-bot:
(poly p has-sgnx sgn-neg-inf p) at-bot
using has-sgnz-def poly-sgn-eventually-at-bot by blast

lemma sgnz-poly-at-top:

sgnz (poly p) at-top = sgn-pos-inf p
by (simp add: has-sgna-def has-sgnz-imp-sgnx poly-sgn-eventually-at-top)

lemma sgnax-poly-at-bot:
sgnz (poly p) at-bot = sgn-neg-inf p
by (simp add: has-sgna-def has-sgnz-imp-sgnz poly-sgn-eventually-at-bot)

lemma poly-has-sgnz-values:
assumes p#0
shows
(poly p has-sgnz 1) (at-left a) V (poly p has-sgnx — 1) (at-left a)
(poly p has-sgnz 1) (at-right a) V (poly p has-sgnz — 1) (at-right a)
(poly p has-sgnz 1) at-top V (poly p has-sgnz — 1) at-top
(poly p has-sgnz 1) at-bot V (poly p has-sgnz — 1) at-bot
proof —
have sgn-pos-inf p = 1 V sgn-pos-inf p = —1
unfolding sgn-pos-inf-def by (simp add: assms sgn-if)
then show (poly p has-sgnz 1) at-top V (poly p has-sgnz — 1) at-top
using has-sgna-poly-at-top by metis
next
have sgn-neg-inf p = 1 V sgn-neg-inf p = —1
unfolding sgn-neg-inf-def by (simp add: assms sgn-if)
then show (poly p has-sgnx 1) at-bot V (poly p has-sgnz — 1) at-bot
using has-sgnz-poly-at-bot by metis
next
obtain ¢ where c-def:(poly p has-sgnz ¢) (at-left a)
using sgna-able-poly(2) sgnz-able-sgnx by blast
then have sgnz (poly p) (at-left a) = ¢ using assms by auto
then have c=—1 V ¢=0 V c¢=1

48

using sgna-values sgnz-able-poly(2) trivial-limit-at-left-real by blast
moreover have Fualse when c=0
proof —
have (poly p has-sgnz 0) (at-left a) using c-def that by auto
then obtain /b where lb<a Vy. (lb<y A y < a) — poly p y = 0

unfolding has-sgnz-def eventually-at-left sgn-if
by (metis one-neq-zero zero-neq-neg-one)

then have {lb<..<a} C proots p unfolding proots-within-def by auto

then have infinite (proots p)
apply (elim infinite-super)
using «b<a> by auto

moreover have finite (proots p) using finite-proots|OF <p#£0>] by auto
ultimately show Fulse by auto
qed

ultimately have c=—1 V c=1 by auto

then show (poly p has-sgnx 1) (at-left a) V (poly p has-sgnx — 1) (at-left a)

using c-def by auto

next

obtain ¢ where c-def:(poly p has-sgnz ¢) (at-right a)
using sgna-able-poly(1) sgnz-able-sgnx by blast

then have sgnz (poly p) (at-right a) = ¢ using assms by auto
then have ¢c=—1 V ¢=0 V c¢=1

using sgna-values sgnz-able-poly(1) trivial-limit-at-right-real by blast
moreover have Fualse when c=0
proof —

have (poly p has-sgnz 0) (at-right a) using c-def that by auto

then obtain ub where ub>a Vy. (a<y Ay < ub) — poly py = 0
unfolding has-sgna-def eventually-at-right sgn-if
by (metis one-neg-zero zero-neq-neg-one)

then have {a<..<ub} C proots p unfolding proots-within-def by auto
then have infinite (proots p)
apply (elim infinite-super)
using (ub>a> by auto

moreover have finite (proots p) using finite-proots|OF <p#£0>] by auto

ultimately show Fulse by auto
qed
ultimately have c=—1 V ¢=1 by auto

qed

then show (poly p has-sgnz 1) (at-right a) V (poly p has-sgnz — 1) (at-right a)
using c-def by auto

lemma poly-sgnx-values:
assumes p#(0

shows sgnz (poly p) (at-left a) = 1 V sgnz (poly p) (at-left a) = —1

sgnz (poly p) (at-right a) = 1 V sgnz (poly p) (at-right a) = —1

using poly-has-sgnz-values|OF <p#£0»] has-sgna-imp-sgnz trivial-limit-at-left-real
trivial-limit-at-right-real by blast+

49

lemma has-sgnz-inverse: (f has-sgnz ¢) F «— ((inverse o f) has-sgnz (inverse c))
F

unfolding has-sgnz-def comp-def

apply (rule eventually-subst)

apply (rule always-eventually)

by (metis inverse-inverse-eq sgn-inverse)

lemma has-sgnz-derivative-at-left:
assumes g-deriv:(g has-field-derivative ¢) (at z) and g =0 and c#0
shows (g has-sgnz — sgn ¢) (at-left)
proof —
have (g has-sgnz —1) (at-left) when ¢>0
proof —
obtain dI where d1>0 and dI-defVh>0. h < dl — g(z —h) < gz
using DERIV-pos-inc-left|OF g-deriv <¢>0>] <g z=0» by auto
have (g has-sgnz —1) (at-left)
unfolding has-sgna-def eventually-at-left
apply (intro exI[where z=z—d1])
using «d1>0) di-def
by (metis (no-types, opaque-lifting) add.commute add-uminus-conv-diff assms(2)
diff-add-cancel
diff-strict-left-mono diff-zero minus-diff-eq sgn-neg)
thus ?thesis by auto
qed
moreover have (g has-sgnz 1) (at-left) when ¢<0
proof —
obtain dI where d1>0 and dI-def:Vh>0. h < dl — g(z —h) > gz
using DERIV-neg-dec-left[OF g-deriv <c<0>] <g z=0> by auto
have (g has-sgnz 1) (at-left x)
unfolding has-sgnz-def eventually-at-left
apply (intro exI[where x=x—d1])
using «d1>0> di-def
by (metis (no-types, opaque-lifting) add.commute add-uminus-conv-diff
assms(2) diff-add-cancel
diff-zero less-diff-eq minus-diff-eq sgn-pos)
thus ?thesis using «¢c<0> by auto
qed
ultimately show %thesis using <c#0) using sgn-real-def by auto
qed

lemma has-sgnz-derivative-at-right:
assumes g-deriv:(g has-field-derivative ¢) (at z) and g z=0 and c¢#£0
shows (g has-sgnz sgn ¢) (at-right x)
proof —
have (g has-sgnz 1) (at-right) when ¢>0
proof —
obtain d2 where d2>0 and d2-defVh>0. h < d2 — gz < g (z + h)
using DERIV-pos-inc-right|OF g-deriv <¢>05] <g x=0> by auto

50

have (g has-sgnz 1) (at-right)
unfolding has-sgnz-def eventually-at-right
apply (intro exl[where z=xz+d2])
using «d2>0> d2-def
by (metis add.commute assms(2) diff-add-cancel diff-less-eq less-add-same-cancell

$gn-pos)
thus ?thesis using <«c¢>0» by auto
qed
moreover have (g has-sgnx —1) (at-right z) when c¢<0
proof —

obtain d2 where d2>0 and d2-defVh>0. h < d2 — gz > g (z + h)
using DERIV-neg-dec-right]|OF g-deriv <¢<0>] <g x=0> by auto
have (g has-sgnz —1) (at-right z)
unfolding has-sgnz-def eventually-at-right
apply (intro exI[where z=1+d2])
using «d2>0> d2-def
by (metis (no-types, opaque-lifting) add.commute add.right-inverse add-uminus-conv-diff
assms(2)
diff-add-cancel diff-less-eq sgn-neg)
thus ?thesis using <«c<0» by auto
qged
ultimately show %thesis using <c#£0) using sgn-real-def by auto
qed

lemma has-sgnz-split:
(f has-sgnz ¢) (at) <— (f has-sgnz ¢) (at-left) A (f has-sgnz ¢) (at-right x)
unfolding has-sgnz-def using eventually-at-split by auto

lemma sgnz-at-top-IVT:
assumes sgnz (poly p) (at-right a) # sgnz (poly p) at-top
shows Jz>a. poly p z=0
proof (cases p=0)
case True
then show %thesis using gt-ex[of a] by simp
next
case Fulse
from poly-has-sgnz-values|OF this]
have (poly p has-sgnz 1) (at-right a) V (poly p has-sgnz — 1) (at-right a)
(poly p has-sgnz 1) at-top V (poly p has-sgnz — 1) at-top
by auto
moreover have ?thesis when has-r:(poly p has-sgnz 1) (at-right a)
and has-top:(poly p has-sgnz —1) at-top
proof —
obtain b where b>a poly p b>0
proof —
obtain a’ where a’>a and a’-def:Vy>a. y < a’ — sgn (poly p y) = 1
using has-r{unfolded has-sgna-def eventually-at-right] by auto
define b where b=(a+a’)/2
have a<b b<a’ unfolding b-def using <a’>a> by auto

o1

moreover have poly p b>0
using a’-def[rule-format,OF a) <b<a’»] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain ¢ where ¢>b poly p c<0
proof —
obtain b’ where b’-def:¥n>b". sgn (poly p n) = — 1

using has-top[unfolded has-sgnz-def eventually-at-top-linorder| by auto
define ¢ where c=1+maz b b’
have c¢>b ¢>b’ unfolding c-def using a> by auto
moreover have poly p c<0
using b’-def[rule-format, OF «b'<¢)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately show ?thesis using poly-IVT-neg[of b ¢ p] not-less by fastforce
qged
moreover have ?thesis when has-r:(poly p has-sgnz —1) (at-right a)
and has-top:(poly p has-sgnx 1) at-top
proof —
obtain b where b>a poly p b<0
proof —
obtain a’ where a">a and a’-def:Vy>a. y < a’ — sgn (poly p y) = —1
using has-r[unfolded has-sgnz-def eventually-at-right] by auto
define b where b=(a+a’)/2
have a<b b<a’ unfolding b-def using <a’>a> by auto
moreover have poly p b<0
using a’-def[rule-format,OF a> <b<a’»] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
moreover obtain ¢ where c¢>b poly p ¢>0
proof —
obtain b’ where b'-def:¥ n>b". sgn (poly p n) = 1
using has-toplunfolded has-sgnz-def eventually-at-top-linorder] by auto
define ¢ where c=1+maz b b’
have c¢>b ¢>b’ unfolding c-def using a> by auto
moreover have poly p ¢>0
using b’-def[rule-format,OF <b'<c)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately show ?thesis using poly-IVT-pos[of b ¢ p] not-less by fastforce
qed
moreover have ?thesis when
(poly p has-sgnz 1) (at-right a) A (poly p has-sgnz 1) at-top
V (poly p has-sgnx — 1) (at-right a) A (poly p has-sgnz —1) at-top
proof —
have sgnz (poly p) (at-right a) = sgnz (poly p) at-top
using that has-sgnz-imp-sgnz by auto
then have Fulse using assms by simp
then show ?thesis by auto

52

qed
ultimately show ?thesis by blast
qed

lemma sgnz-at-left-at-right-1VT:
assumes sgnz (poly p) (at-right a) # sgnz (poly p) (at-left b) a<b
shows Jz. a<z A z<b A poly p x=0
proof (cases p=0)
case True
then show ?thesis using <a<bs by (auto intro:exI[where x=(a+b)/2])
next
case Fulse
from poly-has-sgnz-values|OF this)
have (poly p has-sgnz 1) (at-right a) V (poly p has-sgnz — 1) (at-right a)
(poly p has-sgnz 1) (at-left b) V (poly p has-sgnz — 1) (at-left b)
by auto
moreover have ?thesis when has-r:(poly p has-sgnz 1) (at-right a)
and has-l:(poly p has-sgnz —1) (at-left b)
proof —
obtain ¢ where a<c c¢<b poly p c>0
proof —
obtain o’ where a’>a and a’-def:Vy>a. y < a’ — sgn (poly p y) = 1
using has-r[unfolded has-sgnz-def eventually-at-right] by auto
define ¢ where c=(a+min a’ b)/2
have a<c c<a’ ¢c<b unfolding c-def using <a’>a> a> by auto
moreover have poly p ¢>0
using a’-def[rule-format,OF (c>ay <c<a’] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain d where c<dd<b poly p d<0
proof —
obtain b’ where b'<b and b’-def:Vy>b". y < b — sgn (poly p y) = — 1

using has-l[unfolded has-sgnz-def eventually-at-left] by auto
define d where d=(b+maz b’ ¢)/2
have b'<d d<b d>c
unfolding d-def using b" c> by auto
moreover have poly p d<0
using b’-def[rule-format, OF <b’<d) <d<b)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately obtain z where c<z x<d poly p z=0
using poly-IVT-neg[of ¢ d p] by auto
then show ?thesis using <c>a> «d<b» by (auto intro: exl[where z=z))
qed
moreover have ?thesis when has-r:(poly p has-sgnz —1) (at-right a)
and has-l:(poly p has-sgnz 1) (at-left b)
proof —
obtain ¢ where a<c ¢<b poly p c<0
proof —

93

obtain a’ where a">a and a’-def:Vy>a. y < a’ — sgn (poly p y) = —1
using has-r[unfolded has-sgnz-def eventually-at-right] by auto
define ¢ where c=(a+min a’ b)/2
have a<c c<a’ c<b unfolding c-def using (a’>a> a> by auto
moreover have poly p c<0
using a’-def[rule-format,OF <c>a) <c<a"»] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
moreover obtain d where c<dd<b poly p d>0
proof —
obtain b’ where b'<b and b’-def:Vy>b". y < b — sgn (poly p y) = 1
using has-l[unfolded has-sgnz-def eventually-at-left] by auto
define d where d=(b+maz b’ ¢)/2
have b'<d d<b d>c
unfolding d-def using b" c> by auto
moreover have poly p d>0
using b’-def[rule-format, OF <b’'<ds «d] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately obtain z where c<z x<d poly p z=0
using poly-IVT-pos|of ¢ d p] by auto
then show ?thesis using «¢>a> «d by (auto intro: exl[where r=x])
qed
moreover have ?thesis when
(poly p has-sgnz 1) (at-right a) A (poly p has-sgnz 1) (at-left b)
V (poly p has-sgnx — 1) (at-right a) A (poly p has-sgnz —1) (at-left b)
proof —
have sgnz (poly p) (at-right a) = sgnz (poly p) (at-left b)
using that has-sgnz-imp-sgnz by auto
then have Fulse using assms by simp
then show %thesis by auto
qed
ultimately show ?thesis by blast
qed

lemma sgnz-at-bot-IVT:

assumes sgnz (poly p) (at-left a) # sgnz (poly p) at-bot

shows Fz<a. poly p z=0

proof (cases p=0)

case True

then show ?thesis using lt-ex|[of a] by simp

next

case Fulse

from poly-has-sgnz-values|OF this]

have (poly p has-sgnz 1) (at-left a) V (poly p has-sgnz — 1) (at-left a)
(poly p has-sgnz 1) at-bot V (poly p has-sgnz — 1) at-bot
by auto

moreover have ?thesis when has-1:(poly p has-sgnz 1) (at-left a)

and has-bot:(poly p has-sgnz —1) at-bot

54

proof —
obtain b where b<a poly p b>0
proof —
obtain a’ where a'<a and a’-def:Vy>a’. y < a — sgn (poly p y) = 1
using has-l[unfolded has-sgna-def eventually-at-left] by auto
define b where b=(a+a’)/2
have a>b b>a’ unfolding b-def using <a'<a> by auto
moreover have poly p b>0
using a’-def[rule-format,OF a"y <b<a)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain ¢ where c¢<b poly p c<0
proof —
obtain b’ where b'-def:V n<b’. sgn (poly p n) = — 1

using has-bot[unfolded has-sgnz-def eventually-at-bot-linorder] by auto
define ¢ where c=min b b'— 1
have c<b ¢<b’ unfolding c-def using <b<a) by auto
moreover have poly p c<0
using b’-def[rule-format,OF <b">¢)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately show ?thesis using poly-IVT-pos[of ¢ b p] using not-less by
fastforce
qed
moreover have ?thesis when has-l:(poly p has-sgnz —1) (at-left a)
and has-bot:(poly p has-sgnz 1) at-bot
proof —
obtain b where b<a poly p b<0
proof —
obtain a’ where a'<a and a’-def:Vy>a’. y < a — sgn (poly p y) = —1
using has-l[unfolded has-sgna-def eventually-at-left] by auto
define b where b=(a+a’)/2
have a>b b>a’ unfolding b-def using (a'<a> by auto
moreover have poly p b<0
using a’-def[rule-format,OF a’y <b<a)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qged
moreover obtain ¢ where c¢<b poly p ¢>0
proof —
obtain b’ where b’-def:V n<b’. sgn (poly p n) = 1
using has-bot[unfolded has-sgnz-def eventually-at-bot-linorder] by auto
define ¢ where c=min b b'— 1
have c<b c<b’ unfolding c-def using <b<a> by auto
moreover have poly p ¢>0
using b’-def[rule-format,OF <b">¢)] unfolding sgn-if by argo
ultimately show ?thesis using that by auto
qed
ultimately show ?thesis using poly-IVT-neglof ¢ b p] using not-less by
fastforce

95

qed
moreover have ?thesis when
(poly p has-sgnz 1) (at-left a) A (poly p has-sgnz 1) at-bot
V (poly p has-sgnx — 1) (at-left a) A (poly p has-sgnx —1) at-bot
proof —
have sgnz (poly p) (at-left a) = sgnz (poly p) at-bot
using that has-sgnz-imp-sgnz by auto
then have Fulse using assms by simp
then show ?thesis by auto
qged
ultimately show ¢thesis by blast
qed

lemma sgnx-poly-nz:
assumes poly p T£0
shows sgnz (poly p) (at-left x) = sgn (poly p x)
sgnz (poly p) (at-right x) = sgn (poly p x)
proof —
have (poly p has-sgnz sgn(poly p z)) (at x)
apply (rule tendsto-nonzero-has-sgnz)
using assms by auto
then show sgnz (poly p) (at-left x) = sgn (poly p x)
sgnz (poly p) (at-right x) = sgn (poly p x)
unfolding has-sgna-split by auto
qed

5.3 Finite predicate segments over an interval

inductive finite-Psegments::(real = bool) = real = real = bool for P where
emptyl: a>b = finite-Psegments P a b|
insertl-1: [s€{a..<b};s=aVP s;¥Vte{s<..<b}. P t; finite-Psegments P a s]
= finite-Psegments P a b|
insertl-2: [s€{a..<b};s=aVP s;(Vte{s<..<b}. =P t);finite-Psegments P a]
= finite-Psegments P a b

lemma finite- Psegments-pos-linear:
assumes finite-Psegments P (bxlb+c) (bxub+c) and b>0
shows finite-Psegments (P o (A\t. bxt+c)) Ib ub
proof —
have [simp]:b#0 using 0» by auto
show ?thesis
proof (rule finite-Psegments.induct|OF assms(1),
of Ab’' ub’. finite-Psegments (P o (At. bxt+c)) ((Ib'—c)/b) ((ub'—c)/b),simplified))

fix b ub f assume (lb::real)<ub

then have (Ib — ¢) / b < (ub—¢) / b
using «b>0) by (auto simp add:field-simps)

then show finite-Psegments (f o (At. b x t + ¢)) ((ub — ¢) / b) ((Ib — ¢) / b)
by (rule finite-Psegments.emptyl)

o6

next
fix slbub P
assume asm: b < s A s < ub
Vie{s<.<ub}. Pt
finite-Psegments (P o (At. bxt + ¢)) ((Ib—2¢) / b) ((s —¢)/ b)
s=1IVPs
show finite-Psegments (P o (At. bx t + ¢)) (b —¢) / b) ((ub — ¢) / b)
apply (rule finite-Psegments.insertl-1[of (s—c)/b])
using asm «b>0> by (auto simp add:field-simps)
next
fix slbub P
assume asm: b < s A s < ub
Vie{s<.<ub}. = Pt
finite-Psegments (P o (At. bt + ¢)) ((Ib—2¢) / b) ((s —¢)/ b)
s=lbV Ps
show finite-Psegments (P o (At. bxt + ¢)) (Ib — ¢) / b) ((ub — ¢) / b)
apply (rule finite-Psegments.insertl-2[of (s—c)/b])
using asm «b>0> by (auto simp add:field-simps)
qed
qed

lemma finite-Psegments-congkE:
assumes finite-Psegments @) Ib ub
Nt [lb<tit<ub] = Q¢ +— Pt
shows finite-Psegments P lb ub using assms
proof (induct rule:finite- Psegments.induct)
case (emptyl a b)
then show ?case using finite-Psegments.emptyl by auto
next
case (insertl-1 s a b)
show ?Zcase
proof (rule finite-Psegments.insertl-1[of s])
have P s when s#a
proof —
have se{a<..<b} using (s € {a..<b}> that by auto
then show ?thesis using insertl-1 by auto
qged
then show s = a V P s by auto
next
show s € {a..<b} Vie{s<..<b}. Pt finite-Psegments P a s using insertl-1
by auto
qed
next
case (insertl-2 s a b)
show ?Zcase
proof (rule finite-Psegments.insertl-2[of s])
have P s when s#a
proof —
have sc{a<..<b} using (s € {a..<b}» that by auto

o7

then show ?thesis using insertl-2 by auto
qed
then show s = a V P s by auto
next
show s € {a..<b} Vie{s<..<b}. = Pt finite-Psegments P a s using insertl-2
by auto
qed
qed

lemma finite- Psegments-constl:
assumes At. [a<t;i<b] = Pt =c
shows finite-Psegments P a b
proof —
have finite-Psegments (A-. ¢) a b
proof —
have ?thesis when a>0b
using that finite- Psegments.emptyl by auto
moreover have ?thesis when a<b ¢
apply (rule finite-Psegments.insertl-1[of a))
using that by (auto intro: finite-Psegments.emptyl)
moreover have ?thesis when a<b —c
apply (rule finite-Psegments.insertl-2[of a])
using that by (auto intro: finite-Psegments.emptyl)
ultimately show ?thesis by argo
qed
then show ?thesis
apply (elim finite-Psegments-congE)
using assms by auto
qed

context
begin

private lemma finite- Psegments-less-eql:
assumes finite-Psegments P a ¢ b<c
shows finite-Psegments P a b using assms
proof (induct arbitrary: b rule:finite- Psegments.induct)
case (emptyl a c)
then show ?case using finite-Psegments.emptyl by auto
next
case (insertl-1 s a c)
have ?case when b<s using insertl-1 that by auto
moreover have ?case when b>s
proof —
have s € {a..<b} using that <s € {a..<c}» <b < ¢ by auto
moreover have Vte{s<..<b}. Pt using «Vit€{s<..<c}. P t» that <b < ¢) by
auto
ultimately show ?case
using finite-Psegments.insertl-1[OF - - - «finite-Psegments P a $)] < s = a V

o8

P sy by auto
qed
ultimately show ?case by fastforce
next
case (insertl-2 s a c)
have ?case when b<s using insertl-2 that by auto
moreover have ?case when b>s
proof —
have s € {a..<b} using that <s € {a..<c} b < © by auto
moreover have Vite{s<..<b}. = P ¢ using «Vit€{s<..<c}. = P t» that <b <
¢» by auto
ultimately show ?case
using finite-Psegments.insertl-2[OF - - - «finite-Psegments P a)] < s = a V
P sy by auto
qed
ultimately show ?case by fastforce
qed

private lemma finite-Psegments-less-eq2:
assumes finite-Psegments P a ¢ a<b
shows finite-Psegments P b ¢ using assms
proof (induct arbitrary: rule:finite- Psegments.induct)
case (emptyl a c)
then show “case using finite-Psegments.emptyl by auto
next
case (insertl-1 s a c)
have ?case when s<b
proof —
have Vite{b<..<c}. P t using insertl-1 that by auto
then show ?thesis by (simp add: finite-Psegments-constl)
qed
moreover have ?case when s>b
apply (rule finite-Psegments.insertl-1[where s=s|)
using insertl-1 that by auto
ultimately show ?case by linarith
next
case (insertl-2 s a c)
have ?case when s<b
proof —
have Vite{b<..<c}. = P ¢ using insertl-2 that by auto
then show ?thesis by (metis finite-Psegments-constl greaterThanLess Than-iff)
qed
moreover have ?case when s>b
apply (rule finite-Psegments.insertl-2[where s=s|)
using insertl-2 that by auto
ultimately show ?case by linarith
qed

99

lemma finite- Psegments-included:

assumes finite-Psegments P a d a<b c¢<d

shows finite-Psegments P b ¢

using finite- Psegments-less-eq2 finite- Psegments-less-eql assms by blast
end

lemma finite- Psegments-combine:
assumes finite-Psegments P a b finite-Psegments P b ¢ be{a..c} closed ({z. P
z} N {a..c})
shows finite-Psegments P a ¢ using assms(2,1,3,4)
proof (induct rule:finite- Psegments.induct)
case (emptyl b c)
then show ?case using finite-Psegments-included by auto
next
case (insertl-1 s b c)
have P s
proof —
have s<c using insertl-1 by auto
define S where S = {z. Pz} N {s..(s+¢)/2}
have closed S
proof —
have closed ({a. P a} N {a..c}) using insertl-1(8) .
moreover have S = ({a. P a} N {a..c}) N {s..(s+¢)/2}
using insertl-1(1,7) unfolding S-def by (auto simp add:field-simps)
ultimately show ?thesis
using closed-Int[of {a. P a} N {a..c} {s..(s+c)/2}] by blast
qed
moreover have Fy€S. dist y s < e when e>0 for e
proof —
define y where y = min ((s+c¢)/2) (e/2+s)
have yeS$
proof —
have ye{s..(s+c)/2} unfolding y-def
using <e>0) «s<c¢» by (auto simp add:min-mult-distrib-left algebra-simps)
moreover have P y
apply (rule insertl-1(3)[rule-format])
unfolding y-def
using <e>0> «s<c»
by (auto simp add:algebra-simps min-mult-distrib-left min-less-iff-disj)
ultimately show ?thesis unfolding S-def by auto
qed
moreover have dist y s <e
unfolding y-def using <e>0) <s<c)
by (auto simp add:algebra-simps min-mult-distrib-left min-less-iff-disj dist-real-def)
ultimately show ?thesis by auto
qed
ultimately have s€S using closed-approachable by auto
then show ?thesis unfolding S-def by auto

60

qed
show ?Zcase
proof (rule finite-Psegments.insertl-1[of s])
show s € {a.<c} s=aV PsVie{s<.<c}. Pt
using insertl-1 <P s» by auto
next
have closed ({a. P a} N {a..s})
using closed-Int[OF <closed ({a. P a} N {a..c})»,of {a..s},simplified]
apply (elim arg-elim[of closed))
using «s € {b..<c}» <b € {a..c}) by auto
then show finite-Psegments P a s using insertl-1 by auto
qed
next
case (insertl-2 s b c)
have ?case when P s
proof (rule finite-Psegments.insertl-2[of s])
show s € {a..<c} s = a V P s Vte{s<..<c}. = Pt using that insertl-2 by
auto
next
have closed ({a. P a} N {a..s})
using closed-Int[OF <closed ({a. P a} N {a..c})»,of {a..s},simplified]
apply (elim arg-elim[of closed))
using <s € {b..<c}» b € {a..c}» by auto
then show finite-Psegments P a s using insertl-2 by auto
qed
moreover have ?case when — P s s=b using «finite-Psegments P a b
proof (cases rule:finite- Psegments.cases)
case emptyl
then show ?thesis using insertl-2 that
by (metis antisym-conv atLeastAtMost-iff finite-Psegments.insertl-2)
next
case (insertl-1 s0)
have P s
proof —
have s0<s using insertl-1 atLeastLessThan-iff that(2) by blast
define S where S = {z. Pz} N {(s0+s)/2..s}
have closed S
using closed-Int[OF «closed ({a. P a} N {a..c})r,of {(s0+s)/2..s},simplified]

apply (elim arg-elim[of closed))
unfolding S-def using (s0 € {a..<b}> « s € {b..<c}» <b € {a..c}> by auto

moreover have Fye€S. dist y s < e when e>0 for e
proof —
define y where y = maz ((s+s0)/2) (s—e/2)
have yesS
proof —
have ye{(s0+s)/2..s} unfolding y-def
using <e>0) «s0<s» by (auto simp add:field-simps min-mult-distrib-left)

61

moreover have P y
apply (rule insertl-1(3)[rule-format])
unfolding y-def
using <e>0) s0<s» <s=b
by (auto simp add:field-simps maz-mult-distrib-left less-max-iff-disj)
ultimately show #thesis unfolding S-def by auto
qged
moreover have dist y s <e
unfolding y-def using <e>0)> <s0<s»
by (auto simp add:algebra-simps max-mult-distrib-left less-maz-iff-disj
dist-real-def
maz-add-distrib-right)
ultimately show ?thesis by auto
qed
ultimately have s€S using closed-approachable by auto
then show ?thesis unfolding S-def by auto
qed
then have Fulse using <= P s» by auto
then show ?thesis by simp
next
case (insertl-2 s0)
have «: Vie{s0<..<c}. - Pt
using « Vie{s<..<c}. = P t» that Vte{s0<..<b}. = P b
by force
show ?thesis
apply (rule finite-Psegments.insertl-2[of s0])
subgoal using insertl-2.prems(2) local.insertl-2(1) by auto
subgoal using «s0 = a V P s0> .
subgoal using * .
subgoal using «finite-Psegments P a s0» .
done
qed
moreover note <s =56V P s
ultimately show ?case by auto
qed

5.4 Finite segment intersection of a path with the imaginary
axis

definition finite-ReZ-segments::(real = complex) = complex = bool where
finite-ReZ-segments g z = finite-Psegments (At. Re (gt — z) = 0) 0 1

lemma finite-ReZ-segments-joinpaths:
assumes ¢I:finite-ReZ-segments g1 z and ¢2: finite-ReZ-segments g2 z and
path g1 path g2 pathfinish g1 =pathstart g2
shows finite-ReZ-segments (g1 +++92) z
proof —
define P where P = (At. (Re ((g1 +++ g2)t — 2) = 0 AN 0<t AN t<1) V t=0
Vv t=1)

62

have finite-Psegments P 0 (1/2)
proof —
have finite-Psegments (At. Re (91t — 2z) = 0) 0 1
using g1 unfolding finite-ReZ-segments-def .
then have finite-Psegments (At. Re (g1 (2 xt) — 2) = 0) 0 (1/2)
apply (drule-tac finite-Psegments-pos-linear[of - 2 0 0 1/2,simplified])
by (auto simp add:comp-def)
then show ?thesis
unfolding P-def joinpaths-def
by (elim finite-Psegments-congE,auto)
qed
moreover have finite-Psegments P (1/2) 1
proof —
have finite-Psegments (At. Re (92t — z) = 0) 0 1
using ¢2 unfolding finite-ReZ-segments-def .
then have finite-Psegments (At. Re (g2 (2 x t—1) — 2) = 0) (1/2) 1
apply (drule-tac finite-Psegments-pos-linear|of - 2 1/2 —1 1,simplified])
by (auto simp add:comp-def)
then show ?thesis
unfolding P-def joinpaths-def
apply (elim finite-Psegments-congE)
by auto
qed
moreover have closed {z. P z}
proof —
define @ where Q=(\t. Re ((g1 +++ ¢2) t — 2) = 0)
have continuous-on {0<..<1} (g1+++g¢2)
using path-join-imp[OF <path g15 <path g2 <pathfinish g1=pathstart g2>]
unfolding path-def by (auto elim:continuous-on-subset)
from continuous-on-Re[OF this] have continuous-on {0<..<1} (Az. Re ((g1
+++ g2) 1)) .
from continuous-on-open-Collect-neq| OF this,of A-. Re z,OF continuous-on-const,simplified)
have open {t. Re ((g1 +++ ¢g2) t — z) # 0 N 0<t A t<1}
by (elim arg-elim[where f=open],auto)
from closed-Diff[of {0::real..1},0F - this,simplified]
show closed {z. P x}
apply (elim arg-elim[where f=closed])
by (auto simp add:P-def)
qed
ultimately have finite-Psegments P 0 1
using finite- Psegments-combinelof - 0 1/2 1] by auto
then show ?thesis
unfolding finite-ReZ-segments-def P-def
by (elim finite-Psegments-congE auto)
qed

lemma finite-ReZ-segments-congF:

assumes finite-ReZ-segments pl z1
Nt [0<t;t<1] = Re(pl t— z1) = Re(p2t — 22)

63

shows finite-ReZ-segments p2 z2

using assms unfolding finite- ReZ-segments-def
apply (elim finite-Psegments-congE)

by auto

lemma finite-ReZ-segments-constl:
assumes Vit. 0<itANt<l — gt =—c
shows finite-ReZ-segments g z
proof —
have finite-ReZ-segments (A-. ¢) z
unfolding finite-ReZ-segments-def
by (rule finite-Psegments-constl ,auto)
then show ?thesis using assms
by (elim finite-ReZ-segments-congE,auto)
qed

lemma finite- ReZ-segment-cases [consumes 1, case-names subEq subNEq,cases pred:finite- ReZ-segments]:
assumes finite-ReZ-segments g z
and subEq:(As. [s € {0..<1};s=0VRe (g s) = Re z;
Vie{s<..<1}. Re (g t) = Re z;finite-ReZ-segments (subpath 0 s g) z] =
P)
and subNEq:(\s. [s € {0..<1};s=0VRe (g s) = Re z;
Vie{s<..<1}. Re (g t) # Re z;finite-ReZ-segments (subpath 0 s g) z] =
P)
shows P
using assms(1) unfolding finite- ReZ-segments-def
proof (cases rule:finite-Psegments.cases)
case emptyl
then show ?thesis by auto
next
case (insertl-1 s)
have finite-ReZ-segments (subpath 0 s g) z
proof (cases s=0)
case True
show ?thesis
apply (rule finite-ReZ-segments-constl)
using True unfolding subpath-def by auto
next
case Fulse
then have s>0 using «s€{0..<1}» by auto
from finite-Psegments-pos-linear|OF - this,of - 0 0 1] insertl-1(4)
show finite-ReZ-segments (subpath 0 s g) z
unfolding finite- ReZ-segments-def comp-def subpath-def by auto
qed
then show ?thesis using subEq insertl-1 by force
next
case (insertl-2 s)
have finite-ReZ-segments (subpath 0 s g) z
proof (cases s=0)

64

case True
show ?thesis
apply (rule finite-ReZ-segments-constl)
using True unfolding subpath-def by auto
next
case Fulse
then have s>0 using «s€{0..<1}» by auto
from finite-Psegments-pos-linear|OF - this,of - 0 0 1] insertl-2(4)
show finite-ReZ-segments (subpath 0 s g) z
unfolding finite- ReZ-segments-def comp-def subpath-def by auto
qed
then show ?thesis using subNEq insertl-2 by force
qed

lemma finite- ReZ-segments-induct [case-names sub0 subEq subNEq, induct pred:finite- ReZ-segments:
assumes finite-ReZ-segments g z
assumes sub0:\g z. (P (subpath 0 0 g) z)
and subEq:(A\s g z. [s € {0..<1};s=0VRe (g s) = Re z;
Vie{s<..<1}. Re (g t) = Re z;finite-ReZ-segments (subpath 0 s g) z;
P (subpath 0 s g) z] = P g z)
and subNEq:(\s g z. [s € {0..<1};s=0VRe (g s) = Re z;
Vite{s<..<1}. Re (g t) # Re z;finite-ReZ-segments (subpath 0 s g) z;
P (subpath 0 s g) z] = P g z)
shows P g z
proof —
have finite-Psegments (At. Re (gt — z) = 0) 0 1
using assms(1) unfolding finite- ReZ-segments-def by auto
then have (0::real)<1 — P (subpath 0 1 g) z
proof (induct rule: finite-Psegments.induct[of - 0 1 Aa b. b>a — P (subpath a
bg) 2])
case (emptyl a b)
then show ?case using sub0]of subpath a b g] unfolding subpath-def by auto

next
case (insertl-1 s a b)
have ?7case when a=b
using sub0[of subpath a b g] that unfolding subpath-def by auto
moreover have ?case when a#b
proof —
have b>a using that <s € {a..<b}» by auto
define s”:real where s'=(s—a)/(b—a)
have P (subpath a b g) z
proof (rule subEq[of s’ subpath a b g])
show Vie{s'<..<1}. Re (subpath a b g t) = Re z
proof
fix t assume t € {s'<..<1}
then have (b — a) * ¢ + a€{s<..<b}
unfolding s’-def using a) <s € {a..<b}»
apply (auto simp add:field-simps)

