
Strong Eventual Consistency of the Collaborative
Editing Framework WOOT

Emin Karayel and Edgar Gonzàlez

Google, Mountain View

March 17, 2025

Abstract
Commutative Replicated Data Types (CRDTs) are a promising new

class of data structures for large-scale shared mutable content in ap-
plications that only require eventual consistency. The WithOut Oper-
ational Transforms (WOOT) framework is a CRDT for collaborative
text editing introduced by Oster et al. (CSCW 2006) for which the
eventual consistency property was verified only for a bounded model
to date. We contribute a formal proof for WOOTs strong eventual
consistency.

Contents

1 Introduction 2

2 Related Work 3

3 Preliminary Notes 5
3.1 Algorithms in Isabelle . 5

4 The WOOT Framework 6
4.1 Symbol Identifiers . 7

4.1.1 Extended Identifiers 8
4.2 Messages . 8
4.3 States . 9
4.4 Basic Algorithms . 9
4.5 Edit Operations . 10
4.6 Integration algorithm . 12
4.7 Network Model . 14

1

5 Formalized Proof 18
5.1 Definition of Ψ . 19
5.2 Sorting . 22
5.3 Consistency of sets of WOOT Messages 23
5.4 Create Consistent . 25
5.5 Termination Proof for integrate-insert 27
5.6 Integrate Commutes . 28
5.7 Strong Convergence . 32

6 Strong Eventual Consistency 34

7 Code generation 35

8 Proof Outline 35
8.1 Sort Keys . 37
8.2 Induction . 39

9 Example 40

1 Introduction

A Replicated (Abstract) Data Type (RDT) consists of “multiple copies of a
shared Abstract Data Type (ADT) replicated over distributed sites, [which]
provides a set of primitive operation types corresponding to that of nor-
mal ADTs, concealing details for consistency maintenance” [22]. RDTs
can be classified as state-based or operation-based depending on whether
full states (e.g., a document’s text) or only the operations performed on
them (e.g., character insertions and deletions) are exchanged among repli-
cas. Operation-based RDTs are commutative when the integration of any
two concurrent operations on any reachable replica state commutes [24].

Commutative (Operation-Based) Replicated Data Types (CRDTs1 from
now on) enable sharing mutable content with optimistic replication—ensu-
ring high-availability, responsive interaction, and eventual consistency with-
out consensus-based concurrency control [13]. They are used in highly scal-
able robust distributed applications [26, 3].

An RDT is eventually consistent when, if after some point in time no
further updates are made at any replica, all replicas eventually converge to
equivalent states. It is strongly eventually consistent when it is eventually

1Note that other authors like Shapiro et al. [24] use CmRDT to refer to Commutative
RDTs, with CRDT standing for Conflict-free RDTs.

2

consistent and, whenever any two peers have seen the same set of updates
(in possibly different order), they reach equivalent states immediately [24].

The WithOut Operational Transforms (WOOT) Framework [19] was the
first proposed CRDT for collaborative text editing [2]. It has been imple-
mented as part of several OSS projects [4, 6, 8, 16]. However, the eventual
consistency of WOOT has only been verified for a bounded model [19, 18].
A formal proof of WOOTs consistency can rigorously establish that there is
no complex counter-example not identified by model checking.

The contribution of this work is one such proof that the WOOT Frame-
work is strongly eventually consistent. Its central idea is the association of
a value from a dense totally ordered space to each inserted (and potentially
deleted) character, using a recursive definition with respect to the acyclic
graph induced by the predecessor and successor relation of the characters.
We then show that the strings in each peer remain sorted with respect to
that value, i.e., that the values form a sort key for W-characters.2 This re-
solves the conjecture posed by Oster et al. [18, conjecture 1] and is also the
key lemma to establish that the WOOT Framework has the strong eventual
consistency property.

After reviewing related work in the following section, we formalize the
WOOT Framework as a distributed application in Section 4. We follow
with the complete eventual consistency proof in Section 5 and summarize
the established results in Section 6. In Section 8 we given overview of the
proof and follow up with a conrete formalized example in Section 9.

The presentation is structured such that all the definitions necessary to
review the established results in Section 6 are part of Section 4. This means
it is possible to skip Section 5 entirely.

2 Related Work

The first collaborative text editing tools were based on operational transfor-
mations (OT), and introduced by Ellis and Gibbs [5]. The basic idea behind
OT-based frameworks is to adjust edit operations, based on the effects of
previously executed concurrent operations. For instance, in Figure 1a, peer
B can execute the message received from peer A without correction, but
peer A needs to transform the one received from peer B to reach the same
state.

Proving the correctness of OT-based frameworks is error-prone and re-
quires complicated case coverage [14, 17]. Counter-examples have been
found in most OT algorithms [22][7, section 8.2].

2Note that the values themselves do not have to be actually computed, during the exe-
cution of the framework. Their existence and compatibility with the integration algorithm
forms a witness for the consistency proof we are presenting.

3

Peer A Peer B

c a u s e c a u s e

Ins 2 l Ins 5 s

c l a u s e c a u s e s

Ins 6 s Ins 1 l

c l a u s e s c l a u s e s
(a) Transformation-based

Peer A Peer B

c1 a2 u3 s4 e5 c1 a2 u3 s4 e5

Ins 1.5 l Ins 6 s

c1 l1.5 a2 u3 s4 e5 c1 a2 u3 s4 e5 s6

Ins 6 s Ins 1.5 l

c1 l1.5 a2 u3 s4 e5 s6 c1 l1.5 a2 u3 s4 e5 s6
(b) Sort-key based

Figure 1: Collaborative text editing

LSEQ [15], LOGOOT [26] and TreeDoc [20] are CRDTs that create and
send sort keys for symbols (e.g., 1.5 and 6 in Figure 1b). These keys can
then be directly used to order them, without requiring any transformations,
and are drawn from a dense totally ordered space. In the figure rational
numbers were chosen for simplicity, but more commonly lexicographically
ordered sequences are used.3 The consistency property of these frameworks
can be established easily. However, the space required per sort key poten-
tially grows linearly with the count of edit operations. In LSEQ, a random-
ized allocation strategy for new identifiers is used to reduce the key growth,
based on empirically determined edit patterns—but in the worst-case the
size of the keys will still grow linearly with the count of insert operations.
Preguica et al. [20] propose a solution for this problem using regular rebal-
ancing operations. However, this can only be done using a consensus-based
mechanism, which is only possible when the number of participating peers
is small.

A benefit of LSEQ, LOGOOT, and TreeDoc is that deleted symbols can
be garbage-collected (though delete messages may have to be kept in a buffer
if the corresponding insertion message has not arrived at a peer), in contrast
to the WOOT Framework, where deleted symbols (tombstones) cannot be
removed.

Replicated Growable Arrays (RGAs) are another data structure for col-
laborative editing, introduced by Roh et al. [22]. Contrary to the previous
approaches, the identifiers associated to the symbols are not sort keys, but
are instead ordered consistently with the happened-before relation. A peer
sends the identifier of the symbol immediately preceeding the new symbol

3In addition, peers draw sort keys from disjoint (but dense) subsets to avoid concur-
rently choosing the same sort key.

4

at the time it was created and the actual identifier associated to the new
symbol. The integration algorithm starts by finding the preceeding sym-
bol and skipping following symbols with a larger identifier before placing
the new symbol. The authors provide a mathematical eventual consistency
proof. Recently, Gomes et. al. [7] also formalized the eventual consistency
property of RGAs using Isabelle/HOL.

In addition to the original design of WOOT by Oster et al. [19], a number
of extensions have also been proposed. For instance, Weiss et al. [25] propose
a line-based version WOOTO, and Ahmed-Nacer et al. [1] introduce a sec-
ond extension WOOTH which improves performance by using hash tables.
The latter compare their implementation in benchmarks against LOGOOT,
RGA, and an OT algorithm.

To the best of our knowledge there are no publications that further expand
on the correctness of the WOOT Framework. The fact that the general
convergence proof is missing is also mentioned by Kumawat and Khun-
teta [11, Section 3.10].

3 Preliminary Notes
3.1 Algorithms in Isabelle
theory ErrorMonad

imports
Certification-Monads.Error-Monad

begin

Isabelle’s functions are mathematical functions and not necessarily algo-
rithms. For example, it is possible to define a non-constructible function:
fun non-constructible-function where

non-constructible-function f = (if (∃n. f n = 0) then 1 else 0)

and even prove properties of them, like for example:

non-constructible-function (λx. Suc 0) = 0

In addition to that, some native functions in Isabelle are under-defined,
e.g., [] ! 1. But it is still possible to show lemmas about these undefined val-
ues, e.g.: [] ! 1 = [a, b] ! 3. While it is possible to define a notion of algorithm
in Isabelle [9], we think that this is not necessary for the purpose of this for-
malization, since the reader needs to verify that the formalized functions
correctly model the algorithms described by Oster et al. [19] anyway. How-
ever, we show that Isabelle can generate code for the functions, indicating
that non-constructible terms are not being used within the algorithms.
type-synonym error = String.literal

5

fun assert :: bool ⇒ error + unit
where

assert False = error (STR ′′Assertion failed. ′′) |
assert True = return ()

fun fromSingleton :: ′a list ⇒ error + ′a
where

fromSingleton [] = error (STR ′′Expected list of length 1 ′′) |
fromSingleton (x # []) = return x |
fromSingleton (x # y # ys) = error (STR ′′Expected list of length 1 ′′)

Moreover, we use the error monad—modelled using the sum type—and
build wrappers around partially defined Isabelle functions such that the
evaluation of undefined terms and violation of invariants expected by the
algorithms result in error values.

We are able to show that all operations succeed without reaching unex-
pected states during the execution of the framework.
end

4 The WOOT Framework
theory Data

imports Main Datatype-Order-Generator .Order-Generator
begin

Following the presentation by Oster et al. [19] we describe the WOOT
framework as an operation-based CRDT [24].

In WOOT, the shared data type is a string over an alphabet ′Σ. Each peer
starts with a prescribed initial state representing the empty string. Users
can perform two types of edit operations on the string at their peer:

• Insert a new character.

