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Abstract
This article provides a formalisation of the Weighted Arithmetic—
Geometric Mean Inequality: given non-negative reals ai,...,a, and
non-negative weights wy, ..., w, such that w; +...4+w, = 1, we have
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If the weights are additionally all non-zero, equality holds if and only
ifay =... = ay,.

As a corollary with wy = ... = w, = %, the regular arithmetic—
geometric mean inequality follows, namely that

—_

Vay..can < —(a1+ ...+ ay) .

n

I follow Pélya’s elegant proof, which uses the inequality 1+ = < e*
as a starting point. Pdlya claims that this proof came to him in a
dream, and that it was ‘the best mathematics he had ever dreamt.” [1,
pp. 22-26|
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1 The Weighted Arithmetic-Geometric Mean In-
equality

theory Weighted-Arithmetic-Geometric-Mean
imports Complex-Main
begin

1.1 Auxiliary Facts

lemma root-powr-inverse” 0 < n = 0 < x = root n x = z powr (1/n)
by (cases x = 0) (auto simp: root-powr-inverse)

lemma powr-sum-distrib-real-right:
assumes g # 0
shows ([[z€X. a powr e z :: real) = a powr (>, z€X. e x)
using assms
by (induction X rule: infinite-finite-induct) (auto simp: powr-add)

lemma powr-sum-distrib-real-left:
assumes A\z. 2 € X = az > 0
shows ([[z€X. a z powr e :: real) = ([[2z€X. a ) powr e
using assms
by (induction X rule: infinite-finite-induct)
(auto simp: powr-mult prod-nonneg)

lemma prod-ge-pointwise-le-imp-pointwise-eq:
fixes [ :: 'a = real
assumes finite X
assumes ge: prod f X > prod g X
assumes nonneg: N\z. z € X = fax > 0
assumes pos: A\z. z € X = gz > 0
assumes le: A\z. € X = fz<grand z:z € X
shows fz =gz
proof (rule ccontr)
assume fz # g
with le[of z] and z have fz < gz
by auto
hence prod f X < prod g X
using z and le and nonneg and pos and <finite X»
by (intro prod-mono-strict) auto
with ge show Fulse
by simp
qed

lemma powr-right-real-eq-iff:
assumes a > (0 :: real)
shows a powrz=apowry+—a=0Va=1Vzr=y
using assms by (auto simp: powr-def)



lemma powr-left-real-eq-iff:
assumes a¢ > (0 = real) b > 0z # 0
shows a powr x = b powr x <— a = b
using assms by (auto simp: powr-def)

lemma exp-real-eq-one-plus-iff:
fixes z :: real
shows ezpr =1+ z+— 2 =10
proof (cases z = 0)
case Fulse
define f :: real = real where f = (A\z. ezp x — 1 — 1)
have deriv: (f has-field-derivative (exp * — 1)) (at z) for z
by (auto simp: f-def intro!: derivative-eg-intros)

have 3z. z>minz 0 A z < max z 0 N f (max z 0) — f (minz 0) =
(max z 0 — minz 0) x (exp z — 1)

using MVT2[of min z 0 maz x 0 f Az. exp v — 1] deriv False
by (auto simp: min-def maz-def)

then obtain z where z € {min z 0<..<maz z 0}
f(maxz0)—f(minz0)=(mazx0 — minz0)x (expz— 1)
by (auto simp: f-def)

thus ?thesis using Fulse
by (cases z 0 :: real rule: linorder-cases) (auto simp: f-def)

qed auto

1.2 The Inequality

We first prove the equality under the assumption that all the a; and w; are
positive.

