Weight-Balanced Trees

Tobias Nipkow and Stefan Dirix March 17, 2025

Abstract

This theory provides a verified implementation of weight-balanced trees following the work of Hirai and Yamamoto [4] who proved that all parameters in a certain range are valid, i.e. guarantee that insertion and deletion preserve weight-balance. Instead of a general theorem we provide parameterized proofs of preservation of the invariant that work for many (all?) valid parameters.

1 Introduction

Weight-balanced trees (WB trees) are a class of binary search trees of logarithmic height. They were invented by Nievergelt and Reingold [5, 6] who called them trees of bounded balance. They are parametrized by a constant. Parameters are called *valid* if they guarantee that insertion and deletion preserve the WB invariant. Blum and Mehlhorn [3] later discovered that there is a flaw in Nievergelt and Reingold's analysis of valid parameters and gave a detailed correctness proof for a modified range of parameters. Adams [1, 2] considered a slightly modified version of WB trees and analyzed which parameters are valid. The Haskell libraries Data. Set and Data. Map are based on Adams' papers but it was found that the implementation did not preserve the invariant. This motivated Hirai and Yamamoto [4] to verify the valid parameter range for the original definition of WB tree formally in Coq. They also showed that Adams' analysis is flawed by giving a counterexample to Adams' claimed range of valid parameters. Straka [8] analyzes valid parameters for Adam's variant. Yet another variant of WB trees was considered by Roura [7].

2 Weight-Balanced Trees Have Logarithmic Height, and More

theory Weight_Balanced_Trees_log imports Complex_Main

```
HOL-Library.Tree begin
```