• Delete an existing character.

Whenever a user performs one of these operations, their peer will create
an update message (see Section 4.5), integrate it immediately into its state,
and send it to every other peer.

An update message created at a peer may depend on at most two of the
previously integrated messages at that peer. A message cannot be delivered
to a peer if its antecedents have not been delivered to it yet. In Section 4.7
we describe a few possible methods to implement this requirement, as there
is a trade-off between causal consistency and scalability.

Once delivered to a remote peer, an update message will be integrated
to the peers’ state. The integration algorithm for an update message is the

6

Peer A Peer B Peer C

[] [] []

Send (InsM ` (A, 0) a I) Send (InsM ` (B, 0) a N)

Recv (B, 0)

[N(B,0)]

Recv (A, 0)

[I(A,0)N(B,0)]

Recv (C, 1)

[I(A,0)N(B,0)K(C,1)]

Recv (A, 0)

[I(A,0)]

Recv (B, 0)

[I(A,0)N(B,0)]

Recv (C, 1)

[I(A,0)N(B,0)K(C,1)]

Recv (A, 0)

[I(A,0)]

Send InsM(A, 0)(C, 1) a K

Recv (C, 1)

[I(A,0)K(C,1)]

Recv (B, 0)

[I(A,0)N(B,0)K(C,1)]

Figure 2: Example session with 3 peers. Each peer creates an update message
and sends a copy of it to the other two peers. Each peer integrates the
messages in a different order. The white rounded boxes represent states,
for brevity we only show the W-character’s symbol and identifier. Although
a W-character’s data structure stores the identifiers of its predecessor and
successor from its original creation event. The gray round boxes represent
events, we abbreviate the reception events, with the identifier of the W-
character, although the peer receives the full insert message.

same whether the message originated at the same or at a different peer (see
Section 4.6).

The interaction of the WOOT Framework can be visualized using a space-
time diagram [10]. An example session between 3 peers is shown in Figure 2.
Note that, each peer sees the edit operations in a different order.

4.1 Symbol Identifiers

The WOOT Framework requires a unique identifier for each insert operation,
which it keeps associated with the inserted symbol. The identifier may not
be used for another insertion operation on the same or any other peer.
Moreover the set of identifiers must be endowed with a total linear order.
We will denote the set of identifiers by ′I :: linorder.

7

Note that the order on the identifiers is not directly used as a global order
over the inserted symbols, in contrast to the sort-key based approaches:
LSEQ, LOGOOT, or TreeDoc. In particular, this means we do not require
the identifier space to be dense.

In the modelling in Section 4.7, we will use the pair consisting of a unique
identifier for the peer and the count of messages integrated or sent by that
peer, with the lexicographic order induced by the Cartesian product of the
peer identifier and the counter.

It is however possible to use other methods to generate unique identifiers,
as long as the above requirements are fulfilled.

4.1.1 Extended Identifiers
datatype ′I extended
= Begin (‹`›)
| InString ′I (‹(1 [[-]])›)
| End (‹a›)

derive linorder extended

We embed the set of identifiers in an extension containing two additional
elements denoting the smallest (resp. largest) element of the extension. The
order of identifiers with respect to each other is preserved. The extended set
is used in the corner cases, where a W-character is inserted at the beginning
or end of the string - and there is no preceeding resp. succeeding W-character
to reference. See also the following section.

4.2 Messages
datatype (′I, ′Σ) insert-message =

InsertMessage (P: ′I extended) (I : ′I) (S : ′I extended) (Σ: ′Σ)

datatype ′I delete-message = DeleteMessage ′I

datatype (′I, ′Σ) message =
Insert (′I, ′Σ) insert-message |
Delete ′I delete-message

Two kinds of update messages are exchanged in the WOOT Framework,
indicating respectively an insertion or a deletion of a character. Thus the
set of messages is a sum type message.

An insert message Insert m has the following four components:

• P m and S m denote the identifiers of the character immediately pre-
ceding (resp. succeeding) the character at the time of its insertion.
The special value ` (resp. a) indicates that there was no such char-
acter, i.e., that it was inserted at the beginning (resp. end) of the
string.

8

• I m denotes the unique identifier associated to the character (as de-
scribed in Subsection 4.1).

• Σ m denotes the inserted character.

4.3 States
type-synonym (′I, ′Σ) woot-character = (′I, ′Σ option) insert-message

A W-character w is the representation of an inserted character in the
state of a peer. It has the same semantics and notation for its components
as an insert message, with the difference that Σ w can be Some σ denoting
an inserted character, or None if the character has already been deleted.
Because of this overlap in semantics, we define the type of W-characters as
a type synonym.

The state of a peer is then a string of W-characters s :: (′I, ′Σ) woot-character
list. The initial state is the empty string []. The string the user sees is the
sequence of symbols omitting Nones, i.e., the sequence: [σ. Some σ ← map
Σ s].
fun to-woot-char :: (′I, ′Σ) insert-message ⇒ (′I, ′Σ) woot-character

where
to-woot-char (InsertMessage p i s σ) = InsertMessage p i s (Some σ)

An insert message can be converted into a W-character by applying Some
to the symbol component.
end

4.4 Basic Algorithms
theory BasicAlgorithms

imports Data ErrorMonad
begin

In this section, we introduce preliminary definitions and functions, re-
quired by the integration and edit algorithms in the following sections.
definition ext-ids :: (′I, ′Σ) woot-character list ⇒ ′I extended list

where ext-ids s = `#(map (λx. [[I x]]) s)@[a]

The function ext-ids returns the set of extended identifiers in a string s,
including the beginning and end markers ` and a.
fun idx :: (′I, ′Σ) woot-character list ⇒ ′I extended ⇒ error + nat

where
idx s i = fromSingleton (filter (λj. (ext-ids s ! j = i)) [0 ..<(length (ext-ids s))])

The function idx returns the index in w of a W-character with a given
identifier i:

9

• If the identifier i occurs exactly once in the string then idx s [[i]] = Inr
(j + 1) where I (s ! j) = i, otherwise idx s [[i]] will be an error.

• idx s ` = Inr 0 and idx s a = Inr (length w + 1).

fun nth :: (′I, ′Σ) woot-character list ⇒ nat ⇒ error + (′I, ′Σ) woot-character
where

nth s 0 = error (STR ′′Index has to be >= 1 . ′′) |
nth s (Suc k) = (

if k < (length s) then
return (s ! k)

else
error (STR ′′Index has to be <= length s ′′))

The function nth returns the W-character at a given index in s. The first
character has the index 1.
fun list-update ::
(′I, ′Σ) woot-character list ⇒ nat ⇒ (′I, ′Σ) woot-character ⇒
error + (′I, ′Σ) woot-character list
where

list-update s (Suc k) v = (
if k < length s then

return (List.list-update s k v)
else

error (STR ′′Illegal arguments. ′′)) |
list-update - 0 - = error (STR ′′Illegal arguments. ′′)

The function list-update substitutes the W-character at the index k in s
with the W-character v. As before, we use the convention of using the index
1 for the first character.
end

4.5 Edit Operations
theory CreateAlgorithms

imports BasicAlgorithms
begin

fun is-visible :: (′I, ′Σ) woot-character ⇒ bool
where is-visible (InsertMessage - - - s) = (s 6= None)

fun nth-visible :: (′I, ′Σ) woot-character list ⇒ nat ⇒ error + ′I extended
where

nth-visible s k = (let v = ext-ids (filter is-visible s) in
if k < length v then

return (v ! k)
else

error (STR ′′Argument k out of bounds. ′′))

Let l be the count of visible symbols in s. The function nth-visible s n:

10

• Returns the identifier of the n-th visible element in s if 1 ≤ n ≤ l.

• Returns ` if n = 0, and a if n = l + 1.

• Returns an error otherwise.

Note that, with this definition, the first visible character in the string has
the index 1.

Algorithms create-insert and create-delete detail the process by which
messages are created in response to a user action.
fun from-non-extended :: ′I extended ⇒ error + ′I

where
from-non-extended [[i]] = Inr i |
from-non-extended - = error (STR ′′Expected InString ′′)

fun create-insert ::
(′I, ′Σ) woot-character list ⇒ nat ⇒ ′Σ ⇒ ′I ⇒ error + (′I, ′Σ) message
where create-insert s n σ ′ i =

do {
p ← nth-visible s n;
q ← nth-visible s (n + 1);
return (Insert (InsertMessage p i q σ ′))
}

In particular, when a user inserts a character σ ′ between visible position
n and its successor of the string of a peer with state s, create-insert starts
by retrieving the identifiers p of the last visible character before n in w (or
` if no such character exists) and q of the first visible one after n (or a).

It then broadcasts the message Insert (InsertMessage p i q σ ′) with the
new identifier i.
fun create-delete :: (′I, ′Σ) woot-character list ⇒ nat ⇒ error + (′I, ′Σ) message

where create-delete s n =
do {

m ← nth-visible s n;
i ← from-non-extended m;
return (Delete (DeleteMessage i))
}

When the user deletes the visible character at position n, create-delete
retrieves the identifier i of the n’th visible character in s and broadcasts the
message Delete (DeleteMessage i).

