Well-Quasi-Orders

Christian Sternagel*
March 17, 2025

Abstract

Based on Isabelle/HOL’s type class for preorders, we introduce a
type class for well-quasi-orders (wqo) which is characterized by the
absence of “bad” sequences (our proofs are along the lines of the proof
of Nash-Williams [1], from which we also borrow terminology). Our
main results are instantiations for the product type, the list type, and
a type of finite trees, which (almost) directly follow from our proofs
of (1) Dickson’s Lemma, (2) Higman’s Lemma, and (3) Kruskal’s Tree
Theorem. More concretely:

1. If the sets A and B are wqo then their Cartesian product is wqo.
2. If the set A is wqo then the set of finite lists over A is wqo.
3. If the set A is wqo then the set of finite trees over A is wqo.

Contents

1

Infinite Sequences
1.1 Lexicographic Order on Infinite Sequences

Minimal elements of sets w.r.t. a well-founded and transi-
tive relation

Enumerations of Well-Ordered Sets in Increasing Order

The Almost-Full Property

4.1 Basic Definitions and Facts
4.2 An equivalent inductive definition
4.3 Special Case: Finite Sets
4.4 Further Results

Constructing Minimal Bad Sequences

*The research was funded by the Austrian Science Fund (FWF): J3202.

10
16
17

20

6 A Proof of Higman’s Lemma via Open Induction
6.1 Some facts about the suffix relation
6.2 Lexicographic Order on Infinite Sequences

7 Almost-Full Relations
7.1 Adding a Bottom Element toa Set
7.2 Adding a Bottom Element to an Almost-Full Set
7.3 Disjoint Union of Almost-Full Sets
7.4 Dickson’s Lemma for Almost-Full Relations
7.5 Higman’s Lemma for Almost-Full Relations
7.6 Natural Numbers

8 Well-Quasi-Orders
8.1 Basic Definitions o oo
8.2 Equivalent Definitions
8.3 A Type Class for Well-Quasi-Orders
8.4 Dickson’s Lemma
8.5 Higman’s Lemma L 0oL

9 Kruskal’s Tree Theorem

10 Instances of Well-Quasi-Orders
10.1 The Option Type is Well-Quasi-Ordered
10.2 The Sum Type is Well-Quasi-Ordered
10.3 Pairs are Well-Quasi-Ordered
10.4 Lists are Well-Quasi-Ordered

11 Multiset Extension of Orders (as Binary Predicates)

12 Multiset Extension Preserves Well-Quasi-Orders

1 Infinite Sequences

Some useful constructions on and facts about infinite sequences.

theory Infinite-Sequences
imports Main
begin

The set of all infinite sequences over elements from A.

definition SEQ A = {f:nat = 'a. Vi. fi € A}

lemma SEQ-iff [iff]:
fE€SEQA+— (Vi. fie€ A)
by (auto simp: SEQ-def)

23
23
24

29
29
30
30
32
33
34

35
35
35
37
38
39

41

48
48
48
48
48

62

The i-th "column" of a set B of infinite sequences.

definition ith Bi = {fi| f. f € B}

lemma ithl [intro]:
feB= fi=x= z€ithBi
by (auto simp: ith-def)

lemma ithE [elim]:
[teithBi; Nf.[feB; fi=z] = Q] = @
by (auto simp: ith-def)

lemma ith-conv:
x €ith Bi<+— (3f € B. z = f1)
by auto

The restriction of a set B of sequences to sequences that are equal to a given
sequence f up to position 4.

definition eg-upto :: (nat = ‘a) set = (nat = 'a) = nat = (nat = ’'a) set
where
eq-upto Bfi={g€ B.Vj<i. fj=gj}

lemma eg-uptol [intro]:
loeB;Nioj<i=fj=gjl= g€ equptoBfi
by (auto simp: eq-upto-def)

lemma eq-uptoE [elim]:
lg € equpto Bfis[ge By N\j.j<i=fj=gjl = Q] = @Q
by (auto simp: eq-upto-def)

lemma eg-upto-Suc:
lg € eq-upto B fi; gi = fi] = g € eq-upto B f (Suc 1)
by (auto simp: eq-upto-def less-Suc-eq)

lemma eg-upto-0 [simp]:
eq-upto Bf0 =B
by (auto simp: eq-upto-def)

lemma eg-upto-cong [fundef-congl:
assumes \j. j<i= fj=gjand B=C
shows eq-upto B fi = eq-upto C g i

using assms by (auto simp: eg-upto-def)

1.1 Lexicographic Order on Infinite Sequences
definition LEX P f g +— (Fiznat. P (fi) (g i) AN (Vi<i. fj= g37))
abbreviation LEXEQ P = (LEX P)==

lemma LEX-imp-not-LEX:
assumes LEX P f g

and [dest]: Az yz. Pxry=— Pyz=— Puxz
and [simp]: Az. - Pz z
shows - LEX P g f
proof —
{ fix ij :: nat
assume P (fi) (¢¢) and Vk<i. fk =gk
and P (¢gj) (fj) and Vk<j. gk = fk
then have Fulse by (cases i < j) (auto simp: not-less dest!: le-imp-less-or-eq)
}
then show - LEX P g f using (LEX P f ¢» unfolding LEX-def by blast
qed

lemma LEX-cases:

assumes LEX P f g

obtains (eq) f = ¢ | (neq) k where Vi<k. fi =giand P (fk) (g k)
using assms by (auto simp: LEX-def)

lemma LEX-imp-less:
assumes Vz€A. - Pxzand f € SEQ AV g € SEQ A
and LEX P fgand Vi<k. fi=giand fk# gk
shows P (fk) (g k)
using assms by (auto elim!: LEX-cases) (metis linorder-neqE-nat)+

end

2 Minimal elements of sets w.r.t. a well-founded
and transitive relation

theory Minimal-Elements
imports

Infinite-Sequences

Open-Induction. Restricted-Predicates
begin

locale minimal-element =
fixes P A
assumes po: po-on P A
and wf: wfp-on P A
begin

definition min-elt B = (SOME z. € BA Vy€ A. Pyx — y ¢ B))

lemma minimal:

assumes z € A and Q x

shows dy € A. P~=yz A QyA(Nz€ A Pzy — - Q 2)
using wf and assms
proof (induction rule: wfp-on-induct)

case (less x)

then show ?case
proof (casesVy € A. Pyxz — — Qy)
case True
with less show ?thesis by blast
next
case Fulse
then obtain y where y € A and P y x and @ y by blast
with less show ?thesis
using po [THEN po-on-imp-transp-on, unfolded transp-on-def, rule-format,
of - y z] by blast
qed
qed

lemma min-elt-ex:

assumes B C A and B # {}

shows Jz. 2 € BA(Vye€ A. Pyz — y ¢ B)
using assms using minimal [of - Az. © € B] by auto

lemma min-elt-mem:
assumes B C 4 and B # {}
shows min-elt B € B
using somel-ex [OF min-elt-ex [OF assms|] by (auto simp: min-elt-def)

lemma min-elt-minimal:
assumes x: B C A B # {}
assumes y € A and P y (min-elt B)
shows y ¢ B
using somel-ex [OF min-elt-ex [OF x]] and assms by (auto simp: min-elt-def)

A lexicographically minimal sequence w.r.t. a given set of sequences C

fun lezmin
where

lexmin: lexmin C i = min-elt (ith (eg-upto C (lexmin C) i) 7)
declare lexmin [simp del]

lemma eg-upto-lexmin-non-empty:
assumes C C SEQ A and C # {}
shows eg-upto C' (lexmin C) i # {}
proof (induct i)
case (
show ?case using assms by auto
next
let ?A = Xi. ith (eq-upto C (lexmin C) i) i
case (Suc 17)
then have ?4 i # {} by force
moreover have eg-upto C (lexmin C) i C eq-upto C (lexmin C) 0 by auto
ultimately have ?A i C A and ?A i # {} using assms by (auto simp: ith-def)
from min-elt-mem [OF this, folded lexmin)]
obtain f where f € eg-upto C (lexmin C) (Suc i) by (auto dest: eq-upto-Suc)

then show ?case by blast
qed

lemma lexmin-SEQ-mem:
assumes C C SEQ A and C # {}
shows lexmin C € SEQ A
proof —
{ fix ¢
let X = ith (eq-upto C (lexmin C) i) i
have ?X C A using assms by (auto simp: ith-def)
moreover have ?X # {} using eq-upto-lexmin-non-empty [OF assms] by auto
ultimately have lexmin C i € A using min-elt-mem [of ?X]| by (subst lexmin)
blast }
then show “thesis by auto
qed

lemma non-empty-ith:
assumes C C SEQ A and C # {}
shows ith (eq-upto C (lexmin C) i) i C A
and ith (eq-upto C (lexmin C) i) i # {}
using eg-upto-lexmin-non-empty [OF assms, of i] and assms by (auto simp: ith-def)

lemma lexmin-minimal:

CCSEQA= C#{} = ye A= Py (lexmin Ci) = y ¢ ith (eq-upto
C (lexmin C) i) i
using min-elt-minimal [OF non-empty-ith, folded lexmin] .

lemma lexmin-mem:
C CSEQ A= C # {} = lexmin C i € ith (eq-upto C (lexmin C) i) i
using min-elt-mem [OF non-empty-ith, folded lexmin] .

lemma LEX-chain-on-eq-upto-imp-ith-chain-on:
assumes chain-on (LEX P) (eq-upto C f1i) (SEQ A)
shows chain-on P (ith (eq-upto C f1i) i) A
using assms
proof —
{ fix z y assume z € ith (eg-upto C fi) i and y € ith (eg-upto C f 1) @
and ~ Pzyand y # z
then obtain g h where *: g € eq-upto C' fi h € eqg-upto C fi
and [simpl: z = giy=hiand e¢: Vj<i. gj=fjANhj=7fj
by (auto simp: ith-def eq-upto-def)
with assms and <y #) consider LEX P g h | LEX P h g by (force simp:
chain-on-def)
then have P y ¢
proof (cases)
assume LEX P g h
with eq and <y # z» have P z y using assms and *
by (auto simp: LEX-def)
(metis SEQ-iff chain-on-imp-subset linorder-neqE-nat minimal subsetCE)

with <= Pz 3y show Py x ..
next
assume LEX P h g
with eq and <y # 2> show P y z using assms and *
by (auto simp: LEX-def)
(metis SEQ-iff chain-on-imp-subset linorder-neqE-nat minimal subsetCE)
qed }
then show %thesis using assms by (auto simp: chain-on-def) blast
qed

end

end

3 Enumerations of Well-Ordered Sets in Increas-
ing Order

theory Least-Enum
imports Main
begin

locale infinitely-manyl =
fixes P :: 'a :: wellorder = bool
assumes infm: Vi. 3j>i. P j
begin

Enumerate the elements of a well-ordered infinite set in increasing order.

fun enum :: nat = 'a where
enum 0 = (LEAST n. P n) |
enum (Suc i) = (LEAST n. n > enum ¢ A P n)

lemma enum-mono:
shows enum i < enum (Suc i)
using infm by (cases i, auto) (metis (lifting) Leastl)+

lemma enum-less:
1 < j = enum i < enum j
using enum-mono by (metis lift-Suc-mono-less)

lemma enum-P:
shows P (enum)
using infm by (cases i, auto) (metis (lifting) Leastl)+

end
locale infinitely-many2 =

fixes P :: 'a :: wellorder = 'a = bool
and N :: ‘a

assumes infm: Vi>N. 3j>i. Pij
begin

Enumerate the elements of a well-ordered infinite set that form a chain w.r.t.
a given predicate P starting from a given index IV in increasing order.

fun enumchain :: nat = ’‘a where
enumchain 0 = N |
enumchain (Suc n) = (LEAST m. m > enumchain n A P (enumchain n) m)

lemma enumchain-mono:

shows N < enumchain i A enumchain i < enumchain (Suc)
proof (induct i)

case (

have enumchain 0 > N by simp

moreover then have 3 m>enumchain 0. P (enumchain 0) m using infm by
blast

ultimately show ?case by auto (metis (lifting) Leastl)
next

case (Suc 17)

then have N < enumchain (Suc i) by auto

moreover then have 3 m>enumchain (Suc i). P (enumchain (Suc ¢)) m using
infm by blast

ultimately show ?case by (auto) (metis (lifting) LeastI)
qed

lemma enumchain-chain:
shows P (enumchain i) (enumchain (Suc i))
proof (cases i)
case (
moreover have 3m>enumchain 0. P (enumchain 0) m using infm by auto
ultimately show ?thesis by auto (metis (lifting) Leastl)
next
case (Suc 17)
moreover have enumchain (Suc i) > N using enumchain-mono by (metis
le-less-trans)
moreover then have 3 m>enumchain (Suc i). P (enumchain (Suc i)) m using
infm by auto
ultimately show ?thesis by (auto) (metis (lifting) Leastl)
qed

end

end

4 The Almost-Full Property

theory Almost-Full
imports
HOL— Library.Sublist

HOL—- Library. Ramsey

Regular—Sets. Regexp-Method

Abstract— Rewriting. Seq

Least-Enum

Infinite-Sequences

Open-Induction. Restricted-Predicates
begin

lemma le-Suc-eq”:
< Sucy<+— =0V (Fz". x=Sucz’' Az’ <y
by (cases z) auto

lemma ex-leq-Suc:
(Fi<Suc j. P i) +— P 0OV (3i<j. P (Suc 7))
by (auto simp: le-Suc-eq’)

lemma ex-less-Suc:
(Fi<Sucj. Pi) «— POV (3i<j. P (Suc 1))
by (auto simp: less-Suc-eq-0-disj)

4.1 Basic Definitions and Facts

An infinite sequence is good whenever there are indices ¢ < j such that P (f
i) (fJ)-
definition good :: ('a = 'a = bool) = (nat = ’a) = bool

where
good P f «— (Fij. i <jA P (fi) (f]))

A sequence that is not good is called bad.

abbreviation bad P f = — good P f

lemma goodI:
[i <4 P (fi) (f))] = good P f
by (auto simp: good-def)

lemma goodE [elim]:
good P f = (\ij. [i <j; P (fi) (fj)]l = Q) = @
by (auto simp: good-def)

lemma badE [elim]:
bad P f = ((Nij. i <j= -~ P (fi) (/) = Q) = Q
by (auto simp: good-def)

definition almost-full-on :: (Ya = ’'a = bool) = 'a set = bool

where
almost-full-on P A +— (Vf € SEQ A. good P f)

lemma almost-full-onl [Pure.intro):
(Nf-Vi. fie A= good P f) = almost-full-on P A
unfolding almost-full-on-def by blast

lemma almost-full-onD:
fixes f :: nat = ‘a and A :: 'a set
assumes almost-full-on P A and Ni. fi € A
obtains ¢ j where ¢ < jand P (f i) (fj)
using assms unfolding almost-full-on-def by blast