lemmas neq0_if = less_imp_neq dual_order.strict_implies_not_eq

2.1 Logarithmic Height

The locale below is parameterized wrt to Δ . The original definition of weight-balanced trees [5, 6] uses α . The constants α and Δ are interdefinable. Below we start from Δ but derive α -versions of theorems as well.

```
locale WBT0 =
fixes \Delta :: real
begin
fun balanced1 :: 'a tree \Rightarrow 'a tree \Rightarrow bool where
balanced1 \ t1 \ t2 = (size1 \ t1 \le \Delta * size1 \ t2)
fun wbt :: 'a tree \Rightarrow bool where
wbt \ Leaf = True \mid
wbt \ (Node \ l \perp r) = (balanced1 \ l \ r \land balanced1 \ r \ l \land wbt \ l \land wbt \ r)
end
locale WBT1 = WBT0 +
assumes Delta: \Delta \geq 1
begin
definition \alpha :: real where
\alpha = 1/(\Delta + 1)
lemma Delta_def: \Delta = 1/\alpha - 1
unfolding \alpha\_def by auto
lemma shows alpha_pos: 0 < \alpha and alpha_ub: \alpha \le 1/2
unfolding \alpha\_def using Delta by auto
lemma wbt\_Node\_alpha: wbt (Node\ l\ x\ r) =
 ((let \ q = size1 \ l \ / (size1 \ l + size1 \ r))
   in \alpha \leq q \wedge q \leq 1 - \alpha) \wedge
  wbt \ l \wedge wbt \ r)
proof -
  have l > 0 \Longrightarrow r > 0 \Longrightarrow
    (1/(\Delta+1) \le l/(l+r) \longleftrightarrow r/l \le \Delta) \land
    (1/(\Delta+1) \le r/(l+r) \longleftrightarrow l/r \le \Delta) \land
    (l/(l+r) \le 1 - 1/(\Delta+1) \longleftrightarrow l/r \le \Delta) \land
    (r/(l+r) \le 1 - 1/(\Delta+1) \longleftrightarrow r/l \le \Delta) for l r
    using Delta by (simp add: field_simps divide_le_eq)
 thus ?thesis using Delta by(auto simp: \alpha_def Let_def pos_divide_le_eq add_pos_pos)
```

```
qed
```

```
\mathbf{lemma}\ \mathit{height\_size1\_Delta}.
  wbt \ t \Longrightarrow (1 + 1/\Delta) \ \widehat{} \ (height \ t) \leq size1 \ t
proof(induction t)
  case Leaf thus ?case by simp
\mathbf{next}
  case (Node l \ a \ r)
 let ?t = Node \ l \ a \ r \ let \ ?s = size1 \ ?t \ let \ ?d = 1 + 1/\Delta
 from Node.prems(1) have 1: size1 l * ?d \le ?s and 2: size1 r * ?d \le ?s
   using Delta by (auto simp: Let_def field_simps add_pos_pos neq0_if)
 show ?case
 proof (cases height l \leq height r)
   {\bf case}\ {\it True}
   hence ?d \cap (height ?t) = ?d \cap (height r) * ?d by(simp)
   also have \dots < size1 \ r * ?d
     using Node.IH(2) Node.prems Delta unfolding wbt.simps
     by (smt (verit) divide_nonneg_nonneg_mult_mono of_nat_0_le_iff)
   also have \dots \leq ?s using 2 by (simp)
   finally show ?thesis.
  next
   case False
   hence ?d \cap (height ?t) = ?d \cap (height l) * ?d by(simp)
   also have \dots \leq size1 \ l * ?d
     using Node.IH(1) Node.prems Delta unfolding wbt.simps
     by (smt (verit) divide_nonneq_nonneq mult_mono of_nat_0_le_iff)
   also have \dots \leq ?s using 1 by (simp)
   finally show ?thesis.
 qed
qed
lemma height_size1_alpha:
  wbt \ t \Longrightarrow (1/(1-\alpha)) \ \widehat{} \ (height \ t) \le size1 \ t
proof(induction t)
 case Leaf thus ?case by simp
 note wbt.simps[simp del] wbt_Node_alpha[simp]
 case (Node l \ a \ r)
 let ?t = Node \ l \ a \ r \ let \ ?s = size1 \ ?t
 from Node.prems(1) have 1: size1 l / (1-\alpha) \le ?s and 2: size1 r / (1-\alpha) \le ?s
   using alpha_ub by (auto simp: Let_def field_simps add_pos_pos neq0_if)
 show ?case
  proof (cases height l \leq height r)
   case True
   hence (1/(1-\alpha)) \hat{} (height ?t) = (1/(1-\alpha)) \hat{} (height r) * (1/(1-\alpha)) by (simp)
   also have \dots \leq size1 \ r * (1/(1-\alpha))
     using Node.IH(2) Node.prems unfolding wbt_Node_alpha
     by (smt (verit) mult_right_mono zero_le_divide_1_iff)
   also have \dots \leq ?s using 2 by (simp)
```

```
finally show ?thesis.
  next
   {f case} False
   hence (1/(1-\alpha)) ^ (height ?t) = (1/(1-\alpha)) ^ (height l) * (1/(1-\alpha)) by(simp)
   also have \dots \leq size1 \ l * (1/(1-\alpha))
     \mathbf{using}\ \textit{Node.IH} (1)\ \textit{Node.prems}\ \mathbf{unfolding}\ \textit{wbt\_Node\_alpha}
     \mathbf{by}\ (\mathit{smt}\ (\mathit{verit})\ \mathit{mult\_right\_mono}\ \mathit{zero\_le\_divide\_1\_\mathit{iff}})
   also have \dots \le ?s using 1 by (simp)
   finally show ?thesis.
 qed
qed
lemma height\_size1\_log\_Delta: assumes wbt t
shows height t \leq \log 2 (size1 t) / \log 2 (1 + 1/\Delta)
proof -
 from height_size1_Delta[OF assms]
 have height t \leq log (1 + 1/\Delta) (size1 t)
   using Delta le_log_of_power by auto
 also have ... = log \ 2 \ (size1 \ t) \ / \ log \ 2 \ (1 + 1/\Delta)
   by (simp add: log_base_change)
 finally show ?thesis.
qed
lemma height\_size1\_log\_alpha: assumes wbt t
shows height t \leq \log 2 (size1 t) / log 2 (1/(1-\alpha))
proof -
 from height_size1_alpha[OF assms]
 have height t \leq \log (1/(1-\alpha)) (size1 t)
   using alpha_pos alpha_ub le_log_of_power by auto
 also have ... = log \ 2 \ (size1 \ t) \ / \ log \ 2 \ (1/(1-\alpha))
   by (simp add: log_base_change)
 finally show ?thesis.
qed
end
2.2
       Every 1 \le \Delta < 2 Yields Exactly the Complete Trees
declare WBT0.wbt.simps [simp] WBT0.balanced1.simps [simp]
lemma wbt1\_if\_complete: assumes 1 \leq \Delta shows complete t \Longrightarrow WBT0.wbt \Delta t
apply(induction \ t)
apply simp
apply (simp add: assms size1_if_complete)
lemma complete_if_wbt2: assumes \Delta < 2 shows WBT0.wbt \Delta t \Longrightarrow complete t
proof(induction \ t)
 case Leaf
```

```
then show ?case by simp
next
  case (Node t1 \ x \ t2)
 let ?h1 = height t1 let ?h2 = height t2
 from Node have *: complete t1 \land complete \ t2 by auto
 hence sz: size1 t1 = 2 ?h1 \land size1 t2 = 2 ?h2
   using size1_if_complete by blast
  show ?case
  proof (rule ccontr)
   assume \neg complete \langle t1, x, t2 \rangle
   hence ?h1 \neq ?h2 using * by auto
   thus False
   proof (cases ?h1 < ?h2)
     case True
     hence 2 * (2::real) ^?h1 < 2 ^?h2
      by (metis Suc_leI one_le_numeral power_Suc power_increasing)
     also have ... \leq \Delta * 2 ^ ?h1 using sz Node.prems by (simp)
     finally show False using \langle \Delta < 2 \rangle by simp
     case False
     with \langle ?h1 \neq ?h2 \rangle have ?h2 < ?h1 by linarith
     hence 2 * (2::real) ^ ?h2 \le 2 ^ ?h1
      by (metis Suc_leI one_le_numeral power_Suc power_increasing)
     also have ... \leq \Delta * 2 ^ ?h2 using sz Node.prems by (simp)
     finally show False using \langle \Delta < 2 \rangle by simp
   qed
 qed
qed
end
```

