Weight-Balanced Trees

Tobias Nipkow and Stefan Dirix

March 17, 2025

Abstract

This theory provides a verified implementation of weight-balanced
trees following the work of Hirai and Yamamoto [4] who proved that
all parameters in a certain range are valid, i.e. guarantee that insertion
and deletion preserve weight-balance. Instead of a general theorem we
provide parameterized proofs of preservation of the invariant that work
for many (all?) valid parameters.

1 Introduction

Weight-balanced trees (WB trees) are a class of binary search trees of log-
arithmic height. They were invented by Nievergelt and Reingold [5, 6] who
called them trees of bounded balance. They are parametrized by a constant.
Parameters are called wvalid if they guarantee that insertion and deletion
preserve the WB invariant. Blum and Mehlhorn [3] later discovered that
there is a flaw in Nievergelt and Reingold’s analysis of valid parameters and
gave a detailed correctness proof for a modified range of parameters. Adams
[1, 2] considered a slightly modified version of WB trees and analyzed which
parameters are valid. The Haskell libraries Data.Set and Data.Map are
based on Adams’ papers but it was found that the implementation did not
preserve the invariant. This motivated Hirai and Yamamoto [4] to verify
the valid parameter range for the original definition of WB tree formally in
Coq. They also showed that Adams’ analysis is flawed by giving a coun-
terexample to Adams’ claimed range of valid parameters. Straka [8] analyzes
valid parameters for Adam’s variant. Yet another variant of WB trees was
considered by Roura [7].

2 Weight-Balanced Trees Have Logarithmic Height,
and More

theory Weight_Balanced—Trees_log
imports
Complexr—Main



HOL—- Library. Tree
begin

lemmas neq0—if = less_imp_neq dual_order.strict_implies_not_eq

2.1 Logarithmic Height

The locale below is parameterized wrt to A. The original definition of
weight-balanced trees [5, 6] uses a. The constants o and A are interdefin-
able. Below we start from A but derive a-versions of theorems as well.

locale WBT0 =
fixes A :: real
begin

fun balancedl :: 'a tree = 'a tree = bool where
balancedl t1 12 = (sizel t1 < A x sizel 12)

fun wbt :: ‘a tree = bool where
wbt Leaf = True |
wbt (Node | — 1) = (balancedl 11 A balancedl r1 A wbt | A wbt 1)

end

locale WBT1 = WBT0 +
assumes Delta: A > 1
begin

definition « :: real where
a = 1/(A+1)

lemma Delta_def: A = 1/a — 1
unfolding a_def by auto

lemma shows alpha_pos: 0 < « and alpha—ub: o < 1/2
unfolding a_def using Delta by auto

lemma wbt_Node_alpha: wbt (Node | z ) =
((let ¢ = sizel 1/ (sizel | + sizel r)
ma<ghg<l—a)A
wbt I A wbt 1)
proof —
have | > 0= 1> 0=
(1/(A+1) < U/(l4+71) +—= r/l < A) A
(1/(A41) < r/(l4r) «— 1/r < A) A
(I/(4r) <1 —=1/(A+1) «— I/r < A) A
(r/(I+r) <1 —=1/(A41) «— 1/l < A) for | r
using Delta by (simp add: field_simps divide_le_eq)
thus ?thesis using Delta by (auto simp: a—def Let_def pos_divide_le_eq add—_pos—pos)



qed

lemma height_sizel_Delta:
wht t = (1 4+ 1/A) ~ (height t) < sizel t
proof (induction t)
case Leaf thus ?case by simp
next
case (Node l a )
let 2t = Node l a r let s = sizel ?tlet 2d =1+ 1/A
from Node.prems(1) have 1: sizel | x 2d < ?s and 2: sizel r x ?d < %s
using Delta by (auto simp: Let_def field—simps add—pos—pos neq0—if)
show ?case
proof (cases height | < height )

case True
hence ?d ~ (height ?t) = ?d ~ (height r) * ?d by(simp)
also have ... < sizel r * 2d

using Node.IH(2) Node.prems Delta unfolding wbt.simps

by (smt (verit) divide_nonneg—nonneg mult_mono of nat_0_le_iff)
also have ... < ?s using 2 by (simp)
finally show ?thesis .

