A Formalization of Weighted Path Orders and
Recursive Path Orders*

Christian Sternagel René Thiemann Akihisa Yamada

March 17, 2025

Abstract

We define the weighted path order (WPO) and formalize several
properties such as strong normalization, the subterm property, and
closure properties under substitutions and contexts. Our definition of
WPO extends the original definition by also permitting multiset com-
parisons of arguments instead of just lexicographic extensions. There-
fore, our WPO not only subsumes lexicographic path orders (LPO),
but also recursive path orders (RPO). We formally prove these sub-
sumptions and therefore all of the mentioned properties of WPO are
automatically transferable to LPO and RPO as well. Such a trans-
formation is not required for Knuth-Bendix orders (KBO), since they
have already been formalized. Nevertheless, we still provide a proof
that WPO subsumes KBO and thereby underline the generality of

WPO.
Contents
1 Introduction 2
2 Preliminaries 3
2.1 Status functions o 3
2.2 Precedence 4
2.3 Local versions of relations, .. 5
2.4 Interface for extending an order pair on lists 11
3 Multiset extension of an order pair 11
3.1 Pointwise multiset order 13
3.2 Multiset extension for order pairs via the pointwise order and
mult . .. e 17
3.3 One-step versions of the multiset extensions 19
3.4 Cancellation o 21

*Supported by FWF (Austrian Science Fund) projects P27502 and Y757.

3.5 Implementation friendly versions of mult2-s and mult2-ns . . 22
3.6 Local well-foundedness: restriction to downward closure of a

1 24

3.7 Trivial cases 27
3.8 Executable version 30

4 Multiset extension of order pairs in the other direction 34
4.1 List based characterization of multpw 35
4.2 Definition of the multiset extension of >-orders 35
4.3 Basic properties oL 36
4.4 Multisets as order on lists 53
4.5 Special case: non-strict order is equality 55
4.6 Executable version 57

5 The Weighted Path Order 61
6 The Recursive Path Order as an instance of WPO 100

7 The Lexicographic Path Order as an instance of WPO 103

8 The Knuth—Bendix Order as an instance of WPO 106
8.1 Aligning least elements 106
8.2 A restricted equality between KBO and WPO 109

9 Executability of the orders 118

1 Introduction

Path orders are well-founded orders on terms that are useful for auto-
mated deduction, e.g., for termination proving of term rewrite systems or
for completion-based theorem provers. Well-known path orders are the lex-
icographic path order (LPO) [3], the recursive path order (RPO) [2], and
the Knuth-Bendix order (KBO) [4], and all of these orders are presented in
a standard textbook on term rewriting [1, Chapter 5].

Whereas the mentioned path orders date back to the last century, the
weighted path order (WPO) has only recently been presented [9, 10]. It has
two nice properties. First, the search for suitable parameters is feasible and
tools like NaTT and TTT2 implement it. Second, WPO is quite powerful
and versatile: in fact, KBO and LPO are just instances of WPO. Moreover,
with a slight extension of WPO (adding multiset-comparisons) also RPO is
covered.

This AFP-entry provides a full formalization of WPO and also the con-
nection to KBO, LPO, and RPO. Here, for the existing formal version of
KBO [5, 6] it is just proven that WPO can simulate it by chosing suitable

parameters, whereas LPO and RPO are defined from scratch and many
properties of LPO and RPO—such as strong normalization, closure under
contexts and substitutions, transitivity, etc.—are derived from the corre-
sponding WPO properties.

Note that most of the WPO formalization is described in [8]. The formal
version deviates from the paper version only by the additional possibility to
perform multiset-comparisons instead of lexicographic comparisons within
WPO. The formal version of LPO and RPO extend their original definitions
as well: the RPO definition is taken from [7], and LPO is defined as this
extended RPO where always lexicographic comparisons are performed when
comparing lists of terms. The formalization of multiset-comparisons (w.r.t.
two orders) is described in more detail in [7].

2 Preliminaries

2.1 Status functions

A status function assigns to each n-ary symbol a list of indices between 0 and
n-1. These functions are encapsulated into a separate type, so that recursion
on the i-th subterm does not have to perform out-of-bounds checks (e.g., to
ensure termination).

theory Status
imports
First-Order-Terms. Term
begin

typedef f status = { (o = 'f x nat = nat list). (Vv fk. set (o (f, k)) C {0 .<
ED}

morphisms status Abs-status

by (rule exI[of - A -. []]) auto

setup-lifting type-definition-status

lemma status: set (status o (f, n)) C {0 ..< n}
by (transfer) auto

lemma status-auz[termination-simp|: i € set (status o (f, length ss)) => ss! i €
set ss
using status|of o flength ss] unfolding set-conv-nth by force

lemma status-termination-simps[termination-simp|:

assumes il: i < length (status o (f, length xs))

shows size (zs | (status o (f, length zs) ! 7)) < Suc (size-list size xs) (is %a <
?c)
proof —

from ¢! have status o (f, length zs) | i € set (status o (f, length xs)) by auto

from status-auxz[OF this] have %a < size-list size xs by (auto simp: termina-
tion-simp)

then show ?thesis by auto
qed

lemma status-ne:
status o (f, n) # [| = 3i < n. © € set (status o (f, n))
using status [of o f n]
by (meson atLeastLessThan-iff set-empty subsetCE subsetl subset-empty)

lemma set-status-nth:
length s = n = i € set (status o (f, n)) = i < length s N xzs | i € set xs
using status [of o f n] by force

lift-definition full-status :: 'f status is A (f, n). [0 ..< n] by auto

lemma full-status[simp]: status full-status (f, n) = [0 ..< n]
by transfer auto

An argument position i is simple wrt. some term relation, if the i-th
subterm is in relation to the full term.

definition simple-arg-pos :: ('f, 'v) term rel = 'f x nat = nat = bool where
simple-arg-pos rel fi =V ts. i < snd f — length ts = snd f — (Fun (fst f)
ts, ts ! 7) € rel

lemma simple-arg-posI: [\ ts. length ts = n = i < n = (Fun f s, ts | i) €
rel] = simple-arg-pos rel (f, n) i
unfolding simple-arg-pos-def by auto

end

2.2 Precedence

A precedence consists of two compatible relations (strict and non-strict) on
symbols such that the strict relation is strongly normalizing. In the for-
malization we model this via a function "prc" (precedence-compare) which
returns two Booleans, indicating whether the one symbol is strictly or weakly
bigger than the other symbol. Moreover, there also is a function "prl"
(precedence-least) which gives quick access to whether a symbol is least
in precedence, i.e., without comparing it to all other symbols explicitly.

theory Precedence
imports
Abstract— Rewriting. Abstract- Rewriting
begin

locale irrefi-precedence =
fixes prc :: 'f = 'f = bool x bool
and prl :: 'f = bool

assumes pre-refl: pre f f = (False, True)
and pre-stri-imp-nstri: fst (prc f g) = snd (pre [g)
and pri: prl g = snd (prc f g) = True
and pri3: prl f = snd (prc f g) = prlyg
and pre-compat: pre f g = (s1, nsl) = prc g h = (82, ns2) = prc fh = (s,
ns) =
(ns1 A ns2 — ns) A (nsl A s2 — s) A (s1 A ns2 — s)
begin
lemma pri2:
assumes ¢: prl g shows fst (prc g f) = False
proof (rule ccontr)
assume — ?thesis
then obtain b where gf: prc g f = (True, b) by (cases pre g f, auto)
obtain b1 b2 where gg: prc g g = (b1, b2) by force
obtain b’ where fg: pre f g = (b', True) using prl[OF g, of f] by (cases prc f
g, auto)
from prc-compat[OF gf fg gg] gg have gg: fst (prc g g) by auto
with pre-refl[of g] show False by auto
qed

abbreviation pr = (pre, pri)
end

locale precedence = irrefl-precedence +
constrains prc :: 'f = 'f = bool x bool
and prl :: 'f = bool
assumes prce-SN: SN {(f, g). fst (prc fg)}

end

2.3 Local versions of relations

theory Relations
imports
HOL— Library. Multiset
Abstract— Rewriting. Abstract- Rewriting
begin

Common predicates on relations

definition compatible-l :: 'a rel = ’a rel = bool where
compatible-l R1 R2 = R1 O R2 C R2

definition compatible-r :: 'a rel = 'a rel = bool where
compatible-r R1 R2 = R2 O R1 C R2
Local reflexivity

definition locally-refl :: 'a rel = 'a multiset = bool where
locally-refl R A= (V¥ a. a €# A — (a,a) € R)

definition locally-irrefl :: 'a rel = 'a multiset = bool where
locally-irrel R A = (Vt. t e# A — (t,t) ¢ R)

Local symmetry

definition locally-sym :: 'a rel = 'a multiset = bool where
locally-sym R A= (Vtu. t e# A — u e# A —
(t,u) € R — (u,t) € R)

definition locally-antisym :: 'a rel = 'a multiset = bool where
locally-antisym R A = Vtu. t e# A — v eH A —
(tu) € R — (ut) € R — t = u)

Local transitivity

definition locally-trans :: 'a rel = 'a multiset = 'a multiset = 'a multiset = bool
where
locally-trans R A B C = (Yt u v.
te#t A—ue#r B—ve# C—
(t,u) € R — (u,w) € R — (t,v) € R)

Local inclusion

definition locally-included :: 'a rel = 'a rel = 'a multiset = 'a multiset = bool
where
locally-included R1 R2 A B= Vtu. t e A — u €# B —
(t,u) € R1 — (t,u) € R2)

Local transitivity compatibility

definition locally-compatible-1 :: 'a rel = 'a rel = 'a multiset = 'a multiset = 'a
multiset = bool where
locally-compatible-l R1 R2A B C = Ntuv. te#f A—ue# B—ve# C
H
(t,u) € R1 — (u,v) € R2 — (t,v) € R2)

definition locally-compatible-r :: 'a rel = 'a rel = 'a multiset = 'a multiset = 'a
multiset = bool where
locally-compatible-r R1 R2A BC = Ntuv. te# A— ue# B—ve# C
H
(t,u) € R2 — (uw,v) € R1 — (t,v) € R2)

included + compatible — transitive

lemma in-cl-tr:
assumes R1 C R2
and compatible-l R2 R1
shows trans R1
proof—
{
fix xyz
assume s-z-y: (z,y) € R1 and s-y-z: (y,2) € R1
from assms s-z-y have (z,y) € R2 by auto
with s-y-z assms(2)[unfolded compatible-I-def] have (z,z) € R1 by blast

}

then show ?thesis unfolding trans-def by fast
qed

lemma in-cr-tr:
assumes R1 C R2
and compatible-r R2 R1
shows trans R1
proof—
{
fixzyz
assume s-z-y: (z,y) € R1 and s-y-z: (y,2) € R1
with assms have (y,z) € R2 by auto
with s-2-y assms(2)[unfolded compatible-r-def] have (z,z) € R1 by blast
}
then show ?thesis unfolding trans-def by fast
qed

If a property holds globally, it also holds locally. Obviously.

lemma r-lr:
assumes refl R
shows locally-refl R A
using assms unfolding refi-on-def locally-refi-def by blast

lemma tr-ltr:
assumes trans R
shows locally-trans R A B C
using assms unfolding trans-def and locally-trans-def by fast

lemma in-lin:
assumes R1 C R2
shows locally-included R1 R2 A B
using assms unfolding locally-included-def by auto

lemma cl-lcl:
assumes compatible-l R1 R2
shows locally-compatible-l R1 R2 A B C
using assms unfolding compatible-I-def and locally-compatible-I-def by auto

lemma cr-ler:
assumes compatible-r R1 R2
shows locally-compatible-r R1 R2 A B C
using assms unfolding compatible-r-def and locally-compatible-r-def by auto

If a predicate holds on a set then it holds on all the subsets:

lemma Ir-trans-I:
assumes locally-refl R (A + B)
shows locally-refl R A
using assms unfolding locally-refi-def

by auto

lemma li-trans-I:
assumes locally-irrefl R (A + B)
shows locally-irrefl R A
using assms unfolding locally-irrefi-def
by auto

lemma Is-trans-I:
assumes locally-sym R (A + B)
shows locally-sym R A
using assms unfolding locally-sym-def
by auto

lemma las-trans-I:
assumes locally-antisym R (A + B)
shows locally-antisym R A
using assms unfolding locally-antisym-def
by auto

lemma lt-trans-l:
assumes locally-trans R (A + B) (C + D) (E + F)
shows locally-trans R A C E
using assms[unfolded locally-trans-def, rule-format)
unfolding locally-trans-def by auto

lemma lin-trans-I:
assumes locally-included R1 R2 (A + B) (C + D)
shows locally-included R1 R2 A C
using assms unfolding locally-included-def by auto

lemma [cl-trans-i:
assumes locally-compatible-l R1 R2 (A + B) (C + D) (E + F)
shows locally-compatible-l R1 R2 A C E
using assms[unfolded locally-compatible-lI-def, rule-format]
unfolding locally-compatible-lI-def by auto

lemma lcr-trans-I:
assumes locally-compatible-r R1 R2 (A + B) (C + D) (E + F)
shows locally-compatible-r R1 R2 A C' E
using assms[unfolded locally-compatible-r-def, rule-format]
unfolding locally-compatible-r-def by auto

lemma Ir-trans-r:
assumes locally-refl R (A + B)
shows locally-refl R B
using assms unfolding locally-refi-def
by auto

lemma li-trans-r:
assumes locally-irrefl R (A + B)
shows locally-irrefl R B
using assms unfolding locally-irrefi-def
by auto

lemma Is-trans-r:
assumes locally-sym R (A + B)
shows locally-sym R B
using assms unfolding locally-sym-def
by auto

lemma las-trans-r:
assumes locally-antisym R (A + B)
shows locally-antisym R B
using assms unfolding locally-antisym-def
by auto

lemma lt-trans-r:
assumes locally-trans R (A + B) (C + D) (E + F)
shows locally-trans R B D F
using assms[unfolded locally-trans-def, rule-format]
unfolding locally-trans-def
by auto

lemma lin-trans-r:
assumes locally-included R1 R2 (A + B) (C + D)
shows locally-included R1 R2 B D
using assms unfolding locally-included-def by auto

lemma Icl-trans-r:
assumes locally-compatible-l R1 R2 (A + B) (C + D) (E + F)
shows locally-compatible-l R1 R2 B D F
using assms[unfolded locally-compatible-l-def , rule-format]
unfolding locally-compatible-lI-def by auto

lemma lcr-trans-r:
assumes locally-compatible-r R1 R2 (A + B) (C + D) (E + F)
shows locally-compatible-r R1 R2 B D F
using assms[unfolded locally-compatible-r-def, rule-format]
unfolding locally-compatible-r-def by auto

lemma Ir-minus:
assumes locally-refl R A
shows locally-refl R (A — B)
using assms unfolding locally-refl-def by (meson in-diffD)

lemma li-minus:
assumes locally-irrefil R A

shows locally-irrefl R (A — B)
using assms unfolding locally-irrefl-def by (meson in-diffD)

lemma Is-minus:
assumes locally-sym R A
shows locally-sym R (A — B)
using assms unfolding locally-sym-def by (meson in-diffD)

lemma las-minus:
assumes locally-antisym R A
shows locally-antisym R (A — B)
using assms unfolding locally-antisym-def by (meson in-diffD)

lemma lt-minus:
assumes locally-trans R A C E
shows locally-trans R (A — B) (C — D) (E — F)
using assms[unfolded locally-trans-def, rule-format]
unfolding locally-trans-def by (meson in-diffD)

lemma lin-minus:
assumes locally-included R1 R2 A C
shows locally-included R1 R2 (A — B) (C — D)
using assms unfolding locally-included-def by (meson in-diffD)

lemma Icl-minus:
assumes locally-compatible-l R1 R2 A C E
shows locally-compatible-l R1 R2 (A — B) (C — D) (E — F)
using assms[unfolded locally-compatible-lI-def, rule-format]
unfolding locally-compatible-I-def by (meson in-diffD)

lemma lcr-minus:
assumes locally-compatible-r R1 R2 A C FE
shows locally-compatible-r R1 R2 (A — B) (C — D) (E — F)
using assms[unfolded locally-compatible-r-def, rule-format]
unfolding locally-compatible-r-def by (meson in-diffD)
Notations

notation restrict (infixl <[> 80)

lemma mem-restrictI[intro!]: assumes z € X y € X (z,y) € R shows (z,y) € R
I X
using assms unfolding restrict-def by auto

lemma mem-restrictD[dest]: assumes (z,y) € R | X shows z € X y € X (z,9)

€ER
using assms unfolding restrict-def by auto

10

end

2.4 Interface for extending an order pair on lists

theory List-Order
imports
Knuth-Bendiz-Order. Order-Pair
begin

type-synonym ’a list-ext = 'a rel = 'a rel = 'a list rel

locale list-order-extension =
fixes s-list :: 'a list-ext
and ns-list :: 'a list-ext
assumes extension: SN-order-pair S NS = SN-order-pair (s-list S NS) (ns-list
S NS)
and s-map: [A a b. (a,b) € S = (fa.,fb) € S; A\ ab. (a,) € NS = (fa,f
b) € NS] = (as,bs) € s-list S NS = (map f as, map f bs) € s-list S NS
and ns-map: [\ a b. (a,b) € S = (fa,fb) € S; \ ab. (a,b) € NS = (f a,f
b) € NS| = (as,bs) € ns-list S NS = (map [as, map f bs) € ns-list S NS
and all-ns-imp-ns: length as = length bs = [\ i. i < length bs = (as ! 1,
bs ! i) € NS] = (as,bs) € ns-list S NS

type-synonym ’a list-ext-impl = ('a = 'a = bool x bool) = 'a list = 'a list =
bool x bool

locale list-order-extension-impl = list-order-extension s-list ns-list for
s-list ns-list :: 'a list-ext +
fixes list-ext :: 'a list-ext-impl
assumes list-ext-s:)\ s ns. s-list {(a,b). s a b} {(a,b). ns a b} = {(as,bs). fst
(list-ext (X a b. (s a b, ns a b)) as bs)}
and list-ext-ns: \ s ns. ns-list {(a,b). s a b} {(a,b). ns a b} = {(as,bs). snd
(list-ext (XA a b. (s a b, ns a b)) as bs)}
and s-ext-local-mono: \ s ns s’ ns’ as bs. (set as x set bs) N ns C ns’ = (set
as X set bs) N's C 8" = (as,bs) € s-list ns s = (as,bs) € s-list ns’ s’
and ns-ext-local-mono: /\ s ns s’ ns’ as bs. (set as x set bs) N ns C ns’' =
(set as x set bs) N s C s = (as,bs) € ns-list ns s => (as,bs) € ns-list ns’ s’

end

3 Multiset extension of an order pair
Given a well-founded order < and a compatible non-strict order 3, we define
the corresponding multiset-extension of these orders.

theory Multiset-Extension-Pair
imports
HOL— Library. Multiset

11

Regular—Sets. Regexp-Method
Abstract— Rewriting. Abstract- Rewriting
Relations

begin

lemma mult-locally-cancel:
assumes trans s and locally-irrefl s (X + Z) and locally-irrefl s (Y + 7)
shows (X + Z, Y + Z) € mult s +— (X, Y) € mult s (is ?L +— ?R)
proof
assume ?L thus ?R using assms(2, 3)
proof (induct Z arbitrary: X Y)
case (add z 7)
obtain X’ Y’ Z’ where x: add-mset 2z X + Z = 7' + X' add-mset z Y + Z
S Y Y A (R
Vz € set-mset X'. Jy € set-mset Y'. (z, y) € s
using mult-implies-one-step|OF <trans s> add(2)] by auto
consider Z2 where Z' = add-mset z Z2 | X2 Y2 where X' = add-mset z X2
Y’ = add-mset z Y2
using x(1,2) by (metis add-mset-remove-trivial-If insert-iff set-mset-add-mset-insert
union-iff)
thus Zcase
proof (cases)
case I thus ?thesis using * one-step-implies-mult[of Y' X' s Z2]
by (auto simp: add.commute|of - {#-#}] add.assoc intro: add(1))
(metis add.hyps add.prems(2) add.prems(3) add-mset-add-single li-trans-I
union-mset-add-mset-right)
next
case 2 then obtain y where y € set-mset Y2 (z, y) € s using *(4) add(3,
4)
by (auto simp: locally-irrefl-def)
moreover from this transD[OF <trans s» - this(2)]
have z' € set-mset X2 = Jy € set-mset Y2. (z', y) € s for z’
using 2 x(4)[rule-format, of z'] by auto
ultimately show ?thesis using * one-step-implies-mult[of Y2 X2 s Z'] 2
add(8, 4)
by (force simp: locally-irrefl-def add.commute[of {#-#}] add.assoc[symmetric]
intro: add(1))
qed
qed auto
next
assume ?R then obtain [J K
where Y =1+ JX =1+ K J # {#} Vk € set-mset K. 3j € set-mset J.
(kj) € 5
using mult-implies-one-step|OF <trans)] by blast
thus ?L using one-step-implies-mult[of J K s I + Z] by (auto simp: ac-simps)
qed

12

lemma mult-locally-cancelL:
assumes trans s locally-irrefl s (X + Z) locally-irrefl s (Y + Z)
shows (Z + X, Z+ Y) e mults <— (X, Y) € mult s
using mult-locally-cancel|OF assms] by (simp only: union-commute)

lemma mult-cancelL:
assumes trans s irrefl sshows (Z + X, Z+ Y) € mult s +— (X, V) € mult s
using assms
by (auto simp: union-commaute introl: mult-cancel elim: irrefl-on-subset)

lemma wf-trancl-conv:
shows wf (r*) «— wfr
using wf-subset[of v+ r] by (force simp: wf-trancl)

3.1 Pointwise multiset order

inductive-set multpw :: 'a rel = ‘a multiset rel for ns :: 'a rel where

empty: ({#}, {#}) € multpw ns
| add: (z, y) € ns = (X, Y) € multpw ns = (add-mset z X, add-mset y Y) €
multpw ns

lemma multpw-emptyL [simp]:
{#}, X) € multpw ns «— X = {#}
by (cases X) (auto elim: multpw.cases intro: multpw.intros)

lemma multpw-emptyR [simp]:
(X, {#}) € multpw ns «— X = {#}
by (cases X) (auto elim: multpw.cases intro: multpw.intros)

lemma refl-multpw:
assumes refl ns shows refl (multpw ns)
proof —
have (X, X) € multpw ns for X using assms
by (induct X) (auto intro: multpw.intros simp: refl-on-def)
then show %thesis by (auto simp: refl-on-def)
qed

lemma multpw-Id-Id [simp):
multpw Id = Id
proof —
have (X, Y) € multpw (Id :: ‘a rel) = X = Y for X Y by (induct X Y rule:
multpw.induct) auto
then show %thesis using refl-multpw|of Id] by (auto simp: refl-on-def)
qed

lemma mono-multpw:
assumes ns C ns’ shows multpw ns C multpw ns’
proof —
have (X, V) € multpw ns = (X, Y) € multpw ns’ for X YV

13

by (induct X Y rule: multpw.induct) (insert assms, auto intro: multpw.intros)
then show ?thesis by auto
qed

lemma multpw-converse:

multpw (ns™t) = (multpw ns)~
proof —

have (X, V) € multpw (ns™') = (X, Y) € (multpw ns)~! for X Y and ns =
‘a rel

by (induct X Y rule: multpw.induct) (auto intro: multpw.intros)

then show ?thesis by auto

qed

1

lemma multpw-local:
(X, Y) € multpw ns = (X, Y) € multpw (ns N set-mset X x set-mset Y)
proof (induct X Y rule: multpw.induct)
case (add z y X Y) then show ?case
using mono-multpw(of ns N set-mset X X set-mset Y ns N insert x (set-mset
X) x insert y (set-mset Y]
by (auto intro: multpw.intros)
qed auto

lemma multpw-split1 R:
assumes (add-mset z X, Y) € multpw ns
obtains z Z where Y = add-mset z Z and (z, z) € ns and (X, Z) € multpw
ns
using assms
proof (induct add-mset x X Y arbitrary: X thesis rule: multpw.induct)
case (add z' y’ X' Y') then show Zcase
proof (cases © = z)
case Fulse
obtain X'’ where [simp]: X = add-mset ' X"
using add(4) False
by (metis add-eq-conv-diff)
have X’ = add-mset x X" using add(4) by (auto simp: add-eq-conv-ex)
with add(2) obtain Y y where Y’ = add-mset y Y (z,y) € ns (X", V")
€ multpw ns
by (auto intro: add(3))
then show ?thesis using add(1) add(5)[of y add-mset y' Y
by (auto simp: ac-simps intro: multpw.intros)
qed auto
qged auto

lemma multpw-splitR:

assumes (X1 + X2, Y) € multpw ns

obtains Y7 Y2 where Y = Y1 + Y2 and (X1, Y!) € multpw ns and (X2,
Y2) € multpw ns

using assms
proof (induct X2 arbitrary: Y thesis)

14

case (add z2 X2)
from add(8) obtain Y’ y2 where (X1 + X2, Y') € multpw ns (22, y2) € ns
Y = add-mset y2 Y’
by (auto elim: multpw-splitl1 R simp: union-assoc[symmetric])
moreover then obtain Y1 Y2 where (X1, Y1) € multpw ns (X2, Y2) €
multpw ns Y/ = Y1 + Y2
by (auto elim: add(1)[rotated)])
ultimately show ?case by (intro add(2)) (auto simp: union-assoc intro: multpw.intros)
qed auto

lemma multpw-split1L:

assumes (X, add-mset y Y) € multpw ns

obtains z Z where X = add-mset z Z and (z, y) € ns and (Z, V) € multpw
ns

using assms multpw-split1R[of y Y X ns~* thesis] by (auto simp: multpw-converse)

lemma multpw-splitL:

assumes (X, Y1 + Y2) € multpw ns

obtains X1 X2 where X = X1 + X2 and (X1, Y1) € multpw ns and (X2,
Y2) € multpw ns

using assms multpw-splitR[of Y1 Y2 X ns~* thesis] by (auto simp: multpw-converse)

lemma locally-trans-multpw:
assumes locally-trans ns S T U
and (S, T) € multpw ns
and (T, U) € multpw ns
shows (S, U) € multpw ns
using assms(2,3,1)
proof (induct S T arbitrary: U rule: multpw.induct)
case (addzy X Y)
then show ?case unfolding locally-trans-def
by (auto 0 3 intro: multpw.intros elim: multpw-split1R)
qed blast

lemma trans-multpw:
assumes trans ns shows trans (multpw ns)
using locally-trans-multpw unfolding locally-trans-def trans-def
by (meson assms locally-trans-multpw tr-ltr)

lemma multpw-add:
assumes (X1, Y1) € multpw ns (X2, Y2) € multpw ns shows (X1 + X2, VI
+ Y2) € multpw ns
using assms(2,1)
by (induct X2 Y2 rule: multpw.induct) (auto intro: multpw.intros simp: add.assoc[symmetric])

lemma multpw-single:

(z, y) € ns = ({#=#}, {#y#}) € mulipw ns
using multpw.intros(2)[OF - multpw.intros(1)] .

15

lemma multpw-multl-commute:
assumes compat: s O ns C s and refins: refl ns
shows mult! s O multpw ns C multpw ns O mult] s
proof —
{fix X Y Z assume I: (X, Y) € mult! s (Y, Z) € multpw ns
then obtain X’ Y’y where 2: X = Y/ 4+ X' Y = add-mset y Y' V. z €
X' — (z,y) €s
by (auto simp: multl-def)
moreover obtain Z' z where 3: Z = add-mset z Z' (y, z) € ns (Y', Z') €
multpw ns
using 1(2) 2(2) by (auto elim: multpw-split1R)
moreover have Vz. z €# X' — (z, z) € s using 2(3) 3(2) compat by blast
ultimately have 3 Y. (X, Y') € multpw ns A (Y’, Z) € mult! s unfolding
multl-def
using refl-multpw[OF refins]
by (intro exI[of - Z' + X']) (auto intro: multpw-add simp: refl-on-def)

then show ?thesis by fast
qed

lemma multpw-mult-commute:
assumes s O ns C s refl ns shows mult s O multpw ns C multpw ns O mult s
proof —
{fix X Y Zassume I: (X, Y) € mult s (Y, Z) € multpw ns
then have 3 Y. (X, Y') € multpw ns A (Y', Z) € mult s unfolding mult-def
using multpw-mult1-commute] OF assms] by (induct rule: converse-trancl-induct)
(auto 0 8)
}
then show ?thesis by fast
qed

lemma wf-mult-rel-multpw:

assumes wf s s O ns C s refl ns shows wf ((multpw ns)* O mult s O (multpw
ns)*)

using assms(1) multpw-mult-commute][OF assms(2,8)] by (subst ge-wf-relto-iff)
(auto simp: wf-mult)

lemma multpw-cancell :
assumes trans ns (y,) € ns
shows (add-mset z X, add-mset y Y) € multpw ns = (X, Y) € multpw ns (is
7L = ?R)
proof —
assume ?L then obtain z’ X’ where X: (z/, y) € ns add-mset v’ X' = add-mset
z X (X', Y) € multpw ns
by (auto elim: multpw-split1L simp: union-assoc[symmetric])
then show 7R
proof (cases © = z)
case Fulse then obtain X2 where X2: X' = add-mset © X2 X = add-mset z’
X2

16

using X (2) by (auto simp: add-eg-conv-ex)
then obtain y’ Y’ where Y: (z, y') € ns Y = add-mset y’' Y’ (X2, Y') €
multpw ns
using X (%) by (auto elim: multpw-split1R)
have (z/, y') € ns using X (1) Y(1) <trans ns» assms(2) by (metis trans-def)
then show ?thesis using Y by (auto intro: multpw.intros simp: X2)
qged auto
qed

lemma multpw-cancel:

assumes refl ns trans ns

shows (X + Z, Y + Z) € multpw ns «— (X, Y) € multpw ns (is YL «— ?R)
proof

assume ?L then show 7R

proof (induct Z)

case (add z Z) then show ?case using multpw-cancell[of ns 2z X + Z Y +
Z) assms
by (auto simp: refl-on-def union-assoc)

qed auto
next

assume ?R then show ?L using assms refl-multpw by (auto intro: multpw-add
simp: refl-on-def)
qed

lemma multpw-cancelL:

assumes refl ns trans ns shows (Z + X, Z + Y) € multpw ns +— (X, Y) €
multpw ns

using multpw-cancel|OF assms, of X Z Y] by (simp only: union-commute)

3.2 Multiset extension for order pairs via the pointwise order
and mult

definition mult2-s ns s = multpw ns O mult s
definition mult2-ns ns s = multpw ns O (mult s)=

lemma mult2-ns-conuv:
shows mult2-ns ns s = mult2-s ns s U multpw ns
by (auto simp: mult2-s-def mult2-ns-def)

lemma mono-mult2-s:

assumes ns C ns’ s C s’ shows mult2-s ns s C mult2-s ns’ s’

using mono-multpw[OF assms(1)] mono-mult| OF assms(2)] unfolding mult2-s-def
by auto

lemma mono-mult2-ns:

assumes ns C ns’ s C s’ shows mult2-ns ns s C mult2-ns ns’ s’

using mono-multpw[OF assms(1)] mono-mult| OF assms(2)] unfolding mult2-ns-def
by auto