3 Weight Balanced Tree Implementation of Sets

This theory follows Hirai and Yamamoto but we do not prove their general theorem. Instead we provide a short parameterized theory that, when interpreted with valid parameters, will prove perservation of the invariant for these parameters.

```
theory Weight_Balanced_Trees imports HOL-Data\_Structures.Isin2 begin \mathbf{lemma}\ neq\_Leaf2\_iff\colon t\neq Leaf\longleftrightarrow (\exists\ l\ a\ n\ r.\ t=Node\ l\ (a,n)\ r) by (cases\ t)\ auto \mathbf{type\text{-synonym}}\ 'a\ wbt=('a*nat)\ tree \mathbf{fun}\ size\_wbt:: 'a\ wbt\Rightarrow nat\ \mathbf{where}
```

```
size\_wbt \ Leaf = 0 \mid size\_wbt \ (Node \_ (\_, n) \_) = n
```

Smart constructor:

```
fun N :: 'a \ wbt \Rightarrow 'a \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt where N \ l \ a \ r = Node \ l \ (a, size\_wbt \ l + size\_wbt \ r + 1) \ r
```

Basic Rotations:

```
fun rot1L :: 'a wbt \Rightarrow 'a \Rightarrow 'a wbt \Rightarrow 'a \Rightarrow 'a wbt \Rightarrow 'a wbt \Rightarrow 'a wbt where rot1L A a B b C = N (N A a B) b C
```

fun $rot1R :: 'a \ wbt \Rightarrow 'a \Rightarrow 'a \ wbt \Rightarrow 'a \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt$ **where** $rot1R \ A \ a \ B \ b \ C = N \ A \ a \ (N \ B \ b \ C)$

```
fun rot2 :: 'a \ wbt \Rightarrow 'a \Rightarrow 'a \ wbt \Rightarrow 'a \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt where rot2 \ A \ a \ (Node \ B1 \ (b,\_) \ B2) \ c \ C = N \ (N \ A \ a \ B1) \ b \ (N \ B2 \ c \ C)
```

3.1 WB trees

Parameters:

 Δ determines when a tree needs to be rebalanced

 Γ determines whether it needs to be single or double rotation.

We represent rational numbers as pairs: $\Delta = \Delta 1/\Delta 2$ and $\Gamma = \Gamma 1/\Gamma 2$.

Hirai and Yamamoto [4] proved that under the following constraints insertion and deletion preserve the WB invariant, i.e. Δ and Γ are *valid*:

```
\begin{array}{l} \textbf{definition} \ valid\_params :: \ nat \Rightarrow \ nat \Rightarrow \ nat \Rightarrow \ nat \Rightarrow \ bool \ \textbf{where} \\ valid\_params \ \Delta 1 \ \Delta 2 \ \Gamma 1 \ \Gamma 2 = (\\ \Delta 1 * 2 < \Delta 2 * 9 \ - \ right: \ \Delta < 4.5 \ \land \\ \Gamma 1 * \Delta 2 + \Gamma 2 * \Delta 2 \leq \Gamma 2 * \Delta 1 \ - \ left: \ \Gamma + 1 \leq \Delta \ \land \\ \Gamma 1 * \Delta 1 \geq \Gamma 2 * (\Delta 1 + \Delta 2) \ - \ lower: \ \Gamma \geq (\Delta + 1) \ / \ \Delta \ \land \\ - \ upper: \\ (5*\Delta 2 \leq 2*\Delta 1 \ \land \ 1*\Delta 1 < 3*\Delta 2 \ \longrightarrow \ \Gamma 1*2 \leq \Gamma 2*3) \\ - \ \Gamma \leq 3/2 \ \text{if} \ 2.5 \leq \Delta < 3 \ \land \\ (3*\Delta 2 \leq 1*\Delta 1 \ \land \ 2*\Delta 1 < 7*\Delta 2 \ \longrightarrow \ \Gamma 1*2 \leq \Gamma 2*4) \\ - \ \Gamma \leq 4/2 \ \text{if} \ 3 \leq \Delta < 3.5 \ \land \\ (7*\Delta 2 \leq 2*\Delta 1 \ \land \ 1*\Delta 1 < 4*\Delta 2 \ \longrightarrow \ \Gamma 1*3 \leq \Gamma 2*4) \\ - \ \Gamma \leq 4/3 \ \text{when} \ 3.5 \leq \Delta < 4 \ \land \\ (4*\Delta 2 \leq 1*\Delta 1 \ \land \ 2*\Delta 1 < 9*\Delta 2 \ \longrightarrow \ \Gamma 1*3 \leq \Gamma 2*5) \\ - \ \Gamma \leq 5/3 \ \text{when} \ 4 \leq \Delta < 4.5 \\ ) \end{array}
```

We do not make use of these constraints and do not prove that they guarantee preservation of the invariant. Instead, we provide generic proofs of invariant preservation that work for many (all?) interpretations of locale WBT (below) with valid parameters. Further down we demonstrate this by

interpreting WBT with a selection of valid parameters. [For some parameters, some smt proofs fail because smt on nats fails although on non-negative ints it succeeds, i.e. the goal should be provable. This is a shortcoming of smt that is under investigation.]

