Well-Quasi-Orders

Christian Sternagel*

February 23, 2021

Abstract

Based on Isabelle/HOL's type class for preorders, we introduce a type class for well-quasi-orders (wqo) which is characterized by the absence of “bad” sequences (our proofs are along the lines of the proof of Nash-Williams [1], from which we also borrow terminology). Our main results are instantiations for the product type, the list type, and a type of finite trees, which (almost) directly follow from our proofs of (1) Dickson’s Lemma, (2) Higman’s Lemma, and (3) Kruskal’s Tree Theorem. More concretely:

1. If the sets A and B are wqo then their Cartesian product is wqo.
2. If the set A is wqo then the set of finite lists over A is wqo.
3. If the set A is wqo then the set of finite trees over A is wqo.

Contents

1 Infinite Sequences 2
 1.1 Lexicographic Order on Infinite Sequences 3

2 Minimal elements of sets w.r.t. a well-founded and transitive relation 4

3 Enumerations of Well-Ordered Sets in Increasing Order 7

4 The Almost-Full Property 8
 4.1 Basic Definitions and Facts .. 9
 4.2 An equivalent inductive definition ... 10
 4.3 Special Case: Finite Sets .. 16
 4.4 Further Results ... 17

5 Constructing Minimal Bad Sequences 20

*The research was funded by the Austrian Science Fund (FWF): J3202.
6 A Proof of Higman’s Lemma via Open Induction 23
6.1 Some facts about the suffix relation 23
6.2 Lexicographic Order on Infinite Sequences 24

7 Almost-Full Relations 29
7.1 Adding a Bottom Element to a Set 29
7.2 Adding a Bottom Element to an Almost-Full Set 30
7.3 Disjoint Union of Almost-Full Sets 30
7.4 Dickson’s Lemma for Almost-Full Relations 32
7.5 Higman’s Lemma for Almost-Full Relations 32
7.6 Natural Numbers . 34

8 Well-Quasi-Orders 34
8.1 Basic Definitions . 35
8.2 Equivalent Definitions . 35
8.3 A Type Class for Well-Quasi-Orders 37
8.4 Dickson’s Lemma . 38
8.5 Higman’s Lemma . 39

9 Kruskal’s Tree Theorem 41

10 Instances of Well-Quasi-Orders 47
10.1 The Option Type is Well-Quasi-Ordered 48
10.2 The Sum Type is Well-Quasi-Ordered 48
10.3 Pairs are Well-Quasi-Ordered 48
10.4 Lists are Well-Quasi-Ordered 48

11 Multiset Extension of Orders (as Binary Predicates) 49

12 Multiset Extension Preserves Well-Quasi-Orders 62

1 Infinite Sequences

Some useful constructions on and facts about infinite sequences.

theory Infinite-Sequences
imports Main
begin

The set of all infinite sequences over elements from A.

definition $SEQ A = \{f::\text{nat} \Rightarrow 'a. \forall i. f\ i \in A\}$

lemma SEQ-iff [iff]:
\[f \in SEQ A \iff (\forall i. f\ i \in A) \]
by (auto simp: SEQ-def)
The i-th "column" of a set B of infinite sequences.

definition $ith B i = \{ f i | f, f \in B \}$

lemma $ithI$ [intro]:
$f \in B \implies f i = x \implies x \in ith B i$
by (auto simp: ith-def)

lemma $ithE$ [elim]:
$[x \in ith B i; \forall f. [f \in B; f i = x] \implies Q] \implies Q$
by (auto simp: ith-def)

lemma ith-conv:
$x \in ith B i \iff (\exists f \in B. x = f i)$
by (auto)

The restriction of a set B of sequences to sequences that are equal to a given sequence f up to position i.

definition eq-upto :: $(nat \Rightarrow 'a) set \Rightarrow (nat \Rightarrow 'a) set$
where
eq-upto $B f i = \{ g \in B. \forall j < i. f j = g j \}$

lemma eq-uptoI [intro]:
$[g \in B; \forall j. j < i \implies f j = g j] \implies g \in eq$-upto $B f i$
by (auto simp: eq-upto-def)

lemma eq-uptoE [elim]:
$[g \in eq$-upto $B f i; g i = f i \implies f j = g j] \implies Q \implies Q$
by (auto simp: eq-upto-def)

lemma eq-upto-Suc:
$[g \in eq$-upto $B f i; g i = f i \implies f j = g j] \implies g \in eq$-upto $B f (Suc i)$
by (auto simp: eq-upto-def less-Suc-eq)

lemma eq-upto-0 [simp]:
eq-upto $B f 0 = B$
by (auto simp: eq-upto-def)

lemma eq-upto-cong [fundef-cong]:
assumes $\forall j. j < i \implies f j = g j$ and $B = C$
shows eq-upto $B f i = eq$-upto $C g i$
using assms by (auto simp: eq-upto-def)

1.1 Lexicographic Order on Infinite Sequences

definition $LEX P f g \iff (\exists i::nat. P (f i) (g i) \land (\forall j < i. f j = g j))$

abbreviation $LEXEQ P \equiv (LEX P)$

lemma LEX-imp-not-LEX:
assumes $LEX P f g$

and \(\text{[dest]} : \forall x y z. P x y \rightarrow P y z \rightarrow P x z \)
and \(\text{[simp]} : \forall x. \neg P x x \)
shows \(\neg LEX P g f \)
proof
\begin{itemize}
\item fix \(i j :: \text{nat} \)
\item assume \(P (f i) (g i) \) and \(\forall k < i. f k = g k \)
\item and \(P (g j) (f j) \) and \(\forall k < j. g k = f k \)
\item then have False by (cases \(i < j \)) (auto simp: not-less dest: le-imp-less-or-eq)
\end{itemize}
then show \(\neg LEX P g f \) using \(\langle LEX P f g \rangle \) unfolding LEX-def by blast qed

lemma LEX-cases:
assumes \(LEX P f g \)
obtains \((eq) f = g \mid (neq) k \) where \(\forall i < k. f i = g i \) and \(P (f i) (g i) \)
using assms by (auto simp: LEX-def)

lemma LEX-imp-less:
assumes \(\forall x \in A. \neg P x x \) and \(f \in \text{SEQ A} \lor g \in \text{SEQ A} \)
\begin{itemize}
\item and \(LEX P f g \) and \(\forall i < k. f i = g i \) and \(f k \neq g k \)
\item shows \(P (f k) (g k) \)
\end{itemize}
using assms by (auto elim!: LEX-cases) (metis linorder-neqE-nat)+
end

2 Minimal elements of sets w.r.t. a well-founded and transitive relation

theory Minimal-Elements
imports
Infinite-Sequences
Open-Induction.Restricted-Predicates
begin
locale minimal-element =
fixes \(P A \)
assumes \(po: \text{po-on P A} \)
and \(uf: \text{wfp-on P A} \)
begin

definition min-elt \(B = (\text{SOME } x. x \in B \land (\forall y \in A. P y x \rightarrow y \notin B)) \)

lemma minimal:
assumes \(x \in A \) and \(Q x \)
shows \(\exists y \in A. P^\equiv y x \land Q y \land (\forall z \in A. P z y \rightarrow \neg Q z) \)
using \(uf \) and assms
proof (induction rule: wfp-on-induct)
\begin{itemize}
\item case \((\text{less } x) \)
\end{itemize}
A lexicographically minimal sequence w.r.t. a given set of sequences C
then show \(?\)case by blast

qed

lemma lexmin-SEQ-mem:
 assumes \(C \subseteq \text{SEQ } A\) and \(C \neq \{\}\)
 shows \(\text{lexmin } C \in \text{SEQ } A\)
proof –
 \{ fix \(i\)
 let \(?X = \text{ith } (\text{eq-upto } C \text{ (lexmin } C\) i) i\)
 have \(?X \subseteq A\) using assms by (auto simp: ith-def)
 moreover have \(?X \neq \{\}\) using eq-upto-lexmin-non-empty [OF assms] by auto
 ultimately have \(\text{lexmin } C \in A\) using min-elt-mem [of \(?X\)] by (subst lexmin)
 blast \}
 then show \(?\)thesis by auto
qed

lemma non-empty-ith:
 assumes \(C \subseteq \text{SEQ } A\) and \(C \neq \{\}\)
 shows \(\text{ith } (\text{eq-upto } C \text{ (lexmin } C\) i) i \subseteq A\)
and \(\text{ith } (\text{eq-upto } C \text{ (lexmin } C\) i) i \neq \{\}\)
using eq-upto-lexmin-non-empty [OF assms, of \(i\)] and assms by (auto simp: ith-def)

lemma lexmin-minimal:
 \(C \subseteq \text{SEQ } A \Rightarrow C \neq \{\}\ \Rightarrow \ y \in A \Rightarrow \ P y \text{ (lexmin } C\) i) i \Rightarrow y \notin \text{ith } (\text{eq-upto } C \text{ (lexmin } C\) i) i\)
using min-elt-minimal [OF non-empty-ith, folded lexmin].

lemma lexmin-mem:
 \(C \subseteq \text{SEQ } A \Rightarrow C \neq \{\}\ \Rightarrow \text{lexmin } C \in \text{ith } (\text{eq-upto } C \text{ (lexmin } C\) i) i\)
using min-elt-mem [OF non-empty-ith, folded lexmin].

lemma LEX-chain-on-eq-upto-imp-ith-chain-on:
 assumes chain-on (LEX \(P\) \(\text{eq-upto } C \text{ f } i\) \(\text{SEQ } A\))
 shows chain-on \(P \text{ ith } (\text{eq-upto } C \text{ f } i\) i) \(A\)
using assms
proof –
 \{ fix \(x y\) assume \(x \in \text{ith } (\text{eq-upto } C \text{ f } i\) i\) and \(y \in \text{ith } (\text{eq-upto } C \text{ f } i\) i\)
and \(\neg P x y\) and \(y \neq x\)
 then obtain \(g \ h\) where \(*: g \in \text{eq-upto } C \text{ f } i \ h \in \text{eq-upto } C \text{ f } i\)
 and \([\text{simpl}: x = g \ i \ y = h \ i\) and \(\text{eq } \forall j<i. g \ j = f \ j \ \wedge \ h \ j = f \ j\)
 by (auto simp: ith-def eq-upto-def)
 with assms and \((y \neq x)\) consider LEX \(P \ g \ h\) | LEX \(P \ h \ g\) by (force simp:
chain-on-def)
 then have \(P y x\)
 proof (cases)
 assume LEX \(P \ g \ h\)
 with eq and \((y \neq x)\) have \(P x y\) using assms and *
 by (auto simp: LEX-def)
(metis SEQ-iff chain-on-imp-subset linorder-neqE-nat minimal subsetCE)
with (∼ P x y) show P y x ..
next
assume LEX P h g
with eq and (y ≠ x) show P y x using assms and *
 by (auto simp: LEX-def)
 (metis SEQ-iff chain-on-imp-subset linorder-neqE-nat minimal subsetCE)
qed }
then show ?thesis using assms by (auto simp: chain-on-def) blast
qed
end
end

3 Enumerations of Well-Ordered Sets in Increasing Order

theory Least-Enum
imports Main
begin
locale infinitely-many1 =
fixes P :: 'a :: wellorder ⇒ bool
assumes infm: ∀ i. ∃ j>i. P j
begin

Enumerate the elements of a well-ordered infinite set in increasing order.

fun enum :: nat ⇒ 'a where
enum 0 = (LEAST n. P n) |
enum (Suc i) = (LEAST n. n > enum i ∧ P n)

lemma enum-mono:
 shows enum i < enum (Suc i)
 using infm by (cases i, auto) (metis (lifting) LeastI)+

lemma enum-less:
i < j ⇒ enum i < enum j
 using enum-mono by (metis lift-Suc-mono-less)

lemma enum-P:
 shows P (enum i)
 using infm by (cases i, auto) (metis (lifting) LeastI)+
end

locale infinitely-many2 =
fixes P :: 'a :: wellorder ⇒ 'a ⇒ bool
\begin{align*}
\text{and } N :: 'a \\
\text{assumes } \infm: \forall i \geq N. \exists j > i. P \ i \ j \\
\text{begin} \\
\text{Enumerate the elements of a well-ordered infinite set that form a chain w.r.t.} \\
a \text{given predicate } P \text{ starting from a given index } N \text{ in increasing order.} \\
\text{fun enumchain :: } \text{nat } \Rightarrow \ 'a \ \text{where} \\
\quad \text{enumchain } 0 = N \\
\quad \text{enumchain } (\text{Suc } n) = (\text{LEAST } m. m > \text{enumchain } n \land P \ (\text{enumchain } n) \ m) \\
\text{lemma enumchain-mono:} \\
\text{shows } N \leq \text{enumchain } i \land \text{enumchain } i < \text{enumchain } (\text{Suc } i) \\
\text{proof (induct } i) \\
\text{case } 0 \\
\text{have enumchain } 0 \geq N \text{ by simp} \\
\text{moreover then have } \exists m > \text{enumchain } 0. P \ (\text{enumchain } 0) \ m \text{ using } \infm \text{ by blast} \\
\text{ultimately show } ?\text{case by auto (metis (lifting) LeastI)} \\
\text{next} \\
\text{case } (\text{Suc } i) \\
\text{then have } N \leq \text{enumchain } (\text{Suc } i) \text{ by auto} \\
\text{moreover then have } \exists m > \text{enumchain } (\text{Suc } i). P \ (\text{enumchain } (\text{Suc } i)) \ m \text{ using } \infm \text{ by blast} \\
\text{ultimately show } ?\text{case by (auto) (metis (lifting) LeastI)} \\
\text{qed} \\
\text{lemma enumchain-chain:} \\
\text{shows } P \ (\text{enumchain } i) \ (\text{enumchain } (\text{Suc } i)) \\
\text{proof (cases } i) \\
\text{case } 0 \\
\text{moreover have } \exists m > \text{enumchain } 0. P \ (\text{enumchain } 0) \ m \text{ using } \infm \text{ by auto} \\
\text{ultimately show } ?\text{thesis by auto (metis (lifting) LeastI)} \\
\text{next} \\
\text{case } (\text{Suc } i) \\
\text{moreover have } \text{enumchain } (\text{Suc } i) > N \text{ using } \text{enumchain-mono by (metis le-less-trans)} \\
\text{moreover then have } \exists m > \text{enumchain } (\text{Suc } i). P \ (\text{enumchain } (\text{Suc } i)) \ m \text{ using } \infm \text{ by auto} \\
\text{ultimately show } ?\text{thesis by (auto) (metis (lifting) LeastI)} \\
\text{qed} \\
\text{end} \\
\text{end} \\
\end{align*}

\section{4 The Almost-Full Property}

theory Almost-Full

imports
lemma le-Suc-eq':
\[x \leq \text{Suc } y \iff x = 0 \lor (\exists x'. x = \text{Suc } x' \land x' \leq y) \]
by (cases x) auto

lemma ex-leq-Suc:
\[(\exists i \leq \text{Suc } j. P i) \iff P 0 \lor (\exists i \leq j. P (\text{Suc } i)) \]
by (auto simp: le-Suc-eq')

lemma ex-less-Suc:
\[(\exists i < \text{Suc } j. P i) \iff P 0 \lor (\exists i < j. P (\text{Suc } i)) \]
by (auto simp: less-Suc-eq-0-disj)

4.1 Basic Definitions and Facts

An infinite sequence is *good* whenever there are indices \(i < j \) such that \(P (f i) (f j) \).

definition good :: ('a ⇒ 'a ⇒ bool) ⇒ (nat ⇒ 'a) ⇒ bool
where
\[\text{good } P f \iff (\exists i j. i < j \land P (f i) (f j)) \]

A sequence that is not good is called *bad*.

abbreviation bad P f ≡ ¬ good P f

lemma goodI:
\[[[i < j ; P (f i) (f j)]] \implies \text{good } P f \]
by (auto simp: good-def)

lemma goodE [elim]:
\[\text{good } P f \implies (\forall i j. [i < j ; P (f i) (f j)] \implies Q) \implies Q \]
by (auto simp: good-def)

lemma badE [elim]:
\[\text{bad } P f \implies ((\forall i j. i < j \Rightarrow \neg P (f i) (f j)) \Rightarrow Q) \Rightarrow Q \]
by (auto simp: good-def)

definition almost-full-on :: ('a ⇒ 'a ⇒ bool) ⇒ 'a set ⇒ bool
where
almost-full-on \(PA \leftrightarrow (\forall f \in SEQ A. \text{good } P f) \)

Lemma \(\text{almost-full-onI} \) [Pure.intro]:

\((\forall f. \forall i. f i \in A \implies \text{good } P f) \implies \text{almost-full-on } PA \)

Unfolding almost-full-on-def by blast

Lemma \(\text{almost-full-onD} \):

fixes \(f :: nat \rightarrow 'a \) and \(A :: 'a \set \)

assumes almost-full-on \(PA \) and \(\forall i. f i \in A \)

obtains \(i j \) where \(i < j \) and \(P (f i) (f j) \)

using assms unfolding almost-full-on-def by blast

4.2 An equivalent inductive definition

Inductive af for A

where

now: \((\forall x y. x \in A \implies y \in A \implies P x y) \implies af A P \)

| later: \((\forall x. x \in A \implies af A (\lambda y z. P y z \lor P x y)) \implies af A P \)

Lemma \(\text{af-imp-almost-full-on} \):

assumes \(\text{af } A P \)

shows \(\text{almost-full-on } P A \)

proof

fix \(f :: nat \rightarrow 'a \) assume \(\forall i. f i \in A \)

with assms obtain \(i j \) where \(i < j \) and \(P (f i) (f j) \)

proof (induct arbitrary: \(f \) thesis)

| case (later \(P \))

\| define \(g \) where \(g i = f \) \((\text{Suc } i) \) for \(i \)

\| have \(f 0 \in A \) and \(\forall i. g i \in A \) using later by auto

\| then obtain \(i j \) where \(i < j \) and \(P (g i) (g j) \lor P (f 0) (g i) \) using later by blast

\| then consider \(P (g i) (g j) \mid P (f 0) (g i) \) by blast

\| then show \(?\)case using \(\langle i < j \rangle \) by (cases) (auto intro: later)

qed blast

then show \(\text{good } P f \) by (auto simp: good-def)

qed

Lemma \(\text{af-mono} \):

assumes \(\text{af } A P \)

and \(\forall x y. x \in A \wedge y \in A \wedge P x y \implies Q x y \)

shows \(\text{af } A Q \)

using assms

proof (induct arbitrary: \(Q \))

| case (now \(P \))

\| then have \(\forall x y. x \in A \implies y \in A \implies Q x y \) by blast

\| then show \(?\)case by (rule af.now)

next

| case (later \(P \))

