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Abstract

A VCG auction (named after their inventors Vickrey, Clarke, and
Groves) is a generalization of the single-good, second price Vickrey
auction to the case of a combinatorial auction (multiple goods, from
which any participant can bid on each possible combination). We for-
malize in this entry VCG auctions, including tie-breaking and prove
that the functions for the allocation and the price determination are
well-defined. Furthermore we show that the allocation function allo-
cates goods only to participants, only goods in the auction are allo-
cated, and no good is allocated twice. We also show that the price
function is non-negative. These properties also hold for the automati-
cally extracted Scala code.
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1 Introduction
An auction mechanism is mathematically represented through a pair of func-
tions (a, p): the first describes how some given goods at stake are allocated
among the bidders (also called participants or agents), while the second
specifies how much each bidder pays following this allocation. Each pos-
sible output of this pair of functions is referred to as an outcome of the
auction. Both functions take the same argument, which is another function,
commonly called a bid vector b; it describes how much each bidder values
the possible outcomes of the auction. This valuation is usually expressed
through money. In this setting, some common questions are the study of the
quantitative and qualitative properties of a given auction mechanism (e.g.,
whether it maximizes some relevant quantity, such as revenue, or whether
it is efficient, that is, whether it allocates the item to the bidder who values
it most), and the study of the algorithms running it (in particular, their
correctness).

A VCG auction (named after their inventors Vickrey, Clarke, and Groves)
is a generalization of the single-good, second price Vickrey auction to the
case of a combinatorial auction (multiple goods, from which any participant
can bid on each possible combination). We formalize in this entry VCG
auctions, including tie-breaking and prove that the functions a and p are
well-defined. Furthermore we show that the allocation function a allocates
goods only to participants, only goods in the auction are allocated, and no
good is allocated twice. Furthermore we show that the price function p is
non-negative. These properties also hold for the automatically extracted
Scala code. For further details on the formalization, see [4]. For background
information on VCG auctions, see [5].

The following files are part of the Auction Theory Toolbox (ATT) [1] de-
veloped in the ForMaRE project [2]. The theories CombinatorialAuction.thy,
StrictCombinatorialAuction.thy and UniformTieBreaking.thy contain
the relevant definitions and theorems; CombinatorialAuctionExamples.thy
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and CombinatorialAuctionCodeExtraction.thy present simple helper def-
initions to run them on given examples and to export them to the Scala
language, respectively; FirstPrice.thy shows how easy it is to adapt the
definitions to the first price combinatorial auction. The remaining theories
contain more general mathematical definitions and theorems.

1.1 Rationale for developing set theory as replacing one bid-
der in a second price auction

Throughout the whole ATT, there is a duality in the way mathematical
notions are modeled: either through objects typical of lambda calculus and
HOL (lambda-abstracted functions and lists, for example) or through ob-
jects typical of set theory (for example, relations, intersection, union, set
difference, Cartesian product).

This is possible because inside HOL, it is possible to model a simply-
typed set theory which, although quite restrained if compared to, e.g., ZFC,
is powerful enough for many standard mathematical purposes.

ATT freely adopts one approach, the other, or a mixture thereof, de-
pending on technical and expressive convenience. A technical discussion of
this topic can be found in [3].

1.2 Bridging

One of the differences between the approaches of functional definitions on
the one hand and classical (often set-theoretical) definitions on the other
hand is that, commonly (although not always), the first approach is better
suited to produce Isabelle/HOL definitions which are computable (typically,
inductive definitions); while the definitions from the second approach are
often more general (e.g., encompassing infinite sets), closer to pen-and-paper
mathematics, but also not computable. This means that many theorems are
proved with respect to definitions of the second type, while in the end we
want them to apply to definitions of the first type, because we want our
theorems to hold for the code we will be actually running. Hence, bridging
theorems are needed, showing that, for the limited portions of objects for
which we state both kinds of definitions, they are the same.

1.3 Main theorems

The main theorems about VCG auctions are:

the definiteness theorem: our definitions grant that there is exactly one
solution; this is ensured by vcgaDefiniteness.

PairwiseDisjointAllocations: no good is allocated to more than one par-
ticipant.
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onlyGoodsAreAllocated: only the actually available goods are allocated.

the adequacy theorem: the solution provided by our algorithm is indeed
the one prescribed by standard pen-and-paper definition.

NonnegPrices: no participant ends up paying a negative price (e.g., no
participant receives money at the end of the auction).

Bridging theorems: as discussed above, such theorems permit to apply
the theorems in this list to the executable code Isabelle generates.

1.4 Scala code extraction

Isabelle permits to generate, from our definition of VCG, Scala code to run
any VCG auction. Use CombinatorialAuctionCodeExtraction.thy for
this. This code is in the form of Scala functions which can be evaluated on
any input (e.g., a bidvector) to return the resulting allocation and prices.

To deploy such functions use the provided Scala wrapper (taking care of
the output and including sample inputs). In order to do so, you can evaluate
inside Isabelle/JEdit the file CombinatorialAuctionCodeExtraction.thy
(position the cursor on its last line and wait for Isabelle/JEdit to end all its
processing). This will result in the file /dev/shm/VCG-withoutWrapper.scala,
which can be automatically appended to the wrapper by running the shell
script at the end of CombinatorialAuctionCodeExtraction.thy. For de-
tails of how to run the Scala code see http://www.cs.bham.ac.uk/research/
projects/formare/vcg.php.

2 Additional material that we would have expected
in Set.thy

theory SetUtils
imports

Main

begin

2.1 Equality

An inference (introduction) rule that combines [[?A ⊆ ?B; ?B ⊆ ?A]] =⇒
?A = ?B and (

∧
x. x ∈ ?A =⇒ x ∈ ?B) =⇒ ?A ⊆ ?B to a single step

lemma equalitySubsetI : (
∧

x . x ∈ A =⇒ x ∈ B) =⇒ (
∧

x . x ∈ B =⇒ x ∈ A)
=⇒ A = B

by blast
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2.2 Trivial sets

A trivial set (i.e. singleton or empty), as in Mizar
definition trivial where trivial x = (x ⊆ {the-elem x})

The empty set is trivial.
lemma trivial-empty: trivial {}

unfolding trivial-def by (rule empty-subsetI )

A singleton set is trivial.
lemma trivial-singleton: trivial {x}

unfolding trivial-def by simp

If a trivial set has a singleton subset, the latter is unique.
lemma singleton-sub-trivial-uniq:

fixes x X
assumes {x} ⊆ X and trivial X
shows x = the-elem X

using assms unfolding trivial-def by fast

Any subset of a trivial set is trivial.
lemma trivial-subset: fixes X Y assumes trivial Y assumes X ⊆ Y

shows trivial X

using assms unfolding trivial-def
by (metis (full-types) subset-empty subset-insertI2 subset-singletonD)

There are no two different elements in a trivial set.
lemma trivial-imp-no-distinct:

assumes triv: trivial X and x: x ∈ X and y: y ∈ X
shows x = y

using assms by (metis empty-subsetI insert-subset singleton-sub-trivial-uniq)

2.3 The image of a set under a function

an equivalent notation for the image of a set, using set comprehension
lemma image-Collect-mem: { f x | x . x ∈ S } = f ‘ S

by auto

2.4 Big Union

An element is in the union of a family of sets if it is in one of the family’s
member sets.
lemma Union-member : (∃ S ∈ F . x ∈ S) ←→ x ∈

⋃
F

by blast
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2.5 Miscellaneous
lemma trivial-subset-non-empty: assumes trivial t t ∩ X 6= {}

shows t ⊆ X
using trivial-def assms in-mono by fast

lemma trivial-implies-finite: assumes trivial X
shows finite X

using assms by (metis finite.simps subset-singletonD trivial-def )

lemma lm01 : assumes trivial (A × B)
shows (finite (A×B) & card A ∗ (card B) ≤ 1 )

using trivial-def assms One-nat-def card-cartesian-product card.empty card-insert-disjoint
empty-iff finite.emptyI le0 trivial-implies-finite order-refl subset-singletonD

by (metis(no-types))

lemma lm02 : assumes finite X
shows trivial X=(card X ≤ 1 )

using assms One-nat-def card.empty card-insert-if card-mono card-seteq
empty-iff

empty-subsetI finite.cases finite.emptyI finite-insert insert-mono
trivial-def trivial-singleton

by (metis(no-types))

lemma lm03 : shows trivial {x}
by (metis order-refl the-elem-eq trivial-def )

lemma lm04 : assumes trivial X {x} ⊆ X
shows {x} = X

using singleton-sub-trivial-uniq assms by (metis subset-antisym trivial-def )

lemma lm05 : assumes ¬ trivial X trivial T
shows X − T 6= {}

using assms by (metis Diff-iff empty-iff subsetI trivial-subset)

lemma lm06 : assumes (finite (A × B) & card A ∗ (card B) ≤ 1 )
shows trivial (A × B)

unfolding trivial-def using trivial-def assms by (metis card-cartesian-product
lm02 )

lemma lm07 : trivial (A × B) = (finite (A × B) & card A ∗ (card B) ≤ 1 )
using lm01 lm06 by blast

lemma trivial-empty-or-singleton: trivial X = (X = {} ∨ X = {the-elem X})
by (metis subset-singletonD trivial-def trivial-empty trivial-singleton)

lemma trivial-cartesian: assumes trivial X trivial Y
shows trivial (X × Y )

using assms lm07 One-nat-def Sigma-empty1 Sigma-empty2 card.empty
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card-insert-if
finite-SigmaI trivial-implies-finite nat-1-eq-mult-iff order-refl subset-singletonD

trivial-def trivial-empty
by (metis (full-types))

lemma trivial-same: trivial X = (∀ x1 ∈ X . ∀ x2 ∈ X . x1 = x2 )
using trivial-def trivial-imp-no-distinct ex-in-conv insertCI subsetI subset-singletonD

trivial-singleton
by (metis (no-types, opaque-lifting))

lemma lm08 : assumes (Pow X ⊆ {{},X})
shows trivial X

unfolding trivial-same using assms by auto

lemma lm09 : assumes trivial X
shows (Pow X ⊆ {{},X})

using assms trivial-same by fast

lemma lm10 : trivial X = (Pow X ⊆ {{},X})
using lm08 lm09 by metis

lemma lm11 : ({x} × UNIV ) ∩ P = {x} × (P ‘‘ {x})
by fast

lemma lm12 : (x,y) ∈ P = (y ∈ P‘‘{x})
by simp

lemma lm13 : assumes inj-on f A inj-on f B
shows inj-on f (A ∪ B) = (f‘(A−B) ∩ (f‘(B−A)) = {})

using assms inj-on-Un by (metis)

lemma injection-union: assumes inj-on f A inj-on f B (f‘A) ∩ (f‘B) = {}
shows inj-on f (A ∪ B)

using assms lm13 by fast

lemma lm14 : (Pow X = {X}) = (X={})
by auto

end

3 Partitions of sets
theory Partitions
imports

SetUtils

begin

We define the set of all partitions of a set (all-partitions) in textbook style, as
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well as a computable function all-partitions-list to algorithmically compute
this set (then represented as a list). This function is suitable for code gen-
eration. We prove the equivalence of the two definition in order to ensure
that the generated code correctly implements the original textbook-style
definition. For further background on the overall approach, see Caminati,
Kerber, Lange, Rowat: Proving soundness of combinatorial Vickrey auctions
and generating verified executable code, 2013.

P is a family of non-overlapping sets.
definition is-non-overlapping

where is-non-overlapping P = (∀ X∈P . ∀ Y∈ P . (X ∩ Y 6= {} ←→
X = Y ))

A subfamily of a non-overlapping family is also a non-overlapping family
lemma subset-is-non-overlapping:

assumes subset: P ⊆ Q and
non-overlapping: is-non-overlapping Q

shows is-non-overlapping P

proof −
{

fix X Y assume X ∈ P ∧ Y ∈ P
then have X ∈ Q ∧ Y ∈ Q using subset by fast

then have X ∩ Y 6= {} ←→ X = Y using non-overlapping unfolding
is-non-overlapping-def by force

}
then show ?thesis unfolding is-non-overlapping-def by force

qed

The family that results from removing one element from an equivalence class
of a non-overlapping family is not otherwise a member of the family.
lemma remove-from-eq-class-preserves-disjoint:

fixes elem:: ′a
and X :: ′a set
and P:: ′a set set

assumes non-overlapping: is-non-overlapping P
and eq-class: X ∈ P
and elem: elem ∈ X

shows X − {elem} /∈ P
using assms Int-Diff is-non-overlapping-def Diff-disjoint Diff-eq-empty-iff

Int-absorb2 insert-Diff-if insert-not-empty by (metis)

Inserting into a non-overlapping family P a set X, which is disjoint with the
set partitioned by P, yields another non-overlapping family.
lemma non-overlapping-extension1 :

fixes P:: ′a set set
and X :: ′a set
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assumes partition: is-non-overlapping P
and disjoint: X ∩

⋃
P = {}

and non-empty: X 6= {}
shows is-non-overlapping (insert X P)

proof −
{

fix Y :: ′a set and Z :: ′a set
assume Y-Z-in-ext-P: Y ∈ insert X P ∧ Z ∈ insert X P
have Y ∩ Z 6= {} ←→ Y = Z
proof

assume Y ∩ Z 6= {}
then show Y = Z

using Y-Z-in-ext-P partition disjoint
unfolding is-non-overlapping-def
by fast

next
assume Y = Z
then show Y ∩ Z 6= {}

using Y-Z-in-ext-P partition non-empty
unfolding is-non-overlapping-def
by auto

qed
}
then show ?thesis unfolding is-non-overlapping-def by force

qed

An element of a non-overlapping family has no intersection with any other
of its elements.
lemma disj-eq-classes:

fixes P:: ′a set set
and X :: ′a set

assumes is-non-overlapping P
and X ∈ P

shows X ∩
⋃

(P − {X}) = {}
proof −

{
fix x:: ′a
assume x-in-two-eq-classes: x ∈ X ∩

⋃
(P − {X})

then obtain Y where other-eq-class: Y ∈ P − {X} ∧ x ∈ Y by blast
have x ∈ X ∩ Y ∧ Y ∈ P

using x-in-two-eq-classes other-eq-class by force
then have X = Y using assms is-non-overlapping-def by fast
then have x ∈ {} using other-eq-class by fast

}
then show ?thesis by blast

qed

The empty set is not element of a non-overlapping family.
lemma no-empty-in-non-overlapping:
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assumes is-non-overlapping p
shows {} /∈ p

using assms is-non-overlapping-def by fast

P is a partition of the set A. The infix notation takes the form “noun-verb-
object”
definition is-partition-of (infix ‹partitions› 75 )

where is-partition-of P A = (
⋃

P = A ∧ is-non-overlapping P)

No partition of a non-empty set is empty.
lemma non-empty-imp-non-empty-partition:

assumes A 6= {}
and P partitions A

shows P 6= {}
using assms unfolding is-partition-of-def by fast

Every element of a partitioned set ends up in one element in the partition.
lemma elem-in-partition:

assumes in-set: x ∈ A
and part: P partitions A

obtains X where x ∈ X and X ∈ P
using part in-set unfolding is-partition-of-def is-non-overlapping-def by (auto

simp add: UnionE)

Every element of the difference of a set A and another set B ends up in an
element of a partition of A, but not in an element of the partition of {B}.
lemma diff-elem-in-partition:

assumes x: x ∈ A − B
and part: P partitions A

shows ∃ S ∈ P − { B } . x ∈ S

proof −
from part x obtain X where x ∈ X and X ∈ P

by (metis Diff-iff elem-in-partition)
with x have X 6= B by fast
with ‹x ∈ X› ‹X ∈ P› show ?thesis by blast

qed

Every element of a partitioned set ends up in exactly one set.
lemma elem-in-uniq-set:

assumes in-set: x ∈ A
and part: P partitions A

shows ∃ ! X ∈ P . x ∈ X
proof −

from assms obtain X where ∗: X ∈ P ∧ x ∈ X
by (rule elem-in-partition) blast

moreover {
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fix Y assume Y ∈ P ∧ x ∈ Y
then have Y = X

using part in-set ∗
unfolding is-partition-of-def is-non-overlapping-def
by (metis disjoint-iff-not-equal)

}
ultimately show ?thesis by (rule ex1I )

qed

A non-empty set “is” a partition of itself.
lemma set-partitions-itself :

assumes A 6= {}
shows {A} partitions A unfolding is-partition-of-def is-non-overlapping-def

proof
show

⋃
{A} = A by simp

{
fix X Y
assume X ∈ {A}
then have X = A by (rule singletonD)
assume Y ∈ {A}
then have Y = A by (rule singletonD)
from ‹X = A› ‹Y = A› have X ∩ Y 6= {} ←→ X = Y using assms by simp

}
then show ∀ X ∈ {A} . ∀ Y ∈ {A} . X ∩ Y 6= {} ←→ X = Y by force

qed

The empty set is a partition of the empty set.
lemma emptyset-part-emptyset1 :

shows {} partitions {}
unfolding is-partition-of-def is-non-overlapping-def by fast

Any partition of the empty set is empty.
lemma emptyset-part-emptyset2 :

assumes P partitions {}
shows P = {}
using assms unfolding is-partition-of-def is-non-overlapping-def
by fastforce

Classical set-theoretical definition of “all partitions of a set A”
definition all-partitions where
all-partitions A = {P . P partitions A}

The set of all partitions of the empty set only contains the empty set. We
need this to prove the base case of all-partitions-paper-equiv-alg.
lemma emptyset-part-emptyset3 :

shows all-partitions {} = {{}}
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unfolding all-partitions-def using emptyset-part-emptyset1 emptyset-part-emptyset2
by fast

inserts an element new_el into a specified set S inside a given family of sets
definition insert-into-member :: ′a ⇒ ′a set set ⇒ ′a set ⇒ ′a set set

where insert-into-member new-el Sets S = insert (S ∪ {new-el}) (Sets − {S})

Using insert-into-member to insert a fresh element, which is not a member
of the set S being partitioned, into a non-overlapping family of sets yields
another non-overlapping family.
lemma non-overlapping-extension2 :

fixes new-el:: ′a
and P:: ′a set set
and X :: ′a set

assumes non-overlapping: is-non-overlapping P
and class-element: X ∈ P
and new: new-el /∈

⋃
P

shows is-non-overlapping (insert-into-member new-el P X)
proof −

let ?Y = insert new-el X
have rest-is-non-overlapping: is-non-overlapping (P − {X})

using non-overlapping subset-is-non-overlapping by blast
have ∗: X ∩

⋃
(P − {X}) = {}

using non-overlapping class-element by (rule disj-eq-classes)
from ∗ have non-empty: ?Y 6= {} by blast
from ∗ have disjoint: ?Y ∩

⋃
(P − {X}) = {} using new by force

have is-non-overlapping (insert ?Y (P − {X}))
using rest-is-non-overlapping disjoint non-empty by (rule non-overlapping-extension1 )

then show ?thesis unfolding insert-into-member-def by simp
qed

inserts an element into a specified set inside the given list of sets – the list
variant of insert-into-member
The rationale for this variant and for everything that depends on it is: While
it is possible to computationally enumerate “all partitions of a set” as an
′a set set set, we need a list representation to apply further computational
functions to partitions. Because of the way we construct partitions (using
functions such as all-coarser-partitions-with below) it is not sufficient to
simply use ′a set set list, but we need ′a set list list. This is because it is
hard to impossible to convert a set to a list, whereas it is easy to convert a
list to a set.
definition insert-into-member-list :: ′a ⇒ ′a set list ⇒ ′a set ⇒ ′a set list

where insert-into-member-list new-el Sets S = (S ∪ {new-el}) # (remove1 S
Sets)

insert-into-member-list and insert-into-member are equivalent (as in return-
ing the same set).
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lemma insert-into-member-list-equivalence:
fixes new-el:: ′a

and Sets:: ′a set list
and S :: ′a set

assumes distinct Sets
shows set (insert-into-member-list new-el Sets S) = insert-into-member new-el

(set Sets) S
unfolding insert-into-member-list-def insert-into-member-def using assms by

simp

an alternative characterization of the set partitioned by a partition obtained
by inserting an element into an equivalence class of a given partition (if P
is a partition)
lemma insert-into-member-partition1 :

fixes elem:: ′a
and P:: ′a set set
and set:: ′a set

shows
⋃

(insert-into-member elem P set) =
⋃

(insert (set ∪ {elem}) (P −
{set}))

unfolding insert-into-member-def
by fast

Assuming that P is a partition of a set S, and new-el /∈ S, the function
defined below yields all possible partitions of S ∪ {new-el} that are coarser
than P (i.e. not splitting classes that already exist in P). These comprise one
partition with a class {new-el} and all other classes unchanged, as well as all
partitions obtained by inserting new-el into one class of P at a time. While
we use the definition to build coarser partitions of an existing partition P,
the definition itself does not require P to be a partition.
definition coarser-partitions-with :: ′a ⇒ ′a set set ⇒ ′a set set set

where coarser-partitions-with new-el P =
insert
— Let P be a partition of a set Set,
— and suppose new-el /∈ Set, i.e. {new-el} /∈ P,
— then the following constructs a partition of Set ∪ {new-el} obtained by
— inserting a new class {new-el} and leaving all previous classes unchanged.
(insert {new-el} P)
— Let P be a partition of a set Set,
— and suppose new-el /∈ Set,
— then the following constructs
— the set of those partitions of Set ∪ {new-el} obtained by
— inserting new-el into one class of P at a time.
((insert-into-member new-el P) ‘ P)

the list variant of coarser-partitions-with
definition coarser-partitions-with-list :: ′a ⇒ ′a set list ⇒ ′a set list list

where coarser-partitions-with-list new-el P =
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— Let P be a partition of a set Set,
— and suppose new-el /∈ Set, i.e. {new-el} /∈ set P,
— then the following constructs a partition of Set ∪ {new-el} obtained by
— inserting a new class {new-el} and leaving all previous classes unchanged.
({new-el} # P)
#
— Let P be a partition of a set Set,
— and suppose new-el /∈ Set,
— then the following constructs
— the set of those partitions of Set ∪ {new-el} obtained by
— inserting new-el into one class of P at a time.
(map ((insert-into-member-list new-el P)) P)

coarser-partitions-with-list and coarser-partitions-with are equivalent.
lemma coarser-partitions-with-list-equivalence:

assumes distinct P
shows set (map set (coarser-partitions-with-list new-el P)) =

coarser-partitions-with new-el (set P)
proof −
have set (map set (coarser-partitions-with-list new-el P)) = set (map set (({new-el}

# P) # (map ((insert-into-member-list new-el P)) P)))
unfolding coarser-partitions-with-list-def ..

also have . . . = insert (insert {new-el} (set P)) ((set ◦ (insert-into-member-list
new-el P)) ‘ set P)

by simp
also have . . . = insert (insert {new-el} (set P)) ((insert-into-member new-el (set

P)) ‘ set P)
using assms insert-into-member-list-equivalence by (metis comp-apply)

finally show ?thesis unfolding coarser-partitions-with-def .
qed

Any member of the set of coarser partitions of a given partition, obtained by
inserting a given fresh element into each of its classes, is non_overlapping.
lemma non-overlapping-extension3 :

fixes elem:: ′a
and P:: ′a set set
and Q:: ′a set set

assumes P-non-overlapping: is-non-overlapping P
and new-elem: elem /∈

⋃
P

and Q-coarser : Q ∈ coarser-partitions-with elem P
shows is-non-overlapping Q

proof −
let ?q = insert {elem} P
have Q-coarser-unfolded: Q ∈ insert ?q (insert-into-member elem P ‘ P)

using Q-coarser
unfolding coarser-partitions-with-def
by fast

show ?thesis
proof (cases Q = ?q)
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case True
then show ?thesis

using P-non-overlapping new-elem non-overlapping-extension1
by fastforce

next
case False
then have Q ∈ (insert-into-member elem P) ‘ P using Q-coarser-unfolded by

fastforce
then show ?thesis using non-overlapping-extension2 P-non-overlapping new-elem

by fast
qed

qed

Let P be a partition of a set S, and elem an element (which may or may not
be in S already). Then, any member of coarser-partitions-with elem P is a
set of sets whose union is S ∪ {elem}, i.e. it satisfies one of the necessary
criteria for being a partition of S ∪ {elem}.
lemma coarser-partitions-covers:

fixes elem:: ′a
and P:: ′a set set
and Q:: ′a set set

assumes Q ∈ coarser-partitions-with elem P
shows

⋃
Q = insert elem (

⋃
P)

proof −
let ?S =

⋃
P

have Q-cases: Q ∈ (insert-into-member elem P) ‘ P ∨ Q = insert {elem} P
using assms unfolding coarser-partitions-with-def by fast

{
fix eq-class assume eq-class-in-P: eq-class ∈ P
have

⋃
(insert (eq-class ∪ {elem}) (P − {eq-class})) = ?S ∪ (eq-class ∪

{elem})
using insert-into-member-partition1

by (metis Sup-insert Un-commute Un-empty-right Un-insert-right insert-Diff-single)
with eq-class-in-P have

⋃
(insert (eq-class ∪ {elem}) (P − {eq-class})) = ?S

∪ {elem} by blast
then have

⋃
(insert-into-member elem P eq-class) = ?S ∪ {elem}

using insert-into-member-partition1
by (rule subst)

}
then show ?thesis using Q-cases by blast

qed

Removes the element elem from every set in P, and removes from P any
remaining empty sets. This function is intended to be applied to parti-
tions, i.e. elem occurs in at most one set. partition-without e reverses
coarser-partitions-with e. coarser-partitions-with is one-to-many, while this
is one-to-one, so we can think of a tree relation, where coarser partitions of
a set S ∪ {elem} are child nodes of one partition of S.
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definition partition-without :: ′a ⇒ ′a set set ⇒ ′a set set
where partition-without elem P = (λX . X − {elem}) ‘ P − {{}}

alternative characterization of the set partitioned by the partition obtained
by removing an element from a given partition using partition-without
lemma partition-without-covers:

fixes elem:: ′a
and P:: ′a set set

shows
⋃

(partition-without elem P) = (
⋃

P) − {elem}
proof −

have
⋃

(partition-without elem P) =
⋃

((λx . x − {elem}) ‘ P − {{}})
unfolding partition-without-def by fast

also have . . . =
⋃

P − {elem} by blast
finally show ?thesis .

qed

Any class of the partition obtained by removing an element elem from an
original partition P using partition-without equals some class of P, reduced
by elem.
lemma super-class:

assumes X ∈ partition-without elem P
obtains Z where Z ∈ P and X = Z − {elem}

proof −
from assms have X ∈ (λX . X − {elem}) ‘ P − {{}} unfolding parti-

tion-without-def .
then obtain Z where Z-in-P: Z ∈ P and Z-sup: X = Z − {elem}

by (metis (lifting) Diff-iff image-iff )
then show ?thesis ..

qed

The class of sets obtained by removing an element from a non-overlapping
class is another non-overlapping clas.
lemma non-overlapping-without-is-non-overlapping:

fixes elem:: ′a
and P:: ′a set set

assumes is-non-overlapping P
shows is-non-overlapping (partition-without elem P) (is is-non-overlapping ?Q)

proof −
have ∀ X1 ∈ ?Q. ∀ X2 ∈ ?Q. X1 ∩ X2 6= {} ←→ X1 = X2
proof

fix X1 assume X1-in-Q: X1 ∈ ?Q
then obtain Z1 where Z1-in-P: Z1 ∈ P and Z1-sup: X1 = Z1 − {elem}

by (rule super-class)
have X1-non-empty: X1 6= {} using X1-in-Q partition-without-def by fast
show ∀ X2 ∈ ?Q. X1 ∩ X2 6= {} ←→ X1 = X2
proof

fix X2 assume X2 ∈ ?Q
then obtain Z2 where Z2-in-P: Z2 ∈ P and Z2-sup: X2 = Z2 − {elem}

17



by (rule super-class)
have X1 ∩ X2 6= {} −→ X1 = X2
proof

assume X1 ∩ X2 6= {}
then have Z1 ∩ Z2 6= {} using Z1-sup Z2-sup by fast

then have Z1 = Z2 using Z1-in-P Z2-in-P assms unfolding is-non-overlapping-def
by fast

then show X1 = X2 using Z1-sup Z2-sup by fast
qed
moreover have X1 = X2 −→ X1 ∩ X2 6= {} using X1-non-empty by auto
ultimately show (X1 ∩ X2 6= {}) ←→ X1 = X2 by blast

qed
qed
then show ?thesis unfolding is-non-overlapping-def .

qed

coarser-partitions-with elem is the “inverse” of partition-without elem.
lemma coarser-partitions-inv-without:

fixes elem:: ′a
and P:: ′a set set

assumes non-overlapping: is-non-overlapping P
and elem: elem ∈

⋃
P

shows P ∈ coarser-partitions-with elem (partition-without elem P)
(is P ∈ coarser-partitions-with elem ?Q)

proof −
let ?remove-elem = λX . X − {elem}
obtain Y

where elem-eq-class: elem ∈ Y and elem-eq-class ′: Y ∈ P using elem ..
let ?elem-neq-classes = P − {Y }
have P-wrt-elem: P = ?elem-neq-classes ∪ {Y } using elem-eq-class ′ by blast
let ?elem-eq = Y − {elem}
have Y-elem-eq: ?remove-elem ‘ {Y } = {?elem-eq} by fast

have elem-neq-classes-part: is-non-overlapping ?elem-neq-classes
using subset-is-non-overlapping non-overlapping
by blast

have elem-eq-wrt-P: ?elem-eq ∈ ?remove-elem ‘ P using elem-eq-class ′ by blast

{
fix W assume W-eq-class: W ∈ ?elem-neq-classes
then have elem /∈ W

using elem-eq-class elem-eq-class ′ non-overlapping is-non-overlapping-def
by fast

then have ?remove-elem W = W by simp
}
then have elem-neq-classes-id: ?remove-elem ‘ ?elem-neq-classes = ?elem-neq-classes

by fastforce

have Q-unfolded: ?Q = ?remove-elem ‘ P − {{}}
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unfolding partition-without-def
using image-Collect-mem
by blast

also have . . . = ?remove-elem ‘ (?elem-neq-classes ∪ {Y }) − {{}} using P-wrt-elem
by presburger

also have . . . = ?elem-neq-classes ∪ {?elem-eq} − {{}}
using Y-elem-eq elem-neq-classes-id image-Un by metis

finally have Q-wrt-elem: ?Q = ?elem-neq-classes ∪ {?elem-eq} − {{}} .

