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Abstract

In complex analysis, the winding number measures the number
of times a path (counterclockwise) winds around a point, while the
Cauchy index can approximate how the path winds. This entry pro-
vides a formalisation of the Cauchy index, which is then shown to be
related to the winding number. In addition, this entry also offers a
tactic that enables users to evaluate the winding number by calculat-
ing Cauchy indices. The connection between the winding number and
the Cauchy index can be found in the literature [1] [2, Chapter 11].

1 Some useful lemmas in topology
theory Missing-Topology imports HOL−Analysis.Multivariate-Analysis
begin

1.1 Misc
lemma open-times-image:

fixes S :: ′a::real-normed-field set
assumes open S c 6=0
shows open (((∗) c) ‘ S)

proof −
let ?f = λx. x/c and ?g=((∗) c)
have continuous-on UNIV ?f using ‹c 6=0 › by (auto intro:continuous-intros)
then have open (?f −‘ S) using ‹open S› by (auto elim:open-vimage)
moreover have ?g ‘ S = ?f −‘ S using ‹c 6=0 ›

using image-iff by fastforce
ultimately show ?thesis by auto

qed

lemma image-linear-greaterThan:
fixes x:: ′a::linordered-field
assumes c 6=0
shows ((λx. c∗x+b) ‘ {x<..}) = (if c>0 then {c∗x+b <..} else {..< c∗x+b})

using ‹c 6=0 ›
apply (auto simp add:image-iff field-simps)
subgoal for y by (rule bexI [where x=(y−b)/c],auto simp add:field-simps)
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subgoal for y by (rule bexI [where x=(y−b)/c],auto simp add:field-simps)
done

lemma image-linear-lessThan:
fixes x:: ′a::linordered-field
assumes c 6=0
shows ((λx. c∗x+b) ‘ {..<x}) = (if c>0 then {..<c∗x+b} else {c∗x+b<..})

using ‹c 6=0 ›
apply (auto simp add:image-iff field-simps)
subgoal for y by (rule bexI [where x=(y−b)/c],auto simp add:field-simps)
subgoal for y by (rule bexI [where x=(y−b)/c],auto simp add:field-simps)

done

lemma continuous-on-neq-split:
fixes f :: ′a::linear-continuum-topology ⇒ ′b::linorder-topology
assumes ∀ x∈s. f x 6=y continuous-on s f connected s
shows (∀ x∈s. f x>y) ∨ (∀ x∈s. f x<y)
by (smt (verit) assms connectedD-interval connected-continuous-image imageE

image-eqI leI )

lemma
fixes f :: ′a::linorder-topology ⇒ ′b::topological-space
assumes continuous-on {a..b} f a<b
shows continuous-on-at-left:continuous (at-left b) f

and continuous-on-at-right:continuous (at-right a) f
using assms continuous-on-Icc-at-leftD continuous-within apply blast
using assms continuous-on-Icc-at-rightD continuous-within by blast

1.2 More about eventually
lemma eventually-comp-filtermap:

eventually (P o f ) F ←→ eventually P (filtermap f F)
unfolding comp-def using eventually-filtermap by auto

lemma eventually-at-infinityI :
fixes P:: ′a::real-normed-vector ⇒ bool
assumes

∧
x. c ≤ norm x =⇒ P x

shows eventually P at-infinity
unfolding eventually-at-infinity using assms by auto

lemma eventually-at-bot-linorderI :
fixes c:: ′a::linorder
assumes

∧
x. x ≤ c =⇒ P x

shows eventually P at-bot
using assms by (auto simp: eventually-at-bot-linorder)

1.3 More about filtermap
lemma filtermap-linear-at-within:

assumes bij f and cont: isCont f a and open-map:
∧

S . open S =⇒ open (f‘S)
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shows filtermap f (at a within S) = at (f a) within f‘S
unfolding filter-eq-iff

proof safe
fix P
assume eventually P (filtermap f (at a within S))
then obtain T where open T a ∈ T and impP:∀ x∈T . x 6=a −→ x∈S−→ P (f

x)
by (auto simp: eventually-filtermap eventually-at-topological)

then show eventually P (at (f a) within f ‘ S)
unfolding eventually-at-topological
apply (intro exI [of - f‘T ])
using ‹bij f › open-map by (metis bij-pointE imageE imageI )

next
fix P
assume eventually P (at (f a) within f ‘ S)
then obtain T1 where open T1 f a ∈ T1 and impP:∀ x∈T1 . x 6=f a −→

x∈f‘S−→ P (x)
unfolding eventually-at-topological by auto

then obtain T2 where open T2 a ∈ T2 (∀ x ′∈T2 . f x ′ ∈ T1 )
using cont[unfolded continuous-at-open,rule-format,of T1 ] by blast

then have ∀ x∈T2 . x 6=a −→ x∈S−→ P (f x)
using impP by (metis assms(1 ) bij-pointE imageI )

then show eventually P (filtermap f (at a within S))
unfolding eventually-filtermap eventually-at-topological
apply (intro exI [of - T2 ])
using ‹open T2 › ‹a ∈ T2 › by auto

qed

lemma filtermap-at-bot-linear-eq:
fixes c:: ′a::linordered-field
assumes c 6=0
shows filtermap (λx. x ∗ c + b) at-bot = (if c>0 then at-bot else at-top)

proof (cases c>0 )
case True
then have filtermap (λx. x ∗ c + b) at-bot = at-bot

apply (intro filtermap-fun-inverse[of λx. (x−b) / c])
subgoal unfolding eventually-at-bot-linorder filterlim-at-bot

by (auto simp add: field-simps)
subgoal unfolding eventually-at-bot-linorder filterlim-at-bot

by (metis mult.commute real-affinity-le)
by auto

then show ?thesis using ‹c>0 › by auto
next

case False
then have c<0 using ‹c 6=0 › by auto
then have filtermap (λx. x ∗ c + b) at-bot = at-top

apply (intro filtermap-fun-inverse[of λx. (x−b) / c])
subgoal unfolding eventually-at-top-linorder filterlim-at-bot

by (meson le-diff-eq neg-divide-le-eq)
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subgoal unfolding eventually-at-bot-linorder filterlim-at-top
using ‹c < 0 › by (meson False diff-le-eq le-divide-eq)

by auto
then show ?thesis using ‹c<0 › by auto

qed

lemma filtermap-linear-at-left:
fixes c:: ′a::{linordered-field,linorder-topology,real-normed-field}
assumes c 6=0
shows filtermap (λx. c∗x+b) (at-left x) = (if c>0 then at-left (c∗x+b) else

at-right (c∗x+b))
proof −

let ?f = λx. c∗x+b
have filtermap (λx. c∗x+b) (at-left x) = (at (?f x) within ?f ‘ {..<x})
proof (subst filtermap-linear-at-within)

show bij ?f using ‹c 6=0 ›
by (auto intro!: o-bij[of λx. (x−b)/c])

show isCont ?f x by auto
show

∧
S . open S =⇒ open (?f ‘ S)

using open-times-image[OF - ‹c 6=0 ›,THEN open-translation,of - b]
by (simp add:image-image add.commute)

show at (?f x) within ?f ‘ {..<x} = at (?f x) within ?f ‘ {..<x} by simp
qed
moreover have ?f ‘ {..<x} = {..<?f x} when c>0

using image-linear-lessThan[OF ‹c 6=0 ›,of b x] that by auto
moreover have ?f ‘ {..<x} = {?f x<..} when ¬ c>0

using image-linear-lessThan[OF ‹c 6=0 ›,of b x] that by auto
ultimately show ?thesis by auto

qed

lemma filtermap-linear-at-right:
fixes c:: ′a::{linordered-field,linorder-topology,real-normed-field}
assumes c 6=0
shows filtermap (λx. c∗x+b) (at-right x) = (if c>0 then at-right (c∗x+b) else

at-left (c∗x+b))
proof −

let ?f = λx. c∗x+b
have filtermap ?f (at-right x) = (at (?f x) within ?f ‘ {x<..})
proof (subst filtermap-linear-at-within)

show bij ?f using ‹c 6=0 ›
by (auto intro!: o-bij[of λx. (x−b)/c])

show isCont ?f x by auto
show

∧
S . open S =⇒ open (?f ‘ S)

using open-times-image[OF - ‹c 6=0 ›,THEN open-translation,of - b]
by (simp add:image-image add.commute)

show at (?f x) within ?f ‘ {x<..} = at (?f x) within ?f ‘ {x<..} by simp
qed
moreover have ?f ‘ {x<..} = {?f x<..} when c>0

using image-linear-greaterThan[OF ‹c 6=0 ›,of b x] that by auto
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moreover have ?f ‘ {x<..} = {..<?f x} when ¬ c>0
using image-linear-greaterThan[OF ‹c 6=0 ›,of b x] that by auto

ultimately show ?thesis by auto
qed

lemma filtermap-at-top-linear-eq:
fixes c:: ′a::linordered-field
assumes c 6=0
shows filtermap (λx. x ∗ c + b) at-top = (if c>0 then at-top else at-bot)

proof (cases c>0 )
case True
then have filtermap (λx. x ∗ c + b) at-top = at-top

apply (intro filtermap-fun-inverse[of λx. (x−b) / c])
subgoal unfolding eventually-at-top-linorder filterlim-at-top

by (meson le-diff-eq pos-le-divide-eq)
subgoal unfolding eventually-at-top-linorder filterlim-at-top

apply auto
by (metis mult.commute real-le-affinity)

by auto
then show ?thesis using ‹c>0 › by auto

next
case False
then have c<0 using ‹c 6=0 › by auto
then have filtermap (λx. x ∗ c + b) at-top = at-bot

apply (intro filtermap-fun-inverse[of λx. (x−b) / c])
subgoal unfolding eventually-at-bot-linorder filterlim-at-top

by (auto simp add: field-simps)
subgoal unfolding eventually-at-top-linorder filterlim-at-bot

by (meson le-diff-eq neg-divide-le-eq)
by auto

then show ?thesis using ‹c<0 › by auto
qed

1.4 More about filterlim
lemma filterlim-at-top-linear-iff :

fixes f :: ′a::linordered-field ⇒ ′b
assumes c 6=0
shows (LIM x at-top. f (x ∗ c + b) :> F2 ) ←→ (if c>0 then (LIM x at-top. f x

:> F2 )
else (LIM x at-bot. f x :> F2 ))

unfolding filterlim-def
apply (subst filtermap-filtermap[of f λx. x ∗ c + b,symmetric])
using assms by (auto simp add:filtermap-at-top-linear-eq)

lemma filterlim-at-bot-linear-iff :
fixes f :: ′a::linordered-field ⇒ ′b
assumes c 6=0
shows (LIM x at-bot. f (x ∗ c + b) :> F2 ) ←→ (if c>0 then (LIM x at-bot. f x
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:> F2 )
else (LIM x at-top. f x :> F2 ))

unfolding filterlim-def
apply (subst filtermap-filtermap[of f λx. x ∗ c + b,symmetric])
using assms by (auto simp add:filtermap-at-bot-linear-eq)

lemma filterlim-tendsto-add-at-top-iff :
assumes f : (f −−−→ c) F
shows (LIM x F . (f x + g x :: real) :> at-top) ←→ (LIM x F . g x :> at-top)

proof
assume LIM x F . f x + g x :> at-top
moreover have ((λx. − f x) −−−→ − c) F

using f by (intro tendsto-intros,simp)
ultimately show filterlim g at-top F using filterlim-tendsto-add-at-top

by fastforce
qed (auto simp add:filterlim-tendsto-add-at-top[OF f ])

lemma filterlim-tendsto-add-at-bot-iff :
fixes c::real
assumes f : (f −−−→ c) F
shows (LIM x F . f x + g x :> at-bot) ←→ (LIM x F . g x :> at-bot)

proof −
have (LIM x F . f x + g x :> at-bot)

←→ (LIM x F . − f x + (− g x) :> at-top)
apply (subst filterlim-uminus-at-top)
by (rule filterlim-cong,auto)

also have ... = (LIM x F . − g x :> at-top)
apply (subst filterlim-tendsto-add-at-top-iff [of - −c])
by (auto intro:tendsto-intros simp add:f )

also have ... = (LIM x F . g x :> at-bot)
apply (subst filterlim-uminus-at-top)
by (rule filterlim-cong,auto)

finally show ?thesis .
qed

lemma tendsto-inverse-0-at-infinity:
LIM x F . f x :> at-infinity =⇒ ((λx. inverse (f x) :: real) −−−→ 0 ) F

by (metis filterlim-at filterlim-inverse-at-iff )

end

2 Some useful lemmas in algebra
theory Missing-Algebraic imports

HOL−Computational-Algebra.Polynomial-Factorial
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HOL−Computational-Algebra.Fundamental-Theorem-Algebra
HOL−Complex-Analysis.Complex-Analysis
Missing-Topology
Budan-Fourier .BF-Misc

begin

2.1 Misc
lemma poly-holomorphic-on[simp]: (poly p) holomorphic-on s

by (meson field-differentiable-def has-field-derivative-at-within holomorphic-onI
poly-DERIV )

lemma order-zorder :
fixes p::complex poly and z::complex
assumes p 6=0
shows order z p = nat (zorder (poly p) z)

proof −
define n where n=nat (zorder (poly p) z)
define h where h=zor-poly (poly p) z
have ∃w. poly p w 6= 0 using assms poly-all-0-iff-0 by auto
then obtain r where 0 < r cball z r ⊆ UNIV and

h-holo: h holomorphic-on cball z r and
poly-prod:(∀w∈cball z r . poly p w = h w ∗ (w − z) ^ n ∧ h w 6= 0 )

using zorder-exist-zero[of poly p UNIV z,folded h-def ] poly-holomorphic-on
unfolding n-def by auto

then have h holomorphic-on ball z r
and (∀w∈ball z r . poly p w = h w ∗ (w − z) ^ n)
and h z 6=0
by auto

then have order z p = n using ‹p 6=0 ›
proof (induct n arbitrary:p h)

case 0
then have poly p z=h z using ‹r>0 › by auto
then have poly p z 6=0 using ‹h z 6=0 › by auto
then show ?case using order-root by blast

next
case (Suc n)
define sn where sn=Suc n
define h ′ where h ′≡ λw. deriv h w ∗ (w−z)+ sn ∗ h w
have (poly p has-field-derivative poly (pderiv p) w) (at w) for w

using poly-DERIV [of p w] .
moreover have (poly p has-field-derivative (h ′ w)∗(w−z)^n ) (at w) when

w∈ball z r for w
proof (subst DERIV-cong-ev[of w w poly p λw. h w ∗ (w − z) ^ Suc n

],simp-all)
show ∀ F x in nhds w. poly p x = h x ∗ ((x − z) ∗ (x − z) ^ n)

unfolding eventually-nhds using Suc(3 ) ‹w∈ball z r›
by (metis Elementary-Metric-Spaces.open-ball power-Suc)

next
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have (h has-field-derivative deriv h w) (at w)
using ‹h holomorphic-on ball z r› ‹w∈ball z r› holomorphic-on-imp-differentiable-at

by (simp add: holomorphic-derivI )
then have ((λw. h w ∗ ((w − z) ^ sn))

has-field-derivative h ′ w ∗ (w − z) ^ (sn − 1 )) (at w)
unfolding h ′-def
apply (auto intro!: derivative-eq-intros simp add:field-simps)
by (auto simp add:field-simps sn-def )

then show ((λw. h w ∗ ((w − z) ∗ (w − z) ^ n))
has-field-derivative h ′ w ∗ (w − z) ^ n) (at w)

unfolding sn-def by auto
qed

ultimately have ∀w∈ball z r . poly (pderiv p) w = h ′ w ∗ (w − z) ^ n
using DERIV-unique by blast

moreover have h ′ holomorphic-on ball z r
unfolding h ′-def using ‹h holomorphic-on ball z r›
by (auto intro!: holomorphic-intros)

moreover have h ′ z 6=0 unfolding h ′-def sn-def using ‹h z 6= 0 › of-nat-neq-0
by auto

moreover have pderiv p 6= 0
proof

assume pderiv p = 0
obtain c where p=[:c:] using ‹pderiv p = 0 › using pderiv-iszero by blast
then have c=0

using Suc(3 )[rule-format,of z] ‹r>0 › by auto
then show False using ‹p 6=0 › using ‹p=[:c:]› by auto

qed
ultimately have order z (pderiv p) = n by (auto elim: Suc.hyps)
moreover have order z p 6= 0

using Suc(3 )[rule-format,of z] ‹r>0 › order-root ‹p 6=0 › by auto
ultimately show ?case using order-pderiv[OF ‹pderiv p 6= 0 ›] by auto

qed
then show ?thesis unfolding n-def .

qed

lemma pcompose-pCons-0 :pcompose p [:a:] = [:poly p a:]
by (metis (no-types, lifting) coeff-pCons-0 pcompose-0 ′ pcompose-assoc poly-0-coeff-0

poly-pcompose)

lemma pcompose-coeff-0 :
coeff (pcompose p q) 0 = poly p (coeff q 0 )
by (metis poly-0-coeff-0 poly-pcompose)

lemma poly-field-differentiable-at[simp]:
poly p field-differentiable (at x within s)
using field-differentiable-at-within field-differentiable-def poly-DERIV by blast

lemma deriv-pderiv:
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deriv (poly p) = poly (pderiv p)
by (meson ext DERIV-imp-deriv poly-DERIV )

lemma lead-coeff-map-poly-nz:
assumes f (lead-coeff p) 6=0 f 0=0
shows lead-coeff (map-poly f p) = f (lead-coeff p)
by (metis (no-types, lifting) antisym assms coeff-0 coeff-map-poly le-degree lead-

ing-coeff-0-iff )

lemma filterlim-poly-at-infinity:
fixes p:: ′a::real-normed-field poly
assumes degree p>0
shows filterlim (poly p) at-infinity at-infinity

using assms
proof (induct p)

case 0
then show ?case by auto

next
case (pCons a p)
have ?case when degree p=0
proof −

obtain c where c-def :p=[:c:] using ‹degree p = 0 › degree-eq-zeroE by blast
then have c 6=0 using ‹0 < degree (pCons a p)› by auto
then show ?thesis unfolding c-def

apply (auto intro!:tendsto-add-filterlim-at-infinity)
apply (subst mult.commute)
by (auto intro!:tendsto-mult-filterlim-at-infinity filterlim-ident)

qed
moreover have ?case when degree p 6=0
proof −

have filterlim (poly p) at-infinity at-infinity
using that by (auto intro:pCons)

then show ?thesis
by (auto intro!:tendsto-add-filterlim-at-infinity filterlim-at-infinity-times filter-

lim-ident)
qed
ultimately show ?case by auto

qed

lemma poly-divide-tendsto-aux:
fixes p:: ′a::real-normed-field poly
shows ((λx. poly p x/x^(degree p)) −−−→ lead-coeff p) at-infinity

proof (induct p)
case 0
then show ?case by (auto intro:tendsto-eq-intros)

next
case (pCons a p)
have ?case when p=0

using that by auto
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moreover have ?case when p 6=0
proof −

define g where g=(λx. a/(x∗x^degree p))
define f where f=(λx. poly p x/x^degree p)
have ∀ F x in at-infinity. poly (pCons a p) x / x ^ degree (pCons a p) = g x +

f x
proof (rule eventually-at-infinityI [of 1 ])

fix x:: ′a assume norm x≥1
then have x 6=0 by auto
then show poly (pCons a p) x / x ^ degree (pCons a p) = g x + f x

using that unfolding g-def f-def by (auto simp add:field-simps)
qed
moreover have ((λx. g x+f x) −−−→ lead-coeff (pCons a p)) at-infinity
proof −

have (g −−−→ 0 ) at-infinity
unfolding g-def using filterlim-poly-at-infinity[of monom 1 (Suc (degree

p))]
apply (auto intro!:tendsto-intros tendsto-divide-0 simp add: degree-monom-eq)

apply (subst filterlim-cong[where g=poly (monom 1 (Suc (degree p)))])
by (auto simp add:poly-monom)

moreover have (f −−−→ lead-coeff (pCons a p)) at-infinity
using pCons ‹p 6=0 › unfolding f-def by auto

ultimately show ?thesis by (auto intro:tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)

qed
ultimately show ?case by auto

qed

lemma filterlim-power-at-infinity:
assumes n 6=0
shows filterlim (λx:: ′a::real-normed-field. x^n) at-infinity at-infinity
using filterlim-poly-at-infinity[of monom 1 n] assms
apply (subst filterlim-cong[where g=poly (monom 1 n)])
by (auto simp add:poly-monom degree-monom-eq)

lemma poly-divide-tendsto-0-at-infinity:
fixes p:: ′a::real-normed-field poly
assumes degree p > degree q
shows ((λx. poly q x / poly p x) −−−→ 0 ) at-infinity

proof −
define pp where pp=(λx. x^(degree p) / poly p x)
define qq where qq=(λx. poly q x/x^(degree q))
define dd where dd=(λx:: ′a. 1/x^(degree p − degree q))
have ∀ F x in at-infinity. poly q x / poly p x = qq x ∗ pp x ∗ dd x
proof (rule eventually-at-infinityI [of 1 ])

fix x:: ′a assume norm x≥1
then have x 6=0 by auto
then show poly q x / poly p x = qq x ∗ pp x ∗ dd x
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unfolding qq-def pp-def dd-def using assms
by (auto simp add:field-simps divide-simps power-diff )

qed
moreover have ((λx. qq x ∗ pp x ∗ dd x) −−−→ 0 ) at-infinity
proof −

have (qq −−−→ lead-coeff q) at-infinity
unfolding qq-def using poly-divide-tendsto-aux[of q] .

moreover have (pp −−−→ 1/lead-coeff p) at-infinity
proof −

have p 6=0 using assms by auto
then show ?thesis

unfolding pp-def using poly-divide-tendsto-aux[of p]
apply (drule-tac tendsto-inverse)
by (auto simp add:inverse-eq-divide)

qed
moreover have (dd −−−→ 0 ) at-infinity

unfolding dd-def
apply (rule tendsto-divide-0 )
by (auto intro!: filterlim-power-at-infinity simp add:assms)

ultimately show ?thesis by (auto intro:tendsto-eq-intros)
qed
ultimately show ?thesis by (auto dest:tendsto-cong)

qed

lemma lead-coeff-list-def :
lead-coeff p= (if coeffs p=[] then 0 else last (coeffs p))
by (simp add: last-coeffs-eq-coeff-degree)

lemma poly-linepath-comp:
fixes a:: ′a::{real-normed-vector ,comm-semiring-0 ,real-algebra-1}
shows poly p o (linepath a b) = poly (p ◦p [:a, b−a:]) o of-real
by (force simp add:poly-pcompose linepath-def scaleR-conv-of-real algebra-simps)

lemma poly-eventually-not-zero:
fixes p::real poly
assumes p 6=0
shows eventually (λx. poly p x 6=0 ) at-infinity

proof (rule eventually-at-infinityI [of Max (norm ‘ {x. poly p x=0}) + 1 ])
fix x::real assume asm:Max (norm ‘ {x. poly p x=0}) + 1 ≤ norm x
have False when poly p x=0
proof −

define S where S=norm ‘{x. poly p x = 0}
have norm x∈S using that unfolding S-def by auto
moreover have finite S using ‹p 6=0 › poly-roots-finite unfolding S-def by

blast
ultimately have norm x≤Max S by simp
moreover have Max S + 1 ≤ norm x using asm unfolding S-def by simp
ultimately show False by argo

qed
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then show poly p x 6= 0 by auto
qed

2.2 More about degree
lemma map-poly-degree-eq:

assumes f (lead-coeff p) 6=0
shows degree (map-poly f p) = degree p
using assms
unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly lead-coeff-list-def
by (metis (full-types) last-conv-nth-default length-map no-trailing-unfold nth-default-coeffs-eq

nth-default-map-eq strip-while-idem)

lemma map-poly-degree-less:
assumes f (lead-coeff p) =0 degree p 6=0
shows degree (map-poly f p) < degree p

proof −
have length (coeffs p) >1

using ‹degree p 6=0 › by (simp add: degree-eq-length-coeffs)
then obtain xs x where xs-def :coeffs p=xs@[x] length xs>0
by (metis One-nat-def add-0 append-Nil length-greater-0-conv list.size(4 ) nat-neq-iff

not-less-zero rev-exhaust)
have f x=0 using assms(1 ) by (simp add: lead-coeff-list-def xs-def (1 ))
have degree (map-poly f p) = length (strip-while ((=) 0 ) (map f (xs@[x]))) − 1

unfolding map-poly-def degree-eq-length-coeffs coeffs-Poly
by (subst xs-def ,auto)

also have ... = length (strip-while ((=) 0 ) (map f xs)) − 1
using ‹f x=0 › by simp

also have ... ≤ length xs −1
using length-strip-while-le by (metis diff-le-mono length-map)

also have ... < length (xs@[x]) − 1
using xs-def (2 ) by auto

also have ... = degree p
unfolding degree-eq-length-coeffs xs-def by simp

finally show ?thesis .
qed

lemma map-poly-degree-leq[simp]:
shows degree (map-poly f p) ≤ degree p
unfolding map-poly-def degree-eq-length-coeffs
by (metis coeffs-Poly diff-le-mono length-map length-strip-while-le)

2.3 roots / zeros of a univariate function
definition roots-within::( ′a ⇒ ′b::zero) ⇒ ′a set ⇒ ′a set where

roots-within f s = {x∈s. f x = 0}

abbreviation roots::( ′a ⇒ ′b::zero) ⇒ ′a set where
roots f ≡ roots-within f UNIV
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2.4 The argument principle specialised to polynomials.
lemma argument-principle-poly:

assumes p 6=0 and valid:valid-path g and loop: pathfinish g = pathstart g
and no-proots:path-image g ⊆ − proots p

shows contour-integral g (λx. deriv (poly p) x / poly p x) = 2 ∗ of-real pi ∗ i ∗
(
∑

x∈proots p. winding-number g x ∗ of-nat (order x p))
proof −

have contour-integral g (λx. deriv (poly p) x / poly p x) = 2 ∗ of-real pi ∗ i ∗
(
∑

x | poly p x = 0 . winding-number g x ∗ of-int (zorder (poly p) x))
apply (rule argument-principle[of UNIV poly p {} λ-. 1 g,simplified,OF - valid

loop])
using no-proots[unfolded proots-def ] by (auto simp add:poly-roots-finite[OF

‹p 6=0 ›] )
also have ... = 2 ∗ of-real pi ∗ i ∗ (

∑
x∈proots p. winding-number g x ∗ of-nat

(order x p))
proof −

have nat (zorder (poly p) x) = order x p when x∈proots p for x
using order-zorder [OF ‹p 6=0 ›] that unfolding proots-def by auto

then show ?thesis unfolding proots-def
apply (auto intro!: sum.cong)
by (metis assms(1 ) nat-eq-iff2 of-nat-nat order-root)

qed
finally show ?thesis .

qed

end

3 Some useful lemmas about transcendental func-
tions

theory Missing-Transcendental imports
Missing-Topology
Missing-Algebraic

begin

3.1 Misc
lemma exp-Arg2pi2pi-multivalue:

assumes exp (i ∗ of-real x) = z
shows ∃ k::int. x = Arg2pi z + 2∗k∗pi

proof −
define k where k=floor( x/(2∗pi))
define x ′ where x ′= x − (2∗k∗pi)
have x ′/(2∗pi) ≥0 unfolding x ′-def k-def by (simp add: diff-divide-distrib)
moreover have x ′/(2∗pi) < 1
proof −

have x/(2∗pi) − k < 1 unfolding k-def by linarith
thus ?thesis unfolding k-def x ′-def by (auto simp add:field-simps)
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qed
ultimately have x ′≥0 and x ′<2∗pi by (auto simp add:field-simps)
moreover have exp (i ∗ complex-of-real x ′) = z

using assms x ′-def by (auto simp add:field-simps )
ultimately have Arg2pi z = x ′ using Arg2pi-unique[of 1 x ′ z,simplified] by auto
hence x = Arg2pi z + 2∗k∗pi unfolding x ′-def by auto
thus ?thesis by auto

qed

lemma uniform-discrete-tan-eq:
uniform-discrete {x::real. tan x = y}

proof −
have x1=x2 when dist:dist x1 x2<pi/2 and tan x1=y tan x2=y for x1 x2
proof −

obtain k1 ::int where x1 :x1 = arctan y + k1∗pi ∨ (x1 = pi/2 + k1∗pi ∧
y=0 )

using tan-eq-arctan-Ex ‹tan x1=y› by auto
obtain k2 ::int where x2 :x2 = arctan y + k2∗pi ∨ (x2 = pi/2 + k2∗pi ∧

y=0 )
using tan-eq-arctan-Ex ‹tan x2=y› by auto

let ?xk1=x1 = arctan y + k1∗pi and ?xk1 ′=x1 = pi/2 + k1∗pi ∧ y=0
let ?xk2=x2 = arctan y + k2∗pi and ?xk2 ′=x2 = pi/2 + k2∗pi ∧ y=0
have ?thesis when (?xk1 ∧ ?xk2 ) ∨ (?xk1 ′ ∧ ?xk2 ′)
proof −

have x1−x2= (k1 − k2 ) ∗pi when ?xk1 ?xk2
using arg-cong2 [where f=minus,OF ‹?xk1 › ‹?xk2 ›]
by (auto simp add:algebra-simps)

moreover have x1−x2= (k1 − k2 ) ∗pi when ?xk1 ′ ?xk2 ′

using arg-cong2 [where f=minus,OF conjunct1 [OF ‹?xk1 ′›] conjunct1 [OF
‹?xk2 ′›]]

by (auto simp add:algebra-simps)
ultimately have x1−x2= (k1 − k2 ) ∗pi using that by auto
then have |k1 − k2 | < 1/2

using dist[unfolded dist-real-def ] by (auto simp add:abs-mult)
then have k1=k2 by linarith
then show ?thesis using that by auto

qed
moreover have ?thesis when ?xk1 ?xk2 ′

proof −
have x1 = k1∗pi x2 = pi / 2 + k2 ∗ pi using ‹?xk2 ′› ‹?xk1 › by auto
from arg-cong2 [where f=minus,OF this] have x1 − x2 = (k1 − k2 ) ∗ pi

−pi/2
by (auto simp add:algebra-simps)

then have |(k1 − k2 ) ∗ pi −pi/2 | < pi/2 using dist[unfolded dist-real-def ]
by auto

then have 0<k1−k2 k1−k2<1
unfolding abs-less-iff by (auto simp add: zero-less-mult-iff )

then have False by simp
then show ?thesis by auto
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qed
moreover have ?thesis when ?xk1 ′ ?xk2
proof −

have x1 = pi / 2 + k1∗pi x2 = k2 ∗ pi using ‹?xk2 › ‹?xk1 ′› by auto
from arg-cong2 [where f=minus,OF this] have x1 − x2 = (k1 − k2 ) ∗ pi

+ pi/2
by (auto simp add:algebra-simps)

then have |(k1 − k2 ) ∗ pi + pi/2 | < pi/2 using dist[unfolded dist-real-def ]
by auto

then have |(k1 − k2 + 1/2 )∗pi| < pi/2 by (auto simp add:algebra-simps)
then have |(k1 − k2 + 1/2 )| < 1/2 by (auto simp add:abs-mult)
then have −1<k1−k2 ∧ k1−k2<0

unfolding abs-less-iff by linarith
then have False by auto
then show ?thesis by auto

qed
ultimately show ?thesis using x1 x2 by blast

qed
then show ?thesis unfolding uniform-discrete-def

apply (intro exI [where x=pi/2 ])
by auto

qed

lemma get-norm-value:
fixes a:: ′a::{floor-ceiling}
assumes pp>0
obtains k::int and a1 where a=(of-int k)∗pp+a1 a0≤a1 a1<a0+pp

proof −
define k where k=floor ((a−a0 )/pp)
define a1 where a1=a−(of-int k)∗pp
have of-int b(a − a0 ) / ppc ∗ pp ≤ a− a0

using assms by (meson le-divide-eq of-int-floor-le)
moreover have a−a0 < of-int (b(a − a0 ) / ppc+1 ) ∗ pp

using assms by (meson divide-less-eq floor-correct)
ultimately show ?thesis

apply (intro that[of k a1 ])
unfolding k-def a1-def using assms by (auto simp add:algebra-simps)

qed

lemma filtermap-tan-at-right:
fixes a::real
assumes cos a 6=0
shows filtermap tan (at-right a) = at-right (tan a)

proof −
obtain k::int and a1 where aa1 :a=k∗pi+a1 and pi-a1 : −pi/2≤a1 a1<pi/2

using get-norm-value[of pi a −pi/2 ] by auto
have −pi/2 < a1
using assms
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by (smt (verit, ccfv-SIG) pi-a1 aa1 cos-2pi-minus cos-diff cos-pi-half cos-two-pi
divide-minus-left mult-of-int-commute sin-add sin-npi-int sin-pi-half sin-two-pi)

have eventually P (at-right (tan a))
when eventually P (filtermap tan (at-right a)) for P

proof −
obtain b1 where b1>a and b1-imp: ∀ y>a. y < b1 −→ P (tan y)
by (metis Sturm-Tarski.eventually-at-right ‹eventually P (filtermap tan (at-right

a))› eventually-filtermap)
define b2 where b2=min b1 (k∗pi+pi/4+a1/2 )
define b3 where b3=b2 − k∗pi
have −pi/2 < b3 b3<pi/2
proof −

have a1<b3
using ‹b1>a› aa1 ‹a1<pi/2 › unfolding b2-def b3-def by (auto simp

add:field-simps)
then show −pi/2 < b3 using ‹−pi/2≤a1 › by auto
show b3 < pi/2

using b2-def b3-def pi-a1 (2 ) by linarith
qed
have tan b2 > tan a
proof −

have tan a = tan a1
using aa1 by (simp add: add.commute)

also have ... < tan b3
proof −

have a1<b3
using ‹b1>a› aa1 ‹a1<pi/2 › unfolding b2-def b3-def by (auto simp

add:field-simps)
then show ?thesis

using tan-monotone ‹−pi/2 < a1 › ‹b3 < pi/2 › by simp
qed
also have ... = tan b2 unfolding b3-def
by (metis Groups.mult-ac(2 ) add-uminus-conv-diff mult-minus-right of-int-minus

tan-periodic-int)
finally show ?thesis .

qed
moreover have P y when y>tan a y < tan b2 for y
proof −

define y1 where y1=arctan y+ k ∗ pi
have a<y1
proof −

have arctan (tan a) < arctan y using ‹y>tan a› arctan-monotone by auto
then have a1<arctan y
using arctan-tan ‹−pi/2 < a1 › ‹a1<pi/2 › unfolding aa1 by (simp add:

add.commute)
then show ?thesis unfolding y1-def aa1 by auto

qed
moreover have y1<b2

16



proof −
have arctan y < arctan (tan b2 )

using ‹y < tan b2 › arctan-monotone by auto
moreover have arctan (tan b2 ) = b3

using arctan-tan[of b3 ] ‹−pi/2 < b3 › ‹b3<pi/2 › unfolding b3-def
by (metis add.inverse-inverse diff-minus-eq-add divide-minus-left mult.commute

mult-minus-right of-int-minus tan-periodic-int)
ultimately have arctan y < b3 by auto
then show ?thesis unfolding y1-def b3-def by auto

qed
moreover have ∀ y>a. y < b2 −→ P (tan y)

using b1-imp unfolding b2-def by auto
moreover have tan y1=y unfolding y1-def by (auto simp add:tan-arctan)
ultimately show ?thesis by auto

qed
ultimately show eventually P (at-right (tan a))

unfolding eventually-at-right by (metis eventually-at-right-field)
qed
moreover have eventually P (filtermap tan (at-right a))

when eventually P (at-right (tan a)) for P
proof −

obtain b1 where b1>tan a and b1-imp:∀ y>tan a. y < b1 −→ P y
using ‹eventually P (at-right (tan a))› unfolding eventually-at-right
by (metis eventually-at-right-field)

define b2 where b2=arctan b1 + k∗pi
have a1 < arctan b1

by (metis ‹− pi / 2 < a1 › ‹a1 < pi / 2 › ‹tan a < b1 › aa1 add.commute
arctan-less-iff

arctan-tan divide-minus-left tan-periodic-int)
then have b2>a unfolding aa1 b2-def by auto
moreover have P (tan y) when y>a y < b2 for y
proof −

define y1 where y1 = y − k∗pi
have a1 < y1 y1 < arctan b1 unfolding y1-def

subgoal using ‹y>a› unfolding aa1 by auto
subgoal using b2-def that(2 ) by linarith
done

then have tan a1 < tan y1 tan y1< b1
subgoal using ‹a1>−pi/2 ›

apply (intro tan-monotone,simp,simp)
using arctan-ubound less-trans by blast

subgoal
by (metis ‹− pi / 2 < a1 › ‹a1 < y1 › ‹y1 < arctan b1 › arctan-less-iff

arctan-tan
arctan-ubound divide-minus-left less-trans)

done
have tan y>tan a

by (metis ‹tan a1 < tan y1 › aa1 add.commute add-uminus-conv-diff
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mult.commute
mult-minus-right of-int-minus tan-periodic-int y1-def )

moreover have tan y<b1
by (metis ‹tan y1 < b1 › add-uminus-conv-diff mult.commute mult-minus-right

of-int-minus tan-periodic-int y1-def )
ultimately show ?thesis using b1-imp by auto

qed
ultimately show ?thesis unfolding eventually-filtermap eventually-at-right

by (metis eventually-at-right-field)
qed
ultimately show ?thesis unfolding filter-eq-iff by blast

qed

lemma filtermap-tan-at-left:
fixes a::real
assumes cos a 6=0
shows filtermap tan (at-left a) = at-left (tan a)

proof −
have filtermap tan (at-right (− a)) = at-right (tan (− a))

using filtermap-tan-at-right[of −a] assms by auto
then have filtermap (uminus o tan) (at-left a) = filtermap uminus (at-left (tan

a))
unfolding at-right-minus filtermap-filtermap comp-def by auto

then have filtermap uminus (filtermap (uminus o tan) (at-left a))
= filtermap uminus (filtermap uminus (at-left (tan a)))

by auto
then show ?thesis

unfolding filtermap-filtermap comp-def by auto
qed

lemma filtermap-tan-at-right-inf :
fixes a::real
assumes cos a=0
shows filtermap tan (at-right a) = at-bot

proof −
obtain k::int where ak:a=k∗pi + pi/2

using cos-zero-iff-int2 assms by auto
have eventually P at-bot when eventually P (filtermap tan (at-right a)) for P
proof −

obtain b1 where b1>a and b1-imp:∀ y>a. y < b1 −→ P (tan y)
using ‹eventually P (filtermap tan (at-right a))›
unfolding eventually-filtermap eventually-at-right
by (metis eventually-at-right-field)

define b2 where b2=min (k∗pi+pi) b1
have P y when y<tan b2 for y
proof −

define y1 where y1=(k+1 )∗pi+arctan y
have a < y1
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unfolding ak y1-def using arctan-lbound[of y]
by (auto simp add:field-simps)

moreover have y1 < b2
proof −

define b3 where b3=b2−(k+1 ) ∗ pi
have −pi/2 < b3 b3<pi/2

using ‹b1>a› unfolding b3-def b2-def ak
by (auto simp add:field-simps min-mult-distrib-left intro!:min.strict-coboundedI1 )
then have arctan (tan b3 ) = b3

by (simp add: arctan-tan)
then have arctan (tan b2 ) = b3

unfolding b3-def by (metis diff-eq-eq tan-periodic-int)
then have arctan y < b3

using arctan-monotone[OF ‹y<tan b2 ›] by simp
then show ?thesis

unfolding y1-def b3-def by auto
qed
then have y1<b1 unfolding b2-def by auto
ultimately have P (tan y1 ) using b1-imp[rule-format,of y1 ,simplified] by

auto
then show ?thesis unfolding y1-def by (metis add.commute arctan tan-periodic-int)
qed
then show ?thesis unfolding eventually-at-bot-dense by auto

qed
moreover have eventually P (filtermap tan (at-right a)) when eventually P

at-bot for P
proof −

obtain b1 where b1-imp:∀n<b1 . P n
using ‹eventually P at-bot› unfolding eventually-at-bot-dense by auto

define b2 where b2=arctan b1 + (k+1 )∗pi
have b2>a unfolding ak b2-def using arctan-lbound[of b1 ]

by (auto simp add:algebra-simps)
moreover have P (tan y) when a < y y < b2 for y
proof −

define y1 where y1=y−(k+1 )∗pi
have tan y1 < tan (arctan b1 )

apply (rule tan-monotone)
subgoal using ‹a<y› unfolding y1-def ak by (auto simp add:algebra-simps)
subgoal using ‹y < b2 › unfolding y1-def b2-def by (auto simp add:algebra-simps)

subgoal using arctan-ubound by auto
done

then have tan y1<b1 by (simp add: arctan)
then have tan y < b1 unfolding y1-def

by (metis diff-eq-eq tan-periodic-int)
then show ?thesis using b1-imp by auto

qed
ultimately show eventually P (filtermap tan (at-right a))

unfolding eventually-filtermap eventually-at-right
by (metis eventually-at-right-field)
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qed
ultimately show ?thesis unfolding filter-eq-iff by auto

qed

lemma filtermap-tan-at-left-inf :
fixes a::real
assumes cos a=0
shows filtermap tan (at-left a) = at-top

proof −
have filtermap tan (at-right (− a)) = at-bot

using filtermap-tan-at-right-inf [of −a] assms by auto
then have filtermap (uminus o tan) (at-left a) = at-bot

unfolding at-right-minus filtermap-filtermap comp-def by auto
then have filtermap uminus (filtermap (uminus o tan) (at-left a)) = filtermap

uminus at-bot
by auto

then show ?thesis
unfolding filtermap-filtermap comp-def using at-top-mirror [where ′a=real]

by auto
qed

3.2 Periodic set
definition periodic-set:: real set ⇒ real ⇒ bool where

periodic-set S δ ←→ (∃B. finite B ∧ (∀ x∈S . ∃ b∈B. ∃ k::int. x =b + k ∗ δ ))

lemma periodic-set-multiple:
assumes k 6=0
shows periodic-set S δ ←→ periodic-set S (of-int k∗δ)

proof
assume asm:periodic-set S δ
then obtain B1 where finite B1 and B1-def :∀ x∈S . ∃ b∈B1 . (∃ k::int. x = b

+ k ∗ δ)
unfolding periodic-set-def by metis

define B where B = B1 ∪ {b+i∗δ | b i. b∈B1 ∧ i∈{0 ..<|k|}}
have ∃ b∈B. ∃ k ′. x = b + real-of-int k ′ ∗ (real-of-int k ∗ δ) when x∈S for x
proof −

obtain b1 and k1 ::int where b1∈B1 and x-δ:x = b1 + k1 ∗ δ
using B1-def [rule-format, OF ‹x∈S›] by auto

define r d where r= k1 mod |k| and d = k1 div |k|
define b kk where b=b1+r∗δ and kk = (if k>0 then d else −d)
have x = b1 + (r+|k|∗d)∗δ using x-δ unfolding r-def d-def by auto
then have x = b + kk∗(k∗δ) unfolding b-def kk-def using ‹k 6=0 ›

by (auto simp add:algebra-simps)
moreover have b∈B
proof −

have r ∈ {0 ..<|k|} unfolding r-def by (simp add: ‹k 6=0 ›)
then show ?thesis unfolding b-def B-def using ‹b1∈B1 › by blast

qed
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ultimately show ?thesis by auto
qed
moreover have finite B unfolding B-def using ‹finite B1 ›

by (simp add: finite-image-set2 )
ultimately show periodic-set S (real-of-int k ∗ δ) unfolding periodic-set-def

by auto
next

assume periodic-set S (real-of-int k ∗ δ)
then show periodic-set S δ unfolding periodic-set-def

by (metis mult.commute mult.left-commute of-int-mult)
qed

lemma periodic-set-empty[simp]: periodic-set {} δ
unfolding periodic-set-def by auto

lemma periodic-set-finite:
assumes finite S
shows periodic-set S δ

unfolding periodic-set-def using assms mult.commute by force

lemma periodic-set-subset[elim]:
assumes periodic-set S δ T ⊆ S
shows periodic-set T δ

using assms unfolding periodic-set-def by (meson subsetCE)

lemma periodic-set-union:
assumes periodic-set S δ periodic-set T δ
shows periodic-set (S ∪ T ) δ

using assms unfolding periodic-set-def by (metis Un-iff infinite-Un)

lemma periodic-imp-uniform-discrete:
assumes periodic-set S δ
shows uniform-discrete S

proof −
have ?thesis when S 6={} δ 6=0
proof −

obtain B g where finite B and g-def :∀ x∈S . g x∈B ∧ (∃ k::int. x = g x + k
∗ δ)

using assms unfolding periodic-set-def by metis
define P where P = ((∗) δ) ‘ Ints
define B-diff where B-diff = {|x−y| | x y. x∈B ∧ y∈B} − P
have finite B-diff unfolding B-diff-def using ‹finite B›

by (simp add: finite-image-set2 )
define e where e = (if setdist B-diff P = 0 then |δ| else min (setdist B-diff P)

(|δ|))
have e>0

unfolding e-def using setdist-pos-le[unfolded order-class.le-less] ‹δ 6=0 ›
by auto

moreover have x=y when x∈S y∈S dist x y<e for x y
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proof −
obtain k1 ::int where k1 :x = g x + k1 ∗ δ and g x∈B using g-def ‹x∈S›

by auto
obtain k2 ::int where k2 :y = g y + k2 ∗ δ and g y∈B using g-def ‹y∈S›

by auto
have ?thesis when |g x − g y| ∈ P
proof −

obtain k::int where k:g x − g y = k ∗ δ
proof −

obtain k ′ where k ′∈Ints and ∗:|g x − g y| = δ ∗ k ′

using ‹|g x − g y| ∈ P› unfolding P-def image-iff by auto
then obtain k where ∗∗:k ′ = of-int k using Ints-cases by auto
show ?thesis

apply (cases g x − g y ≥ 0 )
subgoal using that[of k] ∗ ∗∗ by simp
subgoal using that[of −k] ∗ ∗∗ by (auto simp add:algebra-simps)
done

qed
have dist x y = |(g x − g y)+(k1−k2 )∗δ|

unfolding dist-real-def by (subst k1 ,subst k2 ,simp add:algebra-simps)
also have ... = |(k+k1−k2 )∗δ|

by (subst k,simp add:algebra-simps)
also have ... = |k+k1−k2 |∗|δ| by (simp add: abs-mult)
finally have ∗:dist x y = |k+k1−k2 |∗|δ| .
then have |k+k1−k2 |∗|δ| < e using ‹dist x y<e› by auto
then have |k+k1−k2 |∗|δ| < |δ|

by (simp add: e-def split: if-splits)
then have |k+k1−k2 | = 0 unfolding e-def using ‹δ 6=0 › by force
then have dist x y=0 using ∗ by auto
then show ?thesis by auto

qed
moreover have ?thesis when |g x − g y| /∈ P
proof −

have |g x − g y| ∈ B-diff unfolding B-diff-def using ‹g x∈B› ‹g y∈B›
that by auto

have e ≤ ||g x − g y| − |(k1−k2 )∗δ||
proof −

have |g x − g y| ∈ B-diff unfolding B-diff-def using ‹g x∈B› ‹g y∈B›
that by auto

moreover have |(k1−k2 )∗δ| ∈ P unfolding P-def
apply (intro rev-image-eqI [of (if δ≥0 then |of-int(k1−k2 )| else −

|of-int(k1−k2 )|)])
apply (metis Ints-minus Ints-of-int of-int-abs)
by (auto simp add:abs-mult)

ultimately have ||g x − g y| − |(k1−k2 )∗δ|| ≥ setdist B-diff P
using setdist-le-dist[of - B-diff - P] dist-real-def by auto

moreover have setdist B-diff P 6= 0
proof −
have compact B-diff using ‹finite B-diff › using finite-imp-compact by
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blast
moreover have closed P

unfolding P-def using closed-scaling[OF closed-Ints[where ′a=real],
of δ] by auto

moreover have P 6= {} using Ints-0 unfolding P-def by blast
moreover have B-diff ∩ P = {} unfolding B-diff-def by auto

moreover have B-diff 6={} unfolding B-diff-def using ‹g x∈B› ‹g
y∈B› that by auto

ultimately show ?thesis using setdist-eq-0-compact-closed[of B-diff P]
by auto

qed
ultimately show ?thesis unfolding e-def by argo

qed
also have ... ≤ |(g x − g y) + (k1−k2 )∗δ|
proof −

define t1 where t1=g x − g y
define t2 where t2 = of-int (k1 − k2 ) ∗ δ
show ?thesis

apply (fold t1-def t2-def )
by linarith

qed
also have ... = dist x y

unfolding dist-real-def
by (subst (2 ) k1 ,subst (2 ) k2 ,simp add:algebra-simps)

finally have dist x y≥e .
then have False using ‹dist x y<e› by auto
then show ?thesis by auto

qed
ultimately show ?thesis by auto

qed
ultimately show ?thesis unfolding uniform-discrete-def by auto

qed
moreover have ?thesis when S={} using that by auto
moreover have ?thesis when δ=0
proof −

obtain B g where finite B and g-def :∀ x∈S . g x∈B ∧ (∃ k::int. x = g x + k
∗ δ)

using assms unfolding periodic-set-def by metis
then have ∀ x∈S . g x∈B ∧ (x = g x) using that by fastforce
then have S ⊆ g ‘ B by auto
then have finite S using ‹finite B› by (auto elim:finite-subset)
then show ?thesis using uniform-discrete-finite-iff by blast

qed
ultimately show ?thesis by blast

qed

lemma periodic-set-tan-linear :
assumes a 6=0 c 6=0
shows periodic-set (roots (λx. a∗tan (x/c) + b)) (c∗pi)
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proof −
define B where B = { c∗arctan (− b / a), c∗pi/2}
have ∃ b∈B. ∃ k::int. x = b + k ∗ (c∗pi) when x∈roots (λx. a ∗ tan (x/c) + b)

for x
proof −

define C1 where C1 = (∃ k::int. x = c∗arctan (− b / a) + k ∗ (c∗pi))
define C2 where C2 = (∃ k::int. x = c∗pi / 2 + k ∗ (c∗pi) ∧ − b / a = 0 )
have tan (x/c) = − b/a using that ‹a 6=0 › unfolding roots-within-def

by (auto simp add:field-simps)
then have C1 ∨ C2 unfolding C1-def C2-def using tan-eq-arctan-Ex[of x/c

−b/a] ‹c 6=0 ›
by (auto simp add:field-simps)

moreover have ?thesis when C1 using that unfolding C1-def B-def by blast
moreover have ?thesis when C2 using that unfolding C2-def B-def by blast
ultimately show ?thesis by auto

qed
moreover have finite B unfolding B-def by auto
ultimately show ?thesis unfolding periodic-set-def by auto

qed

lemma periodic-set-cos-linear :
assumes a 6=0 c 6=0
shows periodic-set (roots (λx. a∗cos (x/c) + b)) (2∗c∗pi)

proof −
define B where B = { c∗arccos (− b / a), − c∗arccos (− b / a)}
have ∃ b∈B. ∃ k::int. x = b + k ∗ (2∗c∗pi)

when x∈roots (λx. a ∗ cos (x/c) + b) for x
proof −

define C1 where C1 = (∃ k::int. x = c∗arccos (− b / a) + k ∗ (2∗c∗pi))
define C2 where C2 = (∃ k::int. x = − c∗arccos (− b / a) + k ∗ (2∗c∗pi))
have cos (x/c) = − b/a using that ‹a 6=0 › unfolding roots-within-def

by (auto simp add:field-simps)
then have C1 ∨ C2

unfolding cos-eq-arccos-Ex ex-disj-distrib C1-def C2-def using ‹c 6=0 ›
apply (auto simp add:divide-simps)
by (auto simp add:algebra-simps)

moreover have ?thesis when C1 using that unfolding C1-def B-def by blast
moreover have ?thesis when C2 using that unfolding C2-def B-def by blast
ultimately show ?thesis by auto

qed
moreover have finite B unfolding B-def by auto
ultimately show ?thesis unfolding periodic-set-def by auto

qed

lemma periodic-set-tan-poly:
assumes p 6=0 c 6=0
shows periodic-set (roots (λx. poly p (tan (x/c)))) (c∗pi)
using assms

proof (induct rule:poly-root-induct-alt)
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case 0
then show ?case by simp

next
case (no-proots p)
then show ?case unfolding roots-within-def by simp

next
case (root a p)
have roots (λx. poly ([:− a, 1 :] ∗ p) (tan (x/c))) = roots (λx. tan (x/c) − a)