\| show \(?\)case
proof (intro af later [of A Q])
fix x assume x ∈ A
then show af A (λ y z. Q y z ∨ Q x y)
 using later(3) by (intro later(2) [of x]) auto
qed
qed

lemma accessible-on-imp-af:
 assumes accessible-on P A x
 shows af A (λ u v. ¬ P v u ∨ ¬ P u x)
 using assms
proof (induct)
case (1 x)
then have af A (λ u v. (¬ P v u ∨ ¬ P u x) ∨ ¬ P u y ∨ ¬ P y x) if y ∈ A for y
 using that by (cases P y x) (auto intro: af.now af-mono)
then show ?case by (rule af.later)
qed

lemma wfp-on-imp-af:
 assumes wfp-on P A
 shows af A (λ x y. ¬ P y x)
 using assms by (auto simp: wfp-on-accessible-on-iff intro: accessible-on-imp-af af.later)

lemma af-leq:
 af UNIV ((≤) :: nat ⇒ nat ⇒ bool)
 using wf-less [folded afP-def wfp-on-UNIV, THEN wfp-on-imp-af] by (simp add: not-less)

definition NOTAF A P = (SOME x. x ∈ A ∧ ¬ af A (λ y z. P y z ∨ P x y))

lemma not-af:
 ¬ af A P ⊢ (∃ x y. x ∈ A ∧ y ∈ A ∧ ¬ P x y) ∨ (∃ x ∈ A. ¬ af A (λ y z. P y z ∨ P x y))
 unfolding af.simps [of A P] by blast

fun F
where
 F A P 0 = NOTAF A P
| F A P (Suc i) = (let x = NOTAF A P in F A (λ y z. P y z ∨ P x y) i)

lemma almost-full-on-imp-af:
 assumes af: almost-full-on P A
 shows af A P
proof (rule ccontr)
assume ¬ af A P
then have ∗: F A P n ∈ A ∧ ¬ af A (λ y z. P y z ∨ (∃ i≤n. P (F A P i) y) ∨ (∃ j≤n. ∃ i. i < j ∧ P (F A P i) (F A P j))) for n
proof (induct n arbitrary: P)
case 0
 from (¬ af A P) have ∃ x. x ∈ A ∧ ¬ af A (λy z. P y z ∨ P x y) by (auto intro: af.intros)
 then have NOTAF A P ∈ A ∧ ¬ af A (λy z. P y z ∨ P (NOTAF A P) y)
unfolding NOTAF-def by (rule someI-ex)
 with 0 show ?case by simp
next
case (Suc n)
 from (¬ af A P) have ∃ x. x ∈ A ∧ ¬ af A (λy z. P y z ∨ P x y) by (auto intro: af.intros)
 then have NOTAF A P ∈ A ∧ ¬ af A (λy z. P y z ∨ P (NOTAF A P) y)
unfolding NOTAF-def by (rule someI-ex)
 from Suc(1) [OF this [THEN conjunct2]]
 show ?case
 by (fastforce simp: ex-leq-Suc ex-less-Suc elim: back-subst [where P = λx. ¬ af A x])
qed

hide-const NOTAF F

lemma almost-full-on-UNIV:
 almost-full-on (λ- _. True) UNIV
by (auto simp: almost-full-on-def good-def)

lemma almost-full-on-imp-reflp-on:
 assumes almost-full-on P A
 shows reflp-on P A
using assms by (auto simp: almost-full-on-def reflp-on-def)

lemma almost-full-on-subset:
 A ⊆ B ⇒ almost-full-on P B ⇒ almost-full-on P A
by (auto simp: almost-full-on-def)

lemma almost-full-on-mono:
 assumes A ⊆ B and (∀ x y. Q x y ⇒ P x y)
 and almost-full-on Q B
 shows almost-full-on P A
using assms by (metis almost-full-on-def almost-full-on-subset good-def)

Every sequence over elements of an almost-full set has a homogeneous subsequence.

lemma almost-full-on-imp-homogeneous-subseq:
 assumes almost-full-on P A
and \(\forall i :: \text{nat}. \ f \ i \in A \)
shows \(\exists \varphi :: \text{nat}. \ \forall i \ j. \ i < j \rightarrow \varphi \ i < \varphi \ j \land P (f (\varphi \ i)) (f (\varphi \ j)) \)
proof
-
 define \(X \) where \(X = \{ (i, j) \mid i :: \text{nat}. \ i < j \land P (f \ i) (f \ j) \} \)
 define \(Y \) where \(Y = \neg X \)
 define \(h \) where \(h = (\lambda Z. \text{if } Z \in X \text{ then } 0 \text{ else } Suc 0) \)
 have \(\text{iff} : \forall x. y. \ h \ {x, y} = 0 \longleftrightarrow \{x, y\} \in X \text{ by } (\text{auto simp: h-def}) \)
 have \(\text{iff} : \forall x. y. \ h \ {x, y} = Suc 0 \longleftrightarrow \{x, y\} \in Y \text{ by } (\text{auto simp: h-def Y-def}) \)

have \(\forall x \in UNIV. \forall y \in UNIV. \ x \neq y \rightarrow h \ {x, y} < 2 \text{ by } (\text{simp add: h-def}) \)
from Ramsey2 \([\text{OF infinite-UNIV-nat this}] \) obtain \(I \ c \)
 where \(\text{infinite } I \text{ and } c < 2 \)
 and \(* : \forall x \in I. \forall y \in I. \ x \neq y \rightarrow h \ {x, y} = c \text{ by blast} \)
then interpret infinitely-many1 \(\lambda i. \ i \in I \)
 by \((\text{unfold-locales}) \) \((\text{simp add: infinite-nat-iff-unbounded}) \)

have \(c = 0 \lor c = 1 \text{ using } c < 2 \) by \(\text{arith} \)
then show \(\text{thesis} \)
proof
 assume \(\text{simp} : c = 0 \)
 have \(\forall i \ j. \ i < j \rightarrow P (f (\text{enum} \ i)) (f (\text{enum} \ j)) \)
 proof \((\text{intro allII impI}) \)
 fix \(i \ j :: \text{nat} \)
 assume \(i < j \)
 from \(* \) and \(\text{enum-P and enum-less [OF } i < j \text{]} \) have \(\{\text{enum} \ i, \text{enum} \ j\} \in X \) by \(\text{auto} \)
 with \(\text{enum-less [OF } i < j \text{]} \)
 show \(P (f (\text{enum} \ i)) (f (\text{enum} \ j)) \) by \((\text{auto simp: X-def doubleton-eq-iff}) \)
 qed
then show \(\text{thesis using enum-less by blast} \)
next
 assume \(\text{simp} : c = 1 \)
 have \(\forall i \ j. \ i < j \rightarrow \neg P (f (\text{enum} \ i)) (f (\text{enum} \ j)) \)
 proof \((\text{intro allII impI}) \)
 fix \(i \ j :: \text{nat} \)
 assume \(i < j \)
 from \(* \) and \(\text{enum-P and enum-less [OF } i < j \text{]} \) have \(\{\text{enum} \ i, \text{enum} \ j\} \in Y \) by \(\text{auto} \)
 with \(\text{enum-less [OF } i < j \text{]} \)
 show \(\neg P (f (\text{enum} \ i)) (f (\text{enum} \ j)) \) by \((\text{auto simp: Y-def doubleton-eq-iff}) \)
 qed
then have \(\neg \text{good } P (f \circ \text{enum}) \) by \(\text{auto} \)
moreover have \(\forall i. \ f (\text{enum} \ i) \in A \) using \(\text{assms by auto} \)
ultimately show \(\text{thesis using } (\text{almost-full-on } P \ A) \text{ by } (\text{simp add: almost-full-on-def}) \)
 qed
qed
Almost full relations do not admit infinite antichains.

Lemma almost-full-on-imp-no-antichain-on:
- **Assumes** almost-full-on P A
- **Shows** \(\neg \text{antichain-on} P f A \)

Proof
- Assume \(*: \text{antichain-on} P f A \)
- Then have \(\forall i. f i \in A \) by simp
- With assms have good P f by (auto simp: almost-full-on-def)
- Unfolding good-def by auto
- Moreover with \(* \) have incomparable \(P (f i) (f j) \) by auto
- Ultimately show False by blast

qed

If the image of a function is almost-full then also its preimage is almost-full.

Lemma almost-full-on-map:
- **Assumes** almost-full-on Q B and \(h ': A \subseteq B \)
- **Shows** almost-full-on \((\lambda x y. Q (h x) (h y)) A \) (is almost-full-on ?P A)

Proof
- Fix \(f \)
- Assume \(\forall i :: \text{nat}. f i \in A \)
- Then have \(\\land i. h (f i) \in B \) using \(h ': A \subseteq B \) by auto
- With \{almost-full-on Q B; \[unfolded almost-full-on-def, THEN bspec, of h \circ \] \}
- Show good \(?P f \) unfolding good-def comp-def by blast

qed

The homomorphic image of an almost-full set is almost-full.

Lemma almost-full-on-hom:
- **Fixes** \(h :: 'a \Rightarrow 'b \)
- **Assumes** hom: \(\forall x y. [x \in A; y \in A; P x y] \Rightarrow Q (h x) (h y) \)
- **And** af: almost-full-on P A
- **Shows** almost-full-on Q \(h ' A \)

Proof
- Fix \(f :: \text{nat} \Rightarrow 'b \)
- Assume \(\forall i. f i \in h ' A \)
- Then have \(\forall i. \exists x. x \in A \land f i = h x \) by (auto simp: image-def)
- From choice [OF this] obtain \(g \)
 - Where \(*: \forall i. g i \in A \land f i = h (g i) \) by blast
- Show good \(Q f \)
- Proof (rule ccontr)
 - Assume bad: bad \(Q f \)
 - \{ fix \(i j :: \text{nat} \)
 - Assume \(i < j \)
 - From bad have \(\neg Q (f i) (f j) \) using \(i < j \) by (auto simp: good-def)
 - With hom have \(\neg P (g i) (g j) \) using \(* \) by auto \}
 - Then have \(\neg P g \) by (auto simp: good-def)
 - With of \(\) and \(* \) show False by (auto simp: good-def almost-full-on-def)

qed
The monomorphic preimage of an almost-full set is almost-full.

Lemma almost-full-on-mon:
- **Assumes** `mon: ∀x y. [x ∈ A; y ∈ A] ⇒ P x y = Q (h x) (h y)` (bij-betw h A B)
 - and `af: almost-full-on Q B`
- **Shows** `almost-full-on P A`

Proof
- Fix `f :: nat ⇒ 'a`
- Assume `∀i. f i ∈ A`
- Then have `∀i. (h ∘ f) i ∈ B` using `mon`
- Show `good P f`
 - Rule `ccontr`
 - Assume `¬ almost-full-on P A`
 - Then obtain `f :: nat ⇒ 'a` where `∀i. f i ∈ A` (bij-betw-def)
 - With `mon` have `∀i. (h ∘ f) i ∈ B` (bij-betw-def)
 - Using `i < j` by (auto simp: good-def)
 - With `af` and `¬` show `False` by (auto simp: good-def)

Qed

Every total and well-founded relation is almost-full.

Lemma total-on-and-wfp-on-imp-almost-full-on:
- **Assumes** `total-on P A` and `wfp-on P A`
- **Shows** `almost-full-on P A`

Proof (rule `ccontr`)
- Assume `¬ almost-full-on P A`
 - Then obtain `f :: nat ⇒ 'a` where `∀i. f i ∈ A` (bij-betw-def)
 - With `mon` have `∀i. (h ∘ f) i ∈ B` (bij-betw-def)
 - Using `i < j` by (auto simp: good-def)
 - With `af` and `¬` show `False` by (auto simp: good-def)

Qed

Lemma Nil-imp-good-list-emb [simp]:
- **Assumes** `f i = []`
- **Shows** `good (list-emb P) f`

Proof (rule `ccontr`)
- Assume `bad (list-emb P) f`
 - Moreover have `¬ list-emb P A` (bij-betw-def)
 - Using `i < j` by (auto simp: good-def)
 - With `af` and `¬` show `False` by (auto simp: good-def)

Qed
lemma ne-lists:
assumes $xs \neq []$ and $xs \in \text{lists } A$
shows $\text{hd } xs \in A$ and $\text{tl } xs \in \text{lists } A$
using assms by (case-tac [] xs) simp-all

lemma list-emb-eq-length-induct [consumes 2, case-names Nil Cons]:
assumes length $xs = \text{ length } ys$
and list-emb $P \ x y$ xs ys
and $Q [] []$
and $\forall x y \ x y \ x y. \ [P x y; \text{list-emb } P \ x y; \text{ Q } \ x y \ x y] \Longrightarrow Q (x\#\ x y) (y\#\ y y)$
shows $Q \ x y \ x y$
using assms(2, 1, 3−) by (induct) (auto dest: list-emb-length)

lemma list-emb-eq-length-P:
assumes length $xs = \text{ length } ys$
and list-emb $P \ x y$ xs ys
shows $\forall i < \text{length } x s . \ P (xs ! i) (ys ! i)$
using assms
proof (induct rule: list-emb-eq-length-induct)
case (Cons $x y$ xs ys)
show ?case
proof (intro allI impI)
fix i assume $i < \text{length } x s$
with Cons show $P ((x\#\ x s)!i) ((y\#\ y s)!i)$
by (cases i) simp-all
qed
qed simp

4.3 Special Case: Finite Sets

Every reflexive relation on a finite set is almost-full.

lemma finite-almost-full-on:
assumes finite: finite A
and refl: reflp-on $P \ A$
shows almost-full-on $P \ A$
proof
fix $f :: \text{nat } \Rightarrow 'a$
assume $\forall i. f i \in A$
let $?I = \text{UNIV::nat set}$
have $f \ \ ?I \subseteq \ A$ using * by auto
with finite and finite-subset have I: finite ($f \ ?I$) by blast
have infinite $?I$ by auto
from pigeonhole-infinite [OF this I]
 obtain k where infinite $\ {\{j. \ f j = f k\}}$ by auto
then obtain l where $k < l$ and $f l = f k$
 unfolding infinite-nat-iff-unbounded by auto
then have $P (f k) (f l)$ using refl and * by (auto simp: reflp-on-def)
with \(k < b \) show \(\text{good } P f \) by (auto simp: good-def)

qed

Lemma \(\text{eq-almost-full-on-finite-set} \):
- **Assumes** finite \(A \)
- **Shows** almost-full-on \((=) A \)
- **Using** finite-almost-full-on \(\text{OF assms, of } (=) \)
- **By** (auto simp: reflp-on-def)

4.4 Further Results

Lemma \(\text{af-trans-extension-imp-wf} \):
- **Assumes** subrel: \(\forall x y. P x y \Rightarrow Q x y \)
- and af: almost-full-on \(P A \)
- and trans: transp-on \(Q A \)
- **Shows** wfp-on \(\text{strict } Q A \)

Proof (unfold wfp-on-def, rule notI)
- **Assume** \(\exists f. \forall i. f i \in A \land \text{strict } Q (f (\text{Suc } i)) (f i) \)
- **Then obtain** \(f \) where \(\forall i. f i \in A \land ((\text{strict } Q)^{\sim-1}) (f i) (f (\text{Suc } i)) \) by blast
- from chain-transp-on-less \(\text{OF this} \)
- and transp-on-strict \(\text{THEN transp-on-converse, OF trans} \)
- **Have** \(\forall i j. i < j \Rightarrow \neg Q (f i) (f j) \) by blast
- with subrel have \(\forall i j. i < j \Rightarrow \neg P (f i) (f j) \) by blast
- with af show False
- **Using** \(* \) by (auto simp: almost-full-on-def good-def)

qed

Lemma \(\text{af-trans-imp-wf} \):
- **Assumes** almost-full-on \(P A \)
- and transp-on \(P A \)
- **Shows** wfp-on \(\text{strict } P A \)
- **Using** assms by (intro af-trans-extension-imp-wf)

Lemma \(\text{wf-and-no-antichain-imp-qo-extension-wf} \):
- **Assumes** wf: wfp-on \(\text{strict } P A \)
- and anti: \(\neg (\exists f. \text{antichain-on } P f A) \)
- and subrel: \(\forall x \in A. \forall y \in A. P x y \Rightarrow Q x y \)
- and qo: qo-on \(Q A \)
- **Shows** wfp-on \(\text{strict } Q A \)

Proof (rule ccontr)
- **Have** transp-on \(\text{strict } Q A \)
- using go unfolding go-on-def transp-on-def by blast
- **Then have** \(* \) transp-on \(((\text{strict } Q)^{\sim-1}) A \) by (rule transp-on-converse)
- assume \(\neg \text{wpf-on } (\text{strict } Q) A \)
- **Then obtain** \(f :: \text{nat} \Rightarrow 'a \) where \(A. \forall i. f i \in A \)
- and \(\forall i. \text{strict } Q (f (\text{Suc } i)) (f i) \) unfolding wfp-on-def by blast+
- **Then have** \(\forall i. f i \in A \land ((\text{strict } Q)^{\sim-1}) (f i) (f (\text{Suc } i)) \) by auto
- from chain-transp-on-less \(\text{OF this } * \)
- **Have** \(\forall i j. i < j \Rightarrow \neg P (f i) (f j) \)
proof (cases)
 assume \(\exists k. \forall i > k. \exists j > i. \ P (f j) (f i) \)
 then obtain \& where \(\forall i > k. \exists j > i. \ P (f j) (f i) \) by auto
from subchain [of \(k - f \), OF this] obtain \(g \)
 where \(\forall i. j. \ i < j \Rightarrow g i < g j \)
 and \(\forall i. P (g (Suc i)) (f (g i)) \) by auto
with * have \(\forall i. \ P (f (g (Suc i))) (f (g i)) \) by blast
with wf [unfolded wfp-on-def not-ex, THEN spec, of \(\lambda i. \ f (g i) \)] and \(A \)
 show False by fast
next
 assume \(\neg (\exists k. \forall i > k. \exists j > i. \ P (f j) (f i)) \)
 then have \(\forall k. \exists i > k. \forall j > i. \neg P (f j) (f i) \) by auto
from choice [OF this] obtain \(h \)
 where \(\forall k. h k > k \)
 and **: \(\forall k. \forall j > h k. \neg P (f j) (f (h k)) \) by auto
define \(\varphi \) where simp: \(\varphi = (\lambda i. (h \, ^{\sim} \, Suc i) \, 0) \)
have \(\forall i. \varphi i < \varphi (Suc i) \)
 using \(\forall k. h k > k \) by (induct-tac \(i \)) auto
then have mon: \(\forall i. j. \ i < j \Rightarrow \varphi i < \varphi j \) by (metis lift-Suc-mono-less)
then have \(\forall i. j. \ i < j \Rightarrow \neg P (f (\varphi j)) (f (\varphi i)) \)
 using ** by auto
with mono [THEN *]
 have \(\forall i. j. \ i < j \Rightarrow \neg \text{inc}\text{omp} P (f (\varphi j)) (f (\varphi i)) \) by blast
moreover have \(\exists i. j. \ i < j \land \neg \text{inc}\text{omp} P (f (\varphi j)) (f (\varphi i)) \)
 using anti [unfolded not-ex, THEN spec, of \(\lambda i. \ f (\varphi i) \)] and \(A \) by blast
ultimately show False by blast
qed

lemma every-qo-extension-wf-imp-af:
 assumes ext: \(\forall Q. \ (\forall x \in A. \forall y \in A. \ P x y \Rightarrow Q x y) \land \)
 \(\text{qo-on} \ Q A \Rightarrow \text{wf-on} \ (\text{strict} \ Q) \ A \)
 and \(\text{qo-on} \ P A \)
 shows \(\text{almost-full-on} \ P A \)
proof
from (qo-on P A)
 have refl: reflp-on P A
 and trans: transp-on P A
 by (auto intro: qo-on-imp-reflp-on qo-on-imp-transp-on)

fix \(f :: \text{nat} \Rightarrow 'a \)
assume \(\forall i. f i \in A \)
then have \(A: \land i. f i \in A \) ..
 show \(\text{good} \ P f \)
proof (rule ccontr)
 assume \(\neg \text{thesis} \)
 then have \(\text{bad: } \forall i. j. \ i < j \Rightarrow \neg P (f i) (f j) \) by (auto simp: good-def)
then have \(\forall i j. P (f i) (f j) \implies i \geq j \) by (metis not-le-imp-less)

define \(D \) where [simp]: \(D = (\lambda x y. \exists i. x = f (Suc i) \land y = f i) \)

define \(P' \) where \(P' = restrict-to P A \)

define \(Q \) where [simp]: \(Q = (\sup P') (\sup P') \)

have \(\forall i j. (D OO P') (f i) (f j) \implies i > j \)

proof -
 fix \(i j \)
 assume \((D OO P') (f i) (f j) \)
 then show \(i > j \)
 apply (induct \(f i f j \) arbitrary: \(j \))
 apply (insert \(A \), auto dest: \(\ast \))
 apply (metis \(\ast \) dual-order.strict-trans1 less-Suc-eq-le refl reflp-on-def)
 by (metis le-imp-less-Suc less-trans)

 ultimately have \(\sup (P') (\sup P') (f i) (f (Suc i)) \)
 by simp
 then have \((P') (\sup P') (f i) (f (Suc i)) \)
 by auto
 then have \(Suc i < i \)
 using \(\ast \) apply auto
 by (metis (lifting, mono_tags) less-le recomp.pp.recompI tranclp-into-tranclp2)
 then show \(False \) by auto

 with \(A \) [of \(i \)] show \(f i \in A \land strict Q (f (Suc i)) (f i) \)
 then have \(False \) unfolding wfp-on-def by blast

 qed

 qed

end
5 Constructing Minimal Bad Sequences

theory Minimal-Bad-Sequences
imports
 Almost-Full
 Minimal-Elements
begin

A locale capturing the construction of minimal bad sequences over values from A. Where minimality is to be understood w.r.t. size of an element.