next
case Fulse
hence ?d ~ (height ?t) = 2d ~ (height 1) * 2d by(simp)
also have ... < sizel [ *x 2d

using Node.IH (1) Node.prems Delta unfolding wbt.simps
by (smt (verit) divide—nonneg—nonneg mult_mono of—nat_0_le_3iff)
also have ... < %s using 1 by (simp)
finally show ?thesis .
qed
qed

lemma height_sizel _alpha:
wht t = (1/(1—«)) ~ (height t) < sizel ¢
proof (induction t)
case Leaf thus ?case by simp
next
note wbt.simps[simp del] wbt_Node_alpha[simp]
case (Node l a 1)
let 2t = Node [ a r let ?s = sizel %t
from Node.prems(1) have 1: sizel | / (1—a) < s and 2: sizel r / (1—a) < %s
using alpha—ub by (auto simp: Let_def field_simps add—pos_pos neq0—if)
show Zcase
proof (cases height | < height )
case True
hence (1/(1—«)) ~ (height 2t) = (1/(1—a)) ~ (height r) * (1/(1—a)) by(simp)
also have ... < sizel r * (1/(1—a))
using Node.IH(2) Node.prems unfolding wbt_Node_alpha
by (smt (verit) mult_right_mono zero_le_divide_1_iff)
also have ... < ?%s using 2 by (simp)



finally show ?thesis .
next
case Fulse
hence (1/(1—a)) ~ (height ?2t) = (1/(1—a)) ~ (height 1) x (1/(1—«)) by(simp)
also have ... < sizel | % (1/(1—a))
using Node.IH (1) Node.prems unfolding wbt_Node_alpha
by (smt (verit) mult_right_mono zero_le_divide_1_iff)
also have ... < ?s using 1 by (simp)
finally show ?thesis .
qged
qed

lemma height_sizel _log_Delta: assumes wbt t
shows height t < log 2 (sizel t) / log 2 (1 + 1/A)
proof —
from height_sizel _Delta] OF assms]
have height t < log (1 + 1/A) (sizel t)
using Delta le_log—of power by auto
also have ... = log 2 (sizel t) / log2 (1 + 1/A)
by (simp add: log—base_change)
finally show ?thesis .
qed

lemma height_sizel _log_alpha: assumes wbt t
shows height t < log 2 (sizel t) / log 2 (1/(1—a))
proof —
from height_sizel _alpha|OF assms]
have height t < log (1/(1—a)) (sizel t)
using alpha_pos alpha—ub le_log_of power by auto
also have ... = log 2 (sizel t) / log 2 (1/(1—a))
by (simp add: log—base_change)
finally show ?thesis .
qed

end

2.2 Every 1 < A < 2 Yields Exactly the Complete Trees
declare WBTO.wbt.simps [simp] WBTO.balancedl.simps [simp)

lemma wbtl if complete: assumes 1 < A shows complete t = WBT0.wbt A t
apply (induction t)

apply simp

apply (simp add: assms sizel _if _complete)

done

lemma complete—if wbt2: assumes A < 2 shows WBT0.wbt A t = complete t
proof (induction t)
case Leaf



then show Zcase by simp
next
case (Node t1 z 12)
let ?hl = height t1 let ?h2 = height t2
from Node have x: complete t1 N complete 12 by auto
hence sz: sizel t1 = 2 = 2hl A sizel 12 =2 ~ 2h2
using sizel_if complete by blast
show ?Zcase
proof (rule ccontr)
assume — complete (t1, x, 12)
hence ?hl # ?h2 using * by auto
thus Fulse
proof (cases ?hl < ?h2)
case True
hence 2 * (2::real) ~ ?h1 < 2 7 7h2
by (metis Suc_lel one_le_numeral power—Suc power—increasing)
also have ... < A x 2 7 24l using sz Node.prems by (simp)
finally show Fulse using (A < 2) by simp
next
case Fulse
with «?hl # ?h2) have ?h2 < ?hl by linarith
hence 2 * (2::real) ~ 202 < 2 7 ?hl
by (metis Suc_lel one_le_numeral power—_Suc power—increasing)
also have ... < A % 2 7 ?h2 using sz Node.prems by (simp)
finally show Fulse using (A < 2) by simp
qged
qed
qed

end

3 Weight Balanced Tree Implementation of Sets

This theory follows Hirai and Yamamoto but we do not prove their general
theorem. Instead we provide a short parameterized theory that, when in-
terpreted with valid parameters, will prove perservation of the invariant for
these parameters.