In both cases the message will be integrated into the peer’s own state,
with the same algorithm that integrates messages received from other peers.
end

11

4.6 Integration algorithm

In this section we describe the algorithm to integrate a received message
into a peers’ state.
theory IntegrateAlgorithm

imports BasicAlgorithms Data
begin

fun fromSome :: ′a option ⇒ error + ′a
where

fromSome (Some x) = return x |
fromSome None = error (STR ′′Expected Some ′′)

lemma fromSome-ok-simp [simp]: (fromSome x = Inr y) = (x = Some y)
〈proof 〉

fun substr :: ′a list ⇒ nat ⇒ nat ⇒ ′a list where
substr s l u = take (u − (Suc l)) (drop l s)

fun concurrent ::
(′I, ′Σ) woot-character list
⇒ nat
⇒ nat
⇒ (′I, ′Σ) woot-character
⇒ error + (′I extended list)
where

concurrent s l u w =
do {

p-pos ← idx s (P w);
s-pos ← idx s (S w);
return (if (p-pos ≤ l ∧ s-pos ≥ u) then [[[I w]]] else [])
}

function integrate-insert
where

integrate-insert m w p s =
do {

l ← idx w p;
u ← idx w s;
assert (l < u);
if Suc l = u then

return ((take l w)@[to-woot-char m]@(drop l w))
else do {

d ← mapM (concurrent w l u) (substr w l u);
assert (concat d 6= []);
(p ′, s ′) ← fromSome (find ((λx.[[I m]] < x ∨ x = s) ◦ snd)

(zip (p#concat d) (concat d@[s])));
integrate-insert m w p ′ s ′

}

12

}
〈proof 〉

fun integrate-delete ::
(′I :: linorder) delete-message
⇒ (′I, ′Σ) woot-character list
⇒ error + (′I, ′Σ) woot-character list
where

integrate-delete (DeleteMessage i) s =
do {

k ← idx s [[i]];
w ← nth s k;
list-update s k
(case w of (InsertMessage p i u -) ⇒ InsertMessage p i u None)

}

fun integrate ::
(′I, ′Σ) woot-character list
⇒ (′I :: linorder , ′Σ) message
⇒ error + (′I, ′Σ) woot-character list
where

integrate s (Insert m) = integrate-insert m s (P m) (S m) |
integrate s (Delete m) = integrate-delete m s

Algorithm integrate describes the main function that is called when a new
message m has to be integrated into the state s of a peer. It is called both
when m was generated locally or received from another peer. Note that we
require that the antecedant messages have already been integrated. See also
Section 4.7 for the delivery assumptions that ensure this requirement.

Algorithm integrate-delete describes the procedure to integrate a delete
message: DeleteMessage i. The algorithm just replaces the symbol of the
W-character with identifier i with the value None. It is not possible to
entirely remove a W-character if it is deleted, since there might be unreceived
insertion messages that depend on its position.

Algorithm integrate-insert describes the procedure to integrate an insert
message: m = InsertMessage p i s σ. Since insertion operations can happen
concurrently and the order of message delivery is not fixed, it can hap-
pen that a remote peer receiving m finds multiple possible insertion points
between the predecessor p and successor s that were recorded when the
message was generated. An example of this situation is the conflict between
InsertMessage ` (A, 0) a CHR ′′I ′′ and InsertMessage ` (B, 0) a CHR
′′N ′′ in Figure 2.

A first attempt to resolve this would be to insert the W-characters by
choosing an insertion point using the order induced by their identifiers to
achieve a consistent ordering. But this method fails in some cases: a counter-
example was found by Oster et al. [19, section 2].

13

The solution introduced by the authors of WOOT is to restrict the iden-
tifier comparison to the set of W-characters in the range substr l u s whose
predecessor and successor are outside of the possible range, i.e. idx s (P w)
≤ l and idx s (S w) ≥ u.

New narrowed bounds are selected by finding the first W-character within
that restricted set with an identifier strictly larger than the identifier of the
new W-character.

This leads to a narrowed range where the found character forms an up-
per bound and its immediately preceeding character the lower bound. The
method is applied recursively until the insertion point is uniquely deter-
mined.

Note that the fact that this strategy leads to a consistent ordering has
only been verified for a bounded model. One of the contributions of this
paper is to provide a complete proof for it.
end

4.7 Network Model

In the past subsections, we described the algorithms each peer uses to inte-
grate received messages and broadcast new messages when an edit operation
has been made on that peer.

In this section, we model the WOOT Framework as a distributed appli-
cation and set the basis for the consistency properties, we want to establish.

We assume a finite set of peers starting with the same initial state of an
empty W-string, each peer reaches a finite set of subsequent states, caused
by the integration of received (or locally generated messages). A message
is always generated from a concrete state of a peer, using the algorithms
described in Section 4.5. Moreover, we assume that the same message will
only be delivered once to a peer. Finally, we assume that the happened
before relation, formed by

• Subsequent states of the same peer

• States following the reception and states that were the generation sites

do not contain loops. (Equivalently that the transitive closure of the relation
is a strict partial order.)

The latter is a standard assumption in the modelling of distributed sys-
tems (compare e.g. [21, Chapter 6.1]) effectively implied by the fact that
there are no physical causal loops.

Additionally, we assume that a message will be only received by a peer,
when the antecedent messages have already been received by the peer. This
is a somewhat technical assumption to simplify the description of the system.

14

In a practical implementation a peer would buffer the set of messages that
cannot yet be integrated. Note that this assumption is automatically implied
if causal delivery is assumed.

We establish two properties under the above assumptions

• The integration algorithm never fails.

• Two peers having received the same set of messages will be in the same
state.

The model assumptions are derived from Gomes et al.[7] and Shapiro et
al.[23] with minor modifications required for WOOT.
theory DistributedExecution

imports IntegrateAlgorithm CreateAlgorithms HOL−Library.Product-Lexorder
begin

type-synonym ′p event-id = ′p × nat

datatype (′p, ′Σ) event =
Send (′p event-id, ′Σ) message |
Receive ′p event-id (′p event-id, ′Σ) message

The type variable ′p denotes a unique identifier identifying a peer. We
model each peer’s history as a finite sequence of events, where each event is
either the reception or broadcast of a message. The index of the event in a
peer’s history and its identifier form a pair uniquely identifying an event in
a distributed execution of the framework. In the case of a reception, Receive
s m indicated the reception of the message m sent at event s.

In the following we introduce the locale dist-execution-preliminary from
which the dist-execution locale will inherit. The reason for the introduction
of two locales is technical - in particular, it is not possible to interleave def-
initions and assumptions within the definition of a locale. The preliminary
locale only introduces the assumption that the set of participating peers is
finite.
locale dist-execution-preliminary =

fixes events :: (′p :: linorder) ⇒ (′p, ′Σ) event list
— We introduce a locale fixing the sequence of events per peer.

assumes fin-peers: finite (UNIV :: ′p set)
— We are assuming a finite set of peers.

begin

fun is-valid-event-id
where is-valid-event-id (i,j) = (j < length (events i))

15

fun event-pred
where event-pred (i,j) p = (is-valid-event-id (i,j) ∧ p (events i ! j))

fun event-at
where event-at i m = event-pred i ((=) m)

fun is-reception
where

is-reception i j = event-pred j (λe. case e of Receive s - ⇒ s = i | - ⇒ False)

fun happened-immediately-before where
happened-immediately-before i j = (

is-valid-event-id i ∧
is-valid-event-id j ∧
((fst i = fst j ∧ Suc (snd i) = snd j) ∨ is-reception i j))

The happened-immediately-before describes immediate causal precedence:

• An events causally precedes the following event on the same peer.

• A message broadcast event causally precedes the reception event of it.

The transitive closure of this relation is the famous happened before re-
lation introduced by Lamport[12].

In the dist-execution we will assume that the relation is acyclic - which
implies that the transitive closure happened-immediately-before++ is a strict
partial order.

Each peer passes through a sequence of states, which may change after
receiving a message. We denote the initial state of peer p as (p, 0) and the
state after event (p, i) as (p, i + 1). Note that there is one more state per
peer than events, since we are count both the initial and terminal state of a
peer.
fun is-valid-state-id

where is-valid-state-id (i,j) = (j ≤ length (events i))

fun received-messages
where

received-messages (i,j) = [m. (Receive - m) ← (take j (events i))]

fun state where state i = foldM integrate [] (received-messages i)

Everytime a peer receives a message its state is updated by integrating
the message. The function state returns the state for a given state id.
end

The function deps computes the identifiers a message depends on.
fun extended-to-set :: ′I extended ⇒ ′I set

16

where
extended-to-set [[i]] = {i} |
extended-to-set - = {}

fun deps :: (′I, ′Σ) message ⇒ ′I set
where

deps (Insert (InsertMessage l - u -)) = extended-to-set l ∪ extended-to-set u |
deps (Delete (DeleteMessage i)) = {i}

locale dist-execution = dist-execution-preliminary +
assumes no-data-corruption:∧

i s m. event-at i (Receive s m) =⇒ event-at s (Send m)
— A received message must also have been actually broadcast. Note that, we do

not assume that a broadcast message will be received by all peers, similar to the
modelling made by [7, Section 5.2].

assumes at-most-once:∧
i j s m.

event-at i (Receive s m) =⇒
event-at j (Receive s m) =⇒
fst i = fst j =⇒ i = j

— A peer will never receive the same message twice. Note that this is something
that can be easily implemented in the application layer, if the underlying transport
mechanism does not guarantee it.

assumes acyclic-happened-before:
acyclicP happened-immediately-before

— The immediate causal precendence relation is acyclic, which implies that its
closure, the happened before relation is a strict partial order.

assumes semantic-causal-delivery:∧
m s i j i ′. event-at (i,j) (Receive s m) =⇒ i ′ ∈ deps m =⇒
∃ s ′ j ′ m ′. event-at (i,j ′) (Receive s ′ (Insert m ′)) ∧ j ′ < j ∧ I m ′ = i ′

— A message will only be delivered to a peer, if its antecedents have already been
delivered. (See beginning of this Section for the reason of this assumption).

assumes send-correct:∧
m i. event-at i (Send m) =⇒

(∃n σ. return m = state i >>= (λs. create-insert s n σ i)) ∨
(∃n. return m = state i >>= (λs. create-delete s n))

— A peer broadcasts messages by running the create-insert or create-delete algo-
rithm on its current state. In the case of an insertion the new character is assigned
the event id as its identifier. Note that, it would be possible to assume, a different
choice for allocating unique identifiers to new W-characters. We choose the event
id since it is automatically unique.

begin

Based on the assumptions above we show in Section 6:

17

• Progress: All reached states state i will be successful, i.e., the algorithm
integrate terminates and does not fail.