lemma weighted-arithmetic-geometric-mean-pos:
fixes a w :: 'a = real
assumes finite X
assumes posl: A\z.z € X = az > 0
assumes pos2: N\z. z € X = wz > 0
assumes sum-weights: (> z€X. wx) = 1
shows ([[z€X. azpowrwz) < (> z€X. wz * ax)
proof —
note nonnegl = less-imp-le[OF posl1|
note nonneg2 = less-imp-le[OF pos2)
define A where 4 = (> z€X. wx x a x)
define r where r = (A\z. az / A — 1)
from sum-weights have X # {} by auto
hence A # 0
unfolding A-def using nonnegl nonneg2 posl pos2 <finite X»
by (subst sum-nonneg-eq-0-iff) force+
moreover from nonnegl nonneg2 have A > 0
by (auto simp: A-def introl: sum-nonneg)
ultimately have A > 0 by simp



have ([[z€X. (1 + rz) powr wz) = ([[z€X. (a x / A) powr w x)

by (simp add: r-def)
also have ... = (J[[z€X. a z powr wz) / (J[[z€X. 4 powr w )

unfolding prod-dividef [symmetric]

using assms pos2 <A > 0» by (intro prod.cong powr-divide) (auto intro:
less-imp-le)

also have ([[z€X. A powr wz) = exp (O z€X. wx) x In A)

using <A > 0) and «finite X> by (simp add: powr-def exp-sum sum-distrib-right)
also have (3" zeX. wz) = 1 by fact
also have exp (1 xln A) = A

using <A > 0> by simp
finally have lhs: ([[z€X. (1 + rz) powr w z) = ([[z€X. a z powr wz) /| A .

have ([[zeX. exp (wz * rz)) = exp O z€X. wz * 1 x)
using «finite X» by (simp add: exp-sum)
also have (Y zeX. waxrz) = zeX. azxxwz) / A — 1
using <A > 0» by (simp add: r-def algebra-simps sum-subtractf sum-divide-distrib
sum-weights)
also have (> zeX. azxwz) /| A= 1
using <4 > 0) by (simp add: A-def mult.commute)
finally have rhs: ([[z€X. exp (wz * rx)) = 1 by simp

have ([[z€X. a z powr wz) /| A = ([[z€X. (I + rz) powr w )
by (fact lhs [symmetric])
also have ([[z€X. (I + rz) powr wz) < ([[z€X. exp (wz * rz))
proof (intro prod-mono conjl)
fix z assume z: z € X
have 1 + rz < exp (r x)
by (rule exp-ge-add-one-self)
hence (1 + 7 z) powr wz < exp (r z) powr w x
using nonnegl [of x] nonneg2[of z] x <A > 0>
by (intro powr-mono2) (auto simp: r-def field-simps)
also have ... = exp (wz * r 1)
by (simp add: powr-def)
finally show (1 + rz) powrwz < exp (wzx * rx) .
qed auto
also have ([[z€X. exp (wz x rz)) = I by (fact rhs)
finally show ([[z€X. a z powr wz) < A
using <A > 0) by (simp add: field-simps)
qed

We can now relax the positivity assumptions to non-negativity: if one of the
a; is zero, the theorem becomes trivial (note that 0° = 0 by convention for
the real-valued power operator (powr)).

Otherwise, we can simply remove all the indices that have weight 0 and
apply the above auxiliary version of the theorem.

theorem weighted-arithmetic-geometric-mean:
fixes a w :: 'a = real
assumes finite X



assumes nonnegl: N\e. 2 € X = az > 0
assumes nonneg2: N\z. z € X = wz > 0
assumes sum-weights: (. z€X. wx) = 1
shows ([[z€X. azpowrwz) < (D 2zeX. wzx * ax)
proof (cases 3z€X. ax = 0)
case True
hence ([[z€X. a z powr wz) = 0
using <finite X» by simp
also have ... < > zeX. wx x a x)
by (intro sum-nonneg mult-nonneg-nonneg assms)
finally show ?thesis .
next
case Fulse
have (> zeX—{z. wz =0} wz) = (O zeX. wx)
by (intro sum.mono-neutral-left assms) auto
also have ... = 1 by fact
finally have sum-weights”: (3} zeX—{z. wz =0} wzx)=1.