theory Weight_Balanced—Trees
imports

HOL—Data_Structures.Isin2
begin

lemma neq Leaf2_iff: t # Leaf <— (Ilanr.t = Nodel (an) r)
by(cases t) auto

type-synonym ’‘a wbt = ('a x nat) tree

fun size_wbt :: 'a wbt = nat where



size_wbt Leaf = 0 |
size_wbt (Node —(—, n) ) =n

Smart constructor:

fun N :: 'a wbt = 'a = 'a wbt = 'a wbt where
Nlar = Nodel (a, sizewbt | + sizewbt v + 1) r

Basic Rotations:

fun rotlL :: 'a wbt = 'a = 'a wbt = 'a = 'a wbt = 'a wbt where
rotlLAaBbC=N(NAaB)bC

fun rotlR :: 'a wbt = 'a = 'a wbt = 'a = 'a wbt = 'a wbt where
rotlR AaBbC=NAa(NBbCO)

fun rot2 :: 'a wht = 'a = 'a wbt = 'a = 'a wbt = 'a wbt where
rot2 A a (Node Bl (b)) B2) ¢ C =N (NAaBl)b(NB2cC)

3.1 WRB trees

Parameters:

A determines when a tree needs to be rebalanced

I" determines whether it needs to be single or double rotation.
We represent rational numbers as pairs: A = A1/A2 and I' = I'1/T2.

Hirai and Yamamoto [4] proved that under the following constraints
insertion and deletion preserve the WB invariant, i.e. A and I are valid:

definition valid_params :: nat = nat = nat = nat = bool where
valid_params A1 A2 T1 T2 = (
Al *2 < A2 %9 —right: A <45 A
T'lx A2 4+ T2« A2 <T2x A1l —left: T+ 1 <AA
I« Al >T2 % (Al + A2) —lower: ' > (A +1)/ AA
— upper:
(5xA2 < 2xAl A 1xAl < 3xA2 — T'1x2 < I'2x3)
T <3/2if25 <A <3A
(3xA2 < 1xA1 A 2xA1 < TxA2 — T'1x2 < T'2+4)
T <4/2if3<A<35A
(TxA2 < 2xA1 A 1xA1 < 45A2 — T'1x3 < I'2x4)
— T <4/3 when 3.5 < A <4 A
(4%A2 < 1+A1 A 2¢A1 < 9xA2 —» D143 < ['245)
—I'<5/3when4 < A <45

)

We do not make use of these constraints and do not prove that they
guarantee preservation of the invariant. Instead, we provide generic proofs
of invariant preservation that work for many (all?) interpretations of locale
WBT (below) with valid parameters. Further down we demonstrate this by



interpreting WBT with a selection of valid parameters. [For some parame-
ters, some smt proofs fail because smt on nats fails although on non-negative
ints it succeeds, i.e. the goal should be provable. This is a shortcoming of
smt that is under investigation.]

Locale WBT comes with some minimal assumptions (I'l > I'2 and Al
> A2) which follow from valid_params and from which we conclude some
simple lemmas.

locale WBT =

fixes Al A2 :: nat and I'1 T'2 :: nat

assumes Delta—grl: Al > A2 and Gamma—grl: I'l > I'2
begin

3.1.1 Balance Indicators

fun balancedl :: 'a wbt = 'a wbt = bool where
balancedl t1 12 = (Al x (size—wbt t1 + 1) > A2 x (size_wbt 12 + 1))