• Strong Eventual Consistency: Any pair of states state i and state j
which have been reached after receiving the same set of messages, i.e.,
set (received-messages i) = set (received-messages j) will be equal.

end

end

5 Formalized Proof
theory SortKeys

imports Data HOL−Library.List-Lexorder HOL−Library.Product-Lexorder
begin

datatype sort-dir =
Left |
Right

derive linorder sort-dir

lemma sort-dir-less-def [simp]: (x < y) = (x = Left ∧ y = Right)
〈proof 〉

datatype ′I sort-key =
NonFinal (′I × sort-dir) ′I sort-key |
Final ′I

type-synonym ′I position = ′I sort-key extended

fun embed-dir where embed-dir (x,Left) = (x, 0) | embed-dir (x,Right) = (x, Suc
(Suc 0))

lemma embed-dir-inj [simp]: (embed-dir x = embed-dir y) = (x = y)
〈proof 〉

lemma embed-dir-mono [simp]: (embed-dir x < embed-dir y) = (x < y)
〈proof 〉

fun sort-key-embedding :: ′I sort-key ⇒ (′I × nat) list
where
sort-key-embedding (NonFinal x y) = embed-dir x#(sort-key-embedding y) |
sort-key-embedding (Final i) = [(i, Suc 0)]

lemma sort-key-embedding-injective:
sort-key-embedding x = sort-key-embedding y =⇒ x = y
〈proof 〉

18

instantiation sort-key :: (ord) ord
begin
definition sort-key-less-eq-def [simp]:
(x :: (′a :: ord) sort-key) ≤ y ←→
(sort-key-embedding x ≤ sort-key-embedding y)

definition sort-key-less-def [simp]:
(x :: (′a :: ord) sort-key) < y ←→
(sort-key-embedding x < sort-key-embedding y)

instance 〈proof 〉
end

instantiation sort-key :: (order) order
begin
instance 〈proof 〉
end

instantiation sort-key :: (linorder) linorder
begin
instance 〈proof 〉
end

end

5.1 Definition of Ψ

theory Psi
imports SortKeys HOL−Eisbach.Eisbach

begin

fun extended-size :: (′I sort-key) extended ⇒ nat
where

extended-size [[x]] = size x |
extended-size - = 0

lemma extended-simps [simp]:
(` < x) = (x 6= `)
([[x ′]] < [[y ′]]) = (x ′ < y ′)
[[x ′]] < a
¬([[x ′]] < `)
¬(a < x)
` ≤ x
([[x ′]] ≤ [[y ′]]) = ((x ′ :: ′I :: linorder) ≤ y ′)
x ≤ a
¬([[x ′]] ≤ `)
(a ≤ x) = (x = a)
〈proof 〉

19

fun int-size where int-size (l,u) = max (extended-size l) (extended-size u)

lemma position-cases:
assumes

∧
y z. x = [[NonFinal (y,Left) z]] =⇒ p

assumes
∧

y z. x = [[NonFinal (y,Right) z]] =⇒ p
assumes

∧
y. x = [[Final y]] =⇒ p

assumes x = ` =⇒ p
assumes x = a =⇒ p
shows p
〈proof 〉

fun derive-pos ::
(′I :: linorder) × sort-dir ⇒ ′I sort-key extended ⇒ ′I sort-key extended
where

derive-pos h [[NonFinal x y]] =
(if h < x then a else (if x < h then ` else [[y]])) |

derive-pos h [[Final x]] =
(if fst h < x ∨ fst h = x ∧ snd h = Left then a else `) |

derive-pos - ` = ` |
derive-pos - a = a

lemma derive-pos-mono: x ≤ y =⇒ derive-pos h x ≤ derive-pos h y
〈proof 〉

fun γ :: (′I :: linorder) position ⇒ sort-dir ⇒ ′I × sort-dir
where
γ [[NonFinal x y]] - = x |
γ [[Final x]] d = (x,d) |
γ ` - = undefined |
γ a - = undefined

fun derive-left where
derive-left (l, u) = (derive-pos (γ l Right) l, derive-pos (γ l Right) u)

fun derive-right where
derive-right (l, u) = (derive-pos (γ u Left) l, derive-pos (γ u Left) u)

fun is-interval where is-interval (l,u) = (l < u)

fun elem where elem x (l,u) = (l < x ∧ x < u)

fun subset where subset (l,u) (l ′,u ′) = (l ′ ≤ l ∧ u ≤ u ′)

method interval-split for x :: (′I :: linorder) position × ′I position =
(case-tac [!] x,
rule-tac [!] position-cases [where x=fst x],
rule-tac [!] position-cases [where x=snd x])

lemma derive-size:

20

[[Final i]] ≤ fst x ∧ is-interval x =⇒ int-size (derive-left x) < int-size x
snd x ≤ [[Final i]] ∧ is-interval x =⇒ int-size (derive-right x) < int-size x
〈proof 〉

lemma derive-interval:
[[Final i]] ≤ fst x =⇒ is-interval x =⇒ is-interval (derive-left x)
snd x ≤ [[Final i]] =⇒ is-interval x =⇒ is-interval (derive-right x)
〈proof 〉

function Ψ :: (′I :: linorder) position × ′I position ⇒ ′I ⇒ ′I sort-key
where
Ψ (l,u) i = Final i

if l < [[Final i]] ∧ [[Final i]] < u |
Ψ (l,u) i = NonFinal (γ l Right) (Ψ (derive-left (l,u)) i)

if [[Final i]] ≤ l ∧ l < u |
Ψ (l,u) i = NonFinal (γ u Left) (Ψ (derive-right (l,u)) i)

if u ≤ [[Final i]] ∧ l < u |
Ψ (l,u) i = undefined if u ≤ l
〈proof 〉

termination
〈proof 〉

proposition psi-elem: is-interval x =⇒ elem [[Ψ x i]] x
〈proof 〉

proposition psi-mono:
assumes i1 < i2
shows is-interval x =⇒ Ψ x i1 < Ψ x i2
〈proof 〉

proposition psi-narrow:
elem [[Ψ x ′ i]] x =⇒ subset x x ′ =⇒ Ψ x ′ i = Ψ x i
〈proof 〉

definition preserve-order :: ′a :: linorder ⇒ ′a ⇒ ′b :: linorder ⇒ ′b ⇒ bool
where preserve-order x y u v ≡ (x < y −→ u < v) ∧ (x > y −→ u > v)

proposition psi-preserve-order :
fixes l l ′ u u ′ i i ′
assumes elem [[Ψ (l, u) i]] (l ′,u ′)
assumes elem [[Ψ (l ′, u ′) i ′]] (l, u)
shows preserve-order i i ′ [[Ψ (l,u) i]] [[Ψ (l ′, u ′) i ′]]
〈proof 〉

end

21

5.2 Sorting

Some preliminary lemmas about sorting.
theory Sorting

imports Main HOL.List HOL−Library.Sublist
begin

lemma insort:
assumes Suc l < length s
assumes s ! l < (v :: ′a :: linorder)
assumes s ! (l+1) > v
assumes sorted-wrt (<) s
shows sorted-wrt (<) ((take (Suc l) s)@v#(drop (Suc l) s))
〈proof 〉

lemma sorted-wrt-irrefl-distinct:
assumes irreflp r
shows sorted-wrt r xs −→ distinct xs
〈proof 〉

lemma sort-set-unique-h:
assumes irreflp r ∧ transp r
assumes set (x#xs) = set (y#ys)
assumes ∀ z ∈ set xs. r x z
assumes ∀ z ∈ set ys. r y z
shows x = y ∧ set xs = set ys
〈proof 〉

lemma sort-set-unique-rel:
assumes irreflp r ∧ transp r
assumes set x = set y
assumes sorted-wrt r x
assumes sorted-wrt r y
shows x = y
〈proof 〉

lemma sort-set-unique:
assumes set x = set y
assumes sorted-wrt (<) (map (f :: (′a ⇒ (′b :: linorder))) x)
assumes sorted-wrt (<) (map f y)
shows x = y
〈proof 〉

If two sequences contain the same element and strictly increasing with
respect.
lemma subseq-imp-sorted:

assumes subseq s t
assumes sorted-wrt p t
shows sorted-wrt p s

22

〈proof 〉

If a sequence t is sorted with respect to a relation p then a subsequence
will be as well.
fun to-ord where to-ord r x y = (¬(r∗∗ y x))

lemma trancl-idemp: r++++ x y = r++ x y
〈proof 〉

lemma top-sort:
fixes rp
assumes acyclicP r
shows finite s −→ (∃ l. set l = s ∧ sorted-wrt (to-ord r) l ∧ distinct l)
〈proof 〉

lemma top-sort-eff :
assumes irreflp p++

assumes sorted-wrt (to-ord p) x
assumes i < length x
assumes j < length x
assumes (p++ (x ! i) (x ! j))
shows i < j
〈proof 〉

end

5.3 Consistency of sets of WOOT Messages
theory Consistency

imports SortKeys Psi Sorting DistributedExecution
begin

definition insert-messages :: (′I, ′Σ) message set ⇒ (′I, ′Σ) insert-message set
where insert-messages M = {x. Insert x ∈ M}

lemma insert-insert-message:
insert-messages (M ∪ {Insert m}) = insert-messages M ∪ {m}
〈proof 〉

definition delete-messages :: (′I, ′Σ) message set ⇒ ′I delete-message set
where delete-messages M = {x. Delete x ∈ M}

fun depends-on where depends-on M x y = (x ∈ M ∧ y ∈ M ∧ I x ∈ deps (Insert
y))

definition a-conditions ::
(′I :: linorder , ′Σ) insert-message set ⇒ (′I extended ⇒ ′I position) ⇒ bool
where a-conditions M a = (

a ` < a a ∧

23

(∀m. m ∈ M −→ a (P m) < a (S m) ∧
a [[I m]] = [[Ψ (a (P m), a (S m)) (I m)]]))

definition consistent :: (′I :: linorder , ′Σ) message set ⇒ bool
where consistent M ≡

inj-on I (insert-messages M) ∧
(
⋃

(deps ‘ M) ⊆ (I ‘ insert-messages M)) ∧
wfP (depends-on (insert-messages M)) ∧
(∃ a. a-conditions (insert-messages M) a)