4.2 An equivalent inductive definition

inductive af for A
where
now: (Ney. 2 € A—ye€ A= Pzy) = af AP
| later: (Az. 2 € A= af A(Ay2. PyzV Pzy)) = af AP

lemma af-imp-almost-full-on:
assumes af A P
shows almost-full-on P A
proof
fix f :: nat = 'a assume Vi. fi € A
with assms obtain ¢ and j where ¢ < j and P (%) (fj)
proof (induct arbitrary: f thesis)
case (later P)
define g where [simp]: g i = f (Suc i) for i
have f0 € Aand Vi. g i € A using later by auto
then obtain ¢ and j where ¢ < jand P (g) (¢gj) V P (f0) (g i) using
later by blast
then consider P (g %) (g j) | P (f0) (g i) by blast
then show Zcase using i < j» by (cases) (auto intro: later)
qed blast
then show good P f by (auto simp: good-def)
qed

lemma af-mono:
assumes af A P
andVzy. z€ ANye ANPzy— Quxy
shows af A Q)
using assms
proof (induct arbitrary: @)
case (now P)
then have Az y. 1 € A = y € A = Q z y by blast
then show ?case by (rule af.now)
next
case (later P)
show ?Zcase
proof (intro af .later [of A Q])

10

fix z assume z € A
then show af A (A\y z. QyzV Qzvy)
using later(8) by (intro later(2) [of z]) auto
qed
qed

lemma accessible-on-imp-af:
assumes accessible-on P A x
shows af A (Auv. - PvuV - Pux)
using assms
proof (induct)
case (1 z)
then have af A (Auv. (- PvuV - Puz)V-PuyV - Pyz)ifyec Afory
using that by (cases P y z) (auto intro: af .now af-mono)
then show ?Zcase by (rule af.later)
qed

lemma wfp-on-imp-af:

assumes wfp-on P A

shows af A (A\xy. - Py x)

using assms by (auto simp: wfp-on-accessible-on-iff intro: accessible-on-imp-af
af .later)

lemma af-leq:

af UNIV ((<) :: nat = nat = bool)

using wf-less [folded wfp-def wfp-on-UNIV, THEN wfp-on-imp-af] by (simp add:
not-less)

definition NOTAF A P = (SOME z. x € AN—-af A(Ayz PyzV Pzy))

lemma not-af:

“af AP= Jzy.ze€ ANye AN-Pxy) AN(FzcA. —af A (A\yz. Pyz
V Pzy))

unfolding af.simps [of A P] by blast

fun F
where
FAPO=NOTAF AP
| FAP (Suci)= (letw = NOTAFAPinFA(MNz PyzVv Pzy)i)

lemma almost-full-on-imp-af:

assumes af: almost-full-on P A

shows af A P
proof (rule ccontr)

assume - af A P

then have x: FA Pnec AN

~af A(\yz PyzV (3i<n. P(FAPQ) y)V (3j<n. Ji.i<jAP(FAP

i) (FAPj))) for n

proof (induct n arbitrary: P)

11

case (
from (= af A P> have 3z. 2 € AN - af A (Ayz. PyzV Pzxy) by (auto
intro: af .intros)
then have NOTAF A Pe AN-af A (Ayz PyzV P (NOTAF A P) y)
unfolding NOTAF-def by (rule somel-ex)
with 0 show ?case by simp
next
case (Suc n)
from = af A Py have 3z. 2 € AN - af A (Ayz. PyzV Pzy) by (auto
intro: af .intros)
then have NOTAF A Pec AN—-af A(Ayz PyzV P (NOTAF A P) y)
unfolding NOTAF-def by (rule somel-ex)
from Suc(1) [OF this [THEN conjunct2]]
show ?case
by (fastforce simp: ex-leg-Suc ex-less-Suc elim!: back-subst [where P = \x.
- af A z])
qed
then have FF A P € SEQ A by auto
from af [unfolded almost-full-on-def, THEN bspec, OF this| and not-af [OF x
[THEN conjunct2])
show Fulse unfolding good-def by blast
qged

hide-const NOTAF F

lemma almost-full-on-UNIV:
almost-full-on (A- -. True) UNIV
by (auto simp: almost-full-on-def good-def)

lemma almost-full-on-imp-refip-on:
assumes almost-full-on P A
shows refip-on A P
using assms by (auto simp: almost-full-on-def reflp-on-def)

lemma almost-full-on-subset:
A C B = almost-full-on P B => almost-full-on P A
by (auto simp: almost-full-on-def)

lemma almost-full-on-mono:
assumes A C Band Azy. Qzy = Puzy
and almost-full-on @ B
shows almost-full-on P A
using assms by (metis almost-full-on-def almost-full-on-subset good-def)

Every sequence over elements of an almost-full set has a homogeneous sub-
sequence.

lemma almost-full-on-imp-homogeneous-subseq:
assumes almost-full-on P A
and Vi:nat. fi € A

12

shows Jy:nat = nat. Vij. i <j— i< j AP (p0)(f (¢))
proof —

define X where X = {{¢, j} | i junat. i <jA P (fi) (fj)}

define Y where ¥ = — X

define h where h = (AZ. if Z € X then 0 else Suc 0)

have [iff]: Az y. h {z, y} = 0 +— {z, y} € X by (auto simp: h-def)
have [iff]: Az y. h {z, y} = Suc 0 +— {z, y} € Y by (auto simp: h-def Y-def)

have Vo UNIV.VyeUNIV. z # y — h {z, y} < 2 by (simp add: h-def)
from Ramsey?2 [OF infinite-UNIV-nat this] obtain I ¢

where infinite I and ¢ < 2

and x: Vzel. Vyel. z # y — h {z, y} = ¢ by blast
then interpret infinitely-manyl M. ¢ € 1

by (unfold-locales) (simp add: infinite-nat-iff-unbounded)

have ¢ = 0 V ¢ = 1 using «c < 2) by arith
then show ?thesis
proof
assume [simp]: ¢ = 0
have Vij. i < j — P (f (enum 7)) (f (enum j))
proof (intro alll impl)
fix ij :: nat
assume ¢ < j
from x and enum-P and enum-less [OF i < j»] have {enum i, enum j} €
X by auto
with enum-less [OF < <]
show P (f (enum 7)) (f (enum 7)) by (auto simp: X-def doubleton-eq-iff)
qed
then show %thesis using enum-less by blast
next
assume [simp]: ¢ = 1
have Vij. i < j — = P (f (enum 7)) (f (enum j))
proof (intro alll impl)
fix ¢ j :: nat
assume i < j
from x and enum-P and enum-less [OF i < j»] have {enum i, enum j} €
Y by auto
with enum-less [OF i < j]
show — P (f (enum 1)) (f (enum j)) by (auto simp: Y-def X-def double-
ton-eq-iff)
qed
then have — good P (f o enum) by auto
moreover have Vi. f (enum i) € A using assms by auto
ultimately show ?thesis using <almost-full-on P Ay by (simp add: almost-full-on-def)
qed
qed

Almost full relations do not admit infinite antichains.

13

lemma almost-full-on-imp-no-antichain-on:
assumes almost-full-on P A
shows — antichain-on P f A
proof
assume x: antichain-on P f A
then have Vi. fi € A by simp
with assms have good P f by (auto simp: almost-full-on-def)
then obtain ¢ j where ¢ < j and P (f %) (f7)
unfolding good-def by auto
moreover with x have incomparable P (f i) (f j) by auto
ultimately show Fulse by blast
qed

If the image of a function is almost-full then also its preimage is almost-full.

lemma almost-full-on-map:
assumes almost-full-on Q B
and h ‘A CB
shows almost-full-on (Az y. @ (h x) (hy)) A (is almost-full-on 2P A)
proof
fix f
assume Vi:nat. fi € A
then have Ai. h (f{) € B using <h ‘A C B> by auto
with <almost-full-on Q B> [unfolded almost-full-on-def, THEN bspec, of h o f]
show good ?P f unfolding good-def comp-def by blast
qed

The homomorphic image of an almost-full set is almost-full.

lemma almost-full-on-hom:
fixes h :: 'a = b
assumes hom: Az y. [xr € A;ye€ A; Pzy] = Q (hz) (hy)
and af: almost-full-on P A
shows almost-full-on @ (h * A)
proof
fix f :: nat = 'b
assume Vi. fi € h ‘A
then have Vi. 3z. z € A A fi = h x by (auto simp: image-def)
from choice [OF this] obtain g
where *x: Vi. gi € AN fi=h (g1i) by blast
show good Q f
proof (rule ccontr)
assume bad: bad Q f
{ fix {j :: nat
assume 7 < j
from bad have = Q (f4) (fj) using <i < j» by (auto simp: good-def)
with hom have — P (g i) (g j) using * by auto }
then have bad P g by (auto simp: good-def)
with af and * show False by (auto simp: good-def almost-full-on-def)
qed
qed

14

The monomorphic preimage of an almost-full set is almost-full.

lemma almost-full-on-mon:
assumes mon: Az y. [t € A;y € A] = Pzy= Q (hz) (hy) bij-betwh A B
and af: almost-full-on Q B
shows almost-full-on P A
proof
fix f : nat = 'a
assume *: Vi. fi € A
then have xx: Vi. (h o f) ¢ € B using mon by (auto simp: bij-betw-def)
show good P f
proof (rule ccontr)
assume bad: bad P f
{ fix {j :: nat
assume i < j
from bad have = P (f i) (f j) using «i < j» by (auto simp: good-def)
with mon have = Q (h (f¢)) (b (f7))
using * by (auto simp: bij-betw-def inj-on-def) }
then have bad Q (h o f) by (auto simp: good-def)
with af and *x show False by (auto simp: good-def almost-full-on-def)
qed
qed

Every total and well-founded relation is almost-full.

lemma total-on-and-wfp-on-imp-almost-full-on:
assumes totalp-on A P and wfp-on P A
shows almost-full-on P== A
proof (rule ccontr)
assume — almost-full-on P== A
then obtain f :: nat = 'a where x: A\i. fi € A
and Vij. i <j— - P== (f1i) (fj)
unfolding almost-full-on-def by (auto dest: badE)
with <totalp-on A Py have Vij. i <j— P (f7) (f9)
unfolding totalp-on-def by blast
then have Ai. P (f (Suc 7)) (f i) by auto
with «wfp-on P A» and * show Fulse
unfolding wfp-on-def by blast
qed

lemma Nil-imp-good-list-emb [simp]:
assumes f i = [|
shows good (list-emb P) f
proof (rule ccontr)
assume bad (list-emb P) f
moreover have (list-emb P) (f i) (f (Suc 7))
unfolding assms by auto
ultimately show Fulse
unfolding good-def by auto
qed

15

lemma ne-lists:
assumes zs # [| and zs € lists A
shows hd zs € A and tl zs € lists A
using assms by (case-tac [!] xs) simp-all

lemma list-emb-eg-length-induct [consumes 2, case-names Nil Cons]:
assumes length xs = length ys
and list-emb P xs ys
and Q []
and Az y xs ys. [P x y; list-emb P xs ys; Q xs ys] = Q (x#xs) (y#ys)
shows @ zs ys
using assms(2, 1, 3—) by (induct) (auto dest: list-emb-length)

lemma list-emb-eq-length-P:
assumes length xs = length ys
and list-emb P xs ys
shows Vi<length zs. P (xs!4) (ys ! 7)
using assms
proof (induct rule: list-emb-eq-length-induct)
case (Cons z y xs ys)
show Zcase
proof (intro alll impI)
fix ¢ assume ¢ < length (z # xs)
with Cons show P ((z#xs)!%) ((y#ys)!%)
by (cases i) simp-all
qged
qed simp

4.3 Special Case: Finite Sets

Every reflexive relation on a finite set is almost-full.

lemma finite-almost-full-on:
assumes finite: finite A
and refl: reflp-on A P
shows almost-full-on P A
proof
fix f :: nat = 'a
assume *: Vi. fi € A
let ¢ = UNIV::nat set
have f * ?2I C A using * by auto
with finite and finite-subset have 1: finite (f ¢ ?I) by blast
have infinite ?I by auto
from pigeonhole-infinite [OF this 1]
obtain &k where infinite {j. fj = f k} by auto
then obtain [where k < land fl = fk
unfolding infinite-nat-iff-unbounded by auto
then have P (f k) (f 1) using refl and x by (auto simp: refip-on-def)
with <k < I show good P f by (auto simp: good-def)
qed

16

lemma eg-almost-full-on-finite-set:

assumes finite A

shows almost-full-on (=)

using finite-almost-full-on [OF assms, of (=)]
by (auto simp: reflp-on-def)

4.4 Further Results

lemma af-trans-extension-imp-wf:
assumes subrel: Az y. Pry = Quzy
and af: almost-full-on P A
and trans: transp-on A @
shows wfp-on (strict Q) A
proof (unfold wfp-on-def, rule notl)
assume 3f. Vi. fi € A A strict Q (f (Suc i) (f9)
then obtain f where x: Vi. fi € A A ((strict Q)~171) (f4) (f (Suc 7)) by blast
from chain-transp-on-less| OF this]
have Vi j. i < j — = Q (f4) (fj) using trans using transp-on-conversep
transp-on-strict by blast
with subrel have Vij. i <j — = P (fi) (fj) by blast
with af show Fulse
using * by (auto simp: almost-full-on-def good-def)
qed

lemma af-trans-imp-wf:
assumes almost-full-on P A
and transp-on A P
shows wfp-on (strict P) A
using assms by (intro af-trans-extension-imp-wf)

lemma wf-and-no-antichain-imp-qo-extension-wf:
assumes wf: wfp-on (strict P) A
and anti: = (3 f. antichain-on P f A)
and subrel: Vz€A. VyecA. Pxy — Qx vy
and go: qo-on Q A
shows wfp-on (strict Q) A
proof (rule ccontr)
have transp-on A (strict Q)
using go unfolding qo-on-def transp-on-def by blast
then have x: transp-on A ((strict Q)~*~1) by simp
assume — wfp-on (strict Q) A
then obtain f :: nat = ‘a where A: \i. fi € A
and Vi. strict Q (f (Suc ©)) (f 7) unfolding wfp-on-def by blast+
then have Vi. fi € A A ((strict Q)~1=Y) (f i) (f (Suc i)) by auto
from chain-transp-on-less [OF this %]
have «: Aij. i < j= - P (f7) (fj))
using subrel and A by blast
show Fulse