65

by (sos ((((A<0 * (A<1 * A<2)) x R<1) + (((A<=1 * (A<0 % R<1))
x (R<1 % [1]72))
+ ((A<=0 * (A<0 * (A<1 % R<1))) * (R<1 % [1]72))))))
then have Re (g (b — a) xt +a) — 2) =0
using insertl-1(3)[rule-format,of (b — a) x t + a] by auto
then show Re (subpath a b g t) = Re z
unfolding subpath-def by auto
qed
show finite-ReZ-segments (subpath 0 s’ (subpath a b g)) z
proof (cases s=a)
case True
then show ?thesis unfolding s’-def subpath-def
by (auto intro:finite-ReZ-segments-constl)
next
case Fulse
have finite-Psegments (At. Re (¢t — 2) = 0) a s
using insertl-1(4) unfolding finite-ReZ-segments-def by auto
then have finite-Psegments ((At. Re (gt — z) = 0) o (Mt. (s — a) x t +
a)) 01
apply (elim finite-Psegments-pos-linear|of - s—a 0 a 1,simplified])
using False <s€{a..<b}» by auto
then show ?thesis
using «b>a> unfolding finite- ReZ-segments-def subpath-def s'-def comp-def
by auto
qed
show s’ € {0..<1}
using a> «s€{a..<b}> unfolding s’-def
by (auto simp add:field-simps)
show P (subpath 0 s’ (subpath a b g)) z
proof —
have P (subpath a s g) z using insertl-1(1,5) by auto
then show ?thesis
using «b>a> unfolding s’-def subpath-def by simp
qed
show s’ = 0 V Re (subpath a b g s') = Re z
proof —
have ?thesis when s=a
using that unfolding s’-def by auto
moreover have ?thesis when Re (g s — z) = 0
using that unfolding s’-def subpath-def by auto
ultimately show ?thesis using (s = a V Re (g s — z) = 0» by auto
qged
qed
then show ?thesis using a> by auto
qed
ultimately show ?case by auto
next
case (insertl-2 s a b)
have ?case when a=b

66

using sub0[of subpath a b g] that unfolding subpath-def by auto
moreover have ?case when a#b
proof —
have b>a using that <s € {a..<b}» by auto
define s”:real where s'=(s—a)/(b—a)
have P (subpath a b g) z
proof (rule subNEq[of s’ subpath a b g])
show Vite{s'<..<1}. Re (subpath a b g t) # Re z
proof
fix t assume t € {s'<..<1}
then have (b — a) x t + ac{s<..<b}
unfolding s’-def using «b>a> <s € {a..<b}
apply (auto simp add:field-simps)
by (sos ((((A<0 x (A<l x A<2)) x R<1) + (((A<=1 * (A<0 * R<1))
x (R<1 % [1]72)) +
((A<=0 % (A<0 * (A<I % R<1))) * (R<I % [1]72))))))
then have Re (g (b — a) x t + a) — 2) # 0
using insertl-2(3)[rule-format,of (b — a) *
then show Re (subpath a b g t) # Re z
unfolding subpath-def by auto
qged
show finite-ReZ-segments (subpath 0 s’ (subpath a b g)) z
proof (cases s=a)
case True
then show ?thesis unfolding s’-def subpath-def
by (auto intro:finite- ReZ-segments-constl)
next
case Fulse
have finite-Psegments (At. Re (g9t — z) = 0) a s
using insertl-2(4) unfolding finite-ReZ-segments-def by auto
then have finite-Psegments ((At. Re (gt — z) = 0) o (At. (s — a) x t +
a)) 01

t + a] by auto

apply (elim finite- Psegments-pos-linear|of - s—a 0 a 1,simplified])
using False <s€{a..<b}» by auto
then show ?thesis
using «b>a) unfolding finite- ReZ-segments-def subpath-def s'-def comp-def
by auto
qed
show s’ € {0..<1}
using «b>a> <s€{a..<b}> unfolding s’-def
by (auto simp add:field-simps)
show P (subpath 0 s’ (subpath a b g)) z
proof —
have P (subpath a s g) z using insertl-2(1,5) by auto
then show ?thesis
using a) unfolding s’-def subpath-def by simp
qed
show s’ = 0 V Re (subpath a b g ') = Re z
proof —

67

have ?thesis when s=a
using that unfolding s’-def by auto
moreover have ?thesis when Re (g s — z) = 0
using that unfolding s’-def subpath-def by auto
ultimately show ?thesis using (s = a V Re (g s — z) = 0» by auto
qged
qed
then show ?thesis using «b>a> by auto
qed
ultimately show ?case by auto
qed
then show ?thesis by auto
qed

lemma finite- ReZ-segments-shiftpah:
assumes finite-ReZ-segments g z s€{0..1} path g and loop:pathfinish g = path-
start g
shows finite-ReZ-segments (shiftpath s g) z
proof —
have finite-Psegments (At. Re (shiftpath s gt — 2z) = 0) 0 (1—3s)
proof —
have finite-Psegments (At. Re (g t) = Re 2) s 1
using assms finite- Psegments-included|of - 0 1 s] unfolding finite- ReZ-segments-def

by force
then have finite-Psegments (At. Re (g (s +t) — 2) = 0) 0 (1—s)
using finite-Psegments-pos-linear[of \t. Re (gt — z) =01 0 s 1—s,simplified]
unfolding comp-def by (auto simp add:algebra-simps)
then show ?thesis unfolding shiftpath-def
apply (elim finite-Psegments-congE)
using «s€{0..1}> by auto
qed
moreover have finite-Psegments (At. Re (shiftpath s gt — z) = 0) (1—s) 1
proof —
have finite-Psegments (At. Re (g t) = Re z) 0's
using assms finite- Psegments-included unfolding finite- ReZ-segments-def
by force
then have finite-Psegments (At. Re (g (s +t — 1) — 2) = 0) (1—s) 1
using finite- Psegments-pos-linear[of At. Re (gt — 2z) =01 1—s s—1 1,simplified)
unfolding comp-def by (auto simp add:algebra-simps)
then show ?thesis unfolding shiftpath-def
apply (elim finite-Psegments-congE)
using <s€{0..1}> by auto
qed
moreover have I — s € {0..1} using <s€{0..1}> by auto
moreover have closed ({z. Re (shiftpath s gz — z) = 0} N {0..1})
proof —
let 2f = A\x. Re (shiftpath s g x — 2)
have continuous-on {0..1} ?f

68

using path-shiftpath|OF <path g» loop <s€{0..1}>] unfolding path-def
by (auto intro: continuous-intros)
from continuous-closed-preimage-constant| OF this,of 0,simplified]
show ?thesis
apply (elim arg-elim[of closed))
by force
qed
ultimately show ?thesis unfolding finite-ReZ-segments-def
by (rule finite-Psegments-combine[where b=1—s|)
qed

lemma finite-imp-finite- ReZ-segments:
assumes finite {t. Re (gt — 2) =0 AN 0 <t AN t<1}
shows finite-ReZ-segments g z
proof —
define P where P = (A\t. Re (gt — 2) = 0)
define rs where rs=(\b. {t. Pt A 0 < t A t<b})
have finite-Psegments P 0 b when finite (rs b) b>0 for b
using that
proof (induct card (rs b) arbitrary:b rule:nat-less-induct)
case ind:1
have ?case when rs b= {}
apply (rule finite-Psegments.intros(3)[of 0])
using that <0 < by unfolding rs-def by (auto intro:finite- Psegments.intros)

moreover have ?case when rs b£{}
proof —
define [j where lj = Max (s b)
have 0<lj lj<b P lj
using Maz-in[OF <finite (rs b)» <rs b£{}>,folded lj-def]
unfolding rs-def by auto
show ?Zthesis
proof (rule finite-Psegments.intros(3)[of lj])
show [j € {0.<b} lj =0V Plj
using <0<lj> <lj<by <P lj> by auto
show Vte{lj<..<b}. - Pt
proof (rule ccontr)
assume - (Vie{lj<.<b}. = Pt)
then obtain ¢t where t:P ¢t [j < tt < b by auto
then have ters b unfolding rs-def using «j>0) by auto
then have t<[j using Maz-ge|OF «finite (rs b)»,of t] unfolding lj-def by
auto
then show Fulse using «t>1lj> by auto
qed
show finite-Psegments P 0 lj
proof (rule ind.hyps[rule-format,of card (rs lj) lj,simplified))
show finite (rs lj)
using <finite (rs b)) unfolding rs-def using <lj<b
by (auto elim!:rev-finite-subset)

69

show card (rs lj) < card (rs b)
apply (rule psubset-card-mono[OF «finite (rs b)»])
using Maz-in <finite (rs lj)y <lj < by lj-def rs-def that by fastforce
show 0 < lj using <0<lj> .
qged
qed
qed
ultimately show ?case by auto
qed
moreover have finite (rs 1)
using assms unfolding rs-def P-def
by (auto elim:rev-finite-subset)
ultimately have finite-Psegments P 0 1 by auto
then show ?thesis unfolding P-def finite-ReZ-segments-def .
qed

lemma finite- ReZ-segments-poly-linepath:
shows finite-ReZ-segments (poly p o linepath a b) z
proof —
define P where P=map-poly Re (pcompose (p—|[:z:]) [:a,b—a:])
have *:Re ((poly p o linepath a b) t — z) = 0 +— poly P t=0 for t
unfolding inner-complex-def P-def linepath-def comp-def
apply (subst Re-poly-of-real[symmetric])
by (auto simp add: algebra-simps poly-pcompose scaleR-conv-of-real)
have ?thesis when P+#0
proof —
have finite {t. poly P t=0} using that poly-roots-finite by auto
then have finite {t. Re ((poly p o linepath a b) t — 2) =0 N0 <t ANt <1}
using *
by auto
then show ?thesis
using finite-imp-finite- ReZ-segments[of poly p o linepath a b z] by auto
qed
moreover have ?thesis when P=0
unfolding finite-ReZ-segments-def
apply (rule finite-Psegments-constl [where c¢=True])
apply (subst x)
using that by auto
ultimately show ?thesis by auto
qed

lemma part-circlepath-half-finite-inter:

assumes st£tt r£0 c£0

shows finite {t. part-circlepath 20 r st ttt « ¢ = d AN 0< t N t<1} (is finite ?T)
proof —

let 25 = {9. (20+r*exp (i *x 9)) - ¢ = d N9 € closed-segment st tt}

define S where S = {0. (20+r*exp (1 x ¥)) - ¢ = d ANV € closed-segment st
tt}

have S = linepath st tt < ¢T

70

proof
define g where g=(\t. (t—st)/(tt —st))
have 0<g t g t<1 when t € closed-segment st tt for ¢
using that <st#tty closed-segment-eq-real-ivl unfolding g-def real-scaleR-def
by (auto simp add:divide-simps)
moreover have linepath st tt (g t) =t g (linepath st tt t) = t for ¢
unfolding linepath-def g-def real-scaleR-def using <st#tt»
apply (simp-all add:divide-simps)
by (auto simp add:algebra-simps)
ultimately have z€linepath st tt < T when z€S§ for z
using that unfolding S-def
by (auto introl:image-eql [where z=g x| simp add:part-circlepath-def)
then show S C linepath st tt * ?T by auto
next
have z€S when z€linepath st tt < ?T for z
using that unfolding part-circlepath-def S-def
by (auto simp add: linepath-in-path)
then show linepath st tt < ¢T C S by auto
qed
moreover have finite S
proof —
define a’ b’ ¢’ where a’=r * Re cand b’ = r* Im c and c¢'=Im ¢ x Im 20 +
Re 20 x Re ¢ — d
define f where f Y= a’ * cos ¥ + b’ * sin ¥ + ¢’ for ¥
have (z0+r*exp (i*x ¥)) - c=d +— f 9 =0 for ¢
unfolding ezp-Euler inner-complex-def f-def a’-def b’-def c¢'-def
by (auto simp add:algebra-simps cos-of-real sin-of-real)
then have *:5 = roots f N closed-segment st tt
unfolding S-def roots-within-def by auto
have uniform-discrete S
proof —
have a’ A0V b’ £ 0V c'# 0
using assms complex-eq-iff unfolding a’-def b’-def c’-def
by auto
then have periodic-set (roots f) (4 * pt)
using periodic-set-sin-cos-linear[of a’ b' ¢’ folded f-def] by auto
then have uniform-discrete (roots f) using periodic-imp-uniform-discrete by
auto
then show ?thesis unfolding * by auto
qed
moreover have bounded S unfolding *
by (simp add: bounded-Int bounded-closed-segment)
ultimately show %thesis using uniform-discrete-finite-iff by auto
qed
moreover have inj-on (linepath st tt) ¢T
proof —
have inj (linepath st tt)
unfolding linepath-def using assms inj-segment by blast
then show ?2thesis by (auto elim:subset-inj-on)

71

qed
ultimately show ?thesis by (auto elim!: finite-imageD)
qed

lemma linepath-half-finite-inter:
assumes a - c A dVb-c#d
shows finite {t. linepath a bt - ¢ = d N 0< t N t<1} (is finite 25)
proof (rule ccontr)
assume asm:infinite 25
obtain ¢! t2 where ulu2:t1#£t2 t1€?5 t2€?S
proof —
obtain t! where t1€%S using not-finite-existsD asm by blast
moreover have Ju2. u2e€?5—{t1}
using infinite-remove[OF asm,of t1]
by (meson finite.emptyl rev-finite-subset subsetl)
ultimately show %thesis using that by auto
qed
have t1:(1—tl)x(a-c) + t1 x(b-c)=d
using «t1€ 2S5y unfolding linepath-def by (simp add: inner-left-distrib)
have t2:(1—t2)x(a - ¢) + t2 % (b-c¢) = d
using «t2€ 25y unfolding linepath-def by (simp add: inner-left-distrib)
have a - c=d
proof —
have t2x((1—t1)x(a - ¢) + t1 x (b - ¢)) = t2+d using tI by auto
then have x:(t2—t1xt2)x(a - ¢) + tI1*t2 x (b - ¢) = t2+d by (auto simp
add:algebra-simps)
have t1x((1—t2)*x(a - ¢) + t2 % (b - ¢)) = tI1xd using t2 by auto
then have xx:(t1—t1xt2)x(a + ¢) + t1xt2 x (b - ¢) = t1*xd by (auto simp
add:algebra-simps)
have (t2—t1)x(a - ¢) = (t2—t1)*d using arg-cong2[OF x sx,of minus]
by (auto simp add:algebra-simps)
then show ?thesis using «t1#t2» by auto
qed
moreover have b - ¢ = d
proof —
have (1—t2)x((1—t1)*(a - ¢) + t1 * (b - ¢)) = (I —1t2)xd using tI by auto
then have x:(1—t1)x(1—t2)x(a - ¢) + (t1—t1*t2) * (b - ¢) = (1—t2)*d by
(auto simp add:algebra-simps)
have (1—t1)+((1—t2)x(a - ¢) + t2 * (b - ¢)) = (1—t1)+d using t2 by auto
then have sx:(1—¢1)x(1—t2)x(a - ¢) + (t2—t1%t2) = (b« ¢) = (1 —t1)*d by
(auto simp add:algebra-simps)
have (t2—t1)x(b - ¢) = (t2—t1)xd using arg-cong2[OF *x x,of minus]
by (auto simp add:algebra-simps)
then show ?thesis using «t1#t2» by auto
qed
ultimately show Fulse using assms by auto
qed

lemma finite-half-joinpaths-inter:

72

assumes finite {t. l1t-c=d AN 0< t AN t<1} finite {t. 12t -c=d AN O T A
t<1}
shows finite {t. (lI1+++12)t-c=d N 0< t N tI<1}
proof —
let 211s = {t. 11 (2%t) - c=d A 0< t A t<1/2}
let 212s ={t. 12 (2xt—1)-c=dAN1/2<tANtl1}
let 2is =M. {t. lt-c=dANO0<tANt<1}
have {t. (l14+++12) t-c=d N 0< t N t<I1} = ?l1s U 212s
unfolding joinpaths-def by auto
moreover have finite ?l1s
proof —
have ?l1s = ((x) (1/2)) * ?ls l1 by (auto intro:rev-image-eql)
thus ?thesis using assms by simp
qed
moreover have finite ?12s
proof —
have ?12s C (Az. z/2 + 1/2) ‘ ?ls 12 by (auto intro:rev-image-eql simp
add:field-simps)
thus ?thesis using assms
by (auto elim:finite-subset)
qged
ultimately show ?thesis by simp
qed

lemma finite- ReZ-segments-linepath:
finite-ReZ-segments (linepath a b) z
proof —
have ?thesis when Re a#Re z V Re b #Re z
proof —
let 251={t. Re (linepath a bt—2) = 0 N0 <t ANt < 1}
have finite 251
using linepath-half-finite-inter[of a Complex 1 0 Re z b] that
using one-complex.code by auto
from finite-imp-finite- ReZ-segments| OF this] show ?thesis .
qed
moreover have ?thesis when Re a=Re z Re b=Re z
unfolding finite- ReZ-segments-def
apply (rule finite-Psegments.intros(2)[of 0])
using that unfolding linepath-def by (auto simp add:algebra-simps intro: finite- Psegments.intros)
ultimately show ?thesis by blast
qed

lemma finite- ReZ-segments-part-circlepath:
finite-ReZ-segments (part-circlepath 20 r st tt) z
proof —
have %thesis when st # tt r # 0
proof —
let 2S1={t. Re (part-circlepath 20 r st tt t—z) = 0 N 0 < t At < 1}
have finite 751

73

using part-circlepath-half-finite-inter|of st tt r Complex 1 0 20 Re 2] that
one-complex.code
by (auto simp add:inner-complezx-def)
from finite-imp-finite- ReZ-segments[OF this] show ?thesis .
qed
moreover have ?thesis when st =tt V r=0
proof —
define ¢ where ¢ = 20 + 7 % exp (i *)
have part-circlepath z0 r st tt = (At. ¢)
unfolding part-circlepath-def c-def using that linepath-refl by auto
then show ?thesis
using finite- ReZ-segments-linepath[of ¢ ¢ 2| linepath-refl[of ¢
by auto
qed
ultimately show ¢thesis by blast
qed

lemma finite- ReZ-segments-poly-of-real:
shows finite-ReZ-segments (poly p o of-real) z
using finite- ReZ-segments-poly-linepath[of p 0 1 z] unfolding linepath-def
by (auto simp add:scaleR-conv-of-real)

lemma finite-ReZ-segments-subpath:
assumes finite-ReZ-segments g z
0<u uv v<]
shows finite-ReZ-segments (subpath u v g) z
proof (cases u=v)
case True
then show ?thesis
unfolding subpath-def by (auto intro:finite-ReZ-segments-constl)
next
case Fulse
then have u<v using (u<v» by auto
define P where P=(At. Re (gt — z) = 0)
have finite-ReZ-segments (subpath v v g) z
= finite-Psegments (P o (At. (v — u) * t + u)) 0 1
unfolding finite-ReZ-segments-def subpath-def P-def comp-def by auto
also have ...
apply (rule finite-Psegments-pos-linear)
using assms False unfolding finite- ReZ-segments-def
by (fold P-def,auto elim:finite-Psegments-included)
finally show ?thesis .
qed

5.5 jump and jumpF

definition jump::(real = real) = real = int where
Jump f a = (if
(LIM z (at-left a). fx > at-bot) A (LIM z (at-right a). fx :> at-top)

74

then 1 else if
(LIM z (at-left a). fx :> at-top) A (LIM z (at-right a). f x :> at-bot)
then —1 else 0)

definition jumpF::(real = real) = real filter = real where
JumpF [F = (if filterlim f at-top F then 1/2 else
if filterlim f at-bot F then —1/2 else (0::real))

lemma jumpF-const[simp]:
assumes F=#£bot
shows jumpF (A-. ¢) F =0
proof —
have Fulse when LIM x F. ¢ :> at-bot
using filterlim-at-bot-nhds[OF that - <F#bot)] by auto
moreover have Fulse when LIM x F. ¢ :> at-top
using filterlim-at-top-nhds[OF that - <F#bot)] by auto
ultimately show ¢thesis unfolding jumpF-def by auto
qed

lemma jumpF-not-infinity:
assumes continuous F g F#bot
shows jumpF g F = 0
proof —
have — filterlim g at-infinity F
using not-tendsto-and-filterlim-at-infinity| OF «F #bot> assms(1)[unfolded con-
tinuous-def])
by auto
then have — filterlim g at-bot F — filterlim g at-top F
using at-bot-le-at-infinity at-top-le-at-infinity filterlim-mono by blast+
then show ?thesis unfolding jumpF-def by auto
qed

lemma jumpF-linear-comp:
assumes c#(
shows
jumpF (f o (A\z. cxx+0b)) (at-left x) =
(if ¢>0 then jumpF f (at-left (cxz+Db)) else jumpF f (at-right (cxxz+D)))
(is ?casel)
JumpF (f o (Az. cxx+D)) (at-right z) =
(if ¢>0 then jumpF f (at-right (cxz+Db)) else jumpF f (at-left (cxx+D)))
(is ?case2)
proof —
let 29 = A\z. cxa+b
have ?casel ?case2 when — ¢>0
proof —
have ¢<0 using <c#0> that by auto
have filtermap ?g (at-left x) = at-right (?g x)
filtermap ?g (at-right x) = at-left (?g x)
using <c<0>

75

filtermap-linear-at-left[OF <c#£0y, of b 1]
filtermap-linear-at-right[OF «c#0>, of b z] by auto
then have
JumpF (f o 2g) (at-left x) = jumpF f (at-right (%9 x))
JumpF (f o 2g) (at-right ©) = jumpF f (at-left (%9))
unfolding jumpF-def filterlim-def comp-def
by (auto simp add: filtermap-filtermaplof [?g,symmetric])
then show ?casel ?case2 using <«c<0) by auto
qed
moreover have ?casel ?case2 when c¢>0
proof —
have filtermap ?g (at-left ©) = at-left (g x)
filtermap %g (at-right x) = at-right (?g z)
using that
filtermap-linear-at-left{ OF <c#£0>, of b x]
filtermap-linear-at-right[OF <c#£05, of b z] by auto
then have
JumpE (f o %g) (at-left) = jumpF [(at-left (%9 x))
JumpE (f o %9) (at-right x) = jumpF [(at-right (%9 z))
unfolding jumpF-def filterlim-def comp-def
by (auto simp add: filtermap-filtermap|of f ?g,symmetric])
then show ?casel ?case2 using that by auto
qed
ultimately show ?casel ?case2 by auto
qed

lemma jump-const[simp):jump (A-. ¢) a = 0
proof —
have False when LIM z (at-left a). ¢ :> at-bot
apply (rule not-tendsto-and-filterlim-at-infinity[of at-left a A-. ¢ c])
apply auto
using at-bot-le-at-infinity filterlim-mono that by blast
moreover have Fulse when LIM z (at-left a). ¢ :> at-top
apply (rule not-tendsto-and-filterlim-at-infinity|of at-left a A-. ¢ c])
apply auto
using at-top-le-at-infinity filterlim-mono that by blast
ultimately show ¢thesis unfolding jump-def by auto
qged

lemma jump-not-infinity:
isCont f a = jump fa =0
by (meson at-bot-le-at-infinity at-top-le-at-infinity filterlim-at-split
filterlim-def isCont-def jump-def not-tendsto-and-filterlim-at-infinity
order-trans trivial-limit-at-left-real)

lemma jump-jump-poly-auz:

assumes p#£0 coprime p q

shows jump (\z. poly q = / poly p x) a = jump-poly q p a
proof (cases q=0)

76

case True
then show ?thesis by auto
next
case Fulse
define f where f = (Az. poly ¢ x / poly p x)
have ?thesis when poly ¢ a = 0
proof —
have poly p a#0 using coprime-poly-0[OF <coprime p ¢ that by blast
then have isCont f a unfolding f-def by simp
then have jump f a=0 using jump-not-infinity by auto
moreover have jump-poly ¢ p a=0
using jump-poly-not-root|OF <poly p a#0>] by auto
ultimately show ?thesis unfolding f-def by auto
qed
moreover have ?thesis when poly q a#0
proof (cases even(order a p))
case True
define ¢ where c=sgn (poly q a)
note
filterlim-divide-at-bot-at-top-iff
[OF - that,of poly q at-left a poly p,folded f-def c-def,simplified]
filterlim-divide-at-bot-at-top-iff
[OF - that,of poly q at-right a poly p,folded f-def c-def ,simplified)
moreover have (poly p has-sgnz — c¢) (at-left a) = (poly p has-sgnz — c)
(at-right a)
(poly p has-sgnz ¢) (at-left a) = (poly p has-sgnz c¢) (at-right a)
using poly-has-sgnz-left-right| OF «p#£0>] True by auto
moreover have c¢£0 by (simp add: c-def sgn-if that)
then have Fulse when
(poly p has-sgnx — c) (at-right a)
(poly p has-sgnz ¢) (at-right a)
using has-sgnz-unique[OF - that] by auto
ultimately have jump fa = 0
unfolding jump-def by auto
moreover have jump-poly ¢ p a = 0 unfolding jump-poly-def
using True by (simp add: order-0I that)
ultimately show ?thesis unfolding f-def by auto
next
case Fulse
define ¢ where c=sgn (poly q a)
have (poly p —— 0) (at a) using False
by (metis even-zero order-0I poly-tendsto(1))
then have (poly p —— 0) (at-left a) and (poly p —— 0) (at-right a)
by (auto simp add: filterlim-at-split)
moreover note
filterlim-divide-at-bot-at-top-iff
[OF - that,of poly q - poly p,folded f-def c-def]
moreover have (poly p has-sgnz c) (at-left a) = (poly p has-sgnx — c) (at-right

a)

77

(poly p has-sgnx — ¢) (at-left a) = (poly p has-sgnz ¢) (at-right a)
using poly-has-sgna-left-right|OF <p#0>]| False by auto
ultimately have jump f a = (if (poly p has-sgnz c) (at-right a) then 1
else if (poly p has-sgnz — c) (at-right a) then —1 else 0)
unfolding jump-def by auto

also have ... = (if sign-r-pos (q * p) a then 1 else — 1)

proof —
have (poly p has-sgnz ¢) (at-right a) «— sign-r-pos (¢ * p) a
proof

assume (poly p has-sgnz ¢) (at-right a)
then have sgnz (poly p) (at-right a) = ¢ by auto
moreover have sgnz (poly q) (at-right a) = ¢
unfolding c-def using that by (auto intro!: tendsto-nonzero-sgnz)
ultimately have sgnz (Az. poly (qxp) z) (at-right a) = ¢ * ¢
by (simp add:sgnz-times)
moreover have c¢£0 by (simp add: c-def sgn-if that)
ultimately have sgnz (Az. poly (qxp) z) (at-right a) > 0
using not-real-square-gt-zero by fastforce
then show sign-r-pos (¢ * p) a using sign-r-pos-sgnz-iff
by blast
next
assume asm:sign-r-pos (q * p) a
let %c1 = sgnz (poly p) (at-right a)
let ?c2 = sgnz (poly q) (at-right a)
have 0 < sgnz (Az. poly (q * p) z) (at-right a)
using asm sign-r-pos-sgnz-iff by blast
then have ?¢2 % ?¢c1 >0
apply (subst (asm) poly-mult)
apply (subst (asm) sgna-times)
by auto
then have 2c2>0 A 2c1>0 V 2c¢2<0 N ?c1<0
by (simp add: zero-less-mult-iff)
then have ?c1=72c2
using sgna-values| OF sgnz-able-poly(1), of a,simplified]
by (metis add.inverse-neutral less-minus-iff less-not-sym)
moreover have sgnz (poly q) (at-right a) = ¢
unfolding c-def using that by (auto introl: tendsto-nonzero-sgnzx)
ultimately have ?c1 = ¢ by auto
then show (poly p has-sgnz c) (at-right a)
using sgna-able-poly(1) sgnz-able-sgnz by blast
qed
then show ?thesis
unfolding jump-poly-def using poly-has-sgnz-values|OF <p#£0))
by (metis add.inverse-inverse c-def sgn-if that)
qed
also have ... = jump-poly q p a
unfolding jump-poly-def using False order-root that by (simp add: order-root
assms(1))
finally show %thesis unfolding f-def by auto

78

qed
ultimately show ?thesis by auto
qed

lemma jump-jumpF:
assumes cont:isCont (inverse o f) a and
sgnal:(f has-sgnz 1) (at-left a) and sgnzr:(f has-sgnz 1) (at-right a) and
I#0 r#0
shows jump f a = jumpF f (at-right a) — jumpF f (at-left a)
proof —
have ?thesis when filterlim f at-bot (at-left a) filterlim f at-top (at-right a)
unfolding jump-def jumpF-def
using that filterlim-at-top-at-bot[OF - - trivial-limit-at-left-real]
by auto
moreover have ?thesis when filterlim f at-top (at-left a) filterlim f at-bot
(at-right a)
unfolding jump-def jumpF-def
using that filterlim-at-top-at-bot[OF - - trivial-limit-at-right-real]
by auto
moreover have ?thesis when
- filterlim f at-bot (at-left a) vV — filterlim f at-top (at-right a)
= filterlim f at-top (at-left a) V — filterlim f at-bot (at-right a)
proof (cases f a=0)
case Fulse
have jumpF f (at-right o) = 0 jumpF [(at-left a) = 0
proof —
have isCont (inverse o inverse o f) a using cont False unfolding comp-def
by (rule-tac continuous-at-within-inverse, auto)
then have isCont f a unfolding comp-def by auto
then have (f —— fa) (at-right a) (f —— f a) (at-left a)
unfolding continuous-at-split by (auto simp add:continuous-within)
moreover note trivial-limit-at-left-real trivial-limit-at-right-real
ultimately show jumpF f (at-right a) = 0 jumpF f (at-left a) = 0
unfolding jumpF-def using filterlim-at-bot-nhds filterlim-at-top-nhds
by metis+
qed
then show %thesis unfolding jump-def using that by auto
next
case True
then have tends0:((Az. inverse (f z)) —— 0) (at a)
using cont unfolding isCont-def comp-def by auto
have jump f a = 0 using that unfolding jump-def by auto
have r-lim:if r> 0 then filterlim f at-top (at-right a) else filterlim f at-bot (at-right
a
)
proof (cases r>0)
case True
then have Vr z in (at-right a). 0 < fx
using sgnzr unfolding has-sgnz-def
by (auto elim:eventually-mono)

79

then have filterlim f at-top (at-right a)
using filterlim-inverse-at-top[of Ax. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto
then show ?thesis using True by presburger
next
case Fulse
then have YV z in (at-right a). 0 > fx
using sgnar «r#0> False unfolding has-sgnz-def
apply (elim eventually-mono)
by (meson linorder-neqE-linordered-idom sgn-less)
then have filterlim f at-bot (at-right a)
using filterlim-inverse-at-bot[of Az. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto
then show ?thesis using Fualse by simp
qed
have [-lim:if I>0 then filterlim f at-top (at-left a) else filterlim f at-bot (at-left

proof (cases [>0)
case True
then have V z in (at-left a). 0 < fz
using sgnzl unfolding has-sgnz-def
by (auto elim:eventually-mono)
then have filterlim f at-top (at-left a)
using filterlim-inverse-at-top[of Az. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto
then show ?thesis using True by presburger
next
case Fulse
then have Vp z in (at-left a). 0 > fx
using sgnxl <I#0> Fualse unfolding has-sgnz-def
apply (elim eventually-mono)
by (meson linorder-neqE-linordered-idom sgn-less)
then have filterlim f at-bot (at-left a)
using filterlim-inverse-at-bot[of Az. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto
then show ?thesis using Fulse by simp
qged

have ?thesis when [>0 r>0
using that I-lim r-lim <jump f a=0> unfolding jumpF-def by auto
moreover have ?thesis when - >0 — r>0
proof —
have filterlim f at-bot (at-right a) filterlim f at-bot (at-left a)
using r-lim [-lim that by auto
moreover then have — filterlim f al-top (at-right a) — filterlim f at-top
(at-left a)
by (auto elim: filterlim-at-top-at-bot)
ultimately have jumpF f (at-right a) = —1/2 jumpF f (at-left a) = —1/2
unfolding jumpF-def by auto

80

then show ?thesis using Gjump f a=0> by auto

qed

moreover have ?thesis when >0 — r>0

proof —
note «— filterlim f at-top (at-left a) vV — filterlim f at-bot (at-right a)»
moreover have filterlim f at-bot (at-right a) filterlim f at-top (at-left a)

using r-lim [-lim that by auto

ultimately have Fulse by auto
then show ?thesis by auto

qed

moreover have ?thesis when — >0 r>0

proof —
note «— filterlim f at-bot (at-left a) V = filterlim f at-top (at-right a)»
moreover have filterlim f at-bot (at-left a) filterlim f at-top (at-right a)

using r-lim [-lim that by auto

ultimately have Fulse by auto
then show ?thesis by auto

qed

ultimately show ?thesis by auto

qed
ultimately show ?thesis by auto
qged

lemma jump-linear-comp:
assumes c#0
shows jump (f o (Az. cxa+b)) © = (if ¢>0 then jump f (cxz+Dd) else —jump f
(cxz+b))
proof (cases ¢>0)
case Fulse
then have c<(0 using «c#0> by auto
let g = A\z. cxz+b
have filtermap ?g (at-left ©) = at-right (?g x)
filtermap ?g (at-right x) = at-left (?g x)
using <c<0>
filtermap-linear-at-left[OF <c#£0>, of b x
filtermap-linear-at-right[OF <c#£05, of b z] by auto
then have jump (f o %9) © = — jump f (¢ x ¢ + b)
unfolding jump-def filterlim-def comp-def
apply (auto simp add: filtermap-filtermap[of | ?g,symmetric])
apply (fold filterlim-def)
by (auto elim:filterlim-at-top-at-bot)
then show ?thesis using (c<0» by auto
next
case True
let 29 = A\z. cxz+b
have filtermap ?g (at-left) = at-left (?g x)
filtermap ?g (at-right) = at-right (%9 x)
using True
filtermap-linear-at-left[OF <c#£0y, of b 1]

81

filtermap-linear-at-right[OF «c#£0>, of b z] by auto
then have jump (f o %9) z = jump f (¢ x z + b)
unfolding jump-def filterlim-def comp-def
by (auto simp add: filtermap-filtermap|of f ?g,symmetric])
then show ?thesis using True by auto
qed

lemma jump-divide-derivative:
assumes isCont fx gz = 0 f 2#£0
and g-deriv:(g has-field-derivative ¢) (at z) and c¢#0
shows jump (A\t. ft/gt) x = (if sgn ¢ = sgn (fx) then 1 else —1)
proof —
have g-tendsto:(¢ —— 0) (at-left z) (9 —— 0) (at-right z)
by (metis DERIV-isCont Lim-at-imp-Lim-at-within assms(2) assms(4) contin-
uous-at)+
have f-tendsto:(f —— fx) (at-left z) (f —— f) (at-right z)
using Lim-at-imp-Lim-at-within assms(1) continuous-at by blast+

have ?thesis when ¢>0 f x>0
proof —
have (g has-sgnz — sgn (f ©)) (at-left x)
using has-sgna-derivative-at-left[OF g-deriv <g =0>] that by auto
moreover have (g has-sgnz sgn (f z)) (at-right x)
using has-sgnz-derivative-at-right| OF g-deriv <g z=0>] that by auto
ultimately have (LIM t at-left x. ft / g t :> at-bot) A (LIM t at-right x. f t
/ g t:> at-top)
using filterlim-divide-at-bot-at-top-iff [OF - <f x#0>, of f]
using f-tendsto(1) f-tendsto(2) g-tendsto(1) g-tendsto(2) by blast
moreover have sgn ¢ = sgn (f z) using that by auto
ultimately show ?thesis unfolding jump-def by auto
qed
moreover have ?thesis when ¢>0 f x<0
proof —
have (g has-sgnz sgn (f z)) (at-left x)
using has-sgnz-derivative-at-left|OF g-deriv <g x=0>] that by auto
moreover have (g has-sgnz — sgn (f z)) (at-right x)
using has-sgnz-derivative-at-right| OF g-deriv <g x=0>] that by auto
ultimately have (LIM t at-left x. ft / gt :> at-top) A (LIM t at-right x. ft
/ gt :> at-bot)
using filterlim-divide-at-bot-at-top-iff [OF - <f z#0), of f]
using f-tendsto(1) f-tendsto(2) g-tendsto(1) g-tendsto(2) by blast
moreover from this have - (LIM t at-left x. ft / g t :> at-bot)
using filterlim-at-top-at-bot by fastforce
moreover have sgn ¢ # sgn (f z) using that by auto
ultimately show ?thesis unfolding jump-def by auto
qed
moreover have ?thesis when c¢<0 f x>0
proof —
have (g has-sgnz sgn (f x)) (at-left)