17

lemma wf-mult2-s:

assumes wf s s O ns C s refl ns

shows wf (mult2-s ns s)

using wf-mult-rel-multpw|OF assms| assms by (auto simp: mult2-s-def wf-mult
intro: wf-subset)

lemma refl-mult2-ns:
assumes refl ns shows refl (mult2-ns ns s)
using refl-multpw|OF assms] unfolding mult2-ns-def refl-on-def by fast

lemma trans-mult2-s:

assumes s O ns C s refl ns trans ns

shows trans (mult2-s ns s)

using trans-multpw[OF assms(8)] trans-trancl[of mult! s, folded mult-def] multpw-mult-commute] OF
assms(1,2)]

unfolding mult2-s-def trans-O-iff by (blast 8)

lemma trans-mult2-ns:

assumes s O ns C s refl ns trans ns

shows trans (mult2-ns ns s)

using trans-multpw[OF assms(3)] trans-trancl|of mult! s, folded mult-def] multpw-mult-commute] OF
assms(1,2)]

unfolding mult2-ns-def trans-O-iff by (blast 8)

lemma compat-mult2:

assumes s O ns C s refl ns trans ns

shows mult2-ns ns s O mult2-s ns s C mult2-s ns s mult2-s ns s O mult2-ns ns
s C mult2-s ns s

using trans-multpw[OF assms(3)] trans-trancl]of mult! s, folded mult-def] multpw-mult-commute] OF
assms(1,2)]

unfolding mult2-s-def mult2-ns-def trans-O-iff by (blast 8)+

Trivial inclusions

lemma mult-implies-mult2-s:
assumes refl ns (X, Y) € mult s
shows (X, Y) € mult2-s ns s
using refl-multpw|of ns] assms unfolding mult2-s-def refl-on-def by blast

lemma mult-implies-mult2-ns:
assumes refl ns (X, Y) € (mult s)
shows (X, Y) € mult2-ns ns s
using refl-multpw[of ns] assms unfolding mult2-ns-def refl-on-def by blast

lemma multpw-implies-mult2-ns:
assumes (X, Y) € multpw ns
shows (X, Y) € mult2-ns ns s
unfolding mult2-ns-def using assms by simp

18

3.3 One-step versions of the multiset extensions

lemma mult2-s-one-step:
assumes ns O s C s refl ns trans s
shows (X, V) € mult2-sns s +— (3X1 X2 Y1 Y2. X =X1 + X2 AN Y = Y1
+ Y2 A
(X1, Y1) € multpw ns N Y2 # {#} N (Vz. z €# X2 — (Fy. y €# Y2 A
(z,y) €s))) (is ?L «<— ?R)
proof
assume ?R then obtain X7 X2 Y1 Y2 where x: X = X1 + X2 Y =YI +
Y2 (X1, Y1) € multpw ns and
Y2 £ {#} Vo z e# X2 — (Fy. y €# Y2 A (z, y) € s) by blast
then have (Y1 + X2, Y1 + Y2) € mult s
using (trans s» by (auto intro: one-step-implies-mult)
moreover have (X1 + X2, Y1 + X2) € multpw ns
using «refl ns» refl-multpw]of ns] by (auto intro: multpw-add simp: refl-on-def
*
)

ultimately show ?L by (auto simp: mult2-s-def)
next
assume ?L then obtain X1 X2 71 Z2 Y2 where x: X = X1 + X2 Y =71 +
Y2 (X1, Z1) € multpw ns
(X2, Z2) € multpw ns Y2 # {#} Vr. x €# Z2 — (Fy. y €# Y2 A (z,y) €
)

by (auto 0 8 dest!: mult-implies-one-step|OF <trans $»] simp: mult2-s-def elim!:
multpw-splitL) metis
have Vz. z €# X2 — (Jy. y €# Y2 A (z,y) € 3)
proof (intro alll impl)
fix z assume z €# X2
then obtain X2’ where X2 = add-mset © X2' by (metis multi-member-split)
then obtain z Z2' where Z2 = add-mset z Z2' (z, z) € ns using *(4) by
(auto elim: multpw-split1R)
then have z €# Z2 (z, z) € ns by auto
then show Jy. y €# Y2 A (z,y) € s using *(6) <ns O s C s» by blast
qed
then show ?R using x by auto
qed

lemma mult2-ns-one-step:
assumes ns O s C s refl ns trans s
shows (X, Y) € mult2nsnss+— (3X1 X2Y1 V2. X =X1+X2ANY =Y1
+ Y2 A
(X1, Y1) € multpw ns N (Vz. z €# X2 — Jy. y €# Y2 A (2, y) € 5))) (is
?L +— ?R)
proof
assume ?L then consider (X, Y) € multpw ns | (X, V) € mult2-s ns s
by (auto simp: mult2-s-def mult2-ns-def)
then show ?R using mult2-s-one-step| OF assms]
by (cases, intro exI[of - {#}, THEN exzl[of - Y, THEN ezl|of - {#}, THEN
exI[of - X]]]]) auto
next

19

assume ?R then obtain X1 X2 Y1 Y2 where X = X1 + X2 Y = Y1 + Y2
(X1, Y1) € mullpw nsVa. x €# X2 — (Jy. y €# Y2 A (z, y) € s) by blast
then show ?L using mult2-s-one-step|OF assms, of X Y| count-inject[of X2
{#}]
by (cases Y2 = {#}) (auto simp: mult2-s-def mult2-ns-def)
qed

lemma mult2-s-locally-one-step’:
assumes ns O s C s refl ns locally-irrefl s X locally-irrefl s Y trans s
shows (X, V) € mult2-sns s +— (IX1 X2 Y1 Y2. X =X1 + X2 AN Y = Y1
+ Y2 A
(X1, Y1) € multpw ns A (X2, Y2) € mult s) (is 2L <— ?R)
proof
assume ?L then show ?R unfolding mult2-s-one-step|OF assms(1,2,5)]
using one-step-implies-mult[of - - s {#}] by auto metis
next
assume ?R then obtain X7 X2 Y1 Y2 where z: X = X1 + X2 and y: ¥ =
Y1 + Y2 and
ns: (X1, Y1) € multpw ns and s: (X2, Y2) € mult s by blast
then have [: locally-irrefl s (X2 + Y1) and r: locally-irrefl s (Y2 + Y1)
using assms(3, 4) by (auto simp add: locally-irrefi-def)
show ?L using ns s mult-locally-cancelL|OF assms(5) 1 r] multpw-add]OF ns,
of X2 X2] refl-multpw[OF <refl ns)]
unfolding mult2-s-def refl-on-def © y by auto
qed

lemma mult2-s-one-step’:
assumes ns O s C s refl ns irrefl s trans s
shows (X, V) € mult2-sns s +— (3X1 X2 Y1 Y2. X =X1 + X2 NY = Y1
+ Y2 A
(X1, Y1) € multpw ns A (X2, Y2) € mult s) (is ?L «— ?R)
using assms mult2-s-locally-one-step’ by (simp add: mult2-s-locally-one-step’ ir-
refl-def locally-irrefl-def)

lemma mult2-ns-one-step:
assumes ns O s C s refl ns irrefl s trans s
shows (X, V) € mult2nsnss+— (3X1 X2Y1 V2. X =X1+X2ANY =Y1
+ Y2 A
(X1, Y1) € multpw ns A (X2, Y2) € (mult s)7) (is L <— ?R)
proof —
have (X, Y) € multpw ns = ?R
by (intro exI[of - {#}, THEN exI[of - Y, THEN exl[of - {#}, THEN exI[of -
Xl auto
moreover have X = X1 + Y2 A Y = Y1 + Y2 A (X1, Y1) € multpw ns =
?L for X1 Y1 Y2
using multpw-add[of X1 Y1 ns Y2 Y2| refl-multpw|OF <refl nsy] by (auto simp:
mult2-ns-def refl-on-def)
ultimately show ?thesis using mult2-s-one-step’| OF assms] unfolding mult2-ns-conv
by auto blast

20

qed

3.4 Cancellation

lemma mult2-s-locally-cancell
assumes s O ns C s ns O s C s refl ns trans ns locally-irrefl s (add-mset z X)
locally-irrefl s (add-mset z Y) trans s
(add-mset z X, add-mset z Y) € mult2-s ns s
shows (X, Y) € mult2-s ns s
proof —
obtain X1 X2 Y1 Y2 where *: add-mset 2z X = X1 + X2 add-mset z Y = Y1
+ Y2 (X1, Y1) € multpw ns
(X2, Y2) € mult s using assms(8) unfolding mult2-s-locally-one-step |OF
assms(2,3,5,6,7)] by blast
from union-single-eqg-member[OF this(1)] union-single-eg-member|OF this(2)]
multi-member-split
consider X1’ where X1 = add-mset z X1'| Y1’ where Y1 = add-mset z Y1'
| X2’ Y2’ where X2 = add-mset z X2' Y2 = add-mset z Y2'
unfolding set-mset-union Un-iff by metis
then show ?thesis
proof (cases)
case ! then obtain Y71’ z' where xx: (X1’, Y1') € multpw ns Y1 = add-mset
2 Y1’ (2, 2) € ns
using * by (auto elim: multpw-split1R)
then have (X, Y1’ + Y2) € mult2-s ns s using * 1
by auto (metis add-mset-add-single assms(2 — 7) li-trans-l mult2-s-locally-one-step”)

moreover
have (Y1'+ Y2, Y) € multpw ns
using refl-multpw[OF <refl ns)] % xx multpw-cancell [OF <trans ns» x(8), of
Y1+ Y2 Y]
by (auto simp: refl-on-def)
ultimately show ?thesis using compat-mult2[OF assms(1,3,4)] unfolding
mult2-ns-conv by blast
next
case 2 then obtain X1’ 2z’ where #x: (X1’, Y1') € multpw ns X1 = add-mset
2! X1' (2, 2) € ns
using * by (auto elim: multpw-split1L)
then have (X1'+ X2, V) € mult2-s ns s using * 2
by auto (metis add-mset-add-single assms(2 — 7) li-trans-1 mult2-s-locally-one-step’)
moreover
have (X, X1’ + X2) € multpw ns
using refl-multpw[OF <refl ns)] * xx multpw-cancell [OF <trans ns) *x(3), of
X X1+ X2]
by (auto simp: refl-on-def)
ultimately show ?thesis using compat-mult2[OF assms(1,3,4)] unfolding
mult2-ns-conv by blast
next
case 3 then show ?thesis using assms *

21

by (auto simp: mult2-s-locally-one-step’ union-commute[of {#-#}] union-assoc[symmetric]
mult-cancel mult-cancel-add-mset)
(metis (1) *(2) add-mset-add-single li-trans-1 li-trans-r mult2-s-locally-one-step’
mult-locally-cancel)
qed
qed

lemma mult2-s-cancell:

assumes s O ns C s ns O s C s refl ns trans ns irrefl s trans s (add-mset z X,
add-mset z Y) € mult2-s ns s

shows (X, Y) € mult2-s ns s

using assms mult2-s-locally-cancell by (metis irrefl-def locally-irrefl-def)

lemma mult2-s-locally-cancel:
assumes s O ns C sns O s C s refl ns trans ns locally-irrefl s (X + Z) locally-irrefl
s (Y + Z) trans s
shows (X + Z, Y + Z) € mult2-s ns s = (X, Y) € mult2-s ns s
using assms(5, 6)
proof (induct Z)
case (add z Z) then show Zcase
using mult2-s-locally-cancell [OF assms(1—4), of 2 X + ZY + Z]
by auto (metis add-mset-add-single assms(7) li-trans-l)
qged auto

lemma mult2-s-cancel:
assumes s O ns C s ns O s C s refl ns trans ns irrefl s trans s
shows (X + Z, Y + Z) € mult2-s ns s = (X, Y) € mult2-s ns s
using mult2-s-locally-cancel assms by (metis irrefl-def locally-irrefl-def)

lemma mult2-ns-cancel:
assumes s O ns C s ns O s C s refl ns trans s irrefl s trans ns
shows (X + Z, Y + Z) € mult2-s ns s = (X, Y) € mult2-ns ns s
unfolding mult2-ns-conv using assms mult2-s-cancel multpw-cancel by blast

3.5 Implementation friendly versions of mult2-s and mult2-ns

definition mult2-alt :: bool = 'a rel = 'a rel = 'a multiset rel where
mult2-alt bns s = {(X, V). 3X1 X2Y1 Y2. X =X1+X2ANY =Y+ Y2
A\
(X1, Y1) € multpwns AN (bV Y2 A {#}) AN Va. z €# X2 — (Jy. y €# Y2
A (z, y) € 8)))}

lemma mult2-altl:
assumes X = X1 + X2Y = Y1 4+ Y2 (X1, Y1) € multpw ns
bV Y2 £ {#} V. v e# X2 — (Jy. y €# Y2 N (x, y) € 9)
shows (X, Y) € mult2-alt b ns s
using assms unfolding mult2-alt-def by blast

lemma mult2-altE:

22

assumes (X, Y) € mult2-alt b ns s
obtains X7 X2 Y1 Y2 where X = X1 + X2Y = Y1 4+ Y2 (X1, Y1) € multpw
ns
bV Y2 £ {#} V. v e# X2 — (Fy. y €# Y2 N (2, y) € 9)
using assms unfolding mult2-alt-def by blast

lemma mono-mult2-alt:
assumes ns C ns’ s C s’ shows mult2-alt b ns s C mult2-alt b ns’ s’
unfolding mult2-alt-def using mono-multpw|OF assms(1)] assms by (blast 19)

abbreviation mult2-alt-s = mult2-alt False
abbreviation mult2-alt-ns = mult2-alt True

lemmas mult2-alt-s-def = mult2-alt-def[where b = False, unfolded simp-thms]

lemmas mult2-alt-ns-def = mult2-alt-def[where b = True, unfolded simp-thms]

lemmas mult2-alt-sI = mult2-altl[where b = False, unfolded simp-thms)

lemmas mult2-alt-nsl = mult2-altI[where b = True, unfolded simp-thms True-implies-equals]
lemmas mult2-alt-sE = mult2-altE[where b = Fualse, unfolded simp-thms]

lemmas mult2-alt-nsE = mult2-altE[where b = True, unfolded simp-thms True-implies-equals)

Equivalence to mult2-s and mult2-ns lemma mult2-s-eq-mult2-s-alt:
assumes ns O s C s refl ns trans s
shows mult2-alt-s ns s = mult2-s ns s
using mult2-s-one-step|OF assms] unfolding mult2-alt-s-def by blast

lemma mult2-ns-eq-mult2-ns-alt:
assumes ns O s C s refl ns trans s
shows mult2-alt-ns ns s = mult2-ns ns s
using mult2-ns-one-step| OF assms|] unfolding mult2-alt-ns-def by blast

lemma mult2-alt-local:
assumes (X, Y) € mult2-alt b ns s
shows (X, Y) € mult2-alt b (ns N set-mset X X set-mset Y) (s N set-mset X x
set-mset Y)
proof —
from assms obtain X1 X2 Y1 Y2 where x: X = X1 + X2 Y = YI 4+ Y2 and
(X1, Y1) € multpwns (bV Y2 # {#}) Va. z €# X2 — (Fy. y €# Y2 A
(2,) € 5))
unfolding mult2-alt-def by blast
then have X = X1 + X2 AN Y =Y1 + Y2 A
(X1, Y1) € multpw (ns N set-mset X x set-mset Y) A (bV Y2 £ {#}) A
(Vao. v e# X2 — (Jy. y €# Y2 A (2, y) € s N set-mset X x set-mset Y))
using multpw-local[of X1 Y1 ns]
mono-multpw(of ns N set-mset X1 x set-mset Y1 ns N set-mset X x set-mset
Y] assms
unfolding * set-mset-union unfolding set-mset-def by blast
then show ?thesis unfolding mult2-alt-def by blast
qed

23

3.6 Local well-foundedness: restriction to downward closure
of a set

definition wf-below :: 'a rel = 'a set = bool where
wf-below r A = wf (Restr v ((r*)~1 « A))

lemma wf-below- UNIV [simp):

shows wf-below r UNIV +— wf r

by (auto simp: wf-below-def rtrancl-converse|symmetric] Image-closed-trancl|OF
subset-UNIV])

lemma wf-below-monol:
assumes r C 1’ wf-below ' A shows wf-below r A
using assms unfolding wf-below-def
by (intro wf-subset|OF assms(2)[unfolded wf-below-def]] Int-mono Sigma-mono
Image-mono
iff D2]OF converse-mono] rtrancl-mono subset-refl)

lemma wf-below-mono2:
assumes A C A’ wf-below r A’ shows wf-below r A
using assms unfolding wf-below-def
by (intro wf-subset[OF assms(2)[unfolded wf-below-def]]) blast

lemma wf-below-pointwise:
wf-below r A «— (Va. a € A — wf-below r {a}) (is ?L <— ?R)
proof
assume ?L then show ?R using wf-below-mono2[of {-} A r] by blast
next
have x: (r*)~! “A = {(r*)~! “{a} |a. a € A} unfolding Image-def by blast
assume ?R
{ fix 2 X assume *: X C Restrr ((r*)"! “A) “Xz e X
then obtain a¢ where xx: a € A (z, a) € r* unfolding Image-def by blast
from * have X N ((r*)~! “{a}) C (Restr r ((r*)~* “A) “X)n ((r*)~t «
{a}) by auto
also have ... C Restr r ((r*)~! “{a}) “(X n ((r*)~' “{a})) unfolding
Image-def by fastforce
finally have X N ((r*)~! “{a}) = {} using (7R x*(1) unfolding wf-below-def
by (intro wfE-pf|of Restr v ((r*)~! “{a})]) (auto simp: Image-def)
then have Fulse using *(2) *x unfolding Image-def by blast
}
then show ?L unfolding wf-below-def by (intro wfl-pf) auto
qed

lemma SN-on-Image-rtrancl-conv:
SN-on r A <— SN-on r (r* “ A) (is ?L +— ?R)
proof
assume ?L then show ?R by (auto simp: SN-on-Image-rtrancl)
next
assume ?R then show ?L by (auto simp: SN-on-def)
qed

24

lemma SN-on-iff-wf-below:
SN-on r A «— wf-below (r=1) A
proof —
{ fix f
assume f 0 € r* “ A and *x: (f 4, f (Suc ©)) € r for ¢
then have fi € r* “ A for ¢
by (induct ©) (auto simp: Image-def, metis UnCI relcomp.relcompl rtrancl-unfold)
then have (f i, f (Suc 7)) € Restr r (r* ““ A) for { using *x by auto
}
moreover then have SN-on r (r* “ A) «— SN-on (Restr r (r* “ A)) (r*
A)
unfolding SN-on-def by auto blast
moreover have (Ai. (f i, f (Suc i)) € Restrr (r* “A)) = f0 € r* “ A for
f by auto
then have SN-on (Restr r (r* ““ A)) (r* “ A) «+— SN-on (Restr r (r* “ A))
UNIV
unfolding SN-on-def by auto
ultimately show ?thesis unfolding SN-on-Image-rtrancl-conv [of - A]
by (simp add: wf-below-def SN-iff-wf rtrancl-converse converse-Int converse-Times)
qed

lemma restr-trancl-under:
shows Restr (rT) ((r*)=! “ A) = (Restr r ((r*)~% “ A))*
proof (intro equalityl subrell, elim IntE conjE[OF iffD1[OF mem-Sigma-iff]])
fix a b assume x: (a, b)) € r* be (r*)7 “ A
then have (a, b) € (Restr r ((r*)™! “A)T ANae (r*)"t “ A4
proof (induct rule: trancl-trans-induct[consumes 1])
case ! then show ?case by (auto simp: Image-def intro: converse-rtrancl-into-rtrancl)
next
case 2 then show ?case by (auto simp del: Int-iff del: ImageF)
qed
then show (a, b) € (Restr r ((r*)~! “ A))* by simp
next
fix a b assume (a, b) € (Restr r ((r*)~ “ A))*
then show (a, b) : Restr (r) ((r*)=! “ A) by induct auto
qged

lemma wf-below-trancl:
shows wf-below (r*) A +— wf-below r A
using restr-trancl-under|of r A] by (simp add: wf-below-def wf-trancl-conv)

lemma wf-below-mult-local:
assumes wf-below 1 (set-mset X) shows wf-below (mult r) {X}

proof —

have foo: mult r C mult (r*) using mono-mult[of r r*] by force
have (Y, X) € (mult (r7))* = set-mset Y C ((r7)*)~1 “ set-mset X for YV

25

proof (induct rule: converse-rtrancl-induct)
case (step Z Y)
obtain [J K where x: Y =1+ JZ =1+ K (Vk € set-mset K. 3j €
set-mset J. (k, j) € rT)
using mult-implies-one-step[OF - step(1)] by auto
{ fix k assume k €# K
then obtain j where j €# J (k, j) € rT using x(3) by auto
moreover then obtain z where © €# X (4, z) € r* using step(3) by (auto
sitmp: *)
ultimately have 3z. z €# X A (k,) € r* by auto
}
then show ?case using * step(3) by (auto simp: Image-def) metis
qged auto
then have ¢: (Y, X) € (mult (r7))* = ye# Y = y € ((r*)*)"! “ set-mset
X for Y y by force
have Restr (mult (r)) (((mult (r*))*)=r “{X}) C mult (Restr (r*) (((rT)*)~!
“ set-mset X))
proof (intro subrell)
fix N M assume (N, M) € Restr (mult (r*)) (((mult (r7))*)=1 “{X})
then have xx: (N, X) € (mult (r*))* (M, X) € (mult (r*))* (N, M) € mult
(r™) by auto
obtain J J K where x: M =1 + JN =1+ K J # {#} Yk € set-mset K.
3j € set-mset J. (k, j) € rT
using mult-implies-one-step| OF - «(N, M) € mult (r*))] by auto
then show (N, M) € mult (Restr (r*) (((r7)*)~! “ set-mset X))
using q[OF *x(1)] q[OF *x(2)] unfolding * by (auto intro: one-step-implies-mult)
qed
note bar = subset-trans|OF Int-mono|[OF foo Sigma-mono| this]
have ((mult r)*)~1 “{X} C ((mult (r7))*)~! “{X} using foo by (simp add:
Image-mono rtrancl-mono)
then have Restr (mult r) (((mult r)*)~1 “{X}) C mult (Restr (r*) (((r*)*)~1
“ set-mset X))
by (intro bar) auto
then show ?thesis using wf-mult assms wf-subset
unfolding wf-below-trancl|of r, symmetric] unfolding wf-below-def by blast
qed

lemma qc-wf-below:
assumes s O ns C (s U ns)* O s wf-below s A
shows wf-below (ns* O s O ns*) A
unfolding wf-below-def
proof (intro wfl-pf)
let 24’ = ((ns* O s O ns*)*)"L “ A
fix X assume X: X C Restr (ns* O s O ns*) 24" “ X
let 72X’ = ((s U ns)* N UNIV x ((s*)7t “A)) “X
have #: s O (s U ns)* C (sU ns)* O s
proof —
{ fix z y z assume (y, z) € (s U ns)* and (z, y) € s
then have (z, z) € (s U ns)* O s

26

proof (induct y z)
case rtrancl-refl then show ?case by auto
next
case (rtrancl-into-rtrancl a b c)
then have (z, ¢) € ((s U ns)* O (s U ns)*) O s using assms by blast
then show ?case by simp
qed }
then show ?thesis by auto
qed
{ fix z assume z € Restr (ns* O s O ns*) ?A’ “ X
then obtain y z where xx: y € X z € A (y, z) € ns* O s O ns* (z, z) € (ns*
O s O ns*)* by blast
have (ns* O s O ns*) O (ns* O s O ns*)* C (s U ns)* by regezp
then have (y, z) € (s U ns)* using *x(3,4) by blast
moreover have ?X’' = {}
proof (intro wfE-pf[OF assms(2)[unfolded wf-below-def]] subsetl)
fix z assume z € ?X’
then have z € ((s U ns)* N UNIV x ((s*)71 ““ A)) ““ Restr (ns* O s O ns*)
?A’ ““ X using X by auto
then obtain z0 y z where #x: z € X 20 € A (z, y) € ns* O s O ns* (y,)
€ (sUmns)* (z, z0) € s
unfolding Image-def by blast
have (ns* O s O ns*) O (s U ns)* C ns* O (s O (s U ns)*) by regexp
with *x(3,4) have (z, z) € ns* O (s O (s U ns)*) by blast
moreover have ns* O ((s U ns)* O s) C (s U ns)* O s by regexp
ultimately have (z, z) € (s U ns)* O s using * by blast
then obtain z’ where z € X (2, z/) € (s U ns)* (2/, z) € s (z/, 20) € s*
(z, 20) € s* 20 € A
using *x(1,2,5) converse-rtrancl-into-rtrancl[OF - xx(5)] by blast
then show z € Restr s ((s*)7! “ A) “ 2X’
unfolding Image-def by blast
qed
ultimately have Fulse using *x(1,2) unfolding Image-def by blast
}
then show X = {} using X by blast
qed

lemma wf-below-mult2-s-local:
assumes wf-below s (set-mset X) s O ns C s refl ns trans ns
shows wf-below (mult2-s ns s) {X}
using wf-below-mult-local[of s X]| assms multpw-mult-commaute[of s ns]
wf-below-monol [of multpw ns O mult s (multpw ns)* O mult s O (multpw ns)*
(xy)
ge-wf-below[of mult s multpw ns {X}]
unfolding mult2-s-def by blast

3.7 Trivial cases

lemma mult2-alt-emptyL:

27

({#}, Y) € mult2-alt b ns s «— bV Y # {#}
unfolding mult2-alt-def by auto

lemma mult2-alt-emptyR:
(X, {#}) € mult2-alt b ns s +— b AN X = {#}
unfolding mult2-alt-def by (auto intro: multiset-eql)

lemma mult2-alt-s-single:

(a, b) € s = ({#a#}, {#b#}) € mult2-alt-s ns s
using mult2-altl[of - {#} - - {#} - ns False s] by auto

lemma multpw-implies-mult2-alt-ns:
assumes (X, Y) € multpw ns
shows (X, Y) € mult2-alt-ns ns s
using assms by (intro mult2-alt-nsl[of X X {#} Y Y {#}]) auto

lemma mult2-alt-ns-conv:
mult2-alt-ns ns s = mult2-alt-s ns s U multpw ns (is 2l = ?r)
proof (intro equalityl subrell)
fix X Y assume (X, V) € 2
thm mult2-alt-nsE
then obtain X7 X2 Y1 Y2 where X = X1 + X2Y =Y + Y2 (X1, Y1) €
multpw ns
Vaz.z €# X2 — (Jy. y €# Y2 A (2, y) € s) by (auto elim: mult2-alt-nsE)
then show (X, Y) € ?r using count-inject[of X2 {#1}]
by (cases Y2 = {#}) (auto intro: mult2-alt-sI elim: mult2-alt-nsE mult2-alt-sE)
next
fix X Y assume (X, Y) € ?r then show (X, V) € ¢
by (auto intro: mult2-alt-nsI multpw-implies-mult2-alt-ns elim: mult2-alt-sE)
qed

lemma mult2-alt-s-implies-mult2-alt-ns:
assumes (X, Y) € mult2-alt-s ns s
shows (X, Y) € mult2-alt-ns ns s
using assms by (auto intro: mult2-alt-nsl elim: mult2-alt-sE)

lemma mult2-alt-add:
assumes (X1, Y1) € mult2-alt b1 ns s and (X2, Y2) € mult2-alt b2 ns s
shows (X1 + X2, Y1 + Y2) € mult2-alt (b1 A b2) ns s
proof —
from assms obtain X11 X12 Y11 Y12 X21 X22 Y21 Y22 where
X1 =X11+ X12Y1 =YI11 4+ Y12
(X11, Y11) € multpw ns (b1 V Y12 # {#}) V. z €# X12 — (Jy. y €#
Y12 A (2, y) € s))
X2 = X21 + X22Y2 = Y21 + Y22
(X21, Y21) € multpw ns (b2 V Y22 # {#}) V. v €# X22 — (Fy. y c#
Y22 A (2, y) € 9))
unfolding mult2-alt-def by (blast 9)
then show ?thesis

28

by (intro mult2-altI[of - X11 + X21 X12 + X22 - Y11 + Y21 Y12 + Y22))
(auto intro: multpw-add simp: ac-simps)
qed

lemmas mult2-alt-s-s-add = mult2-alt-add[of - - False - - - - False, unfolded
sitmp-thms)

lemmas mult2-alt-ns-s-add
simp-thms]

lemmas mult2-alt-s-ns-add = mult2-alt-add|of - - False - - - - True, unfolded
simp-thms]

lemmas mult2-alt-ns-ns-add = mult2-alt-add[of - - True - - - - True, unfolded
stmp-thms)

mult2-alt-add]of - - True - - - - False, unfolded

lemma multpw-map:
assumes Az y. 2 €# X —= ye# YV = (2, y) € ns = (fz, gy) € ns’
and (X, Y) € multpw ns
shows (image-mset f X, image-mset g Y) € multpw ns’
using assms(2,1) by (induct X Y rule: multpw.induct) (auto intro: multpw.intros)

lemma mult2-alt-map:
assumes Az y. t e# X —= ye# Y = (z,y) € ns = (fz, gy) € ns’
and A\zy. s e X = ye# Y = (z,y) € s= (fz,gy) € s’
and (X, Y) € mult2-alt b ns s
shows (image-mset f X, image-mset g Y) € mult2-alt b ns’ s’
proof —
from assms(3) obtain X1 X2 Y1 Y2 where X = X1 + X2Y = Y1 + Y2
(X1, Y1) € multpw ns
bV Y2 £{#}Va. x e# X2 — (Jy. y €# Y2 A (z, y) € s) by (auto elim:
mult2-altE)
moreover from this(1,2,5) have Vz. © €# image-mset f X2 — (Fy. y €#
image-mset g Y2 A (z, y) € s')
using assms(2) by (simp add: in-image-mset image-iff) blast
ultimately show ?thesis using assms multpw-map[of X1 Y1 ns f g]
by (intro mult2-altl[of - image-mset f X1 image-mset f X2 - image-mset g Y1
image-mset g Y2]) auto
qed

Local transitivity of mult2-alt

lemma trans-mult2-alt-local:

assumes ss: N\eyz. c €E# X = ye# Y = 2z €# 7 = (z, y) € s = (y,
2) € s = (z, 2) € s

and ns: N\eyz. e € X = ye# Y = 2 e# 7 = (z,y) € ns = (y, 2)
€s= (z,2) €s

and sn: N\eyz. 2 €# X = ye# Y = 2z e# 7 = (2, y) € s = (y, 2)
eEns = (z,2) €s

and nn: A\eyz. 2 e# X = ye# Y = 2 e# 7 = (z,y) € ns = (y, 2)
€ ns = (z, 2) € ns

and zyz: (X, Y) € mult2-alt b1 ns s (Y, Z) € mult2-alt b2 ns s

29

shows (X, Z) € mult2-alt (b1 A b2) ns s
proof —
let a1l = Enum.finite-3.a; and %02 = Enum.finite-3.a2 and ?a3 = Enum.finite-3.a3
let 2t = {(%al, ?a2), (%al, %?a8), (a2, ?a3)}
let A = {(%al, z) |z. v €# X} U {(%a2, y) |y. y €# Y} U {(%a3, 2) |z. z €#
7}
define s’ where s’ = Restr {((a, z), (b, y)) la b y. (a, b) € 2t A (z, y) € s}
24
define ns’ where ns’ = (Restr {((a, z), (b, y)) la z b y. (a, b) € 2t A (z, y) €
ns} ?A4)=
have *: refl ns’ trans ns’ trans s’ s’ O ns’ C s’ ns’ O s’ C s’
by (force simp: trans-def ss ns sn nn s'-def ns’-def)+
have ({#(%al, z). x €# X#}, {#(%a2, y). y €# Y#}) € mult2-alt b1 ns’ s’
by (auto intro: mult2-alt-map|OF - - xyz(1)] simp: s’-def ns’-def)
moreover have ({#(%a2, y). y €# Y#}, {#(%a3, 2). z €# Z#}) € mult2-alt
b2 ns’ s’
by (auto intro: mult2-alt-map|OF - - xyz(2)] simp: s’-def ns’-def)
ultimately have ({#(%al, z). v €# X#}, {#(%a3, 2). z €# Z#}) € mult2-alt
(b1 A D2) ns' s’
using mult2-s-eq-mult2-s-alt[OF *(5,1,3)] mult2-ns-eq-mult2-ns-alt| OF x(5,1,3)]
trans-mult2-s|OF x(4,1,2)] trans-mult2-ns[OF %(4,1,2)] compat-mult2[OF
“(4.1.2)
by (cases b1; cases b2) (auto simp: trans-O-iff)
from mult2-alt-map[OF - - this, of snd snd ns s]
show ?thesis by (auto simp: s'-def ns’-def image-mset.compositionality comp-def
in-image-mset image-iff)

qged

lemmas trans-mult2-alt-s-s-local = trans-mult2-alt-local[of - - - - - False False,
unfolded simp-thms]

lemmas trans-mult2-alt-ns-s-local = trans-mult2-alt-local[of - - - - - True False,
unfolded simp-thms]

lemmas trans-mult2-alt-s-ns-local = trans-mult2-alt-local[of - - - - - False True,
unfolded simp-thms]

lemmas trans-mult2-alt-ns-ns-local = trans-mult2-alt-localof - - - - - True True,

unfolded simp-thms]

end

3.8 Executable version

theory Multiset- Extension-Pair-Impl
imports
Multiset- Extension-Pair
begin

lemma subset-mult2-alt:

assumes X C# Y (Y, Z) € mult2-alt b ns s b = b’
shows (X, Z) € mult2-alt b’ ns s

30

proof —
from assms(2) obtain Y1 Y2 Z1 Z2 where x: Y = Y1 + Y27 = Z1 + Z2
(Y1, Z1) € multpw ns bV Z2 £ {#} Vy. y €# Y2 — (Fz. z €# Z2 A (y,
z) €)
unfolding mult2-alt-def by blast
define Y11 Y12 X2 where Y11 = Y1 N# X and Yi2 = Y! — X and X2 =
X — Y11
have #x: X = Y11 + X2 X2 C# Y2 Y1 = Y11 + Y12 using (1)
by (auto simp: Y11-def Y12-def X2-def multiset-eq-iff subseteq-mset-def)
(metis add.commute assms(1) le-diff-conv subseteq-mset-def)
obtain Z11 Z12 where *xx: Z = Z11 + (Z12 + Z2) Z1 = Z11 + Z12 (Y11,
Z11) € multpw ns
using %(2,3) *x(3) by (auto elim: multpw-splitR simp: ac-simps)
moreover have Vy. y €# X2 — (3z. z €# Z12 + Z2 N (y, z) € s) bV Z12
+ 22 # {#}
using *(4,5) *x(2) by (auto dest!: mset-subset-eqD)
ultimately show ?thesis using *(2) #x(1) assms(3) unfolding mult2-alt-def
by blast
qed