The global weight-balanced tree invariant:

fun wbt :: ‘a wbt = bool where
wbt Leaf = True|
wbt (Node I (—, n) r) =
(n = size l + size r + 1 A balancedl I r A balancedl r1 A wbt | A wbt 1)

lemma size_wbt_eq size[simp]: wbt t = size_wbt t = size t
by (induction t) auto

fun single :: 'a wbt = ‘a wbt = bool where
single t1 12 = (T'1 * (size—wbt 2 + 1) > I'2 x (size_wbt t1 + 1))

3.1.2 Code

fun rotateL :: 'a wbt = 'a = 'a wbt = 'a wbt where
rotatel. A a (Node B (b, ) C) =
(if single B C then rotlL A a B'b C else r0t2 A a B'b C)

fun balancel :: 'a wbt = 'a = 'a wbt = ’a wbt where
balanceL | a r = (if balancedl 1 r then N [ a r else rotateL | a 1)

fun rotateR :: 'a wbt = 'a = 'a wbt = ’a wbt where
rotateR (Node A (a, ) B) b C =
(if single B A then rotlR A a Bb C else rot2 A a B b C)

fun balanceR :: 'a wbt = 'a = 'a wbt = 'a wbt where
balanceR | a v = (if balancedl r 1 then N Il a r else rotateR 1 a 1)

fun insert :: ‘a::linorder = 'a wbt = 'a wbt where
insert © Leaf = Node Leaf (x, 1) Leaf |
insert x (Node l (a, n) ) =



(case cmp x a of
LT = balanceR (insert x 1) a |
GT = balancel [ a (insert x r) |
EQ = Node | (a, n) 1)

fun split_min :: 'a wbt = 'a * 'a wbt where
split_min (Node | (a, ) ) =
(if | = Leaf then (a,r) else let (x,l’) = split_min [ in (x, balanceL 1" a 1))

fun del_maz :: 'a wbt = 'a * 'a wbt where
del_maz (Node |l (a, ) ) =
(if r = Leaf then (a,l) else let (z,r") = del_maz r in (z, balanceR | a r'))

fun combine :: 'a wbt = 'a wbt = 'a wbt where
combine Leaf Leaf = Leaf|
combine Leaf r = r|
combine | Leaf = |
combine | r =
(if size | > size r then
let (IMaz, ') = del_maz 1 in balanceLl 1’ IMax r
else
let (rMin, r') = split_min r in balanceR | rMin )

fun delete :: 'a::linorder = 'a wbt = 'a wbt where
delete — Leaf = Leaf |
delete © (Node | (a, ) r) =
(case cmp x a of
LT = balancel (delete z 1) a 1 |
GT = balanceR 1 a (delete z 1) |
EQ = combine | r)

3.2 Functional Correctness Proofs

A WB tree must be of a certain structure if balancedl and single are False.

lemma not_Leaf if not_balancedl:

assumes — balancedl [ r

shows r # Leaf
proof

assume r = Leaf with assms Delta_grl show Fulse by simp
qed

lemma not_Leaf if not_single:

assumes — single [ r

shows | # Leaf
proof

assume | = Leaf with assms Gamma—grl show Fualse by simp
qed



3.2.1 Inorder Properties

lemma inorder_rot2:

B # Leaf = inorder(rot2 A a B'b C) = inorder A Q a # inorder B Q b #
inorder C
by (cases (A,a,B,b,C) rule: rot2.cases) (auto)

lemma inorder_rotateL:
r # Leaf = inorder(rotateL 1 a v) = inorder | @ a # inorder r
by (induction I a r rule: rotateL.induct) (auto simp add: inorder—rot2 not_Leaf—if not_single)

lemma inorder_rotateR:
| # Leaf = inorder(rotateR | a r) = inorder | @ a # inorder r
by (induction | a r rule: rotateR.induct) (auto simp add: inorder—rot2 not_Leaf_if not_single)

lemma inorder—insert:
sorted(inorder t) = inorder(insert « t) = ins_list x (inorder t)
by (induction t)
(auto simp: ins_list_simps inorder—rotateL inorder—_rotateR not_Leaf if not_balancedl)

lemma split_minD:
split_min t = (x,t') = t # Leaf = z # inorder t' = inorder t
by (induction t arbitrary: t’ rule: split_min.induct)
(auto simp: sorted_ems inorder—rotateL not_Leafif not_balancedl
split: prod.splits if_splits)