82

using has-sgna-derivative-at-left[OF g-deriv <g =0>] that by auto
moreover have (g has-sgnz — sgn (f z)) (at-right z)
using has-sgnz-derivative-at-right| OF g-deriv <g x=0>] that by auto
ultimately have (LIM t at-left x. ft / g t :> at-top) A (LIM t at-right x. f t
/ gt :> at-bot)
using filterlim-divide-at-bot-at-top-iff [OF - <f £0>, of f]
using f-tendsto(1) f-tendsto(2) g-tendsto(1) g-tendsto(2) by blast
moreover from this have - (LIM ¢t at-left x. ft / g t :> at-bot)
using filterlim-at-top-at-bot by fastforce
moreover have sgn ¢ # sgn (f z) using that by auto
ultimately show ?thesis unfolding jump-def by auto
qed
moreover have ?thesis when c¢<0 f x<0
proof —
have (g has-sgnz — sgn (f ©)) (at-left x)
using has-sgnz-derivative-at-left|OF g-deriv <g x=0>] that by auto
moreover have (g has-sgnz sgn (f z)) (at-right x)
using has-sgna-derivative-at-right|OF g-deriv <g =0>] that by auto
ultimately have (LIM ¢ at-left x. ft / g t :> at-bot) N (LIM t at-right z. ft
/ g t:> at-top)
using filterlim-divide-at-bot-at-top-iff [OF - <f x#0>, of f]
using f-tendsto(1) f-tendsto(2) g-tendsto(1) g-tendsto(2) by blast
moreover have sgn ¢ =sgn (f) using that by auto
ultimately show ?thesis unfolding jump-def by auto
qed
ultimately show “thesis using «c#£0> «f t#0> by argo
qged

lemma jump-jump-poly: jump (Az. poly q z / poly p) a = jump-poly q p a
proof (cases p=0)

case True

then show ?thesis by auto
next

case Fulse

obtain p’ ¢’ where p’:p= p’*ged p q and q’:q=q"*gcd p q

using gcd-dvd1 ged-dvd2 dvd-def|of ged p q, simplified mult.commute] by metis
then have coprime p’ q’ p'#0 gcd p q#0 using gcd-coprime <p#£0> by auto

define f where f = (Az. poly ¢’ z / poly p' x)
define g where g = (\z. if poly (ged p q) x = 0 then 0::real else 1)

have g-tendsto:(¢ —— 1) (at-left a) (9 —— 1) (at-right a)
proof —
have
(poly (ged p q) has-sgnz 1) (at-left a)
V (poly (gcd p q) has-sgnx — 1) (at-left a)
(poly (ged p q) has-sgnx 1) (at-right a)
V (poly (ged p q) has-sgnz — 1) (at-right a)
using <p#£0> poly-has-sgnz-values by auto

83

then have Vp zin at-left a. go =1 Vp xin at-right a. g = 1
unfolding has-sgnz-def g-def by (auto elim:eventually-mono)
then show (g —— 1) (at-left a) (9 —— 1) (at-right a)
using tendsto-eventually by auto
qed

have poly gz / polyp x = gz * fz for
unfolding f-def g-def by (subst p’,subst q’,auto)
then have jump (Az. poly q z / poly p x) a = jump (A\z. gz * fz) a
by auto
also have ... = jump fa
unfolding jump-def
apply (subst (1 2) filterlim-tendsto-pos-mult-at-top-iff)
prefer 5
apply (subst (1 2) filterlim-tendsto-pos-mult-at-bot-iff)
using g-tendsto by auto
also have ... = jump-poly ¢’ p’ a
using jump-jump-poly-auz|OF <p'#0> <coprime p’ ¢"»] unfolding f-def by auto
also have ... = jump-poly ¢ p a
using jump-poly-mult|OF «ged p q¢ # 0», of ¢'] p’ ¢’
by (metis mult.commute)
finally show ?thesis .
qed

lemma jump-Im-divide-Re-0:
assumes path g Re (g 2)#0 0<z z<1
shows jump (At. Im (gt) / Re (gt)) z =0
proof —
have isCont g z
using «path g»[unfolded path-def] «0<zy x<1>
apply (elim continuous-on-interior)
by auto
then have isCont (At. Im(g t)/Re(g t)) = using «Re (g z)#0»
by (auto intro:continuous-intros isCont-Re isCont-Im)
then show jump (At. Im(g t)/Re(g t)) z=0
using jump-not-infinity by auto
qged

lemma jumpF-im-divide-Re-0:
assumes path g Re (g x)#£0
shows [0<z;x<1] = jumpF (\t. Im (g t) /
[0<z;2<1] = jumpF (At. Im (g t) / Re
proof —
define g’ where g’ = (At. Im (g t) / Re (g 1))

Re (g t)) (at-right z) = 0
(g t) (at-left x) = 0

show jumpF g’ (at-right) = 0 when 0<z z<1
proof —
have (¢’ —— ¢’ z) (at-right z)

84

proof (cases x=0)
case True
have continuous (at-right 0) g
using <path ¢> unfolding path-def
by (auto elim:continuous-on-at-right)
then have continuous (at-right x) (At. Im(g t)) continuous (at-right z) (At.
Re(g 1))
using continuous-Im continuous-Re True by auto
moreover have Re (g (netlimit (at-right x))) # 0
using assms(2) by (simp add: Lim-ident-at)
ultimately have continuous (at-right) (At. Im (g t)/Re(g t))
by (auto intro:continuous-divide)
then show ?thesis unfolding g¢’-def continuous-def
by (simp add: Lim-ident-at)
next
case Fulse
have isCont (Az. Im (g z)) x isCont (Az. Re (g z)) z
using <path ¢» unfolding path-def
by (metis False atLeastAtMost-iff at-within-Icc-at continuous-Im continu-
ous-Re
continuous-on-eq-continuous-within less-le that)+
then have isCont ¢’ =
using assms(2) unfolding ¢'-def
by (auto intro:continuous-intros)
then show ?thesis unfolding isCont-def using filterlim-at-split by blast
qged
then have — filterlim g’ at-top (at-right x) — filterlim g’ at-bot (at-right)
using filterlim-at-top-nhds|of g’ at-right x] filterlim-at-bot-nhds[of g’ at-right
7
by auto
then show ?thesis unfolding jumpF-def by auto
qed

show jumpF ¢’ (at-left) = 0 when 0<z z<1
proof —
have (¢ —— ¢’ z) (at-left)
proof (cases z=1)
case True
have continuous (at-left 1) g
using <path ¢> unfolding path-def
by (auto elim:continuous-on-at-left)
then have continuous (at-left x) (At. Im(g t)) continuous (at-left x) (At. Re(yg

t))
using continuous-Im continuous-Re True by auto
moreover have Re (g (netlimit (at-left z))) # 0
using assms(2) by (simp add: Lim-ident-at)
ultimately have continuous (at-left) (At. Im (g t)/Re(g t))
by (auto intro:continuous-divide)
then show ?thesis unfolding g¢’-def continuous-def

85

by (simp add: Lim-ident-at)
next
case Fulse
have isCont (Az. Im (g z)) x isCont (Az. Re (g z)) z
using <path ¢> unfolding path-def
by (metis False atLeastAtMost-iff at-within-Icc-at continuous-Im continu-
ous-Re
continuous-on-eq-continuous-within less-le that)+
then have isCont ¢' =
using assms(2) unfolding g’-def
by (auto)
then show ?thesis unfolding isCont-def using filterlim-at-split by blast
qed
then have - filterlim g’ at-top (at-left x) — filterlim g’ at-bot (at-left)
using filterlim-at-top-nhds|of ¢’ at-left z] filterlim-at-bot-nhds[of g’ at-left x]
by auto
then show ?thesis unfolding jumpF-def by auto
qed
qed

lemma jump-cong:
assumes z=y and eventually (A\z. f z=g x) (at z)
shows jump fx = jump g y
proof —
have left:eventually (A\z. f =g z) (at-left x)
and right:eventually (\z. f x=g x) (at-right z)
using assms(2) eventually-at-split by blast+
from filterlim-cong|OF - - this(1)] filterlim-cong[OF - - this(2)]
show ?thesis unfolding jump-def using assms(1) by fastforce
qed

lemma jumpF-cong:
assumes F=G and eventually (A\z. fz=g z) F
shows jumpF f F = jumpF g G
proof —
haveVp rin G. fr=gr
using assms(1) assms(2) by force
then show ?thesis
by (simp add: assms(1) filterlim-cong jumpF-def)
qed

lemma jump-at-left-at-right-eq:

assumes isCont f z and fz # 0 and sgnz-eq:sgnz g (at-left x) = sgnx g (at-right
x

)

shows jump (A\t. ft/gt) z =0
proof —

define ¢ where ¢ = sgn (f z)

then have ¢#£0 using «f 1£0> by (simp add: sgn-zero-iff)

have f-tendsto:(f —— fz) (at-left ©) (f —— fz) (at-right x)

86

using <isCont f x> Lim-at-imp-Lim-at-within isCont-def by blast+
have Fulse when (g has-sgnz — ¢) (at-left x) (g has-sgnz c) (at-right x)
proof —
have sgnz g (at-left ©) = —c using that(1) by auto
moreover have sgnz g (at-right) = c using that(2) by auto
ultimately show Fulse using sgna-eq <c#0> by force
qed
moreover have False when (g has-sgnz c¢) (at-left ©) (g has-sgnz — c) (at-right

z)

proof —
have sgnz g (at-left) = ¢ using that(1) by auto
moreover have sgnz g (at-right) = — ¢ using that(2) by auto
ultimately show Fulse using sgna-eq <c#0> by force

qed

ultimately show “thesis
unfolding jump-def
by (auto simp add:f-tendsto filterlim-divide-at-bot-at-top-iff [OF - <f © # 0)]
c-def)
qed

lemma jumpF-pos-has-sgnx:
assumes jumpF fF > 0
shows (f has-sgnx 1) F
proof —
have filterlim f at-top F using assms unfolding jumpF-def by argo
then have eventually (Az. f £>0) F using filterlim-at-top-dense[of f F] by blast
then show ?thesis unfolding has-sgna-def
apply (elim eventually-mono)
by auto
qed

lemma jumpF-neg-has-sgnx:
assumes jumpF fF < 0
shows (f has-sgnz —1) F
proof —
have filterlim f at-bot F using assms unfolding jumpF-def by argo
then have eventually (Az. f £<0) F using filterlim-at-bot-denselof f F] by blast
then show ?thesis unfolding has-sgnz-def
apply (elim eventually-mono)
by auto
qed

lemma jumpF-IVT:
fixes f::real = real and a b::real
defines right=(\(R::real = real = bool). R (jumpF f (at-right a)) 0
V (continuous (at-right a) f A R (f a) 0))
and
left=(A(R::real = real = bool). R (jumpF f (at-left b)) 0

87

V (continuous (at-left b) f A R (fb) 0))
assumes a<b and cont:continuous-on {a<..<b} f and
right-left:right greater A left less \V right less A left greater
shows Jz. a<z A z<b A fz =0
proof —
have ?thesis when right greater left less
proof —
have (f has-sgnz 1) (at-right a)
proof —
have ?thesis when jumpF [(at-right a)>0 using jumpF-pos-has-sgnz|OF
that] .
moreover have ?thesis when fa > 0 continuous (at-right a) f
proof —
have (f —— f a) (at-right a) using that(2) by (simp add: continu-
ous-within)
then show ?thesis
using tendsto-nonzero-has-sgnz[of f f a at-right a] that by auto
qed
ultimately show ?thesis using that(1) unfolding right-def by auto
qed
then obtain a’ where a<a’ and a’-def:Vy. a<y ANy <a’' — fy >0
unfolding has-sgnz-def eventually-at-right using sgn-1-pos by auto
have (f has-sgnxz — 1) (at-left b)
proof —
have ?thesis when jumpF f (at-left b)<0 using jumpF-neg-has-sgnz|OF that]

moreover have ?thesis when fb < 0 continuous (at-left b) f
proof —
have (f —— fb) (at-left b)
using that(2) by (simp add: continuous-within)
then show ?thesis
using tendsto-nonzero-has-sgnz[of f f b at-left b] that by auto
qed
ultimately show ?thesis using that(2) unfolding left-def by auto
qed
then obtain b’ where b'<b and b’-def:Vy. b'<y ANy <b— fy <0
unfolding has-sgnz-def eventually-at-left using sgn-1-neg by auto
have o’ < b’
proof (rule ccontr)
assume — a’ < b’
then have {a<..<a’} N {b'<..<b} # {}
using <a<a’s «b' <a by auto
then obtain ¢ where ce{a<..<a'} ce{b'<..<b} by blast
then have f ¢>0 f c<0
using a’-def b’-def by auto
then show Fulse by auto
qed
define a0 where a0=(a+a’)/2
define b0 where b0=(b+b")/2

88

have [simp]:a<a0 a0<a’ a0<b0 b'<b0 bO<b
unfolding a0-def b0-def using <a<a’> <b’ «a’<b"» by auto
have f a0>0 f b0<0 using a’-def[rule-format,of a0] b’-def [rule-format,of b0)]
by auto
moreover have continuous-on {a0..b0} f
using cont <a < al0» b0 < b
by (meson atLeastAtMost-subseteq-greater ThanLess Than-iff continuous-on-subset)
ultimately have 3x>a0. £ < b0 A fz = 0
using IVT-strict[of 0 f a0 b0] by auto
then show %thesis using <a < a0> b0 < b»
by (meson lessThan-strict-subset-iff psubsetE subset-psubset-trans)

qed
moreover have ?thesis when right less left greater
proof —
have (f has-sgnz —1) (at-right a)
proof —
have ?thesis when jumpF f (at-right a)<0 using jumpF-neg-has-sgnz[OF
that] .
moreover have ?thesis when f a < 0 continuous (at-right a) f
proof —
have (f —— fa) (at-right a)
using that(2) by (simp add: continuous-within)
then show ?thesis
using tendsto-nonzero-has-sgnz|of f f a at-right a] that by auto
qed
ultimately show ?thesis using that(1) unfolding right-def by auto
qed

then obtain o’ where a<a’ and a’-def:Vy. a<y ANy < a' — fy <0
unfolding has-sgnz-def eventually-at-right using sgn-1-neg by auto

have (f has-sgnz 1) (at-left b)

proof —

have ?thesis when jumpF f (at-left b)>0 using jumpF-pos-has-sgnz|[OF that]

moreover have ?thesis when f b > 0 continuous (at-left b) f
proof —
have (f —— fb) (at-left b)
using that(2) by (simp add: continuous-within)
then show ?thesis
using tendsto-nonzero-has-sgnz[of f f b at-left b] that by auto
qed
ultimately show ?thesis using that(2) unfolding left-def by auto
qed
then obtain b’ where b'<b and b'-def:Vy. b'<y ANy <b— fy >0
unfolding has-sgnz-def eventually-at-left using sgn-1-pos by auto
have ¢’ < b/
proof (rule ccontr)
assume — a’ < b’
then have {a<..<a’} N {b'<..<b} # {}
using <a<a’y b' <a by auto

89

then obtain ¢ where ce{a<..<a'} ce{b'<..<b} by blast
then have f ¢>0 f ¢c<0
using a’-def b’-def by auto
then show Fulse by auto
qed
define a0 where a0=(a+a’)/2
define b0 where b0=(b+b")/2
have [simp|:a<a0 a0<a' a0<b0 b'<b0 bO<b
unfolding a0-def b0-def using <a<a’» <b’ <a'<b"» by auto
have f a0<0 f b0>0 using a’-def[rule-format,of a0] b’-def [rule-format,of b0]
by auto
moreover have continuous-on {a0..b0} f
using cont <a < a0 b0 < by
by (meson atLeastAtMost-subseteq-greater ThanLess Than-iff continuous-on-subset)

ultimately have 3x>a0. 2 < b0 A fz = 0
using [V T-strict[of 0 f a0 b0] by auto
then show ?thesis using <a < a0> b0 < b
by (meson lessThan-strict-subset-iff psubsetE subset-psubset-trans)
qed
ultimately show %thesis using right-left by auto
qged

lemma jumpF-eventually-const:
assumes eventually (Az. f x=c) F F#bot
shows jumpF f F = 0
proof —
have jumpF f F = jumpF (\-. ¢) F
apply (rule jumpF-cong)
using assms(1) by auto

also have ... = 0 using jumpF-const|OF «F#bot)] by simp
finally show ?thesis .
qed

lemma jumpF-tan-comp:
JjumpF (f o tan) (at-right) = (if cos x = 0
then jumpF f at-bot else jumpF f (at-right (tan x)))
JumpF (f o tan) (at-left x) = (if cos © =0
then jumpF f at-top else jumpF f (at-left (tan x)))
proof —
have filtermap (f o tan) (at-right x) =
(if cos x = 0 then filtermap f at-bot else filtermap f (at-right (tan z)))
unfolding comp-def
apply (subst filtermap-filtermap|of f tan,symmetric])
using filtermap-tan-at-right-inf filtermap-tan-at-right by auto
then show jumpF' (f o tan) (at-right x) = (if cos © = 0
then jumpF f at-bot else jumpF f (at-right (tan x)))
unfolding jumpF-def filterlim-def by auto
next

90

have filtermap (f o tan) (at-left) =
(if cos © = 0 then filtermap f at-top else filtermap f (at-left (tan x)))
unfolding comp-def
apply (subst filtermap-filtermap|of f tan,symmetric])
using filtermap-tan-at-left-inf filtermap-tan-at-left by auto
then show jumpF (f o tan) (at-left z) = (if cos x = 0
then jumpF f at-top else jumpF f (at-left (tan x)))
unfolding jumpF-def filterlim-def by auto
qed

5.6 Finite jumpFs over an interval

definition finite-jumpFs::(real = real) = real = real = bool where

finite-jumpFs f a b = finite {x. (jumpF [(at-left) #£0 V jumpF f (at-right x)

#0) N a<z A z<b}

lemma finite-jumpFs-linear-pos:
assumes c>(

shows finite-jumpFs (f o (Az. ¢ *x & + b)) Ib ub <— finite-jumpFs f (¢ * b +b)

(¢ * ub + b)
proof —

define left where left = (Af Ib ub. {x. jumpF [(at-left z) # 0 AN Ib < x Az <

ub})

define right where right = (\f Ib ub. {z. jumpF f (at-right) # 0 AN Ib < z A

x < ub})
define g where g=(\z. cxz+b)
define gi where ¢gi = (Az. (z—b)/c)
have finite-jumpFs (f o (Az. ¢ x x + b)) Ib ub
= finite (left (f o g) b ub U right (f o g) Ib ub)
unfolding finite-jumpFs-def
apply (rule arg-cong[where f=finite])
by (auto simp add:left-def right-def g-def)
also have ... = finite (gi ‘ (left f (g Ib) (g ub) U right f (g b) (g ub)))
proof —
have j-rw:
jumpF (f o g) (at-left x) = jumpF [(at-left (g z))
jumpF (f o g) (at-right x) = jumpF f (at-right (g x))
for z
using jumpF-linear-complof ¢ f b z] <¢>0> unfolding g-def by auto
then have
left (fog)lbub=gi‘leftf (gib) (g ub)
right (f o g) lb ub = gi ‘ right f (g Ib) (g ub)
unfolding left-def right-def gi-def
using <¢>0) by (auto simp add:g-def field-simps)
then have left (f o g) Ib ub U right (f o g) b ub
= gi “(left f (g 1b) (g ub) U right f (g Ib) (g ub))
by auto
then show ?thesis by auto
qed

91

also have ... = finite (left f (g Ib) (g ub) U right f (g 1b) (g ub))
apply (rule finite-image-iff)
unfolding gi-def using <c¢ >0) inj-on-def by fastforce

also have ... = finite-jumpFs f (¢ * Ib +b) (¢ * ub + b)
unfolding finite-jumpFs-def
apply (rule arg-cong[where f=finite])
by (auto simp add:left-def right-def g-def)

finally show ?thesis .

qed

lemma finite-jumpFs-consts:
finite-jumpFs (A- . ¢) b ub
unfolding finite-jumpFs-def using jumpF-const by auto

lemma finite-jumpFs-combine:
assumes finite-jumpFs f a b finite-jumpFs f b ¢
shows finite-jumpFs f a c
proof —
define P where P=(Az. jumpF [(at-left ©) # 0 V jumpF f (at-right x) # 0)
have {z. Pz Aha<zAz<c}C{e. Pz Aha<zAz<b}U{z. PxAb<z
A z<c}
by auto
moreover have finite ({z. Pz A a <z Az<b} U{z. Pz A b <z A z<c})
using assms unfolding finite-jumpFs-def P-def by auto
ultimately have finite {. Pz A a <z Az < ¢}
using finite-subset by auto
then show ?thesis unfolding finite-jumpFs-def P-def by auto
qed

lemma finite-jumpFs-subE:
assumes finite-jumpFs fa b a<a’ b'<b
shows finite-jumpFs f a’ b’

using assms unfolding finite-jumpFs-def
apply (elim rev-finite-subset)
by auto

lemma finite- Psegments-Re-imp-jumpFs:
assumes finite-Psegments (At. Re (gt — 2) = 0) a b continuous-on {a..b} g
shows finite-jumpFs (At. Im (gt — z)/Re (gt — 2)) a b
using assms
proof (induct rule:finite- Psegments.induct)
case (emptyl a b)
then show ?case unfolding finite-jumpFs-def
by (auto intro:rev-finite-subset[of {a}])
next
case (insertl-1 s a b)
define f where f=(\t. Im (gt — 2z) / Re (gt — 2))
have finite-jumpFs f a s
proof —

92

have continuous-on {a..s} g using <continuous-on {a..b} ¢» «s € {a..<b}
by (auto elim:continuous-on-subset)
then show ?thesis using insertl-1 unfolding f-def by auto
qed
moreover have finite-jumpFs f s b
proof —
have jumpF [(at-left) =0 jumpF [(at-right) = 0 when ze{s<..<b} for z
proof —
show jumpF f (at-left x) =0
apply (rule jumpF-eventually-const[of - 0])
unfolding eventually-at-left
apply (rule exI[where x=s])
using that insertl-1 unfolding f-def by auto
show jumpF f (at-right z) = 0
apply (rule jumpF-eventually-const[of - 0])
unfolding eventually-at-right
apply (rule exI[where z=b])
using that insertl-1 unfolding f-def by auto
qed
then have {z. (jumpF [(at-left) # 0 V jumpF [(at-right) # 0) A s < z
Az < b}
= {z. (jumpF f (at-left) # 0 V jumpF f (at-right) # 0) A (z=s V z
-

using <(s€{a..<b}» by force
then show ?thesis unfolding finite-jumpFs-def by auto
qged
ultimately show ?Zcase using finite-jumpFs-combine[of - a s b] unfolding f-def
by auto
next
case (insertl-2 s a b)
define f where f=(\t. Im (gt — z) / Re (gt — 2))
have finite-jumpFs f a s
proof —
have continuous-on {a..s} g using <continuous-on {a..b} ¢» «s € {a..<b}
by (auto elim:continuous-on-subset)
then show %thesis using insertl-2 unfolding f-def by auto
qged
moreover have finite-jumpFs f s b
proof —
have jumpF [(at-left) =0 jumpF [(at-right) = 0 when ze{s<..<b} for z
proof —
have isCont f z
unfolding f-def
apply (intro continuous-intros isCont-Im isCont-Re
continuous-on-interior| OF <continuous-on {a..b} ¢])
using insertl-2.hyps(1) that
apply auto[2]
using insertl-2.hyps(3) that by blast
then show jumpF f (at-left) =0 jumpF [(at-right) = 0

93

by (simp-all add: continuous-at-split jumpF-not-infinity)
qed
then have {z. (jumpF [(at-left z) # 0 V jumpF [(at-right) # 0) A s < z
Az < b}
= {z. (jumpF f (at-left ©) # 0 V jumpF f (at-right) # 0) A (x=s V z
=b)}

using <(s€{a..<b}» by force
then show ?thesis unfolding finite-jumpFs-def by auto
qed
ultimately show ?Zcase using finite-jumpFs-combine[of - a s b] unfolding f-def
by auto
qed

lemma finite- ReZ-segments-imp-jumpFs:
assumes finite-ReZ-segments g z path g
shows finite-jumpFs (At. Im (gt — 2)/Re (gt — 2)) 0 1
using assms unfolding finite-ReZ-segments-def path-def
by (rule finite-Psegments-Re-imp-jumpF's)

5.7 jumpF at path ends

definition jumpF-pathstart::(real = complex) = complex = real where
JumpF-pathstart g z= jumpF (At. Im(g t— z)/Re(g t — z)) (at-right 0)

definition jumpF-pathfinish::(real = complex) = complex = real where
JumpF-pathfinish g z= jumpF (At. Im(g t — z)/Re(g t —2)) (at-left 1)

lemma jumpF-pathstart-eq-0:
assumes path g Re(pathstart g)#Re z
shows jumpF-pathstart g z = 0
unfolding jumpF-pathstart-def
apply (rule jumpF-im-divide-Re-0)
using assms[unfolded pathstart-def] by auto

lemma jumpF-pathfinish-eq-0:
assumes path g Re(pathfinish g)#Re z
shows jumpF-pathfinish g z = 0
unfolding jumpF-pathfinish-def
apply (rule jumpF-im-divide-Re-0)
using assms[unfolded pathfinish-def] by auto

lemma

shows jumpF-pathfinish-reversepath: jumpF-pathfinish (reversepath g) z = jumpF-pathstart
gz

and jumpF-pathstart-reversepath: jumpF-pathstart (reversepath g) z = jumpF-pathfinish
gz
proof —

define f where f=(\t. Im (gt — z) / Re (gt — 2))

define f’ where f'=(\t. Im (reversepath g t — z) / Re (reversepath g t — z))

94

have fo (At. 1 — t) = f'
unfolding f-def f'-def comp-def reversepath-def by auto
then show jumpF-pathfinish (reversepath g) z = jumpF-pathstart g z
JumpF-pathstart (reversepath g) z = jumpF-pathfinish g z
unfolding jumpF-pathstart-def jumpF-pathfinish-def
using jumpF-linear-comp(2)[of —1 f 1 0,simplified] jumpF-linear-comp(1)[of
—1f1 1,simplified]
apply (fold f-def f'-def)
by auto
qed

lemma jumpF-pathstart-joinpaths|simp):
JumpF-pathstart (g1+++92) z = jumpF-pathstart g1 z
proof —
let h=(At. Im (g1 t — z) / Re (g1 t — 2))
let 2f=XAt. Im ((g1 +++ g2) t — 2) / Re ((g1 +++ ¢2) t — 2)
have jumpF-pathstart g1 z = jumpF ?h (at-right 0)
unfolding jumpF-pathstart-def by simp
also have ... = jumpF (?h o (At. 2xt)) (at-right 0)
using jumpF-linear-complof 2 ?h 0 0,simplified] by auto
also have ... = jumpF ?f (at-right 0)
proof (rule jumpF-cong)
show VYV p xin at-right 0. (?ho (x) 2) z =%z
unfolding ecventually-at-right
apply (intro exI[where z=1/2])
by (auto simp add:joinpaths-def)
qged simp
also have ... =jumpF-pathstart (g1+++92) z
unfolding jumpF-pathstart-def by simp
finally show ?thesis by simp
qed

lemma jumpF-pathfinish-joinpaths|simp):
JumpF-pathfinish (g1+++g2) z = jumpF-pathfinish g2 z
proof —
let 2h=(At. Im (g2t — z) / Re (g2t — 2))
let 2f=XAt. Im ((g1 +++ g2) t — 2) / Re ((g1 +++ ¢2) t — 2)
have jumpF-pathfinish g2 z = jumpF ?h (at-left 1)
unfolding jumpF-pathfinish-def by simp
also have ... = jumpF (?h o (At. 2xt—1)) (at-left 1)
using jumpF-linear-complof 2 - —1 1,simplified] by auto
also have ... = jumpF ?f (at-left 1)
proof (rule jumpF-cong)
show Vg xzinatleft 1. (?ho (M. 2t — 1)) z=%zx
unfolding eventually-at-left
apply (intro exl[where z=1/2])
by (auto simp add:joinpaths-def)
qged simp
also have ... =jumpF-pathfinish (g1+++g2) z

95

unfolding jumpF-pathfinish-def by simp
finally show ?thesis by simp
qed

5.8 Cauchy index
definition cindex::real = real = (real = real) = int where

cinder a b f = (3 z€{z. jump fx£0 N a<z A z<b}. jump fz)

definition cindezE::real = real = (real = real) = real where
cindezE a b f = (O xe{x. jumpF [(at-right) £0 N a<z A z<b}. jumpF f
(at-right x))

z))

— (O ze{z. jumpF f (at-left ©) #0 A a<z A z<b}. jumpF f (at-left

definition cindexE-ubd::(real = real) = real where
cindexE-ubd f = (> z€{x. jumpF f (at-right) #£0 }. jumpF [(at-right x))
— (O- ze{x. jumpF f (at-left x) #0}. jumpF f (at-left x))

lemma cindexFE-empty:
cindexE a a f = 0
unfolding cindexE-def by (simp add: sum.neutral)

lemma cindezx-const: cindex a b (A-. ¢) = 0
unfolding cindex-def
apply (rule sum.neutral)
by auto

lemma cindex-eq-cindez-poly: cindex a b (Az. poly q x/poly p x) = cindex-poly a
bqp
proof (cases p=0)
case True
then show ?thesis using cindez-const by auto
next
case Fulse
have cindex-poly a b ¢ p =
-z [jump-poly ¢ p x A0 N a < x A z < b. jump-poly q p z)
unfolding cindex-poly-def
apply (rule sum.mono-neutral-cong-right)
using jump-poly-not-root by (auto simp add: <p#£0> poly-roots-finite)
also have ... = cindex a b (Az. poly q z/poly p x)
unfolding cindex-def
apply (rule sum.cong)
using jump-jump-poly[of ¢q] by auto
finally show ?thesis by auto
qed

lemma cindex-combine:

96

assumes finite:finite {z. jump f 2£0 N a<z A z<c} and a<b b<c
shows cindex a ¢ f = cindex a b f + jump fb + cindex b ¢ f
proof —
define ssum where ssum = (As. sum (jump f) ({z. jump f2#£0 N a<z A z<c}
N s))
have ssum-union:ssum (A U B) = ssum A + ssum B when A N B ={} for A
B
proof —
define C where C={z. jump fz # 0 N a<z A z<c}
have finite C using finite unfolding C-def .
then show ?thesis
unfolding ssum-def
apply (fold C-def)
using sum-Un[of C N A C N B that
by (simp add: inf-assoc inf-sup-aci(8) inf-sup-distrib1 sum.union-disjoint)
qged
have cindex a ¢ f = ssum ({a<..<b} U {b} U {b<..<c})
unfolding ssum-def cindex-def
apply (rule sum.cong|of - - jump [jump f,simplified])
using <a<by «b<c» by fastforce
moreover have cindex a b f = ssum {a<..<b}
unfolding cindex-def ssum-def using <a <b<c»
by (intro sum.cong,auto)
moreover have jump f b = ssum {b}
unfolding ssum-def using <a<b <b<c» by (cases jump f b=0,auto)
moreover have cindex b ¢ f = ssum {b<..<c}
unfolding cindez-def ssum-def using <a<by <b<c» by (intro sum.cong,auto)
ultimately show ?thesis
apply (subst (asm) ssum-union,simp)
by (subst (asm) ssum-union,auto)
qed

lemma cindexE-combine:
assumes finite:finite-jumpFs f a ¢ and a<b b<c
shows cindexzE a ¢ f = cindexE a b f + cindexE b ¢ f
proof —
define S where S={z. (jumpF f (at-left x) # 0 V jumpF f (at-right) # 0) A
a<zAz<c}
define A0 where A0={z. jumpF f
define A1 where A1={z. jumpF f
define A2 where A2={z. jumpF f
define B0 where BO={z. jumpF [(at-left z) # 0 N a < z Az < ¢}
define B! where Bi={z. jumpF [(at-left z) # 0 N a < z A z < b}
define B2 where B2={z. jumpF f (at-left) # 0 N b < z Az < ¢}
have [simp]:finite A1 finite A2 finite Bl finite B2
proof —
have finite S using finite unfolding finite-jumpFs-def S-def by auto
moreover have A1 C S A2 C SB1 C SB2CS
unfolding A1-def A2-def Bi-def B2-def S-def using <a <b<c> by auto

at-right) # 0 AN a <z ANz < c}
at-right ©) # 0 AN a < z Az < b}
at-right) # 0 AN b <z Az < c}

97

ultimately show finite A1 finite A2 finite B1 finite B2 by (auto elim:finite-subset)
qed
have cindezE a ¢ f = sum (Az. jumpF f (at-right x)) A0
— sum (Az. jumpF f (at-left x)) BO
unfolding cindexE-def A0-def BO-def by auto
also have ... = sum (Az. jumpF f (at-right z)) (A1 U A2)
— sum (Az. jumpF f (at-left z)) (B1 U B2)
proof —
have A0=A1UA2 unfolding A0-def Al-def A2-def using assms by auto
moreover have B0=B1UB2 unfolding B0-def Bi1-def B2-def using assms
by auto
ultimately show ¢thesis by auto
qed
also have ... = cindexF a b f + cindexE b ¢ f
proof —
have A1 N A2 = {} unfolding AI-def A2-def by auto
moreover have B! N B2 = {} unfolding BI-def B2-def by auto
ultimately show #thesis
unfolding cindexE-def
apply (fold A1-def A2-def Bi-def B2-def)
by (auto simp add:sum.union-disjoint)
qed
finally show ?thesis .
qed

lemma cindez-linear-comp:
assumes c#(
shows cindex Ib ub (f o (Az. cxa+bd)) = (if ¢>0
then cindex (cxlb+bd) (cxub+bd) f
else — cindex (cxub+b) (cxlb+b) f)
proof (cases ¢>0)

case Fulse
then have c<(0 using (c#0> by auto
have cindex Ib ub (f o (A\z. cxz+b)) = — cindex (cxub+b) (cxlb+d) f

unfolding cindex-def
apply (subst sum-negf[symmetric])
apply (intro sum.reindex-cong[of Az. (z—b)/c])
subgoal by (simp add: inj-on-def)
subgoal using Fulse
apply (subst jump-linear-comp[OF <c#£0>))
by (auto simp add:<c<0> «c£0> field-simps)
subgoal for x
apply (subst jump-linear-comp[OF <c#£0»))
by (auto simp add:<c<0) <c£0> False field-simps)
done
then show ?thesis using Fulse by auto
next
case True
have cindex Ib ub (f o (Az. cxz+Db)) = cindex (cxlb+b) (cxub+d) f