lemma consistent-subset:
assumes consistent N
assumes M ⊆ N
assumes

⋃
(deps ‘ M) ⊆ (I ‘ insert-messages M)

shows consistent M
〈proof 〉

lemma pred-is-dep: P m = [[i]] −→ i ∈ deps (Insert m)
〈proof 〉

lemma succ-is-dep: S m = [[i]] −→ i ∈ deps (Insert m)
〈proof 〉

lemma a-subset:
fixes M N a
assumes M ⊆ N
assumes a-conditions (insert-messages N) a
shows a-conditions (insert-messages M) a
〈proof 〉

definition delete-maybe :: ′I ⇒ (′I, ′Σ) message set ⇒ ′Σ ⇒ ′Σ option where
delete-maybe i D s = (if Delete (DeleteMessage i) ∈ D then None else Some s)

definition to-woot-character ::
(′I, ′Σ) message set ⇒ (′I, ′Σ) insert-message ⇒ (′I, ′Σ) woot-character
where

to-woot-character D m = (
case m of
(InsertMessage l i u s) ⇒ InsertMessage l i u (delete-maybe i D s))

lemma to-woot-character-keeps-i [simp]: I (to-woot-character M m) = I m
〈proof 〉

lemma to-woot-character-keeps-i-lifted [simp]:
I ‘ to-woot-character M ‘ X = I ‘ X
〈proof 〉

lemma to-woot-character-keeps-P [simp]: P (to-woot-character M m) = P m
〈proof 〉

24

lemma to-woot-character-keeps-S [simp]: S (to-woot-character M m) = S m
〈proof 〉

lemma to-woot-character-insert-no-eff :
to-woot-character (insert (Insert m) M) = to-woot-character M
〈proof 〉

definition is-associated-string ::
(′I, ′Σ) message set ⇒ (′I :: linorder , ′Σ) woot-character list ⇒ bool
where is-associated-string M s ≡ (

consistent M ∧
set s = to-woot-character M ‘ (insert-messages M) ∧
(∀ a. a-conditions (insert-messages M) a −→

sorted-wrt (<) (map a (ext-ids s))))

fun is-certified-associated-string where
is-certified-associated-string M (Inr v) = is-associated-string M v |
is-certified-associated-string M (Inl -) = False

lemma associated-string-unique:
assumes is-associated-string M s
assumes is-associated-string M t
shows s = t
〈proof 〉

lemma is-certified-associated-string-unique:
assumes is-certified-associated-string M s
assumes is-certified-associated-string M t
shows s = t
〈proof 〉

lemma empty-consistent: consistent {}
〈proof 〉

lemma empty-associated: is-associated-string {} []
〈proof 〉

The empty set of messages is consistent and the associated string is the
empty string.
end

5.4 Create Consistent
theory CreateConsistent

imports CreateAlgorithms Consistency
begin

lemma nth-visible-inc ′:

25

assumes sorted-wrt (<) (map a (ext-ids s))
assumes nth-visible s n = Inr i
assumes nth-visible s (Suc n) = Inr j
shows a i < a j
〈proof 〉

lemma nth-visible-eff :
assumes nth-visible s n = Inr i
shows extended-to-set i ⊆ I ‘ set s
〈proof 〉

lemma subset-mono:
assumes N ⊆ M
shows I ‘ insert-messages N ⊆ I ‘ insert-messages M
〈proof 〉

lemma deps-insert:
assumes

⋃
(deps ‘ M) ⊆ (I ‘ insert-messages M)

assumes deps m ⊆ I ‘ insert-messages M
shows

⋃
(deps ‘ (M ∪ {m})) ⊆ (I ‘ insert-messages (M ∪ {m}))

〈proof 〉

lemma wf-add:
fixes m :: (′I, ′Σ) insert-message
assumes wfP (depends-on M)
assumes

∧
n. n ∈ (M ∪ {m}) =⇒ I m /∈ deps (Insert n)

assumes m /∈ M
shows wfP (depends-on (M ∪ {m}))
〈proof 〉

lemma create-insert-p-s-ordered:
assumes is-associated-string N s
assumes a-conditions (insert-messages N) a
assumes Inr (Insert m) = create-insert s n σ new-id
shows a (P m) < a (S m)
〈proof 〉

lemma create-insert-consistent:
assumes consistent M
assumes is-associated-string N s
assumes N ⊆ M
assumes Inr m = create-insert s n σ new-id
assumes new-id /∈ I ‘ insert-messages M
shows consistent (M ∪ {m})
〈proof 〉

lemma bind-simp: (x >>= (λl. y l) = Inr r) =⇒ (y (projr x) = Inr r)
〈proof 〉

26

lemma create-delete-consistent:
assumes consistent M
assumes is-associated-string N s
assumes N ⊆ M
assumes Inr m = create-delete s n
shows consistent (M ∪ {m})
〈proof 〉

end

5.5 Termination Proof for integrate-insert
theory IntegrateInsertCommute

imports IntegrateAlgorithm Consistency CreateConsistent
begin

In the following we show that integrate-insert terminates. Note that, this
does not yet imply that the return value will not be an error state.
lemma substr-simp [simp]: substr s l u = nths s {k. l < Suc k ∧ Suc k < u}
〈proof 〉

declare substr .simps [simp del]

Instead of simplifying substr with its definition we use substr-simp as a
simplification rule. The right hand side of substr-simp is a better represen-
tation within proofs. However, we cannot directly define substr using the
right hand side as it is not constructible term for Isabelle.
lemma int-ins-loop-term-1 :

assumes isOK (mapM (concurrent w l u) t)
assumes x ∈ set (concat (projr (mapM (concurrent w l u) t)))
shows x ∈ (InString ◦ I) ‘ (set t)
〈proof 〉

lemma fromSingleton-simp: (fromSingleton xs = Inr x) = ([x] = xs)
〈proof 〉

lemma filt-simp: ([b] = filter p [0 ..<n]) =
(p b ∧ b < n ∧ (∀ y < n. p y −→ b = y))
〈proof 〉

lemma substr-eff :
assumes x ∈ (InString ◦ I) ‘ set (substr w l u)
assumes isOK (idx w x)
shows l < (projr (idx w x)) ∧ (projr (idx w x)) < u
〈proof 〉

lemma find-zip:
assumes find (cond ◦ snd) (zip (p#v) (v@[s])) = Some (x,y)
assumes v 6= []

27

shows
cond y
x ∈ set v ∨ y ∈ set v
x = p ∨ (x ∈ set v ∧ ¬(cond x))
y = s ∨ (y ∈ set v)

〈proof 〉

fun int-ins-measure ′

where
int-ins-measure ′ (m,w,p,s) = (

do {
l ← idx w p;
u ← idx w s;
assert (l < u);
return (u − l)
})

fun int-ins-measure
where

int-ins-measure (m,w,p,s) = case-sum (λe. 0) id (int-ins-measure ′ (m,w,p,s))

We show that during the iteration of integrate-insert, the arguments are
decreasing with respect to int-ins-measure. Note, this means that the dis-
tance between the W-characters with identifiers p (resp. s) is decreasing.
lemma int-ins-loop-term:

assumes idx w p = Inr l
assumes idx w s = Inr u
assumes mapM (concurrent w l u) (substr w l u) = Inr d
assumes concat d 6= []
assumes find ((λx.[[I m]] < x ∨ x = s) ◦ snd)
(zip (p#concat d) (concat d@[s])) = Some r

shows int-ins-measure (m, w, r) < u − l
〈proof 〉

lemma assert-ok-simp [simp]: (assert p = Inr z) = p 〈proof 〉

termination integrate-insert
〈proof 〉

5.6 Integrate Commutes
locale integrate-insert-commute =

fixes M :: (′I :: linorder , ′Σ) message set
fixes a :: ′I extended ⇒ ′I position
fixes s :: (′I, ′Σ) woot-character list
assumes associated-string-assm: is-associated-string M s
assumes a-conditions-assm: a-conditions (insert-messages M) a

begin

28

lemma dist-ext-ids: distinct (ext-ids s)
〈proof 〉

lemma I-inj-on-S :
l < length s ∧ u < length s ∧ I (s ! l) = I (s ! u) =⇒ l = u
〈proof 〉

lemma idx-find:
assumes x < length (ext-ids s)
assumes ext-ids s ! x = i
shows idx s i = Inr x
〈proof 〉

lemma obtain-idx:
assumes x ∈ set (ext-ids s)
shows ∃ i. idx s x = Inr i
〈proof 〉

lemma sorted-a:
assumes idx s x = Inr l
assumes idx s y = Inr u
shows (l ≤ u) = (a x ≤ a y)
〈proof 〉

lemma sorted-a-le: idx s x = Inr l =⇒ idx s y = Inr u =⇒ (l < u) = (a x < a y)
〈proof 〉

lemma idx-intro-ext: i < length (ext-ids s) =⇒ idx s (ext-ids s ! i) = Inr i
〈proof 〉

lemma idx-intro:
assumes i < length s
shows idx s [[I (s ! i)]] = Inr (Suc i)
〈proof 〉

end

locale integrate-insert-commute-insert = integrate-insert-commute +
fixes m
assumes consistent-assm: consistent (M ∪ {Insert m})
assumes insert-assm: Insert m /∈ M
assumes a-conditions-assm-2 :

a-conditions (insert-messages (M ∪ {Insert m})) a
begin

definition invariant where
invariant pm sm = (pm ∈ set (ext-ids s) ∧ sm ∈ set (ext-ids s) ∧
subset (a pm, a sm) (a (P m), a (S m)) ∧
elem (a [[I m]]) (a pm, a sm))