have ?elem-eq = {} ∨ ?elem-eq /∈ P
using elem-eq-class elem-eq-class ′ non-overlapping Diff-Int-distrib2 Diff-iff empty-Diff

insert-iff
unfolding is-non-overlapping-def by metis

then have ?elem-eq /∈ P
using non-overlapping no-empty-in-non-overlapping
by metis

then have elem-neq-classes: ?elem-neq-classes − {?elem-eq} = ?elem-neq-classes
by fastforce

show ?thesis
proof cases

assume ?elem-eq /∈ ?Q
then have ?elem-eq ∈ {{}}

using elem-eq-wrt-P Q-unfolded
by (metis DiffI )

then have Y-singleton: Y = {elem} using elem-eq-class by fast
then have ?Q = ?elem-neq-classes − {{}}

using Q-wrt-elem
by force

then have ?Q = ?elem-neq-classes
using no-empty-in-non-overlapping elem-neq-classes-part
by blast

then have insert {elem} ?Q = P
using Y-singleton elem-eq-class ′

by fast
then show ?thesis unfolding coarser-partitions-with-def by auto

next
assume True: ¬ ?elem-eq /∈ ?Q

hence Y ′: ?elem-neq-classes ∪ {?elem-eq} − {{}} = ?elem-neq-classes ∪
{?elem-eq}

using no-empty-in-non-overlapping non-overlapping non-overlapping-without-is-non-overlapping
by force

have insert-into-member elem ({?elem-eq} ∪ ?elem-neq-classes) ?elem-eq =
insert (?elem-eq ∪ {elem}) (({?elem-eq} ∪ ?elem-neq-classes) − {?elem-eq})

unfolding insert-into-member-def ..
also have . . . = ({} ∪ ?elem-neq-classes) ∪ {?elem-eq ∪ {elem}} using

elem-neq-classes by force
also have . . . = ?elem-neq-classes ∪ {Y } using elem-eq-class by blast

finally have insert-into-member elem ({?elem-eq} ∪ ?elem-neq-classes) ?elem-eq
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= ?elem-neq-classes ∪ {Y } .
then have ?elem-neq-classes ∪ {Y } = insert-into-member elem ?Q ?elem-eq

using Q-wrt-elem Y ′ partition-without-def
by force

then have {Y } ∪ ?elem-neq-classes ∈ insert-into-member elem ?Q ‘ ?Q using
True by blast

then have {Y } ∪ ?elem-neq-classes ∈ coarser-partitions-with elem ?Q unfold-
ing coarser-partitions-with-def by simp

then show ?thesis using P-wrt-elem by simp
qed

qed

Given a set Ps of partitions, this is intended to compute the set of all coarser
partitions (given an extension element) of all partitions in Ps.
definition all-coarser-partitions-with :: ′a ⇒ ′a set set set ⇒ ′a set set set

where all-coarser-partitions-with elem Ps =
⋃

(coarser-partitions-with elem ‘
Ps)

the list variant of all-coarser-partitions-with
definition all-coarser-partitions-with-list :: ′a ⇒ ′a set list list ⇒ ′a set list list

where all-coarser-partitions-with-list elem Ps =
concat (map (coarser-partitions-with-list elem) Ps)

all-coarser-partitions-with-list and all-coarser-partitions-with are equivalent.
lemma all-coarser-partitions-with-list-equivalence:

fixes elem:: ′a
and Ps:: ′a set list list

assumes distinct: ∀ P ∈ set Ps . distinct P
shows set (map set (all-coarser-partitions-with-list elem Ps)) = all-coarser-partitions-with

elem (set (map set Ps))
(is ?list-expr = ?set-expr)

proof −
have ?list-expr = set (map set (concat (map (coarser-partitions-with-list elem)

Ps)))
unfolding all-coarser-partitions-with-list-def ..

also have . . . = set ‘ (
⋃

x ∈ (coarser-partitions-with-list elem) ‘ (set Ps) . set
x) by simp

also have . . . = set ‘ (
⋃

x ∈ { coarser-partitions-with-list elem P | P . P ∈ set
Ps } . set x)

by (simp add: image-Collect-mem)
also have . . . =

⋃
{ set (map set (coarser-partitions-with-list elem P)) | P . P

∈ set Ps } by auto
also have . . . =

⋃
{ coarser-partitions-with elem (set P) | P . P ∈ set Ps }

using distinct coarser-partitions-with-list-equivalence by fast
also have . . . =

⋃
(coarser-partitions-with elem ‘ (set ‘ (set Ps))) by (simp add:

image-Collect-mem)
also have . . . =

⋃
(coarser-partitions-with elem ‘ (set (map set Ps))) by simp

also have . . . = ?set-expr unfolding all-coarser-partitions-with-def ..
finally show ?thesis .
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qed

all partitions of a set (given as list) in form of a set
fun all-partitions-set :: ′a list ⇒ ′a set set set

where
all-partitions-set [] = {{}} |
all-partitions-set (e # X) = all-coarser-partitions-with e (all-partitions-set X)

all partitions of a set (given as list) in form of a list
fun all-partitions-list :: ′a list ⇒ ′a set list list

where
all-partitions-list [] = [[]] |
all-partitions-list (e # X) = all-coarser-partitions-with-list e (all-partitions-list

X)

A list of partitions coarser than a given partition in list representation (con-
structed with coarser-partitions-with is distinct under certain conditions.
lemma coarser-partitions-with-list-distinct:

fixes ps
assumes ps-coarser : ps ∈ set (coarser-partitions-with-list x Q)

and distinct: distinct Q
and partition: is-non-overlapping (set Q)
and new: {x} /∈ set Q

shows distinct ps
proof −
have set (coarser-partitions-with-list x Q) = insert ({x} # Q) (set (map (insert-into-member-list

x Q) Q))
unfolding coarser-partitions-with-list-def by simp

with ps-coarser have ps ∈ insert ({x} # Q) (set (map ((insert-into-member-list
x Q)) Q)) by blast

then show ?thesis
proof

assume ps = {x} # Q
with distinct and new show ?thesis by simp

next
assume ps ∈ set (map (insert-into-member-list x Q) Q)

then obtain X where X-in-Q: X ∈ set Q and ps-insert: ps = insert-into-member-list
x Q X by auto

from ps-insert have ps = (X ∪ {x}) # (remove1 X Q) unfolding in-
sert-into-member-list-def .

also have . . . = (X ∪ {x}) # (removeAll X Q) using distinct by (metis
distinct-remove1-removeAll)

finally have ps-list: ps = (X ∪ {x}) # (removeAll X Q) .

have distinct-tl: X ∪ {x} /∈ set (removeAll X Q)
proof

from partition have partition ′: ∀ x∈set Q. ∀ y∈set Q. (x ∩ y 6= {}) = (x =
y) unfolding is-non-overlapping-def .

assume X ∪ {x} ∈ set (removeAll X Q)
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with X-in-Q partition show False by (metis partition ′ inf-sup-absorb mem-
ber-remove no-empty-in-non-overlapping remove-code(1 ))

qed
with ps-list distinct show ?thesis by (metis (full-types) distinct.simps(2 ) dis-

tinct-removeAll)
qed

qed

The classical definition all-partitions and the algorithmic (constructive) def-
inition all-partitions-list are equivalent.
lemma all-partitions-equivalence ′:

fixes xs:: ′a list
shows distinct xs =⇒

((set (map set (all-partitions-list xs)) =
all-partitions (set xs)) ∧ (∀ ps ∈ set (all-partitions-list xs) . distinct ps))

proof (induct xs)
case Nil
have set (map set (all-partitions-list [])) = all-partitions (set [])

unfolding List.set-simps(1 ) emptyset-part-emptyset3 by simp

moreover have ∀ ps ∈ set (all-partitions-list []) . distinct ps by fastforce
ultimately show ?case ..

next
case (Cons x xs)
from Cons.prems Cons.hyps
have hyp-equiv: set (map set (all-partitions-list xs)) = all-partitions (set xs) by

simp
from Cons.prems Cons.hyps

have hyp-distinct: ∀ ps ∈ set (all-partitions-list xs) . distinct ps by simp

have distinct-xs: distinct xs using Cons.prems by simp
have x-notin-xs: x /∈ set xs using Cons.prems by simp

have set (map set (all-partitions-list (x # xs))) = all-partitions (set (x # xs))
proof (rule equalitySubsetI )

fix P:: ′a set set
let ?P-without-x = partition-without x P

have P-partitions-exc-x:
⋃

?P-without-x =
⋃

P − {x} using partition-without-covers
.

assume P ∈ all-partitions (set (x # xs))
then have is-partition-of : P partitions (set (x # xs)) unfolding all-partitions-def

..
then have is-non-overlapping: is-non-overlapping P unfolding is-partition-of-def

by simp
from is-partition-of have P-covers:

⋃
P = set (x # xs) unfolding is-partition-of-def

by simp

have ?P-without-x partitions (set xs)
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unfolding is-partition-of-def
using is-non-overlapping non-overlapping-without-is-non-overlapping parti-

tion-without-covers P-covers x-notin-xs
by (metis Diff-insert-absorb List.set-simps(2 ))

with hyp-equiv have p-list: ?P-without-x ∈ set (map set (all-partitions-list xs))
unfolding all-partitions-def by fast

have P ∈ coarser-partitions-with x ?P-without-x
using coarser-partitions-inv-without is-non-overlapping P-covers
by (metis List.set-simps(2 ) insertI1 )

then have P ∈
⋃

(coarser-partitions-with x ‘ set (map set (all-partitions-list
xs)))

using p-list by blast
then have P ∈ all-coarser-partitions-with x (set (map set (all-partitions-list

xs)))
unfolding all-coarser-partitions-with-def by fast

then show P ∈ set (map set (all-partitions-list (x # xs)))
using all-coarser-partitions-with-list-equivalence hyp-distinct
by (metis all-partitions-list.simps(2 ))

next
fix P:: ′a set set
assume P: P ∈ set (map set (all-partitions-list (x # xs)))

have set (map set (all-partitions-list (x # xs))) = set (map set (all-coarser-partitions-with-list
x (all-partitions-list xs)))

by simp
also have . . . = all-coarser-partitions-with x (set (map set (all-partitions-list

xs)))
using distinct-xs hyp-distinct all-coarser-partitions-with-list-equivalence by

fast
also have . . . = all-coarser-partitions-with x (all-partitions (set xs))

using distinct-xs hyp-equiv by auto
finally have P-set: set (map set (all-partitions-list (x # xs))) = all-coarser-partitions-with

x (all-partitions (set xs)) .

with P have P ∈ all-coarser-partitions-with x (all-partitions (set xs)) by fast
then have P ∈

⋃
(coarser-partitions-with x ‘ (all-partitions (set xs)))

unfolding all-coarser-partitions-with-def .
then obtain Y

where P-in-Y : P ∈ Y
and Y-coarser : Y ∈ coarser-partitions-with x ‘ (all-partitions (set xs)) ..

from Y-coarser obtain Q
where Q-part-xs: Q ∈ all-partitions (set xs)

and Y-coarser ′: Y = coarser-partitions-with x Q ..
from P-in-Y Y-coarser ′ have P-wrt-Q: P ∈ coarser-partitions-with x Q by fast
then have Q ∈ all-partitions (set xs) using Q-part-xs by simp
then have Q partitions (set xs) unfolding all-partitions-def ..
then have is-non-overlapping Q and Q-covers:

⋃
Q = set xs

unfolding is-partition-of-def by simp-all
then have P-partition: is-non-overlapping P
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using non-overlapping-extension3 P-wrt-Q x-notin-xs by fast
have

⋃
P = set xs ∪ {x}

using Q-covers P-in-Y Y-coarser ′ coarser-partitions-covers by fast
then have

⋃
P = set (x # xs)

using x-notin-xs P-wrt-Q Q-covers
by (metis List.set-simps(2 ) insert-is-Un sup-commute)

then have P partitions (set (x # xs))
using P-partition unfolding is-partition-of-def by blast

then show P ∈ all-partitions (set (x # xs)) unfolding all-partitions-def ..
qed
moreover have ∀ ps ∈ set (all-partitions-list (x # xs)) . distinct ps
proof

fix ps:: ′a set list assume ps-part: ps ∈ set (all-partitions-list (x # xs))

have set (all-partitions-list (x # xs)) = set (all-coarser-partitions-with-list x
(all-partitions-list xs))

by simp
also have . . . = set (concat (map (coarser-partitions-with-list x) (all-partitions-list

xs)))
unfolding all-coarser-partitions-with-list-def ..

also have . . . =
⋃

((set ◦ (coarser-partitions-with-list x)) ‘ (set (all-partitions-list
xs)))

by simp
finally have all-parts-unfolded: set (all-partitions-list (x # xs)) =

⋃
((set ◦

(coarser-partitions-with-list x)) ‘ (set (all-partitions-list xs))) .

with ps-part obtain qs
where qs: qs ∈ set (all-partitions-list xs)

and ps-coarser : ps ∈ set (coarser-partitions-with-list x qs)
using UnionE comp-def imageE by auto

from qs have set qs ∈ set (map set (all-partitions-list (xs))) by simp
with distinct-xs hyp-equiv have qs-hyp: set qs ∈ all-partitions (set xs) by fast
then have qs-part: is-non-overlapping (set qs)

using all-partitions-def is-partition-of-def
by (metis mem-Collect-eq)

then have distinct-qs: distinct qs
using qs distinct-xs hyp-distinct by fast

from Cons.prems have x /∈ set xs by simp
then have new: {x} /∈ set qs

using qs-hyp
unfolding all-partitions-def is-partition-of-def
by (metis (lifting, mono-tags) UnionI insertI1 mem-Collect-eq)

from ps-coarser distinct-qs qs-part new
show distinct ps by (rule coarser-partitions-with-list-distinct)

qed
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ultimately show ?case ..
qed

The classical definition all-partitions and the algorithmic (constructive) def-
inition all-partitions-list are equivalent. This is a front-end theorem derived
from distinct ?xs =⇒ set (map set (all-partitions-list ?xs)) = all-partitions
(set ?xs) ∧ (∀ ps∈set (all-partitions-list ?xs). distinct ps); it does not make
the auxiliary statement about partitions being distinct lists.
theorem all-partitions-paper-equiv-alg:

fixes xs:: ′a list
shows distinct xs =⇒ set (map set (all-partitions-list xs)) = all-partitions (set

xs)
using all-partitions-equivalence ′ by blast

The function that we will be using in practice to compute all partitions of
a set, a set-oriented front-end to all-partitions-list
definition all-partitions-alg :: ′a::linorder set ⇒ ′a set list list

where all-partitions-alg X = all-partitions-list (sorted-list-of-set X)

end

4 Locus where a function or a list (of linord type)
attains its maximum value

theory Argmax
imports Main

begin

Structural induction is used in proofs on lists.
lemma structInduct: assumes P [] and ∀ x xs. P (xs) −→ P (x#xs)

shows P l
using assms list-nonempty-induct by (metis)

the subset of elements of a set where a function reaches its maximum
fun argmax :: ( ′a ⇒ ′b::linorder) ⇒ ′a set ⇒ ′a set

where argmax f A = { x ∈ A . f x = Max (f ‘ A) }

lemma argmaxLemma: argmax f A = { x ∈ A . f x = Max (f ‘ A) }
by simp

lemma maxLemma:
assumes x ∈ X finite X
shows Max (f‘X) >= f x
(is ?L >= ?R) using assms
by (metis (opaque-lifting, no-types) Max.coboundedI finite-imageI image-eqI )
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lemma lm01 :
argmax f A = A ∩ f −‘ {Max (f ‘ A)}
by force

lemma lm02 :
assumes y ∈ f‘A
shows A ∩ f −‘ {y} 6= {}
using assms by blast

lemma argmaxEquivalence:
assumes ∀ x∈X . f x = g x
shows argmax f X = argmax g X
using assms argmaxLemma Collect-cong image-cong
by (metis(no-types,lifting))

The arg max of a function over a non-empty set is non-empty.
corollary argmax-non-empty-iff : assumes finite X X 6= {}

shows argmax f X 6={}
using assms Max-in finite-imageI image-is-empty lm01

lm02
by (metis(no-types))

The previous definition of argmax operates on sets. In the following we
define a corresponding notion on lists. To this end, we start with defining a
filter predicate and are looking for the elements of a list satisfying a given
predicate; but, rather than returning them directly, we return the (sorted)
list of their indices. This is done, in different ways, by filterpositions and
filterpositions2.
definition filterpositions :: ( ′a => bool) => ′a list => nat list

where filterpositions P l = map snd (filter (P o fst) (zip l (upt 0 (size
l))))

definition filterpositions2
where filterpositions2 P l = [n. n ← [0 ..<size l], P (l!n)]

definition maxpositions
where maxpositions l = filterpositions2 (%x . x ≥ Max (set l)) l

lemma lm03 : maxpositions l = [n. n←[0 ..<size l], l!n ≥ Max(set l)]
unfolding maxpositions-def filterpositions2-def by fastforce

definition argmaxList
where argmaxList f l = map (nth l) (maxpositions (map f l))
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lemma lm04 : [n . n <− l, P n] = [n . n <− l, n ∈ set l, P n]
proof −

have map (λuu. if P uu then [uu] else []) l =
map (λuu. if uu ∈ set l then if P uu then [uu] else [] else []) l by simp

thus concat (map (λn. if P n then [n] else []) l) =
concat (map (λn. if n ∈ set l then if P n then [n] else [] else []) l) by presburger

qed

lemma lm05 : [n . n <− [0 ..<m], P n] = [n . n <− [0 ..<m], n ∈ set [0 ..<m], P
n]

using lm04 by fast

lemma lm06 : fixes f m P
shows (map f [n . n <− [0 ..<m], P n]) = [ f n . n <− [0 ..<m], P n]

by (induct m) auto

lemma map-commutes-a: [f n . n <− [], Q (f n)] = [x <− (map f []). Q x]
by simp

lemma map-commutes-b: ∀ x xs. ([f n . n <− xs, Q (f n)] = [x <− (map f
xs). Q x ] −→

[f n . n <− (x#xs), Q (f n)] = [x <− (map f (x#xs)).
Q x])

by simp

lemma map-commutes: fixes f :: ′a => ′b fixes Q:: ′b => bool fixes xs:: ′a list
shows [f n . n <− xs, Q (f n)] = [x <− (map f xs). Q x]

using map-commutes-a map-commutes-b structInduct by fast

lemma lm07 : fixes f l
shows maxpositions (map f l) =

[n . n <− [0 ..<size l], f (l!n) ≥ Max (f‘(set l))]
(is maxpositions (?fl) = -)

proof −
have maxpositions ?fl =
[n. n <− [0 ..<size ?fl], n∈ set[0 ..<size ?fl], ?fl!n ≥ Max (set ?fl)]
using lm04 unfolding filterpositions2-def maxpositions-def .
also have ... =
[n . n <− [0 ..<size l], (n<size l), (?fl!n ≥ Max (set ?fl))] by simp
also have ... =
[n . n <− [0 ..<size l], (n<size l) ∧ (f (l!n) ≥ Max (set ?fl))]
using nth-map by (metis (poly-guards-query, opaque-lifting)) also have ... =
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[n . n <− [0 ..<size l], (n∈ set [0 ..<size l]),(f (l!n) ≥ Max (set ?fl))]
using atLeastLessThan-iff le0 set-upt by (metis(no-types))
also have ... =
[n . n <− [0 ..<size l], f (l!n) ≥ Max (set ?fl)] using lm05 by presburger
finally show ?thesis by auto

qed

lemma lm08 : fixes f l
shows argmaxList f l =

[ l!n . n <− [0 ..<size l], f (l!n) ≥ Max (f‘(set l))]
unfolding lm07 argmaxList-def by (metis lm06 )

The theorem expresses that argmaxList is the list of arguments greater equal
the Max of the list.
theorem argmaxadequacy: fixes f :: ′a => ( ′b::linorder) fixes l:: ′a list

shows argmaxList f l = [ x <− l. f x ≥ Max (f‘(set l))]
(is ?lh=-)

proof −
let ?P=% y::( ′b::linorder) . y ≥ Max (f‘(set l))
let ?mh=[nth l n . n <− [0 ..<size l], ?P (f (nth l n))]
let ?rh=[ x <− (map (nth l) [0 ..<size l]). ?P (f x)]
have ?lh = ?mh using lm08 by fast
also have ... = ?rh using map-commutes by fast
also have ...= [x <− l. ?P (f x)] using map-nth by metis
finally show ?thesis by force

qed

end

5 Additional operators on relations, going beyond
Relations.thy, and properties of these operators

theory RelationOperators
imports

SetUtils
HOL−Library.Code-Target-Nat

begin

5.1 Evaluating a relation as a function

If an input has a unique image element under a given relation, return that
element; otherwise return a fallback value.
fun eval-rel-or :: ( ′a × ′b) set ⇒ ′a ⇒ ′b ⇒ ′b

where eval-rel-or R a z = (let im = R ‘‘ {a} in if card im = 1 then the-elem im
else z)
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right-uniqueness of a relation: the image of a trivial set (i.e. an empty or
singleton set) under the relation is trivial again. This is the set-theoretical
way of characterizing functions, as opposed to λ functions.
definition runiq :: ( ′a × ′b) set ⇒ bool

where runiq R = (∀ X . trivial X −→ trivial (R ‘‘ X))

5.2 Restriction

restriction of a relation to a set (usually resulting in a relation with a smaller
domain)
definition restrict :: ( ′a × ′b) set ⇒ ′a set ⇒ ( ′a × ′b) set (infix ‹||› 75 )

where R || X = (X × Range R) ∩ R

extensional characterization of the pairs within a restricted relation
lemma restrict-ext: R || X = {(x, y) | x y . x ∈ X ∧ (x, y) ∈ R}

unfolding restrict-def using Range-iff by blast

alternative statement of ?R || ?X = {(x, y) |x y. x ∈ ?X ∧ (x, y) ∈ ?R}
without explicitly naming the pair’s components
lemma restrict-ext ′: R || X = {p . fst p ∈ X ∧ p ∈ R}
proof −

have R || X = {(x, y) | x y . x ∈ X ∧ (x, y) ∈ R} by (rule restrict-ext)
also have . . . = { p . fst p ∈ X ∧ p ∈ R } by force
finally show ?thesis .

qed

Restricting a relation to the empty set yields the empty set.
lemma restrict-empty: P || {} = {}

unfolding restrict-def by simp

A restriction is a subrelation of the original relation.
lemma restriction-is-subrel: P || X ⊆ P

using restrict-def by blast

Restricting a relation only has an effect within its domain.
lemma restriction-within-domain: P || X = P || (X ∩ (Domain P))

unfolding restrict-def by fast

alternative characterization of the restriction of a relation to a singleton set
lemma restrict-to-singleton: P || {x} = {x} × (P ‘‘ {x})

unfolding restrict-def by fast

5.3 Relation outside some set

For a set-theoretical relation R and an “exclusion” set X, return those tuples
of R whose first component is not in X. In other words, exclude X from the
domain of R.
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definition Outside :: ( ′a × ′b) set ⇒ ′a set ⇒ ( ′a × ′b) set (infix ‹outside› 75 )
where R outside X = R − (X × Range R)

Considering a relation outside some set X reduces its domain by X.
lemma outside-reduces-domain: Domain (P outside X) = (Domain P) − X

unfolding Outside-def by fast

Considering a relation outside a singleton set {x} reduces its domain by x.
corollary Domain-outside-singleton:

assumes Domain R = insert x A
and x /∈ A

shows Domain (R outside {x}) = A
using assms outside-reduces-domain by (metis Diff-insert-absorb)

For any set, a relation equals the union of its restriction to that set and its
pairs outside that set.
lemma outside-union-restrict: P = (P outside X) ∪ (P || X)

unfolding Outside-def restrict-def by fast

The range of a relation R outside some exclusion set X is a subset of the
image of the domain of R, minus X, under R.
lemma Range-outside-sub-Image-Domain: Range (R outside X) ⊆ R ‘‘ (Domain
R − X)

using Outside-def Image-def Domain-def Range-def by blast

Considering a relation outside some set does not enlarge its range.
lemma Range-outside-sub:

assumes Range R ⊆ Y
shows Range (R outside X) ⊆ Y
using assms outside-union-restrict by (metis Range-mono inf-sup-ord(3 ) sub-

set-trans)

5.4 Flipping pairs of relations

flipping a pair: exchanging first and second component
definition flip where flip tup = (snd tup, fst tup)

Flipped pairs can be found in the converse relation.
lemma flip-in-conv:

assumes tup ∈ R
shows flip tup ∈ R−1

using assms unfolding flip-def by simp

Flipping a pair twice doesn’t change it.
lemma flip-flip: flip (flip tup) = tup

by (metis flip-def fst-conv snd-conv surjective-pairing)
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Flipping all pairs in a relation yields the converse relation.
lemma flip-conv: flip ‘ R = R−1

proof −
have flip ‘ R = { flip tup | tup . tup ∈ R } by (metis image-Collect-mem)
also have . . . = { tup . tup ∈ R−1 } using flip-in-conv by (metis converse-converse

flip-flip)
also have . . . = R−1 by simp
finally show ?thesis .

qed

5.5 Evaluation as a function

Evaluates a relation R for a single argument, as if it were a function. This
will only work if R is right-unique, i.e. if the image is always a singleton set.
fun eval-rel :: ( ′a × ′b) set ⇒ ′a ⇒ ′b (infix ‹,,› 75 )

where R ,, a = the-elem (R ‘‘ {a})

5.6 Paste

the union of two binary relations P and Q, where pairs from Q override
pairs from P when their first components coincide. This is particularly
useful when P, Q are runiq, and one wants to preserve that property.
definition paste (infix ‹+∗› 75 )

where P +∗ Q = (P outside Domain Q) ∪ Q

If a relation P is a subrelation of another relation Q on Q’s domain, pasting
Q on P is the same as forming their union.
lemma paste-subrel:

assumes P || Domain Q ⊆ Q
shows P +∗ Q = P ∪ Q
unfolding paste-def using assms outside-union-restrict by blast

Pasting two relations with disjoint domains is the same as forming their
union.
lemma paste-disj-domains:

assumes Domain P ∩ Domain Q = {}
shows P +∗ Q = P ∪ Q
unfolding paste-def Outside-def using assms by fast

A relation P is equivalent to pasting its restriction to some set X on P
outside X.
lemma paste-outside-restrict: P = (P outside X) +∗ (P || X)
proof −

have Domain (P outside X) ∩ Domain (P || X) = {}
unfolding Outside-def restrict-def by fast

moreover have P = P outside X ∪ P || X by (rule outside-union-restrict)
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ultimately show ?thesis using paste-disj-domains by metis
qed

The domain of two pasted relations equals the union of their domains.
lemma paste-Domain: Domain(P +∗ Q)=Domain P∪Domain Q unfolding paste-def
Outside-def by blast

Pasting two relations yields a subrelation of their union.
lemma paste-sub-Un: P +∗ Q ⊆ P ∪ Q

unfolding paste-def Outside-def by fast

The range of two pasted relations is a subset of the union of their ranges.
lemma paste-Range: Range (P +∗ Q) ⊆ Range P ∪ Range Q

using paste-sub-Un by blast
end

6 Additional properties of relations, and opera-
tors on relations, as they have been defined by
Relations.thy

theory RelationProperties
imports

RelationOperators

begin

6.1 Right-Uniqueness
lemma injflip: inj-on flip A

by (metis flip-flip inj-on-def )

lemma lm01 : card P = card (P^−1 )
using card-image flip-conv injflip by metis

lemma cardinalityOneTheElemIdentity: (card X = 1 ) = (X={the-elem X})
by (metis One-nat-def card-Suc-eq card.empty empty-iff the-elem-eq)

lemma lm02 : trivial X = (X={} ∨ card X=1 )
using cardinalityOneTheElemIdentity order-refl subset-singletonD trivial-def triv-

ial-empty by (metis(no-types))

lemma lm03 : trivial P = trivial (P^−1 )
using trivial-def subset-singletonD subset-refl subset-insertI cardinalityOneTheElemI-

dentity converse-inject
converse-empty lm01

by metis
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lemma restrictedRange: Range (P||X) = P‘‘X
unfolding restrict-def by blast

lemma doubleRestriction: ((P || X) || Y ) = (P || (X ∩ Y ))
unfolding restrict-def by fast

lemma restrictedDomain: Domain (R||X) = Domain R ∩ X
using restrict-def by fastforce