98

unfolding cindex-def

apply (intro sum.reindex-cong[of Ax. (z—0b)/c])

subgoal by (simp add: inj-on-def)

subgoal
apply (subst jump-linear-comp[OF <c#£0>))
by (auto simp add: True «c£0> field-simps)

subgoal for z
apply (subst jump-linear-comp[OF <c#£0>))
by (auto simp add: <c£0> True field-simps)

done

then show ?thesis using True by auto
qed

lemma cindexFE-linear-comp:
assumes c#0
shows cindezE b ub (f o (Az. exa+b)) = (if ¢>0
then cindezE (cxlb+b) (cxub+b) f
else — cindezE (cxub+b) (cxlb+b) f)
proof —
define cright where cright = (Alb ub f. (3 z | jumpF f (at-right x) # 0 A 1b <
T Nz < ub.
JjumpF [(at-right z)))
define cleft where cleft = (Alb ub f. (O z | jumpF f (at-left x) # 0 N 1b < z A
z < ub.
jumpF f (at-left x)))
have cindexFE-unfold:cindexE lb ub f = cright Ib ub f — cleft Ib ub f
for Ib ub f unfolding cindexE-def cright-def cleft-def by auto
have ?thesis when c<0
proof —
have cright Ib ub (f o (Az. ¢ x z + b)) = cleft (¢ x ub + b) (cx b+ b) f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of Az. (z—b)/c])
subgoal by (simp add: inj-on-def)
subgoal using that
by (subst jumpF-linear-comp|OF <c#£0>],auto simp add:field-simps)
subgoal for z using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add: field-simps)
done
moreover have cleft Ib ub (f o (Az. ¢ * + b)) = cright (cxub+b) (cxlb + b)
f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of Az. (z—b)/c])
subgoal by (simp add: inj-on-def)
subgoal using that
by (subst jumpF-linear-comp[OF <c#0>],auto simp add:field-simps)
subgoal for z using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add: field-simps)
done
ultimately show #thesis unfolding cindexFE-unfold using that by auto

99

qed
moreover have ?thesis when ¢>0
proof —
have cright Ib ub (f o (Az. ¢ x © + b)) = cright (¢ *x b + b) (¢ x ub+ b) f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of Ax. (x—0b)/c])
subgoal by (simp add: inj-on-def)
subgoal using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add:field-simps)
subgoal for z using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add: field-simps)
done
moreover have cleft Ib ub (f o (Az. ¢ x © + b)) = cleft (cxlb+b) (cxub + b) f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of Az. (z—b)/c])
subgoal by (simp add: inj-on-def)
subgoal using that
by (subst jumpF-linear-comp[OF <c#0>],auto simp add:field-simps)
subgoal for z using that
by (subst jumpF-linear-comp[OF <c#£0>],auto simp add: field-simps)
done
ultimately show #thesis unfolding cindexFE-unfold using that by auto
qed
ultimately show ?thesis using <c#0> by auto
qed

lemma cindexE-cong:
assumes finite s and fg-eq: \z. [a<z;z<bia¢s] = fz =gz
shows cindexE o b f = cindezE a b g
proof —
define left where
left=(\f. Oz | jumpF f (at-left) # 0 AN a < z Az < b. jumpF f (at-left
2)))

define right where
right=\f. (3. z | jumpF f (at-right z) # 0 AN a < z Az < b. jumpF f (at-right
z)))
have left f = left g
proof —
have jumpF f (at-left) = jumpF g (at-left £) when a<z 2<b for x
proof (rule jumpF-cong)
define cs where cs = {y€s. a<y A y<z}
define ¢ where c= (if cs = {} then (z+a)/2 else Maz cs)
have finite cs unfolding cs-def using assms(1) by auto
have c<z A (Vy. c<y A y<z — fy=g y)
proof (cases cs={})
case True
then have Vy. c<y A y<z — y ¢ s unfolding cs-def c-def by force
moreover have c=(z+a)/2 using True unfolding c-def by auto
ultimately show ?thesis using fg-eq using that by auto

100

next

case Fulse

then have ce€cs unfolding c-def using Fulse <finite csy by auto

moreover have Vy. c<y A y<z — y ¢ s

proof (rule ccontr)
assume - (Vy. c < yANy<z—y¢s)
then obtain y’ where c<y’ y'<z y'es by auto
then have y’ccs using (c€cs) unfolding cs-def by auto
then have y'<c unfolding c-def using Fulse (finite cs» by auto
then show False using (c<y’» by auto

ged

ultimately show ?thesis unfolding cs-def using that by (auto intro!:fg-eq)

qed
then show Vg z in at-left x. fx = g x
unfolding eventually-at-left by auto
qed simp
then show ?thesis
unfolding left-def
by (auto intro: sum.cong)
qed
moreover have right f = right g
proof —
have jumpF f (at-right x) = jumpF ¢ (at-right) when a<z z<b for z
proof (rule jumpF-cong)
define cs where cs = {y€s. z<y A y<b}
define ¢ where c= (if cs = {} then (z+b)/2 else Min cs)
have finite cs unfolding cs-def using assms(1) by auto
have z<c A (Vy. z<y A y<c — fy=g y)
proof (cases cs={})
case True
then have Vy. z<y A y<c — y ¢ s unfolding cs-def c-def by force
moreover have ¢=(z+b)/2 using True unfolding c-def by auto
ultimately show ?thesis using fg-eq using that by auto
next
case Fulse
then have c€cs unfolding c-def using Fulse «finite cs» by auto
moreover have Vy. z<y A y<c — y ¢ s
proof (rule ccontr)
assume - Vy. 2 <yAy<c—yé¢s)
then obtain y’ where z<y’ y’<c y’es by auto
then have y’'ecs using (c€cs» unfolding cs-def by auto
then have y’>c unfolding c-def using Fulse (finite cs» by auto
then show False using (¢>y"> by auto
qed

ultimately show ?thesis unfolding cs-def using that by (auto intro!:fg-eq)

qed
then show Vg z in at-right z. fz =g
unfolding eventually-at-right by auto
qed simp

101

then show ?thesis
unfolding right-def
by (auto intro: sum.cong)
qed
ultimately show ?thesis unfolding cindexE-def left-def right-def by presburger

qed

lemma cindexE-constl:
assumes A¢. [a<t;t<b] = fi=c
shows cindexE a b f = 0
proof —
define left where
left=(Af. O_x | jumpF f (at-left x) # 0 N a < z Az < b. jumpF f (at-left

z)))

define right where
right=(\f. (O« | jumpF f (at-right) # 0 A a < x A x < b. jumpF f (at-right
)
have left f = 0
proof —
have jumpF f (at-left) = 0 when a<z z<b for z
apply (rule jumpF-eventually-const[of - c])
unfolding eventually-at-left using assms that by auto
then show ?thesis unfolding left-def by auto
qed
moreover have right f = 0
proof —
have jumpF f (at-right) = 0 when a<z z<b for z
apply (rule jumpF-eventually-const|of - c])
unfolding cventually-at-right using assms that by auto
then show ?thesis unfolding right-def by auto
qed
ultimately show ¢thesis unfolding cindexE-def left-def right-def by auto

qed

lemma cindez-eq-cinderFE-divide:
fixes f g::real = real
defines h = (A\z. fz/g 1)
assumes a<b and
finite-fg: finite {z. (f z=0Vg z=0) N a<zAz<b} and
g-tmp-f:¥V z€{a..b}. g z=0 — f2#0 and
f-cont: continuous-on {a..b} f and
g-cont:continuous-on {a..b} g
shows cindexE a b h = jumpF h (at-right a) + cindex a b h — jumpF h (at-left
b)
proof —
define R where R=(\S.{z. jumpF h (at-right) # 0 N z€S})
define L where L=(\S.{x. jumpF h (at-left z) # 0 N x€S})
define right where right = (AS. (3_z€R S. jumpF h (at-right x)))
define left where left = (A\S. (O x€L S. jumpF h (at-left z)))

102

have jump-gnz:jumpF h (at-left) = 0 jumpF h (at-right £) = 0 jump h =0
when a<z z<b g z#0 for z
proof —
have isCont h ¢ unfolding h-def using f-cont g-cont that
by (auto intro!:continuous-intros elim:continuous-on-interior)
then show jumpF h (at-left) = 0 jumpF h (at-right £) = 0 jump h =0

using jumpF-not-infinity jump-not-infinity unfolding continuous-at-split
by auto

qed

have finite-jFs:finite-jumpFs h a b
proof —
define S where S=(\s. {z. (jumpF h (at-left ©) # 0 V jumpF h (at-right x)
0) N z€s})
note jump-gnz
then have S {a<..<b} C {z. (fz=0Vg 2=0) N a<zAz<b}
unfolding S-def by auto
then have finite (S {a<..<b})
using rev-finite-subset| OF finite-fg] by auto
moreover have finite (S {a,b}) unfolding S-def by auto
moreover have S {a..b} = S {a<..<b} U S {a,b}
unfolding S-def using <a<b» by auto
ultimately have finite (S {a..b}) by auto
then show ?thesis unfolding S-def finite-jumpFs-def by auto
qed
have cindezE a b h = right {a..<b} — left {a<..b}
unfolding cindexE-def right-def left-def R-def L-def by auto
also have ... = jumpF h (at-right a) + right {a<..<b} — left {a<..<b} — jumpF
h (at-left b)
proof —
have right {a..<b} = jumpF h (at-right a) + right {a<..<b}
proof (cases jumpF h (at-right a) =0)
case True
then have R {a..<b} = R {a<..<b}
unfolding R-def using less-eq-real-def by auto
then have right {a..<b} = right {a<..<b}
unfolding right-def by auto
then show ?thesis using True by auto
next
case Fulse
have finite (R {a..<b})
using finite-jF's unfolding R-def finite-jumpFs-def
by (auto elim:rev-finite-subset)
moreover have a € R {a..<b} using Fulse (a unfolding R-def by auto
moreover have R {a..<b} — {a} = R {a<..<b} unfolding R-def by auto
ultimately show right {a..<b}= jumpF h (at-right a)
+ right {a<..<b}
using sum.removelof R {a..<b} a Az. jumpF h (at-right z)]
unfolding right-def by simp

103

qed
moreover have left {a<..b} = jumpF h (at-left b) + left {a<..<b}
proof (cases jumpF h (at-left b) =0)
case True
then have L {a<..b} = L {a<..<b}
unfolding L-def using less-eq-real-def by auto
then have left {a<..b} = left {a<..<b}
unfolding left-def by auto
then show ?Zthesis using True by auto
next
case Fulse
have finite (L {a<..b})
using finite-jF's unfolding L-def finite-jumpFs-def
by (auto elim:rev-finite-subset)
moreover have b € L {a<..b} using Fulse <a<by unfolding L-def by auto
moreover have L {a<..b} — {b} = L {a<..<b} unfolding L-def by auto
ultimately show left {a<..b}= jumpF h (at-left b) + left {a<..<b}
using sum.removelof L {a<..b} b Az. jumpF h (at-left x))
unfolding left-def by simp

qed

ultimately show ¢thesis by simp
qed
also have ... = jumpF h (at-right a) + cindex a b h — jumpF h (at-left b)
proof —

define S where S={z. g2=0 A a < z A z < b}
have right {a<..<b} = sum (Az. jumpF h (at-right x)) S
unfolding right-def S-def R-def
apply (rule sum.mono-neutral-left)
subgoal using finite-fg by (auto elim:rev-finite-subset)
subgoal using jump-gnz by auto
subgoal by auto
done
moreover have left {a<..<b} = sum (Az. jumpF h (at-left x)) S
unfolding left-def S-def L-def
apply (rule sum.mono-neutral-left)
subgoal using finite-fg by (auto elim:rev-finite-subset)
subgoal using jump-gnz by auto
subgoal by auto
done
ultimately have right {a<..<b} — left {a<..<b}
= sum (Az. jumpF h (at-right z) — jumpF h (at-left z)) S
by (simp add: sum-subtractf)
also have ... = sum (\z. of-int(jump h x)) S
proof (rule sum.cong)
fix z assume z€S5
define hr where hr = sgnz h (at-right z)
define hl where hl = sgnz h (at-left x)
have h sgna-able (at-left x) hr#0 h sgnz-able (at-right x) hi£0
proof —

104

have finite {t. ht =0 N a <t At < b}
using finite-fg unfolding h-def by (auto elim!:rev-finite-subset)
moreover have continuous-on ({a<..<b} —{z. gz =0ANa <z Az <
b}) h
unfolding h-def using f-cont g-cont
by (auto intro!: continuous-intros elim:continuous-on-subset)
moreover have finite {z. gz = 0 N a <z Az < b}
using finite-fg by (auto elim!:rev-finite-subset)
moreover have z € {a<..<b}
using (zx€S» unfolding S-def by auto
ultimately show h sgnz-able (at-left x) hi£0 h sgnz-able (at-right) hr#£0

using finite-sgnz-at-left-at-right[of h a b {z. g z=0 N a<zAz<b} x|
unfolding hl-def hr-def by blast+
qed
then have (h has-sgnx hl) (at-left x) (h has-sgnz hr) (at-right)
unfolding hl-def hr-def using sgna-able-sgnz by blast+
moreover have isCont (inverse o h) x
proof —
have f z#£0 using <z€S) g-imp-f unfolding S-def by auto
then show ?%thesis using f-cont g-cont <z€S) unfolding h-def S-def
by (auto simp add:comp-def intro!:continuous-intros elim:continuous-on-interior)

qed
ultimately show jumpF h (at-right ©) — jumpF h (at-left x) = real-of-int
(jump h 2)
using jump-jumpF|of © h] <hr#£0> <hl£0> by auto
qed auto
also have ... = cindez a b h

unfolding cindex-def of-int-sum S-def
apply (rule sum.mono-neutral-cong-right)
using jump-gnz finite-fg by (auto elim:rev-finite-subset)
finally show ?thesis by simp
qed
finally show ?thesis .
qed

5.9 Cauchy index along a path

definition cindex-path::(real = complex) = complex = int where
cindez-path g z = cindex 0 1 (At. Im (gt — z) / Re (gt — 2))

definition cindez-pathE::(real = complex) = complex = real where
cindex-pathE g z = cindezE 01 (A\t. Im (gt — 2) / Re (gt — 2))

lemma cindez-pathE-point: cindez-pathE (linepath a a) b = 0
unfolding cindex-pathE-def by (simp add:cindexE-constl)

lemma cindez-path-reversepath:
cindez-path (reversepath g) z = — cindex-path g z

105

proof —
define f where f=(\t. Im (gt — z) / Re (gt — 2))
define f’ where f'=(At. Im (reversepath g t — z) / Re (reversepath g t — z))
have fo (At. 1 — t) = f’
unfolding f-def f’-def comp-def reversepath-def by auto
then have cindex 0 1 f' = — cindex 0 1 f
using cindez-linear-complof —1 0 1 f 1,simplified] by simp
then show ?thesis
unfolding cindex-path-def
apply (fold f-def f'-def)
by simp
qed

lemma cindez-pathE-reversepath: cindex-pathE (reversepath g) z = —cindez-pathE
gz

using cindezE-linear-complof —1 01 At. (Im (gt) — Im z) / (Re (g t) — Re 2)
1]

by (simp add: cindex-pathE-def reversepath-def o-def)

lemma cindex-pathE-reversepath’: cindex-pathE g z = —cindez-pathE (reversepath
9) 2

using cindexE-linear-complof —1 0 1 Xt. (Im (g t) — Im 2) / (Re (g t) — Re 2)
1]

by (simp add: cindez-pathE-def reversepath-def o-def)

lemma cindex-pathE-joinpaths:
assumes ¢1:finite-ReZ-segments g1 z and g¢2: finite-ReZ-segments g2 z and
path g1 path g2 pathfinish g1 = pathstart g2
shows cindez-pathE (g14+++¢2) z = cindez-pathE g1 z + cindez-pathE g2 z
proof —
define f where f = (\g (t:real). Im (gt — 2z) / Re (gt — z))
have cindez-pathE (g1 +++ ¢2) z = cindexE 0 1 (f (g1+++92))
unfolding cindex-pathE-def f-def by auto
also have ... = cindexE 0 (1/2) (f (91+++4g2)) + cindexE (1/2) 1 (f (91+++g2))
proof (rule cindexE-combine)
show finite-jumpFs (f (g1 +++ ¢g2)) 0 1
unfolding f-def
apply (rule finite-ReZ-segments-imp-jumpFs)
subgoal using finite-ReZ-segments-joinpaths|OF g1 g2] assms(3—5) .
subgoal using path-join-imp[OF <path g1 <path g2 <pathfinish g1 =pathstart
9] .
done
qed auto
also have ... = cindex-pathE g1 z + cindez-pathE g2 z
proof —
have cindexE 0 (1/2) (f (91+++92)) = cindex-pathE g1 z
proof —
have cindexE 0 (1/2) (f (9g1+++g2)) = cindexE 0 (1/2) (f g1 o ((x) 2))
apply (rule cindexE-cong)

106

unfolding comp-def joinpaths-def f-def by auto

also have ... = cindexE 0 1 (f g1)
using cindezE-linear-complof 2 0 1/2 - 0,simplified] by simp
also have ... = cindez-pathE g1 z

unfolding cindex-pathE-def f-def by auto
finally show ?thesis .
qed
moreover have cindexE (1/2) 1 (f (¢91+++92)) = cindex-pathE g2 z
proof —
have cindexE (1/2) 1 (f (g1+++g2)) = cindexE (1/2) 1 (f 92 0 (Az. 2xx
— 1))
apply (rule cindexE-cong)
unfolding comp-def joinpaths-def f-def by auto

also have ... = cindexE 0 1 (f 92)
using cindexE-linear-complof 2 1/2 1 - —1,simplified] by simp
also have ... = cindez-pathE g2 z

unfolding cindex-pathE-def f-def by auto
finally show ?thesis .
qed
ultimately show ¢thesis by simp
qged
finally show ?thesis .
qed

lemma cindez-pathFE-constl:
assumes At. [0<t;i<1] = g t=c
shows cindex-pathE g z = 0
unfolding cindex-pathE-def
apply (rule cindexzE-constl)
using assms by auto

lemma cindez-pathE-subpath-combine:
assumes g¢:finite-ReZ-segments g zand path g and
0<a a<b b<c c<1I
shows cindez-pathE (subpath a b g) z + cindex-pathE (subpath b ¢ g) z
= cindex-pathE (subpath a ¢ g) z
proof —
define f where f = (At. Im (gt — 2z) / Re (gt — z))
have ?thesis when a=b
proof —
have cindex-pathE (subpath a b g) z = 0
apply (rule cindexr-pathE-constl)
using that unfolding subpath-def by auto
then show ¢thesis using that by auto
qed
moreover have ?thesis when b=c
proof —
have cindex-pathE (subpath b ¢ g) z = 0
apply (rule cindex-pathE-constI)

107

using that unfolding subpath-def by auto
then show ¢thesis using that by auto
qed
moreover have ?thesis when a#b b#c
proof —
have [simp]:a<b b<c a<c
using that <a<b» <b<c» by auto
have cindex-pathE (subpath a b g) z = cindezE a b f
proof —
have cindex-pathE (subpath a b g) z = cindexE 0 1 (f o (Az. (b — a) x z +
a))

unfolding cindez-pathE-def f-def comp-def subpath-def by auto
also have ... = cindezF a b f
using cindezE-linear-complof b—a 0 1 f a,simplified] that(1) by auto
finally show ?thesis .
qed
moreover have cindex-pathE (subpath b ¢ g) z = cindexE b ¢ f
proof —
have cindex-pathE (subpath b ¢ g) z = cindezE 0 1 (f o (Az. (¢ — b) x = +
b))

unfolding cindex-pathE-def f-def comp-def subpath-def by auto
also have ... = cindezE b c f
using cindexE-linear-complof c—b 0 1 f b,simplified] that(2) by auto
finally show ?thesis .
qed
moreover have cindex-pathE (subpath a ¢ g) z = cindexE a ¢ f
proof —
have cindex-pathE (subpath a ¢ g) z = cindezE 0 1 (f o (Az. (¢ — a) x z +
2)

unfolding cindex-pathE-def f-def comp-def subpath-def by auto
also have ... = cindezF a c f
using cindezE-linear-complof c—a 0 1 f a,simplified] <a<c) by auto
finally show ?thesis .
qed
moreover have cindexE a b f + cindexE b ¢ f = cindexE a ¢ f
proof —
have finite-jumpFs f a c
using finite-ReZ-segments-imp-jumpFs[OF g <path ¢»] <0<a> <¢<1) unfold-
ing f-def
by (elim finite-jumpFs-subE auto)
then show ?thesis using cindexE-linear-comp cindexE-combine[OF - (a<b)
b<ey] by auto
qed
ultimately show ¢thesis by auto
qed
ultimately show ¢thesis by blast
qed

lemma cindex-pathE-shiftpath:

108

assumes finite-ReZ-segments g z s€{0..1} path g and loop:pathfinish g = path-
start g
shows cindez-pathE (shiftpath s g) z = cindex-pathE g z
proof —
define f where f=(\g t. Im (g (t::real) — z) / Re (gt — z))
have cindez-pathE (shiftpath s g) z = cindezE 0 1 (f (shiftpath s g))
unfolding cindex-pathE-def f-def by simp
also have ... = cindezE 0 (1—s) (f (shiftpath s g)) + cindezE (1—s) 1 (f
(shiftpath s g))
proof (rule cindexE-combine)
have finite-ReZ-segments (shiftpath s g) z
using finite- ReZ-segments-shiftpah| OF assms] .
from finite- ReZ-segments-imp-jumpFs|OF this] path-shiftpath|OF <path g» loop
(s€{0..1}p]
show finite-jumpFs (f (shiftpath s g)) 0 1 unfolding f-def by simp
show 0 < 1 — s 1 — s < 1 using ¢s€{0..1}» by auto
qed
also have ... = cindezE 0 s (f g) + cindezE s 1 (f g)
proof —
have cindexE 0 (1—s) (f (shiftpath s g)) = cindexE s 1 (f g)
proof —
have cindezE 0 (1—s) (f (shiftpath s g)) = cindexE 0 (1—s) ((f g) o (At
t+s))
apply (rule cindezE-cong)
unfolding shiftpath-def f-def using «s€{0..1}» by (auto simp add:algebra-simps)
also have ...= cindezE s 1 (f g)
using cindezE-linear-complof 1 0 1—s f g s,simplified] .
finally show ?thesis .
qed
moreover have cindexE (1 — s) 1 (f (shiftpath s g)) = cindezE 0 s (f g)
proof —
have cindexE (1 — s) 1 (f (shiftpath s g)) = cindexE (1—s) 1 ((f g) o (At.
t+s—1))
apply (rule cindexzE-cong)
unfolding shiftpath-def f-def using «s€{0..1}» by (auto simp add:algebra-simps)
also have ... = cindexF 0 s (f g)
using cindexE-linear-complof 1 1—s 1 f g s—1,simplified)
by (simp add:algebra-simps)
finally show ?thesis .

qed

ultimately show ?thesis by auto
qed
also have ... = cindezE 0 1 (f g)

proof (rule cindexzE-combine[symmetric])
show finite-jumpF's (f g) 0 1
using finite-ReZ-segments-imp-jumpFs[OF assms(1,3)] unfolding f-def by
simp
show 0 < s s<I using «s€{0..1} by auto
qed

109

also have ... = cindez-pathE g z
unfolding cindex-pathE-def f-def by simp
finally show ?thesis .
qed

5.10 Cauchy’s Index Theorem

theorem winding-number-cindex-pathFE-auz:
fixes g::real = complex
assumes finite-ReZ-segments g z and wvalid-path g z ¢ path-image g and
Re-ends:Re (g 1) = Re z Re (g 0) = Re 2
shows 2 % Re(winding-number g z) = — cindex-pathE g z
using assms
proof (induct rule:finite-ReZ-segments-induct)
case (sub0 g z)
have winding-number (subpath 0 0 g) z = 0
using <z ¢ path-image (subpath 0 0 g)> unfolding subpath-refl
by (auto intro!: winding-number-trivial)
moreover have cindez-pathE (subpath 0 0 g) z = 0
unfolding subpath-def by (auto intro:cindez-pathE-constl)
ultimately show ?case by auto
next
case (subEq s g z)
have Re-winding-0:Re(winding-number h z) = 0
when Re-const:V t€{0..1}. Re (h t) = Re z and wvalid-path h z¢path-image h
for h
proof —
have Re (winding-number (At. h t — z) 0) = (Im (Ln (pathfinish (A\t. h ¢t —
2)))
— Im (Ln (pathstart (At. h t — 2)))) / (2 * pi)
apply (rule Re-winding-number-half-right[of - 0,simplified])
using Re-const <valid-path hy <z ¢ path-image h>
apply auto
by (metis (no-types, opaque-lifting) add.commute imageFE le-add-same-cancell
order-refl
path-image-def plus-complex.simps(1))
moreover have Im (Ln (h 1 — 2)) = Im (Ln (h 0 — 2))
proof —
define z0 where 20 = h 0 — 2
define z1 where z1 = h 1 — 2
have [simp]: 200 z1#0 Re z0=0 Re z1=0
using <z ¢ path-image hy that(1) unfolding zI-def 20-def path-image-def
by auto
have ?thesis when [simp]: Im 20>0 Im z1>0
apply (fold z1-def z0-def)
using I'm-Ln-eq-pi-half|of z1] Im-Ln-eq-pi-half|of 20] by auto
moreover have ?thesis when [simp]: Im 20<0 Im z1<0
apply (fold z1-def z0-def)
using Im-Ln-eq-pi-half|of z1] Im-Ln-eq-pi-half|of 20] by auto

110

moreover have Fualse when Im 20>0 Im 21<0
proof —
define f where f=(\t. Im (ht — 2))
have 3z>0. < I AN fzx =10
apply (rule IVT2'of f 1 0 0])
using that valid-path-imp-path|OF <valid-path hy]
unfolding f-def 20-def z1-def path-def
by (auto intro:continuous-intros)
then show Fulse using Re-const <z ¢ path-image h)> unfolding f-def
by (metis atLeastAtMost-iff complex-surj image-eql minus-complex.simps(2)

path-defs(4) right-minus-eq)
qed
moreover have Fualse when Im 20<0 Im z1>0
proof —
define f where f=(\t. Im (h t — 2))
have 3z>0. 2 < 1 A fz =0
apply (rule IVT’)
using that valid-path-imp-path[OF <valid-path h)]
unfolding f-def z0-def z1-def path-def
by (auto intro:continuous-intros)
then show Fulse using Re-const <z ¢ path-image h) unfolding f-def
by (metis atLeastAtMost-iff complex-surj image-eql minus-complex.simps(2)

path-defs(4) right-minus-eq)
qed
ultimately show ?thesis by argo
qed
ultimately have Re (winding-number (At. ht — z) 0) = 0
unfolding pathfinish-def pathstart-def by auto
then show %thesis using winding-number-offset by auto
qed
have ?case when s = 0
proof —
have x: Vte{0..1}. Re (g t) = Re z
using Vte{s<..<1}. Re (gt) = Re z» <Re (9 1) = Re z» <Re (g 0) = Re »»
<s=0)»
by force
have Re(winding-number g z) = 0
by (rule Re-winding-0[OF * <wvalid-path ¢> <z & path-image g>])
moreover have cindezx-pathFE g z = 0
unfolding cindex-pathE-def
apply (rule cindexE-constI)
using * by auto
ultimately show ?thesis by auto
qed
moreover have ?case when s#0
proof —
define g1 where g1 = subpath 0 s g

111

define g2 where g2 = subpath s 1 g
have path g s>0
using valid-path-imp-path|OF <valid-path ¢] that «s€{0..<1}» by auto
have 2 x Re (winding-number g z) = 2xRe (winding-number g1 z) + 2xRe
(winding-number g2 z)
apply (subst winding-number-subpath-combine[OF <path ¢» <z¢path-image
g,0f 0s 1
,simplified,symmetric])
using (s€{0..<1}> unfolding gI-def g2-def by auto

also have ... = — cindex-pathE g1 z — cindez-pathE g2 z
proof —
have 2+«Re (winding-number g1 z) = — cindezx-pathE g1 z

unfolding gI-def
apply (rule subEq.hyps(5))
subgoal using subEq.hyps(1) subEq.prems(1) valid-path-subpath by fastforce

subgoal by (meson Path-Connected.path-image-subpath-subset atLeastAt-
Most-iff
atLeastLess Than-iff less-eq-real-def subEq(7) subEq.hyps(1) subEq.prems(1)

subsetCFE wvalid-path-imp-path zero-le-one)
subgoal by (metis Groups.add-ac(2) add-0-left diff-zero mult.right-neutral
subEq(2)
subEq(9) subpath-def)
subgoal by (simp add: subEq.prems(4) subpath-def)

done
moreover have 2xRe (winding-number g2 z) = — cindez-pathE g2 z
proof —

have x: Vt€{0..1}. Re (92t) = Re z

proof

fix t::real assume te{0..1}
have Re (g2t) = Re z when =0 V t=1
using that unfolding g¢2-def
by (metis <s # 0> add.left-neutral diff-add-cancel mult.commute
mult.left-neutral
mult-zero-left subEq.hyps(2) subEq.prems(8) subpath-def)
moreover have Re (g2 t) = Re z when te{0<..<1}
proof —
define t’ where t'=(1 — s) x t + s
then have t'e{s<..<I}
using that <s€{0..<1}> unfolding t’-def
apply auto
by (sos ((((A<0 x (A<1 % A<2)) *x R<1) + ((A<=1 * (A<0 * R<1))
« (R<1 * [1]72)))))
then have Re (g t') = Re z
using «Vte{s<..<I1}. Re (g t) = Re » by auto
then show ?thesis
unfolding ¢2-def subpath-def t'-def .
qed

112

ultimately show Re (g2 t) = Re z using <t€{0..1}» by fastforce
qged
have Re(winding-number g2 z) = 0
apply (rule Re-winding-0[OF x])
subgoal using ¢2-def subEq.hyps(1) subEq.prems(1) wvalid-path-subpath
by fastforce
subgoal by (metis (no-types, opaque-lifting) Path-Connected.path-image-subpath-subset

atLeastAtMost-iff atLeastLess Than-iff g2-def less-eq-real-def subEq.hyps(1)

subEq.prems(1) subEq.prems(2) subsetCE wvalid-path-imp-path
zero-le-one)
done
moreover have cindez-pathE g2 z = 0
unfolding cindex-pathE-def
apply (rule cindexE-constl)
using * by auto
ultimately show ?thesis by auto

qed

ultimately show ?thesis by auto
qed
also have ... = — cindex-pathFE g z
proof —

have finite-ReZ-segments g z
unfolding finite- ReZ-segments-def
apply (rule finite-Psegments.insertl-1[of s])
subgoal using (s € {0..<1}» by auto
subgoal using <s = 0 V Re (g s) = Re 2> by auto
subgoal using «Vte{s<..<1}. Re (¢ t) = Re 2> by auto
subgoal
proof —
have finite-Psegments (At. Re (g (s x t)) = Re z) 0 1
using «finite-ReZ-segments (subpath 0 s g) 2
unfolding subpath-def finite-ReZ-segments-def by auto
from finite-Psegments-pos-linear|[of - 1/s 0 0 s,simplified, OF this]
show finite-Psegments (At. Re (gt — z) = 0) 0°s
using <s>0» unfolding comp-def by auto
qed
done
then show ?thesis
using cindex-pathE-subpath-combine[OF - <path g»,of z 0 s 1,folded g1-def
g2-def ,simplified]
«se{0..<1}» by auto
qed
finally show ?thesis .
qed
ultimately show ?case by auto
next
case (subNEq s g z)

113

have Re-winding:2x Re(winding-number h z) = jumpF-pathfinish h z — jumpF-pathstart
h z
when Re-neq:Vte{0<..<1}. Re (ht) # Re z and Re (h 0) = Re z Re (h 1)
= Re z
and valid-path h z¢path-image h for h
proof —
have Re-winding-pos:
2% Re(winding-number h0 0) = jumpF-pathfinish h0 0 — jumpF-pathstart h0

when Re-gt:Vte{0<..<1}. Re (h0t) > 0 and Re (h0 0) = 0 Re (h0 1) = 0
and wvalid-path h0 0¢path-image h0 for h0
proof —
define f where f = (A\(¢::real). Im(h0 t) / Re (hO t))
define In0 where n0 = Im ((h0 0)) / pi
define In! where In1 = Im (Ln (h0 1)) / pi
have path h0 using <valid—path h0> valid-path-imp-path by auto
have h0 040 ho 10
using path-defs(4) that(5) by fastforce+
have In1 = jumpF-pathfinish h0 0
proof —
have sgnz-at-left:((Az. Re (h0 x)) has-sgnz 1) (at-left 1)
unfolding has-sgnz-def eventually-at-left using «Vpe{0<..<1}. Re (h0
p) > 0>
by (intro exzl[where z=0],auto)
have cont:continuous (at-left 1) (At. Im (hO t))
continuous (at-left 1) (At. Re (h0 t))
using <path h0)> unfolding path-def
by (auto intro:continuous-on-at-left[of 0 1] continuous-intros)
have ?thesis when Im (h0 1) > 0
proof —
have Inl = 1/2
using Im-Ln-eq-pi-half[OF <h0 1#0>] that <Re (h0 1) = 0> unfolding
In1-def by auto
moreover have jumpF-pathfinish h0 0 = 1/2
proof —
have filterlim f at-top (at-left 1) unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff[of - Im (h0 1)])
using «Re(h0 1) = 0> sgna-at-left cont that unfolding continuous-within

by auto
then show ?thesis unfolding jumpF-pathfinish-def jumpF-def f-def by
auto
ged
ultimately show #thesis by auto
qed
moreover have ?thesis when Im (h0 1) < 0
proof —
have Inl = - 1/2

using Im-Ln-eq-pi-half[OF <h0 1#0>] that <Re (h0 1) = 0> unfolding
In1-def by auto

114

moreover have jumpF-pathfinish h0 0 = — 1/2
proof —
have ((Az. Re (h0 z)) has-sgnx — sgn (Im (h0 1))) (at-left 1)
using sgnz-at-left that by auto
then have filterlim f at-bot (at-left 1)
unfolding f-def using cont that
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 1)])
unfolding continuous-within using <Re(h0 1) = 0> by auto
then show ?thesis unfolding jumpF-pathfinish-def jumpF-def f-def by

auto
qed
ultimately show ¢thesis by auto
qged
moreover have Im (h0 1)#0 using <h0 1#0> <Re (h0 1) = 0>
using complex.expand by auto
ultimately show ?thesis by linarith
qed
moreover have n0 = jumpF-pathstart h0 0
proof —

have sgnz-at-right:((Az. Re (h0 z)) has-sgnx 1) (at-right 0)
unfolding has-sgnz-def eventually-at-right using <V pe{0<..<1}. Re (h0
p) > 0»
by (intro exl[where z=1],auto)
have cont:continuous (at-right 0) (At. Im (h0 t))
continuous (at-right 0) (At. Re (h0 t))
using <path h0)> unfolding path-def
by (auto intro:continuous-on-at-right[of 0 1] continuous-intros)
have ?thesis when Im (h0 0) > 0
proof —
have In0 = 1/2
using Im-Ln-eq-pi-half[OF <h0 0#£0>] that <Re (h0 0) = 0> unfolding
In0-def by auto
moreover have jumpF-pathstart h0 0 = 1/2
proof —
have filterlim f at-top (at-right 0) unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 0)])
using <Re(h0 0) = 0> sgnx-at-right cont that unfolding continuous-within
by auto
then show ?thesis unfolding jumpF-pathstart-def jumpF-def f-def by

auto
qed
ultimately show ?thesis by auto
qged
moreover have ?thesis when Im (h0 0) < 0
proof —
have In0 = — 1/2

using Im-Ln-eq-pi-half[OF <h0 0#0>] that <Re (h0 0) = 0> unfolding
In0-def by auto
moreover have jumpF-pathstart h0 0 = — 1/2