∪ roots (λx. poly p (tan (x/c)))
unfolding roots-within-def by auto

moreover have periodic-set (roots (λx. tan (x/c) − a)) (c∗pi)
using periodic-set-tan-linear [OF - ‹c 6=0 › ,of 1 −a,simplified] .

moreover have periodic-set (roots (λx. poly p (tan (x/c)))) (c∗pi) using root
by fastforce

ultimately show ?case using periodic-set-union by simp
qed

lemma periodic-set-sin-cos-linear :
fixes a b c ::real
assumes a 6=0 ∨ b 6=0 ∨ c 6=0
shows periodic-set (roots (λx. a ∗ cos x + b ∗ sin x + c)) (4∗pi)

proof −
define f where f x= a ∗ cos x + b ∗ sin x + c for x
have roots f = (roots f ∩ {x. cos (x/2 ) = 0}) ∪ (roots f ∩ {x. cos (x/2 ) 6= 0})

by auto
moreover have periodic-set (roots f ∩ {x. cos (x/2 ) = 0}) (4∗pi)
proof −

have periodic-set ({x. cos (x/2 ) = 0}) (4∗pi)
using periodic-set-cos-linear [of 1 2 0 ,unfolded roots-within-def ,simplified] by

simp
then show ?thesis by auto

qed
moreover have periodic-set (roots f ∩ {x. cos (x/2 ) 6= 0}) (4∗pi)
proof −

define p where p=[:a+c,2∗b,c−a:]
have poly p (tan (x/2 )) = 0 ←→ f x=0 when cos (x/2 ) 6=0 for x
proof −

define t where t=tan (x/2 )
define tt where tt = 1+t^2
have cos x = (1−t^2 ) / tt unfolding tt-def t-def

using cos-tan-half [OF that,simplified] by simp
moreover have sin x = 2∗t / tt unfolding tt-def t-def

using sin-tan-half [of x/2 ,simplified] by simp
moreover have tt 6=0 unfolding tt-def

by (metis power-one sum-power2-eq-zero-iff zero-neq-one)
ultimately show ?thesis

unfolding f-def p-def
apply (fold t-def )
apply simp

25



apply (auto simp add:field-simps)
by (auto simp add:algebra-simps tt-def power2-eq-square)

qed
then have roots f ∩ {x. cos (x/2 ) 6= 0} = roots (λx. poly p (tan (x/2 ))) ∩

{x. cos (x/2 ) 6= 0}
unfolding roots-within-def by auto

moreover have periodic-set (roots (λx. poly p (tan (x/2 ))) ∩ {x. cos (x/2 ) 6=
0}) (4∗pi)

proof −
have p 6=0 unfolding p-def using assms by auto
then have periodic-set (roots (λx. poly p (tan (x/2 )))) (4∗pi)

using periodic-set-tan-poly[of p 2 ,simplified]
periodic-set-multiple[of 2 - 2∗pi,simplified]

by auto
then show ?thesis by auto

qed
ultimately show ?thesis by auto

qed
ultimately show periodic-set (roots f ) (4∗pi) using periodic-set-union by metis

qed

end

4 Some useful lemmas in analysis
theory Missing-Analysis

imports HOL−Complex-Analysis.Complex-Analysis
begin

4.1 More about paths
lemma pathfinish-offset[simp]:

pathfinish (λt. g t − z) = pathfinish g − z
unfolding pathfinish-def by simp

lemma pathstart-offset[simp]:
pathstart (λt. g t − z) = pathstart g − z
unfolding pathstart-def by simp

lemma pathimage-offset[simp]:
fixes g :: - ⇒ ′b::topological-group-add
shows p ∈ path-image (λt. g t − z) ←→ p+z ∈ path-image g

unfolding path-image-def by (auto simp:algebra-simps)

lemma path-offset[simp]:
fixes g :: - ⇒ ′b::topological-group-add
shows path (λt. g t − z) ←→ path g

unfolding path-def
proof
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assume continuous-on {0 ..1} (λt. g t − z)
hence continuous-on {0 ..1} (λt. (g t − z) + z)

using continuous-on-add continuous-on-const by blast
then show continuous-on {0 ..1} g by auto

qed (auto intro:continuous-intros)

lemma not-on-circlepathI :
assumes cmod (z−z0 ) 6= |r |
shows z /∈ path-image (part-circlepath z0 r st tt)
using assms
by (auto simp add: path-image-def image-def part-circlepath-def norm-mult)

lemma circlepath-inj-on:
assumes r>0
shows inj-on (circlepath z r) {0 ..<1}

proof (rule inj-onI )
fix x y assume asm: x ∈ {0 ..<1} y ∈ {0 ..<1} circlepath z r x = circlepath z r

y
define c where c=2 ∗ pi ∗ i
have c 6=0 unfolding c-def by auto
from asm(3 ) have exp (c ∗ x) =exp (c ∗ y)

unfolding circlepath c-def using ‹r>0 › by auto
then obtain n where c ∗ x =c ∗ (y + of-int n)

by (auto simp add:exp-eq c-def algebra-simps)
then have x=y+n using ‹c 6=0 ›

by (meson mult-cancel-left of-real-eq-iff )
then show x=y using asm(1 ,2 ) by auto

qed

4.2 More lemmas related to winding-number
lemma winding-number-comp:

assumes open s f holomorphic-on s path-image γ ⊆ s
valid-path γ z /∈ path-image (f ◦ γ)

shows winding-number (f ◦ γ) z = 1/(2∗pi∗i)∗ contour-integral γ (λw. deriv f
w / (f w − z))
proof −

obtain spikes where finite spikes and γ-diff : γ C1-differentiable-on {0 ..1} −
spikes

using ‹valid-path γ› unfolding valid-path-def piecewise-C1-differentiable-on-def
by auto

have valid-path (f ◦ γ)
using valid-path-compose-holomorphic assms by blast

moreover have contour-integral (f ◦ γ) (λw. 1 / (w − z))
= contour-integral γ (λw. deriv f w / (f w − z))

unfolding contour-integral-integral
proof (rule integral-spike[rule-format,OF negligible-finite[OF ‹finite spikes›]])

fix t::real assume t:t ∈ {0 ..1} − spikes
then have γ differentiable at t
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using γ-diff unfolding C1-differentiable-on-eq by auto
moreover have f field-differentiable at (γ t)
proof −
have γ t ∈ s using ‹path-image γ ⊆ s› t unfolding path-image-def by auto
thus ?thesis

using ‹open s› ‹f holomorphic-on s› holomorphic-on-imp-differentiable-at
by blast

qed
ultimately show deriv f (γ t) / (f (γ t) − z) ∗ vector-derivative γ (at t) =

1 / ((f ◦ γ) t − z) ∗ vector-derivative (f ◦ γ) (at t)
by (simp add: vector-derivative-chain-at-general)

qed
moreover note ‹z /∈ path-image (f ◦ γ)›
ultimately show ?thesis

using winding-number-valid-path by presburger
qed

lemma winding-number-uminus-comp:
assumes valid-path γ − z /∈ path-image γ
shows winding-number (uminus ◦ γ) z = winding-number γ (−z)

proof −
define c where c= 2 ∗ pi ∗ i
have winding-number (uminus ◦ γ) z = 1/c ∗ contour-integral γ (λw. deriv

uminus w / (−w−z))
proof (rule winding-number-comp[of UNIV , folded c-def ])
show open UNIV uminus holomorphic-on UNIV path-image γ ⊆ UNIV valid-path

γ
using ‹valid-path γ› by (auto intro:holomorphic-intros)

show z /∈ path-image (uminus ◦ γ)
unfolding path-image-compose using ‹− z /∈ path-image γ› by auto

qed
also have . . . = 1/c ∗ contour-integral γ (λw. 1 / (w− (−z)))

by (auto intro!:contour-integral-eq simp add:field-simps minus-divide-right)
also have . . . = winding-number γ (−z)
using winding-number-valid-path[OF ‹valid-path γ› ‹− z /∈ path-image γ›,folded

c-def ]
by simp

finally show ?thesis by auto
qed

lemma winding-number-comp-linear :
assumes c 6=0 valid-path γ and not-image: (z−b)/c /∈ path-image γ
shows winding-number ((λx. c∗x+b) ◦ γ) z = winding-number γ ((z−b)/c) (is

?L = ?R)
proof −

define cc where cc=1 / (complex-of-real (2 ∗ pi) ∗ i)
define zz where zz=(z−b)/c
have ?L = cc ∗ contour-integral γ (λw. deriv (λx. c ∗ x + b) w / (c ∗ w + b −

z))

28



apply (subst winding-number-comp[of UNIV ,simplified])
subgoal by (auto intro:holomorphic-intros)
subgoal using ‹valid-path γ› .
subgoal using not-image ‹c 6=0 › unfolding path-image-compose by auto
subgoal unfolding cc-def by auto
done

also have . . . = cc ∗ contour-integral γ (λw.1 / (w − zz))
proof −

have deriv (λx. c ∗ x + b) = (λx. c)
by (auto intro:derivative-intros)

then show ?thesis
unfolding zz-def cc-def using ‹c 6=0 ›
by (auto simp:field-simps)

qed
also have . . . = winding-number γ zz

using winding-number-valid-path[OF ‹valid-path γ› not-image,folded zz-def
cc-def ]

by simp
finally show winding-number ((λx. c ∗ x + b) ◦ γ) z = winding-number γ zz .

qed

end

5 Cauchy’s index theorem
theory Cauchy-Index-Theorem imports

HOL−Complex-Analysis.Complex-Analysis
Sturm-Tarski.Sturm-Tarski
HOL−Computational-Algebra.Fundamental-Theorem-Algebra
Missing-Transcendental
Missing-Algebraic
Missing-Analysis

begin

This theory formalises Cauchy indices on the complex plane and relate
them to winding numbers

5.1 Misc
lemma atMostAtLeast-subset-convex:

fixes C :: real set
assumes convex C

and x ∈ C y ∈ C
shows {x .. y} ⊆ C

proof safe
fix z assume z: z ∈ {x .. y}
have z ∈ C if ∗: x < z z < y
proof −

let ?µ = (y − z) / (y − x)
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have 0 ≤ ?µ ?µ ≤ 1
using assms ∗ by (auto simp: field-simps)

then have comb: ?µ ∗ x + (1 − ?µ) ∗ y ∈ C
using assms iffD1 [OF convex-alt, rule-format, of C y x ?µ]
by (simp add: algebra-simps)

have ?µ ∗ x + (1 − ?µ) ∗ y = (y − z) ∗ x / (y − x) + (1 − (y − z) / (y −
x)) ∗ y

by (auto simp: field-simps)
also have . . . = ((y − z) ∗ x + (y − x − (y − z)) ∗ y) / (y − x)

using ∗ by (simp only: add-divide-distrib) (auto simp: field-simps)
also have . . . = z

using assms ∗ by (auto simp: field-simps)
finally show ?thesis

using comb by auto
qed
then show z ∈ C

using z assms by (auto simp: le-less)
qed

lemma arg-elim:
f x =⇒ x= y =⇒ f y
by auto

lemma arg-elim2 :
f x1 x2 =⇒ x1= y1 =⇒x2=y2 =⇒ f y1 y2
by auto

lemma arg-elim3 :
[[f x1 x2 x3 ;x1= y1 ;x2=y2 ;x3=y3 ]] =⇒ f y1 y2 y3
by auto

lemma IVT-strict:
fixes f :: ′a::linear-continuum-topology ⇒ ′b::linorder-topology
assumes (f a > y ∧ y > f b) ∨ (f a < y ∧ y < f b) a<b continuous-on {a .. b} f
shows ∃ x. a < x ∧ x < b ∧ f x = y

by (metis IVT ′ IVT2 ′ assms(1 ) assms(2 ) assms(3 ) linorder-neq-iff order-le-less
order-less-imp-le)

lemma (in dense-linorder) atLeastAtMost-subseteq-greaterThanLessThan-iff :
{a .. b} ⊆ { c <..< d } ←→ (a ≤ b −→ c < a ∧ b < d)
using dense[of a min c b] dense[of max a d b]
by (force simp: subset-eq Ball-def not-less[symmetric])

lemma Re-winding-number-half-right:
assumes ∀ p∈path-image γ. Re p ≥ Re z and valid-path γ and z /∈path-image γ
shows Re(winding-number γ z) = (Im (Ln (pathfinish γ − z)) − Im (Ln

(pathstart γ − z)))/(2∗pi)
proof −

define g where g=(λt. γ t − z)
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define st fi where st≡pathstart g and fi≡pathfinish g
have valid-path g 0 /∈path-image g and pos-img:∀ p∈path-image g. Re p ≥ 0

unfolding g-def
subgoal using assms(2 ) by auto
subgoal using assms(3 ) by auto
subgoal using assms(1 ) by fastforce
done

have (inverse has-contour-integral Ln fi − Ln st) g
unfolding fi-def st-def

proof (rule contour-integral-primitive[OF - ‹valid-path g›,of − �≤0])
fix x::complex assume x ∈ − �≤0

then have (Ln has-field-derivative inverse x) (at x) using has-field-derivative-Ln
by auto

then show (Ln has-field-derivative inverse x) (at x within − �≤0)
using has-field-derivative-at-within by auto

next
show path-image g ⊆ − �≤0 using pos-img ‹0 /∈path-image g›

by (metis ComplI antisym assms(3 ) complex-nonpos-Reals-iff complex-surj
subsetI zero-complex.code)

qed
then have winding-eq:2∗pi∗i∗winding-number g 0 = (Ln fi − Ln st)
using has-contour-integral-winding-number [OF ‹valid-path g› ‹0 /∈path-image g›

,simplified,folded inverse-eq-divide] has-contour-integral-unique
by auto

have Re(winding-number g 0 )
= (Im (Ln fi) − Im (Ln st))/(2∗pi)

(is ?L=?R)
proof −

have ?L = Re((Ln fi − Ln st)/(2∗pi∗i))
using winding-eq[symmetric] by auto

also have ... = ?R
by (metis Im-divide-of-real Im-i-times complex-i-not-zero minus-complex.simps(2 )

mult.commute mult-divide-mult-cancel-left-if times-divide-eq-right)
finally show ?thesis .

qed
then show ?thesis unfolding g-def fi-def st-def using winding-number-offset

by simp
qed

lemma Re-winding-number-half-upper :
assumes pimage:∀ p∈path-image γ. Im p ≥ Im z and valid-path γ and z /∈path-image

γ
shows Re(winding-number γ z) =

(Im (Ln (i∗z − i∗pathfinish γ)) − Im (Ln (i∗z − i∗pathstart γ )))/(2∗pi)
proof −

define γ ′ where γ ′=(λt. − i ∗ (γ t − z) + z)
have Re (winding-number γ ′ z) = (Im (Ln (pathfinish γ ′ − z)) − Im (Ln

(pathstart γ ′ − z))) / (2 ∗ pi)
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unfolding γ ′-def
apply (rule Re-winding-number-half-right)
subgoal using pimage unfolding path-image-def by auto
subgoal

apply (rule valid-path-compose-holomorphic[OF ‹valid-path γ›,of λx. −i ∗
(x−z) + z UNIV

, unfolded comp-def ])
by (auto intro!:holomorphic-intros)

subgoal using ‹z /∈path-image γ› unfolding path-image-def by auto
done

moreover have winding-number γ ′ z = winding-number γ z
proof −

define f where f=(λx. −i ∗ (x−z) + z)
define c where c= 1 / (complex-of-real (2 ∗ pi) ∗ i)
have winding-number γ ′ z = winding-number (f o γ) z

unfolding γ ′-def comp-def f-def by auto
also have ... = c ∗ contour-integral γ (λw. deriv f w / (f w − z)) unfolding

c-def
proof (rule winding-number-comp[of UNIV ])

show z /∈ path-image (f ◦ γ) using ‹z /∈path-image γ› unfolding f-def
path-image-def by auto

qed (auto simp add:f-def ‹valid-path γ› intro!:holomorphic-intros)
also have ... = c ∗ contour-integral γ (λw. 1 / (w − z))
proof −

have deriv f x = −i for x
unfolding f-def
by (auto intro!:derivative-eq-intros DERIV-imp-deriv)

then show ?thesis
unfolding f-def c-def

by (auto simp add:field-simps divide-simps intro!:arg-cong2 [where f=contour-integral])
qed
also have ... = winding-number γ z

using winding-number-valid-path[OF ‹valid-path γ› ‹z /∈path-image γ›,folded
c-def ] by simp

finally show ?thesis .
qed
moreover have pathfinish γ ′ = z+ i∗z −i∗ pathfinish γ pathstart γ ′ = z+ i∗z
−i∗pathstart γ

unfolding γ ′-def path-defs by (auto simp add:algebra-simps)
ultimately show ?thesis by auto

qed

lemma Re-winding-number-half-lower :
assumes pimage:∀ p∈path-image γ. Im p ≤ Im z and valid-path γ and z /∈path-image

γ
shows Re(winding-number γ z) =

(Im (Ln ( i∗pathfinish γ − i∗z)) − Im (Ln (i∗pathstart γ − i∗z)))/(2∗pi)
proof −

define γ ′ where γ ′=(λt. i ∗ (γ t − z) + z)
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have Re (winding-number γ ′ z) = (Im (Ln (pathfinish γ ′ − z)) − Im (Ln
(pathstart γ ′ − z))) / (2 ∗ pi)

unfolding γ ′-def
apply (rule Re-winding-number-half-right)
subgoal using pimage unfolding path-image-def by auto
subgoal
apply (rule valid-path-compose-holomorphic[OF ‹valid-path γ›,of λx. i ∗ (x−z)

+ z UNIV
, unfolded comp-def ])

by (auto intro!:holomorphic-intros)
subgoal using ‹z /∈path-image γ› unfolding path-image-def by auto
done

moreover have winding-number γ ′ z = winding-number γ z
proof −

define f where f=(λx. i ∗ (x−z) + z)
define c where c= 1 / (complex-of-real (2 ∗ pi) ∗ i)
have winding-number γ ′ z = winding-number (f o γ) z

unfolding γ ′-def comp-def f-def by auto
also have ... = c ∗ contour-integral γ (λw. deriv f w / (f w − z)) unfolding

c-def
proof (rule winding-number-comp[of UNIV ])

show z /∈ path-image (f ◦ γ) using ‹z /∈path-image γ› unfolding f-def
path-image-def by auto

qed (auto simp add:f-def ‹valid-path γ› intro!:holomorphic-intros)
also have ... = c ∗ contour-integral γ (λw. 1 / (w − z))
proof −

have deriv f x = i for x
unfolding f-def
by (auto intro!:derivative-eq-intros DERIV-imp-deriv)

then show ?thesis
unfolding f-def c-def

by (auto simp add:field-simps divide-simps intro!:arg-cong2 [where f=contour-integral])
qed
also have ... = winding-number γ z

using winding-number-valid-path[OF ‹valid-path γ› ‹z /∈path-image γ›,folded
c-def ] by simp

finally show ?thesis .
qed
moreover have pathfinish γ ′ = z+ i∗ pathfinish γ − i∗z pathstart γ ′ = z+

i∗pathstart γ − i∗z
unfolding γ ′-def path-defs by (auto simp add:algebra-simps)

ultimately show ?thesis by auto
qed

lemma Re-winding-number-half-left:
assumes neg-img:∀ p∈path-image γ. Re p ≤ Re z and valid-path γ and z /∈path-image

γ
shows Re(winding-number γ z) = (Im (Ln (z − pathfinish γ)) − Im (Ln (z −
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pathstart γ )))/(2∗pi)
proof −

define γ ′ where γ ′≡(λt. 2∗z − γ t)
have Re (winding-number γ ′ z) = (Im (Ln (pathfinish γ ′ − z)) − Im (Ln

(pathstart γ ′ − z))) / (2 ∗ pi)
unfolding γ ′-def
apply (rule Re-winding-number-half-right)
subgoal using neg-img unfolding path-image-def by auto
subgoal

apply (rule valid-path-compose-holomorphic[OF ‹valid-path γ›,of λt. 2∗z−t
UNIV ,

unfolded comp-def ])
by (auto intro:holomorphic-intros)

subgoal using ‹z /∈path-image γ› unfolding path-image-def by auto
done

moreover have winding-number γ ′ z = winding-number γ z
proof −

define f where f=(λt. 2∗z−t)
define c where c= 1 / (complex-of-real (2 ∗ pi) ∗ i)
have winding-number γ ′ z = winding-number (f o γ) z

unfolding γ ′-def comp-def f-def by auto
also have ... = c ∗ contour-integral γ (λw. deriv f w / (f w − z)) unfolding

c-def
proof (rule winding-number-comp[of UNIV ])

show z /∈ path-image (f ◦ γ) using ‹z /∈path-image γ› unfolding f-def
path-image-def by auto

qed (auto simp add:f-def ‹valid-path γ› intro:holomorphic-intros)
also have ... = c ∗ contour-integral γ (λw. 1 / (w − z))

unfolding f-def c-def
by (auto simp add:field-simps divide-simps intro!:arg-cong2 [where f=contour-integral])
also have ... = winding-number γ z

using winding-number-valid-path[OF ‹valid-path γ› ‹z /∈path-image γ›,folded
c-def ] by simp

finally show ?thesis .
qed
moreover have pathfinish γ ′= 2∗z − pathfinish γ pathstart γ ′= 2∗z − pathstart

γ
unfolding γ ′-def path-defs by auto

ultimately show ?thesis by auto
qed

lemma continuous-on-open-Collect-neq:
fixes f g :: ′a::topological-space ⇒ ′b::t2-space
assumes f : continuous-on S f and g: continuous-on S g and open S
shows open {x∈S . f x 6= g x}

proof (rule topological-space-class.openI )
fix t
assume t ∈ {x∈S . f x 6= g x}
then obtain U0 V0 where open U0 open V0 f t ∈ U0 g t ∈ V0 U0 ∩ V0 = {}
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t∈S
by (auto simp add: separation-t2 )

obtain U1 where open U1 t ∈ U1 ∀ y∈(S ∩ U1 ). f y ∈ U0
using f [unfolded continuous-on-topological,rule-format,OF ‹t∈S› ‹open U0 › ‹f

t ∈U0 ›] by auto
obtain V1 where open V1 t ∈ V1 ∀ y∈(S ∩ V1 ). g y ∈ V0

using g[unfolded continuous-on-topological,rule-format,OF ‹t∈S› ‹open V0 › ‹g
t ∈V0 ›] by auto

define T where T=V1 ∩ U1 ∩ S
have open T unfolding T-def using ‹open U1 › ‹open V1 › ‹open S› by auto
moreover have t ∈ T unfolding T-def using ‹t∈U1 › ‹t∈V1 › ‹t∈S› by auto
moreover have T ⊆ {x ∈ S . f x 6= g x} unfolding T-def

using ‹U0 ∩ V0 = {}› ‹∀ y∈S ∩ U1 . f y ∈ U0 › ‹∀ y∈S ∩ V1 . g y ∈ V0 › by
auto

ultimately show ∃T . open T ∧ t ∈ T ∧ T ⊆ {x ∈ S . f x 6= g x} by auto
qed

5.2 Sign at a filter
definition has-sgnx::(real ⇒ real) ⇒ real ⇒ real filter ⇒ bool

(infixr ‹has ′-sgnx› 55 ) where
(f has-sgnx c) F= (eventually (λx. sgn(f x) = c) F)

definition sgnx-able (infixr ‹sgnx ′-able› 55 ) where
(f sgnx-able F) = (∃ c. (f has-sgnx c) F)

definition sgnx where
sgnx f F = (SOME c. (f has-sgnx c) F)

lemma has-sgnx-eq-rhs: (f has-sgnx x) F =⇒ x = y =⇒ (f has-sgnx y) F
by simp

named-theorems sgnx-intros introduction rules for has-sgnx
setup ‹

Global-Theory.add-thms-dynamic (@{binding sgnx-eq-intros},
fn context =>
Named-Theorems.get (Context.proof-of context) @{named-theorems sgnx-intros}
|> map-filter (try (fn thm => @{thm has-sgnx-eq-rhs} OF [thm])))

›

lemma sgnx-able-sgnx:f sgnx-able F =⇒ (f has-sgnx (sgnx f F)) F
unfolding sgnx-able-def sgnx-def using someI-ex by metis

lemma has-sgnx-imp-sgnx-able[elim]:
(f has-sgnx c) F =⇒ f sgnx-able F

unfolding sgnx-able-def by auto

lemma has-sgnx-unique:
assumes F 6=bot (f has-sgnx c1 ) F (f has-sgnx c2 ) F

35



shows c1=c2
proof (rule ccontr)

assume c1 6= c2
have eventually (λx. sgn(f x) = c1 ∧ sgn(f x) = c2 ) F

using assms unfolding has-sgnx-def eventually-conj-iff by simp
then have eventually (λ-. c1 = c2 ) F by (elim eventually-mono,auto)
then have eventually (λ-. False) F using ‹c1 6= c2 › by auto
then show False using ‹F 6= bot› eventually-False by auto

qed

lemma has-sgnx-imp-sgnx[elim]:
(f has-sgnx c) F =⇒F 6=bot =⇒ sgnx f F = c
using has-sgnx-unique sgnx-def by auto

lemma has-sgnx-const[simp,sgnx-intros]:
((λ-. c) has-sgnx sgn c) F

by (simp add: has-sgnx-def )

lemma finite-sgnx-at-left-at-right:
assumes finite {t. f t=0 ∧ a<t ∧ t<b} continuous-on ({a<..<b} − s) f finite s

and x:x∈{a<..<b}
shows f sgnx-able (at-left x) sgnx f (at-left x)6=0

f sgnx-able (at-right x) sgnx f (at-right x) 6=0
proof −

define ls where ls ≡ {t. (f t=0 ∨ t∈s) ∧ a<t ∧t<x }
define l where l≡(if ls = {} then (a+x)/2 else (Max ls + x)/2 )
have finite ls
proof −

have {t. f t=0 ∧ a<t ∧ t<x} ⊆ {t. f t=0 ∧ a<t ∧ t<b} using x by auto
then have finite {t. f t=0 ∧ a<t ∧ t<x} using assms(1 )

using finite-subset by blast
moreover have finite {t. t∈s ∧ a<t ∧ t<x} using assms(3 ) by auto
moreover have ls = {t. f t=0 ∧ a<t ∧ t<x} ∪ {t. t∈s ∧ a<t ∧ t<x}

unfolding ls-def by auto
ultimately show ?thesis by auto

qed
have [simp]: l<x a<l l<b
proof −

have l<x ∧ a<l ∧ l<b when ls = {}
using that x unfolding l-def by auto

moreover have l<x ∧ a<l ∧ l<b when ls 6={}
proof −

have Max ls ∈ ls using assms(1 ,3 ) that ‹finite ls›
apply (intro linorder-class.Max-in)
by auto

then have a<Max ls ∧ Max ls < x unfolding ls-def by auto
then show ?thesis unfolding l-def using that x by auto

qed
ultimately show l<x a<l l<b by auto
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qed
have noroot:f t 6=0 when t:t∈{l..<x} for t
proof (cases ls = {})

case True
have False when f t=0
proof −

have t>a using t ‹l>a› by (meson atLeastLessThan-iff less-le-trans)
then have t∈ls using that t unfolding ls-def by auto
then show False using True by auto

qed
then show ?thesis by auto

next
case False
have t>Max ls using that False ‹l<x› unfolding l-def by auto
have False when f t=0
proof −

have t>a using t ‹l>a› by (meson atLeastLessThan-iff less-le-trans)
then have t∈ls using that t unfolding ls-def by auto
then have t≤Max ls using ‹finite ls› by auto
then show False using ‹t>Max ls› by auto

qed
then show ?thesis by auto

qed
have (f has-sgnx sgn (f l)) (at-left x) unfolding has-sgnx-def
proof (rule eventually-at-leftI [OF - ‹l<x›])

fix t assume t:t∈{l<..<x}
then have [simp]:t>a t<b using ‹l>a› x

by (meson greaterThanLessThan-iff less-trans)+
have False when f t = 0

using noroot t that by auto
moreover have False when f l=0

using noroot t that by auto
moreover have False when f l>0 ∧ f t<0 ∨ f l <0 ∧ f t >0
proof −

have False when {l..t} ∩ s 6={}
proof −

obtain t ′ where t ′:t ′∈{l..t} t ′∈s
using ‹{l..t} ∩ s 6= {}› by blast

then have a<t ′ ∧ t ′<x
by (metis ‹a < l› atLeastAtMost-iff greaterThanLessThan-iff le-less less-trans

t)
then have t ′∈ls unfolding ls-def using ‹t ′∈s› by auto
then have t ′≤Max ls using ‹finite ls› by auto
moreover have Max ls<l

using ‹l<x› ‹t ′∈ls› ‹finite ls› unfolding l-def by (auto simp add:ls-def )
ultimately show False using t ′(1 ) by auto

qed
moreover have {l..t} ⊆ {a<..<b}

by (intro atMostAtLeast-subset-convex,auto)
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ultimately have continuous-on {l..t} f using assms(2 )
by (elim continuous-on-subset,auto)

then have ∃ x>l. x < t ∧ f x = 0
apply (intro IVT-strict)
using that t assms(2 ) by auto

then obtain t ′ where l<t ′ t ′<t f t ′=0 by auto
then have t ′∈{l..<x} unfolding ls-def using t by auto
then show False using noroot ‹f t ′=0 › by auto

qed
ultimately show sgn (f t) = sgn (f l)

by (metis le-less not-less sgn-if )
qed
then show f sgnx-able (at-left x) by auto
show sgnx f (at-left x) 6=0

using noroot[of l,simplified] ‹(f has-sgnx sgn (f l)) (at-left x)›
by (simp add: has-sgnx-imp-sgnx sgn-if )

next
define rs where rs ≡ {t. (f t=0 ∨ t∈s) ∧ x<t ∧ t<b}
define r where r≡(if rs = {} then (x+b)/2 else (Min rs + x)/2 )
have finite rs
proof −

have {t. f t=0 ∧ x<t ∧ t<b} ⊆ {t. f t=0 ∧ a<t ∧ t<b} using x by auto
then have finite {t. f t=0 ∧ x<t ∧ t<b} using assms(1 )

using finite-subset by blast
moreover have finite {t. t∈s ∧ x<t ∧ t<b} using assms(3 ) by auto
moreover have rs = {t. f t=0 ∧ x<t ∧ t<b} ∪ {t. t∈s ∧ x<t ∧ t<b}

unfolding rs-def by auto
ultimately show ?thesis by auto

qed

have [simp]: r>x a<r r<b
proof −

have r>x ∧ a<r ∧ r<b when rs = {}
using that x unfolding r-def by auto

moreover have r>x ∧ a<r ∧ r<b when rs 6={}
proof −

have Min rs ∈ rs using assms(1 ,3 ) that ‹finite rs›
apply (intro linorder-class.Min-in)
by auto

then have x<Min rs ∧ Min rs < b unfolding rs-def by auto
then show ?thesis unfolding r-def using that x by auto

qed
ultimately show r>x a<r r<b by auto

qed
have noroot:f t 6=0 when t:t∈{x<..r} for t
proof (cases rs = {})

case True
have False when f t=0
proof −
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have t<b using t ‹r<b›
using greaterThanAtMost-iff by fastforce

then have t∈rs using that t unfolding rs-def by auto
then show False using True by auto

qed
then show ?thesis by auto

next
case False
have t<Min rs using that False ‹r>x› unfolding r-def by auto
have False when f t=0
proof −

have t<b using t ‹r<b› by (metis greaterThanAtMost-iff le-less less-trans)
then have t∈rs using that t unfolding rs-def by auto
then have t≥Min rs using ‹finite rs› by auto
then show False using ‹t<Min rs› by auto

qed
then show ?thesis by auto

qed
have (f has-sgnx sgn (f r)) (at-right x) unfolding has-sgnx-def
proof (rule eventually-at-rightI [OF - ‹r>x›])

fix t assume t:t∈{x<..<r}
then have [simp]:t>a t<b using ‹r<b› x

by (meson greaterThanLessThan-iff less-trans)+
have False when f t = 0

using noroot t that by auto
moreover have False when f r=0

using noroot t that by auto
moreover have False when f r>0 ∧ f t<0 ∨ f r <0 ∧ f t >0
proof −

have False when {t..r} ∩ s 6={}
proof −

obtain t ′ where t ′:t ′∈{t..r} t ′∈s
using ‹{t..r} ∩ s 6= {}› by blast

then have x<t ′ ∧ t ′<b
by (meson ‹r < b› atLeastAtMost-iff greaterThanLessThan-iff less-le-trans

not-le t)
then have t ′∈rs unfolding rs-def using t ‹t ′∈s› by auto
then have t ′≥Min rs using ‹finite rs› by auto
moreover have Min rs>r

using ‹r>x› ‹t ′∈rs› ‹finite rs› unfolding r-def by (auto simp add:rs-def
)

ultimately show False using t ′(1 ) by auto
qed
moreover have {t..r} ⊆ {a<..<b}

by (intro atMostAtLeast-subset-convex,auto)
ultimately have continuous-on {t..r} f using assms(2 ) by (elim continu-

ous-on-subset,auto)
then have ∃ x>t. x < r ∧ f x = 0

apply (intro IVT-strict)
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using that t assms(2 ) by auto
then obtain t ′ where t<t ′ t ′<r f t ′=0 by auto
then have t ′∈{x<..r} unfolding rs-def using t by auto
then show False using noroot ‹f t ′=0 › by auto

qed
ultimately show sgn (f t) = sgn (f r)

by (metis le-less not-less sgn-if )
qed
then show f sgnx-able (at-right x) by auto
show sgnx f (at-right x) 6=0

using noroot[of r ,simplified] ‹(f has-sgnx sgn (f r)) (at-right x)›
by (simp add: has-sgnx-imp-sgnx sgn-if )

qed

lemma sgnx-able-poly[simp]:
(poly p) sgnx-able (at-right a)
(poly p) sgnx-able (at-left a)
(poly p) sgnx-able at-top
(poly p) sgnx-able at-bot

proof −
show (poly p) sgnx-able at-top

using has-sgnx-def poly-sgn-eventually-at-top sgnx-able-def by blast
show (poly p) sgnx-able at-bot

using has-sgnx-def poly-sgn-eventually-at-bot sgnx-able-def by blast
show (poly p) sgnx-able (at-right a)
proof (cases p=0 )

case True
then show ?thesis unfolding sgnx-able-def has-sgnx-def eventually-at-right

using linordered-field-no-ub by force
next

case False
obtain ub where ub>a and ub:∀ z. a<z∧z≤ub−→poly p z 6=0

using next-non-root-interval[OF False] by auto
have ∀ z. a<z∧z≤ub−→sgn(poly p z) = sgn (poly p ub)
proof (rule ccontr)

assume ¬ (∀ z. a < z ∧ z ≤ ub −→ sgn (poly p z) = sgn (poly p ub))
then obtain z where a<z z≤ub sgn(poly p z) 6= sgn (poly p ub) by auto
moreover then have poly p z 6=0 poly p ub 6=0 z 6=ub using ub ‹ub>a› by

blast+
ultimately have (poly p z>0 ∧ poly p ub<0 ) ∨ (poly p z<0 ∧ poly p ub>0 )

by (metis linorder-neqE-linordered-idom sgn-neg sgn-pos)
then have ∃ x>z. x < ub ∧ poly p x = 0

using poly-IVT-neg[of z ub p] poly-IVT-pos[of z ub p] ‹z≤ub› ‹z 6=ub› by
argo

then show False using ub ‹a < z› by auto
qed
then show ?thesis unfolding sgnx-able-def has-sgnx-def eventually-at-right

apply (rule-tac exI [where x=sgn(poly p ub)])
apply (rule-tac exI [where x=ub])
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using less-eq-real-def ‹ub>a› by blast
qed
show (poly p) sgnx-able (at-left a)
proof (cases p=0 )

case True
then show ?thesis unfolding sgnx-able-def has-sgnx-def eventually-at-right

using linordered-field-no-ub by force
next

case False
obtain lb where lb<a and ub:∀ z. lb≤z∧z<a−→poly p z 6=0

using last-non-root-interval[OF False] by auto
have ∀ z. lb≤z∧z<a−→sgn(poly p z) = sgn (poly p lb)
proof (rule ccontr)

assume ¬ (∀ z. lb≤z∧z<a −→ sgn (poly p z) = sgn (poly p lb))
then obtain z where lb≤z z<a sgn(poly p z) 6= sgn (poly p lb) by auto

moreover then have poly p z 6=0 poly p lb 6=0 z 6=lb using ub ‹lb<a› by blast+
ultimately have (poly p z>0 ∧ poly p lb<0 ) ∨ (poly p z<0 ∧ poly p lb>0 )

by (metis linorder-neqE-linordered-idom sgn-neg sgn-pos)
then have ∃ x>lb. x < z ∧ poly p x = 0
using poly-IVT-neg[of lb z p] poly-IVT-pos[of lb z p] ‹lb≤z› ‹z 6=lb› by argo

then show False using ub ‹z < a› by auto
qed
then show ?thesis unfolding sgnx-able-def has-sgnx-def eventually-at-left

apply (rule-tac exI [where x=sgn(poly p lb)])
apply (rule-tac exI [where x=lb])
using less-eq-real-def ‹lb<a› by blast

qed
qed

lemma has-sgnx-identity[intro,sgnx-intros]:
shows x≥0 =⇒((λx. x) has-sgnx 1 ) (at-right x)

x≤0 =⇒ ((λx. x) has-sgnx −1 ) (at-left x)
proof −

show x≥0 =⇒ ((λx. x) has-sgnx 1 ) (at-right x)
unfolding has-sgnx-def eventually-at-right
apply (intro exI [where x=x+1 ])
by auto

show x≤0 =⇒ ((λx. x) has-sgnx −1 ) (at-left x)
unfolding has-sgnx-def eventually-at-left
apply (intro exI [where x=x−1 ])
by auto

qed

lemma has-sgnx-divide[sgnx-intros]:
assumes (f has-sgnx c1 ) F (g has-sgnx c2 ) F
shows ((λx. f x / g x) has-sgnx c1 / c2 ) F

proof −
have ∀ F x in F . sgn (f x) = c1 ∧ sgn (g x) = c2

using assms unfolding has-sgnx-def by (intro eventually-conj,auto)
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then have ∀ F x in F . sgn (f x / g x) = c1 / c2
apply (elim eventually-mono)
by (simp add: sgn-mult sgn-divide)

then show ((λx. f x / g x) has-sgnx c1 / c2 ) F unfolding has-sgnx-def by auto
qed

lemma sgnx-able-divide[sgnx-intros]:
assumes f sgnx-able F g sgnx-able F
shows (λx. f x / g x) sgnx-able F

using has-sgnx-divide by (meson assms(1 ) assms(2 ) sgnx-able-def )

lemma sgnx-divide:
assumes F 6=bot f sgnx-able F g sgnx-able F
shows sgnx (λx. f x / g x) F =sgnx f F / sgnx g F

proof −
obtain c1 c2 where c1 :(f has-sgnx c1 ) F and c2 :(g has-sgnx c2 ) F

using assms unfolding sgnx-able-def by auto
have sgnx f F=c1 sgnx g F=c2 using c1 c2 ‹F 6=bot› by auto
moreover have ((λx. f x / g x) has-sgnx c1 / c2 ) F

using has-sgnx-divide[OF c1 c2 ] .
ultimately show ?thesis using assms(1 ) has-sgnx-imp-sgnx by blast

qed

lemma has-sgnx-times[sgnx-intros]:
assumes (f has-sgnx c1 ) F (g has-sgnx c2 ) F
shows ((λx. f x∗ g x) has-sgnx c1 ∗ c2 ) F

proof −
have ∀ F x in F . sgn (f x) = c1 ∧ sgn (g x) = c2

using assms unfolding has-sgnx-def by (intro eventually-conj,auto)
then have ∀ F x in F . sgn (f x ∗ g x) = c1 ∗ c2

apply (elim eventually-mono)
by (simp add: sgn-mult)

then show ((λx. f x∗ g x) has-sgnx c1 ∗ c2 ) F unfolding has-sgnx-def by auto
qed

lemma sgnx-able-times[sgnx-intros]:
assumes f sgnx-able F g sgnx-able F
shows (λx. f x ∗ g x) sgnx-able F

using has-sgnx-times by (meson assms(1 ) assms(2 ) sgnx-able-def )

lemma sgnx-times:
assumes F 6=bot f sgnx-able F g sgnx-able F
shows sgnx (λx. f x ∗ g x) F =sgnx f F ∗ sgnx g F

proof −
obtain c1 c2 where c1 :(f has-sgnx c1 ) F and c2 :(g has-sgnx c2 ) F

using assms unfolding sgnx-able-def by auto
have sgnx f F=c1 sgnx g F=c2 using c1 c2 ‹F 6=bot› by auto
moreover have ((λx. f x∗ g x) has-sgnx c1 ∗ c2 ) F

using has-sgnx-times[OF c1 c2 ] .
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ultimately show ?thesis using assms(1 ) has-sgnx-imp-sgnx by blast
qed

lemma tendsto-nonzero-has-sgnx:
assumes (f −−−→ c) F c 6=0
shows (f has-sgnx sgn c) F

proof (cases rule:linorder-cases[of c 0 ])
case less
then have ∀ F x in F . f x<0

using order-topology-class.order-tendstoD[OF assms(1 ),of 0 ] by auto
then show ?thesis

unfolding has-sgnx-def
apply (elim eventually-mono)
using less by auto

next
case equal
then show ?thesis using ‹c 6=0 › by auto

next
case greater
then have ∀ F x in F . f x>0

using order-topology-class.order-tendstoD[OF assms(1 ),of 0 ] by auto
then show ?thesis

unfolding has-sgnx-def
apply (elim eventually-mono)
using greater by auto

qed

lemma tendsto-nonzero-sgnx:
assumes (f −−−→ c) F F 6=bot c 6=0
shows sgnx f F = sgn c
using tendsto-nonzero-has-sgnx

by (simp add: assms has-sgnx-imp-sgnx)

lemma filterlim-divide-at-bot-at-top-iff :
assumes (f −−−→ c) F c 6=0
shows
(LIM x F . f x / g x :> at-bot) ←→ (g −−−→ 0 ) F
∧ ((λx. g x) has-sgnx − sgn c) F

(LIM x F . f x / g x :> at-top) ←→ (g −−−→ 0 ) F
∧ ((λx. g x) has-sgnx sgn c) F

proof −
show (LIM x F . f x / g x :> at-bot) ←→ ((g −−−→ 0 ) F )
∧ ((λx. g x) has-sgnx − sgn c) F

proof
assume asm:LIM x F . f x / g x :> at-bot
then have filterlim g (at 0 ) F

using filterlim-at-infinity-divide-iff [OF assms(1 ,2 ),of g]
at-bot-le-at-infinity filterlim-mono by blast
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then have (g −−−→ 0 ) F using filterlim-at by blast
moreover have (g has-sgnx − sgn c) F
proof −

have ((λx. sgn c ∗ inverse (f x)) −−−→ sgn c ∗ inverse c) F
using assms(1 ,2 ) by (auto intro:tendsto-intros)

then have LIM x F . sgn c ∗ inverse (f x) ∗ (f x / g x) :> at-bot
apply (elim filterlim-tendsto-pos-mult-at-bot[OF - - asm])
using ‹c 6=0 › sgn-real-def by auto

then have LIM x F . sgn c / g x :> at-bot
apply (elim filterlim-mono-eventually)

using eventually-times-inverse-1 [OF assms] by (auto elim:eventually-mono)
then have ∀ F x in F . sgn c / g x < 0

using filterlim-at-bot-dense[of λx. sgn c/g x F ] by auto
then show ?thesis unfolding has-sgnx-def

apply (elim eventually-mono)
by (metis add.inverse-inverse divide-less-0-iff sgn-neg sgn-pos sgn-sgn)

qed
ultimately show (g −−−→ 0 ) F ∧ (g has-sgnx − sgn c) F by auto

next
assume (g −−−→ 0 ) F ∧ (g has-sgnx − sgn c) F
then have asm:(g −−−→ 0 ) F (g has-sgnx − sgn c) F by auto
have LIM x F . inverse (g x ∗ sgn c) :> at-bot
proof (rule filterlim-inverse-at-bot)

show ((λx. g x ∗ sgn c) −−−→ 0 ) F
apply (rule tendsto-mult-left-zero)
using asm(1 ) by blast

next
show ∀ F x in F . g x ∗ sgn c < 0 using asm(2 ) unfolding has-sgnx-def

apply (elim eventually-mono)
by (metis add.inverse-inverse assms(2 ) linorder-neqE-linordered-idom mult-less-0-iff

neg-0-less-iff-less sgn-greater sgn-zero-iff )
qed
moreover have ((λx. f x ∗ sgn c) −−−→ c ∗ sgn c) F

using ‹(f −−−→ c) F› ‹c 6=0 ›
apply (intro tendsto-intros)
by (auto simp add:sgn-zero-iff )

moreover have c ∗ sgn c >0 using ‹c 6=0 › by (simp add: sgn-real-def )
ultimately have LIM x F . (f x ∗ sgn c) ∗inverse (g x ∗ sgn c) :> at-bot

using filterlim-tendsto-pos-mult-at-bot by blast
then show LIM x F . f x / g x :> at-bot

using ‹c 6=0 › by (auto simp add:field-simps sgn-zero-iff )
qed
show (LIM x F . f x / g x :> at-top) ←→ ((g −−−→ 0 ) F )
∧ ((λx. g x) has-sgnx sgn c) F

proof
assume asm:LIM x F . f x / g x :> at-top
then have filterlim g (at 0 ) F

using filterlim-at-infinity-divide-iff [OF assms(1 ,2 ),of g]
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at-top-le-at-infinity filterlim-mono by blast
then have (g −−−→ 0 ) F using filterlim-at by blast
moreover have (g has-sgnx sgn c) F
proof −

have ((λx. sgn c ∗ inverse (f x)) −−−→ sgn c ∗ inverse c) F
using assms(1 ,2 ) by (auto intro:tendsto-intros)

then have LIM x F . sgn c ∗ inverse (f x) ∗ (f x / g x) :> at-top
apply (elim filterlim-tendsto-pos-mult-at-top[OF - - asm])
using ‹c 6=0 › sgn-real-def by auto

then have LIM x F . sgn c / g x :> at-top
apply (elim filterlim-mono-eventually)

using eventually-times-inverse-1 [OF assms] by (auto elim:eventually-mono)
then have ∀ F x in F . sgn c / g x > 0

using filterlim-at-top-dense[of λx. sgn c/g x F ] by auto
then show ?thesis unfolding has-sgnx-def

apply (elim eventually-mono)
by (metis sgn-greater sgn-less sgn-neg sgn-pos zero-less-divide-iff )

qed
ultimately show (g −−−→ 0 ) F ∧ (g has-sgnx sgn c) F by auto

next
assume (g −−−→ 0 ) F ∧ (g has-sgnx sgn c) F
then have asm:(g −−−→ 0 ) F (g has-sgnx sgn c) F by auto
have LIM x F . inverse (g x ∗ sgn c) :> at-top
proof (rule filterlim-inverse-at-top)

show ((λx. g x ∗ sgn c) −−−→ 0 ) F
apply (rule tendsto-mult-left-zero)
using asm(1 ) by blast

next
show ∀ F x in F . g x ∗ sgn c > 0 using asm(2 ) unfolding has-sgnx-def

apply (elim eventually-mono)
by (metis assms(2 ) sgn-1-neg sgn-greater sgn-if zero-less-mult-iff )

qed
moreover have ((λx. f x ∗ sgn c) −−−→ c ∗ sgn c) F

using ‹(f −−−→ c) F› ‹c 6=0 ›
apply (intro tendsto-intros)
by (auto simp add:sgn-zero-iff )

moreover have c ∗ sgn c >0 using ‹c 6=0 › by (simp add: sgn-real-def )
ultimately have LIM x F . (f x ∗ sgn c) ∗inverse (g x ∗ sgn c) :> at-top

using filterlim-tendsto-pos-mult-at-top by blast
then show LIM x F . f x / g x :> at-top

using ‹c 6=0 › by (auto simp add:field-simps sgn-zero-iff )
qed

qed

lemma poly-sgnx-left-right:
fixes c a::real and p::real poly
assumes p 6=0
shows sgnx (poly p) (at-left a) = (if even (order a p)
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then sgnx (poly p) (at-right a)
else −sgnx (poly p) (at-right a))

using assms
proof (induction degree p arbitrary: p rule: less-induct)

case less
have ?case when poly p a 6=0
proof −

have sgnx (poly p) (at-left a) = sgn (poly p a)
by (simp add: has-sgnx-imp-sgnx tendsto-nonzero-has-sgnx that)

moreover have sgnx (poly p) (at-right a) = sgn (poly p a)
by (simp add: has-sgnx-imp-sgnx tendsto-nonzero-has-sgnx that)

moreover have order a p = 0 using that by (simp add: order-0I )
ultimately show ?thesis by auto

qed
moreover have ?case when poly p a=0
proof −

obtain q where pq:p= [:−a,1 :] ∗ q
using ‹poly p a=0 › by (meson dvdE poly-eq-0-iff-dvd)

then have q 6=0 using ‹p 6=0 › by auto
then have degree q < degree p unfolding pq by (subst degree-mult-eq,auto)
have sgnx (poly p) (at-left a) = − sgnx (poly q) (at-left a)
proof −

have sgnx (λx. poly p x) (at-left a)
= sgnx (poly q) (at-left a) ∗ sgnx (poly [:−a,1 :]) (at-left a)

unfolding pq
apply (subst poly-mult)
apply (subst sgnx-times)
by auto

moreover have sgnx (λx. poly [:−a,1 :] x) (at-left a) = −1
apply (intro has-sgnx-imp-sgnx)
unfolding has-sgnx-def eventually-at-left
by (auto simp add: linordered-field-no-lb)

ultimately show ?thesis by auto
qed
moreover have sgnx (poly p) (at-right a) = sgnx (poly q) (at-right a)
proof −

have sgnx (λx. poly p x) (at-right a)
= sgnx (poly q) (at-right a) ∗ sgnx (poly [:−a,1 :]) (at-right a)

unfolding pq
apply (subst poly-mult)
apply (subst sgnx-times)
by auto

moreover have sgnx (λx. poly [:−a,1 :] x) (at-right a) = 1
apply (intro has-sgnx-imp-sgnx)
unfolding has-sgnx-def eventually-at-right
by (auto simp add: linordered-field-no-ub)

ultimately show ?thesis by auto
qed
moreover have even (order a p) ←→ odd (order a q)
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unfolding pq
apply (subst order-mult[OF ‹p 6= 0 ›[unfolded pq]])
using ‹q 6=0 › by (auto simp add:order-power-n-n[of - 1 , simplified])

moreover note less.hyps[OF ‹degree q < degree p› ‹q 6=0 ›]
ultimately show ?thesis by auto

qed
ultimately show ?case by blast

qed

lemma poly-has-sgnx-left-right:
fixes c a::real and p::real poly
assumes p 6=0
shows (poly p has-sgnx c) (at-left a) ←→ (if even (order a p)

then (poly p has-sgnx c) (at-right a)
else (poly p has-sgnx −c) (at-right a))

using poly-sgnx-left-right
by (metis (no-types, opaque-lifting) add.inverse-inverse assms has-sgnx-unique