Case distinction for recursion on left argument

lemma mem-multiset-diff: ¢ e# A = x # y = x €# (A — {#y#})
by (metis add-mset-remove-trivial-If diff-single-trivial insert-noteg-member)

lemma mult2-alt-addL: (add-mset x X, V) € mult2-alt b ns s +—
Quych YA(g) csh(#och X (r.0) €5 #) ¥ — (#uht))
mult2-alt-ns ns s) V
By ye#F Y A(z,y) €nsA(z,y) ¢ s N (X, Y — {#y#}) € mult2-alt b ns s)
(is 7L «— ?R1 V 7R2)
proof (intro iffI; (elim disjE)?)
assume ?L then obtain X7 X2 Y1 Y2 where *x: add-mset t X = X1 + X2'Y
=Yl + Y2
(X1, Y1) € multpwns bV Y2 £ {#} V. v €# X2 — Fy. y €# Y2 A (z,
y) € 3)
unfolding mult2-alt-def by blast
from union-single-eq-member|[OF this(1)] multi-member-split
consider X1’ where XI = add-mset x X1’ x €# X1 | X2’ where X2 =
add-mset ¥ X2' x €# X2
unfolding set-mset-union Un-iff by metis
then show YR1 V ?R2
proof cases
case I then obtain y Y1’ where xx: y €# Y1 Y1 = add-mset y Y1’ (X1,
Y1') € multpw ns (z, y) € ns
using * by (auto elim: multpw-split1R)
show ?thesis
proof (cases (z, y) € s)
case Fulse then show ?thesis using mult2-altI[OF refl refl «x(3) *(4,5)] =
by (auto simp: 1 ** intro: exl[of - y])
next

31

case True
define X2’ where X2' = {# z €¢# X2. (z, y) ¢ s #}
have z5: V. z €# X2' — (2. 2z €# Y2 A (z, 2) € s) using x(5) *x(1,2)
by (auto simp: X2'-def)
have z4: {# = €# X. (z, y) & s#} C# X1’ + X2' using (1) 1
by (auto simp: X2'-def multiset-eq-iff intro!: mset-subset-eql split: if-splits
elim!: in-countE) (metis le-refl)
show ?thesis using mult2-alt-nsI[OF refl refl xx(3) x3, THEN subset-mult2-alt[OF
74]]
xx(2) %(2) True by (auto intro: exl[of - y])
qed
next
case 2 then obtain y where xx: y €# Y2 (z, y) € s using * by blast
define X2’ where X2' = {# ¢ €# X2. (z, y) ¢ s #}
have z5: V. z €# X2' — (Fz. 2z €# Y2 — {#y#} A (2, 2) €)
using *(5) *xx(1,2) by (auto simp: X2'-def) (metis mem-multiset-diff)
have zf: {# =z e¢# X. (z, y) ¢ s#} C# X1 + X2’
using *(1) xx(2) by (auto simp: X2'-def multiset-eq-iff intro!: mset-subset-eql
split: if-splits)
show ?thesis
using mult2-alt-nsI[OF refl refl x(3) 3, THEN subset-mult2-alt|OF 4], of
True] xx(1,2) %(2)
by (auto simp: diff-union-single-conv[symmetric|)
qed
next
assume ?R1
then obtain y where x: y €# Y (2, y) € s {(# z €# X. (z, y) ¢ s #}, ¥V —
{#y#}) € mult2-alt-ns ns s
by blast

then have xx: ({# z €# X. (z, y) € s #} + {#a#}, {#y#}) € mult2-alt b ns

s
(foet X (ny) gs#t+ (Foet X (ny) es 4} =X
by (auto intro: mult2-altl[of - {#} - - {#}] multiset-eql split: if-splits)
show ?L using mult2-alt-add[OF x(8) xx(1)] % *x by (auto simp: union-assoc[symmetric|)
next
assume ?R2
then obtain y where x: y €# Y (2, y) € ns (X, Y — {#y#}) € mult2-alt b
ns s by blast
then show ?L using mult2-alt-add[OF «(8) multpw-implies-mult2-alt-ns, of
[} (o))
by (auto intro: multpw-single)
qged

Auxiliary version with an extra bool argument for distinguishing between
the non-strict and the strict orders

context fixes nss :: ‘a = 'a = bool = bool
begin

fun mult2-impl0 :: 'a list = 'a list = bool = bool

32

and mult2-ex-dom0 :: 'a = 'a list = 'a list = 'a list = bool = bool
where

mult2-impl0 || b+—b
| mult2-impl0 xs [| b +— False
| mult2-impl0] ys b «— True

| mult2-impl0 (z # xs) ys b «— mult2-ex-dom0 = xs ys [| b

| mult2-ex-dom0 x s || ys' b «— False

| mult2-ex-dom0 x zs (y # ys) ys’ b +—
nss « y False A mult2-impl0 (filter (A\x. - nss x y False) xzs) (ys @ ys’) True V
nss x y True A — nss z y False A mult2-impl0 xs (ys @ ys’) bV
mult2-ex-dom0 = xs ys (y # ys') b

end

lemma mult2-impl0-sound:
fixes nss
defines ns = {(z, y). nss z y True} and s = {(z, y). nss x y False}
shows mult2-impl0 nss xs ys b <— (mset xs, mset ys) € mult2-alt b ns s
mult2-ex-dom0 nss T xs ys ys' b +—
(Fy. y €# mset ys A (z, y) € s A (mset (filter (A\x. (z, y) & s) xs), mset (ys
Q ys') — {#y#}) € mult2-alt True ns s) V
By. y €# mset ys A (z, y) € ns A (z, y) ¢ s A (mset zs, mset (ys Q ys’) —
{#y#}) € mult2-alt b ns s)
proof (induct zs ys b and z xs ys ys’ b taking: nss rule: mult2-impl0-mult2-ex-dom0.induct)
case (4 z s y ys b) show ?case unfolding mult2-impl0.simps 4
using mult2-alt-addL{of x mset xs mset (y # ys) b ns s] by (simp add:
mset-filter)
next
case (6 z zs y ys ys' b) show ?case unfolding mult2-exz-dom0.simps 6
using subset-mult2-alt[of mset [z<xs . (z, y) & s] mset xs mset (ys Q ys') b ns
s True]
apply (intro iffI; elim disjE conjE exE; simp add: mset-filter ns-def s-def; (elim
disjE) ?)
subgoal by (intro disjl1 exI[of - y]) auto
subgoal by (intro disjI2 exI[of - y]) auto
subgoal for y’ by (intro disjI1 exI[of - y']) auto
subgoal for y’ by (intro disjI2 exI[of - y']) auto
subgoal for y’ by simp
subgoal for y’ by (rule disjI2, rule disjI2, rule disjI1, rule exI[of - y']) simp
subgoal for 3’ by simp
subgoal for y’ by (rule disjI2, rule disjI2, rule disjI2, rule exI[of - y']) simp
done
qed (auto simp: mult2-alt-emptyL mult2-alt-emptyR)

Now, instead of functions of type bool = bool, use pairs of type bool x
bool

definition [simp]: or2 a b = (fst a V fst b, snd a V snd b)

33

context fixes sns :: ‘'a = 'a = bool x bool
begin

fun mult2-impl :: 'a list = 'a list = bool x bool
and mult2-ez-dom :: 'a = 'a list = 'a list = 'a list = bool x bool
where
mult2-impl] [| = (False, True)
| mult2-impl xs [| = (False, False)
| mult2-impl] ys = (True, True)
| mult2-impl (z # xs) ys = mult2-ex-dom x xs ys []

| mult2-ex-dom x xs |] ys' = (False, Fulse)
| mult2-ex-dom x zs (y # ys) ys’' =

(case sns x y of

(True, -) = if snd (mult2-impl (filter (Az. — fst (sns = y)) zs) (ys Q ys'))
then (True, True)
else mult2-ex-dom x s ys (y # ys’)

| (False, True) = or2 (mult2-impl xzs (ys Q ys’)) (mult2-ez-dom z zs ys (y #
y5")

| - = mult2-ex-dom x xs ys (y # ys'))
end

lemma mult2-impl-sound0:
defines pair = Af. (f False, f True) and fun = Ap b. if b then snd p else fst p
shows mult2-impl sns xzs ys = pair (mult2-impl0 (Az y. fun (sns x y)) zs ys) (is
?P)
mult2-ex-dom sns x zs ys ys' = pair (mult2-ex-dom0 (Az y. fun (sns z y)) z s
ys ys') (is 7Q)
proof —
show ?P ?2(Q)
proof (induct zs ys and z s ys ys’ taking: sns rule: mult2-impl-mult2-ex-dom.induct)
case (6 z xs y ys ys')
show ?case unfolding mult2-ex-dom.simps mult2-ex-dom0.simps
by (fastforce simp: pair-def fun-def 6 if-bool-eq-conj split: prod.splits bool.splits)
qed (auto simp: pair-def fun-def if-bool-eq-conj)
qed

lemmas mult2-impl-sound = mult2-impl-sound0(1)[unfolded mult2-impl0-sound
if-True if-False]
end

4 Multiset extension of order pairs in the other
direction

Many term orders are formulated in the other direction, i.e., they use strong
normalization of > instead of well-foundedness of <. Here, we flip the direc-
tion of the multiset extension of two orders, connect it to existing interfaces,
and prove some further properties of the multiset extension.

34

theory Multiset-Extension2
imports
List-Order
Multiset- Extension-Pair
begin

4.1 List based characterization of multpw

lemma multpw-listl:
assumes length rs = length ys X = mset xs Y = mset ys
Vi i < length ys — (zs ! i, ys ! i) € ns
shows (X, Y) € multpw ns
using assms
proof (induct xs arbitrary: ys X Y)
case (Nil ys) then show ?case by (cases ys) (auto intro: multpw.intros)
next
case Consl: (Cons z zs ys' X Y) then show Zcase
proof (cases ys’)
case (Cons y ys)
then have Vi. i < length ys — (zs ! i, ys ! i) € ns using ConsI(5) by
fastforce
then show ?thesis using Cons(2,5) by (auto intro!: multpw.intros simp:
Cons(1) Consl)
ged auto
qed

lemma multpw-listE:
assumes (X, Y) € multpw ns
obtains zs ys where length xs = length ys X = mset zs Y = mset ys
Vi. i < length ys — (zs ! i, ys ! i) € ns
using assms
proof (induct X Y arbitrary: thesis rule: multpw.induct)
case (addzy X Y)
then obtain zs ys where length xs = length ys X = mset xs
Y = mset ys (Vi. i < length ys — (zs! 4, ys ! i) € ns) by blast
then show ?case using add(1) by (intro add(4)[of x # xs y # ys]) (auto,
case-tac i, auto)
qed auto

4.2 Definition of the multiset extension of >-orders

We define here the non-strict extension of the order pair (>,>) — usually
written as (ns, s) in the sources — by just flipping the directions twice.

definition ns-mul-ext :: 'a rel = 'a rel = 'a multiset rel

where ns-mul-ext ns s = (mult2-alt-ns (ns~1!) (s71))~!

lemma ns-mul-extl:
assumes A = Al + A2 and B = Bl + B2
and (A1, BI) € multpw ns

35

and A\b. b €# B2 = Ja. a €# A2 A (a, b) € s
shows (A, B) € ns-mul-ext ns s
using assms by (auto simp: ns-mul-ezxt-def multpw-converse introl: mult2-alt-nsI)

lemma ns-mul-extE:
assumes (A, B) € ns-mul-ext ns s
obtains A1 A2 Bl B2 where A = A1 + A2 and B = Bl + B2
and (A1, B1) € multpw ns
and A\b. b €# B2 = Ja. a €# A2 A (a, b) € s
using assms by (auto simp: ns-mul-ext-def multpw-converse elim!: mult2-alt-nsE)

lemmas ns-mul-extl-old = ns-mul-extI[OF - - multpw-listI|OF - refl refl], rule-format]

Same for the "greater than" order on multisets.

definition s-mul-ext :: 'a rel = 'a rel = 'a multiset rel
where s-mul-ext ns s = (mult2-alt-s (ns~1) (s71))~*

lemma s-mul-extl:
assumes A = A1 + A2 and B = Bl + B2
and (A1, Bl) € multpw ns
and A2 # {#} and A\b. b €# B2 = Ja. a €# A2 A (a, b) € s
shows (4, B) € s-mul-ext ns s
using assms by (auto simp: s-mul-ext-def multpw-converse introl: mult2-alt-sI)

lemma s-mul-extE:
assumes (A, B) € s-mul-ext ns s
obtains A1 A2 Bl B2 where A = A1 + A2 and B = Bl + B2
and (A1, B1) € multpw ns
and A2 # {#} and A\b. b €# B2 = FJa. a €# A2 N (a, b) € s
using assms by (auto simp: s-mul-ext-def multpw-converse elim!: mult2-alt-sE)

lemmas s-mul-extl-old = s-mul-extI[OF - - multpw-listI[OF - refl refl], rule-format)

4.3 Basic properties

lemma s-mul-ext-mono:
assumes ns C ns’ s C s’ shows s-mul-ext ns s C s-mul-ext ns’ s’
unfolding s-mul-ext-def using assms mono-mult2-alt[of ns~1 ns'~! s71 s/~1

by simp

lemma ns-mul-ext-mono:
assumes ns C ns’ s C s’ shows ns-mul-ext ns s C ns-mul-ext ns’ s’
unfolding ns-mul-ext-def using assms mono-mult2-alt[of ns™! ns'~! s71 s/~1

by simp

lemma s-mul-ext-local-mono:
assumes sub: (set-mset xs X set-mset ys) N ns C ns’ (set-mset xs X set-mset ys)
NsCs’
and rel: (zs,ys) € s-mul-ext ns s
shows (zs,ys) € s-mul-ext ns’ s’

36

using rel s-mul-ext-mono[OF sub] mult2-alt-local|of ys xs False ns—1 s71]
by (auto simp: s-mul-ext-def converse-Int ac-simps converse-Times)

lemma ns-mul-ext-local-mono:
assumes sub: (set-mset xs X set-mset ys) N ns C ns’ (set-mset xs X set-mset ys)
NsCs’
and rel: (xs,ys) € ns-mul-ext ns s
shows (zs,ys) € ns-mul-ext ns’ s’
using rel ns-mul-ext-mono[OF sub] mult2-alt-local[of ys xs True ns=1 s71]
by (auto simp: ns-mul-ext-def converse-Int ac-simps converse-Times)

lemma s-mul-ext-ord-s [mono):

assumes Ast. ord st — ord' st

shows (s, t) € s-mul-ext ns {(s,t). ord s t} — (s, t) € s-mul-ext ns {(s,t). ord’
st}

using assms s-mul-ext-mono by (metis (mono-tags) case-prod-conv mem-Collect-eq
old.prod.exhaust subset-eq)

lemma ns-mul-ext-ord-s [mono):

assumes Ast. ord st — ord' st

shows (s, t) € ns-mul-ext ns {(s,t). ord s t} — (s, t) € ns-mul-ext ns {(s,t).
ord’ s t}

using assms ns-mul-ext-mono by (metis (mono-tags) case-prod-conv mem-Collect-eq
old.prod.exhaust subset-eq)

The empty multiset is the minimal element for these orders

lemma ns-mul-ext-bottom: (A {#}) € ns-mul-ext ns s
by (auto intro!: ns-mul-extl)

lemma ns-mul-ext-bottom-uniqueness:
assumes ({#},4) € ns-mul-ext ns s
shows A = {#}
using assms by (auto simp: ns-mul-ext-def mult2-alt-ns-def)

lemma ns-mul-ext-bottom?2:
assumes (A,B) € ns-mul-ext ns s

and B # {#}
shows A # {#}

using assms by (auto simp: ns-mul-ext-def mult2-alt-ns-def)

lemma s-mul-ext-bottom:
assumes A # {#}
shows (A {#}) € s-mul-ext ns s
using assms by (auto simp: s-mul-ext-def mult2-alt-s-def)

lemma s-mul-ext-bottom-strict:
({#},A) ¢ s-mul-ext ns s
by (auto simp: s-mul-ext-def mult2-alt-s-def)

Obvious introduction rules.

37

lemma all-ns-ns-mul-ext:
assumes length as = length bs
and Vi. ¢ < length bs — (as ! 4, bs ! ©) € ns
shows (mset as, mset bs) € ns-mul-ext ns s
using assms by (auto introl: ns-mul-extI[of - - {#} - - {#}] multpw-list])

lemma all-s-s-mul-ext:
assumes A # {#}
and Vb. b €# B — (Ja. a €# A A (a,) € 3)
shows (4, B) € s-mul-ext ns s
using assms by (auto introl: s-mul-extl[of - {#} - - {#}] multpw-listI)

Being stricly lesser than implies being lesser than

lemma s-ns-mul-ext:
assumes (A4, B) € s-mul-ext ns s
shows (A, B) € ns-mul-ext ns s
using assms by (simp add: s-mul-ext-def ns-mul-ext-def mult2-alt-s-implies-mult2-alt-ns)

The non-strict order is reflexive.

lemma multpw-refl”:
assumes locally-refl ns A
shows (A4, A) € multpw ns
proof —
have Restr Id (set-mset A) C ns using assms by (auto simp: locally-refl-def)
from refl-multpw]of Id] multpw-local[of A A Id] mono-multpw|OF this|
show ?thesis by (auto simp: refl-on-def)
qed

lemma ns-mul-ext-refi-local:
assumes locally-refl ns A
shows (4, A) € ns-mul-ext ns s
using assms by (auto intro!: ns-mul-extl[of A A {#} A A {#} ns s| multpw-refl’)

lemma ns-mul-ext-refi:

assumes refl ns

shows (4, A) € ns-mul-ext ns s

using assms ns-mul-ext-refl-locallof ns A s] unfolding refl-on-def locally-refl-def
by auto

The orders are union-compatible

lemma ns-s-mul-ext-union-multiset-I:
assumes (A, B) € ns-mul-ext ns s
and C # {#}
andVd. d e# D — (Jec. c €# C A (¢,d) € 3)
shows (A + C, B + D) € s-mul-ext ns s
using assms unfolding ns-mul-ext-def s-mul-ext-def
by (auto intro!: conversel mult2-alt-ns-s-add mult2-alt-sl|of - {#} - - {#}])

lemma s-mul-ext-union-compat:

38

assumes (A, B) € s-mul-ext ns s
and locally-refl ns C
shows (A + C, B + C) € s-mul-ext ns s
using assms ns-mul-ext-refl-local| OF assms(2)] unfolding ns-mul-ext-def s-mul-ext-def
by (auto intro!: conversel mult2-alt-s-ns-add)

lemma ns-mul-ext-union-compat:
assumes (A, B) € ns-mul-ext ns s
and locally-refl ns C
shows (A + C, B + C) € ns-mul-ext ns s
using assms ns-mul-ext-refl-local| OF assms(2)] unfolding ns-mul-ext-def s-mul-ext-def
by (auto intro!: conversel mult2-alt-ns-ns-add)

context
fixes NS :: 'a rel
assumes NS: refl NS
begin

lemma refi-imp-locally-refl: locally-refl NS A using NS unfolding refl-on-def lo-
cally-refl-def by auto

lemma supseteq-imp-ns-mul-ext:
assumes A DO# B
shows (4, B) € ns-mul-ext NS S
using assms
by (auto introl: ns-mul-extl[of A B A — B B B {#}] multpw-refl’ refl-imp-locally-refl
simp: subset-mset.add-diff-inverse)

lemma supset-imp-s-mul-ext:
assumes A D# B
shows (4, B) € s-mul-ext NS S
using assms subset-mset.add-diff-inverse[of B A
by (auto intro!: s-mul-extl[of A B A — B B B {#}] multpw-refl’ refl-imp-locally-refl
stmp: Diff-eq-empty-iff-mset)

end

definition mul-ext :: ('a = 'a = bool x bool) = 'a list = 'a list = bool x bool

where mul-ext f zs ys = let s = {(z,y). fst (fz y)}; ns = {(z,y). snd (fz y)}
in ((mset zs,mset ys) € s-mul-ext ns s, (mset xs, mset ys) € ns-mul-ext ns s)

definition smulextp f m n <— (m, n) € s-mul-ext {(z, y). snd (fz y)} {(=,).

fst (fzy)}

definition nsmulextp f m n «— (m, n) € ns-mul-ext {(z, y). snd (fz y)} {(z, v).

fst (fzy)}
lemma smulextp-cong[fundef-congl:

assumes 751 = ysl
and zs2 = ys2

39

and A\ z 2’ x €# ysl = v/ e# ys2 = frzax' ' =guza’
shows smulextp f xs1 xs2 = smulextp g ysI ys2
unfolding smulextp-def
proof
assume (zs1, zs2) € s-mul-ext {(z, y). snd (fz y)} {(z, y). fst (fzy)}
from s-mul-ext-local-mono|OF - - this, of {(z, y). snd (g z y)} {(z, v). fst (g
v}
show (ysI, ys2) € s-mul-ext {(z, y). snd (g zy)} {(z, y). fst (g z y)}
using assms by force
next
assume (ys!, ys2) € s-mul-ext {(z, y). snd (g z y)} {(z, y). fst (g z y)}
from s-mul-ext-local-mono[OF - - this, of {(z, y). snd (fz y)} {(z, v). fst (fz
v}
show (zs1, zs2) € s-mul-ext {(z, y). snd (fz y)} {(z, y). fst (fzy)}
using assms by force
qed

lemma nsmulextp-cong|fundef-cong]:
assumes sl = ysl
and xs2 = ys2
and A\ z 2’z €# ysl =z’ €# ys2 = faza'=gaz’
shows nsmulextp f xs1 xs2 = nsmulextp g ysi ys2
unfolding nsmulextp-def
proof
assume (zs1, zs2) € ns-mul-ext {(z, y). snd (fzy)} {(z, v). fst (fz y)}
from ns-mul-ext-local-mono|OF - - this, of {(x, y). snd (g x y)} {(z, y). fst (g z
y)}]
show (ys1, ys2) € ns-mul-ext {(z, y). snd (g z y)} {(z, v). fst (9 z y)}
using assms by force
next

assume (ysl, ys2) € ns-mul-ext {(z, y). snd (g z y)} {(z, y). fst (g z y)}
from ns-mul-ext-local-mono[OF - - this, of {(x, y). snd (fz y)} {(z, y). fst (fz

y)}]
show (zs1, zs2) € ns-mul-ext {(z, y). snd (fz y)} {(z, v). fst (fzy)}
using assms by force
qed

definition mulextp f m n = (smulextp f m n, nsmulextp f m n)

lemma mulextp-cong|fundef-congl:
assumes 15! = ysl
and zs2 = ys2
and A\ z 2’ x €# ysl = v/ e# ys2 = frzax'=gaza’
shows mulextp f xsl xs2 = mulextp g ys1 ys2
unfolding mulectp-def using assms by (auto cong: nsmulextp-cong smulextp-cong)

lemma mset-s-mul-ext:
(mset zs, mset ys) € s-mul-ext {(z, y). snd (fzy)} {(z, y).fst (fz y)} +—

40

fst (mul-ext f xs ys)
by (auto simp: mul-ext-def Let-def)

lemma mset-ns-mul-ext:
(mset xs, mset ys) € ns-mul-ext {(z, y). snd (fz y)} {(z, y).fst (fzy)} «—
snd (mul-ext f s ys)
by (auto simp: mul-ext-def Let-def)

lemma smulextp-mset-code:
smulextp f (mset xs) (mset ys) +— fst (mul-ext f zs ys)
unfolding smulextp-def mset-s-mul-ext ..

lemma nsmulextp-mset-code:
nsmulextp f (mset zs) (mset ys) «— snd (mul-ext f zs ys)
unfolding nsmulextp-def mset-ns-mul-ext ..

lemma nstri-mul-ext-map:
assumes \\s t. s € set ss => t € set ts = fst (order s t) => fst (order’ (f s)

(F1))
and Ast. s € set ss = t € set ts => snd (order s t) = snd (order’ (fs) (f
t)
and snd (mul-ext order ss ts)
shows snd (mul-ext order’ (map f ss) (map f ts))
using assms mult2-alt-map|of mset ts mset ss {(t, s). snd (order s t)} f f
{(t, 8). snd (order’ s t)} {(t, s). fst (order s t)} {(t, s). fst (order’ s t)} True]
by (auto simp: mul-ext-def ns-mul-ext-def converse-unfold)

lemma stri-mul-ext-map:
assumes \s t. s € set ss = t € set ts = fst (order s t) = fst (order’ (f s)

(1)
and Ast. s € set ss = t € set ts => snd (order s t) = snd (order’ (fs) (f
t)
and fst (mul-ext order ss ts)
shows fst (mul-ext order’ (map f ss) (map [ts))
using assms mult2-alt-map|of mset ts mset ss {(t,s). snd (order s t)} f f
{(t, 8). snd (order’ s t)} {(t, s). fst (order s t)} {(t, s). fst (order’ s t)} False]
by (auto simp: mul-ext-def s-mul-ext-def converse-unfold)

lemma mul-ezt-arg-empty: snd (mul-ext f || xs) = s = |]
unfolding mul-ext-def Let-def by (auto simp: ns-mul-ext-def mult2-alt-def)

The non-strict order is irreflexive

lemma s-mul-ext-irrefl: assumes érr: irrefl-on (set-mset A) S
and S-NS: S C NS
and compat: S O NS C S

shows (A4,A) ¢ s-mul-ext NS S using irr

proof (induct A rule: wf-induct|OF wf-measure|of size]])
case (1 A)

41

show Zcase
proof
assume (A,A4) € s-mul-ext NS S
from s-mul-extE[OF this]
obtain A1 A2 B1 B2 where
A: A= A1 + A2
and B: A = B!l + B2
and AB1: (A1, B1) € multpw NS
and ne: A2 # {#}
and S: A\b. b €# B2 — Ja. a €# A2 A (a, b) € S
by blast
from multpw-listE[OF AB1] obtain as! bs! where
l1: length asl = length bsl1
and AI: Al = mset asl
and BI: Bl = mset bsl
and NS: A i. i<length bs1 = (as1 ! i, bs1 ! i) € NS by blast

note NSS = NS
note SS = S

obtain as2 where A2: A2 = mset as2 by (metis ex-mset)
obtain bs2 where B2: B2 = mset bs2 by (metis ex-mset)
define as where as = as! @ as2
define bs where bs = bs! Q bs2
have as: A = mset as unfolding A A1 A2 as-def by simp
have bs: A = mset bs unfolding B B1 B2 bs-def by simp
from as bs have abs: mset as = mset bs by simp
hence set-ab: set as = set bs by (rule mset-eq-setD)
let ?n = length bs
have las: length as = ?n

using mset-eq-length abs by fastforce
let ?m = length bs1
define decr where decr j i =

(aslj,bsti) e NSA(i<m —j=0) AN (m<i— 2m<jA(as!j,

bs!i) € S) for ij

define step where step 1 j k =

(i< fmAj<mANE<nANbs!k=uas!jA decrji)

for ijk
{
fix ¢
assume i: 1 < n
let 26 = bs ! i

have 3 j. j < ?n A decrji
proof (cases i < ?m)
case Fulse
with 7 have ?b € set bs2 unfolding bs-def
by (auto simp: nth-append)
hence ?b €# B2 unfolding B2 by auto
from S[OF this, unfolded A2] obtain a where a: a € set as2 and S: (a,

42

%) € S
by auto
from a obtain k£ where a: a = as2 | k and k: k < length as2 unfolding
set-conv-nth by auto
have a = as! (Ym + k) unfolding a as-def l1[symmetric] by simp
from S[unfolded this] S-NS False k
show ?thesis unfolding decr-def
by (intro exI[of - ?m + k], auto simp: las[symmetric] l1[symmetric] as-def)
next
case True
from NS[OF this] i True show ?thesis unfolding decr-def
by (auto simp: as-def bs-def 11 nth-append)
qed (insert i NS)
from this[unfolded set-conv-nth| las
obtain j where j: j < ?n and decr: decr j i by auto
let 2a = as!j
from j las have %a € set as by auto
from this[unfolded set-ab, unfolded set-conv-nth] obtain k where
k: k < %n and id: ?a = bs ! k by auto
have J j k. stepij k
using j k decr id ¢ unfolding step-def by metis
}

henceV i.3 jk. i < ?n — step 1 j k by blast
from choice|OF this| obtain J' where V . 3 k. i < n — step i (J' i) k
by blast
from choice[OF this] obtain K’ where
step: \ . i < n = step i (J' i) (K' i) by blast
define [where I { = (K'77%) 0 for {
define J where J i = J’ (I i) for i
define K where K i = K’ (I i) for 4
from ne have A # {#} unfolding A by auto
hence set as # {} unfolding as by auto
hence length as # 0 by simp
hence n0: 0 < ?n using las by auto
{
fix n
have step (I n) (Jn) (K n)
proof (induct n)
case ()
from step|OF n0] show ?case unfolding I-def J-def K-def by auto
next
case (Suc n)
from Suc have K n < ?n unfolding step-def by auto
from step|OF this] show ?case unfolding J-def K-def I-def by auto
qed
}
note step = this
have I n € {..<?n} for n using step[of n] unfolding step-def by auto
hence I * UNIV C {..<?n} by auto