115

proof —
have filterlim f at-bot (at-right 0) unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 0)])
using (Re(h0 0) = 0» sgnz-at-right cont that unfolding continuous-within
by auto
then show ?thesis unfolding jumpF-pathstart-def jumpF-def f-def by
auto
qed
ultimately show ?thesis by auto
qged
moreover have Im (h0 0)#£0 using <h0 0#£0> <Re (h0 0) = 0>
using complex.expand by auto
ultimately show ?thesis by linarith
qed
moreover have 2xRe(winding-number h0 0) = Inl — In0
proof —
have V pepath-image h0. 0 < Re p
proof
fix p assume p € path-image h0
then obtain ¢ where #:t€{0..1} p = h0 ¢t unfolding path-image-def by
auto
have 0 < Re p when t=0 V t=1
using that t <Re (h0 0) = 0> <Re (h0 1) = 0» by auto
moreover have 0 < Re p when te{0<..<1}
using that t Re-gt[rule-format, of t| by fastforce
ultimately show 0 < Re p using t(1) by fastforce
ged
from Re-winding-number-half-right[of - 0,simplified, OF this <valid-path h0»
<0 ¢ path-image h0»]
show ?thesis unfolding InI-def In0-def pathfinish-def pathstart-def
by (auto simp add:field-simps)
qed
ultimately show ?thesis by auto
qed

have ?thesis when Vite{0<..<1}. Re (ht) < Re z
proof —
let ?hu= At. z — h t
have 2xRe(winding-number ?hu 0) = jumpF-pathfinish ?hu 0 — jumpF-pathstart
Zhu 0
apply(rule Re-winding-pos)
subgoal using that by auto
subgoal using <Re (h 0) = Re 2> by auto
subgoal using <Re (h 1) = Re 2> by auto
subgoal using <wvalid-path h> valid-path-offset valid-path-uminus-comp
unfolding comp-def by fastforce
subgoal using (z¢path-image hy by (simp add: image-iff path-defs(4))
done
moreover have winding-number ?hu 0 = winding-number h z

116

using winding-number-offset[of h 2|
winding-number-uminus-complof \t. h t— z 0,unfolded comp-def ,simplified]

<valid-path hy <z¢path-image hy by auto
moreover have jumpF-pathfinish ?hu 0 = jumpF-pathfinish h z
unfolding jumpF-pathfinish-def
apply (auto intro!:jumpF-cong eventuallyl)
by (auto simp add:divide-simps algebra-simps)
moreover have jumpF-pathstart ?hu 0 = jumpF-pathstart h z
unfolding jumpF-pathstart-def
apply (auto intro':jumpF-cong eventuallyl)
by (auto simp add:divide-simps algebra-simps)
ultimately show ?thesis by auto
qed
moreover have ?thesis when Vite{0<..<1}. Re (ht) > Re z
proof —
let ?hu= Mt. ht — 2
have 2xRe(winding-number ?hu 0) = jumpF-pathfinish ?hu 0 — jumpF-pathstart
Zhu 0
apply(rule Re-winding-pos)
subgoal using that by auto
subgoal using <Re (h 0) = Re 2> by auto
subgoal using <Re (h 1) = Re 2> by auto
subgoal using <wvalid-path h> valid-path-offset valid-path-uminus-comp
unfolding comp-def by fastforce
subgoal using (z¢path-image h> by simp
done
moreover have winding-number ?hu 0 = winding-number h z
using winding-number-offset|[of h z] <valid-path hy <z¢path-image h) by auto
moreover have jumpF-pathfinish ?hu 0 = jumpF-pathfinish h z
unfolding jumpF-pathfinish-def by auto
moreover have jumpF-pathstart ?hu 0 = jumpF-pathstart h z
unfolding jumpF-pathstart-def by auto
ultimately show ?thesis by auto
qed
moreover have (Vie{0<..<1}. Re (ht) > Re z) V (Vte{0<..<1}. Re (h t)
< Re z)
proof (rule ccontr)
assume — ((Vte{0<..<1}. Rez < Re (ht)) V (Vte{0<..<I1}. Re (ht) <
Re z))
then obtain ¢! t2 where t:t1e{0<..<1} t2€{0<..<1} Re (h t1)<Re z Re
(h t2)>Re z
unfolding path-image-def by auto
have Fulse when t1<t2
proof —
have continuous-on {t1..t2} (At. Re (h t))
using valid-path-imp-path[OF <valid-path hy] t unfolding path-def
by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-
ous-on-subset

117

eucl-less-le-not-le greaterThanLess Than-iff)
then obtain ¢’ where t":.t'>t1 t'<t2 Re (h t') = Re z
using IVT'[of At. Re (ht) t1 - t2] t <t1<t2) by auto
then have t'€{0<..<1} using t by auto
then have Re (h t') # Re z using Re-neq by auto
then show Fulse using «Re (h t') = Re 2> by simp
qed
moreover have Fualse when t1>t2
proof —
have continuous-on {t2..t1} (At. Re (h t))
using valid-path-imp-path[OF <valid-path hy] t unfolding path-def
by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-
ous-on-subset
eucl-less-le-not-le greaterThanLess Than-iff)
then obtain ¢’ where t":.t'<t1 t">t2 Re (h t') = Re z
using IVT2'[of At. Re (h t) t1 - t2] t <t1>t2» by auto
then have t'€{0<..<1} using t by auto
then have Re (h t') # Re z using Re-neq by auto
then show False using (Re (h t') = Re 2> by simp
qed
ultimately show Fulse by linarith
qed
ultimately show ¢thesis by blast
qed

have indez-ends:cindez-pathE h z = jumpF-pathstart h z — jumpF-pathfinish h z
when Re-neq:Vte{0<..<1}. Re (ht) # Re z and valid-path h for h
proof —
define f where f = (At. Im (ht — 2) / Re (h t — 2))
define Ri where Ri = {z. jumpF [(at-right z) 2 0N 0 < x ANz < 1}
define Le where Le = {z. jumpF f (at-leftx) # 0 N0 <z Az < 1}
have path h using <valid-path hy valid-path-imp-path by auto
have jumpF-eq0: jumpF f (at-left) = 0 jumpF f (at-right £) = 0 when
ze{0<..<1} for x
proof —
have Re (h z) # Re z
using «Vte{0<..<1}. Re (ht) # Re 2> that by blast
then have isCont f x
unfolding f-def using continuous-on-interior|OF <path h)[unfolded path-def]]
that
by (auto introl: continuous-intros isCont-Im isCont-Re)
then show jumpF f (at-left ©) = 0 jumpF f (at-right x) = 0
unfolding continuous-at-split by (auto intro: jumpF-not-infinity)
qed
have cindez-pathE h z = cindexFE 0 1 f
unfolding cindex-pathE-def f-def by simp
also have ... = sum (A\x. jumpF f (at-right z)) Ri — sum (\z. jumpF [(at-left
x)) Le
unfolding cindexE-def Ri-def Le-def by auto

118

also have ... = jumpF f (at-right 0) — jumpF f (at-left 1)
proof —
have sum (Az. jumpF f (at-right x)) Ri = jumpF f (at-right 0)
proof (cases jumpF f (at-right 0) = 0
case True
hence Fulse if x € Ri for z using that
by (cases x = 0) (auto simp: jumpF-eq0 Ri-def)
hence Ri = {} by blast
then show ?thesis using True by auto
next
case Fulse
hence z € Ri <— z = 0 for z using that
by (cases x = 0) (auto simp: jumpF-eq0 Ri-def)
hence Ri = {0} by blast
then show ?thesis by auto
qed
moreover have sum (Az. jumpF f (at-left x)) Le = jumpF f (at-left 1)
proof (cases jumpF f (at-left 1) = 0)
case True
then have Le = {}
unfolding Le-def using jumpF-eq0(1) greaterThanLessThan-iff by
fastforce
then show ?thesis using True by auto
next
case Fulse
then have Le = {1}
unfolding Le-def using jumpF-eq0(1) greaterThanLessThan-iff by

fastforce
then show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
also have ... = jumpF-pathstart h z — jumpF-pathfinish h z

unfolding jumpF-pathstart-def jumpF-pathfinish-def f-def by simp
finally show ?thesis .
qed

have ?case when s=0
proof —
have 2 x Re (winding-number g z) = jumpF-pathfinish g z — jumpF-pathstart
gz
apply (rule Re-winding)
using subNEq that by auto
moreover have cinder-pathE g z = jumpF-pathstart g z — jumpF-pathfinish g

apply (rule indez-ends)
using subNFEq that by auto
ultimately show ?thesis by auto
qed

119

moreover have ?case when s#£0
proof —
define g1 where g1 = subpath 0 s g
define g2 where g2 = subpath s 1 g
have path g s>0
using valid-path-imp-path[OF <valid-path ¢] that <s€{0..<1}> by auto
have 2 % Re (winding-number g z) = 2xRe (winding-number g1 z) + 2xRe
(winding-number g2 z)
apply (subst winding-number-subpath-combine[OF <path ¢ <z¢path-image
gr,0f 0s 1
,simplified,symmetric])
using (s€{0..<1}> unfolding gI-def g2-def by auto

also have ... = — cindex-pathE g1 z — cindez-pathE g2 z
proof —
have 2xRe (winding-number g1 z) = — cindez-pathE g1 z

unfolding g1-def
apply (rule subNEq.hyps(5))
subgoal using subNEq.hyps(1) subNEq.prems(1) valid-path-subpath by
fastforce
subgoal by (meson Path-Connected.path-image-subpath-subset atLeastAt-
Most-iff
atLeastLess Than-iff less-eq-real-def subNEq(7) subNEq.hyps(1) sub-
NEq.prems(1)
subsetCFE valid-path-imp-path zero-le-one)

subgoal by (metis Groups.add-ac(2) add-0-left diff-zero mult.right-neutral
subNEq(2)
subNEq(9) subpath-def)
subgoal by (simp add: subNEq.prems(4) subpath-def)
done
moreover have 2xRe (winding-number g2 z) = — cindez-pathE g2 z
proof —
have x:Vte{0<..<1}. Re (g2 t) # Re z
proof
fix t::real assume ¢ € {0<..<1}
define ¢’ where t'=(1 — s) x t + s
have t'e{s<..<1} unfolding t’-def using «sc{0..<1}> <t € {0<..<1}
apply (auto simp add:algebra-simps)
by (sos ((((A<0 x (A<1 % A<2)) * R<1) + ((A<=1 * (A<1 % R<1))
« (R<1 + [1]2)))))
then have Re (g t') # Re z using «Vt€{s<..<I}. Re (g t) # Re z» by
auto
then show Re (g2 t) # Re z unfolding g¢2-def subpath-def t’-def by auto
qged
have 2xRe (winding-number g2 z) = jumpF-pathfinish g2 z — jumpF-pathstart
g2 z
apply (rule Re-winding[OF «])
subgoal by (metis add.commute add.right-neutral g2-def mult-zero-right
subNEq.hyps(2)
subpath-def that)

120

subgoal by (simp add: <g2 = subpath s 1 ¢» subNEq.prems(8) subpath-def)
subgoal using ¢2-def subNEq.hyps(1) subNEq.prems(1) valid-path-subpath
by fastforce
subgoal by (metis (no-types, opaque-lifting) Path-Connected.path-image-subpath-subset

<path ¢> atLeastAtMost-iff atLeastLessThan-iff g2-def less-eq-real-def
subNEq.hyps(1)
subNEq.prems(2) subsetCE zero-le-one)
done
moreover have cindex-pathE g2 z = jumpF-pathstart g2 z — jumpF-pathfinish
92 z
apply (rule indez-ends|OF x])
using ¢2-def subNEq.hyps(1) subNEq.prems(1) valid-path-subpath by
fastforce
ultimately show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
also have ... = — cindez-pathFE g z
proof —
have finite-ReZ-segments g z
unfolding finite- ReZ-segments-def
apply (rule finite-Psegments.insertl-2[of s|)
subgoal using <s € {0..<1}> by auto
subgoal using «<s = 0 V Re (g s) = Re 2> by auto
subgoal using Vte{s<..<I1}. Re (g t) # Re 2> by auto
subgoal
proof —
have finite-Psegments (At. Re (g (s x t)) = Re z) 0 1
using «finite-ReZ-segments (subpath 0 s g) 2
unfolding subpath-def finite-ReZ-segments-def by auto
from finite-Psegments-pos-linear[of - 1/s 0 0 s,simplified, OF this)]
show finite-Psegments (At. Re (gt — z) = 0) 0's
using ¢s>0)> unfolding comp-def by auto
qed
done
then show ?thesis
using cindex-pathE-subpath-combine[OF - <path g>,of z 0 s 1,folded g1-def
g2-def ,simplified]
«se{0..<1}» by auto
qed
finally show ?thesis .
qed
ultimately show ?case by auto
qed

theorem winding-number-cindex-pathE:

fixes g::real = complex
assumes finite-ReZ-segments g z and wvalid-path g z ¢ path-image g and

121

loop: pathfinish g = pathstart g
shows winding-number g z = — cindex-pathE g z | 2
proof (rule finite-ReZ-segment-cases|OF assms(1)])
fix s assume s € {0..<1} s=0V Re(gs) = Re z
and const:Vte{s<..<1}. Re (g t) = Re z
and finite: finite-ReZ-segments (subpath 0 s g) z
have Re (g 1) = Re z
apply(rule continuous-constant-on-closure[of {s<..<1} At. Re(g t)])
subgoal using valid-path-imp-path|OF <valid-path g>,unfolded path-def] <s€{0..<1}»
by (auto intro!:continuous-intros continuous-Re elim:continuous-on-subset)
subgoal using const by auto
subgoal using <s€{0..<1}» by auto

done
moreover then have Re (g 0) = Re z using loop unfolding path-defs by auto
ultimately have 2 x Re (winding-number g z) = — cindez-pathE g z

using winding-number-cindez-pathE-auz|of g z] assms(1—3) by auto
moreover have winding-number g z € Z
using integer-winding-number| OF - loop <z¢ path-image ¢] valid-path-imp-path[OF
<valid-path ¢»]
by auto
ultimately show winding-number g z = — cindex-pathE g 2z | 2
by (metis add.right-neutral complez-eq complex-is-Int-iff mult-zero-right
nonzero-mult-div-cancel-left of-real-0 zero-neg-numeral)
next
fix s assume s € {0..<1} s=0V Re (gs) = Re z
and Re-neq:Vte{s<..<I1}. Re (g t) # Re z
and finite: finite-ReZ-segments (subpath 0 s g) z
have path g using <valid-path g) valid-path-imp-path by auto

let ?goal = 2 * Re (winding-number g z) = — cindex-pathE g z
have ?goal when s=0
proof —

have indez-ends:cindex-pathE h z = jumpF-pathstart h z — jumpF-pathfinish h

when Re-neq:Vte{0<..<1}. Re (h t) # Re z and valid-path h for h
proof —
define f where f = (A\t. Im (ht — 2) / Re (h t — 2))
define Ri where Ri = {z. jumpF f (at-right x) # 0 N 0 <z Az < 1}
define Le where Le = {z. jumpF f (at-leftz) # 0 N0 <z ANz <1}
have path h using <valid-path h) valid-path-imp-path by auto
have jumpF-eq0: jumpF f (at-left ©) = 0 jumpF f (at-right) = 0 when
ze{0<..<1} for z
proof —
have Re (h x) # Re 2
using «Vte{0<..<1}. Re (h t) # Re z> that by blast
then have isCont f x
unfolding f-def using continuous-on-interior|OF <path h)[unfolded
path-def]] that
by (auto intro!: continuous-intros isCont-Im isCont-Re)
then show jumpF f (at-left x) = 0 jumpF f (at-right) = 0

122

unfolding continuous-at-split by (auto intro: jumpF-not-infinity)
qed
have cindez-pathE h z = cindexE 0 1 f
unfolding cindex-pathE-def f-def by simp
also have ... = sum (Az. jumpF f (at-right x)) Ri — sum (\z. jumpF f (at-left
x)) Le
unfolding cindexE-def Ri-def Le-def by auto
also have ... = jumpF f (at-right 0) — jumpF f (at-left 1)
proof —
have sum (Az. jumpF f (at-right x)) Ri = jumpF f (at-right 0)
proof (cases jumpF f (at-right 0) = 0)
case True
hence Fulse if © € Ri for x using that
by (cases x = 0) (auto simp: jumpF-eq0 Ri-def)
hence Ri = {} by blast
then show ?thesis using True by auto
next
case Fulse
hence z € Ri +— z = 0 for z using that
by (cases x = 0) (auto simp: jumpF-eq0 Ri-def)
then have Ri = {0} by blast
then show ?thesis by auto
qged
moreover have sum (Az. jumpF f (at-left z)) Le = jumpF' [(at-left 1)
proof (cases jumpF f (at-left 1) = 0)
case True
then have Le = {}
unfolding Le-def using jumpF-eq0(1) greaterThanLessThan-iff by
fastforce
then show #?thesis using True by auto
next
case Fulse
then have Le = {1}
unfolding Le-def using jumpF-eq0(1) greaterThanLessThan-iff by

fastforce
then show %thesis by auto
qged
ultimately show ?thesis by auto
qed
also have ... = jumpF-pathstart h z — jumpF-pathfinish h z

unfolding jumpF-pathstart-def jumpF-pathfinish-def f-def by simp
finally show ?thesis .
qed
define fI where fI=(\t. Im (g t — 2))
define fR where fR=(At. Re (g t — 2))
have fI: (fI —— fI 0) (at-right 0) (fIl —— fI 1) (at-left 1)
proof —
have continuous (at-right 0) fI
apply (rule continuous-on-at-right[of - 1])

123

using «path ¢» unfolding fI-def path-def by (auto intro:continuous-intros)
then show (fI —— fI 0) (at-right 0) by (simp add: continuous-within)
next
have continuous (at-left 1) fI
apply (rule continuous-on-at-left[of 0])
using «path ¢» unfolding fI-def path-def by (auto intro:continuous-intros)
then show (fI —— fI 1) (at-left 1) by (simp add: continuous-within)
qed
have fR: (fR —— 0) (at-right 0) (fR —— 0) (at-left 1) when Re (g 0) =
Re z
proof —
have continuous (at-right 0) fR
apply (rule continuous-on-at-right[of - 1])
using <path ¢» unfolding fR-def path-def by (auto intro:continuous-intros)

then show (fR —— 0) (at-right 0) using that unfolding fR-def by (simp
add: continuous-within)
next
have continuous (at-left 1) fR
apply (rule continuous-on-at-left[of 0])
using ¢path ¢» unfolding fR-def path-def by (auto intro:continuous-intros)

then show (fR —— 0) (at-left 1)
using that loop unfolding fR-def path-defs by (simp add: continuous-within)
qed
have (Vte{0<..<1}. Re (gt) > Re z) V (Vte{0<..<1}. Re (g t) < Re z)
proof (rule ccontr)
assume - ((Vie{0<..<1}. Rez < Re (g t)) V (Vte{0<..<1}. Re (g t) <
Re z))
then obtain ¢1 t2 where t:t1€{0<..<1} t2€{0<..<1} Re (g t1)<Re z Re
(g t2)>Re z
unfolding path-image-def by auto
have Fulse when t1<t2
proof —
have continuous-on {t1..t2} (At. Re (g t))
using valid-path-imp-path[OF <valid-path ¢»] t unfolding path-def
by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-
ous-on-subset
eucl-less-le-not-le greaterThanLess Than-iff)
then obtain ¢’ where t":.t'>¢1 t'<t2 Re (g t') = Re z
using IVT'[of At. Re (g t) t1 - t2] t <t1<t2» by auto
then have t'€{0<..<1} using t by auto
then have Re (g t’) # Re z using Re-neq <s=0) by auto
then show Fulse using <Re (g t') = Re 2> by simp
qed
moreover have Fulse when t1>t2
proof —
have continuous-on {t2..t1} (At. Re (g t))
using valid-path-imp-path[OF <valid-path ¢>] ¢t unfolding path-def

124

by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-
ous-on-subset
eucl-less-le-not-le greaterThanLess Than-iff)
then obtain ¢’ where t":.t'<t1 t">t2 Re (g t') = Re z
using IVT2'[of At. Re (g t) t1 - t2] t <t1>t2) by auto
then have t'€{0<..<1} using t by auto
then have Re (g t') # Re z using Re-neq <s=0> by auto
then show Fulse using (Re (g t') = Re 2> by simp
qed
ultimately show Fualse by linarith
qed
moreover have ?thesis when Re-pos:Vte{0<..<1}. Re (g t) > Re z
proof —
have Re (winding-number g z) = 0
proof —
have V pepath-image g. Re z < Re p
proof
fix p assume p € path-image g
then obtain ¢ where 0<t t<1 p = g ¢t unfolding path-image-def by auto
have Re z < Re (g t)
apply (rule continuous-ge-on-closure[of {0<..<1} At. Re (g t) t Re
z,simplified))
subgoal using valid-path-imp-path[OF <valid-path g),unfolded path-def]
by (auto intro:continuous-intros)
subgoal using «0<t» «t<1» by auto
subgoal for z using that[rule-format,of x] by auto
done
then show Re z < Re p using <p = g t» by auto
qed
from Re-winding-number-half-right| OF this <valid-path ¢> <z¢path-image ¢]
loop
show ?thesis by auto
qed
moreover have cindex-pathE g z = 0
proof —
have cindez-pathE g z = jumpF-pathstart g z — jumpF-pathfinish g z
using index-ends[OF - <valid-path ¢3] Re-neq <s=0> by auto
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
0) # Re z
proof —
have jumpF-pathstart g z = 0
using jumpF-pathstart-eq-0|OF <path ¢] that unfolding path-defs by
auto
moreover have jumpF-pathfinish g z=0
using jumpF-pathfinish-eq-0[OF <path ¢>] that loop unfolding path-defs
by auto
ultimately show ?thesis by auto
qged
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g

125

0) = Re z
proof —

have [simpl:(fR has-sgnz 1) (at-right 0)
unfolding fR-def has-sgnz-def eventually-at-right
apply (rule exI[where z=1])
using Re-pos by auto

have [simp]:(fR has-sgnz 1) (at-left 1)
unfolding fR-def has-sgna-def eventually-at-left
apply (rule exI[where z=0])
using Re-pos by auto

have fI 00

proof (rule ccontr)
assume - fI 0 # 0
then have g 0 =z using (Re (g 0) = Re 2>

unfolding fI-def by (simp add: complex.expand)

then show Fulse using <z ¢ path-image ¢» unfolding path-image-def

by auto
qed
moreover have ?thesis when fI 0>0
proof —
have jumpF-pathstart g 2 = 1/2
proof —

have (LIM z at-right 0. flx / fR z :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0])
using that fI fR[OF <Re (g 0) = Re 2] by simp-all
then show #“thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto
qed
moreover have jumpF-pathfinish g z = 1/2
proof —
have fI 1>0 using loop that unfolding path-defs fI-def by auto
then have (LIM z at-left 1. fTx | fR x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1])
using that fI fR{OF <Re (g 0) = Re 2] by simp-all
then show ?thesis unfolding jumpF-pathfinish-def fl-def fR-def
JumpF-def by auto
qed
ultimately show ¢thesis by simp
qed
moreover have ?thesis when fI 0<0
proof —
have jumpF-pathstart g z = — 1/2
proof —
have (LIM z at-right 0. fl = | fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0])
using that fI fR[OF <Re (g 0) = Re 2)] by simp-all
then show ?thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto
qed

126

moreover have jumpF-pathfinish g z = — 1/2
proof —
have fI 1 <0 using loop that unfolding path-defs fI-def by auto
then have (LIM z at-left 1. flx | fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1])
using that fI fR{OF <Re (g 0) = Re 23] by simp-all
then show ?thesis unfolding jumpF-pathfinish-def fl-def fR-def
jumpF-def by auto

qed
ultimately show ?thesis by simp
qed
ultimately show ¢thesis by linarith
qged
ultimately show ?thesis by auto
qed
ultimately show %thesis by auto
qed
moreover have ?thesis when Re-neg:Vt€{0<..<1}. Re (g t) < Re z
proof —
have Re (winding-number g z) = 0
proof —
have V pepath-image g. Re z > Re p
proof

fix p assume p € path-image g
then obtain ¢t where 0<t t<1 p = g ¢t unfolding path-image-def by auto
have Re z > Re (g t)
apply (rule continuous-le-on-closure[of {0<..<1} At. Re (g t) t Re
z,simplified))
subgoal using valid-path-imp-path[OF <valid-path g),unfolded path-def]
by (auto intro:continuous-intros)
subgoal using «0<t» «(t<1» by auto
subgoal for z using that[rule-format,of x] by auto

done
then show Re z > Re p using <p = g t» by auto
qed
from Re-winding-number-half-left[OF this <valid-path ¢> <z¢path-image ¢]
loop
show ?thesis by auto
qed
moreover have cindex-pathE g z = 0
proof —
have cindez-pathE g z = jumpF-pathstart g z — jumpF-pathfinish g z
using index-ends[OF - <valid-path ¢3] Re-neq <s=0> by auto
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
0) # Re z
proof —
have jumpF-pathstart g z = 0
using jumpF-pathstart-eq-0|OF <path ¢] that unfolding path-defs by
auto

127

moreover have jumpF-pathfinish g z=0
using jumpF-pathfinish-eq-0[OF <path ¢>] that loop unfolding path-defs

by auto
ultimately show ?thesis by auto
qged
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
0) = Re z
proof —

have [simpl:(fR has-sgnz — 1) (at-right 0)
unfolding fR-def has-sgnz-def eventually-at-right
apply (rule exI[where z=1])
using Re-neg by auto

have [simp]:(fR has-sgnz — 1) (at-left 1)
unfolding fR-def has-sgnz-def eventually-at-left
apply (rule exI[where z=0])
using Re-neg by auto

have fI 00

proof (rule ccontr)
assume — fI 0 # 0
then have g 0 =z using <Re (g 0) = Re »»

unfolding fI-def by (simp add: complex.expand)
then show Fulse using <z ¢ path-image ¢» unfolding path-image-def

by auto
qed
moreover have ?thesis when fI 0>0
proof —
have jumpF-pathstart g 2 = — 1/2
proof —

have (LIM z at-right 0. fl z / fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0])
using that fI fR[OF <Re (g 0) = Re 2)] by simp-all
then show ?thesis unfolding jumpF-pathstart-def fl-def fR-def
jumpF-def by auto
qed
moreover have jumpF-pathfinish g z = — 1/2
proof —
have fI 1>0 using loop that unfolding path-defs fI-def by auto
then have (LIM z at-left 1. fTx | fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1])
using that fI fR[OF <Re (g 0) = Re 2] by simp-all
then show ?thesis unfolding jumpF-pathfinish-def fI-def fR-def
jumpF-def by auto
qed
ultimately show ¢thesis by simp
qed
moreover have ?thesis when fI 0<0
proof —
have jumpF-pathstart g z = 1/2
proof —

128

have (LIM z at-right 0. fl z / fR x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0])
using that fI fR[OF <Re (g 0) = Re 2] by simp-all
then show ?thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto
qed
moreover have jumpF-pathfinish g z = 1/2
proof —
have fI 1<0 using loop that unfolding path-defs fI-def by auto
then have (LIM z at-left 1. flx | fR x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1])
using that fI fR[OF <Re (g 0) = Re 2] by simp-all
then show ?thesis unfolding jumpF-pathfinish-def fl-def fR-def
JumpF-def by auto
qed
ultimately show ¢thesis by simp
qed
ultimately show ¢thesis by linarith
qed
ultimately show ?thesis by auto
qed
ultimately show %thesis by auto
qed
ultimately show ?thesis by auto
qed
moreover have ?goal when s#£(
proof —
have Re (g s) = Re z using <s = 0 V Re (g s) = Re 2z that by auto
define ¢’ where g’ = shiftpath s g
have 2 x Re (winding-number g’ z) = — cindez-pathE g’ z
proof (rule winding-number-cindez-pathE-auz)
show Re (¢’ 1) = Re z Re (¢’ 0) = Re 2
using (Re (g s) = Re 2> «s€{0..<1}> <s£0»
unfolding ¢’-def shiftpath-def by simp-all
show wvalid-path g’
using valid-path-shiftpath| OF <valid-path g» loop,of s,folded g'-def] <s€{0..<1}
by auto
show z ¢ path-image g’
using s € {0..<1}) assms(3) g'-def loop path-image-shiftpath by fastforce
show finite-ReZ-segments g’ 2
using finite- ReZ-segments-shiftpah| OF «finite-ReZ-segments g 2> - <path g
loop] «<se{0..<1}>
unfolding ¢’-def by auto
qed
moreover have winding-number ¢’ z = winding-number g z
unfolding g’-def
apply (rule winding-number-shiftpath|OF <path ¢» <z ¢ path-image g» loop])
using «s€{0..<1}> by auto
moreover have cindex-pathE g’ z = cindex-pathE g z

129

unfolding g’-def
apply (rule cindex-pathE-shiftpath[OF «finite-ReZ-segments g z» - <path g»
loop))
using «s€{0..<1}» by auto
ultimately show ?thesis by auto
qed
ultimately have ?goal by auto
moreover have winding-number g z € Z
using integer-winding-number[OF - loop <z¢ path-image ¢»] valid-path-imp-path[OF
walid-path ¢]
by auto
ultimately show winding-number g z = — cindex-pathE g z | 2
by (metis add.right-neutral complez-eq complez-is-Int-iff mult-zero-right
nonzero-mult-div-cancel-left of-real-0 zero-neg-numeral)
qed

REMARK: The usual statement of Cauchy’s Index theorem (i.e. An-
alytic Theory of Polynomials (2002): Theorem 11.1.3) is about the equal-
ity between the number of polynomial roots and the Cauchy index, which
is the joint application of [finite-ReZ-segments ?q ?z; valid-path %g; ?z ¢
path-image ?g; pathfinish ?g = pathstart ?g9] = winding-number ?g ?z =
complex-of-real (— cindex-pathE ?g ?z / 2) and [open ?S; connected ?S; ?f
holomorphic-on 2S5 — ?poles; ?h holomorphic-on 2S; valid-path ?g; pathfin-
ish 29 = pathstart ?g; path-image g C 25 — {w € 2S. o%fw =0V w €
Zpoles}; ¥V z. z ¢ 25 — winding-number ?q z = 0; finite {w € 25. ?f w
= 0 V w € ?poles}; ¥V pe?S N Zpoles. is-pole ?f p] = contour-integral ?g
(Az. deriv ?f x % ?h x | ?f) = complex-of-real (2 * pi) x 1 * (>, pe{w €
2S. 2fw =0V w € ?poles}. winding-number ?g p x ?h p * complezx-of-int
(zorder 2f p)).

end

6 Evaluate winding numbers by calculating Cauchy
indices

theory Winding-Number-Eval imports
Cauchy-Index-Theorem
HOL— Eisbach. Eisbach-Tools

begin

6.1 Misc

lemma not-on-closed-segmentI:
fixes z::'a::euclidean-space
assumes norm (z — a) xg (b — z) # norm (b — z) xr (z — a)
shows z ¢ closed-segment a b
using assms by (auto simp add:between-mem-segment|[symmetric] between-norm)

130

lemma not-on-closed-segmentI-complex:
fixes z::complex
assumes (Re b — Re z) x (Im z — Im a) # (Im b — Im z) x (Re z — Re a)
shows z ¢ closed-segment a b
proof (cases z#a A z#£b)
case True
then have cmod (z — a)#0 cmod (b — 2)#0 by auto
then have (Re b — Re z) x (Imz — Im a) = (Im b — Im z) x (Re z — Re a)
when
emod (z — a) x (Re b — Re z) = cmod (b — z) x (Re 2 — Re a)
emod (z — a) x (Imb — Im z) = cmod (b — 2) x (Im z — Im a)
using that by algebra
then show ?thesis using assms
apply (intro not-on-closed-segment)
by (auto simp add:scaleR-complex.ctr simp del: Complez-eq)
next
case Fulse
then have (Re b — Re z) * (Imz — Im a) = (Im b — Im 2) x (Re z — Re a)
by auto
then have Fulse using assms by auto
then show ?thesis by auto
qged

6.2 finite intersection with the two axes

definition finite-azes-cross::(real = complex) = complex = bool where
finite-azes-cross g z = finite {t. (Re (9t—2) =0V Im (gt—2) =0) AN 0 <t A
t<1}

lemma finite-cross-intros:
[Re a#Re z V Re b #Re z; Im a#Im z V Im b#Im z]=>finite-axes-cross (linepath
ab)z
[st # tt; r # 0] = finite-azes-cross (part-circlepath 20 r st tt) z
[finite-axes-cross g1 z;finite-axes-cross g2 z]| = finite-axes-cross (g1 +++92) z
proof —
assume asm:Re a#Re z V Re b #Re z Im a#Im z V Im b#Im z
let 251={t. Re (linepath a bt—2) =0 N0 <t ANt <1}
and 252={t. Im (linepath a bt—2) = 0 N 0 <t Nt < 1}
have finite 751
using linepath-half-finite-inter[of a Complex 1 0 Re z b] asm(1)
by (auto simp add:inner-complex-def)
moreover have finite 952
using linepath-half-finite-inter[of a Complez 0 1 Im z b] asm(2)
by (auto simp add:inner-complez-def)
moreover have {t. (Re (linepath a b t—z) = 0 V Im (linepath a b t—z) = 0) A
0<tAt<1}
= 9251 U 252
by fast
ultimately show finite-azes-cross (linepath a b) z

131

unfolding finite-azes-cross-def by force
next
assume asm: st #tt r#£0
let 2S1={t. Re (part-circlepath 20 r st tt t—z) = 0 AN 0 < t ANt < 1}
and ?52={t. Im (part-circlepath z0 r st tt t—z) = 0 N 0 < t ANt < 1}
have finite 251
using part-circlepath-half-finite-inter|of st tt r Complex 1 0 20 Re z| asm
by (auto simp add:inner-complez-def Complex-eq-0)
moreover have finite 252
using part-circlepath-half-finite-inter|of st tt r Complex 0 1 z0 Im z] asm
by (auto simp add:inner-complex-def Complex-eq-0)
moreover have {t. (Re (part-circlepath 20 r st tt t—z) = 0
V Im (part-circlepath 20 v st tt t—z) = 0) N 0 < t ANt < 1} = 251 U 252
by fast
ultimately show finite-azxes-cross (part-circlepath 20 r st tt) z
unfolding finite-azes-cross-def by auto
next
assume asm:finite-axes-cross gl z finite-axes-cross g2 z
let ?g1R={¢. Re (91 t—2)=0AN0<tANt< 1}
and %g11={t. Im (g1 t—2) = 0 N0 <t ANt < 1}
and ?g2R={t. Re (¢2t—2)=0N0<tANt< 1}
and 2g2I={t. Im (g2t—2) =0 N0 < tANt< 1}
have finite ?g1R finite ?g11
proof —
have {t. (Re (g1t —2) =0V Im (glt—2)=0)AN0<tANt<1}= %IR
U g1l
by force
then have finite (?g1R U ?¢11)
using asm(1) unfolding finite-azes-cross-def by auto
then show finite ?g1R finite ?g11 by blast+
qed
have finite ?92R finite 2921
proof —
have {t. (Re (g2t —2) =0V Im (g2t —2)=0) N0 <t ANt <1} = %2R
U 2g2I
by force
then have finite (?g2R U 292I)
using asm(2) unfolding finite-azes-cross-def by auto
then show finite ?g2R finite 2921 by blast+
qed
let 251 = {t. Re ((91 +++ g2)t —2)=0AN0<tANt< 1}
and 252 = {t. Im ((91 +++ g2)t —2)=0AN0 <t ANt <1}
have finite 251
using finite-half-joinpaths-inter[of g1 Complex 1 0 Re z g2,simplified]
finite 2g1R> <finite 2g2R)»
by (auto simp add:inner-complez-def)
moreover have finite 252
using finite-half-joinpaths-inter|of g1 Complex 0 1 Im z ¢2,simplified)
<finite 2g11> <finite 721>