Locale WBT comes with some minimal assumptions ($\Gamma 1 > \Gamma 2$ and $\Delta 1 > \Delta 2$) which follow from *valid_params* and from which we conclude some simple lemmas.

```
locale WBT= fixes \Delta 1 \Delta 2::nat and \Gamma 1 \Gamma 2::nat assumes Delta\_gr1:\Delta 1>\Delta 2 and Gamma\_gr1:\Gamma 1>\Gamma 2 begin
```

```
3.1.1 Balance Indicators

fun balanced1 :: 'a wbt \Rightarrow 'a wbt \Rightarrow bool where
balanced1 t1 t2 = (\Delta 1 * (size\_wbt \ t1 + 1) \ge \Delta 2 * (size\_wbt \ t2 + 1))

The global weight-balanced tree invariant:

fun wbt :: 'a wbt \Rightarrow bool where
wbt Leaf = True|
wbt (Node l (\neg, n) r) =
(n = size \ l + size \ r + 1 \land balanced1 \ l \ r \land balanced1 \ r \ l \land wbt \ l \land wbt \ r)

lemma size\_wbt\_eq\_size[simp]: wbt t \Longrightarrow size\_wbt \ t = size \ t
by(induction t) auto

fun single :: 'a wbt \Rightarrow 'a wbt \Rightarrow bool where
single t1 t2 = (\Gamma 1 * (size\_wbt \ t2 + 1) > \Gamma 2 * (size\_wbt \ t1 + 1))

3.1.2 Code
```

```
fun rotateL :: 'a \ wbt \Rightarrow 'a \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt  where rotateL \ A \ a \ (Node \ B \ (b, \ ) \ C) =
(if \ single \ B \ C \ then \ rot1L \ A \ a \ B \ b \ C \ else \ rot2 \ A \ a \ B \ b \ C)

fun balanceL :: 'a \ wbt \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt  where balanceL \ l \ a \ r = (if \ balanced1 \ l \ r \ then \ N \ l \ a \ r \ else \ rotateL \ l \ a \ r)

fun rotateR :: 'a \ wbt \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt  where rotateR \ (Node \ A \ (a, \ ) \ B) \ b \ C =
(if \ single \ B \ A \ then \ rot1R \ A \ a \ B \ b \ C \ else \ rot2 \ A \ a \ B \ b \ C)

fun balanceR :: 'a \ wbt \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt  where balanceR \ l \ a \ r = (if \ balanced1 \ r \ l \ then \ N \ l \ a \ r \ else \ rotateR \ l \ a \ r)

fun insert :: 'a :: linorder \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt  where insert \ x \ Leaf = Node \ Leaf \ (x, 1) \ Leaf \ |
insert \ x \ (Node \ l \ (a, n) \ r) =
```

```
(case cmp \ x \ a \ of
      LT \Rightarrow balanceR (insert \ x \ l) \ a \ r \mid
      GT \Rightarrow balanceL \ l \ a \ (insert \ x \ r) \ |
      EQ \Rightarrow Node \ l \ (a, \ n) \ r \ )
fun split\_min :: 'a \ wbt \Rightarrow 'a * 'a \ wbt \ \mathbf{where}
split\_min (Node \ l \ (a, \_) \ r) =
   (if \ l = Leaf \ then \ (a,r) \ else \ let \ (x,l') = split\_min \ l \ in \ (x, \ balanceL \ l' \ a \ r))
fun del\_max :: 'a \ wbt \Rightarrow 'a * 'a \ wbt where
del\_max (Node \ l \ (a, \_) \ r) =
   (if \ r = Leaf \ then \ (a,l) \ else \ let \ (x,r') = del\_max \ r \ in \ (x, \ balanceR \ l \ a \ r'))
fun combine :: 'a \ wbt \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt where
combine\ Leaf\ Leaf\ =\ Leaf|
combine Leaf r = r
combine\ l\ Leaf = l
combine l r =
   (if size l > size r then
      let (lMax, l') = del\_max l in balanceL l' lMax r
      let (rMin, r') = split\_min \ r \ in \ balanceR \ l \ rMin \ r')
fun delete :: 'a::linorder \Rightarrow 'a \ wbt \Rightarrow 'a \ wbt where
delete \perp Leaf = Leaf
delete \ x \ (Node \ l \ (a, \_) \ r) =
  (case cmp \ x \ a \ of
     LT \Rightarrow balanceL (delete \ x \ l) \ a \ r \mid
     GT \Rightarrow balanceR \ l \ a \ (delete \ x \ r) \ |
     EQ \Rightarrow combine \ l \ r)
```

3.2 Functional Correctness Proofs

A WB tree must be of a certain structure if balanced1 and single are False.

```
lemma not_Leaf_if_not_balanced1:
    assumes \neg balanced1 l r
    shows r \neq Leaf
proof
    assume r = Leaf with assms Delta\_gr1 show False by simp qed

lemma not_Leaf_if_not_single:
    assumes \neg single l r
    shows l \neq Leaf
proof
    assume l = Leaf with assms Gamma\_gr1 show False by simp qed
```