43

from finite-subset| OF this] have finite (I ¢ UNIV) by simp
from pigeonhole-infinite[OF - this| obtain m where
infinite {i. I i = I m} by auto
henced m’. m’'>mAIm'=1m
by (simp add: infinite-nat-iff-unbounded)
then obtain m’ where x: m < m’ I m’ = I m by auto
let P=An.3mnZ0ANI(n+m)=1Im
define n where n = (LEAST n. ?P n)
have 3 n. ?Pn
by (rule exI[of - m’ — m], rule exI[of - m], insert x, auto)
from Leastl-ex[of ?P, OF this, folded n-def]
obtain m where n: n # 0 and Im: I (n + m) = I m by auto
let M = {m..<m+n}
{
fix ij
assume x: m < (¢ < jj<n+m
define k£ where £k = j — ¢
have k0: k # 0 and j: j = k + i and kn: k < n using * unfolding k-def
by auto
from not-less-Least|of - 2P, folded n-def, OF kn] kO
have I ¢ # I j unfolding j by metis
}
hence inj: inj-on I ?M unfolding inj-on-def
by (metis add.commute atLeastLessThan-iff linorder-neqE-nat)
define b where b i = bs! I ¢ for ¢
have bnm: b (n + m) = b m unfolding b-def Im ..
{
fix ¢
from step|of i, unfolded step-def]
have id: bs ! K i = as ! Ji and decr: decr (J i) (I i) by auto
from id decr[unfolded decr-def] have (bs ! K i, bs ! I i) € NS by auto
also have K i = I (Suc i) unfolding I-def K-def by auto
finally have (b (Suc i), b i) € NS unfolding b-def by auto
} note NS = this
{
fix i j :: nat
assume 7 < j
then obtain k where j: j = i + k by (rule less-eqE)
have (b j, b i) € NS unfolding j
proof (induct k)
case (Suc k)
thus ?case using NS[of i + k] by auto
qed auto
} note NSstar = this
{
assume d ¢ € M. I¢> ?m
then obtain k£ where k: k € ?M and I: [k > ?m by auto
from step|of k, unfolded step-def]
have id: bs ! Kk = as! J k and decr: decr (J k) (I k) by auto

44

from id decr[unfolded decr-def] I have (bs! K k, bs ! I k) € S by auto
also have K k = I (Suc k) unfolding I-def K-def by auto
finally have S: (b (Suc k), b k) € S unfolding b-def by auto
from k have m < k by auto
from NSstar|OF this] have NS1: (b k, b m) € NS™x .
from k£ have Suc k < n + m by auto
from NSstar|OF this, unfolded bnm] have NS2: (b m, b (Suc k)) € NS .
from NSI1 NS2 have (b k, b (Suc k)) € NS™x by simp
with S have (b (Suc k), b (Suc k)) € S O NS™x by auto
also have ... C S using compat
by (metis compat-tr-compat converse-inward(1) converse-mono converse-relcomp)
finally have contradiction: b (Suc k) ¢ set-mset A using 1 unfolding
irrefl-on-def by auto
have b (Suc k) € set bs unfolding b-def using step[of Suc k] unfolding
step-def
by auto
also have set bs = set-mset A unfolding bs by auto
finally have Fulse using contradiction by auto

}

hence only-NS: i € ?M = I i < ?m for i by force
{
fix ¢
assume i: i € M
from step|of i, unfolded step-def] have x: [i < n K i < n
and id: bs ! Ki = as! Jiand decr: decr (J i) (I i) by auto
from decr[unfolded decr-def] only-NS[OF i] have J i = I i by auto
with id have id: bs ! K i = as ! I i by auto
note only-NS[OF i] id
} note pre-result = this
{
fix ¢
assume i: 1 € M
have x: [i < m K i < ?m
proof (rule pre-result|OF i])
have 3 je ?M. Ki=1j
proof (cases Suc i € ?M)
case True
show ?thesis by (rule bexI[OF - True], auto simp: K-def I-def)
next
case Fulse
with ¢ have id: n + m = Suc 7 by auto
hence id: K i = I m by (subst Im[symmetric], unfold id, auto simp: K-def
I-def)
with ¢ show ?thesis by (intro bezl[of - m], auto simp: K-def I-def)
qed
with pre-result show K i < ?m by auto
qed
from pre-result(2)[OF i] « 11 have bsi | Ki=asl ! 17K i=1 (Suci)
unfolding as-def bs-def by (auto simp: nth-append K-def I-def)

45

with « have bs! ! I (Suc i) =asl ' IiIi< ?m I (Suci)< ?m
by auto
} note pre-identities = this
define M where M = M
note inj = inj[folded M-def]
define nzt where nat ¢ = (if Suc i = n + m then m else Suc i) for i
define prv where prv i = (if i = m then n + m — 1 else i — 1) for i
{
fix {
assume 7 € M
hence i: { € ?M unfolding M-def by auto
from i n have inM: nat i € M prvi € M nat (prv i) = i prv (nat i) = ¢
unfolding nat-def pru-def by (auto simp: M-def)
from i pre-identities|OF i] pre-identities[of m] Im n
have nxt: bs! ! I (nat i) = asl ! T4
unfolding nat-def pru-def by (auto simp: M-def)
note nat inM
} note identities = this

note identities = identities|folded M-def]
define Drop where Drop =1 ‘M

define rem-idc where rem-idz = filter (X i. i ¢ Drop) [0..<?m)]
define drop-idz where drop-ide = filter (X i. ¢ € Drop) [0..<?m]
define as!’ where as!’ = map ((!) asl) rem-idz
define bs1’ where bs1’ = map ((!) bsl) rem-idx
define as!’ where as1’ = map ((!) asl) drop-idz
define bs!’ where bs1'" = map ((!) bsl) drop-idz
{

fix as! :: 'a list and D :: nat set

define I where I = [0..< length asl]

have mset as! = mset (map ((!) asl) I) unfolding I-def

by (rule arg-conglof - - mset], intro nth-equalityl, auto)
also have ... = mset (map ((!) as?) (filter (A i. i € D) I))
+ mset (map ((!) as1) (filter (A 4. i ¢ D) I))
by (induct I, auto)
also have I = [0..< length asl] by fact
finally have mset asl = mset (map ((!) asl) (filter (Ai. i € D) [0..<length
asl])) + mset (map ((!) as1) (filter (\i. i ¢ D) [0..<length asl])) .

} note split = this
from split[of bs1 Drop, folded rem-idz-def drop-idz-def, folded bs1'-def bs1''-def]
have bs1: mset bs1 = mset bsl' + mset bsl’ .

from split[of asl Drop, unfolded 11, folded rem-idz-def drop-idz-def, folded

asl’-def as1''-def]

have asl: mset asl = mset asl’ + mset asl’.

46

define I’ where I’ = the-inv-into M I
have bij: bij-betw I M Drop using inj unfolding Drop-def by (rule inj-on-imp-bij-betw)
from the-inv-into-f-f[OF inj, folded I'-def] have I'l: i e M = I’ (I i) = i
for i by auto
from bij I'I have II": i € Drop = I (I' i) = i for i
by (simp add: I’-def f-the-inv-into-f-bij-betw)
from II' I'I identities bij have Drop-M: i € Drop = 1’ i € M for i
using Drop-def by force
have M-Drop: i € M = I i € Drop for i unfolding Drop-def by auto
{
fix z
assume z € Drop
then obtain ¢ where i: i € M and z: z = I ¢ unfolding Drop-def by auto
have z < ?m unfolding z using i pre-identities[of i] unfolding M-def by
auto
} note Drop-m = this
hence drop-idz: set drop-idr = Drop unfolding M-def drop-idz-def set-filter
set-upt by auto
have mset as1' = mset (map ((!) as1) drop-idz) unfolding as1'’-def mset-map
by auto
also have drop-ide = map (I o I') drop-idz using drop-idz by (intro nth-equalityl
auto introl: I1'[symmetric])
also have map ((!) asl) ... = map (A i. asl ! I i) (map I’ drop-idz) by auto
also have ... = map (A i. bs1 ! I (nat ©)) (map I’ drop-idzx)
by (rule map-cong|OF refl], rule identities(1)[symmetric], insert drop-idx
Drop-M, auto)

also have ... = map ((!) bs1) (map (I o nxt o I') drop-idx)
by auto
also have mset ... = image-mset ((!) bsl) (image-mset (I o nxt o I') (mset

drop-idz)) unfolding mset-map ..
also have image-mset (I o nat o I’) (mset drop-idx) = image-mset I (image-mset
nat (image-mset I' (mset drop-idr)))
by (metis multiset.map-comp)
also have image-mset nat (image-mset I' (mset drop-idz)) = image-mset I’
(mset drop-idz)
proof —
have dist: distinct drop-idez unfolding drop-idz-def by auto
have injI". inj-on I' Drop using II' by (rule inj-on-inversel)
have mset drop-ide = mset-set Drop unfolding drop-idz[symmetric]
by (rule mset-set-set[symmetric, OF dist])
from image-mset-mset-set[OF injl’, folded this)
have image-mset I' (mset drop-idz) = mset-set (I' ¢ Drop) by auto
also have I’ ‘ Drop = M using II' I'l M-Drop Drop-M by force
finally have id: image-mset I’ (mset drop-idz) = mset-set M .
have inj-nat: inj-on nat M using identities by (intro inj-on-inversel)
have nzt: nat < M = M using identities by force
show ?thesis unfolding id image-mset-mset-set| OF inj-nxt] nat ..
qed
also have image-mset I ... = mset drop-ide unfolding multiset.map-comp

47

using II’
by (intro multiset. map-ident-strong, auto simp: drop-idx)
also have image-mset ((!) bs1) ... = mset bs1' unfolding bs1'"'-def mset-map

finally have bs!': mset bs1’ = mset asl’ ..

let ?A = mset asl’ + mset as2

let ?B = mset bs1’ + mset bs2

from as! bs1’ have asl: mset asl1 = mset bsl1' + mset asl’ by auto
have A: A = mset bs1’” + ?A unfolding A A1 A2 asl by auto
have B: A = mset bs1” + ?B unfolding B B1 B2 bsl by auto
from A[unfolded B] have AB: ?A = ?B by simp

have 11" length asl’ = length bs1’ unfolding asl’-def bs1’-def by auto
have NS: (mset asl’, mset bs1’) € multpw NS
proof (rule multpw-listI[OF 11" refl refl], intro alll impl)
fix ¢
assume i: | < length bs1’
hence rem-idx ! i € set rem-idz unfolding bs1’-def by (auto simp: nth-append)
hence ri: rem-idx ! ¢ < ¢m unfolding rem-idz-def by auto
from NSS[OF this] i
show (as1’! i, bs1’! i) € NS unfolding as!’-def bs1’-def by (auto simp:
nth-append)
qed
have S: (mset asl’ + mset as2, ?B) € s-mul-ext NS S
by (intro s-mul-extI[OF refl refl NS|, unfold A2[symmetric] B2[symmetric],
rule ne, rule S)
have irr: irrefl-on (set-mset ?B) S using 1(2) B unfolding irrefl-on-def by
stmp
have M # {} unfolding M-def using n by auto
hence Drop # {} unfolding Drop-def by auto
with drop-idz have drop-idz # [| by auto
hence bs1'' # [| unfolding bs1''-def by auto
hence B C# A unfolding B by (simp add: subset-mset.less-le)
hence size ?B < size A by (rule mset-subset-size)
thus False using 1(1) AB S irr by auto
qed
qed

lemma mul-ext-irrefl: assumes A z. x € set xs = — fst (rel z)
and A zy z. fst (rel z y) = snd (rel y 2) = fst (rel x 2)
and A z y. fst (rel x y) = snd (rel z y)
shows — fst (mul-ext rel xs xs)
unfolding mul-ext-def Let-def fst-conv
by (rule s-mul-ext-irrefl, insert assms, auto simp: irrefl-on-def)

The non-strict order is transitive.

lemma ns-mul-ext-trans:

48

assumes trans s trans ns compatible-l ns s compatible-r ns s refl ns
and (A, B) € ns-mul-ext ns s
and (B, C) € ns-mul-ext ns s
shows (4, C) € ns-mul-ext ns s
using assms unfolding compatible-I-def compatible-r-def ns-mul-ext-def
using trans-mult2-ns[of s=1 ns™1]
by (auto simp: mult2-ns-eq-mult2-ns-alt converse-relcomp|symmetric]) (metis trans-def)

The strict order is trans.

lemma s-mul-ext-trans:
assumes trans s trans ns compatible-l ns s compatible-r ns s refl ns
and (A, B) € s-mul-ext ns s
and (B, C) € s-mul-ext ns s
shows (4, C) € s-mul-ext ns s
using assms unfolding compatible-lI-def compatible-r-def s-mul-ext-def
using trans-mult2-s[of s71 ns~1]
by (auto simp: mult2-s-eq-mult2-s-alt converse-relcomp|symmetric]) (metis trans-def)

The strict order is compatible on the left with the non strict one

lemma s-ns-mul-ext-trans:
assumes trans s trans ns compatible-l ns s compatible-r ns s refl ns
and (A, B) € s-mul-ext ns s
and (B, C) € ns-mul-ext ns s
shows (A4, C) € s-mul-ext ns s
using assms unfolding compatible-I-def compatible-r-def s-mul-ext-def ns-mul-ext-def

using compat-mult2(1)[of s71 ns™1]
by (auto simp: mult2-s-eq-mult2-s-alt mult2-ns-eq-mult2-ns-alt converse-relcomp[symmetric])

The strict order is compatible on the right with the non-strict one.

lemma ns-s-mul-ext-trans:
assumes trans s trans ns compatible-l ns s compatible-r ns s refl ns
and (A, B) € ns-mul-ext ns s
and (B, C) € s-mul-ext ns s
shows (4, C) € s-mul-ext ns s
using assms unfolding compatible-I-def compatible-r-def s-mul-ext-def ns-mul-ext-def

using compat-mult2(2)[of s71 ns™1]
by (auto simp: mult2-s-eq-mult2-s-alt mult2-ns-eq-mult2-ns-alt converse-relcomp[symmetric])

s-mul-ext is strongly normalizing

lemma SN-s-mul-ext-strong:

assumes order-pair s ns

and Vy. y €# M — SN-on s {y}

shows SN-on (s-mul-ext ns s) {M}

using mult2-s-eq-mult2-s-alt[of ns~* s~1] assms wf-below-pointwise[of s~ set-mset
%
unfolding SN-on-iff-wf-below s-mul-ext-def order-pair-def compat-pair-def pre-order-pair-def
by (auto intro!: wf-below-mult2-s-local simp: converse-relcomp|symmetric])

lemma SN-s-mul-ext:

49

assumes order-pair s ns SN s

shows SN (s-mul-ext ns s)

using SN-s-mul-ext-strong| OF assms(1)] assms(2)
by (auto simp: SN-on-def)

lemma (in order-pair) mul-ext-order-pair:
order-pair (s-mul-ext NS S) (ns-mul-ext NS S) (is order-pair 25 ?NS)
proof
from s-mul-ext-trans trans-S trans-NS compat-NS-S compat-S-NS refl-NS
show trans ¢S unfolding trans-def compatible-l-def compatible-r-def by blast
next
from ns-mul-ext-trans trans-S trans-NS compat-NS-S compat-S-NS refl-NS
show trans ?NS unfolding trans-def compatible-I-def compatible-r-def by blast
next
from ns-s-mul-ext-trans trans-S trans-NS compat-NS-S compat-S-NS refl-NS
show ?NS O 25 C 25 unfolding trans-def compatible-I-def compatible-r-def by
blast
next
from s-ns-mul-ext-trans trans-S trans-NS compat-NS-S compat-S-NS refl-NS
show 25 O ?NS C 25 unfolding trans-def compatible-lI-def compatible-r-def by
blast
next
from ns-mul-ext-refl| OF refl-NS, of - S]
show refl ?NS unfolding refl-on-def by fast
qed

lemma (in SN-order-pair) mul-ext-SN-order-pair: SN-order-pair (s-mul-ext NS S)
(ns-mul-ext NS S)
(is SN-order-pair 25 ?NS)
proof —
from mul-ext-order-pair
interpret order-pair ¢S ?NS .
have order-pair S NS by unfold-locales
then interpret SN-ars 25 using SN-s-mul-ext[of S NS] SN by unfold-locales
show ?thesis by unfold-locales
qed

lemma mul-ext-compat:
assumes compat: N\ st u. [s € set ss; t € set ts; u € set us] =
(snd (fst) A fst (ftu) — fst (fsu) A
(fst (fst) Nsnd (ftu) — fst (fsu) A
(snd (fst)Asnd (ftu) — snd (fsu) A
(fst (fst) A fst (ftu) — fst (fsu))
shows
(snd (mul-ext f ss ts) A fst (mul-ext fts us) — fst (mul-ext f ss us)) A
(fst (mul-ext f ss ts) A snd (mul-ext f ts us) — fst (mul-ext f ss us)) A
(snd (mul-ext f ss ts) A snd (mul-ext f ts us) — snd (mul-ext f ss us)) A
(fst (mul-ext f ss ts) A fst (mul-ext f ts us) — fst (mul-ext f ss us))
proof —

50

let ?s = {(z, y). fst (fzy)} ! and ?ns = {(z, y). snd (fz y)} !
have [dest]: (mset ts, mset ss) € mult2-alt b2 ?ns ?s = (mset us, mset ts) €
mult2-alt b1 ?ns %s =
(mset us, mset ss) € mult2-alt (b1 A b2) ?ns ?s for b1 b2
using assms by (auto intro!: trans-mult2-alt-local]of - mset ts] simp: in-multiset-in-set)
show ?thesis by (auto simp: mul-ext-def s-mul-ext-def ns-mul-ext-def Let-def)
qed

lemma mul-ext-cong[fundef-cong|:
assumes mset rsl = mset ysl
and mset xs2 = mset ys2
and A\ z2’. x € set ys1 = z' € set ys2 = faxax' =gz’
shows mul-ext f xs1 £s2 = mul-ext g ys1 ys2
using assms
mult2-alt-map|of mset xs2 mset xs1 {(z, y). snd (fz y)}~! id id {(z, y). snd (g
zy)}!
{(z, y). fst (fzy)} " {(z,). fst (g y)}~]
mult2-alt-map|of mset ys2 mset ys1 {(z, y). snd (g z y)} ! id id {(z, y). snd
(fazy)}t
{(z, y). fst (gz)} " {(z, 9). fst (Fzy)}]

by (auto simp: mul-ext-def s-mul-ext-def ns-mul-ext-def Let-def in-multiset-in-set)

lemma all-nstri-imp-mul-nstri:

assumes Vi<length ys. snd (f (zs!) (ys! 7))

and length s = length ys

shows snd (mul-ext f xs ys)
proof—

from assms(1) have Vi. i < length ys — (xzs ! i, ys ! {) € {(z,y). snd (fzy)}
by simp

from all-ns-ns-mul-ext[OF assms(2) this] show ?thesis by (simp add: mul-ext-def)
qed

lemma relation-inter:

shows {(z,y). Pz y} N {(z,9). Qzy} = {(z,y). Pry A Q z y}
by blast

lemma mul-ext-unfold:
(z,y) € {(a,b). fst (mul-ext g a b)} «— (mset x, mset y) € (s-mul-ext {(a,b). snd

(9 ab)} {(a)b). fst (g ab)})
unfolding mul-ext-def by (simp add: Let-def)

The next lemma is a local version of strong-normalization of the multi-
set extension, where the base-order only has to be strongly normalizing on
elements of the multisets. This will be crucial for orders that are defined
recursively on terms, such as RPO or WPO.

lemma mul-ext-SN:
assumes Vz. snd (g z x)
andVzyz fst (gzy) — snd (gyz) — fst (g x2)
andVzyz. snd (gxy) — fst (gy z) — fst (g x 2)

o1

and Vz yz. snd (gzy) — snd (gy z) — snd (g 2)
andVzyz fst (gzy) — fst (gyz) — fst (g z2)
shows SN {(ys, zs).
(Vyeset ys. SN-on {(s ,t). fst (g s t)} {y}) A
fst (mul-ext g ys xzs)}
proof —
let ?R1 = Azs ys. Yy€ set ys. SN-on {(s ,t). fst (g s t)} {y}
let YR2 = Axs ys. fst (mul-ext g ys xs)
let s = {(z,y). fst (g z y)} and ?ns = {(z,y). snd (g z y)}
have OP: order-pair ?s ?ns using assms(1—95)
by unfold-locales ((unfold refl-on-def trans-def)?, blast)+
let R = {(ys, xs). ?R1 zs ys \ ?R2 xs ys}
let 2Sn = SN-on 7R
{
fix ys zs
assume R-ys-zs: (ys, zs) € ?R
let ?mys = mset ys
let ?mxs = mset s
from R-ys-zs have HSN-ys: Vy. y € set ys — SN-on ?s {y} by simp
with in-multiset-in-set[of ys] have Vy. y €# ?mys — SN-on ?s {y} by simp
from SN-s-mul-ext-strong|OF OP this| and mul-ext-unfold
have SN-on {(ys,zs). fst (mul-ext g ys zs)} {ys} by fast
from relation-inter[of YR2 R1] and SN-on-weakening[OF' this)
have SN-on ?R {ys} by blast
}
then have Hyp: Vys zs. (ys,xs) € YR — SN-on ?R {ys} by auto
{
fix ys
have SN-on 7R {ys}
proof (cases 3 xs. (ys, xs) € ?R)
case True with Hyp show ?thesis by simp
next
case Fulse then show ?thesis by auto
qed
}
then show ?thesis unfolding SN-on-def by simp
qed

lemma mul-ext-stri-imp-nstri:
assumes fst (mul-ext f as bs)
shows snd (mul-ext f as bs)
using assms and s-ns-mul-ext unfolding mul-ext-def by (auto simp: Let-def)

lemma ns-ns-mul-ext-union-compat:
assumes (A,B) € ns-mul-ext ns s
and (C,D) € ns-mul-ext ns s
shows (A + C, B + D) € ns-mul-ext ns s
using assms by (auto simp: ns-mul-ext-def intro: mult2-alt-ns-ns-add)

52

lemma s-ns-mul-ext-union-compat:
assumes (A,B) € s-mul-ext ns s
and (C,D) € ns-mul-ext ns s
shows (A + C, B + D) € s-mul-ext ns s
using assms by (auto simp: s-mul-ext-def ns-mul-ext-def intro: mult2-alt-s-ns-add)

lemma ns-ns-mul-ext-union-compat-rtrancl: assumes refl: refl ns
and AB: (A, B) € (ns-mul-ext ns s)*
and CD: (C, D) € (ns-mul-ext ns s)*
shows (A + C, B + D) € (ns-mul-ext ns s)*
proof —
{
fix ABC
assume (4, B) € (ns-mul-ext ns s)*
then have (A + C, B + C) € (ns-mul-ext ns s)*
proof (induct rule: rtrancl-induct)
case (step B D)
have (C, C) € ns-mul-ext ns s
by (rule ns-mul-ext-refl, insert refl, auto simp: locally-refl-def refl-on-def)
from ns-ns-mul-ext-union-compat| OF step(2) this] step(3)
show ?case by auto
qed auto

}

from this]|OF AB, of C] this|OF CD, of B]

show ?thesis by (auto simp: ac-simps)
qged

4.4 Multisets as order on lists

interpretation mul-ext-list: list-order-extension
As ns. {(as, bs). (mset as, mset bs) € s-mul-ext ns s}
As ns. {(as, bs). (mset as, mset bs) € ns-mul-ext ns s}
proof —
let ?m = mset :: ('a list = 'a multiset)
let 25 = As ns. {(as, bs). (m as, ?m bs) € s-mul-ext ns s}
let NS = As ns. {(as, bs). (?m as, ?m bs) € ns-mul-ext ns s}
show list-order-extension 25 ?NS
proof (rule list-order-extension.intro)
fix s ns
let %s = 25 s ns
let ?ns = NS s ns
assume SN-order-pair s ns
then interpret SN-order-pair s ns .
interpret SN-order-pair (s-mul-ext ns s) (ns-mul-ext ns s)
by (rule mul-ext-SN-order-pair)
show SN-order-pair ?s ?ns
proof
show refl ?ns using refl-NS unfolding refl-on-def by blast
show ?ns O %s C %s using compat-NS-S by blast

93

show ?s O %ns C %s using compat-S-NS by blast
show trans ?ns using trans-NS unfolding trans-def by blast
show trans ?s using trans-S unfolding trans-def by blast
show SN ?s using SN-inv-image[OF SN, of ?m, unfolded inv-image-def] .
qed
next
fix S f NS as bs
assume Aa b. (a, b)) € S = (fa, fb) €S
Na b. (a, b) € NS = (fa, fb) € NS
(as, bs) € 2S S NS
then show (map f as, map f bs) € 25 S NS
using mult2-alt-map|of - - NS=* ff NS™! S=1 S=1] by (auto simp: mset-map
s-mul-ext-def)
next
fix S f NS as bs
assume Aa b. (a, b)) € S = (fa, fb) €S
Na b. (a, b) € NS = (fa, fb) € NS
(as, bs) € ?NS S NS
then show (map f as, map f bs) € ?NS S NS
using mult2-alt-map[of - - NS~ ff NS~1 §=1 S~1] by (auto simp: mset-map
ns-mul-ext-def)
next
fix as bs :: 'a list and NS S :: 'a rel
assume ass: length as = length bs
Ni. i < length bs = (as ! i, bs ! i) € NS
show (as, bs) € ?NS S NS
by (rule, unfold split, rule all-ns-ns-mul-ext, insert ass, auto)
qed
qed

lemma s-mul-ext-singleton [simp, intro:
assumes (a, b) € s

shows ({#a#}, {#b#}) € s-mul-ext ns s

using assms by (auto simp: s-mul-ext-def mult2-alt-s-single)

lemma ns-mul-ext-singleton [simp, introl:

(a, b) € ns = ({#a#}, {#b#}) € ns-mul-ext ns s

by (auto simp: ns-mul-ext-def multpw-converse intro: multpw-implies-mult2-alt-ns
multpw-single)

lemma ns-mul-ext-singleton?2:

(a, b) € s = ({#a#}, {#b#}) € ns-mul-ext ns s

by (intro s-ns-mul-ext s-mul-ext-singleton)

lemma s-mul-ext-self-extend-left:
assumes A # {#} and locally-refl W B
shows (4 + B, B) € s-mul-ext W S
proof —
have (A + B, {#} + B) € s-mul-ext W S

54

using assms by (intro s-mul-ext-union-compat) (auto dest: s-mul-ext-bottom)
then show ?thesis by simp
qed

lemma s-mul-ext-ne-extend-left:
assumes A # {#} and (B, C) € ns-mul-ext W S
shows (4 + B, C) € s-mul-ext W S
using assms
proof —
have (A + B, {#} + C) € s-mul-ext W S
using assms by (intro s-ns-mul-ext-union-compat)
(auto simp: s-mul-ext-bottom dest: s-ns-mul-ext)
then show %thesis by (simp add: ac-simps)
qed

lemma s-mul-ext-extend-left:
assumes (B, C) € s-mul-ext W S
shows (4 + B, C) € s-mul-ext W S
using assms
proof —
have (B + A, C + {#}) € s-mul-ext W S
using assms by (intro s-ns-mul-ext-union-compat)
(auto simp: ns-mul-ext-bottom dest: s-ns-mul-ext)
then show %thesis by (simp add: ac-simps)
qed

lemma mul-ext-mono:
assumes Az y. [z € set xs; y € set ys; fst (P zy)] = fst (P z y)
and Az y. [z € set as; y € set ys; snd (P z y)] = snd (P’ z y)
shows
fst (mul-ext P xs ys) = fst (mul-ext P’ xs ys)
snd (mul-ext P xs ys) = snd (mul-ext P’ xs ys)
unfolding mul-ext-def Let-def fst-conv snd-conv
proof —
assume mem: (mset zs, mset ys) € s-mul-ext {(z, y). snd (P z y)} {(z, y). fst
(P zy)}
show (mset zs, mset ys) € s-mul-ext {(z, y). snd (P’ zy)} {(z, y). fst (P’ zy)}
by (rule s-mul-ext-local-mono[OF - - mem)], insert assms, auto)
next
assume mem: (mset zs, mset ys) € ns-mul-ext {(z, y). snd (P z y)} {(z, y). fst
(Pzy)}
show (mset zs, mset ys) € ns-mul-ext {(z, y). snd (P’ z y)} {(z, y). fst (P'z
y)}
by (rule ns-mul-ext-local-mono[OF - - mem], insert assms, auto)
qed

4.5 Special case: non-strict order is equality

lemma ns-mul-ext-1dFE:

95

assumes (M, N) € ns-mul-ext Id R
obtains X and Y and Z where M = X + Zand N =Y + Z
and Vy € set-mset Y. 3z € set-mset X. (z, y) € R
using assms
by (auto simp: ns-mul-ext-def elim!: mult2-alt-nsE) (insert union-commute, blast)

lemma ns-mul-ext-1d1:

assumes M = X + Zand N =Y + Z and Vy € set-mset Y. Jx € set-mset
X. (z,y) €R

shows (M, N) € ns-mul-ext Id R

using assms mult2-alt-nsI[of N Z Y M Z X Id R™1]

by (auto simp: ns-mul-ext-def)

lemma s-mul-ext-1dE:
assumes (M, N) € s-mul-ext Id R
obtains X and Y and Z where X # {#}and M =X+ Zand N=Y + 7
and Vy € set-mset Y. 3z € set-mset X. (z, y) € R
using assms
by (auto simp: s-mul-ext-def elim!: mult2-alt-sE) (metis union-commute)

lemma s-mul-ext-1dI:
assumes X Z {#}land M =X+ Zand N =Y + Z
and Vy € set-mset Y. 3z € set-mset X. (z, y) € R
shows (M, N) € s-mul-ext Id R
using assms mult2-alt-sl[of N Z Y M Z X Id R™']
by (auto simp: s-mul-ext-def ac-simps)

lemma mult-s-mul-ext-conv:
assumes trans R
shows (mult (R71))~! = s-mul-ext Id R
using mult2-s-eq-mult2-s-alt[of Id R=1] assms
by (auto simp: s-mul-ext-def refl-Id mult2-s-def)

lemma ns-mul-ext-Id-eq:
ns-mul-ext Id R = (s-mul-ext Id R)=
by (auto simp add: ns-mul-ect-def s-mul-ext-def mult2-alt-ns-conv)

lemma subseteg-mset-imp-ns-mul-ext-1d:

assumes A C# B

shows (B, A) € ns-mul-ext Id R
proof —

obtain C where [simp]: B= C + A using assms by (auto simp: mset-subset-eq-exists-conv
ac-simps)

have (C + A, {#} + A) € ns-mul-ext Id R

by (intro ns-mul-ext-IdI [of - C' A - {#}]) auto

then show ?thesis by simp

qed

lemma subset-mset-imp-s-mul-ext-1d:

o6

assumes A C# B
shows (B, A) € s-mul-ext Id R
using assms by (intro supset-imp-s-mul-ext) (auto simp: refl-1d)

end

4.6 Executable version

theory Multiset-Extension2-Impl
imports

HOL— Library. DA List-Multiset

List-Order

Multiset- Extension2

Multiset- Extension-Pair-Impl
begin

lemma mul-ext-list-ext: 3 s ns. list-order-extension-impl s ns mul-ext
proof (intro exl)
let ?s = X\ s ns. {(as,bs). (mset as, mset bs) € s-mul-ext ns s}
let ?ns = X s ns. {(as,bs). (mset as, mset bs) € ns-mul-ext ns s}
let ?m = mset
show list-order-extension-impl ?s ?ns mul-ext
proof
fix s ns
show ?s {(a,b). s a b} {(a,b). ns a b} = {(as,bs). fst (mul-ext (X a b. (s a b,
ns a b)) as bs)}
unfolding mul-ext-def Let-def by auto
next
fix s ns
show ?ns {(a,b). s a b} {(a,b). ns a b} = {(as,bs). snd (mul-ext (A a b. (s a b,
ns a b)) as bs)}
unfolding mul-ext-def Let-def by auto
next
fix s ns s’ ns’ as bs
assume set as x set bs N ns C ns’
set as X set bs N's C s’
(as,bs) € ?s s ns
then show (as,bs) € ?s s’ ns’
using s-mul-ext-local-mono[of ?m as ?m bs ns ns’ s 5]
unfolding set-mset-mset by auto
next
fix s ns s’ ns’ as bs
assume set as X set bs N ns C ns’
set as x set bs N s C s’
(as,bs) € ?ns s ns
then show (as,bs) € ?ns s’ ns’

o7

using ns-mul-ext-local-monolof m as ¢m bs ns ns’ s s’
unfolding set-mset-mset by auto
qed
qed

context fixes sns :: ‘a = 'a = bool x bool
begin

fun mul-ext-impl :: 'a list = 'a list = bool x bool
and mul-ex-dom :: 'a list = 'a list = 'a = 'a list = bool x bool
where
mul-ext-impl [] [] = (False, True)
| mul-ext-impl [] ys = (False, False)
| mul-ext-impl s || = (True, True)
| mul-ext-impl zs (y # ys) = mul-ex-dom zs | y ys

| mul-ezx-dom || xzs' y ys = (False, False)
| mul-ex-dom (z # xs) zs’ y ys =

(case sns x y of

(True, -) = if snd (mul-ext-impl (zs Q xs") (filter (A\y. — fst (sns z y)) ys))
then (True, True)
else mul-ex-dom xzs (x # zs’) y ys

| (False, True) = or2 (mul-ext-impl (zs Q xs’) ys) (mul-ex-dom xs (xv # xs’) y
ys)

| - = mul-ez-dom xs (x # xs’) y ys)

end

context

begin

lemma mul-ext-impl-sound0:
mul-ext-impl sns xs ys = mult2-impl (A\x y. sns y) ys s
mul-ex-dom sns xs xs’ y ys = mult2-ex-dom (A\z y. sns y x) y ys zs xs’

by (induct zs ys and zs zs’ y ys taking: sns rule: mul-ext-impl-mul-ez-dom.induct)
(auto split: prod.splits bool.splits)

private definition cond! where
condl fbsyaxsys =
((3b. b € setbs A fst (fby) A snd (mul-ext f (removel b xs) [y«ys . = fst (fb