A subrelation of a right-unique relation is right-unique.
lemma subrel-runiq:

assumes runiq Q P ⊆ Q
shows runiq P
using assms runiq-def by (metis Image-mono subsetI trivial-subset)

lemma rightUniqueInjectiveOnFirstImplication:
assumes runiq P
shows inj-on fst P
unfolding inj-on-def
using assms runiq-def trivial-def trivial-imp-no-distinct

the-elem-eq surjective-pairing subsetI Image-singleton-iff
by (metis(no-types))

alternative characterization of right-uniqueness: the image of a singleton set
is trivial, i.e. an empty or a singleton set.
lemma runiq-alt: runiq R ←→ (∀ x . trivial (R ‘‘ {x}))

unfolding runiq-def by (metis Image-empty2 trivial-empty-or-singleton triv-
ial-singleton)

an alternative definition of right-uniqueness in terms of (,,)

lemma runiq-wrt-eval-rel: runiq R = (∀ x . R ‘‘ {x} ⊆ {R ,, x})
by (metis eval-rel.simps runiq-alt trivial-def )

lemma rightUniquePair :
assumes runiq f
assumes (x,y)∈f
shows y=f ,,x
using assms runiq-wrt-eval-rel subset-singletonD Image-singleton-iff equals0D sin-

gletonE
by fast

lemma runiq-basic: runiq R ←→ (∀ x y y ′ . (x, y) ∈ R ∧ (x, y ′) ∈ R −→ y = y ′)

unfolding runiq-alt trivial-same by blast

lemma rightUniqueFunctionAfterInverse:
assumes runiq f
shows f‘‘(f^−1‘‘Y ) ⊆ Y
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using assms runiq-basic ImageE converse-iff subsetI by (metis(no-types))

lemma lm04 :
assumes runiq f y1 ∈ Range f
shows (f^−1 ‘‘ {y1} ∩ f^−1 ‘‘ {y2} 6= {}) = (f^−1‘‘{y1}=f^−1‘‘{y2})
using assms rightUniqueFunctionAfterInverse by fast

lemma converse-Image:
assumes runiq: runiq R

and runiq-conv: runiq (R^−1 )
shows (R^−1 ) ‘‘ R ‘‘ X ⊆ X
using assms by (metis converse-converse rightUniqueFunctionAfterInverse)

lemma lm05 :
assumes inj-on fst P
shows runiq P
unfolding runiq-basic
using assms fst-conv inj-on-def old.prod.inject
by (metis(no-types))

lemma rightUniqueInjectiveOnFirst: (runiq P) = (inj-on fst P)
using rightUniqueInjectiveOnFirstImplication lm05 by blast

lemma disj-Un-runiq:
assumes runiq P runiq Q (Domain P) ∩ (Domain Q) = {}
shows runiq (P ∪ Q)
using assms rightUniqueInjectiveOnFirst fst-eq-Domain injection-union by metis

lemma runiq-paste1 :
assumes runiq Q runiq (P outside Domain Q)
shows runiq (P +∗ Q)
unfolding paste-def
using assms disj-Un-runiq Diff-disjoint Un-commute outside-reduces-domain
by (metis (poly-guards-query))

corollary runiq-paste2 :
assumes runiq Q runiq P
shows runiq (P +∗ Q)
using assms runiq-paste1 subrel-runiq Diff-subset Outside-def
by (metis)

lemma rightUniqueRestrictedGraph: runiq {(x,f x)| x. P x}
unfolding runiq-basic by fast

lemma rightUniqueSetCardinality:
assumes x ∈ Domain R runiq R
shows card (R‘‘{x})=1
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using assms lm02 DomainE Image-singleton-iff empty-iff
by (metis runiq-alt)

The image of a singleton set under a right-unique relation is a singleton set.
lemma Image-runiq-eq-eval:

assumes x ∈ Domain R runiq R
shows R ‘‘ {x} = {R ,, x}
using assms rightUniqueSetCardinality
by (metis eval-rel.simps cardinalityOneTheElemIdentity)

lemma lm06 :
assumes trivial f
shows runiq f
using assms trivial-subset-non-empty runiq-basic snd-conv
by fastforce

A singleton relation is right-unique.
corollary runiq-singleton-rel: runiq {(x, y)}

using trivial-singleton lm06 by fast

The empty relation is right-unique
lemma runiq-emptyrel: runiq {}

using trivial-empty lm06 by blast

lemma runiq-wrt-ex1 :
runiq R ←→ (∀ a ∈ Domain R . ∃ ! b . (a, b) ∈ R)
using runiq-basic by (metis Domain.DomainI Domain.cases)

alternative characterization of the fact that, if a relation R is right-unique,
its evaluation R ,, x on some argument x in its domain, occurs in R’s range.
Note that we need runiq R in order to get a definite value for R ,, x
lemma eval-runiq-rel:

assumes domain: x ∈ Domain R
and runiq: runiq R

shows (x, R,,x) ∈ R
using assms by (metis rightUniquePair runiq-wrt-ex1 )

Evaluating a right-unique relation as a function on the relation’s domain
yields an element from its range.
lemma eval-runiq-in-Range:

assumes runiq R
and a ∈ Domain R

shows R ,, a ∈ Range R
using assms by (metis Range-iff eval-runiq-rel)
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6.2 Converse

The inverse image of the image of a singleton set under some relation is the
same singleton set, if both the relation and its converse are right-unique and
the singleton set is in the relation’s domain.
lemma converse-Image-singleton-Domain:

assumes runiq: runiq R
and runiq-conv: runiq (R−1)
and domain: x ∈ Domain R

shows R−1 ‘‘ R ‘‘ {x} = {x}
proof −

have sup: {x} ⊆ R−1 ‘‘ R ‘‘ {x} using domain by fast
have trivial (R ‘‘ {x}) using runiq domain by (metis runiq-def trivial-singleton)
then have trivial (R−1 ‘‘ R ‘‘ {x})

using assms runiq-def by blast
then show ?thesis

using sup by (metis singleton-sub-trivial-uniq subset-antisym trivial-def )
qed

The images of two disjoint sets under an injective function are disjoint.
lemma disj-Domain-imp-disj-Image:

assumes Domain R ∩ X ∩ Y = {}
assumes runiq R

and runiq (R−1)
shows (R ‘‘ X) ∩ (R ‘‘ Y ) = {}
using assms unfolding runiq-basic by blast

lemma runiq-converse-paste-singleton:
assumes runiq (P^−1 ) y /∈(Range P)
shows runiq ((P +∗ {(x,y)})−1)
(is ?u (?P^−1 ))

proof −
have (?P) ⊆ P ∪ {(x,y)} using assms by (metis paste-sub-Un)
then have ?P^−1 ⊆ P^−1 ∪ ({(x,y)}^−1 ) by blast
moreover have ... = P^−1 ∪ {(y,x)} by fast
moreover have Domain (P^−1 ) ∩ Domain {(y,x)} = {} using assms(2 ) by

auto
ultimately moreover have ?u (P^−1 ∪ {(y,x)}) using assms(1 ) by (metis

disj-Un-runiq runiq-singleton-rel)
ultimately show ?thesis by (metis subrel-runiq)

qed

6.3 Injectivity

The following is a classical definition of the set of all injective functions from
X to Y.
definition injections :: ′a set ⇒ ′b set ⇒ ( ′a × ′b) set set
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where injections X Y = {R . Domain R = X ∧ Range R ⊆ Y ∧ runiq R ∧
runiq (R−1)}

The following definition is a constructive (computational) characterization of
the set of all injections X Y, represented by a list. That is, we define the list of
all injective functions (represented as relations) from one set (represented as
a list) to another set. We formally prove the equivalence of the constructive
and the classical definition in Universes.thy.
fun injections-alg

where injections-alg [] Y = [{}] |
injections-alg (x # xs) Y = concat [ [ R +∗ {(x,y)} . y ← sorted-list-of-set

(Y − Range R) ]
. R ← injections-alg xs Y ]

lemma Image-within-domain ′:
fixes x R
shows (x ∈ Domain R) = (R ‘‘ {x} 6= {})
by blast

end

7 Toolbox of various definitions and theorems about
sets, relations and lists

theory MiscTools

imports
HOL−Library.Discrete-Functions
HOL−Library.Code-Target-Nat
HOL−Library.Indicator-Function
Argmax
RelationProperties

begin

lemmas restrict-def = RelationOperators.restrict-def

7.1 Facts and notations about relations, sets and functions.
notation paste (infix ‹+<› 75 )

+< abbreviation permits to shorten the notation for altering a function f in
a single point by giving a pair (a, b) so that the new function has value b
with argument a.
abbreviation singlepaste

where singlepaste f pair == f +∗ {(fst pair , snd pair)}
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notation singlepaste (infix ‹+<› 75 )

−− abbreviation permits to shorten the notation for considering a function
outside a single point.
abbreviation singleoutside (infix ‹−−› 75 )

where f −− x ≡ f outside {x}

Turns a HOL function into a set-theoretical function
definition

Graph f = {(x, f x) | x . True}

Inverts Graph (which is equivalently done by (,,)).
definition

toFunction R = (λ x . (R ,, x))

lemma
toFunction = eval-rel
using toFunction-def by blast

lemma lm001 :
((P ∪ Q) || X) = ((P || X) ∪ (Q||X))
unfolding restrict-def by blast

update behaves like P +* Q (paste), but without enlarging P’s Domain.
update is the set theoretic equivalent of the lambda function update fun-upd
definition update

where update P Q = P +∗ (Q || (Domain P))
notation update (infix ‹+^› 75 )

definition runiqer :: ( ′a × ′b) set => ( ′a × ′b) set
where runiqer R = { (x, THE y. y ∈ R ‘‘ {x})| x. x ∈ Domain R }

graph is like Graph, but with a built-in restriction to a given set X. This
makes it computable for finite X, whereas Graph f || X is not computable.
Duplicates the eponymous definition found in Function-Order, which is oth-
erwise not needed.
definition graph

where graph X f = {(x, f x) | x. x ∈ X}

lemma lm002 :
assumes runiq R
shows R ⊇ graph (Domain R) (toFunction R)
unfolding graph-def toFunction-def
using assms graph-def toFunction-def eval-runiq-rel by fastforce
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lemma lm003 :
assumes runiq R
shows R ⊆ graph (Domain R) (toFunction R)
unfolding graph-def toFunction-def
using assms eval-runiq-rel runiq-basic Domain.DomainI mem-Collect-eq subrelI

by fastforce

lemma lm004 :
assumes runiq R
shows R = graph (Domain R) (toFunction R)
using assms lm002 lm003 by fast

lemma domainOfGraph:
runiq(graph X f ) & Domain(graph X f )=X
unfolding graph-def
using rightUniqueRestrictedGraph by fast

abbreviation eval-rel2 (R::( ′a × ( ′b set)) set) (x:: ′a) ==
⋃

(R‘‘{x})
notation eval-rel2 (infix ‹,,,› 75 )

lemma imageEquivalence:
assumes runiq (f ::(( ′a × ( ′b set)) set)) x ∈ Domain f
shows f ,,x = f ,,,x
using assms Image-runiq-eq-eval cSup-singleton by metis

lemma lm005 :
Graph f=graph UNIV f
unfolding Graph-def graph-def by simp

lemma graphIntersection:
graph (X ∩ Y ) f ⊆ ((graph X f ) || Y )
unfolding graph-def
using Int-iff mem-Collect-eq RelationOperators.restrict-ext subrelI by auto

definition runiqs
where runiqs={f . runiq f }

lemma outsideOutside:
((P outside X) outside Y ) = P outside (X∪Y )
unfolding Outside-def by blast

corollary lm006 :
((P outside X) outside X) = P outside X
using outsideOutside by force

lemma lm007 :
assumes (X ∩ Domain P) ⊆ Domain Q
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shows P +∗ Q = (P outside X) +∗ Q
unfolding paste-def Outside-def using assms by blast

corollary lm008 :
P +∗ Q = (P outside (Domain Q)) +∗ Q
using lm007 by fast

corollary outsideUnion:
R = (R outside {x}) ∪ ({x} × (R ‘‘ {x}))
using restrict-to-singleton outside-union-restrict by metis

lemma lm009 :
P = P ∪ {x}×P‘‘{x}
by (metis outsideUnion sup.right-idem)

corollary lm010 :
R = (R outside {x}) +∗ ({x} × (R ‘‘ {x}))
by (metis paste-outside-restrict restrict-to-singleton)

lemma lm011 :
R ⊆ R +∗ ({x} × (R‘‘{x}))
using lm010 lm008 paste-def Outside-def by fast

lemma lm012 :
R ⊇ R+∗({x} × (R‘‘{x}))
by (metis Un-least Un-upper1 outside-union-restrict paste-def

restrict-to-singleton restriction-is-subrel)

lemma lm013 :
R = R +∗ ({x} × (R‘‘{x}))
using lm011 lm012 by force

lemma rightUniqueTrivialCartes:
assumes trivial Y
shows runiq (X × Y )
using assms runiq-def Image-subset lm013 trivial-subset lm011 by (metis(no-types))

lemma lm014 :
runiq ((X × {x}) +∗ (Y × {y}))
using rightUniqueTrivialCartes trivial-singleton runiq-paste2 by metis

lemma lm015 :
(P || (X ∩ Y )) ⊆ (P||X) & P outside (X ∪ Y ) ⊆ P outside X
by (metis doubleRestriction le-sup-iff outsideOutside outside-union-restrict sub-

set-refl)

lemma lm016 :
P || X ⊆ (P||(X ∪ Y )) & P outside X ⊆ P outside (X ∩ Y )
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using lm015 distrib-sup-le sup-idem le-inf-iff subset-antisym sup-commute
by (metis sup-ge1 )

lemma lm017 :
P‘‘(X ∩ Domain P) = P‘‘X
by blast

lemma cardinalityOneSubset:
assumes card X=1 and X ⊆ Y
shows Union X ∈ Y
using assms cardinalityOneTheElemIdentity by (metis cSup-singleton insert-subset)

lemma cardinalityOneTheElem:
assumes card X=1 X ⊆ Y
shows the-elem X ∈ Y
using assms by (metis (full-types) insert-subset cardinalityOneTheElemIdentity)

lemma lm018 :
(R outside X1 ) outside X2 = (R outside X2 ) outside X1
by (metis outsideOutside sup-commute)

7.2 Ordered relations
lemma lm019 :

assumes card X≥1 ∀ x∈X . y > x
shows y > Max X
using assms by (metis (poly-guards-query) Max-in One-nat-def card-eq-0-iff lessI

not-le)

lemma lm020 :
assumes finite X mx ∈ X f x < f mx
showsx /∈ argmax f X
using assms not-less by fastforce

lemma lm021 :
assumes finite X mx ∈ X ∀ x ∈ X−{mx}. f x < f mx
shows argmax f X ⊆ {mx}
using assms mk-disjoint-insert by force

lemma lm022 :
assumes finite X mx ∈ X ∀ x ∈ X−{mx}. f x < f mx
shows argmax f X = {mx}
using assms lm021 by (metis argmax-non-empty-iff equals0D subset-singletonD)

corollary argmaxProperty:
(finite X & mx ∈ X & (∀ aa ∈ X−{mx}. f aa < f mx)) −→ argmax f X = {mx}
using lm022 by metis
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corollary lm023 :
assumes finite X mx ∈ X ∀ x ∈ X . x 6= mx −→ f x < f mx
shows argmax f X = {mx}
using assms lm022 by (metis Diff-iff insertI1 )

lemma lm024 :
assumes f ◦ g = id
shows inj-on g UNIV using assms
by (metis inj-on-id inj-on-imageI2 )

lemma lm025 :
assumes inj-on f X
shows inj-on (image f ) (Pow X)
using assms inj-on-image-eq-iff inj-onI PowD by (metis (mono-tags, lifting))

lemma injectionPowerset:
assumes inj-on f Y X ⊆ Y
shows inj-on (image f ) (Pow X)
using assms lm025 by (metis subset-inj-on)

definition finestpart
where finestpart X = (%x. {x}) ‘ X

lemma finestPart:
finestpart X = {{x}|x . x∈X}
unfolding finestpart-def by blast

lemma finestPartUnion:
X=

⋃
(finestpart X)

using finestPart by auto

lemma lm026 :
Union ◦ finestpart = id
using finestpart-def finestPartUnion by fastforce

lemma lm027 :
inj-on Union (finestpart ‘ UNIV )
using lm026 by (metis inj-on-id inj-on-imageI )

lemma nonEqualitySetOfSets:
assumes X 6= Y
shows {{x}| x. x ∈ X} 6= {{x}| x. x ∈ Y }
using assms by auto

corollary lm028 :
inj-on finestpart UNIV
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using nonEqualitySetOfSets finestPart by (metis (lifting, no-types) injI )

lemma unionFinestPart:
{Y | Y . ∃ x.((Y ∈ finestpart x) ∧ (x ∈ X))} =

⋃
(finestpart‘X)

by auto

lemma rangeSetOfPairs:
Range {(fst pair , Y )| Y pair . Y ∈ finestpart (snd pair) & pair ∈ X} =
{Y . ∃ x. ((Y ∈ finestpart x) ∧ (x ∈ Range X))}

by auto

lemma setOfPairsEquality:
{(fst pair , {y})| y pair . y ∈ snd pair & pair ∈ X} =
{(fst pair , Y )| Y pair . Y ∈ finestpart (snd pair) & pair ∈ X}

using finestpart-def by fastforce

lemma setOfPairs:
{(fst pair , {y})| y. y ∈ snd pair} =
{fst pair} × {{y}| y. y ∈ snd pair}

by fastforce

lemma lm029 :
x ∈ X = ({x} ∈ finestpart X)
using finestpart-def by force

lemma pairDifference:
{(x,X)}−{(x,Y )} = {x}×({X}−{Y })
by blast

lemma lm030 :
assumes

⋃
P = X

shows P ⊆ Pow X
using assms by blast

lemma lm031 :
argmax f {x} = {x}
by auto

lemma sortingSameSet:
assumes finite X
shows set (sorted-list-of-set X) = X
using assms by simp

lemma lm032 :
assumes finite A
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shows sum f A = sum f (A ∩ B) + sum f (A − B)
using assms by (metis DiffD2 Int-iff Un-Diff-Int Un-commute finite-Un sum.union-inter-neutral)

corollary sumOutside:
assumes finite g
shows sum f g = sum f (g outside X) + (sum f (g||X))
unfolding Outside-def restrict-def using assms add.commute inf-commute lm032

by (metis)

lemma lm033 :
assumes (Domain P ⊆ Domain Q)
shows (P +∗ Q) = Q
unfolding paste-def Outside-def using assms by fast

lemma lm034 :
assumes (P +∗ Q=Q)
shows (Domain P ⊆ Domain Q)
using assms paste-def Outside-def by blast

lemma lm035 :
(Domain P ⊆ Domain Q) = (P +∗ Q=Q)
using lm033 lm034 by metis

lemma
(P||(Domain Q)) +∗ Q = Q
by (metis Int-lower2 restrictedDomain lm035 )

lemma lm036 :
P||X = P outside (Domain P − X)
using Outside-def restrict-def by fastforce

lemma lm037 :
(P outside X) ⊆ P || ((Domain P)−X)
using lm036 lm016 by (metis Int-commute restrictedDomain outside-reduces-domain)

lemma lm038 :
Domain (P outside X) ∩ Domain (Q || X) = {}
using lm036
by (metis Diff-disjoint Domain-empty-iff Int-Diff inf-commute restrictedDomain

outside-reduces-domain restrict-empty)

lemma lm039 :
(P outside X) ∩ (Q || X) = {}
using lm038 by fast

lemma lm040 :
(P outside (X ∪ Y )) ∩ (Q || X) = {} & (P outside X) ∩ (Q || (X ∩ Z )) =
{}
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using Outside-def restrict-def lm039 lm015 by fast

lemma lm041 :
P outside X = P || ((Domain P) − X)
using Outside-def restrict-def lm037 by fast

lemma lm042 :
R‘‘(X−Y ) = (R||X)‘‘(X−Y )
using restrict-def by blast

lemma lm043 :
assumes

⋃
XX ⊆ X x ∈ XX x 6= {}

shows x ∩ X 6= {}
using assms by blast

lemma lm044 :
assumes ∀ l ∈ set L1 . set L2 = f2 (set l) N
shows set [set L2 . l <− L1 ] = {f2 P N | P. P ∈ set (map set L1 )}
using assms by auto

lemma setVsList:
assumes ∀ l ∈ set (g1 G). set (g2 l N ) = f2 (set l) N
shows set [set (g2 l N ). l <− (g1 G)] = {f2 P N | P. P ∈ set (map set (g1

G))}
using assms by auto

lemma lm045 :
(∀ l ∈ set (g1 G). set (g2 l N ) = f2 (set l) N ) −−>
{f2 P N | P. P ∈ set (map set (g1 G))} = set [set (g2 l N ). l <− g1 G]

by auto

lemma lm046 :
assumes X ∩ Y = {}
shows R‘‘X = (R outside Y )‘‘X
using assms Outside-def Image-def by blast

lemma lm047 :
assumes (Range P) ∩ (Range Q) = {} runiq (P^−1 ) runiq (Q^−1 )
shows runiq ((P ∪ Q)^−1 )
using assms by (metis Domain-converse converse-Un disj-Un-runiq)

lemma lm048 :
assumes (Range P) ∩ (Range Q) = {} runiq (P^−1 ) runiq (Q^−1 )
shows runiq ((P +∗ Q)^−1 )
using lm047 assms subrel-runiq by (metis converse-converse converse-subset-swap

paste-sub-Un)
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lemma lm049 :
assumes runiq R
shows card (R ‘‘ {a}) = 1 ←→ a ∈ Domain R
using assms card-Suc-eq One-nat-def
by (metis Image-within-domain ′ Suc-neq-Zero assms rightUniqueSetCardinality)

lemma lm050 :
inj (λa. ((fst a, fst (snd a)), snd (snd a)))
by (auto intro: injI )

lemma lm051 :
assumes finite X x > Max X
shows x /∈ X
using assms Max.coboundedI by (metis leD)

lemma lm052 :
assumes finite A A 6= {}
shows Max (f‘A) ∈ f‘A
using assms by (metis Max-in finite-imageI image-is-empty)

lemma lm053 :
argmax f A ⊆ f −‘ {Max (f ‘ A)}
by force

lemma lm054 :
argmax f A = A ∩ { x . f x = Max (f ‘ A) }
by auto

lemma lm055 :
(x ∈ argmax f X) = (x ∈ X & f x = Max (f ‘ X))
using argmax.simps mem-Collect-eq by (metis (mono-tags, lifting))

lemma rangeEmpty:
Range −‘ {{}} = {{}}
by auto

lemma finitePairSecondRange:
(∀ pair ∈ R. finite (snd pair)) = (∀ y ∈ Range R. finite y)
by fastforce

lemma lm056 :
fst ‘ P = snd ‘ (P^−1 )
by force

lemma lm057 :
fst pair = snd (flip pair) & snd pair = fst (flip pair)
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unfolding flip-def by simp

lemma flip-flip2 :
flip ◦ flip = id
using flip-flip by fastforce

lemma lm058 :
fst = (snd◦flip)
using lm057 by fastforce

lemma lm059 :
snd = (fst◦flip)
using lm057 by fastforce

lemma lm060 :
inj-on fst P = inj-on (snd◦flip) P
using lm058 by metis

lemma lm062 :
inj-on fst P = inj-on snd (P^−1 )
using lm060 flip-conv by (metis converse-converse inj-on-imageI lm059 )

lemma sumPairsInverse:
assumes runiq (P^−1 )
shows sum (f ◦ snd) P = sum f (Range P)
using assms lm062 converse-converse rightUniqueInjectiveOnFirst rightUniqueIn-

jectiveOnFirst
sum.reindex snd-eq-Range

by metis

lemma notEmptyFinestpart:
assumes X 6= {}
shows finestpart X 6= {}
using assms finestpart-def by blast

lemma lm063 :
assumes inj-on g X
shows sum f (g‘X) = sum (f ◦ g) X
using assms by (metis sum.reindex)

lemma functionOnFirstEqualsSecond:
assumes runiq R z ∈ R
shows R,,(fst z) = snd z
using assms by (metis rightUniquePair surjective-pairing)

lemma lm064 :
assumes runiq R
shows sum (toFunction R) (Domain R) = sum snd R
using assms toFunction-def sum.reindex-cong functionOnFirstEqualsSecond
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rightUniqueInjectiveOnFirst
by (metis (no-types) fst-eq-Domain)

corollary lm065 :
assumes runiq (f ||X)
shows sum (toFunction (f ||X)) (X ∩ Domain f ) = sum snd (f ||X)
using assms lm064 by (metis Int-commute restrictedDomain)

lemma lm066 :
Range (R outside X) = R‘‘((Domain R) − X)
by (metis Diff-idemp ImageE Range.intros Range-outside-sub-Image-Domain lm041

lm042 order-class.order .antisym subsetI )

lemma lm067 :
(R||X) ‘‘ X = R‘‘X
using Int-absorb doubleRestriction restrictedRange by metis

lemma lm068 :
assumes x ∈ Domain (f ||X)
shows (f ||X)‘‘{x} = f‘‘{x}
using assms doubleRestriction restrictedRange Int-empty-right Int-iff

Int-insert-right-if1 restrictedDomain
by metis

lemma lm069 :
assumes x ∈ X ∩ Domain f runiq (f ||X)
shows (f ||X),,x = f ,,x
using assms doubleRestriction restrictedRange Int-empty-right Int-iff Int-insert-right-if1

eval-rel.simps
by metis

lemma lm070 :
assumes runiq (f ||X)
shows sum (toFunction (f ||X)) (X ∩ Domain f ) = sum (toFunction f ) (X ∩

Domain f )
using assms sum.cong lm069 toFunction-def by metis

corollary sumRestrictedToDomainInvariant:
assumes runiq (f ||X)
shows sum (toFunction f ) (X ∩ Domain f ) = sum snd (f ||X)
using assms lm065 lm070 by fastforce

corollary sumRestrictedOnFunction:
assumes runiq (f ||X)
shows sum (toFunction (f ||X)) (X ∩ Domain f ) = sum snd (f ||X)
using assms lm064 restrictedDomain Int-commute by metis

lemma cardFinestpart:
card (finestpart X) = card X
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using finestpart-def by (metis (lifting) card-image inj-on-inverseI the-elem-eq)

corollary lm071 :
finestpart {} = {} & card ◦ finestpart = card
using cardFinestpart finestpart-def by fastforce

lemma finiteFinestpart:
finite (finestpart X) = finite X
using finestpart-def lm071
by (metis card-eq-0-iff empty-is-image finite.simps cardFinestpart)

lemma lm072 :
finite ◦ finestpart = finite
using finiteFinestpart by fastforce

lemma finestpartSubset:
assumes X ⊆ Y
shows finestpart X ⊆ finestpart Y
using assms finestpart-def by (metis image-mono)

corollary lm073 :
assumes x ∈ X
shows finestpart x ⊆ finestpart (

⋃
X)

using assms finestpartSubset by (metis Union-upper)

lemma lm074 :⋃
(finestpart ‘ XX) ⊆ finestpart (

⋃
XX)

using finestpart-def lm073 by force

lemma lm075 :⋃
(finestpart ‘ XX) ⊇ finestpart (

⋃
XX)

(is ?L ⊇ ?R)
unfolding finestpart-def using finestpart-def by auto

corollary commuteUnionFinestpart:⋃
(finestpart ‘ XX) = finestpart (

⋃
XX)

using lm074 lm075 by fast

lemma unionImage:
assumes runiq a
shows {(x, {y})| x y. y ∈

⋃
(a‘‘{x}) & x ∈ Domain a} =

{(x, {y})| x y. y ∈ a,,x & x ∈ Domain a}
using assms Image-runiq-eq-eval
by (metis (lifting, no-types) cSup-singleton)

lemma lm076 :
assumes runiq P
shows card (Domain P) = card P
using assms rightUniqueInjectiveOnFirst card-image by (metis Domain-fst)
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lemma finiteDomainImpliesFinite:
assumes runiq f
shows finite (Domain f ) = finite f
using assms Domain-empty-iff card-eq-0-iff finite.emptyI lm076 by metis

lemma sumCurry:
sum ((curry f ) x) Y = sum f ({x} × Y )

proof −
let ?f=% y. (x, y) let ?g=(curry f ) x let ?h=f
have inj-on ?f Y by (metis(no-types) Pair-inject inj-onI )
moreover have {x} × Y = ?f ‘ Y by fast
moreover have ∀ y. y ∈ Y −→ ?g y = ?h (?f y) by simp
ultimately show ?thesis using sum.reindex-cong by metis

qed

lemma lm077 :
sum (%y. f (x,y)) Y = sum f ({x}×Y )
using sumCurry Sigma-cong curry-def sum.cong by fastforce

corollary lm078 :
assumes finite X
shows sum f X = sum f (X−Y ) + (sum f (X ∩ Y ))
using assms Diff-iff IntD2 Un-Diff-Int finite-Un inf-commute sum.union-inter-neutral

by metis

lemma lm079 :
(P +∗ Q)‘‘(Domain Q∩X) = Q‘‘(Domain Q∩X)
unfolding paste-def Outside-def Image-def Domain-def by blast

corollary lm080 :
(P +∗ Q)‘‘(X∩(Domain Q)) = Q‘‘X
using Int-commute lm079 by (metis lm017 )

corollary lm081 :
assumes X ∩ (Domain Q) = {}
shows (P +∗ Q) ‘‘ X = (P outside (Domain Q))‘‘ X
using assms paste-def by fast

lemma lm082 :
assumes X∩Y = {}
shows (P outside Y )‘‘X=P‘‘X
using assms Outside-def by blast

corollary lm083 :
assumes X∩ (Domain Q) = {}
shows (P +∗ Q)‘‘X=P‘‘X
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using assms lm081 lm082 by metis

lemma lm084 :
assumes finite X finite Y card(X∩Y ) = card X
shows X ⊆ Y
using assms by (metis Int-lower1 Int-lower2 card-seteq order-refl)

lemma cardinalityIntersectionEquality:
assumes finite X finite Y card X = card Y
shows (card (X∩Y ) = card X) = (X = Y )
using assms lm084 by (metis card-seteq le-iff-inf order-refl)

lemma lm085 :
assumes P xx
shows {(x,f x)| x. P x},,xx = f xx

proof −
let ?F={(x,f x)| x. P x} let ?X=?F‘‘{xx}
have ?X={f xx} using Image-def assms by blast thus ?thesis by fastforce

qed

lemma graphEqImage:
assumes x ∈ X
shows graph X f ,,x = f x
unfolding graph-def using assms lm085 by (metis (mono-tags) Gr-def )

lemma lm086 :
Graph f ,,x = f x
using UNIV-I graphEqImage lm005 by (metis(no-types))

lemma lm087 :
toFunction (Graph f ) = f (is ?L=-)

proof −
{fix x have ?L x=f x unfolding toFunction-def lm086 by metis}
thus ?thesis by blast

qed

lemma lm088 :
R outside X ⊆ R
by (metis outside-union-restrict subset-Un-eq sup-left-idem)

lemma lm089 :
Range(f outside X) ⊇ (Range f )−(f‘‘X)
using Outside-def by blast

lemma lm090 :
assumes runiq P
shows (P−1‘‘((Range P)−Y )) ∩ ((P−1)‘‘Y ) = {}
using assms rightUniqueFunctionAfterInverse by blast
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lemma lm091 :
assumes runiq (P−1)
shows (P‘‘((Domain P) − X)) ∩ (P‘‘X) = {}
using assms rightUniqueFunctionAfterInverse by fast

lemma lm092 :
assumes runiq f runiq (f^−1 )
shows Range(f outside X) ⊆ (Range f )−(f‘‘X)
using assms Diff-triv lm091 lm066 Diff-iff ImageE Range-iff subsetI by metis

lemma rangeOutside:
assumes runiq f runiq (f^−1 )
shows Range(f outside X) = (Range f )−(f‘‘X)
using assms lm089 lm092 by (metis order-class.order .antisym)

lemma unionIntersectionEmpty:
(∀ x∈X . ∀ y∈Y . x∩y = {}) = ((

⋃
X)∩(

⋃
Y )={})

by blast

lemma setEqualityAsDifference:
{x}−{y} = {} = (x = y)
by auto

lemma lm093 :
assumes R 6= {} Domain R ∩ X 6= {}
shows R‘‘X 6= {}
using assms by blast

lemma lm095 :
R ⊆ (Domain R) × (Range R)
by auto

lemma finiteRelationCharacterization:
(finite (Domain Q) & finite (Range Q)) = finite Q
using rev-finite-subset finite-SigmaI lm095 finite-Domain finite-Range by metis

lemma familyUnionFiniteEverySetFinite:
assumes finite (

⋃
XX)

shows ∀X ∈ XX . finite X
using assms by (metis Union-upper finite-subset)

lemma lm096 :
assumes runiq f X ⊆ (f^−1 )‘‘Y
shows f‘‘X ⊆ Y
using assms rightUniqueFunctionAfterInverse by (metis Image-mono order-refl

subset-trans)

lemma lm097 :
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assumes y ∈ f‘‘{x} runiq f
shows f ,,x = y
using assms by (metis Image-singleton-iff rightUniquePair)