17

proof (cases)
assume 3 k. Vi>k. 3j>i. P (f7) (f9)
then obtain k where Vi>k. 35>i. P (fj) (f i) by auto
from subchain [of k - f, OF this] obtain g
where \ij. i<j= gi<ygj
and \i. P (f (g (Suc i) (f (g 1)) by auto
with * have Ai. strict P (f (g (Suc 7)) (f (g ¢)) by blast
with wf [unfolded wfp-on-def not-ex, THEN spec, of \i. f (g)] and A
show Fulse by fast
next
assume - (3k. Vi>k. 3j>i. P (f7) (f 1))
then have Vk. 3i>k. Vji>i. = P (fj) (f i) by auto
from choice [OF this] obtain h
where Vk. hk >k
and xx: Vk. (Vi>h k. = P (fj) (f (hk))) by auto
define ¢ where [simp]: ¢ = (Mi. (b 7 Suc i) 0)
have Ai. ¢ i < ¢ (Suc 7)
using Vk. b k > k> by (induct-tac i) auto
then have mono: \ij. i < j = ¢ i < ¢ j by (metis lift-Suc-mono-less)
then have Vij. i <j— = P (f (¢ 7)) (f (¢ 1))
using *x by auto
with mono [THEN x|
have Vi j. i < j — incomparable P (f (¢ j)) (f (¢ 7)) by blast
moreover have 37 j. i < j A = incomparable P (f (¢ @) (f (¢ J))
using anti [unfolded not-ex, THEN spec, of Ai. f (¢ i)] and A by blast
ultimately show Fulse by blast
qed
qed

lemma every-qo-extension-wf-imp-af:
assumes ezxt: V Q. (Vz€A. VyeAd. Pzy — Quzy) A
go-on Q A — wfp-on (strict Q) A
and go-on P A
shows almost-full-on P A
proof
from «qo-on P A»
have refi: refip-on A P
and trans: transp-on A P
by (auto intro: go-on-imp-reflp-on qo-on-imp-transp-on)

fix f :: nat = 'a

assume Vi. fi € A

then have A: \i. fi e A ..

show good P f

proof (rule ccontr)
assume — ?thesis
then have bad: Vij. i <j — = P (f4) (fj) by (auto simp: good-def)
then have x: Aij. P (fi) (fj) = ¢ > j by (metis not-le-imp-less)

18

define D where [simp]: D = (Ax y. 3i. ¢ = f (Suc i) Ay = f1)
define P’ where P’ = restrict-to P A
define @ where [simp]: Q = (sup P’ D)**

have xx: A\ij. (D OO0 P**)TF (fi) (fj) = i >j
proof —
fix ij
assume (D 00 P**)** (fi) (fj)
then show 7 > j
apply (induct f i f j arbitrary: j)
apply (insert A, auto dest!: * simp: P’-def reflp-on-restrict-to-rtranclp [OF
refl trans])
apply (metis * dual-order.strict-trans1 less-Suc-eg-le refl reflp-on-def)
by (metis le-imp-less-Suc less-trans)
qed

have Vz€A. VyeA. Pz y — Q z y by (auto simp: P'-def)
moreover have go-on Q A by (auto simp: go-on-def refip-on-def transp-on-def)
ultimately have wfp-on (strict Q) A
using ext [THEN spec, of Q] by blast

moreover have Vi. fi € A A strict Q (f (Suc ©)) (f4)
proof

fix ¢

have - Q (1) (f (Suc)

proof
assume Q (f i) (f (Suc 7))
then have (sup P’ D)** (fi) (f (Suc 7)) by auto
moreover have (sup P’ D)** = sup (P™**) (P™* OO (D OO P"**)*™)
proof —
have AA B. (AU B)* = A* U A* O (B O A*)" by regexp
from this [to-pred] show ?Zthesis by blast
ged
ultimately have sup (P**) (P”** OO (D 00 P™*)**) (fi) (f (Suc i))
by simp
then have (P™* 00 (D OO0 P"**)**) (fi) (f (Suc 7)) by auto
then have Suc i < i
using *xx apply auto
by (metis (lifting, mono-tags) less-le relcompp.relcompl tranclp-into-tranclp2)
then show Fulse by auto
qed
with A [of i]| show fi € A A strict Q (f (Suc 7)) (f7) by auto
qed
ultimately show Fulse unfolding wfp-on-def by blast
qed
qed

end

19

5 Constructing Minimal Bad Sequences

theory Minimal-Bad-Sequences
imports
Almost-Full
Minimal-Elements
begin

A locale capturing the construction of minimal bad sequences over values
from A. Where minimality is to be understood w.r.t. size of an element.

locale mbs =
fixes A :: (Ya :: size) set
begin

Since the size is a well-founded measure, whenever some element satisfies a
property P, then there is a size-minimal such element.

lemma minimal:
assumes ¢ € A and Pz
shows Jy € A. sizey < sizex N Py AN (Vz € A. size z < sizey — — P 2)
using assms
proof (induction x taking: size rule: measure-induct)
case (I x)
then show ?case
proof (cases Vy € A. size y < sizex — — P y)
case True
with 1 show ?thesis by blast
next
case Fulse
then obtain y where y € A and size y < size x and P y by blast
with 1.7H show ?Zthesis by (fastforce elim!: order-trans)
qed
qed

lemma less-not-eq [simp):
z € A= sizex < size y = x = y = Fulse
by simp
The set of all bad sequences over A.
definition BAD P = {f € SEQ A. bad P f}
lemma BAD-iff [iff]:
f€BADP +— (Vi.fi€ A) ANbad P f
by (auto simp: BAD-def)
A partial order on infinite bad sequences.

definition geseq :: ((nat = ’a) x (nat = 'a)) set
where
geseq =

20

{(f,9)-f€SEQANge SEQAN(f =gV (i. size (g i) < size (fi) N (V]
<ifi=gi))}

The strict part of the above order.

definition gseq :: ((nat = ’a) x (nat = 'a)) set where
gseq = {(f, 9). f € SEQ AN ge SEQ AN (Fi. size (g1i) < size (fi) N (Vj <
i.fi=g9)}

lemma geseq-iff:
(f, 9) € geseq «—
fE€ESEQANge SEQAN(f=gV (Fi. size (g1i) < size (fi) NVj<i. fj
=974)))
by (auto simp: geseq-def)

lemma gseq-iff:

(f, g) € gseq «— f € SEQ AN ge SEQ AN (Ti. size (g 1) < size (fi) N (V]
<i. fji=gj)

by (auto simp: gseq-def)

lemma geseqFE:
assumes (f, g) € geseq
and [Vi. fi€ A;Vi.gi € A; f=g] = Q
and Ai. [Vi. fi € A;Vi. gi € A; size (g1) < size (fi); Vi<i fj=gj] =
Q
shows @
using assms by (auto simp: geseq-iff)

lemma gseqFE:
assumes (f, g) € gseq
and Ai. [Vi. fi € A; Vi gi € A; size (g1) < size (fi);Vj<i fj=gj]=
Q
shows @
using assms by (auto simp: gseq-iff)

sublocale min-elt-size?: minimal-element measure-on size UNIV A

rewrites measure-on size UNIV = Az y. size © < size y

apply (unfold-locales)

apply (auto simp: po-on-def irreflp-on-def transp-on-def simp del: wfp-on-UNIV
intro: wfp-on-subset)

apply (auto simp: measure-on-def inv-image-betw-def)

done

context
fixes P :: 'a = 'a = bool
begin

A lower bound to all sequences in a set of sequences B.

abbreviation b = lexmin (BAD P)

21

lemma eq-upto-BAD-mem:
assumes | € eg-upto (BAD P) g i
shows fje A
using assms by (auto)

Assume that there is some infinite bad sequence h.

context

fixes h :: nat = 'a

assumes BAD-ex: h € BAD P
begin

When there is a bad sequence, then filtering BAD P w.r.t. positions in b
never yields an empty set of sequences.

lemma eq-upto-BAD-non-empty:
eq-upto (BAD P) Ib i # {}
using eg-upto-lexmin-non-empty [of BAD P] and BAD-ex by auto

lemma non-empty-ith:
shows ith (eq-upto (BAD P)Ibi)iC A
and ith (eq-upto (BAD P) lb i) i # {}
using eg-upto-BAD-non-empty [of i| by auto

lemmas
lb-minimal = min-elt-minimal [OF non-empty-ith, folded lexmin] and
lb-mem = min-elt-mem [OF non-empty-ith, folded lexmin]

Ib is a infinite bad sequence.

lemma [b-BAD:
Ilb e BAD P
proof —
have x: Aj. Ib j € ith (eg-upto (BAD P) Ib j) j by (rule lb-mem)
then have Vi. lb i € A by (auto simp: ith-conv) (metis eq-upto-BAD-mem)
moreover
{ assume good P b
then obtain ¢ j where i < j and P (Ib i) (Ib j) by (auto simp: good-def)
from x have b j € ith (eq-upto (BAD P) b j) j by (auto)
then obtain g where g € eq-upto (BAD P) b j and g j = Ib j by force
then have Vk < j. g k = Ib k by (auto simp: order-le-less)
with « < j» and <P (Ib) (Ib 7)» have P (g i) (g j) by auto
with i < j» have good P g by (auto simp: good-def)
with «g € eq-upto (BAD P) Ib j> have False by auto }
ultimately show ?thesis by blast
qed

There is no infinite bad sequence that is strictly smaller than [b.

lemma [b-lower-bound:
Vg. (lb, g) € gseq — g ¢ BAD P
proof (intro alll impl)

22

fix g
assume (lb, g) € gseq
then obtain ¢ where g ¢ € A and size (g) < size (Ib i)
and Vj < i. lb j = g j by (auto simp: gseq-iff)
moreover with [b-minimal
have ¢ i ¢ ith (eq-upto (BAD P) b %) i by auto
ultimately show g ¢ BAD P by blast
qed

If there is at least one bad sequence, then there is also a minimal one.

lemma lower-bound-ez:
3f € BAD P.Vy. (f, g) € gseq — g ¢ BAD P
using b-BAD and [b-lower-bound by blast

lemma gseq-conuv:

(f, 9) € gseq «— [# g A (f, g9) € geseq
by (auto simp: gseq-def geseq-def dest: less-not-eq)

There is a minimal bad sequence.

lemma mbs:
3f € BAD P.Vyg. (f, g) € gseq — good P g
using lower-bound-ex by (auto simp: gseq-conv geseq-iff)

end
end
end

end

6 A Proof of Higman’s Lemma via Open Induction

theory Higman-OI

imports
Open-Induction. Open-Induction
Minimal-Elements
Almost-Full

begin

6.1 Some facts about the suffix relation

lemma wfp-on-strict-suffiz:
wfp-on strict-suffic A

by (rule wfp-on-mono [OF subset-refl, of - - measure-on length A))
(auto simp: strict-suffiz-def suffiz-def)

lemma po-on-strict-suffiz:

23

po-on strict-suffiz A
by (force simp: strict-suffiz-def po-on-def transp-on-def irrefip-on-def)

6.2 Lexicographic Order on Infinite Sequences

lemma antisymp-on-LEX:
assumes irrefip-on A P and antisymp-on A P
shows antisymp-on (SEQ A) (LEX P)
proof (rule antisymp-onI)
fix f g assume SEQ: f € SEQ A g € SEQ Aand LEX P fgand LEX P g f
then obtain ¢ j where P (fi) (¢ i) and P (g 3j) (fj)
and Vk<i. fk=gkand Vk<j. g k = fk by (auto simp: LEX-def)
then have P (f (min i 7)) (f (min ij))
using assms(2) and SEQ by (cases i = j) (auto simp: antisymp-on-def min-def,
force)
with assms(1) and SEQ show [= g by (auto simp: irreflp-on-def)
qed

lemma LEX-trans:
assumes transp-on A P and f € SEQ A and g € SEQ A and h € SEQ A
and LEX Pfgand LEX P g h
shows LEX P f h
using assms by (auto simp: LEX-def transp-on-def) (metis less-trans linorder-neqE-nat)

lemma qo-on-LEXEQ:
transp-on A P = qo-on (LEXEQ P) (SEQ A)
by (auto simp: qo-on-def reflp-on-def transp-on-def [of - LEXEQ P| dest: LEX-trans)

context minimal-element
begin

lemma glb-LEX-lexmin:
assumes chain-on (LEX P) C (SEQ A) and C # {}
shows glb (LEX P) C (lexmin C)
proof
have C C SEQ A using assms by (auto simp: chain-on-def)
then have lezmin C € SEQ A using «C # {}» by (intro lexmin-SEQ-mem)
note x = «C C SEQ A» «C # {}
note lex = LEX-imp-less [folded irreflp-on-def, OF po [THEN po-on-imp-irrefip-on]]
— lexmin C'is a lower bound
show b (LEX P) C (lexmin C)
proof
fix f assume f € C
then show LEXEQ P (lexmin C) f
proof (cases f = lexmin C)
define { where ¢ = (LEAST i. i # lexmin C i)
case Fulse
then have neq: 4. fi # lexmin C i by blast
from Leastl-ex [OF this, folded i-def]

24

and not-less-Least [where P = \i. fi # lexmin C i, folded i-def]
have neq: fi # lexmin C i and eq: Vj<i. fj = lexmin C j by auto
then have xx: f € eq-upto C (lexmin C) i f i € ith (eg-upto C (lexmin C) i)

using «f € C» by force+
moreover from xx have - P (f i) (lexmin C i)
using lezmin-minimal [OF %, of fi i) and <f € C» and «C C SEQ A» by
blast
moreover obtain g where g € eg-upto C (lexmin C) (Suc 7)
using eg-upto-lexmin-non-empty [OF %] by blast
ultimately have P (lexmin C i) (f ©)
using neq and «C C SEQ A) and assms(1) and lex [of g f i] and lex [of f
g 1]
by (auto simp: eq-upto-def chain-on-def)
with eq show ?thesis by (auto simp: LEX-def)
qed simp
qed