3.2.1 Inorder Properties

```
lemma inorder_rot2:
  B \neq Leaf \implies inorder(rot2\ A\ a\ B\ b\ C) = inorder\ A\ @\ a\ \#\ inorder\ B\ @\ b\ \#
inorder C
by (cases (A,a,B,b,C) rule: rot2.cases) (auto)
lemma inorder\_rotateL:
  r \neq Leaf \Longrightarrow inorder(rotateL\ l\ a\ r) = inorder\ l\ @\ a\ \#\ inorder\ r
by (induction l a r rule: rotateL.induct) (auto simp add: inorder_rot2 not_Leaf_if_not_single)
lemma inorder_rotateR:
  l \neq Leaf \Longrightarrow inorder(rotateR\ l\ a\ r) = inorder\ l\ @\ a\ \#\ inorder\ r
by (induction l a r rule: rotateR.induct) (auto simp add: inorder_rot2 not_Leaf_if_not_single)
lemma inorder_insert:
  sorted(inorder\ t) \Longrightarrow inorder(insert\ x\ t) = ins\_list\ x\ (inorder\ t)
by (induction \ t)
  (auto simp: ins_list_simps inorder_rotateL inorder_rotateR not_Leaf_if_not_balanced1)
lemma split_minD:
  split\_min\ t = (x,t') \Longrightarrow t \neq Leaf \Longrightarrow x \# inorder\ t' = inorder\ t
by (induction t arbitrary: t' rule: split_min.induct)
   (auto simp: sorted_lems inorder_rotateL not_Leaf_if_not_balanced1
    split: prod.splits if_splits)
lemma del\_maxD:
  del\_max\ t = (x,t') \Longrightarrow t \neq Leaf \Longrightarrow inorder\ t' @ [x] = inorder\ t
\mathbf{by}\ (\mathit{induction}\ t\ \mathit{arbitrary} \colon \mathit{t'}\ \mathit{rule} \colon \mathit{del}\_\mathit{max}.\mathit{induct})
   (auto simp: sorted_lems inorder_rotateR not_Leaf_if_not_balanced1
    split: prod.splits if_splits)
lemma inorder_combine:
  inorder(combine \ l \ r) = inorder \ l \ @ inorder \ r
\mathbf{by}(induction\ l\ r\ rule:\ combine.induct)
 (auto\ simp:\ del\_maxD\ split\_minD\ inorder\_rotateL\ inorder\_rotateR\ not\_Leaf\_if\_not\_balanced1
   simp del: rotateL.simps rotateR.simps split: prod.splits)
\mathbf{lemma}\ in order\_delete:
  sorted(inorder\ t) \Longrightarrow inorder(delete\ x\ t) = del\_list\ x\ (inorder\ t)
\mathbf{by}(induction\ t)
  (auto simp: del_list_simps inorder_combine inorder_rotateL inorder_rotateR
    not_Leaf_if_not_balanced1 simp del: rotateL.simps rotateR.simps)
        Size Lemmas
3.3
```

3.3.1 Insertion

```
lemma size\_rot2L[simp]: B \neq Leaf \implies size(rot2 \ A \ a \ B \ b \ C) = size \ A + size \ B + size \ C + 2
```

```
by(induction A a B b C rule: rot2.induct) auto
lemma size\_rotateR[simp]:
  l \neq Leaf \Longrightarrow size(rotateR \ l \ a \ r) = size \ l + size \ r + 1
by(induction l a r rule: rotateR.induct)
  (auto simp: not_Leaf_if_not_single simp del: rot2.simps)
lemma size\_rotateL[simp]:
  r \neq Leaf \Longrightarrow size(rotateL\ l\ a\ r) = size\ l + size\ r + 1
by(induction l a r rule: rotateL.induct)
  (auto simp: not_Leaf_if_not_single simp del: rot2.simps)
lemma size\_length: size\ t = length\ (inorder\ t)
by (induction t rule: inorder.induct) auto
lemma size_insert: size (insert x t) = (if isin t x then size t else Suc (size t))
\mathbf{by}\ (\mathit{induction}\ t\ \mathit{rule}:\ \mathit{tree2}\mathit{\_induct})\ (\mathit{auto}\ \mathit{simp}:\ \mathit{not}\mathit{\_Leaf}\mathit{\_if}\mathit{\_not}\mathit{\_balanced1})
3.3.2 Deletion
lemma size\_delete\_if\_isin: isin\ t\ x \Longrightarrow size\ t = Suc\ (size(delete\ x\ t))
proof (induction t rule: tree2_induct)
  case (Node \_ a \_ \_)
  thus ?case
  proof (cases \ cmp \ x \ a)
  case LT thus ?thesis using Node.prems by (simp add: Node.IH(1) not_Leaf_if_not_balanced1)
  case EQ thus ?thesis by simp (metis size_length inorder_combine length_append)
  next
  case GT thus ?thesis using Node.prems by (simp add: Node.IH(2) not_Leaf_if_not_balanced1)
  ged
qed (auto)
lemma delete\_id\_if\_wbt\_notin: wbt\ t \Longrightarrow \neg\ isin\ t\ x \Longrightarrow delete\ x\ t=t
by (induction \ t) auto
lemma size\_split\_min: t \neq Leaf \Longrightarrow size \ t = Suc \ (size \ (snd \ (split\_min \ t)))
by(induction t) (auto simp: not_Leaf_if_not_balanced1 split: if_splits prod.splits)
lemma size\_del\_max: t \neq Leaf \Longrightarrow size t = Suc(size(snd(del\_max t)))
by(induction t) (auto simp: not_Leaf_if_not_balanced1 split: if_splits prod.splits)
3.4
        Auxiliary Definitions
fun balanced1\_arith :: nat \Rightarrow nat \Rightarrow bool where
balanced1\_arith\ a\ b = (\Delta 1 * (a + 1) \ge \Delta 2 * (b + 1))
fun balanced2\_arith :: nat \Rightarrow nat \Rightarrow bool where
balanced2\_arith\ a\ b = (balanced1\_arith\ a\ b \land balanced1\_arith\ b\ a)
```

```
\begin{array}{l} \mathbf{fun} \ singly\_balanced\_arith :: \ nat \Rightarrow nat \Rightarrow bool \ \mathbf{where} \\ singly\_balanced\_arith \ x \ y \ w = (balanced2\_arith \ x \ y \ \wedge balanced2\_arith \ (x+y+1) \ w) \\ \mathbf{fun} \ doubly\_balanced\_arith :: \ nat \Rightarrow nat \Rightarrow nat \Rightarrow bool \ \mathbf{where} \\ doubly\_balanced\_arith \ x \ y \ z \ w = \\ (balanced2\_arith \ x \ y \ \wedge balanced2\_arith \ z \ w \ \wedge balanced2\_arith \ (x+y+1) \ (z+w+1)) \end{array}
```