7.3 Indicator function in set-theoretical form.
abbreviation

Outside ′ X f == f outside X

abbreviation
Chi X Y == (Y × {0 ::nat}) +∗ (X × {1})
notation Chi (infix ‹<||› 80 )

abbreviation
chii X Y == toFunction (X <|| Y )
notation chii (infix ‹<|› 80 )

abbreviation
chi X == indicator X

lemma lm098 :
runiq (X <|| Y )
by (rule lm014 )

lemma lm099 :
assumes x ∈ X
shows 1 ∈ (X <|| Y ) ‘‘ {x}
using assms toFunction-def paste-def Outside-def runiq-def lm014 by blast

lemma lm100 :
assumes x ∈ Y−X
shows 0 ∈ (X <|| Y ) ‘‘ {x}
using assms toFunction-def paste-def Outside-def runiq-def lm014 by blast

lemma lm101 :
assumes x ∈ X ∪ Y
shows (X <|| Y ),,x = chi X x (is ?L=?R)
using assms lm014 lm099 lm100 lm097
by (metis DiffI Un-iff indicator-simps(1 ) indicator-simps(2 ))

lemma lm102 :
assumes x ∈ X ∪ Y
shows (X <| Y ) x = chi X x
using assms toFunction-def lm101 by metis

corollary lm103 :
sum (X <| Y ) (X∪Y ) = sum (chi X) (X∪Y )
using lm102 sum.cong by metis
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corollary lm104 :
assumes ∀ x∈X . f x = g x
shows sum f X = sum g X
using assms by (metis (poly-guards-query) sum.cong)

corollary lm105 :
assumes ∀ x∈X . f x = g x Y⊆X
shows sum f Y = sum g Y
using assms lm104 by (metis contra-subsetD)

corollary lm106 :
assumes Z ⊆ X ∪ Y
shows sum (X <| Y ) Z = sum (chi X) Z

proof −
have ∀ x∈Z .(X<|Y ) x=(chi X) x using assms lm102 in-mono by metis
thus ?thesis using lm104 by blast

qed

corollary lm107 :
sum (chi X) (Z − X) = 0
by simp

corollary lm108 :
assumes Z ⊆ X ∪ Y
shows sum (X <| Y ) (Z − X) = 0
using assms lm107 lm106 Diff-iff in-mono subsetI by metis

corollary lm109 :
assumes finite Z
shows sum (X <| Y ) Z = sum (X <| Y ) (Z − X) + (sum (X <| Y ) (Z
∩ X))

using lm078 assms by blast

corollary lm110 :
assumes Z ⊆ X ∪ Y finite Z
shows sum (X <| Y ) Z = sum (X <| Y ) (Z ∩ X)
using assms lm078 lm108 comm-monoid-add-class.add-0 by metis

corollary lm111 :
assumes finite Z
shows sum (chi X) Z = card (X ∩ Z )
using assms sum-indicator-eq-card by (metis Int-commute)

corollary lm112 :
assumes Z ⊆ X ∪ Y finite Z
shows sum (X <| Y ) Z = card (Z ∩ X)
using assms lm111 by (metis lm106 sum-indicator-eq-card)
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corollary subsetCardinality:
assumes Z ⊆ X ∪ Y finite Z
shows (sum (X <| Y ) X) − (sum (X <| Y ) Z ) = card X − card (Z ∩ X)
using assms lm112 by (metis Int-absorb2 Un-upper1 card.infinite equalityE

sum.infinite)

corollary differenceSumVsCardinality:
assumes Z ⊆ X ∪ Y finite Z
shows int (sum (X <| Y ) X) − int (sum (X <| Y ) Z ) = int (card X) − int

(card (Z ∩ X))
using assms lm112 by (metis Int-absorb2 Un-upper1 card.infinite equalityE

sum.infinite)

lemma lm113 :
int (n::nat) = real n
by simp

corollary differenceSumVsCardinalityReal:
assumes Z⊆X∪Y finite Z
shows real (sum (X <| Y ) X) − real (sum (X <| Y ) Z ) =

real (card X) − real (card (Z ∩ X))
using assms lm112 by (metis Int-absorb2 Un-upper1 card.infinite equalityE

sum.infinite)

7.4 Lists
lemma lm114 :

assumes ∃ n ∈ {0 ..<size l}. P (l!n)
shows [n. n ← [0 ..<size l], P (l!n)] 6= []
using assms by auto

lemma lm115 :
assumes ll ∈ set (l:: ′a list)
shows ∃ n∈ (nth l) −‘ (set l). ll=l!n
using assms(1 ) by (metis in-set-conv-nth vimageI2 )

lemma lm116 :
assumes ll ∈ set (l:: ′a list)
shows ∃ n. ll=l!n & n < size l & n >= 0
using assms in-set-conv-nth by (metis le0 )

lemma lm117 :
assumes P −‘ {True} ∩ set l 6= {}
shows ∃ n ∈ {0 ..<size l}. P (l!n)
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using assms lm116 by fastforce

lemma nonEmptyListFiltered:
assumes P −‘ {True} ∩ set l 6= {}
shows [n. n ← [0 ..<size l], P (l!n)] 6= []
using assms filterpositions2-def lm117 lm114 by metis

lemma lm118 :
(nth l) ‘ set ([n. n ← [0 ..<size l], (%x. x∈X) (l!n)]) ⊆ X∩set l
by force

corollary lm119 :
(nth l)‘ set (filterpositions2 (%x.(x∈X)) l) ⊆ X ∩ set l
unfolding filterpositions2-def using lm118 by fast

lemma lm120 :
(n∈{0 ..<N}) = ((n::nat) < N )
using atLeast0LessThan lessThan-iff by metis

lemma lm121 :
assumes X ⊆ {0 ..<size list}
shows (nth list)‘X ⊆ set list
using assms atLeastLessThan-def atLeast0LessThan lessThan-iff by auto

lemma lm122 :
set ([n. n ← [0 ..<size l], P (l!n)]) ⊆ {0 ..<size l}
by force

lemma lm123 :
set (filterpositions2 pre list) ⊆ {0 ..<size list}
using filterpositions2-def lm122 by metis

7.5 Computing all the permutations of a list
abbreviation

rotateLeft == rotate
abbreviation

rotateRight n l == rotateLeft (size l − (n mod (size l))) l

abbreviation
insertAt x l n == rotateRight n (x#(rotateLeft n l))
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fun perm2 where
perm2 [] = (%n. []) |
perm2 (x#l) = (%n. insertAt x ((perm2 l) (n div (1+size l)))

(n mod (1+size l)))

abbreviation
takeAll P list == map (nth list) (filterpositions2 P list)

lemma permutationNotEmpty:
assumes l 6= []
shows perm2 l n 6= []
using assms perm2 .simps(2 ) rotate-is-Nil-conv by (metis neq-Nil-conv)

lemma lm124 :
set (takeAll P list) = ((nth list) ‘ set (filterpositions2 P list))
by simp

corollary listIntersectionWithSet:
set (takeAll (%x.(x∈X)) l) ⊆ (X ∩ set l)
using lm119 lm124 by metis

corollary lm125 :
set (takeAll P list) ⊆ set list
using lm123 lm124 lm121 by metis

lemma takeAllSubset:
set (takeAll (%x. x∈ P) list) ⊆ P
by (metis Int-subset-iff listIntersectionWithSet)

lemma lm126 :
set (insertAt x l n) = {x} ∪ set l
by simp

lemma lm127 :
∀n. set (perm2 [] n) = set []
by simp

lemma lm128 :
assumes ∀n. (set (perm2 l n) = set l)
shows set (perm2 (x#l) n) = {x} ∪ set l
using assms lm126 by force

corollary permutationInvariance:
∀n. set (perm2 (l:: ′a list) n) = set l

proof (induct l)
let ?P = %l::( ′a list). (∀n. set (perm2 l n) = set l)
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show ?P [] using lm127 by force
fix x fix l
assume ?P l then
show ?P (x#l) by force

qed

corollary takeAllPermutation:
set (perm2 (takeAll (%x.(x∈X)) l) n) ⊆ X ∩ set l
using listIntersectionWithSet permutationInvariance by metis

abbreviation subList l xl == map (nth l) (takeAll (%x. x ≤ size l) xl)

7.6 A more computable version of toFunction.
abbreviation toFunctionWithFallback R fallback ==

(% x. if (R‘‘{x} = {R,,x}) then (R,,x) else fallback)
notation

toFunctionWithFallback (infix ‹Else› 75 )

abbreviation sum ′ where
sum ′ R X == sum (R Else 0 ) X

lemma lm129 :
assumes runiq f x ∈ Domain f
shows (f Else 0 ) x = (toFunction f ) x
using assms by (metis Image-runiq-eq-eval toFunction-def )

lemma lm130 :
assumes runiq f
shows sum (f Else 0 ) (X∩(Domain f )) = sum (toFunction f ) (X∩(Domain f ))

using assms sum.cong lm129 by fastforce

lemma lm131 :
assumes Y ⊆ f−‘{0}
shows sum f Y = 0
using assms by (metis rev-subsetD sum.neutral vimage-singleton-eq)

lemma lm132 :
assumes Y ⊆ f−‘{0} finite X
shows sum f X = sum f (X−Y )
using Int-lower2 add.comm-neutral assms(1 ) assms(2 ) lm078 lm131 order-trans
by (metis (no-types))

lemma lm133 :
−(Domain f ) ⊆ (f Else 0 )−‘{0}
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by fastforce

corollary lm134 :
assumes finite X
shows sum (f Else 0 ) X = sum (f Else 0 ) (X∩Domain f )

proof −
have X∩Domain f=X−(−Domain f ) by simp
thus ?thesis using assms lm133 lm132 by fastforce

qed

corollary lm135 :
assumes finite X
shows sum (f Else 0 ) (X∩Domain f ) = sum (f Else 0 ) X
(is ?L=?R)

proof −
have ?R=?L using assms by (rule lm134 )
thus ?thesis by simp

qed

corollary lm136 :
assumes finite X runiq f
shows sum (f Else 0 ) X = sum (toFunction f ) (X∩Domain f )
(is ?L=?R)

proof −
have ?R = sum (f Else 0 ) (X∩Domain f ) using assms(2 ) lm130 by fastforce
moreover have ... = ?L using assms(1 ) by (rule lm135 )
ultimately show ?thesis by presburger

qed

lemma lm137 :
sum (f Else 0 ) X = sum ′ f X
by fast

corollary lm138 :
assumes finite X runiq f
shows sum (toFunction f ) (X∩Domain f ) = sum ′ f X
using assms lm137 lm136 by fastforce

lemma lm139 :
argmax (sum ′ b) = (argmax ◦ sum ′) b
by simp

lemma domainConstant:
Domain (Y × {0 ::nat}) = Y & Domain (X × {1}) = X
by blast

lemma domainCharacteristicFunction:
Domain (X <|| Y ) = X ∪ Y
using domainConstant paste-Domain sup-commute by metis
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lemma functionEquivalenceOnSets:
assumes ∀ x ∈ X . f x = g x
shows f‘X = g‘X
using assms by (metis image-cong)

7.7 Cardinalities of sets.
lemma lm140 :

assumes runiq R runiq (R^−1 )
shows (R‘‘A) ∩ (R‘‘B) = R‘‘(A∩B)
using assms rightUniqueInjectiveOnFirst converse-Image by force

lemma intersectionEmptyRelationIntersectionEmpty:
assumes runiq (R^−1 ) runiq R X1 ∩ X2 = {}
shows (R‘‘X1 ) ∩ (R‘‘X2 ) = {}
using assms by (metis disj-Domain-imp-disj-Image inf-assoc inf-bot-right)

lemma lm141 :
assumes runiq f trivial Y
shows trivial (f ‘‘ (f^−1 ‘‘ Y ))
using assms by (metis rightUniqueFunctionAfterInverse trivial-subset)

lemma lm142 :
assumes trivial X
shows card (Pow X)∈{1 ,2}
using trivial-empty-or-singleton card-Pow Pow-empty assms trivial-implies-finite

cardinalityOneTheElemIdentity power-one-right the-elem-eq
by (metis insert-iff )

lemma lm143 :
assumes card (Pow A) = 1
shows A = {}
using assms by (metis Pow-bottom Pow-top cardinalityOneTheElemIdentity sin-

gletonD)

lemma lm144 :
(¬ (finite A)) = (card (Pow A) = 0 )
by auto

corollary lm145 :
(finite A) = (card (Pow A) 6= 0 )
using lm144 by metis

lemma lm146 :
assumes card (Pow A) 6= 0
shows card A=floor-log (card (Pow A))
using assms floor-log-power card-Pow by (metis card.infinite finite-Pow-iff )
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lemma log-2 [simp]:
floor-log 2 = 1
using floor-log-power [of 1 ] by simp

lemma lm147 :
assumes card (Pow A) = 2
shows card A = 1
using assms lm146 [of A] by simp

lemma lm148 :
assumes card (Pow X) = 1 ∨ card (Pow X) = 2
shows trivial X
using assms trivial-empty-or-singleton lm143 lm147 cardinalityOneTheElemIden-

tity by metis

lemma lm149 :
trivial A = (card (Pow A) ∈ {1 ,2})
using lm148 lm142 by blast

lemma lm150 :
assumes R ⊆ f runiq f Domain f = Domain R
shows runiq R
using assms by (metis subrel-runiq)

lemma lm151 :
assumes f ⊆ g runiq g Domain f = Domain g
shows g ⊆ f
using assms Domain-iff contra-subsetD runiq-wrt-ex1 subrelI
by (metis (full-types,opaque-lifting))

lemma lm152 :
assumes R ⊆ f runiq f Domain f ⊆ Domain R
shows f = R
using assms lm151 by (metis Domain-mono dual-order .antisym)

lemma lm153 :
graph X f = (Graph f ) || X
using inf-top.left-neutral lm005 domainOfGraph restrictedDomain lm152 graphIn-

tersection
restriction-is-subrel subrel-runiq subset-iff

by (metis (erased, lifting))

lemma lm154 :
graph (X ∩ Y ) f = (graph X f ) || Y
using doubleRestriction lm153 by metis

lemma restrictionVsIntersection:
{(x, f x)| x. x ∈ X2} || X1 = {(x, f x)| x. x ∈ X2 ∩ X1}
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using graph-def lm154 by metis

lemma lm155 :
assumes runiq f X ⊆ Domain f
shows graph X (toFunction f ) = (f ||X)

proof −
have

∧
v w. (v:: ′a set) ⊆ w −→ w ∩ v = v by (simp add: Int-commute inf .absorb1 )

thus graph X (toFunction f ) = f || X by (metis assms(1 ) assms(2 ) doubleRe-
striction lm004 lm153 )
qed

lemma lm156 :
(Graph f ) ‘‘ X = f ‘ X
unfolding Graph-def image-def by auto

lemma lm157 :
assumes X ⊆ Domain f runiq f
shows f‘‘X = (eval-rel f )‘X
using assms lm156 by (metis restrictedRange lm153 lm155 toFunction-def )

lemma cardOneImageCardOne:
assumes card A = 1
shows card (f‘A) = 1
using assms card-image card-image-le

proof −
have finite (f‘A) using assms One-nat-def Suc-not-Zero card.infinite finite-imageI

by (metis(no-types))
moreover have f‘A 6= {} using assms by fastforce
moreover have card (f‘A) ≤ 1 using assms card-image-le One-nat-def Suc-not-Zero

card.infinite
by (metis)

ultimately show ?thesis by (metis assms image-empty image-insert
cardinalityOneTheElemIdentity the-elem-eq)

qed

lemma cardOneTheElem:
assumes card A = 1
shows the-elem (f‘A) = f (the-elem A)
using assms image-empty image-insert the-elem-eq by (metis cardinalityOneTheElemI-

dentity)

abbreviation
swap f == curry ((case-prod f ) ◦ flip)

lemma lm158 :
finite X = (X ∈ range set)

62



by (metis List.finite-set finite-list image-iff rangeI )

lemma lm159 :
finite = (%X . X∈range set)
using lm158 by metis

lemma lm160 :
swap f = (%x. %y. f y x)
by (metis comp-eq-dest-lhs curry-def flip-def fst-conv old.prod.case snd-conv)

7.8 Some easy properties on real numbers
lemma lm161 :

fixes a::real
fixes b c
shows a∗b − a∗c=a∗(b−c)
by (metis real-scaleR-def real-vector .scale-right-diff-distrib)

lemma lm162 :
fixes a::real
fixes b c
shows a∗b − c∗b=(a−c)∗b
using lm161 by (metis mult.commute)

end

8 Definitions about those Combinatorial Auctions
which are strict (i.e., which assign all the avail-
able goods)

theory StrictCombinatorialAuction
imports Complex-Main

Partitions
MiscTools

begin

8.1 Types
type-synonym index = integer
type-synonym participant = index
type-synonym good = integer
type-synonym goods = good set
type-synonym price = real
type-synonym bids3 = ((participant × goods) × price) set
type-synonym bids = participant ⇒ goods ⇒ price
type-synonym allocation-rel = (goods × participant) set
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type-synonym allocation = (participant × goods) set
type-synonym payments = participant ⇒ price
type-synonym bidvector = (participant × goods) ⇒ price
abbreviation bidvector (b::bids) == case-prod b
abbreviation proceeds (b::bidvector) (allo::allocation) == sum b allo
abbreviation winnersOfAllo (a::allocation) == Domain a
abbreviation allocatedGoods (allo::allocation) ==

⋃
(Range allo)

fun possible-allocations-rel
where possible-allocations-rel G N = Union { injections Y N | Y . Y ∈ all-partitions

G }

abbreviation is-partition-of ′ P A == (
⋃

P = A ∧ is-non-overlapping P)
abbreviation all-partitions ′ A == {P . is-partition-of ′ P A}

abbreviation possible-allocations-rel ′ G N == Union{injections Y N | Y . Y ∈
all-partitions ′ G}
abbreviation allAllocations where

allAllocations N G == converse ‘ (possible-allocations-rel G N )

algorithmic version of possible-allocations-rel
fun possible-allocations-alg :: goods ⇒ participant set ⇒ allocation-rel list

where possible-allocations-alg G N =
concat [ injections-alg Y N . Y ← all-partitions-alg G ]

abbreviation allAllocationsAlg N G ==
map converse (concat [(injections-alg l N ) . l ← all-partitions-list G])

8.2 VCG mechanism
abbreviation winningAllocationsRel N G b ==

argmax (sum b) (allAllocations N G)

abbreviation winningAllocationRel N G t b == t (winningAllocationsRel N G b)

abbreviation winningAllocationsAlg N G b == argmaxList (proceeds b) (allAllocationsAlg
N G)

definition winningAllocationAlg N G t b == t (winningAllocationsAlg N G b)

payments

alpha is the maximum sum of bids of all bidders except bidder n’s bid,
computed over all possible allocations of all goods, i.e. the value reportedly
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generated by value maximization when solved without n’s bids
abbreviation alpha N G b n == Max ((sum b)‘(allAllocations (N−{n}) G))

abbreviation alphaAlg N G b n == Max ((proceeds b)‘(set (allAllocationsAlg
(N−{n}) (G::- list))))

abbreviation remainingValueRel N G t b n == sum b ((winningAllocationRel N
G t b) −− n)

abbreviation remainingValueAlg N G t b n == proceeds b ((winningAllocationAlg
N G t b) −− n)

abbreviation paymentsRel N G t == (alpha N G) − (remainingValueRel N G t)

definition paymentsAlg N G t == (alphaAlg N G) − (remainingValueAlg N G t)

end

9 Sets of injections, partitions, allocations expressed
as suitable subsets of the corresponding uni-
verses

theory Universes

imports
HOL−Library.Code-Target-Nat
StrictCombinatorialAuction
HOL−Library.Indicator-Function

begin

9.1 Preliminary lemmas
lemma lm001 :

assumes Y ∈ set (all-partitions-alg X)
shows distinct Y
using assms distinct-sorted-list-of-set all-partitions-alg-def all-partitions-equivalence ′

by metis

lemma lm002 :
assumes finite G
shows all-partitions G = set ‘ (set (all-partitions-alg G))
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using assms sortingSameSet all-partitions-alg-def all-partitions-paper-equiv-alg
distinct-sorted-list-of-set image-set

by metis

9.2 Definitions of various subsets of UNIV.
abbreviation isChoice R == ∀ x. R‘‘{x} ⊆ x
abbreviation partitionsUniverse == {X . is-non-overlapping X}
lemma partitionsUniverse ⊆ Pow UNIV

by simp

abbreviation partitionValuedUniverse ==
⋃

P ∈ partitionsUniverse. Pow (UNIV
× P)
lemma partitionValuedUniverse ⊆ Pow (UNIV × (Pow UNIV ))

by simp

abbreviation injectionsUniverse == {R. (runiq R) & (runiq (R^−1 ))}

abbreviation allocationsUniverse == injectionsUniverse ∩ partitionValuedUni-
verse
abbreviation totalRels X Y == {R. Domain R = X & Range R ⊆ Y }

9.3 Results about the sets defined in the previous section
lemma lm003 :

assumes ∀ x1 ∈ X . (x1 6= {} & (∀ x2 ∈ X−{x1}. x1 ∩ x2 = {}))
shows is-non-overlapping X
unfolding is-non-overlapping-def using assms by fast

lemma lm004 :
assumes ∀ x ∈ X . f x ∈ x
shows isChoice (graph X f )
using assms
by (metis Image-within-domain ′ empty-subsetI insert-subset graphEqImage do-

mainOfGraph
runiq-wrt-eval-rel subset-trans)

lemma lm006 : injections X Y ⊆ injectionsUniverse
using injections-def by fast

lemma lm007 : injections X Y ⊆ injectionsUniverse
using injections-def by blast

lemma lm008 : injections X Y = totalRels X Y ∩ injectionsUniverse
using injections-def by (simp add: Collect-conj-eq Int-assoc)

lemma allocationInverseRangeDomainProperty:
assumes a ∈ allAllocations N G
shows a^−1 ∈ injections (Range a) N &
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(Range a) partitions G &
Domain a ⊆ N

unfolding injections-def using assms all-partitions-def injections-def by fast-
force

lemma lm009 :
assumes is-non-overlapping XX YY ⊆ XX
shows (XX − YY ) partitions (

⋃
XX −

⋃
YY )

proof −
let ?xx=XX − YY let ?X=

⋃
XX let ?Y=

⋃
YY

let ?x=?X − ?Y
have ∀ y ∈ YY . ∀ x∈?xx. y ∩ x={} using assms is-non-overlapping-def

by (metis Diff-iff rev-subsetD)
then have

⋃
?xx ⊆ ?x using assms by blast

then have
⋃

?xx = ?x by blast
moreover have is-non-overlapping ?xx using subset-is-non-overlapping

by (metis Diff-subset assms(1 ))
ultimately
show ?thesis using is-partition-of-def by blast

qed

lemma allocationRightUniqueRangeDomain:
assumes a ∈ possible-allocations-rel G N
shows runiq a &

runiq (a−1) &
(Domain a) partitions G &
Range a ⊆ N

proof −
obtain Y where
0 : a ∈ injections Y N & Y ∈ all-partitions G using assms by auto
show ?thesis using 0 injections-def all-partitions-def mem-Collect-eq by fastforce

qed

lemma lm010 :
assumes runiq a runiq (a−1) (Domain a) partitions G Range a ⊆ N
shows a ∈ possible-allocations-rel G N

proof −
have a ∈ injections (Domain a) N unfolding injections-def

using assms(1 ) assms(2 ) assms(4 ) by blast
moreover have Domain a ∈ all-partitions G using assms(3 ) all-partitions-def

by fast
ultimately show ?thesis using assms(1 ) by auto

qed

lemma allocationProperty:
a ∈ possible-allocations-rel G N ←→
runiq a & runiq (a−1) & (Domain a) partitions G & Range a ⊆ N
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using allocationRightUniqueRangeDomain lm010 by blast

lemma lm011 :
possible-allocations-rel ′ G N ⊆ injectionsUniverse
using injections-def by force

lemma lm012 :
possible-allocations-rel G N ⊆ {a. (Range a) ⊆ N & (Domain a) ∈ all-partitions

G}
using injections-def by fastforce

lemma lm013 :
injections X Y = injections X Y
using injections-def by metis

lemma lm014 :
all-partitions X = all-partitions ′ X
using all-partitions-def is-partition-of-def by auto

lemma lm015 :
possible-allocations-rel ′ A B = possible-allocations-rel A B
(is ?A=?B)

proof −
have ?B=

⋃
{ injections Y B | Y . Y ∈ all-partitions A }

by auto
moreover have ... = ?A using lm014 by metis
ultimately show ?thesis by presburger

qed

lemma lm016 :
possible-allocations-rel G N ⊆
injectionsUniverse ∩ {a. Range a ⊆ N & Domain a ∈ all-partitions G}

using lm012 lm011 injections-def by fastforce

lemma lm017 :
possible-allocations-rel G N ⊇
injectionsUniverse ∩ {a. Domain a ∈ all-partitions G & Range a ⊆ N}

using injections-def by auto

lemma lm018 :
possible-allocations-rel G N =
injectionsUniverse ∩ {a. Domain a ∈ all-partitions G & Range a ⊆ N}

using lm016 lm017 by blast

lemma lm019 :
converse ‘ injectionsUniverse = injectionsUniverse
by auto
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lemma lm020 :
converse‘(A ∩ B) = (converse‘A) ∩ (converse‘B)
by force

lemma allocationInjectionsUnivervseProperty:
allAllocations N G =
injectionsUniverse ∩ {a. Domain a ⊆ N & Range a ∈ all-partitions G}

proof −
let ?A=possible-allocations-rel G N
let ?c=converse
let ?I=injectionsUniverse
let ?P=all-partitions G
let ?d=Domain
let ?r=Range
have ?c‘?A = (?c‘?I ) ∩ ?c‘ ({a. ?r a ⊆ N & ?d a ∈ ?P}) using lm018 by

fastforce
moreover have ... = (?c‘?I ) ∩ {aa. ?d aa ⊆ N & ?r aa ∈ ?P} by fastforce
moreover have ... = ?I ∩ {aa. ?d aa ⊆ N & ?r aa ∈ ?P} using lm019 by

metis
ultimately show ?thesis by presburger

qed

lemma lm021 :
allAllocations N G ⊆ injectionsUniverse
using allocationInjectionsUnivervseProperty by fast

lemma lm022 :
allAllocations N G ⊆ partitionValuedUniverse
using allocationInverseRangeDomainProperty is-partition-of-def is-non-overlapping-def

by auto blast

corollary allAllocationsUniverse:
allAllocations N G ⊆ allocationsUniverse
using lm021 lm022 by (metis (lifting, mono-tags) inf .bounded-iff )

corollary posssibleAllocationsRelCharacterization:
a ∈ allAllocations N G =
(a ∈ injectionsUniverse & Domain a ⊆ N & Range a ∈ all-partitions G)

using allocationInjectionsUnivervseProperty Int-Collect Int-iff by (metis (lifting))

corollary lm023 :
assumes a ∈ allAllocations N1 G
shows a ∈ allAllocations (N1 ∪ N2 ) G

proof −
have Domain a ⊆ N1 ∪ N2 using assms(1 ) posssibleAllocationsRelCharacteri-

zation
by (metis le-supI1 )
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moreover have a ∈ injectionsUniverse & Range a ∈ all-partitions G
using assms posssibleAllocationsRelCharacterization by blast

ultimately show ?thesis using posssibleAllocationsRelCharacterization by blast

qed

corollary lm024 :
allAllocations N1 G ⊆ allAllocations (N1 ∪ N2 ) G
using lm023 by (metis subsetI )

lemma lm025 :
assumes (

⋃
P1 ) ∩ (

⋃
P2 ) = {}

is-non-overlapping P1 is-non-overlapping P2
X ∈ P1 ∪ P2 Y ∈ P1 ∪ P2 X ∩ Y 6= {}

shows (X = Y )
unfolding is-non-overlapping-def using assms is-non-overlapping-def by fast

lemma lm026 :
assumes (

⋃
P1 ) ∩ (

⋃
P2 ) = {}

is-non-overlapping P1
is-non-overlapping P2
X ∈ P1 ∪ P2
Y ∈ P1 ∪ P2
(X = Y )

shows X ∩ Y 6= {}
unfolding is-non-overlapping-def using assms is-non-overlapping-def by fast

lemma lm027 :
assumes (

⋃
P1 ) ∩ (

⋃
P2 ) = {}

is-non-overlapping P1
is-non-overlapping P2

shows is-non-overlapping (P1 ∪ P2 )
unfolding is-non-overlapping-def using assms lm025 lm026 by metis

lemma lm028 :
Range Q ∪ (Range (P outside (Domain Q))) = Range (P +∗ Q)
by (simp add: paste-def Range-Un-eq Un-commute)

lemma lm029 :
assumes a1 ∈ injectionsUniverse

a2 ∈ injectionsUniverse
(Range a1 ) ∩ (Range a2 )={}
(Domain a1 ) ∩ (Domain a2 ) = {}

shows a1 ∪ a2 ∈ injectionsUniverse
using assms disj-Un-runiq
by (metis (no-types) Domain-converse converse-Un mem-Collect-eq)

lemma nonOverlapping:
assumes R ∈ partitionValuedUniverse
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shows is-non-overlapping (Range R)
proof −

obtain P where
0 : P ∈ partitionsUniverse & R ⊆ UNIV × P using assms by blast
have Range R ⊆ P using 0 by fast
then show ?thesis using 0 mem-Collect-eq subset-is-non-overlapping by (metis)

qed

lemma allocationUnion:
assumes a1 ∈ allocationsUniverse

a2 ∈ allocationsUniverse
(
⋃

(Range a1 )) ∩ (
⋃

(Range a2 )) = {}
(Domain a1 ) ∩ (Domain a2 ) = {}

shows a1 ∪ a2 ∈ allocationsUniverse
proof −

let ?a=a1 ∪ a2
let ?b1=a1^−1
let ?b2=a2^−1
let ?r=Range
let ?d=Domain
let ?I=injectionsUniverse
let ?P=partitionsUniverse
let ?PV=partitionValuedUniverse
let ?u=runiq
let ?b=?a^−1
let ?p=is-non-overlapping
have ?p (?r a1 ) & ?p (?r a2 ) using assms nonOverlapping by blast then
moreover have ?p (?r a1 ∪ ?r a2 ) using assms by (metis lm027 )
then moreover have (?r a1 ∪ ?r a2 ) ∈ ?P by simp
moreover have ?r ?a = (?r a1 ∪ ?r a2 ) using assms by fast
ultimately moreover have ?p (?r ?a) using lm027 assms by fastforce
then moreover have ?a ∈ ?PV using assms by fast
moreover have ?r a1 ∩ (?r a2 ) ⊆ Pow (