)

V (3b. b € set bs A snd (fby) A fst (mul-ext f (removel b zs) ys)))

private lemma condI1-propagate:
assumes condl f bs y xs ys
shows condl f (b # bs) y xs ys

using assms unfolding condI-def by auto

private definition cond2 where
cond? f bs y xs ys = (condl f bs y s ys

o8

V (3b. b€ set bs A snd (fby) A snd (mul-ext f (removel b zs) ys)))

private lemma cond2-propagate:

assumes cond2 f bs y xs ys

shows cond2 f (b # bs) y zs ys
using assms and condI-propagate[of f bs y xs ys]
unfolding cond2-def by auto

private lemma condi-cond2:
assumes condl f bs y xs ys
shows cond?2 f bs y zs ys
using assms unfolding cond2-def by simp

lemma mul-ext-impl-sound:
shows mul-ext-impl f xs ys = mul-ext f xs ys
unfolding mul-ext-def s-mul-ext-def ns-mul-ext-def
by (auto simp: Let-def converse-def mul-ext-impl-sound0 mult2-impl-sound)

lemma mul-ext-code [code]: mul-ext = mul-ext-impl
by (intro ext, unfold mul-ext-impl-sound, auto)

lemma mul-ext-impl-cong[fundef-cong]:
assumes Az z'. z € set xs = z' € set ys = faz' =gz’
shows mul-ext-impl f xs ys = mul-ext-impl g xs ys

using assms

stri-mul-ext-map|of zs ys g f id] nstri-mul-ext-map|of xs ys g f id]
stri-mul-ext-map|of zs ys [g id] nstri-mul-ext-map|of xs ys f g id]
by (auto simp: mul-ext-impl-sound mul-ext-def Let-def)

end

fun ass-list-to-single-list :: ('a x nat) list = 'a list
where
ass-list-to-single-list [| = |]
| ass-list-to-single-list ((xz, n) # xs) = replicate n x @ ass-list-to-single-list xs

lemma set-ass-list-to-single-list [simp):
set (ass-list-to-single-list zs) = {x. In. (z, n) € set xs A n > 0}
by (induct zs rule: ass-list-to-single-list.induct) auto

lemma count-mset-replicate [simpl:
count (mset (replicate n x)) z = n
by (induct n) (auto)

lemma count-mset-lal-ge:
(z, n) € set xs = count (mset (ass-list-to-single-list xs)) © > n
by (induct zs) auto

lemma count-of-count-mset-lal [simp]:

distinct (map fst y) = count-of y x = count (mset (ass-list-to-single-list y))

99

by (induct y) (auto simp: count-mset-lal-ge count-of-empty)

lemma Bag-mset: Bag s = mset (ass-list-to-single-list (DAList.impl-of xs))
by (intro multiset-eql, induct xs) (auto simp: Alist-inverse)

lemma Bag-Alist-Cons:
x & fst ¢ set xs = distinct (map fst zs) =
Bag (Alist ((z, n) # xs)) = mset (replicate n) + Bag (Alist zs)
by (induct xzs) (auto simp: Bag-mset Alist-inverse)

lemma mset-lal [simp):
distinct (map fst zs) = mset (ass-list-to-single-list xs) = Bag (Alist xs)
apply (induct xs) apply (auto simp: Bag-Alist-Cons)
apply (simp add: Mempty-Bag empty.abs-eq)
done

lemma Bag-s-mul-ext:
(Bag xs, Bag ys) € s-mul-ext {(z, y). snd (fz y)} {(z, y). fst (fz y)} «—
fst (mul-ext f (ass-list-to-single-list (DAList.impl-of zs)) (ass-list-to-single-list
(DAList.impl-of ys)))
by (auto simp: mul-ext-def Let-def Alist-impl-of)

lemma Bag-ns-mul-ext:
(Bag xs, Bag ys) € ns-mul-ext {(z, y). snd (fz y)} {(z, y). fst (fzy)} +—
snd (mul-ext f (ass-list-to-single-list (DAList.impl-of zs)) (ass-list-to-single-list
(DAList.impl-of ys)))
by (auto simp: mul-ext-def Let-def Alist-impl-of)

lemma smulextp-code[codel:

smulextp f (Bag zs) (Bag ys) +— fst (mul-ext f (ass-list-to-single-list (DA List.impl-of
x8)) (ass-list-to-single-list (DA List.impl-of ys)))

unfolding smulextp-def Bag-s-mul-ext ..

lemma nsmulextp-code[code]:

nsmuleztp f (Bag zs) (Bag ys) «— snd (mul-ext f (ass-list-to-single-list (DAList.impl-of
x8)) (ass-list-to-single-list (DA List.impl-of ys)))

unfolding nsmulextp-def Bag-ns-mul-ext ..

lemma mulextp-code|code]:

mulextp f (Bag xs) (Bag ys) = mul-ext f (ass-list-to-single-list (DAList.impl-of
x8)) (ass-list-to-single-list (DA List.impl-of ys))

unfolding mulextp-def by (simp add: nsmulextp-code smulextp-code)

end

60

5 The Weighted Path Order

This is a version of WPO that also permits multiset comparisons of lists of
terms. It therefore generalizes RPO.

theory WPO
imports

Knuth-Bendiz-Order. Lexicographic- Extension
First-Order-Terms.Subterm-and-Context
Knuth-Bendiz-Order. Order-Pair
Polynomial-Factorization. Missing-List
Status
Precedence
Multiset- Extension2
HOL.Zorn

begin

datatype order-tag = Lex | Mul

locale wpo =
fixes n :: nat

and S NS == ('f, 'v) term rel
and pre :: (/f X nat = 'f X nat = bool X bool)
and prl :: 'f x nat = bool
and oo :: f status
and ¢ :: 'f x nat = order-tag
and ssimple :: bool
and large :: 'f X nat = bool

begin

fun wpo :: ('f, 'v) term = ('f, "v) term = bool x bool
where
wpo s t = (if (s,t) € S then (True, True) else
if (s,t) € NS then (case s of
Var © = (False,
(case t of
Vary =z =1y
| Fun g ts = status oo (g, length ts) =[] A prl (g, length ts)))

| Fun f ss =
if 3 i € set (status oo (f, length ss)). snd (wpo (ss ! 4) t) then (True, True)
else
(case t of
Var - = (False, ssimple A large (f, length ss))
| Fun g ts =

(case pre (f, length ss) (g, length ts) of (prs, prns) =
if prns A (Y j € set (status oo (g, length ts)). fst (wpo s (ts!j))) then
if prs then (True, True)
else let ss" = map (X i. ss ! i) (status oo (f, length ss));
ts’ = map (X i. ts |) (status oo (g, length ts));
cf = ¢ (f,length ss);

61

cg = ¢ (g,length ts)
in if ¢f = Lex N\ cg = Lex
then lezx-ext wpo n ss’ ts’
else if ¢f = Mul N\ cg = Mul
then mul-ext wpo ss’ ts’
else (length ss’ £ 0 A length ts' = 0, length ts' = 0)
else (False, False))))
else (False, False))

declare wpo.simps [simp del]

abbreviation wpo-s (infix <-» 50) where s > t = fst (wpo s t)
abbreviation wpo-ns (infix <=> 50) where s > ¢t = snd (wpo s t)

abbreviation WPO-S = {(s,t). s > t}
abbreviation WPO-NS = {(s,t). s = t}

lemma wpo-s-imp-ns: s = t = s = t
using lex-ext-stri-imp-nstri
unfolding wpo.simps|of s t]
by (auto simp: Let-def mul-ext-stri-imp-nstri split: term.splits if-splits prod.splits)

lemma S-imp-wpo-s: (s,t) € S = s > t by (simp add: wpo.simps)
end

declare wpo.wpo.simps|code]

definition strictly-simple-status :: 'f status = ('f,’v)term rel = bool where
strictly-simple-status o rel =
(V ftsi. i€ set (status o (f,length ts)) — (Fun fts, ts | i) € rel)

definition trans-precedence where trans-precedence prc = (¥ f g h.
(fst (pre fg) — snd (prc g h) — fst (pre fh)) A
(snd (pre f g) — fst (pre g h) — fst (pre fh)) A
(snd (pre f g) — snd (prc g h) — snd (pre f h)))

locale wpo-with-basic-assms = wpo +

order-pair + irrefl-precedence +

constrains S :: ('f, 'v) term rel and NS :: -
and pre :: 'f X nat = 'f X nat = bool x bool
and pril :: 'f x nat = bool
and ssimple :: bool
and large :: 'f X nat = bool
and ¢ :: 'f x nat = order-tag
and n :: nat

62

and oo :: f status
assumes subst-S: (s,t) € S = (s-o,t-0) € S
and subst-NS: (s,t) € NS = (s-o,t-0) € NS
and idrrefl-S: irrefl S
and S-imp-NS: S C NS
and ss-status: ssimple = i € set (status oo fn) = simple-arg-pos S fn i
and large: ssimple = large fn = fst (prc fn gm) V snd (prc fn gm) A status
oo gm = ||
and large-trans: ssimple = large fn = snd (prc gm fn) = large gm
and ss-S-non-empty: ssimple — S # {}
begin
abbreviation ¢ = status oo

lemma ss-NS-not-UNIV: ssimple = NS # UNIV
proof
assume ssimple NS = UNIV
with ss-S-non-empty obtain a b where (a,b) € S (b,a) € NS by auto
from compat-S-NS-point[OF this| have (a,a) € S .
with irrefl-S show Fualse unfolding irrefi-def by auto
qed

lemmas o = status|[of oo
lemma oE: i € set (o (f, length ss)) = ss | i € set ss by (rule status-auz)

lemma wpo-ns-imp-NS: s = t = (s,t) € NS
using S-imp-NS
by (cases s, auto simp: wpo.simps|of - t], cases t,
auto simp: refl-NS-point split: if-splits)

lemma wpo-s-imp-NS: s > t = (s,t) € NS
by (rule wpo-ns-imp-NS[OF wpo-s-imp-ns])

lemma wpo-least-1: assumes prl (f,length ss)
and (t, Fun f ss) € NS
and o (f,length ss) = ||
shows t = Fun f ss
proof (cases t)
case (Var z)
with assms show ?thesis by (simp add: wpo.simps)
next
case (Fun g ts)
let ?2f = (f,length ss)
let ?g = (g,length ts)
obtain s ns where prc 29 ?f = (s,ns) by force
with pri[OF assms(1), of ?g] have pre: prc ?g 2f = (s,True) by auto
show ?thesis using assms(2)
unfolding Fun
unfolding wpo.simps|of Fun g ts Fun f ss] term.simps assms(3)
by (auto simp: pre lex-ext-least-1 mul-ext-def ns-mul-ext-bottom Let-def)

63

qed

lemma wpo-least-2: assumes prl (f,length ss) (is prl ?f)
and (Fun fss, t) ¢ S
and o (f,length ss) = ||
shows = Fun fss =t
proof (cases t)
case (Var z)
with Var show ?thesis using assms(2—3) by (auto simp: wpo.simps split:
if-splits)
next
case (Fun g ts)
let %9 = (g,length ts)
obtain s ns where prc ?f ?g = (s,ns) by force
with pri2[OF assms(1), of ?g] have pre: pre ?f 29 = (False,ns) by auto
show ?thesis using assms(2) assms(3) unfolding Fun
by (simp add: wpo.simps|of - Fun g ts] lex-ext-least-2 prc
mul-ext-def s-mul-ext-bottom-strict Let-def)
qed

lemma wpo-least-3: assumes pri (f,length ss) (is prl 2f)
and ns: Fun fss = t
and NS: (u, Fun f ss) € NS
and ss: o (f,length ss) = ||
and S: A\ z. (Fun fss, z) ¢ S
and w: v = Varz
shows u = ¢
proof (cases (Fun fss, t) € SV (u, Fun fss) € SV (u, t) € 5)
case True
with wpo-ns-imp-NS[OF ns] NS compat-NS-S-point compat-S-NS-point have (u,
t) € S by blast
from wpo-s-imp-ns|OF S-imp-wpo-s|OF this]] show ?thesis .
next
case Fulse
from trans-NS-point|OF NS wpo-ns-imp-NS|OF ns|] have utA: (u, t) € NS .
show ?thesis
proof (cases t)
case t: (Var y)
with ns False ss have x: ssimple large (f,length ss)
by (auto simp: wpo.simps split: if-splits)
show ?thesis
proof (cases T = y)
case True
thus ?thesis using ns * False utA ss
unfolding wpo.simps|of u t| wpo.simps[of Fun f ss t]
unfolding t u term.simps
by (auto split: if-splits)
next
case Fulse

64

from utA[unfolded t u]
have (Var z, Var y) € NS .
from False subst-NS[OF this, of X\ z. if z = x then v else w for v w)
have (v,w) € NS for v w by auto
hence NS = UNIV by auto
with ss-NS-not-UNIV[OF <ssimpley]
have Fulse by auto
thus ?thesis ..
qed
next
case (Fun g ts)
let ?g = (g,length ts)
obtain s ns where prc ?f 2g = (s,ns) by force
with pri2[OF «prl ?f, of ?g] have pre: prc ?f g = (False,ns) by auto
show ?thesis
proof (cases o ?g)
case Nil
with False Fun assms prc have pre ?f 29 = (False, True)
by (auto simp: wpo.simps split: if-splits)
with pri8[OF «prl ?f>, of ?g] have prl ?g by auto
show ?thesis using utA unfolding Fun by (rule wpo-least-1[{OF <prl],
stmp add: Nil)
next
case (Cons t1 tts)
have — wpo-s (Fun f ss) (ts ! t1) by (rule wpo-least-2[OF <prl 2f> S ss])
with (wpo-ns (Fun f ss) t» False Fun Cons
have Fualse by (simp add: ss wpo.simps split: if-splits)
then show ?thesis ..
qed
qed
qed

lemma wpo-compat: (s = t At = u — s> u) A
(s=tANt>=u—s>u) A
(s=tAt=u— s> u) (is %ran st u)
proof (induct (s,t,u) arbitrary: s t u rule: wf-induct[OF wf-measures[of [\ (s,t,u).
size s, A (s,t,u). size t, A (s,t,u). size u]]])
case 1
note ind = 1[simplified]
show %tran st u
proof (cases (s,t) € SV (t,u) € SV (s,u) €)
case True
{
assume st: wpo-ns s t and tu: wpo-ns t u
from wpo-ns-imp-NS[OF st] wpo-ns-imp-NS[OF tu]
True compat-NS-S-point compat-S-NS-point have (s,u) € S by blast
from S-imp-wpo-s|OF this] have wpo-s s u .

}

65

with wpo-s-imp-ns show ?thesis by blast
next
case Fulse
then have stS: (s,t) ¢ S and tuS: (t,u) ¢ S and suS: (s,u) ¢ S by auto
show ?thesis
proof (cases t)
note [simp] = wpo.simps[of s u] wpo.simps[of s t] wpo.simps[of t u]
case (Var z)
note wpo.simps|simp]
show ?thesis
proof safe

assume wpo-s t u
with Var tuS show wpo-s s u by (auto split: if-splits)

next

assume gr: wpo-s s t and ge: wpo-ns t u
from wpo-s-imp-NS[OF gr] have stA: (s,t) € NS .
from wpo-ns-imp-NS[OF ge] have tuA: (t,u) € NS .
from trans-NS-point| OF stA tuA] have suA: (s,u) € NS .
show wpo-s s u
proof (cases u)
case (Var y)
with ge <t = Var x> tuS have ¢t = u by (auto split: if-splits)
with gr show ?thesis by auto
next
case (Fun h us)
let ?h = (h,length us)
from Fun ge Var tuS have us: o ?h =[] and pri: prl ?h by (auto split:

if-splits)

from gr Var tuS ge stS obtain f ss where s: s = Fun f ss by (cases s,

auto split: if-splits)

let ?f = (f,length ss)
from s gr Var False obtain ¢ where i: i € set (o ?f) and sit: ss ! i = ¢

by (auto split: if-splits)

from trans-NS-point| OF wpo-ns-imp-NS[OF sit] tuA] have siu: (ss ! i,u)

€ NS .

from wpo-least-1[OF pri siu[unfolded Fun us] us]
have ss ! ¢ > u unfolding Fun us .
with ¢ have 3 i € set (o ?f). ss! i > u by blast
with s sud show ?thesis by simp

qed

next

assume gel: wpo-ns s t and ge2: wpo-ns t u
show wpo-ns s u
proof (cases u)
case (Var y)
with ge2 <t = Var x> tuS have t = u by (auto split: if-splits)
with gel show ?thesis by auto
next
case (Fun h us)

66

let ?h = (h,length us)
from Fun ge2 Var tuS have us: o ?h = [| and pri: prl ?h by (auto split:
if-splits)
show ?thesis unfolding Fun us
by (rule wpo-least-1[OF pri trans-NS-point[OF wpo-ns-imp-NS[OF gel]
wpo-ns-imp-NS[OF ge2[unfolded Fun us]]] us])
qged
qed
next
case (Fun g ts)
let 29 = (g,length ts)
let %ts = set (o ?9)
let 2t = Fun g ts
from Fun have t: t = ¢ .
show ?thesis
proof (cases s)
case (Var z)
show ?thesis
proof safe
assume gr: wpo-s s t
with Var Fun stS show wpo-s s u by (auto simp: wpo.simps split: if-splits)
next
assume ge: wpo-ns s t and gr: wpo-s t u
with Var Fun stS have pri: prl ?g and o ?g = [| by (auto simp: wpo.simps
split: if-splits)
with gr Fun show wpo-s s u using wpo-least-2[OF pri, of u] False by
auto
next
assume gel: wpo-ns s t and ge2: wpo-ns t u
with Var Fun stS have pri: prl ?g and empty: o ?g = [| by (auto simp:
wpo.simps split: if-splits)
from wpo-ns-imp-NS[OF gel] Var Fun empty have ns: (Var z, Fun g ts)
€ NS by simp
from wpo-ns-imp-NS[OF gel] wpo-ns-imp-NS[OF ge2]
have sud: (s,u) € NS by (rule trans-NS-point)
note wpo-simp = wpo.simps|of t u)
show wpo-ns s u
proof (cases u)
case u: (Fun h us)
let ?h = (h,length us)
obtain pns where prc: pre ?g ?h = (False,pns) using pri2|OF pri, of
?h) by (cases pre ?g ?h, auto)
from prc wpo-ns-imp-NS[OF ge2] tuS ge2 Fun u empty have pns
unfolding wpo-simp
by (auto split: if-splits simp: Let-def)
with prc have pre: pre %9 ?h = (False, True) by auto
from pri3[OF pri, of ?h] prc have pri’: prl ?h by auto
from prc wpo-ns-imp-NS[OF ge2] tuS ge2 Fun u empty have empty”: o
?h = [] unfolding wpo-simp

67

by (auto split: if-splits simp: Let-def dest: lex-ext-arg-empty mul-ext-arg-empty)
from pri’ empty’ suA show ?thesis unfolding Var u by (auto simp:
wpo.simps)
next
case u: (Var 2)
from wpo-ns-imp-NS[OF ge2] tuS ge2 Fun u empty wpo-simp
have ssimple large ?g by auto
show ?thesis
proof (cases T = z)
case True
thus ?thesis using sud Var u by (simp add: wpo.simps)
next
case Fulse
from sud[unfolded Var u] have ns: (Var x, Var z) € NS by auto
have (a,b) € NS for a b using subst-NS[OF ns, of X z. if z = x then
a else b] False by auto
hence NS = UNIV by auto
from ss-S-non-empty[OF <ssimpley] this compat-S-NS obtain ¢ where
(a,a) € S by auto
with irrefl-S show ?thesis unfolding irrefi-def by auto
qed
qed
qged
next
case (Fun f ss)
let ?s = Fun f ss
let 2f = (f,length ss)
let %ss = set (o ?f)
from Fun have s: s = %s .
let 9s1 =3 i€ %ss. 88! i =t
let 2t1 =3 j€ %s. ts!jr=u
let ?ls = length ss
let %It = length ts
obtain ps pns where pre: pre ?f 2g = (ps,pns) by force
let ?tran2 = X a b c.
((wpo-ns a b) A (wpo-s b ¢) — (wpo-s a ¢)) N
((wpo-s a b) A (wpo-ns b ¢) — (wpo-s a c)) A
((wpo-ns a b) A (wpo-ns b ¢) — (wpo-ns a c)) A
((wpo-s a b) A (wpo-s b ¢) — (wpo-s a c))
from s have V s’ € set ss. size s’ < size s by (auto simp: size-simps)
with ind have ind2: \ s’ t' u'. [s' € set ss] = %tran s’ t' v’ by blast
with wpo-s-imp-ns have ind3: \ us s’ t' u'. [s' € set ss; t’ € set ts] =
?tran2 s’ t' v’ by blast
let ?mss = map (A i. ss ! i) (o ?2f)
let ?mts = map (A j. ts ! j) (o ?g)
have ind3": A\ us s’ t' u'. [s' € set ?mss; t' € set Imts] = Ztran2 s’ t' u
by (rule ind3, auto simp: status-aux)

{

assume gel: s = t and ge2: t > u

!/

68

from wpo-ns-imp-NS[OF gel] have stA: (s,t) € NS .
from wpo-s-imp-NS|OF ge2] have tuA: (t,u) € NS .
from trans-NS-point|OF stA tuA] have suA: (s,u) € NS .
have s > u
proof (cases ?s1)
case True
from this obtain 7 where i: i € ?ss and ges: ss ! i = t by auto
from o E[OF i] have s ss ! i € set ss .
with ¢ s s’ ind2[of ss | i t u, simplified] ges ge2 have ss! i > u by auto
then have ss ! { = u by (rule wpo-s-imp-ns)
with i s sud show ?thesis by (cases u, auto simp: wpo.simps split:
if-splits)
next
case Fulse
show ?thesis
proof (cases ?t1)
case True
from this obtain j where j: j € ?ts and ges: ts | j = u by auto
from o E[OF j] have t": ts | j € set ts by auto
from j t’' t stS False gel s have gel’: s = ts | j unfolding wpo.simps|of
st
by (auto split: if-splits prod.splits)
from t’ s t gel’ ges ind[rule-format, of s ts ! j u, simplified]
show s > u
using suA size-simps supt.intros unfolding wpo.simps|of s u]
by (auto split: if-splits)
next
case Fulse
from t this ge2 tuS obtain h us where u: v = Fun h us
by (cases u, auto simp: wpo.simps split: if-splits)
let ?u = Fun h us
let ?h = (h,length us)
let %us = set (o ?h)
let ?mus = map (A k. us ! k) (o %h)
from st u gel ge2 have gel: ?s = ?t and ge2: ?t = %u by auto
from stA stS s t have stAS: ((%s,7t) € S) = False ((9s,9t) € NS) =
True by auto
from tuAd tuS t v have tuAS: ((%t,%u) € S) = False ((%t,%u) € NS) =
True by auto
note gel = gel [unfolded wpo.simps|of ?s ?t] stAS, simplified]
note ge2 = ge2[unfolded wpo.simps|of 7t ?u] tuAS, simplified]
obtain ps2 pns2 where prc2: pre 29 ?h = (ps2,pns2) by force
obtain ps3 pns3 where prc3: pre ?f ?h = (ps8,pns3) by force
from <= ?s1) t gel have stV j € %ts. ?s = ts ! j by (auto split:
if-splits prod.splits)
from <= ?t1» t u ge2 tuS have tu: V k € %us. 7t = us ! k by (auto
split: if-splits prod.splits)
from <— %51y st gel stS st’ have fg: pns by (cases ?thesis, auto simp:
pre)

69

from «— %t1) u ge2 tu’ have gh: pns2 by (cases ?thesis, auto simp:
pre2)

from <— ?s1) have ?s1 = Fulse by simp

note gel = gel [unfolded this[unfolded t] if-False term.simps prc split]
from = ?t1» have ¢t1 = False by simp

note ge2 = ge2[unfolded thislunfolded u] if-False term.simps prc2 split]
note compat = pre-compat| OF pre pre2 pred)

from fg gh compat have fh: pns3 by simp

fix k
assume k: k € us
from o E[OF this] have size (us ! k) < size u unfolding u using
size-simps by auto
with tu'[folded t] <s = ©
ind[rule-format, of s t us ! k] k have s = us | k by blast
} note su’ = this
show ?thesis
proof (cases ps3)
case True
with su’ s u fh pre8 suA show ?thesis by (auto simp: wpo.simps)
next
case Fulse
from Fulse fg gh compat have nfg: = ps and ngh: = ps2 and *: ps
= Fulse ps2 = Fualse by blast+
note gel = gel[unfolded * if-False]

note ge2 = ge2[unfolded * if-False]
show ?thesis

proof (cases ¢ ?f)
case Mul note cf = this
show ?thesis
proof (cases ¢ ?g)
case Mul note cg = this
show ?thesis
proof (cases ¢ ?h)
case Mul note ch = this
from ge! [unfolded cf cg)
have mull: snd (mul-ext wpo ?mss ?mts) by (auto split: if-splits)
from ge2[unfolded cg ch]
have mul2: fst (mul-ext wpo ?mts ?mus) by (auto split: if-splits)
from mull mul2 mul-ext-compat|OF ind3’, of ?mss ?mits ?mus]
have fst (mul-ext wpo ?mss ?mus) by auto

with s u fh su’ pre3 cf ch suA show ?thesis unfolding wpo.simps|of
s u] by simp

next
case Lexr note ch = this
from gh u ge2 tu’ prc2 ngh cg ch have us-e: ?mus = [| by simp

from gh u ge2 tu’ prc2 ngh cg ch have ts-ne: ?mts # [| by (auto
split: if-splits)

from ns-mul-ext-bottom-uniqueness|of mset ?mts]

70

have Af. snd (mul-ext f [| ?mts) = ?mts = [] unfolding
mul-ext-def by (simp add: Let-def)
with ts-ne fg <= 251> t gel st’ prc nfg cf cg have ss-ne: ?mss # ||
by (cases ss) auto
from us-e ss-ne s u fh su’ prc3 cf cg ch suA show ?thesis
unfolding wpo.simps|of s u] by simp
qed
next
case Lex note cg = this
from fg <— %s1» t gel st’ prc nfg cf cg have ts-e: ?mts = [| by

stmp
with gh <— 2t1> u ge2 tu’ prc2 ngh cg show ?thesis
by (cases ¢ ?h) (simp-all add: lex-ext-least-2)
qed
next
case Ler note cf = this
show ?thesis
proof (cases ¢ ?g)
case Mul note cg = this
from fg <— %s1» t gel st’ prc nfg cf cg have ts-e: ?mts = [| by
simp

with gh < 2t1> u ge2 tu’ prc2 ngh cg show Zthesis
by (cases ¢ ?h) (auto simp: Let-def s-mul-ext-def s-mul-ext-bottom
mul-ext-def elim: mult2-alt-sE)
next
case Ler note cg = this
show ?thesis
proof (cases ¢ ?h)
case Mul note ch = this

from gh u ge2 tu’ ngh cg ch have us-e: ?mus = [| by simp
from gh u ge2 tu’ ngh cg ch have ts-ne: ?mts # || by simp
from lez-ext-iff [of - - [| ?mts]

have Af. snd (lex-ext f n [| ?mts) = ?mts = [| by simp

with ts-ne fg t gel st’ nfg cf cg have ss-ne: ?mss # [] by auto
from us-e ss-ne s u fh su’ prc3 cf cg ch suA show ?thesis
unfolding wpo.simps|of s u] by simp
next
case Lexr note ch = this
from fg t gel st’ nfg cf cg
have lex!: snd (lez-ext wpo n ?mss ?mts) by auto
from gh u ge2 tu’ ngh cg ch
have lex2: fst (lexz-ext wpo n ?mts ?mus) by auto
from lex! lex2 lex-ext-compat|OF ind3', of ?mss ?mts ?mus]
have fst (lex-ext wpo n ?mss ?mus) by auto
with s u fh su’ pre8 cf c¢g ch suA show ?thesis unfolding
wpo.simps|of s u] by simp
qed
qed
qed

71

}

qed
qed
qed

moreover

{

if-splits)

st

True by

assume gel: s = t and ge2: t = u

from wpo-s-imp-NS[OF gel] have stA: (s,t) € NS .

from wpo-ns-imp-NS[OF ge2] have tuA: (t,u) € NS .

from trans-NS-point|OF stA tuA] have suA: (s,u) € NS .

have s >~ u

proof (cases ?s1)
case True
from True obtain ¢ where i: ¢ € ?ss and ges: ss | ¢ = t by auto
from o E[OF i] have s" ss | i € set ss by auto
with s s" ind2[of ss ! i t u, simplified] ges ge2 have ss ! i = u by auto
with i s’ s sud show %thesis by (cases u, auto simp: wpo.simps split:

next

case Fulse

show ?thesis

proof (cases ?t1)
case True
from this obtain j where j: j € ?ts and ges: ts | j = u by auto
from oE[OF j] have t": ts! j € set ts .

from j t’ t stS False gel s have gel’: s = ts | j unfolding wpo.simps|of

by (auto split: if-splits prod.splits)
from t’ s t gel’ ges ind[rule-format, of s ts ! j u, simplified)
show s > u
using suA size-simps supt.intros unfolding wpo.simps|of s u]
by (auto split: if-splits)
next
case Fulse
show ?thesis
proof (cases u)
case u: (Fun h us)
let ?u = Fun h us
let ?h = (h,length us)
let %us = set (o %h)
let ?mss = map (X i. ss ! 4) (o 2f)
let ?mts = map (X j. ts 1 j) (o %9)
let ?mus = map (A k. us ' k) (o %h)
note oE = oE[of - f ss| oE[of - g ts| cE[of - h us]
from s t u gel ge2 have gel: %s = %t and ge2: 9t = ?u by auto
from stA stS s t have stAS: ((%s,%t) € S) = False ((%s,%t) € NS) =
auto
from tud tuS t u have tuAS: ((%t,%u) € S) = False ((?t,%u) € NS)