— lexmin C' is greater than or equal to any other lower bound
fix f assume b: Ib (LEX P) C' f
then show LEXEQ P f (lexmin C)
proof (cases f = lexmin C)
define ¢ where i = (LEAST i. f i # lexmin C i)
case Fulse
then have neq: 3i. fi # lexmin C i by blast
from Leastl-ex [OF this, folded i-def]
and not-less-Least [where P = \i. fi # lexmin C i, folded i-def]
have neq: fi # lexmin C i and eq: Vj<i. fj = lexmin C j by auto
obtain h where h € eq-upto C (lexmin C) (Suc i) and h € C
using eg-upto-lexmin-non-empty [OF x| by (auto simp: eq-upto-def)
then have [simp]: Aj. j < Suc i = h j = lexmin C j by auto
with [b and <h € C» have LEX P f h using neq by (auto simp: lb-def)
then have P (f i) (h 1)
using neq and eq and «C C SEQ Ay and <h € C» by (intro lex) auto
with eq show %thesis by (auto simp: LEX-def)
qed simp
qed

lemma dc-on-LEXEQ:
dc-on (LEXEQ P) (SEQ A)
proof
fix C assume chain-on (LEXEQ P) C (SEQ A) and C # {}
then have chain: chain-on (LEX P) C (SEQ A) by (auto simp: chain-on-def)
then have C C SEQ A by (auto simp: chain-on-def)
then have lezmin C € SEQ A using «C # {}» by (intro lexmin-SEQ-mem)
have glb (LEX P) C (lexmin C) by (rule glb-LEX-lexmin [OF chain «C # {}])
then have ¢lb (LEXEQ P) C (lexmin C) by (auto simp: glb-def lb-def)
with <lexmin C € SEQ A> show 3f € SEQ A. glb (LEXEQ P) C f by blast
qed

25

end

Properties that only depend on finite initial segments of a sequence (i.e.,
which are open with respect to the product topology).

definition pt-open-on Q@ A «+— (VfeA. Q f +— (In. (VgeA. Vi<n. gi = [1)
— Q9)))

lemma pt-open-onD:
pt-open-on Q A = Qf = f € A= (In. VygeA. (Vi<n.gi=fi) — Q

9))

unfolding pt-open-on-def by blast

lemma pt-open-on-good:
pt-open-on (good Q) (SEQ A)
proof (unfold pt-open-on-def, intro balll)
fix f assume f: f € SEQ A
show good Q f = (In. VgeSEQ A. (Vi<n. gi = fi) — good @ g)
proof
assume good @ f
then obtain ¢ and j where x: { < j Q (f4) (f7) by auto
have V geSEQ A. (Vi<Suc j. gi = fi) — good Q ¢
proof (intro balll impI)
fix g assume g € SEQ A and Vi<Sucj. gi = f1
then show good @ g using * by (force simp: good-def)
qed
then show dn. VgeSEQ A. (Vi<n. gi = fi) — good Q g ..
next
assume Jn. VgeSEQ A. (Vi<n. gi = fi) — good Q g
with f show good @ f by blast
qed
qed

context minimal-element
begin

lemma pt-open-on-imp-open-on-LEXEQ:
assumes pt-open-on Q (SEQ A)
shows open-on (LEXEQ P) Q (SEQ A)
proof
fix C' assume chain: chain-on (LEXEQ P) C (SEQ A) and ne: C # {}
and 3geSEQ A. glb (LEXEQ P) Cg AN Qg
then obtain g where g: ¢ € SEQ A and glb (LEXEQ P) C g
and Q: @ g by blast
then have glb: glb (LEX P) C g by (auto simp: glb-def lb-def)
from chain have chain-on (LEX P) C (SEQ A) and C: C C SEQ A by (auto
simp: chain-on-def)
note x = glb-LEX-lexmin [OF this(1) ne]
have lexmin C € SEQ A using ne and C by (intro lexmin-SEQ-mem)

26

from glb-unique [OF - g this glb *|

and antisymp-on-LEX [OF po-on-imp-irreflp-on [OF po| po-on-imp-antisymp-on
[OF po]]

have [simp]: lexmin C = ¢ by auto

from assms [THEN pt-open-onD, OF Q g]

obtain n :: nat where *x: Ah. h € SEQ A = (Vi<n. hi=g1i) — Q h by
blast

from eq-upto-lexmin-non-empty [OF C ne, of n]

obtain f where f € eq-upto C g n by auto

then have f € C and @ f using xx [of f] and C by force+

then show 3 fcC. @ f by blast
qed

lemma open-on-good:
open-on (LEXEQ P) (good Q) (SEQ A)
by (intro pt-open-on-imp-open-on-LEXEQ pt-open-on-good)

end

lemma open-on-LEXFEQ-imp-pt-open-on-counterexample:
fixes a b :: 'a
defines A = {a, b} and P = (A\z y. False) and Q = (\f. Vi. fi = b)
assumes [simp|: a # b
shows minimal-element P A and open-on (LEXEQ P) Q (SEQ A)
and — pt-open-on Q (SEQ A)
proof —
show minimal-element P A
by standard (auto simp: P-def po-on-def irreflp-on-def transp-on-def wfp-on-def)
show open-on (LEXEQ P) Q (SEQ A)
by (auto simp: P-def open-on-def chain-on-def SEQ-def glb-def lb-def LEX-def)
show — pt-open-on Q (SEQ A)
proof
define f :: nat = 'a where f = (A\z. b)
have f € SEQ A by (auto simp: A-def f-def)
moreover assume pt-open-on Q (SEQ A)
ultimately have Q f +— (In. (VgeSEQ A. Vi<n. gi=fi) — Q g))
unfolding pt-open-on-def by blast
moreover have @ f by (auto simp: Q-def f-def)
moreover have 3geSEQ A. (Vi<n. gi=fi) AN - Q g for n
by (intro bexl [of - f(n := a)]) (auto simp: f-def Q-def A-def)
ultimately show Fulse by blast
qed
qed

lemma higman:

assumes almost-full-on P A

shows almost-full-on (list-emb P) (lists A)
proof

interpret minimal-element strict-suffic lists A

27

by (unfold-locales) (intro po-on-strict-suffiz wfp-on-strict-suffiz)+
fix f presume [€ SEQ (lists A)
with qo-on-LEXEQ [OF po-on-imp-transp-on [OF po-on-strict-suffiz]] and dc-on-LEXEQ
and open-on-good
show good (list-emb P) f
proof (induct rule: open-induct-on)
case (less f)
define h where h i = hd (f {) for ¢
show ?case
proof (cases 3i. fi = 1))
case Fulse
then have ne: Vi. fi # [] by auto
with «f € SEQ (lists A)> have Vi. h i € A by (auto simp: h-def ne-lists)
from almost-full-on-imp-homogeneous-subseq [OF assms this]
obtain ¢ :: nat = nat where mono: \ij. i <j= pi<epj
and P: \ij. i <j= P (h (¢ 1)) (h (¢])) by blast
define f' where f' i = (if i < ¢ 0 then fielsetl (f (p (i — ¢ 0)))) for ¢
have [f' € SEQ (lists A) using ne and <f € SEQ (lists A)»
by (auto simp: f'-def dest: list.set-sel)
have [simp]: \i. ¢ 0 <i=h(p (i —¢ 0))# [i=[(p(i—¢0))
Ni. i < 9 0 = f'i = fiusing ne by (auto simp: f'-def h-def)
moreover have strict-suffiz (f' (¢ 0)) (f (p 0)) using ne by (auto simp:
f-def)
ultimately have LEX strict-suffix f' f by (auto simp: LEX-def)
with LEX-imp-not-LEX [OF this] have strict (LEXEQ strict-suffix) f' f
using po-on-strict-suffix [of UNIV] unfolding po-on-def irreflp-on-def
transp-on-def by blast
from less(2) [OF f' this] have good (list-emb P) f'.
then obtain i j where i < j and emb: list-emb P (f' 1) (f'j) by (auto simp:
good-def)
consider j < 9o 0 | ¢ 0 <i|i< ¢ 0and ¢ 0 < jby arith
then show ?thesis
proof (cases)
case 1 with «i < j» and emb show ?thesis by (auto simp: good-def)
next
case 2
with < < j» and P have P (h (¢ (i — ¢ 0))) (h (¢ (j — ¢ 0))) by auto
with emb have list-emb P (h (¢ (i — 9 0)) # f') (h (¢ (j — ¢ 0)) # [’
j) by auto
then have list-emb P (f (¢ (i — ¢ 0))) (f (¢ (j — ¢ 0))) using 2 and <
< j» by auto
moreover with 2 and « <j» have ¢ (i — ¢ 0) < ¢ (j — ¢ 0) using
mono by auto
ultimately show ?thesis by (auto simp: good-def)
next
case 3
with emb have list-emb P (f i) (f' j) by auto
moreover have f (¢ (j — ¢ 0)) =h (¢ (j — ¢ 0)) # f' j using 3 by auto
ultimately have list-emb P (f i) (f (¢ (j — ¢ 0))) by auto

28

moreover have i < ¢ (j — ¢ 0) using mono [of 0j — ¢ 0] and & by force
ultimately show ?thesis by (auto simp: good-def)
qed
qed auto
qed
qed blast

end

7 Almost-Full Relations

theory Almost-Full-Relations
imports Minimal-Bad-Sequences
begin

lemma (in mbs) mbs”.

assumes — almost-full-on P A

shows 3m € BAD P.Vyg. (m, g) € gseq — good P g
using assms and mbs unfolding almost-full-on-def by blast

7.1 Adding a Bottom Element to a Set

definition with-bot :: 'a set = 'a option set («-1» [1000] 1000)
where
A = {None} U Some ‘ A

lemma with-bot-iff [iff]:
Somexr € A «—z € A
by (auto simp: with-bot-def)

lemma Nonel [simp, intro]:
None € A}
by (simp add: with-bot-def)

lemma not-None-the-mem [simp):
z # None = thex € A+—z € A,
by auto

lemma with-bot-cases:
veAd = (A\z.2€ A= u= Somer = P) = (u= None = P) = P
by auto

lemma with-bot-empty-conv [iff]:
A = {None} +— A ={}
by (auto elim: with-bot-cases)

lemma with-bot-UNIV [simp]:

UNIV = UNIV
proof (rule set-eql)

29

fix = :: 'a option
show z € UNIV | <— x € UNIV by (cases z) auto
qed

7.2 Adding a Bottom Element to an Almost-Full Set

fun

option-le :: ('a = 'a = bool) = 'a option = 'a option = bool
where

option-le P None y = True |

option-le P (Some) None = False |

option-le P (Some z) (Some y) = Pz y

lemma None-imp-good-option-le [simp):
assumes f i = None
shows good (option-le P) f
by (rule goodI [of i Suc i]) (auto simp: assms)

lemma almost-full-on-with-bot:
assumes almost-full-on P A
shows almost-full-on (option-le P) A, (is almost-full-on P ?A)
proof
fix f :: nat = 'a option
assume *: Vi. fi € 74
show good 7P f
proof (cases Vi. fi # None)
case True
then have sx: A\i. Some (the (fi)) = fi
and Ai. the (f i) € A using * by auto
with almost-full-onD [OF assms, of the o f] obtain i j where ¢ < j
and P (the (f 7)) (the (f 7)) by auto
then have ?P (Some (the (f4))) (Some (the (fj))) by simp
then have ?P (f) (fj) unfolding *x .
with i < j» show good ?P f by (auto simp: good-def)
qged auto
qed

7.3 Disjoint Union of Almost-Full Sets

fun

sum-le :: (Ya = 'a = bool) = ('b = "b = bool) = 'a + 'b = 'a + 'b = bool
where

sum-le P Q (Inl z) (Inly) =Pz y|

sum-le P Q (Inr z) (Inry) = Qz vy |

sum-le P QQ x y = Fulse

lemma not-sum-le-cases:
assumes — sum-le P QQ a b
and Az y. [a = Inlz; b = Inl y; = P z y] = thesis
and Az y. [a = Inr z; b = Inr y; = Q z y] = thesis

30

and Az y. [a = Inl x; b = Inr y] = thesis
and Az y. [a = Inr ; b = Inl y] = thesis
shows thesis
using assms by (cases a b rule: sum.ezhaust [case-product sum.exhaust]) auto

When two sets are almost-full, then their disjoint sum is almost-full.

lemma almost-full-on-Plus:
assumes almost-full-on P A and almost-full-on Q) B
shows almost-full-on (sum-le P Q) (A <+> B) (is almost-full-on ?P ?A)
proof
fix f :: nat = (‘a + 'b)
let 21 = f —Inl “ A
let 2/ =f—“Inr ‘B
assume Vi. fi € ?A
then have x: ?J = (UNIV:nat set) — ?I by (fastforce)
show good 7P f
proof (rule ccontr)
assume bad: bad ?P f
show Fulse
proof (cases finite 2I)
assume finite 21
then have infinite ?J by (auto simp: *)
then interpret infinitely-manyl Ai. fi € Inr ‘B
by (unfold-locales) (simp add: infinite-nat-iff-unbounded)
have [dest]: Ai z. f (enum i) = Inl x = False
using enum-P by (auto simp: image-iff) (metis Inr-Inl-False)
let ?f = Xi. projr (f (enum 1))
have B: Ai. ?f i € B using enum-P by (auto simp: image-iff) (metis
sum.sel(2))
{ fix ij :: nat
assume 7 < j
then have enum i < enum j using enum-less by auto
with bad have - 2P (f (enum @)) (f (enum j)) by (auto simp: good-def)
then have = Q (?f{) (?fj) by (auto elim: not-sum-le-cases) }
then have bad Q ?f by (auto simp: good-def)
moreover from <almost-full-on Q B> and B
have good @ ?f by (auto simp: good-def almost-full-on-def)
ultimately show Fulse by blast
next
assume infinite ?1
then interpret infinitely-manyl \i. fi € Inl * A
by (unfold-locales) (simp add: infinite-nat-iff-unbounded)
have [dest]: A\i z. f (enum i) = Inr £ = False
using enum-P by (auto simp: image-iff) (metis Inr-Inl-False)
let 2f = \i. projl (f (enum 7))
have A: Vi. ?f i € A using enum-P by (auto simp: image-iff) (metis
sum.sel(1))
{ fix ij :: nat
assume i < j

31

then have enum i < enum j using enum-less by auto
with bad have = ?P (f (enum 7)) (f (enum 7)) by (auto simp: good-def)
then have = P (?f4) (?f j) by (auto elim: not-sum-le-cases) }

then have bad P ?f by (auto simp: good-def)

moreover from <almost-full-on P A> and A
have good P ?f by (auto simp: good-def almost-full-on-def)

ultimately show Fulse by blast

qed
qed
qed

7.4 Dickson’s Lemma for Almost-Full Relations

When two sets are almost-full, then their Cartesian product is almost-full.