132

by (auto simp add:inner-complex-def)
moreover have {t. (Re ((91 +++ g2)t — 2z) =0V Im ((91 +++ g2) t — 2)
—O)ANO<tAL< I}
= 951 U 252
by force
ultimately show finite-azes-cross (g1 +++ g2) =z
unfolding finite-azxes-cross-def
by auto
qed

lemma cindex-path-joinpaths:
assumes finite-azes-cross g1 z finite-axes-cross g2 z
and path g1 path g2 pathfinish g1 = pathstart g2 pathfinish g1+#z
shows cindez-path (g1+++g2) z = cindex-path g1 z + jumpF-pathstart g2 z
— jumpF-pathfinish g1 z + cindex-path g2 z
proof —
define h12 where h12 = (At. Im ((g1+++¢2) t — 2) / Re ((g1+++g2) t —
2)
let 2h =Xg. A\t. Im (gt — 2) / Re (gt — 2)
have cindex-path (g1+++g2) z = cindex 0 1 h12
unfolding cindex-path-def h12-def by simp
also have ... = cindex 0 (1/2) h12 + jump h12 (1/2) + cindex (1/2) 1 h12
proof (rule cindex-combine)
have finite-azes-cross (¢1+++9¢2) z using assms by (auto intro:finite-cross-intros)
then have finite {t. Re ((g14+++g2) t — 2) = 0 N 0<t A t<1}
unfolding finite-axes-cross-def by (auto elim:rev-finite-subset)
moreover have jump h12t = 0 when Re ((g1 +++ g2)t —2) £ 00 < tt
< 1 fort
apply (rule jump-Im-divide-Re-0[of At. (g1 +++g2) t— z,folded h12-def,OF
- that])
using assms by (auto intro:path-offset)
ultimately show finite {z. jump h12x # 0N 0O <z ANz <1}
apply (elim rev-finite-subset)

by auto

qged auto

also have ... = cindex-path g1 z + jumpF-pathstart g2 z
— jumpF-pathfinish g1 z + cindex-path g2 z

proof —

have jump h12 (1/2) = jumpF-pathstart g2 z — jumpF-pathfinish g1 z
proof —
have jump h12 (1 / 2) = jumpF hi12 (at-right (1 / 2)) — jumpF h12 (at-left
(1/2)
proof (cases Re ((g1+++¢2) (1/2) — 2z) = 0)
case Fulse
have jump h12 (1 / 2) =0
unfolding hi2-def
apply (rule jump-Im-divide-Re-0)
using assms False by (auto intro:path-offset)
moreover have jumpF h12 (at-right (1/2)) = 0

133

unfolding hi2-def
apply (intro jumpF-im-divide-Re-0)
subgoal using assms by (auto intro:path-offset)
subgoal using assms(5—6) False unfolding joinpaths-def pathfinish-def
pathstart-def by auto
by auto
moreover have jumpF h12 (at-left (1/2)) = 0
unfolding hi2-def
apply (intro jumpF-im-divide-Re-0)
subgoal using assms by (auto intro:path-offset)
subgoal using assms(5—6) False unfolding joinpaths-def pathfinish-def
pathstart-def by auto
by auto
ultimately show ?thesis by auto
next
case True
then have Im ((g1 +++¢2) (1 / 2) — 2) # 0
using assms(5,6)
by (metis (no-types, opaque-lifting) Re-divide-numeral complez-Re-numeral
complez-eq
divide-self-if joinpaths-def minus-complex.simps mult.commute
mult.left-neutral
numeral-One pathfinish-def pathstart-def right-minus-eq times-divide-eq-left
zero-neg-numeral)
show ?thesis
proof (rule jump-jumpF|of - h12 sgnxz h12 (at-left (1/2)) sgnx h12 (at-right
(1/2))
define g where g=(At. (g1 +++ ¢g2) t — 2)
have hi2-def:h12 = (At. Im(g t)/Re(g t)) unfolding hi12-def g-def by
stmp
have path g using assms unfolding g-def by (auto introl:path-offset)
then have isCont (At. Im (g t)) (I / 2) isCont (At. Re (g t)) (1 / 2)
unfolding path-def by (auto intro!:continuous-intros continuous-on-interior)
moreover have Im (g (1/2)) #0
using m ((g1 +++ ¢2) (1 / 2) — z) # 0> unfolding g-def .
ultimately show isCont (inverse o h12) (1 / 2)
unfolding hi12-def comp-def
by (auto introl: continuous-intros)

define [where | = sgnz h12 (at-left (1/2))
define r where r = sgnz h12 (at-right (1/2))
have x:continuous-on ({0<..<1}— {t. hiI2t=0AN0 <t ANt < 1}) h12
using <path g>[unfolded path-def] unfolding h12-def
apply (auto introl: continuous-intros)
by (auto elim:continuous-on-subset)
have sx:finite {t. h12t=0AN0 <t ANt < 1}
proof —
have finite-azes-cross (g1 +++ g2) z
using assms(1,2) finite-cross-intros(3)[of g1 z g2] by auto

134

then have finite {t. (Re (9t) =0V Im(gt)=0)N0<tANt <1}
unfolding finite-azes-cross-def g-def
apply (elim rev-finite-subset)
by auto
then show ?thesis unfolding hi2-def
by (simp add:disj-commute)
qed
have h12 sgnz-able at-left (1/2) 1 # 0 h12 sgnz-able at-right (1/2) r # 0
unfolding I-def r-def using finite-sgna-at-left-at-right|OF sx % xx]
by auto
then show (h12 has-sgnz 1) (at-left (1/2)) (h12 has-sgnz r) (at-right
(1/2)) I£0 r#0
unfolding [-def r-def by (auto elim:sgna-able-sgnz)
qed
qed
moreover have jumpF h12 (at-right (1/2)) = jumpF-pathstart g2 z
proof —
have jumpF hi12 (at-right (1 / 2)) = jumpF (h12 o (Az.z / 2 + 1/ 2))
(at-right 0)
using jumpF-linear-complof 1/2 h12 1/2 0,simplified] by simp
also have jumpF (h12 o (Az.z / 2 + 1 / 2)) (at-right 0) = jumpF-pathstart
92 z
unfolding hi12-def jumpF-pathstart-def
proof (rule jumpF-cong)
show V p z in at-right 0. (A\t. Im ((g1 +++ g2) t — 2z) / Re ((g1 +++
92) t — z))
oM.z /2+1/2)x=1In(g2x — 2)/ Re (92 — 2)
unfolding cventually-at-right
apply (intro exI[where z=1/2])
unfolding joinpaths-def by auto
qed simp
finally show ?thesis .
qed
moreover have jumpF hi12 (at-left (1 / 2)) = jumpF-pathfinish g1 z
proof —
have jumpF h12 (at-left (1 / 2)) = jumpF (h12 o (Az. z / 2)) (at-left 1)
using jumpF-linear-complof 1/2 h12 0 1,simplified] by simp
also have jumpF (h12 o (Az. z / 2)) (at-left 1) = jumpF-pathfinish g1 z
unfolding hi12-def jumpF-pathfinish-def
proof (rule jumpF-cong)
show Vg zin at-left 1. (At. Im ((g1 +++ ¢2) t — z) / Re ((91 +++
g2) t — 2))
oM.z / 2)x=1Im (gl x— 2)/ Re (g1 z — 2)
unfolding cventually-at-left
apply (intro exI[where z=1/2])
unfolding joinpaths-def by auto
qed simp
finally show ?thesis .
qed

135

ultimately show ?thesis by auto
qed
moreover have cindex 0 (1 / 2) h12 = cindex-path g1 z
proof —
have cindex 0 (1 / 2) h12 = cindex 0 1 (h12 o (\z. z / 2))
using cindez-linear-complof 1/2 0 1 h12 0,simplified,symmetric] .
also have ... = cindex-path g1 z
proof —
let 2g = (At. Im (g1 ¢t — 2)
have x:jump (h12 o (Az. z /
unfolding hi12-def
proof (rule jump-cong)
show V p zin at z. (At. Im ((g1 +++ g2) t — 2) / Re ((g1 +++ g2) t
- 2))

/ Re (g1t — 2))
2)) © = jump ?g x when 0<z z<1 for z

oM.z /2)x=1Im (gl z—2)/ Re (gl z— 2)
unfolding eventually-at joinpaths-def comp-def using that
apply (intro exI[where x=(1—1)/2])
by (auto simp add: dist-norm)
qed simp
then have {z. jump (hi2 0o (Az. 2z / 2)) 2 A0 N0 <z Az <1}
={z. jump gz £ O0N0O<zxANz<Il1}
by auto
then show ?thesis
unfolding cindex-def cindex-path-def
apply (elim sum.cong)
by (auto simp add:*)
qed
finally show ?thesis .
qed
moreover have cindex (1 / 2) 1 h12 = cindez-path g2 z
proof —
have cindex (1 / 2) 1 h12 = cindex 01 (hi2 0 (Nz.z / 2+ 1/ 2))
using cindez-linear-complof 1/2 0 1 h12 1/2,simplified,symmetric] .
also have ... = cindez-path g2 z
proof —
let 2g = (At. Im (g2t — 2) / Re (92t — 2))
have x:jump (h12 o (A\z. x / 2+1/2)) x = jump ?g © when 0<z z<1 for

unfolding hi12-def
proof (rule jump-cong)
show V r zin at z. (At. Im ((g1 +++ g2) t — 2) / Re ((91 +++ g2) ¢
- 2))

oM.z [/ 241/2) x=1Im (g2x — 2) / Re (g2 2 — 2)
unfolding cventually-at joinpaths-def comp-def using that
apply (intro exI[where z=1x/2])
by (auto simp add: dist-norm)
qed simp
then have {z. jump (hi2 0 (Az. z / 2+1/2) s A 0N 0 <z ANz <1}
={z.jump gz AO0NO<zANz<I1}

136

by auto
then show ?thesis
unfolding cindex-def cindex-path-def
apply (elim sum.cong)
by (auto simp add:*)
qed
finally show ?thesis .
qed
ultimately show ?thesis by simp
qged
finally show ?thesis .
qed

6.3 More lemmas related cindex-pathE | jumpF-pathstart | jumpF-pathfinish

lemma cindez-pathE-linepath:
assumes z¢ closed-segment a b
shows cindez-pathE (linepath a b) z = (
let c1 = Re a — Re z;
¢2 = Re b — Re z;
c3=ImaxReb+ RezxImb+ Imzx Rea— Imzx Reb— Imbx
Re a — Re z x Im a;
dl =Ima— Im z
d2=Imb—Imz
inif (c1>0 A c2<0)V (c1<0 A ¢2>0) then
(if ¢3>0 then 1 else —1)
else
(if (c1=0 +— c2#£0) A (c1=0 —d1#£0) A (c2=0 — d2#0) then
if (e1=0 A (c2 >0 +— d1>0))V (c2=0 A (c1 >0 +— d2<0)) then
1/2 else —1/2
else 0))
proof —
define c1 ¢2 where c1=Re a — Re z and c2=Re b — Re z
define dI d2 where di=Im a — Im z and d2=Im b — Im z
let ?g = linepath a b
have ?thesis when = ((c1>0 A ¢2<0) V (c1<0 A ¢2>0))
proof —
have Re a= Re z A Re b=Re 2
when 0<t t<1 and asm:(1—t)xRe a + t x Re b = Re z for t
unfolding cI-def c2-def using that
proof —
have ?thesis when c1<0 c1>0
proof —
have Re a=Re z using that unfolding ci-def by auto
then show ?thesis using <0<t» <t<1)> asm
apply (cases Re b Re z rule:linorder-cases)
apply (auto simp add:field-simps)
done
qed

137

moreover have ?thesis when c1<0 ¢2<0
proof —
have Fulse when c1<0
proof —
have (I — t) *x Rea < (I — t) * Re z
using («t<1» «c1<0> unfolding ci-def by auto
moreover have ¢t x Re b < tx Re z using «t>0» «¢2<0> unfolding c2-def

by auto
ultimately have (1 — t) *x Rea+ t* Reb< (I —t)*x Rez+ t* Rez
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qed
moreover have Fualse when c2<0
proof —

have (I — t) *x Rea < (I — t) * Re z
using «t<1» <cI1<0> unfolding ci-def by auto
moreover have ¢t x Re b < tx Re z using «t>0» «c2<0> unfolding c2-def

by auto
ultimately have (I — t) * Rea+ t+* Reb < (I —t) x Rez + t x Re 2
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qged
ultimately show ?thesis using that unfolding ci-def c2-def by argo
qed
moreover have ?thesis when ¢2<0 ¢2>0
proof —

have Re b=Re z using that unfolding c2-def by auto
then have (I — t) * Re a = (1—t)xRe z using asm by (auto simp
add:field-simps)
then have Re a= Re z using (t<1) by auto
then show ?thesis using <Re b=Re z» by auto
qed
moreover have ?thesis when c1>0 c2>0
proof —
have Fulse when c1>0
proof —
have (I — t) *x Rea > (1 — t) * Re z
using (t<1» <c1>0> unfolding ci1-def by auto
moreover have t x« Re b > tx Re z using <t>0» «c2>0> unfolding c2-def

by auto
ultimately have (I — t) x Rea+ t* Reb> (I —t)*x Rez+ t * Re z
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qed
moreover have Fualse when c2>0
proof —

have (I — t) * Rea > (1 — t) * Re z
using «t<1» <c1>0> unfolding ci-def by auto
moreover have t x« Re b > tx Re z using <t>0» «c2>0> unfolding c2-def

138

by auto
ultimately have (I — t) * Rea+ t+* Reb> (1 —t) x Rez + ¢ x Re z
by auto
thus False using asm by (auto simp add:algebra-simps)
qged
ultimately show ?thesis using that unfolding ci-def c2-def by argo
qed
moreover have c1<0 V ¢2>0c¢1>0 V ¢2<0 using — ((cI1>0 A c2<0) V
(c1<0 A ¢2>0)) by auto
ultimately show ?thesis by fast
qed
then have (Vi. 0<t A t<1 —> Re(linepath a bt — 2) # 0) V (c1=0 A c2=0)

using that unfolding linepath-def c1-def c2-def by auto
moreover have ?thesis when asm:Vt. 0<t A t<1 — Re(linepath a b t — 2)
#* 0
and - (c1=0 A c2=0)
proof —
have cindez-ends: cindex-pathE ?qg z = jumpF-pathstart 2g z — jumpF-pathfinish
%9 z
proof —
define f where f=(\t. Im (linepath a bt — 2) / Re (linepath a b t — 2))
define left where left = {x. jumpF [(at-leftz) # 0 N0 <z ANz < 1}
define right where right = {z. jumpF [(at-right) # 0 AN 0 <z Az <

1}
have jumpF-nz:jumpF f (at-left) = 0 jumpF f (at-right) = 0
when 0<z z<1 for z
proof —
have isCont f x unfolding f-def
using asm|[rule-format,of z| that
by (auto intro!:continuous-intros isCont-Im isCont-Re)
then have continuous (at-left x) f continuous (at-right x) f
using continuous-at-split by blast+
then show jumpF f (at-left x) = 0 jumpF f (at-right =) = 0
using jumpF-not-infinity by auto
qed
have cindex-pathE %9 z = sum (Az. jumpF [(at-right x)) right
— sum (Az. jumpF [(at-left x)) left
unfolding cindex-pathE-def cindexE-def right-def left-def
by (fold f-def ,simp)
moreover have sum (Az. jumpF f (at-right x)) right = jumpF-pathstart ?g
z

proof (cases jumpF f (at-right 0) = 0)
case True
hence Fulse if © € right for x using that
by (cases x = 0) (auto simp: jumpF-nz right-def)
then have right = {} by blast
then show ?thesis
unfolding jumpF-pathstart-def using True

139

apply (fold f-def)
by auto
next
case Fulse
hence z € right +— z = 0 for z using that
by (cases x = 0) (auto simp: jumpF-nz right-def)
then have right = {0} by blast
then show ?thesis
unfolding jumpF-pathstart-def using False
apply (fold f-def)
by auto
qed
moreover have sum (Az. jumpF [(at-left z)) left = jumpF-pathfinish ?g z
proof (cases jumpF f (at-left 1) = 0)
case True
then have left = {}
unfolding left-def using jumpF-nz by force
then show ?thesis
unfolding jumpF-pathfinish-def using True
apply (fold f-def)
by auto
next
case Fulse
then have left = {1}
unfolding left-def using jumpF-nz by force
then show ?thesis
unfolding jumpF-pathfinish-def using Fualse
apply (fold f-def)
by auto
qed
ultimately show ?thesis by auto
qed
moreover have jF-start:jumpF-pathstart ?g z =
(if c1=0 N c2 #0 N d1 #0 then
if 2 >0 <— dl > 0 then 1/2 else —1/2
else
0)
proof —
define f where f=(\t. (Im b — Im a)x t + dI)
define g where g=(\t. (Re b — Re a)x t + c1)
have jump-eq:jumpF-pathstart (linepath a b) z = jumpF (At. ft/gt) (at-right
0)
unfolding jumpF-pathstart-def f-def linepath-def g-def d1-def c1-def
by (auto simp add:algebra-simps)
have ?thesis when — (c1 =0 A ¢2 #0 A dI #0)
proof —
have c2=0 — ¢1#0 using - (c1=0 A ¢2=0)) by auto
moreover have dI =0 — cl1#0
proof (rule ccontr)

140

assume - (dI = 0 — ¢l # 0)
then have a=z unfolding dI-def c1-def by (simp add: complex-eql)
then have ze€path-image (linepath a b) by auto
then show False using «z¢closed-segment a by by auto
qed
moreover have ?thesis when c1#£0
proof —
have jumpF (At. ft/g t) (at-right 0) = 0
apply (rule jumpF-not-infinity)
apply (unfold f-def g-def)
using that by (auto intro!: continuous-intros)
then show ¢thesis using jump-eq using that by auto
qed
ultimately show #thesis using that by blast
qed
moreover have ?thesis when c1=0 c2 #0 d1 #0 c¢2 >0 «— d1 > 0
proof —
have (LIM z at-right 0. fz / g x :> al-top)
proof —
have (f —— d1) (at-right 0)
unfolding f-def by (auto intro!: tendsto-eg-intros)
moreover have (9§ —— 0) (at-right 0)
unfolding g-def using <c1=0> by (auto intro!: tendsto-eg-intros)
moreover have (g has-sgnz sgn d1) (at-right 0)
proof —
have (g has-sgnz sgn (c2—cl)) (at-right 0)
unfolding g-def
apply (rule has-sgnz-derivative-at-right)
subgoal unfolding c2-def c1-def di-def by (auto intro!: deriva-
tive-eg-intros)
subgoal using «c1=0) by auto
subgoal using <c1=0> «c2#0» by auto
done
moreover have sgn (c2—cl) = sgn d1 using that by fastforce
ultimately show ?thesis by auto
qed
ultimately show ?thesis
using filterlim-divide-at-bot-at-top-iff [of f d1 at-right 0 g] <d1#0> by
auto
qed
then have jumpF (\t. ft/g t) (at-right 0) = 1/2 unfolding jumpF-def
by auto
then show ?thesis using that jump-eq by auto

qed
moreover have ?thesis when c1=0c2 #0 dl #0 — ¢c2 >0 +— d1l > 0
proof —

have (LIM z at-right 0. fx / g x :> at-bot)

proof —

have (f —— d1) (at-right 0)

141

unfolding f-def by (auto introl: tendsto-eq-intros)
moreover have (¢ —— 0) (at-right 0)
unfolding g-def using <c1=0> by (auto intro!: tendsto-eg-intros)
moreover have (g has-sgnz — sgn d1) (at-right 0)
proof —
have (g has-sgnz sgn (c2—c1)) (at-right 0)
unfolding g-def
apply (rule has-sgnz-derivative-at-right)
subgoal unfolding c2-def c1-def di-def by (auto introl: deriva-
tive-eg-intros)
subgoal using «c1=0) by auto
subgoal using <c1=0> «c2#0» by auto
done
moreover have sgn (c2—cl) = — sgn d1 using that by fastforce
ultimately show ?thesis by auto
qed
ultimately show ¢thesis
using filterlim-divide-at-bot-at-top-iff[of f d1 at-right 0 g] <d1#0> by
auto
qed
then have jumpF (At. ft/gt) (at-right 0) = — 1/2 unfolding jumpF-def
by auto
then show ?thesis using that jump-eq by auto
qed
ultimately show ?thesis by fast
qed
moreover have jF-finish:jumpF-pathfinish ?g z =
(if c2=0 N c1 #0 N d2 #0 then
if c1 >0 <— d2 > 0 then 1/2 else —1/2
else
0)
proof —
define f where f=(\t. (Im b — Im a)x t + (Im a — Im 2))
define g where g=(At. (Re b — Re a)x t + (Re a — Re z))
have jump-eq:jumpF-pathfinish (linepath a b) z = jumpE (At. ft/gt) (at-left
1)
unfolding jumpF-pathfinish-def f-def linepath-def g-def d1-def c1-def
by (auto simp add:algebra-simps)
have ?thesis when — (¢2 =0 A ¢l #0 A d2 #0)
proof —
have c1=0 — ¢2+#0 using - (c1=0 A ¢2=0)) by auto
moreover have d2 =0 — c2#0
proof (rule ccontr)
assume - (d2 = 0 — ¢2 # 0)
then have b=z unfolding d2-def c2-def by (simp add: complez-eql)
then have ze€path-image (linepath a b) by auto
then show False using <z¢closed-segment a by by auto
qed
moreover have ?thesis when c2#0

142

proof —
have jumpF (At. ft/gt) (at-left 1) = 0
apply (rule jumpF-not-infinity)
apply (unfold f-def g-def)
using that unfolding c2-def by (auto intro!: continuous-intros)
then show ?thesis using jump-eq using that by auto
qed
ultimately show ¢thesis using that by blast
qed
moreover have ?thesis when c2=0 cl #0 d2 #0 cl >0 +— d2 > 0
proof —
have (LIM z at-left 1. fz / g x :> al-top)
proof —
have (f —— d2) (at-left 1)
unfolding f-def d2-def by (auto intro!: tendsto-eg-intros)
moreover have (g —— 0) (at-left 1)
using «¢2=0> unfolding g-def c2-def by (auto intro!: tendsto-eg-intros)
moreover have (g has-sgnz sgn d2) (at-left 1)
proof —
have (g has-sgnz — sgn (c2—cl)) (at-left 1)
unfolding g-def
apply (rule has-sgnz-derivative-at-left)
subgoal unfolding c2-def c1-def di-def by (auto intro!: deriva-
tive-eg-intros)
subgoal using «c2=0) unfolding c2-def by auto
subgoal using «c2=0) «c1#0> by auto
done
moreover have — sgn (¢2—cl1) = sgn d2 using that by fastforce
ultimately show ?thesis by auto
qed
ultimately show ?thesis
using filterlim-divide-at-bot-at-top-iff [of f d2 at-left 1 g] «d2#0> by

auto
qed
then have jumpF (At. ft/g t) (at-left 1) = 1/2 unfolding jumpF-def
by auto
then show “thesis using that jump-eq by auto
qed
moreover have ?thesis when c¢2=0 c1 #0 d2 #0 — c1 >0 +— d2 > 0
proof —
have (LIM z at-left 1. fz | g x :> at-bot)
proof —

have (f —— d2) (at-left 1)
unfolding f-def d2-def by (auto intro!: tendsto-eq-intros)
moreover have (¢ —— 0) (at-left 1)
using «c2=0> unfolding g-def c2-def by (auto intro!: tendsto-eg-intros)
moreover have (g has-sgnz — sgn d2) (at-left 1)
proof —
have (g has-sgnz — sgn (c2—cl1)) (at-left 1)

143

unfolding g-def
apply (rule has-sgnz-derivative-at-left)
subgoal unfolding c2-def c1-def di-def by (auto intro!: deriva-
tive-eg-intros)
subgoal using «c2=0) unfolding c2-def by auto
subgoal using «c2=0> «c1#0» by auto
done
moreover have sgn (c2—cl) = sgn d2 using that by fastforce
ultimately show ?thesis by auto
qed
ultimately show ?Zthesis
using filterlim-divide-at-bot-at-top-iff [of [d2 at-left 1 g] «d2#0> by
auto
qed
then have jumpF (At. ft/g t) (at-left 1) = — 1/2 unfolding jumpF-def
by auto
then show ?thesis using that jump-eq by auto
qed
ultimately show ?thesis by fast
qed
ultimately show ?thesis using - ((cI>0 A ¢2<0) V (c1<0 A ¢2>0))»
apply (fold c1-def c2-def d1-def d2-def)
by auto
qed
moreover have ?thesis when c1=0 c2=0
proof —
have (At. Re (linepath a bt — z)) = (A-. 0)
using that unfolding linepath-def c1-def c2-def
by (auto simp add:algebra-simps)
then have (At. Im (linepath a bt — z) / Re (linepath a bt — 2)) = (A-. 0)
by (metis div-by-0)
then have cindex-pathE (linepath a b) z = 0
unfolding cindez-pathE-def
by (auto intro: cindexE-constI)
thus ?thesis using - ((c1>0 A ¢2<0) V (c1<0 A ¢2>0))> that
apply (fold c1-def c2-def di-def d2-def)
by auto
qed
ultimately show ¢thesis by fast
qed
moreover have ?thesis when c1c2-diff-sgn:(c1>0 N ¢2<0) V (c1<0 A ¢2>0)
proof —
define f where f=(\t. (Im b — Im a)x t + (Im a — Im 2))
define g where g=(\t. (Re b — Re a)x t + (Re a — Re 2))
define h where h=(A\t. ft/ g t)
define ¢3 where c3=Im(a)xRe(b)+Re(z)xIm(b)+Im(z)xRe(a) —Im(z)*Re(b)
— Im(b)xRe(a) — Re(z)xIm(a)
define u where u = (Re z — Re a) / (Re b — Re a)
let ?g = At. linepath a bt — 2z

144

have 0<u u<1 Re b — Re a#0 using that unfolding u-def c1-def c2-def by
(auto simp add:field-simps)

have Re(%g u) = 0 g u=0 unfolding linepath-def u-def g-def

apply (auto simp add:field-simps)

using <Re b — Re a#0» by (auto simp add:field-simps)
moreover have u! = u2 when Re(?g ul) = 0 Re(?g u2) = 0 for ul u2
proof —

have (ul — u2) * (Re b — Re a) = Re(?g ul) — Re(%g u2)

unfolding linepath-def by (auto simp add:algebra-simps)

also have ... = 0 using that by auto

finally have (uf — u2) * (Reb — Rea) = 0 .

thus ?thesis using (Re b — Re a#0> by auto
qed
ultimately have re-g-iff:Re(?g t) = 0 +— t=u for t by blast

have cindex-pathE (linepath a b) z = jumpF h (at-right u) — jumpF h (at-left
U
)
proof —
define left where left = {z. jumpF h (at-left) # 0 N0 <z ANz < 1}
define right where right = {z. jumpF h (at-right x) # 0 AN 0 <z ANz < 1}
have jumpF-nz:jumpF h (at-left) = 0 jumpF h (at-right) = 0
when 0<z z<1 z#u for x
proof —
have g z#0
using re-g-iff «x#w> unfolding g-def linepath-def
by (metis <Re b — Re a # 05 add-diff-cancel-left’ diff-diff-eq2 diff-zero
nonzero-mult-div-cancel-left u-def)
then have isCont h x
unfolding h-def f-def g-def
by (auto introl:continuous-intros)
then have continuous (at-left) h continuous (at-right) h
using continuous-at-split by blast+
then show jumpF h (at-left) = 0 jumpF h(at-right x) = 0
using jumpF-not-infinity by auto
qed
have cindex-pathE (linepath a b) z = sum (Az. jumpF h (at-right x)) right
— sum (A\z. jumpF h (at-left x)) left
proof —
have cindex-pathE (linepath a b) z = cindexE 0 1 (At. Im (%9 t) / Re (%g

t))
unfolding cindex-pathE-def by auto
also have ... = cindexE 0 1 h
proof —

have (At. Im (?gt) / Re (%9 t)) =h
unfolding h-def f-def g-def linepath-def
by (auto simp add:algebra-simps)
then show #%thesis by auto
qged
also have ... = sum (Az. jumpF h (at-right z)) right — sum (Az. jumpF h

145

(at-left x)) left
unfolding cindexE-def left-def right-def by auto
finally show ?thesis .
qed
moreover have sum (Az. jumpF h (at-right x)) right = jumpF h (at-right u)
proof (cases jumpF h (at-right u) = 0)
case True
then have right = {}
unfolding right-def using jumpF-nz by force
then show ?thesis using True by auto
next
case Fulse
then have right = {u}
unfolding right-def using jumpF-nz <0<u» <u<l1> by fastforce
then show ?thesis by auto
qed
moreover have sum (Az. jumpF h (at-left x)) left = jumpF h (at-left u)
proof (cases jumpF h (at-left u) = 0)
case True
then have left = {}
unfolding left-def
apply safe
apply (case-tac z=u)
using jumpF-nz <0<u) <u<1) by auto
then show ?thesis using True by auto
next
case Fulse
then have left = {u}
unfolding left-def
apply safe
apply (case-tac x=u)
using jumpF-nz «0<w «u<I1» by auto
then show ?thesis by auto

qed

ultimately show ?Zthesis by auto
qed
moreover have jump h u = (if ¢3>0 then 1 else —1)
proof —

have Re b— Re a#0 using c1c2-diff-sgn unfolding cI-def c2-def by auto
have jump (At. Im(%?g t) / Re(%g t)) u = jump h u
apply (rule arg-cong2[where f=jump])
unfolding linepath-def h-def f-def g-def by (auto simp add:algebra-simps)
moreover have jump (\t. Im(%g t) / Re(%g t)) u
= (if sgn (Re b —Re a) = sgn (Im(%g u)) then 1 else — 1)
proof (rule jump-divide-derivative)
have path ?g using path-offset by auto
then have continuous-on {0..1} (At. Im(%g t))
using continuous-on-Im path-def by blast
then show isCont (At. Im (%9 t)) u

146

unfolding path-def
apply (elim continuous-on-interior)
using <0<w> (u<1» by auto

next

show Re(?g u) = 0 Re b — Re a # 0 using <Re(?g u) = 0> <Re b — Re a

0>
by auto
show Im(%g u) # 0
proof (rule ccontr)
assume — Im (linepath a b u — z) # 0
then have ?g u = 0 using (Re(%g u) = 0
by (simp add: complex-eq-iff)
then have z € closed-segment a b using «0<u) <u<1>
by (auto intro:linepath-in-path)
thus Fulse using <z ¢ closed-segment a by by simp
qged
show ((At. Re (linepath a b t — 2z)) has-real-derivative Re b — Re a) (at u)
unfolding linepath-def by (auto introl:derivative-eg-intros)

qed
moreover have sgn (Re b — Re a) = sgn (Im(%g u)) «— ¢3 > 0
proof —

have Im(%g u) = ¢3/(Re b—Re a)

proof —

define ba where ba = Re b—Re a
have ba#0 using <Re b — Re a # 0)> unfolding ba-def by auto
then show ?thesis
unfolding linepath-def u-def c3-def
apply (fold ba-def)
apply (auto simp add:field-simps)
by (auto simp add:algebra-simps ba-def)
qed
then have sgn (Re b — Re a) = sgn (Im(%g u)) <— sgn (Re b — Re a) =
sgn (c3/(Re b—Re a))
by auto
also have ... <— ¢3>0
using «Re b—Re a#0>»
apply (cases 0::real ¢8 rule:linorder-cases)
by (auto simp add:sgn-zero-iff)
finally show ?thesis .
qed
ultimately show ?Zthesis by auto
qed
moreover have jump h u = jumpF h (at-right v) — jumpF h (at-left u)
proof (rule jump-jumpF’)
have f u#0
proof (rule ccontr)
assume - fu # 0
then have z€path-image (linepath a b)
unfolding path-image-def

147

apply (rule-tac rev-image-eql[of u])
using re-g-iff[of u,simplified] <0<w <u<1)
unfolding f-def linepath-def
by (auto simp add:algebra-simps complex.expand)
then show Fulse using (z¢ closed-segment a by by simp
qed
then show isCont (inverse o h) u
unfolding h-def comp-def f-def g-def
by (auto introl: continuous-intros)
define hs where hs = sgn ((f u) / (¢2 —cl))
show (h has-sgnz —hs) (at-left u) (h has-sgnz hs) (at-right u)
proof —
have ff:(f has-sgnz sgn (f u)) (at-left u) (f has-sgnz sgn (f u)) (at-right)
proof —
have (f —— fu) (at u)
unfolding f-def by (auto intro!:tendsto-intros)
then have (f has-sgnz sgn (f u)) (at u)
using tendsto-nonzero-has-sgnz[of f, OF - <f u#0>] by auto
then show (f has-sgnx sgn (f v)) (at-left u) (f has-sgnz sgn (f w)) (at-right
u)
using has-sgnz-split by blast+
qged
have gg:(g has-sgnz — sgn (c2 — c1)) (at-left u) (g has-sgnz sgn (c2 — c1))
(at-right w)
proof —
have (g has-real-derivative c2 — c1) (at u) unfolding g-def cI-def c2-def
by (auto intro!:derivative-eg-intros)
moreover have c2 — ¢l # (using that by auto
ultimately show (g has-sgnz sgn (c¢2 — c1)) (at-right u)
(g has-sgnz — sgn (c2 — c1)) (at-left u)
using has-sgnz-derivative-at-right[of g c2—cl u]
has-sgnz-derivative-at-left[of g c2—cl u] <g u=0>
by auto
qed
show (h has-sgnz — hs) (at-left u)
using has-sgnz-divide[OF [f(1) gg(1)] unfolding h-def hs-def
by auto
show (h has-sgnz hs) (at-right u)
using has-sgna-divide[OF ff(2) gg(2)] unfolding h-def hs-def
by auto
qed
show hs#0 —hs#0
unfolding hs-def using «f u#0» that by (auto simp add:sgn-if)
qed
ultimately show ¢thesis using that
apply (fold c1-def c2-def c3-def)
by auto
qged
ultimately show ?thesis by fast

148

qed

lemma cindez-path-linepath:
assumes z¢path-image (linepath a b)
shows cindez-path (linepath a b) z = (
let c1=Re(a)—Re(z) ; c2=Re(b)—Re(2) ;
c8 = Im(a)*Re(b)+Re(z)xIm(b)+Im(z)xRe(a) —Im(z)*Re(b) — Im(b)xRe(a)
— Re(z)xIm(a)
inif (c1>0 A c2<0)V (cI<0 A c2>0) then (if c3>0 then 1 else —1) else 0)

proof —
define cI c2 where cl1=Re(a)—Re(z) and c2=Re(b)—Re(z)
let ?g = linepath a b
have ?thesis when — ((c1>0 A ¢2<0) V (c1<0 A ¢2>0))
proof —
have Re a= Re z N Re b=Re z
when 0<t t<1 and asm:(1—t)xRe a + t x Re b = Re z for t
unfolding cI-def c2-def using that
proof —
have ?thesis when c1<0 c1>0
proof —
have Re a=Re z using that unfolding ci-def by auto
then show ?thesis using <0<ty «t<1)> asm
apply (cases Re b Re z rule:linorder-cases)
apply (auto simp add:field-simps)
done
qed
moreover have ?thesis when c1<0 ¢2<0
proof —
have Fulse when c1<0
proof —
have (I — t) * Rea < (I — t) * Re z
using «t<1» <cI1<0> unfolding cI-def by auto
moreover have t x Re b < tx Re z using «t>0» «¢2<0> unfolding c2-def

by auto
ultimately have (I — t) x Rea+ t* Reb< (I —t)*x Rez+ tx Re z
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qed
moreover have Fualse when c2<0
proof —

have (I — t) *x Rea < (I — t) * Re z
using «t<1» <c1<0» unfolding ci-def by auto
moreover have t x Re b < tx Re z using «t>0» «c2<0> unfolding c2-def

by auto
ultimately have (I — t) * Rea + t* Reb < (1 —t) x Rez + ¢ x Re 2
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qged