= True by auto

72

note gel = gel[unfolded wpo.simps[of ?s ?t] stAS, simplified)

note ge2 = ge2[unfolded wpo.simps|of ?t 2u] tuAS, simplified]

let ?lu = length us

obtain ps2 pns2 where prc2: pre 29 ?h = (ps2,pns2) by force

obtain ps3 pns3 where prc3: pre ?f ?h = (ps3,pns3) by force

from <= %s1» t gel have stV j € ?ts. ?s = ts! j by (auto split:
if-splits prod.splits)

from «— 2¢t1> t u ge2 tuS have tu”:V k € ?us. 2t = us ! k by (auto
split: if-splits prod.splits)

from <— ?s1» s t gel stS st’ have fg: pns by (cases ?thesis, auto

simp: pre)

from «— 21y u ge2 tu’ have gh: pns2 by (cases ?thesis, auto simp:
pre2)

from <= ?s1) have ?s1 = Fulse by simp

note gel = gel[unfolded this[unfolded t] if-False term.simps pre split]

from «— ?t1) have ?t1 = Fulse by simp

note ge2 = ge2lunfolded this|unfolded u] if-False term.simps prc2

split]

note compat = pre-compat|OF prc pre2 pres)
from fg gh compat have fh: pns3 by simp
{
fix k
assume k: k € Zus
from o E(3)[OF this] have size (us ! k) < size u unfolding u using
size-simps by auto
with tu’[folded t] wpo-s-imp-ns[OF s = #)]
ind|[rule-format, of s t us ! k] k have s = us ! k by blast
} note su’ = this
show ?thesis
proof (cases ps3)
case True
with su’ s u fh pre3 sud show ?thesis by (auto simp: wpo.simps)
next
case Fulse
from False fg gh compat have nfg: = ps and ngh: = ps2 and x*: ps
= False ps2 = Fulse by blast+
note gel = gel[unfolded * if-False]
note ge2 = ge2[unfolded * if-False]
show ?thesis
proof (cases ¢ ?f)
case Mul note cf = this
show ?thesis
proof (cases ¢ ?g)
case Mul note cg = this
show ?thesis
proof (cases ¢ ?h)
case Mul note ch = this
from fg t gel st’ nfg cf cg
have mull: fst (mul-ext wpo ?mss ?mits) by auto

73

from gh u ge2 tu’ ngh cg ch
have mul2: snd (mul-ext wpo ?mts ?mus) by auto
from mull mul2 mul-ext-compat|OF ind3’, of ?mss ?mts ?mus]
have fst (mul-ext wpo ?mss ?mus) by auto
with s u fh su’ prc3 cf ch suA show ?thesis unfolding
wpo.simps|of s u] by simp

next
case Ler note ch = this
from gh u ge2 tu’ ngh cg ch have us-e: ?mus = [| by simp

from fqg t gel st’ nfg cf cg s-mul-ext-bottom-strict
have ss-ne: ?mss # [by (cases ?mss) (auto simp: Let-def
mul-ext-def)
from us-e ss-ne s u fh su’ pred cf cg ch suA show ?thesis
unfolding wpo.simps|of s u] by simp
qed
next
case Ler note cg = this
from fg t gel st’ prc nfg cf cg s-mul-ext-bottom-strict
have ss-ne: ?mss # [| by (auto simp: mul-ext-def)
from fg t gel st’ nfg cf cg have ts-e: ?mts = || by simp
show ?thesis
proof (cases ¢ ?h)
case Mul note ch = this
with gh u ge2 tu’ ngh cg ch ns-mul-ext-bottom-uniqueness
have ?mus = [] by simp
with ss-ne s u fh su’ pre3 cf cg ch s-mul-ext-bottom suA
show ?thesis unfolding wpo.simps[of s u] by (simp add: Let-def
mul-ext-def s-mul-ext-def mult2-alt-s-def)

next
case Ler note ch = this
from lex-ext-iff [of - - [?mus]
have A\f. snd (lexz-ext f n || mus) = ?mus = || by simp
with ts-e gh u ge2 tu’ ngh cg ch
have ?mus = [| by simp

with ss-ne s u fh su’ pred cf cg ch s-mul-ext-bottom suA
show ?thesis unfolding wpo.simps[of s u] by (simp add:
mul-ext-def)
qed
qed
next
case Ler note cf = this
show ?thesis
proof (cases ¢ ?g)
case Mul note cg = this
from fg t gel st’ nfg cf cg have ss-ne: ?mss # [| by simp
from fg t gel st’ nfg cf cg have ts-e: ?mts = [| by simp
show ?thesis
proof (cases ¢ ?h)
case Mul note ch = this

74

from ts-e gh u ge2 tu’ ngh cg ch
ns-mul-ext-bottom-uniqueness[of mset Ymus)
have ?mus = [] by (simp add: mul-ext-def Let-def)
with ss-ne s u fh su’ pred cf cg ch s-mul-ext-bottom suA
show ?thesis unfolding wpo.simps[of s u] by (simp add:
mul-ext-def)
next
case Ler note ch = this
from gh u ge2 tu' prc2 ngh cg ch have ?mus = || by simp
with ss-ne s u fh su’ pred cf cg ch suA
show ?thesis unfolding wpo.simps[of s u] by (simp add:
lex-ext-iff)
qed
next
case Ler note cg = this
show ?thesis
proof (cases ¢ ?h)
case Mul note ch = this
from gh u ge2 tu’ ngh cg ch have us-e: ?mus = [| by simp
have Af. fst (lex-ext f n ?mss ?mts) = ?mss # |]
by (cases ?mss) (simp-all add: lex-ext-iff)
with fg t gel st’ pre nfg cf cg have ss-ne: ?mss # [| by simp
with us-e s u fh su’ pred cf cg ch suA show ?thesis unfolding
wpo.simps|of s u] by simp
next
case Lex note ch = this
from fg t gel st’ nfg cf cg
have lex1: fst (lex-ext wpo n ?mss ?mts) by auto
from gh u ge2 tu’ ngh cg ch
have lex2: snd (lez-ext wpo n ?mts ¢mus) by auto
from lex! lex2 lex-ext-compat|OF ind3’, of ?mss ?mts ?mus]
have fst (lex-ext wpo n ?mss ?mus) by auto
with s u fh su’ pred cf cg ch suA show ?thesis unfolding
wpo.simps|of s u] by simp
qed
qed
qed
qed
next
case (Var z)
from ge2 <— ?t1) tuS have ssimple large ?g unfolding Var t
by (auto simp: wpo.simps split: if-splits)
from large[OF this, of ?f)
have large: fst (prc 29 2f) V snd (prc 29 ?f) A o ?f =[] by auto
obtain fgs fgns where pre-fg: pre 2f 29 = (fgs,fgns) by (cases pre ?f
g, auto)
from gel <— ?s1» stS have weak-fg: snd (prc ?f ?g) unfolding s ¢
using pre-fg
by (auto simp: wpo.simps split: if-splits)

75

have pre-irrefl: = fst (prc 2f 2f) using pre-refl by simp
from large have Fualse
proof
assume fst (pre ?g ?f)
with weak-fg have fst (prc ?f 2f) by (metis prc-compat prod.collapse)
with pre-irrefl show False by auto
next
assume weak: snd (pre 29 of) Ao ?2f =]
let ?mss = map (A i. ss! %) (o 2f)
let ?mts = map (X j. ts ! j) (o ?9)

assume fst (pre ?f %g)
with weak have fst (prc ?f 2f) by (metis pre-compat prod.collapse)
with pre-irrefl have False by auto
}
hence — fst (prc ?f ?g9) by auto
with gel <= ?s1» stS pre-fg
have fst (lex-ext wpo n ¢mss ?mts) V fst (mul-ext wpo fmss ?mts)
V ?mss #]
unfolding wpo.simps|of s t] unfolding s t
by (auto simp: Let-def split: if-splits)
with weak have fst (lex-ext wpo n [| ¢mits) V fst (mul-ext wpo |]
?mts) by auto
thus False using lez-ext-least-2 by (auto simp: mul-ext-def Let-def
s-mul-ext-bottom-strict)
qged
thus ?thesis ..
qed
qed
qed

}

moreover
{
assume gel: s = t and ge2: t = v and ngtl: = s > t and ngt2: =t > u
from wpo-ns-imp-NS[OF gel] have stA: (s,t) € NS .
from wpo-ns-imp-NS[OF ge2] have tuAd: (t,u) € NS .
from trans-NS-point|OF stA tuA] have suA: (s,u) € NS .
from ngt! stA have — %s1 unfolding s t by (auto simp: wpo.simps split:
if-splits)
from ngt2 tuA have — ?t1 unfolding ¢t by (cases u, auto simp: wpo.simps
split: if-splits)
have s = u
proof (cases u)
case u: (Var z)
from t <= ?t1> ge2 tuA ngt2 have large: ssimple large ?g unfolding u
by (auto simp: wpo.simps split: if-splits)
from s t ngt! gel have snd (prc ?f %g)
by (auto simp: wpo.simps split: if-splits prod.splits)
from large-trans[OF large this| suA large

76

show ?thesis unfolding wpo.simps[of s u] using s u by auto
next
case u: (Fun h us)
let 2u = Fun h us
let ?h = (h,length us)
let %us = set (o ?h)
let ?mss = map (A i. ss! i) (o ?2f)
let ?mts = map (A j. ts ! j) (o ?9)
let ?mus = map (A k. us ! k) (o ?h)
from st u gel ge2 have gel: ?s = ?t and ge2: ?t = %u by auto
from stA stS s t have stAS: ((%s,2t) € S) = False ((%s,%t) € NS) =
True by auto
from tuA tuS t u have tuAS: ((?t,%u) € S) = False ((?t,%u) € NS) =
True by auto
note gel = gel [unfolded wpo.simps|of ?s ?t] stAS, simplified]
note ge2 = ge2[unfolded wpo.simps[of ?t 2u] tuAS, simplified]
from st u ngt! ngt2 have ngtl: = ?s = %t and ngt2: - ?t = ?u by auto
note ngt! = ngtl[unfolded wpo.simps[of ?s ?t] stAS, simplified]
note ngt2 = ngt2[unfolded wpo.simps|of ?t ?u] tuAS, simplified]
from «— %51y t gel have stV j € ?ts. ?s > ts | j by (cases ?thesis,
auto)
from <— 2t1> u ge2 have tu”: V k € 2us. %t = us ! k by (cases ?thesis,
auto)
let ?lu = length us
obtain ps2 pns2 where prc2: pre %9 ?h = (ps2,pns2) by force
obtain ps3 pns3 where pre3: pre ?f ?h = (ps3,pns3) by force
from - ?s1) t gel st’ have fg: pns by (cases ?thesis, auto simp: prc)
from <= 2t1y u ge2 tu’ have gh: pns2 by (cases ?thesis, auto simp: prc2)
note compat = pre-compat| OF pre pre2 pre3)|
from <— %s1) have %s1 = Fulse by simp
note gel = gel [unfolded this[unfolded t] if-False term.simps prc split]
from - ?t1) have ?t1 = Fualse by simp
note ge2 = ge2[unfolded this[unfolded u| if-False term.simps prc2 split]
from compat fg gh have fh: pns3 by blast
{
fix k
assume k: k € Zus
from o E[OF this] have size (us ! k) < size u unfolding u using
size-simps by auto
with tu'[folded t] <s =
ind[rule-format, of s t us ! k] k have s = us ! k by blast
} note su’ = this
from <— %s1» st’ gel ngtl s t have nfg: — ps
by (simp, cases ?thesis, simp, cases ps, auto simp: prc fg)
from <— 2t1»> tu’ ge2 ngt2 t v have ngh: — ps2
by (simp, cases ?thesis, simp, cases ps2, auto simp: prc2 gh)
show s = u
proof (cases ¢ ?f)
case Mul note cf = this

77

show ?thesis
proof (cases ¢ ?g)
case Mul note cg = this
show “thesis
proof (cases ¢ ?h)
case Mul note ch = this
from fg t gel st’ nfg cf cg
have mull: snd (mul-ext wpo ?mss ?mits) by auto
from gh u ge2 tu’ ngh cg ch
have mul2: snd (mul-ext wpo ?mts ?mus) by auto
from mull mul2 mul-ext-compat[OF ind3’, of ?mss ¢mts ?mus]
have snd (mul-ext wpo ?mss ?mus) by auto
with s u fh su’ pred ¢f ch suA show ?thesis unfolding wpo.simps|of

s u] by simp
next
case Ler note ch = this
from gh u ge2 tu’ ngh cg ch have us-e: mus = [| by simp
with s u fh su’ pre3 cf cg ch sud show ?thesis unfolding wpo.simps|of
s u] by simp
qed
next

case Ler note cg = this
from fg ¢ gel st’ nfg cf cg have ts-e: ?mts = [| by simp
show ?thesis
proof (cases ¢ ?h)
case Mul note ch = this
with gh u ge2 tu’ ngh cg ch have ?mus = || by simp
with s u fh su’ pred cf cg ch ns-mul-ext-bottom suA
show ?thesis unfolding wpo.simps|of s u] by (simp add: ns-mul-ext-def
mul-ext-def Let-def mult2-alt-ns-def)

next
case Lex note ch = this
have Af. snd (lex-ext f n || mus) = ?mus = [] by (simp-all add:

lex-ext-iff)
with ts-e gh u ge2 tu’ ngh cg ch have ?mus = [| by simp
with s u fh su’ pre3 cf ¢g ch suA show ?thesis unfolding wpo.simps|of
s u] by simp
qed
qed
next
case Ler note cf = this
show ?thesis
proof (cases ¢ ?g)
case Mul note cg = this
from fg ¢ gel st’ prec nfg cf cg have ts-e: ?mts = [| by simp
show ?thesis
proof (cases ¢ ?h)
case Mul note ch = this
with ts-e gh u ge2 tu’ ngh cg ch

78

ns-mul-ext-bottom-uniqueness|of mset ?mus]
have ?mus = || by (simp add: Let-def mul-ext-def)
with s u fh su’ pre3 cf ¢g ch suA show ?thesis unfolding wpo.simps|of
s u] by simp
next
case Ler note ch = this
with gh u ge2 tu’ prc2 ngh cg ch have ?mus = [| by simp
with s u fh su’ pre3 cf ¢g ch sud show ?thesis unfolding wpo.simps|of
s u] by (simp add: lez-ext-least-1)
qged
next
case Ler note cg = this
show ?thesis
proof (cases ¢ 7h)
case Mul note ch = this
with gh u ge2 tu’ ngh cg ch have ?mus = [| by simp
with s u fh su’ pred cf cg ch suA show ?thesis unfolding wpo.simps|of
s u] by (simp add: lez-ext-least-1)
next
case Ler note ch = this
from st’ gel st fg nfg cf cg
have lex1: snd (lex-ext wpo n ?mss ?mts) by (auto simp: prc)
from tu’ ge2 t u gh ngh cg ch
have lex2: snd (lex-ext wpo n ?mis ?mus) by (auto simp: prc2)
from lex! lex2 lex-ext-compat|OF ind3’, of ?mss ?mts ?mus]
have snd (lez-ext wpo n ?mss ?mus) by auto
with fg gh su’ s u fh cf cg ch suA show ?thesis unfolding
wpo.simps|of s u] by (auto simp: pred)
qed
qed
qed
qed
}
ultimately
show ?thesis using wpo-s-imp-ns by auto
qed
qged
qed
qed

context
assumes ssimple: strictly-simple-status oo NS
begin
lemma NS-arg”:
assumes i: i € set (o (f,length ts))
shows (Fun f ts, ts | i) € NS
using assms ssimple unfolding simple-arg-pos-def strictly-simple-status-def by
simp

79

lemma wpo-ns-refl”:
shows s > s
proof (induct s)
case (Fun f ss)
{
fix ¢
assume si: { € set (o (f,length ss))
from NS-arg’|OF this] have (Fun f ss, ss ! i) € NS .
with si Pun[OF status-auz|[OF si]] have wpo-s (Fun f ss) (ss ! i) unfolding
wpo.simps[of Fun f ss ss !]
by auto
} note wpo-s = this
let ?ss = map (X 4. ss! i) (o (f,length ss))
have rec11: snd (lez-ext wpo n ?ss ?ss)
by (rule all-nstri-imp-lex-nstri, insert o Elof - f ss], auto simp: Fun)
have rec12: snd (mul-ext wpo ?ss ?ss)
unfolding mul-ext-def Let-def snd-conv
by (intro ns-mul-ext-refl-local,
unfold locally-refl-def, auto simp: in-multiset-in-set[of ?ss] introl: Fun sta-
tus-aur)
from reci11 rec12 show ?case using refl-NS-point wpo-s
by (cases ¢ (f,length ss), auto simp: wpo.simps[of Fun f ss Fun f ss| prc-refl)
qed (simp add: wpo.simps refl-NS-point)

lemma wpo-stable”: fixes ¢ :: ('f,"v)subst
shows (s =t — s 0=t -0)A(s=t—s-0=1t-9)
(is ?p s t)
proof (induct (s,t) arbitrary:s t rule: wf-induct]OF wf-measure[of A (s,t). size s
+ size t]])
case (1 s t)
from I
have V s’ t'. size s’ + size t' < size s + size t — ?p s’ t' by auto
note IH = this[rule-format]
let s =15-9
let t=1-6
note simps = wpo.simps|of s t| wpo.simps|of ?s ?t]
show Zcase
proof (cases ((s,t) € SV (%s,7t) € S) V ((s,t) ¢ NS V = wpo-ns s t))
case True
then show ?thesis
proof
assume (s,t) € SV (%5,%) € S
with subst-Slof s t 0] have (%s,%t) € S by blast
from S-imp-wpo-s|OF this| have wpo-s ?s 2t .
with wpo-s-imp-ns|OF this] show ?thesis by blast
next
assume (s,t) ¢ NS V = wpo-ns s t
with wpo-ns-imp-NS have st: = wpo-ns s t by auto

80

with wpo-s-imp-ns have — wpo-s s t by auto
with st show ?thesis by blast
qed
next
case Fulse
then have not: ((s,t) € S) = False ((?s,2t) € S) = False
and stA: (s,t) € NS and ns: wpo-ns s t by auto
from subst-NS[OF stA] have sstsA: (%s,9t) € NS by auto
from stA sstsA have id: ((s,t) € NS) = True ((?s,%t) € NS) = True by auto
note simps = simps[unfolded id not if-False if-True)
show ?thesis
proof (cases s)
case (Var z) note s = this
show ?thesis
proof (cases t)
case (Var y) note t = this
show ?thesis unfolding simps(1) unfolding s ¢t using wpo-ns-refl’[of § y]
by auto
next
case (Fun g ts) note t = this
let ?g = (g,length ts)
show ?thesis
proof (cases 0 z)
case (Var y)
then show #thesis unfolding simps unfolding s ¢t by simp
next
case (Fun f ss)
let 2f = (f, length ss)
show ?thesis
proof (cases prl ?g)
case Fulse then show ?thesis unfolding simps unfolding s ¢ Fun by
auto
next
case True
obtain s ns where prc 2f 29 = (s,ns) by force
with pri[OF True, of ?f] have pre: pre ?f 29 = (s, True) by auto
show ?thesis unfolding simps unfolding s t Fun
by (auto simp: Fun prc mul-ext-def ns-mul-ext-bottom Let-def intro!:
all-nstri-imp-lex-nstri[of ||, simplified])
qed
qed
qed
next
case (Fun f ss) note s = this
let 2f = (f,length ss)
let %ss = set (o ?f)
{
fix ¢
assume i: i € %ss and ns: wpo-ns (ss !) t

81

from [H[of ss ! i t] o E[OF i] ns have wpo-ns (ss ! i - §) ?t using s
by (auto simp: size-simps)
then have wpo-s ?s 7t using i sstsA olof f length ss] unfolding simps
unfolding s by force
with wpo-s-imp-ns|OF this] have ?thesis by blast
} note si-arg = this
show ?thesis
proof (cases t)
case t: (Var y)
show ?thesis
proof (cases i€ ?ss. wpo-ns (ss! i) t)
case True
then obtain ¢
where si: { € ?ss and ns: wpo-ns (ss ! 4) ¢
unfolding s t by auto
from si-arg[OF this] show ?thesis .
next
case Fulse
with ns[unfolded simps| s t
have ssimple and largef: large ?f by (auto split: if-splits)
from False s t not
have — wpo-s s t unfolding wpo.simps|of s t] by auto
moreover
have wpo-ns ?s %t
proof (cases 0 y)
case (Var 2)
show ?thesis unfolding wpo.simps[of ?s ?t] not id
unfolding s t using Var (ssimple> largef by auto
next
case (Fun g ts)
let 29 = (g,length ts)
obtain ps pns where prc: pre ?f 29 = (ps,pns) by (cases pre ?f 29, auto)
from pre-stri-imp-nstrifof ?f ?g] prc have ps: ps = pns by auto
{
fix j
assume j € set (o ?g)
with set-status-nth[OF refl this] ss-status|OF <ssimple) this] t Fun
have (¢ - §, ts! j) € S by (auto simp: simple-arg-pos-def)
with sstsA have S: (s - 0, ts ! j) € S by (metis compat-NS-S-point)
hence wpo-s (s - 9) (ts ! j) by (rule S-imp-wpo-s)
} note ssimple = this
from large[OF <ssimpley largef, of ?g, unfolded prc]
have ps V pns A o %9 = || by auto
thus ?thesis using ssimple unfolding wpo.simps|of s ?t] not id
unfolding s t using Fun prc ps by (auto simp: lex-ext-least-1 mul-ext-def
Let-def ns-mul-ext-bottom)
qed
ultimately show ?thesis by blast
qged

82

next

case (Fun g ts) note t = this
let %9 = (g,length ts)
let %ts = set (o %g)
obtain prs prns where p: pre ?f 29 = (prs, prns) by force
note ns = ns[unfolded simps, unfolded s t p term.simps split]
show ?thesis
proof (cases 3 i € ?ss. wpo-ns (ss ! i) t)
case True
with si-arg show ?thesis by blast
next
case Fulse
then have id: (3 7 € ?ss. wpo-ns (ss! i) (Fun g ts)) = False unfolding

t by auto

note ns = ns[unfolded this if-False]
let ?mss = map (A s.s-9) ss
let ?mts = map (At .t -0) ts
from ns have prns and s-tj: A j. j € ?ts = wpo-s (Fun f ss) (ts ! j)
by (auto split: if-splits)
{
fix j
assume j: j € ?ts
from o E[OF this)
have size s + size (ts! j) < size s + size t unfolding t by (auto simp:

size-simps)

auto

st

from TH[OF this] s-tj|OF j, folded s] have wpo: wpo-s ?s (ts! j - J) by

from j o[of g length ts| have j < length ts by auto
with wpo have wpo-s ?s (?mts ! j) by auto
} note ss-ts = this
note oF = oE[of - f ss] oE[of - g ts]
show ?thesis
proof (cases prs)
case True
with ss-ts sstsA p «prnsy have wpo-s ?s ?t unfolding simps unfolding

by (auto split: if-splits)
with wpo-s-imp-ns|OF this] show ?thesis by blast
next
case Fulse
let ?mmss = map ((!) ss) (o ?f)
let ?mmts = map ((!) ts) (o ?9)
let ?Mmss = map ((!) ?mss) (o ?f)
let ?Mmts = map ((!) ?mts) (o ?g)
have id-map: ?Mmss = map (A t. t - §) ?mmss ?Mmts = map (A t. t -

d) ?mmits

unfolding map-map o-def by (auto simp: set-status-nth)
let ?ls = length (o ?f)
let ?lt = length (o ?g)

83

{
fix si tj
assume x: si € set mmss tj € set ?mmts
have (wpo-s si tj — wpo-s (si - 6) (&j - §)) A (wpo-ns si tj — wpo-ns
(si - 8) (8 - 9))
proof (intro IH add-strict-mono)
from (1) have si € set ss using set-status-nthlof - - - co] by auto
then show size si < size s unfolding s by (auto simp: termination-simp)
from *(2) have #j € set ts using set-status-nth[of - - - oo] by auto
then show size tj < size t unfolding t by (auto simp: termination-simp)
qged
hence wpo-s si tj = wpo-s (si - §) (tj - 0)
wpo-ns si tj => wpo-ns (si -) (tj -) by blast+
} note IH' = this
{
fix ¢
assume ¢ < ?ls i < It
then have i-f: i < length (o ?f) and i-g: © < length (o %g) by auto
with o[of f length ss| olof g length ts] have i: o 2f | i < length ss o %g
' < length ts
unfolding set-conv-nth by auto
then have size (ss ! (o 2f ! 1)) < size s size (ts ! (0 %91 1)) < size t
unfolding s ¢ by (auto simp: size-simps)
then have size (ss! (o ?f ! i) + size (ts! (0 %9 ! i) < size s + size
t by simp
from TH[OF this| i i-f i-g
have (wpo-s (?mmss ! i) (?mmts ! i) =
wpo-s (Pmss | (o 2f 1 4)) (Pmts! (o 29! 1))
(wpo-ns (?mmss ! i) (Pmmts | i) =
wpo-ns (?mss | (o 2f 1 0)) (?mis! (o 29! 7)) by auto
} note IH = this
consider (Lex) ¢ ?f = Lex ¢ 29 = Lex | (Mul) ¢ ?f = Mul ¢ g = Mul
| (Diff) ¢ 7 # ¢ %
by (cases ¢ ?f; cases ¢ ?g, auto)
thus ?thesis
proof cases
case Lex
from Lex False ns have snd (lez-ext wpo n ?mmss ¢mmts) by (auto
split: if-splits)
from this[unfolded lex-ext-iff snd-conv]
have len: (?ls = ?2lt V ?lt < n)
and choice: (Fi< ?ls.
i < 2t N (Vji<i. wpo-ns (Pmmss ! j) (mmis ! §)) A wpo-s (?mmss !
i) (Pmmits ! 7)) V
(Vi< 2It. wpo-ns (Pmmss | i) (?mmits | ©)) A ?lt < 2ls (is Pstri V
?nstri) by auto
from choice have ?stri V (= ?stri A ?nstri) by blast
then show ?%thesis
proof

84

assume ?stri
then obtain ¢ where i: { < ?ls i < ?It
and NS: (Vj<i. wpo-ns (mmss | j) (Ymmis ! j)) and S: wpo-s
(?mmss | ©) (?mmts | ©) by auto
with IH have (Vj<i. wpo-ns (?Mmss ! j) (?Mmts ! j)) wpo-s (?Mmss
1'4) (?Mmits ! ©) by auto
with i len have fst (lez-ext wpo n ?Mmss ?Mmts) unfolding lex-ext-iff
by auto
with Lex ss-ts sstsA p <prns) have wpo-s ?s ¢t unfolding simps
unfolding s ¢
by (auto split: if-splits)
with wpo-s-imp-ns[OF this] show %thesis by blast
next
assume — ?stri A Pnstri
then have “nstri and nstri: = ?stri by blast+
with IH have (Vi< ?lt. wpo-ns (?Mmss | i) (?Mmits ! i) A 2t < ?ls
by auto
with len have snd (lex-ext wpo n ?Mmss ?Mmts) unfolding lex-ext-iff
by auto
with Lez ss-ts sstsA p <prns> have ns: wpo-ns ?s ?t unfolding simps
unfolding s ¢
by (auto split: if-splits)
{
assume wpo-s s t
from Lex this[unfolded simps, unfolded s t term.simps p split id]

False
have fst (lex-ext wpo n mmss ?mmts) by (auto split: if-splits)
from this[unfolded lex-ext-iff fst-conv] nstri
have (Vi< ?lt. wpo-ns (?mmss |) (Ymmis !) A 2lt < ?ls by auto
with IH have (Vi< ?lt. wpo-ns (?Mmss ! ©) (?Mmts ! i)) A 2t <
?ls by auto

then have fst (lez-ext wpo n ?Mmss ?Mmts) using len unfolding
lez-ext-iff by auto

with Lez ss-ts sstsA p <prns> have ns: wpo-s ?s ?t unfolding simps
unfolding s ¢

}

with ns show ?thesis by blast
qed
next
case Diff
thus ?thesis using ns ss-ts sstsA p <prns> unfolding simps unfolding

by (auto split: if-splits)

st
by (auto simp: Let-def split: if-splits)
next
case Mul
from Mul False ns have ge: snd (mul-ext wpo ?mmss ¢mmts) by (auto
split: if-splits)
have ge: snd (mul-ext wpo ?Mmss ?Mmits) unfolding id-map

85

by (rule nstri-mul-ext-map[OF - - ge], (intro IH', auto)+)
{
assume gr: fst (mul-ext wpo ?mmss ?mmts)
have gro: fst (mul-ext wpo ?Mmss ?Mmts) unfolding id-map
by (rule stri-mul-ext-map[OF - - gr], (intro IH', auto)+)
} note gr = this
from ge gr
show ?thesis
using ss-ts <prns) unfolding simps
unfolding s ¢ term.simps p split eval-term.simps length-map Mul
by (simp add: id-map id)
qed
qed
qed
qed
qed
qed
qed

lemma subterm-wpo-s-arg” assumes i: i € set (o (f,length ss))
shows Fun fss = ss!i

proof —
have refl: ss ! i = ss! i by (rule wpo-ns-refl’)
with ¢ have 3 ¢ € set (o (f,length ss)). ss! i = ss | i by auto
with NS-arg’[OF i] i
show ?thesis by (auto simp: wpo.simps split: if-splits)

qged

context

fixes f s t bef aft

assumes ctzt-NS: (s,t) € NS = (Fun f (bef Q s # aft), Fun f (bef Q t # aft))
€ NS
begin

lemma wpo-ns-pre-mono’:
defines of = o (f, Suc (length bef + length aft))
assumes rel: (wpo-ns s t)
shows (Vjeset of. Fun [(bef Q s # aft) = (bef Q t # aft) ! j)
A (Fun f (bef Q s # aft), (Fun f (bef Q t # aft))) € NS
A (Y i < length of. ((map ((1) (bef @ s # aft)) of) ! ©) = ((map ((!) (bef @Q t
aft)) of) ! 7))
(is - A - A Zthree)
proof —
let ?ss = bef Q s # aft
let ?ts = bef Q t # aft
let 2s = Fun f %ss
let 2t = Fun f %ts
let ?len = Suc (length bef + length aft)
let ?f = (f, ?len)

86

let %0 = o 2f
from wpo-ns-imp-NS[OF rel] have stA: (s,t) € NS .
have ?three unfolding of-def
proof (intro alll impI)
fix ¢
assume i < length %o
then have id: A ss. (map ((!) ss) %0) ! i=ss! (%0 ! i) by auto
show wpo-ns ((map ((!) ?ss) 20) 1 i) ((map ((1) 2ts) %0) ! 7)
proof (cases %o | i = length bef)
case True
then show ?thesis unfolding id using rel by auto
next
case Fulse
from append-Cons-nth-not-middle]OF this, of s aft t] wpo-ns-refl’
show ?thesis unfolding id by auto
qed
qed
have Vjeset %0. wpo-s ?s ((bef Q t # aft) ! j) (is Zone)
proof
fix j
assume j: j € set %o
then have j € set (o (f,length ?ss)) by simp
from subterm-wpo-s-arg'[OF this]
have s: wpo-s ?s (%ss ! j) .
show wpo-s ?s (%ts ! j)
proof (cases j = length bef)
case Fulse
then have %ss | j = %ts | j by (rule append-Cons-nth-not-middle)
with s show ?thesis by simp
next
case True
with s have wpo-s ?s s by simp
with rel wpo-compat have wpo-s ?s t by fast
with True show ?thesis by simp
qed
qed
with «?threes ctzt-NS[OF stA] show ?thesis unfolding of-def by auto
qed

lemma wpo-ns-mono’:

assumes rel: s = ¢

shows Fun f (bef @Q s # aft) = Fun f (bef Q t # aft)
proof —

let ?ss = bef Q s # aft

let ?ts = bef Q t # aft

let 2s = Fun f %ss

let 2t = Fun f %ts

let ?len = Suc (length bef + length aft)

let ?f = (f, ?len)

87

let %0 = o 2f
from wpo-ns-pre-mono’|OF rel]
have id: (Vjeset %o. wpo-s ?s ((bef Q t # aft) ! j)) = True
((?s,%t) € NS) = True
length ?ss = ?len length ?ts = ?len
by auto
have snd (lez-ext wpo n (map ((1) ?ss) %0) (map ((!) %ts) %0))
by (rule all-nstri-imp-lex-nstri, intro alll impl, insert wpo-ns-pre-mono’|OF
rel], auto)
moreover have snd (mul-ext wpo (map ((1) ?ss) %) (map ((!) ?ts) %0))
by (rule all-nstri-imp-mul-nstri, intro alll impl, insert wpo-ns-pre-mono’|OF
rel], auto)
ultimately show ?thesis unfolding wpo.simps[of ?s ?t] term.simps id pre-refl
using order-tag.exzhaust by (auto simp: Let-def)
qed

end
end
end

locale wpo-with-assms = wpo-with-basic-assms + order-pair +
constrains S :: ('f, 'v) term rel and NS :: -
and pre :: 'f X nat = 'f X nat = bool x bool
and pril :: 'f x nat = bool
and ssimple :: bool
and large :: 'f X nat = bool
and ¢ :: 'f x nat = order-tag
and n :: nat
and oo :: 'f status
assumes ctzt-NS: (s,t) € NS = (Fun f (bef @ s # aft), Fun f (bef Q t # aft))
€ NS
and ws-status: i € set (status oo fn) = simple-arg-pos NS fn i
begin

lemma ssimple: strictly-simple-status oo NS
using ws-status set-status-nth unfolding strictly-simple-status-def simple-arg-pos-def
by fastforce

lemma trans-prc: trans-precedence prc
unfolding trans-precedence-def
proof (intro alll, goal-cases)
case (1 fgh)
show ?case using pre-compat|of f g - - h] by (cases pre f g; cases prc g h; cases
pre [h, auto)
qed

lemma NS-arg: assumes i: i € set (o (f,length ts))

shows (Fun fts, ts! i) € NS
using NS-arg'[OF ssimple 1] .