⋃
(?r a1 ) ∩ (

⋃
(?r a2 ))) by auto

ultimately moreover have {} /∈ (?r a1 ) & {} /∈ (?r a2 )
using is-non-overlapping-def by (metis Int-empty-left)

ultimately moreover have ?r a1 ∩ (?r a2 ) = {}
using assms nonOverlapping is-non-overlapping-def by auto

ultimately moreover have ?a ∈ ?I using lm029 assms by fastforce
ultimately show ?thesis by blast

qed

lemma lm030 :
assumes a ∈ injectionsUniverse
shows a − b ∈ injectionsUniverse
using assms
by (metis (lifting) Diff-subset converse-mono mem-Collect-eq subrel-runiq)
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lemma lm031 :
{a. Domain a ⊆ N & Range a ∈ all-partitions G} =
(Domain −‘(Pow N )) ∩ (Range −‘ (all-partitions G))

by fastforce

lemma lm032 :
allAllocations N G =
injectionsUniverse ∩ ((Range −‘ (all-partitions G)) ∩ (Domain −‘(Pow N )))

using allocationInjectionsUnivervseProperty lm031 by (metis (no-types) Int-commute)

corollary lm033 :
allAllocations N G =
injectionsUniverse ∩ (Range −‘ (all-partitions G)) ∩ (Domain −‘(Pow N ))

using lm032 Int-assoc by (metis)

lemma lm034 :
assumes a ∈ allAllocations N G
shows (a^−1 ∈ injections (Range a) N &

Range a ∈ all-partitions G)
using assms
by (metis (mono-tags, opaque-lifting) posssibleAllocationsRelCharacterization

allocationInverseRangeDomainProperty)

lemma lm035 :
assumes a^−1 ∈ injections (Range a) N Range a ∈ all-partitions G
shows a ∈ allAllocations N G
using assms image-iff by fastforce

lemma allocationReverseInjective:
a ∈ allAllocations N G =
(a^−1 ∈ injections (Range a) N & Range a ∈ all-partitions G)

using lm034 lm035 by metis

lemma lm036 :
assumes a ∈ allAllocations N G
shows a ∈ injections (Domain a) (Range a) &

Range a ∈ all-partitions G &
Domain a ⊆ N

using assms mem-Collect-eq injections-def posssibleAllocationsRelCharacteriza-
tion order-refl

by (metis (mono-tags, lifting))

lemma lm037 :
assumes a ∈ injections (Domain a) (Range a)

Range a ∈ all-partitions G
Domain a ⊆ N

shows a ∈ allAllocations N G
using assms mem-Collect-eq posssibleAllocationsRelCharacterization injections-def
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by (metis (erased, lifting))

lemma characterizationallAllocations:
a ∈ allAllocations N G = (a ∈ injections (Domain a) (Range a) &
Range a ∈ all-partitions G &
Domain a ⊆ N )

using lm036 lm037 by metis

lemma lm038 :
assumes a ∈ partitionValuedUniverse
shows a − b ∈ partitionValuedUniverse
using assms subset-is-non-overlapping by fast

lemma reducedAllocation:
assumes a ∈ allocationsUniverse
shows a − b ∈ allocationsUniverse
using assms lm030 lm038 by auto

lemma lm039 :
assumes a ∈ injectionsUniverse
shows a ∈ injections (Domain a) (Range a)
using assms injections-def mem-Collect-eq order-refl by blast

lemma lm040 :
assumes a ∈ allocationsUniverse
shows a ∈ allAllocations (Domain a) (

⋃
(Range a))

proof −
let ?r=Range
let ?p=is-non-overlapping
let ?P=all-partitions
have ?p (?r a) using assms nonOverlapping Int-iff by blast
then have ?r a ∈ ?P (

⋃
(?r a)) unfolding all-partitions-def

using is-partition-of-def mem-Collect-eq by (metis)
then show ?thesis

using assms IntI Int-lower1 equalityE allocationInjectionsUnivervseProperty
mem-Collect-eq rev-subsetD

by (metis (lifting, no-types))
qed

lemma lm041 :
({X} ∈ partitionsUniverse) = (X 6= {})
using is-non-overlapping-def by fastforce

lemma lm042 :
{(x, X)} − {(x, {})} ∈ partitionValuedUniverse
using lm041 by auto

lemma singlePairInInjectionsUniverse:
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{(x, X)} ∈ injectionsUniverse
unfolding runiq-basic using runiq-singleton-rel by blast

lemma allocationUniverseProperty:
{(x,X)} − {(x,{})} ∈ allocationsUniverse
using lm042 singlePairInInjectionsUniverse lm030 Int-iff by (metis (no-types))

lemma lm043 :
assumes is-non-overlapping PP is-non-overlapping (Union PP)
shows is-non-overlapping (Union ‘ PP)

proof −
let ?p=is-non-overlapping
let ?U=Union
let ?P2=?U PP
let ?P1=?U ‘ PP
have
0 : ∀ X∈?P1 . ∀ Y ∈ ?P1 . (X ∩ Y = {} −→ X 6= Y )

using assms is-non-overlapping-def Int-absorb Int-empty-left UnionI Union-disjoint

ex-in-conv imageE
by (metis (opaque-lifting, no-types))

{
fix X Y
assume
1 : X ∈ ?P1 & Y∈?P1 & X 6= Y
then obtain XX YY
where
2 : X = ?U XX & Y=?U YY & XX∈PP & YY∈PP by blast
then have XX ⊆ Union PP & YY ⊆ Union PP & XX ∩ YY = {}
using 1 2 is-non-overlapping-def assms(1 ) Sup-upper by metis

then moreover have ∀ x∈XX . ∀ y∈YY . x ∩ y = {} using assms(2 )
is-non-overlapping-def

by (metis IntI empty-iff subsetCE)
ultimately have X ∩ Y={} using assms 0 1 2 is-non-overlapping-def by

auto
}
then show ?thesis using 0 is-non-overlapping-def by metis

qed

lemma lm044 :
assumes a ∈ allocationsUniverse
shows (a − ((X∪{i})×(Range a))) ∪

({(i,
⋃

(a‘‘(X ∪ {i})))} − {(i,{})}) ∈ allocationsUniverse &⋃
(Range ((a − ((X∪{i})×(Range a))) ∪ ({(i,

⋃
(a‘‘(X ∪ {i})))} −

{(i,{})}))) =⋃
(Range a)

proof −
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let ?d=Domain
let ?r=Range
let ?U=Union
let ?p=is-non-overlapping
let ?P=partitionsUniverse
let ?u=runiq
let ?Xi=X ∪ {i}
let ?b=?Xi × (?r a)
let ?a1=a − ?b
let ?Yi=a‘‘?Xi
let ?Y=?U ?Yi
let ?A2={(i, ?Y )}
let ?a3={(i,{})}
let ?a2=?A2 − ?a3
let ?aa1=a outside ?Xi
let ?c=?a1 ∪ ?a2
let ?t1=?c ∈ allocationsUniverse
have
1 : ?U (?r(?a1∪?a2 ))=?U (?r ?a1 ) ∪ (?U (?r ?a2 )) by (metis Range-Un-eq Union-Un-distrib)

have
2 : ?U (?r a) ⊆ ?U (?r ?a1 ) ∪ ?U (a‘‘?Xi) & ?U (?r ?a1 ) ∪ ?U (?r ?a2 ) ⊆ ?U (?r

a) by blast
have
3 : ?u a & ?u (a^−1 ) & ?p (?r a) & ?r ?a1 ⊆ ?r a & ?Yi ⊆ ?r a

using assms Int-iff nonOverlapping mem-Collect-eq by auto
then have
4 : ?p (?r ?a1 ) & ?p ?Yi using subset-is-non-overlapping by metis
have ?a1 ∈ allocationsUniverse & ?a2 ∈ allocationsUniverse

using allocationUniverseProperty assms(1 ) reducedAllocation by fastforce
then have (?a1 = {} ∨ ?a2 = {})−→ ?t1

using Un-empty-left by (metis (lifting, no-types) Un-absorb2 empty-subsetI )
moreover have (?a1 = {} ∨ ?a2 = {})−→ ?U (?r a) = ?U (?r ?a1 ) ∪ ?U (?r

?a2 ) by fast
ultimately have
5 : (?a1 = {} ∨ ?a2 = {})−→ ?thesis using 1 by simp
{

assume
6 : ?a1 6={} & ?a2 6={}
then have ?r ?a2⊇{?Y }

using Diff-cancel Range-insert empty-subsetI insert-Diff-single insert-iff
insert-subset

by (metis (opaque-lifting, no-types))
then have
7 : ?U (?r a) = ?U (?r ?a1 ) ∪ ?U (?r ?a2 ) using 2 by blast
have ?r ?a1 6= {} & ?r ?a2 6= {} using 6 by auto
moreover have ?r ?a1 ⊆ a‘‘(?d ?a1 ) using assms by blast
moreover have ?Yi ∩ (a‘‘(?d a − ?Xi)) = {}

using assms 3 6 Diff-disjoint intersectionEmptyRelationIntersectionEmpty
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by metis
ultimately moreover have ?r ?a1 ∩ ?Yi = {} & ?Yi 6= {} by blast

ultimately moreover have ?p {?r ?a1 , ?Yi} unfolding is-non-overlapping-def

using IntI Int-commute empty-iff insert-iff subsetI subset-empty by metis
moreover have ?U {?r ?a1 , ?Yi} ⊆ ?r a by auto
then moreover have ?p (?U {?r ?a1 , ?Yi}) by (metis 3 Outside-def sub-

set-is-non-overlapping)
ultimately moreover have ?p (?U‘{(?r ?a1 ), ?Yi}) using lm043 by fast
moreover have ... = {?U (?r ?a1 ), ?Y } by force
ultimately moreover have ∀ x ∈ ?r ?a1 . ∀ y∈?Yi. x 6= y
using IntI empty-iff by metis
ultimately moreover have ∀ x ∈ ?r ?a1 . ∀ y∈?Yi. x ∩ y = {}

using 3 4 6 is-non-overlapping-def by (metis rev-subsetD)
ultimately have ?U (?r ?a1 ) ∩ ?Y = {} using unionIntersectionEmpty

proof −
have ∀ v0 . v0 ∈ Range (a − (X ∪ {i}) × Range a) −→ (∀ v1 . v1 ∈ a ‘‘ (X ∪
{i}) −→ v0 ∩ v1 = {})

by (metis (no-types) ‹∀ x∈Range (a − (X ∪ {i}) × Range a). ∀ y∈a ‘‘ (X ∪
{i}). x ∩ y = {}›)

thus
⋃
(Range (a − (X ∪ {i}) × Range a)) ∩

⋃
(a ‘‘ (X ∪ {i})) = {} by blast

qed
then have

?U (?r ?a1 ) ∩ (?U (?r ?a2 )) = {} by blast
moreover have ?d ?a1 ∩ (?d ?a2 ) = {} by blast
moreover have ?a1 ∈ allocationsUniverse using assms(1 ) reducedAllocation

by blast
moreover have ?a2 ∈ allocationsUniverse using allocationUniverseProperty

by fastforce
ultimately have ?a1 ∈ allocationsUniverse & ?a2 ∈ allocationsUniverse &⋃

(Range ?a1 ) ∩
⋃

(Range ?a2 ) = {} & Domain ?a1 ∩ Domain
?a2 = {}

by blast
then have ?t1 using allocationUnion by auto
then have ?thesis using 1 7 by simp

}
then show ?thesis using 5 by linarith

qed

corollary allocationsUniverseOutsideUnion:
assumes a ∈ allocationsUniverse
shows (a outside (X∪{i})) ∪ ({i}×({

⋃
(a‘‘(X∪{i}))}−{{}})) ∈ allocation-

sUniverse &⋃
(Range((a outside (X∪{i})) ∪ ({i}×({

⋃
(a‘‘(X∪{i}))}−{{}})))) =⋃

(Range a)
proof −

have a − ((X∪{i})×(Range a)) = a outside (X ∪ {i}) using Outside-def by
metis

moreover have (a − ((X∪{i})×(Range a))) ∪ ({(i,
⋃

(a‘‘(X ∪ {i})))} −
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{(i,{})}) ∈
allocationsUniverse

using assms lm044 by fastforce
moreover have

⋃
(Range ((a − ((X∪{i})×(Range a))) ∪ ({(i,

⋃
(a‘‘(X ∪

{i})))} − {(i,{})}))) =⋃
(Range a)

using assms lm044 by (metis (no-types))
ultimately have

(a outside (X∪{i})) ∪ ({(i,
⋃

(a‘‘(X ∪ {i})))} − {(i,{})}) ∈ allocationsUni-
verse &⋃

(Range ((a outside (X∪{i})) ∪ ({(i,
⋃

(a‘‘(X ∪ {i})))} − {(i,{})}))) =⋃
(Range a)

by simp
moreover have {(i,

⋃
(a‘‘(X ∪ {i})))} − {(i,{})} = {i} × ({

⋃
(a‘‘(X∪{i}))}

− {{}})
by fast

ultimately show ?thesis by auto
qed

lemma lm045 :
assumes Domain a ∩ X 6= {} a ∈ allocationsUniverse
shows

⋃
(a‘‘X) 6= {}

proof −
let ?p = is-non-overlapping
let ?r = Range
have ?p (?r a) using assms Int-iff nonOverlapping by auto
moreover have a‘‘X ⊆ ?r a by fast
ultimately have ?p (a‘‘X) using assms subset-is-non-overlapping by blast
moreover have a‘‘X 6= {} using assms by fast
ultimately show ?thesis by (metis Union-member all-not-in-conv no-empty-in-non-overlapping)

qed

corollary lm046 :
assumes Domain a ∩ X 6= {} a ∈ allocationsUniverse
shows {

⋃
(a‘‘(X∪{i}))}−{{}} = {

⋃
(a‘‘(X∪{i}))}

using assms lm045 by fast

corollary lm047 :
assumes a ∈ allocationsUniverse

(Domain a) ∩ X 6= {}
shows (a outside (X∪{i})) ∪ ({i}×{

⋃
(a‘‘(X∪{i}))}) ∈ allocationsUniverse &⋃

(Range((a outside (X∪{i})) ∪ ({i}×{
⋃
(a‘‘(X∪{i}))}))) =⋃

(Range a)
proof −

let ?t1 = (a outside (X∪{i})) ∪ ({i}×({
⋃

(a‘‘(X∪{i}))}−{{}})) ∈ allocation-
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sUniverse
let ?t2 =

⋃
(Range((a outside (X∪{i})) ∪ ({i}×({

⋃
(a‘‘(X∪{i}))}−{{}})))) =⋃

(Range a)
have
0 : a ∈ allocationsUniverse using assms(1 ) by fast
then have ?t1 & ?t2 using allocationsUniverseOutsideUnion
proof −

have a ∈ allocationsUniverse −→
a outside (X ∪ {i}) ∪ {i} × ({

⋃
(a ‘‘ (X ∪ {i}))} − {{}}) ∈ allocation-

sUniverse
using allocationsUniverseOutsideUnion by fastforce

hence a outside (X ∪ {i}) ∪ {i} × ({
⋃
(a ‘‘ (X ∪ {i}))} − {{}}) ∈ alloca-

tionsUniverse
by (metis 0 )

thus a outside (X ∪ {i}) ∪ {i} × ({
⋃

(a ‘‘ (X ∪ {i}))} − {{}}) ∈
allocationsUniverse ∧

⋃
(Range (a outside (X ∪ {i}) ∪ {i} × ({

⋃
(a ‘‘

(X ∪ {i}))} − {{}})))
=

⋃
(Range a)

using 0 by (metis (no-types) allocationsUniverseOutsideUnion)
qed
moreover have
{
⋃
(a‘‘(X∪{i}))}−{{}} = {

⋃
(a‘‘(X∪{i}))} using lm045 assms by fast

ultimately show ?thesis by auto
qed

abbreviation
bidMonotonicity b i ==
(∀ t t ′. (trivial t & trivial t ′ & Union t ⊆ Union t ′) −→

sum b ({i}×t) ≤ sum b ({i}×t ′))

lemma lm048 :
assumes bidMonotonicity b i runiq a
shows sum b ({i}×((a outside X)‘‘{i})) ≤ sum b ({i}×{

⋃
(a‘‘(X∪{i}))})

proof −
let ?u = runiq
let ?I = {i}
let ?R = a outside X
let ?U = Union
let ?Xi = X ∪?I
let ?t1 = ?R‘‘?I
let ?t2 = {?U (a‘‘?Xi)}
have ?U (?R‘‘?I ) ⊆ ?U (?R‘‘(X∪?I )) by blast
moreover have ... ⊆ ?U (a‘‘(X∪?I )) using Outside-def by blast
ultimately have ?U (?R‘‘?I ) ⊆ ?U (a‘‘(X∪?I )) by auto
then have
0 : ?U ?t1 ⊆ ?U ?t2 by auto
have ?u a using assms by fast
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moreover have ?R ⊆ a using Outside-def by blast ultimately
have ?u ?R using subrel-runiq by metis
then have trivial ?t1 by (metis runiq-alt)
moreover have trivial ?t2 by (metis trivial-singleton)
ultimately show ?thesis using assms 0 by blast

qed

lemma lm049 :
assumes XX ∈ partitionValuedUniverse
shows {} /∈ Range XX
using assms mem-Collect-eq no-empty-in-non-overlapping by auto

corollary emptyNotInRange:
assumes a ∈ allAllocations N G
shows {} /∈ Range a
using assms lm049 allAllocationsUniverse by auto blast

lemma lm050 :
assumes a ∈ allAllocations N G
shows Range a ⊆ Pow G
using assms allocationInverseRangeDomainProperty is-partition-of-def by (metis

subset-Pow-Union)

corollary lm051 :
assumes a ∈ allAllocations N G
shows Domain a ⊆ N & Range a ⊆ Pow G − {{}}
using assms lm050 insert-Diff-single emptyNotInRange subset-insert

allocationInverseRangeDomainProperty by metis

corollary allocationPowerset:
assumes a ∈ allAllocations N G
shows a ⊆ N × (Pow G − {{}})
using assms lm051 by blast

corollary lm052 :
allAllocations N G ⊆ Pow (N×(Pow G−{{}}))
using allocationPowerset by blast

lemma lm053 :
assumes a ∈ allAllocations N G

i ∈ N−X
Domain a ∩ X 6= {}

shows a outside (X ∪ {i}) ∪ ({i} × {
⋃

(a‘‘(X∪{i}))}) ∈
allAllocations (N−X) (

⋃
(Range a))

proof −
let ?R = a outside X
let ?I = {i}
let ?U = Union
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let ?u = runiq
let ?r = Range
let ?d = Domain
let ?aa = a outside (X ∪ {i}) ∪ ({i} × {?U (a‘‘(X∪{i}))})
have
1 : a ∈ allocationsUniverse using assms(1 ) allAllocationsUniverse rev-subsetD

by blast
have i /∈ X using assms by fast
then have
2 : ?d a − X ∪ {i} = ?d a ∪ {i} − X by fast
have a ∈ allocationsUniverse using 1 by fast
moreover have ?d a ∩ X 6= {} using assms by fast
ultimately have ?aa ∈ allocationsUniverse & ?U (?r ?aa) = ?U (?r a) apply

(rule lm047 ) done
then have ?aa ∈ allAllocations (?d ?aa) (?U (?r a))

using lm040 by (metis (lifting, mono-tags))
then have ?aa ∈ allAllocations (?d ?aa ∪ (?d a − X ∪ {i})) (?U (?r a))

by (metis lm023 )
moreover have ?d a − X ∪ {i} = ?d ?aa ∪ (?d a − X ∪ {i}) using Outside-def

by auto
ultimately have ?aa ∈ allAllocations (?d a − X ∪ {i}) (?U (?r a)) by simp
then have ?aa ∈ allAllocations (?d a ∪ {i} − X) (?U (?r a)) using 2 by simp
moreover have ?d a ⊆ N using assms(1 ) posssibleAllocationsRelCharacteriza-

tion by metis
then moreover have (?d a ∪ {i} − X) ∪ (N − X) = N − X using assms by

fast
ultimately have ?aa ∈ allAllocations (N − X) (?U (?r a)) using lm024

by (metis (lifting, no-types) in-mono)
then show ?thesis by fast

qed

lemma lm054 :
assumes bidMonotonicity (b::- => real) i

a ∈ allocationsUniverse
Domain a ∩ X 6= {}
finite a

shows sum b (a outside X) ≤
sum b (a outside (X ∪ {i}) ∪ ({i} × {

⋃
(a‘‘(X∪{i}))}))

proof −
let ?R = a outside X
let ?I = {i}
let ?U = Union
let ?u = runiq
let ?r = Range
let ?d = Domain
let ?aa = a outside (X ∪ {i}) ∪ ({i} × {?U (a‘‘(X∪{i}))})
have a ∈ injectionsUniverse using assms by fast
then have
0 : ?u a by simp
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moreover have ?R ⊆ a & ?R−−i ⊆ a using Outside-def using lm088 by auto
ultimately have finite (?R −− i) & ?u (?R−−i) & ?u ?R

using finite-subset subrel-runiq by (metis assms(4 ))
then moreover have trivial ({i}×(?R‘‘{i})) using runiq-def

by (metis trivial-cartesian trivial-singleton)
moreover have ∀X . (?R −− i) ∩ ({i}×X)={} using outside-reduces-domain

by force
ultimately have
1 : finite (?R−−i) & finite ({i}×(?R‘‘{i})) & (?R −− i) ∩ ({i}×(?R‘‘{i}))={}

&
finite ({i} × {?U (a‘‘(X∪{i}))}) & (?R −− i) ∩ ({i} × {?U (a‘‘(X∪{i}))})={}

using Outside-def trivial-implies-finite by fast
have ?R = (?R −− i) ∪ ({i}×?R‘‘{i}) by (metis outsideUnion)
then have sum b ?R = sum b (?R −− i) + sum b ({i}×(?R‘‘{i}))

using 1 sum.union-disjoint by (metis (lifting) sum.union-disjoint)
moreover have sum b ({i}×(?R‘‘{i})) ≤ sum b ({i}×{?U (a‘‘(X∪{i}))})

using lm048 assms(1 ) 0 by metis
ultimately have sum b ?R ≤ sum b (?R −− i) + sum b ({i}×{?U (a‘‘(X∪{i}))})

by linarith
moreover have ... = sum b (?R −− i ∪ ({i} × {?U (a‘‘(X∪{i}))}))
using 1 sum.union-disjoint by auto
moreover have ... = sum b ?aa by (metis outsideOutside)
ultimately show ?thesis by simp

qed

lemma elementOfPartitionOfFiniteSetIsFinite:
assumes finite X XX ∈ all-partitions X
shows finite XX
using all-partitions-def is-partition-of-def
by (metis assms(1 ) assms(2 ) finite-UnionD mem-Collect-eq)

lemma lm055 :
assumes finite N finite G a ∈ allAllocations N G
shows finite a
using assms finiteRelationCharacterization rev-finite-subset
by (metis characterizationallAllocations elementOfPartitionOfFiniteSetIsFinite)

lemma allAllocationsFinite:
assumes finite N finite G
shows finite (allAllocations N G)

proof −
have finite (Pow(N×(Pow G−{{}}))) using assms finite-Pow-iff by blast
then show ?thesis using lm052 rev-finite-subset by (metis(no-types))

qed

corollary lm056 :
assumes bidMonotonicity (b::- => real) i

a ∈ allAllocations N G
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i ∈ N−X
Domain a ∩ X 6= {}
finite N
finite G

shows Max ((sum b)‘(allAllocations (N−X) G)) ≥
sum b (a outside X)

proof −
let ?aa = a outside (X ∪ {i}) ∪ ({i} × {

⋃
(a‘‘(X∪{i}))})

have bidMonotonicity (b::- => real) i using assms(1 ) by fast
moreover have a ∈ allocationsUniverse using assms(2 ) allAllocationsUniverse

by blast
moreover have Domain a ∩ X 6= {} using assms(4 ) by auto
moreover have finite a using assms lm055 by metis
ultimately have
0 : sum b (a outside X) ≤ sum b ?aa by (rule lm054 )
have ?aa ∈ allAllocations (N−X) (

⋃
(Range a)) using assms lm053 by metis

moreover have
⋃

(Range a) = G
using assms allocationInverseRangeDomainProperty is-partition-of-def by metis
ultimately have sum b ?aa ∈ (sum b)‘(allAllocations (N−X) G) by (metis

imageI )
moreover have finite ((sum b)‘(allAllocations (N−X) G))
using assms allAllocationsFinite assms(5 ,6 ) by (metis finite-Diff finite-imageI )
ultimately have sum b ?aa ≤ Max ((sum b)‘(allAllocations (N−X) G)) by

auto
then show ?thesis using 0 by linarith

qed

lemma cardinalityPreservation:
assumes ∀X ∈ XX . finite X is-non-overlapping XX
shows card (

⋃
XX) = sum card XX

by (metis assms is-non-overlapping-def card-Union-disjoint disjointI )

corollary cardSumCommute:
assumes XX partitions X finite X finite XX
shows card (

⋃
XX) = sum card XX

using assms cardinalityPreservation by (metis is-partition-of-def familyUnion-
FiniteEverySetFinite)

lemma sumUnionDisjoint1 :
assumes ∀A∈C . finite A ∀A∈C . ∀B∈C . A 6= B −→ A Int B = {}
shows sum f (Union C ) = sum (sum f ) C
using assms sum.Union-disjoint by fastforce

corollary sumUnionDisjoint2 :
assumes ∀ x∈X . finite x is-non-overlapping X
shows sum f (

⋃
X) = sum (sum f ) X

using assms sumUnionDisjoint1 is-non-overlapping-def by fast
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corollary sumUnionDisjoint3 :
assumes ∀ x∈X . finite x X partitions XX
shows sum f XX = sum (sum f ) X
using assms by (metis is-partition-of-def sumUnionDisjoint2 )

corollary sum-associativity:
assumes finite x X partitions x
shows sum f x = sum (sum f ) X
using assms sumUnionDisjoint3
by (metis is-partition-of-def familyUnionFiniteEverySetFinite)

lemma lm057 :
assumes a ∈ allocationsUniverse Domain a ⊆ N

⋃
(Range a) = G

shows a ∈ allAllocations N G
using assms posssibleAllocationsRelCharacterization lm040 by (metis (mono-tags,

lifting))

corollary lm058 :
(allocationsUniverse ∩ {a. (Domain a) ⊆ N &

⋃
(Range a) = G}) ⊆

allAllocations N G
using lm057 by fastforce

corollary lm059 :
allAllocations N G ⊆ {a. (Domain a) ⊆ N}
using allocationInverseRangeDomainProperty by blast

corollary lm060 :
allAllocations N G ⊆ {a.