have ([[z€X. a z powr w z) = ([[z€X—{z. wz = 0}. a z powr w x)
using «finite X» False by (intro prod.mono-neutral-right) auto

also have ... < > zeX—{z. wz = 0}. wz * a x) using assms False
by (intro weighted-arithmetic-geometric-mean-pos sum-weights’)

(auto simp: order.strict-iff-order)

also have ... = (D> z€eX. wz * a )
using «finite X» by (intro sum.mono-neutral-left) auto

finally show ?thesis .

qged

We can derive the regular arithmetic/geometric mean inequality from this
by simply setting all the weights to %:

corollary arithmetic-geometric-mean:
fixes a :: 'a = real
assumes finite X
defines n = card X
assumes nonneg: N\z. z € X = az > 0
shows root n (J[[z€X. ax) < (3 zeX.ax)/n
proof (cases X = {})
case Fulse
with assms have n: n > 0
by auto
have ([[z€X. az powr (1 / n)) < > zeX. (1 / n)*ax)
using n assms by (intro weighted-arithmetic-geometric-mean) auto
also have ([[z€X. a z powr (1 / n)) = ([[z€X. a x) powr (1 / n)
using nonneg by (subst powr-sum-distrib-real-left) auto
also have ... = root n ([[z€X. a 1)
using «n > 0> nonneg by (subst root-powr-inverse’) (auto simp: prod-nonneg)
also have (> zeX. (I /n)*xax)= (> 2zeX. azx) / n
by (subst sum-distrib-left [symmetric]) auto
finally show ?thesis .



qed (auto simp: n-def)

1.3 The Equality Case

Next, we show that weighted arithmetic and geometric mean are equal if
and only if all the a; are equal.

We first prove the more difficult direction as a lemmas and again first assume
positivity of all a; and w; and will relax this somewhat later.

lemma weighted-arithmetic-geometric-mean-eq-iff-pos:

fixes a w :: 'a = real

assumes finite X

assumes posl: A\z.z € X = az > 0

assumes pos2: N\z. z € X = wz > 0

assumes sum-weights: (> z€X. wx) = 1

assumes eq: ([[z€X. a x powr wz) = D z€X. wz * a x)

shows VzeX.VyeX.ax=ay

proof —

note nonnegl = less-imp-le[OF pos1|

note nonneg?2 = less-imp-le[OF pos2)

define A where 4 = (> z€X. wx x a x)

define r where r = (A\z. az / A — 1)

from sum-weights have X # {} by auto

hence A # 0
unfolding A-def using nonnegl nonneg2 posl pos2 <finite X»
by (subst sum-nonneg-eq-0-iff) force+

moreover from nonnegl nonneg2 have A > 0
by (auto simp: A-def introl: sum-nonneg)

ultimately have A > 0 by simp

have r-ge: rz > —1 if x: v € X for z
using <A > 0) pos1[OF z| by (auto simp: r-def field-simps)

have ([[zeX. (I 4+ r ) powr wz) = ([[z€X. (a z / A) powr w z)

by (simp add: r-def)
also have ... = ([[z€X. a z powr wz) / ([[z€X. A powr w z)

unfolding prod-dividef [symmetric]

using assms pos2 <A > 0> by (intro prod.cong powr-divide) (auto intro:
less-imp-le)

also have ([[z€X. A powr wz) = exp (3 z€X. wz) * In A)

using <A > 0> and «finite X> by (simp add: powr-def exp-sum sum-distrib-right)
also have (}_zeX. wz) = 1 by fact
also have ezp (1 xIn A) = A

using <A > 0> by simp
finally have lhs: ([[z€X. (1 + rz) powr wz) = ([[z€X. a z powr wz) / A .