end

3.5 Preservation of WB tree Invariant for Concrete Parameters

A number of sample interpretations with valid parameters:

```
interpretation WBT where \Delta 1 = 25 and \Delta 2 = 10 and \Gamma 1 = 14 and \Gamma 2 = 10
```

```
by (auto simp add: WBT_def)
lemma wbt_insert:
 wbt \ t \Longrightarrow wbt \ (insert \ x \ t)
\mathbf{proof}\ (induction\ t\ rule:\ tree2\_induct)
 case Leaf show ?case by simp
\mathbf{next}
 case (Node l \ a = r)
 show ?case
 proof (cases \ cmp \ x \ a)
   case EQ thus ?thesis using Node.prems by auto
  next
   case [simp]: LT
   let ?l' = insert \ x \ l
   show ?thesis
   proof (cases balanced1 r ? l')
     case True thus ?thesis using Node size_insert[of x l] by auto
     case [simp]: False
```

```
hence ?l' \neq Leaf using not_Leaf_if_not_balanced1 by auto
     then obtain k ll' al' rl' where [simp]: ?l' = (Node ll' (al', k) rl')
      \mathbf{by}(meson\ neq\_Leaf2\_iff)
     show ?thesis
     proof (cases single rl' ll')
      case True thus ?thesis using Node size_insert[of x l]
        by (auto split: if_splits)
     next
      case isDouble: False
      then obtain k \ llr' \ alr' \ rlr' where [simp]: \ rl' = (Node \ llr' \ (alr', \ k) \ \ rlr')
        using not_Leaf_if_not_single tree2_cases by blast
      show ?thesis using isDouble Node size_insert[of x l]
        by (auto split: if_splits)
     qed
   qed
 next
   case [simp]: GT
   let ?r' = insert x r
   show ?thesis
   proof (cases balanced1 l ?r')
     case True thus ?thesis using Node size_insert[of x r] by auto
   next
     case [simp]: False
     hence ?r' \neq Leaf using not_Leaf_if_not_balanced1 by auto
     then obtain k \ lr' \ ar' \ rr' where [simp]: \ ?r' = (Node \ lr' \ (ar', \ k) \ rr')
      by(meson neq_Leaf2_iff)
     show ?thesis
     proof (cases single lr' rr')
      case True thus ?thesis using Node size_insert[of x r]
        by (auto split: if_splits)
     next
      case isDouble: False
      hence lr' \neq Leaf using not_Leaf_if_not_single by auto
      thus ?thesis
        using Node isDouble size_insert[of x r]
        by (auto simp: neq_Leaf2_iff split: if_splits)
     qed
   qed
 qed
qed
declare [[smt\_nat\_as\_int]]
    Show that invariant is preserved by deletion in the left/right subtree:
\mathbf{lemma}\ wbt\_balanceL:
 assumes wbt \ (Node \ l \ (a, \ n) \ r) \ wbt \ l' \ size \ l = size \ l' + 1
 shows wbt (balanceL l' a' r)
proof -
 have rl'Balanced: balanced1 r l' using assms by auto
```

```
have rBalanced: wbt r using assms(1) by simp
 show ?thesis
 proof (cases balanced1 l'r)
   case True thus ?thesis using assms(2) rBalanced rl'Balanced by auto
 next
   case notBalanced: False
   hence r \neq Leaf using not_Leaf_if_not_balanced1 by auto
    then obtain k lr ar rr where [simp]: r = Node \ lr \ (ar, k) \ rr \ by (meson
neq\_Leaf2\_iff)
   show ?thesis
   proof (cases single lr rr)
    case single: True
    have singly_balanced_arith (size l') (size lr) (size rr)
      using assms(1) notBalanced rl'Balanced rBalanced single assms
      by (simp) (smt?)
    thus ?thesis using notBalanced single assms(2) rBalanced by simp
   next
    case isDouble: False
    hence lr \neq Leaf using not_Leaf_if_not_single by auto
    then obtain k2 \ llr \ alr \ rlr where [simp]: lr = (Node \ llr \ (alr, \ k2) \ rlr)
      by(meson neq_Leaf2_iff)
    have doubly_balanced_arith (size l') (size llr) (size rlr) (size rr)
      using assms(1) notBalanced rl'Balanced rBalanced isDouble assms(2,3)
      by auto
    thus ?thesis using notBalanced isDouble assms(2) rBalanced by simp
   qed
 qed
qed
lemma wbt_balanceR:
 assumes wbt (Node l(a, n) r) wbt r' size r = size r' + 1
 shows wbt (balanceR l a' r')
proof -
 have lr'Balanced: balanced1 l r' using assms by auto
 have lBalanced: wbt\ l\ using\ assms(1) by simp
 show ?thesis
 proof (cases balanced1 r' l)
   case True thus ?thesis using assms(2) lBalanced lr'Balanced by simp
 next
   case notBalanced: False
   hence l \neq Leaf using not_Leaf_if_not_balanced1 by auto
    then obtain k ll al rl where [simp]: l = (Node \ ll \ (al, \ k) \ rl) by (meson
neq\_Leaf2\_iff)
   show ?thesis
   proof (cases single rl ll)
    case single: True
    have singly\_balanced\_arith (size rl) (size r') (size ll)
      using assms(1) notBalanced lr'Balanced lBalanced single assms(2,3)
      apply (auto) apply((thin\_tac \_ = \_)+, smt)? done
```

```
thus ?thesis using assms(2) lBalanced notBalanced single by simp
   next
     case isDouble: False
     hence rl \neq Leaf using not\_Leaf\_if\_not\_single by auto
     then obtain k \ lrl \ arl \ rrl \ where \ [simp]: \ rl = (Node \ lrl \ (arl, \ k) \ rrl)
      by(meson neq_Leaf2_iff)
     have doubly_balanced_arith (size ll) (size lrl) (size rrl) (size r')
      using assms(1) notBalanced lr'Balanced lBalanced isDouble assms(2,3)
      apply (auto) apply((thin\_tac = = )+, smt)? done
     thus ?thesis using assms(2) lBalanced notBalanced isDouble by simp
   qed
 qed
qed
lemma wbt\_split\_min: t \neq Leaf \Longrightarrow wbt \ t \Longrightarrow wbt \ (snd \ (split\_min \ t))