sgnx-able-poly sgnx-able-sgnx trivial-limit-at-left-real trivial-limit-at-right-real)

lemma sign-r-pos-sgnx-iff :
sign-r-pos p a ←→ sgnx (poly p) (at-right a) > 0

proof
assume asm:0 < sgnx (poly p) (at-right a)
obtain c where c-def :(poly p has-sgnx c) (at-right a)

using sgnx-able-poly(1 ) sgnx-able-sgnx by blast
then have c>0 using asm

using has-sgnx-imp-sgnx trivial-limit-at-right-real by blast
then show sign-r-pos p a using c-def unfolding sign-r-pos-def has-sgnx-def

apply (elim eventually-mono)
by force

next
assume asm:sign-r-pos p a
define c where c = sgnx (poly p) (at-right a)
then have (poly p has-sgnx c) (at-right a)

by (simp add: sgnx-able-sgnx)
then have (∀ F x in (at-right a). poly p x>0 ∧ sgn (poly p x) = c)

using asm unfolding has-sgnx-def sign-r-pos-def
by (simp add:eventually-conj-iff )

then have ∀ F x in (at-right a). c > 0
apply (elim eventually-mono)
by fastforce

then show c>0 by auto
qed

lemma sgnx-values:
assumes f sgnx-able F F 6= bot
shows sgnx f F = −1 ∨ sgnx f F = 0 ∨ sgnx f F = 1
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proof −
obtain c where c-def :(f has-sgnx c) F

using assms(1 ) unfolding sgnx-able-def by auto
then obtain x where sgn(f x) = c

unfolding has-sgnx-def using assms(2 ) eventually-happens
by blast

then have c=−1 ∨ c=0 ∨ c=1 using sgn-if by metis
moreover have sgnx f F = c using c-def by (simp add: assms(2 ) has-sgnx-imp-sgnx)
ultimately show ?thesis by auto

qed

lemma has-sgnx-poly-at-top:
(poly p has-sgnx sgn-pos-inf p) at-top

using has-sgnx-def poly-sgn-eventually-at-top by blast

lemma has-sgnx-poly-at-bot:
(poly p has-sgnx sgn-neg-inf p) at-bot

using has-sgnx-def poly-sgn-eventually-at-bot by blast

lemma sgnx-poly-at-top:
sgnx (poly p) at-top = sgn-pos-inf p

by (simp add: has-sgnx-def has-sgnx-imp-sgnx poly-sgn-eventually-at-top)

lemma sgnx-poly-at-bot:
sgnx (poly p) at-bot = sgn-neg-inf p

by (simp add: has-sgnx-def has-sgnx-imp-sgnx poly-sgn-eventually-at-bot)

lemma poly-has-sgnx-values:
assumes p 6=0
shows
(poly p has-sgnx 1 ) (at-left a) ∨ (poly p has-sgnx − 1 ) (at-left a)
(poly p has-sgnx 1 ) (at-right a) ∨ (poly p has-sgnx − 1 ) (at-right a)
(poly p has-sgnx 1 ) at-top ∨ (poly p has-sgnx − 1 ) at-top
(poly p has-sgnx 1 ) at-bot ∨ (poly p has-sgnx − 1 ) at-bot

proof −
have sgn-pos-inf p = 1 ∨ sgn-pos-inf p = −1

unfolding sgn-pos-inf-def by (simp add: assms sgn-if )
then show (poly p has-sgnx 1 ) at-top ∨ (poly p has-sgnx − 1 ) at-top

using has-sgnx-poly-at-top by metis
next

have sgn-neg-inf p = 1 ∨ sgn-neg-inf p = −1
unfolding sgn-neg-inf-def by (simp add: assms sgn-if )

then show (poly p has-sgnx 1 ) at-bot ∨ (poly p has-sgnx − 1 ) at-bot
using has-sgnx-poly-at-bot by metis

next
obtain c where c-def :(poly p has-sgnx c) (at-left a)

using sgnx-able-poly(2 ) sgnx-able-sgnx by blast
then have sgnx (poly p) (at-left a) = c using assms by auto
then have c=−1 ∨ c=0 ∨ c=1
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using sgnx-values sgnx-able-poly(2 ) trivial-limit-at-left-real by blast
moreover have False when c=0
proof −

have (poly p has-sgnx 0 ) (at-left a) using c-def that by auto
then obtain lb where lb<a ∀ y. (lb<y ∧ y < a) −→ poly p y = 0

unfolding has-sgnx-def eventually-at-left sgn-if
by (metis one-neq-zero zero-neq-neg-one)

then have {lb<..<a} ⊆ proots p unfolding proots-within-def by auto
then have infinite (proots p)

apply (elim infinite-super)
using ‹lb<a› by auto

moreover have finite (proots p) using finite-proots[OF ‹p 6=0 ›] by auto
ultimately show False by auto

qed
ultimately have c=−1 ∨ c=1 by auto
then show (poly p has-sgnx 1 ) (at-left a) ∨ (poly p has-sgnx − 1 ) (at-left a)

using c-def by auto
next

obtain c where c-def :(poly p has-sgnx c) (at-right a)
using sgnx-able-poly(1 ) sgnx-able-sgnx by blast

then have sgnx (poly p) (at-right a) = c using assms by auto
then have c=−1 ∨ c=0 ∨ c=1

using sgnx-values sgnx-able-poly(1 ) trivial-limit-at-right-real by blast
moreover have False when c=0
proof −

have (poly p has-sgnx 0 ) (at-right a) using c-def that by auto
then obtain ub where ub>a ∀ y. (a<y ∧ y < ub) −→ poly p y = 0

unfolding has-sgnx-def eventually-at-right sgn-if
by (metis one-neq-zero zero-neq-neg-one)

then have {a<..<ub} ⊆ proots p unfolding proots-within-def by auto
then have infinite (proots p)

apply (elim infinite-super)
using ‹ub>a› by auto

moreover have finite (proots p) using finite-proots[OF ‹p 6=0 ›] by auto
ultimately show False by auto

qed
ultimately have c=−1 ∨ c=1 by auto
then show (poly p has-sgnx 1 ) (at-right a) ∨ (poly p has-sgnx − 1 ) (at-right a)

using c-def by auto
qed

lemma poly-sgnx-values:
assumes p 6=0
shows sgnx (poly p) (at-left a) = 1 ∨ sgnx (poly p) (at-left a) = −1

sgnx (poly p) (at-right a) = 1 ∨ sgnx (poly p) (at-right a) = −1
using poly-has-sgnx-values[OF ‹p 6=0 ›] has-sgnx-imp-sgnx trivial-limit-at-left-real

trivial-limit-at-right-real by blast+
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lemma has-sgnx-inverse: (f has-sgnx c) F ←→ ((inverse o f ) has-sgnx (inverse c))
F

unfolding has-sgnx-def comp-def
apply (rule eventually-subst)
apply (rule always-eventually)
by (metis inverse-inverse-eq sgn-inverse)

lemma has-sgnx-derivative-at-left:
assumes g-deriv:(g has-field-derivative c) (at x) and g x=0 and c 6=0
shows (g has-sgnx − sgn c) (at-left x)

proof −
have (g has-sgnx −1 ) (at-left x) when c>0
proof −

obtain d1 where d1>0 and d1-def :∀ h>0 . h < d1 −→ g (x − h) < g x
using DERIV-pos-inc-left[OF g-deriv ‹c>0 ›] ‹g x=0 › by auto

have (g has-sgnx −1 ) (at-left x)
unfolding has-sgnx-def eventually-at-left
apply (intro exI [where x=x−d1 ])
using ‹d1>0 › d1-def

by (metis (no-types, opaque-lifting) add.commute add-uminus-conv-diff assms(2 )
diff-add-cancel

diff-strict-left-mono diff-zero minus-diff-eq sgn-neg)
thus ?thesis by auto

qed
moreover have (g has-sgnx 1 ) (at-left x) when c<0
proof −

obtain d1 where d1>0 and d1-def :∀ h>0 . h < d1 −→ g (x − h) > g x
using DERIV-neg-dec-left[OF g-deriv ‹c<0 ›] ‹g x=0 › by auto

have (g has-sgnx 1 ) (at-left x)
unfolding has-sgnx-def eventually-at-left
apply (intro exI [where x=x−d1 ])
using ‹d1>0 › d1-def

by (metis (no-types, opaque-lifting) add.commute add-uminus-conv-diff
assms(2 ) diff-add-cancel

diff-zero less-diff-eq minus-diff-eq sgn-pos)
thus ?thesis using ‹c<0 › by auto

qed
ultimately show ?thesis using ‹c 6=0 › using sgn-real-def by auto

qed

lemma has-sgnx-derivative-at-right:
assumes g-deriv:(g has-field-derivative c) (at x) and g x=0 and c 6=0
shows (g has-sgnx sgn c) (at-right x)

proof −
have (g has-sgnx 1 ) (at-right x) when c>0
proof −

obtain d2 where d2>0 and d2-def :∀ h>0 . h < d2 −→ g x < g (x + h)
using DERIV-pos-inc-right[OF g-deriv ‹c>0 ›] ‹g x=0 › by auto
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have (g has-sgnx 1 ) (at-right x)
unfolding has-sgnx-def eventually-at-right
apply (intro exI [where x=x+d2 ])
using ‹d2>0 › d2-def

by (metis add.commute assms(2 ) diff-add-cancel diff-less-eq less-add-same-cancel1
sgn-pos)

thus ?thesis using ‹c>0 › by auto
qed
moreover have (g has-sgnx −1 ) (at-right x) when c<0
proof −

obtain d2 where d2>0 and d2-def :∀ h>0 . h < d2 −→ g x > g (x + h)
using DERIV-neg-dec-right[OF g-deriv ‹c<0 ›] ‹g x=0 › by auto

have (g has-sgnx −1 ) (at-right x)
unfolding has-sgnx-def eventually-at-right
apply (intro exI [where x=x+d2 ])
using ‹d2>0 › d2-def

by (metis (no-types, opaque-lifting) add.commute add.right-inverse add-uminus-conv-diff
assms(2 )

diff-add-cancel diff-less-eq sgn-neg)
thus ?thesis using ‹c<0 › by auto

qed
ultimately show ?thesis using ‹c 6=0 › using sgn-real-def by auto

qed

lemma has-sgnx-split:
(f has-sgnx c) (at x) ←→ (f has-sgnx c) (at-left x) ∧ (f has-sgnx c) (at-right x)

unfolding has-sgnx-def using eventually-at-split by auto

lemma sgnx-at-top-IVT :
assumes sgnx (poly p) (at-right a) 6= sgnx (poly p) at-top
shows ∃ x>a. poly p x=0

proof (cases p=0 )
case True
then show ?thesis using gt-ex[of a] by simp

next
case False
from poly-has-sgnx-values[OF this]
have (poly p has-sgnx 1 ) (at-right a) ∨ (poly p has-sgnx − 1 ) (at-right a)
(poly p has-sgnx 1 ) at-top ∨ (poly p has-sgnx − 1 ) at-top
by auto

moreover have ?thesis when has-r :(poly p has-sgnx 1 ) (at-right a)
and has-top:(poly p has-sgnx −1 ) at-top

proof −
obtain b where b>a poly p b>0
proof −

obtain a ′ where a ′>a and a ′-def :∀ y>a. y < a ′ −→ sgn (poly p y) = 1
using has-r [unfolded has-sgnx-def eventually-at-right] by auto

define b where b=(a+a ′)/2
have a<b b<a ′ unfolding b-def using ‹a ′>a› by auto
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moreover have poly p b>0
using a ′-def [rule-format,OF ‹b>a› ‹b<a ′›] unfolding sgn-if by argo

ultimately show ?thesis using that by auto
qed
moreover obtain c where c>b poly p c<0
proof −

obtain b ′ where b ′-def :∀n≥b ′. sgn (poly p n) = − 1
using has-top[unfolded has-sgnx-def eventually-at-top-linorder ] by auto

define c where c=1+max b b ′

have c>b c≥b ′ unfolding c-def using ‹b>a› by auto
moreover have poly p c<0

using b ′-def [rule-format,OF ‹b ′≤c›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
ultimately show ?thesis using poly-IVT-neg[of b c p] not-less by fastforce

qed
moreover have ?thesis when has-r :(poly p has-sgnx −1 ) (at-right a)

and has-top:(poly p has-sgnx 1 ) at-top
proof −

obtain b where b>a poly p b<0
proof −

obtain a ′ where a ′>a and a ′-def :∀ y>a. y < a ′ −→ sgn (poly p y) = −1
using has-r [unfolded has-sgnx-def eventually-at-right] by auto

define b where b=(a+a ′)/2
have a<b b<a ′ unfolding b-def using ‹a ′>a› by auto
moreover have poly p b<0

using a ′-def [rule-format,OF ‹b>a› ‹b<a ′›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain c where c>b poly p c>0
proof −

obtain b ′ where b ′-def :∀n≥b ′. sgn (poly p n) = 1
using has-top[unfolded has-sgnx-def eventually-at-top-linorder ] by auto

define c where c=1+max b b ′

have c>b c≥b ′ unfolding c-def using ‹b>a› by auto
moreover have poly p c>0

using b ′-def [rule-format,OF ‹b ′≤c›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
ultimately show ?thesis using poly-IVT-pos[of b c p] not-less by fastforce

qed
moreover have ?thesis when
(poly p has-sgnx 1 ) (at-right a) ∧ (poly p has-sgnx 1 ) at-top
∨ (poly p has-sgnx − 1 ) (at-right a) ∧ (poly p has-sgnx −1 ) at-top

proof −
have sgnx (poly p) (at-right a) = sgnx (poly p) at-top

using that has-sgnx-imp-sgnx by auto
then have False using assms by simp
then show ?thesis by auto
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qed
ultimately show ?thesis by blast

qed

lemma sgnx-at-left-at-right-IVT :
assumes sgnx (poly p) (at-right a) 6= sgnx (poly p) (at-left b) a<b
shows ∃ x. a<x ∧ x<b ∧ poly p x=0

proof (cases p=0 )
case True
then show ?thesis using ‹a<b› by (auto intro:exI [where x=(a+b)/2 ])

next
case False
from poly-has-sgnx-values[OF this]
have (poly p has-sgnx 1 ) (at-right a) ∨ (poly p has-sgnx − 1 ) (at-right a)
(poly p has-sgnx 1 ) (at-left b) ∨ (poly p has-sgnx − 1 ) (at-left b)
by auto

moreover have ?thesis when has-r :(poly p has-sgnx 1 ) (at-right a)
and has-l:(poly p has-sgnx −1 ) (at-left b)

proof −
obtain c where a<c c<b poly p c>0
proof −

obtain a ′ where a ′>a and a ′-def :∀ y>a. y < a ′ −→ sgn (poly p y) = 1
using has-r [unfolded has-sgnx-def eventually-at-right] by auto

define c where c=(a+min a ′ b)/2
have a<c c<a ′ c<b unfolding c-def using ‹a ′>a› ‹b>a› by auto
moreover have poly p c>0

using a ′-def [rule-format,OF ‹c>a› ‹c<a ′›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain d where c<dd<b poly p d<0
proof −

obtain b ′ where b ′<b and b ′-def :∀ y>b ′. y < b −→ sgn (poly p y) = − 1
using has-l[unfolded has-sgnx-def eventually-at-left] by auto

define d where d=(b+max b ′ c)/2
have b ′<d d<b d>c

unfolding d-def using ‹b>b ′› ‹b>c› by auto
moreover have poly p d<0

using b ′-def [rule-format, OF ‹b ′<d› ‹d<b›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
ultimately obtain x where c<x x<d poly p x=0

using poly-IVT-neg[of c d p] by auto
then show ?thesis using ‹c>a› ‹d<b› by (auto intro: exI [where x=x])

qed
moreover have ?thesis when has-r :(poly p has-sgnx −1 ) (at-right a)

and has-l:(poly p has-sgnx 1 ) (at-left b)
proof −

obtain c where a<c c<b poly p c<0
proof −
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obtain a ′ where a ′>a and a ′-def :∀ y>a. y < a ′ −→ sgn (poly p y) = −1
using has-r [unfolded has-sgnx-def eventually-at-right] by auto

define c where c=(a+min a ′ b)/2
have a<c c<a ′ c<b unfolding c-def using ‹a ′>a› ‹b>a› by auto
moreover have poly p c<0

using a ′-def [rule-format,OF ‹c>a› ‹c<a ′›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain d where c<dd<b poly p d>0
proof −

obtain b ′ where b ′<b and b ′-def :∀ y>b ′. y < b −→ sgn (poly p y) = 1
using has-l[unfolded has-sgnx-def eventually-at-left] by auto

define d where d=(b+max b ′ c)/2
have b ′<d d<b d>c

unfolding d-def using ‹b>b ′› ‹b>c› by auto
moreover have poly p d>0

using b ′-def [rule-format, OF ‹b ′<d› ‹d<b›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
ultimately obtain x where c<x x<d poly p x=0

using poly-IVT-pos[of c d p] by auto
then show ?thesis using ‹c>a› ‹d<b› by (auto intro: exI [where x=x])

qed
moreover have ?thesis when
(poly p has-sgnx 1 ) (at-right a) ∧ (poly p has-sgnx 1 ) (at-left b)
∨ (poly p has-sgnx − 1 ) (at-right a) ∧ (poly p has-sgnx −1 ) (at-left b)

proof −
have sgnx (poly p) (at-right a) = sgnx (poly p) (at-left b)

using that has-sgnx-imp-sgnx by auto
then have False using assms by simp
then show ?thesis by auto

qed
ultimately show ?thesis by blast

qed

lemma sgnx-at-bot-IVT :
assumes sgnx (poly p) (at-left a) 6= sgnx (poly p) at-bot
shows ∃ x<a. poly p x=0

proof (cases p=0 )
case True
then show ?thesis using lt-ex[of a] by simp

next
case False
from poly-has-sgnx-values[OF this]
have (poly p has-sgnx 1 ) (at-left a) ∨ (poly p has-sgnx − 1 ) (at-left a)
(poly p has-sgnx 1 ) at-bot ∨ (poly p has-sgnx − 1 ) at-bot
by auto

moreover have ?thesis when has-l:(poly p has-sgnx 1 ) (at-left a)
and has-bot:(poly p has-sgnx −1 ) at-bot
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proof −
obtain b where b<a poly p b>0
proof −

obtain a ′ where a ′<a and a ′-def :∀ y>a ′. y < a −→ sgn (poly p y) = 1
using has-l[unfolded has-sgnx-def eventually-at-left] by auto

define b where b=(a+a ′)/2
have a>b b>a ′ unfolding b-def using ‹a ′<a› by auto
moreover have poly p b>0

using a ′-def [rule-format,OF ‹b>a ′› ‹b<a›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain c where c<b poly p c<0
proof −

obtain b ′ where b ′-def :∀n≤b ′. sgn (poly p n) = − 1
using has-bot[unfolded has-sgnx-def eventually-at-bot-linorder ] by auto

define c where c=min b b ′− 1
have c<b c≤b ′ unfolding c-def using ‹b<a› by auto
moreover have poly p c<0

using b ′-def [rule-format,OF ‹b ′≥c›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
ultimately show ?thesis using poly-IVT-pos[of c b p] using not-less by

fastforce
qed
moreover have ?thesis when has-l:(poly p has-sgnx −1 ) (at-left a)

and has-bot:(poly p has-sgnx 1 ) at-bot
proof −

obtain b where b<a poly p b<0
proof −

obtain a ′ where a ′<a and a ′-def :∀ y>a ′. y < a −→ sgn (poly p y) = −1
using has-l[unfolded has-sgnx-def eventually-at-left] by auto

define b where b=(a+a ′)/2
have a>b b>a ′ unfolding b-def using ‹a ′<a› by auto
moreover have poly p b<0

using a ′-def [rule-format,OF ‹b>a ′› ‹b<a›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
moreover obtain c where c<b poly p c>0
proof −

obtain b ′ where b ′-def :∀n≤b ′. sgn (poly p n) = 1
using has-bot[unfolded has-sgnx-def eventually-at-bot-linorder ] by auto

define c where c=min b b ′− 1
have c<b c≤b ′ unfolding c-def using ‹b<a› by auto
moreover have poly p c>0

using b ′-def [rule-format,OF ‹b ′≥c›] unfolding sgn-if by argo
ultimately show ?thesis using that by auto

qed
ultimately show ?thesis using poly-IVT-neg[of c b p] using not-less by

fastforce
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qed
moreover have ?thesis when
(poly p has-sgnx 1 ) (at-left a) ∧ (poly p has-sgnx 1 ) at-bot
∨ (poly p has-sgnx − 1 ) (at-left a) ∧ (poly p has-sgnx −1 ) at-bot

proof −
have sgnx (poly p) (at-left a) = sgnx (poly p) at-bot

using that has-sgnx-imp-sgnx by auto
then have False using assms by simp
then show ?thesis by auto

qed
ultimately show ?thesis by blast

qed

lemma sgnx-poly-nz:
assumes poly p x 6=0
shows sgnx (poly p) (at-left x) = sgn (poly p x)

sgnx (poly p) (at-right x) = sgn (poly p x)
proof −

have (poly p has-sgnx sgn(poly p x)) (at x)
apply (rule tendsto-nonzero-has-sgnx)
using assms by auto

then show sgnx (poly p) (at-left x) = sgn (poly p x)
sgnx (poly p) (at-right x) = sgn (poly p x)

unfolding has-sgnx-split by auto
qed

5.3 Finite predicate segments over an interval
inductive finite-Psegments::(real ⇒ bool) ⇒ real ⇒ real ⇒ bool for P where

emptyI : a≥b =⇒ finite-Psegments P a b|
insertI-1 : [[s∈{a..<b};s=a∨P s;∀ t∈{s<..<b}. P t; finite-Psegments P a s]]

=⇒ finite-Psegments P a b|
insertI-2 : [[s∈{a..<b};s=a∨P s;(∀ t∈{s<..<b}. ¬P t);finite-Psegments P a s]]

=⇒ finite-Psegments P a b

lemma finite-Psegments-pos-linear :
assumes finite-Psegments P (b∗lb+c) (b∗ub+c) and b>0
shows finite-Psegments (P o (λt. b∗t+c)) lb ub

proof −
have [simp]:b 6=0 using ‹b>0 › by auto
show ?thesis
proof (rule finite-Psegments.induct[OF assms(1 ),

of λlb ′ ub ′. finite-Psegments (P o (λt. b∗t+c)) ((lb ′−c)/b) ((ub ′−c)/b),simplified])

fix lb ub f assume (lb::real)≤ub
then have (lb − c) / b ≤ (ub − c) / b

using ‹b>0 › by (auto simp add:field-simps)
then show finite-Psegments (f ◦ (λt. b ∗ t + c)) ((ub − c) / b) ((lb − c) / b)

by (rule finite-Psegments.emptyI )
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next
fix s lb ub P
assume asm: lb ≤ s ∧ s < ub
∀ t∈{s<..<ub}. P t
finite-Psegments (P ◦ (λt. b ∗ t + c)) ((lb − c) / b) ((s − c) / b)
s = lb ∨ P s

show finite-Psegments (P ◦ (λt. b ∗ t + c)) ((lb − c) / b) ((ub − c) / b)
apply (rule finite-Psegments.insertI-1 [of (s−c)/b])
using asm ‹b>0 › by (auto simp add:field-simps)

next
fix s lb ub P
assume asm: lb ≤ s ∧ s < ub
∀ t∈{s<..<ub}. ¬ P t
finite-Psegments (P ◦ (λt. b ∗ t + c)) ((lb − c) / b) ((s − c) / b)
s=lb ∨ P s

show finite-Psegments (P ◦ (λt. b ∗ t + c)) ((lb − c) / b) ((ub − c) / b)
apply (rule finite-Psegments.insertI-2 [of (s−c)/b])
using asm ‹b>0 › by (auto simp add:field-simps)

qed
qed

lemma finite-Psegments-congE :
assumes finite-Psegments Q lb ub∧

t. [[lb<t;t<ub]] =⇒ Q t ←→ P t
shows finite-Psegments P lb ub using assms

proof (induct rule:finite-Psegments.induct)
case (emptyI a b)
then show ?case using finite-Psegments.emptyI by auto

next
case (insertI-1 s a b)
show ?case
proof (rule finite-Psegments.insertI-1 [of s])

have P s when s 6=a
proof −

have s∈{a<..<b} using ‹s ∈ {a..<b}› that by auto
then show ?thesis using insertI-1 by auto

qed
then show s = a ∨ P s by auto

next
show s ∈ {a..<b} ∀ t∈{s<..<b}. P t finite-Psegments P a s using insertI-1

by auto
qed

next
case (insertI-2 s a b)
show ?case
proof (rule finite-Psegments.insertI-2 [of s])

have P s when s 6=a
proof −

have s∈{a<..<b} using ‹s ∈ {a..<b}› that by auto
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then show ?thesis using insertI-2 by auto
qed
then show s = a ∨ P s by auto

next
show s ∈ {a..<b} ∀ t∈{s<..<b}. ¬ P t finite-Psegments P a s using insertI-2

by auto
qed

qed

lemma finite-Psegments-constI :
assumes

∧
t. [[a<t;t<b]] =⇒ P t = c

shows finite-Psegments P a b
proof −

have finite-Psegments (λ-. c) a b
proof −

have ?thesis when a≥b
using that finite-Psegments.emptyI by auto

moreover have ?thesis when a<b c
apply (rule finite-Psegments.insertI-1 [of a])
using that by (auto intro: finite-Psegments.emptyI )

moreover have ?thesis when a<b ¬c
apply (rule finite-Psegments.insertI-2 [of a])
using that by (auto intro: finite-Psegments.emptyI )

ultimately show ?thesis by argo
qed
then show ?thesis

apply (elim finite-Psegments-congE)
using assms by auto

qed

context
begin

private lemma finite-Psegments-less-eq1 :
assumes finite-Psegments P a c b≤c
shows finite-Psegments P a b using assms

proof (induct arbitrary: b rule:finite-Psegments.induct)
case (emptyI a c)
then show ?case using finite-Psegments.emptyI by auto

next
case (insertI-1 s a c)
have ?case when b≤s using insertI-1 that by auto
moreover have ?case when b>s
proof −

have s ∈ {a..<b} using that ‹s ∈ {a..<c}› ‹b ≤ c› by auto
moreover have ∀ t∈{s<..<b}. P t using ‹∀ t∈{s<..<c}. P t› that ‹b ≤ c› by

auto
ultimately show ?case

using finite-Psegments.insertI-1 [OF - - - ‹finite-Psegments P a s›] ‹ s = a ∨
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P s› by auto
qed
ultimately show ?case by fastforce

next
case (insertI-2 s a c)
have ?case when b≤s using insertI-2 that by auto
moreover have ?case when b>s
proof −

have s ∈ {a..<b} using that ‹s ∈ {a..<c}› ‹b ≤ c› by auto
moreover have ∀ t∈{s<..<b}. ¬ P t using ‹∀ t∈{s<..<c}. ¬ P t› that ‹b ≤

c› by auto
ultimately show ?case

using finite-Psegments.insertI-2 [OF - - - ‹finite-Psegments P a s›] ‹ s = a ∨
P s› by auto

qed
ultimately show ?case by fastforce

qed

private lemma finite-Psegments-less-eq2 :
assumes finite-Psegments P a c a≤b
shows finite-Psegments P b c using assms

proof (induct arbitrary: rule:finite-Psegments.induct)
case (emptyI a c)
then show ?case using finite-Psegments.emptyI by auto

next
case (insertI-1 s a c)
have ?case when s≤b
proof −

have ∀ t∈{b<..<c}. P t using insertI-1 that by auto
then show ?thesis by (simp add: finite-Psegments-constI )

qed
moreover have ?case when s>b

apply (rule finite-Psegments.insertI-1 [where s=s])
using insertI-1 that by auto

ultimately show ?case by linarith
next

case (insertI-2 s a c)
have ?case when s≤b
proof −

have ∀ t∈{b<..<c}. ¬ P t using insertI-2 that by auto
then show ?thesis by (metis finite-Psegments-constI greaterThanLessThan-iff )

qed
moreover have ?case when s>b

apply (rule finite-Psegments.insertI-2 [where s=s])
using insertI-2 that by auto

ultimately show ?case by linarith
qed

59



lemma finite-Psegments-included:
assumes finite-Psegments P a d a≤b c≤d
shows finite-Psegments P b c
using finite-Psegments-less-eq2 finite-Psegments-less-eq1 assms by blast

end

lemma finite-Psegments-combine:
assumes finite-Psegments P a b finite-Psegments P b c b∈{a..c} closed ({x. P

x} ∩ {a..c})
shows finite-Psegments P a c using assms(2 ,1 ,3 ,4 )

proof (induct rule:finite-Psegments.induct)
case (emptyI b c)
then show ?case using finite-Psegments-included by auto

next
case (insertI-1 s b c)
have P s
proof −

have s<c using insertI-1 by auto
define S where S = {x. P x} ∩ {s..(s+c)/2}
have closed S
proof −

have closed ({a. P a} ∩ {a..c}) using insertI-1 (8 ) .
moreover have S = ({a. P a} ∩ {a..c}) ∩ {s..(s+c)/2}

using insertI-1 (1 ,7 ) unfolding S-def by (auto simp add:field-simps)
ultimately show ?thesis

using closed-Int[of {a. P a} ∩ {a..c} {s..(s+c)/2}] by blast
qed
moreover have ∃ y∈S . dist y s < e when e>0 for e
proof −

define y where y = min ((s+c)/2 ) (e/2+s)
have y∈S
proof −

have y∈{s..(s+c)/2} unfolding y-def
using ‹e>0 › ‹s<c› by (auto simp add:min-mult-distrib-left algebra-simps)

moreover have P y
apply (rule insertI-1 (3 )[rule-format])
unfolding y-def
using ‹e>0 › ‹s<c›
by (auto simp add:algebra-simps min-mult-distrib-left min-less-iff-disj)

ultimately show ?thesis unfolding S-def by auto
qed
moreover have dist y s <e

unfolding y-def using ‹e>0 › ‹s<c›
by (auto simp add:algebra-simps min-mult-distrib-left min-less-iff-disj dist-real-def )
ultimately show ?thesis by auto

qed
ultimately have s∈S using closed-approachable by auto
then show ?thesis unfolding S-def by auto
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qed
show ?case
proof (rule finite-Psegments.insertI-1 [of s])

show s ∈ {a..<c} s = a ∨ P s ∀ t∈{s<..<c}. P t
using insertI-1 ‹P s› by auto

next
have closed ({a. P a} ∩ {a..s})

using closed-Int[OF ‹closed ({a. P a} ∩ {a..c})›,of {a..s},simplified]
apply (elim arg-elim[of closed])
using ‹s ∈ {b..<c}› ‹b ∈ {a..c}› by auto

then show finite-Psegments P a s using insertI-1 by auto
qed

next
case (insertI-2 s b c)
have ?case when P s
proof (rule finite-Psegments.insertI-2 [of s])

show s ∈ {a..<c} s = a ∨ P s ∀ t∈{s<..<c}. ¬ P t using that insertI-2 by
auto

next
have closed ({a. P a} ∩ {a..s})

using closed-Int[OF ‹closed ({a. P a} ∩ {a..c})›,of {a..s},simplified]
apply (elim arg-elim[of closed])
using ‹s ∈ {b..<c}› ‹b ∈ {a..c}› by auto

then show finite-Psegments P a s using insertI-2 by auto
qed
moreover have ?case when ¬ P s s=b using ‹finite-Psegments P a b›
proof (cases rule:finite-Psegments.cases)

case emptyI
then show ?thesis using insertI-2 that

by (metis antisym-conv atLeastAtMost-iff finite-Psegments.insertI-2 )
next

case (insertI-1 s0 )
have P s
proof −

have s0<s using insertI-1 atLeastLessThan-iff that(2 ) by blast
define S where S = {x. P x} ∩ {(s0+s)/2 ..s}
have closed S
using closed-Int[OF ‹closed ({a. P a} ∩ {a..c})›,of {(s0+s)/2 ..s},simplified]

apply (elim arg-elim[of closed])
unfolding S-def using ‹s0 ∈ {a..<b}› ‹ s ∈ {b..<c}› ‹b ∈ {a..c}› by auto

moreover have ∃ y∈S . dist y s < e when e>0 for e
proof −

define y where y = max ((s+s0 )/2 ) (s−e/2 )
have y∈S
proof −

have y∈{(s0+s)/2 ..s} unfolding y-def
using ‹e>0 › ‹s0<s› by (auto simp add:field-simps min-mult-distrib-left)
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moreover have P y
apply (rule insertI-1 (3 )[rule-format])
unfolding y-def
using ‹e>0 › ‹s0<s› ‹s=b›
by (auto simp add:field-simps max-mult-distrib-left less-max-iff-disj)

ultimately show ?thesis unfolding S-def by auto
qed
moreover have dist y s <e

unfolding y-def using ‹e>0 › ‹s0<s›
by (auto simp add:algebra-simps max-mult-distrib-left less-max-iff-disj

dist-real-def
max-add-distrib-right)

ultimately show ?thesis by auto
qed
ultimately have s∈S using closed-approachable by auto
then show ?thesis unfolding S-def by auto

qed
then have False using ‹¬ P s› by auto
then show ?thesis by simp

next
case (insertI-2 s0 )
have ∗: ∀ t∈{s0<..<c}. ¬ P t

using ‹ ∀ t∈{s<..<c}. ¬ P t› that ‹∀ t∈{s0<..<b}. ¬ P t›
by force

show ?thesis
apply (rule finite-Psegments.insertI-2 [of s0 ])
subgoal using insertI-2 .prems(2 ) local.insertI-2 (1 ) by auto
subgoal using ‹s0 = a ∨ P s0 › .
subgoal using ∗ .
subgoal using ‹finite-Psegments P a s0 › .
done

qed
moreover note ‹s = b ∨ P s›
ultimately show ?case by auto

qed

5.4 Finite segment intersection of a path with the imaginary
axis

definition finite-ReZ-segments::(real ⇒ complex) ⇒ complex ⇒ bool where
finite-ReZ-segments g z = finite-Psegments (λt. Re (g t − z) = 0 ) 0 1

lemma finite-ReZ-segments-joinpaths:
assumes g1 :finite-ReZ-segments g1 z and g2 : finite-ReZ-segments g2 z and

path g1 path g2 pathfinish g1=pathstart g2
shows finite-ReZ-segments (g1+++g2 ) z

proof −
define P where P = (λt. (Re ((g1 +++ g2 ) t − z) = 0 ∧ 0<t ∧ t<1 ) ∨ t=0
∨ t=1 )
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have finite-Psegments P 0 (1/2 )
proof −

have finite-Psegments (λt. Re (g1 t − z) = 0 ) 0 1
using g1 unfolding finite-ReZ-segments-def .

then have finite-Psegments (λt. Re (g1 (2 ∗ t) − z) = 0 ) 0 (1/2 )
apply (drule-tac finite-Psegments-pos-linear [of - 2 0 0 1/2 ,simplified])
by (auto simp add:comp-def )

then show ?thesis
unfolding P-def joinpaths-def
by (elim finite-Psegments-congE ,auto)

qed
moreover have finite-Psegments P (1/2 ) 1
proof −

have finite-Psegments (λt. Re (g2 t − z) = 0 ) 0 1
using g2 unfolding finite-ReZ-segments-def .

then have finite-Psegments (λt. Re (g2 (2 ∗ t−1 ) − z) = 0 ) (1/2 ) 1
apply (drule-tac finite-Psegments-pos-linear [of - 2 1/2 −1 1 ,simplified])
by (auto simp add:comp-def )

then show ?thesis
unfolding P-def joinpaths-def
apply (elim finite-Psegments-congE)
by auto

qed
moreover have closed {x. P x}
proof −

define Q where Q=(λt. Re ((g1 +++ g2 ) t − z) = 0 )
have continuous-on {0<..<1} (g1+++g2 )

using path-join-imp[OF ‹path g1 › ‹path g2 › ‹pathfinish g1=pathstart g2 ›]
unfolding path-def by (auto elim:continuous-on-subset)

from continuous-on-Re[OF this] have continuous-on {0<..<1} (λx. Re ((g1
+++ g2 ) x)) .

from continuous-on-open-Collect-neq[OF this,of λ-. Re z,OF continuous-on-const,simplified]
have open {t. Re ((g1 +++ g2 ) t − z) 6= 0 ∧ 0<t ∧ t<1}

by (elim arg-elim[where f=open],auto)
from closed-Diff [of {0 ::real..1},OF - this,simplified]
show closed {x. P x}

apply (elim arg-elim[where f=closed])
by (auto simp add:P-def )

qed
ultimately have finite-Psegments P 0 1

using finite-Psegments-combine[of - 0 1/2 1 ] by auto
then show ?thesis

unfolding finite-ReZ-segments-def P-def
by (elim finite-Psegments-congE ,auto)

qed

lemma finite-ReZ-segments-congE :
assumes finite-ReZ-segments p1 z1∧

t. [[0<t;t<1 ]] =⇒ Re(p1 t− z1 ) = Re(p2 t − z2 )
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shows finite-ReZ-segments p2 z2
using assms unfolding finite-ReZ-segments-def
apply (elim finite-Psegments-congE)
by auto

lemma finite-ReZ-segments-constI :
assumes ∀ t. 0<t∧t<1 −→ g t = c
shows finite-ReZ-segments g z

proof −
have finite-ReZ-segments (λ-. c) z

unfolding finite-ReZ-segments-def
by (rule finite-Psegments-constI ,auto)

then show ?thesis using assms
by (elim finite-ReZ-segments-congE ,auto)

qed

lemma finite-ReZ-segment-cases [consumes 1 , case-names subEq subNEq,cases pred:finite-ReZ-segments]:
assumes finite-ReZ-segments g z

and subEq:(
∧

s. [[s ∈ {0 ..<1};s=0∨Re (g s) = Re z;
∀ t∈{s<..<1}. Re (g t) = Re z;finite-ReZ-segments (subpath 0 s g) z]] =⇒

P)
and subNEq:(

∧
s. [[s ∈ {0 ..<1};s=0∨Re (g s) = Re z;

∀ t∈{s<..<1}. Re (g t) 6= Re z;finite-ReZ-segments (subpath 0 s g) z]] =⇒
P)

shows P
using assms(1 ) unfolding finite-ReZ-segments-def
proof (cases rule:finite-Psegments.cases)

case emptyI
then show ?thesis by auto

next
case (insertI-1 s)
have finite-ReZ-segments (subpath 0 s g) z
proof (cases s=0 )

case True
show ?thesis

apply (rule finite-ReZ-segments-constI )
using True unfolding subpath-def by auto

next
case False
then have s>0 using ‹s∈{0 ..<1}› by auto
from finite-Psegments-pos-linear [OF - this,of - 0 0 1 ] insertI-1 (4 )
show finite-ReZ-segments (subpath 0 s g) z

unfolding finite-ReZ-segments-def comp-def subpath-def by auto
qed
then show ?thesis using subEq insertI-1 by force

next
case (insertI-2 s)
have finite-ReZ-segments (subpath 0 s g) z
proof (cases s=0 )
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case True
show ?thesis

apply (rule finite-ReZ-segments-constI )
using True unfolding subpath-def by auto

next
case False
then have s>0 using ‹s∈{0 ..<1}› by auto
from finite-Psegments-pos-linear [OF - this,of - 0 0 1 ] insertI-2 (4 )
show finite-ReZ-segments (subpath 0 s g) z

unfolding finite-ReZ-segments-def comp-def subpath-def by auto
qed
then show ?thesis using subNEq insertI-2 by force

qed

lemma finite-ReZ-segments-induct [case-names sub0 subEq subNEq, induct pred:finite-ReZ-segments]:
assumes finite-ReZ-segments g z
assumes sub0 :

∧
g z. (P (subpath 0 0 g) z)

and subEq:(
∧

s g z. [[s ∈ {0 ..<1};s=0∨Re (g s) = Re z;
∀ t∈{s<..<1}. Re (g t) = Re z;finite-ReZ-segments (subpath 0 s g) z;
P (subpath 0 s g) z]] =⇒ P g z)

and subNEq:(
∧

s g z. [[s ∈ {0 ..<1};s=0∨Re (g s) = Re z;
∀ t∈{s<..<1}. Re (g t) 6= Re z;finite-ReZ-segments (subpath 0 s g) z;
P (subpath 0 s g) z]] =⇒ P g z)

shows P g z
proof −

have finite-Psegments (λt. Re (g t − z) = 0 ) 0 1
using assms(1 ) unfolding finite-ReZ-segments-def by auto

then have (0 ::real)≤1 −→ P (subpath 0 1 g) z
proof (induct rule: finite-Psegments.induct[of - 0 1 λa b. b≥a −→ P (subpath a

b g) z] )
case (emptyI a b)
then show ?case using sub0 [of subpath a b g] unfolding subpath-def by auto

next
case (insertI-1 s a b)
have ?case when a=b

using sub0 [of subpath a b g] that unfolding subpath-def by auto
moreover have ?case when a 6=b
proof −

have b>a using that ‹s ∈ {a..<b}› by auto
define s ′::real where s ′=(s−a)/(b−a)
have P (subpath a b g) z
proof (rule subEq[of s ′ subpath a b g])

show ∀ t∈{s ′<..<1}. Re (subpath a b g t) = Re z
proof

fix t assume t ∈ {s ′<..<1}
then have (b − a) ∗ t + a∈{s<..<b}

unfolding s ′-def using ‹b>a› ‹s ∈ {a..<b}›
apply (auto simp add:field-simps)
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by (sos ((((A<0 ∗ (A<1 ∗ A<2 )) ∗ R<1 ) + (((A<=1 ∗ (A<0 ∗ R<1 ))
∗ (R<1 ∗ [1 ]^2 ))

+ ((A<=0 ∗ (A<0 ∗ (A<1 ∗ R<1 ))) ∗ (R<1 ∗ [1 ]^2 ))))))
then have Re (g ((b − a) ∗ t + a) − z) = 0

using insertI-1 (3 )[rule-format,of (b − a) ∗ t + a] by auto
then show Re (subpath a b g t) = Re z

unfolding subpath-def by auto
qed
show finite-ReZ-segments (subpath 0 s ′ (subpath a b g)) z
proof (cases s=a)

case True
then show ?thesis unfolding s ′-def subpath-def

by (auto intro:finite-ReZ-segments-constI )
next

case False
have finite-Psegments (λt. Re (g t − z) = 0 ) a s

using insertI-1 (4 ) unfolding finite-ReZ-segments-def by auto
then have finite-Psegments ((λt. Re (g t − z) = 0 ) ◦ (λt. (s − a) ∗ t +

a)) 0 1
apply (elim finite-Psegments-pos-linear [of - s−a 0 a 1 ,simplified])
using False ‹s∈{a..<b}› by auto

then show ?thesis
using ‹b>a› unfolding finite-ReZ-segments-def subpath-def s ′-def comp-def

by auto
qed
show s ′ ∈ {0 ..<1}

using ‹b>a› ‹s∈{a..<b}› unfolding s ′-def
by (auto simp add:field-simps)

show P (subpath 0 s ′ (subpath a b g)) z
proof −

have P (subpath a s g) z using insertI-1 (1 ,5 ) by auto
then show ?thesis

using ‹b>a› unfolding s ′-def subpath-def by simp
qed
show s ′ = 0 ∨ Re (subpath a b g s ′) = Re z
proof −

have ?thesis when s=a
using that unfolding s ′-def by auto

moreover have ?thesis when Re (g s − z) = 0
using that unfolding s ′-def subpath-def by auto

ultimately show ?thesis using ‹s = a ∨ Re (g s − z) = 0 › by auto
qed

qed
then show ?thesis using ‹b>a› by auto

qed
ultimately show ?case by auto

next
case (insertI-2 s a b)
have ?case when a=b
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using sub0 [of subpath a b g] that unfolding subpath-def by auto
moreover have ?case when a 6=b
proof −

have b>a using that ‹s ∈ {a..<b}› by auto
define s ′::real where s ′=(s−a)/(b−a)
have P (subpath a b g) z
proof (rule subNEq[of s ′ subpath a b g])

show ∀ t∈{s ′<..<1}. Re (subpath a b g t) 6= Re z
proof

fix t assume t ∈ {s ′<..<1}
then have (b − a) ∗ t + a∈{s<..<b}

unfolding s ′-def using ‹b>a› ‹s ∈ {a..<b}›
apply (auto simp add:field-simps)

by (sos ((((A<0 ∗ (A<1 ∗ A<2 )) ∗ R<1 ) + (((A<=1 ∗ (A<0 ∗ R<1 ))
∗ (R<1 ∗ [1 ]^2 )) +

((A<=0 ∗ (A<0 ∗ (A<1 ∗ R<1 ))) ∗ (R<1 ∗ [1 ]^2 ))))))
then have Re (g ((b − a) ∗ t + a) − z) 6= 0

using insertI-2 (3 )[rule-format,of (b − a) ∗ t + a] by auto
then show Re (subpath a b g t) 6= Re z

unfolding subpath-def by auto
qed
show finite-ReZ-segments (subpath 0 s ′ (subpath a b g)) z
proof (cases s=a)

case True
then show ?thesis unfolding s ′-def subpath-def

by (auto intro:finite-ReZ-segments-constI )
next

case False
have finite-Psegments (λt. Re (g t − z) = 0 ) a s

using insertI-2 (4 ) unfolding finite-ReZ-segments-def by auto
then have finite-Psegments ((λt. Re (g t − z) = 0 ) ◦ (λt. (s − a) ∗ t +

a)) 0 1
apply (elim finite-Psegments-pos-linear [of - s−a 0 a 1 ,simplified])
using False ‹s∈{a..<b}› by auto

then show ?thesis
using ‹b>a› unfolding finite-ReZ-segments-def subpath-def s ′-def comp-def

by auto
qed
show s ′ ∈ {0 ..<1}

using ‹b>a› ‹s∈{a..<b}› unfolding s ′-def
by (auto simp add:field-simps)

show P (subpath 0 s ′ (subpath a b g)) z
proof −

have P (subpath a s g) z using insertI-2 (1 ,5 ) by auto
then show ?thesis

using ‹b>a› unfolding s ′-def subpath-def by simp
qed
show s ′ = 0 ∨ Re (subpath a b g s ′) = Re z
proof −
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have ?thesis when s=a
using that unfolding s ′-def by auto

moreover have ?thesis when Re (g s − z) = 0
using that unfolding s ′-def subpath-def by auto

ultimately show ?thesis using ‹s = a ∨ Re (g s − z) = 0 › by auto
qed

qed
then show ?thesis using ‹b>a› by auto

qed
ultimately show ?case by auto

qed
then show ?thesis by auto

qed

lemma finite-ReZ-segments-shiftpah:
assumes finite-ReZ-segments g z s∈{0 ..1} path g and loop:pathfinish g = path-

start g
shows finite-ReZ-segments (shiftpath s g) z

proof −
have finite-Psegments (λt. Re (shiftpath s g t − z) = 0 ) 0 (1−s)
proof −

have finite-Psegments (λt. Re (g t) = Re z) s 1
using assms finite-Psegments-included[of - 0 1 s] unfolding finite-ReZ-segments-def

by force
then have finite-Psegments (λt. Re (g (s + t) − z) = 0 ) 0 (1−s)
using finite-Psegments-pos-linear [of λt. Re (g t − z) =0 1 0 s 1−s,simplified]
unfolding comp-def by (auto simp add:algebra-simps)

then show ?thesis unfolding shiftpath-def
apply (elim finite-Psegments-congE)
using ‹s∈{0 ..1}› by auto

qed
moreover have finite-Psegments (λt. Re (shiftpath s g t − z) = 0 ) (1−s) 1
proof −

have finite-Psegments (λt. Re (g t) = Re z) 0 s
using assms finite-Psegments-included unfolding finite-ReZ-segments-def
by force

then have finite-Psegments (λt. Re (g (s + t − 1 ) − z) = 0 ) (1−s) 1
using finite-Psegments-pos-linear [of λt. Re (g t − z) =0 1 1−s s−1 1 ,simplified]

unfolding comp-def by (auto simp add:algebra-simps)
then show ?thesis unfolding shiftpath-def

apply (elim finite-Psegments-congE)
using ‹s∈{0 ..1}› by auto

qed
moreover have 1 − s ∈ {0 ..1} using ‹s∈{0 ..1}› by auto
moreover have closed ({x. Re (shiftpath s g x − z) = 0} ∩ {0 ..1})
proof −

let ?f = λx. Re (shiftpath s g x − z)
have continuous-on {0 ..1} ?f
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using path-shiftpath[OF ‹path g› loop ‹s∈{0 ..1}›] unfolding path-def
by (auto intro: continuous-intros)

from continuous-closed-preimage-constant[OF this,of 0 ,simplified]
show ?thesis

apply (elim arg-elim[of closed])
by force

qed
ultimately show ?thesis unfolding finite-ReZ-segments-def

by (rule finite-Psegments-combine[where b=1−s])
qed

lemma finite-imp-finite-ReZ-segments:
assumes finite {t. Re (g t − z) = 0 ∧ 0 ≤ t ∧ t≤1}
shows finite-ReZ-segments g z

proof −
define P where P = (λt. Re (g t − z) = 0 )
define rs where rs=(λb. {t. P t ∧ 0 < t ∧ t<b})
have finite-Psegments P 0 b when finite (rs b) b>0 for b
using that
proof (induct card (rs b) arbitrary:b rule:nat-less-induct)

case ind:1
have ?case when rs b= {}

apply (rule finite-Psegments.intros(3 )[of 0 ])
using that ‹0 < b› unfolding rs-def by (auto intro:finite-Psegments.intros)

moreover have ?case when rs b 6={}
proof −

define lj where lj = Max (rs b)
have 0<lj lj<b P lj

using Max-in[OF ‹finite (rs b)› ‹rs b 6={}›,folded lj-def ]
unfolding rs-def by auto

show ?thesis
proof (rule finite-Psegments.intros(3 )[of lj])

show lj ∈ {0 ..<b} lj = 0 ∨ P lj
using ‹0<lj› ‹lj<b› ‹P lj› by auto

show ∀ t∈{lj<..<b}. ¬ P t
proof (rule ccontr)

assume ¬ (∀ t∈{lj<..<b}. ¬ P t)
then obtain t where t:P t lj < t t < b by auto
then have t∈rs b unfolding rs-def using ‹lj>0 › by auto

then have t≤lj using Max-ge[OF ‹finite (rs b)›,of t] unfolding lj-def by
auto

then show False using ‹t>lj› by auto
qed
show finite-Psegments P 0 lj
proof (rule ind.hyps[rule-format,of card (rs lj) lj,simplified])

show finite (rs lj)
using ‹finite (rs b)› unfolding rs-def using ‹lj<b›
by (auto elim!:rev-finite-subset )
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show card (rs lj) < card (rs b)
apply (rule psubset-card-mono[OF ‹finite (rs b)›])
using Max-in ‹finite (rs lj)› ‹lj < b› lj-def rs-def that by fastforce

show 0 < lj using ‹0<lj› .
qed

qed
qed
ultimately show ?case by auto

qed
moreover have finite (rs 1 )

using assms unfolding rs-def P-def
by (auto elim:rev-finite-subset)

ultimately have finite-Psegments P 0 1 by auto
then show ?thesis unfolding P-def finite-ReZ-segments-def .