⋃
(Range a) = G}

using is-partition-of-def allocationInverseRangeDomainProperty mem-Collect-eq
subsetI

by (metis(mono-tags))

corollary lm061 :
allAllocations N G ⊆ allocationsUniverse &
allAllocations N G ⊆ {a. (Domain a) ⊆ N &

⋃
(Range a) = G}

using lm059 lm060 conj-subset-def allAllocationsUniverse by (metis (no-types))

corollary allAllocationsIntersectionSubset:
allAllocations N G ⊆
allocationsUniverse ∩ {a. (Domain a) ⊆ N &

⋃
(Range a) = G}

(is ?L ⊆ ?R1 ∩ ?R2 )
proof −

have ?L ⊆ ?R1 & ?L ⊆ ?R2 by (rule lm061 ) thus ?thesis by auto
qed

corollary allAllocationsIntersection:
allAllocations N G =
(allocationsUniverse ∩ {a. (Domain a) ⊆ N &

⋃
(Range a) = G})

(is ?L = ?R)
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proof −
have ?L ⊆ ?R using allAllocationsIntersectionSubset by metis
moreover have ?R ⊆ ?L using lm058 by fast
ultimately show ?thesis by force

qed

corollary allAllocationsIntersectionSetEquals:
a ∈ allAllocations N G =
(a ∈ allocationsUniverse & (Domain a) ⊆ N &

⋃
(Range a) = G)

using allAllocationsIntersection Int-Collect by (metis (mono-tags, lifting))

corollary allocationsUniverseOutside:
assumes a ∈ allocationsUniverse
shows a outside X ∈ allocationsUniverse
using assms Outside-def by (metis (lifting, mono-tags) reducedAllocation)

9.4 Bridging theorem for injections
lemma lm062 :

totalRels {} Y = {{}}
by fast

lemma lm063 :
{} ∈ injectionsUniverse
by (metis CollectI converse-empty runiq-emptyrel)

lemma lm064 :
injectionsUniverse ∩ (totalRels {} Y ) = {{}}
using lm062 lm063 by fast

lemma lm065 :
assumes runiq f x /∈Domain f
shows { f ∪ {(x, y)} | y . y ∈ A } ⊆ runiqs
unfolding paste-def runiqs-def using assms runiq-basic by blast

lemma lm066 :
converse ‘ (converse ‘ X) = X
by auto

lemma lm067 :
runiq (f^−1 ) = (f ∈ converse‘runiqs)
unfolding runiqs-def by auto

lemma lm068 :
assumes runiq (f^−1 ) A ∩ Range f = {}
shows converse ‘ { f ∪ {(x, y)} | y . y ∈ A } ⊆ runiqs
using assms lm065 by fast

lemma lm069 :
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assumes f∈converse‘runiqs A ∩ Range f = {}
shows {f ∪ {(x, y)}| y. y ∈ A} ⊆ converse‘runiqs
(is ?l ⊆ ?r)

proof −
have runiq (f^−1 ) using assms(1 ) lm067 by blast
then have converse ‘ ?l ⊆ runiqs using assms(2 ) by (rule lm068 )
then have ?r ⊇ converse‘(converse‘?l) by auto
moreover have converse‘(converse‘?l)=?l by (rule lm066 )
ultimately show ?thesis by simp

qed

lemma lm070 :
{ R ∪ {(x, y)} | y . y ∈ A } ⊆ totalRels ({x} ∪ Domain R) (A ∪ Range R)
by force

lemma lm071 :
injectionsUniverse = runiqs ∩ converse‘runiqs
unfolding runiqs-def by auto

lemma lm072 :
assumes f ∈ injectionsUniverse x /∈ Domain f A ∩ (Range f ) = {}
shows {f ∪ {(x, y)}| y. y ∈ A} ⊆ injectionsUniverse
(is ?l ⊆ ?r)

proof −
have f ∈ converse‘runiqs using assms(1 ) lm071 by blast
then have ?l ⊆ converse‘runiqs using assms(3 ) by (rule lm069 )
moreover have ?l ⊆ runiqs using assms(1 ,2 ) lm065 by force
ultimately show ?thesis using lm071 by blast

qed

lemma lm073 :
injections X Y = totalRels X Y ∩ injectionsUniverse
using lm008 by metis

lemma lm074 :
assumes f ∈ injectionsUniverse
shows f outside A ∈ injectionsUniverse
using assms by (metis (no-types) Outside-def lm030 )

lemma lm075 :
assumes R ∈ totalRels A B
shows R outside C ∈ totalRels (A−C ) B
unfolding Outside-def using assms by blast

lemma lm076 :
assumes g ∈ injections A B
shows g outside C ∈ injections (A − C ) B
using assms Outside-def Range-outside-sub lm030 mem-Collect-eq outside-reduces-domain
unfolding injections-def

85



by fastforce

lemma lm077 :
assumes g ∈ injections A B
shows g outside C ∈ injections (A − C ) B
using assms lm076 by metis

lemma lm078 :
{x}×{y}={(x,y)}
by simp

lemma lm079 :
assumes x ∈ Domain f runiq f
shows {x}×f‘‘{x} = {(x,f ,,x)}
using assms lm078 Image-runiq-eq-eval by metis

corollary lm080 :
assumes x ∈ Domain f runiq f
shows f = (f −− x) ∪ {(x,f ,,x)}
using assms lm079 outsideUnion by metis

lemma lm081 :
assumes f ∈ injectionsUniverse
shows Range(f outside A) = Range f − f‘‘A
using assms mem-Collect-eq rangeOutside by (metis)

lemma lm082 :
assumes g ∈ injections X Y x ∈ Domain g
shows g ∈ {g−−x ∪ {(x,y)}|y. y ∈ Y − (Range(g−−x))}

proof −
let ?f = g−−x
have g∈injectionsUniverse using assms(1 ) lm008 by fast
then moreover have g,,x ∈ g‘‘{x}

using assms(2 ) by (metis Image-runiq-eq-eval insertI1 mem-Collect-eq)
ultimately have g,,x ∈ Y−Range ?f using lm081 assms(1 ) unfolding injec-

tions-def by fast
moreover have g=?f∪{(x, g,,x)}

using assms lm080 mem-Collect-eq unfolding injections-def by (metis (lifting))

ultimately show ?thesis by blast
qed

corollary lm083 :
assumes x /∈ X g ∈ injections ({x} ∪ X) Y
shows g−−x ∈ injections X Y
using assms lm077 by (metis Diff-insert-absorb insert-is-Un)

corollary lm084 :
assumes x /∈ X g ∈ injections ({x} ∪ X) Y
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(is g ∈ injections (?X) Y )
shows ∃ f ∈ injections X Y . g ∈ {f ∪ {(x,y)}|y. y ∈ Y − (Range f )}

proof −
let ?f = g−−x
have
0 : g∈injections ?X Y using assms by metis
have Domain g=?X
using assms(2 ) mem-Collect-eq unfolding injections-def by (metis (mono-tags,

lifting))
then have
1 : x ∈ Domain g by simp then have ?f ∈ injections X Y using assms lm083

by fast
moreover have g∈{?f∪{(x,y)}|y. y∈Y−Range ?f } using 0 1 by (rule lm082 )
ultimately show ?thesis by blast

qed

corollary lm085 :
assumes x /∈ X
shows injections ({x} ∪ X) Y ⊆

(
⋃

f ∈ injections X Y . {f ∪ {(x, y)} | y . y ∈ Y − (Range f )})
using assms lm084 by auto

lemma lm086 :
assumes x /∈ X
shows (

⋃
f∈injections X Y . {f ∪ {(x, y)} | y . y ∈ Y−Range f }) ⊆

injections ({x} ∪ X) Y
using assms lm072 injections-def lm073 lm070

proof −
{ fix f

assume f ∈ injections X Y
then have
0 : f ∈ injectionsUniverse & x /∈ Domain f & Domain f = X & Range f ⊆ Y

using assms unfolding injections-def by fast
then have f ∈ injectionsUniverse by fast
moreover have x /∈ Domain f using 0 by fast
moreover have
1 : (Y−Range f ) ∩ Range f = {} by blast
ultimately have {f ∪ {(x, y)} | y . y ∈ (Y−Range f )} ⊆ injectionsUniverse

by (rule lm072 )
moreover have {f ∪ {(x, y)} | y . y ∈ (Y−Range f )} ⊆ totalRels ({x} ∪ X)

Y
using lm070 0 by force

ultimately have {f ∪ {(x, y)} | y . y ∈ (Y−Range f )} ⊆
injectionsUniverse ∩ totalRels ({x}∪X) Y

by auto
}
thus ?thesis using lm008 unfolding injections-def by blast

qed

87



corollary injectionsUnionCommute:
assumes x /∈ X
shows (

⋃
f∈injections X Y . {f ∪ {(x, y)} | y . y ∈ Y − (Range f )}) =

injections ({x} ∪ X) Y
(is ?r=injections ?X -)

proof −
have
0 : ?r = (

⋃
f∈injections X Y . {f ∪ {(x, y)} | y . y ∈ Y−Range f })

(is -=?r ′) by blast
have ?r ′ ⊆ injections ?X Y using assms by (rule lm086 ) moreover have ...

= injections ?X Y
unfolding lm005

by simp ultimately have ?r ⊆ injections ?X Y using 0 by simp
moreover have injections ?X Y ⊆ ?r using assms by (rule lm085 )
ultimately show ?thesis by blast

qed

lemma lm087 :
assumes ∀ x. (P x −→ (f x = g x))
shows Union {f x|x. P x} = Union {g x | x. P x}
using assms by blast

lemma lm088 :
assumes x /∈ Domain R
shows R +∗ {(x,y)} = R ∪ {(x,y)}
using assms
by (metis (erased, lifting) Domain-empty Domain-insert Int-insert-right-if0

disjoint-iff-not-equal ex-in-conv paste-disj-domains)

lemma lm089 :
assumes x /∈ X
shows (

⋃
f ∈ injections X Y . {f +∗ {(x, y)} | y . y ∈ Y−Range f }) =

(
⋃

f ∈ injections X Y . {f ∪ {(x, y)} | y . y ∈ Y−Range f })
(is ?l = ?r)

proof −
have
0 : ∀ f ∈ injections X Y . x /∈ Domain f unfolding injections-def using assms

by fast
then have
1 : ?l=Union {{f +∗ {(x, y)} | y . y ∈ Y−Range f }|f .f ∈ injections X Y & x

/∈ Domain f }
(is -=?l ′) using assms by auto
moreover have
2 : ?r=Union {{f ∪ {(x, y)} | y . y ∈ Y−Range f }|f .f ∈ injections X Y & x /∈

Domain f }
(is -=?r ′) using assms 0 by auto
have ∀ f . f∈injections X Y & x /∈ Domain f −→
{f +∗ {(x, y)} | y . y ∈ Y−Range f }={f ∪ {(x, y)} | y . y ∈ Y−Range f }
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using lm088 by force
then have ?l ′=?r ′ by (rule lm087 )
then show ?l = ?r using 1 2 by presburger

qed

corollary lm090 :
assumes x /∈ X
shows (

⋃
f ∈ injections X Y . {f +∗ {(x, y)} | y . y ∈ Y−Range f }) =

injections ({x} ∪ X) Y
(is ?l=?r)

proof −
have ?l=(

⋃
f∈injections X Y . {f ∪ {(x, y)} | y . y ∈ Y−Range f }) using

assms by (rule lm089 )
moreover have ... = ?r using assms by (rule injectionsUnionCommute)
ultimately show ?thesis by simp

qed

lemma lm091 :
set [ f ∪ {(x,y)} . y ← (filter (%y. y /∈ (Range f )) Y ) ] =
{f ∪ {(x,y)} | y . y ∈ (set Y ) − (Range f )}

by auto

lemma lm092 :
assumes ∀ x ∈ set L. set (F x) = G x
shows set (concat [ F x . x <− L]) = (

⋃
x∈set L. G x)

using assms by force

lemma lm093 :
set (concat [ [ f ∪ {(x,y)} . y ← (filter (%y. y /∈ Range f ) Y ) ]. f ← F ]) =
(
⋃

f ∈ set F . {f ∪ {(x,y)} | y . y ∈ (set Y ) − (Range f )})
by auto

lemma lm094 :
assumes finite Y
shows set [ f +∗ {(x,y)} . y ← sorted-list-of-set (Y − (Range f )) ] =

{ f +∗ {(x,y)} | y . y ∈ Y − (Range f )}
using assms by auto

lemma lm095 :
assumes finite Y
shows set (concat [[f +∗ {(x,y)}. y ← sorted-list-of-set(Y − (Range f ))]. f ←

F ]) =
(
⋃

f ∈ set F .{f +∗ {(x,y)} | y . y ∈ Y − (Range f )})
using assms lm094 lm092 by auto

89



9.5 Computable injections
fun injectionsAlg

where
injectionsAlg [] (Y :: ′a list) = [{}] |
injectionsAlg (x#xs) Y =

concat [ [R∪{(x,y)}. y ← (filter (%y. y /∈ Range R) Y )]
.R ← injectionsAlg xs Y ]

corollary lm096 :
set (injectionsAlg (x # xs) Y ) =
(
⋃

f ∈ set (injectionsAlg xs Y ). {f ∪ {(x,y)} | y . y ∈ (set Y ) − (Range f )})
using lm093 by auto

corollary lm097 :
assumes set (injectionsAlg xs Y ) = injections (set xs) (set Y )
shows set (injectionsAlg (x # xs) Y ) =

(
⋃

f ∈ injections (set xs) (set Y ). {f ∪ {(x,y)} | y . y ∈ (set Y ) − (Range
f )})

using assms lm096 by auto

We sometimes use parallel abbreviation and definition for the same object
to save typing ‘unfolding xxx’ each time. There is also different behaviour
in the code extraction.
lemma lm098 :

injections {} Y = {{}}
by (simp add: lm008 lm062 runiq-emptyrel)

lemma lm099 :
injections {} Y = {{}}
unfolding injections-def by (metis lm098 injections-def )

lemma injectionsFromEmptyIsEmpty:
injectionsAlg [] Y = [{}]
by simp

lemma lm100 :
assumes x /∈ set xs set (injectionsAlg xs Y ) = injections (set xs) (set Y )
shows set (injectionsAlg (x # xs) Y ) = injections ({x} ∪ set xs) (set Y )
(is ?l=?r)

proof −
have ?l = (

⋃
f∈injections (set xs) (set Y ). {f ∪ {(x,y)} | y . y ∈ (set Y )−Range

f })
using assms(2 ) by (rule lm097 )
moreover have ... = ?r using assms(1 ) by (rule injectionsUnionCommute)
ultimately show ?thesis by simp

qed
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lemma lm101 :
assumes x /∈ set xs

set (injections-alg xs Y ) = injections (set xs) Y
finite Y

shows set (injections-alg (x#xs) Y ) = injections ({x} ∪ set xs) Y
(is ?l=?r)

proof −
have ?l = (

⋃
f∈injections (set xs) Y . {f +∗ {(x,y)} | y . y ∈ Y−Range f })

using assms(2 ,3 ) lm095 by auto
moreover have ... = ?r using assms(1 ) by (rule lm090 )
ultimately show ?thesis by simp

qed

lemma listInduct:
assumes P [] ∀ xs x. P xs −→ P (x#xs)
shows ∀ x. P x
using assms by (metis structInduct)

lemma injectionsFromEmptyAreEmpty:
set (injections-alg [] Z ) = {{}}
by simp

theorem injections-equiv:
assumes finite Y and distinct X
shows set (injections-alg X Y ) = injections (set X) Y

proof −
let ?P=λ l. distinct l −→ (set (injections-alg l Y )=injections (set l) Y )
have ?P [] using injectionsFromEmptyAreEmpty list.set(1 ) lm099 by metis
moreover have ∀ x xs. ?P xs −→ ?P (x#xs)

using assms(1 ) lm101 by (metis distinct.simps(2 ) insert-is-Un list.simps(15 ))

ultimately have ?P X by (rule structInduct)
then show ?thesis using assms(2 ) by blast

qed

lemma lm102 :
assumes l ∈ set (all-partitions-list G) distinct G
shows distinct l
using assms by (metis all-partitions-equivalence ′)

lemma bridgingInjection:
assumes card N > 0 distinct G
shows ∀ l ∈ set (all-partitions-list G). set (injections-alg l N ) =

injections (set l) N
using lm102 injections-equiv assms by (metis card-ge-0-finite)

lemma lm103 :
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assumes card N > 0 distinct G
shows {injections P N | P. P ∈ all-partitions (set G)} =

set [set (injections-alg l N ) . l ← all-partitions-list G]
proof −

let ?g1 = all-partitions-list
let ?f2 = injections
let ?g2 = injections-alg
have ∀ l ∈ set (?g1 G). set (?g2 l N ) = ?f2 (set l) N using assms bridgingIn-

jection by blast
then have set [set (?g2 l N ). l <− ?g1 G] = {?f2 P N | P. P ∈ set (map set

(?g1 G))}
apply (rule setVsList) done

moreover have ... = {?f2 P N | P. P ∈ all-partitions (set G)}
using all-partitions-paper-equiv-alg assms by blast

ultimately show ?thesis by presburger
qed

lemma lm104 :
assumes card N > 0 distinct G
shows Union {injections P N | P. P ∈ all-partitions (set G)} =

Union (set [set (injections-alg l N ) . l ← all-partitions-list G])
(is Union ?L = Union ?R)

proof −
have ?L = ?R using assms by (rule lm103 ) thus ?thesis by presburger

qed

corollary allAllocationsBridgingLemma:
assumes card N > 0 distinct G
shows allAllocations N (set G) =

set(allAllocationsAlg N G)
proof −

let ?LL =
⋃
{injections P N | P. P ∈ all-partitions (set G)}

let ?RR =
⋃

(set [set (injections-alg l N ) . l ← all-partitions-list G])
have ?LL = ?RR using assms by (rule lm104 )
then have converse ‘ ?LL = converse ‘ ?RR by simp
thus ?thesis by force

qed

end

10 Termination theorem for uniform tie-breaking
theory UniformTieBreaking

imports
StrictCombinatorialAuction
Universes
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HOL−Library.Code-Target-Nat

begin

10.1 Uniform tie breaking: definitions

Let us repeat the general context. Each bidder has made their bids and the
VCG algorithm up to now allocates goods to the higher bidders. If there
are several high bidders tie breaking has to take place. To do tie breaking
we generate out of a random number a second bid vector so that the same
algorithm can be run again to determine a unique allocation.
To this end, we associate to each allocation the bid in which each participant
bids for a set of goods an amount equal to the cardinality of the intersection
of the bid with the set she gets in this allocation. By construction, the
revenue of an auction run using this bid is maximal on the given allocation,
and this maximal is unique. We can then use the bid constructed this way
tiebids to break ties by running an auction having the same form as a normal
auction (that is why we use the adjective “uniform”), only with this special
bid vector.
abbreviation omega pair == {fst pair} × (finestpart (snd pair))

definition pseudoAllocation allocation ==
⋃

(omega ‘ allocation)

abbreviation bidMaximizedBy allocation N G ==
pseudoAllocation allocation <|| ((N × (finestpart G)))

abbreviation maxbid a N G ==
toFunction (bidMaximizedBy a N G)

abbreviation summedBid bids pair ==
(pair , sum (%g. bids (fst pair , g)) (finestpart (snd pair)))

abbreviation summedBidSecond bids pair ==
sum (%g. bids (fst pair , g)) (finestpart (snd pair))

abbreviation summedBidVectorRel bids N G == (summedBid bids) ‘ (N × (Pow
G − {{}}))

abbreviation summedBidVector bids N G == toFunction (summedBidVectorRel
bids N G)
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abbreviation tiebids allocation N G == summedBidVector (maxbid allocation N
G) N G

abbreviation Tiebids allocation N G == summedBidVectorRel (real◦maxbid al-
location N G) N G

definition randomEl list (random::integer) = list ! ((nat-of-integer random) mod
(size list))

value nat-of-integer (−3 ::integer) mod 2

lemma randomElLemma:
assumes set list 6= {}
shows randomEl list random ∈ set list
using assms by (simp add: randomEl-def )

abbreviation chosenAllocation N G bids random ==
randomEl (takeAll (%x. x∈(winningAllocationsRel N (set G) bids))

(allAllocationsAlg N G))
random

abbreviation resolvingBid N G bids random ==
tiebids (chosenAllocation N G bids random) N (set G)

10.2 Termination theorem for the uniform tie-breaking scheme
corollary winningAllocationPossible:

winningAllocationsRel N G b ⊆ allAllocations N G
using injectionsFromEmptyAreEmpty mem-Collect-eq subsetI by auto

lemma subsetAllocation:
assumes a ∈ allocationsUniverse c ⊆ a
shows c ∈ allocationsUniverse

proof −
have c=a−(a−c) using assms(2 ) by blast
thus ?thesis using assms(1 ) reducedAllocation by (metis (no-types))

qed

lemma lm001 :
assumes a ∈ allocationsUniverse
shows a outside X ∈ allocationsUniverse
using assms reducedAllocation Outside-def by (metis (no-types))
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corollary lm002 :
{x}×({X}−{{}}) ∈ allocationsUniverse
using allocationUniverseProperty pairDifference by metis

corollary lm003 :
{(x,{y})} ∈ allocationsUniverse

proof −
have

∧
x1 . {} − {x1 :: ′a × ′b set} = {} by simp

thus {(x, {y})} ∈ allocationsUniverse
by (metis (no-types) allocationUniverseProperty empty-iff insert-Diff-if insert-iff

prod.inject)
qed

corollary lm004 :
allocationsUniverse 6= {}
using lm003 by fast

corollary lm005 :
{} ∈ allocationsUniverse
using subsetAllocation lm003 by (metis (lifting, mono-tags) empty-subsetI )

lemma lm006 :
assumes G 6= {}
shows {G} ∈ all-partitions G
using all-partitions-def is-partition-of-def is-non-overlapping-def assms by force

lemma lm007 :
assumes n ∈ N
shows {(G,n)} ∈ totalRels {G} N
using assms by force

lemma lm008 :
assumes n∈N
shows {(G,n)} ∈ injections {G} N
using assms injections-def singlePairInInjectionsUniverse by fastforce

corollary lm009 :
assumes G 6={} n∈N
shows {(G,n)} ∈ possible-allocations-rel G N

proof −
have {(G,n)} ∈ injections {G} N using assms lm008 by fast
moreover have {G} ∈ all-partitions G using assms lm006 by metis
ultimately show ?thesis by auto

qed

corollary lm010 :
assumes N 6= {} G 6={}
shows allAllocations N G 6= {}
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using assms lm009
by (metis (opaque-lifting, no-types) equals0I image-insert insert-absorb insert-not-empty)

corollary lm011 :
assumes N 6= {} finite N G 6= {} finite G
shows winningAllocationsRel N G bids 6= {} & finite (winningAllocationsRel N

G bids)
using assms lm010 allAllocationsFinite argmax-non-empty-iff
by (metis winningAllocationPossible rev-finite-subset)

lemma lm012 :
allAllocations N {} ⊆ {{}}
using emptyset-part-emptyset3 rangeEmpty characterizationallAllocations

mem-Collect-eq subsetI vimage-def by metis

lemma lm013 :
assumes a ∈ allAllocations N G finite G
shows finite (Range a)
using assms elementOfPartitionOfFiniteSetIsFinite by (metis allocationRever-

seInjective)

corollary allocationFinite:
assumes a ∈ allAllocations N G finite G
shows finite a
using assms finite-converse Range-converse imageE allocationProperty finiteDo-

mainImpliesFinite lm013
by (metis (erased, lifting))

lemma lm014 :
assumes a ∈ allAllocations N G finite G
shows ∀ y ∈ Range a. finite y
using assms is-partition-of-def allocationInverseRangeDomainProperty
by (metis Union-upper rev-finite-subset)

corollary lm015 :
assumes a ∈ allAllocations N G finite G
shows card G = sum card (Range a)
using assms cardSumCommute lm013 allocationInverseRangeDomainProperty by

(metis is-partition-of-def )

10.3 Results on summed bid vectors
lemma lm016 :

summedBidVectorRel bids N G =
{(pair , sum (%g. bids (fst pair , g)) (finestpart (snd pair)))|
pair . pair ∈ N × (Pow G−{{}})}

by blast
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corollary lm017 :
{(pair , sum (%g. bids (fst pair , g)) (finestpart (snd pair))) |

pair . pair ∈ (N × (Pow G−{{}})) } || a =
{(pair , sum (%g. bids (fst pair , g)) (finestpart (snd pair))) |
pair . pair ∈ (N × (Pow G−{{}})) ∩ a}

by (metis restrictionVsIntersection)

corollary lm018 :
(summedBidVectorRel bids N G) || a =
{(pair , sum (%g. bids (fst pair , g)) (finestpart (snd pair))) |
pair . pair ∈ (N × (Pow G − {{}})) ∩ a}
(is ?L = ?R)

proof −
let ?l = summedBidVectorRel
let ?M = {(pair , sum (%g. bids (fst pair , g)) (finestpart (snd pair))) |

pair . pair ∈ N × (Pow G−{{}})}
have ?l bids N G = ?M by (rule lm016 )
then have ?L = (?M || a) by presburger
moreover have ... = ?R by (rule lm017 )
ultimately show ?thesis by simp

qed

lemma lm019 :
(summedBid bids) ‘ ((N × (Pow G − {{}})) ∩ a) =
{(pair , sum (%g. bids (fst pair , g)) (finestpart (snd pair))) |
pair . pair ∈ (N × (Pow G − {{}})) ∩ a}

by blast

corollary lm020 :
(summedBidVectorRel bids N G) || a = (summedBid bids) ‘ ((N × (Pow G −
{{}})) ∩ a)
(is ?L=?R)

proof −
let ?l=summedBidVectorRel
let ?p=summedBid
let ?M={(pair , sum (%g. bids (fst pair , g)) (finestpart (snd pair))) |

pair . pair ∈ (N × (Pow G − {{}})) ∩ a}
have ?L = ?M by (rule lm018 )
moreover have ... = ?R using lm019 by blast
ultimately show ?thesis by simp

qed

lemma summedBidInjective:
inj-on (summedBid bids) UNIV
using fst-conv inj-on-inverseI by (metis (lifting))
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corollary lm021 :
inj-on (summedBid bids) X
using fst-conv inj-on-inverseI by (metis (lifting))

lemma lm022 :
sum snd (summedBidVectorRel bids N G) =
sum (snd ◦ (summedBid bids)) (N × (Pow G − {{}}))

using lm021 sum.reindex by blast

corollary lm023 :
snd (summedBid bids pair) = sum bids (omega pair)
using sumCurry by force

corollary lm024 :
snd ◦ summedBid bids = (sum bids) ◦ omega
using lm023 by fastforce

lemma lm025 :
assumes finite (finestpart (snd pair))
shows card (omega pair) = card (finestpart (snd pair))
using assms by force

corollary lm026 :
assumes finite (snd pair)
shows card (omega pair) = card (snd pair)
using assms cardFinestpart card-cartesian-product-singleton by metis

lemma lm027 :
assumes {} /∈ Range f runiq f
shows is-non-overlapping (omega ‘ f )

proof −
let ?X=omega ‘ f let ?p=finestpart

{ fix y1 y2
assume y1 ∈ ?X ∧ y2 ∈ ?X
then obtain pair1 pair2 where

y1 = omega pair1 & y2 = omega pair2 & pair1 ∈ f & pair2 ∈ f by blast
then moreover have snd pair1 6= {} & snd pair1 6= {}

using assms by (metis rev-image-eqI snd-eq-Range)
ultimately moreover have fst pair1 = fst pair2 ←→ pair1 = pair2

using assms runiq-basic surjective-pairing by metis
ultimately moreover have y1 ∩ y2 6= {} −→ y1 = y2 using assms by fast
ultimately have y1 = y2 ←→ y1 ∩ y2 6= {}

using assms notEmptyFinestpart by (metis Int-absorb Times-empty in-
sert-not-empty)

}
thus ?thesis using is-non-overlapping-def
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by (metis (lifting, no-types) inf-commute inf-sup-aci(1 ))
qed

lemma lm028 :
assumes {} /∈ Range X
shows inj-on omega X

proof −
let ?p=finestpart
{

fix pair1 pair2
assume pair1 ∈ X & pair2 ∈ X
then have snd pair1 6= {} & snd pair2 6= {}

using assms by (metis Range.intros surjective-pairing)
moreover assume omega pair1 = omega pair2
then moreover have ?p (snd pair1 ) = ?p (snd pair2 ) by blast
then moreover have snd pair1 = snd pair2 by (metis finestPart nonEquali-

tySetOfSets)
ultimately moreover have {fst pair1} = {fst pair2} using notEmptyFinest-

part
by (metis fst-image-times)

ultimately have pair1 = pair2 by (metis prod-eqI singleton-inject)
}
thus ?thesis by (metis (lifting, no-types) inj-onI )

qed

lemma lm029 :
assumes {} /∈ Range a ∀X ∈ omega ‘ a. finite X

is-non-overlapping (omega ‘ a)
shows card (pseudoAllocation a) = sum (card ◦ omega) a
(is ?L = ?R)

proof −
have ?L = sum card (omega ‘ a)
unfolding pseudoAllocation-def
using assms by (simp add: cardinalityPreservation)
moreover have ... = ?R using assms(1 ) lm028 sum.reindex by blast
ultimately show ?thesis by simp

qed

lemma lm030 :
card (omega pair)= card (snd pair)
using cardFinestpart card-cartesian-product-singleton by metis

corollary lm031 :
card ◦ omega = card ◦ snd
using lm030 by fastforce

corollary lm032 :
assumes {} /∈ Range a ∀ pair ∈ a. finite (snd pair) finite a runiq a
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shows card (pseudoAllocation a) = sum (card ◦ snd) a
proof −

let ?P=pseudoAllocation
let ?c=card
have ∀ pair ∈ a. finite (omega pair) using finiteFinestpart assms by blast
moreover have is-non-overlapping (omega ‘ a) using assms lm027 by force
ultimately have ?c (?P a) = sum (?c ◦ omega) a using assms lm029 by force
moreover have ... = sum (?c ◦ snd) a using lm031 by metis
ultimately show ?thesis by simp

qed

corollary lm033 :
assumes runiq (a^−1 ) runiq a finite a {} /∈ Range a ∀ pair ∈ a. finite (snd

pair)
shows card (pseudoAllocation a) = sum card (Range a)
using assms sumPairsInverse lm032 by force

corollary lm034 :
assumes a ∈ allAllocations N G finite G
shows card (pseudoAllocation a) = card G

proof −
have {} /∈ Range a using assms by (metis emptyNotInRange)
moreover have ∀ pair ∈ a. finite (snd pair) using assms lm014 finitePairSec-

ondRange by metis
moreover have finite a using assms allocationFinite by blast
moreover have runiq a using assms

by (metis (lifting) Int-lower1 in-mono allocationInjectionsUnivervseProperty
mem-Collect-eq)

moreover have runiq (a^−1 ) using assms
by (metis (mono-tags) injections-def characterizationallAllocations mem-Collect-eq)

ultimately have card (pseudoAllocation a) = sum card (Range a) using lm033
by fast

moreover have ... = card G using assms lm015 by metis
ultimately show ?thesis by simp

qed

corollary lm035 :
assumes pseudoAllocation aa ⊆ pseudoAllocation a ∪ (N × (finestpart G))

finite (pseudoAllocation aa)
shows sum (toFunction (bidMaximizedBy a N G)) (pseudoAllocation a) −