proof (induction t rule: split_min.induct)
 case (1 \ l \ a \ m \ r)
 show ?case
 proof (cases l rule: tree2_cases)
   case Leaf thus ?thesis using 1.prems(2) by simp
   case (Node ll al n rl)
   let ?l' = snd (split\_min (Node ll (al, n) rl))
   have delBalanceL: snd (split\_min (Node l (a, m) r)) = balanceL ?l' a r
     using Node by(auto split: prod.splits)
   have wbt ?l' using 1(1) 1.prems(2) Node by auto
   moreover have size l = size ?l' + 1
     using Node size_split_min by (metis Suc_eq_plus1 neq_Leaf2_iff)
   ultimately have wbt (balanceL ?l' a r)
    by (meson 1.prems(2) wbt_balanceL)
   thus ?thesis using delBalanceL by auto
 qed
qed (blast)
lemma wbt\_del\_max: t \neq Leaf \implies wbt \ t \implies wbt \ (snd \ (del\_max \ t))
proof (induction t rule: del_max.induct)
 case (1 \ l \ a \ m \ r)
 show ?case
 proof (cases r rule: tree2_cases)
   case Leaf thus ?thesis using 1.prems(2) by simp
 next
   case (Node lr ar n rr)
   then obtain r' where delMaxR: r' = snd (del\_max (Node lr (ar, n) rr))
    by simp
   hence delBalanceR: snd (del\_max (Node l (a, m) r)) = balanceR l a r'
     using Node by(auto split: prod.splits)
   have wbt r' using 1(1) 1.prems(2) Node delMaxR by auto
   moreover have size r = size \ r' + 1 using size\_del\_max \ Node \ delMaxR
     by (metis\ Suc\_eq\_plus1\ tree.simps(3))
```

```
ultimately have wbt (balanceR l \ a \ r')
     using wbt_balanceR by (metis 1.prems(2))
   thus ?thesis using delBalanceR by auto
 qed
qed (blast)
lemma wbt\_delete: wbt \ t \Longrightarrow wbt \ (delete \ x \ t)
proof (induction t rule: tree2_induct)
 case Leaf thus ?case by simp
\mathbf{next}
 case (Node\ l\ a\ n\ r)
 show ?case
 proof (cases isin (Node l(a, n) r) x)
   case False thus ?thesis using Node.prems delete_id_if_wbt_notin by metis
 next
   case isin: True
   thus ?thesis
   proof (cases \ cmp \ x \ a)
    case LT
    let ?l' = delete \ x \ l
    have size l = size ?l' + 1
      using LT isin by (auto simp: size_delete_if_isin)
     hence wbt (balanceL ?l' a r)
      using Node.IH(1) Node.prems by (fastforce intro: wbt_balanceL)
     thus ?thesis by (simp add: LT)
   next
     case GT
    let ?r' = delete \ x \ r
    have wbt ?r' using Node.IH(2) Node.prems by simp
     moreover have size r = size ?r' + 1
      using GT Node.prems isin size_delete_if_isin by auto
     ultimately have wbt (balanceR l a ?r')
      by (meson Node.prems wbt_balanceR)
     thus ?thesis by (simp add: GT)
   next
     case [simp]: EQ
    hence xCombine: delete \ x \ (Node \ l \ (a, \ n) \ r) = combine \ l \ r \ by \ simp
      assume l = Leaf r = Leaf hence ?thesis by simp
     }
    moreover
      assume l = Leaf r \neq Leaf
      hence ?thesis using Node.prems by (auto simp: neq_Leaf2_iff)
     moreover
      assume l \neq Leaf r = Leaf
      hence ?thesis using Node.prems by (auto simp: neq_Leaf2_iff)
```

```
}
     moreover
     {
      assume lrNotLeaf: l \neq Leaf r \neq Leaf
      then obtain kl kr ll al rl lr ar rr
        where [simp]: l = (Node \ ll \ (al, \ kl) \ rl) \ r = (Node \ lr \ (ar, \ kr) \ rr)
        by (meson neq_Leaf2_iff)
      have ?thesis
      proof (cases size l > size r)
        case True
        obtain lMax \ l' where letMax: del\_max \ l = (lMax, \ l')
          by (metis prod.exhaust)
        hence balanceLeft: combine l r = balanceL l' lMax r
         using \langle size \ l > size \ r \rangle by (simp)
        have wbt l'
          using Node.prems wbt_del_max[OF lrNotLeaf(1)] letMax
         by (metis\ wbt.simps(2)\ snd\_conv)
        moreover have size l = size l' + 1
          using size\_del\_max[OF\ lrNotLeaf(1)]\ letMax\ by\ (simp)
        ultimately have wbt(balanceL\ l'\ lMax\ r)
          using wbt_balanceL by (metis Node.prems)
        thus ?thesis using balanceLeft by simp
      next
        case False
        obtain rMin \ r' where letMin: split\_min \ r = (rMin, r')
          by (metis prod.exhaust)
        hence balanceRight: combine l r = balanceR \ l \ rMin \ r'
          using \langle \neg size \ l > size \ r \rangle by (simp)
        have wbt r'
          using Node.prems wbt_split_min[OF lrNotLeaf(2)] letMin
         by (metis\ wbt.simps(2)\ snd\_conv)
        moreover have size r = size r' + 1
          using size_split_min[OF lrNotLeaf(2)] letMin by simp
        ultimately have wbt(balanceR l rMin r')
         using wbt_balanceR by (metis Node.prems)
        thus ?thesis using balanceRight by simp
      qed
     ultimately show ?thesis by blast
   qed
 qed
qed
3.6
      The final correctness proof
interpretation S: Set_by_Ordered
where empty = Leaf and isin = isin and insert = insert and delete = delete
and inorder = inorder and inv = wbt
proof (standard, goal_cases)
```

```
case 1 show ?case by simp

next
case 2 thus ?case by(simp add: isin_set_inorder)

next
case 3 thus ?case by(simp add: inorder_insert)

next
case 4 thus ?case by(simp add: inorder_delete)

next
case 5 show ?case by simp

next
case 6 thus ?case using wbt_insert by blast

next
case 7 thus ?case using wbt_delete by blast

qed

end
```