qed

lemma finite-ReZ-segments-poly-linepath:
shows finite-ReZ-segments (poly p o linepath a b) z

proof −
define P where P=map-poly Re (pcompose (p−[:z:]) [:a,b−a:])
have ∗:Re ((poly p ◦ linepath a b) t − z) = 0 ←→ poly P t=0 for t

unfolding inner-complex-def P-def linepath-def comp-def
apply (subst Re-poly-of-real[symmetric])
by (auto simp add: algebra-simps poly-pcompose scaleR-conv-of-real)

have ?thesis when P 6=0
proof −

have finite {t. poly P t=0} using that poly-roots-finite by auto
then have finite {t. Re ((poly p ◦ linepath a b) t − z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}

using ∗
by auto

then show ?thesis
using finite-imp-finite-ReZ-segments[of poly p o linepath a b z] by auto

qed
moreover have ?thesis when P=0

unfolding finite-ReZ-segments-def
apply (rule finite-Psegments-constI [where c=True])
apply (subst ∗)
using that by auto

ultimately show ?thesis by auto
qed

lemma part-circlepath-half-finite-inter :
assumes st 6=tt r 6=0 c 6=0
shows finite {t. part-circlepath z0 r st tt t · c = d ∧ 0≤ t ∧ t≤1} (is finite ?T )

proof −
let ?S = {ϑ. (z0+r∗exp (i ∗ ϑ )) · c = d ∧ ϑ ∈ closed-segment st tt}
define S where S ≡ {ϑ. (z0+r∗exp (i ∗ ϑ )) · c = d ∧ ϑ ∈ closed-segment st

tt}
have S = linepath st tt ‘ ?T

70



proof
define g where g≡(λt. (t−st)/(tt −st))
have 0≤g t g t≤1 when t ∈ closed-segment st tt for t

using that ‹st 6=tt› closed-segment-eq-real-ivl unfolding g-def real-scaleR-def
by (auto simp add:divide-simps)

moreover have linepath st tt (g t) =t g (linepath st tt t) = t for t
unfolding linepath-def g-def real-scaleR-def using ‹st 6=tt›
apply (simp-all add:divide-simps)
by (auto simp add:algebra-simps )

ultimately have x∈linepath st tt ‘ ?T when x∈S for x
using that unfolding S-def
by (auto intro!:image-eqI [where x=g x] simp add:part-circlepath-def )

then show S ⊆ linepath st tt ‘ ?T by auto
next

have x∈S when x∈linepath st tt ‘ ?T for x
using that unfolding part-circlepath-def S-def
by (auto simp add: linepath-in-path)

then show linepath st tt ‘ ?T ⊆ S by auto
qed
moreover have finite S
proof −

define a ′ b ′ c ′ where a ′=r ∗ Re c and b ′ = r∗ Im c and c ′=Im c ∗ Im z0 +
Re z0 ∗ Re c − d

define f where f ϑ= a ′ ∗ cos ϑ + b ′ ∗ sin ϑ + c ′ for ϑ
have (z0+r∗exp (i ∗ ϑ )) · c = d ←→ f ϑ = 0 for ϑ

unfolding exp-Euler inner-complex-def f-def a ′-def b ′-def c ′-def
by (auto simp add:algebra-simps cos-of-real sin-of-real)

then have ∗:S = roots f ∩ closed-segment st tt
unfolding S-def roots-within-def by auto

have uniform-discrete S
proof −

have a ′ 6= 0 ∨ b ′ 6= 0 ∨ c ′ 6= 0
using assms complex-eq-iff unfolding a ′-def b ′-def c ′-def
by auto

then have periodic-set (roots f ) (4 ∗ pi)
using periodic-set-sin-cos-linear [of a ′ b ′ c ′,folded f-def ] by auto

then have uniform-discrete (roots f ) using periodic-imp-uniform-discrete by
auto

then show ?thesis unfolding ∗ by auto
qed
moreover have bounded S unfolding ∗

by (simp add: bounded-Int bounded-closed-segment)
ultimately show ?thesis using uniform-discrete-finite-iff by auto

qed
moreover have inj-on (linepath st tt) ?T
proof −

have inj (linepath st tt)
unfolding linepath-def using assms inj-segment by blast

then show ?thesis by (auto elim:subset-inj-on)
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qed
ultimately show ?thesis by (auto elim!: finite-imageD)

qed

lemma linepath-half-finite-inter :
assumes a · c 6= d ∨ b · c 6= d
shows finite {t. linepath a b t · c = d ∧ 0≤ t ∧ t≤1} (is finite ?S)

proof (rule ccontr)
assume asm:infinite ?S
obtain t1 t2 where u1u2 :t1 6=t2 t1∈?S t2∈?S
proof −

obtain t1 where t1∈?S using not-finite-existsD asm by blast
moreover have ∃ u2 . u2∈?S−{t1}

using infinite-remove[OF asm,of t1 ]
by (meson finite.emptyI rev-finite-subset subsetI )

ultimately show ?thesis using that by auto
qed
have t1 :(1−t1 )∗(a · c) + t1 ∗ (b · c) = d

using ‹t1∈?S› unfolding linepath-def by (simp add: inner-left-distrib)
have t2 :(1−t2 )∗(a · c) + t2 ∗ (b · c) = d

using ‹t2∈?S› unfolding linepath-def by (simp add: inner-left-distrib)
have a · c = d
proof −

have t2∗((1−t1 )∗(a · c) + t1 ∗ (b · c)) = t2∗d using t1 by auto
then have ∗:(t2−t1∗t2 )∗(a · c) + t1∗t2 ∗ (b · c) = t2∗d by (auto simp

add:algebra-simps)
have t1∗((1−t2 )∗(a · c) + t2 ∗ (b · c)) = t1∗d using t2 by auto
then have ∗∗:(t1−t1∗t2 )∗(a · c) + t1∗t2 ∗ (b · c) = t1∗d by (auto simp

add:algebra-simps)
have (t2−t1 )∗(a · c) = (t2−t1 )∗d using arg-cong2 [OF ∗ ∗∗,of minus]

by (auto simp add:algebra-simps)
then show ?thesis using ‹t1 6=t2 › by auto

qed
moreover have b · c = d
proof −

have (1−t2 )∗((1−t1 )∗(a · c) + t1 ∗ (b · c)) = (1−t2 )∗d using t1 by auto
then have ∗:(1−t1 )∗(1−t2 )∗(a · c) + (t1−t1∗t2 ) ∗ (b · c) = (1−t2 )∗d by

(auto simp add:algebra-simps)
have (1−t1 )∗((1−t2 )∗(a · c) + t2 ∗ (b · c)) = (1−t1 )∗d using t2 by auto
then have ∗∗:(1−t1 )∗(1−t2 )∗(a · c) + (t2−t1∗t2 ) ∗ (b · c) = (1−t1 )∗d by

(auto simp add:algebra-simps)
have (t2−t1 )∗(b · c) = (t2−t1 )∗d using arg-cong2 [OF ∗∗ ∗,of minus]

by (auto simp add:algebra-simps)
then show ?thesis using ‹t1 6=t2 › by auto

qed
ultimately show False using assms by auto

qed

lemma finite-half-joinpaths-inter :
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assumes finite {t. l1 t · c = d ∧ 0≤ t ∧ t≤1} finite {t. l2 t · c = d ∧ 0≤ t ∧
t≤1}

shows finite {t. (l1+++l2 ) t · c = d ∧ 0≤ t ∧ t≤1}
proof −

let ?l1s = {t. l1 (2∗t) · c = d ∧ 0≤ t ∧ t≤1/2}
let ?l2s = {t. l2 (2 ∗ t − 1 ) · c = d ∧ 1/2< t ∧ t≤1}
let ?ls = λl. {t. l t · c = d ∧ 0≤ t ∧ t≤1}
have {t. (l1+++l2 ) t · c = d ∧ 0≤ t ∧ t≤1} = ?l1s ∪ ?l2s

unfolding joinpaths-def by auto
moreover have finite ?l1s
proof −

have ?l1s = ((∗) (1/2 )) ‘ ?ls l1 by (auto intro:rev-image-eqI )
thus ?thesis using assms by simp

qed
moreover have finite ?l2s
proof −

have ?l2s ⊆ (λx. x/2 + 1/2 ) ‘ ?ls l2 by (auto intro:rev-image-eqI simp
add:field-simps)

thus ?thesis using assms
by (auto elim:finite-subset)

qed
ultimately show ?thesis by simp

qed

lemma finite-ReZ-segments-linepath:
finite-ReZ-segments (linepath a b) z

proof −
have ?thesis when Re a 6=Re z ∨ Re b 6=Re z
proof −

let ?S1={t. Re (linepath a b t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
have finite ?S1

using linepath-half-finite-inter [of a Complex 1 0 Re z b] that
using one-complex.code by auto

from finite-imp-finite-ReZ-segments[OF this] show ?thesis .
qed
moreover have ?thesis when Re a=Re z Re b=Re z

unfolding finite-ReZ-segments-def
apply (rule finite-Psegments.intros(2 )[of 0 ])

using that unfolding linepath-def by (auto simp add:algebra-simps intro:finite-Psegments.intros)
ultimately show ?thesis by blast

qed

lemma finite-ReZ-segments-part-circlepath:
finite-ReZ-segments (part-circlepath z0 r st tt) z

proof −
have ?thesis when st 6= tt r 6= 0
proof −

let ?S1={t. Re (part-circlepath z0 r st tt t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
have finite ?S1
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using part-circlepath-half-finite-inter [of st tt r Complex 1 0 z0 Re z] that
one-complex.code

by (auto simp add:inner-complex-def )
from finite-imp-finite-ReZ-segments[OF this] show ?thesis .

qed
moreover have ?thesis when st =tt ∨ r=0
proof −

define c where c = z0 + r ∗ exp (i ∗ tt)
have part-circlepath z0 r st tt = (λt. c)

unfolding part-circlepath-def c-def using that linepath-refl by auto
then show ?thesis

using finite-ReZ-segments-linepath[of c c z] linepath-refl[of c]
by auto

qed
ultimately show ?thesis by blast

qed

lemma finite-ReZ-segments-poly-of-real:
shows finite-ReZ-segments (poly p o of-real) z
using finite-ReZ-segments-poly-linepath[of p 0 1 z] unfolding linepath-def
by (auto simp add:scaleR-conv-of-real)

lemma finite-ReZ-segments-subpath:
assumes finite-ReZ-segments g z

0≤u u≤v v≤1
shows finite-ReZ-segments (subpath u v g) z

proof (cases u=v)
case True
then show ?thesis

unfolding subpath-def by (auto intro:finite-ReZ-segments-constI )
next

case False
then have u<v using ‹u≤v› by auto
define P where P=(λt. Re (g t − z) = 0 )
have finite-ReZ-segments (subpath u v g) z

= finite-Psegments (P o (λt. (v − u) ∗ t + u)) 0 1
unfolding finite-ReZ-segments-def subpath-def P-def comp-def by auto

also have ...
apply (rule finite-Psegments-pos-linear)
using assms False unfolding finite-ReZ-segments-def
by (fold P-def ,auto elim:finite-Psegments-included)

finally show ?thesis .
qed

5.5 jump and jumpF
definition jump::(real ⇒ real) ⇒ real ⇒ int where

jump f a = (if
(LIM x (at-left a). f x :> at-bot) ∧ (LIM x (at-right a). f x :> at-top)
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then 1 else if
(LIM x (at-left a). f x :> at-top) ∧ (LIM x (at-right a). f x :> at-bot)

then −1 else 0 )

definition jumpF ::(real ⇒ real) ⇒ real filter ⇒ real where
jumpF f F ≡ (if filterlim f at-top F then 1/2 else

if filterlim f at-bot F then −1/2 else (0 ::real))

lemma jumpF-const[simp]:
assumes F 6=bot
shows jumpF (λ-. c) F = 0

proof −
have False when LIM x F . c :> at-bot

using filterlim-at-bot-nhds[OF that - ‹F 6=bot›] by auto
moreover have False when LIM x F . c :> at-top

using filterlim-at-top-nhds[OF that - ‹F 6=bot›] by auto
ultimately show ?thesis unfolding jumpF-def by auto

qed

lemma jumpF-not-infinity:
assumes continuous F g F 6=bot
shows jumpF g F = 0

proof −
have ¬ filterlim g at-infinity F

using not-tendsto-and-filterlim-at-infinity[OF ‹F 6=bot› assms(1 )[unfolded con-
tinuous-def ]]

by auto
then have ¬ filterlim g at-bot F ¬ filterlim g at-top F

using at-bot-le-at-infinity at-top-le-at-infinity filterlim-mono by blast+
then show ?thesis unfolding jumpF-def by auto

qed

lemma jumpF-linear-comp:
assumes c 6=0
shows

jumpF (f o (λx. c∗x+b)) (at-left x) =
(if c>0 then jumpF f (at-left (c∗x+b)) else jumpF f (at-right (c∗x+b)))

(is ?case1 )
jumpF (f o (λx. c∗x+b)) (at-right x) =

(if c>0 then jumpF f (at-right (c∗x+b)) else jumpF f (at-left (c∗x+b)))
(is ?case2 )

proof −
let ?g = λx. c∗x+b
have ?case1 ?case2 when ¬ c>0
proof −

have c<0 using ‹c 6=0 › that by auto
have filtermap ?g (at-left x) = at-right (?g x)

filtermap ?g (at-right x) = at-left (?g x)
using ‹c<0 ›
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filtermap-linear-at-left[OF ‹c 6=0 ›, of b x]
filtermap-linear-at-right[OF ‹c 6=0 ›, of b x] by auto

then have
jumpF (f ◦ ?g) (at-left x) = jumpF f (at-right (?g x))
jumpF (f ◦ ?g) (at-right x) = jumpF f (at-left (?g x))

unfolding jumpF-def filterlim-def comp-def
by (auto simp add: filtermap-filtermap[of f ?g,symmetric])

then show ?case1 ?case2 using ‹c<0 › by auto
qed
moreover have ?case1 ?case2 when c>0
proof −

have filtermap ?g (at-left x) = at-left (?g x)
filtermap ?g (at-right x) = at-right (?g x)

using that
filtermap-linear-at-left[OF ‹c 6=0 ›, of b x]
filtermap-linear-at-right[OF ‹c 6=0 ›, of b x] by auto

then have
jumpF (f ◦ ?g) (at-left x) = jumpF f (at-left (?g x))
jumpF (f ◦ ?g) (at-right x) = jumpF f (at-right (?g x))

unfolding jumpF-def filterlim-def comp-def
by (auto simp add: filtermap-filtermap[of f ?g,symmetric])

then show ?case1 ?case2 using that by auto
qed
ultimately show ?case1 ?case2 by auto

qed

lemma jump-const[simp]:jump (λ-. c) a = 0
proof −

have False when LIM x (at-left a). c :> at-bot
apply (rule not-tendsto-and-filterlim-at-infinity[of at-left a λ-. c c])

apply auto
using at-bot-le-at-infinity filterlim-mono that by blast

moreover have False when LIM x (at-left a). c :> at-top
apply (rule not-tendsto-and-filterlim-at-infinity[of at-left a λ-. c c])

apply auto
using at-top-le-at-infinity filterlim-mono that by blast

ultimately show ?thesis unfolding jump-def by auto
qed

lemma jump-not-infinity:
isCont f a =⇒ jump f a =0
by (meson at-bot-le-at-infinity at-top-le-at-infinity filterlim-at-split

filterlim-def isCont-def jump-def not-tendsto-and-filterlim-at-infinity
order-trans trivial-limit-at-left-real)

lemma jump-jump-poly-aux:
assumes p 6=0 coprime p q
shows jump (λx. poly q x / poly p x) a = jump-poly q p a

proof (cases q=0 )
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case True
then show ?thesis by auto

next
case False
define f where f ≡ (λx. poly q x / poly p x)
have ?thesis when poly q a = 0
proof −

have poly p a 6=0 using coprime-poly-0 [OF ‹coprime p q›] that by blast
then have isCont f a unfolding f-def by simp
then have jump f a=0 using jump-not-infinity by auto
moreover have jump-poly q p a=0

using jump-poly-not-root[OF ‹poly p a 6=0 ›] by auto
ultimately show ?thesis unfolding f-def by auto

qed
moreover have ?thesis when poly q a 6=0
proof (cases even(order a p))

case True
define c where c≡sgn (poly q a)
note

filterlim-divide-at-bot-at-top-iff
[OF - that,of poly q at-left a poly p,folded f-def c-def ,simplified]

filterlim-divide-at-bot-at-top-iff
[OF - that,of poly q at-right a poly p,folded f-def c-def ,simplified]

moreover have (poly p has-sgnx − c) (at-left a) = (poly p has-sgnx − c)
(at-right a)

(poly p has-sgnx c) (at-left a) = (poly p has-sgnx c) (at-right a)
using poly-has-sgnx-left-right[OF ‹p 6=0 ›] True by auto

moreover have c 6=0 by (simp add: c-def sgn-if that)
then have False when

(poly p has-sgnx − c) (at-right a)
(poly p has-sgnx c) (at-right a)

using has-sgnx-unique[OF - that] by auto
ultimately have jump f a = 0

unfolding jump-def by auto
moreover have jump-poly q p a = 0 unfolding jump-poly-def

using True by (simp add: order-0I that)
ultimately show ?thesis unfolding f-def by auto

next
case False
define c where c≡sgn (poly q a)
have (poly p −−−→ 0 ) (at a) using False

by (metis even-zero order-0I poly-tendsto(1 ))
then have (poly p −−−→ 0 ) (at-left a) and (poly p −−−→ 0 ) (at-right a)

by (auto simp add: filterlim-at-split)
moreover note

filterlim-divide-at-bot-at-top-iff
[OF - that,of poly q - poly p,folded f-def c-def ]

moreover have (poly p has-sgnx c) (at-left a) = (poly p has-sgnx − c) (at-right
a)
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(poly p has-sgnx − c) (at-left a) = (poly p has-sgnx c) (at-right a)
using poly-has-sgnx-left-right[OF ‹p 6=0 ›] False by auto

ultimately have jump f a = (if (poly p has-sgnx c) (at-right a) then 1
else if (poly p has-sgnx − c) (at-right a) then −1 else 0 )

unfolding jump-def by auto
also have ... = (if sign-r-pos (q ∗ p) a then 1 else − 1 )
proof −

have (poly p has-sgnx c) (at-right a) ←→ sign-r-pos (q ∗ p) a
proof

assume (poly p has-sgnx c) (at-right a)
then have sgnx (poly p) (at-right a) = c by auto
moreover have sgnx (poly q) (at-right a) = c

unfolding c-def using that by (auto intro!: tendsto-nonzero-sgnx)
ultimately have sgnx (λx. poly (q∗p) x) (at-right a) = c ∗ c

by (simp add:sgnx-times)
moreover have c 6=0 by (simp add: c-def sgn-if that)
ultimately have sgnx (λx. poly (q∗p) x) (at-right a) > 0

using not-real-square-gt-zero by fastforce
then show sign-r-pos (q ∗ p) a using sign-r-pos-sgnx-iff

by blast
next

assume asm:sign-r-pos (q ∗ p) a
let ?c1 = sgnx (poly p) (at-right a)
let ?c2 = sgnx (poly q) (at-right a)
have 0 < sgnx (λx. poly (q ∗ p) x) (at-right a)

using asm sign-r-pos-sgnx-iff by blast
then have ?c2 ∗ ?c1 >0

apply (subst (asm) poly-mult)
apply (subst (asm) sgnx-times)
by auto

then have ?c2>0 ∧ ?c1>0 ∨ ?c2<0 ∧ ?c1<0
by (simp add: zero-less-mult-iff )

then have ?c1=?c2
using sgnx-values[OF sgnx-able-poly(1 ), of a,simplified]
by (metis add.inverse-neutral less-minus-iff less-not-sym)

moreover have sgnx (poly q) (at-right a) = c
unfolding c-def using that by (auto intro!: tendsto-nonzero-sgnx)

ultimately have ?c1 = c by auto
then show (poly p has-sgnx c) (at-right a)

using sgnx-able-poly(1 ) sgnx-able-sgnx by blast
qed
then show ?thesis

unfolding jump-poly-def using poly-has-sgnx-values[OF ‹p 6=0 ›]
by (metis add.inverse-inverse c-def sgn-if that)

qed
also have ... = jump-poly q p a
unfolding jump-poly-def using False order-root that by (simp add: order-root

assms(1 ))
finally show ?thesis unfolding f-def by auto
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qed
ultimately show ?thesis by auto

qed

lemma jump-jumpF :
assumes cont:isCont (inverse o f ) a and

sgnxl:(f has-sgnx l) (at-left a) and sgnxr :(f has-sgnx r) (at-right a) and
l 6=0 r 6=0

shows jump f a = jumpF f (at-right a) − jumpF f (at-left a)
proof −

have ?thesis when filterlim f at-bot (at-left a) filterlim f at-top (at-right a)
unfolding jump-def jumpF-def
using that filterlim-at-top-at-bot[OF - - trivial-limit-at-left-real]
by auto

moreover have ?thesis when filterlim f at-top (at-left a) filterlim f at-bot
(at-right a)

unfolding jump-def jumpF-def
using that filterlim-at-top-at-bot[OF - - trivial-limit-at-right-real]
by auto

moreover have ?thesis when
¬ filterlim f at-bot (at-left a) ∨ ¬ filterlim f at-top (at-right a)
¬ filterlim f at-top (at-left a) ∨ ¬ filterlim f at-bot (at-right a)

proof (cases f a=0 )
case False
have jumpF f (at-right a) = 0 jumpF f (at-left a) = 0
proof −

have isCont (inverse o inverse o f ) a using cont False unfolding comp-def
by (rule-tac continuous-at-within-inverse, auto)

then have isCont f a unfolding comp-def by auto
then have (f −−−→ f a) (at-right a) (f −−−→ f a) (at-left a)

unfolding continuous-at-split by (auto simp add:continuous-within)
moreover note trivial-limit-at-left-real trivial-limit-at-right-real
ultimately show jumpF f (at-right a) = 0 jumpF f (at-left a) = 0

unfolding jumpF-def using filterlim-at-bot-nhds filterlim-at-top-nhds
by metis+

qed
then show ?thesis unfolding jump-def using that by auto

next
case True
then have tends0 :((λx. inverse (f x)) −−−→ 0 ) (at a)

using cont unfolding isCont-def comp-def by auto
have jump f a = 0 using that unfolding jump-def by auto

have r-lim:if r>0 then filterlim f at-top (at-right a) else filterlim f at-bot (at-right
a)

proof (cases r>0 )
case True
then have ∀ F x in (at-right a). 0 < f x

using sgnxr unfolding has-sgnx-def
by (auto elim:eventually-mono)
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then have filterlim f at-top (at-right a)
using filterlim-inverse-at-top[of λx. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto

then show ?thesis using True by presburger
next

case False
then have ∀ F x in (at-right a). 0 > f x

using sgnxr ‹r 6=0 › False unfolding has-sgnx-def
apply (elim eventually-mono)
by (meson linorder-neqE-linordered-idom sgn-less)

then have filterlim f at-bot (at-right a)
using filterlim-inverse-at-bot[of λx. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto

then show ?thesis using False by simp
qed
have l-lim:if l>0 then filterlim f at-top (at-left a) else filterlim f at-bot (at-left

a)
proof (cases l>0 )

case True
then have ∀ F x in (at-left a). 0 < f x

using sgnxl unfolding has-sgnx-def
by (auto elim:eventually-mono)

then have filterlim f at-top (at-left a)
using filterlim-inverse-at-top[of λx. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto

then show ?thesis using True by presburger
next

case False
then have ∀ F x in (at-left a). 0 > f x

using sgnxl ‹l 6=0 › False unfolding has-sgnx-def
apply (elim eventually-mono)
by (meson linorder-neqE-linordered-idom sgn-less)

then have filterlim f at-bot (at-left a)
using filterlim-inverse-at-bot[of λx. inverse (f x), simplified] tends0
unfolding filterlim-at-split by auto

then show ?thesis using False by simp
qed

have ?thesis when l>0 r>0
using that l-lim r-lim ‹jump f a=0 › unfolding jumpF-def by auto

moreover have ?thesis when ¬ l>0 ¬ r>0
proof −

have filterlim f at-bot (at-right a) filterlim f at-bot (at-left a)
using r-lim l-lim that by auto
moreover then have ¬ filterlim f at-top (at-right a) ¬ filterlim f at-top

(at-left a)
by (auto elim: filterlim-at-top-at-bot)

ultimately have jumpF f (at-right a) = −1/2 jumpF f (at-left a) = −1/2
unfolding jumpF-def by auto
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then show ?thesis using ‹jump f a=0 › by auto
qed
moreover have ?thesis when l>0 ¬ r>0
proof −

note ‹¬ filterlim f at-top (at-left a) ∨ ¬ filterlim f at-bot (at-right a)›
moreover have filterlim f at-bot (at-right a) filterlim f at-top (at-left a)

using r-lim l-lim that by auto
ultimately have False by auto
then show ?thesis by auto

qed
moreover have ?thesis when ¬ l>0 r>0
proof −

note ‹¬ filterlim f at-bot (at-left a) ∨ ¬ filterlim f at-top (at-right a)›
moreover have filterlim f at-bot (at-left a) filterlim f at-top (at-right a)

using r-lim l-lim that by auto
ultimately have False by auto
then show ?thesis by auto

qed
ultimately show ?thesis by auto

qed
ultimately show ?thesis by auto

qed

lemma jump-linear-comp:
assumes c 6=0
shows jump (f o (λx. c∗x+b)) x = (if c>0 then jump f (c∗x+b) else −jump f

(c∗x+b))
proof (cases c>0 )

case False
then have c<0 using ‹c 6=0 › by auto
let ?g = λx. c∗x+b
have filtermap ?g (at-left x) = at-right (?g x)

filtermap ?g (at-right x) = at-left (?g x)
using ‹c<0 ›

filtermap-linear-at-left[OF ‹c 6=0 ›, of b x]
filtermap-linear-at-right[OF ‹c 6=0 ›, of b x] by auto

then have jump (f ◦ ?g) x = − jump f (c ∗ x + b)
unfolding jump-def filterlim-def comp-def
apply (auto simp add: filtermap-filtermap[of f ?g,symmetric])
apply (fold filterlim-def )
by (auto elim:filterlim-at-top-at-bot)

then show ?thesis using ‹c<0 › by auto
next

case True
let ?g = λx. c∗x+b
have filtermap ?g (at-left x) = at-left (?g x)

filtermap ?g (at-right x) = at-right (?g x)
using True

filtermap-linear-at-left[OF ‹c 6=0 ›, of b x]
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filtermap-linear-at-right[OF ‹c 6=0 ›, of b x] by auto
then have jump (f ◦ ?g) x = jump f (c ∗ x + b)

unfolding jump-def filterlim-def comp-def
by (auto simp add: filtermap-filtermap[of f ?g,symmetric])

then show ?thesis using True by auto
qed

lemma jump-divide-derivative:
assumes isCont f x g x = 0 f x 6=0

and g-deriv:(g has-field-derivative c) (at x) and c 6=0
shows jump (λt. f t/g t) x = (if sgn c = sgn ( f x) then 1 else −1 )

proof −
have g-tendsto:(g −−−→ 0 ) (at-left x) (g −−−→ 0 ) (at-right x)

by (metis DERIV-isCont Lim-at-imp-Lim-at-within assms(2 ) assms(4 ) contin-
uous-at)+

have f-tendsto:(f −−−→ f x) (at-left x) (f −−−→ f x) (at-right x)
using Lim-at-imp-Lim-at-within assms(1 ) continuous-at by blast+

have ?thesis when c>0 f x>0
proof −

have (g has-sgnx − sgn (f x)) (at-left x)
using has-sgnx-derivative-at-left[OF g-deriv ‹g x=0 ›] that by auto

moreover have (g has-sgnx sgn (f x)) (at-right x)
using has-sgnx-derivative-at-right[OF g-deriv ‹g x=0 ›] that by auto

ultimately have (LIM t at-left x. f t / g t :> at-bot) ∧ (LIM t at-right x. f t
/ g t :> at-top)

using filterlim-divide-at-bot-at-top-iff [OF - ‹f x 6=0 ›, of f ]
using f-tendsto(1 ) f-tendsto(2 ) g-tendsto(1 ) g-tendsto(2 ) by blast

moreover have sgn c = sgn (f x) using that by auto
ultimately show ?thesis unfolding jump-def by auto

qed
moreover have ?thesis when c>0 f x<0
proof −

have (g has-sgnx sgn (f x)) (at-left x)
using has-sgnx-derivative-at-left[OF g-deriv ‹g x=0 ›] that by auto

moreover have (g has-sgnx − sgn (f x)) (at-right x)
using has-sgnx-derivative-at-right[OF g-deriv ‹g x=0 ›] that by auto

ultimately have (LIM t at-left x. f t / g t :> at-top) ∧ (LIM t at-right x. f t
/ g t :> at-bot)

using filterlim-divide-at-bot-at-top-iff [OF - ‹f x 6=0 ›, of f ]
using f-tendsto(1 ) f-tendsto(2 ) g-tendsto(1 ) g-tendsto(2 ) by blast

moreover from this have ¬ (LIM t at-left x. f t / g t :> at-bot)
using filterlim-at-top-at-bot by fastforce

moreover have sgn c 6= sgn (f x) using that by auto
ultimately show ?thesis unfolding jump-def by auto

qed
moreover have ?thesis when c<0 f x>0
proof −

have (g has-sgnx sgn (f x)) (at-left x)
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using has-sgnx-derivative-at-left[OF g-deriv ‹g x=0 ›] that by auto
moreover have (g has-sgnx − sgn (f x)) (at-right x)

using has-sgnx-derivative-at-right[OF g-deriv ‹g x=0 ›] that by auto
ultimately have (LIM t at-left x. f t / g t :> at-top) ∧ (LIM t at-right x. f t

/ g t :> at-bot)
using filterlim-divide-at-bot-at-top-iff [OF - ‹f x 6=0 ›, of f ]
using f-tendsto(1 ) f-tendsto(2 ) g-tendsto(1 ) g-tendsto(2 ) by blast

moreover from this have ¬ (LIM t at-left x. f t / g t :> at-bot)
using filterlim-at-top-at-bot by fastforce

moreover have sgn c 6= sgn (f x) using that by auto
ultimately show ?thesis unfolding jump-def by auto

qed
moreover have ?thesis when c<0 f x<0
proof −

have (g has-sgnx − sgn (f x)) (at-left x)
using has-sgnx-derivative-at-left[OF g-deriv ‹g x=0 ›] that by auto

moreover have (g has-sgnx sgn (f x)) (at-right x)
using has-sgnx-derivative-at-right[OF g-deriv ‹g x=0 ›] that by auto

ultimately have (LIM t at-left x. f t / g t :> at-bot) ∧ (LIM t at-right x. f t
/ g t :> at-top)

using filterlim-divide-at-bot-at-top-iff [OF - ‹f x 6=0 ›, of f ]
using f-tendsto(1 ) f-tendsto(2 ) g-tendsto(1 ) g-tendsto(2 ) by blast

moreover have sgn c =sgn (f x) using that by auto
ultimately show ?thesis unfolding jump-def by auto

qed
ultimately show ?thesis using ‹c 6=0 › ‹f x 6=0 › by argo

qed

lemma jump-jump-poly: jump (λx. poly q x / poly p x) a = jump-poly q p a
proof (cases p=0 )

case True
then show ?thesis by auto

next
case False
obtain p ′ q ′ where p ′:p= p ′∗gcd p q and q ′:q=q ′∗gcd p q
using gcd-dvd1 gcd-dvd2 dvd-def [of gcd p q, simplified mult.commute] by metis

then have coprime p ′ q ′ p ′6=0 gcd p q 6=0 using gcd-coprime ‹p 6=0 › by auto

define f where f ≡ (λx. poly q ′ x / poly p ′ x)
define g where g ≡ (λx. if poly (gcd p q) x = 0 then 0 ::real else 1 )

have g-tendsto:(g −−−→ 1 ) (at-left a) (g −−−→ 1 ) (at-right a)
proof −

have
(poly (gcd p q) has-sgnx 1 ) (at-left a)
∨ (poly (gcd p q) has-sgnx − 1 ) (at-left a)

(poly (gcd p q) has-sgnx 1 ) (at-right a)
∨ (poly (gcd p q) has-sgnx − 1 ) (at-right a)

using ‹p 6=0 › poly-has-sgnx-values by auto
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then have ∀ F x in at-left a. g x = 1 ∀ F x in at-right a. g x = 1
unfolding has-sgnx-def g-def by (auto elim:eventually-mono)

then show (g −−−→ 1 ) (at-left a) (g −−−→ 1 ) (at-right a)
using tendsto-eventually by auto

qed

have poly q x / poly p x = g x ∗ f x for x
unfolding f-def g-def by (subst p ′,subst q ′,auto)

then have jump (λx. poly q x / poly p x) a = jump (λx. g x ∗ f x) a
by auto

also have ... = jump f a
unfolding jump-def
apply (subst (1 2 ) filterlim-tendsto-pos-mult-at-top-iff )

prefer 5
apply (subst (1 2 ) filterlim-tendsto-pos-mult-at-bot-iff )

using g-tendsto by auto
also have ... = jump-poly q ′ p ′ a
using jump-jump-poly-aux[OF ‹p ′6=0 › ‹coprime p ′ q ′›] unfolding f-def by auto

also have ... = jump-poly q p a
using jump-poly-mult[OF ‹gcd p q 6= 0 ›, of q ′] p ′ q ′

by (metis mult.commute)
finally show ?thesis .

qed

lemma jump-Im-divide-Re-0 :
assumes path g Re (g x)6=0 0<x x<1
shows jump (λt. Im (g t) / Re (g t)) x = 0

proof −
have isCont g x

using ‹path g›[unfolded path-def ] ‹0<x› ‹x<1 ›
apply (elim continuous-on-interior)
by auto

then have isCont (λt. Im(g t)/Re(g t)) x using ‹Re (g x)6=0 ›
by (auto intro:continuous-intros isCont-Re isCont-Im)

then show jump (λt. Im(g t)/Re(g t)) x=0
using jump-not-infinity by auto

qed

lemma jumpF-im-divide-Re-0 :
assumes path g Re (g x)6=0
shows [[0≤x;x<1 ]] =⇒ jumpF (λt. Im (g t) / Re (g t)) (at-right x) = 0

[[0<x;x≤1 ]] =⇒ jumpF (λt. Im (g t) / Re (g t)) (at-left x) = 0
proof −

define g ′ where g ′ = (λt. Im (g t) / Re (g t))

show jumpF g ′ (at-right x) = 0 when 0≤x x<1
proof −

have (g ′ −−−→ g ′ x) (at-right x)
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proof (cases x=0 )
case True
have continuous (at-right 0 ) g

using ‹path g› unfolding path-def
by (auto elim:continuous-on-at-right)

then have continuous (at-right x) (λt. Im(g t)) continuous (at-right x) (λt.
Re(g t))

using continuous-Im continuous-Re True by auto
moreover have Re (g (netlimit (at-right x))) 6= 0

using assms(2 ) by (simp add: Lim-ident-at)
ultimately have continuous (at-right x) (λt. Im (g t)/Re(g t))

by (auto intro:continuous-divide)
then show ?thesis unfolding g ′-def continuous-def

by (simp add: Lim-ident-at)
next

case False
have isCont (λx. Im (g x)) x isCont (λx. Re (g x)) x

using ‹path g› unfolding path-def
by (metis False atLeastAtMost-iff at-within-Icc-at continuous-Im continu-

ous-Re
continuous-on-eq-continuous-within less-le that)+

then have isCont g ′ x
using assms(2 ) unfolding g ′-def
by (auto intro:continuous-intros)

then show ?thesis unfolding isCont-def using filterlim-at-split by blast
qed
then have ¬ filterlim g ′ at-top (at-right x) ¬ filterlim g ′ at-bot (at-right x)

using filterlim-at-top-nhds[of g ′ at-right x] filterlim-at-bot-nhds[of g ′ at-right
x]

by auto
then show ?thesis unfolding jumpF-def by auto

qed

show jumpF g ′ (at-left x) = 0 when 0<x x≤1
proof −

have (g ′ −−−→ g ′ x) (at-left x)
proof (cases x=1 )

case True
have continuous (at-left 1 ) g

using ‹path g› unfolding path-def
by (auto elim:continuous-on-at-left)

then have continuous (at-left x) (λt. Im(g t)) continuous (at-left x) (λt. Re(g
t))

using continuous-Im continuous-Re True by auto
moreover have Re (g (netlimit (at-left x))) 6= 0

using assms(2 ) by (simp add: Lim-ident-at)
ultimately have continuous (at-left x) (λt. Im (g t)/Re(g t))

by (auto intro:continuous-divide)
then show ?thesis unfolding g ′-def continuous-def
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by (simp add: Lim-ident-at)
next

case False
have isCont (λx. Im (g x)) x isCont (λx. Re (g x)) x

using ‹path g› unfolding path-def
by (metis False atLeastAtMost-iff at-within-Icc-at continuous-Im continu-

ous-Re
continuous-on-eq-continuous-within less-le that)+

then have isCont g ′ x
using assms(2 ) unfolding g ′-def
by (auto)

then show ?thesis unfolding isCont-def using filterlim-at-split by blast
qed
then have ¬ filterlim g ′ at-top (at-left x) ¬ filterlim g ′ at-bot (at-left x)

using filterlim-at-top-nhds[of g ′ at-left x] filterlim-at-bot-nhds[of g ′ at-left x]
by auto

then show ?thesis unfolding jumpF-def by auto
qed

qed

lemma jump-cong:
assumes x=y and eventually (λx. f x=g x) (at x)
shows jump f x = jump g y

proof −
have left:eventually (λx. f x=g x) (at-left x)

and right:eventually (λx. f x=g x) (at-right x)
using assms(2 ) eventually-at-split by blast+

from filterlim-cong[OF - - this(1 )] filterlim-cong[OF - - this(2 )]
show ?thesis unfolding jump-def using assms(1 ) by fastforce

qed

lemma jumpF-cong:
assumes F=G and eventually (λx. f x=g x) F
shows jumpF f F = jumpF g G

proof −
have ∀ F r in G. f r = g r

using assms(1 ) assms(2 ) by force
then show ?thesis

by (simp add: assms(1 ) filterlim-cong jumpF-def )
qed

lemma jump-at-left-at-right-eq:
assumes isCont f x and f x 6= 0 and sgnx-eq:sgnx g (at-left x) = sgnx g (at-right

x)
shows jump (λt. f t/g t) x = 0

proof −
define c where c = sgn (f x)
then have c 6=0 using ‹f x 6=0 › by (simp add: sgn-zero-iff )
have f-tendsto:(f −−−→ f x) (at-left x) (f −−−→ f x) (at-right x)
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using ‹isCont f x› Lim-at-imp-Lim-at-within isCont-def by blast+
have False when (g has-sgnx − c) (at-left x) (g has-sgnx c) (at-right x)
proof −

have sgnx g (at-left x) = −c using that(1 ) by auto
moreover have sgnx g (at-right x) = c using that(2 ) by auto
ultimately show False using sgnx-eq ‹c 6=0 › by force

qed
moreover have False when (g has-sgnx c) (at-left x) (g has-sgnx − c) (at-right

x)
proof −

have sgnx g (at-left x) = c using that(1 ) by auto
moreover have sgnx g (at-right x) = − c using that(2 ) by auto
ultimately show False using sgnx-eq ‹c 6=0 › by force

qed
ultimately show ?thesis

unfolding jump-def
by (auto simp add:f-tendsto filterlim-divide-at-bot-at-top-iff [OF - ‹f x 6= 0 ›]

c-def )
qed

lemma jumpF-pos-has-sgnx:
assumes jumpF f F > 0
shows (f has-sgnx 1 ) F

proof −
have filterlim f at-top F using assms unfolding jumpF-def by argo
then have eventually (λx. f x>0 ) F using filterlim-at-top-dense[of f F ] by blast
then show ?thesis unfolding has-sgnx-def

apply (elim eventually-mono)
by auto

qed

lemma jumpF-neg-has-sgnx:
assumes jumpF f F < 0
shows (f has-sgnx −1 ) F

proof −
have filterlim f at-bot F using assms unfolding jumpF-def by argo
then have eventually (λx. f x<0 ) F using filterlim-at-bot-dense[of f F ] by blast
then show ?thesis unfolding has-sgnx-def

apply (elim eventually-mono)
by auto

qed

lemma jumpF-IVT :
fixes f ::real ⇒ real and a b::real
defines right≡(λ(R::real ⇒ real ⇒ bool). R (jumpF f (at-right a)) 0

∨ (continuous (at-right a) f ∧ R (f a) 0 ))
and

left≡(λ(R::real ⇒ real ⇒ bool). R (jumpF f (at-left b)) 0
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∨ (continuous (at-left b) f ∧ R (f b) 0 ))
assumes a<b and cont:continuous-on {a<..<b} f and

right-left:right greater ∧ left less ∨ right less ∧ left greater
shows ∃ x. a<x ∧ x<b ∧ f x =0

proof −
have ?thesis when right greater left less
proof −

have (f has-sgnx 1 ) (at-right a)
proof −

have ?thesis when jumpF f (at-right a)>0 using jumpF-pos-has-sgnx[OF
that] .

moreover have ?thesis when f a > 0 continuous (at-right a) f
proof −

have (f −−−→ f a) (at-right a) using that(2 ) by (simp add: continu-
ous-within)

then show ?thesis
using tendsto-nonzero-has-sgnx[of f f a at-right a] that by auto

qed
ultimately show ?thesis using that(1 ) unfolding right-def by auto

qed
then obtain a ′ where a<a ′ and a ′-def :∀ y. a<y ∧ y < a ′ −→ f y > 0

unfolding has-sgnx-def eventually-at-right using sgn-1-pos by auto
have (f has-sgnx − 1 ) (at-left b)
proof −
have ?thesis when jumpF f (at-left b)<0 using jumpF-neg-has-sgnx[OF that]

.
moreover have ?thesis when f b < 0 continuous (at-left b) f
proof −

have (f −−−→ f b) (at-left b)
using that(2 ) by (simp add: continuous-within)

then show ?thesis
using tendsto-nonzero-has-sgnx[of f f b at-left b] that by auto

qed
ultimately show ?thesis using that(2 ) unfolding left-def by auto

qed
then obtain b ′ where b ′<b and b ′-def :∀ y. b ′<y ∧ y < b −→ f y < 0

unfolding has-sgnx-def eventually-at-left using sgn-1-neg by auto
have a ′ ≤ b ′

proof (rule ccontr)
assume ¬ a ′ ≤ b ′

then have {a<..<a ′} ∩ {b ′<..<b} 6= {}
using ‹a<a ′› ‹b ′<b› ‹a<b› by auto

then obtain c where c∈{a<..<a ′} c∈{b ′<..<b} by blast
then have f c>0 f c<0

using a ′-def b ′-def by auto
then show False by auto

qed
define a0 where a0=(a+a ′)/2
define b0 where b0=(b+b ′)/2
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have [simp]:a<a0 a0<a ′ a0<b0 b ′<b0 b0<b
unfolding a0-def b0-def using ‹a<a ′› ‹b ′<b› ‹a ′≤b ′› by auto

have f a0>0 f b0<0 using a ′-def [rule-format,of a0 ] b ′-def [rule-format,of b0 ]
by auto

moreover have continuous-on {a0 ..b0} f
using cont ‹a < a0 › ‹b0 < b›

by (meson atLeastAtMost-subseteq-greaterThanLessThan-iff continuous-on-subset)
ultimately have ∃ x>a0 . x < b0 ∧ f x = 0

using IVT-strict[of 0 f a0 b0 ] by auto
then show ?thesis using ‹a < a0 › ‹b0 < b›

by (meson lessThan-strict-subset-iff psubsetE subset-psubset-trans)
qed
moreover have ?thesis when right less left greater
proof −

have (f has-sgnx −1 ) (at-right a)
proof −

have ?thesis when jumpF f (at-right a)<0 using jumpF-neg-has-sgnx[OF
that] .

moreover have ?thesis when f a < 0 continuous (at-right a) f
proof −

have (f −−−→ f a) (at-right a)
using that(2 ) by (simp add: continuous-within)

then show ?thesis
using tendsto-nonzero-has-sgnx[of f f a at-right a] that by auto

qed
ultimately show ?thesis using that(1 ) unfolding right-def by auto

qed
then obtain a ′ where a<a ′ and a ′-def :∀ y. a<y ∧ y < a ′ −→ f y < 0

unfolding has-sgnx-def eventually-at-right using sgn-1-neg by auto
have (f has-sgnx 1 ) (at-left b)
proof −
have ?thesis when jumpF f (at-left b)>0 using jumpF-pos-has-sgnx[OF that]

.
moreover have ?thesis when f b > 0 continuous (at-left b) f
proof −

have (f −−−→ f b) (at-left b)
using that(2 ) by (simp add: continuous-within)

then show ?thesis
using tendsto-nonzero-has-sgnx[of f f b at-left b] that by auto

qed
ultimately show ?thesis using that(2 ) unfolding left-def by auto

qed
then obtain b ′ where b ′<b and b ′-def :∀ y. b ′<y ∧ y < b −→ f y > 0

unfolding has-sgnx-def eventually-at-left using sgn-1-pos by auto
have a ′ ≤ b ′

proof (rule ccontr)
assume ¬ a ′ ≤ b ′

then have {a<..<a ′} ∩ {b ′<..<b} 6= {}
using ‹a<a ′› ‹b ′<b› ‹a<b› by auto
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then obtain c where c∈{a<..<a ′} c∈{b ′<..<b} by blast
then have f c>0 f c<0

using a ′-def b ′-def by auto
then show False by auto

qed
define a0 where a0=(a+a ′)/2
define b0 where b0=(b+b ′)/2
have [simp]:a<a0 a0<a ′ a0<b0 b ′<b0 b0<b

unfolding a0-def b0-def using ‹a<a ′› ‹b ′<b› ‹a ′≤b ′› by auto
have f a0<0 f b0>0 using a ′-def [rule-format,of a0 ] b ′-def [rule-format,of b0 ]

by auto
moreover have continuous-on {a0 ..b0} f

using cont ‹a < a0 › ‹b0 < b›
by (meson atLeastAtMost-subseteq-greaterThanLessThan-iff continuous-on-subset)

ultimately have ∃ x>a0 . x < b0 ∧ f x = 0
using IVT-strict[of 0 f a0 b0 ] by auto

then show ?thesis using ‹a < a0 › ‹b0 < b›
by (meson lessThan-strict-subset-iff psubsetE subset-psubset-trans)

qed
ultimately show ?thesis using right-left by auto

qed

lemma jumpF-eventually-const:
assumes eventually (λx. f x=c) F F 6=bot
shows jumpF f F = 0

proof −
have jumpF f F = jumpF (λ-. c) F

apply (rule jumpF-cong)
using assms(1 ) by auto

also have ... = 0 using jumpF-const[OF ‹F 6=bot›] by simp
finally show ?thesis .

qed

lemma jumpF-tan-comp:
jumpF (f o tan) (at-right x) = (if cos x = 0

then jumpF f at-bot else jumpF f (at-right (tan x)))
jumpF (f o tan) (at-left x) = (if cos x =0

then jumpF f at-top else jumpF f (at-left (tan x)))
proof −

have filtermap (f ◦ tan) (at-right x) =
(if cos x = 0 then filtermap f at-bot else filtermap f (at-right (tan x)))

unfolding comp-def
apply (subst filtermap-filtermap[of f tan,symmetric])
using filtermap-tan-at-right-inf filtermap-tan-at-right by auto

then show jumpF (f o tan) (at-right x) = (if cos x = 0
then jumpF f at-bot else jumpF f (at-right (tan x)))

unfolding jumpF-def filterlim-def by auto
next
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have filtermap (f ◦ tan) (at-left x) =
(if cos x = 0 then filtermap f at-top else filtermap f (at-left (tan x)))

unfolding comp-def
apply (subst filtermap-filtermap[of f tan,symmetric])
using filtermap-tan-at-left-inf filtermap-tan-at-left by auto

then show jumpF (f o tan) (at-left x) = (if cos x = 0
then jumpF f at-top else jumpF f (at-left (tan x)))

unfolding jumpF-def filterlim-def by auto
qed

5.6 Finite jumpFs over an interval
definition finite-jumpFs::(real ⇒ real) ⇒ real ⇒ real ⇒ bool where

finite-jumpFs f a b = finite {x. (jumpF f (at-left x) 6=0 ∨ jumpF f (at-right x)
6=0 ) ∧ a≤x ∧ x≤b}

lemma finite-jumpFs-linear-pos:
assumes c>0
shows finite-jumpFs (f o (λx. c ∗ x + b)) lb ub ←→ finite-jumpFs f (c ∗ lb +b)

(c ∗ ub + b)
proof −

define left where left = (λf lb ub. {x. jumpF f (at-left x) 6= 0 ∧ lb ≤ x ∧ x ≤
ub})

define right where right = (λf lb ub. {x. jumpF f (at-right x) 6= 0 ∧ lb ≤ x ∧
x ≤ ub})

define g where g=(λx. c∗x+b)
define gi where gi = (λx. (x−b)/c)
have finite-jumpFs (f o (λx. c ∗ x + b)) lb ub

= finite (left (f o g) lb ub ∪ right (f o g) lb ub)
unfolding finite-jumpFs-def
apply (rule arg-cong[where f=finite])
by (auto simp add:left-def right-def g-def )

also have ... = finite (gi ‘ (left f (g lb) (g ub) ∪ right f (g lb) (g ub)))
proof −

have j-rw:
jumpF (f o g) (at-left x) = jumpF f (at-left (g x))
jumpF (f o g) (at-right x) = jumpF f (at-right (g x))

for x
using jumpF-linear-comp[of c f b x] ‹c>0 › unfolding g-def by auto

then have
left (f o g) lb ub = gi ‘ left f (g lb) (g ub)
right (f o g) lb ub = gi ‘ right f (g lb) (g ub)

unfolding left-def right-def gi-def
using ‹c>0 › by (auto simp add:g-def field-simps)

then have left (f o g) lb ub ∪ right (f o g) lb ub
= gi ‘ (left f (g lb) (g ub) ∪ right f (g lb) (g ub))

by auto
then show ?thesis by auto

qed
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also have ... = finite (left f (g lb) (g ub) ∪ right f (g lb) (g ub))
apply (rule finite-image-iff )
unfolding gi-def using ‹c >0 › inj-on-def by fastforce

also have ... = finite-jumpFs f (c ∗ lb +b) (c ∗ ub + b)
unfolding finite-jumpFs-def
apply (rule arg-cong[where f=finite])
by (auto simp add:left-def right-def g-def )

finally show ?thesis .
qed

lemma finite-jumpFs-consts:
finite-jumpFs (λ- . c) lb ub
unfolding finite-jumpFs-def using jumpF-const by auto

lemma finite-jumpFs-combine:
assumes finite-jumpFs f a b finite-jumpFs f b c
shows finite-jumpFs f a c

proof −
define P where P=(λx. jumpF f (at-left x) 6= 0 ∨ jumpF f (at-right x) 6= 0 )
have {x. P x ∧ a ≤ x ∧ x ≤ c} ⊆ {x. P x ∧ a ≤ x ∧ x≤b} ∪ {x. P x ∧ b ≤x
∧ x≤c}

by auto
moreover have finite ({x. P x ∧ a ≤ x ∧ x≤b} ∪ {x. P x ∧ b ≤x ∧ x≤c})

using assms unfolding finite-jumpFs-def P-def by auto
ultimately have finite {x. P x ∧ a ≤ x ∧ x ≤ c}

using finite-subset by auto
then show ?thesis unfolding finite-jumpFs-def P-def by auto

qed

lemma finite-jumpFs-subE :
assumes finite-jumpFs f a b a≤a ′ b ′≤b
shows finite-jumpFs f a ′ b ′

using assms unfolding finite-jumpFs-def
apply (elim rev-finite-subset)
by auto

lemma finite-Psegments-Re-imp-jumpFs:
assumes finite-Psegments (λt. Re (g t − z) = 0 ) a b continuous-on {a..b} g
shows finite-jumpFs (λt. Im (g t − z)/Re (g t − z)) a b

using assms
proof (induct rule:finite-Psegments.induct)

case (emptyI a b)
then show ?case unfolding finite-jumpFs-def

by (auto intro:rev-finite-subset[of {a}])
next

case (insertI-1 s a b)
define f where f=(λt. Im (g t − z) / Re (g t − z))
have finite-jumpFs f a s
proof −
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have continuous-on {a..s} g using ‹continuous-on {a..b} g› ‹s ∈ {a..<b}›
by (auto elim:continuous-on-subset)

then show ?thesis using insertI-1 unfolding f-def by auto
qed
moreover have finite-jumpFs f s b
proof −

have jumpF f (at-left x) =0 jumpF f (at-right x) = 0 when x∈{s<..<b} for x
proof −

show jumpF f (at-left x) =0
apply (rule jumpF-eventually-const[of - 0 ])
unfolding eventually-at-left
apply (rule exI [where x=s])

using that insertI-1 unfolding f-def by auto
show jumpF f (at-right x) = 0

apply (rule jumpF-eventually-const[of - 0 ])
unfolding eventually-at-right
apply (rule exI [where x=b])

using that insertI-1 unfolding f-def by auto
qed
then have {x. (jumpF f (at-left x) 6= 0 ∨ jumpF f (at-right x) 6= 0 ) ∧ s ≤ x