locale mbs =
 fixes A :: (\'a :: $size$) set
begin

Since the size is a well-founded measure, whenever some element satisfies a property P, then there is a size-minimal such element.

lemma minimal:
 assumes $x \in A$ and $P \; x$
 shows $\exists y \in A. \text{size} \; y \leq \text{size} \; x \land (\forall z \in A. \text{size} \; z < \text{size} \; y \longrightarrow \neg P \; z)$
using assms
proof (induction x taking: size rule: measure-induct)
 case (1 x)
 then show $?$ case
 proof (cases $\forall y \in A. \text{size} \; y < \text{size} \; x \longrightarrow \neg P \; y$)
 case True
 with 1 show $?$ thesis by blast
 next
 case False
 then obtain y where $y \in A$ and $\text{size} \; y < \text{size} \; x$ and $P \; y$ by blast
 with 1.IH show $?$ thesis by (fastforce elim!: order-trans)
 qed
qed

lemma less-not-eq [simp]:
 $x \in A \Longrightarrow \text{size} \; x < \text{size} \; y \Longrightarrow x = y \Longrightarrow \text{False}$
by simp

The set of all bad sequences over A.

definition $\text{BAD} \; P = \{ f \in \text{SEQ} \; A. \; \text{bad} \; P \; f \}$

lemma $\text{BAD}-\text{iff}$ [iff]:
 $f \in \text{BAD} \; P \iff (\forall i. \; f \; i \in A) \land \text{bad} \; P \; f$
by (auto simp: BAD-def)

A partial order on infinite bad sequences.

definition geseq :: ((nat \Rightarrow \'a) \times (nat \Rightarrow \'a)) set
where
geseq =
\{(f, g). f \in \text{SEQ } A \land g \in \text{SEQ } A \land (f = g \lor (\exists i. \text{size } (g i) < \text{size } (f i) \land (\forall j < i. f j = g j)))\}\}

The strict part of the above order.

definition gseq ::= ((\text{nat} \Rightarrow 'a) \times (\text{nat} \Rightarrow 'a)) \text{ set where}

\[
gseq = \{(f, g). f \in \text{SEQ } A \land g \in \text{SEQ } A \land (\exists i. \text{size } (g i) < \text{size } (f i) \land (\forall j < i. f j = g j))\}\]

lemma gseq-iff:

\((f, g) \in gseq \iff f \in \text{SEQ } A \land g \in \text{SEQ } A \land (f = g \lor (\exists i. \text{size } (g i) < \text{size } (f i) \land (\forall j < i. f j = g j)))\)

lemma gseq-iff:

\((f, g) \in gseq \iff f \in \text{SEQ } A \land g \in \text{SEQ } A \land (\exists i. \text{size } (g i) < \text{size } (f i) \land (\forall j < i. f j = g j))\)

lemma geseqE:

assumes \((f, g) \in geseq \land (\forall i. f i \in A; \forall i. g i \in A; f = g) \Rightarrow Q\)

and \(\land i. [\forall i. f i \in A; \forall i. g i \in A; \text{size } (g i) < \text{size } (f i); \forall j < i. f j = g j] \Rightarrow Q\)

shows \(Q\)

using **assms** by (auto simp: geseq-iff)

lemma geseqE:

assumes \((f, g) \in geseq \land (\forall i. f i \in A; \forall i. g i \in A; \text{size } (g i) < \text{size } (f i); \forall j < i. f j = g j) \Rightarrow Q\)

shows \(Q\)

using **assms** by (auto simp: geseq-iff)

sublocale min-elt-size?: minimal-element measure-on size UNIV A

rewrites measure-on size UNIV \(\equiv \lambda x y. \text{size } x < \text{size } y\)

apply (unfold-locales)

apply (auto simp: po-on-def irreflp-on-def transp-on-def simp del: wfp-on-UNIV.intro: wfp-on-subset)

apply (auto simp: measure-on-def inv-image-betw-def)

done

context

fixes \text{P} :: 'a \Rightarrow 'a \Rightarrow bool

begin

A lower bound to all sequences in a set of sequences \(B\).

abbreviation \(\text{lb} \equiv \text{lexmin } (\text{BAD } P)\)
lemma eq-upto-BAD-mem:
assumes $f \in \text{eq-upto} (\text{BAD } P) \ g \ i$
shows $f \ j \in A$
using assms by (auto)

Assume that there is some infinite bad sequence h.

class
fixes $h :: \text{nat} \Rightarrow \text{'}a$
assumes BAD-ex: $h \in \text{BAD } P$

begin

When there is a bad sequence, then filtering $\text{BAD } P$ w.r.t. positions in lb
never yields an empty set of sequences.

lemma eq-upto-BAD-non-empty:
\[
\text{eq-upto} (\text{BAD } P) \ lb \ i \neq \{\}
\]
using eq-upto-lexmin-non-empty [of \text{BAD } P] and BAD-ex by auto

lemma non-empty-ith:
shows $\text{ith} (\text{eq-upto} (\text{BAD } P) \ lb \ i) \ i \subseteq A$
and $\text{ith} (\text{eq-upto} (\text{BAD } P) \ lb \ i) \ i \neq \{\}$
using eq-upto-BAD-non-empty [of i] by auto

lemmas
\[
\text{lb-minimal} = \text{min-elt-minimal} \ [\text{OF non-empty-ith}, \text{folded lexmin}] \ \text{and} \\
\text{lb-mem} = \text{min-elt-mem} \ [\text{OF non-empty-ith}, \text{folded lexmin}]
\]

lb is an infinite bad sequence.

lemma lb-BAD:
$lb \in \text{BAD } P$
proof
 have \ast: $\forall j. \ lb \ j \in \text{ith} (\text{eq-upto} (\text{BAD } P) \ lb \ j) \ j \in \ A$ by (rule lb-mem)
 then have $\forall i. \ lb \ i \in A$ by (auto simp: ith-conv) (metis eq-upto-BAD-mem)
 moreover
 { assume $\text{good } P \ lb$
 then obtain $i \ j$ where $i < j$ and $P (lb \ i) \ (lb \ j)$ by (rule lb-mem)
 from \ast have $\forall k \leq j. \ lb \ k \in A$ by (auto)
 then obtain g where $g \in eq-upto (\text{BAD } P) \ lb \ j$ and $g \ j = lb \ j$ by force
 then have $\forall k \leq j. \ g \ k = lb \ k$ by (auto simp: order-le-less)
 with $i < j$ and $P (lb \ i) \ (lb \ j)$ have $P (g \ i) \ (g \ j)$ by auto
 with $i < j$ have $\text{good } P \ g \ by \ (\text{auto simp: good-def})$
 with $g \in eq-upto (\text{BAD } P) \ lb \ j$ have False by auto }
 ultimately show thesis by blast
qed

There is no infinite bad sequence that is strictly smaller than lb.

lemma lb-lower-bound:
$\forall g. \ (lb, g) \in \text{gseq} \rightarrow \ g \notin \text{BAD } P$
proof (intro allI impI)
fix \(g \)
assume \((lb, g) \in \text{gseq}\)
then obtain \(i \) where \(g \in A \) and \(\text{size}(g) < \text{size}(lb) \)
and \(\forall j < i. \ lb j = g j \) by \(\text{(auto simp: gseq-iff)} \)
moreover with \(\text{lb-minimal} \)
have \(g \notin \text{ith}(\text{eq-upto}(\text{BAD P}) \ lb i) \) \(i \) by \(\text{auto} \)
ultimately show \(g \notin \text{BAD P} \) by \(\text{blast} \)
qed

If there is at least one bad sequence, then there is also a minimal one.

lemma \(\text{lower-bound-ex}: \)
\(\exists f \in \text{BAD P}. \ \forall g. \ (f, g) \in \text{gseq} \rightarrow g \notin \text{BAD P} \)
using \(\text{lb-BAD} \) and \(\text{lb-lower-bound} \) by \(\text{blast} \)

lemma \(\text{gseq-conv}: \)
\((f, g) \in \text{gseq} \leftrightarrow f \neq g \land (f, g) \in \text{gseq} \)
by \(\text{(auto simp: gseq-def geseq-def dest: less-not-eq)} \)

There is a minimal bad sequence.

lemma \(\text{mbs}: \)
\(\exists f \in \text{BAD P}. \ \forall g. \ (f, g) \in \text{gseq} \rightarrow \text{good P g} \)
using \(\text{lower-bound-ex} \) by \(\text{(auto simp: gseq-conv geseq-iff)} \)

end

end

end

end

6 A Proof of Higman’s Lemma via Open Induction

theory \(\text{Higman-OI} \)
imports
 \(\text{Open-Induction, Open-Induction} \)
 \(\text{Minimal-Elements} \)
 \(\text{Almost-Full} \)
begin

6.1 Some facts about the suffix relation

lemma \(\text{wfp-on-strict-suffix}: \)
\(\text{wfp-on strict-suffix A} \)
by \(\text{(rule wfp-on-mono \{OF subset-refl, of - - measure-on length A\})} \)
(\(\text{(auto simp: strict-suffix-def suffix-def)} \))

lemma \(\text{po-on-strict-suffix}: \)
po-on strict-suffix A
by (force simp: strict-suffix-def po-on-def transp-on-def irreflp-on-def)

6.2 Lexicographic Order on Infinite Sequences

lemma antisymp-on-LEX:
assumes irreflp-on P A and antisymp-on P A
shows antisymp-on (LEX P) (SEQ A)
proof
fix f g assume SEQ: f ∈ SEQ A g ∈ SEQ A and LEX P f g and LEX P g f
then obtain i j where P (f i) (g i) and P (g j) (f j)
and ∀k<i. f k = g k and ∀k<j. g k = f k by (auto simp: LEX-def)
then have P (f (min i j)) (f (min i j))
using assms(2) and SEQ by (cases i = j) (auto simp: antisymp-on-def min-def, force)
with assms(1) and SEQ show f = g by (auto simp: irreflp-on-def) qed

lemma LEX-trans:
assumes transp-on P A and f ∈ SEQ A and g ∈ SEQ A and h ∈ SEQ A
and LEX P f g and LEX P g h
shows LEX P f h
using assms by (auto simp: LEX-def transp-on-def) (metis less-trans linorder-neqE-nat)

lemma qo-on-LEXEQ:
transp-on P A ⇒ qo-on (LEXEQ P) (SEQ A)
by (auto simp: qo-on-def reflp-on-def transp-on-def [of LEXEQ P] dest: LEX-trans)

context minimal-element
begin

lemma glb-LEX-lexmin:
assumes chain-on (LEX P) C (SEQ A) and C ≠ {}
shows glb (LEX P) C (lexmin C)
proof
have C ⊆ SEQ A using assms by (auto simp: chain-on-def)
then have lexmin C ∈ SEQ A using C ≠ {} by (intro lexmin-SEQ-mem)
note * = ℐ C ⊆ SEQ A ; C ≠ {} ;
note lex = LEX-imp-less [folded irreflp-on-def, OF po [THEN po-on-imp-irreflp-on]]
— lexmin C is a lower bound
show lb (LEX P) C (lexmin C)
proof
fix f assume f ∈ C
then show LEXEQ P (lexmin C) f
proof (cases f = lexmin C)
 define i where i = (LEAST i. f i ≠ lexmin C i)
case False
then have neq: ∃ i. f i ≠ lexmin C i by blast
from LeastI-ex [OF this, folded i-def]
and not-less-Least [where \(P = \lambda i. f \neq \operatorname{lexmin} C i \), folded i-def]

have neq: \(f \neq \operatorname{lexmin} C i \) and eq: \(\forall j<i. f j = \operatorname{lexmin} C j \) by auto

then have \(*\): \(f \in \text{eq-upto} C (\operatorname{lexmin} C) \) if \(f \in \text{ith} (\text{eq-upto} C (\operatorname{lexmin} C) i) \) i

using \(f \in C \) by force+

moreover from \(*\) have \(\neg P (f i) (\operatorname{lexmin} C i) \)

using \(\operatorname{lexmin}\)-minimal [OF \(*\), of \(f i \)] and \(f \in C \) and \(\{C \subseteq \text{SEQ} A\} \)

by blast

moreover obtain \(g \) where \(g \in \text{eq-upto} C (\operatorname{lexmin} C) (\operatorname{Suc} i) \)

using \(\text{eq-upto-xm-min} \)-non-empty [OF \(*\)] by blast

ultimately have \(P (\operatorname{lexmin} C i) (f i) \)

using \(\text{neq} \) and \(\{C \subseteq \text{SEQ} A\} \) and \(\text{assms}(1) \) and \(\text{lex} \) [of \(g f i \)] and \(\text{lex} \) [of \(f g i \)]

by (auto simp: \(\text{eq-upto-def} \) \(\text{chain-on-def} \))

with eq show \(?\)thesis by (auto simp: \(\text{LEX-def} \))

qed simp

qed

— \(\operatorname{lexmin} C \) is greater than or equal to any other lower bound

fix \(f \) assume \(\text{lb}: \text{lb} (\text{LEX} P) C f \)

then show \(\text{LEXEQ} P f (\text{lexmin} C) \)

proof (cases \(f = \text{lexmin} C \))

define \(i \) where \(i = (\text{LEAST} i. f i \neq \text{lexmin} C i) \)

case False

then have neq: \(\exists i. f i \neq \text{lexmin} C i \) by blast

from LeastI-ex [OF this, folded i-def]

and not-less-Least [where \(P = \lambda i. f i \neq \text{lexmin} C i \), folded i-def]

have neq: \(f \neq \text{lexmin} C i \) and eq: \(\forall j<i. f j = \text{lexmin} C j \) by auto

obtain \(h \) where \(h \in \text{eq-upto} C (\text{lexmin} C) (\text{Suc} i) \) and \(h \in C \)

using \(\text{eq-upto-xm-min} \)-non-empty [OF \(*\)] by (auto simp: \(\text{eq-upto-def} \))

then have \(\text{simp}: \forall j. j < \text{Suc} i \imp h j = \text{lexmin} C j \) by auto

with \(\text{lb} \) and \(h \in C \) have \(\text{LEX} P f h \) using \(\text{neq} \) by (auto simp: \(\text{lb-def} \))

then have \(P (f i) (h i) \)

using \(\text{neq} \) and \(\text{eq} \) and \(\{C \subseteq \text{SEQ} A\} \) and \(h \in C \) by (intro lex) auto

with eq show \(?\)thesis by (auto simp: \(\text{LEX-def} \))

qed simp

qed

lemma \(\text{dc-on-LEXEQ} \):

\(\text{dc-on} (\text{LEXEQ} P) (\text{SEQ} A) \)

proof

fix \(C \) assume \(\text{chain-on} (\text{LEXEQ} P) C (\text{SEQ} A) \) and \(C \neq \{\} \)

then have \(\text{chain}: \text{chain-on} (\text{LEX} P) C (\text{SEQ} A) \) by (auto simp: \(\text{chain-on-def} \))

then have \(C \subseteq \text{SEQ} A \) by (auto simp: \(\text{chain-on-def} \))

then have \(\text{lexmin} C \in \text{SEQ} A \) using \(\{C \neq \{\}\} \) by (intro \(\text{lexmin} \)-SEQ-mem)

have \(\text{lb} (\text{LEX} P) C (\text{lexmin} C) \) by (rule \(\text{lb-LEX-lexmin} \) [OF chain \(\{C \neq \{\}\}\)])

then have \(\text{lb} (\text{LEXEQ} P) C (\text{lexmin} C) \) by (auto simp: \(\text{lb-def} \))

with \(\text{lexmin} C \in \text{SEQ} A \) show \(\exists f \in \text{SEQ} A . \text{lb} (\text{LEXEQ} P) C f \) by blast

qed
Properties that only depend on finite initial segments of a sequence (i.e., which are open with respect to the product topology).