lemma del_maxD:
del_maz t = (z,t") = t # Leaf = inorder t' Q [z] = inorder t
by (induction t arbitrary: t' rule: del_maz.induct)
(auto simp: sorted_ems inorder—rotateR not_Leaf if not_balancedl
split: prod.splits ifsplits)

lemma inorder—_combine:
inorder(combine I r) = inorder | @ inorder r
by (induction | r rule: combine.induct)
(auto simp: del_mazxD split_minD inorder—_rotateL inorder—_rotateR not_Leaf_if not_balancedl
simp del: rotateL.simps rotateR.simps split: prod.splits)

lemma inorder_delete:
sorted(inorder t) = inorder(delete © t) = del_list © (inorder t)
by (induction t)
(auto simp: del_list_simps inorder—combine inorder—_rotateL inorder_rotateR
not_Leaf—_if not_balancedl simp del: rotateL.simps rotateR.simps)

3.3 Size Lemmas

3.3.1 Insertion

lemma size _rot2L[simp]:
B # Leaf = size(rot2 A a Bb C) = size A + size B + size C + 2



by (induction A a B b C rule: rot2.induct) auto

lemma size_rotateR[simp]:

| # Leaf = size(rotateR | a r) = size | + size r + 1
by (induction | a r rule: rotateR.induct)

(auto simp: not_Leaf—if not_single simp del: rot2.simps)

lemma size_rotateL[simp]:

r # Leaf = size(rotateL | a r) = size | + size r + 1
by (induction | a r rule: rotateL.induct)

(auto simp: not_Leaf—if not_single simp del: rot2.simps)

lemma size_length: size t = length (inorder t)
by (induction t rule: inorder.induct) auto

lemma size_insert: size (insert x t) = (if isin t x then size t else Suc (size t))
by (induction t rule: tree2_induct) (auto simp: not—Leaf_if not_balancedl)

3.3.2 Deletion

lemma size_delete_if isin: isin t v = size t = Suc (size(delete z t))
proof (induction t rule: tree2_induct)
case (Node —a )
thus ?case
proof (cases cmp x a)
case LT thus ?thesis using Node.prems by (simp add: Node.TH (1) not_Leafif not_balancedl)
next
case E(Q) thus %thesis by simp (metis size_length inorder—combine length_append)
next
case GT thus ?thesis using Node.prems by (simp add: Node.IH (2) not_Leaf—if not_balancedl)
qged
qed (auto)

lemma delete_id_if wbt_notin: wbt t = — isin t t = delete x t =t
by (induction t) auto

lemma size_split_min: t # Leaf = size t = Suc (size (snd (split—min t)))
by (induction t) (auto simp: not_Leaf—if not_balancedl split: if—splits prod.splits)

lemma size_del_max: t # Leaf = size t = Suc(size(snd(del_maz t)))
by (induction t) (auto simp: not_Leaf—if not_balancedl split: if_splits prod.splits)

3.4 Auxiliary Definitions

fun balancedl_arith :: nat = nat = bool where
balancedl—arith a b = (Al * (a + 1) > A2 % (b + 1))

fun balanced2_arith :: nat = nat = bool where
balanced2—arith a b = (balancedl—arith a b A balancedl—arith b a)

10



fun singly_balanced—arith :: nat = nat = nat = bool where
singly_balanced—arith  y w = (balanced2—arith = y N balanced2—arith (z+y+1) w)

fun doubly_balanced—arith :: nat = nat = nat = nat = bool where
doubly—balanced—arith x y z w =
(balanced2—arith x y A balanced2—arith z w A balanced2—arith (z+y+1) (z+w+1))

end

3.5 Preservation of WB tree Invariant for Concrete Param-
eters

A number of sample interpretations with valid parameters:

interpretation WBT where
Al =25and A2 =10and I'l = 14 and I'2 = 10

by (auto simp add: WBT_def)

lemma wbt_insert:
wht t = wbt (insert x t)
proof (induction t rule: tree2_induct)
case Leaf show ?Zcase by simp
next
case (Node l a )
show ?Zcase
proof (cases cmp  a)
case F() thus ?thesis using Node.prems by auto
next
case [simp]: LT
let ?l' = insert z 1
show ?thesis
proof (cases balancedl r ?1’)
case True thus ?thesis using Node size_insert[of = [| by auto
next
case [simp]: False