149

ultimately show ?thesis using that unfolding ci-def c2-def by argo
qed
moreover have ?thesis when ¢2<0 ¢2>0
proof —
have Re b=Re z using that unfolding c2-def by auto
then have (I — t) * Re a = (I—t)*Re z using asm by (auto simp
add:field-simps)
then have Re a= Re z using «t<1) by auto
then show ?thesis using <Re b=Re z» by auto
qed
moreover have ?thesis when c1>0 c2>0
proof —
have Fulse when c1>0
proof —
have (I — ¢) * Rea > (I — t) * Re z
using (t<1» <c1>0> unfolding ci1-def by auto
moreover have t x Re b > tx Re z using <t>0» «c2>0> unfolding c2-def

by auto
ultimately have (I — t) * Rea+ t+* Reb> (1 —t) x Rez + t x Re 2
by auto
thus Fualse using asm by (auto simp add:algebra-simps)
qged
moreover have Fulse when c2>0
proof —

have (I — ¢t) *x Rea > (1 — t) * Re z
using <t<1» <c1>0> unfolding ci-def by auto
moreover have t x Re b > tx Re z using «t>0» «c2>0> unfolding c2-def
by auto
ultimately have (I — t) * Rea+ t+* Reb> (1 —t) x Rez + t x Re z
by auto
thus False using asm by (auto simp add:algebra-simps)
ged
ultimately show ?thesis using that unfolding ci-def c2-def by argo
qed
moreover have c1<0 V ¢2>0c1>0 V ¢2<0 using — ((cI1>0 A c2<0) V
(c1<0 A ¢2>0))> by auto
ultimately show %thesis by fast
qed
then have (V. 0<t A t<1 —> Re(linepath a bt — z) # 0) V (Re a= Re z A
Re b=Re z)
using that unfolding linepath-def by auto
moreover have ?thesis when asm:Vt. 0<t A t<1 — Re(linepath a b t — 2)
0
proof —
have jump (At. Im (linepath a bt — z) / Re (linepath a bt — 2)) t = 0
when 0<t t<1 for ¢
apply (rule jump-Im-divide-Re-0[of At. linepath a bt — z,
OF - asm]rule-format]])
by (auto simp add:path-offset that)

150

then have cindez-path (linepath a b) z = 0
unfolding cindez-path-def cindex-def by auto
thus ?thesis using <— ((c1>0 A c2<0) V (c1<0 A ¢2>0))»
apply (fold c1-def c2-def)
by auto
qed
moreover have ?thesis when Re a= Re z Re b=Re 2
proof —
have (\t. Re (linepath a bt — z)) = (A-. 0)
unfolding linepath-def using <Re a= Re 2> (Re b=Re z»
by (auto simp add:algebra-simps)
then have (At. Im (linepath a bt — z) / Re (linepath a bt — z)) = (A-. 0)
by (metis div-by-0)
then have jump (At. Im (linepath a bt — z) / Re (linepath a bt — 2)) t =
0 for t
using jump-const by auto
then have cindez-path (linepath a b) z = 0
unfolding cindezx-path-def cindex-def by auto
thus ?thesis using <= ((c1>0 A ¢2<0) V (c1<0 A ¢2>0))»
apply (fold c1-def c2-def)
by auto
qed
ultimately show ¢thesis by auto
qed
moreover have ?thesis when c1c2-diff-sgn:(c1>0 N ¢2<0) V (c1<0 A ¢2>0)
proof —
define ¢3 where c3=Im(a)xRe(b)+Re(z)xIm(b)+Im(z)xRe(a) —Im(z)*Re(b)
— Im(b)*Re(a) — Re(z)*Im(a)
define u where u = (Re z — Re a) / (Re b — Re a)
let ?2g = At. linepath a bt — 2
have 0<u u<1 Re b — Re a#0 using that unfolding u-def cI1-def c2-def by
(auto simp add:field-simps)
have Re(?g u) = 0 unfolding linepath-def u-def
apply (auto simp add:field-simps)
using <Re b — Re a#0> by (auto simp add:field-simps)
moreover have u! = u2 when Re(?g ul) = 0 Re(?g u2) = 0 for ul u2
proof —
have (ul — u2) * (Re b — Re a) = Re(?g ul) — Re(%g u2)
unfolding linepath-def by (auto simp add:algebra-simps)
also have ... = 0 using that by auto
finally have (uf — u2) x (Reb — Rea) = 0 .
thus “thesis using «Re b — Re a#0> by auto
qed
ultimately have re-g-iff:Re(?g t) = 0 +— t=u for t by blast
have cindex-path (linepath a b) z = jump (At. Im (?g t)/Re(%g t)) u
proof —
define f where f=(\t. Im (linepath a bt — z) / Re (linepath a b t — 2))
have jump ft =0 when t#u 0<t t<1 for t
unfolding f-def

151

apply (rule jump-Im-divide-Re-0)
using that re-g-iff by (auto simp add: path-offset)
then have {z. jump fz # 0 AN 0 <z A x < 1} = (if jump f u=0 then {}
else {u})
using <0<uy <u<l»
apply auto
by fastforce
then show ?thesis
unfolding cindex-path-def cindex-def
apply (fold f-def)
by auto
qed
moreover have jump (At. Im (%9 t)/Re(?g t)) u = (if c3>0 then 1 else —1)
proof —
have Re b—Re a#0 using clc2-diff-sgn unfolding ci-def c2-def by auto
have jump (At. Im(?g t) / Re(?gt)) u
= (if sgn (Re b —Re a) = sgn (Im(%g u)) then 1 else — 1)
proof (rule jump-divide-derivative)
have path ?g using path-offset by auto
then have continuous-on {0..1} (At. Im(%g t))
using continuous-on-Im path-def by blast
then show isCont (At. Im (%9 t)) u
unfolding path-def
apply (elim continuous-on-interior)
using <0<w> <u<I1» by auto
next

show Re(?g u) = 0 Re b — Re a # 0 using «Re(?g u) = 0> <Re b — Re a

0>
by auto
show Im(%g u) # 0
proof (rule ccontr)
assume — Im (linepath a b u — 2) # 0
then have ?g u = 0 using «Re(%g u) = 0>
by (simp add: complez-eq-iff)
thus Fualse using assms «0<uy <u<I1) unfolding path-image-def by
fastforce
qged
show ((At. Re (linepath a b t — 2)) has-real-derivative Re b — Re a) (at u)
unfolding linepath-def by (auto intro!:derivative-eg-intros)

qed
moreover have sgn (Re b — Re a) = sgn (Im(%g u)) <— ¢8 > 0
proof —

have Im(%g u) = ¢3/(Re b—Re a)

proof —

define ba where ba = Re b—Re a
have ba#0 using <Re b — Re a # 0» unfolding ba-def by auto
then show ?thesis

unfolding linepath-def u-def c3-def

apply (fold ba-def)

152

apply (auto simp add:field-simps)
by (auto simp add:algebra-simps ba-def)
qed
then have sgn (Re b — Re a) = sgn (Im(?g u)) +— sgn (Re b — Re a) =
sgn (c3/(Re b—Re a))
by auto
also have ... <— ¢3>0
using «Re b—Re a#0>»
apply (cases 0::real ¢8 rule:linorder-cases)
by (auto simp add:sgn-zero-iff)
finally show ?thesis .
qed
ultimately show ?thesis by auto
qed
ultimately show “thesis using c1c2-diff-sgn
apply (fold c1-def c2-def c3-def)
by auto
qed
ultimately show ¢thesis by blast
qed

lemma cindez-pathFE-part-circlepath:
assumes cmod (z—20) #r and >0 0<st st<tt tt<2%pi
shows cindez-pathE (part-circlepath z r st tt) 20 = (
if |Re z — Re 20| < r then

(let
9 = arccos ((Re 20 — Re z)/r);
B = 2xpi — 9

m

JumpF-pathstart (part-circlepath z r st tt) 20
l’
(if st<d A 9<it then if r x sin 9 + Im z > Im 20 then —1 else 1 else 0)
|

(if st<B A B < tt then if r x sin B + Im z > Im 20 then 1 else —1 else 0)

JumpF-pathfinish (part-circlepath z r st tt) z0

else
if |Re z — Re 20| = r then
JumpF-pathstart (part-circlepath z r st tt) 20
— jumpF-pathfinish (part-circlepath z v st tt) z0
else 0

)

proof —
define f where f=(\i. 7 x sin i + Im z — Im 20)
define g where g=(\i. 7 * cos i + Re z — Re 20)
define h where h=(\t. ft / g t)

have indez-eq: cindex-pathE (part-circlepath z v st tt) 20 = cindexE st tt h
proof —

153

have cindex-pathE (part-circlepath z r st tt) 20
= cindexE 0 1 ((Ni. fi/g %) o (linepath st tt))
unfolding cindezx-pathE-def part-circlepath-def exp-Euler f-def g-def comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = cindexE st tt (\i. fi/g 1)
unfolding linepath-def using cindexE-linear-complof tt—st 0 1 - st] <st<tt»
by (simp add:algebra-simps)
also have ... = cindezF st tt h unfolding h-def by simp
finally show ?thesis .
qged
have jstart-eq:jumpF-pathstart (part-circlepath z r st tt) 20 = jumpF h (at-right
st)
proof —
have jumpF-pathstart (part-circlepath z r st tt) 20
= jumpF ((\i. fi/g %) o (linepath st tt)) (at-right 0)
unfolding jumpF-pathstart-def part-circlepath-def exp- Euler f-def g-def comp-def

by (simp add:cos-of-real sin-of-real algebra-simps)

also have ... = jumpF (X\i. fi/g i) (at-right st)
unfolding linepath-def using jumpF-linear-comp(2)[of tt—st - st 0] <st<tt»
by (simp add:algebra-simps)

also have ... = jumpF h (at-right st) unfolding h-def by simp
finally show ?thesis .
qed
have jfinish-eq:jumpF-pathfinish (part-circlepath z r st tt) 20 = jumpF h (at-left
tt)
proof —

have jumpF-pathfinish (part-circlepath z r st tt) 20
= jumpF ((Ai. fi/g i) o (linepath st tt)) (at-left 1)
unfolding jumpF-pathfinish-def part-circlepath-def exp-Euler f-def g-def comp-def

by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = jumpF (\i. fi/g i) (at-left tt)
unfolding linepath-def using jumpF-linear-comp(1)[of tt—st - st 1] <st<tt»
by (simp add:algebra-simps)
also have ... = jumpF h (at-left tt) unfolding h-def by simp
finally show ?thesis .
qed
have finite-jFs:finite-jumpFs h st tt
proof —
note finite- ReZ-segments-imp-jumpFs|OF finite- ReZ-segments-part-circlepath
,of zr sttt 20,simplified)
then have finite-jumpFs ((\i. fi/g i) o (linepath st tt)) 0 1
unfolding h-def f-def g-def part-circlepath-def exp-Euler comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)
then have finite-jumpFs (Xi. fi/g i) sttt
unfolding linepath-def using finite-jumpFs-linear-pos|of tt—st - st 0 1] <st<tt>

by (simp add:algebra-simps)

154

then show ?thesis unfolding h-def by auto
qed
have g-imp-f:g ¢ = 0 = fi#0 for ¢
proof (rule ccontr)
assume gi =0 - fi# 0
then have r x sin i = Im (20 — z) r % cos i = Re (20 — 2)
unfolding f-def g-def by auto
then have (r % sin @) "2 4+ (r* cosi) 2 =1Im (20 — 2) ~ 2+ Re (20 — 2)
-2
by auto
then have 772 % (sini "2 + cosi 2) =1Im (20 — z) ~2 4+ Re (20 — 2) "2
by (auto simp only:algebra-simps power-mult-distrib)
then have 172 = c¢mod (20—2) ~ 2
unfolding cmod-def by auto
then have r = cmod (20—2z)
using «r>0) power2-eq-imp-eq by fastforce
then show Fulse using (cmod (2—20) #r) using norm-minus-commute by
blast
qed
have ?thesis when |Re z — Re 20| > r
proof —
have jumpF h (at-right x) = 0 jumpF h (at-left) = 0 for z
proof —
have g z #0
proof (rule ccontr)
assume - gz #
then have cos z = (Re 20 — Re z) / r unfolding g¢-def using «r>0»
by (auto simp add:field-simps)
then have |(Re 20 — Re z)/r| < 1
by (metis abs-cos-le-one)
then have |Re 20 — Re z| < r
using «r>0» by (auto simp add:field-simps)
then show Fulse using that by auto
qed
then have isCont h x
unfolding h-def f-def g-def by (auto intro:continuous-intros)
then show jumpF h (at-right x) = 0 jumpF h (at-left z) = 0
using jumpF-not-infinity unfolding continuous-at-split by auto
qed
then have cindezE st tt h = 0 unfolding cindexE-def by auto
then show %thesis using indezx-eq that by auto
qed
moreover have ?thesis when |Re z — Re 20| = r
proof —
define R where R=(AS.{z. jumpF h (at-right) # 0 N z€S})
define L where L=(\S.{z. jumpF h (at-left z) # 0 N z€S})
define right where
right = (AS. O_xz€R S. jumpF h (at-right z)))
define left where

155

left = (AS. (O_z€L S. jumpF h (at-left z)))
have cindex-pathE (part-circlepath z r st tt) 20 = cindexE st tt h
using indezx-eq by simp

also have ... = right {st..<tt} — left {st<..tt}
unfolding cindexE-def right-def left-def R-def L-def by auto
also have ... = jumpF h (at-right st) + right {st<..<tt} — left {st<..<tt} —
jumpF h (at-left tt)
proof —

have right {st..<tt} = jumpF h (at-right st) + right {st<..<tt}
proof (cases jumpF h (at-right st) =0)
case True
then have R {st.<tt} = R {st<..<tt}
unfolding R-def using less-eg-real-def by auto
then have right {st..<tt} = right {st<..<tt}
unfolding right-def by auto
then show ?thesis using True by auto
next
case Fulse
have finite (R {st..<tt})
using finite-jF's unfolding R-def finite-jumpFs-def
by (auto elim:rev-finite-subset)
moreover have st € R {st..<tt} using Fualse (st<it) unfolding R-def by
auto
moreover have R {st..<tt} — {st} = R {st<..<it} unfolding R-def by
auto
ultimately show right {st..<tt}= jumpF h (at-right st)
+ right {st<..<tt}
using sum.removelof R {st..<tt} st Az. jumpF h (at-right z)]
unfolding right-def by simp
qed
moreover have left {st<..tt} = jumpF h (at-left tt) + left {st<..<tt}
proof (cases jumpF h (at-left tt) =0)
case True
then have L {st<..tt} = L {st<..<tt}
unfolding L-def using less-eq-real-def by auto
then have left {st<..tt} = left {st<..<tt}
unfolding left-def by auto
then show ?thesis using True by auto
next
case Fulse
have finite (L {st<..tt})
using finite-jF's unfolding L-def finite-jumpFs-def
by (auto elim:rev-finite-subset)
moreover have tt € L {st<..tt} using False <st<tt) unfolding L-def by
auto
moreover have L {st<..tt} — {tt} = L {st<..<tt} unfolding L-def by
auto
ultimately show left {st<..tt}= jumpF h (at-left tt) + left {st<..<tt}
using sum.removelof L {st<..tt} tt Az. jumpF h (at-left)]

156

unfolding left-def by simp

qed

ultimately show ?thesis by simp
qed
also have ... = jumpF h (at-right st) — jumpF h (at-left tt)
proof —

define S where S={z. (jumpF h (at-left ©) # 0 V jumpF h (at-right ©) #
0) N st <z Aaz<tt}
have right {st<..<tt} = sum (A\z. jumpF h (at-right z)) S
unfolding right-def S-def R-def
apply (rule sum.mono-neutral-left)
subgoal using finite-jF's unfolding finite-jumpF's-def by (auto elim:rev-finite-subset)
subgoal by auto
subgoal by auto
done
moreover have left {st<..<tt} = sum (Az. jumpF h (at-left z)) S
unfolding left-def S-def L-def
apply (rule sum.mono-neutral-left)
subgoal using finite-jF's unfolding finite-jumpF's-def by (auto elim:rev-finite-subset)
subgoal by auto
subgoal by auto
done
ultimately have right {st<..<tt} — left {st<..<tt}
= sum (Az. jumpF h (at-right ©) — jumpF h (at-left)) S
by (simp add: sum-subtractf)

also have ... = 0
proof —
have jumpF h (at-right i) — jumpF h (at-left i) = 0 when ¢ i=0 for i
proof —
have (LIM z ati. fz / g x > at-bot) V (LIM z at i. fz / g x :> at-top)
proof —

have x: f —i— fig—i— 0fi# 0

using g-imp-f[OF <g i=0>] <g i=0> unfolding f-def g-def

by (auto introl:tendsto-eg-intros)
have ?thesis when Re z > Re 20
proof —

have g-alt:g = (At. 7 * cos t + r) unfolding g-def using <|Re z — Re

20| = 1 that by auto
have (g has-sgnz 1) (at 7)

proof —
have sgn (g t) = 1 when ¢t # i dist t i < pi for t
proof —
have cos i = — 1 using <g i =0 «r>0> unfolding g-alt

by (metis add.inverse-inverse less-numeral-extra(3) mult-cancel-left

mult-minus1-right real-add-minus-iff)
then obtain k::int where k-def:i = (2 x k + 1) * pi
using cos-eg-minusl [of i] by auto
show ?thesis

157

proof (rule ccontr)
assume sgn (g t) # 1
then have cos t + 1<0 using «r>0) unfolding g-alt
by (metis (no-types, opaque-lifting) add-le-same-cancell
add-minus-cancel
mult-le-cancel-left1 mult-le-cancel-rightl mult-minus-right
mult-zero-left
sgn-pos zero-le-one)
then have cos t = —1
by (metis add.commute cos-ge-minus-one le-less not-less
real-add-le-0-iff)
then obtain k”:int where k'-def:t = (2 * k' + 1) * pi
using cos-eq-minusl [of t| by auto
then have ¢t — i = 2 x pix(k’ — k)
using k-def by (auto simp add:algebra-simps)
then have 2 * pi x| (k' — k)| < pi
using «dist t i < pi» by (simp add:dist-norm abs-mult)
from divide-strict-right-mono| OF this, of 2xpi,simplified] have |k’
—k|l<1/2
by auto
then have k=k’ by linarith
then have t=i using k-def k’-def by auto
then show Fulse using <t#i> by auto
qed
qed
then show “thesis unfolding has-sgnz-def eventually-at
apply(intro exl[where z=pi])

by auto
qed
then show ?thesis using * filterlim-divide-at-bot-at-top-iff [of f f i at i
)
by (simp add: sgn-if)

qed
moreover have ?thesis when Re z < Re 20
proof —

have g-alt:g = (At. © x cos t — r) unfolding g-def using (|Re z —
Re 20| = r» that by auto
have (g has-sgnz — 1) (at 7)
proof —
have sgn (gt) = — 1 when t # ¢ dist t i < pi for t
proof —
have cos i = 1 using <g i =0» «r>0> unfolding g-alt by simp
then obtain k::int where k-def:i = (2 x k * pi)
using cos-one-2pi-int[of i] by auto
show ?thesis
proof (rule ccontr)
assume sgn (g t) # — 1
then have cos t — 1>0 using <r>0> unfolding g-alt
using mult-le-cancel-left1 by fastforce

158

then have cos t = 1
by (meson cos-le-one diff-ge-0-iff-ge le-less not-less)
then obtain k’:int where k'-def:t = 2 * k'x pi
using cos-one-2pi-int[of t] by auto
then have ¢t — i = 2 x pix(k' — k)
using k-def by (auto simp add:algebra-simps)
then have 2 x pi x| (k' — k)| < pi
using «dist t i < pi» by (simp add:dist-norm abs-mult)
from divide-strict-right-mono| OF this, of 2xpi,simplified] have
|k — k| < 1/2
by auto
then have k=k’ by linarith
then have t=i using k-def k'-def by auto
then show Fulse using (t#i» by auto
qed
qed
then show ?thesis unfolding has-sgna-def eventually-at
apply (intro exI[where z=pi))

by auto
qed
then show ?thesis using * filterlim-divide-at-bot-at-top-iff [of f f i at
ig]
by (simp add: sgn-if)
qed
moreover have Re z# Re 20 using <|Re z — Re 20| = r» <r>0» by
fastforce
ultimately show %thesis by fastforce
qed
moreover have ?thesis when (LIM z at i. fz / g x :> at-bot)
proof —
have jumpF h (at-right i) = — 1/2 jumpF h (at-left i) = —1/2
using that unfolding jumpF-def h-def filterlim-at-split by auto
then show ?thesis by auto
qed
moreover have ?thesis when (LIM z at i. fz [/ g © :> at-top)
proof —
have jumpF h (at-right i) = 1/2 jumpF h (at-left i) = 1/2
using that unfolding jumpF-def h-def filterlim-at-split by auto
then show ?thesis by auto
qed
ultimately show ?thesis by auto
qged
moreover have jumpF h (at-right i) — jumpF h (at-left i) = 0 when ¢
1#0 for 4
proof —

have isCont h i using that unfolding h-def f-def g-def
by (auto intro!:continuous-intros)

then have jumpF h (at-right i) = 0 jumpF h (at-left i) = 0
using jumpF-not-infinity unfolding continuous-at-split by auto

159

then show ?thesis by auto

qged
ultimately show ?thesis by (intro sum.neutral,auto)
qed
finally show ?thesis by simp
qed
also have ... = jumpF-pathstart (part-circlepath z r st tt) 20

— jumpF-pathfinish (part-circlepath z r st tt) 20
using jstart-eq jfinish-eq by auto
finally have cindex-pathE (part-circlepath z r st tt) 20 =
JumpF-pathstart (part-circlepath z r st tt) 20
— jumpF-pathfinish (part-circlepath z r st tt) 20

then show %thesis using that by auto
qed
moreover have ?thesis when |Re z — Re 20| < r
proof —
define zr where zr= (Re 20 — Re z)/r
define ¥ where 9 = arccos zr
define 8 where 8 = 2xpi — ¥
have 0<9 d<pi
proof —
have — 1 < zrazr < 1
using that <r>0> unfolding zr-def by (auto simp add:field-simps)
from arccos-lt-bounded[OF this] show 0<v ¥<pi
unfolding V-def by auto
qed
have g9 =0¢g 68 =10
proof —
have |2r|<1 using that unfolding zr-def by auto
then have cos ¢ = zr cos 8 = cos ¢
unfolding -def[folded zr-def] B-def by auto
then show ¢ ¥ = 0 g f = 0 unfolding zr-def g-def using «r>0> by auto
qed
have g-sgnz-0:(g has-sgnz 1) (at-left ¥) (g has-sgnx —1) (at-right)
proof —
have (g has-real-derivative — r x sin 9) (at)
unfolding g-def by (auto intro!:derivative-eg-intros)
moreover have — r x sin ¥ <0
using sin-gt-zero[OF <0< 9<pi>] <r>0) by auto
ultimately show (g has-sgnz 1) (at-left ©¥) (g has-sgnz —1) (at-right)
using has-sgnz-derivative-at-leftjof g — r x sin ¥, OF - <g ¥=0»]
has-sgnz-derivative-at-right[of g — r * sin ¥, OF - «g 9=0)]
by force+
qed
have g-sgnaz-f:(g has-sgnx —1) (at-left) (g has-sgnz 1) (at-right B)
proof —
have (g has-real-derivative — r x sin 3) (at 3)
unfolding g-def by (auto intro!:derivative-eg-intros)

160

moreover have pi<f [<2xpi unfolding S-def using «(0<¥» «(JI<pi> by
auto
from sin-lt-zero|OF this| <r>0» have — r x sin § >0 by (simp add:
mult-pos-neg)
ultimately show (g has-sgnx —1) (at-left 8) (g has-sgnx 1) (at-right)
using has-sgna-derivative-at-leftof g — r x sin 8, OF - <g 5=0)]
has-sgnz-derivative-at-right[of g — r x sin B, OF - <g f=0>]
by force+
qed
have f-tendsto: (f —— f 1) (at-left i) (f —— f1i) (at-right 7)
and g-tendsto: (¢ —— g 1) (at-left i) (9 —— g 1) (at-right i) for i
proof —
have (f —— f1) (at Q)
unfolding f-def by (auto introl:tendsto-eg-intros)
then show (f —— f 1) (at-left i) (f —— f1i) (at-right 7)
by (auto simp add: filterlim-at-split)
next
have (9§ —— ¢ %) (at Q)
unfolding g-def by (auto introl:tendsto-eg-intros)
then show (g —— ¢ i) (at-left i) (9 —— g 1) (at-right @)
by (auto simp add: filterlim-at-split)
qed

define ¥-if::real where 0-if = (if r x sin 9 + Im z > Im 20 then —1 else 1)
define §-if::real where B-if = (if r x sin 8 + Im z > Im z0 then 1 else —1)
have jump (A\i. fi/g i) O = 9-if
proof —
have ?thesis when r x sin 9 + Im z > Im 20
proof —
have f ¥ > 0 using that unfolding f-def by auto
have (LIM z (at-left). fz / g © :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f ¥ - ¢])
using «f ¥ > 0> <g 9 =0» f-tendsto g-tendsto[of U] g-sgna-¥ by auto
moreover then have — (LIM z (at-left 9). fz / g z :> at-bot) by auto
moreover have (LIM z (at-right 9). fz / g x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f ¥ - g])
using «f ¥ > 0y <g 9 =0> f-tendsto g-tendsto[of 9] g-sgna-9 by auto
ultimately show ?thesis using that unfolding jump-def 9-if-def by auto
qed
moreover have ?thesis when r x sin ¢ + Im z < Im 20
proof —
have f ¢ < 0 using that unfolding f-def by auto
have (LIM z (at-left 9). fz | g :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f ¥ - g])
using «f ¥ < 0> <g 9 =0» f-lendsto g-tendsto[of V] g-sgna-¥ by auto
moreover have (LIM z (at-right ¥). fz / g x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f ¥ - ¢])
using «f ¥ < 0y <g 9 =0> f-tendsto g-tendsto[of J] g-sgna-9 by auto
ultimately show ?thesis using that unfolding jump-def 9-if-def by auto

161

qed
moreover have r x sin 9 + Im z # Im 20

using g-imp-f[OF «g 9=0>] unfolding f-def by auto
ultimately show ?thesis by fastforce

qed
moreover have jump (\i. fi/g i) 8 = B-if
proof —
have ?thesis when r *x sin 8 + Im z > Im 20
proof —

have f 8 > 0 using that unfolding f-def by auto
have (LIM z (at-left B). fz / g x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f B - g])
using «f 8 > 0> <g 8 =0) f-tendsto g-tendsto[of B] g-sgnz-f by auto
moreover have (LIM z (at-right 8). fz / g © :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f B - g])
using «f 8 > 0» <g B =0 f-tendsto g-tendstolof B] g-sgnz-f by auto
ultimately show ?thesis using that unfolding jump-def 5-if-def by auto
qed
moreover have ?thesis when r % sin 8 + Im z < Im 20
proof —
have f 8 < 0 using that unfolding f-def by auto
have (LIM z (at-left B). fx / g x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f B - g])
using «f 8 < 0» <g B =0 f-tendsto g-tendstolof] g-sgnz-§ by auto
moreover have (LIM z (at-right 8). fx / g x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff[of f f B - g])
using «f 8 < 0» <g B =0 f-tendsto g-tendstolof B] g-sgnz-f by auto
ultimately show ?thesis using that unfolding jump-def B-if-def by auto
qed
moreover have r x sin 8 + Im z # Im 20
using g-imp-f[OF «g f=0>] unfolding f-def by auto
ultimately show ¢thesis by fastforce
qed
moreover have jump (\i. fi / gi) © # 0 «— z=U V 2= when st<z z<it
for z
proof
assume z =9 V=0
then show jump (\i. fi / gi) z # 0
using <jump (A\i. fi/g i) 9 = 9-if> Gump (Ni. fi/g i) 8 = B-if>
unfolding ¥-if-def [-if-def
by (metis add.inverse-inverse add.inverse-neutral of-int-0 one-neg-zero)
next
assume asm:jump (Ni. fi / gi) z # 0
let ?thesis=x =9V z =0
have g z=0
proof (rule ccontr)
assume g x # 0
then have isCont (\i. fi / gi) z
unfolding f-def g-def by (auto intro:continuous-intros)

162

then have jump (M\i. fi / g i) z = 0 using jump-not-infinity by simp
then show Fulse using asm by auto
qed
then have cos © = zr unfolding g-def zr-def using <r>0> by (auto simp
add:field-simps)
have ?thesis when z<pi
proof—
have >0 using <st<x) <st>0» by auto
then have arccos (cos x) = z using arccos-cos|of x| that by auto
then have =19 unfolding ¥-def <cos x==zr» by auto
then show ?thesis by auto
qed
moreover have ?thesis when — z<pi

proof —
have z—2xpi<0 —pi<z—2xpi using that «x<tt> <tt<2xpi> by auto

from arccos-cos2[OF this] have arccos (cos (x — 2 x pi)) = 2xpi—z by
auto

then have arccos (cos x) = 2xpi—z
by (metis arccos cos-2pi-minus cos-ge-minus-one cos-le-one)

then have z=(unfolding S-def ¥-def using <cos x =zr» by auto
then show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
then have {z. jump (Mi. fi/ gi)xz# 0 A st <z Az <ttt} ={06}N
{st<..<tt}

by force
moreover have 9#£f using §-def <9 < pi> by auto

ultimately have cindex st tt h =
(if st<¥ A O<it then V-if else 0)
l’
(if st<B A B < tt then B-if else 0)
unfolding cindex-def h-def by fastforce
moreover have cindezE st tt h = jumpF h (at-right st) + cindex st tt h —

JumpE h (at-left tt)
proof (rule cindex-eq-cindexE-divide[of st tt f g,folded h-def])

show st < tt using «st < tt> .

show Vze{st..tt}. gz = 0 — fz # 0 using g-imp-f by auto

show continuous-on {st..tt} f continuous-on {st..tt} g
unfolding f-def g-def by (auto introl:continuous-intros)

next

let 2S1={t. Re (part-circlepath z r st tt t—20) = 0 AN 0 < t Nt < 1}

let 252={t. Im (part-circlepath z r st tt t—2z0) = 0 N 0 < t ANt < 1}

define G where G={t. g (linepath st ttt) =0 N0 <t ANt < 1}
ONO<tAL< I}

define F where F={t. [(linepath st tt t) =
define vl where vl=(\z. (z—st)/(tt—st))
have finite G finite F'

proof —
have finite {t. Re (part-circlepath z r st tt t—20) = 0 N 0 <t Nt < 1}

163

finite {t. Im (part-circlepath z r st tt t—20) = 0 AN 0 < t ANt < 1}
using part-circlepath-half-finite-inter|of st tt r Complex 1 0 z Re 20]
part-circlepath-half-finite-inter|of st tt r Complex 0 1 z Im 20] <st<tt
<r>0)»
by (auto simp add:inner-complex-def Complex-eq-0)
moreover have
Re (part-circlepath z r st tt t—20) = 0 <— g (linepath st tt t) = 0
Im (part-circlepath z r st tt t—20) = 0 <— f (linepath st tt t) = 0
for ¢
unfolding cindex-pathE-def part-circlepath-def exp-Euler f-def g-def comp-def
by (auto simp add:cos-of-real sin-of-real algebra-simps)
ultimately show finite G finite F' unfolding G-def F-def
by auto
qed
then have finite (linepath st tt * F) finite (linepath st tt * G)
by auto
moreover have
{z. fr =0 AN st <z Azx<it} C linepath st tt ‘ F
{z. gz =0AN st <z Ax<it} C linepath st tt * G
proof —
have *: linepath st tt (vl t) = t vl t>0 +— t>st vl t<1 «—t<tt for t
unfolding linepath-def vl-def using «tt>st»
apply (auto simp add:divide-simps)
by (simp add:algebra-simps)
then show
{z. fe=0 AN st <z Az <ttt} C linepath st tt ‘F
{z. gz =0 N st <x Az <ttt} C linepath sttt ‘G
unfolding F-def G-def
by (clarify|rule-tac z=vl z in rev-image-eql ,auto)+
qed
ultimately have
finite {z. fr =0 N st <z Azx<tt}
finite {z. gz = 0 N st <z Az < it}
by (auto elim:rev-finite-subset)
from finite-UnI[OF this| show finite {z. (fz =0V gx =0)Ast <z Az
<t}
by (elim rev-finite-subset,auto)
qed
ultimately show ¢thesis
unfolding Let-def
apply (fold zr-def V-def B-def 9-if-def B-if-def)+
using jstart-eq jfinish-eq indezr-eq that by auto
qed
ultimately show ?thesis by fastforce
qed

lemma jumpF-pathstart-part-circlepath:

assumes st<tt r>0 cmod (z—20) #r
shows jumpF-pathstart (part-circlepath z r st tt) 20 = (

164

if r % cos st + Re z — Re z0 = 0 then
(let
A = rx sin st + Im z — Im 20
n
if (sinst> 0V cosst=1)NA<O0
V (sin st < 0V cos st=—1) ANA >0 then
1/2
else
—-1/2)
else 0)
proof —
define f where f=(\i. r * sin i + Im z — Im 20)
define g where g=(\i. 7 * cos i + Re z — Re 20)
have jumpF-eq:jumpF-pathstart (part-circlepath z r st tt) 20 = jumpF (Ai. fi/g
i) (at-right st)
proof —
have jumpF-pathstart (part-circlepath z r st tt) 20
= jumpF ((Xi. fi/g 1) o linepath st tt) (at-right 0)
unfolding jumpF-pathstart-def part-circlepath-def exp- Euler f-def g-def comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = jumpF (\i. fi/g 1) (at-right st)
using jumpF-linear-comp(2)[of tt—st (Ai. fi/g i) st 0,symmetric] <st<it)
unfolding linepath-def by (auto simp add:algebra-simps)
finally show ?thesis .
qed
have g¢-has-sgnzl:(g has-sgnz 1) (at-right st) when g st=0 sin st < 0 V cos
st=—1
proof —
have ?thesis when sin st<0
proof —
have (g has-sgnx sgn (— r * sin st)) (at-right st)
apply (rule has-sgnz-derivative-at-right[of g — r * sin st st])
subgoal unfolding g-def by (auto intro!:derivative-eg-intros)
subgoal using <«g st=0) .
subgoal using <r>0) ¢sin st<0> by (simp add: mult-pos-neg)
done
then show ?thesis using «<r>0> that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos st = —1
proof —
have ¢ ¢ > 0 when st<i i<st+pi for i
proof —
obtain k where k-def:st = 2 x of-int k * pi+ pi
using (cos st = —1» by (metis cos-eqg-minusl distrib-left mult.commute
mult.right-neutral)
have cos (i—st) < 1 using cos-monotone-0-pi[of 0 i—st | that by auto
moreover have cos (i—st) = — cos i
apply (rule cos-eq-neg-periodic-intro|of - - —k—1])
unfolding k-def by (auto simp add:algebra-simps)

165

ultimately have cos i>—1 by auto
then have cos st<cos i using <cos st=—1» by auto
have 0 = r % cos st + Re z — Re 20
using ¢g st = 0> unfolding g-def by auto
also have ... < r x cos i + Re z — Re 20
using <cos st < cos 0> <r>0> by auto
finally show ?thesis unfolding g-def by auto
qed
then show ?thesis
unfolding has-sgnz-def eventually-at-right
apply (intro exI[where x=st+pi])
by auto
qed
ultimately show ?thesis using that(2) by auto
qed
have g-has-sgnz2:(g has-sgnz —1) (at-right st) when g st=0 sin st > 0 V cos
st=1

proof —
have ?thesis when sin st>0
proof —
have (g has-sgnz sgn (— r * sin st)) (at-right st)
apply (rule has-sgnz-derivative-at-right[of - — * sin st])

subgoal unfolding g-def by (auto intro!: derivative-eg-intros)
subgoal using <«g st=0» .
subgoal using «r>0) ¢sin st>0> by (simp add: mult-pos-neg)
done
then show ?thesis using «r>0» that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos st=1
proof —
have ¢ ¢ < 0 when st<i i<st+pi for i
proof —
obtain k where k-def:st = 2 x of-int k * pi
using <cos st=1» cos-one-2pi-int by auto
have cos (i—st) < 1 using cos-monotone-0-pi[of 0 i—st | that by auto
moreover have cos (i—st) = cos i
apply (rule cos-eq-periodic-intro[of - - —k])
unfolding k-def by (auto simp add:algebra-simps)
ultimately have cos i<1 by auto
then have cos st>cos i using <cos st=1» by auto
have 0 = r % cos st + Re z — Re 20
using ¢g st = 0> unfolding g-def by auto
also have ... > r x cos i + Re z — Re 20
using <cos st > cos ©» <r>0)> by auto
finally show ?thesis unfolding g-def by auto
qed
then show ?thesis
unfolding has-sgnz-def eventually-at-right
apply (intro exl[where z=st+pi])