Definition

\(pt\text{-}open\text{-}on\ Q\ A \iff (\forall f \in A.\ Q f \iff (\exists n.\ (\forall i < n.\ g i = f i) \rightarrow Q g)) \)

Lemma \(pt\text{-}open\text{-}on\ D: \)

\(pt\text{-}open\text{-}on\ Q\ A \rightarrow Q f \rightarrow f \in A \rightarrow (\exists n.\ (\forall i < n.\ g i = f i) \rightarrow Q g)) \)

unfolding \(pt\text{-}open\text{-}on\text{-}def\) by blast

Lemma \(pt\text{-}open\text{-}on\text{-}good: \)

\(pt\text{-}open\text{-}on\ (good\ Q)\ (SEQ\ A) \)

Proof (unfold \(pt\text{-}open\text{-}on\text{-}def\), intro ballI)

fix \(f \) assume \(f \in\ SEQ\ A \)

show \(good\ Q\ f = (\exists n.\ g \in\ SEQ\ A.\ (\forall i < n.\ g i = f i) \rightarrow good\ Q\ g) \)

proof

assume \(good\ Q\ f \)

then obtain \(i \) and \(j \) where \(*: i < j \) \(Q (f i \ f j) \) by auto

have \(\forall g \in\ SEQ\ A.\ (\forall i < \text{Suc} j.\ g i = f i) \rightarrow good\ Q\ g \)

proof (intro ballI impI)

fix \(g \) assume \(g \in\ SEQ\ A\ and\ \forall i < \text{Suc} j.\ g i = f i \)

then show \(good\ Q\ g\ using\ *\ by\ (force\ simp: good-def)\)

qed

then show \(\exists n.\ \forall g \in\ SEQ\ A.\ (\forall i < n.\ g i = f i) \rightarrow good\ Q\ g \) ..

next

assume \(\exists n.\ \forall g \in\ SEQ\ A.\ (\forall i < n.\ g i = f i) \rightarrow good\ Q\ g \)

with \(f \) show \(good\ Q\ f\ by\ blast\)

qed

qed

context minimal-element begin

Lemma \(pt\text{-}open\text{-}on\text{-}imp\text{-}open\text{-}on\-LEXEQ: \)

assumes \(pt\text{-}open\text{-}on\ Q\ (SEQ\ A) \)

shows \(open\text{-}on\ (LEXEQ\ P)\ Q\ (SEQ\ A) \)

Proof

fix \(C \) assume chain: \(chain\text{-}on\ (LEXEQ\ P)\ C\ (SEQ\ A)\ and\ ne: C \neq \{} \)

and \(\exists g \in\ SEQ\ A.\ \text{glb}\ (LEXEQ\ P)\ C g \land Q g \)

then obtain \(g\ where\ g:\ g \in\ SEQ\ A\ and\ \text{glb}\ (LEXEQ\ P)\ C g \)

and \(Q: Q\ g\ by\ blast\)

then have \(\text{glb}: \text{glb}\ (LEX\ P)\ C g\ by\ (auto\ simp: \text{glb-def lb-def})\)

from \(\text{chain}\ have\ \text{chain}\text{-}on\ (LEX\ P)\ C\ (SEQ\ A)\ and\ C: C \subseteq\ SEQ\ A\ by\ (auto\ simp: chain\text{-}on\text{-}def)\)

note \(* = \text{glb\text{-}LEX\text{-}lexmin}[OF\ this(1)\ ne]\)

have \text{lexmin} \(C \in\ SEQ\ A\ using\ ne\ and\ C\ by\ (intro\ lexmin\text{-}SEQ\text{-}mem)\)

from \(\text{glb\text{-}unique}[OF\ -\ g\ this\ glb\ *]\)
and antisym-on-LEX [OF po-on-imp-irrefl-on [OF po] po-on-imp-antisym-on [OF po]]

have [simp]: lexmin C = g by auto
from assms [THEN pt-open-onD, OF Q g]
obtain n :: nat where **: \ h. h \in SEQ A \implies (\forall i< n. h i = g i) \implies Q h by blast
from eq-upto-lexmin-non-empty [OF C ne of n]
obtain f where f \in eq-upto C g n by auto
then have f \in C and Q f using ** [of f] and C by force+
then show \exists f \in C. Q f by blast
qed

lemma open-on-good:
oppenon (LEXEQ P) (good Q) (SEQ A)
by (intro pt-open-on-imp-open-on-LEXEQ pt-open-on-good)
end

lemma open-on-LEXEQ-imp-pt-open-on-counterexample:
fixes a b :: 'a
defines A \equiv \{ a, b \} and P \equiv (\lambda x y. False) and Q \equiv (\lambda f. \forall i. f i = b)
assumes [simp]: a \neq b
shows minimal-element P A and open-on (LEXEQ P) Q (SEQ A)
and \neg pt-open-on Q (SEQ A)
proof –
show minimal-element P A
by standard (auto simp: P-def po-on-def irrefl-on-def transp-on-def wfp-on-def)
show open-on (LEXEQ P) Q (SEQ A)
by (auto simp: P-def open-on-def chain-on-def SEQ-def glb-def lb-def LEX-def)
show \neg pt-open-on Q (SEQ A)
proof
define f :: nat \Rightarrow 'a where f \equiv (\lambda x. b)
have f \in SEQ A by (auto simp: A-def f-def)
moreover assume pt-open-on Q (SEQ A)
ultimately have Q f \iff (\exists n. (\forall g \in SEQ A. (\forall i< n. g i = f i) \implies Q g))
unfolding pt-open-on-def by blast
moreover have Q f by (auto simp: Q-def f-def)
moreover have \exists g\in SEQ A. (\forall i< n. g i = f i) \land \neg Q g for n
by (intro bexI [of - f(n := a)]) (auto simp: f-def Q-def A-def)
ultimately show False by blast
qed
qed

lemma higman:
assumes almost-full-on P A
shows almost-full-on (list-emb P) (lists A)
proof
interpret minimal-element strict-suffix lists A
by (unfold-locales) (intro po-on-strict-suffix wfp-on-strict-suffix)+

27
fix \(f \) presume \(f \in \text{SEQ} \) (lists \(A \))
with \(\text{go-on-LEXEQ} \) \(\{ \text{OF po-on-imp-transp-on} \ [\text{OF po-on-strict-suffix} \} \) and \(\text{dc-on-LEXEQ} \)
and \(\text{open-on-good} \)
show \(\text{good} \) (list-emb \(P \)) \(f \)
proof
(induct rule: open-induct-on)
case (less \(f \))
define \(h \) where \(h \cdot i = \text{hd} \ (f \cdot i) \) for \(i \)
show \(?\text{case} \)
proof
(cases \(\exists i \cdot f \cdot i = [] \))
case False
then have \(\text{ne} : \forall i. \ f \cdot i \neq [] \) by auto
with \(f \in \text{SEQ} \) (lists \(A \))
\(\forall i. \ h \cdot i \in A \) by (auto simp: \(h \)-def \(\text{ne-lists} \))
from \(\text{almost-full-on-imp-homogeneous-subseq} \) \(\{ \text{OF assms this} \} \) obtain \(\varphi : \forall \cdot \text{nat} \Rightarrow \text{nat} \) where mono: \(\forall i. \ j. \ i < j \Rightarrow \varphi \cdot i < \varphi \cdot j \)
and \(P : \underbrace{\forall i. \ j. \ i < j \Rightarrow P \ (h \ (\varphi \ i)) \ (h \ (\varphi \ j))} \) by blast
define \(f' \) where \(f' \cdot i = (\text{if } i < \varphi \cdot 0 \text{ then } f \ (\varphi \ (i - \varphi \ 0)) \text{ else } \text{tl} \ (\varphi \ (i - \varphi \ 0))) \) for \(i \)
have \(f' : f' \in \text{SEQ} \) (lists \(A \)) using \(\text{ne} \) and \(f \in \text{SEQ} \) (lists \(A \))
by (auto simp: \(f'\)-def dest: list-setSel)
have \(\text{simp} : \forall i. \ j. \ \varphi \cdot 0 \leq i \Rightarrow h \ (\varphi \ (i - \varphi \ 0)) \# f' \cdot i = f \ (\varphi \ (i - \varphi \ 0)) \)
\(\wedge i. \ i < \varphi \cdot 0 \Rightarrow f' \cdot i = f \cdot i \) using \(\text{ne} \) by (auto simp: \(f'\)-def h-def)
moreover have \(\text{strict-suffix} \ (f' \ (\varphi \ 0)) \) (\(f \ (\varphi \ 0) \)) using \(\text{ne} \) by (auto simp: \(f'\)-def)
ultimately have \(\text{LEX} \) \(\text{strict-suffix} \ \varphi \cdot f \cdot f' \)
with \(\text{LEX-imp-not-LEX} \) \(\{ \text{OF this} \} \) have \(\text{strict} \) (\(\text{LEXEQ} \) \(\text{strict-suffix} \)) \(f' \cdot f \)
using \(\text{po-on-strict-suffix} \) [\(\text{of UNIV} \)] unfolding \(\text{po-on-strict-suffix} \) irreflp-on-def transp-on-def by blast
from \(\text{less(2)} \) [\(\text{OF } f' \ this \)] have \(\text{good} \) (list-emb \(P \)) \(f' \).
then obtain \(i \cdot j \) where \(i < j \) and emb: list-emb \(P \) \((f' \cdot i) \) \((f' \cdot j) \) by (auto simp: \(\text{good-def} \))
consider \(j < \varphi \cdot 0 \mid \varphi \cdot 0 \leq i \mid i < \varphi \cdot 0 \) and \(\varphi \cdot 0 \leq j \) by arith
then show \(\text{?thesis} \)
proof
(cases)
case 1 with \(\cdot i < j \) and emb show \(\text{?thesis} \) by (auto simp: \(\text{good-def} \))
next
case 2
with \(\cdot i < j \) and \(P \) have \(P \ (h \ (\varphi \ (i - \varphi \ 0))) \ (h \ (\varphi \ (j - \varphi \ 0))) \) by auto
with emb have list-emb \(P \) \((h \ (\varphi \ (i - \varphi \ 0))) \# f' \cdot i) \ (h \ (\varphi \ (j - \varphi \ 0))) \# f' \cdot j) \) by auto
then have list-emb \(P \) \(f \ (\varphi \ (i - \varphi \ 0))) \ (f \ (\varphi \ (j - \varphi \ 0))) \) using 2 and \(\cdot i < j \) by auto
moreover with 2 and \(\cdot i < j \) have \(\varphi \ (i - \varphi \ 0) < \varphi \ (j - \varphi \ 0) \) using mono
by auto
ultimately show \(\text{?thesis} \) by (auto simp: \(\text{good-def} \))
next
case 3
with emb have list-emb \(P \) \(f \cdot i) \) \(f' \cdot j) \) by auto
moreover have \(f \ (\varphi \ (j - \varphi \ 0))) = h \ (\varphi \ (j - \varphi \ 0))) \# f' \cdot j \) using 3 by auto
ultimately have list-emb \(P \) \(f \cdot i) \) \(f \ (\varphi \ (j - \varphi \ 0))) \) by auto
moreover have \(i < \varphi \ (j - \varphi \ 0) \) using mono [\(\text{of } 0 \cdot j - \varphi \ 0 \)] and \(3 \) by force

28
ultimately show \(\varphi \)thesis by (auto simp: good-def)
Qed
Qed auto
Qed
Qed blast
end

7 Almost-Full Relations

theory Almost-Full-Relations
imports Minimal-Bad-Sequences
begin
lemma (in mbs) mbs':
 assumes \(\neg \) almost-full-on \(P \) \(A \)
 shows \(\exists m \in \text{BAD} \ P. \ \forall g. (m, g) \in gseq \rightarrow \text{good} \ P \ g \)
using assms and mbs unfolding almost-full-on-def by blast

7.1 Adding a Bottom Element to a Set

definition with-bot :: 'a set \Rightarrow 'a option set (\⊥ [1000] 1000)
where
\(A_\bot = \{ \text{None} \} \cup \text{Some} ' A \)

lemma with-bot-iff [iff]:
 Some \(x \in A_\bot \leftrightarrow x \in A \)
by (auto simp: with-bot-def)

lemma NoneI [simp, intro]:
 \(\text{None} \in A_\bot \)
by (simp add: with-bot-def)

lemma not-None-the-mem [simp]:
 \(x \neq \text{None} \rightarrow \text{the} \ x \in A \leftrightarrow x \in A_\bot \)
by auto

lemma with-bot-cases:
 \(u \in A_\bot \rightarrow (\forall x. x \in A \rightarrow u = \text{Some} x \rightarrow P) \rightarrow (u = \text{None} \rightarrow P) \rightarrow P \)
by auto

lemma with-bot-empty-conv [iff]:
 \(A_\bot = \{ \text{None} \} \leftrightarrow A = \{ \} \)
by (auto elim: with-bot-cases)

lemma with-bot-UNIV [simp]:
 \(\text{UNIV}_\bot = \text{UNIV} \)
proof (rule set-eql)
 fix \(x :: 'a \ \text{option} \)
show $x \in \text{UNIV}_\bot \leftrightarrow x \in \text{UNIV}$ by (cases x) auto

qed

7.2 Adding a Bottom Element to an Almost-Full Set

fun
 \text{option-le} :: \('a \Rightarrow 'a \Rightarrow \text{bool}' \Rightarrow 'a \text{ option} \Rightarrow 'a \text{ option} \Rightarrow \text{bool}'
where
 \text{option-le} P \text{ None} y = \text{True} |
 \text{option-le} P (\text{Some} x) \text{ None} = \text{False} |
 \text{option-le} P (\text{Some} x) (\text{Some} y) = P x y

lemma \text{None-imp-good-option-le} [simp]:
 assumes $f \ i = \text{None}$
 shows \text{good} (\text{option-le} P) f
 by (rule \text{goodI} [of $i \ Suc \ i$]) (auto simp: \text{assms})

lemma \text{almost-full-on-with-bot}:
 assumes \text{almost-full-on} P A
 shows \text{almost-full-on} (\text{option-le} P) A_\bot (\text{is \ almost-full-on} ?P ?A)
proof
 fix \text{f} :: \text{nat} \Rightarrow 'a \text{ option}
 assume \ast : $\forall i. \text{f} i \in ?A$
 show \text{good} ?P f
 proof (cases $\forall i. \text{f} i \neq \text{None}$)
 case True
 then have $\ast\ast$: $\forall i. \text{Some} (\text{the} (\text{f} i)) = \text{f} i$
 and $\forall i. \text{the} (\text{f} i) \in A$ using \ast by auto
 with \text{almost-full-onD} (\text{OF} \text{assms}, \text{of} \text{the} \circ \text{f}) \text{obtain} i \ j \text{ where} i < j
 and $\text{P} (\text{the} (\text{f} i)) (\text{the} (\text{f} j))$ by auto
 then have $?P (\text{Some} (\text{the} (\text{f} i))) (\text{Some} (\text{the} (\text{f} j)))$ by simp
 then have $?P (\text{f} i) (\text{f} j)$ unfolding $\ast\ast$.
 with $(i < j)$ show \text{good} $?P f$ by (auto simp: \text{good-def})
 qed auto
qed

7.3 Disjoint Union of Almost-Full Sets

fun
 \text{sum-le} :: \('a \Rightarrow 'a \Rightarrow \text{bool}' \Rightarrow 'b \Rightarrow 'b \Rightarrow \text{bool}' \Rightarrow 'a + 'b \Rightarrow 'a + 'b \Rightarrow \text{bool}'
where
 \text{sum-le} P Q (\text{Inl} x) (\text{Inl} y) = P x y |
 \text{sum-le} P Q (\text{Inr} x) (\text{Inr} y) = Q x y |
 \text{sum-le} P Q x y = \text{False}

lemma \text{not-sum-le-cases}:
 assumes $\sim \text{sum-le} P Q a b$
 and $\forall x \ y. [a = \text{Inl} x; b = \text{Inl} y; \sim P x y] \Longrightarrow \text{thesis}$
 and $\forall x \ y. [a = \text{Inr} x; b = \text{Inr} y; \sim Q x y] \Longrightarrow \text{thesis}$
 and $\forall x \ y. [a = \text{Inl} x; b = \text{Inr} y] \Longrightarrow \text{thesis}$
 qed
and $\forall x y. [a = \text{Inr } x; b = \text{Inl } y] \implies \text{thesis}$

shows thesis

using asms by (cases a b rule: sum.exhaust [case-product sum.exhaust]) auto

When two sets are almost-full, then their disjoint sum is almost-full.

Lemma almost-full-on-Plus:

Assumes almost-full-on $P A$ and almost-full-on $Q B$

Shows almost-full-on (sum-le $P Q$) ($A <\leftrightarrow B$) (is almost-full-on $?P \ ?A$

Proof

fix $f :: \text{nat} \Rightarrow (\text{'}a + \text{'}b)$

let $?I = f - \text{'}\text{Inl } A$

let $?J = f - \text{'}\text{Inr } B$

assume $\forall i. f i \in ?A$

then have \ast: $\forall i. f i \in ?A$

by (fastforce)

show good $?P f$

proof (rule ccontr)

assume bad $?P f$

show False

proof (cases finite $?I$

assume finite $?I$

then have infinite $?J$ by (auto simp: \ast)

then interpret infinitely-many1 $\lambda i. f i \in \text{Inr } B$

by (unfold-locales) (simp add: infinite-nat-iff-unbounded)

have $[\text{dest}]: \forall i. f (\text{enum } i) = \text{Inl } x \Longrightarrow \text{False}$

using enum-P by (auto simp: image-iff) (metis Inr-Inl-False)

let $?f = \lambda i. \text{projr } (f (\text{enum } i))$

have $B: \forall i. f i \in B$ using enum-P by (auto simp: image-iff) (metis sum.sel(2))

\{ fix i j :: nat

assume $i < j$

then have enum i < enum j using enum-less by auto

with bad have $\neg ?F (f (\text{enum } i)) (f (\text{enum } j))$ by (auto simp: good-def)

then have $\neg Q (?f i) (?f j)$ by (auto elim: not-sum-le-cases)

then have bad Q $?F$ by (auto simp: good-def)

moreover from almost-full-on $Q B$ and B

have good Q $?F$ by (auto simp: good-def almost-full-on-def)

ultimately show False by blast

next

assume infinite $?I$

then interpret infinitely-many1 $\lambda i. f i \in \text{Inr } A$

by (unfold-locales) (simp add: infinite-nat-iff-unbounded)

have $[\text{dest}]: \forall i. f (\text{enum } i) = \text{Inr } x \Longrightarrow \text{False}$

using enum-P by (auto simp: image-iff) (metis Inr-Inl-False)

let $?f = \lambda i. \text{projr } (f (\text{enum } i))$

have $A: \forall i. f i \in A$ using enum-P by (auto simp: image-iff) (metis sum.sel(I))

\{ fix i j :: nat

assume $i < j$

then have enum i < enum j using enum-less by auto
with \(\text{bad have } \neg \forall P \ (f \ (\text{enum } i)) \ (f \ (\text{enum } j)) \ \text{by (auto simp: good-def}) \)
then have \(\neg P \ (f \ i \ (f \ j)) \ \text{by (auto elim: not-sum-le-cases}) \)
then have \(\text{bad } P \ (\forall f \ i) \ (\forall f \ j) \ \text{by (auto simp: good-def}) \)

moreover from \(\text{almost-full-on } P \ A \ \text{and } A \
\text{have good } P \ (\forall f \ i) \ (\forall f \ j) \ \text{by (auto simp: good-def almost-full-on-def}) \)
ultimately show \(\text{False} \ \text{by blast} \)

\[\text{qed} \]
\[\text{qed} \]
\[\text{qed} \]

7.4 Dickson’s Lemma for Almost-Full Relations

When two sets are almost-full, then their Cartesian product is almost-full.

definition prod-le :: \('(a \Rightarrow 'a \Rightarrow \text{bool}) \Rightarrow ('b \Rightarrow 'b \Rightarrow \text{bool}) \Rightarrow 'a \times 'b \Rightarrow 'a \times 'b \Rightarrow \text{bool} \)
where
prod-le P1 P2 = \(\lambda \ (p1, p2) \ (q1, q2). \ P1 \ p1 \ q1 \ \land \ P2 \ p2 \ q2 \)

lemma prod-le-True [simp]:
prod-le P (\(\lambda \ -. \ True \)) a b = \(P \ (\text{fst } a) \ (\text{fst } b) \)
by (auto simp: prod-le-def)

lemma almost-full-on-Sigma:
assumes almost-full-on P1 A1 and almost-full-on P2 A2
shows almost-full-on (prod-le P1 P2) (A1 \times A2) (is almost-full-on ?P ?A)
proof (rule ccontr)
assume \(\neg \text{almost-full-on } P \ A \)
then obtain f where f: \(\forall i. \ f \ i \in ?A \)
and bad: \(\text{bad } P \ (\forall f \ i) \) by (auto simp: almost-full-on-def)
let ?W = \(\lambda x y. \ P1 \ (\text{fst } x) \ (\text{fst } y) \)
let ?B = \(\lambda x y. \ P2 \ (\text{snd } x) \ (\text{snd } y) \)
from f have fst: \(\forall i. \ \text{fst } (f \ i) \in A1 \) and snd: \(\forall i. \ \text{snd } (f \ i) \in A2 \)
by (metis SigmaE fst-conv, metis SigmaE snd-conv)
from almost-full-on-imp-homogeneous-subseq [OF assms(1) fst]
obtain \(\varphi :: \text{nat} \Rightarrow \text{nat} \) where mono: \(\forall i. \ j. \ i < j \Rightarrow \varphi \ i < \varphi \ j \)
\(\land \ast: \forall i. \ j. \ i < j \Rightarrow ?W \ (f \ (\varphi \ i)) \ (f \ (\varphi \ j)) \) by auto
from snd have \(\forall i. \ \text{snd } (f \ (\varphi \ i)) \in A2 \) by auto
then have \(\text{snd } \circ \ f \circ \varphi \in \text{SEQ } A2 \) by auto
with assms(2) have \(\text{good } P2 \ (\text{snd } \circ \ f \circ \varphi) \) by (auto simp: almost-full-on-def)
then obtain i j :: nat
where \(i < j \) and \(\exists B \ (f \ (\varphi \ i)) \ (f \ (\varphi \ j)) \) by auto
with \(\ast \ [OF \ i < j]\) have \(\forall P \ (f \ (\varphi \ i)) \ (f \ (\varphi \ j)) \) by (simp add: case-prod-beta prod-le-def)
with mono [OF \ i < j] and bad show \(\text{False} \) by auto
qed