(sum (toFunction (bidMaximizedBy a N G)) (pseudoAllocation aa)) =
card (pseudoAllocation a) −

card (pseudoAllocation aa ∩ (pseudoAllocation a))
using assms subsetCardinality by blast

corollary lm036 :
assumes pseudoAllocation aa ⊆ pseudoAllocation a ∪ (N × (finestpart G))

finite (pseudoAllocation aa)
shows int (sum (maxbid a N G) (pseudoAllocation a)) −
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int (sum (maxbid a N G) (pseudoAllocation aa)) =
int (card (pseudoAllocation a)) −

int (card (pseudoAllocation aa ∩ (pseudoAllocation a)))
using differenceSumVsCardinality assms by blast

lemma lm037 :
pseudoAllocation {} = {}
unfolding pseudoAllocation-def by simp

corollary lm038 :
assumes a ∈ allAllocations N {}
shows (pseudoAllocation a) = {}
unfolding pseudoAllocation-def using assms lm012 by blast

corollary lm039 :
assumes a ∈ allAllocations N G finite G G 6= {}
shows finite (pseudoAllocation a)

proof −
have card (pseudoAllocation a) = card G using assms(1 ,2 ) lm034 by blast
thus finite (pseudoAllocation a) using assms(2 ,3 ) by fastforce

qed

corollary lm040 :
assumes a ∈ allAllocations N G finite G
shows finite (pseudoAllocation a)
using assms finite.emptyI lm039 lm038 by (metis (no-types))

lemma lm041 :
assumes a ∈ allAllocations N G aa ∈ allAllocations N G finite G
shows (card (pseudoAllocation aa ∩ (pseudoAllocation a)) = card (pseudoAllocation

a)) =
(pseudoAllocation a = pseudoAllocation aa)

proof −
let ?P=pseudoAllocation
let ?c=card
let ?A=?P a
let ?AA=?P aa
have ?c ?A=?c G & ?c ?AA=?c G using assms lm034 by (metis (lifting,

mono-tags))
moreover have finite ?A & finite ?AA using assms lm040 by blast
ultimately show ?thesis using assms cardinalityIntersectionEquality by (metis(no-types,lifting))

qed

lemma lm042 :
omega pair = {fst pair} × {{y}| y. y ∈ snd pair}
using finestpart-def finestPart by auto
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lemma lm043 :
omega pair = {(fst pair , {y})| y. y ∈ snd pair}
using lm042 setOfPairs by metis

lemma lm044 :
pseudoAllocation a =

⋃
{{(fst pair , {y})| y. y ∈ snd pair}| pair . pair ∈ a}

unfolding pseudoAllocation-def using lm043 by blast

lemma lm045 :⋃
{{(fst pair , {y})| y. y ∈ snd pair}| pair . pair ∈ a} =

{(fst pair , {y})| y pair . y ∈ snd pair & pair ∈ a}
by blast

corollary lm046 :
pseudoAllocation a = {(fst pair , Y )| Y pair . Y ∈ finestpart (snd pair) & pair ∈

a}
unfolding pseudoAllocation-def using setOfPairsEquality by fastforce

lemma lm047 :
assumes runiq a
shows {(fst pair , Y )| Y pair . Y ∈ finestpart (snd pair) & pair ∈ a} =

{(x, Y )| Y x. Y ∈ finestpart (a,,x) & x ∈ Domain a}
(is ?L=?R)

using assms Domain.DomainI fst-conv functionOnFirstEqualsSecond runiq-wrt-ex1
surjective-pairing

by (metis(opaque-lifting,no-types))

corollary lm048 :
assumes runiq a
shows pseudoAllocation a = {(x, Y )| Y x. Y ∈ finestpart (a,,x) & x ∈ Domain

a}
unfolding pseudoAllocation-def using assms lm047 lm046 by fastforce

corollary lm049 :
Range (pseudoAllocation a) =

⋃
(finestpart ‘ (Range a))

unfolding pseudoAllocation-def
using lm046 rangeSetOfPairs unionFinestPart by fastforce

corollary lm050 :
Range (pseudoAllocation a) = finestpart (

⋃
(Range a))

using commuteUnionFinestpart lm049 by metis

lemma lm051 :
pseudoAllocation a = {(fst pair , {y})| y pair . y ∈ snd pair & pair ∈ a}
using lm044 lm045 by (metis (no-types))

lemma lm052 :
{(fst pair , {y})| y pair . y ∈ snd pair & pair ∈ a} =
{(x, {y})| x y. y ∈

⋃
(a‘‘{x}) & x ∈ Domain a}
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by auto

lemma lm053 :
pseudoAllocation a = {(x, {y})| x y. y ∈

⋃
(a‘‘{x}) & x ∈ Domain a}

(is ?L=?R)
proof −

have ?L={(fst pair , {y})| y pair . y ∈ snd pair & pair ∈ a} by (rule lm051 )
moreover have ... = ?R by (rule lm052 )
ultimately show ?thesis by simp

qed

lemma lm054 :
runiq (summedBidVectorRel bids N G)
using graph-def image-Collect-mem domainOfGraph by (metis(no-types))

corollary lm055 :
runiq (summedBidVectorRel bids N G || a)
unfolding restrict-def using lm054 subrel-runiq Int-commute by blast

lemma summedBidVectorCharacterization:
N × (Pow G − {{}}) = Domain (summedBidVectorRel bids N G)
by blast

corollary lm056 :
assumes a ∈ allAllocations N G
shows a ⊆ Domain (summedBidVectorRel bids N G)

proof −
let ?p=allAllocations
let ?L=summedBidVectorRel
have a ⊆ N × (Pow G − {{}}) using assms allocationPowerset by (metis(no-types))
moreover have N × (Pow G − {{}}) = Domain (?L bids N G) using summed-

BidVectorCharacterization by blast
ultimately show ?thesis by blast

qed

corollary lm057 :
sum (summedBidVector bids N G) (a ∩ (Domain (summedBidVectorRel bids N

G))) =
sum snd ((summedBidVectorRel bids N G) || a)

using sumRestrictedToDomainInvariant lm055 by fast

corollary lm058 :
assumes a ∈ allAllocations N G
shows sum (summedBidVector bids N G) a = sum snd ((summedBidVectorRel

bids N G) || a)
proof −

let ?l=summedBidVector let ?L=summedBidVectorRel
have a ⊆ Domain (?L bids N G) using assms by (rule lm056 )
then have a = a ∩ Domain (?L bids N G) by blast
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then have sum (?l bids N G) a = sum (?l bids N G) (a ∩ Domain (?L bids N
G))

by presburger
thus ?thesis using lm057 by auto

qed

corollary lm059 :
assumes a ∈ allAllocations N G
shows sum (summedBidVector bids N G) a =

sum snd ((summedBid bids) ‘ ((N × (Pow G − {{}})) ∩ a))
(is ?X=?R)

proof −
let ?p = summedBid
let ?L = summedBidVectorRel
let ?l = summedBidVector
let ?A = N × (Pow G − {{}})
let ?inner2 = (?p bids)‘(?A ∩ a)
let ?inner1 = (?L bids N G)||a
have ?R = sum snd ?inner1 using assms lm020 by (metis (no-types))
moreover have sum (?l bids N G) a = sum snd ?inner1 using assms by (rule

lm058 )
ultimately show ?thesis by simp

qed

corollary lm060 :
assumes a ∈ allAllocations N G
shows sum (summedBidVector bids N G) a = sum snd ((summedBid bids) ‘ a)
(is ?L=?R)

proof −
let ?p=summedBid
let ?l=summedBidVector
have ?L = sum snd ((?p bids)‘((N × (Pow G − {{}}))∩ a)) using assms by

(rule lm059 )
moreover have ... = ?R using assms allocationPowerset Int-absorb1 by (metis

(no-types))
ultimately show ?thesis by simp

qed

corollary lm061 :
sum snd ((summedBid bids) ‘ a) = sum (snd ◦ (summedBid bids)) a
using sum.reindex lm021 by blast

corollary lm062 :
assumes a ∈ allAllocations N G
shows sum (summedBidVector bids N G) a = sum (snd ◦ (summedBid bids)) a
(is ?L=?R)

proof −
let ?p = summedBid
let ?l = summedBidVector

104



have ?L = sum snd ((?p bids)‘ a) using assms by (rule lm060 )
moreover have ... = ?R using assms lm061 by blast
ultimately show ?thesis by simp

qed

corollary lm063 :
assumes a ∈ allAllocations N G
shows sum (summedBidVector bids N G) a = sum ((sum bids) ◦ omega) a
(is ?L=?R)

proof −
let ?inner1 = snd ◦ (summedBid bids)
let ?inner2=(sum bids) ◦ omega
let ?M=sum ?inner1 a
have ?L = ?M using assms by (rule lm062 )
moreover have ?inner1 = ?inner2 using lm023 assms by fastforce
ultimately show ?L = ?R using assms by metis

qed

corollary lm064 :
assumes a ∈ allAllocations N G
shows sum (summedBidVector bids N G) a = sum (sum bids) (omega‘ a)

proof −
have {} /∈ Range a using assms by (metis emptyNotInRange)
then have inj-on omega a using lm028 by blast
then have sum (sum bids) (omega ‘ a) = sum ((sum bids) ◦ omega) a

by (rule sum.reindex)
moreover have sum (summedBidVector bids N G) a = sum ((sum bids) ◦ omega)

a
using assms lm063 by (rule Extraction.exE-realizer)

ultimately show ?thesis by presburger
qed

lemma lm065 :
assumes finite (snd pair)
shows finite (omega pair)
using assms finite.emptyI finite.insertI finite-SigmaI finiteFinestpart by (metis(no-types))

corollary lm066 :
assumes ∀ y∈(Range a). finite y
shows ∀ y∈(omega ‘ a). finite y
using assms lm065 imageE finitePairSecondRange by fast

corollary lm067 :
assumes a ∈ allAllocations N G finite G
shows ∀ x∈(omega ‘ a). finite x
using assms lm066 lm014 by (metis(no-types))

corollary lm068 :
assumes a ∈ allAllocations N G
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shows is-non-overlapping (omega ‘ a)
proof −

have runiq a by (metis (no-types) assms image-iff allocationRightUniqueRange-
Domain)

moreover have {} /∈ Range a using assms by (metis emptyNotInRange)
ultimately show ?thesis using lm027 by blast

qed

lemma lm069 :
assumes a ∈ allAllocations N G finite G
shows sum (sum bids) (omega‘ a) = sum bids (

⋃
(omega ‘ a))

using assms sumUnionDisjoint2 lm068 lm067 by (metis (lifting, mono-tags))

corollary lm070 :
assumes a ∈ allAllocations N G finite G
shows sum (summedBidVector bids N G) a = sum bids (pseudoAllocation a)
(is ?L = ?R)

proof −
have ?L = sum (sum bids) (omega ‘a) using assms lm064 by blast
moreover have ... = sum bids (

⋃
(omega ‘ a)) using assms lm069 by blast

ultimately show ?thesis unfolding pseudoAllocation-def by presburger
qed

lemma lm071 :
Domain (pseudoAllocation a) ⊆ Domain a
unfolding pseudoAllocation-def by fastforce

corollary lm072 :
assumes a ∈ allAllocations N G
shows Domain (pseudoAllocation a) ⊆ N & Range (pseudoAllocation a) =

finestpart G
using assms lm071 allocationInverseRangeDomainProperty lm050 is-partition-of-def

subset-trans
by (metis(no-types))

corollary lm073 :
assumes a ∈ allAllocations N G
shows pseudoAllocation a ⊆ N × finestpart G

proof −
let ?p = pseudoAllocation
let ?aa = ?p a
let ?d = Domain
let ?r = Range
have ?d ?aa ⊆ N using assms lm072 by (metis (lifting, mono-tags))
moreover have ?r ?aa ⊆ finestpart G using assms lm072 by (metis (lifting,

mono-tags) equalityE)
ultimately have ?d ?aa × (?r ?aa) ⊆ N × finestpart G by auto
then show ?aa ⊆ N × finestpart G by auto

qed
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10.4 From Pseudo-allocations to allocations
abbreviation pseudoAllocationInv pseudo == {(x,

⋃
(pseudo ‘‘ {x}))| x. x ∈

Domain pseudo}

lemma lm074 :
assumes runiq a {} /∈ Range a
shows a = pseudoAllocationInv (pseudoAllocation a)

proof −
let ?p={(x, Y )| Y x . Y ∈ finestpart (a,,x) & x ∈ Domain a}
let ?a={(x,

⋃
(?p ‘‘ {x}))| x. x ∈ Domain ?p}

have ∀ x ∈ Domain a. a,,x 6= {} by (metis assms eval-runiq-in-Range)
then have ∀ x ∈ Domain a. finestpart (a,,x) 6= {} by (metis notEmptyFinestpart)

then have Domain a ⊆ Domain ?p by force
moreover have Domain a ⊇ Domain ?p by fast
ultimately have
1 : Domain a = Domain ?p by fast
{

fix z assume z ∈ ?a
then obtain x where
x ∈ Domain ?p & z=(x ,

⋃
(?p ‘‘ {x})) by blast

then have x ∈ Domain a & z=(x ,
⋃

(?p ‘‘ {x})) by fast
then moreover have ?p‘‘{x} = finestpart (a,,x) using assms by fastforce
moreover have

⋃
(finestpart (a,,x))= a,,x by (metis finestPartUnion)

ultimately have z ∈ a by (metis assms(1 ) eval-runiq-rel)
}
then have
2 : ?a ⊆ a by fast
{

fix z assume 0 : z ∈ a let ?x=fst z let ?Y=a,,?x let ?YY=finestpart ?Y
have z ∈ a & ?x ∈ Domain a using 0 by (metis fst-eq-Domain rev-image-eqI )

then have
3 : z ∈ a & ?x ∈ Domain ?p using 1 by presburger
then have ?p ‘‘ {?x} = ?YY by fastforce
then have

⋃
(?p ‘‘ {?x}) = ?Y by (metis finestPartUnion)

moreover have z = (?x, ?Y ) using assms by (metis 0 functionOnFirstE-
qualsSecond

surjective-pairing)
ultimately have z ∈ ?a using 3 by (metis (lifting, mono-tags) mem-Collect-eq)

}
then have a = ?a using 2 by blast
moreover have ?p = pseudoAllocation a using lm048 assms by (metis (lifting,

mono-tags))
ultimately show ?thesis by auto

qed

corollary lm075 :
assumes a ∈ runiqs ∩ Pow (UNIV × (UNIV − {{}}))
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shows (pseudoAllocationInv ◦ pseudoAllocation) a = id a
proof −

have runiq a using runiqs-def assms by fast
moreover have {} /∈ Range a using assms by blast
ultimately show ?thesis using lm074 by fastforce

qed

lemma lm076 :
inj-on (pseudoAllocationInv ◦ pseudoAllocation) (runiqs ∩ Pow (UNIV × (UNIV
− {{}})))
proof −

let ?ne=Pow (UNIV × (UNIV − {{}}))
let ?X=runiqs ∩ ?ne
let ?f=pseudoAllocationInv ◦ pseudoAllocation
have ∀ a1 ∈ ?X . ∀ a2 ∈ ?X . ?f a1 = ?f a2 −→ id a1 = id a2 using lm075 by

blast
then have ∀ a1 ∈ ?X . ∀ a2 ∈ ?X . ?f a1 = ?f a2 −→ a1 = a2 by auto
thus ?thesis unfolding inj-on-def by blast

qed

corollary lm077 :
inj-on pseudoAllocation (runiqs ∩ Pow (UNIV × (UNIV − {{}})))
using lm076 inj-on-imageI2 by blast

lemma lm078 :
injectionsUniverse ⊆ runiqs
using runiqs-def Collect-conj-eq Int-lower1 by metis

lemma lm079 :
partitionValuedUniverse ⊆ Pow (UNIV × (UNIV − {{}}))
using is-non-overlapping-def by force

corollary lm080 :
allocationsUniverse ⊆ runiqs ∩ Pow (UNIV × (UNIV − {{}}))
using lm078 lm079 by auto

corollary lm081 :
inj-on pseudoAllocation allocationsUniverse
using lm077 lm080 subset-inj-on by blast

corollary lm082 :
inj-on pseudoAllocation (allAllocations N G)

proof −
have allAllocations N G ⊆ allocationsUniverse

by (metis (no-types) allAllocationsUniverse)
thus inj-on pseudoAllocation (allAllocations N G) using lm081 subset-inj-on by

blast
qed
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lemma lm083 :
assumes card N > 0 distinct G
shows winningAllocationsRel N (set G) bids ⊆ set (allAllocationsAlg N G)
using assms winningAllocationPossible allAllocationsBridgingLemma by (metis(no-types))

corollary lm084 :
assumes N 6= {} finite N distinct G set G 6= {}
shows winningAllocationsRel N (set G) bids ∩ set (allAllocationsAlg N G) 6= {}

proof −
let ?w = winningAllocationsRel
let ?a = allAllocationsAlg
let ?G = set G
have card N > 0 using assms by (metis card-gt-0-iff )
then have ?w N ?G bids ⊆ set (?a N G) using lm083 by (metis assms(3 ))
then show ?thesis using assms lm011 by (metis List.finite-set le-iff-inf )

qed

lemma lm085 :
X = (%x. x ∈ X) −‘{True}
by blast

corollary lm086 :
assumes N 6= {} finite N distinct G set G 6= {}
shows (%x. x∈winningAllocationsRel N (set G) bids)−‘{True} ∩

set (allAllocationsAlg N G) 6= {}
using assms lm084 lm085 by metis

lemma lm087 :
assumes P −‘ {True} ∩ set l 6= {}
shows takeAll P l 6= []
using assms nonEmptyListFiltered filterpositions2-def by (metis Nil-is-map-conv)

corollary lm088 :
assumes N 6= {} finite N distinct G set G 6= {}
shows takeAll (%x. x ∈ winningAllocationsRel N (set G) bids) (allAllocationsAlg

N G) 6= []
using assms lm087 lm086 by metis

corollary lm089 :
assumes N 6= {} finite N distinct G set G 6= {}
shows perm2 (takeAll (%x. x ∈ winningAllocationsRel N (set G) bids)

(allAllocationsAlg N G))
n 6= []

using assms permutationNotEmpty lm088 by metis

corollary lm090 :
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assumes N 6= {} finite N distinct G set G 6= {}
shows chosenAllocation N G bids random ∈ winningAllocationsRel N (set G)

bids
proof −

have
∧

x1 b-x x. set x1 = {}
∨ (randomEl x1 b-x::( ′a × ′b set) set) ∈ x
∨ ¬ set x1 ⊆ x by (metis (no-types) randomElLemma subsetCE)

thus winningAllocationRel N (set G)
((∈) (randomEl (takeAll (λx. winningAllocationRel N (set G) ((∈) x) bids)

(allAllocationsAlg N G)) random)) bids
by (metis lm088 assms(1 ) assms(2 ) assms(3 ) assms(4 ) takeAllSubset

set-empty)
qed

lemma lm091 :
assumes finite G a ∈ allAllocations N G aa ∈ allAllocations N G
shows real(sum(maxbid a N G)(pseudoAllocation a)) −

sum(maxbid a N G)(pseudoAllocation aa) =
real (card G) −

card (pseudoAllocation aa ∩ (pseudoAllocation a))
proof −

let ?p = pseudoAllocation
let ?f = finestpart
let ?m = maxbid
let ?B = ?m a N G
have ?p aa ⊆ N × ?f G using assms lm073 by (metis (lifting, mono-tags))
then have ?p aa ⊆ ?p a ∪ (N × ?f G) by auto
moreover have finite (?p aa) using assms lm034 lm040 by blast
ultimately have real(sum ?B (?p a)) − sum ?B (?p aa) =

real(card (?p a))−card(?p aa ∩ (?p a))
using differenceSumVsCardinalityReal by fast

moreover have ... = real (card G) − card (?p aa ∩ (?p a))
using assms lm034 by (metis (lifting, mono-tags))

ultimately show ?thesis by simp
qed

lemma lm092 :
summedBidVectorRel bids N G = graph (N × (Pow G−{{}})) (summedBidSecond

bids)
unfolding graph-def using lm016 by blast

lemma lm093 :
assumes x∈X
shows toFunction (graph X f ) x = f x
using assms by (metis graphEqImage toFunction-def )

corollary lm094 :
assumes pair ∈ N × (Pow G−{{}})
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shows summedBidVector bids N G pair = summedBidSecond bids pair
using assms lm093 lm092 by (metis(mono-tags))

lemma lm095 :
summedBidSecond (real ◦ ((bids:: - => nat))) pair = real (summedBidSecond

bids pair)
by simp

lemma lm096 :
assumes pair ∈ N × (Pow G−{{}})
shows summedBidVector (real◦(bids:: - => nat)) N G pair =

real (summedBidVector bids N G pair)
using assms lm094 lm095 by (metis(no-types))

corollary lm097 :
assumes X ⊆ N × (Pow G − {{}})
shows ∀ pair ∈ X . summedBidVector (real ◦ (bids::-=>nat)) N G pair =

(real ◦ (summedBidVector bids N G)) pair
proof −

{ fix esk48 0 :: ′a × ′b set
{ assume esk48 0 ∈ N × (Pow G − {{}})

hence summedBidVector (real ◦ bids) N G esk48 0 = real (summedBidVector
bids N G esk48 0) using lm096 by blast

hence esk48 0 /∈ X ∨ summedBidVector (real ◦ bids) N G esk48 0 = (real ◦
summedBidVector bids N G) esk48 0 by simp }

hence esk48 0 /∈ X ∨ summedBidVector (real ◦ bids) N G esk48 0 = (real ◦
summedBidVector bids N G) esk48 0 using assms by blast }

thus ∀ pair∈X . summedBidVector (real ◦ bids) N G pair = (real ◦ summedBid-
Vector bids N G) pair by blast
qed

corollary lm098 :
assumes aa ⊆ N × (Pow G−{{}})
shows sum ((summedBidVector (real ◦ (bids::-=>nat)) N G)) aa =

real (sum ((summedBidVector bids N G)) aa)
(is ?L=?R)

proof −
have ∀ pair ∈ aa. summedBidVector (real ◦ bids) N G pair =

(real ◦ (summedBidVector bids N G)) pair
using assms by (rule lm097 )
then have ?L = sum (real◦(summedBidVector bids N G)) aa using sum.cong

by force
then show ?thesis by simp

qed

corollary lm099 :
assumes aa ∈ allAllocations N G
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shows sum ((summedBidVector (real ◦ (bids::-=>nat)) N G)) aa =
real (sum ((summedBidVector bids N G)) aa)

using assms lm098 allocationPowerset by (metis(lifting,mono-tags))

corollary lm100 :
assumes finite G a ∈ allAllocations N G aa ∈ allAllocations N G
shows real (sum (tiebids a N G) a) − sum (tiebids a N G) aa =

real (card G) − card (pseudoAllocation aa ∩ (pseudoAllocation a))
(is ?L=?R)

proof −
let ?l=summedBidVector
let ?m=maxbid
let ?s=sum
let ?p=pseudoAllocation
let ?bb=?m a N G
let ?b=real ◦ (?m a N G)
have real (?s ?bb (?p a)) − (?s ?bb (?p aa)) = ?R using assms lm091 by blast
then have
1 : ?R = real (?s ?bb (?p a)) − (?s ?bb (?p aa)) by simp
have ?s (?l ?b N G) aa = ?s ?b (?p aa) using assms lm070 by blast moreover

have
... = ?s ?bb (?p aa) by fastforce
moreover have (?s (?l ?b N G) aa) = real (?s (?l ?bb N G) aa) using assms(3 )

by (rule lm099 )
ultimately have
2 : ?R = real (?s ?bb (?p a)) − (?s (?l ?bb N G) aa) by (metis 1 )
have ?s (?l ?b N G) a=(?s ?b (?p a)) using assms lm070 by blast
moreover have ... = ?s ?bb (?p a) by force
moreover have ... = real (?s ?bb (?p a)) by fast
moreover have ?s (?l ?b N G) a = real (?s (?l ?bb N G) a) using assms(2 )

by (rule lm099 )
ultimately have ?s (?l ?bb N G) a = real (?s ?bb (?p a)) by simp
thus ?thesis using 2 by simp

qed

corollary lm101 :
assumes finite G a ∈ allAllocations N G aa ∈ allAllocations N G

x = real (sum (tiebids a N G) a) − sum (tiebids a N G) aa
shows x <= card G &

x ≥ 0 &
(x=0 ←→ a = aa) &
(aa 6= a −→ sum (tiebids a N G) aa < sum (tiebids a N G) a)

proof −
let ?p = pseudoAllocation
have real (card G) >= real (card G) − card (?p aa ∩ (?p a)) by force
moreover have real (sum (tiebids a N G) a) − sum (tiebids a N G) aa =

real (card G) − card (pseudoAllocation aa ∩ (pseudoAllocation a))
using assms lm100 by blast

ultimately have
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1 : x=real(card G)−card(pseudoAllocation aa∩(pseudoAllocation a)) using assms
by force

then have
2 : x ≤ real (card G) using assms by linarith
have
3 : card (?p aa) = card G & card (?p a) = card G using assms lm034 by blast
moreover have finite (?p aa) & finite (?p a) using assms lm040 by blast
ultimately have card (?p aa ∩ ?p a) ≤ card G using Int-lower2 card-mono by

fastforce
then have
4 : x ≥ 0 using assms lm100 1 by linarith
have card (?p aa ∩ (?p a)) = card G ←→ (?p aa = ?p a)

using 3 lm041 4 assms by (metis (lifting, mono-tags))
moreover have ?p aa = ?p a −→ a = aa using assms lm082 inj-on-def

by (metis (lifting, mono-tags))
ultimately have card (?p aa ∩ (?p a)) = card G ←→ (a=aa) by blast
moreover have x = real (card G) − card (?p aa ∩ (?p a)) using assms lm100

by blast
ultimately have
5 : x = 0 ←→ (a=aa) by linarith
then have
aa 6= a −→ sum (tiebids a N G) aa < real (sum (tiebids a N G) a)

using 1 4 assms by auto
thus ?thesis using 2 4 5

unfolding of-nat-less-iff by force
qed

corollary lm102 :
assumes finite G a ∈ allAllocations N G

aa ∈ allAllocations N G aa 6= a
shows sum (tiebids a N G) aa < sum (tiebids a N G) a
using assms lm101 by blast

lemma lm103 :
assumes N 6= {} finite N distinct G set G 6= {}

aa ∈ (allAllocations N (set G))−{chosenAllocation N G bids random}
shows sum (resolvingBid N G bids random) aa <

sum (resolvingBid N G bids random) (chosenAllocation N G bids random)
proof −

let ?a=chosenAllocation N G bids random
let ?p=allAllocations
let ?G=set G
have ?a ∈ winningAllocationsRel N (set G) bids using assms lm090 by blast
moreover have winningAllocationsRel N (set G) bids ⊆ ?p N ?G using assms

winningAllocationPossible by metis
ultimately have ?a ∈ ?p N ?G using lm090 assms winningAllocationPossible

rev-subsetD by blast
then show ?thesis using assms lm102 by blast
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qed

abbreviation terminatingAuctionRel N G bids random ==
argmax (sum (resolvingBid N G bids random))

(argmax (sum bids) (allAllocations N (set G)))

Termination theorem: it assures that the number of winning allocations is
exactly one
theorem winningAllocationUniqueness:

assumes N 6= {} distinct G set G 6= {} finite N
shows terminatingAuctionRel N G (bids) random = {chosenAllocation N G bids

random}
proof −

let ?p = allAllocations
let ?G = set G
let ?X = argmax (sum bids) (?p N ?G)
let ?a = chosenAllocation N G bids random
let ?b = resolvingBid N G bids random
let ?f = sum ?b
let ?t=terminatingAuctionRel
have ∀ aa ∈ (allAllocations N ?G)−{?a}. ?f aa < ?f ?a

using assms lm103 by blast
then have ∀ aa ∈ ?X−{?a}. ?f aa < ?f ?a using assms lm103 by auto
moreover have finite N using assms by simp
then have finite (?p N ?G) using assms allAllocationsFinite by (metis List.finite-set)
then have finite ?X using assms by (metis finite-subset winningAllocationPos-

sible)
moreover have ?a ∈ ?X using lm090 assms by blast
ultimately have finite ?X & ?a ∈ ?X & (∀ aa ∈ ?X−{?a}. ?f aa < ?f ?a) by

force
moreover have (finite ?X & ?a ∈ ?X & (∀ aa ∈ ?X−{?a}. ?f aa < ?f ?a)) −→

argmax ?f ?X = {?a}
by (rule argmaxProperty)

ultimately have {?a} = argmax ?f ?X using injectionsFromEmptyIsEmpty by
presburger

moreover have ... = ?t N G bids random by simp
ultimately show ?thesis by simp

qed

The computable variant of Else is defined next as Elsee.
definition toFunctionWithFallbackAlg R fallback ==