29

fun is-concurrent where
is-concurrent pm sm x = (x ∈ set s ∧
subset (a pm, a sm) (a (P x), a (S x)) ∧
elem (a [[I x]]) (a pm, a sm))

lemma no-id-collision: I m /∈ I ‘ insert-messages M
〈proof 〉

lemma not-deleted: to-woot-char m = to-woot-character M m
〈proof 〉

lemma invariant-imp-sorted:
assumes Suc l < length (ext-ids s)
assumes a(ext-ids s ! l) < a [[I m]] ∧ a [[I m]] < a(ext-ids s ! (l+1))
shows sorted-wrt (<) (map a (ext-ids ((take l s)@to-woot-char m#drop l s)))
〈proof 〉

lemma no-self-dep: ¬ depends-on (insert-messages M ∪ {m}) m m
〈proof 〉

lemma pred-succ-order :
m ′ ∈ (insert-messages M ∪ {m}) =⇒ a(P m ′) < a [[I m ′]] ∧ a(S m ′) > a [[I m ′]]
〈proof 〉

lemma find-dep:
assumes Insert m ′ ∈ (M ∪ {Insert m})
assumes i ∈ deps (Insert m ′)
shows [[i]] ∈ set (ext-ids s)
〈proof 〉

lemma find-pred:
m ′ ∈ (insert-messages M ∪ {m}) =⇒ P m ′ ∈ set (ext-ids s)
〈proof 〉

lemma find-succ:
m ′ ∈ (insert-messages M ∪ {m}) =⇒ S m ′ ∈ set (ext-ids s)
〈proof 〉

fun is-certified-associated-string ′ where
is-certified-associated-string ′ (Inr v) = (

set v = to-woot-character (M ∪ {Insert m}) ‘
(insert-messages (M ∪ {Insert m})) ∧

sorted-wrt (<) (map a (ext-ids v))) |
is-certified-associated-string ′ (Inl -) = False

lemma integrate-insert-final-step:
assumes invariant pm sm
assumes idx s pm = Inr l

30

assumes idx s sm = Inr (Suc l)
shows is-certified-associated-string ′ (Inr (take l s@(to-woot-char m)#drop l s))
〈proof 〉

lemma concurrent-eff :
assumes idx s pm = Inr l
assumes idx s sm = Inr u
obtains d where mapM (concurrent s l u) (substr s l u) = Inr d ∧

set (concat d) = InString ‘ I ‘ {x. is-concurrent pm sm x}
〈proof 〉

lemma concurrent-eff-2 :
assumes invariant pm sm
assumes is-concurrent pm sm x
shows preserve-order [[I x]] [[I m]] (a [[I x]]) (a [[I m]])
〈proof 〉

lemma concurrent-eff-3 :
assumes idx s pm = Inr l
assumes idx s sm = Inr u
assumes Suc l < u
shows {x. is-concurrent pm sm x} 6= {}
〈proof 〉

lemma integrate-insert-result-helper :
invariant pm sm =⇒ m ′ = m =⇒ s ′ = s =⇒
is-certified-associated-string ′ (integrate-insert m ′ s ′ pm sm)
〈proof 〉

lemma integrate-insert-result:
is-certified-associated-string ′ (integrate-insert m s (P m) (S m))
〈proof 〉
end

lemma integrate-insert-result:
assumes consistent (M ∪ {Insert m})
assumes Insert m /∈ M
assumes is-associated-string M s
shows is-certified-associated-string (M ∪ {Insert m}) (integrate-insert m s (P

m) (S m))
〈proof 〉

locale integrate-insert-commute-delete = integrate-insert-commute +
fixes m :: (′I :: linorder) delete-message
assumes consistent-assm: consistent (M ∪ {Delete m})

begin

fun delete :: (′I, ′Σ) woot-character ⇒ (′I, ′Σ) woot-character
where delete (InsertMessage p i u -) = InsertMessage p i u None

31

definition delete-only-m :: (′I, ′Σ) woot-character ⇒ (′I, ′Σ) woot-character
where delete-only-m x = (if DeleteMessage (I x) = m then delete x else x)

lemma set-s: set s = to-woot-character M ‘ insert-messages M
〈proof 〉

lemma delete-only-m-effect:
delete-only-m (to-woot-character M x) = to-woot-character (M ∪ {Delete m}) x
〈proof 〉

lemma integrate-delete-result:
is-certified-associated-string (M ∪ {Delete m}) (integrate-delete m s)
〈proof 〉
end

lemma integrate-delete-result:
assumes consistent (M ∪ {Delete m})
assumes is-associated-string M s
shows is-certified-associated-string (M ∪ {Delete m}) (integrate-delete m s)
〈proof 〉

fun is-delete :: (′I, ′Σ) message ⇒ bool
where

is-delete (Insert m) = False |
is-delete (Delete m) = True

proposition integrate-insert-commute:
assumes consistent (M ∪ {m})
assumes is-delete m ∨ m /∈ M
assumes is-associated-string M s
shows is-certified-associated-string (M ∪ {m}) (integrate s m)
〈proof 〉

end

5.7 Strong Convergence
theory StrongConvergence

imports IntegrateInsertCommute CreateConsistent HOL.Finite-Set Distribut-
edExecution
begin

lemma (in dist-execution) happened-before-same:
assumes i < j
assumes j < length (events k)
shows (happened-immediately-before)++ (k,i) (k,j)
〈proof 〉

32

definition make-set where make-set (k :: nat) p = {x. ∃ j. p j x ∧ j < k}

lemma make-set-nil [simp]: make-set 0 p = {} 〈proof 〉

lemma make-set-suc [simp]: make-set (Suc k) p = make-set k p ∪ {x. p k x}
〈proof 〉

lemma (in dist-execution) received-messages-eff :
assumes is-valid-state-id (i,j)
shows set (received-messages (i,j)) = make-set j (λk x. (∃ s. event-at (i, k)

(Receive s x)))
〈proof 〉

lemma (in dist-execution) finite-valid-event-ids:
finite {i. is-valid-event-id i}
〈proof 〉

lemma (in dist-execution) send-insert-id-1 :
state i >>= (λs. create-insert s n σ i) = Inr (Insert m) =⇒ I m = i
〈proof 〉

lemma (in dist-execution) send-insert-id-2 :
state i >>= (λs. create-delete s n) = Inr (Insert m) =⇒ False
〈proof 〉

lemma (in dist-execution) send-insert-id:
event-at i (Send (Insert m)) =⇒ I m = i
〈proof 〉

lemma (in dist-execution) recv-insert-once:
event-at (i,j) (Receive s (Insert m)) =⇒ event-at (i,k) (Receive t (Insert m)) =⇒

j = k
〈proof 〉

proposition integrate-insert-commute ′:
fixes M m s
assumes consistent M
assumes is-delete m ∨ m /∈ T
assumes m ∈ M
assumes T ⊆ M
assumes deps m ⊆ I ‘ insert-messages T
assumes is-certified-associated-string T s
shows is-certified-associated-string (T ∪ {m}) (s >>= (λt. integrate t m))
〈proof 〉

lemma foldM-rev: foldM f s (li@[ll]) = foldM f s li >>= (λt. f t ll)
〈proof 〉

lemma (in dist-execution) state-is-associated-string ′:

33

fixes i M
assumes j ≤ length (events i)
assumes consistent M
assumes make-set j (λk m. ∃ s. event-at (i,k) (Receive s m)) ⊆ M
shows is-certified-associated-string (make-set j (λk m. ∃ s. event-at (i,k) (Receive

s m))) (state (i,j))
〈proof 〉

lemma (in dist-execution) sent-before-recv:
assumes event-at (i,k) (Receive s m)
assumes j < length (events i)
assumes k < j
shows event-at s (Send m) ∧ happened-immediately-before++ s (i,j)
〈proof 〉

lemma (in dist-execution) irrefl-p: irreflp (happened-immediately-before++)
〈proof 〉

lemma (in dist-execution) new-messages-keep-consistency:
assumes consistent M
assumes event-at i (Send m)
assumes set (received-messages i) ⊆ M
assumes i /∈ I ‘ insert-messages M
shows consistent (insert m M)
〈proof 〉

lemma (in dist-execution) sent-messages-consistent:
consistent {m. (∃ i. event-at i (Send m))}
〈proof 〉

lemma (in dist-execution) received-messages-were-sent:
assumes is-valid-state-id (i,j)
shows make-set j (λk m. (∃ s. event-at (i, k) (Receive s m))) ⊆ {m. ∃ i. event-at

i (Send m)}
〈proof 〉

lemma (in dist-execution) state-is-associated-string:
assumes is-valid-state-id i
shows is-certified-associated-string (set (received-messages i)) (state i)
〈proof 〉

end

6 Strong Eventual Consistency
theory SEC

imports StrongConvergence
begin

34

In the following theorem we establish that all reached states are successful.
This implies with the unconditional termination property (Section 5.5) of it
that the integration algorithm never fails.
theorem (in dist-execution) no-failure:

fixes i
assumes is-valid-state-id i
shows isOK (state i)
〈proof 〉

The following theorem establishes that any pair of peers having received
the same set of updates, will be in the same state.
theorem (in dist-execution) strong-convergence:

assumes is-valid-state-id i
assumes is-valid-state-id j
assumes set (received-messages i) = set (received-messages j)
shows state i = state j
〈proof 〉

As we noted in Section 4.7, we have not assumed eventual delivery, but
a corollary of this theorem with the eventual delivery assumption implies
eventual consistency. Since finally all peer would have received all messages,
i.e., an equal set.

7 Code generation
export-code integrate create-insert create-delete in Haskell

module-name WOOT file-prefix code

8 Proof Outline

In this section we outline and motivate the approach we took to prove the
strong eventual consistency of WOOT.

While introducing operation-based CRDTs Shapiro et al. also establish
[24][Theorem 2.2]. If the following two conditions are met:

• Concurrent operations commute, i.e., if a pair of operations m1, m2 is
concurrent with respect to the order induced by the happened-before
relation, and they are both applicable to a state s, then the message
m1 (resp. m2) is still applicable on the state reached by applying m2

(resp. m1) on s and the resulting states are equal.

• Assuming causal delivery, the messages are applicable.

Then the CRDT has strong convergence. The same authors extend the
above result in [23, Proposition 2.2] to more general delivery orders d−→

35

(weaker than the one induced by the happened-before relation), i.e., two
messages may be causally dependent but concurrent with respect to d−→.
Assuming operations that are concurrent with respect to d−→ commute, and
messages are applicable, when the delivery order respects d−→ then again the
CRDT has strong convergence.