7.5 Higman’s Lemma for Almost-Full Relations

lemma almost-full-on-lists:
assumes almost-full-on \(P \) A
shows almost-full-on (list-emb \(P \)) (lists A) (is almost-full-on \(\neg P \) \(\neg A \))
proof (rule ccontr)
\begin{align*}
 &\text{interpret mbs \(?A \) .} \\
 &\text{assume } \neg \text{thesis} \\
 &\text{from mbs' \([OF \ this] \) obtain } m \\
 &\quad \text{where } \text{bad}: m \in \text{BAD} \ \neg P \\
 &\quad \text{and } \text{min}: \forall g. \ (m, g) \in \text{gseq} \longrightarrow \text{good} \ \neg P \ g \ldots \\
 &\quad \text{then have lists: } \bigwedge i. m \ i \in \text{lists} A \\
 &\quad \quad \text{and ne: } \bigwedge i. m \ i \ \neq \ [] \ \text{by auto} \\
\end{align*}

\begin{align*}
 \text{define } h \ t \ \text{where } h &= (\lambda i. \ \text{hd} \ (m \ i)) \ \text{and } t = (\lambda i. \ \text{tl} \ (m \ i)) \\
 \text{have } m: \bigwedge i. m \ i = h \ i \ # \ t \ i \ \text{using ne by (simp add: h-def t-def)}
\end{align*}

have \(\forall \ i. \ h \ i \in A \ \text{using ne-lists} \ [OF \ ne] \ \text{and lists by (auto simp add: h-def)} \)
from almost-full-on-imp-homogeneous-subseq \([OF \ \text{assms \ this}] \) obtain \(\varphi :: \ \text{nat} \ \Rightarrow \ \text{nat} \)

\begin{align*}
 &\quad \text{where } \text{less}: \bigwedge i. j. \ i < j \ \Longrightarrow \ \varphi \ i < \varphi \ j \\
 &\quad \text{and } P: \forall i. j. \ i < j \longrightarrow P \ (h \ (\varphi \ i)) \ (h \ (\varphi \ j)) \ \text{by blast} \\
\end{align*}

have \(\text{bad-t: } \text{bad} \ ?P \ (t \circ \varphi) \)
proof
\begin{align*}
 &\quad \text{assume } \text{good} \ ?P \ (t \circ \varphi) \\
 &\quad \text{then obtain } i \ j \ \text{where } i < j \ \text{and } \ ?P \ (t \ (\varphi \ i)) \ (t \ (\varphi \ j)) \ \text{by auto} \\
 &\quad \text{moreover with } P \ \text{have } P \ (h \ (\varphi \ i)) \ (h \ (\varphi \ j)) \ \text{by blast} \\
 &\quad \text{ultimately have } \ ?P \ (m \ (\varphi \ i)) \ (m \ (\varphi \ j)) \\
 &\quad \quad \text{by (subst (1 2) } m) \ \text{rule list-emb-Cons2, auto) \\
 &\quad \text{with less and } (i < j) \ \text{have good } \ ?P \ m \ \text{by (auto simp: good-def)} \\
 &\quad \text{with bad show False by blast} \\
\end{align*}
qed

\begin{align*}
 \text{define } m' \ \text{where } m' &= (\lambda i. \ \text{if } i < \varphi \ 0 \ \text{then } m \ i \ \text{else } t \ (\varphi \ (i - \varphi \ 0))) \\
 \text{have } m'^{-}\text{less}: \bigwedge i. i < \varphi \ 0 \ \Longrightarrow \ m' \ i = m \ i \ \text{by (simp add: m'-def)} \\
 \text{have } m'^{-}\text{geq}: \bigwedge i. i \geq \varphi \ 0 \ \Longrightarrow \ m' \ i = t \ (\varphi \ (i - \varphi \ 0)) \ \text{by (simp add: m'-def)}
\end{align*}

have \(\forall i. \ m' \ i \in \text{lists} A \ \text{using ne-lists} \ [OF \ ne] \ \text{and lists by (auto simp: m'-def t-def)} \)
moreover have \(\text{length} \ (m' \ (\varphi \ 0)) < \text{length} \ (m \ (\varphi \ 0)) \ \text{using ne by (simp add: t-def m'-geq)} \)
moreover have \(\forall j < \varphi \ 0. \ m' \ j = m \ j \ \text{by (auto simp: m'-less)} \)
ultimately have \((m, m') \in \text{gseq} \ \text{using lists by (auto simp: gseq-def)} \)
moreover have \(\text{bad} \ ?P \ m' \)
proof
\begin{align*}
 &\quad \text{assume } \text{good} \ ?P \ m' \\
 &\quad \text{then obtain } i \ j \ \text{where } i < j \ \text{and } \text{emb: } ?P \ (m' \ i) \ (m' \ j) \ \text{by (auto simp: good-def)} \\
 &\quad \quad \{ \ \text{assume } j < \varphi \ 0 \\
 &\quad \quad \quad \text{with } (i < j) \ \text{and } \text{emb have } ?P \ (m \ i) \ (m \ j) \ \text{by (auto simp: m'-less)} \}
\end{align*}
with \((i < j)\) and \(bad\) have \(False\) by \(blast\)

moreover
{ assume \(\varphi \ 0 \leq \ i\)
 with \((i < j)\) and \(\text{emb}\) have \(?P\ (t \ (\varphi \ (i - \varphi \ 0)))\) (\(t \ (\varphi \ (j - \varphi \ 0)))\)
 and \(i - \varphi \ 0 < j - \varphi \ 0\) by (auto simp: \(m^\prime\)-geq)
 with \(bad-t\) have \(False\) by auto }

moreover
{ assume \(i < \varphi \ 0\) and \(\varphi \ 0 \leq \ j\)
 with \((i < j)\) and \(\text{emb}\) have \(?P\ (m \ i)\) (\(t \ (\varphi \ (j - \varphi \ 0)))\) by (simp add: \(m^\prime\)-less \(m^\prime\)-geq)
 from \(\text{list-emb-Cons} \ [OF\ this,\ of\ h\ (\varphi \ (j - \varphi \ 0))]\)
 have \(?P\ (m \ i)\) (\(m \ (\varphi \ (j - \varphi \ 0)))\) using \(ne\) by (simp add: \(h\)-def \(t\)-def)
 moreover have \(i < \varphi \ (j - \varphi \ 0)\)
 using \(less\ [of\ 0\ j - \varphi \ 0]\) and \((i < \varphi \ 0,\ and\ \varphi \ 0 \leq \ j)\)
 by (cases \(j = \varphi \ 0\)) auto
 ultimately have \(False\) using \(bad\) by \(blast\) }
 ultimately show \(False\) using \((i < j)\) by \(arith\)
 qed

ultimately show \(False\) using \(\min\) by \(blast\)
 qed

7.6 Natural Numbers

lemma \(\text{almost-full-on-UNIV-nat:}\)
 \(\text{almost-full-on} \ (\leq) \ (\text{UNIV} :: \text{nat set})\)

proof
 let \(?P = \text{subseq} :: \text{bool list} \Rightarrow \text{bool list} \Rightarrow \text{bool}\)
 have \(*: length \cdot (\text{UNIV} :: \text{bool list set}) = (\text{UNIV} :: \text{nat set})\)
 by (metis \(\text{Ex-list-of-length surj-def}\))
 have \(\text{almost-full-on} \ (\leq) \ (\text{length} \cdot (\text{UNIV} :: \text{bool list set}))\)
 proof (rule \(\text{almost-full-on-hom}\))
 fix \(xs\ ys :: \text{bool list}\)
 assume \(?P\ \text{xs}\ \text{ys}\)
 then show \(\text{length} \ \text{xs} \leq \ \text{length} \ \text{ys}\)
 by (metis \(\text{list-emb-length}\))
 next
 have \(\text{finite} \ (\text{UNIV} :: \text{bool set})\) by auto
 from \(\text{almost-full-on-lists} \ [OF\ \text{eq-almost-full-on-finite-set} \ [OF\ this]]\)
 show \(\text{almost-full-on} \ ?P\ \text{UNIV}\ \text{unfolding}\ \text{lists-UNIV}\) .
 qed
 then show \(?\text{thesis}\ \text{unfolding} \ (*).\)
 qed
 end

8 Well-Quasi-Orders

theory \(\text{Well-Quasi-Orders}\)
imports \(\text{Almost-Full-Relations}\)
begin

8.1 Basic Definitions

definition wqo-on :: (′a ⇒ ′a ⇒ bool) ⇒ ′a set ⇒ bool where
wqo-on P A \iff transp-on P A ∧ almost-full-on P A

lemma wqo-on-UNIV:
wqo-on (λ- -. True) UNIV
using almost-full-on-UNIV by (auto simp: wqo-on-def transp-on-def)

lemma wqo-onI [Pure.intro]:
[transp-on P A; almost-full-on P A] \implies wqo-on P A
unfolding wqo-on-def almost-full-on-def by blast

lemma wqo-on-imp-reflp-on:
wqo-on P A \implies reflp-on P A
using almost-full-on-imp-reflp-on by (auto simp: wqo-on-def)

lemma wqo-on-imp-transp-on:
wqo-on P A \implies transp-on P A
by (auto simp: wqo-on-def)

lemma wqo-on-imp-almost-full-on:
wqo-on P A \implies almost-full-on P A
by (auto simp: wqo-on-def)

lemma wqo-on-imp-qo-on:
wqo-on P A \implies qo-on P A
by (metis qo-on-def wqo-on-imp-reflp-on wqo-on-imp-transp-on)

lemma wqo-on-imp-good:
wqo-on P A \implies \forall i. f i ∈ A \implies good P f
by (auto simp: wqo-on-def almost-full-on-def)

lemma wqo-on-subset:
A ⊆ B \implies wqo-on P B \implies wqo-on P A
using almost-full-on-subset [of A B P]
and transp-on-subset [of A B P]
unfolding wqo-on-def by blast

8.2 Equivalent Definitions

Given a quasi-order P, the following statements are equivalent:

1. P is a almost-full.

2. P does neither allow decreasing chains nor antichains.

3. Every quasi-order extending P is well-founded.
lemma wqo-af-conv:
assumes qo-on P A
shows wqo-on P A \iff almost-full-on P A
using assms by (metis qo-on-def wqo-on-def)

lemma wqo-wf-and-no-antichain-conv:
assumes qo-on P A
shows wqo-on P A \iff wfp-on (strict P) A \land \neg (\exists f. antichain-on P f A)
unfolding wqo-af-conv [OF assms]
using af-trans-imp-wf [OF assms \THEN qo-on-imp-transp-on]
and almost-full-on-imp-no-antichain-on [of P A]
and wqo-wf-and-no-antichain-imp-qo-extension-wf [of P A]
and every-qo-extension-wf-imp-af [OF assms]
by blast

lemma wqo-extensions-wf-conv:
assumes qo-on P A
shows wqo-on P A \iff \forall Q. (\forall x \in A. \forall y \in A. \ P x y \imp Q (h x) (h y)) \land qo-on Q A
unfolding wqo-af-conv [OF assms]
using af-trans-imp-wf [OF assms \THEN qo-on-imp-transp-on]
and almost-full-on-imp-no-antichain-on [of P A]
and wqo-wf-and-no-antichain-imp-qo-extension-wf [of P A]
and every-qo-extension-wf-imp-af [OF assms]
by blast

lemma wqo-on-imp-wfp-on:
wqo-on P A \Rightarrow wfp-on (strict P) A
by (metis (no-types) wqo-on-imp-qo-on wqo-wf-and-no-antichain-conv)

The homomorphic image of a wqo set is wqo.

lemma wqo-on-hom:
assumes transp-on Q (h ' A)
and \forall x \in A. \forall y \in A. \ P x y \imp Q (h x) (h y)
and wqo-on P A
shows wqo-on Q (h ' A)
using assms and almost-full-on-hom [of A P Q h]
unfolding wqo-on-def by blast

The monomorphic preimage of a wqo set is wqo.

lemma wqo-on-mon:
assumes \forall x \in A. \forall y \in A. \ P x y \imp Q (h x) (h y)
and bij: bij-betw h A B
and wqo: wqo-on Q B
shows wqo-on P A
proof
have transp-on P A
proof
fix x y z assume [intro]: x \in A y \in A z \in A
and \(P \ x \ y \) and \(P \ y \ z \)
with * have \(Q \ (h \ x) \ (h \ y) \) and \(Q \ (h \ y) \ (h \ z) \) by blast+
with \ wqo-on-imp-transp-on \ [OF \ wqo] \ have \(Q \ (h \ x) \ (h \ z) \)
using bij by (auto simp: bij-betw-def transp-on-def)
with * show \(P \ x \ z \) by blast
qed
with assms and almost-full-on-mon \ [of \ A \ P \ Q \ h] \ show \ \?thesis \ unfolding \ wqo-on-def \ by \ blast
qed

8.3 A Type Class for Well-Quasi-Orders

In a well-quasi-order (wqo) every infinite sequence is good.

\[
\begin{align*}
\text{class} & \ wqo = \ preorder + \\
& \text{assumes} \ good: \ good \ (\leq) \ f
\end{align*}
\]

\textbf{lemma} \ wqo-on-class \ [simp, intro]:
\(wqo-on \ (\leq) \ (UNIV :: ('a :: wqo) set) \)
using \ good \ by \ (auto simp: wqo-on-def transp-on-def almost-full-on-def dest: order-trans)

\textbf{lemma} \ wqo-on-UNIV-class-wqo \ [intro!]:
\(wqo-on \ P \ UNIV =\Rightarrow \ \text{class.wqo} \ P \) (strict P)
by (unfold-locales) \ (auto simp: wqo-on-def almost-full-on-def, unfold transp-on-def, blast)

The following lemma converts between \(wqo-on \) (for the special case that the domain is the universe of a type) and the class predicate \(\text{class.wqo} \).

\textbf{lemma} \ wqo-on-UNIV-class-wqo \ [intro!]:
\(wqo-on \ P \ UNIV \iff \ \text{class.wqo} \ P \) (strict P)
\is \ ?lhs = ?rhs
\proof
assume \ ?lhs then show \ ?rhs by \ auto
next
assume \ ?rhs then show \ ?lhs
unfolding \ class.wqo-def \ class.preorder-def \ class.wqo-axioms-def
by \ (auto simp: wqo-on-def almost-full-on-def transp-on-def)
qed

The strict part of a wqo is well-founded.

\textbf{lemma} \ (in \ wqo) \ wfp \ (<)
\proof
have \ class.wqo \ (\leq) \ (<) .
hence \ wqo-on \ (\leq) \ UNIV
unfolding \ less-le-not-le \ [abs-def] \ wqo-on-UNIV-conv \ [symmetric] ,
from \ wqo-on-imp-wfp-on \ [OF \ this]
show \ ?thesis \ unfolding \ less-le-not-le \ [abs-def] \ wfp-on-UNIV .
qed
lemma wqo-on-with-bot:
 assumes wqo-on P A
 shows wqo-on (option-le P) A⊥ (is wqo-on ?P ?A)
proof –
 { from assms have trans [unfolded transp-on-def]: transp-on P A
 by (auto simp: wqo-on-def)
 have transp-on ?P ?A
 by (auto simp: transp-on-def elim: with-bot-cases, insert trans) blast }
moreover
 { from assms and almost-full-on-with-bot
 have almost-full-on ?P ?A by (auto simp: wqo-on-def) }
ultimately
 show thesis by (auto simp: wqo-on-def)
qed

lemma wqo-on-option-UNIV [intro]:
 wqo-on P UNIV ⇒ wqo-on (option-le P) UNIV
using wqo-on-with-bot [of P UNIV] by simp

When two sets are wqo, then their disjoint sum is wqo.

lemma wqo-on-Plus:
 assumes wqo-on P A and wqo-on Q B
 shows wqo-on (sum-le P Q) (A <+> B) (is wqo-on ?P ?A)
proof –
 { from assms have trans [unfolded transp-on-def]: transp-on P A transp-on Q B
 by (auto simp: wqo-on-def)
 have transp-on ?P ?A
 unfolding transp-on-def by (auto, insert trans) (blast+) }
moreover
 { from assms and almost-full-on-Plus have almost-full-on ?P ?A by (auto simp: wqo-on-def) }
ultimately
 show thesis by (auto simp: wqo-on-def)
qed

lemma wqo-on-sum-UNIV [intro]:
 wqo-on P UNIV ⇒ wqo-on Q UNIV ⇒ wqo-on (sum-le P Q) UNIV
using wqo-on-Plus [of P UNIV Q UNIV] by simp

8.4 Dickson’s Lemma

lemma wqo-on-Sigma:
 fixes A1 :: 'a set and A2 :: 'b set
 assumes wqo-on P1 A1 and wqo-on P2 A2
 shows wqo-on (prod-le P1 P2) (A1 × A2) (is wqo-on ?P ?A)
proof –
 { from assms have transp-on P1 A1 and transp-on P2 A2 by (auto simp: wqo-on-def)
 hence transp-on ?P ?A unfolding transp-on-def prod-le-def by blast }

38
moreover
 \{ from \textit{assms and almost-full-on-Sigma [of P1 A1 P2 A2]}
 have almost-full-on \textit{?P \,?A by (auto simp: wqo-on-def) } \}\nultimately
show \textit{?thesis by (auto simp: wqo-on-def)}
qed

lemmas dickson = wqo-on-Sigma

lemma wqo-on-prod-UNIV [intro]:
 wqo-on P UNIV \implies wqo-on Q UNIV \implies wqo-on (prod-le P Q) UNIV
using wqo-on-Sigma [of P UNIV Q UNIV] by simp

\textbf{8.5 Higman’s Lemma}

\textbf{lemma transp-on-list-emb:}
 \textbf{assumes} transp-on P A
 \textbf{shows} transp-on (list-emb P) (lists A)
using \textit{assms and list-emb-trans [of - - P]}
 unfolding transp-on-def by blast

lemma wqo-on-lists:
 \textbf{assumes} wqo-on P A \textbf{shows} wqo-on (list-emb P) (lists A)
using \textit{assms and almost-full-on-lists}
 \textbf{and} transp-on-list-emb by (auto simp: wqo-on-def)

lemmas higman = wqo-on-lists

\textbf{lemma wqo-on-list-UNIV [intro]:}
 wqo-on P UNIV \implies wqo-on (list-emb P) UNIV
using wqo-on-lists [of P UNIV] by simp

Every reflexive and transitive relation on a finite set is a wqo.