definition

prod-le :: ('a = 'a = bool) = ('b = 'b = bool) = 'a x 'b = 'a x 'b = bool
where

prod-le P1 P2 = (A\(p1, p2) (q1, q2). P1 p1 q1 N P2 p2 q2)

lemma prod-le-True [simp):
prod-le P (A- -. True) a b = P (fst a) (fst b)
by (auto simp: prod-le-def)

lemma almost-full-on-Sigma:
assumes almost-full-on P1 A1 and almost-full-on P2 A2
shows almost-full-on (prod-le P1 P2) (A1 x A2) (is almost-full-on ?P ?A)
proof (rule ccontr)
assume — almost-full-on ?P ?A
then obtain f where f: Vi. fi € 74
and bad: bad ?P f by (auto simp: almost-full-on-def)
let ?W = Az y. P1 (fstx) (fst y)
let B = Az y. P2 (snd) (snd y)
from f have fst: Vi. fst (fi) € Al and snd: Vi. snd (fi) € A2
by (metis SigmakFE fst-conv, metis SigmaE snd-conv)
from almost-full-on-imp-homogeneous-subseq [OF assms(1) fst]
obtain ¢ :: nat = nat where mono: \ij. i <j= pi<epj
and x: N\ij. i <j= ?W (f (¢ 9)) (f (¢ J)) by auto
from snd have Vi. snd (f (¢ 7)) € A2 by auto
then have snd o f o p € SEQ A2 by auto
with assms(2) have good P2 (snd o f o ¢) by (auto simp: almost-full-on-def)
then obtain 7 j :: nat
where i < jand ?B (f (¢ 7)) (f (¢ j)) by auto
with x [OF < < j»] have 2P (f (¢ 7)) (f (¢ j)) by (simp add: case-prod-beta
prod-le-def)
with mono [OF «i < j»] and bad show False by auto
qed

32

7.5 Higman’s Lemma for Almost-Full Relations

lemma almost-full-on-lists:
assumes almost-full-on P A
shows almost-full-on (list-emb P) (lists A) (is almost-full-on ?P ?A)
proof (rule ccontr)
interpret mbs 74 .
assume — ?thesis
from mbs’ [OF this] obtain m
where bad: m € BAD ?P
and min: Vg. (m, g) € gseq —> good ?P g ..
then have lists: \i. m i € lists A
and ne: \i. m i # [| by auto

define h t where h = (\i. hd (m i) and t = (Ai. ¢ (m 7))
have m: \i. m i = h i # t i using ne by (simp add: h-def t-def)

have Vi. h i € A using ne-lists [OF ne| and lists by (auto simp add: h-def)
from almost-full-on-imp-homogeneous-subseq [OF assms this| obtain ¢ :: nat =
nat
where less: \ij. i<j= pi<pj
and P:Vij. i <j— P (h(¢17)) (h(¢])) by blast

have bad-t: bad 7P (t o ¢)

proof
assume good ?P (t o ¢)
then obtain i j where i < j and ?P (¢t (¢ i)) (t (¢ j)) by auto
moreover with P have P (h (¢ 7)) (h (¢ j)) by blast
ultimately have ?P (m (¢ 7)) (m (¢ 7))

by (subst (1 2) m) (rule list-emb-Cons2, auto)

with less and «i < j» have good ?P m by (auto simp: good-def)
with bad show Fulse by blast

qed

define m’ where m’ = (\i. if i < ¢ 0 then mielset (p (i — ¢ 0)))

have m'-less: N\i. i < ¢ 0 = m’ i = m i by (simp add: m’-def)
have m’-geq: Ni. i > o 0 = m' i =1t (p (i — ¢ 0)) by (simp add: m'-def)

have Vi. m’ i € lists A using ne-lists [OF ne] and lists by (auto simp: m’-def
t-def)
moreover have length (m’ (¢ 0)) < length (m (¢ 0)) using ne by (simp add:
t-def m’-geq)
moreover have Vj<y 0. m’ j = m j by (auto simp: m'-less)
ultimately have (m, m’) € gseq using lists by (auto simp: gseq-def)
moreover have bad ?P m’
proof
assume good ?P m’
then obtain ¢ j where i < j and emb: ?P (m' i) (m' j) by (auto simp:
good-def)

33

{ assume j < ¢ 0
with < < j» and emb have 2P (m i) (m j) by (auto simp: m'-less)
with «i < j» and bad have Fualse by blast }
moreover
{ assume ¢ 0 < ¢
with i < j» and emb have ?P (¢t (¢ (i — ¢ 0))) (t (¢ (j — ¢ 0)))
and i — ¢ 0 < j — ¢ 0 by (auto simp: m'-geq)
with bad-t have False by auto }
moreover
{assume i < ¢ 0 and ¢ 0 < j
with «i < j» and emb have ?P (m i) (t (¢ (j — ¢ 0))) by (simp add: m’-less
/
m'-geq)
from list-emb-Cons [OF this, of h (¢ (j — ¢ 0))]
have ?P (m i) (m (¢ (j — ¢ 0))) using ne by (simp add: h-def t-def)
moreover have i < ¢ (j — ¢ 0)
using less [of 0j — ¢ 0] and <i < ¢ 0> and «p 0 <
by (cases j = ¢ 0) auto
ultimately have Fulse using bad by blast }
ultimately show Fulse using i < j» by arith
qed
ultimately show Fulse using min by blast
qed

7.6 Natural Numbers

lemma almost-full-on-UNIV-nat:
almost-full-on (<) (UNIV :: nat set)
proof —
let ?P = subseq :: bool list = bool list = bool
have x: length * (UNIV :: bool list set) = (UNIV :: nat set)
by (metis Ex-list-of-length surj-def)
have almost-full-on (<) (length < (UNIV :: bool list set))
proof (rule almost-full-on-hom)
fix zs ys :: bool list
assume ?P s ys
then show length zs < length ys
by (metis list-emb-length)
next
have finite (UNIV :: bool set) by auto
from almost-full-on-lists [OF eq-almost-full-on-finite-set [OF this]]
show almost-full-on ?P UNIV unfolding lists-UNIV .
qed
then show ?thesis unfolding x* .
qed

end

34

8 Well-Quasi-Orders

theory Well-Quasi-Orders
imports Almost-Full-Relations
begin

8.1 Basic Definitions

definition wqo-on :: (‘a = 'a = bool) = 'a set = bool where
wqo-on P A «— transp-on A P A almost-full-on P A

lemma wqo-on-UNIV:
wqo-on (A- -. True) UNIV
using almost-full-on-UNIV by (auto simp: wqo-on-def transp-on-def)

lemma wqo-onl [Pure.intro):
[transp-on A P; almost-full-on P A] = wqo-on P A
unfolding wqo-on-def almost-full-on-def by blast

lemma wqo-on-imp-reflp-on:
wqo-on P A = reflp-on A P
using almost-full-on-imp-reflp-on by (auto simp: wqo-on-def)

lemma wqo-on-imp-transp-on:
wqo-on P A = transp-on A P
by (auto simp: wqo-on-def)

lemma wqo-on-imp-almost-full-on:
wgqo-on P A = almost-full-on P A
by (auto simp: wqo-on-def)

lemma wqo-on-imp-qo-on:

wqo-on P A = qo-on P A

by (metis go-on-def wqo-on-imp-reflp-on wqo-on-imp-transp-on)
lemma wqo-on-imp-good:

wqo-on P A = Vi. fi € A = good P f

by (auto simp: wqo-on-def almost-full-on-def)
lemma wqo-on-subset:

A C B = wgo-on P B = wqo-on P A

using almost-full-on-subset [of A B P]

and transp-on-subset [of B P A]
unfolding wqo-on-def by blast

8.2 Equivalent Definitions
Given a quasi-order P, the following statements are equivalent:

1. P is a almost-full.

35

2. P does neither allow decreasing chains nor antichains.

3. Every quasi-order extending P is well-founded.

lemma wqo-af-conv:
assumes qo-on P A
shows wqo-on P A <— almost-full-on P A
using assms by (metis go-on-def wqo-on-def)

lemma wqo-wf-and-no-antichain-conv:
assumes qo-on P A
shows wqo-on P A <— wfp-on (strict P) A A = (3 f. antichain-on P f A)
unfolding wqo-af-conv [OF assms|
using af-trans-imp-wf [OF - assms [THEN qo-on-imp-transp-on]]
and almost-full-on-imp-no-antichain-on [of P A
and wf-and-no-antichain-imp-qo-extension-wf [of P A
and every-qo-extension-wf-imp-af [OF - assms]
by blast

lemma wqo-extensions-wf-conv:
assumes go-on P A
shows wgo-on P A «— (VQ. (Vz€A.VycA. Pz y — Qz y) A qo-on Q A
— wfp-on (strict Q) A)
unfolding wqo-af-conv [OF assms|
using af-trans-imp-wf [OF - assms [THEN qo-on-imp-transp-on]]
and almost-full-on-imp-no-antichain-on [of P A
and wf-and-no-antichain-imp-qo-extension-wf [of P A]
and every-qo-extension-wf-imp-af [OF - assms]
by blast

lemma wqo-on-imp-wfp-on:
wqo-on P A = wfp-on (strict P) A
by (metis (no-types) wqo-on-imp-qo-on wqo-wf-and-no-antichain-conv)

The homomorphic image of a wqo set is wqo.

lemma wqo-on-hom:
assumes transp-on (h ‘ A) Q
and Vz€A. VycA. Pz y — Q (hz) (hy)
and wgo-on P A
shows wqo-on Q (h * A)
using assms and almost-full-on-hom [of A P Q h)
unfolding wqo-on-def by blast

The monomorphic preimage of a wqo set is wqo.

lemma wqo-on-mon:
assumes x: Vz€A. VyeA. Pz y +— Q (hz) (hy)
and bij: bij-betw h A B
and wgqo: wgo-on @ B
shows wqo-on P A

36

proof —
have transp-on A P
proof (rule transp-onl)
fix x y z assume [introl: s € Aye Aze A
and Pzyand Py 2
with x have @ (h z) (hy) and Q (h y) (h 2) by blast+
with wgo-on-imp-transp-on [OF wqo] have @ (h z) (h 2)
using bij by (auto simp: bij-betw-def transp-on-def)
with * show P z z by blast
qged
with assms and almost-full-on-mon [of A P Q h]
show ?thesis unfolding wqo-on-def by blast
qed

8.3 A Type Class for Well-Quasi-Orders

In a well-quasi-order (wqo) every infinite sequence is good.

class wqo = preorder +
assumes good: good (<) f

lemma wqo-on-class [simp, intro]:

wqo-on (<) (UNIV :: ('a :: wqo) set)

using good by (auto simp: wqo-on-def transp-on-def almost-full-on-def dest: or-
der-trans)

lemma wqo-on-UNIV-class-wqo [intro!]:

wqo-on P UNIV = class.wqo P (strict P)

by (unfold-locales) (auto simp: wqo-on-def almost-full-on-def , unfold transp-on-def,
blast)

The following lemma converts between wgo-on (for the special case that the
domain is the universe of a type) and the class predicate class.wqo.

lemma wqo-on-UNIV-conv:
wqo-on P UNIV <— class.wqo P (strict P) (is ?lhs = ?rhs)
proof
assume ?lhs then show ¢rhs by auto
next
assume ?rhs then show ?lhs
unfolding class.wqo-def class.preorder-def class.wqo-axioms-def
by (auto simp: wqo-on-def almost-full-on-def transp-on-def)
qed

The strict part of a wqo is well-founded.

lemma (in wqo) wfP (<)
proof —
have class.wqo (<) (<) ..
hence wgo-on (<) UNIV
unfolding less-le-not-le [abs-def] wqo-on-UNIV-conv [symmetric] .

37

from wqo-on-imp-wfp-on [OF this]
show ?thesis unfolding less-le-not-le [abs-def] wfp-on-UNIV .
qed

lemma wqo-on-with-bot:
assumes wqo-on P A
shows wqo-on (option-le P) A, (is wgo-on ¢P ?A)
proof —
{ from assms have trans [unfolded transp-on-def]: transp-on A P
by (auto simp: wqo-on-def)
have transp-on ?A ?P
by (auto simp: transp-on-def elim!: with-bot-cases, insert trans) blast }
moreover
{ from assms and almost-full-on-with-bot
have almost-full-on ?P ?A by (auto simp: wqo-on-def) }
ultimately
show ?thesis by (auto simp: wqo-on-def)
qed

lemma wqo-on-option-UNIV [intro):
wqo-on P UNIV = wqo-on (option-le P) UNIV
using wqo-on-with-bot [of P UNIV] by simp

When two sets are wqo, then their disjoint sum is wqo.

lemma wqo-on-Plus:
assumes wqo-on P A and wqo-on @ B
shows wqo-on (sum-le P Q) (A <+> B) (is wqo-on ?P ?A)
proof —
{ from assms have trans [unfolded transp-on-def]: transp-on A P transp-on B
Q
by (auto simp: wqo-on-def)
have transp-on ?A ?P
unfolding transp-on-def by (auto, insert trans) (blast+) }
moreover
{ from assms and almost-full-on-Plus have almost-full-on ?P ?A by (auto simp:
wqo-on-def) }
ultimately
show ?thesis by (auto simp: wqo-on-def)
qed

lemma wqo-on-sum-UNIV [intro]:
wqo-on P UNIV = wqo-on @Q UNIV = wqo-on (sum-le P Q) UNIV
using wqo-on-Plus [of P UNIV Q UNIV] by simp

8.4 Dickson’s Lemma

lemma wqo-on-Sigma:
fixes A1 :: 'a set and A2 :: b set
assumes wqo-on P1 A1 and wqo-on P2 A2

38

shows wqo-on (prod-le P1 P2) (A1 x A2) (is wgo-on ?P ?A)
proof —

{ from assms have transp-on Al P1 and transp-on A2 P2 by (auto simp:
wqo-on-def)

hence transp-on ?A ?P unfolding transp-on-def prod-le-def by blast }
moreover
{ from assms and almost-full-on-Sigma [of P1 A1 P2 A2]
have almost-full-on ?P ?A by (auto simp: wqo-on-def) }

ultimately

show ?thesis by (auto simp: wqo-on-def)
qed

lemmas dickson = wqo-on-Sigma

lemma wqo-on-prod-UNIV [intro]:
wqo-on P UNIV = wqo-on @Q UNIV = wqo-on (prod-le P Q) UNIV
using wqo-on-Sigma [of P UNIV @ UNIV] by simp

8.5 Higman’s Lemma

lemma transp-on-list-emb:
assumes transp-on A P
shows transp-on (lists A) (list-emb P)
using assms and list-emb-trans [of - - - P]
unfolding transp-on-def by blast

lemma wqo-on-lists:
assumes wqgo-on P A shows wqo-on (list-emb P) (lists A)
using assms and almost-full-on-lists
and transp-on-list-emb by (auto simp: wqo-on-def)

lemmas higman = wqo-on-lists

lemma wqo-on-list-UNIV [intro]:
wqo-on P UNIV = wqo-on (list-emb P) UNIV
using wqo-on-lists [of P UNIV] by simp

Every reflexive and transitive relation on a finite set is a wqo.