88

lemma NS-subterm: assumes all: \ fk. set (o (f,k)) ={0 .< k}
shows s > t = (s,t) € NS
proof (induct s t rule: supteq.induct)
case (refl)
from refl-NS show Zcase unfolding refl-on-def by blast
next
case (subt s sst f)
from subt(1) obtain ¢ where i: i < length ss and s: s = ss | i unfolding
set-conv-nth by auto
from NS-arglof i f ss, unfolded all] s i have (Fun f ss, s) € NS by auto
from trans-NS-point| OF this subt(3)] show ?case .
qed

lemma wpo-ns-refl: s = s
using wpo-ns-refl'|OF ssimple] .

lemma subterm-wpo-s-arg: assumes i: ¢ € set (o (f,length ss))
shows Fun fss > ss!i
by (rule subterm-wpo-s-arg’|OF ssimple 1i])

lemma subterm-wpo-ns-arg: assumes i: i € set (o (f,length ss))
shows Fun fss > ss!i
by (rule wpo-s-imp-ns[OF subterm-wpo-s-arg|OF i]])

lemma wpo-irrefl: = (s >)
proof
assume s = §
thus Fulse
proof (induct s)
case Var
thus False using irrefl-S by (auto simp: wpo.simps irrefl-def split: if-splits)
next
case (Fun f ss)
let ?s = Fun f ss
let ?n = length ss
let 2f = (f,length ss)
let %sub = Jicset (o 2f). ssli > s
{
fix ¢
assume i: i € set (o ?f) and ge: ss! i = s
with status[of oo f ?n] have { < ?n by auto
hence ss ! i € set ss by auto
from Fun(1)[OF this] have not: = (ss! i > ss! i) by auto
from ge subterm-wpo-s-arg|OF i] have ss ! i = ss !4
using wpo-compat by blast
with not have Fulse ..

89

hence id0: ?sub = False by auto

from irrefl-S refl-NS have id1: ((%s,%s) € S) = Fulse ((%s,%s) € NS) = True
unfolding irrefi-def refl-on-def by auto

let ?ss = map ((!) ss) (o ?f)

define ss’ where ss’ = %ss

have set ss’ C set ss using status[of oo f ?n] by (auto simp: ss’-def)

note IH = Fun(1)[OF set-mp[OF this]]

from Fun(2)[unfolded wpo.simps|of ?s ?s] id1 id0 if-False if-True term.simps

pre-refl split Let-def)

have fst (lex-ext wpo n ss’ ss’) V fst (mul-ext wpo ss’ ss’)
by (auto split: if-splits simp: ss’-def)

thus Fulse

proof
assume fst (lex-ext wpo n ss’ ss’)
with lex-ext-irrefljof ss’ wpo n] IH show False by auto

next
assume fst (mul-ext wpo ss’ ss’)
with mul-ext-irrefl[of ss’ wpo, OF - - wpo-s-imp-ns| IH wpo-compat
show Fulse by blast

qed

qged
qged

lemma wpo-ns-mono:
assumes rel: s = ¢
shows Fun f (bef @Q s # aft) = Fun f (bef Q t # aft)
by (rule wpo-ns-mono’|OF ssimple ctxt-NS rel])

lemma wpo-ns-pre-mono: fixes f and bef aft :: ('f,v)term list
defines of = o (f, Suc (length bef + length aft))
assumes rel: (wpo-ns s t)
shows (Vjeset af. Fun [(bef @ s # aft) = (bef Q t # aft) ! j)
A (Fun f (bef Q s # aft), (Fun f (bef Q t # aft))) € NS
A (Y i < length of. ((map ((1) (bef @ s # aft)) of) ! ©) = ((map ((!) (bef @Q ¢
aft)) af) ! 1))
unfolding of-def
by (rule wpo-ns-pre-mono’|OF ssimple ctxt-NS rel])

lemma wpo-stable: fixes ¢ :: ('f,"v)subst
shows (s >t —s-0>=t-0)A(s=t—s-0>=1t-9)
by (rule wpo-stable’|OF ssimple))

theorem wpo-order-pair: order-pair WPO-S WPO-NS
proof

show refl WPO-NS using wpo-ns-refl unfolding refl-on-def by auto

show trans WPO-NS using wpo-compat unfolding trans-def by blast

show trans WPO-S using wpo-compat wpo-s-imp-ns unfolding trans-def by
blast

show WPO-NS O WPO-S C WPO-S using wpo-compat by blast

90

show WPO-§ O WPO-NS C WPO-S using wpo-compat by blast
qed

theorem WPO-S-subst: (s,t) € WPO-S = (s - 0, t - o) € WPO-S for ¢
using wpo-stable by auto

theorem WPO-NS-subst: (s,t) € WPO-NS = (s - 0, t - 0) € WPO-NS for o
using wpo-stable by auto

theorem WPO-NS-ctat: (s,t) € WPO-NS = (Fun f (bef Q s # aft), Fun f (bef
Q@ ¢ # aft)) € WPO-NS

using wpo-ns-mono by blast

theorem WPO-S-subset-WPO-NS: WPO-S C WPO-NS
using wpo-s-imp-ns by blast

context
assumes o-full: \ fk. set (o (f,k)) = {0 ..< k}
begin

lemma subterm-wpo-s: s >t = s =t
proof (induct s t rule: supt.induct)

case (arg s ss f)

from arg[unfolded set-conv-nth] obtain ¢ where i: i < length ss and s: s = ss
!¢ by auto

from o-full[of f length ss] i have ii: i € set (o (f,length ss)) by auto

from subterm-wpo-s-arg|OF ii] s show ?case by auto
next

case (subt s sst f)

from subt wpo-s-imp-ns have 3 s € set ss. wpo-ns s t by blast

from this[unfolded set-conv-nth] obtain ¢ where ns: ss! ¢ > t and i: i < length
ss by auto

from o-full[of f length ss| i have ii: i € set (o (f,length ss)) by auto

from subt have Fun f ss > t by auto

from NS-subterm|[OF o-full this] ns ii

show ?case by (auto simp: wpo.simps split: if-splits)
qed

lemma subterm-wpo-ns: assumes supteq: s > t shows s = ¢
proof —
from supteq have s =t V s > t by auto
then show ?thesis
proof
assume s = ¢ then show ?thesis using wpo-ns-refl by blast
next
assume s > t
from wpo-s-imp-ns|OF subterm-wpo-s[OF this]]

91

show ?thesis .
qed
qed

lemma wpo-s-mono: assumes rels: s > t
shows Fun f (bef @Q s # aft) = Fun f (bef Q t # aft)
proof —
let ?ss = bef Q s # aft
let ?ts = bef @Q t # aft
let ?s = Fun f %ss
let 2t = Fun f ?ts
let ?len = Suc (length bef + length aft)
let 2f = (f, %len)
let %0 = o 2f
from wpo-s-imp-ns|OF rels| have rel: wpo-ns st .
from wpo-ns-pre-mono| OF rel]
have id: (Vjeset %0. wpo-s ?s ((bef Q t # aft) ! j)) = True
((?s,7t) € NS) = True
length ?ss = f?len length ?ts = ?len
by auto
let ?lb = length bef
from o-full[of f ?len] have lb-mem: ?lb € set %0 by auto
then obtain i where oi: %0 ! i = ?lb and i: ¢ < length %o
unfolding set-conv-nth by force
let ?mss = map ((!) ?ss) %o
let ?mts = map ((!) ?ts) %o
have fst (lex-ext wpo n ?mss ?mts)
unfolding lex-ext-iff fst-conv
proof (intro conjl, force, rule disjl1, unfold length-map id, intro exl conjl, rule
i, rule 1,
intro alll impl)
show wpo-s (?mss ! i) (?mts ! i) using o i rels by simp
next
fix j
assume j < 1
with ¢ have j: j < length %0 by auto
with wpo-ns-pre-mono|OF rel]
show ?mss ! j = ?mts! j by blast
qed
moreover
obtain b nlb where part: partition ((=) ?lb) %0 = (Ib, nlb) by force
hence mset-o: mset %0 = mset lb + mset nlb
by (induct %o, auto)
let ?mibs = map ((!) %ss) Ib
let ?mnlbs = map ((!) ?ss) nib
let ?mibt = map ((!) %ts) Ib
let ?mnlbt = map ((!) 2ts) nlb
have id1: mset ?mss = mset ?mnlbs + mset ?mlbs using mset-oc by auto
have id2: mset ?mts = mset ?mnlbt + mset ?mlbt using mset-oc by auto

92

from part Ib-mem have [b: ?lb € set Ib by auto
have fst (mul-ext wpo ?mss ?mis)
unfolding mul-ext-def Let-def fst-conv
proof (intro s-mul-extl-old, rule id1, rule id2)
from b show mset ?mlbs # {#} by auto
{
fix ¢
assume i < length ?mnlbt
then obtain j where id: ?mnlbs ! i = 2ss!j ?mnlbt ! ¢ = %ts | jj € set nlb
by auto
with part have j # ?lb by auto
hence %ss!j = %ts! j by (auto simp: nth-append)
thus (?mnlbs ! 7, ?mnibt | i) € WPO-NS unfolding id using wpo-ns-refl by
auto
}
fix u
assume u €# mset ?mibt
hence u = t using part by auto
moreover have s €# mset ?mlbs using Ib by force
ultimately show 3 v. v €# mset ?mlbs A (v,u) € WPO-S using rels by
force
qed auto
ultimately show ?thesis unfolding wpo.simps[of ?s ?t] term.simps id pre-refl
using order-tag.ezhaust by (auto simp: Let-def)
qed

theorem WPO-S-ctzt: (s,t) € WPO-S = (Fun f (bef Q s # aft), Fun f (bef @
t # aft)) € WPO-S
using wpo-s-mono by blast

theorem supt-subset-WPO-S: {>} C WPO-S
using subterm-wpo-s by blast

theorem supteg-subset-WPO-NS: {&>} C WPO-NS
using subterm-wpo-ns by blast

end
end

If we demand strong normalization of the underlying order and the prece-
dence, then also WPO is strongly normalizing.

locale wpo-with-SN-assms = wpo-with-assms + SN-order-pair + precedence +
constrains S :: ('f, 'v) term rel and NS :: -
and prc :: 'f X nat = 'f X nat = bool x bool
and prl :: 'f X nat = bool
and ssimple :: bool
and large :: 'f x nat = bool
and ¢ :: 'f x nat = order-tag
and n :: nat

93

and oo :: f status
begin

lemma Var-not-S[simpl: (Var x, t) ¢ S
proof
assume st: (Varz, t) € S
from SN-imp-minimal[OF SN, rule-format, of undefined UNIV|
obtain s where A u. (s,u) ¢ S by blast
with subst-S[OF st, of A -. §
show Fulse by auto
qged

lemma WPO-S-SN: SN WPO-S
proof —

fix ¢t 2 ('f,"v)term
let 2S = Az. SN-on WPO-S {z}
note iff = SN-on-all-reducts-SN-on-conv[of WPO-S]
{
fix »
have 25 (Var z) unfolding iff[of Var z]
proof (intro alll impl)
fix s
assume (Var z, s) € WPO-S
then have Fulse by (cases s, auto simp: wpo.simps split: if-splits)
then show 2S5 ..
qed
} note var-SN = this
have 25 ¢
proof (induct t)
case (Var z) show ?Zcase by (rule var-SN)
next
case (Fun fts)
let ?Slist = X fys. V i € set (o f). 25 (ys ! i)
let 2r8 = {((f,ad), (g,ab")). ((c f = ¢ g) — (2Slist f ab A
(¢ f = Mul — fst (mul-ext wpo (map ((!) ab) (o f)) (map ((!) ab’) (¢
9)))) A

9)))))
A (e f# cg)— (map ((1) ab) (o f) # [] A (map ((!) ab’) (o 9)) = []))}
l{et 2r0 = lex-two {(f,g). fst (pre f 9)} {(f,9). snd (prc f g)} ?r3
fix ab
{
assume 3S5. S0 = ab A (Vi. (S, S (Suci)) € 7r3)
then obtain S where
S0: S 0 = ab and
SS:Vi. (S, S (Suci)) € 73
by auto

(¢ f = Lex — fst (lez-ext wpo n (map ((!) ab) (o f)) (map ((!) ab’) (o

94

let 75f = . fst (fst (S 0))
let 2Sn = Ai. snd (fst (S ©))
let 2Sfn = X i. fst (S 14)
let ?Sts = X\i. snd (S i)
let ?Stso = Ai. map ((1) (9Sts @) (o (2Sfn 7))
have False
proof (cases Vi. ¢ (9Sfn i) = Mul)
case True
let #r’ = {((f,ys), (g,25))-
(V yi €set ((map ((") ys) (¢ f))). SN-on WPO-S {yi})
A fst (mul-ext wpo (map ((!) ys) (o f)) (map ((!) zs) (o 9)))}
{
fix ¢
from True[rule-format, of i| and True[rule-format, of Suc i]
and SS[rule-format, of i]
have (S 4, S (Suc 7)) € ?r' by auto
}
then have Hf: - SN-on ?r' {S 0}
unfolding SN-on-def by auto
from mul-ext-SN|[of wpo, rule-format, OF wpo-ns-refl]
and wpo-compat wpo-s-imp-ns
have tmp: SN {(ys, xs). (Vy€Eset ys. SN-on {(s, t). wpo-s s t} {y}) A fst
(mul-ext wpo ys xs)}
(is SN ?R) by blast
have id: ?r’ = inv-image ?R (X (f,ys). map ((!) ys) (o f)) by auto
from SN-inv-image[OF tmp)
have SN ?r’ unfolding id .
from SN-on-subset2[OF subset-UNIV[of {S 0}], OF this]
have SN-on ?r' {(S 0)} .
with Hf show ?thesis ..
next
case Fualse note HMul = this
show ?thesis
proof (cases Vi. ¢ (?Sfn i) = Lex)
case True
let 2r’ = {((f,ys), (g,25))-
(V yi €set ((map ((") ys) (¢ f))). SN-on WPO-S {yi})
A fst (lez-ext wpo n (map (1) ys) (o f)) (map ((!) zs) (o 9)))}
{
fix ¢
from SS[rule-format, of i| Truel[rule-format, of i| True[rule-format,
of Suc 1
have (S 4, S (Suc i)) € ?r' by auto
}
then have Hf: = SN-on ?r’' {S 0}
unfolding SN-on-def by auto
from wpo-compat have \ z y z. wpo-ns x y = wpo-s y z => wpo-s «
z by blast
from lex-ext-SN[of wpo n, OF this

95

have tmp: SN {(ys, xs). (Y yEset ys. SN-on WPO-S {y}) A fst (lex-ext
wpo n ys xs)}
(is SN 7R) .
have id: ?r’ = inv-image ?R (A (f,ys). map ((!) ys) (o f)) by auto
from SN-inv-image[OF tmp]
have SN ?r’ unfolding id .
then have SN-on ?r' {(S 0)} unfolding SN-defs by blast
with Hf show False ..
next
case False note HLex = this
from HMul and HLez
have Ji. ¢ (?Sfn i) # ¢ (?Sfn (Suc 7))
proof (cases ?thesis, simp)
case Fulse
then have T:Vi. ¢ (?Sfn i) = ¢ (?Sfn (Suc 7)) by simp
{
fix ¢
have ¢ (?Sfn i) = ¢ (?Sfn 0)
proof (induct 7)
case (Suc j) then show Zcase by (simp add: T[rule-format, of j))
qed simp
}
then show ?thesis using HMul HLex
by (cases ¢ (¢Sfn 0)) auto
qed
then obtain i where
Hdiff: ¢ (2Sfn i) # ¢ (25fn (Suc 7))
by auto
from Hdiff have Hf: ?Stso (Suc i) = []
using SS[rule-format, of i] by auto
show ?thesis
proof (cases ¢ (2Sfn (Suc ©)) = ¢ (2Sfn (Suc (Suc ©))))
case Fulse then show ?thesis using Hf and SS[rule-format, of Suc
i] by auto
next
case True
show ?thesis
proof (cases ¢ (2Sfn (Suc)))
case Mul
with True and SS[rule-format, of Suc i
have fst (mul-ext wpo (2Stso (Suc ©)) (2Stso (Suc (Suc i))))
by auto
with Hf and s-mul-ext-bottom-strict show ?thesis
by (simp add: Let-def mul-ext-def s-mul-ext-bottom-strict)
next
case Lez
with True and SS[rule-format, of Suc 1]
have fst (lex-ext wpo n (9Stso (Suc ©)) (2Stso (Suc (Suc 7))))
by auto

96

with Hf show ?thesis by (simp add: lex-ext-iff)
qed
qed
qed
qed
}

}
then have SN ?r3 unfolding SN-on-def by blast

have SN1:SN ?r0
proof (rule lex-two[OF - pre-SN «SN 9r83))

let 7r’ = {(f,9). fst (prc f g)}
let 2r = {(f,g). snd (prc f g)}

{
fix al a2 a3

assume (al,a2) € ?r (a2,a3) € ?r'
then have (al,a3) € 7r'
by (cases prc al a2, cases prc a2 a8, cases prc al a3,
insert prc-compat|of al a2 - - a8], force)
}

then show ?r O ?r’ C ?r' by auto
qed
let ?m = X (f,ts). ((f,length ts), ((f, length ts), ts))
let ?r = {(a,b). (?m a, ?m b) € ?r0}
have SN-r: SN ?r using SN-inv-image[OF SN1, of ?m] unfolding inv-image-def
by fast
let 2SA = (A z y. (z,y) € 5)
let YNSA = (A z y. (z,y) € NS)
let ?rr = lex-two S NS ?r
define rr where rr = ?rr
from lez-two[OF compat-NS-S SN SN-r]
have SN-rr: SN rr unfolding rr-def by auto
let ?rrr = inv-image rr (X (f,ts). (Fun f ts, (f,ts)))
have SN-rrr: SN 2rrr
by (rule SN-inv-image[OF SN-rr))
let %ind = X\ (f,ts). ¢Slist (f,length ts) ts — 25 (Fun f ts)
have ?ind (f,ts)
proof (rule SN-induct|OF SN-rrr, of ?ind])
fix fts
assume ind: N\ gss. (fts,gss) € ?rrr = %ind gss
obtain f ts where Pair: fts = (f,ts) by force
let ?2f = (f,length ts)
note ind = ind[unfolded Pair)
show ?ind fts unfolding Pair split
proof (intro impl)
assume ts: ?Slist ?f ts
let 2t = Fun fts
show 75 %t
proof (simp only: iff[of ?t], intro alll impI)
fix s

97

assume (?t,s) € WPO-S
then have ?¢ > s by simp
then show 7S s
proof (induct s, simp add: var-SN)
case (Fun g ss) note IH = this
let s = Fun g ss
let %9 = (g,length ss)
from Fun have t-gr-s: ?t = ?s by auto
show 25 7s
proof (cases 3 i € set (o ?f). ts! i = 9s)
case True
then obtain ¢ where i € set (o ?f) and ge: ts ! i = %s by auto
with ts have 25 (ts ! 7) by auto
show 25 s
proof (unfold iff [of ?s], intro alll impl)
fix u
assume (?s,u) € WPO-S
with wpo-compat ge have u: ts! ¢ = u by blast
with <25 (¢s ! i) [unfolded iff [of ts ! i]]
show %5 u by simp
qged
next
case Fulse note oFulse = this
from wpo-s-imp-NS[OF t-gr-s]
have ¢-NS-s: (?t,%s) € NS .
show ?thesis
proof (cases (%t,%s) € S)
case True
then have ((f,ts),(g,ss)) € ?rrr unfolding rr-def by auto
with ind have ind: ?ind (g,ss) by auto
{
fix ¢
assume i: i € set (o ?g)
have ?s = ss ! i by (rule subterm-wpo-ns-arg|OF 1i])
with t-gr-s have ts: ¢t >= ss ! i using wpo-compat by blast
have 2S5 (ss ! i) using IH(1)[OF oE[OF 1] ts] by auto
} note SN-ss = this
from ind SN-ss show ?thesis by auto
next
case Fulse
with t-NS-s oFalse
have id: (?t,%s) € S = False (%t,%s) € NS = True by simp-all
let ?ls = length ss
let ?it = length ts
let 2f = (f,%lt)
let 79 = (g,%ls)
obtain s ns! where prci: pre ?f 29 = (s1,ns1) by force
note t-gr-s = t-gr-s{unfolded wpo.simps[of 7t ?s],
unfolded term.simps id if-True if-False prcl split]

98

¢ ?f = Mul c

from oFalse t-gr-s have f-ge-g: nsi

by (cases ?thesis, auto)

from oFalse t-gr-s f-ge-g have small-ss: ¥V i € set (o ?g). 7t = ss i

by (cases ?thesis, auto)

with Fun oE[of - ¢ ss] have ss-S: ?Slist 29 ss by auto
show ?thesis
proof (cases s1)

case True

then have ((f,ts),(g,ss)) € ?r by (simp add: prcl)

with t-NS-s have ((f,ts),(g,55)) € ?rrr unfolding rr-def by auto
with ind have ?ind (g,ss) by auto

with ss-S show ?thesis by auto

next

case Fulse

consider (Diff) ¢ ?f # ¢ ?g | (Lex) ¢ ?f = Lex ¢ 29 = Lex | (Mul)
79 = Mul

by (cases ¢ ?f; cases ¢ ?g, auto)
thus ?thesis
proof cases
case Diff
with Fulse oFulse f-ge-g t-gr-s small-ss prcl t-NS-s
have ((f,ts),(g,ss)) € ?rrr unfolding rr-def by (cases ¢ ?f;

cases ¢ g, auto)

auto

auto

with ind have ?ind (g,ss) using Pair by auto
with ss-S show ?thesis by simp
next
case Lezr
from False oFulse t-gr-s small-ss f-ge-g Lex
have lex: fst (lex-ext wpo n (map ((1) ts) (o 2f)) (map ((!) ss)

by auto
from Fulse lex ts f-ge-g Lex have ((f,ts),(g,s5)) € ?r
by (simp add: prel)
with t-NS-s have ((f,ts),(g,ss)) € ?rrr unfolding rr-def by

with ind have ?%ind (g,ss) by auto
with ss-S show ?thesis by auto
next
case Mul
from Fulse oFulse t-gr-s small-ss f-ge-g Mul
have mul: fst (mul-ext wpo (map ((!) ts) (o 7)) (map ((!) ss)

by auto
from False mul ts f-ge-g Mul have ((f,ts),(g,ss)) € r
by (simp add: prel)
with ¢-NS-s have ((f,ts),(g,ss)) € ?rrr unfolding rr-def by

with ind have ?ind (g,ss) by auto
with ss-S show ?thesis by auto

99

qed
qed
qed
qed
qed
qed
qged
qed
with Fun show ?case using o E[of - f ts] by simp
qed

from SN-I[OF this)
show SN {(s::('f, 'v)term, t). fst (wpo s t)} .
qed

theorem wpo-SN-order-pair: SN-order-pair WPO-S WPO-NS
proof —

interpret order-pair WPO-S WPO-NS by (rule wpo-order-pair)

show ?thesis

proof

show SN WPO-S using WPO-S-SN .

qed

qed

end
end

6 The Recursive Path Order as an instance of WPO

This theory defines the recursive path order (RPO) that given two terms
provides two Booleans, whether the terms can be strictly or non-strictly
oriented. It is proven that RPO is an instance of WPO, and hence, carries
over all the nice properties of WPO immediately.

theory RPO
imports
WPO
begin

context
fixes pr :: 'f X nat = 'f x nat = bool x bool
and prl :: 'f x nat = bool
and c :: 'f x nat = order-tag
and n :: nat
begin

fun rpo :: ('f, 'v) term = ('f, 'v) term = bool x bool

where
rpo (Var z) (Var y) = (False, z = y) |

100

rpo (Var z) (Fun g ts) = (False, ts =[] A prl (g,0)) |
rpo (Fun f ss) (Var y) = (let con = (3 s € set ss. snd (rpo s (Var y))) in
(con,con)) |
rpo (Fun f ss) (Fun g ts) = (
if (3 s € setss. snd (rpo s (Fun g ts)))
then (True, True)
else (let (prs,prns) = pr (f,length ss) (g,length ts) in
if prns N (V t € set ts. fst (rpo (Fun f ss) t))
then if prs
then (True, True)
else if ¢ (f,length ss) = Lex A ¢ (g,length ts) = Lex
then lex-ext rpo n ss ts
else if ¢ (f,length ss) = Mul A ¢ (g,length ts) = Mul
then mul-ext rpo ss ts
else (length ss # 0 N length ts = 0, length ts = 0)
else (Fualse,False)))
end

locale rpo-with-assms = precedence prc prl
for pre :: 'f x nat = 'f X nat = bool x bool
and prl :: 'f x nat = bool
and ¢ :: 'f x nat = order-tag
and n :: nat
begin

sublocale wpo-with-SN-assms n {} UNIV prc prl full-status ¢ False A -. False
by (unfold-locales, auto simp: refl-on-def trans-def simple-arg-pos-def irrefl-def)

abbreviation rpo-pr = rpo prc prl c n
abbreviation rpo-s = \ s t. fst (rpo-pr s t)
abbreviation rpo-ns = X s t. snd (rpo-pr s t)

lemma rpo-eq-wpo: rpo-pr st = wpo st
proof —
note simps = wpo.simps
show ?thesis
proof (induct s t rule: rpo.induct|of - pre prl ¢ n))
case (1 z y)
then show ?case by (simp add: simps)
next
case (2 z g ts)
then show Zcase by (auto simp: simps)
next
case (3 f ss y)
then show ?case by (auto simp: simps[of Fun f ss Var y] Let-def set-conv-nth)
next
case IH: (4 fss g ts)
have id: A\ s. (s € {}) = False \ s. (s € UNIV) = True
and (Fie{0..<length ss}. wpo-ns (ss! i) t) = (I si€set ss. wpo-ns si t)

101

by (auto, force simp: set-conv-nth)
have id": map ((!) ss) (o (f, length ss)) = ss for f ss by (intro nth-equalityl,
auto)
have ex: (Ficset (o (f, length ss)). wpo-ns (ss ! i) (Fun g ts)) = (3 si € set
ss. rpo-ns si (Fun g ts))
using [H (1) unfolding set-conv-nth by auto
obtain prs prns where pre: pre (f, length ss) (g, length ts) = (prs, prns) by
force
show ?case
unfolding rpo.simps simps[of Fun f ss Fun g ts] term.simps id id’ if-False
if-True
Let-def ex pre split
proof (rule sym, rule if-cong[OF refl refl], rule if-cong|OF conj-cong|OF refl]
if-cong[OF refl refl if-cong|OF refl - if-cong]] refl])
assume — (3 si€set ss. rpo-ns si (Fun g ts))
note IH = [H(2—)[OF this prc[symmetric] refl]
from IH(1) show (Vjeset (o (g, length ts)). wpo-s (Fun f ss) (ts ! j)) =
(Vteset ts. rpo-s (Fun f ss) t)
unfolding set-conv-nth by auto
assume prns A (VY t€set ts. rpo-s (Fun f ss) t) - prs
note IH = IH(2—)[OF this]
{
assume c (f, length ss) = Lex A ¢ (g, length ts) = Lex
from IH(1)[OF this]
show lez-ext wpo n ss ts = lex-ext rpo-pr n ss ts
by (intro lex-ext-cong, auto)
}
{
assume - (c (f, length ss) = Lex A ¢ (g, length ts) = Lex) c (f, length ss)
= Mul A ¢ (g, length ts) = Mul
from [H(2)[OF this
show mul-ext wpo ss ts = mul-ext rpo-pr ss ts
by (intro mul-ext-cong, auto)
}
qed auto
qed
qed

abbreviation RPO-S = {(s,t). rpo-s s t}
abbreviation RPO-NS = {(s,t). rpo-ns s t}

theorem RPO-SN-order-pair: SN-order-pair RPO-S RPO-NS
unfolding rpo-eq-wpo by (rule wpo-SN-order-pair)

theorem RPO-S-subst: (s,t) € RPO-S = (s - 0, t - 0) € RPO-S for o :

('f,’a)subst
using WPO-S-subst unfolding rpo-eq-wpo .

102

theorem RPO-NS-subst: (s,t) € RPO-NS = (s - 0, t - 0) € RPO-NS for o :
('f,’a)subst
using WPO-NS-subst unfolding rpo-eq-wpo .

theorem RPO-NS-ctat: (s,t) € RPO-NS = (Fun [(bef Q s # aft), Fun f (bef
Q@ ¢ # aft)) € RPO-NS
using WPO-NS-ctzt unfolding rpo-eq-wpo .

theorem RPO-S-ctzt: (s,t) € RPO-S = (Fun f (bef Q s # aft), Fun f (bef Q ¢
aft)) € RPO-S
using WPO-S-ctzt unfolding rpo-eq-wpo by auto

theorem RPO-S-subset-RPO-NS: RPO-S C RPO-NS
using WPO-S-subset-WPO-NS unfolding rpo-eq-wpo .

theorem supt-subset-RPO-S: {>} C RPO-S
using supt-subset-WPO-S unfolding rpo-eg-wpo by auto

theorem supteq-subset-RPO-NS: {>} C RPO-NS
using supteg-subset- WPO-NS unfolding rpo-eq-wpo by auto

end
end

7 The Lexicographic Path Order as an instance of
WPO

We first directly define the strict- and non-strict lexicographic path orders
(LPO) w.r.t. some precedence, and then show that it is an instance of WPO.
For this instance we use the trivial reduction pair in WPO (@, UNIV) and
the status is the full one, i.e., taking parameters [0,..,n-1] for each n-ary
symbol.

theory LPO
imports
wWPO
begin

context
fixes pr :: ('f x nat = 'f x nat = bool x bool)
and prl :: 'f x nat = bool
and n :: nat
begin
fun lpo :: ('f, 'v) term = ('f, 'v) term = bool x bool
where
Ipo (Var z) (Var y) = (False, x = y) |
Ipo (Var x) (Fun g ts) = (False, ts =[] A prl (g,0)) |
Ipo (Fun f ss) (Var y) = (let con = (3 s € set ss. snd (Ipo s (Var y))) in

103

(com,con)) |
lpo (Fun f ss) (Fun g ts) = (
if (3 s € setss. snd (lpo s (Fun g ts)))
then (True, True)
else (let (prs,prns) = pr (f,length ss) (g,length ts) in
if prns A (V t € set ts. fst (Ipo (Fun f ss) t))
then if prs
then (True,True)
else lex-ext lpo n ss ts
else (False,False)))

end

locale Ilpo-with-assms = precedence prc prl
for prc :: 'f X nat = 'f x nat = bool X bool
and prl :: 'f X nat = bool
and n :: nat
begin

sublocale wpo-with-SN-assms n {} UNIV prc prl full-status \ -. Lex False \ -.
False
by (unfold-locales, auto simp: refl-on-def trans-def simple-arg-pos-def irrefl-def)

abbreviation Ilpo-pr = Ipo prc prin
abbreviation lpo-s = X s t. fst (Ipo-pr s t)
abbreviation lpo-ns = X s t. snd (Ilpo-pr s t)

lemma Ipo-eq-wpo: lpo-pr s t = wpo s t
proof —
note simps = wpo.simps
show ?thesis
proof (induct s t rule: lpo.induct|of - prc prl n])
case (1 z y)
then show ?case by (simp add: simps)
next
case (2z g ts)
then show ?case by (auto simp: simps)
next
case (3 fss y)
then show ?case by (auto simp: simps|of Fun f ss Var y| Let-def set-conv-nth)
next
case IH: (4 f ss g ts)
have id: A\ s. (s € {}) = False \ s. (s € UNIV) = True
and (Fie{0..<length ss}. wpo-ns (ss! i) t) = (I si€set ss. wpo-ns si t)
by (auto, force simp: set-conv-nth)
have id": map ((!) ss) (o (f, length ss)) = ss for f ss by (intro nth-equalityl,
auto)
have ez: (Ficset (o (f, length ss)). wpo-ns (ss !) (Fun g ts)) = (3 si € set

104

ss. lpo-ns si (Fun g ts))
using [H(1) unfolding set-conv-nth by auto
obtain prs prns where pre: pre (f, length ss) (g, length ts) = (prs, prns) by
force
have lex: (Lex = Lex A Lex = Lex) = True by simp
show ?case
unfolding Ipo.simps simps|[of Fun f ss Fun g ts| term.simps id id’ if-False
if-True lex
Let-def ex prc split
proof (rule sym, rule if-cong|OF refl refl], rule if-cong|OF conj-cong[OF refl]
if-cong[OF refl refl] refl])
assume — (I si€set ss. lpo-ns si (Fun g ts))
note [H = [H(2—)[OF this prc[symmetric] refl]
from IH(1) show (Vjeset (o (g, length ts)). wpo-s (Fun f ss) (ts ! 7)) =
(Vteset ts. lpo-s (Fun f ss) t)
unfolding set-conv-nth by auto
assume prns A (Y t€set ts. lpo-s (Fun f ss) t) = prs
note IH = IH(2—)[OF this]
show lez-ext wpo n ss ts = lex-ext lpo-pr n ss ts
using IH by (intro lex-ext-cong, auto)
qed
qed
qed

abbreviation LPO-S = {(s,t). lpo-s s t}
abbreviation LPO-NS = {(s,t). lpo-ns s t}

theorem LPO-SN-order-pair: SN-order-pair LPO-S LPO-NS
unfolding Ipo-eg-wpo by (rule wpo-SN-order-pair)

theorem LPO-S-subst: (s,t) € LPO-S = (s - 0, t - 0) € LPO-S for o :
('f,’a)subst
using WPO-S-subst unfolding Ipo-eq-wpo .

theorem LPO-NS-subst: (s,t) € LPO-NS = (s - 0, t - o) € LPO-NS for o :
('f,’a)subst
using WPO-NS-subst unfolding Ipo-eq-wpo .

theorem LPO-NS-ctat: (s,t) € LPO-NS = (Fun f (bef Q s # aft), Fun [(bef
@ t # aft)) € LPO-NS
using WPO-NS-ctzt unfolding Ipo-eq-wpo .

theorem LPO-S-ctat: (s,t) € LPO-S = (Fun [(bef @Q s # aft), Fun f (bef @ ¢t
aft)) € LPO-S
using WPO-S-ctxt unfolding Ipo-eq-wpo by auto

theorem LPO-S-subset-LPO-NS: LPO-S C LPO-NS
using WPO-S-subset-WPO-NS unfolding Ipo-eq-wpo .