have ([[z€X. exp (wz x rz)) = exp O z€X. wx * 1)
using <finite X» by (simp add: exp-sum)
also have (> zeX waxsxrz)= D 2eX. azxwz) / A — 1



using <A > 0» by (simp add: r-def algebra-simps sum-subtractf sum-divide-distrib
sum-weights)
also have (Y zeX. azxwz) /| A= 1
using <4 > 0) by (simp add: A-def mult.commute)
finally have rhs: ([[z€X. exp (wz * rx)) = 1 by simp

have a z = Aif z: x € X for z
proof —
have (1 + rz) powr wz = exp (W * 1)
proof (rule prod-ge-pointwise-le-imp-pointwise-eq
[where f = Az. (I + rz) powr wz and g = Az. exp (w z * 7 )])
show (I + rz) powrwz < exp (wa * rz)if z: 2 € X for z
proof —
have 1 + rz < exp (r z)
by (rule exp-ge-add-one-self)
hence (1 + r z) powr wz < exp (r z) powr w x
using nonnegl! [of z] nonneg2[of z] x <A > 0
by (intro powr-mono2) (auto simp: r-def field-simps)
also have ... = exp (wz * r 1)
by (simp add: powr-def)
finally show (1 + r z) powr wz < exp (wx * rz) .
qed
next
show ([Jz€X. (I + rz) powr wz) > ([[z€X. exp (wz * 7))
proof —
have (J[[z€eX. (I + rz) powr wz) = ([[z€X. a z powr wz) / A
by (fact lhs)

also have ... = 1
using <4 # 0) by (simp add: eq A-def)
also have ... = (J[[z€X. exp (w z * r x))

by (simp add: Ths)
finally show ?thesis by simp
qed
qed (use z <finite X» in auto)

also have ezp (w z * r z) = exp (r z) powr w z
by (simp add: powr-def)
finally have 1 + r z = exp (r z)
using z pos2|of z] r-ge[of z] by (subst (asm) powr-left-real-eq-iff) auto
hence rz = 0
using exp-real-eq-one-plus-iff [of r z] by auto
hence a z = A
using <A > 0) by (simp add: r-def field-simps)
thus ?thesis
by (simp add: )
qed
thus VzeX. VyeX. axz =ay
by auto
qed



We can now show the full theorem and relax the positivity condition on the
a; to non-negativity. This is possible because if some q; is zero and the two
means coincide, then the product is obviously 0, but the sum can only be 0
if all the a; are 0.

theorem weighted-arithmetic-geometric-mean-eq-iff:
fixes a w :: 'a = real
assumes finite X
assumes nonnegl: N\e. 2 € X = axz > 0
assumes pos2: Nrz.ze€ X = wz >0
assumes sum-weights: (> z€X. wz) = 1
shows ([[zeX.azpowrwz) = 2eX. wz*az)+— X #{} N (VzeX.
VyeX. az = avy)
proof
assume x: X # {} A (VzeX. VyeX. az =ay)
from * have X # {}
by blast

from * obtain ¢ where c: A\o. 2 € X = ax=cc >0
proof (cases X = {})

case Fulse

then obtain x where z € X by blast

thus ?thesis using * that[of a z] nonnegl [of x] by metis
next

case True

thus ?thesis

using that[of 1] by auto

qed

have ([[z€X. a z powr w z) = (J[[z€X. ¢ powr w )
by (simp add: c)
also have ... = ¢
using assms ¢ <X # {}» by (cases ¢ = 0) (auto simp: powr-sum-distrib-real-right)
also have ... = (D> z€eX. wz * a )
using sum-weights by (simp add: c¢(1) flip: sum-distrib-left sum-distrib-right)
finally show ([[z€X. a z powr wz) = (Y z€X. wz * a ) .
next
assume *: ([[z€X. a z powr wz) = (D z€X. wz * a x)
have X # {}
using * by auto
moreover have (VzeX. VyeX. az = a y)
proof (cases 3z€X. ax = 0)
case Fulse
with nonneg! have posl: VzeX. az > 0
by force
thus ?thesis
using weighted-arithmetic-geometric-mean-eq-iff-pos[of X a w] assms x*
by blast
next
case True



hence ([[z€X. a z powr w z) = 0
using assms by auto
with * have (> zeX. wz xaz) =0
by auto
also have ?this +— (VzeX. wz x axz = 0)
using assms by (intro sum-nonneg-eq-0-iff mult-nonneg-nonneg) (auto intro:
less-imp-le)
finally have (VzeX. a z = 0)
using pos2 by force
thus ?thesis
by auto
qed
ultimately show X # {} A (VzeX.VyeX. az = a y)
by blast
qed