lemma finite-wqo-on:
assumes finite A and refl: reflp-on A P and transp-on A P
shows wqo-on P A
using assms and finite-almost-full-on by (auto simp: wqo-on-def)

lemma finite-eq-wqo-on:
assumes finite A
shows wqo-on (=) A
using finite-wqo-on [OF assms, of (=)]
by (auto simp: reflp-on-def transp-on-def)

39

lemma wqo-on-lists-over-finite-sets:

wqo-on (list-emb (=)) (UNIV::(‘a::finite) list set)

using wqo-on-lists |OF finite-eq-wqo-on [OF finite [of UNIV::('a::finite) set]]] by
stmp

lemma wqo-on-map:
fixes P and () and h
defines P'=Xzy. Pzxy A Q (hz) (hy)
assumes wqo-on P A
and wqo-on @ B
and subset: h ‘A C B
shows wqo-on P’ A
proof
let 7Q =Xz y. Q (hz) (hy)
from <(wqo-on P A) have transp-on A P
by (rule wqo-on-imp-transp-on)
then show transp-on A P’
using <wqo-on) B> and subset
unfolding wqo-on-def transp-on-def P’-def by blast

from <wqo-on P As have almost-full-on P A
by (rule wqo-on-imp-almost-full-on)

from <wqo-on @) B> have almost-full-on Q B
by (rule wgo-on-imp-almost-full-on)

show almost-full-on P’ A
proof
fix f
assume *: Vi:nat. fi € A
from almost-full-on-imp-homogeneous-subseq [OF <almost-full-on P A» this]
obtain g :: nat = nat
where g: \ij. i<j=gi<gj
and *x: Vi. f (gi) € ANP (f (g9) (f (g (Suc 7))
using * by auto
from chain-transp-on-less [OF xx (transp-on A P)]
have «x: \ij. i < j= P (f (94)) (f (97)) -
let g = Xi. h (f (g 17))
from * and subset have B: A\i. %9 i € B by auto
with <almost-full-on @ By [unfolded almost-full-on-def good-def, THEN bspec,
of ?g]
obtain ¢ j :: nat
where i < jand Q (?g i) (%9 j) by blast
with xx [OF i < j] have P’ (f (9 %)) (f (97))
by (auto simp: P’-def)
with g [OF «i < j»] show good P’ f by (auto simp: good-def)
qed
qed

lemma wqo-on-UNIV-nat:

40

wqo-on (<) (UNIV :: nat set)
unfolding wqo-on-def transp-on-def
using almost-full-on-UNIV-nat by simp

end

9 Kiruskal’s Tree Theorem

theory Kruskal
imports Well-Quasi-Orders
begin

locale kruskal-tree =
fixes F :: ('b x nat) set
and mk :: 'b = 'a list = ('a::size)
and root :: 'a = 'b x nat
and args :: 'a = 'a list
and trees :: a set
assumes size-arg: t € trees = s € set (args t) = size s < size t
and root-mk: (f, length ts) € F = root (mk f ts) = (f, length ts)
and args-mk: (f, length ts) € F = args (mk f ts) = ts
and mk-root-args: t € trees => mk (fst (root t)) (args t) =t
and trees-root: t € trees = root t € F
and trees-arity: t € trees = length (args t) = snd (root t)
and trees-args: \s. t € trees = s € set (args t) = s € trees
begin

lemma mk-inject [iff]:
assumes (f, length ss) € F and (g, length ts) € F
shows mk fss=mk gts+— f =g N ss = ts
proof —
{ assume mk f ss = mk g ts
then have root (mk f ss) = root (mk g ts)
and args (mk f ss) = args (mk g ts) by auto }
show ?thesis
using root-mk [OF assms(1)] and root-mk [OF assms(2)]
and args-mk [OF assms(1)] and args-mk [OF assms(2)] by auto
qed

inductive emb for P
where
arg: [(f, m) € F; length ts = m; YV tEset ts. t € trees;
t € setts; emb P st] = emb P s (mk fts) |
list-emb: [(f, m) € F; (g, n) € F; length ss = m; length ts = n;
Vs € set ss. s € trees; Vt € set ts. t € trees;
P (f, m) (g, n); list-emb (emb P) ss ts] = emb P (mk f ss) (mk g ts)
monos list-emb-mono

lemma almost-full-on-trees:

41

assumes almost-full-on P F
shows almost-full-on (emb P) trees (is almost-full-on ¢P ?A)
proof (rule ccontr)
interpret mbs ?A .
assume — “thesis
from mbs’ [OF this] obtain m
where bad: m € BAD ?P
and min: ¥ g. (m, g) € gseq — good ?P g ..
then have trees: \i. m i € trees by auto

define r where r i = root (m i) for {
define a where a i = args (m 7) for ¢
define S where S = J{set (a i) | ¢. True}

have m: Ni. m i = mk (fst (r 1)) (a 7)
by (simp add: r-def a-def mk-root-args [OF trees))
have lists: Vi. a i € lists S by (auto simp: a-def S-def)
have arity: \i. length (a i) = snd (r 7)
using trees-arity [OF trees| by (auto simp: r-def a-def)
then have sig: \i. (fst (r i), length (a 7)) € F
using trees-root [OF trees] by (auto simp: a-def r-def)
have a-trees: N\i. Vt € set (a 7). t € trees by (auto simp: a-def trees-args [OF
trees|)

have almost-full-on ?P S
proof (rule ccontr)
assume — ?thesis
then obtain s :: nat = 'a
where S: A\i. si € S and bad-s: bad ?P s by (auto simp: almost-full-on-def)

define n where n = (LEAST n. 3k. s k € set (a n))
have dn. k. s k € set (a n) using S by (force simp: S-def)
from Leastl-ex [OF this] obtain k
where sk: s k € set (a n) by (auto simp: n-def)
have args: Ak. 3m > n. s k € set (a m)
using S by (auto simp: S-def) (metis Least-le n-def)

define m’ where m’ i = (if { < n then m i else s (k + (i — n))) for i

have m'-less: \i. i < n = m'i{ = m i by (simp add: m’-def)
have m’-geq: N\i. i > n = m'i=s(k+ (i — n)) by (simp add: m’-def)

have bad ?P m’
proof
assume good ?P m'
then obtain ¢ j where i < j and emb: 2P (m’ i) (m'j) by auto
{ assume j < n
with «i < j» and emb have ?P (m i) (m j) by (auto simp: m’-less)
with «{ < j» and bad have False by blast }

42

moreover
{ assume n < §
with «i < j» and emb have ?P (s (k+ (i — n))) (s (k + (j — n)))
and k + (i — n) < k + (j — n) by (auto simp: m’-geq)
with bad-s have Fulse by auto }
moreover
{ assume i < nand n < j
with «i < j» and emb have *: ?P (m i) (s (k + (j — n))) by (auto simp:
m'-less m'-geq)
with args obtain [where [> n and **: s (k + (j — n)) € set (a l) by
blast
from emb.arg [OF sig [of l] - a-trees [of 1] #x]
have 7P (m i) (m) by (simp add: m)
moreover have ¢ < [using < < n» and <n < I» by auto
ultimately have Fulse using bad by blast }
ultimately show Fulse using i < j» by arith
qed
moreover have (m, m’) € gseq
proof —
have m € SEQ ?A using trees by auto
moreover have m’ € SEQ ?A
using trees and S and trees-args [OF trees| by (auto simp: m’-def a-def
S-def)
moreover have Vi < n. m i = m’ i by (auto simp: m'-less)
moreover have size (m' n) < size (m n)
using sk and size-arg [OF trees, unfolded m)
by (auto simp: m m’-geq root-mk [OF sig] args-mk [OF sig])
ultimately show ?thesis by (auto simp: gseg-def)
qed
ultimately show Fulse using min by blast
qed
from almost-full-on-lists [OF this, THEN almost-full-on-imp-homogeneous-subseq,
OF lists]
obtain ¢ :: nat = nat
where less: \ij. i<j= pi<pj
and lemb: N\ij. i < j = list-emb 7P (a (¢ 7)) (a (¢ j)) by blast
have roots: \i. v (p i) € F using trees [THEN trees-root] by (auto simp: r-def)
then have r o p € SEQ F by auto
with assms have good P (r o) by (auto simp: almost-full-on-def)
then obtain 7 j
where i < jand P (r (¢ 7)) (r (¢ j)) by auto
with lemb [OF i < j»] have ?P (m (¢ 7)) (m (¢ j))
using sig and arity and a-trees by (auto simp: m intro!: emb.list-emb)
with less [OF i < 7] and bad show False by blast
qed

inductive-cases
emb-mk2 [consumes 1, case-names arg list-emb]: emb P s (mk g ts)

43

inductive-cases
list-emb-Nil2-cases: list-emb P zs || and
list-emb-Cons-cases: list-emb P s (y#ys)

lemma list-emb-trans-right:

assumes list-emb P xs ys and list-emb (A\y z. Pyz AN (Vz. Pz y — Pz 2)) ys
28

shows list-emb P xs zs

using assms(2, 1) by (induct arbitrary: xzs) (auto elim!: list-emb-Nil2-cases
list-emb-Cons-cases)

lemma emb-trans:
assumes trans: A\fgh. fée F—ge F—=he F —=Pfg— Pgh— P
fh
assumes emb P st and emb Pt u
shows emb P s u
using assms(3, 2)
proof (induct arbitrary: s)
case (arg f m ts v)
then show Zcase by (auto intro: emb.arg)
next
case (list-emb fm g n ss ts)
note IH = this
from <emb P s (mk f ss)»
show ?Zcase
proof (cases rule: emb-mk2)
case aryg
then show %thesis using IH by (auto elim!: list-emb-set intro: emb.arg)
next
case list-emb
then show ?thesis using IH by (auto intro: emb.intros dest: trans list-emb-trans-right)
qed
qed

lemma transp-on-emb:
assumes transp-on F' P
shows transp-on trees (emb P)
using assms and emb-trans [of P] unfolding transp-on-def by blast

lemma kruskal:
assumes wqo-on P F
shows wqo-on (emb P) trees
using almost-full-on-trees [of P] and assms by (metis transp-on-emb wqo-on-def)

end
end

theory Kruskal-Examples
imports Kruskal

44

begin
datatype ’a tree = Node 'a 'a tree list

fun node
where
node (Node f ts) = (f, length ts)

fun succs
where
succs (Node f ts) = ts

inductive-set trees for A
where
feA= Vtesetts t e trees A= Node fts € trees A

lemma [simpl:

trees UNIV = UNIV
proof —

{ fix t :: 'a tree

have t € trees UNIV
by (induct t) (auto intro: trees.intros) }

then show ?thesis by auto

qed

interpretation kruskal-tree-tree: kruskal-tree A x UNIV Node node succs trees A
for A

apply (unfold-locales)

apply auto

apply (case-tac [!] ¢ rule: trees.cases)

apply auto

by (metis less-not-refl not-less-eq size-list-estimation,)

thm kruskal-tree-tree.almost-full-on-trees
thm kruskal-tree-tree.kruskal

definition tree-emb A P = kruskal-tree-tree.emb A (prod-le P (A- -. True))

lemma wqo-on-trees:
assumes wqo-on P A
shows wqo-on (tree-emb A P) (trees A)
using wqo-on-Sigma [OF assms wqo-on-UNIV, THEN kruskal-tree-tree.kruskal]
by (simp add: tree-emb-def)

If the type a is well-quasi-ordered by P, then trees of type ‘a tree are well-
quasi-ordered by the homeomorphic embedding relation.

instantiation tree :: (wgo) wgo
begin
definition s < t «+— tree-emb UNIV (<) st

45

definition (s :: ‘a tree) < t +— s < t A = (t <)

instance
by (rule wqo.intro-of-class)
(auto simp: less-eq-tree-def [abs-def] less-tree-def [abs-def]
intro: wqo-on-trees [of - UNIV, simplified])
end

datatype ('f, 'v) term = Var 'v | Fun 'f ('f, 'v) term list

fun root
where
root (Fun f ts) = (f, length ts)

fun args
where
args (Fun f ts) = ts

inductive-set gterms for F
where

(f,n) € F = lengthts = n = Vs € set ts. s € gterms F = Fun fts € gterms
F

interpretation kruskal-term: kruskal-tree F' Fun root args gterms F for F
apply (unfold-locales)
apply auto
apply (case-tac [!] ¢ rule: gterms.cases)
apply auto
by (metis less-not-refl not-less-eq size-list-estimation)

thm kruskal-term.almost-full-on-trees
inductive-set terms
where
Vit e setts. t € terms = Fun fts € terms
interpretation kruskal-variadic: kruskal-tree UNIV Fun root args terms
apply (unfold-locales)
apply auto
apply (case-tac [!] ¢ rule: terms.cases)
apply auto
by (metis less-not-refl not-less-eq size-list-estimation,)
thm kruskal-variadic.almost-full-on-trees

datatype ‘a exp = V 'a | C nat | Plus 'a exp 'a exp

datatype ‘a symb = v ‘a | ¢ nat | p

46

fun mk

where
mk (ve)[]=Va|
mk (¢cn)[]=Cn|
mk p [a, b] = Plus a b

fun rt

where
rt (V) = (vz, 0:nat) |
1t (Cn) = (cn, 0)]|
rt (Plus a b) = (p, 2)

fun ags
where
ags (Vx) =] |
ags (Cn) = [|
ags (Plus a b) = [a, b]

inductive-set ezrps
where
Vz € exps |
Cn € exps |
a € exps => b € exps = Plus a b € exps

lemma [simp]:
assumes length ts = 2
shows 1t (mk p ts) = (p, 2)
using assms by (induct ts) (auto, case-tac ts, auto)

lemma [simp]:
assumes length ts = 2
shows ags (mk p ts) = ts
using assms by (induct ts) (auto, case-tac ts, auto)

interpretation kruskal-exp: kruskal-tree
{(vz, 0) | z. True} U {(cn, 0)|n. True} U {(p, 2)}
mk Tt ags exps

apply (unfold-locales)

apply auto

apply (case-tac [!] t rule: exps.cases)

by auto

thm kruskal-ezp.almost-full-on-trees
hide-const (open) tree-emb V C Plus v ¢ p

end

47

10 Instances of Well-Quasi-Orders

theory Wgo-Instances
imports Kruskal
begin

10.1 The Option Type is Well-Quasi-Ordered

instantiation option :: (wgo) wqo

begin

definition z < y +— option-le (<) z y

definition (z :: ‘a option) < y «+— z < y A = (y < x)

instance
by (rule wqo.intro-of-class)
(auto simp: less-eq-option-def [abs-def] less-option-def [abs-def])
end

10.2 The Sum Type is Well-Quasi-Ordered

instantiation sum :: (wqo, wgo) wqo

begin

definition z < y +— sum-le (<) () z y
definition (z :: ‘a + D) < y+— 2z <y A - (y <z

instance
by (rule wqo.intro-of-class)
(auto simp: less-eq-sum-def [abs-def] less-sum-def [abs-def])
end

10.3 Pairs are Well-Quasi-Ordered

If types 'a and 'b are well-quasi-ordered by P and @, then pairs of type ‘a
x 'b are well-quasi-ordered by the pointwise combination of P and Q.
instantiation prod :: (wqo, wqo) wqo

begin

definition p < g +— prod-le (<) (<) p ¢

definition (p :: 'a X b)) < g+—p < qgA - (q<p)

instance
by (rule wqo.intro-of-class)

(auto simp: less-eq-prod-def [abs-def] less-prod-def [abs-def])
end

10.4 Lists are Well-Quasi-Ordered

If the type 'a is well-quasi-ordered by P, then lists of type ’a list are well-
quasi-ordered by the homeomorphic embedding relation.