∧ x ≤ b}
= {x. (jumpF f (at-left x) 6= 0 ∨ jumpF f (at-right x) 6= 0 ) ∧ (x=s ∨ x

= b)}
using ‹s∈{a..<b}› by force

then show ?thesis unfolding finite-jumpFs-def by auto
qed
ultimately show ?case using finite-jumpFs-combine[of - a s b] unfolding f-def

by auto
next

case (insertI-2 s a b)
define f where f=(λt. Im (g t − z) / Re (g t − z))
have finite-jumpFs f a s
proof −

have continuous-on {a..s} g using ‹continuous-on {a..b} g› ‹s ∈ {a..<b}›
by (auto elim:continuous-on-subset)

then show ?thesis using insertI-2 unfolding f-def by auto
qed
moreover have finite-jumpFs f s b
proof −

have jumpF f (at-left x) =0 jumpF f (at-right x) = 0 when x∈{s<..<b} for x
proof −

have isCont f x
unfolding f-def
apply (intro continuous-intros isCont-Im isCont-Re

continuous-on-interior [OF ‹continuous-on {a..b} g›])
using insertI-2 .hyps(1 ) that

apply auto[2 ]
using insertI-2 .hyps(3 ) that by blast

then show jumpF f (at-left x) =0 jumpF f (at-right x) = 0
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by (simp-all add: continuous-at-split jumpF-not-infinity)
qed
then have {x. (jumpF f (at-left x) 6= 0 ∨ jumpF f (at-right x) 6= 0 ) ∧ s ≤ x

∧ x ≤ b}
= {x. (jumpF f (at-left x) 6= 0 ∨ jumpF f (at-right x) 6= 0 ) ∧ (x=s ∨ x

= b)}
using ‹s∈{a..<b}› by force

then show ?thesis unfolding finite-jumpFs-def by auto
qed
ultimately show ?case using finite-jumpFs-combine[of - a s b] unfolding f-def

by auto
qed

lemma finite-ReZ-segments-imp-jumpFs:
assumes finite-ReZ-segments g z path g
shows finite-jumpFs (λt. Im (g t − z)/Re (g t − z)) 0 1
using assms unfolding finite-ReZ-segments-def path-def
by (rule finite-Psegments-Re-imp-jumpFs)

5.7 jumpF at path ends
definition jumpF-pathstart::(real ⇒ complex) ⇒ complex ⇒ real where

jumpF-pathstart g z= jumpF (λt. Im(g t− z)/Re(g t − z)) (at-right 0 )

definition jumpF-pathfinish::(real ⇒ complex) ⇒ complex ⇒ real where
jumpF-pathfinish g z= jumpF (λt. Im(g t − z)/Re(g t −z)) (at-left 1 )

lemma jumpF-pathstart-eq-0 :
assumes path g Re(pathstart g)6=Re z
shows jumpF-pathstart g z = 0

unfolding jumpF-pathstart-def
apply (rule jumpF-im-divide-Re-0 )
using assms[unfolded pathstart-def ] by auto

lemma jumpF-pathfinish-eq-0 :
assumes path g Re(pathfinish g) 6=Re z
shows jumpF-pathfinish g z = 0

unfolding jumpF-pathfinish-def
apply (rule jumpF-im-divide-Re-0 )
using assms[unfolded pathfinish-def ] by auto

lemma
shows jumpF-pathfinish-reversepath: jumpF-pathfinish (reversepath g) z = jumpF-pathstart

g z
and jumpF-pathstart-reversepath: jumpF-pathstart (reversepath g) z = jumpF-pathfinish

g z
proof −

define f where f=(λt. Im (g t − z) / Re (g t − z))
define f ′ where f ′=(λt. Im (reversepath g t − z) / Re (reversepath g t − z))
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have f o (λt. 1 − t) = f ′

unfolding f-def f ′-def comp-def reversepath-def by auto
then show jumpF-pathfinish (reversepath g) z = jumpF-pathstart g z

jumpF-pathstart (reversepath g) z = jumpF-pathfinish g z
unfolding jumpF-pathstart-def jumpF-pathfinish-def
using jumpF-linear-comp(2 )[of −1 f 1 0 ,simplified] jumpF-linear-comp(1 )[of

−1 f 1 1 ,simplified]
apply (fold f-def f ′-def )
by auto

qed

lemma jumpF-pathstart-joinpaths[simp]:
jumpF-pathstart (g1+++g2 ) z = jumpF-pathstart g1 z

proof −
let ?h=(λt. Im (g1 t − z) / Re (g1 t − z))
let ?f=λt. Im ((g1 +++ g2 ) t − z) / Re ((g1 +++ g2 ) t − z)
have jumpF-pathstart g1 z = jumpF ?h (at-right 0 )

unfolding jumpF-pathstart-def by simp
also have ... = jumpF (?h o (λt. 2∗t)) (at-right 0 )

using jumpF-linear-comp[of 2 ?h 0 0 ,simplified] by auto
also have ... = jumpF ?f (at-right 0 )
proof (rule jumpF-cong)

show ∀ F x in at-right 0 . (?h ◦ (∗) 2 ) x =?f x
unfolding eventually-at-right
apply (intro exI [where x=1/2 ])
by (auto simp add:joinpaths-def )

qed simp
also have ... =jumpF-pathstart (g1+++g2 ) z

unfolding jumpF-pathstart-def by simp
finally show ?thesis by simp

qed

lemma jumpF-pathfinish-joinpaths[simp]:
jumpF-pathfinish (g1+++g2 ) z = jumpF-pathfinish g2 z

proof −
let ?h=(λt. Im (g2 t − z) / Re (g2 t − z))
let ?f=λt. Im ((g1 +++ g2 ) t − z) / Re ((g1 +++ g2 ) t − z)
have jumpF-pathfinish g2 z = jumpF ?h (at-left 1 )

unfolding jumpF-pathfinish-def by simp
also have ... = jumpF (?h o (λt. 2∗t−1 )) (at-left 1 )

using jumpF-linear-comp[of 2 - −1 1 ,simplified] by auto
also have ... = jumpF ?f (at-left 1 )
proof (rule jumpF-cong)

show ∀ F x in at-left 1 . (?h ◦ (λt. 2 ∗ t − 1 )) x =?f x
unfolding eventually-at-left
apply (intro exI [where x=1/2 ])
by (auto simp add:joinpaths-def )

qed simp
also have ... =jumpF-pathfinish (g1+++g2 ) z
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unfolding jumpF-pathfinish-def by simp
finally show ?thesis by simp

qed

5.8 Cauchy index
definition cindex::real ⇒ real ⇒ (real ⇒ real) ⇒ int where

cindex a b f = (
∑

x∈{x. jump f x 6=0 ∧ a<x ∧ x<b}. jump f x )

definition cindexE ::real ⇒ real ⇒ (real ⇒ real) ⇒ real where
cindexE a b f = (

∑
x∈{x. jumpF f (at-right x) 6=0 ∧ a≤x ∧ x<b}. jumpF f

(at-right x))
− (

∑
x∈{x. jumpF f (at-left x) 6=0 ∧ a<x ∧ x≤b}. jumpF f (at-left

x))

definition cindexE-ubd::(real ⇒ real) ⇒ real where
cindexE-ubd f = (

∑
x∈{x. jumpF f (at-right x) 6=0 }. jumpF f (at-right x))

− (
∑

x∈{x. jumpF f (at-left x) 6=0}. jumpF f (at-left x))

lemma cindexE-empty:
cindexE a a f = 0
unfolding cindexE-def by (simp add: sum.neutral)

lemma cindex-const: cindex a b (λ-. c) = 0
unfolding cindex-def
apply (rule sum.neutral)
by auto

lemma cindex-eq-cindex-poly: cindex a b (λx. poly q x/poly p x) = cindex-poly a
b q p
proof (cases p=0 )

case True
then show ?thesis using cindex-const by auto

next
case False
have cindex-poly a b q p =

(
∑

x |jump-poly q p x 6=0 ∧ a < x ∧ x < b. jump-poly q p x)
unfolding cindex-poly-def
apply (rule sum.mono-neutral-cong-right)
using jump-poly-not-root by (auto simp add: ‹p 6=0 › poly-roots-finite)

also have ... = cindex a b (λx. poly q x/poly p x)
unfolding cindex-def
apply (rule sum.cong)
using jump-jump-poly[of q] by auto

finally show ?thesis by auto
qed

lemma cindex-combine:
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assumes finite:finite {x. jump f x 6=0 ∧ a<x ∧ x<c} and a<b b<c
shows cindex a c f = cindex a b f + jump f b + cindex b c f

proof −
define ssum where ssum = (λs. sum (jump f ) ({x. jump f x 6=0 ∧ a<x ∧ x<c}
∩ s))

have ssum-union:ssum (A ∪ B) = ssum A + ssum B when A ∩ B ={} for A
B

proof −
define C where C={x. jump f x 6= 0 ∧ a<x ∧ x<c}
have finite C using finite unfolding C-def .
then show ?thesis

unfolding ssum-def
apply (fold C-def )
using sum-Un[of C ∩ A C ∩ B] that
by (simp add: inf-assoc inf-sup-aci(3 ) inf-sup-distrib1 sum.union-disjoint)

qed
have cindex a c f = ssum ({a<..<b} ∪ {b} ∪ {b<..<c})

unfolding ssum-def cindex-def
apply (rule sum.cong[of - - jump f jump f ,simplified])
using ‹a<b› ‹b<c› by fastforce

moreover have cindex a b f = ssum {a<..<b}
unfolding cindex-def ssum-def using ‹a<b› ‹b<c›
by (intro sum.cong,auto)

moreover have jump f b = ssum {b}
unfolding ssum-def using ‹a<b› ‹b<c› by (cases jump f b=0 ,auto)

moreover have cindex b c f = ssum {b<..<c}
unfolding cindex-def ssum-def using ‹a<b› ‹b<c› by (intro sum.cong,auto)

ultimately show ?thesis
apply (subst (asm) ssum-union,simp)
by (subst (asm) ssum-union,auto)

qed

lemma cindexE-combine:
assumes finite:finite-jumpFs f a c and a≤b b≤c
shows cindexE a c f = cindexE a b f + cindexE b c f

proof −
define S where S={x. (jumpF f (at-left x) 6= 0 ∨ jumpF f (at-right x) 6= 0 ) ∧

a ≤ x ∧ x ≤ c}
define A0 where A0={x. jumpF f (at-right x) 6= 0 ∧ a ≤ x ∧ x < c}
define A1 where A1={x. jumpF f (at-right x) 6= 0 ∧ a ≤ x ∧ x < b}
define A2 where A2={x. jumpF f (at-right x) 6= 0 ∧ b ≤ x ∧ x < c}
define B0 where B0={x. jumpF f (at-left x) 6= 0 ∧ a < x ∧ x ≤ c}
define B1 where B1={x. jumpF f (at-left x) 6= 0 ∧ a < x ∧ x ≤ b}
define B2 where B2={x. jumpF f (at-left x) 6= 0 ∧ b < x ∧ x ≤ c}
have [simp]:finite A1 finite A2 finite B1 finite B2
proof −

have finite S using finite unfolding finite-jumpFs-def S-def by auto
moreover have A1 ⊆ S A2 ⊆ S B1 ⊆ S B2 ⊆ S

unfolding A1-def A2-def B1-def B2-def S-def using ‹a≤b› ‹b≤c› by auto
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ultimately show finite A1 finite A2 finite B1 finite B2 by (auto elim:finite-subset)
qed
have cindexE a c f = sum (λx. jumpF f (at-right x)) A0

− sum (λx. jumpF f (at-left x)) B0
unfolding cindexE-def A0-def B0-def by auto

also have ... = sum (λx. jumpF f (at-right x)) (A1 ∪ A2 )
− sum (λx. jumpF f (at-left x)) (B1 ∪ B2 )

proof −
have A0=A1∪A2 unfolding A0-def A1-def A2-def using assms by auto
moreover have B0=B1∪B2 unfolding B0-def B1-def B2-def using assms

by auto
ultimately show ?thesis by auto

qed
also have ... = cindexE a b f + cindexE b c f
proof −

have A1 ∩ A2 = {} unfolding A1-def A2-def by auto
moreover have B1 ∩ B2 = {} unfolding B1-def B2-def by auto
ultimately show ?thesis

unfolding cindexE-def
apply (fold A1-def A2-def B1-def B2-def )
by (auto simp add:sum.union-disjoint)

qed
finally show ?thesis .

qed

lemma cindex-linear-comp:
assumes c 6=0
shows cindex lb ub (f o (λx. c∗x+b)) = (if c>0

then cindex (c∗lb+b) (c∗ub+b) f
else − cindex (c∗ub+b) (c∗lb+b) f )

proof (cases c>0 )
case False
then have c<0 using ‹c 6=0 › by auto
have cindex lb ub (f o (λx. c∗x+b)) = − cindex (c∗ub+b) (c∗lb+b) f

unfolding cindex-def
apply (subst sum-negf [symmetric])
apply (intro sum.reindex-cong[of λx. (x−b)/c])
subgoal by (simp add: inj-on-def )
subgoal using False

apply (subst jump-linear-comp[OF ‹c 6=0 ›])
by (auto simp add:‹c<0 › ‹c 6=0 › field-simps)

subgoal for x
apply (subst jump-linear-comp[OF ‹c 6=0 ›])
by (auto simp add:‹c<0 › ‹c 6=0 › False field-simps)

done
then show ?thesis using False by auto

next
case True
have cindex lb ub (f o (λx. c∗x+b)) = cindex (c∗lb+b) (c∗ub+b) f
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unfolding cindex-def
apply (intro sum.reindex-cong[of λx. (x−b)/c])
subgoal by (simp add: inj-on-def )
subgoal

apply (subst jump-linear-comp[OF ‹c 6=0 ›])
by (auto simp add: True ‹c 6=0 › field-simps)

subgoal for x
apply (subst jump-linear-comp[OF ‹c 6=0 ›])
by (auto simp add: ‹c 6=0 › True field-simps)

done
then show ?thesis using True by auto

qed

lemma cindexE-linear-comp:
assumes c 6=0
shows cindexE lb ub (f o (λx. c∗x+b)) = (if c>0

then cindexE (c∗lb+b) (c∗ub+b) f
else − cindexE (c∗ub+b) (c∗lb+b) f )

proof −
define cright where cright = (λlb ub f . (

∑
x | jumpF f (at-right x) 6= 0 ∧ lb ≤

x ∧ x < ub.
jumpF f (at-right x)))

define cleft where cleft = (λlb ub f . (
∑

x | jumpF f (at-left x) 6= 0 ∧ lb < x ∧
x ≤ ub.

jumpF f (at-left x)))
have cindexE-unfold:cindexE lb ub f = cright lb ub f − cleft lb ub f

for lb ub f unfolding cindexE-def cright-def cleft-def by auto
have ?thesis when c<0
proof −

have cright lb ub (f ◦ (λx. c ∗ x + b)) = cleft (c ∗ ub + b) (c ∗ lb + b) f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of λx. (x−b)/c])
subgoal by (simp add: inj-on-def )
subgoal using that

by (subst jumpF-linear-comp[OF ‹c 6=0 ›],auto simp add:field-simps)
subgoal for x using that

by (subst jumpF-linear-comp[OF ‹c 6=0 ›],auto simp add: field-simps)
done

moreover have cleft lb ub (f ◦ (λx. c ∗ x + b)) = cright (c∗ub+b) (c∗lb + b)
f

unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of λx. (x−b)/c])
subgoal by (simp add: inj-on-def )
subgoal using that

by (subst jumpF-linear-comp[OF ‹c 6=0 ›],auto simp add:field-simps)
subgoal for x using that

by (subst jumpF-linear-comp[OF ‹c 6=0 ›],auto simp add: field-simps)
done

ultimately show ?thesis unfolding cindexE-unfold using that by auto
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qed
moreover have ?thesis when c>0
proof −

have cright lb ub (f ◦ (λx. c ∗ x + b)) = cright (c ∗ lb + b) (c ∗ ub + b) f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of λx. (x−b)/c])
subgoal by (simp add: inj-on-def )
subgoal using that

by (subst jumpF-linear-comp[OF ‹c 6=0 ›],auto simp add:field-simps)
subgoal for x using that

by (subst jumpF-linear-comp[OF ‹c 6=0 ›],auto simp add: field-simps)
done

moreover have cleft lb ub (f ◦ (λx. c ∗ x + b)) = cleft (c∗lb+b) (c∗ub + b) f
unfolding cright-def cleft-def
apply (intro sum.reindex-cong[of λx. (x−b)/c])
subgoal by (simp add: inj-on-def )
subgoal using that

by (subst jumpF-linear-comp[OF ‹c 6=0 ›],auto simp add:field-simps)
subgoal for x using that

by (subst jumpF-linear-comp[OF ‹c 6=0 ›],auto simp add: field-simps)
done

ultimately show ?thesis unfolding cindexE-unfold using that by auto
qed
ultimately show ?thesis using ‹c 6=0 › by auto

qed

lemma cindexE-cong:
assumes finite s and fg-eq:

∧
x. [[a<x;x<b;x /∈s]] =⇒ f x = g x

shows cindexE a b f = cindexE a b g
proof −

define left where
left=(λf . (

∑
x | jumpF f (at-left x) 6= 0 ∧ a < x ∧ x ≤ b. jumpF f (at-left

x)))
define right where

right=(λf . (
∑

x | jumpF f (at-right x) 6= 0 ∧ a ≤ x ∧ x < b. jumpF f (at-right
x)))

have left f = left g
proof −

have jumpF f (at-left x) = jumpF g (at-left x) when a<x x≤b for x
proof (rule jumpF-cong)

define cs where cs ≡ {y∈s. a<y ∧ y<x}
define c where c≡ (if cs = {} then (x+a)/2 else Max cs)
have finite cs unfolding cs-def using assms(1 ) by auto
have c<x ∧ (∀ y. c<y ∧ y<x −→ f y=g y)
proof (cases cs={})

case True
then have ∀ y. c<y ∧ y<x −→ y /∈ s unfolding cs-def c-def by force
moreover have c=(x+a)/2 using True unfolding c-def by auto
ultimately show ?thesis using fg-eq using that by auto
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next
case False
then have c∈cs unfolding c-def using False ‹finite cs› by auto
moreover have ∀ y. c<y ∧ y<x −→ y /∈ s
proof (rule ccontr)

assume ¬ (∀ y. c < y ∧ y < x −→ y /∈ s)
then obtain y ′ where c<y ′ y ′<x y ′∈s by auto
then have y ′∈cs using ‹c∈cs› unfolding cs-def by auto
then have y ′≤c unfolding c-def using False ‹finite cs› by auto
then show False using ‹c<y ′› by auto

qed
ultimately show ?thesis unfolding cs-def using that by (auto intro!:fg-eq)
qed
then show ∀ F x in at-left x. f x = g x

unfolding eventually-at-left by auto
qed simp
then show ?thesis

unfolding left-def
by (auto intro: sum.cong)

qed
moreover have right f = right g
proof −

have jumpF f (at-right x) = jumpF g (at-right x) when a≤x x<b for x
proof (rule jumpF-cong)

define cs where cs ≡ {y∈s. x<y ∧ y<b}
define c where c≡ (if cs = {} then (x+b)/2 else Min cs)
have finite cs unfolding cs-def using assms(1 ) by auto
have x<c ∧ (∀ y. x<y ∧ y<c −→ f y=g y)
proof (cases cs={})

case True
then have ∀ y. x<y ∧ y<c −→ y /∈ s unfolding cs-def c-def by force
moreover have c=(x+b)/2 using True unfolding c-def by auto
ultimately show ?thesis using fg-eq using that by auto

next
case False
then have c∈cs unfolding c-def using False ‹finite cs› by auto
moreover have ∀ y. x<y ∧ y<c −→ y /∈ s
proof (rule ccontr)

assume ¬ (∀ y. x < y ∧ y < c −→ y /∈ s)
then obtain y ′ where x<y ′ y ′<c y ′∈s by auto
then have y ′∈cs using ‹c∈cs› unfolding cs-def by auto
then have y ′≥c unfolding c-def using False ‹finite cs› by auto
then show False using ‹c>y ′› by auto

qed
ultimately show ?thesis unfolding cs-def using that by (auto intro!:fg-eq)
qed
then show ∀ F x in at-right x. f x = g x

unfolding eventually-at-right by auto
qed simp
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then show ?thesis
unfolding right-def
by (auto intro: sum.cong)

qed
ultimately show ?thesis unfolding cindexE-def left-def right-def by presburger

qed

lemma cindexE-constI :
assumes

∧
t. [[a<t;t<b]] =⇒ f t=c

shows cindexE a b f = 0
proof −

define left where
left=(λf . (

∑
x | jumpF f (at-left x) 6= 0 ∧ a < x ∧ x ≤ b. jumpF f (at-left

x)))
define right where

right=(λf . (
∑

x | jumpF f (at-right x) 6= 0 ∧ a ≤ x ∧ x < b. jumpF f (at-right
x)))

have left f = 0
proof −

have jumpF f (at-left x) = 0 when a<x x≤b for x
apply (rule jumpF-eventually-const[of - c])
unfolding eventually-at-left using assms that by auto

then show ?thesis unfolding left-def by auto
qed
moreover have right f = 0
proof −

have jumpF f (at-right x) = 0 when a≤x x<b for x
apply (rule jumpF-eventually-const[of - c])
unfolding eventually-at-right using assms that by auto

then show ?thesis unfolding right-def by auto
qed
ultimately show ?thesis unfolding cindexE-def left-def right-def by auto

qed

lemma cindex-eq-cindexE-divide:
fixes f g::real ⇒ real
defines h ≡ (λx. f x/g x)
assumes a<b and

finite-fg: finite {x. (f x=0∨g x=0 ) ∧ a≤x∧x≤b} and
g-imp-f :∀ x∈{a..b}. g x=0 −→ f x 6=0 and
f-cont:continuous-on {a..b} f and
g-cont:continuous-on {a..b} g

shows cindexE a b h = jumpF h (at-right a) + cindex a b h − jumpF h (at-left
b)
proof −

define R where R=(λS .{x. jumpF h (at-right x) 6= 0 ∧ x∈S})
define L where L=(λS .{x. jumpF h (at-left x) 6= 0 ∧ x∈S})
define right where right = (λS . (

∑
x∈R S . jumpF h (at-right x)))

define left where left = (λS . (
∑

x∈L S . jumpF h (at-left x)))
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have jump-gnz:jumpF h (at-left x) = 0 jumpF h (at-right x) = 0 jump h x=0
when a<x x<b g x 6=0 for x

proof −
have isCont h x unfolding h-def using f-cont g-cont that

by (auto intro!:continuous-intros elim:continuous-on-interior)
then show jumpF h (at-left x) = 0 jumpF h (at-right x) = 0 jump h x=0

using jumpF-not-infinity jump-not-infinity unfolding continuous-at-split
by auto

qed

have finite-jFs:finite-jumpFs h a b
proof −

define S where S=(λs. {x. (jumpF h (at-left x) 6= 0 ∨ jumpF h (at-right x)
6= 0 ) ∧ x∈s})

note jump-gnz
then have S {a<..<b} ⊆ {x. (f x=0∨g x=0 ) ∧ a≤x∧x≤b}

unfolding S-def by auto
then have finite (S {a<..<b})

using rev-finite-subset[OF finite-fg] by auto
moreover have finite (S {a,b}) unfolding S-def by auto
moreover have S {a..b} = S {a<..<b} ∪ S {a,b}

unfolding S-def using ‹a<b› by auto
ultimately have finite (S {a..b}) by auto
then show ?thesis unfolding S-def finite-jumpFs-def by auto

qed
have cindexE a b h = right {a..<b} − left {a<..b}

unfolding cindexE-def right-def left-def R-def L-def by auto
also have ... = jumpF h (at-right a) + right {a<..<b} − left {a<..<b} − jumpF

h (at-left b)
proof −

have right {a..<b} = jumpF h (at-right a) + right {a<..<b}
proof (cases jumpF h (at-right a) =0 )

case True
then have R {a..<b} = R {a<..<b}

unfolding R-def using less-eq-real-def by auto
then have right {a..<b} = right {a<..<b}

unfolding right-def by auto
then show ?thesis using True by auto

next
case False
have finite (R {a..<b})

using finite-jFs unfolding R-def finite-jumpFs-def
by (auto elim:rev-finite-subset)

moreover have a ∈ R {a..<b} using False ‹a<b› unfolding R-def by auto
moreover have R {a..<b} − {a} = R {a<..<b} unfolding R-def by auto
ultimately show right {a..<b}= jumpF h (at-right a)

+ right {a<..<b}
using sum.remove[of R {a..<b} a λx. jumpF h (at-right x)]
unfolding right-def by simp
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qed
moreover have left {a<..b} = jumpF h (at-left b) + left {a<..<b}
proof (cases jumpF h (at-left b) =0 )

case True
then have L {a<..b} = L {a<..<b}

unfolding L-def using less-eq-real-def by auto
then have left {a<..b} = left {a<..<b}

unfolding left-def by auto
then show ?thesis using True by auto

next
case False
have finite (L {a<..b})

using finite-jFs unfolding L-def finite-jumpFs-def
by (auto elim:rev-finite-subset)

moreover have b ∈ L {a<..b} using False ‹a<b› unfolding L-def by auto
moreover have L {a<..b} − {b} = L {a<..<b} unfolding L-def by auto
ultimately show left {a<..b}= jumpF h (at-left b) + left {a<..<b}

using sum.remove[of L {a<..b} b λx. jumpF h (at-left x)]
unfolding left-def by simp

qed
ultimately show ?thesis by simp

qed
also have ... = jumpF h (at-right a) + cindex a b h − jumpF h (at-left b)
proof −

define S where S={x. g x=0 ∧ a < x ∧ x < b}
have right {a<..<b} = sum (λx. jumpF h (at-right x)) S

unfolding right-def S-def R-def
apply (rule sum.mono-neutral-left)
subgoal using finite-fg by (auto elim:rev-finite-subset)
subgoal using jump-gnz by auto
subgoal by auto
done

moreover have left {a<..<b} = sum (λx. jumpF h (at-left x)) S
unfolding left-def S-def L-def
apply (rule sum.mono-neutral-left)
subgoal using finite-fg by (auto elim:rev-finite-subset)
subgoal using jump-gnz by auto
subgoal by auto
done

ultimately have right {a<..<b} − left {a<..<b}
= sum (λx. jumpF h (at-right x) − jumpF h (at-left x)) S

by (simp add: sum-subtractf )
also have ... = sum (λx. of-int(jump h x)) S
proof (rule sum.cong)

fix x assume x∈S
define hr where hr = sgnx h (at-right x)
define hl where hl = sgnx h (at-left x)
have h sgnx-able (at-left x) hr 6=0 h sgnx-able (at-right x) hl 6=0
proof −
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have finite {t. h t = 0 ∧ a < t ∧ t < b}
using finite-fg unfolding h-def by (auto elim!:rev-finite-subset)

moreover have continuous-on ({a<..<b} − {x. g x = 0 ∧ a < x ∧ x <
b}) h

unfolding h-def using f-cont g-cont
by (auto intro!: continuous-intros elim:continuous-on-subset)

moreover have finite {x. g x = 0 ∧ a < x ∧ x < b}
using finite-fg by (auto elim!:rev-finite-subset)

moreover have x ∈ {a<..<b}
using ‹x∈S› unfolding S-def by auto

ultimately show h sgnx-able (at-left x) hl 6=0 h sgnx-able (at-right x) hr 6=0

using finite-sgnx-at-left-at-right[of h a b {x. g x=0 ∧ a<x∧x<b} x]
unfolding hl-def hr-def by blast+

qed
then have (h has-sgnx hl) (at-left x) (h has-sgnx hr) (at-right x)

unfolding hl-def hr-def using sgnx-able-sgnx by blast+
moreover have isCont (inverse ◦ h) x
proof −

have f x 6=0 using ‹x∈S› g-imp-f unfolding S-def by auto
then show ?thesis using f-cont g-cont ‹x∈S› unfolding h-def S-def

by (auto simp add:comp-def intro!:continuous-intros elim:continuous-on-interior)
qed
ultimately show jumpF h (at-right x) − jumpF h (at-left x) = real-of-int

(jump h x)
using jump-jumpF [of x h] ‹hr 6=0 › ‹hl 6=0 › by auto

qed auto
also have ... = cindex a b h

unfolding cindex-def of-int-sum S-def
apply (rule sum.mono-neutral-cong-right)
using jump-gnz finite-fg by (auto elim:rev-finite-subset)

finally show ?thesis by simp
qed
finally show ?thesis .

qed

5.9 Cauchy index along a path
definition cindex-path::(real ⇒ complex) ⇒ complex ⇒ int where

cindex-path g z = cindex 0 1 (λt. Im (g t − z) / Re (g t − z))

definition cindex-pathE ::(real ⇒ complex) ⇒ complex ⇒ real where
cindex-pathE g z = cindexE 0 1 (λt. Im (g t − z) / Re (g t − z))

lemma cindex-pathE-point: cindex-pathE (linepath a a) b = 0
unfolding cindex-pathE-def by (simp add:cindexE-constI )

lemma cindex-path-reversepath:
cindex-path (reversepath g) z = − cindex-path g z
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proof −
define f where f=(λt. Im (g t − z) / Re (g t − z))
define f ′ where f ′=(λt. Im (reversepath g t − z) / Re (reversepath g t − z))
have f o (λt. 1 − t) = f ′

unfolding f-def f ′-def comp-def reversepath-def by auto
then have cindex 0 1 f ′ = − cindex 0 1 f

using cindex-linear-comp[of −1 0 1 f 1 ,simplified] by simp
then show ?thesis

unfolding cindex-path-def
apply (fold f-def f ′-def )
by simp

qed

lemma cindex-pathE-reversepath: cindex-pathE (reversepath g) z = −cindex-pathE
g z

using cindexE-linear-comp[of −1 0 1 λt. (Im (g t) − Im z) / (Re (g t) − Re z)
1 ]

by (simp add: cindex-pathE-def reversepath-def o-def )

lemma cindex-pathE-reversepath ′: cindex-pathE g z = −cindex-pathE (reversepath
g) z

using cindexE-linear-comp[of −1 0 1 λt. (Im (g t) − Im z) / (Re (g t) − Re z)
1 ]

by (simp add: cindex-pathE-def reversepath-def o-def )

lemma cindex-pathE-joinpaths:
assumes g1 :finite-ReZ-segments g1 z and g2 : finite-ReZ-segments g2 z and

path g1 path g2 pathfinish g1 = pathstart g2
shows cindex-pathE (g1+++g2 ) z = cindex-pathE g1 z + cindex-pathE g2 z

proof −
define f where f = (λg (t::real). Im (g t − z) / Re (g t − z))
have cindex-pathE (g1 +++ g2 ) z = cindexE 0 1 (f (g1+++g2 ))

unfolding cindex-pathE-def f-def by auto
also have ... = cindexE 0 (1/2 ) (f (g1+++g2 )) + cindexE (1/2 ) 1 (f (g1+++g2 ))
proof (rule cindexE-combine)

show finite-jumpFs (f (g1 +++ g2 )) 0 1
unfolding f-def
apply (rule finite-ReZ-segments-imp-jumpFs)
subgoal using finite-ReZ-segments-joinpaths[OF g1 g2 ] assms(3−5 ) .

subgoal using path-join-imp[OF ‹path g1 › ‹path g2 › ‹pathfinish g1=pathstart
g2 ›] .

done
qed auto
also have ... = cindex-pathE g1 z + cindex-pathE g2 z
proof −

have cindexE 0 (1/2 ) (f (g1+++g2 )) = cindex-pathE g1 z
proof −

have cindexE 0 (1/2 ) (f (g1+++g2 )) = cindexE 0 (1/2 ) (f g1 o ((∗) 2 ))
apply (rule cindexE-cong)
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unfolding comp-def joinpaths-def f-def by auto
also have ... = cindexE 0 1 (f g1 )

using cindexE-linear-comp[of 2 0 1/2 - 0 ,simplified] by simp
also have ... = cindex-pathE g1 z

unfolding cindex-pathE-def f-def by auto
finally show ?thesis .

qed
moreover have cindexE (1/2 ) 1 (f (g1+++g2 )) = cindex-pathE g2 z
proof −

have cindexE (1/2 ) 1 (f (g1+++g2 )) = cindexE (1/2 ) 1 (f g2 o (λx. 2∗x
− 1 ))

apply (rule cindexE-cong)
unfolding comp-def joinpaths-def f-def by auto

also have ... = cindexE 0 1 (f g2 )
using cindexE-linear-comp[of 2 1/2 1 - −1 ,simplified] by simp

also have ... = cindex-pathE g2 z
unfolding cindex-pathE-def f-def by auto

finally show ?thesis .
qed
ultimately show ?thesis by simp

qed
finally show ?thesis .

qed

lemma cindex-pathE-constI :
assumes

∧
t. [[0<t;t<1 ]] =⇒ g t=c

shows cindex-pathE g z = 0
unfolding cindex-pathE-def
apply (rule cindexE-constI )
using assms by auto

lemma cindex-pathE-subpath-combine:
assumes g:finite-ReZ-segments g zand path g and

0≤a a≤b b≤c c≤1
shows cindex-pathE (subpath a b g) z + cindex-pathE (subpath b c g) z

= cindex-pathE (subpath a c g) z
proof −

define f where f = (λt. Im (g t − z) / Re (g t − z))
have ?thesis when a=b
proof −

have cindex-pathE (subpath a b g) z = 0
apply (rule cindex-pathE-constI )
using that unfolding subpath-def by auto

then show ?thesis using that by auto
qed
moreover have ?thesis when b=c
proof −

have cindex-pathE (subpath b c g) z = 0
apply (rule cindex-pathE-constI )
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using that unfolding subpath-def by auto
then show ?thesis using that by auto

qed
moreover have ?thesis when a 6=b b 6=c
proof −

have [simp]:a<b b<c a<c
using that ‹a≤b› ‹b≤c› by auto

have cindex-pathE (subpath a b g) z = cindexE a b f
proof −

have cindex-pathE (subpath a b g) z = cindexE 0 1 (f ◦ (λx. (b − a) ∗ x +
a))

unfolding cindex-pathE-def f-def comp-def subpath-def by auto
also have ... = cindexE a b f

using cindexE-linear-comp[of b−a 0 1 f a,simplified] that(1 ) by auto
finally show ?thesis .

qed
moreover have cindex-pathE (subpath b c g) z = cindexE b c f
proof −

have cindex-pathE (subpath b c g) z = cindexE 0 1 (f ◦ (λx. (c − b) ∗ x +
b))

unfolding cindex-pathE-def f-def comp-def subpath-def by auto
also have ... = cindexE b c f

using cindexE-linear-comp[of c−b 0 1 f b,simplified] that(2 ) by auto
finally show ?thesis .

qed
moreover have cindex-pathE (subpath a c g) z = cindexE a c f
proof −

have cindex-pathE (subpath a c g) z = cindexE 0 1 (f ◦ (λx. (c − a) ∗ x +
a))

unfolding cindex-pathE-def f-def comp-def subpath-def by auto
also have ... = cindexE a c f

using cindexE-linear-comp[of c−a 0 1 f a,simplified] ‹a<c› by auto
finally show ?thesis .

qed
moreover have cindexE a b f + cindexE b c f = cindexE a c f
proof −

have finite-jumpFs f a c
using finite-ReZ-segments-imp-jumpFs[OF g ‹path g›] ‹0≤a› ‹c≤1 › unfold-

ing f-def
by (elim finite-jumpFs-subE ,auto)

then show ?thesis using cindexE-linear-comp cindexE-combine[OF - ‹a≤b›
‹b≤c›] by auto

qed
ultimately show ?thesis by auto

qed
ultimately show ?thesis by blast

qed

lemma cindex-pathE-shiftpath:
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assumes finite-ReZ-segments g z s∈{0 ..1} path g and loop:pathfinish g = path-
start g

shows cindex-pathE (shiftpath s g) z = cindex-pathE g z
proof −

define f where f=(λg t. Im (g (t::real) − z) / Re (g t − z))
have cindex-pathE (shiftpath s g) z = cindexE 0 1 (f (shiftpath s g))

unfolding cindex-pathE-def f-def by simp
also have ... = cindexE 0 (1−s) (f (shiftpath s g)) + cindexE (1−s) 1 (f

(shiftpath s g))
proof (rule cindexE-combine)

have finite-ReZ-segments (shiftpath s g) z
using finite-ReZ-segments-shiftpah[OF assms] .

from finite-ReZ-segments-imp-jumpFs[OF this] path-shiftpath[OF ‹path g› loop
‹s∈{0 ..1}›]

show finite-jumpFs (f (shiftpath s g)) 0 1 unfolding f-def by simp
show 0 ≤ 1 − s 1 − s ≤ 1 using ‹s∈{0 ..1}› by auto

qed
also have ... = cindexE 0 s (f g) + cindexE s 1 (f g)
proof −

have cindexE 0 (1−s) (f (shiftpath s g)) = cindexE s 1 (f g)
proof −

have cindexE 0 (1−s) (f (shiftpath s g)) = cindexE 0 (1−s) ((f g) o (λt.
t+s))

apply (rule cindexE-cong)
unfolding shiftpath-def f-def using ‹s∈{0 ..1}› by (auto simp add:algebra-simps)
also have ...= cindexE s 1 (f g)

using cindexE-linear-comp[of 1 0 1−s f g s,simplified] .
finally show ?thesis .

qed
moreover have cindexE (1 − s) 1 (f (shiftpath s g)) = cindexE 0 s (f g)
proof −

have cindexE (1 − s) 1 (f (shiftpath s g)) = cindexE (1−s) 1 ((f g) o (λt.
t+s−1 ))

apply (rule cindexE-cong)
unfolding shiftpath-def f-def using ‹s∈{0 ..1}› by (auto simp add:algebra-simps)
also have ... = cindexE 0 s (f g)

using cindexE-linear-comp[of 1 1−s 1 f g s−1 ,simplified]
by (simp add:algebra-simps)

finally show ?thesis .
qed
ultimately show ?thesis by auto

qed
also have ... = cindexE 0 1 (f g)
proof (rule cindexE-combine[symmetric])

show finite-jumpFs (f g) 0 1
using finite-ReZ-segments-imp-jumpFs[OF assms(1 ,3 )] unfolding f-def by

simp
show 0 ≤ s s≤1 using ‹s∈{0 ..1}› by auto

qed
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also have ... = cindex-pathE g z
unfolding cindex-pathE-def f-def by simp

finally show ?thesis .
qed

5.10 Cauchy’s Index Theorem
theorem winding-number-cindex-pathE-aux:

fixes g::real ⇒ complex
assumes finite-ReZ-segments g z and valid-path g z /∈ path-image g and

Re-ends:Re (g 1 ) = Re z Re (g 0 ) = Re z
shows 2 ∗ Re(winding-number g z) = − cindex-pathE g z
using assms

proof (induct rule:finite-ReZ-segments-induct)
case (sub0 g z)
have winding-number (subpath 0 0 g) z = 0

using ‹z /∈ path-image (subpath 0 0 g)› unfolding subpath-refl
by (auto intro!: winding-number-trivial)

moreover have cindex-pathE (subpath 0 0 g) z = 0
unfolding subpath-def by (auto intro:cindex-pathE-constI )

ultimately show ?case by auto
next

case (subEq s g z)
have Re-winding-0 :Re(winding-number h z) = 0

when Re-const:∀ t∈{0 ..1}. Re (h t) = Re z and valid-path h z /∈path-image h
for h

proof −
have Re (winding-number (λt. h t − z) 0 ) = (Im (Ln (pathfinish (λt. h t −

z)))
− Im (Ln (pathstart (λt. h t − z)))) / (2 ∗ pi)

apply (rule Re-winding-number-half-right[of - 0 ,simplified])
using Re-const ‹valid-path h› ‹z /∈ path-image h›

apply auto
by (metis (no-types, opaque-lifting) add.commute imageE le-add-same-cancel1

order-refl
path-image-def plus-complex.simps(1 ))

moreover have Im (Ln (h 1 − z)) = Im (Ln (h 0 − z))
proof −

define z0 where z0 = h 0 − z
define z1 where z1 = h 1 − z
have [simp]: z0 6=0 z1 6=0 Re z0=0 Re z1=0

using ‹z /∈ path-image h› that(1 ) unfolding z1-def z0-def path-image-def
by auto

have ?thesis when [simp]: Im z0>0 Im z1>0
apply (fold z1-def z0-def )
using Im-Ln-eq-pi-half [of z1 ] Im-Ln-eq-pi-half [of z0 ] by auto

moreover have ?thesis when [simp]: Im z0<0 Im z1<0
apply (fold z1-def z0-def )
using Im-Ln-eq-pi-half [of z1 ] Im-Ln-eq-pi-half [of z0 ] by auto
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moreover have False when Im z0≥0 Im z1≤0
proof −

define f where f=(λt. Im (h t − z))
have ∃ x≥0 . x ≤ 1 ∧ f x = 0

apply (rule IVT2 ′[of f 1 0 0 ])
using that valid-path-imp-path[OF ‹valid-path h›]
unfolding f-def z0-def z1-def path-def
by (auto intro:continuous-intros)

then show False using Re-const ‹z /∈ path-image h› unfolding f-def
by (metis atLeastAtMost-iff complex-surj image-eqI minus-complex.simps(2 )

path-defs(4 ) right-minus-eq)
qed
moreover have False when Im z0≤0 Im z1≥0
proof −

define f where f=(λt. Im (h t − z))
have ∃ x≥0 . x ≤ 1 ∧ f x = 0

apply (rule IVT ′)
using that valid-path-imp-path[OF ‹valid-path h›]
unfolding f-def z0-def z1-def path-def
by (auto intro:continuous-intros)

then show False using Re-const ‹z /∈ path-image h› unfolding f-def
by (metis atLeastAtMost-iff complex-surj image-eqI minus-complex.simps(2 )

path-defs(4 ) right-minus-eq)
qed
ultimately show ?thesis by argo

qed
ultimately have Re (winding-number (λt. h t − z) 0 ) = 0

unfolding pathfinish-def pathstart-def by auto
then show ?thesis using winding-number-offset by auto

qed
have ?case when s = 0
proof −

have ∗: ∀ t∈{0 ..1}. Re (g t) = Re z
using ‹∀ t∈{s<..<1}. Re (g t) = Re z› ‹Re (g 1 ) = Re z› ‹Re (g 0 ) = Re z›

‹s=0 ›
by force

have Re(winding-number g z) = 0
by (rule Re-winding-0 [OF ∗ ‹valid-path g› ‹z /∈ path-image g›])

moreover have cindex-pathE g z = 0
unfolding cindex-pathE-def
apply (rule cindexE-constI )
using ∗ by auto

ultimately show ?thesis by auto
qed
moreover have ?case when s 6=0
proof −

define g1 where g1 = subpath 0 s g
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define g2 where g2 = subpath s 1 g
have path g s>0

using valid-path-imp-path[OF ‹valid-path g›] that ‹s∈{0 ..<1}› by auto
have 2 ∗ Re (winding-number g z) = 2∗Re (winding-number g1 z) + 2∗Re

(winding-number g2 z)
apply (subst winding-number-subpath-combine[OF ‹path g› ‹z /∈path-image

g›,of 0 s 1
,simplified,symmetric])

using ‹s∈{0 ..<1}› unfolding g1-def g2-def by auto
also have ... = − cindex-pathE g1 z − cindex-pathE g2 z
proof −

have 2∗Re (winding-number g1 z) = − cindex-pathE g1 z
unfolding g1-def
apply (rule subEq.hyps(5 ))

subgoal using subEq.hyps(1 ) subEq.prems(1 ) valid-path-subpath by fastforce

subgoal by (meson Path-Connected.path-image-subpath-subset atLeastAt-
Most-iff

atLeastLessThan-iff less-eq-real-def subEq(7 ) subEq.hyps(1 ) subEq.prems(1 )

subsetCE valid-path-imp-path zero-le-one)
subgoal by (metis Groups.add-ac(2 ) add-0-left diff-zero mult.right-neutral

subEq(2 )
subEq(9 ) subpath-def )

subgoal by (simp add: subEq.prems(4 ) subpath-def )
done

moreover have 2∗Re (winding-number g2 z) = − cindex-pathE g2 z
proof −

have ∗: ∀ t∈{0 ..1}. Re (g2 t) = Re z
proof

fix t::real assume t∈{0 ..1}
have Re (g2 t) = Re z when t=0 ∨ t=1

using that unfolding g2-def
by (metis ‹s 6= 0 › add.left-neutral diff-add-cancel mult.commute

mult.left-neutral
mult-zero-left subEq.hyps(2 ) subEq.prems(3 ) subpath-def )

moreover have Re (g2 t) = Re z when t∈{0<..<1}
proof −

define t ′ where t ′=(1 − s) ∗ t + s
then have t ′∈{s<..<1}

using that ‹s∈{0 ..<1}› unfolding t ′-def
apply auto

by (sos ((((A<0 ∗ (A<1 ∗ A<2 )) ∗ R<1 ) + ((A<=1 ∗ (A<0 ∗ R<1 ))
∗ (R<1 ∗ [1 ]^2 )))))

then have Re (g t ′) = Re z
using ‹∀ t∈{s<..<1}. Re (g t) = Re z› by auto

then show ?thesis
unfolding g2-def subpath-def t ′-def .

qed
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ultimately show Re (g2 t) = Re z using ‹t∈{0 ..1}› by fastforce
qed
have Re(winding-number g2 z) = 0

apply (rule Re-winding-0 [OF ∗])
subgoal using g2-def subEq.hyps(1 ) subEq.prems(1 ) valid-path-subpath

by fastforce
subgoal by (metis (no-types, opaque-lifting) Path-Connected.path-image-subpath-subset

atLeastAtMost-iff atLeastLessThan-iff g2-def less-eq-real-def subEq.hyps(1 )

subEq.prems(1 ) subEq.prems(2 ) subsetCE valid-path-imp-path
zero-le-one)

done
moreover have cindex-pathE g2 z = 0

unfolding cindex-pathE-def
apply (rule cindexE-constI )
using ∗ by auto

ultimately show ?thesis by auto
qed
ultimately show ?thesis by auto

qed
also have ... = − cindex-pathE g z
proof −

have finite-ReZ-segments g z
unfolding finite-ReZ-segments-def
apply (rule finite-Psegments.insertI-1 [of s])
subgoal using ‹s ∈ {0 ..<1}› by auto
subgoal using ‹s = 0 ∨ Re (g s) = Re z› by auto
subgoal using ‹∀ t∈{s<..<1}. Re (g t) = Re z› by auto
subgoal
proof −

have finite-Psegments (λt. Re (g (s ∗ t)) = Re z) 0 1
using ‹finite-ReZ-segments (subpath 0 s g) z›
unfolding subpath-def finite-ReZ-segments-def by auto

from finite-Psegments-pos-linear [of - 1/s 0 0 s,simplified,OF this]
show finite-Psegments (λt. Re (g t − z) = 0 ) 0 s

using ‹s>0 › unfolding comp-def by auto
qed
done

then show ?thesis
using cindex-pathE-subpath-combine[OF - ‹path g›,of z 0 s 1 ,folded g1-def

g2-def ,simplified]
‹s∈{0 ..<1}› by auto

qed
finally show ?thesis .

qed
ultimately show ?case by auto

next
case (subNEq s g z)
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have Re-winding:2∗Re(winding-number h z) = jumpF-pathfinish h z − jumpF-pathstart
h z

when Re-neq:∀ t∈{0<..<1}. Re (h t) 6= Re z and Re (h 0 ) = Re z Re (h 1 )
= Re z

and valid-path h z /∈path-image h for h
proof −

have Re-winding-pos:
2∗Re(winding-number h0 0 ) = jumpF-pathfinish h0 0 − jumpF-pathstart h0

0
when Re-gt:∀ t∈{0<..<1}. Re (h0 t) > 0 and Re (h0 0 ) = 0 Re (h0 1 ) = 0

and valid-path h0 0 /∈path-image h0 for h0
proof −

define f where f ≡ (λ(t::real). Im(h0 t) / Re (h0 t))
define ln0 where ln0 = Im (Ln (h0 0 )) / pi
define ln1 where ln1 = Im (Ln (h0 1 )) / pi
have path h0 using ‹valid-path h0 › valid-path-imp-path by auto
have h0 0 6=0 h0 1 6=0

using path-defs(4 ) that(5 ) by fastforce+
have ln1 = jumpF-pathfinish h0 0
proof −

have sgnx-at-left:((λx. Re (h0 x)) has-sgnx 1 ) (at-left 1 )
unfolding has-sgnx-def eventually-at-left using ‹∀ p∈{0<..<1}. Re (h0

p) > 0 ›
by (intro exI [where x=0 ],auto)

have cont:continuous (at-left 1 ) (λt. Im (h0 t))
continuous (at-left 1 ) (λt. Re (h0 t))

using ‹path h0 › unfolding path-def
by (auto intro:continuous-on-at-left[of 0 1 ] continuous-intros)

have ?thesis when Im (h0 1 ) > 0
proof −

have ln1 = 1/2
using Im-Ln-eq-pi-half [OF ‹h0 1 6=0 ›] that ‹Re (h0 1 ) = 0 › unfolding

ln1-def by auto
moreover have jumpF-pathfinish h0 0 = 1/2
proof −

have filterlim f at-top (at-left 1 ) unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 1 )])

using ‹Re(h0 1 ) = 0 › sgnx-at-left cont that unfolding continuous-within
by auto

then show ?thesis unfolding jumpF-pathfinish-def jumpF-def f-def by
auto

qed
ultimately show ?thesis by auto

qed
moreover have ?thesis when Im (h0 1 ) < 0
proof −

have ln1 = − 1/2
using Im-Ln-eq-pi-half [OF ‹h0 1 6=0 ›] that ‹Re (h0 1 ) = 0 › unfolding

ln1-def by auto
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moreover have jumpF-pathfinish h0 0 = − 1/2
proof −

have ((λx. Re (h0 x)) has-sgnx − sgn (Im (h0 1 ))) (at-left 1 )
using sgnx-at-left that by auto

then have filterlim f at-bot (at-left 1 )
unfolding f-def using cont that
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 1 )])
unfolding continuous-within using ‹Re(h0 1 ) = 0 › by auto

then show ?thesis unfolding jumpF-pathfinish-def jumpF-def f-def by
auto

qed
ultimately show ?thesis by auto

qed
moreover have Im (h0 1 )6=0 using ‹h0 1 6=0 › ‹Re (h0 1 ) = 0 ›

using complex.expand by auto
ultimately show ?thesis by linarith

qed
moreover have ln0 = jumpF-pathstart h0 0
proof −

have sgnx-at-right:((λx. Re (h0 x)) has-sgnx 1 ) (at-right 0 )
unfolding has-sgnx-def eventually-at-right using ‹∀ p∈{0<..<1}. Re (h0

p) > 0 ›
by (intro exI [where x=1 ],auto)

have cont:continuous (at-right 0 ) (λt. Im (h0 t))
continuous (at-right 0 ) (λt. Re (h0 t))
using ‹path h0 › unfolding path-def
by (auto intro:continuous-on-at-right[of 0 1 ] continuous-intros)

have ?thesis when Im (h0 0 ) > 0
proof −

have ln0 = 1/2
using Im-Ln-eq-pi-half [OF ‹h0 0 6=0 ›] that ‹Re (h0 0 ) = 0 › unfolding

ln0-def by auto
moreover have jumpF-pathstart h0 0 = 1/2
proof −

have filterlim f at-top (at-right 0 ) unfolding f-def
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 0 )])

using ‹Re(h0 0 ) = 0 › sgnx-at-right cont that unfolding continuous-within
by auto

then show ?thesis unfolding jumpF-pathstart-def jumpF-def f-def by
auto

qed
ultimately show ?thesis by auto

qed
moreover have ?thesis when Im (h0 0 ) < 0
proof −

have ln0 = − 1/2
using Im-Ln-eq-pi-half [OF ‹h0 0 6=0 ›] that ‹Re (h0 0 ) = 0 › unfolding

ln0-def by auto
moreover have jumpF-pathstart h0 0 = − 1/2
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proof −
have filterlim f at-bot (at-right 0 ) unfolding f-def

apply (subst filterlim-divide-at-bot-at-top-iff [of - Im (h0 0 )])
using ‹Re(h0 0 ) = 0 › sgnx-at-right cont that unfolding continuous-within

by auto
then show ?thesis unfolding jumpF-pathstart-def jumpF-def f-def by

auto
qed
ultimately show ?thesis by auto

qed
moreover have Im (h0 0 )6=0 using ‹h0 0 6=0 › ‹Re (h0 0 ) = 0 ›

using complex.expand by auto
ultimately show ?thesis by linarith

qed
moreover have 2∗Re(winding-number h0 0 ) = ln1 − ln0
proof −

have ∀ p∈path-image h0 . 0 ≤ Re p
proof

fix p assume p ∈ path-image h0
then obtain t where t:t∈{0 ..1} p = h0 t unfolding path-image-def by

auto
have 0 ≤ Re p when t=0 ∨ t=1

using that t ‹Re (h0 0 ) = 0 › ‹Re (h0 1 ) = 0 › by auto
moreover have 0 ≤ Re p when t∈{0<..<1}

using that t Re-gt[rule-format, of t] by fastforce
ultimately show 0 ≤ Re p using t(1 ) by fastforce

qed
from Re-winding-number-half-right[of - 0 ,simplified,OF this ‹valid-path h0 ›