References

- [1] S. Adams. Implementing sets efficiently in a functional language. Technical Report CSTR 92-10, Department of Electronics and Computer Science, University of Southampton, 1992.
- [2] S. Adams. Efficient sets A balancing act. *Journal of Functional Programming*, 3(4):553–561, 1993.
- [3] N. Blum and K. Mehlhorn. On the average number of rebalancing operations in weight-balanced trees. *Theoretical Computator Science*, 11:303–320, 1980.
- [4] Y. Hirai and K. Yamamoto. Balancing weight-balanced trees. *Journal of Functional Programming*, 21(3):287–307, 2011.
- [5] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. In *Proc. 4th ACM Symposium on Theory of Computing*, STOC '72, pages 137–142. ACM, 1972.
- [6] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. SIAM Journal on Computing, 2(1):33–43, 1973.
- [7] S. Roura. A new method for balancing binary search trees. In F. Orejas, P. Spirakis, and J. van Leeuwen, editors, *Automata, Languages and Pro-gramming, ICALP 2001*, volume 2076 of *LNCS*, pages 469–480. Springer, 2001.
- [8] M. Straka. Adams' trees revisited. Correct and efficient implementation. In *Trends in Functional Programming*, volume 7193 of *LNCS*, pages 130–145. Springer, 2011.