48

instantiation list :: (wgo) wqo

begin

definition zs < ys «— list-emb (<) xs ys

definition (zs :: ‘a list) < ys +— zs < ys A = (ys < xs)

instance
by (rule wqo.intro-of-class)
(auto simp: less-eq-list-def [abs-def] less-list-def [abs-def])
end

end

11 Multiset Extension of Orders (as Binary Pred-
icates)

theory Multiset-Extension

imports
Open-Induction. Restricted-Predicates
HOL— Library. Multiset

begin

definition multisets :: 'a set = 'a multiset set where
multisets A = {M. set-mset M C A}

lemma in-multisets-iff:
M € multisets A < set-mset M C A
by (simp add: multisets-def)

lemma empty-multisets [simp]:
{#} € multisets F
by (simp add: in-multisets-iff)

lemma multisets-union [simpl:
M € multisets A = N € multisets A = M + N € multisets A
by (auto simp add: in-multisets-iff)

definition mulez! :: (‘a = 'a = bool) = 'a multiset = 'a multiset = bool where
mulex] P = (AM N. (M, N) € mult! {(z, y). Pz y})

lemma mulexI-empty [iff]:
mulex] P M {#} <— False
using not-less-empty [of M {(z, y). P z y}]
by (auto simp: mulexI-def)

lemma mulex!-add: mulex! P N (M0 + {#a#}) =
(IM. mulex1 P M MO NN =M + {#a#}) Vv
(3K. (Vb.be#t K— Pba) NN = M0 + K)
using less-add [of N a M0 {(z, y). P z y}]

49

by (auto simp: mulexI-def)

lemma mulex!-self-add-right [simp):
mulex! P A (add-mset a A)
proof —
let R = {(z, y). Pz y}
thm multi-def
have A + {#a#} = A + {#a#} by simp
moreover have A = A + {#} by simp
moreover have Vb. b €# {#} — (b, a) € ?R by simp
ultimately have (A, add-mset a A) € mult! ?R
unfolding multl-def by blast
then show %thesis by (simp add: mulex1-def)
qed

lemma empty-multl [simp]:
({#}, {#a#}) € multl R
proof —
have {#a#} = {#} + {#a#]} by simp
moreover have {#} = {#} + {#} by simp
moreover have Vb. b €# {#} — (b, a) € R by simp
ultimately show #thesis unfolding multi-def by force
qed

lemma empty-mulex! [simpl:

mulexl P {#} {#a#}
using empty-mult! [of a {(z, y). P z y}] by (simp add: mulex1-def)

definition mulex-on :: (‘a = ’‘a = bool) = 'a set = 'a multiset = 'a multiset =
bool where
mulez-on P A = (restrict-to (mulex1 P) (multisets A))™+

abbreviation mulex :: (‘a = 'a = bool) = 'a multiset = 'a multiset = bool
where
mulex P = mulex-on P UNIV

lemma mulez-on-induct [consumes 1, case-names base step, induct pred: mulez-on]:
assumes mulex-on P A M N
and AM N. [M € multisets A; N € multisets A; mulexr] P M N] = Q M N
and AL M N. [mulez-on P A L M; Q@ L M; N € multisets A; mulex! P M N]
= QLN
shows Q M N
using assms unfolding mulex-on-def by (induct) blast+

lemma mulez-on-self-add-singleton-right [simp]:
assumes a € A and M € multisets A
shows mulez-on P A M (add-mset a M)
proof —
have mulex! P M (M + {#a+#}) by simp

50

with assms have restrict-to (mulexl P) (multisets A) M (add-mset a M)
by (auto simp: multisets-def)
then show ?thesis unfolding mulez-on-def by blast
qed

lemma singleton-multisets [iff]:
{#a#} € multisets A «— z € A
by (auto simp: multisets-def)

lemma union-multisetsD:
assumes M + N € multisets A
shows M € multisets A AN N € multisets A
using assms by (auto simp: multisets-def)

lemma mulex-on-multisetsD [dest]:
assumes mulez-on P FF M N
shows M € multisets F and N € multisets F'
using assms by (induct) auto

lemma union-multisets-iff [iff]:
M + N € multisets A «— M € multisets A N N € multisets A
by (auto dest: union-multisetsD)

lemma add-mset-multisets-iff [iff]:
add-mset a M € multisets A «— a € A N M € multisets A
unfolding add-mset-add-single[of a M) union-multisets-iff by auto

lemma mulex-on-trans:
mulez-on P A L M = mulez-on P A M N = mulez-on PA L N
by (auto simp: mulez-on-def)

lemma transp-on-mulex-on:
transp-on B (mulez-on P A)
using mulez-on-trans [of P A] by (auto simp: transp-on-def)

lemma mulex-on-add-right [simp]:

assumes mulez-on P A M N and a € A

shows mulez-on P A M (add-mset a N)
proof —

from assms have a € A and N € multisets A by auto

then have mulex-on P A N (add-mset a N) by simp

with «mulez-on P A M N> show ?thesis by (rule mulez-on-trans)
qed

lemma empty-mulez-on [simp]:
assumes M # {#} and M € multisets A
shows mulez-on P A {#} M

using assms

proof (induct M)

o1

case (add a M)
show ?case
proof (cases M = {#})
assume M = {#}
with add show ?thesis by (auto simp: mulez-on-def)
next
assume M # {#}
with add show ?thesis by (auto intro: mulex-on-trans)
qed
qed simp

lemma mulez-on-self-add-right [simp]:
assumes M € multisets A and K € multisets A and K # {#}
shows mulez-on P A M (M + K)
using assms
proof (induct K)
case empty
then show ?case by (cases K = {#}) auto
next
case (add a M)
show ?case
proof (cases M = {#})
assume M = {#} with add show ?thesis by auto
next
assume M # {#} with add show ?thesis
by (auto dest: mulez-on-add-right simp add: ac-simps)
qed
qed

lemma multl-singleton [iff]:
({#ot}, {(#y#}) € mult] R < (s, y) € R
proof
assume (z, y) € R
then have {#y#} = {#} + {#y#}
and {#2#} = {#} + {#a#}
and Vb. b €# {#z#} — (b, y) € R by auto
then show ({#z#}, {#y#}) € mult! R unfolding multi-def by blast
next
assume ({#z#}, {#y#}) € multl R
then obtain M0 K a
where {#y#} = add-mset a M0
and {#z#} = M0 + K
and Vb. be# K — (b, a) € R
unfolding multl-def by blast
then show (z, y) € R by (auto simp: add-eg-conv-diff)
qed

lemma mulexI-singleton [iff]:
mulexl P {#a#} {#y#} «— Pz y

52

using multl-singleton [of x y {(z, y). P z y}] by (simp add: mulex1-def)

lemma singleton-mulez-onl:
Pry=— 2€ A= y € A= mulex-on P A {#a#} {#y#}
by (auto simp: mulez-on-def)

lemma reflclp-mulex-on-add-right [simp]:
assumes (mulez-on P A)== M N and M € multisets A and a € A
shows mulez-on P A M (N + {#a#})
using assms by (cases M = N) simp-all

lemma reflclp-mulex-on-add-right’ [simpl:
assumes (mulez-on P A)== M N and M € multisets A and a € A
shows mulez-on P A M ({#a#} + N)
using reficlp-mulez-on-add-right [OF assms] by (simp add: ac-simps)

lemma mulez-on-union-right [simp]:
assumes mulez-on P FF A B and K € multisets F'
shows mulez-on P F A (K + B)
using assms
proof (induct K)
case (add a K)
then have a € F' and mulez-on P F A (B + K) by (auto simp: multisets-def
ac-simps)
then have mulez-on P F A (B + K) + {#a#}) by simp
then show ?Zcase by (simp add: ac-simps)
qed simp

lemma mulez-on-union-right’ [simpl:
assumes mulex-on P F A B and K € multisets I
shows mulez-on P F A (B + K)
using mulez-on-union-right [OF assms] by (simp add: ac-simps)

Adapted from wf ?r =V M. M € Wellfounded.acc (multl ?r) in HOL— Library. Multiset.

lemma accessible-on-mulex-multisets:

assumes wf: wfp-on P A

shows V M emultisets A. accessible-on (mulexl P) (multisets A) M
proof

let P = mulexl P

let ?A = multisets A

let 2acc = accessible-on ¢P ?A

fix M MO a
assume MO0: Zacc MO
and a € A
and M0 € 7A
and wf-hyp: \b. [b € A; Pba] = (VM. 2acc (M) — Zacc (M + {#b#}))
and acc-hyp: VM. M € 2A N 2P M MO — %acc (M + {#a#})
then have add-mset a M0 € ?A by (auto simp: multisets-def)

93

then have Zacc (add-mset a MO)
proof (rule accessible-onl [of add-mset a MO0])
fix N
assume N € 74
and ?P N (add-mset a M0)
then have (M. M € 2AN 9P M MO NN = M + {#a#}) V
(K. (Vb.be# K — Pba) NN = M0 + K))
using mulex!-add [of P N M0 a] by (auto simp: multisets-def)
then show ?Zacc (N)
proof (elim exE disjE conjE)
fix M assume M € ?A and ?P M M0 and N: N = M + {#a#}
from acc-hyp have M € ?A N ?P M M0 — %acc (M + {#a#}) ..
with «M € 74> and <?P M M0> have %acc (M + {#a#}) by blast
then show ?Zacc (N) by (simp only: N)
next
fix K
assume N: N = M0 + K
assume Vb. be# K — Pba
moreover from N and <N € ?A) have K € ?A by (auto simp: multisets-def)
ultimately have Zacc (M0 + K)
proof (induct K)
case empty
from M0 show %acc (MO + {#}) by simp
next
case (add z K)
from add.prems have z € A and P x a by (auto simp: multisets-def)
with wf-hyp have VM. 2acc M — ?2acc (M + {#x#}) by blast
moreover from add have Yacc (M0 + K) by (auto simp: multisets-def)
ultimately show Zacc (M0 + (add-mset z K)) by simp
qed
then show Zacc N by (simp only: N)
qed
qed
} note tedious-reasoning = this

fix M
assume M € ?4
then show %acc M
proof (induct M)
show %acc {#}
proof (rule accessible-onl)
show {#} € ?A by (auto simp: multisets-def)
next
fix b assume ?P b {#} then show ?acc b by simp
qed
next
case (add a M)
then have %acc M by (auto simp: multisets-def)
from add have a € A by (auto simp: multisets-def)

54

with wf have VM. ?acc M — ?acc (add-mset a M)
proof (induct)
case (less a)
then have r: Ab. [b € A; Pba] = (VM. acc M — %acc (M + {#b#}))
by auto
show V M. 2acc M — ?acc (add-mset a M)
proof (intro alll impl)
fix M’
assume “acc M’
moreover then have M’ € ?A by (blast dest: accessible-on-imp-mem;)
ultimately show ?acc (add-mset a M)
by (induct) (rule tedious-reasoning [OF - <a € Ay - r|, auto)
qed
qed
with «?acc (M)> show Zacc (add-mset a M) by blast
qged
qed

lemmas wfp-on-mulexl-multisets =
accessible-on-mulex1-multisets [THEN accessible-on-imp-wfp-on)

lemmas irreflp-on-mulex! =
wfp-on-mulex-multisets [THEN wfp-on-imp-irreflp-on]

lemma wfp-on-mulex-on-multisets:
assumes wfp-on P A
shows wfp-on (mulex-on P A) (multisets A)
using wfp-on-mulexi-multisets [OF assms]
by (simp only: mulex-on-def wfp-on-restrict-to-tranclp-wfp-on-conv)

lemmas irrefip-on-mulex-on =
wfp-on-mulex-on-multisets [THEN wfp-on-imp-irrefip-on)

lemma mulex1-union:
mulex] P M N = mulex! P (K + M) (K + N)
by (auto simp: mulexl-def multl-union)

lemma mulez-on-union:
assumes mulez-on P A M N and K € multisets A
shows mulez-on P A (K + M) (K + N)
using assms
proof (induct)
case (base M N)
then have mulex? P (K + M) (K + N) by (blast dest: mulex1-union)
moreover from base have (K + M) € multisets A
and (K + N) € multisets A by (auto simp: multisets-def)
ultimately have restrict-to (mulex! P) (multisets A) (K + M) (K + N) by
auto
then show Zcase by (auto simp: mulez-on-def)

95

next
case (step L M N)
then have mulex! P (K + M) (K + N) by (blast dest: mulex1-union)
moreover from step have (K + M) € multisets A and (K + N) € multisets
A by blast+
ultimately have (restrict-to (mulexl P) (multisets A))*+ (K + M) (K + N)
by auto
moreover have mulez-on P A (K + L) (K + M) using step by blast
ultimately show ?case by (auto simp: mulez-on-def)
qed

lemma mulez-on-union”:
assumes mulez-on P A M N and K € multisets A
shows mulez-on P A (M + K) (N + K)
using mulez-on-union [OF assms| by (simp add: ac-simps)

lemma mulex-on-add-mset:
assumes mulex-on P A M N and m € A
shows mulez-on P A (add-mset m M) (add-mset m N)
unfolding add-mset-add-single[of m M| add-mset-add-single[of m N|
apply (rule mulex-on-union’)
using assms by auto

lemma union-mulez-on-mono:
mulez-on P F A C = mulez-on P F B D = mulez-on P F (A + B) (C + D)
by (metis mulez-on-multisetsD mulez-on-trans mulez-on-union mulez-on-union’)

lemma mulez-on-add-mset’:
assumes Pmnand m € Aand n € A and M € multisets A
shows mulez-on P A (add-mset m M) (add-mset n M)
unfolding add-mset-add-single[of m M| add-mset-add-single[of n M)
apply (rule mulez-on-union)
using assms by (auto simp: mulex-on-def)

lemma mulez-on-add-mset-mono:
assumes P mn and m € A and n € A and mulexz-on P A M N
shows mulez-on P A (add-mset m M) (add-mset n N)
unfolding add-mset-add-single[of m M| add-mset-add-single[of n N]
apply (rule union-mulez-on-mono)
using assms by (auto simp: mulez-on-def)

lemma union-mulex-on-monol:
A € multisets F = (mulez-on P F)== A C = mulez-on P F B D —>
mulez-on P F (A + B) (C + D)
by (auto intro: union-mulez-on-mono mulez-on-union)

lemma union-mulex-on-mono2:

B € multisets F = mulez-on P F A C = (mulez-on P F)== B D =
mulex-on P F (A + B) (C + D)

o6

by (auto intro: union-mulex-on-mono mulez-on-union’)

lemma multi-mono:

assumes Az y. [x € A;y € A; (z,y) € R) = (2, y) € S
and M € multisets A
and N € multisets A
and (M, N) € mult! R

shows (M, N) € mult1 S

using assms unfolding mult1-def multisets-def

by auto (metis (full-types) subsetD)

lemma mulex1-mono:

assumes A\zy. [z € 4;y€ A; Pzyl = Quzy
and M € multisets A
and N € multisets A
and mulex] P M N

shows mulexl Q M N

using multl-mono [of A {(z, v). Pz y} {(z, v). Q x y} M N]
and assms unfolding mulex1-def by blast

lemma mulex-on-mono:
assumes x: Az y. [t € A;y€ A, Pryl = Quzy
and mulez-on P A M N
shows mulex-on Q A M N
proof —
let ?rel = AP. (restrict-to (mulex! P) (multisets A))
from <mulez-on P A M N> have (?rel P)™* M N by (simp add: mulex-on-def)
then have (%rel Q)™+t M N
proof (induct rule: tranclp.induct)
case (r-into-trancl M N)
then have M € multisets A and N € multisets A by auto
from mulexi-mono [OF « this] and r-into-trancl
show ?case by auto
next
case (trancl-into-trancl L M N)
then have M € multisets A and N € multisets A by auto
from mulexl-mono [OF x this] and trancl-into-trancl
have ?rel Q M N by auto
with <(%rel Q)™+ L M) show ?case by (rule tranclp.trancl-into-trancl)
qed
then show %thesis by (simp add: mulez-on-def)
qged

lemma mult1-reficl:
assumes (M, N) € mult!l R
shows (M, N) € multl (R™)

using assms by (auto simp: mult1-def)

lemma mulexI-reficlp:

o7

assumes mulex! P M N

shows mulex! (P==) M N

using mulexI-mono [of UNIV P P== M N, OF - - - assms]
by (auto simp: multisets-def)

lemma mulez-on-reficlp:
assumes mulex-on P A M N
shows mulez-on (P==) A M N
using mulez-on-mono [OF - assms, of P==] by auto

lemma surj-on-multisets-mset:
Y Memultisets A. as€lists A. M = mset xs
proof
fix M
assume M € multisets A
then show Jzs€lists A. M = mset xs
proof (induct M)
case empty show ?case by simp
next
case (add a M)
then obtain zs where zs € lists A and M = mset zs by auto
then have add-mset a M = mset (a # zs) by simp
moreover have a # xs € lists A using <zs € lists A> and add by auto
ultimately show ?case by blast
qed
qged

lemma image-mset-lists [simp]:
mset ‘ lists A = multisets A
using surj-on-multisets-mset [of A
by auto (metis mem-Collect-eq multisets-def set-mset-mset subsetl)

lemma multisets-UNIV [simp]: multisets UNIV = UNIV
by (metis image-mset-lists lists-UNIV surj-mset)

lemma non-empty-multiset-induct [consumes 1, case-names singleton add):
assumes M # {#}
and Az. P {#z#}
and Az M. P M = P (add-mset © M)
shows P M
using assms by (induct M) auto

lemma mulex-on-all-strict:
assumes X # {#}
assumes X € multisets A and Y € multisets A
and x: Vy. ye# Y — (Fz.z €e# X AN Pyux)
shows mulex-on P A Y X
using assms
proof (induction X arbitrary: Y rule: non-empty-multiset-induct)

o8

case (singleton x)
then have mulex! P Y {#z#}
unfolding mulex1-def mult1-def
by auto
with singleton show ?case by (auto simp: mulez-on-def)
next
case (add x M)
let Y ={#yec# Y.Iz. x e# M N Pyz #}
let 2Z =Y — ?2Y
have Y: Y = 27 4+ ?Y by (subst multiset-eq-iff) auto
from <Y € multisets A> have ?Y € multisets A by (metis multiset-partition
union-multisets-iff)
moreover have Vy. y €# ?Y — (3z. © €# M N P y x) by auto
moreover have M € multisets A using add by auto
ultimately have mulez-on P A ?Y M using add by blast
moreover have mulez-on P A 97 {#az#}
proof —
have {#a#} = {#} + {##} by simp
moreover have ?7 = {#} + ?Z by simp
moreover have Vy. y €# 927 — Py
using add.prems by (auto simp add: in-diff-count split: if-splits)
ultimately have mulex! P ?Z {#ax#} unfolding mulexl-def multl-def by
blast
moreover have {#z#} € multisets A using add.prems by auto
moreover have ?Z € multisets A
using (Y € multisets Ay by (metis diff-union-cancellL multiset-partition
union-multisetsD)
ultimately show ?thesis by (auto simp: mulex-on-def)
qed
ultimately have mulez-on P A (?Y + 27) (M + {#x#}) by (rule union-mulex-on-mono)
then show ?Zcase using Y by (simp add: ac-simps)
qed

The following lemma shows that the textbook definition (e.g., “Term Rewrit-
ing and All That”) is the same as the one used below.

lemma diff-set- Ez-iff:

XA{#IANXCEMAN=(M—X)+ Y e X £{#ANGZ M=2+
XAN=Z+7Y)

by (auto) (metis add-diff-cancel-left’ multiset-diff-union-assoc union-commute)

Show that mulex-on is equivalent to the textbook definition of multiset-
extension for transitive base orders.

lemma mulex-on-alt-def:
assumes trans: transp-on A P
shows mulez-on P A M N <— M € multisets A AN N € multisets AN (3X Y
Z.
XA{H#AN=Z+XAM=Z+YANNVNyye#tY — Fz.ze#t XA
Py)
(is 2PM N +— ?Q M N)

99

proof
assume ?P M N then show ?Q M N
proof (induct M N)
case (base M N)
then obtain ¢ M0 K where N: N = M0 + {#a#}
and M: M = M0 + K
and x: Vb. be# K — Pba
and M € multisets A and N € multisets A by (auto simp: mulexl-def
mult1-def)
moreover then have {#a#} € multisets A and K € multisets A by auto
moreover have {#a#} # {#} by auto
moreover have N = M0 + {#a#} by fact
moreover have M = M0 + K by fact
moreover have Vy. y €é# K — (3z. z €# {#a#} N P y z) using x by
auto
ultimately show ?case by blast
next
case (step L M N)
then obtain X YV Z
where L € multisets A and M € multisets A and N € multisets A
and X € multisets A and Y € multisets A
and M: M =7+ X
and L: L =7+ Y and X # {#}
and V:Vy. ye# Y — (Jz.z e# X AN Pyux)
and mulexl P M N
by blast
from <mulex?i P M N)» obtain a M0 K
where N: N = add-mset a M0 and M= M = M0 + K
and x: Vb. b €# K — P b a unfolding mulexi-def multi-def by blast
have L. L = (M — X) + Y by (simp add: L M)
have K:Vy. y €# K — (3z. z €# {#a#} N P y) using * by auto

The remainder of the proof is adapted from the proof of Lemma 2.5.4. of the book
“Term Rewriting and All That.”

let ?X = add-mset a (X — K)
let 7Y = (K — X) + Y

have L € multisets A and N € multisets A by fact+
moreover have ?X £ {#} N 3Z. N=Z + ?XNL =7+ ?Y)
proof —
have ?X # {#} by auto
moreover have ?X C# N
using M N M’ by (simp add: add.commute [of {#a#}])
(metis Multiset.diff-subset-eq-self add.commute add-diff-cancel-right)
moreover have L = (N — ?X) + ?Y
proof (rule multiset-eql)
fixz: 'a
let 2c = AM. count M x
let %ic = A\z. int (Yc z)

60

from <X C# N> have *: ?c {#a#} + %¢ (X — K) < %¢c N

by (auto simp add: subseteqg-mset-def split: if-splits)
from x have #x: ?c (X — K) < ?c M0 unfolding N by (auto split: if-splits)
have %ic (N — ?X 4+ ?Y) = int (¢ N — ¢ ?X) + ?%ic ?Y by simp

also have ... = int (¢ N — (%c {#a#} + ?c (X — K))) + %ic (K — X)
+ %ic Y by simp

also have ... = %ic N — (%ic {#a#} + %ic (X — K)) + %ic (K — X) +
%ic Y

using of-nat-diff [OF x| by simp

also have ... = (%ic N — %ic {#a#}) — %ic (X — K) + %ic (K — X) +
Zic 'Y by simp

also have ... = (%ic N — %ic {#a#}) + (%ic (K — X) — %ic (X — K)) +
%ic 'Y by simp

also have ... = (%ic N — %ic {#a#}) + (%ic K — %ic X) + ?ic Y by simp

also have ... = (%ic N — %ic ?X) 4+ %ic ?Y by (simp add: N)

also have ... = %ic L

unfolding L' M’ N
using *x by (simp add: algebra-simps)
finally show %c L = ?¢ (N — ?2X + ?Y) by simp
qed
ultimately show ?thesis by (metis diff-set-Ez-iff)
qed
moreover have Vy. y €# ?Y — (3z. z €# ?X A Py z)
proof (intro alll impl)
fix y assume y €# ?Y
then have y €# K — X V y €# Y by auto
then show Jz. 2z €# X AN Pyz
proof
assume y €# K — X
then have y €# K by (rule in-diffD)
with K show #“thesis by auto
next
assume y €# Y
with Y obtain z where z €# X and P y = by blast
{ assume z €# X — K with <P y 2> have ?thesis by auto }
moreover
{ assume z €# K with x have P x a by auto
moreover have y € A using <Y € multisets A> and «y €# Y) by (auto
sitmp: multisets-def)
moreover have a € A using (N € multisets A> by (auto simp: N)
moreover have z € A using <M € multisets A> and «x €# K> by (auto
simp: M’ multisets-def)
ultimately have P y a using <P y) and trans unfolding transp-on-def
by blast
then have %thesis by force }
moreover from «x €# X»> havez €e# X — KV e# K
by (auto simp add: in-diff-count not-in-iff)
ultimately show ?thesis by auto
qed

61

qed
ultimately show ?case by blast
qed
next
assume ?Q M N
then obtain X Y Z where M € multisets A and N € multisets A
and X #{#}and N: N=Z+ Xand M: M =2+Y
and x: Vy. y €# Y — (Jz. 2 €# X A Py z) by blast
with mulez-on-all-strict [of X A Y] have mulez-on P A Y X by auto
moreover from (N € multisets A> have Z € multisets A by (auto simp: N)
ultimately show ¢P M N unfolding M N by (metis mulex-on-union)
qed

end

12 Multiset Extension Preserves Well-Quasi-Orders

theory Wqo-Multiset
imports
Multiset- Extension
Well-Quasi-Orders
begin

lemma list-emb-imp-reficlp-mulex-on:
assumes s € lists A and ys € lists A
and list-emb P xs ys
shows (mulex-on P A)== (mset xs) (mset ys)
using assms(3, 1, 2)
proof (induct)
case (list-emb-Nil ys)
then show ?case
by (cases ys) (auto intro!: empty-mulex-on simp: multisets-def)
next
case (list-emb-Cons xs ys y)
then show ?case by (auto introl: mulez-on-self-add-singleton-right simp: multi-
sets-def)
next
case (list-emb-Cons2 x y xs ys)
then show ?case
by (force intro: union-mulex-on-mono mulez-on-add-mset
mulex-on-add-mset’ mulex-on-add-mset-mono
simp: multisets-def)
qed

The (reflexive closure of the) multiset extension of an almost-full relation is
almost-full.

lemma almost-full-on-multisets:
assumes almost-full-on P A
shows almost-full-on (mulez-on P A)== (multisets A)

62

proof —
let 7P = (mulez-on P A)==
from almost-full-on-hom [OF - almost-full-on-lists, of A P ?P mset,
OF list-emb-imp-reflclp-mulez-on, simplified]
show ?thesis using assms by blast
qed

lemma wqo-on-multisets:
assumes wqo-on P A
shows wqo-on (mulez-on P A)== (multisets A)
proof
from transp-on-mulez-on [of multisets A P A]
show transp-on (multisets A) (mulex-on P A)
unfolding transp-on-def by blast
next
from almost-full-on-multisets [OF assms [THEN wqo-on-imp-almost-full-on]]
show almost-full-on (mulez-on P A)== (multisets A) .
qed

end

References
[1] C. S. J. A. Nash-Williams. On well-quasi-ordering finite trees. Pro-

ceedings of the Cambridge Philosophical Society, 59(4):833-835, 1963.
doi:10.1017/S0305004100003844.

63

http://dx.doi.org/10.1017/S0305004100003844

	Infinite Sequences
	Lexicographic Order on Infinite Sequences

	Minimal elements of sets w.r.t. a well-founded and transitive relation
	Enumerations of Well-Ordered Sets in Increasing Order
	The Almost-Full Property
	Basic Definitions and Facts
	An equivalent inductive definition
	Special Case: Finite Sets
	Further Results

	Constructing Minimal Bad Sequences
	A Proof of Higman's Lemma via Open Induction
	Some facts about the suffix relation
	Lexicographic Order on Infinite Sequences

	Almost-Full Relations
	Adding a Bottom Element to a Set
	Adding a Bottom Element to an Almost-Full Set
	Disjoint Union of Almost-Full Sets
	Dickson's Lemma for Almost-Full Relations
	Higman's Lemma for Almost-Full Relations
	Natural Numbers

	Well-Quasi-Orders
	Basic Definitions
	Equivalent Definitions
	A Type Class for Well-Quasi-Orders
	Dickson's Lemma
	Higman's Lemma

	Kruskal's Tree Theorem
	Instances of Well-Quasi-Orders
	The Option Type is Well-Quasi-Ordered
	The Sum Type is Well-Quasi-Ordered
	Pairs are Well-Quasi-Ordered
	Lists are Well-Quasi-Ordered

	Multiset Extension of Orders (as Binary Predicates)
	Multiset Extension Preserves Well-Quasi-Orders