11



hence ?l’ # Leaf using not_Leaf_if not_balancedl by auto
then obtain k I’ al’ rl’ where [simp]: 2?1’ = (Node I’ (al’, k) 71’
by(meson neq_Leaf2_iff)
show ?thesis
proof (cases single rl’ 1l’)
case True thus ?thesis using Node size_insert[of x ]
by (auto split: ifsplits)
next
case isDouble: Fulse
then obtain & lir’ alr’ rlr’ where [simp|: v’ = (Node lir’ (alr’, k) rir’)
using not_Leaf if not_single tree2_cases by blast
show ?thesis using isDouble Node size_insert[of x ]
by (auto split: if_splits)
qed
qed
next
case [simp]: GT
let ?r' = insert z r
show ?thesis
proof (cases balancedl 1 ?r’)
case True thus ?thesis using Node size_insert[of x r] by auto
next
case [simp|: False
hence ?r’ # Leaf using not_Leaf if not balancedl by auto
then obtain k Ir’ ar’ rr’ where [simp]: ?r' = (Node Ir’ (ar’, k) rr’)
by(meson neq—Leaf2—iff)
show ?thesis
proof (cases single Ir' rr')
case True thus ?thesis using Node size_insert[of = 7]
by (auto split: if_splits)
next
case isDouble: Fulse
hence Ir' # Leaf using not_Leaf_if not_single by auto
thus ?thesis
using Node isDouble size_insert|of x r]
by (auto simp: neq—Leaf2_iff split: if_splits)
qed
qed
qed
qed

declare [[smt_nat_as_int]]

Show that invariant is preserved by deletion in the left/right subtree:

lemma wbt_balancelL:

assumes wbt (Node | (a, n) r) wbt 1’ size | = size I’ + 1
shows wbt (balanceL I’ a’ r)

proof —

have rl’Balanced: balancedl r I’ using assms by auto

12



have rBalanced: wbt r using assms(1) by simp
show ?thesis
proof (cases balancedl 1 r)
case True thus ?thesis using assms(2) rBalanced rl'Balanced by auto
next
case notBalanced: False
hence r # Leaf using not_Leaf if not_balancedl by auto
then obtain k ir ar rr where [simp]: r = Node Ir (ar, k) rr by(meson
neqg—Leaf2_iff)
show ?thesis
proof (cases single lr rr)
case single: True
have singly balanced_arith (size l') (size lr) (size rr)
using assms(1) notBalanced rl’Balanced rBalanced single assms
by (simp) (smt?)
thus ?thesis using notBalanced single assms(2) rBalanced by simp
next
case isDouble: Fulse
hence Ir # Leaf using not_Leaf if not_single by auto
then obtain k2 lir alr rir where [simp]: Ir = (Node llr (alr, k2) rir)
by (meson neq—Leaf2—iff)
have doubly balanced—arith (size l') (size lir) (size rir) (size rr)
using assms(1) notBalanced rl’Balanced rBalanced isDouble assms(2,3)
by auto
thus ?thesis using notBalanced isDouble assms(2) rBalanced by simp
qged
qed
qed

lemma wbt_balanceR:
assumes wbt (Node | (a, n) r) wbt r’ size r = size r' + 1
shows wbt (balanceR [ a’ r')
proof —
have Ir'Balanced: balancedl | v’ using assms by auto
have [Balanced: wbt | using assms(1) by simp
show ?thesis
proof (cases balancedl r' 1)
case True thus ?thesis using assms(2) [Balanced Ir'Balanced by simp
next
case notBalanced: False
hence [ # Leaf using not_Leaf if not_balancedl by auto
then obtain k Il al rl where [simp]: | = (Node Il (al, k) rl) by(meson
neqg—Leaf2_iff)
show ?thesis
proof (cases single 1l l1)
case single: True
have singly_balanced_arith (size rl) (size r') (size l)
using assms(1) notBalanced Ir'Balanced [Balanced single assms(2,3)
apply (auto) apply((thin—tac —= )+, smt)? done