105

theorem supt-subset-LPO-S: {>} C LPO-S
using supt-subset-WPO-S unfolding Ipo-eq-wpo by auto

theorem supteg-subset-LPO-NS: {} C LPO-NS
using supteg-subset- WPO-NS unfolding Ilpo-eq-wpo by auto

end

end

8 The Knuth—Bendix Order as an instance of WPO

Making the Knuth—Bendix an instance of WPO is more complicated than
in the case of RPO and LPO, because of syntactic and semantic differences.
We face the two main challenges in two different theories and sub-sections.

8.1 Aligning least elements

In all of RPO, LPO and WPO there is the concept of a minimal term, e.g.,
a constant term ¢ where c is least in precedence among all function symbols.
By contrast, in KBO a constant ¢ is minimal if it has minimal weight and
has least precende among all constants of minimal weight.

In this theory we prove that for any KBO one can modify the precedence
in a way that least constants c also have least precendence among all function
symbols, without changing the defined order. Hence, afterwards it will be
simpler to relate such a KBO to WPO.

theory KBO-Transformation
imports WPO Knuth-Bendiz-Order. KBO
begin

context admissible-kbo
begin

lemma weight-w0-unary:
assumes *: weight t = w0 t = Fun fts ts = t1 # ts’
shows ts'=[J w (f,1) = 0
proof —
have w0 + sum-list (map weight ts’) < weight t1 + sum-list (map weight ts’)
by (rule add-right-mono, rule weight-w0)
also have ... = sum-list (map weight ts) unfolding * by simp
also have ... < sum-list (map weight (scf-list (scf (f, length ts)) ts))
by (rule sum-list-scf-list, insert scf, auto)
finally have w (f,length ts) + w0 + sum-list (map weight ts") < weight t un-
folding * by simp
with x(1) have sum: sum-list (map weight ts") = 0 and wf: w (f,length ts) =
0 by auto

106

with weight-gt-0 show ts”: ts’ = [| by (cases ts', auto)
with wf show w (f,1) = 0 using * by auto
qed

definition [Consts :: ('f x nat)set where [Consts = { (f,0) | f. least f}
definition pr-strict’ where pr-strict’ f g = (f ¢ [Consts N\ (pr-strict f g V g €
[Consts))

definition pr-weak’ where pr-weak’ f g = ((f ¢ Consts N pr-weak f g) V g €
[Consts)

lemma admissible-kbo’: admissible-kbo w w0 pr-strict’ pr-weak’ least scf
apply (unfold-locales)
subgoal by (rule w0)
subgoal by (rule w0)
subgoal for f g n using adm|[of f g n] unfolding pr-weak’-def by (auto simp:
[Consts-def)
subgoal for f using least[of f] unfolding pr-weak’-def |Consts-def by auto
subgoal by (rule scf)
subgoal for f using pr-weak-refl[of f] unfolding pr-weak’-def by auto
subgoal for f g h using pr-weak-trans[of f g h] unfolding pr-weak’-def by auto
subgoal for f g using pr-strict[of f g] unfolding pr-strict’-def pr-weak’-def by
auto
proof —
show SN {(z, y). pr-strict’ z y} (is SN ?R)
proof
fix f
assume V i. (f i, f (Suci)) € ?R
hence steps: A\ i. (f4, f (Suc i)) € ?R by blast
have f i ¢ [Consts for i using steps|[of i] unfolding pr-strict’-def by auto
hence pr-strict (f i) (f (Suc i)) for i using steps|of i| unfolding pr-strict’-def
by auto
with pr-SN show Fulse by auto
qed
qed

lemma least-pr-weak”: least f = pr-weak’ g (f,0) unfolding [Consts-def pr-weak’-def
by auto

lemma least-pr-weak’-trans: least f = pr-weak’ (f,0) g = least (fst g) A snd g
=0
unfolding [Consts-def pr-weak’-def by auto

context

begin

interpretation kbo”: admissible-kbo w w0 pr-strict’ pr-weak’ least scf
by (rule admissible-kbo”)

lemma kbo’-eq-kbo: kbo'.kbo s t = kbo s t
proof (induct s t rule: kbo.induct)

107

case (1 s t)
note simps = kbo.simps|of s t] kbo'.kbo.simps|of s t]
show ?case unfolding simps
apply (intro if-cong refl, intro term.case-cong refl)
proof —
fix fssgts
assume *: vars-term-ms (SCF t) C# vars-term-ms (SCF s) A weight t < weight

- wetight t < weight s
and s: s = Fun f ss
and ¢: t = Fun g ts
let ?g = (g,length ts)
let 2f = (f,length ss)
have IH: (if pr-strict ?f 2g then (True, True)
else if pr-weak ?f ?g then lex-ext-unbounded kbo ss ts else (False, False))
= (if pr-strict ?f 2g then (True, True)
else if pr-weak ?f g then lex-ext-unbounded kbo'.kbo ss ts else (False, Fulse))

by (intro if-cong refl lex-ext-unbounded-cong, insert 1[OF x s t], auto)
let ?P = pr-strict’ 2f 29 = pr-strict ?2f 29 N (- pr-strict ?f 29 — pr-weak’ ?f
29 = pr-weak ?f %g)
show (if pr-strict’ ?f ?g then (True, True)
else if pr-weak’ ?f g then lex-ext-unbounded kbo'.kbo ss ts else (False, False))

(if pr-strict ?f ?g then (True, True)
else if pr-weak ?f ?g then lex-ext-unbounded kbo ss ts else (False, False))
proof (cases ?P)
case True
thus ?thesis unfolding IH by auto
next
case notP: False
hence fgC: ?f € IConsts V ?g € |Consts unfolding pr-strict’-def pr-weak’-def
by auto
hence weight: weight s = w0 weight t = w0 using * unfolding [Consts-def
least s t by auto
show ?thesis
proof (cases ss =[] A ts = [])
case empty: True
with weight have w ?f = w0 w ?g = w0 unfolding s ¢t by auto
with empty have ?P unfolding pr-strict’-def pr-weak’-def using pr-weak-trans|of
- (g>0> (f,O)]
pr-weak-trans[of - (f,0) (g,0)]
by (auto simp: [Consts-def pr-strict least)
with notP show ?thesis by blast
next
case Fulse
{
fix f and ¢ :: ('f,’a)term and tI ts’ ts and g
assume x: weight t = w0 t = Fun fts ts = t1 # ts’

108

from weight-w0-unary|OF this|
have ts”: ts' = [| and w: w (f,1) = 0 .
from adm[OF w] ts’
have pr-weak (f, Suc (length ts")) g by (cases g, auto)
} note unary = this
from fgC have ss = [| V ts = [unfolding [Consts-def least by auto
thus ?thesis
proof
assume ss: ss = ||
with False obtain t1 ts’ where ts: ts = t1 # ts’ by (cases ts, auto)
show ?thesis unfolding ss ts using unary[OF weight(2) t ts]
by (simp add: lex-ext-unbounded.simps pr-strict’-def [Consts-def pr-strict)
next
assume ts: ts = [|
with False obtain s ss’ where ss: ss = s1 # ss’ by (cases ss, auto)
show ?thesis unfolding ss ts using unary|OF weight(1) s ss]
by (simp add: lex-ext-unbounded.simps pr-strict’-def pr-weak’-def |Con-
sts-def pr-strict)
qed
qed
qed
qed
qed
end
end
end

8.2 A restricted equality between KBO and WPO

The remaining difficulty to make KBO an instance of WPO is the different
treatment of lexicographic comparisons, which is unrestricted in KBO, but
there is a length-restriction in WPO. Therefore we will only show that KBO
is an instance of WPO if we compare terms with bounded arity.

This restriction does however not prohibit us from lifting properties of
WPO to KBO. For instance, for several properties one can choose a large-
enough bound restriction of WPO, since there are only finitely many arities
occurring in a property.
theory KBO-as-WPO

imports

WPO

KBO-Transformation
begin

definition bounded-arity :: nat = ('f x nat)set = bool where
bounded-arity b F = (VY (f,n) € F. n < b)

lemma finite-funas-term[simp,intro|: finite (funas-term t)
by (induct t, auto)

109

context weight-fun begin

definition weight-le s t =
(vars-term-ms (SCF s) C# vars-term-ms (SCF t) A weight s < weight t)

definition weight-less s t =
(vars-term-ms (SCF' s) C# vars-term-ms (SCF t) A weight s < weight t)

lemma weight-le-less-iff: weight-le s t => weight-less s t «— weight s < weight t
by (auto simp: weight-le-def weight-less-def)

lemma weight-less-iff: weight-less s t = weight-le s t A\ weight s < weight t
by (auto simp: weight-le-def weight-less-def)

abbreviation weight-NS = {(t,s). weight-le s t}
abbreviation weight-S = {(t,s). weight-less s t}

lemma weight-le-mono-one:
assumes S: weight-le s t
shows weight-le (Fun f (ss1 Q s # ss2)) (Fun f (ss1 Q t # ss2)) (is weight-le
9s 7t)
proof —
from S have w: weight s < weight t and v: vars-term-ms (SCF s) C# vars-term-ms
(SCF t)
by (auto simp: weight-le-def)
have v”: vars-term-ms (SCF %s) C# vars-term-ms (SCF 2t)
using mset-replicate-mono[OF v] by simp
have w’: weight ?s < weight ?t using sum-list-replicate-mono[OF w] by simp
from v’ w’ show ?thesis by (auto simp: weight-le-def)
qed

lemma weight-le-ctat: weight-le s t = weight-le (C(s)) (C(t))
by (induct C, auto intro: weight-le-mono-one)

lemma SCF-stable:
assumes vars-term-ms (SCF s) C# vars-term-ms (SCF t)
shows vars-term-ms (SCF (s - 0)) C# vars-term-ms (SCF (¢t - 0))
unfolding scf-term-subst
using vars-term-ms-subst-mono[OF assms].

lemma SN-weight-S: SN weight-S
proof—
from wf-inv-image[OF wjf-less]
have wf: wf {(s,t). weight s < weight t} by (auto simp: inv-image-def)
show ?thesis
by (unfold SN-iff-wf, rule wf-subset|OF wf], auto simp: weight-less-def)

110

qed

lemma weight-less-imp-le: weight-less s t = weight-le s t by (simp add: weight-less-def
weight-le-def)

lemma weight-le- Var-Var: weight-le (Var z) (Var y) +— z =y
by (auto simp: weight-le-def)
end

context kbo begin

lemma kbo-altdef:
kbo s t = (if weight-le t s
then if weight-less t s
then (True, True)
else (case s of
Var y = (False, (case t of Var z = © =y | Fun g ts = ts =[] A least g))
| Fun f ss = (case t of
Var © = (True, True)
| Fun g ts = if pr-strict (f, length ss) (g, length ts)
then (True, True)
else if pr-weak (f, length ss) (g, length ts)
then lez-ext-unbounded kbo ss ts
else (False, False)))
else (False, False))
by (simp add: weight-le-less-iff weight-le-def)

end
context admissible-kbo begin

lemma weight-le-stable:
assumes weight-le s t
shows weight-le (s - o) (t - 0)
using assms weight-stable-le SCF-stable by (auto simp: weight-le-def)

lemma weight-less-stable:
assumes weight-less s t
shows weight-less (s - o) (t - o)
using assms weight-stable-lt SCF-stable by (auto simp: weight-less-def)

lemma simple-arg-pos-weight: simple-arg-pos weight-NS (f,n) i
unfolding simple-arg-pos-def
proof (intro alll impl, unfold snd-conv fst-conv)
fix ts :: ('f,’a)term list
assume i: 1 < n and len: length ts = n
from id-take-nth-drop[OF i[folded len]] i[folded len)
obtain us vs where id: Fun fts = Fun f (us @Q ¢s ! { # vs)
and us: us = take i ts

111

and len: length us = i by auto
have length us < Suc (length us + length vs) by auto
from scf[OF this, of f] obtain j where [simp]: sc¢f (f, Suc (length us + length
vs)) (length us) = Suc j
by (rule lessE)
show (Fun f ts, ts ! i) € weight-NS
unfolding weight-le-def id by (auto simp: o-def)
qed

lemma weight-lemmas:
shows refl weight-NS and trans weight-NS and trans weight-S
and weight-NS O weight-S C weight-S and weight-S O weight-NS C weight-S
by (auto introl: refl-onl transl simp: weight-le-def weight-less-def)

interpretation kbo’: admissible-kbo w w0 pr-strict’ pr-weak’ least scf
by (rule admissible-kbo’)

context
assumes least-global: \ f g. least f = pr-weak g (f,0)
and least-trans: \ [g. least f = pr-weak (f,0) g = least (fst g) A snd g =
0
fixes n :: nat
begin

lemma kbo-instance-of-wpo-with-SN-assms: wpo-with-SN-assms
weight-S weight-NS (Af g. (pr-strict f g, pr-weak f g))
(A(f, n). n = 0 A least f) full-status False (\f. False)
apply (unfold-locales)
apply (auto simp: weight-lemmas SN-weight-S pr-SN pr-strict-irrefl
weight-less-stable weight-le-stable weight-le-mono-one weight-less-imp-le
simple-arg-pos-weight)
apply (force dest: least-global least-trans simp: pr-strict)+
using SN-on-irrefl| OF SN-weight-S|
apply (auto simp: pr-strict least irrefi-def dest:pr-weak-trans)
done

interpretation wpo: wpo-with-SN-assms
where S = weight-S and NS = weight-NS
and prc = Af g. (pr-strict f g, pr-weak f g) and prl = A(f,n). n = 0 A least f
and ¢ = \-. Lex
and ssimple = Fulse and large = Af. False and oo = full-status
and n = n
by (rule kbo-instance-of-wpo-with-SN-assms)

lemma kbo-as-wpo-with-assms: assumes bounded-arity n (funas-term t)
shows kbo s t = wpo.wpo s t

proof —
define m where m = size s + size t
from m-def assms show ?thesis

112

proof (induct m arbitrary: s t rule: less-induct)
case (less m s t)
hence IH: size si + size ti < size s + size t = bounded-arity n (funas-term
ti) = kbo si ti = wpo.wpo si ti for si ti :: ('f,’a)term by auto
note wpo-sI = arg-cong|OF wpo.wpo.simps, of fst, THEN iffD2]
note wpo-nsl = arg-cong[OF wpo.wpo.simps, of snd, THEN iffD2)
note bounded = less(3)
show ?case
proof (cases s)
case s: (Var z)
have — weight-less t (Var z)
by (metis leD weight.simps(1) weight-le-less-iff weight-less-imp-le weight-w0)
thus ?thesis
by (cases t, auto simp add: s kbo-altdef wpo.wpo.simps)
next
case s: (Fun f ss)
show ?thesis
proof (cases t)
case t: (Var y)
{ assume weight-le t s
then have Js’ € set ss. weight-le t s’
apply (auto simp: s t weight-le-def)
by (metis scf set-scf-list weight-w0)
then obtain s’ where s’ s’ € set ss and weight-le t s’ by auto
from this(2) have wpo.wpo-ns s’ ¢
proof (induct s’)
case (Var z)
then show ?case by (auto introl:wpo-nsl simp: t weight-le- Var-Var)
next
case (Fun f' ss’)
from this(2) have 3s” € set ss’. weight-le t s”
apply (auto simp: t weight-le-def)
by (metis scf set-scf-list weight-w0)
then obtain s’ where s”’ € set ss’ and weight-le t s’ by auto
with Fun(1)[OF this] Fun(2)
show ?case by (auto introl: wpo-nsl simp: t in-set-conv-nth)
qged
with s’ have Js’ € set ss. wpo.wpo-ns s’ t by auto
}
then
show ?thesis unfolding wpo.wpo.simps|of s t| kbo-altdef|of s t]
by (auto simp add: s t weight-less-iff set-conv-nth, auto)
next
case t: (Fun g ts)
{
fix j
assume j < length ts
hence ts ! j € set ts by auto
hence funas-term (ts ! j) C funas-term ¢t unfolding ¢ by auto

113

with bounded have bounded-arity n (funas-term (ts ! j)) unfolding
bounded-arity-def by auto
} note bounded-tj = this
note [H-tj = IH[OF - this
show ?thesis
proof (cases = weight-le t s V weight-less t s)
case True
thus ?thesis unfolding wpo.wpo.simps|of s t| kbo-altdef|of s t]
unfolding s t by (auto simp: weight-less-iff)
next
case Fulse
let 2f = (f,length ss)
let ?g = (g,length ts)
from Fulse have wle: weight-le t s = True weight-less t s = Fualse
(s, t) € weight-NS <— True (s, t) € weight-S <— False by auto
have lex: (Lex = Lex N Lex = Lex) = True by simp
have sig: set (wpo.o ?f) = {..<length ss}
set (wpo.o ?g) = {..<length ts} by auto
have map: map ((!) ss) (wpo.c ?f) = ss
map ((!) ts) (wpo.c ?g) = ts
by (auto simp: map-nth)
have sizes: i < length ss = size (ss ! i) < size s for i unfolding s
by (simp add: size-simp1)
have sizet: i < length ts = size (ts ! i) < size t for ¢ unfolding ¢
by (simp add: size-simp1)
have wpo: wpo.wpo s t =
(if Fief{..<length ss}. wpo.wpo-ns (ss! i) t then (True, True)
else if pr-weak ?2f 29 N (Vje{..<length ts}. wpo.wpo-s s (ts! j))
then if pr-strict ?f ?g then (True, True) else lex-ext wpo.wpo n ss ts
else (False, False))
unfolding wpo.wpo.simps|of s t]
unfolding s t term.simps split Let-def lex if-True sig map
unfolding s[symmetric|] t[symmetric] wle if-True weight-less-iff if-False
False snd-conv by auto
have kbo s t = (if pr-strict ?f ?2g then (True, True)
else if pr-weak ?f ?g then lex-ext-unbounded kbo ss ts
else (Fualse, False))
unfolding kbo-altdef[of s t]
unfolding s t term.simps split Let-def if-True
unfolding s[symmetric| t[symmetric] wle if-True weight-less-iff if-False
by auto
also have lez-ext-unbounded kbo ss ts = lex-ext kbo n ss ts
using bounded[unfolded t] unfolding bounded-arity-def lez-ext-def by
auto
also have ... = lex-ext wpo.wpo n ss ts
by (rule lex-ext-cong|OF refl refl refl], rule IH-tj, auto dest!: sizes sizet)
finally have kbo: kbo s t =
(if pr-strict 2f 2g then (True, True)
else if pr-weak ?f ?g then lex-ext wpo.wpo n ss ts

114

else (False, False)) .
show ?thesis
proof (cases Fie{..<length ss}. wpo.wpo-ns (ss ! i) t)
case True
then obtain i where i: ¢ < length ss and wpo.wpo-ns (ss ! i) t by auto
then obtain b where wpo.wpo (ss ! i) t = (b, True) by (cases wpo.wpo
(ss!4) t, auto)
also have wpo.wpo (ss ! i) t = kbo (ss ! ©) t using 7 by (intro
IH[symmetric, OF - bounded), auto dest: sizes)
finally have NS (ss! i) t by simp
from kbo-supt-one[OF this]
have S (Fun f (take i ss Q ss | i # drop (Suc i) ss)) t .
also have (take i ss @Q ss ! i # drop (Suc i) ss) = ss using ¢ by (metis
id-take-nth-drop)
also have Fun f ss = s unfolding s by simp
finally have S'st .
with S-imp-NS[OF this]
have kbo s t = (True,True) by (cases kbo s t, auto)
with True show ?thesis unfolding wpo by auto
next
case False
hence Fulse: (3ie{..<length ss}. wpo.wpo-ns (ss! i) t) = False by simp
{
fix j
assume NS: NS st
assume j: j < length ts

from kbo-supt-one[OF NS-refl, of g take j ts ts ! j drop (Suc j) ts]
have S: St (ts ! j) using id-take-nth-drop[OF j] unfolding ¢ by auto
from kbo-trans[of s t ts ! j] NS S have S s (ts ! j) by auto
with S S-imp-NS[OF this]
have kbo s (ts ! j) = (True, True) by (cases kbo s (ts ! j), auto)
hence wpo.wpo-s s (ts ! j)
by (subst IH-tj|symmetric], insert sizet[OF j] j, auto)
}

thus ?thesis unfolding wpo kbo False if-False using lex-ext-stri-imp-nstri[of

wpo.wpo n. $s s
by (cases lex-ext wpo.wpo n ss ts, auto simp: pr-strict split: if-splits)
qed
qed
qed
qed
qed

qed
end

This is the main theorem. It tells us that KBO can be seen as an instance
of WPO, under mild preconditions: the parameter n for the lexicographic
extension has to be chosen high enough to cover the arities of all terms that

115

should be compared.

lemma defines prec = ((\f g. (pr-strict’ f g, pr-weak’ f g)))
and prl = (A(f, n). n = 0 A least f)
shows
kbo-encoding-is-valid-wpo: wpo-with-SN-assms weight-S weight-NS prec pri full-status
False (A\f. False)
and
kbo-as-wpo: bounded-arity n (funas-term t) = kbo s t = wpo.wpo n weight-S
weight-NS prec prl full-status (\-. Lex) False (Af. False) s t
unfolding prec-def pri-def
subgoal by (intro admissible-kbo.kbo-instance-of-wpo-with-SN-assms|OF admis-
sible-kbo’]
least-pr-weak’ least-pr-weak’-trans)
apply (subst kbo’-eq-kbo[symmetric])
apply (subst admissible-kbo.kbo-as-wpo-with-assms[OF admissible-kbo’ least-pr-weak’
least-pr-weak’-trans, symmetric], (auto)[3])
by auto

As a proof-of-concept we show that now properties of WPO can be used
to prove these properties for KBO. Here, as example we consider closure
under substitutions and strong normalization, but the following idea can be
applied for several more properties: if the property involves only terms where
the arities are bounded, then just choose the parameter n large enough.
This even works for strong normalization, since in an infinite chain of KBO-
decreases t1 > to > t3 > ... all terms have a weight of at most the weight of
t1, and this weight is also a bound on the arities.
lemma KBO-stable-via-WPO: S st = S (s - (o :: ('f,’a) subst)) (t - o)
proof —

let %terms = {t, t - o}
let ?prec = ((Af g. (pr-strict’ f g, pr-weak’ f g)))
let ?prl = (A(f, n). n = 0 A least f)
have finite (|J (funas-term ¢ ?terms))
by auto
from finite-list{OF this] obtain F' where F: set F = |J (funas-term ¢ ?terms)
by auto

define n where n = maz-list (map snd F)

interpret wpo: wpo-with-SN-assms
where S = weight-S and NS = weight-NS
and prc = ?prec and prl = ?prl
and ¢ = \-. Lex
and ssimple = Fualse and large = \f. False and oo = full-status
and n = n
by (rule kbo-encoding-is-valid-wpo)

116

fix ¢
assume t € ?terms
hence funas-term t C set F unfolding F' by auto
hence bounded-arity n (funas-term t) unfolding bounded-arity-def
using maz-list[of - map snd F, folded n-def] by fastforce
}

note kbo-as-wpo = kbo-as-wpo| OF this]

from wpo. WPO-S-subst]of s t o]
show Sst= S (s-0)(t-o)
using kbo-as-wpo by auto
qed

lemma weight-is-arity-bound: weight t < b = bounded-arity b (funas-term t)
proof (induct t)
case (Fun f ts)
have sum-list (map weight ts) < weight (Fun f ts)
using sum-list-scf-list[of ts scf (f,length ts), OF scf] by auto
also have ... < b using Fun by auto
finally have sum-b: sum-list (map weight ts) < b .
{
fix ¢
assume t: ¢t € set ts
from split-list| OF this] have weight t < sum-list (map weight ts) by auto
with sum-b have bounded-arity b (funas-term t) using t Fun by auto
} note IH = this
have length ts = sum-list (map (X -. 1) ts) by (induct ts, auto)
also have ... < sum-list (map weight ts)
apply (rule sum-list-mono)
subgoal for ¢ using weight-gt-0[of t] by auto
done
also have ... < b by fact
finally have len: length ts < b by auto
from IH len show ?case unfolding bounded-arity-def by auto
qed (auto simp: bounded-arity-def)

lemma KBO-SN-via-WPO: SN {(s,t). S st}
proof
fix f :: nat = ('f,’a)term
assume Vi. (f 1, f (Suc i) € {(s, t). S st}
hence steps: S (f©) (f (Suc ©)) for i by auto
define n where n = weight (f 0)

have w-bound: weight (f i) < n for {
proof (induct)
case (Suc 17)
from steps|of 7] have weight (f (Suc 7)) < weight (f 7)

117

unfolding kbo.simps|of f i] by (auto split: if-splits)
with Suc show ?case by simp
qed (auto simp: n-def)

let ?prec = ((Af g. (pr-strict’ f g, pr-weak’ f g)))
let 2prl = (A(f, n). n = 0 A least f)

interpret wpo: wpo-with-SN-assms
where S = weight-S and NS = weight-NS
and prc = ?prec and prl = ?pri
and ¢ = A-. Lex
and ssimple = Fulse and large = \f. False and oo = full-status
and n = n
by (rule kbo-encoding-is-valid-wpo)

have kbo (f7) (f (Suc 7)) = wpo.wpo (f) (f (Suc i)) for ¢
by (rule kbo-as-wpo| OF weight-is-arity-bound| OF w-bound]])

from steps[unfolded this] wpo. WPO-S-SN show False by auto
qed

end

end

9 Executability of the orders

theory FEzxecutable-Orders
imports
wPO
RPO
LPO
Multiset- Extension2-Impl
begin

If one loads the implementation of multiset orders (in particular for
mul-ezt), then all orders defined in this AFP-entry (WPO, RPO, LPO,
multiset extension of order pairs) are executable.

export-code
Ipo
PO
wWPO. WPo
mul-ext
mult2-impl
in Haskell

118

end

References

1]

2]

[10]

F. Baader and T. Nipkow. Term rewriting and all that. Cambridge
University Press, 1998.

N. Dershowitz. Termination of rewriting. J. Symb. Comput.,
3(1/2):69-116, 1987.

S. Kamin and J. J. Lévy. Two generalizations of the recursive path or-
dering. Unpublished Manuscript, University of Illinois, IL, USA, 1980.

D. E. Knuth and P. Bendix. Simple word problems in universal algebras.
In Computational Problems in Abstract Algebra, pages 263-297. 1970.

C. Sternagel and R. Thiemann. Formalizing Knuth-Bendix orders and
Knuth—-Bendix completion. In Rewriting Techniques and Applications,
RTA’13, volume 2 of Leibniz International Proceedings in Informatics,
pages 287-302, 2013.

C. Sternagel and R. Thiemann. A formalization of Knuth—Bendix or-
ders. Archive of Formal Proofs, May 2020. https://isa-afp.org/entries/
Knuth_ Bendix_ Order.html, Formal proof development.

R. Thiemann, G. Allais, and J. Nagele. On the formalization of ter-
mination techniques based on multiset orderings. In A. Tiwari, edi-
tor, 23rd International Conference on Rewriting Techniques and Ap-
plications (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya,
Japan, volume 15 of LIPIcs, pages 339-354. Schloss Dagstuhl - Leibniz-
Zentrum fir Informatik, 2012.

R. Thiemann, J. Schopf, C. Sternagel, and A. Yamada. Certifying
the weighted path order (invited talk). In Z. M. Ariola, editor, 5th
International Conference on Formal Structures for Computation and
Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual
Conference), volume 167 of LIPIcs, pages 4:1-4:20. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2020.

A. Yamada, K. Kusakari, and T. Sakabe. Unifying the Knuth-Bendix,
recursive path and polynomial orders. In R. Pena and T. Schrijvers,
editors, 15th International Symposium on Principles and Practice of
Declarative Programming, PPDP ’13, Madrid, Spain, September 16-
18, 20183, pages 181-192. ACM, 2013.

A. Yamada, K. Kusakari, and T. Sakabe. A unified ordering for termi-
nation proving. Sci. Comput. Program., 111:110-134, 2015.

119

https://isa-afp.org/entries/Knuth_Bendix_Order.html
https://isa-afp.org/entries/Knuth_Bendix_Order.html

	Introduction
	Preliminaries
	Status functions
	Precedence
	Local versions of relations
	Interface for extending an order pair on lists

	Multiset extension of an order pair
	Pointwise multiset order
	Multiset extension for order pairs via the pointwise order and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mult
	One-step versions of the multiset extensions
	Cancellation
	Implementation friendly versions of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mult2-s and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mult2-ns
	Local well-foundedness: restriction to downward closure of a set
	Trivial cases
	Executable version

	Multiset extension of order pairs in the other direction
	List based characterization of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 multpw
	Definition of the multiset extension of >-orders
	Basic properties
	Multisets as order on lists
	Special case: non-strict order is equality
	Executable version

	The Weighted Path Order
	The Recursive Path Order as an instance of WPO
	The Lexicographic Path Order as an instance of WPO
	The Knuth–Bendix Order as an instance of WPO
	Aligning least elements
	A restricted equality between KBO and WPO

	Executability of the orders