‹0 /∈ path-image h0 ›]
show ?thesis unfolding ln1-def ln0-def pathfinish-def pathstart-def

by (auto simp add:field-simps)
qed
ultimately show ?thesis by auto

qed

have ?thesis when ∀ t∈{0<..<1}. Re (h t) < Re z
proof −

let ?hu= λt. z − h t
have 2∗Re(winding-number ?hu 0 ) = jumpF-pathfinish ?hu 0 − jumpF-pathstart

?hu 0
apply(rule Re-winding-pos)
subgoal using that by auto
subgoal using ‹Re (h 0 ) = Re z› by auto
subgoal using ‹Re (h 1 ) = Re z› by auto
subgoal using ‹valid-path h› valid-path-offset valid-path-uminus-comp

unfolding comp-def by fastforce
subgoal using ‹z /∈path-image h› by (simp add: image-iff path-defs(4 ))
done

moreover have winding-number ?hu 0 = winding-number h z
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using winding-number-offset[of h z]
winding-number-uminus-comp[of λt. h t− z 0 ,unfolded comp-def ,simplified]

‹valid-path h› ‹z /∈path-image h› by auto
moreover have jumpF-pathfinish ?hu 0 = jumpF-pathfinish h z

unfolding jumpF-pathfinish-def
apply (auto intro!:jumpF-cong eventuallyI )
by (auto simp add:divide-simps algebra-simps)

moreover have jumpF-pathstart ?hu 0 = jumpF-pathstart h z
unfolding jumpF-pathstart-def
apply (auto intro!:jumpF-cong eventuallyI )
by (auto simp add:divide-simps algebra-simps)

ultimately show ?thesis by auto
qed
moreover have ?thesis when ∀ t∈{0<..<1}. Re (h t) > Re z
proof −

let ?hu= λt. h t − z
have 2∗Re(winding-number ?hu 0 ) = jumpF-pathfinish ?hu 0 − jumpF-pathstart

?hu 0
apply(rule Re-winding-pos)
subgoal using that by auto
subgoal using ‹Re (h 0 ) = Re z› by auto
subgoal using ‹Re (h 1 ) = Re z› by auto
subgoal using ‹valid-path h› valid-path-offset valid-path-uminus-comp

unfolding comp-def by fastforce
subgoal using ‹z /∈path-image h› by simp
done

moreover have winding-number ?hu 0 = winding-number h z
using winding-number-offset[of h z] ‹valid-path h› ‹z /∈path-image h› by auto

moreover have jumpF-pathfinish ?hu 0 = jumpF-pathfinish h z
unfolding jumpF-pathfinish-def by auto

moreover have jumpF-pathstart ?hu 0 = jumpF-pathstart h z
unfolding jumpF-pathstart-def by auto

ultimately show ?thesis by auto
qed
moreover have (∀ t∈{0<..<1}. Re (h t) > Re z) ∨ (∀ t∈{0<..<1}. Re (h t)

< Re z)
proof (rule ccontr)

assume ¬ ((∀ t∈{0<..<1}. Re z < Re (h t)) ∨ (∀ t∈{0<..<1}. Re (h t) <
Re z))

then obtain t1 t2 where t:t1∈{0<..<1} t2∈{0<..<1} Re (h t1 )≤Re z Re
(h t2 )≥Re z

unfolding path-image-def by auto
have False when t1≤t2
proof −

have continuous-on {t1 ..t2} (λt. Re (h t))
using valid-path-imp-path[OF ‹valid-path h›] t unfolding path-def
by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-

ous-on-subset
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eucl-less-le-not-le greaterThanLessThan-iff )
then obtain t ′ where t ′:t ′≥t1 t ′≤t2 Re (h t ′) = Re z

using IVT ′[of λt. Re (h t) t1 - t2 ] t ‹t1≤t2 › by auto
then have t ′∈{0<..<1} using t by auto
then have Re (h t ′) 6= Re z using Re-neq by auto
then show False using ‹Re (h t ′) = Re z› by simp

qed
moreover have False when t1≥t2
proof −

have continuous-on {t2 ..t1} (λt. Re (h t))
using valid-path-imp-path[OF ‹valid-path h›] t unfolding path-def
by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-

ous-on-subset
eucl-less-le-not-le greaterThanLessThan-iff )

then obtain t ′ where t ′:t ′≤t1 t ′≥t2 Re (h t ′) = Re z
using IVT2 ′[of λt. Re (h t) t1 - t2 ] t ‹t1≥t2 › by auto

then have t ′∈{0<..<1} using t by auto
then have Re (h t ′) 6= Re z using Re-neq by auto
then show False using ‹Re (h t ′) = Re z› by simp

qed
ultimately show False by linarith

qed
ultimately show ?thesis by blast

qed

have index-ends:cindex-pathE h z = jumpF-pathstart h z − jumpF-pathfinish h z
when Re-neq:∀ t∈{0<..<1}. Re (h t) 6= Re z and valid-path h for h

proof −
define f where f = (λt. Im (h t − z) / Re (h t − z))
define Ri where Ri = {x. jumpF f (at-right x) 6= 0 ∧ 0 ≤ x ∧ x < 1}
define Le where Le = {x. jumpF f (at-left x) 6= 0 ∧ 0 < x ∧ x ≤ 1}
have path h using ‹valid-path h› valid-path-imp-path by auto
have jumpF-eq0 : jumpF f (at-left x) = 0 jumpF f (at-right x) = 0 when

x∈{0<..<1} for x
proof −

have Re (h x) 6= Re z
using ‹∀ t∈{0<..<1}. Re (h t) 6= Re z› that by blast

then have isCont f x
unfolding f-def using continuous-on-interior [OF ‹path h›[unfolded path-def ]]

that
by (auto intro!: continuous-intros isCont-Im isCont-Re)

then show jumpF f (at-left x) = 0 jumpF f (at-right x) = 0
unfolding continuous-at-split by (auto intro: jumpF-not-infinity)

qed
have cindex-pathE h z = cindexE 0 1 f

unfolding cindex-pathE-def f-def by simp
also have ... = sum (λx. jumpF f (at-right x)) Ri − sum (λx. jumpF f (at-left

x)) Le
unfolding cindexE-def Ri-def Le-def by auto
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also have ... = jumpF f (at-right 0 ) − jumpF f (at-left 1 )
proof −

have sum (λx. jumpF f (at-right x)) Ri = jumpF f (at-right 0 )
proof (cases jumpF f (at-right 0 ) = 0 )

case True
hence False if x ∈ Ri for x using that

by (cases x = 0 ) (auto simp: jumpF-eq0 Ri-def )
hence Ri = {} by blast
then show ?thesis using True by auto

next
case False
hence x ∈ Ri ←→ x = 0 for x using that

by (cases x = 0 ) (auto simp: jumpF-eq0 Ri-def )
hence Ri = {0} by blast
then show ?thesis by auto

qed
moreover have sum (λx. jumpF f (at-left x)) Le = jumpF f (at-left 1 )
proof (cases jumpF f (at-left 1 ) = 0 )

case True
then have Le = {}

unfolding Le-def using jumpF-eq0 (1 ) greaterThanLessThan-iff by
fastforce

then show ?thesis using True by auto
next

case False
then have Le = {1}

unfolding Le-def using jumpF-eq0 (1 ) greaterThanLessThan-iff by
fastforce

then show ?thesis by auto
qed
ultimately show ?thesis by auto

qed
also have ... = jumpF-pathstart h z − jumpF-pathfinish h z

unfolding jumpF-pathstart-def jumpF-pathfinish-def f-def by simp
finally show ?thesis .

qed

have ?case when s=0
proof −

have 2 ∗ Re (winding-number g z) = jumpF-pathfinish g z − jumpF-pathstart
g z

apply (rule Re-winding)
using subNEq that by auto

moreover have cindex-pathE g z = jumpF-pathstart g z − jumpF-pathfinish g
z

apply (rule index-ends)
using subNEq that by auto

ultimately show ?thesis by auto
qed
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moreover have ?case when s 6=0
proof −

define g1 where g1 = subpath 0 s g
define g2 where g2 = subpath s 1 g
have path g s>0

using valid-path-imp-path[OF ‹valid-path g›] that ‹s∈{0 ..<1}› by auto
have 2 ∗ Re (winding-number g z) = 2∗Re (winding-number g1 z) + 2∗Re

(winding-number g2 z)
apply (subst winding-number-subpath-combine[OF ‹path g› ‹z /∈path-image

g›,of 0 s 1
,simplified,symmetric])

using ‹s∈{0 ..<1}› unfolding g1-def g2-def by auto
also have ... = − cindex-pathE g1 z − cindex-pathE g2 z
proof −

have 2∗Re (winding-number g1 z) = − cindex-pathE g1 z
unfolding g1-def
apply (rule subNEq.hyps(5 ))

subgoal using subNEq.hyps(1 ) subNEq.prems(1 ) valid-path-subpath by
fastforce

subgoal by (meson Path-Connected.path-image-subpath-subset atLeastAt-
Most-iff

atLeastLessThan-iff less-eq-real-def subNEq(7 ) subNEq.hyps(1 ) sub-
NEq.prems(1 )

subsetCE valid-path-imp-path zero-le-one)
subgoal by (metis Groups.add-ac(2 ) add-0-left diff-zero mult.right-neutral

subNEq(2 )
subNEq(9 ) subpath-def )

subgoal by (simp add: subNEq.prems(4 ) subpath-def )
done

moreover have 2∗Re (winding-number g2 z) = − cindex-pathE g2 z
proof −

have ∗:∀ t∈{0<..<1}. Re (g2 t) 6= Re z
proof

fix t::real assume t ∈ {0<..<1}
define t ′ where t ′=(1 − s) ∗ t + s
have t ′∈{s<..<1} unfolding t ′-def using ‹s∈{0 ..<1}› ‹t ∈ {0<..<1}›

apply (auto simp add:algebra-simps)
by (sos ((((A<0 ∗ (A<1 ∗ A<2 )) ∗ R<1 ) + ((A<=1 ∗ (A<1 ∗ R<1 ))

∗ (R<1 ∗ [1 ]^2 )))))
then have Re (g t ′) 6= Re z using ‹∀ t∈{s<..<1}. Re (g t) 6= Re z› by

auto
then show Re (g2 t) 6= Re z unfolding g2-def subpath-def t ′-def by auto

qed
have 2∗Re (winding-number g2 z) = jumpF-pathfinish g2 z − jumpF-pathstart

g2 z
apply (rule Re-winding[OF ∗])
subgoal by (metis add.commute add.right-neutral g2-def mult-zero-right

subNEq.hyps(2 )
subpath-def that)
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subgoal by (simp add: ‹g2 ≡ subpath s 1 g› subNEq.prems(3 ) subpath-def )
subgoal using g2-def subNEq.hyps(1 ) subNEq.prems(1 ) valid-path-subpath

by fastforce
subgoal by (metis (no-types, opaque-lifting) Path-Connected.path-image-subpath-subset

‹path g› atLeastAtMost-iff atLeastLessThan-iff g2-def less-eq-real-def
subNEq.hyps(1 )

subNEq.prems(2 ) subsetCE zero-le-one)
done

moreover have cindex-pathE g2 z = jumpF-pathstart g2 z − jumpF-pathfinish
g2 z

apply (rule index-ends[OF ∗])
using g2-def subNEq.hyps(1 ) subNEq.prems(1 ) valid-path-subpath by

fastforce
ultimately show ?thesis by auto

qed
ultimately show ?thesis by auto

qed
also have ... = − cindex-pathE g z
proof −

have finite-ReZ-segments g z
unfolding finite-ReZ-segments-def
apply (rule finite-Psegments.insertI-2 [of s])
subgoal using ‹s ∈ {0 ..<1}› by auto
subgoal using ‹s = 0 ∨ Re (g s) = Re z› by auto
subgoal using ‹∀ t∈{s<..<1}. Re (g t) 6= Re z› by auto
subgoal
proof −

have finite-Psegments (λt. Re (g (s ∗ t)) = Re z) 0 1
using ‹finite-ReZ-segments (subpath 0 s g) z›
unfolding subpath-def finite-ReZ-segments-def by auto

from finite-Psegments-pos-linear [of - 1/s 0 0 s,simplified,OF this]
show finite-Psegments (λt. Re (g t − z) = 0 ) 0 s

using ‹s>0 › unfolding comp-def by auto
qed
done

then show ?thesis
using cindex-pathE-subpath-combine[OF - ‹path g›,of z 0 s 1 ,folded g1-def

g2-def ,simplified]
‹s∈{0 ..<1}› by auto

qed
finally show ?thesis .

qed
ultimately show ?case by auto

qed

theorem winding-number-cindex-pathE :
fixes g::real ⇒ complex
assumes finite-ReZ-segments g z and valid-path g z /∈ path-image g and
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loop: pathfinish g = pathstart g
shows winding-number g z = − cindex-pathE g z / 2

proof (rule finite-ReZ-segment-cases[OF assms(1 )])
fix s assume s ∈ {0 ..<1} s = 0 ∨ Re (g s) = Re z

and const:∀ t∈{s<..<1}. Re (g t) = Re z
and finite:finite-ReZ-segments (subpath 0 s g) z

have Re (g 1 ) = Re z
apply(rule continuous-constant-on-closure[of {s<..<1} λt. Re(g t)])

subgoal using valid-path-imp-path[OF ‹valid-path g›,unfolded path-def ] ‹s∈{0 ..<1}›
by (auto intro!:continuous-intros continuous-Re elim:continuous-on-subset)

subgoal using const by auto
subgoal using ‹s∈{0 ..<1}› by auto
done

moreover then have Re (g 0 ) = Re z using loop unfolding path-defs by auto
ultimately have 2 ∗ Re (winding-number g z) = − cindex-pathE g z

using winding-number-cindex-pathE-aux[of g z] assms(1−3 ) by auto
moreover have winding-number g z ∈ �
using integer-winding-number [OF - loop ‹z /∈path-image g›] valid-path-imp-path[OF

‹valid-path g›]
by auto

ultimately show winding-number g z = − cindex-pathE g z / 2
by (metis add.right-neutral complex-eq complex-is-Int-iff mult-zero-right

nonzero-mult-div-cancel-left of-real-0 zero-neq-numeral)
next

fix s assume s ∈ {0 ..<1} s = 0 ∨ Re (g s) = Re z
and Re-neq:∀ t∈{s<..<1}. Re (g t) 6= Re z
and finite:finite-ReZ-segments (subpath 0 s g) z

have path g using ‹valid-path g› valid-path-imp-path by auto
let ?goal = 2 ∗ Re (winding-number g z) = − cindex-pathE g z
have ?goal when s=0
proof −

have index-ends:cindex-pathE h z = jumpF-pathstart h z − jumpF-pathfinish h
z

when Re-neq:∀ t∈{0<..<1}. Re (h t) 6= Re z and valid-path h for h
proof −

define f where f = (λt. Im (h t − z) / Re (h t − z))
define Ri where Ri = {x. jumpF f (at-right x) 6= 0 ∧ 0 ≤ x ∧ x < 1}
define Le where Le = {x. jumpF f (at-left x) 6= 0 ∧ 0 < x ∧ x ≤ 1}
have path h using ‹valid-path h› valid-path-imp-path by auto
have jumpF-eq0 : jumpF f (at-left x) = 0 jumpF f (at-right x) = 0 when

x∈{0<..<1} for x
proof −

have Re (h x) 6= Re z
using ‹∀ t∈{0<..<1}. Re (h t) 6= Re z› that by blast

then have isCont f x
unfolding f-def using continuous-on-interior [OF ‹path h›[unfolded

path-def ]] that
by (auto intro!: continuous-intros isCont-Im isCont-Re)

then show jumpF f (at-left x) = 0 jumpF f (at-right x) = 0
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unfolding continuous-at-split by (auto intro: jumpF-not-infinity)
qed
have cindex-pathE h z = cindexE 0 1 f

unfolding cindex-pathE-def f-def by simp
also have ... = sum (λx. jumpF f (at-right x)) Ri − sum (λx. jumpF f (at-left

x)) Le
unfolding cindexE-def Ri-def Le-def by auto

also have ... = jumpF f (at-right 0 ) − jumpF f (at-left 1 )
proof −

have sum (λx. jumpF f (at-right x)) Ri = jumpF f (at-right 0 )
proof (cases jumpF f (at-right 0 ) = 0 )

case True
hence False if x ∈ Ri for x using that

by (cases x = 0 ) (auto simp: jumpF-eq0 Ri-def )
hence Ri = {} by blast
then show ?thesis using True by auto

next
case False
hence x ∈ Ri ←→ x = 0 for x using that

by (cases x = 0 ) (auto simp: jumpF-eq0 Ri-def )
then have Ri = {0} by blast
then show ?thesis by auto

qed
moreover have sum (λx. jumpF f (at-left x)) Le = jumpF f (at-left 1 )
proof (cases jumpF f (at-left 1 ) = 0 )

case True
then have Le = {}

unfolding Le-def using jumpF-eq0 (1 ) greaterThanLessThan-iff by
fastforce

then show ?thesis using True by auto
next

case False
then have Le = {1}

unfolding Le-def using jumpF-eq0 (1 ) greaterThanLessThan-iff by
fastforce

then show ?thesis by auto
qed
ultimately show ?thesis by auto

qed
also have ... = jumpF-pathstart h z − jumpF-pathfinish h z

unfolding jumpF-pathstart-def jumpF-pathfinish-def f-def by simp
finally show ?thesis .

qed
define fI where fI=(λt. Im (g t − z))
define fR where fR=(λt. Re (g t − z))
have fI : (fI −−−→ fI 0 ) (at-right 0 ) (fI −−−→ fI 1 ) (at-left 1 )
proof −

have continuous (at-right 0 ) fI
apply (rule continuous-on-at-right[of - 1 ])
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using ‹path g› unfolding fI-def path-def by (auto intro:continuous-intros)
then show (fI −−−→ fI 0 ) (at-right 0 ) by (simp add: continuous-within)

next
have continuous (at-left 1 ) fI

apply (rule continuous-on-at-left[of 0 ])
using ‹path g› unfolding fI-def path-def by (auto intro:continuous-intros)

then show (fI −−−→ fI 1 ) (at-left 1 ) by (simp add: continuous-within)
qed
have fR: (fR −−−→ 0 ) (at-right 0 ) (fR −−−→ 0 ) (at-left 1 ) when Re (g 0 ) =

Re z
proof −

have continuous (at-right 0 ) fR
apply (rule continuous-on-at-right[of - 1 ])
using ‹path g› unfolding fR-def path-def by (auto intro:continuous-intros)

then show (fR −−−→ 0 ) (at-right 0 ) using that unfolding fR-def by (simp
add: continuous-within)

next
have continuous (at-left 1 ) fR

apply (rule continuous-on-at-left[of 0 ])
using ‹path g› unfolding fR-def path-def by (auto intro:continuous-intros)

then show (fR −−−→ 0 ) (at-left 1 )
using that loop unfolding fR-def path-defs by (simp add: continuous-within)

qed
have (∀ t∈{0<..<1}. Re (g t) > Re z) ∨ (∀ t∈{0<..<1}. Re (g t) < Re z)
proof (rule ccontr)

assume ¬ ((∀ t∈{0<..<1}. Re z < Re (g t)) ∨ (∀ t∈{0<..<1}. Re (g t) <
Re z))

then obtain t1 t2 where t:t1∈{0<..<1} t2∈{0<..<1} Re (g t1 )≤Re z Re
(g t2 )≥Re z

unfolding path-image-def by auto
have False when t1≤t2
proof −

have continuous-on {t1 ..t2} (λt. Re (g t))
using valid-path-imp-path[OF ‹valid-path g›] t unfolding path-def
by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-

ous-on-subset
eucl-less-le-not-le greaterThanLessThan-iff )

then obtain t ′ where t ′:t ′≥t1 t ′≤t2 Re (g t ′) = Re z
using IVT ′[of λt. Re (g t) t1 - t2 ] t ‹t1≤t2 › by auto

then have t ′∈{0<..<1} using t by auto
then have Re (g t ′) 6= Re z using Re-neq ‹s=0 › by auto
then show False using ‹Re (g t ′) = Re z› by simp

qed
moreover have False when t1≥t2
proof −

have continuous-on {t2 ..t1} (λt. Re (g t))
using valid-path-imp-path[OF ‹valid-path g›] t unfolding path-def
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by (metis (full-types) atLeastatMost-subset-iff continuous-on-Re continu-
ous-on-subset

eucl-less-le-not-le greaterThanLessThan-iff )
then obtain t ′ where t ′:t ′≤t1 t ′≥t2 Re (g t ′) = Re z

using IVT2 ′[of λt. Re (g t) t1 - t2 ] t ‹t1≥t2 › by auto
then have t ′∈{0<..<1} using t by auto
then have Re (g t ′) 6= Re z using Re-neq ‹s=0 › by auto
then show False using ‹Re (g t ′) = Re z› by simp

qed
ultimately show False by linarith

qed
moreover have ?thesis when Re-pos:∀ t∈{0<..<1}. Re (g t) > Re z
proof −

have Re (winding-number g z) = 0
proof −

have ∀ p∈path-image g. Re z ≤ Re p
proof

fix p assume p ∈ path-image g
then obtain t where 0≤t t≤1 p = g t unfolding path-image-def by auto
have Re z ≤ Re (g t)

apply (rule continuous-ge-on-closure[of {0<..<1} λt. Re (g t) t Re
z,simplified])

subgoal using valid-path-imp-path[OF ‹valid-path g›,unfolded path-def ]
by (auto intro:continuous-intros)

subgoal using ‹0≤t› ‹t≤1 › by auto
subgoal for x using that[rule-format,of x] by auto
done

then show Re z ≤ Re p using ‹p = g t› by auto
qed
from Re-winding-number-half-right[OF this ‹valid-path g› ‹z /∈path-image g›]

loop
show ?thesis by auto

qed
moreover have cindex-pathE g z = 0
proof −

have cindex-pathE g z = jumpF-pathstart g z − jumpF-pathfinish g z
using index-ends[OF - ‹valid-path g›] Re-neq ‹s=0 › by auto

moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
0 ) 6= Re z

proof −
have jumpF-pathstart g z = 0

using jumpF-pathstart-eq-0 [OF ‹path g›] that unfolding path-defs by
auto

moreover have jumpF-pathfinish g z=0
using jumpF-pathfinish-eq-0 [OF ‹path g›] that loop unfolding path-defs

by auto
ultimately show ?thesis by auto

qed
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
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0 ) = Re z
proof −

have [simp]:(fR has-sgnx 1 ) (at-right 0 )
unfolding fR-def has-sgnx-def eventually-at-right
apply (rule exI [where x=1 ])
using Re-pos by auto

have [simp]:(fR has-sgnx 1 ) (at-left 1 )
unfolding fR-def has-sgnx-def eventually-at-left
apply (rule exI [where x=0 ])
using Re-pos by auto

have fI 0 6=0
proof (rule ccontr)

assume ¬ fI 0 6= 0
then have g 0 =z using ‹Re (g 0 ) = Re z›

unfolding fI-def by (simp add: complex.expand)
then show False using ‹z /∈ path-image g› unfolding path-image-def

by auto
qed
moreover have ?thesis when fI 0>0
proof −

have jumpF-pathstart g z = 1/2
proof −

have (LIM x at-right 0 . fI x / fR x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0 ])
using that fI fR[OF ‹Re (g 0 ) = Re z›] by simp-all

then show ?thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto

qed
moreover have jumpF-pathfinish g z = 1/2
proof −

have fI 1>0 using loop that unfolding path-defs fI-def by auto
then have (LIM x at-left 1 . fI x / fR x :> at-top)

apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1 ])
using that fI fR[OF ‹Re (g 0 ) = Re z›] by simp-all

then show ?thesis unfolding jumpF-pathfinish-def fI-def fR-def
jumpF-def by auto

qed
ultimately show ?thesis by simp

qed
moreover have ?thesis when fI 0<0
proof −

have jumpF-pathstart g z = − 1/2
proof −

have (LIM x at-right 0 . fI x / fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0 ])
using that fI fR[OF ‹Re (g 0 ) = Re z›] by simp-all

then show ?thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto

qed
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moreover have jumpF-pathfinish g z = − 1/2
proof −

have fI 1<0 using loop that unfolding path-defs fI-def by auto
then have (LIM x at-left 1 . fI x / fR x :> at-bot)

apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1 ])
using that fI fR[OF ‹Re (g 0 ) = Re z›] by simp-all

then show ?thesis unfolding jumpF-pathfinish-def fI-def fR-def
jumpF-def by auto

qed
ultimately show ?thesis by simp

qed
ultimately show ?thesis by linarith

qed
ultimately show ?thesis by auto

qed
ultimately show ?thesis by auto

qed
moreover have ?thesis when Re-neg:∀ t∈{0<..<1}. Re (g t) < Re z
proof −

have Re (winding-number g z) = 0
proof −

have ∀ p∈path-image g. Re z ≥ Re p
proof

fix p assume p ∈ path-image g
then obtain t where 0≤t t≤1 p = g t unfolding path-image-def by auto
have Re z ≥ Re (g t)

apply (rule continuous-le-on-closure[of {0<..<1} λt. Re (g t) t Re
z,simplified])

subgoal using valid-path-imp-path[OF ‹valid-path g›,unfolded path-def ]
by (auto intro:continuous-intros)

subgoal using ‹0≤t› ‹t≤1 › by auto
subgoal for x using that[rule-format,of x] by auto
done

then show Re z ≥ Re p using ‹p = g t› by auto
qed
from Re-winding-number-half-left[OF this ‹valid-path g› ‹z /∈path-image g›]

loop
show ?thesis by auto

qed
moreover have cindex-pathE g z = 0
proof −

have cindex-pathE g z = jumpF-pathstart g z − jumpF-pathfinish g z
using index-ends[OF - ‹valid-path g›] Re-neq ‹s=0 › by auto

moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g
0 ) 6= Re z

proof −
have jumpF-pathstart g z = 0

using jumpF-pathstart-eq-0 [OF ‹path g›] that unfolding path-defs by
auto
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moreover have jumpF-pathfinish g z=0
using jumpF-pathfinish-eq-0 [OF ‹path g›] that loop unfolding path-defs

by auto
ultimately show ?thesis by auto

qed
moreover have jumpF-pathstart g z = jumpF-pathfinish g z when Re (g

0 ) = Re z
proof −

have [simp]:(fR has-sgnx − 1 ) (at-right 0 )
unfolding fR-def has-sgnx-def eventually-at-right
apply (rule exI [where x=1 ])
using Re-neg by auto

have [simp]:(fR has-sgnx − 1 ) (at-left 1 )
unfolding fR-def has-sgnx-def eventually-at-left
apply (rule exI [where x=0 ])
using Re-neg by auto

have fI 0 6=0
proof (rule ccontr)

assume ¬ fI 0 6= 0
then have g 0 =z using ‹Re (g 0 ) = Re z›

unfolding fI-def by (simp add: complex.expand)
then show False using ‹z /∈ path-image g› unfolding path-image-def

by auto
qed
moreover have ?thesis when fI 0>0
proof −

have jumpF-pathstart g z = − 1/2
proof −

have (LIM x at-right 0 . fI x / fR x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0 ])
using that fI fR[OF ‹Re (g 0 ) = Re z›] by simp-all

then show ?thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto

qed
moreover have jumpF-pathfinish g z = − 1/2
proof −

have fI 1>0 using loop that unfolding path-defs fI-def by auto
then have (LIM x at-left 1 . fI x / fR x :> at-bot)

apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1 ])
using that fI fR[OF ‹Re (g 0 ) = Re z›] by simp-all

then show ?thesis unfolding jumpF-pathfinish-def fI-def fR-def
jumpF-def by auto

qed
ultimately show ?thesis by simp

qed
moreover have ?thesis when fI 0<0
proof −

have jumpF-pathstart g z = 1/2
proof −
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have (LIM x at-right 0 . fI x / fR x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 0 ])
using that fI fR[OF ‹Re (g 0 ) = Re z›] by simp-all

then show ?thesis unfolding jumpF-pathstart-def fI-def fR-def
jumpF-def by auto

qed
moreover have jumpF-pathfinish g z = 1/2
proof −

have fI 1<0 using loop that unfolding path-defs fI-def by auto
then have (LIM x at-left 1 . fI x / fR x :> at-top)

apply (subst filterlim-divide-at-bot-at-top-iff [of - fI 1 ])
using that fI fR[OF ‹Re (g 0 ) = Re z›] by simp-all

then show ?thesis unfolding jumpF-pathfinish-def fI-def fR-def
jumpF-def by auto

qed
ultimately show ?thesis by simp

qed
ultimately show ?thesis by linarith

qed
ultimately show ?thesis by auto

qed
ultimately show ?thesis by auto

qed
ultimately show ?thesis by auto

qed
moreover have ?goal when s 6=0
proof −

have Re (g s) = Re z using ‹s = 0 ∨ Re (g s) = Re z› that by auto
define g ′ where g ′ = shiftpath s g
have 2 ∗ Re (winding-number g ′ z) = − cindex-pathE g ′ z
proof (rule winding-number-cindex-pathE-aux)

show Re (g ′ 1 ) = Re z Re (g ′ 0 ) = Re z
using ‹Re (g s) = Re z› ‹s∈{0 ..<1}› ‹s 6=0 ›
unfolding g ′-def shiftpath-def by simp-all

show valid-path g ′

using valid-path-shiftpath[OF ‹valid-path g› loop,of s,folded g ′-def ] ‹s∈{0 ..<1}›
by auto

show z /∈ path-image g ′

using ‹s ∈ {0 ..<1}› assms(3 ) g ′-def loop path-image-shiftpath by fastforce
show finite-ReZ-segments g ′ z

using finite-ReZ-segments-shiftpah[OF ‹finite-ReZ-segments g z› - ‹path g›
loop] ‹s∈{0 ..<1}›

unfolding g ′-def by auto
qed
moreover have winding-number g ′ z = winding-number g z

unfolding g ′-def
apply (rule winding-number-shiftpath[OF ‹path g› ‹z /∈ path-image g› loop])
using ‹s∈{0 ..<1}› by auto

moreover have cindex-pathE g ′ z = cindex-pathE g z
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unfolding g ′-def
apply (rule cindex-pathE-shiftpath[OF ‹finite-ReZ-segments g z› - ‹path g›

loop])
using ‹s∈{0 ..<1}› by auto

ultimately show ?thesis by auto
qed
ultimately have ?goal by auto
moreover have winding-number g z ∈ �
using integer-winding-number [OF - loop ‹z /∈path-image g›] valid-path-imp-path[OF

‹valid-path g›]
by auto

ultimately show winding-number g z = − cindex-pathE g z / 2
by (metis add.right-neutral complex-eq complex-is-Int-iff mult-zero-right

nonzero-mult-div-cancel-left of-real-0 zero-neq-numeral)
qed

REMARK: The usual statement of Cauchy’s Index theorem (i.e. An-
alytic Theory of Polynomials (2002): Theorem 11.1.3) is about the equal-
ity between the number of polynomial roots and the Cauchy index, which
is the joint application of [[finite-ReZ-segments ?g ?z; valid-path ?g; ?z /∈
path-image ?g; pathfinish ?g = pathstart ?g]] =⇒ winding-number ?g ?z =
complex-of-real (− cindex-pathE ?g ?z / 2 ) and [[open ?S ; connected ?S ; ?f
holomorphic-on ?S − ?poles; ?h holomorphic-on ?S ; valid-path ?g; pathfin-
ish ?g = pathstart ?g; path-image ?g ⊆ ?S − {w ∈ ?S . ?f w = 0 ∨ w ∈
?poles}; ∀ z. z /∈ ?S −→ winding-number ?g z = 0 ; finite {w ∈ ?S . ?f w
= 0 ∨ w ∈ ?poles}; ∀ p∈?S ∩ ?poles. is-pole ?f p]] =⇒ contour-integral ?g
(λx. deriv ?f x ∗ ?h x / ?f x) = complex-of-real (2 ∗ pi) ∗ i ∗ (

∑
p∈{w ∈

?S . ?f w = 0 ∨ w ∈ ?poles}. winding-number ?g p ∗ ?h p ∗ complex-of-int
(zorder ?f p)).
end

6 Evaluate winding numbers by calculating Cauchy
indices

theory Winding-Number-Eval imports
Cauchy-Index-Theorem
HOL−Eisbach.Eisbach-Tools

begin

6.1 Misc
lemma not-on-closed-segmentI :

fixes z:: ′a::euclidean-space
assumes norm (z − a) ∗R (b − z) 6= norm (b − z) ∗R (z − a)
shows z /∈ closed-segment a b
using assms by (auto simp add:between-mem-segment[symmetric] between-norm)
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lemma not-on-closed-segmentI-complex:
fixes z::complex
assumes (Re b − Re z) ∗ (Im z − Im a) 6= (Im b − Im z) ∗ (Re z − Re a)
shows z /∈ closed-segment a b

proof (cases z 6=a ∧ z 6=b)
case True
then have cmod (z − a) 6=0 cmod (b − z) 6=0 by auto
then have (Re b − Re z) ∗ (Im z − Im a) = (Im b − Im z) ∗ (Re z − Re a)

when
cmod (z − a) ∗ (Re b − Re z) = cmod (b − z) ∗ (Re z − Re a)
cmod (z − a) ∗ (Im b − Im z) = cmod (b − z) ∗ (Im z − Im a)
using that by algebra

then show ?thesis using assms
apply (intro not-on-closed-segmentI )
by (auto simp add:scaleR-complex.ctr simp del:Complex-eq)

next
case False
then have (Re b − Re z) ∗ (Im z − Im a) = (Im b − Im z) ∗ (Re z − Re a)

by auto
then have False using assms by auto
then show ?thesis by auto

qed

6.2 finite intersection with the two axes
definition finite-axes-cross::(real ⇒ complex) ⇒ complex ⇒ bool where

finite-axes-cross g z = finite {t. (Re (g t−z) = 0 ∨ Im (g t−z) = 0 ) ∧ 0 ≤ t ∧
t ≤ 1}

lemma finite-cross-intros:
[[Re a 6=Re z ∨ Re b 6=Re z; Im a 6=Im z ∨ Im b 6=Im z]]=⇒finite-axes-cross (linepath

a b) z
[[st 6= tt; r 6= 0 ]] =⇒ finite-axes-cross (part-circlepath z0 r st tt) z
[[finite-axes-cross g1 z;finite-axes-cross g2 z]] =⇒ finite-axes-cross (g1+++g2 ) z

proof −
assume asm:Re a 6=Re z ∨ Re b 6=Re z Im a 6=Im z ∨ Im b 6=Im z
let ?S1={t. Re (linepath a b t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
and ?S2={t. Im (linepath a b t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
have finite ?S1

using linepath-half-finite-inter [of a Complex 1 0 Re z b] asm(1 )
by (auto simp add:inner-complex-def )

moreover have finite ?S2
using linepath-half-finite-inter [of a Complex 0 1 Im z b] asm(2 )
by (auto simp add:inner-complex-def )

moreover have {t. (Re (linepath a b t−z) = 0 ∨ Im (linepath a b t−z) = 0 ) ∧
0 ≤ t ∧ t ≤ 1}

= ?S1 ∪ ?S2
by fast

ultimately show finite-axes-cross (linepath a b) z
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unfolding finite-axes-cross-def by force
next

assume asm: st 6=tt r 6=0
let ?S1={t. Re (part-circlepath z0 r st tt t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
and ?S2={t. Im (part-circlepath z0 r st tt t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
have finite ?S1

using part-circlepath-half-finite-inter [of st tt r Complex 1 0 z0 Re z ] asm
by (auto simp add:inner-complex-def Complex-eq-0 )

moreover have finite ?S2
using part-circlepath-half-finite-inter [of st tt r Complex 0 1 z0 Im z] asm
by (auto simp add:inner-complex-def Complex-eq-0 )

moreover have {t. (Re (part-circlepath z0 r st tt t−z) = 0
∨ Im (part-circlepath z0 r st tt t−z) = 0 ) ∧ 0 ≤ t ∧ t ≤ 1} = ?S1 ∪ ?S2

by fast
ultimately show finite-axes-cross (part-circlepath z0 r st tt) z

unfolding finite-axes-cross-def by auto
next

assume asm:finite-axes-cross g1 z finite-axes-cross g2 z
let ?g1R={t. Re (g1 t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
and ?g1I={t. Im (g1 t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
and ?g2R={t. Re (g2 t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
and ?g2I={t. Im (g2 t−z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
have finite ?g1R finite ?g1I
proof −

have {t. (Re (g1 t − z) = 0 ∨ Im (g1 t − z) = 0 ) ∧ 0 ≤ t ∧ t ≤ 1} = ?g1R
∪ ?g1I

by force
then have finite (?g1R ∪ ?g1I )

using asm(1 ) unfolding finite-axes-cross-def by auto
then show finite ?g1R finite ?g1I by blast+

qed
have finite ?g2R finite ?g2I
proof −

have {t. (Re (g2 t − z) = 0 ∨ Im (g2 t − z) = 0 ) ∧ 0 ≤ t ∧ t ≤ 1} = ?g2R
∪ ?g2I

by force
then have finite (?g2R ∪ ?g2I )

using asm(2 ) unfolding finite-axes-cross-def by auto
then show finite ?g2R finite ?g2I by blast+

qed
let ?S1 = {t. Re ((g1 +++ g2 ) t − z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
and ?S2 = {t. Im ((g1 +++ g2 ) t − z) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
have finite ?S1

using finite-half-joinpaths-inter [of g1 Complex 1 0 Re z g2 ,simplified]
‹finite ?g1R› ‹finite ?g2R›

by (auto simp add:inner-complex-def )
moreover have finite ?S2

using finite-half-joinpaths-inter [of g1 Complex 0 1 Im z g2 ,simplified]
‹finite ?g1I › ‹finite ?g2I ›
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by (auto simp add:inner-complex-def )
moreover have {t. (Re ((g1 +++ g2 ) t − z) = 0 ∨ Im ((g1 +++ g2 ) t − z)

= 0 ) ∧ 0 ≤ t ∧ t ≤ 1}
= ?S1 ∪ ?S2

by force
ultimately show finite-axes-cross (g1 +++ g2 ) z

unfolding finite-axes-cross-def
by auto

qed

lemma cindex-path-joinpaths:
assumes finite-axes-cross g1 z finite-axes-cross g2 z

and path g1 path g2 pathfinish g1 = pathstart g2 pathfinish g1 6=z
shows cindex-path (g1+++g2 ) z = cindex-path g1 z + jumpF-pathstart g2 z

− jumpF-pathfinish g1 z + cindex-path g2 z
proof −

define h12 where h12 = (λt. Im ((g1+++g2 ) t − z) / Re ((g1+++g2 ) t −
z))

let ?h = λg. λt. Im (g t − z) / Re (g t − z)
have cindex-path (g1+++g2 ) z = cindex 0 1 h12

unfolding cindex-path-def h12-def by simp
also have ... = cindex 0 (1/2 ) h12 + jump h12 (1/2 ) + cindex (1/2 ) 1 h12
proof (rule cindex-combine)
have finite-axes-cross (g1+++g2 ) z using assms by (auto intro:finite-cross-intros)
then have finite {t. Re ((g1+++g2 ) t − z) = 0 ∧ 0≤t ∧ t≤1}

unfolding finite-axes-cross-def by (auto elim:rev-finite-subset)
moreover have jump h12 t = 0 when Re ((g1 +++ g2 ) t − z) 6= 0 0 < t t

< 1 for t
apply (rule jump-Im-divide-Re-0 [of λt. (g1+++g2 ) t− z,folded h12-def ,OF

- that])
using assms by (auto intro:path-offset)

ultimately show finite {x. jump h12 x 6= 0 ∧ 0 < x ∧ x < 1}
apply (elim rev-finite-subset)
by auto

qed auto
also have ... = cindex-path g1 z + jumpF-pathstart g2 z
− jumpF-pathfinish g1 z + cindex-path g2 z

proof −
have jump h12 (1/2 ) = jumpF-pathstart g2 z − jumpF-pathfinish g1 z
proof −
have jump h12 (1 / 2 ) = jumpF h12 (at-right (1 / 2 )) − jumpF h12 (at-left

(1 / 2 ))
proof (cases Re ((g1+++g2 ) (1/2 ) − z) = 0 )

case False
have jump h12 (1 / 2 ) = 0

unfolding h12-def
apply (rule jump-Im-divide-Re-0 )
using assms False by (auto intro:path-offset)

moreover have jumpF h12 (at-right (1/2 )) = 0
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unfolding h12-def
apply (intro jumpF-im-divide-Re-0 )
subgoal using assms by (auto intro:path-offset)
subgoal using assms(5−6 ) False unfolding joinpaths-def pathfinish-def

pathstart-def by auto
by auto

moreover have jumpF h12 (at-left (1/2 )) = 0
unfolding h12-def
apply (intro jumpF-im-divide-Re-0 )
subgoal using assms by (auto intro:path-offset)
subgoal using assms(5−6 ) False unfolding joinpaths-def pathfinish-def

pathstart-def by auto
by auto

ultimately show ?thesis by auto
next

case True
then have Im ((g1 +++ g2 ) (1 / 2 ) − z) 6= 0

using assms(5 ,6 )
by (metis (no-types, opaque-lifting) Re-divide-numeral complex-Re-numeral

complex-eq
divide-self-if joinpaths-def minus-complex.simps mult.commute

mult.left-neutral
numeral-One pathfinish-def pathstart-def right-minus-eq times-divide-eq-left

zero-neq-numeral)
show ?thesis

proof (rule jump-jumpF [of - h12 sgnx h12 (at-left (1/2 )) sgnx h12 (at-right
(1/2 ))])

define g where g=(λt. (g1 +++ g2 ) t − z)
have h12-def :h12 = (λt. Im(g t)/Re(g t)) unfolding h12-def g-def by

simp
have path g using assms unfolding g-def by (auto intro!:path-offset)
then have isCont (λt. Im (g t)) (1 / 2 ) isCont (λt. Re (g t)) (1 / 2 )

unfolding path-def by (auto intro!:continuous-intros continuous-on-interior)
moreover have Im (g (1/2 )) 6=0

using ‹Im ((g1 +++ g2 ) (1 / 2 ) − z) 6= 0 › unfolding g-def .
ultimately show isCont (inverse ◦ h12 ) (1 / 2 )

unfolding h12-def comp-def
by (auto intro!: continuous-intros)

define l where l ≡ sgnx h12 (at-left (1/2 ))
define r where r ≡ sgnx h12 (at-right (1/2 ))
have ∗:continuous-on ({0<..<1}− {t. h12 t = 0 ∧ 0 < t ∧ t < 1}) h12

using ‹path g›[unfolded path-def ] unfolding h12-def
apply (auto intro!: continuous-intros)
by (auto elim:continuous-on-subset)

have ∗∗:finite {t. h12 t = 0 ∧ 0 < t ∧ t < 1}
proof −

have finite-axes-cross (g1 +++ g2 ) z
using assms(1 ,2 ) finite-cross-intros(3 )[of g1 z g2 ] by auto
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then have finite {t. (Re (g t) = 0 ∨ Im (g t) = 0 ) ∧ 0 < t ∧ t < 1}
unfolding finite-axes-cross-def g-def
apply (elim rev-finite-subset)
by auto

then show ?thesis unfolding h12-def
by (simp add:disj-commute)

qed
have h12 sgnx-able at-left (1/2 ) l 6= 0 h12 sgnx-able at-right (1/2 ) r 6= 0

unfolding l-def r-def using finite-sgnx-at-left-at-right[OF ∗∗ ∗ ∗∗]
by auto
then show (h12 has-sgnx l) (at-left (1/2 )) (h12 has-sgnx r) (at-right

(1/2 )) l 6=0 r 6=0
unfolding l-def r-def by (auto elim:sgnx-able-sgnx)

qed
qed
moreover have jumpF h12 (at-right (1/2 )) = jumpF-pathstart g2 z
proof −

have jumpF h12 (at-right (1 / 2 )) = jumpF (h12 ◦ (λx. x / 2 + 1 / 2 ))
(at-right 0 )

using jumpF-linear-comp[of 1/2 h12 1/2 0 ,simplified] by simp
also have jumpF (h12 ◦ (λx. x / 2 + 1 / 2 )) (at-right 0 ) = jumpF-pathstart

g2 z
unfolding h12-def jumpF-pathstart-def

proof (rule jumpF-cong)
show ∀ F x in at-right 0 . ((λt. Im ((g1 +++ g2 ) t − z) / Re ((g1 +++

g2 ) t − z))
◦ (λx. x / 2 + 1 / 2 )) x = Im (g2 x − z) / Re (g2 x − z)

unfolding eventually-at-right
apply (intro exI [where x=1/2 ])
unfolding joinpaths-def by auto

qed simp
finally show ?thesis .

qed
moreover have jumpF h12 (at-left (1 / 2 )) = jumpF-pathfinish g1 z
proof −

have jumpF h12 (at-left (1 / 2 )) = jumpF (h12 ◦ (λx. x / 2 )) (at-left 1 )
using jumpF-linear-comp[of 1/2 h12 0 1 ,simplified] by simp

also have jumpF (h12 ◦ (λx. x / 2 )) (at-left 1 ) = jumpF-pathfinish g1 z
unfolding h12-def jumpF-pathfinish-def

proof (rule jumpF-cong)
show ∀ F x in at-left 1 . ((λt. Im ((g1 +++ g2 ) t − z) / Re ((g1 +++

g2 ) t − z))
◦ (λx. x / 2 )) x = Im (g1 x − z) / Re (g1 x − z)

unfolding eventually-at-left
apply (intro exI [where x=1/2 ])
unfolding joinpaths-def by auto

qed simp
finally show ?thesis .

qed
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ultimately show ?thesis by auto
qed
moreover have cindex 0 (1 / 2 ) h12 = cindex-path g1 z
proof −

have cindex 0 (1 / 2 ) h12 = cindex 0 1 (h12 ◦ (λx. x / 2 ))
using cindex-linear-comp[of 1/2 0 1 h12 0 ,simplified,symmetric] .

also have ... = cindex-path g1 z
proof −

let ?g = (λt. Im (g1 t − z) / Re (g1 t − z))
have ∗:jump (h12 ◦ (λx. x / 2 )) x = jump ?g x when 0<x x<1 for x

unfolding h12-def
proof (rule jump-cong)

show ∀ F x in at x. ((λt. Im ((g1 +++ g2 ) t − z) / Re ((g1 +++ g2 ) t
− z))

◦ (λx. x / 2 )) x = Im (g1 x − z) / Re (g1 x − z)
unfolding eventually-at joinpaths-def comp-def using that
apply (intro exI [where x=(1−x)/2 ])
by (auto simp add: dist-norm)

qed simp
then have {x. jump (h12 ◦ (λx. x / 2 )) x 6= 0 ∧ 0 < x ∧ x < 1}

= {x. jump ?g x 6= 0 ∧ 0 < x ∧ x < 1}
by auto

then show ?thesis
unfolding cindex-def cindex-path-def
apply (elim sum.cong)
by (auto simp add:∗)

qed
finally show ?thesis .

qed
moreover have cindex (1 / 2 ) 1 h12 = cindex-path g2 z
proof −

have cindex (1 / 2 ) 1 h12 = cindex 0 1 (h12 ◦ (λx. x / 2 + 1 / 2 ))
using cindex-linear-comp[of 1/2 0 1 h12 1/2 ,simplified,symmetric] .

also have ... = cindex-path g2 z
proof −

let ?g = (λt. Im (g2 t − z) / Re (g2 t − z))
have ∗:jump (h12 ◦ (λx. x / 2+1/2 )) x = jump ?g x when 0<x x<1 for

x
unfolding h12-def

proof (rule jump-cong)
show ∀ F x in at x. ((λt. Im ((g1 +++ g2 ) t − z) / Re ((g1 +++ g2 ) t

− z))
◦ (λx. x / 2+1/2 )) x = Im (g2 x − z) / Re (g2 x − z)

unfolding eventually-at joinpaths-def comp-def using that
apply (intro exI [where x=x/2 ])
by (auto simp add: dist-norm)

qed simp
then have {x. jump (h12 ◦ (λx. x / 2+1/2 )) x 6= 0 ∧ 0 < x ∧ x < 1}

= {x. jump ?g x 6= 0 ∧ 0 < x ∧ x < 1}
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by auto
then show ?thesis

unfolding cindex-def cindex-path-def
apply (elim sum.cong)
by (auto simp add:∗)

qed
finally show ?thesis .

qed
ultimately show ?thesis by simp

qed
finally show ?thesis .

qed

6.3 More lemmas related cindex-pathE / jumpF-pathstart / jumpF-pathfinish
lemma cindex-pathE-linepath:

assumes z /∈closed-segment a b
shows cindex-pathE (linepath a b) z = (

let c1 = Re a − Re z;
c2 = Re b − Re z;
c3 = Im a ∗ Re b + Re z ∗ Im b + Im z ∗ Re a − Im z ∗ Re b − Im b ∗

Re a − Re z ∗ Im a;
d1 = Im a − Im z;
d2 = Im b − Im z

in if (c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 ) then
(if c3>0 then 1 else −1 )

else
(if (c1=0 ←→ c2 6=0 ) ∧ (c1=0 −→d1 6=0 ) ∧ (c2=0 −→ d2 6=0 ) then
if (c1=0 ∧ (c2 >0 ←→ d1>0 )) ∨ (c2=0 ∧ (c1 >0 ←→ d2<0 )) then