166

by auto
qed
ultimately show ?thesis using that(2) by auto
qed

have ?thesis when r x cos st + Re z — Re 20 # 0
proof —
have g st #0 using that unfolding g-def by auto
then have continuous (at-right st) (Xi. fi / g i)
unfolding f-def g-def by (auto introl:continuous-intros)
then have jumpF (\i. fi/g i) (at-right st) = 0
using jumpF-not-infinity[of at-right st (Ai. fi/g i)] by auto
then show ?thesis using jumpF-eq that by auto
qed
moreover have ?thesis when r % cos st + Re z — Re 20 = 0
(sin st > 0 V (cos st=1)) A fst < 0
V (sin st < 0V (cos st=—1)) N fst>0
proof —
have g st = 0 f st0 and g-cont: continuous (at-right st) g and f-cont:continuous
(at-right st) f
using that unfolding g-def f-def by (auto intro!:continuous-intros)
have (g has-sgnz sgn (f st)) (at-right st)
using g-has-sgnzl[OF <g st=0)] g-has-sgnz2[OF <g st=0>] that(2) by auto
then have LIM z at-right st. fz / g x :> at-top
apply (subst filterlim-divide-at-bot-at-top-iff [of f f st at-right st g])
using «f st£0) <g st = 0> g-cont f-cont by (auto simp add: continuous-within)
then have jumpF (\i. fi/g 1) (at-right st) = 1/2
unfolding jumpF-def by auto
then show ?thesis using jumpF-eq that unfolding f-def by auto
qed
moreover have ?thesis when r % cos st + Re z — Re 20 = 0
= ((sin st > 0 V cos st=1) N fst <0
V (sin st < 0V cos st=—1) A fst> 0)
proof —
define neq! where neql! = (Vk:int. st # 2xk«+pt)
define neq2 where neq2 = (Vk:int. st # 2xkxpi+pi)
have g st = 0 and g-cont: continuous (at-right st) g and f-cont:continuous
(at-right st) f
using that unfolding g-def f-def by (auto introl:continuous-intros)
have f st#0
proof (rule ccontr)
assume — f st # 0
then have f st = 0 by auto
then have Im (20 — z) =r % sin st Re (20 — z) = r * cos st using g st=0»
unfolding f-def g-def by (auto simp add:algebra-simps)
then have cmod (20 — z) = sqrt((r x sin st) "2 + (r * cos st)"2)
unfolding cmod-def by auto
also have ... = sqrt (72 x ((sin st) "2 + (cos st)"2))
by (auto simp only:algebra-simps power-mult-distrib)

167

also have ... = r
using <r>0> by simp
finally have cmod (20 — z) = .
then show False using <cmod (z—2z0) #r> by (simp add: norm-minus-commaute)
qed
have (sin st > 0 V (cos st=1)) A fst > 0V (sin st < 0V (cos st=—1)) A
fst<0
proof —
have sin st = 0 <— cos st=—1 V cos st=1
by (metis (no-types, opaque-lifting) add.right-neutral cancel-comm-monoid-add-class. diff-cancel

cos-diff cos-zero mult-eq-0-iff power2-eq-1-iff power2-eq-square sin-squared-eq)
moreover have ((sin st < 0 A cos st #1)V fst > 0) A ((sin st > 0 N cos
st£E—1) V fst < 0)
using that(2) «f st#0» by argo
ultimately show ?thesis by (meson linorder-neqE-linordered-idom not-le)
qed
then have (g has-sgnz — sgn (f st)) (at-right st)
using g-has-sgnz1[OF <g st=0)] g-has-sgnz2[OF <g st=0>] by auto
then have LIM x at-right st. fx / g x :> at-bot
apply (subst filterlim-divide-at-bot-at-top-iff [of f f st at-right st g])
using «f st£0) <g st = 0> g-cont f-cont by (auto simp add: continuous-within)
then have jumpF (Xi. fi/g i) (at-right st) = —1/2
unfolding jumpF-def by auto
then show ?thesis using jumpF-eq that unfolding f-def by auto
qged
ultimately show ¢thesis by fast
qed

lemma jumpF-pathfinish-part-circlepath:
assumes st<tt r>0 cmod (z—20) #r
shows jumpF-pathfinish (part-circlepath z r st tt) 20 = (
if r % cos tt + Re z — Re z0 = 0 then
(let
A=rxsintt+ Imz— Im 20
in

if (sintt> 0V costt=—1)ANA<O0
V (sintt < 0V costt=1)ANA>0 then
—-1/2
else
1/2)
else 0)

proof —
define f where f=(\i. 7 * sin i + Im z — Im 20)
define g where g=(\i. 7 * cos i + Re z — Re 20)
have jumpF-eq:jumpF-pathfinish (part-circlepath z v st tt) 20 = jumpF (Xi. fi/g
i) (at-left tt)
proof —
have jumpF-pathfinish (part-circlepath z r st tt) 20

168

= jumpF ((Mi. fi/g ©) o linepath st tt) (at-left 1)
unfolding jumpF-pathfinish-def part-circlepath-def exp-Euler f-def g-def comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = jumpF (\i. fi/g i) (at-left tt)
using jumpF-linear-comp(1)[of tt—st (Ni. fi/g i) st 1,symmetric] <st<tt»
unfolding linepath-def by (auto simp add:algebra-simps)
finally show ?thesis .
qed
have g-has-sgnx1:(g has-sgnz —1) (at-left tt) when g tt=0 sin tt < 0 V cos tt=1

proof —
have ?thesis when sin tt<0
proof —
have (g has-sgnz — sgn (— r * sin tt)) (at-left tt)
apply (rule has-sgnz-derivative-at-leftlof - — r * sin tt])
subgoal unfolding g-def by (auto intro!:derivative-eg-intros)
subgoal using «g tt=0> .
subgoal using <r>0» ¢sin tt<0» by (simp add: mult-pos-neg)
done
then show ?thesis using <r>0) that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos tt=1
proof —
have g i < 0 when tt—pi<i i<tt for i
proof —
obtain k where k-def:tt = 2 x of-int k * pi
using <cos tt=1> cos-one-2pi-int by auto
have cos (i—tt) < 1
using cos-monotone-0-pilof 0 tt—i | that cos-minus|[of tt—i,simplified] by
auto
moreover have cos (i—tt) = cos i
apply (rule cos-eq-periodic-intro[of - - —k])
unfolding k-def by (auto simp add:algebra-simps)
ultimately have cos i<I by auto
then have cos tt>cos i using <cos tt=1» by auto
have 0 = r % cos tt + Re z — Re 20
using <g tt = 0> unfolding g-def by auto
also have ... > r x cos i + Re z — Re 20
using <cos tt > cos ©» <r>0)> by auto
finally show ?thesis unfolding g-def by auto
qed
then show ?thesis
unfolding has-sgnz-def eventually-at-left
apply (intro exl[where z=tt—pi))
by auto
qed
ultimately show ?thesis using that(2) by auto
qged
have g-has-sgnxz2:(g has-sgnz 1) (at-left tt) when g tt=0 sin tt > 0 V cos tt=—1

169

proof —
have ?thesis when sin tt>0
proof —
have (g has-sgnx — sgn (— r * sin tt)) (at-left tt)
apply (rule has-sgna-derivative-at-left[of - — r * sin tt])
subgoal unfolding g-def by (auto intro!: derivative-eg-intros)
subgoal using <g tt=0> .
subgoal using <r>0) (sin tt>0» by (simp add: mult-pos-neg)
done
then show ?thesis using «r>0» that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos tt = —1
proof —
have ¢g ¢ > 0 when tt—pi<i i<tt for ¢
proof —
obtain k where k-def:tt = 2 * of-int k x pi+ pi
using (cos tt = —1» by (metis cos-eqg-minusl distrib-left mult.commaute
mult.right-neutral)
have cos (i—tt) < 1
using cos-monotone-0-pi[of 0 tt—1i | that cos-minus|of tt—1i,simplified)
by auto
moreover have cos (i—tt) = — cos i
apply (rule cos-eq-neg-periodic-intro|of - - —k—1])
unfolding k-def by (auto simp add:algebra-simps)
ultimately have cos i>—1 by auto
then have cos tt<cos i using <cos tt=—1> by auto
have 0 = r % cos tt + Re z — Re 20
using «g tt = 0> unfolding g-def by auto
also have ... < r % cos ¢ + Re z — Re 20
using <cos tt < cos ©» «r>0»> by auto
finally show ?thesis unfolding g-def by auto
qed
then show ?thesis
unfolding has-sgnz-def eventually-at-left
apply (intro exI[where x=tt—pi])
by auto
qed
ultimately show ?thesis using that(2) by auto
qed

have ?thesis when r % cos tt + Re z — Re 20 # 0
proof —
have g tt #0 using that unfolding g-def by auto
then have continuous (at-left tt) (Ai. fi / g 1)
unfolding f-def g-def by (auto introl:continuous-intros)
then have jumpF (Xi. fi/g i) (at-left tt) = 0
using jumpF-not-infinity|of at-left tt (Mi. fi/g 7)] by auto
then show ?thesis using jumpF-eq that by auto

170

qed
moreover have ?thesis when r x cos tt + Re z — Re 20 = 0
(sintt > 0V cos tt=—1) N ftt < 0
V (sintt < 0V costt=1)Nftt>0
proof —
have g tt = 0 f tt0 and g-cont: continuous (at-left tt) g and f-cont:continuous
(at-left tt) f
using that unfolding g-def f-def by (auto introl:continuous-intros)
have (g has-sgnz — sgn (f tt)) (at-left tt)
using g-has-sgnz1[OF <g tt=0>] g-has-sgnz2[OF <g tt=0>] that(2) by auto
then have LIM z at-left tt. fz / g z :> at-bot
apply (subst filterlim-divide-at-bot-at-top-iff [of f f tt at-left tt g))
using «f tt#£0» <g tt = 0> g-cont f-cont by (auto simp add: continuous-within)
then have jumpF (Xi. fi/g i) (at-left tt) = — 1/2
unfolding jumpF-def by auto
then show ?thesis using jumpF-eq that unfolding f-def by auto
qed
moreover have ?thesis when r x cos tt + Re z — Re 20 = 0
S ((sintt > 0V cos tt=—1) N fit < 0
V (sintt < 0V costt=1)N fitt> 0)
proof —
have ¢ tt = 0 and g-cont: continuous (at-left tt) g and f-cont:continuous
(at-left tt) f
using that unfolding g-def f-def by (auto introl:continuous-intros)
have f tt£0
proof (rule ccontr)
assume - f it # 0
then have f it = 0 by auto
then have Im (20 — z) =r * sin tt Re (20 — z) = r * cos tt using (g tt=0»
unfolding f-def g-def by (auto simp add:algebra-simps)
then have cmod (20 — z) = sqrt((r * sin tt) "2 + (r * cos tt) " 2)
unfolding cmod-def by auto

also have ... = sgrt (r72 * ((sin tt) "2 + (cos tt) "2))
by (auto simp only:algebra-simps power-mult-distrib)
also have ... = r

using «<r>0> by simp

finally have cmod (20 — z) = .
then show Fulse using <cmod (z—20) #r» by (simp add: norm-minus-commute)
qed
have (sin tt > 0 V cos tt=—1) A ftt > 0 V (sintt < 0V cos tt=1) A f it

<0

proof —

have sin tt = 0 +— cos tt=—1 V cos tt=1

by (metis (no-types, opaque-lifting) add.right-neutral cancel-comm-monoid-add-class. diff-cancel

cos-diff cos-zero mult-eq-0-iff power2-eq-1-iff power2-eq-square sin-squared-eq)
moreover have ((sin tt < 0 A cos tt #—1)V fit > 0) A ((sin tt > 0 A
cos tt£1) V fit < 0)
using that(2) «f tt£0> by argo

171

ultimately show ¢thesis by (meson linorder-neqE-linordered-idom not-le)
qed
then have (g has-sgnz sgn (f tt)) (at-left tt)
using g-has-sgnz1[OF <g tt=0>] g-has-sgnz2[OF <g tt=0>] by auto
then have LIM x at-left tt. fx / g z > at-top
apply (subst filterlim-divide-at-bot-at-top-iff [of [f tt at-left tt g])
using «f tt£0»> <g tt = 0> g-cont f-cont by (auto simp add: continuous-within)
then have jumpF (Ai. fi/g i) (at-left tt) = 1/2
unfolding jumpF-def by auto
then show %thesis using jumpF-eq that unfolding f-def by auto
qed
ultimately show ?thesis by fast
qed

lemma
fixes 20 z::compler and r:real
defines upper = cindez-pathE (part-circlepath z v 0 pi) 20
and lower = cindez-pathE (part-circlepath z v pi (2%pi)) 20
shows cindex-pathE-circlepath-upper:

[emod (20—2) < 1] = upper = —1
[Im (20—z) > r; |Re (20 — z)| < r] = upper = 1
[Im (20—2) < —r; |Re (20 — z)| < r] = upper = —1

[|Re (20 — 2)| > r; r>0] = upper = 0
and cindex-pathE-circlepath-lower:
[emod (20—2) < 1] = lower = —1
[Im (20—z) > r; |Re (20 — 2)| < r] = lower = —1
[Im (20—2z) < —r; |Re (20 — z)| < r] = lower = 1
[|Re (20 — 2)| > r; r>0] = lower = 0
proof —
assume assms:cmod (20—z) < r
have zz-facts:—r<Re z — Re z0 Re z — Re z0<r r>0
subgoal using assms complex-Re-le-cmod le-less-trans by fastforce
subgoal by (metis assms complex-Re-le-cmod le-less-trans minus-complex.simps(1)
norm-minus-commaute)
subgoal using assms le-less-trans norm-ge-zero by blast
done
define ¥ where ¢ = arccos ((Re z0 — Re z) / r)
have ¥-bound:0 < 9 AN 9 < pi
unfolding 9-def
apply (rule arccos-lt-bounded)
using zz-facts by (auto simp add:field-simps)
have Im-sin:abs (Im 20 — Im z) < r % sin ¥
proof —
define zz where zz=20—=z
have sqrt ((Re 2z)? + (Im zz)?) < r
using assms unfolding zz-def cmod-def .
then have (Re 22)? + (Im 22)? < 772
by (metis cmod-power2 dvd-refl linorder-not-le norm-complex-def power2-le-imp-le
real-sqrt-power zero-le-power-eq-numeral)

172

then have (Im 22)> < r"2 — (Re 22) "2 by auto
then have abs (Im 2zz) < sqrt (r"2 — (Re 2z) " 2)
by (simp add: real-less-rsqrt)
then show ?thesis
unfolding V-def zz-def
apply (subst sin-arccos-abs)
subgoal using zz-facts by auto
subgoal using «r>0) by (auto simp add:field-simps divide-simps real-sqrt-divide)
done
qged
show upper = — 1
proof —
have jumpF-pathstart (part-circlepath z r 0 pi) 20 = 0
apply (subst jumpF-pathstart-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commaute)
moreover have jumpF-pathfinish (part-circlepath z r 0 pi) 20 = 0
apply (subst jumpF-pathfinish-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commute)
ultimately show ?thesis using assms zz-facts ¥-bound Im-sin unfolding
upper-def
apply (subst cindex-pathE-part-circlepath)
by (fold 9-def,auto simp add: norm-minus-commaute)
qed
show lower = — 1
proof —
have jumpF-pathstart (part-circlepath z r pi (2xpi)) 20 = 0
apply (subst jumpF-pathstart-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commute)
moreover have jumpF-pathfinish (part-circlepath z r pi (2+pi)) 20 = 0
apply (subst jumpF-pathfinish-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commaute)
ultimately show ?2thesis using assms zz-facts ¥-bound Im-sin unfolding
lower-def
apply (subst cindez-pathE-part-circlepath)
by (fold ¥-def,auto simp add: norm-minus-commaute)
qed
next
assume assms:|Re (20 — z)| > r r>0
show upper = 0 using assms unfolding upper-def
apply (subst cindez-pathE-part-circlepath)
apply auto
by (metis abs-Re-le-cmod abs-minus-commute eucl-less-le-not-le minus-complex.simps(1))
show lower = 0
using assms unfolding lower-def
apply (subst cindez-pathE-part-circlepath)
apply auto
by (metis abs-Re-le-cmod abs-minus-commute eucl-less-le-not-le minus-complex.simps(1))
next
assume assms:|Re (20 — z)| < r

173

then have >0 by auto

define ¥ where ¥ = arccos ((Re 20 — Re z) / r)
have ¥-bound:0 < ¢ AN ¥ < pi
unfolding J-def
apply (rule arccos-lt-bounded)
using assms by (auto simp add:field-simps)
note norm-minus-commaute[simp)
have jumpFs:
JjumpF-pathstart (part-circlepath z v 0 pi) 20 = 0
JjumpF-pathfinish (part-circlepath z v 0 pi) 20 = 0
JjumpF-pathstart (part-circlepath z r pi (2xpi)) 20 = 0
JumpF-pathfinish (part-circlepath z r pi (2xpi)) 20 = 0
when cmod (20 — z) # r
subgoal by (subst jumpF-pathstart-part-circlepath,use assms that in auto)
subgoal by (subst jumpF-pathfinish-part-circlepath,use assms that in auto)
subgoal by (subst jumpF-pathstart-part-circlepath,use assms that in auto)
subgoal by (subst jumpF-pathfinish-part-circlepath,use assms that in auto)
done
show upper = 1 lower = —1 when Im (20—2) > r
proof —
have cmod (20 — 2) # r
using that assms abs-Im-le-cmod abs-le-D1 not-le by blast
moreover have Im 20 — Im z > r * sin 0
proof —
have r x sin ¥ < r
using «r>0> by auto
also have ... < Im 20 — Im z using that by auto
finally show ?thesis .
qed
ultimately show upper = 1 using assms jumpFs ¥-bound that unfolding
upper-def
apply (subst cindex-pathE-part-circlepath)
by (fold ¥-def,auto)
have Im z — Im 20 < r * sin ¥
proof —
have Im z — Im 20 <0 using that <r>0) by auto
moreover have r x sin 9>0 using <r>0» 9-bound by (simp add: sin-gt-zero)
ultimately show ?thesis by auto

qed
then show lower = —1 using <cmod (20 — z) # m <Im 20 — Im z > T * sin
P
assms jumpFs ¥-bound that unfolding lower-def
apply (subst cindex-pathE-part-circlepath)
by (fold ¥-def,auto)
qed
show upper = — 1 lower = 1 when Im (20—z) < —r
proof —

have cmod (20 — z) # r

174

using that assms
by (metis abs-Im-le-cmod abs-le-D1 minus-complex.simps(2) minus-diff-eq
neg-less-iff-less
norm-minus-cancel not-le)
moreover have Im z — Im 20 > r * sin 0
proof —
have r x sin ¥ < r
using «r>0> by auto
also have ... < Im z — Im 20 using that by auto
finally show ?thesis .
qed
moreover have Im 20 — Im z < r * sin ¥
proof —
have Im 20 — Im 2<0 using that <r>0)> by auto
moreover have r x sin 9>0 using «r> 0> J-bound by (simp add: sin-gt-zero)
ultimately show ?thesis by auto
qed
ultimately show upper = — 1 using assms jumpFs 9-bound that unfolding
upper-def
apply (subst cindex-pathE-part-circlepath)
by (fold ¥-def,auto)
show lower = 1
using <Im 20 — Im z < r x sin > Im z — Im 20 > r x sin & <cmod (20 —
z) # 1
assms jumpFs ¥-bound that unfolding lower-def
apply (subst cindex-pathE-part-circlepath)
by (fold ¥-def,auto)
qed
qed

lemma jumpF-pathstart-linepath:
jumpF-pathstart (linepath a b) z =
(if Re a = Re z A Im a£Im z N\ Re b # Re a then
if (Im a>Im z A Reb> Rea)V (Ima<Im z A Reb < Re a) then 1/2 else
—-1/2
else 0)
proof —
define f where f=(\t. (Im b — Im a)x t + (Im a — Im 2))
define g where g=(\t. (Re b — Re a)x t + (Re a — Re z))
have jump-eq:jumpF-pathstart (linepath a b) z = jumpF (At. ft/g t) (at-right 0)
unfolding jumpF-pathstart-def f-def linepath-def g-def
by (auto simp add:algebra-simps)
have ?thesis when Re a#Re z
proof —
have jumpF-pathstart (linepath a b) z = 0
unfolding jumpF-pathstart-def
apply (rule jumpF-im-divide-Re-0)
apply auto
by (auto simp add:linepath-def that)

175

then show ¢thesis using that by auto
qed
moreover have ?thesis when Re a=Re z Im a = Im z
proof —
define ¢ where c=(Im b — Im a) / (Re b — Re a)
have jumpF (At. ft/g t) (at-right 0) = jumpF (A-. ¢) (at-right 0)
proof (rule jumpF-cong)
show V p z in at-right 0. fz / gz = ¢
unfolding eventually-at-right f-def g-def c-def using that
apply (intro exI[where z=1])
by auto
qed simp
then show ?thesis using jump-eq that by auto
qed
moreover have ?thesis when Re a=Re z Re b = Re a
proof —
have (At. ft/gt) = (A-. 0) unfolding f-def g-def using that by auto
then have jumpF (At. ft/g t) (at-right 0) = jumpF (A-. 0) (at-right 0) by
auto
then show %thesis using jump-eq that by auto
qged
moreover have ?thesis when Re a = Re z (Im a>Im 2z A Re b > Re a) V (Im
a<Im z A Re b < Re a)
proof —
have LIM z at-right 0. fx / g x :> at-top
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im a — Im z])
unfolding f-def g-def using that
by (auto introl:tendsto-eq-intros sgnx-eq-intros)
then have jumpF' (At. ft/gt) (at-right 0) = 1/2
unfolding jumpF-def by simp
then show %thesis using jump-eq that by auto
qed
moreover have %thesis when Re a = Re z Im a#Im z Re b # Re a
= ((Im a>Im z A Re b > Re a) V (Im a<Im z A Re b < Re a))
proof —
have (Im a>Im z A Re b < Re a) V (Im a<Im z A Re b > Re a)
using that by argo
then have LIM z at-right 0. fx / g :> at-bot
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im a — Im z])
unfolding f-def g-def using that
by (auto introl:tendsto-eq-intros sgna-eq-intros)
moreover then have — (LIM x at-right 0. fx / g x :> at-top)
using filterlim-at-top-at-bot by fastforce
ultimately have jumpF (At. ft/g t) (at-right 0) = — 1/2
unfolding jumpF-def by simp
then show ?thesis using jump-eq that by auto
qed
ultimately show ¢thesis by fast
qed

176

lemma jumpF-pathfinish-linepath:
JumpF-pathfinish (linepath a b) z =
(if Re b= Re z A Im b #Im z A Re b # Re a then
if (Im b>Im z A Re a > Reb)V (Im b<Im z A Re a < Reb) then 1/2 else
—-1/2
else 0)
proof —
define f where f=(At. (Im b — Im a)x t + (Im a — Im 2))
define g where g=(\t. (Re b — Re a) t + (Re a — Re 2))
have jump-eq:jumpF-pathfinish (linepath a b) z = jumpF (At. ft/gt) (at-left 1)
unfolding jumpF-pathfinish-def f-def linepath-def g-def
by (auto simp add:algebra-simps)
have ?thesis when Re b#Re z
proof —
have jumpF-pathfinish (linepath a b) z = 0
unfolding jumpF-pathfinish-def
apply (rule jumpF-im-divide-Re-0)
apply auto
by (auto simp add:linepath-def that)
then show %thesis using that by auto
qed
moreover have ?thesis when Re z=Re b Im z = Im b
proof —
define ¢ where c=(Im a — Im b) / (Re a — Re b)
have jumpF (At. ft/g t) (at-left 1) = jumpF (A-. ¢) (at-left 1)
proof (rule jumpF-cong)
have fz / g x = ¢ when z<1 for x
proof —
have fz / gz = ((Im a — Im b)x(1—x))/((Re a — Re b)*x(1—zx))
unfolding f-def g-def
by (auto simp add:algebra-simps «Re z=Re by <Im z = Im b»)
also have ... = ¢
using that unfolding c-def by auto
finally show ?thesis .
qed
then show Vg zin at-left 1. fz [gz = ¢
unfolding eventually-at-left using that
apply (intro exI[where z=0])
by auto
qed simp
then show %thesis using jump-eq that by auto
qed
moreover have ?thesis when Re a=Re z Re b = Re a
proof —
have (\t. ft/g t) = (A-. 0) unfolding f-def g-def using that by auto
then have jumpF (At. ft/g t) (at-left 1) = jumpF (X-. 0) (at-left 1) by auto
then show ?thesis using jump-eq that by auto
qed

177

moreover have ?thesis when Re b = Re z (Im b>Im z A Re a > Re b) V (Im
b<Im z A Re a < Re b)
proof —
have LIM x at-left 1. fz / g x :> at-top
proof —
have (g has-real-derivative Re b — Re a) (at 1)
unfolding g-def by (auto intro!:derivative-eg-intros)
from has-sgnz-derivative-at-left| OF this]
have (g has-sgnz sgn (Im b — Im z)) (at-left 1)
using that unfolding g-def by auto
then show ?thesis
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im b — Im z])
unfolding f-def g-def using that by (auto introl:tendsto-eg-intros)
qed
then have jumpF (At. ft/gt) (at-left 1) = 1/2
unfolding jumpF-def by simp
then show ?thesis using jump-eq that by auto
qed
moreover have ?thesis when Re b = Re z Im b#Im z Re b # Re a
= ((Im b>Im z A Re a > Re b) V (Im b<Im z A\ Re a < Re b))
proof —
have (Im b>Im z A Re a < Re b) V (Im b<Im z A Re a > Re b)
using that by argo
have LIM z at-left 1. fz |/ g x :> at-bot
proof —
have (g has-real-derivative Re b — Re a) (at 1)
unfolding g-def by (auto intro!:derivative-eg-intros)
from has-sgna-derivative-at-left[OF this]
have (g has-sgnz — sgn (Im b — Im 2)) (at-left 1)
using that unfolding g-def by auto
then show ?thesis
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im b — Im z])
unfolding f-def g-def using that by (auto intro!:tendsto-eg-intros)
qed
moreover then have = (LIM z at-left 1. fz [/ g x :> al-top)
using filterlim-at-top-at-bot by fastforce
ultimately have jumpF (A\t. ft/g t) (at-left 1) = — 1/2
unfolding jumpF-def by simp
then show ?thesis using jump-eq that by auto
qed
ultimately show #¢thesis by argo
qed

6.4 Setting up the method for evaluating winding numbers

lemma pathfinish-pathstart-partcirclepath-simps:
pathstart (part-circlepath 20 v (3xpi/2) tt) = 20 — Complezx 0 r
pathstart (part-circlepath 20 v (2xpi) tt) = 20 + r
pathfinish (part-circlepath z0 r st (8xpi/2)) = 20 — Complex 0 r

178

pathfinish (part-circlepath 20 r st (2xpi)) = 20 + r

pathstart (part-circlepath z0 v 0 tt) = 20 + r

pathstart (part-circlepath z0 v (pi/2) tt) = 20 + Complex 0 r

pathstart (part-circlepath 20 v (pi) tt) = 20 — r

pathfinish (part-circlepath 20 r st 0) = 20+

pathfinish (part-circlepath z0 r st (pi/2)) = 20 + Complex 0 r

pathfinish (part-circlepath 20 r st (pi)) = 20 — r

unfolding part-circlepath-def linepath-def pathstart-def pathfinish-def exp-Euler

subgoal
apply (simp, subst sin.minus-1[symmetric],subst cos.minus-1[symmetric])
by (simp add: complez-of-real-i)

subgoal
by (simp add: complez-of-real-i)

subgoal
apply (simp, subst sin.minus-1[symmetric],subst cos.minus-1[symmetric])
by (simp add: complez-of-real-i)

by (simp-all add: complex-of-real-i)

lemma winding-eq-intro:
finite-ReZ-segments g z =
valid-path g =
z ¢ path-image g =
pathfinish g = pathstart g —>
— of-real(cindex-pathE g z) =2xn —>
winding-number g z = (n::complex)
apply (subst winding-number-cindez-pathE]of g z])
by (auto simp add:field-simps)

named-theorems winding-intros and winding-simps

lemmas [winding-intros| =
finite-ReZ-segments-joinpaths
valid-path-join
path-join-imp
not-in-path-image-join

lemmas [winding-simps] =
finite-ReZ-segments-linepath
finite- ReZ-segments-part-circlepath
JumpF-pathfinish-joinpaths
JumpF-pathstart-joinpaths
pathfinish-linepath
pathstart-linepath
pathfinish-join
pathstart-join
valid-path-linepath
valid-path-part-circlepath
path-part-circlepath
Re-complex-of-real

179

Im-complex-of-real
of-real-linepath
pathfinish-pathstart-partcirclepath-simps

method rep-subst =
(subst cindex-pathE-joinpaths; rep-subst) ?

The method "eval winding" 1 will try to simplify of the form wind-
ing-number g z = n where n is an integer and ¢ is a closed path comprised
of linepath, part-circlepath and (+++).

Suppose g = 1 +++ [2, usually, the key behind the success of this
framework is whether we can prove z ¢ path-image 11, z ¢ path-image (2
and calculate cindex-pathE 11 z and cindex-pathFE (2 z.

method eval-winding =
((rule-tac winding-eq-intro;
rep-subst
)
, auto simp only:winding-simps del:notl introl:winding-intros
, tactic <distinct-subgoals-tacy)

end

7 Some examples of applying the method wind-
ing eval

theory Winding-Number-FEval-Examples imports Winding-Number-Eval
begin

lemma examplel:
assumes R>1
shows winding-number (part-circlepath 0 R 0 pi +++ linepath (—R) R) i = 1
proof (eval-winding,simp-all)
define CR where CR =part-circlepath 0 R 0 pi
define L where L= linepath (— (complex-of-real R)) R
show i ¢ path-image CR unfolding CR-def using <R>1>
by (intro not-on-circlepathl ,auto)
show x:i ¢ closed-segment (— (of-real R)) R using <R>1) complex-eq-iff
by (intro not-on-closed-segmentl ,auto)
from cindex-pathE-linepath[OF this] have cindez-pathE L i = —1
unfolding L-def using <(R>1> by auto
moreover have cindex-pathE CR i = —1
unfolding CR-def using (R>1)
apply (subst cindez-pathE-part-circlepath)
by (simp-all add:jumpF-pathstart-part-circlepath jumpF-pathfinish-part-circlepath)
ultimately show — complez-of-real (cindex-pathE CR i) — cindez-pathE L i =
2
unfolding L-def CR-def by auto
qed

180

lemma example2:
assumes R>1
shows winding-number (part-circlepath 0 R 0 pi +++ linepath (—R) R) (—i) =
0
proof (eval-winding,simp-all)
define CR where CR =part-circlepath 0 R 0 pi
define L where L= linepath (— (complex-of-real R)) R
show —i ¢ path-image CR unfolding CR-def using <R>1)
by (intro not-on-circlepathl ,auto)
show x:—1 ¢ closed-segment (— (of-real R)) R using <R>1) complez-eq-iff
by (intro not-on-closed-segmentI ;auto)
from cindex-pathE-linepath|OF this| have cindez-pathE L (—i) = 1
unfolding L-def using <(R>1> by auto
moreover have cindez-pathE CR (—i) = —1
unfolding CR-def using (R>1)
apply (subst cindex-pathE-part-circlepath)
by (simp-all add:jumpF-pathstart-part-circlepath jumpF-pathfinish-part-circlepath)
ultimately show —cindez-pathE CR (—i) = cindes-pathE L (—i)
unfolding L-def CR-def by auto
qed

lemma example3:
fixes Ib ub z :: complex
defines rec = linepath Ib (Complex (Re ub) (Im b)) +++ linepath (Complex
(Re ub) (Im b)) ub
+++ linepath ub (Complex (Re Ib) (Im ub)) +++ linepath (Complex
(Re Ib) (Im ub)) b
assumes order-asms:Re Ib < Re z Re z < Re ub Im lb < Im z Im z < Im ub
shows winding-number rec z = 1
unfolding rec-def
proof (eval-winding)
let 211 = linepath b (Complex (Re ub) (Im b))
and ?12 = linepath (Complex (Re ub) (Im b)) ub
and ?13 = linepath ub (Complex (Re Ib) (Im ub))
and ?l = linepath (Complex (Re Ib) (Im ub)) Ib
show [1: z ¢ path-image ?l1
apply (auto introl: not-on-closed-segmentI-complezx)
using order-asms by (simp add: algebra-simps crossproduct-eq)
show [2:2 ¢ path-image 712
apply (auto introl: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)
show [3:2 ¢ path-image ?13
apply (auto intro!: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)
show l4:z ¢ path-image ?1}
apply (auto introl: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)
show — complez-of-real (cindex-pathE ?l1 z + (cindez-pathE ?12 z + (cindex-pathE

181

218 2 +
cindex-pathE 214 z))) = 2 * 1
proof —
have (Im z — Im ub) * (Re ub — Re Ib) < 0
using mult-less-0-iff order-asms(1) order-asms(2) order-asms(4) by fastforce
then have cindex-pathE ?13 z = —1
apply (subst cindez-pathE-linepath)
using [3 order-asms by (auto simp add:algebra-simps)
moreover have (Im b — Im z) x (Re ub — Re Ib) <0
using mult-less-0-iff order-asms(1) order-asms(2) order-asms(3) by fastforce
then have cindex-pathE 211 z = —1
apply (subst cindex-pathE-linepath)
using 1 order-asms by (auto simp add:algebra-simps)
moreover have cindex-pathE ?12 z = 0
apply (subst cindex-pathE-linepath)
using 12 order-asms by (auto simp add:algebra-simps)
moreover have cindez-pathE ¢l z = 0
apply (subst cindez-pathE-linepath)
using 4 order-asms by (auto simp add:algebra-simps)
ultimately show ?thesis by auto
qged
qed

end

8 Acknowledgements

The work was supported by the ERC Advanced Grant ALEXANDRIA
(Project 742178), funded by the European Research Council and led by
Professor Lawrence Paulson at the University of Cambridge, UK.

References

[1] M. Eisermann. The fundamental theorem of algebra made effective: An
elementary real-algebraic proof via Sturm chains. American Mathemat-
ical Monthly, 119(9):715-752, 2012.

[2] Q. I. Rahman and G. Schmeisser. Analytic theory of polynomials. Num-
ber 26. Oxford University Press, 2002.

182

	Some useful lemmas in topology
	Misc
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eventually
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 filtermap
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 filterlim

	Some useful lemmas in algebra
	Misc
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 degree
	roots / zeros of a univariate function
	The argument principle specialised to polynomials.

	Some useful lemmas about transcendental functions
	Misc
	Periodic set

	Some useful lemmas in analysis
	More about paths
	More lemmas related to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 winding-number

	Cauchy's index theorem
	Misc
	Sign at a filter
	Finite predicate segments over an interval
	Finite segment intersection of a path with the imaginary axis
	jump and jumpF
	Finite jumpFs over an interval
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 jumpF at path ends
	Cauchy index
	Cauchy index along a path
	Cauchy's Index Theorem

	Evaluate winding numbers by calculating Cauchy indices
	Misc
	finite intersection with the two axes
	More lemmas related 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cindex-pathE / 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 jumpF-pathstart / 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 jumpF-pathfinish
	Setting up the method for evaluating winding numbers

	Some examples of applying the method winding_eval
	Acknowledgements