Again, we derive a version for the unweighted arithmetic/geometric mean.

corollary arithmetic-geometric-mean-eq-iff:
fixes a :: 'a = real
assumes finite X
defines n = card X
assumes nonneg: N\z. t € X = axz > 0
shows rootn ([[z€X. az) = (> z€X. az)/ n+— (VzeX.VyecX. az =a

Y)
proof (cases X = {})
case Fulse
with assms have n > 0
by auto

have ([[z€X. az powr (1 / n)) = (> z€X. (1 / n)*azx)+—
XA£{ANNVzeX. VyeX. ax=ay)
using assms False by (intro weighted-arithmetic-geometric-mean-eq-iff) auto
also have ([[z€X. a z powr (1 / n)) = ([[z€X. a z) powr (1 / n)
using nonneg by (subst powr-sum-distrib-real-left) auto
also have ... = root n ([[z€X. a z)
using «n > 0> nonneg by (subst root-powr-inverse’) (auto simp: prod-nonneg)
also have (> zeX. (I /n)xax)= (> zeX. azx)/n
by (subst sum-distrib-left [symmetric]) auto
finally show ?thesis using Fulse by auto
qed (auto simp: n-def)

1.4 The Binary Version

For convenience, we also derive versions for only two numbers:

corollary weighted-arithmetic-geometric-mean-binary:
fixes w1l w2 x1 x2 :: real
assumes zI > 0z2 > 0wl > 0 w2 > 0wl + w2 = 1
shows z1 powr w1 * z2 powr w2 < wl * x1 + w2 * z2
proof —
let ?a = A\b. if b then z1 else x2



let 2w = Ab. if b then wi else w2
from assms have ([[z€UNIV. %a © powr %w x) < (D x€UNIV. 2w z * ?a x)
by (intro weighted-arithmetic-geometric-mean) (auto simp add: UNIV-bool)
thus ?thesis by (simp add: UNIV-bool add-ac mult-ac)
qed

corollary weighted-arithmetic-geometric-mean-eq-iff-binary:
fixes w1 w2 z1 x2 :: real
assumes z1 > 022 > 0wl > 0 w2 > 0wl + w2 =1
shows 1 powr wi * z2 powr w2 = wl * z1 + w2 * 2 +— x1 = 22
proof —
let 2a = A\b. if b then z1 else x2
let 2w = A\b. if b then wi else w2
from assms have ([[z€UNIV. %a z powr ?w z) = (3, x€UNIV. 2wz % %a x)
<— (UNIV :: bool set) # {} N (V2€UNIV.VyeUNIV. %a x =
fa y)
by (intro weighted-arithmetic-geometric-mean-eq-iff ) (auto simp add: UNIV-bool)
thus ?thesis by (auto simp: UNIV-bool add-ac mult-ac)
qed

corollary arithmetic-geometric-mean-binary:
fixes =1 z2 :: real
assumes z1 > 0z2 > 0
shows sgrt (z1 * 22) < (z1 + 22) / 2
using weighted-arithmetic-geometric-mean-binarylof x1 x2 1/2 1/2] assms
by (simp add: powr-half-sqrt field-simps real-sqri-mult)

corollary arithmetic-geometric-mean-eq-iff-binary:
fixes 1 z2 :: real
assumes z1 > 0z2 > 0
shows sqrt (x1 * 22) = (xl + 22) / 2 +— z1 = 2
using weighted-arithmetic-geometric-mean-eq-iff-binary[of ©1 2 1/2 1/2] assms
by (simp add: powr-half-sqrt field-simps real-sqrt-mult)

end
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