13



thus ?thesis using assms(2) [Balanced notBalanced single by simp
next
case isDouble: Fulse
hence rl # Leaf using not_Leaf if not_single by auto
then obtain k Irl arl rrl where [simp]: rl = (Node Irl (arl, k) rrl)
by (meson neq—Leaf2_iff)
have doubly balanced—arith (size ll) (size lrl) (size rrl) (size r')
using assms(1) notBalanced Ir'Balanced [Balanced isDouble assms(2,3)
apply (auto) apply((thin—tac —= )+, smt)? done
thus ?thesis using assms(2) [Balanced notBalanced isDouble by simp
qed
qed
qed

lemma wbt_split_min: t # Leaf = wbt t = wbt (snd (split_min t))
proof (induction t rule: split_min.induct)
case (1lamr)
show Zcase
proof (cases [ rule: tree2_cases)
case Leaf thus ?thesis using 1.prems(2) by simp
next
case (Node 1l al n rl)
let ?I’ = snd (split—min (Node Il (al, n) 7))
have delBalanceL: snd (split—min (Node | (a, m) r)) = balanceL ?l' a r
using Node by (auto split: prod.splits)
have wbt ?I’ using 1(1) 1.prems(2) Node by auto
moreover have size | = size 21’ + 1
using Node size_split_min by (metis Suc—eqplusl neqLeaf2iff)
ultimately have wbt (balanceL 71’ a 1)
by (meson 1.prems(2) wbt_balancel)
thus ?thesis using delBalancel by auto
qed
qed (blast)

lemma wbt_del max: t # Leaf = wbt t = wbt (snd (del_maz t))
proof (induction t rule: del_maz.induct)
case (1lamr)
show ?case
proof (cases r rule: tree2_cases)
case Leaf thus ?thesis using 1.prems(2) by simp
next
case (Node Ir ar n rr)
then obtain r’ where delMazR: v’ = snd (del—mazx (Node Ir (ar, n) rr))
by simp
hence delBalanceR: snd (del—max (Node I (a, m) 1)) = balanceR l a r’
using Node by (auto split: prod.splits)
have wbt r’ using 1(1) 1.prems(2) Node delMazR by auto
moreover have size r = size v’ + 1 using size_del_maz Node delMazR
by (metis Suc—eqplusl tree.simps(3))

14



ultimately have wbt (balanceR 1 a 1)
using wbt_balanceR by (metis 1.prems(2))
thus ?thesis using delBalanceR by auto
qed
qed (blast)

lemma wbt_delete: wbt t = wbt (delete z t)
proof (induction t rule: tree2_induct)
case Leaf thus ?case by simp
next
case (Node l a n r)
show ?Zcase
proof (cases isin (Node l (a, n) 1) z)
case Fulse thus ?thesis using Node.prems delete_id_if wbt_notin by metis
next
case isin: True
thus ?thesis
proof (cases cmp z a)
case LT
let ?I' = delete z 1
have size | = size 71’ + 1
using LT isin by (auto simp: size_delete_if isin)
hence wbt (balanceL 21" a )
using Node.IH (1) Node.prems by (fastforce intro: wbt_balancelL)
thus ?thesis by (simp add: LT)
next
case GT
let 2r’ = delete x r
have wbt ?r’ using Node.IH(2) Node.prems by simp
moreover have size r = size 7r' + 1
using GT Node.prems isin size_delete_if isin by auto
ultimately have wbt (balanceR 1 a ?r')
by (meson Node.prems wbt_balanceR)
thus ?thesis by (simp add: GT)
next
case [simp]: EQ
hence zCombine: delete z (Node I (a, n) r) = combine [ r by simp

{

assume | = Leaf r = Leaf hence ?thesis by simp

}

moreover

{

assume | = Leaf r # Leaf
hence ?thesis using Node.prems by (auto simp: neqLeaf2—iff)

}

moreover

{

assume | # Leaf r = Leaf
hence ?thesis using Node.prems by (auto simp: neq—Leaf2—iff)