\textbf{lemma finite-wqo-on:}
 \textbf{assumes} finite A and refl: reflp-on P A and transp-on P A
 \textbf{shows} wqo-on P A
using \textit{assms and finite-almost-full-on by (auto simp: wqo-on-def)}

\textbf{lemma finite-eq-wqo-on:}
 \textbf{assumes} finite A
 \textbf{shows} wqo-on (=) A
using \textit{finite-wqo-on [OF assms, of (=)]}
 by (auto simp: reflp-on-def transp-on-def)

\textbf{lemma wqo-on-lists-over-finite-sets:}
 wqo-on (list-emb (=)) (UNIV::('a::finite) list set)
using \textit{wqo-on-lists [OF finite-eq-wqo-on [OF finite [of UNIV::('a::finite) set]]] by simp}
lemma \textit{wqo-on-map}:
 fixes \(P \) and \(Q \) and \(h \)
defines \(P' \equiv \lambda x \ y. P \ x \ y \land Q \ (h \ x) \ (h \ y) \)
assumes \textit{wqo-on} \(P \ A \)
 and \textit{wqo-on} \(Q \ B \)
 and \textit{subset}: \(h ' A \subseteq B \)
shows \textit{wqo-on} \(P' \ A \)
proof
\begin{itemize}
 \item let \(\forall x \ y. Q \ (h \ x) \ (h \ y) \)
 \item from \textit{⟨wqo-on \(P \ A \)⟩} have \textit{transp-on} \(P \ A \)
 by (rule \textit{wqo-on-imp-transp-on})
 \item then show \textit{transp-on} \(P' \ A \)
 using \textit{⟨wqo-on \(Q \ B \)⟩} and \textit{subset}
 unfolding \textit{wqo-on-def transp-on-def} \(P' \)-def by blast
\end{itemize}

\begin{itemize}
 \item \textit{from} \textit{⟨wqo-on \(P \ A \)⟩} have \textit{almost-full-on} \(P \ A \)
 by (rule \textit{wqo-on-imp-almost-full-on})
 \item \textit{from} \textit{⟨wqo-on \(Q \ B \)⟩} have \textit{almost-full-on} \(Q \ B \)
 by (rule \textit{wqo-on-imp-almost-full-on})
\end{itemize}

shows \textit{almost-full-on} \(P' \ A \)
proof
\begin{itemize}
 \item fix \(f \)
 \item assume \(\forall i :: \text{nat}. f i \in A \)
 \item from \textit{⟨almost-full-on-imp-homogeneous-subseq} \(\text{OF} \langle \text{almost-full-on} \ P \ A \rangle \ this \rangle \)
 obtain \(g :: \text{nat} \Rightarrow \text{nat} \)
 where \(g. \forall i j. i < j \implies g \ i < g \ j \)
 and \(\forall i. f \ (g \ i) \in A \land P \ (f \ (g \ i)) \ (f \ (g \ \text{Suc} \ i)) \)
 using \(* \) by \text{auto}
 \item from \textit{chain-transp-on-less} \(\langle \text{OF} \ \langle \text{transp-on} \ P \ A \rangle \ \rangle \)
 have \(\forall i j. i < j \implies P \ (f \ (g \ i)) \ (f \ (g \ j)) \)
 \item let \(g = \lambda i. h \ (f \ (g \ i)) \)
 \item from \(* \) and \textit{subset} have \(B :: \forall i :: \text{nat}. \ ?g \ i \in B \) by \text{auto}
 with \(\langle \text{almost-full-on} \ Q \ B \rangle \) \[\text{unfolded \textit{almost-full-on-def} \(\text{good-def, THEN} \ \text{bspec, OF} \ ?g \rangle} \]
 obtain \(i j :: \text{nat} \)
 where \(i < j \) and \(Q \ (\ ?g \ i) \ (\ ?g \ j) \) by \text{blast}
 with \(\langle \text{OF} \ \langle \ ?g \ i < j \rangle \rangle \) have \textit{P'} \(f \ (g \ i)) \ (f \ (g \ j)) \)
 by (auto simp: \(\text{P'} \)-def)
 \item with \(g \ (\ ?g \ i < j) \) show \textit{good} \(P' \ f \) by (auto simp: \textit{good-def})
\end{itemize}
qed

end
9 Kruskal’s Tree Theorem

theory Kruskal
imports Well-Quasi-Orders
begin

locale kruskal-tree =
fixes F :: (′b × nat) set
and mk :: ′b ⇒ ′a list ⇒ (′a::size)
and root :: ′a ⇒ ′b ∗ nat
and args :: ′a ⇒ ′a list
and trees :: ′a set
assumes size-arg: t ∈ trees =⇒ s ∈ set (args t) =⇒ size s < size t
and root-mk: (f, length ts) ∈ F =⇒ root (mk f ts) = (f, length ts)
and args-mk: (f, length ts) ∈ F =⇒ args (mk f ts) = ts
and mk-root-args: t ∈ trees =⇒ mk (fst (root t)) (args t) = t
and trees-root: t ∈ trees =⇒ root t ∈ F
and trees-arity: t ∈ trees =⇒ length (args t) = snd (root t)
and trees-args: ⋀ s. t ∈ trees =⇒ s ∈ set (args t) =⇒ s ∈ trees

begin

lemma mk-inject [iff]:
assumes (f, length ss) ∈ F and (g, length ts) ∈ F
shows mk f ss = mk g ts ←→ f = g ∧ ss = ts
proof -
{ assume mk f ss = mk g ts
 then have root (mk f ss) = root (mk g ts)
 and args (mk f ss) = args (mk g ts) by auto }
show ?thesis
using root-mk [OF assms(1)] and root-mk [OF assms(2)]
and args-mk [OF assms(1)] and args-mk [OF assms(2)] by auto
qed

inductive emb for P
where
arg: [(f, m) ∈ F; length ts = m; ∀ t∈set ts. t ∈ trees;
 t ∈ set ts; emb P s t] =⇒ emb P s (mk f ts) |
list-emb: [(f, m) ∈ F; (g, n) ∈ F; length ss = m; length ts = n;
 ∀ s ∈ set ss. s ∈ trees; ∀ t ∈ set ts. t ∈ trees;
 P (f, m) (g, n); list-emb (emb P) ss ts] =⇒ emb P (mk f ss) (mk g ts)
monos list-emb-mono

lemma almost-full-on-trees:
assumes almost-full-on P F
shows almost-full-on (emb P) trees (is almost-full-on ?P ?A)
proof (rule ccontr)
interpret mbs ?A .
assume ¬ ?thesis
from mbs" [OF this] obtain m

41
where \(\text{bad} : m \in \text{BAD} \ ?P \)
and \(\text{min} : \forall g. (m, g) \in \text{gseq} \rightarrow \text{good} \ ?P g .. \)
then have trees: \(\lambda i. \ m i \in \text{trees} \) by auto

define \(r \) where \(r \ i = \text{root}(m \ i) \) for \(i \)
define \(a \) where \(a \ i = \text{args}(m \ i) \) for \(i \)
define \(S \) where \(S = \bigcup \{ \text{set} \ (a \ i) \mid i. \ True \} \)

have \(m \ : \ \lambda i. \ m i = \text{mk} \ ((\text{fst} (r \ i)) \ (a \ i)) \) by (simp add: \(\text{r-def} \ \text{a-def} \text{mk-root-args} \ \text{OF trees})]
have lists: \(\forall i. \ a \ i \in \text{lists} \) S by (auto simp: \(\text{a-def} \ \text{S-def} \)
have arity: \(\lambda i. \ \text{length}(a \ i) = \text{snd} \ (r \ i) \)
using trees-arity [OF trees] by (auto simp: \(\text{r-def} \ \text{a-def} \)
then have sig: \(\lambda i. \ (\text{fst} (r \ i), \ \text{length}(a \ i)) \in F \)
using trees-root [OF trees] by (auto simp: \(\text{a-def} \ \text{r-def} \)
have \(a\text{-trees} \ : \ \lambda i. \ \forall t \in \text{set} \ (a \ i) . \ t \in \text{trees} \) by (auto simp: \(\text{a-def} \ \text{trees-args} \ [\text{OF trees}])

have almost-full-on \(\ ?P \ S \)
proof (rule ccontr)
assume \(\neg \ ?thesis \)
then obtain \(s \ : \ \text{nat} \Rightarrow 'a \)
 where \(S = \lambda i. \ s \ i \in S \) and \(\text{bad-s} : \ ?P \ s \) by (auto simp: almost-full-on-def)

define \(n \) where \(n = (\text{LEAST} \ n. \ \exists k. \ s \ k \in \text{set} \ (a \ n)) \)

have \(\exists n. \exists k. \ s \ k \in \text{set} \ (a \ n) \) using \(S \) by (force simp: \(\text{S-def} \)
from LeastI-ex [OF this] obtain \(k \)
where \(\text{sk} : s \ k \in \text{set} \ (a \ n) \) by (auto simp: \(\text{n-def} \)
have \(\text{args} : \lambda k. \ \exists m \geq n. \ s \ k \in \text{set} \ (a \ m) \)
using \(S \) by (auto simp: \(\text{S-def} \) (metis Least-le \(\text{n-def} \)

define \(m' \) where \(m' \ i = (\text{if} \ i < n \ \text{then} \ m \ i \ \text{else} \ s \ (k + (i - n))) \) for \(i \)

have \(m'\text{-less} : \lambda i. \ i < n \Rightarrow m' \ i = m \ i \) by (simp add: \(\text{m'-def} \)
have \(m'\text{-geq} : \lambda i. \ i \geq n \Rightarrow m' \ i = s \ (k + (i - n)) \) by (simp add: \(\text{m'-def} \)

have \(\text{bad} \ ?P m' \)
proof
assume \(\text{good} \ ?P m' \)
then obtain \(i \ j \) where \(i < j \) and \(\text{emb} : ?P \ (m' \ i) \ (m' \ j) \) by auto
 { assume \(j < n \)
 with \(i < j \) and \(\text{emb} \) have \(?P \ (m' \ i) \ (m' \ j) \) by (auto simp: \(\text{m'-less} \)
 with \(i < j \) and \(\text{bad} \) have \(\text{False} \) by blast }
moreover
 { assume \(n \leq i \)
 with \(i < j \) and \(\text{emb} \) have \(?P \ (s \ (k + (i - n))) \ (s \ (k + (j - n))) \)
 and \(k + (i - n) < k + (j - n) \) by (auto simp: \(\text{m'-geq} \)
 with \(\text{bad-s} \) have \(\text{False} \) by auto }
moreover
\{ \text{assume } i < n \text{ and } n \leq j \}
\begin{align*}
\text{with } &i' < j \text{ and } \text{emb have } *: ?P (m \, i') (s \, (k + (j - n))) \text{ by (auto simp: m'-less m'-geq)} \\
\text{with } &\text{args obtain } l \text{ where } l \geq n \text{ and } **: s \, (k + (j - n)) \in \text{set } (a \, l) \text{ by blast} \\
\text{from } &\text{emb,ary } [\text{OF sig of } l] - \text{a-trees of } l \text{ ** *] } \\
\text{have } &?P (m \, i') (m \, l) \text{ by (simp add: } m) \\
\text{moreover have } &i < l \text{ using } (i < n) \text{ and } (n \leq l) \text{ by auto} \\
\text{ultimately have } &\text{False using bad by blast } \\
\text{ultimately show } &\text{False using } (i < j) \text{ by arith} \\
\text{qed} \\
\text{moreover have } & (m, m') \in \text{gseq} \\
\text{proof } - \\
\text{have } &m \in \text{SEQ } ?A \text{ using trees by auto} \\
\text{moreover have } &m' \in \text{SEQ } ?A \\
\text{using } &\text{trees and } S \text{ and } \text{trees-args } [\text{OF trees}] \text{ by (auto simp: m'-def a-def S-def)} \\
\text{moreover have } &\forall i < n. \, m \, i = m' \, i \text{ by (auto simp: m'-less)} \\
\text{moreover have } &\text{size } (m' \, n) < \text{size } (m \, n) \\
\text{using } &\text{sk and } \text{size-ary } [\text{OF trees, unfolded } m] \\
\text{by } &\text{(auto simp: m'-geq root-mk } [\text{OF sig}] \text{ args-mk } [\text{OF sig}]) \\
\text{ultimately show } &?\text{thesis by (auto simp: gseq-def)} \\
\text{qed} \\
\text{ultimately show } &\text{False using min by blast} \\
\text{qed} \\
\text{from } &\text{almost-full-on-lists } [\text{OF this, THEN almost-full-on-imp-homogeneous-subseq, OF lists}] \\
\text{obtain } &\varphi :: \text{nat } \Rightarrow \text{nat} \\
\text{where } &\text{less: } \land \, i \, j. \, i < j \Rightarrow \varphi \, i < \varphi \, j \\
\text{and } &\text{lemb: } \land \, i \, j. \, i < j \Rightarrow \text{list-emb } ?P (a \, (\varphi \, i)) (a \, (\varphi \, j)) \text{ by blast} \\
\text{have } &\text{roots: } \land \, i. \, r \, (\varphi \, i) \in \text{F using trees } [\text{THEN trees-root}] \text{ by (auto simp: r-def)} \\
\text{then have } &r \circ \varphi \in \text{SEQ } F \text{ by auto} \\
\text{with } &\text{assms have } \text{good } P \, (r \circ \varphi) \text{ by (auto simp: almost-full-on-def)} \\
\text{then obtain } &i \, j \\
\text{where } &\text{i < j and } P \, (r \, (\varphi \, i)) \, (r \, (\varphi \, j)) \text{ by auto} \\
\text{with } &\text{lemb } [\text{OF } i < j] \text{ have } ?P (m \, (\varphi \, i)) (m \, (\varphi \, j)) \\
\text{using } &\text{sig and arity and } \text{a-trees by (auto simp: m intro: emb.list-emb)} \\
\text{with } &\text{less } [\text{OF } i < j] \text{ and bad show } \text{False by blast} \\
\text{qed} \\
\text{inductive-cases} \\
\text{emb-mk2 [consumes 1, case-names arg list-emb]: emb } P \, s \, (mk \, y \, ts) \\
\text{inductive-cases} \\
\text{list-emb-nil2-cases: list-emb } P \, xs \, [] \text{ and} \\
\text{list-emb-cons-cases: list-emb } P \, xs \, (y\#ys) \\
\text{lemma } &\text{list-emb-trans-right:} \\
\text{assumes } &\text{list-emb } P \, xs \, ys \text{ and } \text{list-emb } (\lambda y \, z. \, P \, y \, z \, \land \, (\forall x. \, P \, x \, y \, \rightarrow \, P \, x \, z)) \, ys
shows \(\text{list-emb} \ P \ x s \ z s \)

using \(\text{assms}(2, \ 1) \) by (induct arbitrary: \(x s \)) (auto elim!: list-emb-Nil2-cases list-emb-Cons-cases)

lemma \(\text{emb-trans} \):

assumes \(\text{trans} : \bigwedge f \ g \ h. \ f \in F \implies g \in F \implies h \in F \implies P \ f \ g \implies P \ g \ h \implies P \ f \ h \)

shows \(\text{emb} \ P \ s \ t \) and \(\text{emb} \ P \ t \ u \)

using \(\text{assms}(3, \ 2) \)

proof (induct arbitrary: \(s \))

case \(\text{arg} \ f \ m \ t s \ v \)

then show \(\text{?case by (auto intro: emb.arg)} \)

next

case \(\text{list-emb} \ f \ m \ g \ n \ s s \ t s \)

note \(\text{IH = this} \)

from \(\langle \text{emb} \ P \ s \ (\text{mk} \ f \ s s) \rangle \)

show \(\text{?case} \)

proof (cases rule: emb-mk2)

case \(\text{arg} \)

then show \(\text{?thesis using IH by (auto elim!: list-emb-set intro: emb.arg)} \)

next

case \(\text{list-emb} \)

then show \(\text{?thesis using IH by (auto intro: emb.intros dest: trans list-emb-trans-right)} \)

qed

lemma \(\text{transp-on-emb} \):

assumes \(\text{transp-on} \ P \ F \)

shows \(\text{transp-on} \ (\text{emb} \ P) \ \text{trees} \)

using \(\text{assms and emb-trans [of P]} \) unfolding \(\text{transp-on-def} \) by blast

lemma \(\text{kruskal} \):

assumes \(\text{wqo-on} \ P \ F \)

shows \(\text{wqo-on} \ (\text{emb} \ P) \ \text{trees} \)

using \(\text{almost-full-on-trees [of P]} \) and \(\text{assms by (metis transp-on-emb wqo-on-def)} \)

end

end

theory \(\text{Kruskal-Examples} \)

imports \(\text{Kruskal} \)

begin

datatype 'a tree = Node 'a 'a tree list

fun node

where
\[
\text{node} (\text{Node } f \ t s) = (f, \text{length } t s)
\]

\textbf{fun} \text{succs} \\
\textbf{where} \\
\text{succs} (\text{Node } f \ t s) = t s

\textbf{inductive-set} trees \text{ for } A \\
\textbf{where} \\
f \in A \implies \forall t \in \text{set } t s. \ t \in \text{trees } A \implies \text{Node } f \ t s \in \text{trees } A

\textbf{lemma} [\text{simp}]: \\
trees \text{UNIV} = \text{UNIV} \\
\textbf{proof} – \\
\{ \text{fix } t :: \text{'a tree} \\
\text{have } t \in \text{trees \text{UNIV}} \\
\text{by } (\text{induct } t) (\text{auto intro: trees.intros}) \} \\
\text{then show } \text{thesis by auto} \\
\text{qed}

\textbf{interpretation} kruskal-tree-tree: kruskal-tree A \times \text{UNIV \ Node node succs trees } A \\
\text{for } A \\
\text{apply } (\text{unfold-locales}) \\
\text{apply auto} \\
\text{apply} (\text{case-tac }[!] \ t \text{ rule: trees.cases}) \\
\text{apply auto} \\
\text{by } (\text{metis less-not-refl not-less-eq size-list-estimation})

\textbf{thm} kruskal-tree-tree.almost-full-on-trees \\
\textbf{thm} kruskal-tree-tree.kruskal

\textbf{definition} tree-emb A P = kruskal-tree-tree.emb A (prod-le P (\lambda - -. True))

\textbf{lemma} wqo-on-trees: \\
\textbf{assumes} wqo-on P A \\
\textbf{shows} wqo-on (tree-emb A P) (trees A) \\
\textbf{using} wqo-on-Sigma [OF assms wqo-on-UNIV, THEN kruskal-tree-tree.kruskal] \\
\textbf{by} (simp add: tree-emb-def)

If the type \text{'a} is well-quasi-ordered by \text{P}, then trees of type \text{'a tree} are well-
 quasi-ordered by the homeomorphic embedding relation.