1/2 else −1/2
else 0 ))

proof −
define c1 c2 where c1=Re a − Re z and c2=Re b − Re z
define d1 d2 where d1=Im a − Im z and d2=Im b − Im z
let ?g = linepath a b
have ?thesis when ¬ ((c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 ))
proof −

have Re a= Re z ∧ Re b=Re z
when 0<t t<1 and asm:(1−t)∗Re a + t ∗ Re b = Re z for t
unfolding c1-def c2-def using that

proof −
have ?thesis when c1≤0 c1≥0
proof −

have Re a=Re z using that unfolding c1-def by auto
then show ?thesis using ‹0<t› ‹t<1 › asm

apply (cases Re b Re z rule:linorder-cases)
apply (auto simp add:field-simps)

done
qed
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moreover have ?thesis when c1≤0 c2≤0
proof −

have False when c1<0
proof −

have (1 − t) ∗ Re a < (1 − t) ∗ Re z
using ‹t<1 › ‹c1<0 › unfolding c1-def by auto

moreover have t ∗ Re b ≤ t∗ Re z using ‹t>0 › ‹c2≤0 › unfolding c2-def
by auto

ultimately have (1 − t) ∗ Re a + t ∗ Re b < (1 − t) ∗ Re z + t ∗ Re z
by auto

thus False using asm by (auto simp add:algebra-simps)
qed
moreover have False when c2<0
proof −

have (1 − t) ∗ Re a ≤ (1 − t) ∗ Re z
using ‹t<1 › ‹c1≤0 › unfolding c1-def by auto

moreover have t ∗ Re b < t∗ Re z using ‹t>0 › ‹c2<0 › unfolding c2-def
by auto

ultimately have (1 − t) ∗ Re a + t ∗ Re b < (1 − t) ∗ Re z + t ∗ Re z
by auto

thus False using asm by (auto simp add:algebra-simps)
qed
ultimately show ?thesis using that unfolding c1-def c2-def by argo

qed
moreover have ?thesis when c2≤0 c2≥0
proof −

have Re b=Re z using that unfolding c2-def by auto
then have (1 − t) ∗ Re a = (1−t)∗Re z using asm by (auto simp

add:field-simps)
then have Re a= Re z using ‹t<1 › by auto
then show ?thesis using ‹Re b=Re z› by auto

qed
moreover have ?thesis when c1≥0 c2≥0
proof −

have False when c1>0
proof −

have (1 − t) ∗ Re a > (1 − t) ∗ Re z
using ‹t<1 › ‹c1>0 › unfolding c1-def by auto

moreover have t ∗ Re b ≥ t∗ Re z using ‹t>0 › ‹c2≥0 › unfolding c2-def
by auto

ultimately have (1 − t) ∗ Re a + t ∗ Re b > (1 − t) ∗ Re z + t ∗ Re z
by auto

thus False using asm by (auto simp add:algebra-simps)
qed
moreover have False when c2>0
proof −

have (1 − t) ∗ Re a ≥ (1 − t) ∗ Re z
using ‹t<1 › ‹c1≥0 › unfolding c1-def by auto

moreover have t ∗ Re b > t∗ Re z using ‹t>0 › ‹c2>0 › unfolding c2-def
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by auto
ultimately have (1 − t) ∗ Re a + t ∗ Re b > (1 − t) ∗ Re z + t ∗ Re z

by auto
thus False using asm by (auto simp add:algebra-simps)

qed
ultimately show ?thesis using that unfolding c1-def c2-def by argo

qed
moreover have c1≤0 ∨ c2≥0 c1≥0 ∨ c2≤0 using ‹¬ ((c1>0 ∧ c2<0 ) ∨

(c1<0 ∧ c2>0 ))› by auto
ultimately show ?thesis by fast

qed
then have (∀ t. 0<t ∧ t<1 −→ Re(linepath a b t − z) 6= 0 ) ∨ (c1=0 ∧ c2=0 )

using that unfolding linepath-def c1-def c2-def by auto
moreover have ?thesis when asm:∀ t. 0<t ∧ t<1 −→ Re(linepath a b t − z)

6= 0
and ¬ (c1=0 ∧ c2=0 )

proof −
have cindex-ends:cindex-pathE ?g z = jumpF-pathstart ?g z − jumpF-pathfinish

?g z
proof −

define f where f=(λt. Im (linepath a b t − z) / Re (linepath a b t − z))
define left where left = {x. jumpF f (at-left x) 6= 0 ∧ 0 < x ∧ x ≤ 1}
define right where right = {x. jumpF f (at-right x) 6= 0 ∧ 0 ≤ x ∧ x <

1}
have jumpF-nz:jumpF f (at-left x) = 0 jumpF f (at-right x) = 0

when 0<x x<1 for x
proof −

have isCont f x unfolding f-def
using asm[rule-format,of x] that
by (auto intro!:continuous-intros isCont-Im isCont-Re)

then have continuous (at-left x) f continuous (at-right x) f
using continuous-at-split by blast+

then show jumpF f (at-left x) = 0 jumpF f (at-right x) = 0
using jumpF-not-infinity by auto

qed
have cindex-pathE ?g z = sum (λx. jumpF f (at-right x)) right
− sum (λx. jumpF f (at-left x)) left

unfolding cindex-pathE-def cindexE-def right-def left-def
by (fold f-def ,simp)

moreover have sum (λx. jumpF f (at-right x)) right = jumpF-pathstart ?g
z

proof (cases jumpF f (at-right 0 ) = 0 )
case True
hence False if x ∈ right for x using that

by (cases x = 0 ) (auto simp: jumpF-nz right-def )
then have right = {} by blast
then show ?thesis

unfolding jumpF-pathstart-def using True
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apply (fold f-def )
by auto

next
case False
hence x ∈ right ←→ x = 0 for x using that

by (cases x = 0 ) (auto simp: jumpF-nz right-def )
then have right = {0} by blast
then show ?thesis

unfolding jumpF-pathstart-def using False
apply (fold f-def )
by auto

qed
moreover have sum (λx. jumpF f (at-left x)) left = jumpF-pathfinish ?g z
proof (cases jumpF f (at-left 1 ) = 0 )

case True
then have left = {}

unfolding left-def using jumpF-nz by force
then show ?thesis

unfolding jumpF-pathfinish-def using True
apply (fold f-def )
by auto

next
case False
then have left = {1}

unfolding left-def using jumpF-nz by force
then show ?thesis

unfolding jumpF-pathfinish-def using False
apply (fold f-def )
by auto

qed
ultimately show ?thesis by auto

qed
moreover have jF-start:jumpF-pathstart ?g z =

(if c1=0 ∧ c2 6=0 ∧ d1 6=0 then
if c2 >0 ←→ d1 > 0 then 1/2 else −1/2

else
0 )

proof −
define f where f=(λt. (Im b − Im a )∗ t + d1 )
define g where g=(λt. (Re b − Re a )∗ t + c1 )

have jump-eq:jumpF-pathstart (linepath a b) z = jumpF (λt. f t/g t) (at-right
0 )

unfolding jumpF-pathstart-def f-def linepath-def g-def d1-def c1-def
by (auto simp add:algebra-simps)

have ?thesis when ¬ (c1 =0 ∧ c2 6=0 ∧ d1 6=0 )
proof −

have c2=0 −→ c1 6=0 using ‹¬ (c1=0 ∧ c2=0 )› by auto
moreover have d1 =0 −→ c1 6=0
proof (rule ccontr)
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assume ¬ (d1 = 0 −→ c1 6= 0 )
then have a=z unfolding d1-def c1-def by (simp add: complex-eqI )
then have z∈path-image (linepath a b) by auto
then show False using ‹z /∈closed-segment a b› by auto

qed
moreover have ?thesis when c1 6=0
proof −

have jumpF (λt. f t/g t) (at-right 0 ) = 0
apply (rule jumpF-not-infinity)
apply (unfold f-def g-def )

using that by (auto intro!: continuous-intros)
then show ?thesis using jump-eq using that by auto

qed
ultimately show ?thesis using that by blast

qed
moreover have ?thesis when c1=0 c2 6=0 d1 6=0 c2 >0 ←→ d1 > 0
proof −

have (LIM x at-right 0 . f x / g x :> at-top)
proof −

have (f −−−→ d1 ) (at-right 0 )
unfolding f-def by (auto intro!: tendsto-eq-intros)

moreover have (g −−−→ 0 ) (at-right 0 )
unfolding g-def using ‹c1=0 › by (auto intro!: tendsto-eq-intros)

moreover have (g has-sgnx sgn d1 ) (at-right 0 )
proof −

have (g has-sgnx sgn (c2−c1 )) (at-right 0 )
unfolding g-def
apply (rule has-sgnx-derivative-at-right)

subgoal unfolding c2-def c1-def d1-def by (auto intro!: deriva-
tive-eq-intros)

subgoal using ‹c1=0 › by auto
subgoal using ‹c1=0 › ‹c2 6=0 › by auto
done

moreover have sgn (c2−c1 ) = sgn d1 using that by fastforce
ultimately show ?thesis by auto

qed
ultimately show ?thesis

using filterlim-divide-at-bot-at-top-iff [of f d1 at-right 0 g] ‹d1 6=0 › by
auto

qed
then have jumpF (λt. f t/g t) (at-right 0 ) = 1/2 unfolding jumpF-def

by auto
then show ?thesis using that jump-eq by auto

qed
moreover have ?thesis when c1=0 c2 6=0 d1 6=0 ¬ c2 >0 ←→ d1 > 0
proof −

have (LIM x at-right 0 . f x / g x :> at-bot)
proof −

have (f −−−→ d1 ) (at-right 0 )
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unfolding f-def by (auto intro!: tendsto-eq-intros)
moreover have (g −−−→ 0 ) (at-right 0 )

unfolding g-def using ‹c1=0 › by (auto intro!: tendsto-eq-intros)
moreover have (g has-sgnx − sgn d1 ) (at-right 0 )
proof −

have (g has-sgnx sgn (c2−c1 )) (at-right 0 )
unfolding g-def
apply (rule has-sgnx-derivative-at-right)

subgoal unfolding c2-def c1-def d1-def by (auto intro!: deriva-
tive-eq-intros)

subgoal using ‹c1=0 › by auto
subgoal using ‹c1=0 › ‹c2 6=0 › by auto
done

moreover have sgn (c2−c1 ) = − sgn d1 using that by fastforce
ultimately show ?thesis by auto

qed
ultimately show ?thesis

using filterlim-divide-at-bot-at-top-iff [of f d1 at-right 0 g] ‹d1 6=0 › by
auto

qed
then have jumpF (λt. f t/g t) (at-right 0 ) = − 1/2 unfolding jumpF-def

by auto
then show ?thesis using that jump-eq by auto

qed
ultimately show ?thesis by fast

qed
moreover have jF-finish:jumpF-pathfinish ?g z =

(if c2=0 ∧ c1 6=0 ∧ d2 6=0 then
if c1 >0 ←→ d2 > 0 then 1/2 else −1/2

else
0 )

proof −
define f where f=(λt. (Im b − Im a )∗ t + (Im a − Im z))
define g where g=(λt. (Re b − Re a )∗ t + (Re a − Re z))

have jump-eq:jumpF-pathfinish (linepath a b) z = jumpF (λt. f t/g t) (at-left
1 )

unfolding jumpF-pathfinish-def f-def linepath-def g-def d1-def c1-def
by (auto simp add:algebra-simps)

have ?thesis when ¬ (c2 =0 ∧ c1 6=0 ∧ d2 6=0 )
proof −

have c1=0 −→ c2 6=0 using ‹¬ (c1=0 ∧ c2=0 )› by auto
moreover have d2 =0 −→ c2 6=0
proof (rule ccontr)

assume ¬ (d2 = 0 −→ c2 6= 0 )
then have b=z unfolding d2-def c2-def by (simp add: complex-eqI )
then have z∈path-image (linepath a b) by auto
then show False using ‹z /∈closed-segment a b› by auto

qed
moreover have ?thesis when c2 6=0
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proof −
have jumpF (λt. f t/g t) (at-left 1 ) = 0

apply (rule jumpF-not-infinity)
apply (unfold f-def g-def )

using that unfolding c2-def by (auto intro!: continuous-intros)
then show ?thesis using jump-eq using that by auto

qed
ultimately show ?thesis using that by blast

qed
moreover have ?thesis when c2=0 c1 6=0 d2 6=0 c1 >0 ←→ d2 > 0
proof −

have (LIM x at-left 1 . f x / g x :> at-top)
proof −

have (f −−−→ d2 ) (at-left 1 )
unfolding f-def d2-def by (auto intro!: tendsto-eq-intros)

moreover have (g −−−→ 0 ) (at-left 1 )
using ‹c2=0 › unfolding g-def c2-def by (auto intro!: tendsto-eq-intros)
moreover have (g has-sgnx sgn d2 ) (at-left 1 )
proof −

have (g has-sgnx − sgn (c2−c1 )) (at-left 1 )
unfolding g-def
apply (rule has-sgnx-derivative-at-left)

subgoal unfolding c2-def c1-def d1-def by (auto intro!: deriva-
tive-eq-intros)

subgoal using ‹c2=0 › unfolding c2-def by auto
subgoal using ‹c2=0 › ‹c1 6=0 › by auto
done

moreover have − sgn (c2−c1 ) = sgn d2 using that by fastforce
ultimately show ?thesis by auto

qed
ultimately show ?thesis

using filterlim-divide-at-bot-at-top-iff [of f d2 at-left 1 g] ‹d2 6=0 › by
auto

qed
then have jumpF (λt. f t/g t) (at-left 1 ) = 1/2 unfolding jumpF-def

by auto
then show ?thesis using that jump-eq by auto

qed
moreover have ?thesis when c2=0 c1 6=0 d2 6=0 ¬ c1 >0 ←→ d2 > 0
proof −

have (LIM x at-left 1 . f x / g x :> at-bot)
proof −

have (f −−−→ d2 ) (at-left 1 )
unfolding f-def d2-def by (auto intro!: tendsto-eq-intros)

moreover have (g −−−→ 0 ) (at-left 1 )
using ‹c2=0 › unfolding g-def c2-def by (auto intro!: tendsto-eq-intros)
moreover have (g has-sgnx − sgn d2 ) (at-left 1 )
proof −

have (g has-sgnx − sgn (c2−c1 )) (at-left 1 )
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unfolding g-def
apply (rule has-sgnx-derivative-at-left)

subgoal unfolding c2-def c1-def d1-def by (auto intro!: deriva-
tive-eq-intros)

subgoal using ‹c2=0 › unfolding c2-def by auto
subgoal using ‹c2=0 › ‹c1 6=0 › by auto
done

moreover have sgn (c2−c1 ) = sgn d2 using that by fastforce
ultimately show ?thesis by auto

qed
ultimately show ?thesis

using filterlim-divide-at-bot-at-top-iff [of f d2 at-left 1 g] ‹d2 6=0 › by
auto

qed
then have jumpF (λt. f t/g t) (at-left 1 ) = − 1/2 unfolding jumpF-def

by auto
then show ?thesis using that jump-eq by auto

qed
ultimately show ?thesis by fast

qed
ultimately show ?thesis using ‹¬ ((c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 ))›

apply (fold c1-def c2-def d1-def d2-def )
by auto

qed
moreover have ?thesis when c1=0 c2=0
proof −

have (λt. Re (linepath a b t − z)) = (λ-. 0 )
using that unfolding linepath-def c1-def c2-def
by (auto simp add:algebra-simps)

then have (λt. Im (linepath a b t − z) / Re (linepath a b t − z)) = (λ-. 0 )
by (metis div-by-0 )

then have cindex-pathE (linepath a b) z = 0
unfolding cindex-pathE-def
by (auto intro: cindexE-constI )

thus ?thesis using ‹¬ ((c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 ))› that
apply (fold c1-def c2-def d1-def d2-def )
by auto

qed
ultimately show ?thesis by fast

qed
moreover have ?thesis when c1c2-diff-sgn:(c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 )
proof −

define f where f=(λt. (Im b − Im a )∗ t + (Im a − Im z))
define g where g=(λt. (Re b − Re a )∗ t + (Re a − Re z))
define h where h=(λt. f t/ g t)
define c3 where c3=Im(a)∗Re(b)+Re(z)∗Im(b)+Im(z)∗Re(a) −Im(z)∗Re(b)

− Im(b)∗Re(a) − Re(z)∗Im(a)
define u where u = (Re z − Re a) / (Re b − Re a)
let ?g = λt. linepath a b t − z
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have 0<u u<1 Re b − Re a 6=0 using that unfolding u-def c1-def c2-def by
(auto simp add:field-simps)

have Re(?g u) = 0 g u=0 unfolding linepath-def u-def g-def
apply (auto simp add:field-simps)
using ‹Re b − Re a 6=0 › by (auto simp add:field-simps)

moreover have u1 = u2 when Re(?g u1 ) = 0 Re(?g u2 ) = 0 for u1 u2
proof −

have (u1 − u2 ) ∗ (Re b − Re a) = Re(?g u1 ) − Re(?g u2 )
unfolding linepath-def by (auto simp add:algebra-simps)

also have ... = 0 using that by auto
finally have (u1 − u2 ) ∗ (Re b − Re a) = 0 .
thus ?thesis using ‹Re b − Re a 6=0 › by auto

qed
ultimately have re-g-iff :Re(?g t) = 0 ←→ t=u for t by blast

have cindex-pathE (linepath a b) z = jumpF h (at-right u) − jumpF h (at-left
u)

proof −
define left where left = {x. jumpF h (at-left x) 6= 0 ∧ 0 < x ∧ x ≤ 1}
define right where right = {x. jumpF h (at-right x) 6= 0 ∧ 0 ≤ x ∧ x < 1}
have jumpF-nz:jumpF h (at-left x) = 0 jumpF h (at-right x) = 0

when 0≤x x≤1 x 6=u for x
proof −

have g x 6=0
using re-g-iff ‹x 6=u› unfolding g-def linepath-def
by (metis ‹Re b − Re a 6= 0 › add-diff-cancel-left ′ diff-diff-eq2 diff-zero

nonzero-mult-div-cancel-left u-def )
then have isCont h x

unfolding h-def f-def g-def
by (auto intro!:continuous-intros)

then have continuous (at-left x) h continuous (at-right x) h
using continuous-at-split by blast+

then show jumpF h (at-left x) = 0 jumpF h(at-right x) = 0
using jumpF-not-infinity by auto

qed
have cindex-pathE (linepath a b) z = sum (λx. jumpF h (at-right x)) right

− sum (λx. jumpF h (at-left x)) left
proof −

have cindex-pathE (linepath a b) z = cindexE 0 1 (λt. Im (?g t) / Re (?g
t))

unfolding cindex-pathE-def by auto
also have ... = cindexE 0 1 h
proof −

have (λt. Im (?g t) / Re (?g t)) = h
unfolding h-def f-def g-def linepath-def
by (auto simp add:algebra-simps)

then show ?thesis by auto
qed
also have ... = sum (λx. jumpF h (at-right x)) right − sum (λx. jumpF h
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(at-left x)) left
unfolding cindexE-def left-def right-def by auto

finally show ?thesis .
qed
moreover have sum (λx. jumpF h (at-right x)) right = jumpF h (at-right u)
proof (cases jumpF h (at-right u) = 0 )

case True
then have right = {}

unfolding right-def using jumpF-nz by force
then show ?thesis using True by auto

next
case False
then have right = {u}

unfolding right-def using jumpF-nz ‹0<u› ‹u<1 › by fastforce
then show ?thesis by auto

qed
moreover have sum (λx. jumpF h (at-left x)) left = jumpF h (at-left u)
proof (cases jumpF h (at-left u) = 0 )

case True
then have left = {}

unfolding left-def
apply safe
apply (case-tac x=u)
using jumpF-nz ‹0<u› ‹u<1 › by auto

then show ?thesis using True by auto
next

case False
then have left = {u}

unfolding left-def
apply safe

apply (case-tac x=u)
using jumpF-nz ‹0<u› ‹u<1 › by auto

then show ?thesis by auto
qed
ultimately show ?thesis by auto

qed
moreover have jump h u = (if c3>0 then 1 else −1 )
proof −

have Re b−Re a 6=0 using c1c2-diff-sgn unfolding c1-def c2-def by auto
have jump (λt. Im(?g t) / Re(?g t)) u = jump h u

apply (rule arg-cong2 [where f=jump])
unfolding linepath-def h-def f-def g-def by (auto simp add:algebra-simps)

moreover have jump (λt. Im(?g t) / Re(?g t)) u
= (if sgn (Re b −Re a) = sgn (Im(?g u)) then 1 else − 1 )

proof (rule jump-divide-derivative)
have path ?g using path-offset by auto
then have continuous-on {0 ..1} (λt. Im(?g t))

using continuous-on-Im path-def by blast
then show isCont (λt. Im (?g t)) u
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unfolding path-def
apply (elim continuous-on-interior)
using ‹0<u› ‹u<1 › by auto

next
show Re(?g u) = 0 Re b − Re a 6= 0 using ‹Re(?g u) = 0 › ‹Re b − Re a

6= 0 ›
by auto

show Im(?g u) 6= 0
proof (rule ccontr)

assume ¬ Im (linepath a b u − z) 6= 0
then have ?g u = 0 using ‹Re(?g u) = 0 ›

by (simp add: complex-eq-iff )
then have z ∈ closed-segment a b using ‹0<u› ‹u<1 ›

by (auto intro:linepath-in-path)
thus False using ‹z /∈ closed-segment a b› by simp

qed
show ((λt. Re (linepath a b t − z)) has-real-derivative Re b − Re a) (at u)

unfolding linepath-def by (auto intro!:derivative-eq-intros)
qed
moreover have sgn (Re b − Re a) = sgn (Im(?g u)) ←→ c3 > 0
proof −

have Im(?g u) = c3/(Re b−Re a)
proof −

define ba where ba = Re b−Re a
have ba 6=0 using ‹Re b − Re a 6= 0 › unfolding ba-def by auto
then show ?thesis

unfolding linepath-def u-def c3-def
apply (fold ba-def )
apply (auto simp add:field-simps)
by (auto simp add:algebra-simps ba-def )

qed
then have sgn (Re b − Re a) = sgn (Im(?g u)) ←→ sgn (Re b − Re a) =

sgn (c3/(Re b−Re a))
by auto

also have ... ←→ c3>0
using ‹Re b−Re a 6=0 ›
apply (cases 0 ::real c3 rule:linorder-cases)
by (auto simp add:sgn-zero-iff )

finally show ?thesis .
qed
ultimately show ?thesis by auto

qed
moreover have jump h u = jumpF h (at-right u) − jumpF h (at-left u)
proof (rule jump-jumpF)

have f u 6=0
proof (rule ccontr)

assume ¬ f u 6= 0
then have z∈path-image (linepath a b)

unfolding path-image-def
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apply (rule-tac rev-image-eqI [of u])
using re-g-iff [of u,simplified] ‹0<u› ‹u<1 ›
unfolding f-def linepath-def
by (auto simp add:algebra-simps complex.expand)

then show False using ‹z /∈closed-segment a b› by simp
qed
then show isCont (inverse ◦ h) u

unfolding h-def comp-def f-def g-def
by (auto intro!: continuous-intros)

define hs where hs = sgn ((f u) / (c2 −c1 ))
show (h has-sgnx −hs) (at-left u) (h has-sgnx hs) (at-right u)
proof −

have ff :(f has-sgnx sgn (f u)) (at-left u) (f has-sgnx sgn (f u)) (at-right u)
proof −

have (f −−−→ f u) (at u)
unfolding f-def by (auto intro!:tendsto-intros)

then have (f has-sgnx sgn (f u)) (at u)
using tendsto-nonzero-has-sgnx[of f , OF - ‹f u 6=0 ›] by auto

then show (f has-sgnx sgn (f u)) (at-left u) (f has-sgnx sgn (f u)) (at-right
u)

using has-sgnx-split by blast+
qed

have gg:(g has-sgnx − sgn (c2 − c1 )) (at-left u) (g has-sgnx sgn (c2 − c1 ))
(at-right u)

proof −
have (g has-real-derivative c2 − c1 ) (at u) unfolding g-def c1-def c2-def

by (auto intro!:derivative-eq-intros)
moreover have c2 − c1 6= 0 using that by auto
ultimately show (g has-sgnx sgn (c2 − c1 )) (at-right u)

(g has-sgnx − sgn (c2 − c1 )) (at-left u)
using has-sgnx-derivative-at-right[of g c2−c1 u]

has-sgnx-derivative-at-left[of g c2−c1 u] ‹g u=0 ›
by auto

qed
show (h has-sgnx − hs) (at-left u)

using has-sgnx-divide[OF ff (1 ) gg(1 )] unfolding h-def hs-def
by auto

show (h has-sgnx hs) (at-right u)
using has-sgnx-divide[OF ff (2 ) gg(2 )] unfolding h-def hs-def
by auto

qed
show hs 6=0 −hs 6=0

unfolding hs-def using ‹f u 6=0 › that by (auto simp add:sgn-if )
qed
ultimately show ?thesis using that

apply (fold c1-def c2-def c3-def )
by auto

qed
ultimately show ?thesis by fast
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qed

lemma cindex-path-linepath:
assumes z /∈path-image (linepath a b)
shows cindex-path (linepath a b) z = (

let c1=Re(a)−Re(z) ; c2=Re(b)−Re(z) ;
c3 = Im(a)∗Re(b)+Re(z)∗Im(b)+Im(z)∗Re(a) −Im(z)∗Re(b) − Im(b)∗Re(a)

− Re(z)∗Im(a)
in if (c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 ) then (if c3>0 then 1 else −1 ) else 0 )

proof −
define c1 c2 where c1=Re(a)−Re(z) and c2=Re(b)−Re(z)
let ?g = linepath a b
have ?thesis when ¬ ((c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 ))
proof −

have Re a= Re z ∧ Re b=Re z
when 0<t t<1 and asm:(1−t)∗Re a + t ∗ Re b = Re z for t
unfolding c1-def c2-def using that

proof −
have ?thesis when c1≤0 c1≥0
proof −

have Re a=Re z using that unfolding c1-def by auto
then show ?thesis using ‹0<t› ‹t<1 › asm

apply (cases Re b Re z rule:linorder-cases)
apply (auto simp add:field-simps)

done
qed
moreover have ?thesis when c1≤0 c2≤0
proof −

have False when c1<0
proof −

have (1 − t) ∗ Re a < (1 − t) ∗ Re z
using ‹t<1 › ‹c1<0 › unfolding c1-def by auto

moreover have t ∗ Re b ≤ t∗ Re z using ‹t>0 › ‹c2≤0 › unfolding c2-def
by auto

ultimately have (1 − t) ∗ Re a + t ∗ Re b < (1 − t) ∗ Re z + t ∗ Re z
by auto

thus False using asm by (auto simp add:algebra-simps)
qed
moreover have False when c2<0
proof −

have (1 − t) ∗ Re a ≤ (1 − t) ∗ Re z
using ‹t<1 › ‹c1≤0 › unfolding c1-def by auto

moreover have t ∗ Re b < t∗ Re z using ‹t>0 › ‹c2<0 › unfolding c2-def
by auto

ultimately have (1 − t) ∗ Re a + t ∗ Re b < (1 − t) ∗ Re z + t ∗ Re z
by auto

thus False using asm by (auto simp add:algebra-simps)
qed
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ultimately show ?thesis using that unfolding c1-def c2-def by argo
qed
moreover have ?thesis when c2≤0 c2≥0
proof −

have Re b=Re z using that unfolding c2-def by auto
then have (1 − t) ∗ Re a = (1−t)∗Re z using asm by (auto simp

add:field-simps)
then have Re a= Re z using ‹t<1 › by auto
then show ?thesis using ‹Re b=Re z› by auto

qed
moreover have ?thesis when c1≥0 c2≥0
proof −

have False when c1>0
proof −

have (1 − t) ∗ Re a > (1 − t) ∗ Re z
using ‹t<1 › ‹c1>0 › unfolding c1-def by auto

moreover have t ∗ Re b ≥ t∗ Re z using ‹t>0 › ‹c2≥0 › unfolding c2-def
by auto

ultimately have (1 − t) ∗ Re a + t ∗ Re b > (1 − t) ∗ Re z + t ∗ Re z
by auto

thus False using asm by (auto simp add:algebra-simps)
qed
moreover have False when c2>0
proof −

have (1 − t) ∗ Re a ≥ (1 − t) ∗ Re z
using ‹t<1 › ‹c1≥0 › unfolding c1-def by auto

moreover have t ∗ Re b > t∗ Re z using ‹t>0 › ‹c2>0 › unfolding c2-def
by auto

ultimately have (1 − t) ∗ Re a + t ∗ Re b > (1 − t) ∗ Re z + t ∗ Re z
by auto

thus False using asm by (auto simp add:algebra-simps)
qed
ultimately show ?thesis using that unfolding c1-def c2-def by argo

qed
moreover have c1≤0 ∨ c2≥0 c1≥0 ∨ c2≤0 using ‹¬ ((c1>0 ∧ c2<0 ) ∨

(c1<0 ∧ c2>0 ))› by auto
ultimately show ?thesis by fast

qed
then have (∀ t. 0<t ∧ t<1 −→ Re(linepath a b t − z) 6= 0 ) ∨ (Re a= Re z ∧

Re b=Re z)
using that unfolding linepath-def by auto

moreover have ?thesis when asm:∀ t. 0<t ∧ t<1 −→ Re(linepath a b t − z)
6= 0

proof −
have jump (λt. Im (linepath a b t − z) / Re (linepath a b t − z)) t = 0

when 0<t t<1 for t
apply (rule jump-Im-divide-Re-0 [of λt. linepath a b t − z,

OF - asm[rule-format]])
by (auto simp add:path-offset that)
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then have cindex-path (linepath a b) z = 0
unfolding cindex-path-def cindex-def by auto

thus ?thesis using ‹¬ ((c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 ))›
apply (fold c1-def c2-def )
by auto

qed
moreover have ?thesis when Re a= Re z Re b=Re z
proof −

have (λt. Re (linepath a b t − z)) = (λ-. 0 )
unfolding linepath-def using ‹Re a= Re z› ‹Re b=Re z›
by (auto simp add:algebra-simps)

then have (λt. Im (linepath a b t − z) / Re (linepath a b t − z)) = (λ-. 0 )
by (metis div-by-0 )

then have jump (λt. Im (linepath a b t − z) / Re (linepath a b t − z)) t =
0 for t

using jump-const by auto
then have cindex-path (linepath a b) z = 0

unfolding cindex-path-def cindex-def by auto
thus ?thesis using ‹¬ ((c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 ))›

apply (fold c1-def c2-def )
by auto

qed
ultimately show ?thesis by auto

qed
moreover have ?thesis when c1c2-diff-sgn:(c1>0 ∧ c2<0 ) ∨ (c1<0 ∧ c2>0 )
proof −

define c3 where c3=Im(a)∗Re(b)+Re(z)∗Im(b)+Im(z)∗Re(a) −Im(z)∗Re(b)
− Im(b)∗Re(a) − Re(z)∗Im(a)

define u where u = (Re z − Re a) / (Re b − Re a)
let ?g = λt. linepath a b t − z
have 0<u u<1 Re b − Re a 6=0 using that unfolding u-def c1-def c2-def by

(auto simp add:field-simps)
have Re(?g u) = 0 unfolding linepath-def u-def

apply (auto simp add:field-simps)
using ‹Re b − Re a 6=0 › by (auto simp add:field-simps)

moreover have u1 = u2 when Re(?g u1 ) = 0 Re(?g u2 ) = 0 for u1 u2
proof −

have (u1 − u2 ) ∗ (Re b − Re a) = Re(?g u1 ) − Re(?g u2 )
unfolding linepath-def by (auto simp add:algebra-simps)

also have ... = 0 using that by auto
finally have (u1 − u2 ) ∗ (Re b − Re a) = 0 .
thus ?thesis using ‹Re b − Re a 6=0 › by auto

qed
ultimately have re-g-iff :Re(?g t) = 0 ←→ t=u for t by blast
have cindex-path (linepath a b) z = jump (λt. Im (?g t)/Re(?g t)) u
proof −

define f where f=(λt. Im (linepath a b t − z) / Re (linepath a b t − z))
have jump f t =0 when t 6=u 0<t t<1 for t

unfolding f-def
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apply (rule jump-Im-divide-Re-0 )
using that re-g-iff by (auto simp add: path-offset)

then have {x. jump f x 6= 0 ∧ 0 < x ∧ x < 1} = (if jump f u=0 then {}
else {u})

using ‹0<u› ‹u<1 ›
apply auto
by fastforce

then show ?thesis
unfolding cindex-path-def cindex-def
apply (fold f-def )
by auto

qed
moreover have jump (λt. Im (?g t)/Re(?g t)) u = (if c3>0 then 1 else −1 )
proof −

have Re b−Re a 6=0 using c1c2-diff-sgn unfolding c1-def c2-def by auto
have jump (λt. Im(?g t) / Re(?g t)) u

= (if sgn (Re b −Re a) = sgn (Im(?g u)) then 1 else − 1 )
proof (rule jump-divide-derivative)

have path ?g using path-offset by auto
then have continuous-on {0 ..1} (λt. Im(?g t))

using continuous-on-Im path-def by blast
then show isCont (λt. Im (?g t)) u

unfolding path-def
apply (elim continuous-on-interior)
using ‹0<u› ‹u<1 › by auto

next
show Re(?g u) = 0 Re b − Re a 6= 0 using ‹Re(?g u) = 0 › ‹Re b − Re a

6= 0 ›
by auto

show Im(?g u) 6= 0
proof (rule ccontr)

assume ¬ Im (linepath a b u − z) 6= 0
then have ?g u = 0 using ‹Re(?g u) = 0 ›

by (simp add: complex-eq-iff )
thus False using assms ‹0<u› ‹u<1 › unfolding path-image-def by

fastforce
qed
show ((λt. Re (linepath a b t − z)) has-real-derivative Re b − Re a) (at u)

unfolding linepath-def by (auto intro!:derivative-eq-intros)
qed
moreover have sgn (Re b − Re a) = sgn (Im(?g u)) ←→ c3 > 0
proof −

have Im(?g u) = c3/(Re b−Re a)
proof −

define ba where ba = Re b−Re a
have ba 6=0 using ‹Re b − Re a 6= 0 › unfolding ba-def by auto
then show ?thesis

unfolding linepath-def u-def c3-def
apply (fold ba-def )
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apply (auto simp add:field-simps)
by (auto simp add:algebra-simps ba-def )

qed
then have sgn (Re b − Re a) = sgn (Im(?g u)) ←→ sgn (Re b − Re a) =

sgn (c3/(Re b−Re a))
by auto

also have ... ←→ c3>0
using ‹Re b−Re a 6=0 ›
apply (cases 0 ::real c3 rule:linorder-cases)
by (auto simp add:sgn-zero-iff )

finally show ?thesis .
qed
ultimately show ?thesis by auto

qed
ultimately show ?thesis using c1c2-diff-sgn

apply (fold c1-def c2-def c3-def )
by auto

qed
ultimately show ?thesis by blast

qed

lemma cindex-pathE-part-circlepath:
assumes cmod (z−z0 ) 6=r and r>0 0≤st st<tt tt≤2∗pi
shows cindex-pathE (part-circlepath z r st tt) z0 = (

if |Re z − Re z0 | < r then
(let

ϑ = arccos ((Re z0 − Re z)/r);
β = 2∗pi − ϑ

in
jumpF-pathstart (part-circlepath z r st tt) z0
+
(if st<ϑ ∧ ϑ<tt then if r ∗ sin ϑ + Im z > Im z0 then −1 else 1 else 0 )
+
(if st<β ∧ β < tt then if r ∗ sin β + Im z > Im z0 then 1 else −1 else 0 )
−
jumpF-pathfinish (part-circlepath z r st tt) z0

)
else

if |Re z − Re z0 | = r then
jumpF-pathstart (part-circlepath z r st tt) z0
− jumpF-pathfinish (part-circlepath z r st tt) z0

else 0
)

proof −
define f where f=(λi. r ∗ sin i + Im z − Im z0 )
define g where g=(λi. r ∗ cos i + Re z − Re z0 )
define h where h=(λt. f t / g t)
have index-eq:cindex-pathE (part-circlepath z r st tt) z0 = cindexE st tt h
proof −
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have cindex-pathE (part-circlepath z r st tt) z0
= cindexE 0 1 ((λi. f i/g i) o (linepath st tt))
unfolding cindex-pathE-def part-circlepath-def exp-Euler f-def g-def comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)

also have ... = cindexE st tt (λi. f i/g i)
unfolding linepath-def using cindexE-linear-comp[of tt−st 0 1 - st] ‹st<tt›
by (simp add:algebra-simps)

also have ... = cindexE st tt h unfolding h-def by simp
finally show ?thesis .

qed
have jstart-eq:jumpF-pathstart (part-circlepath z r st tt) z0 = jumpF h (at-right

st)
proof −

have jumpF-pathstart (part-circlepath z r st tt) z0
= jumpF ((λi. f i/g i) o (linepath st tt)) (at-right 0 )

unfolding jumpF-pathstart-def part-circlepath-def exp-Euler f-def g-def comp-def

by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = jumpF (λi. f i/g i) (at-right st)

unfolding linepath-def using jumpF-linear-comp(2 )[of tt−st - st 0 ] ‹st<tt›
by (simp add:algebra-simps)

also have ... = jumpF h (at-right st) unfolding h-def by simp
finally show ?thesis .

qed
have jfinish-eq:jumpF-pathfinish (part-circlepath z r st tt) z0 = jumpF h (at-left

tt)
proof −

have jumpF-pathfinish (part-circlepath z r st tt) z0
= jumpF ((λi. f i/g i) o (linepath st tt)) (at-left 1 )

unfolding jumpF-pathfinish-def part-circlepath-def exp-Euler f-def g-def comp-def

by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = jumpF (λi. f i/g i) (at-left tt)

unfolding linepath-def using jumpF-linear-comp(1 )[of tt−st - st 1 ] ‹st<tt›
by (simp add:algebra-simps)

also have ... = jumpF h (at-left tt) unfolding h-def by simp
finally show ?thesis .

qed
have finite-jFs:finite-jumpFs h st tt
proof −

note finite-ReZ-segments-imp-jumpFs[OF finite-ReZ-segments-part-circlepath
,of z r st tt z0 ,simplified]

then have finite-jumpFs ((λi. f i/g i) o (linepath st tt)) 0 1
unfolding h-def f-def g-def part-circlepath-def exp-Euler comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)

then have finite-jumpFs (λi. f i/g i) st tt
unfolding linepath-def using finite-jumpFs-linear-pos[of tt−st - st 0 1 ] ‹st<tt›

by (simp add:algebra-simps)
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then show ?thesis unfolding h-def by auto
qed
have g-imp-f :g i = 0 =⇒ f i 6=0 for i
proof (rule ccontr)

assume g i = 0 ¬ f i 6= 0
then have r ∗ sin i = Im (z0 − z) r ∗ cos i = Re (z0 − z)

unfolding f-def g-def by auto
then have (r ∗ sin i) ^2 + (r ∗ cos i)^2 = Im (z0 − z) ^ 2 + Re (z0 − z)

^2
by auto

then have r^2 ∗ (sin i ^2 + cos i^2 ) = Im (z0 − z) ^ 2 + Re (z0 − z) ^2
by (auto simp only:algebra-simps power-mult-distrib)

then have r^2 = cmod (z0−z) ^ 2
unfolding cmod-def by auto

then have r = cmod (z0−z)
using ‹r>0 › power2-eq-imp-eq by fastforce

then show False using ‹cmod (z−z0 ) 6=r› using norm-minus-commute by
blast

qed
have ?thesis when |Re z − Re z0 | > r
proof −

have jumpF h (at-right x) = 0 jumpF h (at-left x) = 0 for x
proof −

have g x 6=0
proof (rule ccontr)

assume ¬ g x 6= 0
then have cos x = (Re z0 − Re z) / r unfolding g-def using ‹r>0 ›

by (auto simp add:field-simps)
then have |(Re z0 − Re z)/r | ≤ 1

by (metis abs-cos-le-one)
then have |Re z0 − Re z| ≤ r

using ‹r>0 › by (auto simp add:field-simps)
then show False using that by auto

qed
then have isCont h x

unfolding h-def f-def g-def by (auto intro:continuous-intros)
then show jumpF h (at-right x) = 0 jumpF h (at-left x) = 0

using jumpF-not-infinity unfolding continuous-at-split by auto
qed
then have cindexE st tt h = 0 unfolding cindexE-def by auto
then show ?thesis using index-eq that by auto

qed
moreover have ?thesis when |Re z − Re z0 | = r
proof −

define R where R=(λS .{x. jumpF h (at-right x) 6= 0 ∧ x∈S})
define L where L=(λS .{x. jumpF h (at-left x) 6= 0 ∧ x∈S})
define right where

right = (λS . (
∑

x∈R S . jumpF h (at-right x)))
define left where
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left = (λS . (
∑

x∈L S . jumpF h (at-left x)))
have cindex-pathE (part-circlepath z r st tt) z0 = cindexE st tt h

using index-eq by simp
also have ... = right {st..<tt} − left {st<..tt}

unfolding cindexE-def right-def left-def R-def L-def by auto
also have ... = jumpF h (at-right st) + right {st<..<tt} − left {st<..<tt} −

jumpF h (at-left tt)
proof −

have right {st..<tt} = jumpF h (at-right st) + right {st<..<tt}
proof (cases jumpF h (at-right st) =0 )

case True
then have R {st..<tt} = R {st<..<tt}

unfolding R-def using less-eq-real-def by auto
then have right {st..<tt} = right {st<..<tt}

unfolding right-def by auto
then show ?thesis using True by auto

next
case False
have finite (R {st..<tt})

using finite-jFs unfolding R-def finite-jumpFs-def
by (auto elim:rev-finite-subset)

moreover have st ∈ R {st..<tt} using False ‹st<tt› unfolding R-def by
auto

moreover have R {st..<tt} − {st} = R {st<..<tt} unfolding R-def by
auto

ultimately show right {st..<tt}= jumpF h (at-right st)
+ right {st<..<tt}

using sum.remove[of R {st..<tt} st λx. jumpF h (at-right x)]
unfolding right-def by simp

qed
moreover have left {st<..tt} = jumpF h (at-left tt) + left {st<..<tt}
proof (cases jumpF h (at-left tt) =0 )

case True
then have L {st<..tt} = L {st<..<tt}

unfolding L-def using less-eq-real-def by auto
then have left {st<..tt} = left {st<..<tt}

unfolding left-def by auto
then show ?thesis using True by auto

next
case False
have finite (L {st<..tt})

using finite-jFs unfolding L-def finite-jumpFs-def
by (auto elim:rev-finite-subset)

moreover have tt ∈ L {st<..tt} using False ‹st<tt› unfolding L-def by
auto

moreover have L {st<..tt} − {tt} = L {st<..<tt} unfolding L-def by
auto

ultimately show left {st<..tt}= jumpF h (at-left tt) + left {st<..<tt}
using sum.remove[of L {st<..tt} tt λx. jumpF h (at-left x)]
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unfolding left-def by simp
qed
ultimately show ?thesis by simp

qed
also have ... = jumpF h (at-right st) − jumpF h (at-left tt)
proof −

define S where S={x. (jumpF h (at-left x) 6= 0 ∨ jumpF h (at-right x) 6=
0 ) ∧ st < x ∧ x < tt}

have right {st<..<tt} = sum (λx. jumpF h (at-right x)) S
unfolding right-def S-def R-def
apply (rule sum.mono-neutral-left)

subgoal using finite-jFs unfolding finite-jumpFs-def by (auto elim:rev-finite-subset)
subgoal by auto
subgoal by auto
done

moreover have left {st<..<tt} = sum (λx. jumpF h (at-left x)) S
unfolding left-def S-def L-def
apply (rule sum.mono-neutral-left)

subgoal using finite-jFs unfolding finite-jumpFs-def by (auto elim:rev-finite-subset)
subgoal by auto
subgoal by auto
done

ultimately have right {st<..<tt} − left {st<..<tt}
= sum (λx. jumpF h (at-right x) − jumpF h (at-left x)) S

by (simp add: sum-subtractf )
also have ... = 0
proof −

have jumpF h (at-right i) − jumpF h (at-left i) = 0 when g i=0 for i
proof −

have (LIM x at i. f x / g x :> at-bot) ∨ (LIM x at i. f x / g x :> at-top)
proof −

have ∗: f −i→ f i g −i→ 0 f i 6= 0
using g-imp-f [OF ‹g i=0 ›] ‹g i=0 › unfolding f-def g-def
by (auto intro!:tendsto-eq-intros)

have ?thesis when Re z > Re z0
proof −
have g-alt:g = (λt. r ∗ cos t + r) unfolding g-def using ‹|Re z − Re

z0 | = r› that by auto
have (g has-sgnx 1 ) (at i)
proof −

have sgn (g t) = 1 when t 6= i dist t i < pi for t
proof −

have cos i = − 1 using ‹g i =0 › ‹r>0 › unfolding g-alt
by (metis add.inverse-inverse less-numeral-extra(3 ) mult-cancel-left

mult-minus1-right real-add-minus-iff )
then obtain k::int where k-def :i = (2 ∗ k + 1 ) ∗ pi

using cos-eq-minus1 [of i] by auto
show ?thesis
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proof (rule ccontr)
assume sgn (g t) 6= 1
then have cos t + 1≤0 using ‹r>0 › unfolding g-alt

by (metis (no-types, opaque-lifting) add-le-same-cancel1
add-minus-cancel

mult-le-cancel-left1 mult-le-cancel-right1 mult-minus-right
mult-zero-left

sgn-pos zero-le-one)
then have cos t = −1

by (metis add.commute cos-ge-minus-one le-less not-less
real-add-le-0-iff )

then obtain k ′::int where k ′-def :t = (2 ∗ k ′ + 1 ) ∗ pi
using cos-eq-minus1 [of t] by auto

then have t − i = 2 ∗ pi∗(k ′ − k)
using k-def by (auto simp add:algebra-simps)

then have 2 ∗ pi ∗ | (k ′ − k)| < pi
using ‹dist t i < pi› by (simp add:dist-norm abs-mult)

from divide-strict-right-mono[OF this, of 2∗pi,simplified] have |k ′

− k | < 1/2
by auto

then have k=k ′ by linarith
then have t=i using k-def k ′-def by auto
then show False using ‹t 6=i› by auto

qed
qed
then show ?thesis unfolding has-sgnx-def eventually-at

apply(intro exI [where x=pi])
by auto

qed
then show ?thesis using ∗ filterlim-divide-at-bot-at-top-iff [of f f i at i

g]
by (simp add: sgn-if )

qed
moreover have ?thesis when Re z < Re z0
proof −

have g-alt:g = (λt. r ∗ cos t − r) unfolding g-def using ‹|Re z −
Re z0 | = r› that by auto

have (g has-sgnx − 1 ) (at i)
proof −

have sgn (g t) = − 1 when t 6= i dist t i < pi for t
proof −

have cos i = 1 using ‹g i =0 › ‹r>0 › unfolding g-alt by simp
then obtain k::int where k-def :i = (2 ∗ k ∗ pi)

using cos-one-2pi-int[of i] by auto
show ?thesis
proof (rule ccontr)

assume sgn (g t) 6= − 1
then have cos t − 1≥0 using ‹r>0 › unfolding g-alt

using mult-le-cancel-left1 by fastforce
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then have cos t = 1
by (meson cos-le-one diff-ge-0-iff-ge le-less not-less)

then obtain k ′::int where k ′-def :t = 2 ∗ k ′∗ pi
using cos-one-2pi-int[of t] by auto

then have t − i = 2 ∗ pi∗(k ′ − k)
using k-def by (auto simp add:algebra-simps)

then have 2 ∗ pi ∗ | (k ′ − k)| < pi
using ‹dist t i < pi› by (simp add:dist-norm abs-mult)

from divide-strict-right-mono[OF this, of 2∗pi,simplified] have
|k ′ − k | < 1/2

by auto
then have k=k ′ by linarith
then have t=i using k-def k ′-def by auto
then show False using ‹t 6=i› by auto

qed
qed
then show ?thesis unfolding has-sgnx-def eventually-at

apply(intro exI [where x=pi])
by auto

qed
then show ?thesis using ∗ filterlim-divide-at-bot-at-top-iff [of f f i at

i g]
by (simp add: sgn-if )

qed
moreover have Re z 6= Re z0 using ‹|Re z − Re z0 | = r› ‹r>0 › by

fastforce
ultimately show ?thesis by fastforce

qed
moreover have ?thesis when (LIM x at i. f x / g x :> at-bot)
proof −

have jumpF h (at-right i) = − 1/2 jumpF h (at-left i) = −1/2
using that unfolding jumpF-def h-def filterlim-at-split by auto

then show ?thesis by auto
qed
moreover have ?thesis when (LIM x at i. f x / g x :> at-top)
proof −

have jumpF h (at-right i) = 1/2 jumpF h (at-left i) = 1/2
using that unfolding jumpF-def h-def filterlim-at-split by auto

then show ?thesis by auto
qed
ultimately show ?thesis by auto

qed
moreover have jumpF h (at-right i) − jumpF h (at-left i) = 0 when g

i 6=0 for i
proof −

have isCont h i using that unfolding h-def f-def g-def
by (auto intro!:continuous-intros)

then have jumpF h (at-right i) = 0 jumpF h (at-left i) = 0
using jumpF-not-infinity unfolding continuous-at-split by auto
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then show ?thesis by auto
qed
ultimately show ?thesis by (intro sum.neutral,auto)

qed
finally show ?thesis by simp

qed
also have ... = jumpF-pathstart (part-circlepath z r st tt) z0
− jumpF-pathfinish (part-circlepath z r st tt) z0

using jstart-eq jfinish-eq by auto
finally have cindex-pathE (part-circlepath z r st tt) z0 =

jumpF-pathstart (part-circlepath z r st tt) z0
− jumpF-pathfinish (part-circlepath z r st tt) z0