15



}

moreover
{
assume IrNotLeaf: | # Leaf r # Leaf
then obtain kI kr Ul ol rl Ir ar rr
where [simp|: | = (Node Ul (al, k) rl) v = (Node Ir (ar, kr) rr)
by (meson neqLeaf2_iff)
have ?thesis
proof (cases size | > size r)
case True
obtain [Max I’ where letMaz: del_max | = (IMaz, 1)
by (metis prod.ezhaust)
hence balanceLeft: combine | v = balanceL 1’ IMax r
using «(size | > size r» by (simp)
have wbt I’
using Node.prems wbt_del_max[OF IrNotLeaf(1)] letMaz
by (metis wbt.simps(2) snd—conv)
moreover have size | = size I’ + 1
using size_del_maz[OF IrNotLeaf(1)] letMax by (simp)
ultimately have wbt(balanceL I’ IMax 1)
using wbt_balanceL by (metis Node.prems)
thus ?thesis using balanceLeft by simp
next
case Fulse
obtain rMin r’ where letMin: split_min r = (rMin, r’)
by (metis prod.exhaust)
hence balanceRight: combine | r = balanceR | rMin r’
using «— size | > size ry by (simp)
have wbt r’
using Node.prems wbt_split_min[OF IrNotLeaf(2)] letMin
by (metis wbt.simps(2) snd—conv)
moreover have size r = size v’ + 1
using size_split_min|OF IrNotLeaf(2)] letMin by simp
ultimately have wbt(balanceR | rMin ')
using wbt_balanceR by (metis Node.prems)
thus ?thesis using balanceRight by simp
qed
}
ultimately show ?thesis by blast
qed
qed
qged

3.6 The final correctness proof

interpretation S: Set_by Ordered

where empty = Leaf and isin = isin and insert = insert and delete = delete
and inorder = inorder and inv = wbt

proof (standard, goal_cases)

16



case 1 show Zcase by simp
next

case 2 thus ?case by(simp add: isin_set_inorder)
next

case 3 thus ?case by(simp add: inorder—insert)
next

case 4 thus ?case by(simp add: inorder—_delete)
next

case 5 show Zcase by simp
next

case 6 thus ?case using wbt_insert by blast
next

case 7 thus ?case using wbt_delete by blast
qed

end

References

1]

[4]

[5]

S. Adams. Implementing sets efficiently in a functional language. Tech-
nical Report CSTR 92-10, Department of Electronics and Computer
Science, University of Southampton, 1992.

S. Adams. Efficient sets - A balancing act. Journal of Functional Pro-
gramming, 3(4):553-561, 1993.

N. Blum and K. Mehlhorn. On the average number of rebalancing
operations in weight-balanced trees. Theoretical Compututer Science,
11:303-320, 1980.

Y. Hirai and K. Yamamoto. Balancing weight-balanced trees. Journal
of Functional Programming, 21(3):287-307, 2011.

J. Nievergelt and E. M. Reingold. Binary search trees of bounded bal-
ance. In Proc. jth ACM Symposium on Theory of Computing, STOC
72, pages 137-142. ACM, 1972.

J. Nievergelt and E. M. Reingold. Binary search trees of bounded bal-
ance. SIAM Journal on Computing, 2(1):33-43, 1973.

S. Roura. A new method for balancing binary search trees. In F. Orejas,
P. Spirakis, and J. van Leeuwen, editors, Automata, Languages and Pro-
gramming, ICALP 2001, volume 2076 of LNCS, pages 469-480. Springer,
2001.

M. Straka. Adams’ trees revisited. Correct and efficient implementa-
tion. In Trends in Functional Programming, volume 7193 of LNCS, pages
130-145. Springer, 2011.

17



	Introduction
	Weight-Balanced Trees Have Logarithmic Height, and More
	Logarithmic Height
	Every 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 1   < 2 Yields Exactly the Complete Trees

	Weight Balanced Tree Implementation of Sets
	WB trees
	Balance Indicators
	Code

	Functional Correctness Proofs
	Inorder Properties

	Size Lemmas
	Insertion
	Deletion

	Auxiliary Definitions
	Preservation of WB tree Invariant for Concrete Parameters
	The final correctness proof