\textbf{instantiation} tree :: (wqo) wqo \\
\textbf{begin} \\
\textbf{definition} s \leq t \longleftrightarrow \text{tree-emb UNIV } (\leq) \ s t \\
\textbf{definition} (s :: \text{'a tree}) < t \longleftrightarrow s \leq t \land \neg (t \leq s) \\
\textbf{instance} \\
\textbf{by } (\text{rule class.wqo.of-class.intro}) \\
\textbf{(auto simp: less-eq-tree-def [abs-def] less-tree-def [abs-def] } \\
\text{intro: wqo-on-trees [of - UNIV, simplified])}

45
end

datatype ('f, 'v) term = Var 'v | Fun 'f ('f, 'v) term list

fun root
where
 root (Fun f ts) = (f, length ts)

fun args
where
 args (Fun f ts) = ts

inductive-set gterms for F
where
 (f, n) ∈ F → length ts = n → ∀ s ∈ set ts. s ∈ gterms F → Fun f ts ∈ gterms F

interpretation kruskal-term: kruskal-tree F Fun root args gterms F for F
 apply (unfold-locales)
 apply auto
 apply (case-tac []) t rule: gterms.cases
 apply auto
 by (metis less-not-refl not-less-eq size-list-estimation)

thm kruskal-term.almost-full-on-trees

inductive-set terms
where
 ∀ t ∈ set ts. t ∈ terms → Fun f ts ∈ terms

interpretation kruskal-variadic: kruskal-tree UNIV Fun root args terms
 apply (unfold-locales)
 apply auto
 apply (case-tac []) t rule: terms.cases
 apply auto
 by (metis less-not-refl not-less-eq size-list-estimation)

thm kruskal-variadic.almost-full-on-trees

datatype 'a exp = V 'a | C nat | Plus 'a exp 'a exp

datatype 'a symb = v 'a | c nat | p

fun mk
where
 mk (v x) [] = V x |
 mk (c n) [] = C n |
 mk p [a, b] = Plus a b
fun \(rt \) where
\[
rt \ (V \ x) = (v \ x, 0 \ :: \ \text{nat}) \ |
\]
\[
rt \ (C \ n) = (c \ n, 0) \ |
\]
\[
rt \ (Plus \ a \ b) = (p, 2)
\]

fun \(ags \) where
\[
ags \ (V \ x) = [] \ |
\]
\[
ags \ (C \ n) = [] \ |
\]
\[
ags \ (Plus \ a \ b) = [a, b]
\]

inductive-set \(exps \)
where
\[
V \ x \in \ exps \ |
\]
\[
C \ n \in \ exps \ |
\]
\[
a \in \ exps \Rightarrow b \in \ exps \Rightarrow Plus \ a \ b \in \ exps
\]

lemma [simp]:
assumes \(length \ ts = 2 \)
shows \(rt \ (mk \ p \ ts) = (p, 2) \)
using \(assms \) by (induct \(ts \)) (auto, case-tac \(ts \), auto)

lemma [simp]:
assumes \(length \ ts = 2 \)
shows \(ags \ (mk \ p \ ts) = ts \)
using \(assms \) by (induct \(ts \)) (auto, case-tac \(ts \), auto)

interpretation kruskal-exp: kruskal-tree
\[
\{(v \ x, 0) \mid x. \ True\} \cup \{(c \ n, 0) \mid n. \ True\} \cup \{(p, 2)\}
\]
\(mk \ rt \ ags \ exps \)
apply (unfold-locales)
apply auto
apply (case-tac []) rule: exps.cases
by auto

thm kruskal-exp.almost-full-on-trees

hide-const (open) tree-emb \(V \ C \ Plus \ v \ c \ p \)

end

10 Instances of Well-Quasi-Orders

theory Wqo-Instances
imports Kruskal
begin
10.1 The Option Type is Well-Quasi-Ordered

instantiation option :: (wqo) wqo

begin

definition \(x \leq y \iff \text{option-le} (\leq) x y \)

definition \((x :: 'a \text{ option}) < y \iff x \leq y \land \neg (y \leq x) \)

instance

\(\text{by (rule class.wqo.of-class.intro)} \)

\(\text{(auto simp: less-eq-option-def [abs-def] less-option-def [abs-def])} \)

end

10.2 The Sum Type is Well-Quasi-Ordered

instantiation sum :: (wqo, wqo) wqo

begin

definition \(x \leq y \iff \text{sum-le} (\leq) (\leq) x y \)

definition \((x :: 'a + 'b) < y \iff x \leq y \land \neg (y \leq x) \)

instance

\(\text{by (rule class.wqo.of-class.intro)} \)

\(\text{(auto simp: less-eq-sum-def [abs-def] less-sum-def [abs-def])} \)

end

10.3 Pairs are Well-Quasi-Ordered

If types \('a\) and \('b\) are well-quasi-ordered by \(P\) and \(Q\), then pairs of type \('a \times 'b\) are well-quasi-ordered by the pointwise combination of \(P\) and \(Q\).

instantiation prod :: (wqo, wqo) wqo

begin

definition \(p \leq q \iff \text{prod-le} (\leq) (\leq) p q \)

definition \((p :: 'a \times 'b) < q \iff p \leq q \land \neg (q \leq p) \)

instance

\(\text{by (rule class.wqo.of-class.intro)} \)

\(\text{(auto simp: less-eq-prod-def [abs-def] less-prod-def [abs-def])} \)

end

10.4 Lists are Well-Quasi-Ordered

If the type \('a\) is well-quasi-ordered by \(P\), then lists of type \('a list\) are well-quasi-ordered by the homeomorphic embedding relation.

instantiation list :: (wqo) wqo

begin

definition \(xs \leq ys \iff \text{list-emb} (\leq) xs ys \)

definition \((xs :: 'a \text{ list}) < ys \iff xs \leq ys \land \neg (ys \leq xs) \)

instance
11 Multiset Extension of Orders (as Binary Predicates)

theory Multiset-Extension
imports
 Open-Induction.Restricted-Predicates
 HOL-Library.Multiset
begin

definition multisets :: 'a set ⇒ 'a multiset set where
 multisets A = {M. set-mset M ⊆ A}

lemma in-multisets-iff: M ∈ multisets A ←→ set-mset M ⊆ A
 by (simp add: multisets-def)

lemma empty-multisets [simp]: {#} ∈ multisets F
 by (simp add: in-multisets-iff)

lemma multisets-union [simp]: M ∈ multisets A =⇒ N ∈ multisets A =⇒ M + N ∈ multisets A
 by (auto simp add: in-multisets-iff)

definition mulex1 :: ('a ⇒ 'a ⇒ bool) ⇒ 'a multiset ⇒ 'a multiset ⇒ bool where
 mulex1 P = (λM N. (λ(x, y). P x y))

lemma mulex1-empty [iff]:
 mulex1 P M {#} =⇒ False
 using not-less-empty [of M {(x, y). P x y}]
 by (auto simp: mulex1-def)

lemma mulex1-add: mulex1 P N (M0 + {#a#}) =⇒
 (∃M. mulex1 P M M0 ∧ N = M + {#a#}) ∨
 (∃K. (∀b. b ∈ #. K =⇒ P b a) ∧ N = M0 + K)
 using less-add [of N a M0 {(x, y). P x y}]
 by (auto simp: mulex1-def)

lemma mulex1-self-add-right [simp]:
 mulex1 P A (add-mset a A)
proof
 let ?R = {(x, y). P x y}
thm mult1-def
have A + {#a#} = A + {#a#} by simp
moreover have A = A + {#} by simp
moreover have ∀ b. b ∈ {#} → (b, a) ∈ \? R by simp
ultimately have (A, add-mset a A) ∈ mult1 \? R
 unfolding mult1-def by blast
then show ?thesis by (simp add: mulex1-def)
qed

lemma empty-mult1 [simp]:
({#}, {#a#}) ∈ mult1 \? R
proof –
 have {#a#} = {#} + {#a#} by simp
 moreover have {#} = {#} + {#} by simp
 moreover have ∀ b. b ∈ {#} → (b, a) ∈ \? R by simp
 ultimately show ?thesis unfolding mult1-def by force
qed

lemma empty-mulex1 [simp]:
mulex P {#} {#a#}
using empty-mult1 of a {x, y}. P x y by (simp add: mulex1-def)
definition mulex-on :: ('a ⇒ 'a ⇒ bool) ⇒ 'a multiset ⇒ 'a multiset ⇒ 'a multiset ⇒ bool
 where mulex-on P A = (restrict-to (mulex1 P) (multisets A))++
abbreviation mulex :: ('a ⇒ 'a ⇒ bool) ⇒ 'a multiset ⇒ 'a multiset ⇒ bool
 where mulex P ≡ mulex-on P UNIV

lemma mulex-on-induct [consumes 1, case-names base step, induct pred: mulex-on]:
assumes mulex-on P A M N
 and \ ∀ M N. \[M ∈ multisets A; N ∈ multisets A; mulex1 P M N \] ⇒ \ Q M N
 and \ ∀ L M N. \[mulex-on P A L M; Q L M; N ∈ multisets A; mulex1 P M N \] ⇒ \ Q L N
 shows Q M N
using assms unfolding mulex-on-def by (induct) blast+

lemma mulex-on-self-add-singleton-right [simp]:
assumes a ∈ A and M ∈ multisets A
shows mulex-on P A M (add-mset a M)
proof –
 have mulex1 P M (M + {#a#}) by simp
 with assms have restrict-to (mulex1 P) (multisets A) M (add-mset a M)
 by (auto simp: multisets-def)
 then show ?thesis unfolding mulex-on-def by blast
qed

lemma singleton-multisets [iff]:

50
\{\#x\#\} \in \text{multisets } A \iff x \in A
by \ (\text{auto simp: multisets-def})

\textbf{lemma union-multisetsD:}
assumes \(M + N \in \text{multisets } A\)
s\textbf{shows} \(M \in \text{multisets } A \land N \in \text{multisets } A\)
\textbf{using}
assms \ by \ (\text{auto simp: multisets-def})

\textbf{lemma mulex-on-multisetsD} \ [\text{dest}]:
assumes \(\text{mulex-on } P F M N\)
s\textbf{shows} \(M \in \text{multisets } F \text{ and } N \in \text{multisets } F\)
\textbf{using} assms \ by \ (\text{induct}) \ auto

\textbf{lemma union-multisets-iff} \ [\text{iff}]:
\(M + N \in \text{multisets } A \iff M \in \text{multisets } A \land N \in \text{multisets } A\)
by \ (\text{auto dest: union-multisetsD})

\textbf{lemma add-mset-multisets-iff} \ [\text{iff}]:
\(\text{add-mset } a M \in \text{multisets } A \iff a \in A \land M \in \text{multisets } A\)
\textbf{unfolding} \(\text{add-mset-add-single[of a } M\) \ union-multisets-iff \ \text{by} \ \text{auto}

\textbf{lemma mulex-on-trans:}
mulex-on \(P A L M \rightarrow mulex-on \ P A M N \rightarrow mulex-on \ P A L N\)
by \ (\text{auto simp: mulex-on-def})

\textbf{lemma transp-on-mulex-on:}
\text{transp-on} \ (mulex-on \ P A) \ B
\textbf{using} \ mulex-on-trans \ [\text{of } P A] \ \text{by} \ \text{auto simp: transp-on-def}

\textbf{lemma mulex-on-add-right} \ [\text{simp}]:
assumes \(\text{mulex-on } P A M N \text{ and } a \in A\)
s\textbf{shows} \(\text{mulex-on } P A M (\text{add-mset } a N)\)
\textbf{proof} –
\textbf{from} \ assms \ \textbf{have} \(a \in A \land N \in \text{multisets } A\) \ \textbf{by} \ \text{auto}
\textbf{then have} \(\text{mulex-on } P A N (\text{add-mset } a N)\) \ \textbf{by} \ \text{simp}
\textbf{with} \(\text{mulex-on } P A M N\) \ \textbf{show} \ ?thesis \ \textbf{by} \ (\text{rule mulex-on-trans})
\textbf{qed}

\textbf{lemma empty-mulex-on} \ [\text{simp}]:
assumes \(M \neq \{\#\} \text{ and } M \in \text{multisets } A\)
s\textbf{shows} \(\text{mulex-on } P A \{\#\} M\)
\textbf{using} assms
\textbf{proof} \ (\text{induct } M)\n\textbf{case} \ (\text{add } a M)\n\textbf{show} \ ?case
\textbf{proof} \ (\text{cases } M = \{\#\})\n\textbf{assume} \(M = \{\#\}\)
\textbf{with add show} \ ?thesis \ \textbf{by} \ (\text{auto simp: mulex-on-def})
\textbf{next}
\textbf{lemma} mulex-on-self-add-right [simp]:
\begin{itemize}
 \item \textbf{assumes} $M \in \text{multisets A and } K \in \text{multisets A and } K \neq \{\#\}$
 \item \textbf{shows} mulex-on $P A M (M + K)$
\end{itemize}
\textbf{using} \text{assms}
\textbf{proof (induct K)}
\begin{itemize}
 \item \textbf{case empty}
 \begin{itemize}
 \item \textbf{then show} \text{?case by (cases $K = \{\#\}$) auto}
 \end{itemize}
 \item \textbf{next}
 \begin{itemize}
 \item \textbf{case} (add $a M$
 \begin{itemize}
 \item \textbf{show} \text{?case by (cases $M = \{\#\}$) auto}
 \end{itemize}
 \end{itemize}
 \item \textbf{next}
 \begin{itemize}
 \item \textbf{assume} $M \neq \{\#\}$ \text{with add show} \text{?thesis by auto}
 \item \textbf{by (auto dest: mulex-on-add-right simp add: ac-simps)}
 \end{itemize}
 \end{itemize}
\end{itemize}
\textbf{qed}
\textbf{qed simp}

\textbf{lemma} mult1-singleton [iff]:
\begin{itemize}
 \item $(\{\#\}, \{\#\}) \in \text{mult1 R} \iff (x, y) \in R$
\end{itemize}
\textbf{proof}
\begin{itemize}
 \item \textbf{assume} $(x, y) \in R$
 \begin{itemize}
 \item \textbf{then have} $\{\#\} = \{\#\} + \{\#\}$
 \item \text{and} $\{\#\} = \{\#\} + \{\#\}$
 \item \text{and} $\forall b. \ b \in \# \{\#\} \rightarrow (b, y) \in R$ \text{by auto}
 \end{itemize}
 \item \textbf{then show} $(\{\#\}, \{\#\}) \in \text{mult1 R unfolding mult1-def by blast}$
 \item \textbf{next}
 \begin{itemize}
 \item \textbf{assume} $(\{\#\}, \{\#\}) \in \text{mult1 R}$
 \item \textbf{then obtain} $M0 K a$
 \begin{itemize}
 \item \textbf{where} $\{\#\} = \text{add-mset a M0}$
 \item \text{and} $\{\#\} = M0 + K$
 \item \text{and} $\forall b. \ b \in \# \ K \rightarrow (b, a) \in R$
 \end{itemize}
 \item \textbf{unfolding mult1-def by blast}
 \item \textbf{then show} $(x, y) \in R$ \text{by (auto simp: add-eq-conv-diff)}
 \end{itemize}
\end{itemize}
\textbf{qed}

\textbf{lemma} mulex1-singleton [iff]:
\begin{itemize}
 \item mulex1 $P \{\#\} \{\#\} \leftrightarrow P x y$
\end{itemize}
\textbf{using} \text{mult1-singleton [of $x y \{(x, y), P x y\}$] by (simp add: mulex1-def)}

\textbf{lemma} singleton-mulex-onI:
\begin{itemize}
 \item $P x y \Rightarrow x \in A \Rightarrow y \in A \Rightarrow \text{mulex-on} P A \{\#\} \{\#\}$
\end{itemize}
\textbf{by (auto simp: mulex-on-def)}
lemma reflclp-mulex-on-add-right [simp]:
assumes \(\text{mulex-on } P A \Rightarrow M N \) and \(M \in \text{multisets } A \) and \(a \in A \)
shows \(\text{mulex-on } P A M (N + \{\#a\}) \)
using assms by (cases \(M = N \)) simp-all

lemma reflclp-mulex-on-add-right' [simp]:
assumes \(\text{mulex-on } P A \Rightarrow M N \) and \(M \in \text{multisets } A \) and \(a \in A \)
shows \(\text{mulex-on } P A M (\{\#a\} + N) \)
using reflclp-mulex-on-add-right [OF assms] by (simp add: ac-simps)

lemma mulex-on-union-right [simp]:
assumes \(\text{mulex-on } P F A B \) and \(K \in \text{multisets } F \)
shows \(\text{mulex-on } P F A (K + B) \)
using assms
proof (induct K)
case (add a K)
then have \(a \in F \) and \(\text{mulex-on } P F A (B + K) \) by (auto simp: multisets-def ac-simps)
then have \(\text{mulex-on } P F A ((B + K) + \{\#a\}) \) by simp
then show ?case by (simp add: ac-simps)
qed simp

lemma mulex-on-union-right' [simp]:
assumes \(\text{mulex-on } P F A B \) and \(K \in \text{multisets } F \)
shows \(\text{mulex-on } P F A (B + K) \)
using mulex-on-union-right [OF assms] by (simp add: ac-simps)

Adapted from \(\text{wf } ?r \Rightarrow \forall M. M \in \text{Wellfounded} \).acc (mult1 ?r) in HOL–Library.Multiset.

lemma accessible-on-mulex1-multisets:
assumes \(\text{wf } : \langle P A \rangle \) shows \(\forall M \in \text{multisets } A. \text{accessible-on } \langle \text{mulex1 } P \rangle (\text{multisets } A) M \)
proof
let \(?P = \text{mulex1 } P \)
let \(?A = \text{multisets } A \)
let \(?\text{acc} = \text{accessible-on } ?P \) ?A
{
fix \(M M0 a \)
assume \(M0: ?\text{acc } M0 \)
and \(a \in A \)
and \(M0 \in ?A \)
and wfhyp: \(\forall b. [b \in A; P b a] \Rightarrow (\forall M. ?\text{acc } (M) \rightarrow ?\text{acc } (M + \{\#b\}) \))
and acc-hyp: \(\forall M. M \in ?A \land \forall P M M0 \rightarrow ?\text{acc } (M + \{\#a\}) \))
then have \(\text{add-mset a } M0 \in ?A \) by (auto simp: multisets-def)
then have \(?\text{acc } (\text{add-mset a } M0) \)
proof (rule accessible-onI [of \(\text{add-mset a } M0 \)])
fix \(N \)
assume \(N \in ?A \)
and \(?P N (\text{add-mset a } M0) \)
then have \((\exists M. M \in ?A \\ \forall P M M0 \land N = M + \{\#a\}) \lor \)

53
(∃ K. (∀ b ∈ # K → P b a) ∧ N = M₀ + K))

using mulex1-add [of P N M₀ a] by (auto simp: multisets-def)
then show ?acc (N)
proof (elim exE disjE conjE)
 fix M assume M ∈ ?A and ?P M M₀ and N: N = M + {#a#}
 from acc-hyp have M ∈ ?A ∧ ?P M M₀ → ?acc (M + {#a#}) ..
 with M ∈ ?A and ?P M M₀ have ?acc (M + {#a#}) by blast
 then show ?acc (N) by (simp only: N)
next
 fix K
 assume N: N = M₀ + K
 assume ∀ b ∈ # K → P b a
 moreover from N and (N ∈ ?A) have K ∈ ?A by (auto simp: multisets-def)
 ultimately have ?acc (M₀ + K)
 proof (induct K)
 case empty
 from M₀ show ?acc (M₀ + {#}) by simp
 next
 case (add x K)
 from add.prems have x ∈ A and P x a by (auto simp: multisets-def)
 with wf-hyp have ∀ M. ?acc M → ?acc (M + {#x#}) by blast
 moreover from add have ?acc (M₀ + K) by (auto simp: multisets-def)
 ultimately show ?acc (M₀ + (add-mset x K)) by simp
 qed
 then show ?acc N by (simp only: N)
 qed
qed

} note tedious-reasoning = this

fix M
assume M ∈ ?A
then show ?acc M
proof (induct M)
 show ?acc {#}
 proof (rule accessible-onI)
 show {#} ∈ ?A by (auto simp: multisets-def)
 next
 fix b assume ?P b {#} then show ?acc b by simp
 qed
next
 case (add a M)
 then have ?acc M by (auto simp: multisets-def)
 from add have a ∈ A by (auto simp: multisets-def)
 with wf have ∀ M. ?acc M → ?acc (add-mset a M)
 proof (induct)
 case (less a)
 then have r: ∃ b. [b ∈ A; P b a] → (∀ M. ?acc M → ?acc (M + {#b#}))
 by auto
 show ∀ M. ?acc M → ?acc (add-mset a M)