A key difficulty of the consistency proof of the WOOT framework is that
the applicability condition for the WOOT framework has three constraints:

1. Dependencies must be met.

2. Identifiers must be distinct.

3. The order must be consistent, i.e. the predecessor W-character must
appear before the successor W-character in the state an insert message
is being integrated.

The first constraint is a direct consequence of the semantic causal de-
livery order. The uniqueness of identifiers can be directly established by
analyzing the implementation of the message creation algorithms. Alter-
natively, Gomes et al. [7] use an axiomatic approach, where they require
the underlying network protocol to deliver messages with unique identifiers.
They provide a formal framework in Isabelle/HOL that can be used to show
consistency of arbitrary CRDTs. Their results could be used to establish
constraints 1 and 2.

The last constraint is the most intricate one, and forces us to use a different
method to establish the strong eventual consistency. The fact that the order
constraint is fulfilled is a consequence of the consistency property. But the
current fundamental lemmas require applicability of the operations in the
first place to establish consistency, which would result in a circular argument.

Zeller et. al. actually predict the above circumstance in the context of
state-based CRDTs [27]:

In theory it could even be the case that there are two reachable
states for which the merge operation does not yield the correct
result, but where the two states can never be reached in the same
execution.

Because of the above, we treat WOOT as a distributed message passing
algorithm and show convergence by establishing a global invariant, which is
maintained during the execution of the framework. The invariant captures
that the W-characters appear in the same order on all peers. It has strong
convergence as a consequence, in the special case, when peers have received
the same set of updates. It also implies that the generated messages will be
applicable.

36

Peer A

Peer B

Peer C

Figure 3: Example state graph, where the consistency is established left of
the bend curve.

In Figure 3, we exemplify an induction step in a proof over the execution of
the framework. The invariant is established for all states left of the dashed
lines, and we show that it remains true if we include the state, drawn in
dark gray. Note that induction proceeds in an order consistent with the
happened-before relation.

The technique we are using is to define a relation is-associated-string from
a set of messages to the final state their application leads to. Crucially,
that relation can be defined in a message-order independent way. We show
that it correctly models the behaviour of Algorithm integrate by establish-
ing that applying the integration algorithm to the associated string of a
set M leads to the associated string of the set M ∪ {m} in Proposition
integrate-insert-commute.

We also show that at most one s fulfills is-associated-string M s, which
automatically implies commutativity (cf. Lemma associated-string-unique).

Note that the domain of the relation is-associated-string consists of the
sets of messages that we call consistent. We show that, in every state of a
peer, the set of received messages will be consistent. The main ingredient
required for the definition of a consistent set of messages as the relation
is-associated-string are sort keys associated to the W-characters, which we
will explain in the following Section.

8.1 Sort Keys

There is an implicit sort key, which is deterministically computable, using
the immutable data associated to a W-character and the data of the W-
characters it (transitively) depends on.

We show that Algorithm integrate effectively maintains the W-characters
ordered with respect to that sort key, which is the reason we can con-
struct the mapping is-associated-string in a message-order independent way.
An alternative viewpoint would be to see Algorithm integrate-insert as an
optimized version of a more mundane algorithm, that just inserts the W-
characters using this implicit sort key.

37

Since the sort key is deterministically computable using the immutable
data associated to a W-character and the data of the W-characters it (transi-
tively) depends on, all peers could perform this computation independently,
which leads to the conclusion that the W-characters will be ordered consis-
tently across all peers.

The construction relies on a combinator Ψ that computes the sort key for
a W-character, and which requires as input:

• The unique identifier associated to a W-character.

• The sort keys of the predecessor/successor W-characters.

Its values are elements of a totally ordered space.
Note that the predecessor (resp. successor) W-character of a W-character

is the W-character that was immediately before (resp. after) it at the time it
was inserted. Like its unique identifier, it is immutable data associated with
that W-character. Sometimes a W-character is inserted at the beginning
(resp. end) of the string. For those W-characters, we use the special small-
est (resp. largest) sort keys, denoted by ` (resp. a) as predecessor (resp.
successor). These keys themselves are never associated to a W-character.

We will write Ψ (l, u) i for the value computed by the combinator for a
W-character with identifier i, assuming the sort key of its predecessor (resp.
successor) is l (resp. u).

For example, the sort key for a W-character with identifier i inserted in
an empty string (hence its predecessor is ` and its successor is a) will be Ψ
(`, a) i. A W-character inserted between that character and the end of the
string, with identifier j, would be assigned the sort key Ψ ([[Ψ (`, a) i]], a)
j.

The sort key needs to fulfill a couple of properties, to be useful:
There should never be a pair of W-characters with the same sort key.

Note, if this happens, even if those W-characters were equal or ordered
consistently, we would not be able to insert a new W-character between
those W-characters.

Since the W-characters have themselves unique identifiers, a method to
insure the above property is to require that Ψ be injective with respect to
the identifier of the W-character it computes a sort key for, i.e., Ψ (l, u) i
= Ψ (l ′, u ′) i ′ =⇒ i = i ′.

Another essential property is that the W-characters with predecessor hav-
ing the sort key l and successor having the sort key u should have a sort key
that is between l and u, such that the W-character is inserted between the
preceding and succeeding W-character, i.e., l < Ψ (l,u) i < u.

This latter property ensures intention preservation, i.e. the inserted W-
character will be placed at the place the user intended.

38

If we review function concurrent, then we see that the algorithm com-
pares W-characters by identifier, in the special case, when the inserted W-
character is compared to a W-character whose predecessor and successor are
outside of the range it is to be inserted in. A careful investigation, leads to
the conclusion that:

If l ≤ l ′ < Ψ (l,u) i < u ′ ≤ u then Ψ(l,u) i can be compared with Ψ(l ′,u ′)
i ′ by comparing i with i ′, i.e.:

• i < i ′ =⇒ Ψ (l,u) i < Ψ(l ′,u ′) i ′

In Section 5.1 we show that a combinator Ψ with the above properties
can be constructed (cf. Propositions psi-narrow psi-mono psi-elem). Using
the sort keys we can define the notion of a consistent set of messages as well
as the relation is-associated-string in a message-order independent way.

8.2 Induction

We have a couple of criteria that define a consistent set of messages:

• Each insert message in the set has a unique identifier.

• If a message depends on another message identifier, a message with
that identifier will be present. Note that for insert messages, these are
the predecessor/successor W-characters if present. For delete messages
it is the corresponding insert message.

• The dependencies form a well-order, i.e., there is no dependency cycle.

• It is possible to assign sort keys to each insert message, such that the
assigned sort key for each insert message is equal to the value returned
by the Ψ for it, using the associated sort keys of its predecessor and
successors, i.e., a (P m) < a (S m) ∧ a [[I m]] = [[Ψ (a (P m), a (S
m)) (I m)]]. Note that we also require that sort key of the predecessor
is smaller than the sort key of the successor.

The relation is-associated-string is then defined by ordering the insert mes-
sages according to the assigned sort keys above and marking W-characters,
for which there are delete messages as deleted.

The induction proof (Lemma dist-execution.sent-messages-consistent) over
the states of the framework is straight forward: Using Lemma top-sort we
find a possible order of the states consistent with the happened before re-
lation. The induction invariant is that the set of generated messages by all
peers is consistent (independent of whether they have been received by all
peers (yet)). The latter also implies that the subset a peer has received in
any of those states is consistent, using the additional fact that each messages

39

dependencies will be delivered before the message itself (see also Lemma con-
sistent-subset and Proposition integrate-insert-commute ′). For the induction
step, we rely on the results from Section 5.4 that any additional created mes-
sages will keep the set of messages consistent and that the peers’ states will
be consistent with the (consistent subset of) messages they received (Lemma
dist-execution.state-is-associated-string ′).
end

9 Example
theory Example

imports SEC
begin

In this section we formalize the example from Figure 2 for a possible run of
the WOOT framework with three peers, each performing an edit operation.
We verify that it fulfills the conditions of the locale dist-execution and apply
the theorems.
datatype example-peers
= PeerA
| PeerB
| PeerC

derive linorder example-peers

fun example-events :: example-peers ⇒ (example-peers, char) event list where
example-events PeerA = [

Send (Insert (InsertMessage ` (PeerA, 0) a CHR ′′B ′′)),
Receive (PeerA, 0) (Insert (InsertMessage ` (PeerA, 0) a CHR ′′B ′′)),
Receive (PeerB, 0) (Insert (InsertMessage ` (PeerB, 0) a CHR ′′A ′′)),
Receive (PeerC , 1) (Insert (InsertMessage [[(PeerA, 0)]] (PeerC , 1) a CHR

′′R ′′))
] |
example-events PeerB = [

Send (Insert (InsertMessage ` (PeerB, 0) a CHR ′′A ′′)),
Receive (PeerB, 0) (Insert (InsertMessage ` (PeerB, 0) a CHR ′′A ′′)),
Receive (PeerA, 0) (Insert (InsertMessage ` (PeerA, 0) a CHR ′′B ′′)),
Receive (PeerC , 1) (Insert (InsertMessage [[(PeerA, 0)]] (PeerC , 1) a CHR

′′R ′′))
] |
example-events PeerC = [

Receive (PeerA, 0) (Insert (InsertMessage ` (PeerA, 0) a CHR ′′B ′′)),
Send (Insert (InsertMessage [[(PeerA, 0)]] (PeerC , 1) a CHR ′′R ′′)),
Receive (PeerC , 1) (Insert (InsertMessage [[(PeerA, 0)]] (PeerC , 1) a CHR

′′R ′′)),
Receive (PeerB, 0) (Insert (InsertMessage ` (PeerB, 0) a CHR ′′A ′′))

]

The function example-events returns the sequence of events that each peer

40

evaluates. We instantiate the preliminary context by showing that the set
of peers is finite.
interpretation example: dist-execution-preliminary example-events
〈proof 〉

To prove that the happened-before relation is acyclic, we provide an order
on the state that is consistent with it, i.e.:

• The assigned indicies for successive states of the same peer are increas-
ing.