.
then show ?thesis using that by auto

qed
moreover have ?thesis when |Re z − Re z0 | < r
proof −

define zr where zr= (Re z0 − Re z)/r
define ϑ where ϑ = arccos zr
define β where β = 2∗pi − ϑ
have 0<ϑ ϑ<pi
proof −

have − 1 < zr zr < 1
using that ‹r>0 › unfolding zr-def by (auto simp add:field-simps)

from arccos-lt-bounded[OF this] show 0<ϑ ϑ<pi
unfolding ϑ-def by auto

qed
have g ϑ = 0 g β = 0
proof −

have |zr |≤1 using that unfolding zr-def by auto
then have cos ϑ = zr cos β = cos ϑ

unfolding ϑ-def [folded zr-def ] β-def by auto
then show g ϑ = 0 g β = 0 unfolding zr-def g-def using ‹r>0 › by auto

qed
have g-sgnx-ϑ:(g has-sgnx 1 ) (at-left ϑ) (g has-sgnx −1 ) (at-right ϑ)
proof −

have (g has-real-derivative − r ∗ sin ϑ) (at ϑ)
unfolding g-def by (auto intro!:derivative-eq-intros)

moreover have − r ∗ sin ϑ <0
using sin-gt-zero[OF ‹0<ϑ› ‹ϑ<pi›] ‹r>0 › by auto

ultimately show (g has-sgnx 1 ) (at-left ϑ) (g has-sgnx −1 ) (at-right ϑ)
using has-sgnx-derivative-at-left[of g − r ∗ sin ϑ, OF - ‹g ϑ=0 ›]

has-sgnx-derivative-at-right[of g − r ∗ sin ϑ, OF - ‹g ϑ=0 ›]
by force+

qed
have g-sgnx-β:(g has-sgnx −1 ) (at-left β) (g has-sgnx 1 ) (at-right β)
proof −

have (g has-real-derivative − r ∗ sin β) (at β)
unfolding g-def by (auto intro!:derivative-eq-intros)
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moreover have pi<β β<2∗pi unfolding β-def using ‹0<ϑ› ‹ϑ<pi› by
auto

from sin-lt-zero[OF this] ‹r>0 › have − r ∗ sin β >0 by (simp add:
mult-pos-neg)

ultimately show (g has-sgnx −1 ) (at-left β) (g has-sgnx 1 ) (at-right β)
using has-sgnx-derivative-at-left[of g − r ∗ sin β, OF - ‹g β=0 ›]

has-sgnx-derivative-at-right[of g − r ∗ sin β, OF - ‹g β=0 ›]
by force+

qed
have f-tendsto: (f −−−→ f i) (at-left i) (f −−−→ f i) (at-right i)
and g-tendsto: (g −−−→ g i) (at-left i) (g −−−→ g i) (at-right i) for i

proof −
have (f −−−→ f i) (at i)

unfolding f-def by (auto intro!:tendsto-eq-intros)
then show (f −−−→ f i) (at-left i) (f −−−→ f i) (at-right i)

by (auto simp add: filterlim-at-split)
next

have (g −−−→ g i) (at i)
unfolding g-def by (auto intro!:tendsto-eq-intros)

then show (g −−−→ g i) (at-left i) (g −−−→ g i) (at-right i)
by (auto simp add: filterlim-at-split)

qed

define ϑ-if ::real where ϑ-if = (if r ∗ sin ϑ + Im z > Im z0 then −1 else 1 )
define β-if ::real where β-if = (if r ∗ sin β + Im z > Im z0 then 1 else −1 )
have jump (λi. f i/g i) ϑ = ϑ-if
proof −

have ?thesis when r ∗ sin ϑ + Im z > Im z0
proof −

have f ϑ > 0 using that unfolding f-def by auto
have (LIM x (at-left ϑ). f x / g x :> at-top)

apply (subst filterlim-divide-at-bot-at-top-iff [of f f ϑ - g])
using ‹f ϑ > 0 › ‹g ϑ =0 › f-tendsto g-tendsto[of ϑ] g-sgnx-ϑ by auto

moreover then have ¬ (LIM x (at-left ϑ). f x / g x :> at-bot) by auto
moreover have (LIM x (at-right ϑ). f x / g x :> at-bot)

apply (subst filterlim-divide-at-bot-at-top-iff [of f f ϑ - g])
using ‹f ϑ > 0 › ‹g ϑ =0 › f-tendsto g-tendsto[of ϑ] g-sgnx-ϑ by auto

ultimately show ?thesis using that unfolding jump-def ϑ-if-def by auto
qed
moreover have ?thesis when r ∗ sin ϑ + Im z < Im z0
proof −

have f ϑ < 0 using that unfolding f-def by auto
have (LIM x (at-left ϑ). f x / g x :> at-bot)

apply (subst filterlim-divide-at-bot-at-top-iff [of f f ϑ - g])
using ‹f ϑ < 0 › ‹g ϑ =0 › f-tendsto g-tendsto[of ϑ] g-sgnx-ϑ by auto

moreover have (LIM x (at-right ϑ). f x / g x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f ϑ - g])
using ‹f ϑ < 0 › ‹g ϑ =0 › f-tendsto g-tendsto[of ϑ] g-sgnx-ϑ by auto

ultimately show ?thesis using that unfolding jump-def ϑ-if-def by auto
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qed
moreover have r ∗ sin ϑ + Im z 6= Im z0

using g-imp-f [OF ‹g ϑ=0 ›] unfolding f-def by auto
ultimately show ?thesis by fastforce

qed
moreover have jump (λi. f i/g i) β = β-if
proof −

have ?thesis when r ∗ sin β + Im z > Im z0
proof −

have f β > 0 using that unfolding f-def by auto
have (LIM x (at-left β). f x / g x :> at-bot)

apply (subst filterlim-divide-at-bot-at-top-iff [of f f β - g])
using ‹f β > 0 › ‹g β =0 › f-tendsto g-tendsto[of β] g-sgnx-β by auto

moreover have (LIM x (at-right β). f x / g x :> at-top)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f β - g])
using ‹f β > 0 › ‹g β =0 › f-tendsto g-tendsto[of β] g-sgnx-β by auto

ultimately show ?thesis using that unfolding jump-def β-if-def by auto
qed
moreover have ?thesis when r ∗ sin β + Im z < Im z0
proof −

have f β < 0 using that unfolding f-def by auto
have (LIM x (at-left β). f x / g x :> at-top)

apply (subst filterlim-divide-at-bot-at-top-iff [of f f β - g])
using ‹f β < 0 › ‹g β =0 › f-tendsto g-tendsto[of β] g-sgnx-β by auto

moreover have (LIM x (at-right β). f x / g x :> at-bot)
apply (subst filterlim-divide-at-bot-at-top-iff [of f f β - g])
using ‹f β < 0 › ‹g β =0 › f-tendsto g-tendsto[of β] g-sgnx-β by auto

ultimately show ?thesis using that unfolding jump-def β-if-def by auto
qed
moreover have r ∗ sin β + Im z 6= Im z0

using g-imp-f [OF ‹g β=0 ›] unfolding f-def by auto
ultimately show ?thesis by fastforce

qed
moreover have jump (λi. f i / g i) x 6= 0 ←→ x=ϑ ∨ x=β when st<x x<tt

for x
proof

assume x = ϑ ∨ x = β
then show jump (λi. f i / g i) x 6= 0

using ‹jump (λi. f i/g i) ϑ = ϑ-if › ‹jump (λi. f i/g i) β = β-if ›
unfolding ϑ-if-def β-if-def
by (metis add.inverse-inverse add.inverse-neutral of-int-0 one-neq-zero)

next
assume asm:jump (λi. f i / g i) x 6= 0
let ?thesis = x = ϑ ∨ x = β
have g x=0
proof (rule ccontr)

assume g x 6= 0
then have isCont (λi. f i / g i) x

unfolding f-def g-def by (auto intro:continuous-intros)
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then have jump (λi. f i / g i) x = 0 using jump-not-infinity by simp
then show False using asm by auto

qed
then have cos x = zr unfolding g-def zr-def using ‹r>0 › by (auto simp

add:field-simps)
have ?thesis when x≤pi
proof−

have x≥0 using ‹st<x› ‹st≥0 › by auto
then have arccos (cos x) = x using arccos-cos[of x] that by auto
then have x=ϑ unfolding ϑ-def ‹cos x=zr› by auto
then show ?thesis by auto

qed
moreover have ?thesis when ¬ x≤pi
proof −

have x−2∗pi≤0 −pi≤x−2∗pi using that ‹x<tt› ‹tt≤2∗pi› by auto
from arccos-cos2 [OF this] have arccos (cos (x − 2 ∗ pi)) = 2∗pi−x by

auto
then have arccos (cos x) = 2∗pi−x

by (metis arccos cos-2pi-minus cos-ge-minus-one cos-le-one)
then have x=β unfolding β-def ϑ-def using ‹cos x =zr› by auto
then show ?thesis by auto

qed
ultimately show ?thesis by auto

qed
then have {x. jump (λi. f i / g i) x 6= 0 ∧ st < x ∧ x < tt} = {ϑ,β} ∩

{st<..<tt}
by force

moreover have ϑ 6=β using β-def ‹ϑ < pi› by auto
ultimately have cindex st tt h =

(if st<ϑ ∧ ϑ<tt then ϑ-if else 0 )
+
(if st<β ∧ β < tt then β-if else 0 )

unfolding cindex-def h-def by fastforce
moreover have cindexE st tt h = jumpF h (at-right st) + cindex st tt h −

jumpF h (at-left tt)
proof (rule cindex-eq-cindexE-divide[of st tt f g,folded h-def ])

show st < tt using ‹st < tt› .
show ∀ x∈{st..tt}. g x = 0 −→ f x 6= 0 using g-imp-f by auto
show continuous-on {st..tt} f continuous-on {st..tt} g

unfolding f-def g-def by (auto intro!:continuous-intros)
next

let ?S1={t. Re (part-circlepath z r st tt t−z0 ) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
let ?S2={t. Im (part-circlepath z r st tt t−z0 ) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
define G where G={t. g (linepath st tt t) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
define F where F={t. f (linepath st tt t) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
define vl where vl=(λx. (x−st)/(tt−st))
have finite G finite F
proof −

have finite {t. Re (part-circlepath z r st tt t−z0 ) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
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finite {t. Im (part-circlepath z r st tt t−z0 ) = 0 ∧ 0 ≤ t ∧ t ≤ 1}
using part-circlepath-half-finite-inter [of st tt r Complex 1 0 z Re z0 ]

part-circlepath-half-finite-inter [of st tt r Complex 0 1 z Im z0 ] ‹st<tt›
‹r>0 ›

by (auto simp add:inner-complex-def Complex-eq-0 )
moreover have

Re (part-circlepath z r st tt t−z0 ) = 0 ←→ g (linepath st tt t) = 0
Im (part-circlepath z r st tt t−z0 ) = 0 ←→ f (linepath st tt t) = 0
for t

unfolding cindex-pathE-def part-circlepath-def exp-Euler f-def g-def comp-def
by (auto simp add:cos-of-real sin-of-real algebra-simps)

ultimately show finite G finite F unfolding G-def F-def
by auto

qed
then have finite (linepath st tt ‘ F) finite (linepath st tt ‘ G)

by auto
moreover have
{x. f x = 0 ∧ st ≤ x ∧ x ≤ tt} ⊆ linepath st tt ‘ F
{x. g x = 0 ∧ st ≤ x ∧ x ≤ tt} ⊆ linepath st tt ‘ G

proof −
have ∗: linepath st tt (vl t) = t vl t≥0 ←→ t≥st vl t≤1 ←→t≤tt for t

unfolding linepath-def vl-def using ‹tt>st›
apply (auto simp add:divide-simps)

by (simp add:algebra-simps)
then show
{x. f x = 0 ∧ st ≤ x ∧ x ≤ tt} ⊆ linepath st tt ‘F
{x. g x = 0 ∧ st ≤ x ∧ x ≤ tt} ⊆ linepath st tt ‘G

unfolding F-def G-def
by (clarify|rule-tac x=vl x in rev-image-eqI ,auto)+

qed
ultimately have

finite {x. f x = 0 ∧ st ≤ x ∧ x ≤ tt}
finite {x. g x = 0 ∧ st ≤ x ∧ x ≤ tt}

by (auto elim:rev-finite-subset)
from finite-UnI [OF this] show finite {x. (f x = 0 ∨ g x = 0 ) ∧ st ≤ x ∧ x

≤ tt}
by (elim rev-finite-subset,auto)

qed
ultimately show ?thesis

unfolding Let-def
apply (fold zr-def ϑ-def β-def ϑ-if-def β-if-def )+
using jstart-eq jfinish-eq index-eq that by auto

qed
ultimately show ?thesis by fastforce

qed

lemma jumpF-pathstart-part-circlepath:
assumes st<tt r>0 cmod (z−z0 ) 6=r
shows jumpF-pathstart (part-circlepath z r st tt) z0 = (
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if r ∗ cos st + Re z − Re z0 = 0 then
(let
∆ = r∗ sin st + Im z − Im z0

in
if (sin st > 0 ∨ cos st=1 ) ∧ ∆ < 0
∨ (sin st < 0 ∨ cos st=−1 ) ∧ ∆ > 0 then

1/2
else
− 1/2 )

else 0 )
proof −

define f where f=(λi. r ∗ sin i + Im z − Im z0 )
define g where g=(λi. r ∗ cos i + Re z − Re z0 )
have jumpF-eq:jumpF-pathstart (part-circlepath z r st tt) z0 = jumpF (λi. f i/g

i) (at-right st)
proof −

have jumpF-pathstart (part-circlepath z r st tt) z0
= jumpF ((λi. f i/g i) o linepath st tt) (at-right 0 )

unfolding jumpF-pathstart-def part-circlepath-def exp-Euler f-def g-def comp-def
by (simp add:cos-of-real sin-of-real algebra-simps)

also have ... = jumpF (λi. f i/g i) (at-right st)
using jumpF-linear-comp(2 )[of tt−st (λi. f i/g i) st 0 ,symmetric] ‹st<tt›
unfolding linepath-def by (auto simp add:algebra-simps)

finally show ?thesis .
qed
have g-has-sgnx1 :(g has-sgnx 1 ) (at-right st) when g st=0 sin st < 0 ∨ cos

st=−1
proof −

have ?thesis when sin st<0
proof −

have (g has-sgnx sgn (− r ∗ sin st)) (at-right st)
apply (rule has-sgnx-derivative-at-right[of g − r ∗ sin st st])
subgoal unfolding g-def by (auto intro!:derivative-eq-intros)
subgoal using ‹g st=0 › .
subgoal using ‹r>0 › ‹sin st<0 › by (simp add: mult-pos-neg)
done

then show ?thesis using ‹r>0 › that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos st = −1
proof −

have g i > 0 when st<i i<st+pi for i
proof −

obtain k where k-def :st = 2 ∗ of-int k ∗ pi+ pi
using ‹cos st = −1 › by (metis cos-eq-minus1 distrib-left mult.commute

mult.right-neutral)
have cos (i−st) < 1 using cos-monotone-0-pi[of 0 i−st ] that by auto
moreover have cos (i−st) = − cos i

apply (rule cos-eq-neg-periodic-intro[of - - −k−1 ])
unfolding k-def by (auto simp add:algebra-simps)
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ultimately have cos i>−1 by auto
then have cos st<cos i using ‹cos st=−1 › by auto
have 0 = r ∗ cos st + Re z − Re z0

using ‹g st = 0 › unfolding g-def by auto
also have ... < r ∗ cos i + Re z − Re z0

using ‹cos st < cos i› ‹r>0 › by auto
finally show ?thesis unfolding g-def by auto

qed
then show ?thesis

unfolding has-sgnx-def eventually-at-right
apply (intro exI [where x=st+pi])
by auto

qed
ultimately show ?thesis using that(2 ) by auto

qed
have g-has-sgnx2 :(g has-sgnx −1 ) (at-right st) when g st=0 sin st > 0 ∨ cos

st=1
proof −

have ?thesis when sin st>0
proof −

have (g has-sgnx sgn (− r ∗ sin st)) (at-right st)
apply (rule has-sgnx-derivative-at-right[of - − r ∗ sin st])
subgoal unfolding g-def by (auto intro!:derivative-eq-intros)
subgoal using ‹g st=0 › .
subgoal using ‹r>0 › ‹sin st>0 › by (simp add: mult-pos-neg)
done

then show ?thesis using ‹r>0 › that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos st=1
proof −

have g i < 0 when st<i i<st+pi for i
proof −

obtain k where k-def :st = 2 ∗ of-int k ∗ pi
using ‹cos st=1 › cos-one-2pi-int by auto

have cos (i−st) < 1 using cos-monotone-0-pi[of 0 i−st ] that by auto
moreover have cos (i−st) = cos i

apply (rule cos-eq-periodic-intro[of - - −k])
unfolding k-def by (auto simp add:algebra-simps)

ultimately have cos i<1 by auto
then have cos st>cos i using ‹cos st=1 › by auto
have 0 = r ∗ cos st + Re z − Re z0

using ‹g st = 0 › unfolding g-def by auto
also have ... > r ∗ cos i + Re z − Re z0

using ‹cos st > cos i› ‹r>0 › by auto
finally show ?thesis unfolding g-def by auto

qed
then show ?thesis

unfolding has-sgnx-def eventually-at-right
apply (intro exI [where x=st+pi])
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by auto
qed
ultimately show ?thesis using that(2 ) by auto

qed

have ?thesis when r ∗ cos st + Re z − Re z0 6= 0
proof −

have g st 6=0 using that unfolding g-def by auto
then have continuous (at-right st) (λi. f i / g i)

unfolding f-def g-def by (auto intro!:continuous-intros)
then have jumpF (λi. f i/g i) (at-right st) = 0

using jumpF-not-infinity[of at-right st (λi. f i/g i)] by auto
then show ?thesis using jumpF-eq that by auto

qed
moreover have ?thesis when r ∗ cos st + Re z − Re z0 = 0
(sin st > 0 ∨ (cos st=1 ) ) ∧ f st < 0

∨ (sin st < 0 ∨ (cos st=−1 ) ) ∧ f st > 0
proof −
have g st = 0 f st 6=0 and g-cont: continuous (at-right st) g and f-cont:continuous

(at-right st) f
using that unfolding g-def f-def by (auto intro!:continuous-intros)

have (g has-sgnx sgn (f st)) (at-right st)
using g-has-sgnx1 [OF ‹g st=0 ›] g-has-sgnx2 [OF ‹g st=0 ›] that(2 ) by auto

then have LIM x at-right st. f x / g x :> at-top
apply (subst filterlim-divide-at-bot-at-top-iff [of f f st at-right st g])

using ‹f st 6=0 › ‹g st = 0 › g-cont f-cont by (auto simp add: continuous-within)
then have jumpF (λi. f i/g i) (at-right st) = 1/2

unfolding jumpF-def by auto
then show ?thesis using jumpF-eq that unfolding f-def by auto

qed
moreover have ?thesis when r ∗ cos st + Re z − Re z0 = 0
¬ ((sin st > 0 ∨ cos st=1 ) ∧ f st < 0

∨ (sin st < 0 ∨ cos st=−1 ) ∧ f st > 0 )
proof −

define neq1 where neq1 = (∀ k::int. st 6= 2∗k∗pi)
define neq2 where neq2 = (∀ k::int. st 6= 2∗k∗pi+pi)
have g st = 0 and g-cont: continuous (at-right st) g and f-cont:continuous

(at-right st) f
using that unfolding g-def f-def by (auto intro!:continuous-intros)

have f st 6=0
proof (rule ccontr)

assume ¬ f st 6= 0
then have f st = 0 by auto
then have Im (z0 − z) =r ∗ sin st Re (z0 − z) = r ∗ cos st using ‹g st=0 ›

unfolding f-def g-def by (auto simp add:algebra-simps)
then have cmod (z0 − z) = sqrt((r ∗ sin st)^2 + (r ∗ cos st)^2 )

unfolding cmod-def by auto
also have ... = sqrt (r^2 ∗ ((sin st)^2 + (cos st)^2 ))

by (auto simp only:algebra-simps power-mult-distrib)
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also have ... = r
using ‹r>0 › by simp

finally have cmod (z0 − z) = r .
then show False using ‹cmod (z−z0 ) 6=r› by (simp add: norm-minus-commute)
qed
have (sin st > 0 ∨ (cos st=1 ) ) ∧ f st > 0 ∨ (sin st < 0 ∨ (cos st=−1 ) ) ∧

f st < 0
proof −

have sin st = 0 ←→ cos st=−1 ∨ cos st=1
by (metis (no-types, opaque-lifting) add.right-neutral cancel-comm-monoid-add-class.diff-cancel

cos-diff cos-zero mult-eq-0-iff power2-eq-1-iff power2-eq-square sin-squared-eq)
moreover have ((sin st ≤ 0 ∧ cos st 6=1 ) ∨ f st > 0 ) ∧ ((sin st ≥ 0 ∧ cos

st 6=−1 ) ∨ f st < 0 )
using that(2 ) ‹f st 6=0 › by argo

ultimately show ?thesis by (meson linorder-neqE-linordered-idom not-le)
qed
then have (g has-sgnx − sgn (f st)) (at-right st)

using g-has-sgnx1 [OF ‹g st=0 ›] g-has-sgnx2 [OF ‹g st=0 ›] by auto
then have LIM x at-right st. f x / g x :> at-bot

apply (subst filterlim-divide-at-bot-at-top-iff [of f f st at-right st g])
using ‹f st 6=0 › ‹g st = 0 › g-cont f-cont by (auto simp add: continuous-within)

then have jumpF (λi. f i/g i) (at-right st) = −1/2
unfolding jumpF-def by auto

then show ?thesis using jumpF-eq that unfolding f-def by auto
qed
ultimately show ?thesis by fast

qed

lemma jumpF-pathfinish-part-circlepath:
assumes st<tt r>0 cmod (z−z0 ) 6=r
shows jumpF-pathfinish (part-circlepath z r st tt) z0 = (

if r ∗ cos tt + Re z − Re z0 = 0 then
(let
∆ = r∗ sin tt + Im z − Im z0

in
if (sin tt > 0 ∨ cos tt=−1 ) ∧ ∆ < 0
∨ (sin tt < 0 ∨ cos tt=1 ) ∧ ∆ > 0 then
− 1/2

else
1/2 )

else 0 )
proof −

define f where f=(λi. r ∗ sin i + Im z − Im z0 )
define g where g=(λi. r ∗ cos i + Re z − Re z0 )
have jumpF-eq:jumpF-pathfinish (part-circlepath z r st tt) z0 = jumpF (λi. f i/g

i) (at-left tt)
proof −

have jumpF-pathfinish (part-circlepath z r st tt) z0
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= jumpF ((λi. f i/g i) o linepath st tt) (at-left 1 )
unfolding jumpF-pathfinish-def part-circlepath-def exp-Euler f-def g-def comp-def

by (simp add:cos-of-real sin-of-real algebra-simps)
also have ... = jumpF (λi. f i/g i) (at-left tt)

using jumpF-linear-comp(1 )[of tt−st (λi. f i/g i) st 1 ,symmetric] ‹st<tt›
unfolding linepath-def by (auto simp add:algebra-simps)

finally show ?thesis .
qed
have g-has-sgnx1 :(g has-sgnx −1 ) (at-left tt) when g tt=0 sin tt < 0 ∨ cos tt=1

proof −
have ?thesis when sin tt<0
proof −

have (g has-sgnx − sgn (− r ∗ sin tt)) (at-left tt)
apply (rule has-sgnx-derivative-at-left[of - − r ∗ sin tt])
subgoal unfolding g-def by (auto intro!:derivative-eq-intros)
subgoal using ‹g tt=0 › .
subgoal using ‹r>0 › ‹sin tt<0 › by (simp add: mult-pos-neg)
done

then show ?thesis using ‹r>0 › that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos tt=1
proof −

have g i < 0 when tt−pi<i i<tt for i
proof −

obtain k where k-def :tt = 2 ∗ of-int k ∗ pi
using ‹cos tt=1 › cos-one-2pi-int by auto

have cos (i−tt) < 1
using cos-monotone-0-pi[of 0 tt−i ] that cos-minus[of tt−i,simplified] by

auto
moreover have cos (i−tt) = cos i

apply (rule cos-eq-periodic-intro[of - - −k])
unfolding k-def by (auto simp add:algebra-simps)

ultimately have cos i<1 by auto
then have cos tt>cos i using ‹cos tt=1 › by auto
have 0 = r ∗ cos tt + Re z − Re z0

using ‹g tt = 0 › unfolding g-def by auto
also have ... > r ∗ cos i + Re z − Re z0

using ‹cos tt > cos i› ‹r>0 › by auto
finally show ?thesis unfolding g-def by auto

qed
then show ?thesis

unfolding has-sgnx-def eventually-at-left
apply (intro exI [where x=tt−pi])
by auto

qed
ultimately show ?thesis using that(2 ) by auto

qed
have g-has-sgnx2 :(g has-sgnx 1 ) (at-left tt) when g tt=0 sin tt > 0 ∨ cos tt=−1
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proof −
have ?thesis when sin tt>0
proof −

have (g has-sgnx − sgn (− r ∗ sin tt)) (at-left tt)
apply (rule has-sgnx-derivative-at-left[of - − r ∗ sin tt])
subgoal unfolding g-def by (auto intro!:derivative-eq-intros)
subgoal using ‹g tt=0 › .
subgoal using ‹r>0 › ‹sin tt>0 › by (simp add: mult-pos-neg)
done

then show ?thesis using ‹r>0 › that by (simp add: sgn-mult)
qed
moreover have ?thesis when cos tt = −1
proof −

have g i > 0 when tt−pi<i i<tt for i
proof −

obtain k where k-def :tt = 2 ∗ of-int k ∗ pi+ pi
using ‹cos tt = −1 › by (metis cos-eq-minus1 distrib-left mult.commute

mult.right-neutral)
have cos (i−tt) < 1

using cos-monotone-0-pi[of 0 tt−i ] that cos-minus[of tt−i,simplified]
by auto

moreover have cos (i−tt) = − cos i
apply (rule cos-eq-neg-periodic-intro[of - - −k−1 ])
unfolding k-def by (auto simp add:algebra-simps)

ultimately have cos i>−1 by auto
then have cos tt<cos i using ‹cos tt=−1 › by auto
have 0 = r ∗ cos tt + Re z − Re z0

using ‹g tt = 0 › unfolding g-def by auto
also have ... < r ∗ cos i + Re z − Re z0

using ‹cos tt < cos i› ‹r>0 › by auto
finally show ?thesis unfolding g-def by auto

qed
then show ?thesis

unfolding has-sgnx-def eventually-at-left
apply (intro exI [where x=tt−pi])
by auto

qed
ultimately show ?thesis using that(2 ) by auto

qed

have ?thesis when r ∗ cos tt + Re z − Re z0 6= 0
proof −

have g tt 6=0 using that unfolding g-def by auto
then have continuous (at-left tt) (λi. f i / g i)

unfolding f-def g-def by (auto intro!:continuous-intros)
then have jumpF (λi. f i/g i) (at-left tt) = 0

using jumpF-not-infinity[of at-left tt (λi. f i/g i)] by auto
then show ?thesis using jumpF-eq that by auto
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qed
moreover have ?thesis when r ∗ cos tt + Re z − Re z0 = 0
(sin tt > 0 ∨ cos tt=−1 ) ∧ f tt < 0

∨ (sin tt < 0 ∨ cos tt=1 ) ∧ f tt > 0
proof −
have g tt = 0 f tt 6=0 and g-cont: continuous (at-left tt) g and f-cont:continuous

(at-left tt) f
using that unfolding g-def f-def by (auto intro!:continuous-intros)

have (g has-sgnx − sgn (f tt)) (at-left tt)
using g-has-sgnx1 [OF ‹g tt=0 ›] g-has-sgnx2 [OF ‹g tt=0 ›] that(2 ) by auto

then have LIM x at-left tt. f x / g x :> at-bot
apply (subst filterlim-divide-at-bot-at-top-iff [of f f tt at-left tt g])
using ‹f tt 6=0 › ‹g tt = 0 › g-cont f-cont by (auto simp add: continuous-within)

then have jumpF (λi. f i/g i) (at-left tt) = − 1/2
unfolding jumpF-def by auto

then show ?thesis using jumpF-eq that unfolding f-def by auto
qed
moreover have ?thesis when r ∗ cos tt + Re z − Re z0 = 0
¬ ((sin tt > 0 ∨ cos tt=−1 ) ∧ f tt < 0

∨ (sin tt < 0 ∨ cos tt=1 ) ∧ f tt > 0 )
proof −

have g tt = 0 and g-cont: continuous (at-left tt) g and f-cont:continuous
(at-left tt) f

using that unfolding g-def f-def by (auto intro!:continuous-intros)
have f tt 6=0
proof (rule ccontr)

assume ¬ f tt 6= 0
then have f tt = 0 by auto
then have Im (z0 − z) =r ∗ sin tt Re (z0 − z) = r ∗ cos tt using ‹g tt=0 ›

unfolding f-def g-def by (auto simp add:algebra-simps)
then have cmod (z0 − z) = sqrt((r ∗ sin tt)^2 + (r ∗ cos tt)^2 )

unfolding cmod-def by auto
also have ... = sqrt (r^2 ∗ ((sin tt)^2 + (cos tt)^2 ))

by (auto simp only:algebra-simps power-mult-distrib)
also have ... = r

using ‹r>0 › by simp
finally have cmod (z0 − z) = r .

then show False using ‹cmod (z−z0 ) 6=r› by (simp add: norm-minus-commute)
qed
have (sin tt > 0 ∨ cos tt=−1 ) ∧ f tt > 0 ∨ (sin tt < 0 ∨ cos tt=1 ) ∧ f tt

< 0
proof −

have sin tt = 0 ←→ cos tt=−1 ∨ cos tt=1
by (metis (no-types, opaque-lifting) add.right-neutral cancel-comm-monoid-add-class.diff-cancel

cos-diff cos-zero mult-eq-0-iff power2-eq-1-iff power2-eq-square sin-squared-eq)
moreover have ((sin tt ≤ 0 ∧ cos tt 6=−1 ) ∨ f tt > 0 ) ∧ ((sin tt ≥ 0 ∧

cos tt 6=1 ) ∨ f tt < 0 )
using that(2 ) ‹f tt 6=0 › by argo
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ultimately show ?thesis by (meson linorder-neqE-linordered-idom not-le)
qed
then have (g has-sgnx sgn (f tt)) (at-left tt)

using g-has-sgnx1 [OF ‹g tt=0 ›] g-has-sgnx2 [OF ‹g tt=0 ›] by auto
then have LIM x at-left tt. f x / g x :> at-top

apply (subst filterlim-divide-at-bot-at-top-iff [of f f tt at-left tt g])
using ‹f tt 6=0 › ‹g tt = 0 › g-cont f-cont by (auto simp add: continuous-within)

then have jumpF (λi. f i/g i) (at-left tt) = 1/2
unfolding jumpF-def by auto

then show ?thesis using jumpF-eq that unfolding f-def by auto
qed
ultimately show ?thesis by fast

qed

lemma
fixes z0 z::complex and r ::real
defines upper ≡ cindex-pathE (part-circlepath z r 0 pi) z0

and lower ≡ cindex-pathE (part-circlepath z r pi (2∗pi)) z0
shows cindex-pathE-circlepath-upper :

[[cmod (z0−z) < r ]] =⇒ upper = −1
[[Im (z0−z) > r ; |Re (z0 − z)| < r ]] =⇒ upper = 1
[[Im (z0−z) < −r ; |Re (z0 − z)| < r ]] =⇒ upper = −1
[[|Re (z0 − z)| > r ; r>0 ]] =⇒ upper = 0

and cindex-pathE-circlepath-lower :
[[cmod (z0−z) < r ]] =⇒ lower = −1
[[Im (z0−z) > r ; |Re (z0 − z)| < r ]] =⇒ lower = −1
[[Im (z0−z) < −r ; |Re (z0 − z)| < r ]] =⇒ lower = 1
[[|Re (z0 − z)| > r ; r>0 ]] =⇒ lower = 0

proof −
assume assms:cmod (z0−z) < r
have zz-facts:−r<Re z − Re z0 Re z − Re z0<r r>0

subgoal using assms complex-Re-le-cmod le-less-trans by fastforce
subgoal by (metis assms complex-Re-le-cmod le-less-trans minus-complex.simps(1 )

norm-minus-commute)
subgoal using assms le-less-trans norm-ge-zero by blast
done

define ϑ where ϑ = arccos ((Re z0 − Re z) / r)
have ϑ-bound:0 < ϑ ∧ ϑ < pi

unfolding ϑ-def
apply (rule arccos-lt-bounded)
using zz-facts by (auto simp add:field-simps)

have Im-sin:abs (Im z0 − Im z) < r ∗ sin ϑ
proof −

define zz where zz=z0−z
have sqrt ((Re zz)2 + (Im zz)2) < r

using assms unfolding zz-def cmod-def .
then have (Re zz)2 + (Im zz)2 < r^2
by (metis cmod-power2 dvd-refl linorder-not-le norm-complex-def power2-le-imp-le

real-sqrt-power zero-le-power-eq-numeral)
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then have (Im zz)2 < r^2 − (Re zz)^2 by auto
then have abs (Im zz) < sqrt (r^2 − (Re zz)^2 )

by (simp add: real-less-rsqrt)
then show ?thesis

unfolding ϑ-def zz-def
apply (subst sin-arccos-abs)
subgoal using zz-facts by auto

subgoal using ‹r>0 › by (auto simp add:field-simps divide-simps real-sqrt-divide)
done

qed
show upper = − 1
proof −

have jumpF-pathstart (part-circlepath z r 0 pi) z0 = 0
apply (subst jumpF-pathstart-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commute)

moreover have jumpF-pathfinish (part-circlepath z r 0 pi) z0 = 0
apply (subst jumpF-pathfinish-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commute)
ultimately show ?thesis using assms zz-facts ϑ-bound Im-sin unfolding

upper-def
apply (subst cindex-pathE-part-circlepath)
by (fold ϑ-def ,auto simp add: norm-minus-commute)

qed
show lower = − 1
proof −

have jumpF-pathstart (part-circlepath z r pi (2∗pi)) z0 = 0
apply (subst jumpF-pathstart-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commute)

moreover have jumpF-pathfinish (part-circlepath z r pi (2∗pi)) z0 = 0
apply (subst jumpF-pathfinish-part-circlepath)
using zz-facts assms by (auto simp add: norm-minus-commute)
ultimately show ?thesis using assms zz-facts ϑ-bound Im-sin unfolding

lower-def
apply (subst cindex-pathE-part-circlepath)
by (fold ϑ-def ,auto simp add: norm-minus-commute)

qed
next

assume assms:|Re (z0 − z)| > r r>0
show upper = 0 using assms unfolding upper-def

apply (subst cindex-pathE-part-circlepath)
apply auto

by (metis abs-Re-le-cmod abs-minus-commute eucl-less-le-not-le minus-complex.simps(1 ))
show lower = 0

using assms unfolding lower-def
apply (subst cindex-pathE-part-circlepath)
apply auto

by (metis abs-Re-le-cmod abs-minus-commute eucl-less-le-not-le minus-complex.simps(1 ))
next

assume assms:|Re (z0 − z)| < r
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then have r>0 by auto

define ϑ where ϑ = arccos ((Re z0 − Re z) / r)
have ϑ-bound:0 < ϑ ∧ ϑ < pi

unfolding ϑ-def
apply (rule arccos-lt-bounded)
using assms by (auto simp add:field-simps)

note norm-minus-commute[simp]
have jumpFs:

jumpF-pathstart (part-circlepath z r 0 pi) z0 = 0
jumpF-pathfinish (part-circlepath z r 0 pi) z0 = 0
jumpF-pathstart (part-circlepath z r pi (2∗pi)) z0 = 0
jumpF-pathfinish (part-circlepath z r pi (2∗pi)) z0 = 0
when cmod (z0 − z) 6= r

subgoal by (subst jumpF-pathstart-part-circlepath,use assms that in auto)
subgoal by (subst jumpF-pathfinish-part-circlepath,use assms that in auto)
subgoal by (subst jumpF-pathstart-part-circlepath,use assms that in auto)
subgoal by (subst jumpF-pathfinish-part-circlepath,use assms that in auto)
done

show upper = 1 lower = −1 when Im (z0−z) > r
proof −

have cmod (z0 − z) 6= r
using that assms abs-Im-le-cmod abs-le-D1 not-le by blast

moreover have Im z0 − Im z > r ∗ sin ϑ
proof −

have r ∗ sin ϑ ≤ r
using ‹r>0 › by auto

also have ... < Im z0 − Im z using that by auto
finally show ?thesis .

qed
ultimately show upper = 1 using assms jumpFs ϑ-bound that unfolding

upper-def
apply (subst cindex-pathE-part-circlepath)
by (fold ϑ-def ,auto)

have Im z − Im z0 < r ∗ sin ϑ
proof −

have Im z − Im z0 <0 using that ‹r>0 › by auto
moreover have r ∗ sin ϑ>0 using ‹r>0 › ϑ-bound by (simp add: sin-gt-zero)
ultimately show ?thesis by auto

qed
then show lower = −1 using ‹cmod (z0 − z) 6= r› ‹Im z0 − Im z > r ∗ sin

ϑ›
assms jumpFs ϑ-bound that unfolding lower-def

apply (subst cindex-pathE-part-circlepath)
by (fold ϑ-def ,auto)

qed
show upper = − 1 lower = 1 when Im (z0−z) < −r
proof −

have cmod (z0 − z) 6= r

174



using that assms
by (metis abs-Im-le-cmod abs-le-D1 minus-complex.simps(2 ) minus-diff-eq

neg-less-iff-less
norm-minus-cancel not-le)

moreover have Im z − Im z0 > r ∗ sin ϑ
proof −

have r ∗ sin ϑ ≤ r
using ‹r>0 › by auto

also have ... < Im z − Im z0 using that by auto
finally show ?thesis .

qed
moreover have Im z0 − Im z < r ∗ sin ϑ
proof −

have Im z0 − Im z<0 using that ‹r>0 › by auto
moreover have r ∗ sin ϑ>0 using ‹r>0 › ϑ-bound by (simp add: sin-gt-zero)
ultimately show ?thesis by auto

qed
ultimately show upper = − 1 using assms jumpFs ϑ-bound that unfolding

upper-def
apply (subst cindex-pathE-part-circlepath)
by (fold ϑ-def ,auto)

show lower = 1
using ‹Im z0 − Im z < r ∗ sin ϑ› ‹Im z − Im z0 > r ∗ sin ϑ› ‹cmod (z0 −

z) 6= r›
assms jumpFs ϑ-bound that unfolding lower-def

apply (subst cindex-pathE-part-circlepath)
by (fold ϑ-def ,auto)

qed
qed

lemma jumpF-pathstart-linepath:
jumpF-pathstart (linepath a b) z =
(if Re a = Re z ∧ Im a 6=Im z ∧ Re b 6= Re a then

if (Im a>Im z ∧ Re b > Re a) ∨ (Im a<Im z ∧ Re b < Re a) then 1/2 else
−1/2

else 0 )
proof −

define f where f=(λt. (Im b − Im a )∗ t + (Im a − Im z))
define g where g=(λt. (Re b − Re a )∗ t + (Re a − Re z))
have jump-eq:jumpF-pathstart (linepath a b) z = jumpF (λt. f t/g t) (at-right 0 )

unfolding jumpF-pathstart-def f-def linepath-def g-def
by (auto simp add:algebra-simps)

have ?thesis when Re a 6=Re z
proof −

have jumpF-pathstart (linepath a b) z = 0
unfolding jumpF-pathstart-def
apply (rule jumpF-im-divide-Re-0 )

apply auto
by (auto simp add:linepath-def that)
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then show ?thesis using that by auto
qed
moreover have ?thesis when Re a=Re z Im a = Im z
proof −

define c where c=(Im b − Im a) / (Re b − Re a)
have jumpF (λt. f t/g t) (at-right 0 ) = jumpF (λ-. c) (at-right 0 )
proof (rule jumpF-cong)

show ∀ F x in at-right 0 . f x / g x = c
unfolding eventually-at-right f-def g-def c-def using that
apply (intro exI [where x=1 ])
by auto

qed simp
then show ?thesis using jump-eq that by auto

qed
moreover have ?thesis when Re a=Re z Re b = Re a
proof −

have (λt. f t/g t) = (λ-. 0 ) unfolding f-def g-def using that by auto
then have jumpF (λt. f t/g t) (at-right 0 ) = jumpF (λ-. 0 ) (at-right 0 ) by

auto
then show ?thesis using jump-eq that by auto

qed
moreover have ?thesis when Re a = Re z (Im a>Im z ∧ Re b > Re a) ∨ (Im

a<Im z ∧ Re b < Re a)
proof −

have LIM x at-right 0 . f x / g x :> at-top
apply (subst filterlim-divide-at-bot-at-top-iff [of - Im a − Im z ])
unfolding f-def g-def using that
by (auto intro!:tendsto-eq-intros sgnx-eq-intros)

then have jumpF (λt. f t/g t) (at-right 0 ) = 1/2
unfolding jumpF-def by simp

then show ?thesis using jump-eq that by auto
qed
moreover have ?thesis when Re a = Re z Im a 6=Im z Re b 6= Re a
¬ ((Im a>Im z ∧ Re b > Re a) ∨ (Im a<Im z ∧ Re b < Re a))

proof −
have (Im a>Im z ∧ Re b < Re a) ∨ (Im a<Im z ∧ Re b > Re a)

using that by argo
then have LIM x at-right 0 . f x / g x :> at-bot

apply (subst filterlim-divide-at-bot-at-top-iff [of - Im a − Im z ])
unfolding f-def g-def using that
by (auto intro!:tendsto-eq-intros sgnx-eq-intros)

moreover then have ¬ (LIM x at-right 0 . f x / g x :> at-top)
using filterlim-at-top-at-bot by fastforce

ultimately have jumpF (λt. f t/g t) (at-right 0 ) = − 1/2
unfolding jumpF-def by simp

then show ?thesis using jump-eq that by auto
qed
ultimately show ?thesis by fast

qed
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lemma jumpF-pathfinish-linepath:
jumpF-pathfinish (linepath a b) z =
(if Re b = Re z ∧ Im b 6=Im z ∧ Re b 6= Re a then

if (Im b>Im z ∧ Re a > Re b) ∨ (Im b<Im z ∧ Re a < Re b) then 1/2 else
−1/2

else 0 )
proof −

define f where f=(λt. (Im b − Im a )∗ t + (Im a − Im z))
define g where g=(λt. (Re b − Re a )∗ t + (Re a − Re z))
have jump-eq:jumpF-pathfinish (linepath a b) z = jumpF (λt. f t/g t) (at-left 1 )

unfolding jumpF-pathfinish-def f-def linepath-def g-def
by (auto simp add:algebra-simps)

have ?thesis when Re b 6=Re z
proof −

have jumpF-pathfinish (linepath a b) z = 0
unfolding jumpF-pathfinish-def
apply (rule jumpF-im-divide-Re-0 )

apply auto
by (auto simp add:linepath-def that)

then show ?thesis using that by auto
qed
moreover have ?thesis when Re z=Re b Im z = Im b
proof −

define c where c=(Im a − Im b) / (Re a − Re b)
have jumpF (λt. f t/g t) (at-left 1 ) = jumpF (λ-. c) (at-left 1 )
proof (rule jumpF-cong)

have f x / g x = c when x<1 for x
proof −

have f x / g x = ((Im a − Im b)∗(1−x))/((Re a − Re b)∗(1−x))
unfolding f-def g-def
by (auto simp add:algebra-simps ‹Re z=Re b› ‹Im z = Im b›)

also have ... = c
using that unfolding c-def by auto

finally show ?thesis .
qed
then show ∀ F x in at-left 1 . f x / g x = c

unfolding eventually-at-left using that
apply (intro exI [where x=0 ])
by auto

qed simp
then show ?thesis using jump-eq that by auto

qed
moreover have ?thesis when Re a=Re z Re b = Re a
proof −

have (λt. f t/g t) = (λ-. 0 ) unfolding f-def g-def using that by auto
then have jumpF (λt. f t/g t) (at-left 1 ) = jumpF (λ-. 0 ) (at-left 1 ) by auto
then show ?thesis using jump-eq that by auto

qed
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moreover have ?thesis when Re b = Re z (Im b>Im z ∧ Re a > Re b) ∨ (Im
b<Im z ∧ Re a < Re b)

proof −
have LIM x at-left 1 . f x / g x :> at-top
proof −

have (g has-real-derivative Re b − Re a) (at 1 )
unfolding g-def by (auto intro!:derivative-eq-intros)

from has-sgnx-derivative-at-left[OF this]
have (g has-sgnx sgn (Im b − Im z)) (at-left 1 )

using that unfolding g-def by auto
then show ?thesis

apply (subst filterlim-divide-at-bot-at-top-iff [of - Im b − Im z])
unfolding f-def g-def using that by (auto intro!:tendsto-eq-intros)

qed
then have jumpF (λt. f t/g t) (at-left 1 ) = 1/2

unfolding jumpF-def by simp
then show ?thesis using jump-eq that by auto

qed
moreover have ?thesis when Re b = Re z Im b 6=Im z Re b 6= Re a
¬ ((Im b>Im z ∧ Re a > Re b) ∨ (Im b<Im z ∧ Re a < Re b))

proof −
have (Im b>Im z ∧ Re a < Re b) ∨ (Im b<Im z ∧ Re a > Re b)

using that by argo
have LIM x at-left 1 . f x / g x :> at-bot
proof −

have (g has-real-derivative Re b − Re a) (at 1 )
unfolding g-def by (auto intro!:derivative-eq-intros)

from has-sgnx-derivative-at-left[OF this]
have (g has-sgnx − sgn (Im b − Im z)) (at-left 1 )

using that unfolding g-def by auto
then show ?thesis

apply (subst filterlim-divide-at-bot-at-top-iff [of - Im b − Im z])
unfolding f-def g-def using that by (auto intro!:tendsto-eq-intros )

qed
moreover then have ¬ (LIM x at-left 1 . f x / g x :> at-top)

using filterlim-at-top-at-bot by fastforce
ultimately have jumpF (λt. f t/g t) (at-left 1 ) = − 1/2

unfolding jumpF-def by simp
then show ?thesis using jump-eq that by auto

qed
ultimately show ?thesis by argo

qed

6.4 Setting up the method for evaluating winding numbers
lemma pathfinish-pathstart-partcirclepath-simps:

pathstart (part-circlepath z0 r (3∗pi/2 ) tt) = z0 − Complex 0 r
pathstart (part-circlepath z0 r (2∗pi) tt) = z0 + r
pathfinish (part-circlepath z0 r st (3∗pi/2 )) = z0 − Complex 0 r
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pathfinish (part-circlepath z0 r st (2∗pi)) = z0 + r
pathstart (part-circlepath z0 r 0 tt) = z0 + r
pathstart (part-circlepath z0 r (pi/2 ) tt) = z0 + Complex 0 r
pathstart (part-circlepath z0 r (pi) tt) = z0 − r
pathfinish (part-circlepath z0 r st 0 ) = z0+r
pathfinish (part-circlepath z0 r st (pi/2 )) = z0 + Complex 0 r
pathfinish (part-circlepath z0 r st (pi)) = z0 − r
unfolding part-circlepath-def linepath-def pathstart-def pathfinish-def exp-Euler
subgoal

apply(simp, subst sin.minus-1 [symmetric],subst cos.minus-1 [symmetric])
by (simp add: complex-of-real-i)

subgoal
by (simp add: complex-of-real-i)

subgoal
apply(simp, subst sin.minus-1 [symmetric],subst cos.minus-1 [symmetric])
by (simp add: complex-of-real-i)

by (simp-all add: complex-of-real-i)

lemma winding-eq-intro:
finite-ReZ-segments g z =⇒
valid-path g =⇒
z /∈ path-image g =⇒
pathfinish g = pathstart g =⇒
− of-real(cindex-pathE g z) =2∗n =⇒
winding-number g z = (n::complex)

apply (subst winding-number-cindex-pathE [of g z])
by (auto simp add:field-simps)

named-theorems winding-intros and winding-simps

lemmas [winding-intros] =
finite-ReZ-segments-joinpaths
valid-path-join
path-join-imp
not-in-path-image-join

lemmas [winding-simps] =
finite-ReZ-segments-linepath
finite-ReZ-segments-part-circlepath
jumpF-pathfinish-joinpaths
jumpF-pathstart-joinpaths
pathfinish-linepath
pathstart-linepath
pathfinish-join
pathstart-join
valid-path-linepath
valid-path-part-circlepath
path-part-circlepath
Re-complex-of-real
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Im-complex-of-real
of-real-linepath
pathfinish-pathstart-partcirclepath-simps

method rep-subst =
(subst cindex-pathE-joinpaths; rep-subst)?

The method "eval_winding" 1 will try to simplify of the form wind-
ing-number g z = n where n is an integer and g is a closed path comprised
of linepath, part-circlepath and (+++).

Suppose g = l1 +++ l2, usually, the key behind the success of this
framework is whether we can prove z /∈ path-image l1, z /∈ path-image l2
and calculate cindex-pathE l1 z and cindex-pathE l2 z.
method eval-winding =
((rule-tac winding-eq-intro;

rep-subst
)

, auto simp only:winding-simps del:notI intro!:winding-intros
, tactic ‹distinct-subgoals-tac›)

end

7 Some examples of applying the method wind-
ing_eval

theory Winding-Number-Eval-Examples imports Winding-Number-Eval
begin

lemma example1 :
assumes R>1
shows winding-number (part-circlepath 0 R 0 pi +++ linepath (−R) R) i = 1

proof (eval-winding,simp-all)
define CR where CR ≡part-circlepath 0 R 0 pi
define L where L≡ linepath (− (complex-of-real R)) R
show i /∈ path-image CR unfolding CR-def using ‹R>1 ›

by (intro not-on-circlepathI ,auto)
show ∗:i /∈ closed-segment (− (of-real R)) R using ‹R>1 › complex-eq-iff

by (intro not-on-closed-segmentI ,auto)
from cindex-pathE-linepath[OF this] have cindex-pathE L i = −1

unfolding L-def using ‹R>1 › by auto
moreover have cindex-pathE CR i = −1

unfolding CR-def using ‹R>1 ›
apply (subst cindex-pathE-part-circlepath)

by (simp-all add:jumpF-pathstart-part-circlepath jumpF-pathfinish-part-circlepath)
ultimately show − complex-of-real (cindex-pathE CR i) − cindex-pathE L i =

2
unfolding L-def CR-def by auto

qed
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lemma example2 :
assumes R>1
shows winding-number (part-circlepath 0 R 0 pi +++ linepath (−R) R) (−i) =

0
proof (eval-winding,simp-all)

define CR where CR ≡part-circlepath 0 R 0 pi
define L where L≡ linepath (− (complex-of-real R)) R
show −i /∈ path-image CR unfolding CR-def using ‹R>1 ›

by (intro not-on-circlepathI ,auto)
show ∗:−i /∈ closed-segment (− (of-real R)) R using ‹R>1 › complex-eq-iff

by (intro not-on-closed-segmentI ,auto)
from cindex-pathE-linepath[OF this] have cindex-pathE L (−i) = 1

unfolding L-def using ‹R>1 › by auto
moreover have cindex-pathE CR (−i) = −1

unfolding CR-def using ‹R>1 ›
apply (subst cindex-pathE-part-circlepath)

by (simp-all add:jumpF-pathstart-part-circlepath jumpF-pathfinish-part-circlepath)
ultimately show −cindex-pathE CR (−i) = cindex-pathE L (−i)

unfolding L-def CR-def by auto
qed

lemma example3 :
fixes lb ub z :: complex
defines rec ≡ linepath lb (Complex (Re ub) (Im lb)) +++ linepath (Complex

(Re ub) (Im lb)) ub
+++ linepath ub (Complex (Re lb) (Im ub)) +++ linepath (Complex

(Re lb) (Im ub)) lb
assumes order-asms:Re lb < Re z Re z < Re ub Im lb < Im z Im z < Im ub
shows winding-number rec z = 1
unfolding rec-def

proof (eval-winding)
let ?l1 = linepath lb (Complex (Re ub) (Im lb))
and ?l2 = linepath (Complex (Re ub) (Im lb)) ub
and ?l3 = linepath ub (Complex (Re lb) (Im ub))
and ?l4 = linepath (Complex (Re lb) (Im ub)) lb
show l1 : z /∈ path-image ?l1

apply (auto intro!: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)

show l2 :z /∈ path-image ?l2
apply (auto intro!: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)

show l3 :z /∈ path-image ?l3
apply (auto intro!: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)

show l4 :z /∈ path-image ?l4
apply (auto intro!: not-on-closed-segmentI-complex)
using order-asms by (simp add: algebra-simps crossproduct-eq)

show − complex-of-real (cindex-pathE ?l1 z + (cindex-pathE ?l2 z + (cindex-pathE
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?l3 z +
cindex-pathE ?l4 z))) = 2 ∗ 1

proof −
have (Im z − Im ub) ∗ (Re ub − Re lb) < 0
using mult-less-0-iff order-asms(1 ) order-asms(2 ) order-asms(4 ) by fastforce

then have cindex-pathE ?l3 z = −1
apply (subst cindex-pathE-linepath)
using l3 order-asms by (auto simp add:algebra-simps)

moreover have (Im lb − Im z) ∗ (Re ub − Re lb) <0
using mult-less-0-iff order-asms(1 ) order-asms(2 ) order-asms(3 ) by fastforce

then have cindex-pathE ?l1 z = −1
apply (subst cindex-pathE-linepath)
using l1 order-asms by (auto simp add:algebra-simps)

moreover have cindex-pathE ?l2 z = 0
apply (subst cindex-pathE-linepath)
using l2 order-asms by (auto simp add:algebra-simps)

moreover have cindex-pathE ?l4 z = 0
apply (subst cindex-pathE-linepath)
using l4 order-asms by (auto simp add:algebra-simps)

ultimately show ?thesis by auto
qed

qed

end
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