54
proof (intro allI impI)
 fix M'
 assume ?acc M'
moreover then have M' ∈ ?A by (blast dest: accessible-on-imp-mem)
ultimately show ?acc (add-mset a M')
 by (induct) (rule tedious-reasoning [OF - ⟨a ∈ A⟩ - r], auto)
qed
qed
with ⟨?acc (M)⟩ show ?acc (add-mset a M) by blast
qed

lemmas wfp-on-mulex1-multisets =
 accessible-on-mulex1-multisets [THEN accessible-on-imp-wfp-on]

lemmas irreflp-on-mulex1 =
 wfp-on-mulex1-multisets [THEN wfp-on-imp-irreflp-on]

lemma wfp-on-mulex-on-multisets:
 assumes wfp-on P A
 shows wfp-on (mulex-on P A) (multisets A)
 using wfp-on-mulex1-multisets [OF assms]
 by (simp only: mulex-on-def wfp-on-restrict-to-tranclp-wfp-on-conv)

lemmas irreflp-on-mulex-on =
 wfp-on-mulex-on-multisets [THEN wfp-on-imp-irreflp-on]

lemma mulex1-union:
 mulex1 P M N ⇒ mulex1 P (K + M) (K + N)
 by (auto simp: mulex1-def mult1-union)

lemma mulex-on-union:
 assumes mulex-on P A M N and K ∈ multisets A
 shows mulex-on P A (K + M) (K + N)
 using assms
proof (induct)
 case (base M N)
 then have mulex1 P (K + M) (K + N) by (blast dest: mulex1-union)
moreover from base have (K + M) ∈ multisets A
 and (K + N) ∈ multisets A by (auto simp: multisets-def)
ultimately have restrict-to (mulex1 P) (multisets A) (K + M) (K + N) by auto
then show ?case by (auto simp: mulex-on-def)
next
 case (step L M N)
 then have mulex1 P (K + M) (K + N) by (blast dest: mulex1-union)
moreover from step have (K + M) ∈ multisets A and (K + N) ∈ multisets
 A by blast+
ultimately have (restrict-to (mulex1 P) (multisets A))++ (K + M) (K + N)
by auto
moreover have mulex-on P A (K + L) (K + M) using step by blast
ultimately show case by (auto simp: mulex-on-def)
qed

lemma mulex-on-union':
assumes mulex-on P A M N and K ∈ multisets A
shows mulex-on P A (M + K) (N + K)
using mulex-on-union [OF assms] by (simp add: ac-simps)

lemma mulex-on-add-mset:
assumes mulex-on P A M N and m ∈ A
shows mulex-on P A (add-mset m M) (add-mset m N)
unfolding add-mset-add-single[of m M] add-mset-add-single[of m N]
apply (rule mulex-on-union')
using assms by auto

lemma union-mulex-on-mono:
 mulex-on P F A C ⇒ mulex-on P F B D ⇒ mulex-on P F (A + B) (C + D)
by (metis mulex-on-multisetsD mulex-on-trans mulex-on-union mulex-on-union'

lemma mulex-on-add-mset-mono:
assumes P m n and m ∈ A and n ∈ A and mulex-on P A M N
shows mulex-on P A (add-mset m M) (add-mset n N)
unfolding add-mset-add-single[of m M] add-mset-add-single[of n N]
apply (rule union-mulex-on-mono)
using assms by (auto simp: mulex-on-def)

lemma union-mulex-on-mono1:
A ∈ multisets F ⇒ (mulex-on P F)'' A C ⇒ mulex-on P F B D ⇒
 mulex-on P F (A + B) (C + D)
by (auto intro: union-mulex-on-mono mulex-on-union)

lemma union-mulex-on-mono2:
B ∈ multisets F ⇒ mulex-on P F A C ⇒ (mulex-on P F)'' B D ⇒
 mulex-on P F (A + B) (C + D)
by (auto intro: union-mulex-on-mono mulex-on-union')

lemma mult1-mono:
assumes A x y. [x ∈ A; y ∈ A; (x, y) ∈ R] ⇒ (x, y) ∈ S
and M ∈ multisets A
and N ∈ multisets A
and $(M, N) \in \text{mult1 } R$
shows $(M, N) \in \text{mult1 } S$
using \text{assms unfolding mult1-def multisets-def}
by \text{auto (metis (full-types) subsetD)}

\text{lemma mulex1-mono:}
\begin{align*}
\text{assumes } & \forall x y. \left[x \in A; y \in A; P x y \right] \implies Q x y \\
& \text{and } M \in \text{multisets } A \\
& \text{and } N \in \text{multisets } A \\
& \text{and } \text{mulex1 } P M N \\
\text{shows } \text{mulex1 } Q M N \\
\text{using } \text{mult1-mono [of } A \{ (x, y). P x y \} \{ (x, y). Q x y \} M N \]} \\
& \text{and } \text{assms unfolding mulex1-def by blast}
\end{align*}

\text{lemma mulex-on-mono:}
\begin{align*}
\text{assumes } & \ast: \forall x y. \left[x \in A; y \in A; P x y \right] \implies Q x y \\
& \text{and } \text{mulex-on } P A M N \\
\text{shows } \text{mulex-on } Q A M N \\
\text{proof –}
\begin{align*}
& \text{let } \text{rel } = \lambda P. \text{(restrict-to (mulex1 } P \text{) (multisets } A\}) \\
& \text{from } \langle \text{mulex-on } P A M N \rangle \text{ have } (\text{rel } P)^++ M N \text{ by (simp add: mulex-on-def)} \\
& \text{then have } (\text{rel } Q)^++ M N \\
& \text{proof (induct rule: tranclp.induct)} \\
& \text{case } \langle \text{r-into-trancl } M N \rangle \\
& \text{then have } M \in \text{multisets } A \text{ and } N \in \text{multisets } A \text{ by auto} \\
& \text{from } \text{mulex1-mono [OF } \ast \text{ this] and r-into-trancl} \\
& \text{show } \text{?case by auto} \\
& \text{next} \\
& \text{case } \langle \text{trancl-into-trancl } L M N \rangle \\
& \text{then have } M \in \text{multisets } A \text{ and } N \in \text{multisets } A \text{ by auto} \\
& \text{from } \text{mulex1-mono [OF } \ast \text{ this] and trancl-into-trancl} \\
& \text{have } \text{rel } Q M N \text{ by auto} \\
& \text{with } (\text{rel } Q)^++ L M; \text{ show } \text{?case by (rule tranclp.trancl-into-trancl)} \\
& \text{qed} \\
& \text{then show } \text{?thesis by (simp add: mulex-on-def)} \\
& \text{qed}
\end{align*}
\text{lemma mult1-reflcl:}
\begin{align*}
\text{assumes } & (M, N) \in \text{mult1 } R \\
\text{shows } & (M, N) \in \text{mult1 } (R^=) \\
\text{using } & \text{assms by (auto simp: mult1-def)}
\end{align*}

\text{lemma mulex1-reflclp:}
\begin{align*}
\text{assumes } & \text{mulex1 } P M N \\
\text{shows } & \text{mulex1 } (P^=) M N \\
\text{using } & \text{mulex1-mono [of } \text{UNIV } P \text{ P } \ast \text{ M N, OF } \ast \text{ - - } \text{assms]} \\
& \text{by (auto simp: multisets-def)}
\end{align*}

\text{lemma mulex-on-reflclp:}
assumes mulex-on P A M N
shows mulex-on \((P^\equiv)\) A M N
using mulex-on-mono [OF - assms, of \(P^\equiv\)] by auto

\textbf{lemma} surj-on-multisets-mset:
\(\forall M \in \text{multisets } A. \exists xs \in \text{lists } A. M = \text{mset } xs\)
\textbf{proof}
fix M
assume \(M \in \text{multisets } A\)
then show \(\exists xs \in \text{lists } A. M = \text{mset } xs\)
\textbf{proof (induct } M\)
 case empty show ?case by simp
next
 case (add a M)
 then obtain \(xs\) where \(xs \in \text{lists } A\) and \(M = \text{mset } xs\) by auto
 then have \(\text{add-mset } a M = \text{mset } (a \# xs)\) by simp
 moreover have \(a \# xs \in \text{lists } A\) using \(\langle xs \in \text{lists } A \rangle\) and \(\text{add}\) by auto
 ultimately show ?case by blast
qed

\textbf{lemma} image-mset-lists [simp]:
\(\text{mset } '\ \text{lists } A = \text{multisets } A\)
\textbf{using} surj-on-multisets-mset [of A]
\textbf{by} auto (metis mem-Collect-eq multisets-def set-mset-mset subsetI)

\textbf{lemma} multisets-UNIV [simp]: \(\text{multisets } \text{UNIV } = \text{UNIV}\)
\textbf{by} (metis image-mset-lists lists-UNIV surj-mset)

\textbf{lemma} non-empty-multiset-induct [consumes 1, case-names singleton add]:
\textbf{assumes} \(M \neq \{\#\}\)
\textbf{and} \(\forall x. P \{\#x\}\)
\textbf{and} \(\forall x M. P M \Rightarrow P (\text{add-mset } x M)\)
\textbf{shows} \(P M\)
\textbf{using} assms by (induct M) auto

\textbf{lemma} mulex-on-all-strict:
\textbf{assumes} \(X \neq \{\#\}\)
\textbf{assumes} \(X \in \text{multisets } A\) and \(Y \in \text{multisets } A\)
\textbf{and} \(*: \forall y. y \in \# Y \rightarrow (\exists x. x \in \# X \land P y x)\)
\textbf{shows} mulex-on P A Y X
\textbf{using} assms
\textbf{proof (induction } X\ \text{arbitrary: } Y\ \text{rule: } \text{non-empty-multiset-induct})
 case (singleton x)
 then \textbf{have} \(\text{mulex1 } P Y \{\#x\}\)
 unfolding mulex1-def mult1-def
 by auto
 with singleton \textbf{show} ?case \textbf{by} (auto simp: mulex-on-def)
next
\begin{verbatim}
case (add x M)
let \(\mathcal{Y} = \{ \#y \in \mathcal{Y} \mid \exists x. x \in \# M \land P y x \} \)
let \(\mathcal{Z} = \mathcal{Y} - \mathcal{Y} \)

have \(\mathcal{Y} : \mathcal{Y} = \mathcal{Z} + \mathcal{Y} \) by (metis multiset-partition union-multisets-iff)

ultimately have mulex-on P A \(\mathcal{Y} \) M using add by blast
ultimately have mulex-on P A \(\mathcal{Z} \) \{\#x\} using add by blast
ultimately have mulex-on P A \(\mathcal{Z} \) \{\#x\} unfolding mulex1-def mult1-def by blast
ultimately have \(\mathcal{Z} \) \{\#x\} \in multisets A by auto
ultimately have \(\mathcal{Z} \) \{\#x\} \in multisets A using ⟨ Y \in multisets A ⟩ by (metis diff-union-cancelL union-multisetsD)
ultimately show \(\mathfrak{thesis} \) by (auto simp: mulex-on-def)
qed

The following lemma shows that the textbook definition (e.g., "Term Rewriting and All That") is the same as the one used below.

\textbf{lemma} \texttt{diff-set-Ex-iff}:
\(X \neq \{\#\} \land X \subseteq \# M \land N = (M - X) + Y \leftrightarrow X \neq \{\#\} \land (\exists Z. M = Z + X \land N = Z + Y) \);

by (auto) (metis add-diff-cancel-left' multiset-diff-union-assoc union-commute)

Show that \texttt{mulex-on} is equivalent to the textbook definition of multiset-extension for transitive base orders.

\textbf{lemma} \texttt{mulex-on-alt-def}:
\[\text{assumes trans: } \texttt{trans-on P A} \]
\[\text{shows } \texttt{mulex-on P A M N } \leftrightarrow \text{ } M \in \texttt{multisets A } \land \text{ N } \in \texttt{multisets A } \land (\exists X Y Z. X \neq \{\#\} \land N = Z + X \land M = Z + Y \land (\forall y. y \in \# Y \rightarrow (\exists x. x \in \# X \land P y x)) \)
\[\text{is } \texttt{?P M N } \leftrightarrow \texttt{?Q M N} \]

\textbf{proof}
\[\text{assume } \texttt{?P M N then show } \texttt{?Q M N} \]
\[\text{proof } (\texttt{induct M N}) \]
\[\text{case } \texttt{base M N} \]
\[\text{then obtain } a \texttt{ M0 K where } N: N = M0 + \{\#a\} \]
\[\text{and } M: M = M0 + K \]
\[\text{and } \ast: \forall b. b \in \# K \rightarrow P b a \]
\end{verbatim}
and \(M \in \text{multisets} \ A \) and \(N \in \text{multisets} \ A \) by (auto simp: mulex1-def mult1-def)

moreover have \(\{\#\#\}\in \text{multisets} \ A \) and \(K \in \text{multisets} \ A \) by auto
moreover have \(\{\#\#\} \neq \{\#\} \) by auto
moreover have \(N = M0 + \{\#\#\} \) by fact
moreover have \(M = M0 + K \) by fact
moreover have \(\forall y. y \in \# K \longrightarrow (\exists x. x \in\# \{\#\#\} \land P \ y \ x) \) using * by auto
ultimately show \(\text{case by blast} \)

next
case \(\text{(step } L \ M \ N) \)
then obtain \(X \ Y \ Z \)
where \(L \in \text{multisets} \ A \) and \(M \in \text{multisets} \ A \) and \(N \in \text{multisets} \ A \)
and \(X \in \text{multisets} \ A \) and \(Y \in \text{multisets} \ A \)
and \(M' = M + X \)

\(L : L = Z + Y \) and \(X \neq \{\#\} \)

and \(Y : \forall y. y \in \# Y \longrightarrow (\exists x. x \in\# \ X \land P \ y \ x) \)
and \(\text{mulex1} \ P \ M \ N \)
by blast
from \(\text{mulex1} \ P \ M \ N \) obtain \(a \)
where \(N : N = \text{add-mset} \ a \) and \(M0 \)
and \(\ast : \forall b. b \in \# K \longrightarrow P \ b \ a \) unfolding \(\text{mulex1-def} \) \(\text{mult1-def} \) by blast
have \(L' : L = (M - X) + Y \) by (simp add: \(L \ M \))
have \(K : \forall y. y \in \# K \longrightarrow (\exists x. x \in\# \{\#\#\} \land P \ y \ x) \) using * by auto

The remainder of the proof is adapted from the proof of Lemma 2.5.4. of the book “Term Rewriting and All That.”

let \(\ast \ X = \text{add-mset} \ a \ (X - K) \)
let \(\ast \ Y = (K - X) + Y \)

have \(L \in \text{multisets} \ A \) and \(N \in \text{multisets} \ A \) by fact+
m
moreover have \(\ast \ X \neq \{\#\} \) and \((\exists Z. N = Z + \ast \ X \land L = Z + \ast \ Y) \)

proof –
have \(\ast \ X \neq \{\#\} \) by auto
moreover have \(\ast \ X \subseteq \# N \)
using \(M \ N \ M' \) by (simp add: \(\text{add-commute} \) \mid \{\#\#\}\)
(mmetis \(\text{Multiset.diff-subset-eq-self} \) \(\text{add-commute} \) \(\text{add-diff-cancel-right} \))
m
moreover have \(L = (N - \ast \ X) + \ast \ Y \)

proof (rule \(\text{multiset-eqI} \))

fix \(x :: \ast \ a \)
let \(\ast \ c = \lambda M. \ \text{count} \ M \ x \)
let \(\ast \ ic = \lambda x. \ \text{int} \ (\ast \ x) \)
from \(\ast \ X \subseteq \# N \) have \(\ast : \ast \ X \neq \{\#\#\} + \ast \ (X - K) \leq \ast \ N \)
by (auto simp add: \(\text{subseteq-mset-def} \) \(\text{split: if-splits} \))
from \(\ast \ X \neq \{\#\#\} \) unfolding \(N \) by (auto split: if-splits)

have \(\ast \ ic \ N = \ast \ ic (N - \ast \ X + \ast \ Y) = \text{int} \ (\ast \ ic N \ - \ast \ ic \ ?X) + \ast \ ic \ ?Y \) by simp
also have \(\ast \ ic \ N \ - \ast \ ic (\ast \ ?X) + \ast \ ic (X - K)) + \ast \ ic (K - X) + \ast \ ic \ Y \)

60
using of-nat-diff [OF *] by simp
also have \ldots = (\text{?ic } N - \text{?ic } \{\text{#a}\}) - \text{?ic } (X - K) + \text{?ic } (K - X) +
\text{?ic } Y by simp
also have \ldots = (\text{?ic } N - \text{?ic } \{\text{#a}\}) + (\text{?ic } K - \text{?ic } X) + \text{?ic } Y by simp
also have \ldots = (\text{?ic } N - \text{?ic } \{\text{#a}\}) + \text{?ic } Y by simp
also have \ldots = \text{?ic } L

unfolding \text{L'} \text{M'} \text{N}
using \ast\ast by (simp add: algebra-simps)
finally show \text{?c } L = \text{?c } (N - X + Y) by simp
qed
ultimately show \text{?thesis} by (metis diff-set-Ex-iff)
qed
moreover have \forall y. y \in \# Y \longrightarrow (\exists x. x \in \# X \land P y x)
proof (intro allI impI)
fix y assume y \in \# Y
then have y \in \# K - X \lor y \in \# Y by auto
then show \exists x. x \in \# X \land P y x
proof
assume y \in \# K - X
then show y \in \# K by (rule in-diffD)
with K show \text{?thesis} by auto
next
assume y \in \# Y
with Y obtain x where x \in \# X and P y x by blast
{ assume x \in \# X - K with \langle P y x \rangle have \text{?thesis} by auto }
moreover
{ assume x \in \# K with \ast have P x a by auto
moreover have y \in A using \langle Y \in \text{multisets } A \rangle and \langle y \in \# Y \rangle by (auto simp: multisets-def)
moreover have a \in A using \langle N \in \text{multisets } A \rangle by (auto simp: N)
moreover have x \in A using \langle M \in \text{multisets } A \rangle and \langle x \in \# K \rangle by (auto simp: M' multisets-def)
ultimately have P y a using \langle P y x \rangle and trans unfolding transp-on-def
by blast
then have \text{?thesis} by force }
moreover from \langle x \in \# X \rangle have x \in \# X - K \lor x \in \# K
by (auto simp add: in-diff-count not-in-iff)
ultimately show \text{?thesis} by auto
qed
qed
ultimately show \text{?case} by blast
qed
next
assume \?Q M N
then obtain X Y Z where M \in \text{multisets } A and N \in \text{multisets } A
and X \neq \{\#\} and N: N = Z + X and M: M = Z + Y
and \ast\ast: \forall y. y \in \# Y \longrightarrow (\exists x. x \in \# X \land P y x) by blast
with mulex-on-all-strict [of X A Y] have mulex-on P A Y X by auto
moreover from ⟨N ∈ multisets A⟩ have Z ∈ multisets A by (auto simp: N)
ultimately show ?P M N unfolding M N by (metis mulex-on-union)
qed

end

12 Multiset Extension Preserves Well-Quasi-Orders

theory Wqo-Multiset
imports Multiset-Extension Well-Quasi-Orders
begin

lemma list-emb-imp-reflclp-mulex-on:
 assumes xs ∈ lists A and ys ∈ lists A
 and list-emb P xs ys
 shows (mulex-on P A) == (mset xs) (mset ys)
using assms
proof (induct)
 case (list-emb-Nil ys)
 then show ?case
 by (cases ys) (auto intro! empty-mulex-on simp: multisets-def)
next
 case (list-emb-Cons xs ys y)
 then show ?case by (auto intro! mulex-on-self-add-singleton-right simp: multisets-def)
next
 case (list-emb-Cons2 x y xs ys)
 then show ?case
 by (force intro: union-mulex-on-mono mulex-on-add-mset mulex-on-add-mset' mulex-on-add-mset-mono simp: multisets-def)
qed

The (reflexive closure of the) multiset extension of an almost-full relation is almost-full.

lemma almost-full-on-multisets:
 assumes almost-full-on P A
 shows almost-full-on (mulex-on P A) == (multisets A)
proof
 let ?P = (mulex-on P A) ==
from almost-full-on-hom [OF almost-full-on-lists, of A P ?P mset, OF list-emb-imp-reflclp-mulex-on, simplified]
show ?thesis using assms by blast
qed

lemma wqo-on-multisets:
assumes \textit{wqo-on }$P \ A$

shows \textit{wqo-on} $(\text{mulex-on } P \ A)^== (\text{multisets } A)$

proof

from \textit{transp-on-mulex-on} [of $P \ A$ multisets A]

show \textit{transp-on} $(\text{mulex-on } P \ A)^== (\text{multisets } A)$

unfolding \textit{transp-on-def} by \textit{blast}

next

from \textit{almost-full-on-multisets} [OF \text{assms} [\text{THEN wqo-on-imp-almost-full-on}]]

show \textit{almost-full-on} $(\text{mulex-on } P \ A)^== (\text{multisets } A)$.

qed

end

References