• The assigned index of a state receiving a message is larger than the
assigned index of the messages source state.

fun witness-acyclic-events :: example-peers event-id ⇒ nat
where

witness-acyclic-events (PeerA, 0) = 0 |
witness-acyclic-events (PeerB, 0) = 1 |
witness-acyclic-events (PeerA, (Suc 0)) = 2 |
witness-acyclic-events (PeerB, (Suc 0)) = 3 |
witness-acyclic-events (PeerC , 0) = 4 |
witness-acyclic-events (PeerC , (Suc 0)) = 5 |
witness-acyclic-events (PeerC , (Suc (Suc 0))) = 6 |
witness-acyclic-events (PeerC , (Suc (Suc (Suc 0)))) = 7 |
witness-acyclic-events (PeerA, (Suc (Suc 0))) = 8 |
witness-acyclic-events (PeerA, (Suc (Suc (Suc 0)))) = 9 |
witness-acyclic-events (PeerB, (Suc (Suc 0))) = 8 |
witness-acyclic-events (PeerB, (Suc (Suc (Suc 0)))) = 9 |
witness-acyclic-events (PeerA, (Suc (Suc (Suc (Suc n))))) = undefined |
witness-acyclic-events (PeerB, (Suc (Suc (Suc (Suc n))))) = undefined |
witness-acyclic-events (PeerC , (Suc (Suc (Suc (Suc n))))) = undefined

To prove that the created messages make sense, we provide the edit op-
eration that results with it. The first function is the inserted letter and the
second function is the position the letter was inserted.
fun witness-create-letter :: example-peers event-id ⇒ char

where
witness-create-letter (PeerA, 0) = CHR ′′B ′′ |
witness-create-letter (PeerB, 0) = CHR ′′A ′′ |
witness-create-letter (PeerC , Suc 0) = CHR ′′R ′′

fun witness-create-position :: example-peers event-id ⇒ nat
where

witness-create-position (PeerA, 0) = 0 |
witness-create-position (PeerB, 0) = 0 |
witness-create-position (PeerC , Suc 0) = 1

To prove that dependencies of a message are received before a message,

41

we provide the event id as well as the message, when the peer received a
messages dependency.
fun witness-deps-received-at :: example-peers event-id ⇒ example-peers event-id ⇒
nat

where
witness-deps-received-at (PeerA, Suc (Suc (Suc 0))) (PeerA, 0) = 1 |
witness-deps-received-at (PeerB, Suc (Suc (Suc 0))) (PeerA, 0) = 2 |
witness-deps-received-at (PeerC , Suc (Suc 0)) (PeerA, 0) = 0

fun witness-deps-received-is :: example-peers event-id ⇒ example-peers event-id ⇒
(example-peers event-id, char) insert-message

where
witness-deps-received-is (PeerA, Suc (Suc (Suc 0))) (PeerA, 0) = (InsertMessage

` (PeerA, 0) a CHR ′′B ′′) |
witness-deps-received-is (PeerB, Suc (Suc (Suc 0))) (PeerA, 0) = (InsertMessage

` (PeerA, 0) a CHR ′′B ′′) |
witness-deps-received-is (PeerC , Suc (Suc 0)) (PeerA, 0) = (InsertMessage `

(PeerA, 0) a CHR ′′B ′′)

lemma well-order-consistent:
fixes i j
assumes example.happened-immediately-before i j
shows witness-acyclic-events i < witness-acyclic-events j
〈proof 〉

Finally we show that the example-events meet the assumptions for the
distributed execution context.
interpretation example: dist-execution example-events
〈proof 〉

As expected all peers reach the same final state.
lemma

example.state (PeerA, 4) = Inr [
InsertMessage ` (PeerA, 0) a (Some CHR ′′B ′′),
InsertMessage ` (PeerB, 0) a (Some CHR ′′A ′′),
InsertMessage [[(PeerA, 0)]] (PeerC , 1) a (Some CHR ′′R ′′)]

example.state (PeerA, 4) = example.state (PeerB, 4)
example.state (PeerB, 4) = example.state (PeerC , 4)
〈proof 〉

We can also derive the equivalence of states using the strong convergence
theorem. For example the set of received messages in the third state of peer
A and B is equivalent, even though they were not received in the same order:
lemma

example.state (PeerA, 3) = example.state (PeerB, 3)
〈proof 〉

Similarly we can conclude that reached states are successful.

42

lemma
isOK (example.state (PeerC , 4))
〈proof 〉

end

References

[1] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso. Eval-
uating CRDTs for real-time document editing. In Symposium on Doc-
ument Engineering (DocEng), pages 103–112. ACM, 2011.

[2] L. Briot, P. Urso, and M. Shapiro. High responsiveness for group
editing crdts. In International Conference on Supporting Group Work
(GROUP), pages 51–60. ACM, 2016.

[3] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott. Riak DT map: a
composable, convergent replicated dictionary. In Workshop on Princi-
ples and Practice of Eventual Consistency, page 1. ACM, 2014.

[4] R. Dallaway. WOOT model for Scala and JavaScript via Scala.js. https:
//github.com/d6y/wootjs, 2016. Accessed: 2017-01-25.

[5] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems.
In ACM SIGMOD Record, volume 18, pages 399–407. ACM, 1989.

[6] V. Emanouilov. Collaborative rich text editor. https://github.com/
kroky/woot, 2016. Accessed: 2017-01-25.

[7] V. B. F. Gomes, M. Kleppmann, D. P. Mulligan, and A. R. Beresford.
Verifying strong eventual consistency in distributed systems. Proceed-
ings of the ACM on Programming Languages (PACMPL), 1(OOPSLA),
2017.

[8] R. Kaplan. A real time collaboration toy project based on WOOT.
https://github.com/ryankaplan/woot-collaborative-editor, 2016. Ac-
cessed: 2017-01-25.

[9] G. Klein, T. Nipkow, D. von Oheimb, C. Pusch, and M. Strecker. Java
source and bytecode formalizations in isabelle: µjava.

[10] A. D. Kshemkalyani and M. Singhal. Distributed Computing: Princi-
ples, Algorithms, and Systems. Cambridge University Press, 2011.

[11] S. Kumawat and A. Khunteta. A survey on operational transformation
algorithms: Challenges, issues and achievements. International Journal
of Computer Applications, 3(12):30–38, 2010.

43

https://github.com/d6y/wootjs
https://github.com/d6y/wootjs
https://github.com/kroky/woot
https://github.com/kroky/woot
https://github.com/ryankaplan/woot-collaborative-editor

[12] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[13] M. Letia, N. Preguiça, and M. Shapiro. Consistency without concur-
rency control in large, dynamic systems. ACM SIGOPS Operating Sys-
tems Review, 44(2):29–34, 2010.

[14] D. Li and R. Li. An admissibility-based operational transformation
framework for collaborative editing systems. Computer Supported Co-
operative Work (CSCW), 19(1):1–43, 2010.

[15] B. Nédelec, P. Molli, A. Mostefaoui, and E. Desmontils. LSEQ: an
adaptive structure for sequences in distributed collaborative editing. In
Symposium on Document Engineering (DocEng), pages 37–46. ACM,
2013.

[16] T. Olson. Real time group editor without operational transformation.
https://github.com/TGOlson/woot-haskell, 2016. Accessed: 2017-01-
25.

[17] G. Oster, P. Molli, P. Urso, and A. Imine. Tombstone transforma-
tion functions for ensuring consistency in collaborative editing systems.
In International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), pages 1–10. IEEE,
2006.

[18] G. Oster, P. Urso, P. Molli, and A. Imine. Real time group editors
without operational transformation. Technical Report RR-5580, IN-
RIA, 2005.

[19] G. Oster, P. Urso, P. Molli, and A. Imine. Data consistency for P2P col-
laborative editing. In Conference on Computer Supported Cooperative
Work (CSCW), pages 259–268. ACM, 2006.

[20] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia. A commutative
replicated data type for cooperative editing. In International Con-
ference on Distributed Computing Systems (ICDCS), pages 395–403.
IEEE, 2009.

[21] M. Raynal. Distributed Algorithms for Message-Passing Systems.
Springer, 2013.

[22] H.-G. Roh, J.-S. Kim, J. Lee, and S. Maeng. Optimistic operations for
replicated abstract data types. Technical report, 2009.

[23] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types.
Research Report RR-7506, Inria – Centre Paris-Rocquencourt ; INRIA,
Jan. 2011.

44

https://github.com/TGOlson/woot-haskell

[24] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In International Conference on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), pages 386–400.
Springer-Verlag, 2011.

[25] S. Weiss, P. Urso, and P. Molli. Wooki: a P2P wiki-based collaborative
writing tool. In International Conference on Web Information Systems
Engineering, pages 503–512. Springer, 2007.

[26] S. Weiss, P. Urso, and P. Molli. Logoot: A scalable optimistic replica-
tion algorithm for collaborative editing on P2P networks. In Interna-
tional Conference on Distributed Computing Systems (ICDCS), pages
404–412. IEEE, 2009.

[27] P. Zeller, A. Bieniusa, and A. Poetzsch-Heffter. Formal specification
and verification of crdts. In E. Ábrahám and C. Palamidessi, editors,
Formal Techniques for Distributed Objects, Components, and Systems
- 34th IFIP WG 6.1 International Conference, FORTE 2014, Held as
Part of the 9th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014.
Proceedings, volume 8461 of Lecture Notes in Computer Science, pages
33–48. Springer, 2014.

45

	Introduction
	Related Work
	Preliminary Notes
	Algorithms in Isabelle

	The WOOT Framework
	Symbol Identifiers
	Extended Identifiers

	Messages
	States
	Basic Algorithms
	Edit Operations
	Integration algorithm
	Network Model

	Formalized Proof
	Definition of Psi
	Sorting
	Consistency of sets of WOOT Messages
	Create Consistent
	Termination Proof for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 integrate-insert
	Integrate Commutes
	Strong Convergence

	Strong Eventual Consistency
	Code generation
	Proof Outline
	Sort Keys
	Induction

	Example