(% x. if (x ∈ Domain R) then (R,,x) else fallback)
notation toFunctionWithFallbackAlg (infix ‹Elsee› 75 )

end
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11 VCG auction: definitions and theorems
theory CombinatorialAuction

imports
UniformTieBreaking

begin

11.1 Definition of a VCG auction scheme, through the pair
(vcga, vcgp)

abbreviation participants b == Domain (Domain b)

abbreviation goods == sorted-list-of-set o Union o Range o Domain

abbreviation seller == (0 ::integer)

abbreviation allAllocations ′ N Ω ==
injectionsUniverse ∩ {a. Domain a ⊆ N & Range a ∈ all-partitions Ω}

abbreviation allAllocations ′′ N Ω == allocationsUniverse ∩ {a. Domain a ⊆ N
&

⋃
(Range a) = Ω}

lemma allAllocationsEquivalence:
allAllocations N Ω = allAllocations ′ N Ω & allAllocations N Ω = allAllocations ′′

N Ω
using allocationInjectionsUnivervseProperty allAllocationsIntersection by metis

lemma allAllocationsVarCharacterization:
(a ∈ allAllocations ′′ N Ω) = (a ∈ allocationsUniverse& Domain a ⊆ N &⋃
(Range a) = Ω)

by force

abbreviation soldAllocations N Ω == (Outside ′ {seller}) ‘ (allAllocations (N ∪
{seller}) Ω)

abbreviation soldAllocations ′ N Ω == (Outside ′ {seller}) ‘ (allAllocations ′ (N
∪ {seller}) Ω)
abbreviation soldAllocations ′′ N Ω == (Outside ′ {seller}) ‘ (allAllocations ′′ (N
∪ {seller}) Ω)
abbreviation soldAllocations ′′′ N Ω ==

allocationsUniverse ∩ {aa. Domain aa⊆N−{seller} &
⋃

(Range aa)⊆Ω}
lemma soldAllocationsEquivalence:

115



soldAllocations N Ω = soldAllocations ′ N Ω &
soldAllocations ′ N Ω = soldAllocations ′′ N Ω

using allAllocationsEquivalence by metis

corollary soldAllocationsEquivalenceVariant:
soldAllocations = soldAllocations ′ &
soldAllocations ′ = soldAllocations ′′ &
soldAllocations = soldAllocations ′′

using soldAllocationsEquivalence by metis

lemma allocationSellerMonotonicity:
soldAllocations (N−{seller}) Ω ⊆ soldAllocations N Ω
using Outside-def by simp

lemma allocationsUniverseCharacterization:
(a ∈ allocationsUniverse) = (a ∈ allAllocations ′′ (Domain a) (

⋃
(Range a)))

by blast

lemma allocationMonotonicity:
assumes N1 ⊆ N2
shows allAllocations ′′ N1 Ω ⊆ allAllocations ′′ N2 Ω
using assms by auto

lemma allocationWithOneParticipant:
assumes a ∈ allAllocations ′′ N Ω
shows Domain (a −− x) ⊆ N−{x}
using assms Outside-def by fastforce

lemma soldAllocationIsAllocation:
assumes a ∈ soldAllocations N Ω
shows a ∈ allocationsUniverse

proof −
obtain aa where a =aa −− seller & aa ∈ allAllocations (N∪{seller}) Ω

using assms by blast
then have a ⊆ aa & aa ∈ allocationsUniverse

unfolding Outside-def using allAllocationsIntersectionSubset by blast
then show ?thesis using subsetAllocation by blast
qed

lemma soldAllocationIsAllocationVariant:
assumes a ∈ soldAllocations N Ω
shows a ∈ allAllocations ′′ (Domain a) (

⋃
(Range a))

proof −
show ?thesis using assms soldAllocationIsAllocation
by auto blast+

qed

lemma onlyGoodsAreSold:
assumes a ∈ soldAllocations ′′ N Ω
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shows
⋃

(Range a) ⊆ Ω
using assms Outside-def by blast

lemma soldAllocationIsRestricted:
a ∈ soldAllocations ′′ N Ω =
(∃ aa. aa −− (seller) = a ∧ aa ∈ allAllocations ′′ (N ∪ {seller}) Ω)

by blast

lemma restrictionConservation:
(R +∗ ({x}×Y )) −− x = R −− x
unfolding Outside-def paste-def by blast

lemma allocatedToBuyerMeansSold:
assumes a ∈ allocationsUniverse Domain a ⊆ N−{seller}

⋃
(Range a) ⊆ Ω

shows a ∈ soldAllocations ′′ N Ω
proof −

let ?i = seller
let ?Y = {Ω−

⋃
(Range a)}−{{}}

let ?b = {?i}×?Y
let ?aa = a∪?b
let ?aa ′ = a +∗ ?b
have
1 : a ∈ allocationsUniverse using assms(1 ) by fast
have ?b ⊆ {(?i,Ω−

⋃
(Range a))} − {(?i, {})} by fastforce

then have
2 : ?b ∈ allocationsUniverse

using allocationUniverseProperty subsetAllocation by (metis(no-types))
have
3 :

⋃
(Range a) ∩

⋃
(Range ?b) = {} by blast

have
4 : Domain a ∩ Domain ?b ={} using assms by fast
have ?aa ∈ allocationsUniverse using 1 2 3 4 by (rule allocationUnion)
then have ?aa ∈ allAllocations ′′ (Domain ?aa) (

⋃
(Range ?aa))

unfolding allocationsUniverseCharacterization by metis
then have ?aa ∈ allAllocations ′′ (N∪{?i}) (

⋃
(Range ?aa))

using allocationMonotonicity assms paste-def by auto
moreover have Range ?aa = Range a ∪ ?Y by blast
then moreover have

⋃
(Range ?aa) = Ω

using Un-Diff-cancel Un-Diff-cancel2 Union-Un-distrib Union-empty Union-insert

by (metis (lifting, no-types) assms(3 ) cSup-singleton subset-Un-eq)
moreover have ?aa ′ = ?aa using 4 by (rule paste-disj-domains)
ultimately have ?aa ′ ∈ allAllocations ′′ (N∪{?i}) Ω by simp
moreover have Domain ?b ⊆ {?i} by fast
have ?aa ′ −− ?i = a −− ?i by (rule restrictionConservation)
moreover have ... = a using Outside-def assms(2 ) by auto
ultimately show ?thesis using soldAllocationIsRestricted by auto

qed
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lemma allocationCharacterization:
a ∈ allAllocations N Ω =
(a ∈ injectionsUniverse & Domain a ⊆ N & Range a ∈ all-partitions Ω)

by (metis (full-types) posssibleAllocationsRelCharacterization)

lemma lm01 :
assumes a ∈ soldAllocations ′′ N Ω
shows Domain a ⊆ N−{seller} & a ∈ allocationsUniverse

proof −
let ?i = seller
obtain aa where
0 : a = aa −− ?i & aa ∈ allAllocations ′′ (N ∪ {?i}) Ω

using assms(1 ) soldAllocationIsRestricted by blast
then have Domain aa ⊆ N ∪ {?i} using allocationCharacterization by blast
then have Domain a ⊆ N − {?i} using 0 Outside-def by blast
moreover have a ∈ soldAllocations N Ω using assms soldAllocationsEquiva-

lenceVariant by metis
then moreover have a ∈ allocationsUniverse using soldAllocationIsAllocation

by blast
ultimately show ?thesis by blast

qed

corollary lm02 :
assumes a ∈ soldAllocations ′′ N Ω
shows a ∈ allocationsUniverse & Domain a ⊆ N−{seller} &

⋃
(Range a) ⊆ Ω

proof −
have a ∈ allocationsUniverse using assms lm01 [of a] by blast
moreover have Domain a ⊆ N−{seller} using assms lm01 by blast
moreover have

⋃
(Range a) ⊆ Ω using assms onlyGoodsAreSold by blast

ultimately show ?thesis by blast
qed

corollary lm03 :
(a ∈ soldAllocations ′′ N Ω) =
(a ∈ allocationsUniverse & a ∈ {aa. Domain aa ⊆ N−{seller} &

⋃
(Range aa)

⊆ Ω})
(is ?L = ?R)

proof −
have (a∈soldAllocations ′′ N Ω) =

(a∈allocationsUniverse& Domain a ⊆ N−{seller} &
⋃

(Range a) ⊆ Ω)
using lm02 allocatedToBuyerMeansSold by (metis (mono-tags))
then have ?L = (a∈allocationsUniverse& Domain a ⊆ N−{seller} &

⋃
(Range

a) ⊆ Ω) by fast
moreover have ... = ?R using mem-Collect-eq by (metis (lifting, no-types))
ultimately show ?thesis by auto

qed
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corollary lm04 :
a ∈ soldAllocations ′′ N Ω =
(a∈ (allocationsUniverse ∩ {aa. Domain aa ⊆ N−{seller} &

⋃
(Range aa) ⊆

Ω}))
using lm03 by (metis (mono-tags) Int-iff )

corollary soldAllocationVariantEquivalence:
soldAllocations ′′ N Ω = soldAllocations ′′′ N Ω
(is ?L=?R)

proof −
{
fix a
have a ∈ ?L = (a ∈ ?R) by (rule lm04 )

}
thus ?thesis by blast

qed

lemma lm05 :
assumes a ∈ soldAllocations ′′′ N Ω
shows a −− n ∈ soldAllocations ′′′ (N−{n}) Ω

proof −
let ?bb = seller
let ?d = Domain
let ?r = Range
let ?X1 = {aa. ?d aa ⊆ N−{n}−{?bb} &

⋃
(?r aa)⊆Ω}

let ?X2 = {aa. ?d aa ⊆ N−{?bb} &
⋃

(?r aa) ⊆ Ω}
have a∈?X2 using assms(1 ) by fast
then have
0 : ?d a ⊆ N−{?bb} &

⋃
(?r a) ⊆ Ω by blast

then have ?d (a−−n) ⊆ N−{?bb}−{n}
using outside-reduces-domain by (metis Diff-mono subset-refl)

moreover have ... = N−{n}−{?bb} by fastforce
ultimately have ?d (a−−n) ⊆ N−{n}−{?bb} by blast
moreover have

⋃
(?r (a−−n)) ⊆ Ω

unfolding Outside-def using 0 by blast
ultimately have a −− n ∈ ?X1 by fast
moreover have a−−n ∈ allocationsUniverse
using assms(1 ) Int-iff allocationsUniverseOutside by (metis(lifting,mono-tags))

ultimately show ?thesis by blast
qed

lemma allAllocationsEquivalenceExtended:
soldAllocations = soldAllocations ′ &
soldAllocations ′ = soldAllocations ′′ &
soldAllocations ′′ = soldAllocations ′′′

using soldAllocationVariantEquivalence soldAllocationsEquivalenceVariant by metis
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corollary soldAllocationRestriction:
assumes a ∈ soldAllocations N Ω
shows a −− n ∈ soldAllocations (N−{n}) Ω

proof −
let ?A ′ = soldAllocations ′′′

have a ∈ ?A ′ N Ω using assms allAllocationsEquivalenceExtended by metis
then have a −− n ∈ ?A ′ (N−{n}) Ω by (rule lm05 )
thus ?thesis using allAllocationsEquivalenceExtended by metis

qed

corollary allocationGoodsMonotonicity:
assumes Ω1 ⊆ Ω2
shows soldAllocations ′′′ N Ω1 ⊆ soldAllocations ′′′ N Ω2
using assms by blast

corollary allocationGoodsMonotonicityVariant:
assumes Ω1 ⊆ Ω2
shows soldAllocations ′′ N Ω1 ⊆ soldAllocations ′′ N Ω2

proof −
have soldAllocations ′′ N Ω1 = soldAllocations ′′′ N Ω1

by (rule soldAllocationVariantEquivalence)
moreover have ... ⊆ soldAllocations ′′′ N Ω2

using assms(1 ) by (rule allocationGoodsMonotonicity)
moreover have ... = soldAllocations ′′ N Ω2 using soldAllocationVariantEquiv-

alence by metis
ultimately show ?thesis by auto

qed

abbreviation maximalStrictAllocations N Ω b == argmax (sum b) (allAllocations
({seller}∪N ) Ω)

abbreviation randomBids N Ω b random == resolvingBid (N∪{seller}) Ω b ran-
dom

abbreviation vcgas N Ω b r ==
Outside ′ {seller} ‘((argmax◦sum) (randomBids N Ω b r)

((argmax◦sum) b (allAllocations (N ∪ {seller}) (set
Ω))))

abbreviation vcga N Ω b r == the-elem (vcgas N Ω b r)

abbreviation vcga ′ N Ω b r ==
(the-elem (argmax (sum (randomBids N Ω b r))
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(maximalStrictAllocations N (set Ω) b)))
−− seller

lemma lm06 :
assumes card ((argmax◦sum) (randomBids N Ω b r)

((argmax◦sum) b (allAllocations (N∪{seller}) (set Ω))))
= 1

shows vcga N Ω b r =
(the-elem ((argmax◦sum) (randomBids N Ω b r)

((argmax◦sum) b (allAllocations ({seller}∪N ) (set
Ω)))))

−− seller
using assms cardOneTheElem by auto

corollary lm07 :
assumes card ((argmax◦sum) (randomBids N Ω b r)

((argmax◦sum) b (allAllocations (N∪{seller}) (set Ω))))
= 1

shows vcga N Ω b r = vcga ′ N Ω b r
(is ?l = ?r)

proof −
have ?l = (the-elem ((argmax◦sum) (randomBids N Ω b r)

((argmax◦sum) b (allAllocations ({seller}∪N ) (set
Ω)))))

−− seller
using assms by (rule lm06 )

moreover have ... = ?r by force
ultimately show ?thesis by blast

qed

lemma lm08 :
assumes distinct Ω set Ω 6= {} finite N
shows card ((argmax◦sum) (randomBids N Ω bids random)

((argmax◦sum) bids (allAllocations (N∪{seller}) (set
Ω)))) = 1
(is card ?l=-)

proof −
let ?N = N∪{seller}
let ?b ′ = randomBids N Ω bids random
let ?s = sum
let ?a = argmax
let ?f = ?a ◦ ?s
have
1 : ?N 6={} by auto
have
2 : finite ?N using assms(3 ) by simp
have ?a (?s ?b ′) (?a (?s bids) (allAllocations ?N (set Ω))) =

{chosenAllocation ?N Ω bids random} (is ?L=?R)
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using 1 assms(1 ) assms(2 ) 2 by (rule winningAllocationUniqueness)
moreover have ?L= ?f ?b ′ (?f bids (allAllocations ?N (set Ω))) by auto
ultimately have ?l = {chosenAllocation ?N Ω bids random} by simp
moreover have card ...=1 by simp ultimately show ?thesis by simp

qed

lemma vcgaEquivalence:
assumes distinct Ω set Ω 6= {} finite N
shows vcga N Ω b r = vcga ′ N Ω b r
using assms lm07 lm08 by blast

theorem vcgaDefiniteness:
assumes distinct Ω set Ω 6= {} finite N
shows card (vcgas N Ω b r) = 1

proof −
have card ((argmax◦sum) (randomBids N Ω b r)

((argmax◦sum) b (allAllocations (N∪{seller}) (set Ω)))) =
1

(is card ?X = -) using assms lm08 by blast
moreover have (Outside ′{seller}) ‘ ?X = vcgas N Ω b r by blast
ultimately show ?thesis using cardOneImageCardOne by blast

qed

lemma vcgaDefinitenessVariant:
assumes distinct Ω set Ω 6= {} finite N
shows card (argmax (sum (randomBids N Ω b r))

(maximalStrictAllocations N (set Ω) b)) =
1

(is card ?L=-)
proof −

let ?n = {seller}
have
1 : (?n ∪ N ) 6={} by simp
have
2 : finite (?n∪N ) using assms(3 ) by fast
have terminatingAuctionRel (?n∪N ) Ω b r = {chosenAllocation (?n∪N ) Ω b r}

using 1 assms(1 ) assms(2 ) 2 by (rule winningAllocationUniqueness)
moreover have ?L = terminatingAuctionRel (?n∪N ) Ω b r by auto
ultimately show ?thesis by auto

qed

theorem winningAllocationIsMaximal:
assumes distinct Ω set Ω 6= {} finite N
shows the-elem (argmax (sum (randomBids N Ω b r))

(maximalStrictAllocations N (set Ω) b)) ∈
(maximalStrictAllocations N (set Ω) b)
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(is the-elem ?X ∈ ?R)
proof −

have card ?X=1 using assms by (rule vcgaDefinitenessVariant)
moreover have ?X ⊆ ?R by auto
ultimately show ?thesis using cardinalityOneTheElem by blast

qed

corollary winningAllocationIsMaximalWithoutSeller :
assumes distinct Ω set Ω 6= {} finite N
shows vcga ′ N Ω b r ∈ (Outside ′ {seller})‘(maximalStrictAllocations N (set Ω)

b)
using assms winningAllocationIsMaximal by blast

lemma maximalAllactionWithoutSeller :
(Outside ′ {seller})‘(maximalStrictAllocations N Ω b) ⊆ soldAllocations N Ω
using Outside-def by force

lemma onlyGoodsAreAllocatedAuxiliary:
assumes distinct Ω set Ω 6= {} finite N
shows vcga ′ N Ω b r ∈ soldAllocations N (set Ω)
(is ?a ∈ ?A)

proof −
have ?a ∈ (Outside ′ {seller})‘(maximalStrictAllocations N (set Ω) b)

using assms by (rule winningAllocationIsMaximalWithoutSeller)
thus ?thesis using maximalAllactionWithoutSeller by fastforce

qed

theorem onlyGoodsAreAllocated:
assumes distinct Ω set Ω 6= {} finite N
shows vcga N Ω b r ∈ soldAllocations N (set Ω)
(is -∈?r)

proof −
have vcga ′ N Ω b r ∈ ?r using assms by (rule onlyGoodsAreAllocatedAuxiliary)

then show ?thesis using assms vcgaEquivalence by blast
qed

corollary neutralSeller :
assumes ∀X . X ∈ Range a −→b (seller , X)=0 finite a
shows sum b a = sum b (a−−seller)

proof −
let ?n = seller
have finite (a||{?n}) using assms restrict-def by (metis finite-Int)
moreover have ∀ z ∈ a||{?n}. b z=0 using assms restrict-def by fastforce
ultimately have sum b (a||{?n}) = 0 using assms by (metis sum.neutral)
thus ?thesis using sumOutside assms(2 ) by (metis add.comm-neutral)

qed
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corollary neutralSellerVariant:
assumes ∀ a∈A. finite a & (∀ X . X∈Range a −→ b (seller , X)=0 )
shows {sum b a| a. a∈A} = {sum b (a −− seller)| a. a∈A}
using assms neutralSeller by (metis (lifting, no-types))

lemma vcgaIsMaximalAux1 :
assumes distinct Ω set Ω 6= {} finite N
shows ∃ a. ((a ∈ (maximalStrictAllocations N (set Ω) b)) ∧ (vcga ′ N Ω b r =

a −− seller) &
(a ∈ argmax (sum b) (allAllocations ({seller}∪N ) (set Ω))))

using assms winningAllocationIsMaximalWithoutSeller by fast

lemma vcgaIsMaximalAux2 :
assumes distinct Ω set Ω 6= {} finite N
∀ a ∈ allAllocations ({seller}∪N ) (set Ω). ∀ X ∈ Range a. b (seller , X)=0
(is ∀ a∈?X . -)
shows sum b (vcga ′ N Ω b r) = Max{sum b a| a. a ∈ soldAllocations N (set Ω)}

proof −
let ?n = seller
let ?s = sum
let ?a = vcga ′ N Ω b r
obtain a where
0 : a ∈ maximalStrictAllocations N (set Ω) b &

?a = a−−?n &
(a ∈ argmax (sum b) (allAllocations({seller}∪N )(set Ω)))

(is - & ?a=- & a∈?Z )
using assms(1 ,2 ,3 ) vcgaIsMaximalAux1 by blast

have
1 : ∀ a ∈ ?X . finite a & (∀ X . X∈Range a −→ b (?n, X)=0 )

using assms(4 ) List.finite-set allocationFinite by metis
have
2 : a ∈ ?X using 0 by auto have a ∈ ?Z using 0 by fast
then have a ∈ ?X∩{x. ?s b x = Max (?s b ‘ ?X)} using injectionsUnionCom-

mute by simp
then have a ∈ {x. ?s b x = Max (?s b ‘ ?X)} using injectionsUnionCommute

by simp
moreover have ?s b ‘ ?X = {?s b a| a. a∈?X} by blast
ultimately have ?s b a = Max {?s b a| a. a∈?X} by auto
moreover have {?s b a| a. a∈?X} = {?s b (a−−?n)| a. a∈?X}

using 1 by (rule neutralSellerVariant)
moreover have ... = {?s b a| a. a ∈ Outside ′ {?n}‘?X} by blast
moreover have ... = {?s b a| a. a ∈ soldAllocations N (set Ω)} by simp
ultimately have Max {?s b a| a. a ∈ soldAllocations N (set Ω)} = ?s b a by

simp
moreover have ... = ?s b (a−−?n) using 1 2 neutralSeller by (metis (lifting,

no-types))
ultimately show ?s b ?a=Max{?s b a| a. a ∈ soldAllocations N (set Ω)} using

0 by simp
qed
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Adequacy theorem: The allocation satisfies the standard pen-and-paper spec-
ification of a VCG auction. See, for example, [5, § 1.2].
theorem vcgaIsMaximal:

assumes distinct Ω set Ω 6= {} finite N ∀ X . b (seller , X) = 0
shows sum b (vcga ′ N Ω b r) = Max{sum b a| a. a ∈ soldAllocations N (set Ω)}
using assms vcgaIsMaximalAux2 by blast

corollary vcgaIsAllocationAllocatingGoodsOnly:
assumes distinct Ω set Ω 6= {} finite N
shows vcga ′ N Ω b r ∈ allocationsUniverse &

⋃
(Range (vcga ′ N Ω b r)) ⊆ set

Ω
proof −

let ?a = vcga ′ N Ω b r
let ?n = seller
obtain a where
0 : ?a = a −− seller & a ∈ maximalStrictAllocations N (set Ω) b

using assms winningAllocationIsMaximalWithoutSeller by blast
then moreover have
1 : a ∈ allAllocations ({?n}∪N ) (set Ω) by auto
moreover have maximalStrictAllocations N (set Ω) b ⊆ allocationsUniverse

by (metis (lifting, mono-tags) winningAllocationPossible
allAllocationsUniverse subset-trans)

ultimately moreover have ?a = a −− seller & a ∈ allocationsUniverse by
blast

then have ?a ∈ allocationsUniverse using allocationsUniverseOutside by auto
moreover have

⋃
(Range a) = set Ω using allAllocationsIntersectionSetEquals

1 by metis
then moreover have

⋃
(Range ?a) ⊆ set Ω using Outside-def 0 by fast

ultimately show ?thesis using allocationsUniverseOutside Outside-def by blast
qed

abbreviation vcgp N Ω b r n ==
Max (sum b ‘ (soldAllocations (N−{n}) (set Ω)))
− (sum b (vcga N Ω b r −− n))

theorem vcgpDefiniteness:
assumes distinct Ω set Ω 6= {} finite N
shows ∃ ! y. vcgp N Ω b r n = y
using assms vcgaDefiniteness by simp

lemma soldAllocationsFinite:
assumes finite N finite Ω
shows finite (soldAllocations N Ω)
using assms allAllocationsFinite finite.emptyI finite.insertI finite-UnI finite-imageI

by metis
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The price paid by any participant is non-negative.
theorem NonnegPrices:

assumes distinct Ω set Ω 6= {} finite N
shows vcgp N Ω b r n >= (0 ::price)

proof −
let ?a = vcga N Ω b r
let ?A = soldAllocations
let ?f = sum b
have ?a ∈ ?A N (set Ω) using assms by (rule onlyGoodsAreAllocated)
then have ?a −− n ∈ ?A (N−{n}) (set Ω) by (rule soldAllocationRestriction)
moreover have finite (?A (N−{n}) (set Ω))

using assms(3 ) soldAllocationsFinite finite-set finite-Diff by blast
ultimately have Max (?f‘(?A (N−{n}) (set Ω))) ≥ ?f (?a −− n)
(is ?L >= ?R) by (rule maxLemma)
then show ?L − ?R >=0 by linarith

qed

lemma allocationDisjointAuxiliary:
assumes a ∈ allocationsUniverse and n1 ∈ Domain a and n2 ∈ Domain a and

n1 6= n2
shows a,,n1 ∩ a,,n2 = {}

proof −
have Range a ∈ partitionsUniverse using assms nonOverlapping by blast
moreover have a ∈ injectionsUniverse & a ∈ partitionValuedUniverse

using assms by (metis (lifting, no-types) IntD1 IntD2 )
ultimately moreover have a,,n1 ∈ Range a

using assms by (metis (mono-tags) eval-runiq-in-Range mem-Collect-eq)
ultimately moreover have a,,n1 6= a,,n2

using assms converse.intros eval-runiq-rel mem-Collect-eq runiq-basic
by (metis (lifting, no-types))

ultimately show ?thesis
using is-non-overlapping-def
by (metis (lifting, no-types) assms(3 ) eval-runiq-in-Range mem-Collect-eq)

qed

lemma allocationDisjoint:
assumes a ∈ allocationsUniverse and n1 ∈ Domain a and n2 ∈ Domain a and

n1 6= n2
shows a,,,n1 ∩ a,,,n2 = {}
using assms allocationDisjointAuxiliary imageEquivalence by fastforce

No good is assigned twice.
theorem PairwiseDisjointAllocations:

assumes distinct Ω set Ω 6= {} finite N n1 6= n2
shows (vcga ′ N Ω b r),,,n1 ∩ (vcga ′ N Ω b r),,,n2 = {}

proof −
have vcga ′ N Ω b r ∈ allocationsUniverse

using vcgaIsAllocationAllocatingGoodsOnly assms by blast
then show ?thesis using allocationDisjoint assms by fast
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qed

Nothing outside the set of goods is allocated.
theorem OnlyGoodsAllocated:

assumes distinct Ω set Ω 6= {} finite N g ∈ (vcga N Ω b r),,,n
shows g ∈ set Ω

proof −
let ?a = vcga ′ N Ω b r
have ?a ∈ allocationsUniverse using assms(1 ,2 ,3 ) vcgaIsAllocationAllocating-

GoodsOnly by blast
then have 1 : runiq ?a using assms(1 ,2 ,3 ) by blast
have 2 : n ∈ Domain ?a using assms vcgaEquivalence by fast
with 1 have ?a,,n ∈ Range ?a using eval-runiq-in-Range by fast
with 1 2 have ?a,,,n ∈ Range ?a using imageEquivalence by fastforce
then have g ∈

⋃
(Range ?a) using assms vcgaEquivalence by blast

moreover have
⋃

(Range ?a) ⊆ set Ω using assms(1 ,2 ,3 ) vcgaIsAllocationAl-
locatingGoodsOnly by fast

ultimately show ?thesis by blast
qed

11.2 Computable versions of the VCG formalization
abbreviation maximalStrictAllocationsAlg N Ω b ==

argmax (sum b) (set (allAllocationsAlg ({seller}∪N ) Ω))

definition chosenAllocationAlg N Ω b (r ::integer) ==
(randomEl (takeAll (%x. x∈ (argmax ◦ sum) b (set (allAllocationsAlg N Ω)))

(allAllocationsAlg N Ω))
r)

definition maxbidAlg a N Ω == (bidMaximizedBy a N Ω) Elsee 0

definition summedBidVectorAlg bids N Ω == (summedBidVectorRel bids N Ω)
Elsee 0

definition tiebidsAlg a N Ω == summedBidVectorAlg (maxbidAlg a N Ω) N Ω

definition resolvingBidAlg N Ω bids random ==
tiebidsAlg (chosenAllocationAlg N Ω bids random) N (set Ω)

definition randomBidsAlg N Ω b random == resolvingBidAlg (N∪{seller}) Ω b
random
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definition vcgaAlgWithoutLosers N Ω b r ==
(the-elem (argmax (sum (randomBidsAlg N Ω b r))

(maximalStrictAllocationsAlg N Ω b)))
−− seller

abbreviation addLosers participantset allocation == (participantset × {{}}) +∗
allocation

definition vcgaAlg N Ω b r = addLosers N (vcgaAlgWithoutLosers N Ω b r)

abbreviation soldAllocationsAlg N Ω ==
(Outside ′ {seller}) ‘ set (allAllocationsAlg (N ∪ {seller}) Ω)

definition vcgpAlg N Ω b r n (winningAllocation::allocation) =
Max (sum b ‘ (soldAllocationsAlg (N−{n}) Ω)) −
(sum b (winningAllocation −− n))

lemma functionCompletion:
assumes x ∈ Domain f
shows toFunction f x = (f Elsee 0 ) x
unfolding toFunctionWithFallbackAlg-def by (metis assms toFunction-def )

lemma lm09 :
assumes fst pair ∈ N snd pair ∈ Pow Ω − {{}}
shows sum (%g. (toFunction (bidMaximizedBy a N Ω)) (fst pair , g))

(finestpart (snd pair)) =
sum (%g. ((bidMaximizedBy a N Ω) Elsee 0 ) (fst pair , g))

(finestpart (snd pair))
proof −

let ?f1 = %g.(toFunction (bidMaximizedBy a N Ω))(fst pair , g)
let ?f2 = %g.((bidMaximizedBy a N Ω) Elsee 0 )(fst pair , g)
{

fix g assume g ∈ finestpart (snd pair)
then have
0 : g ∈ finestpart Ω using assms finestpartSubset by (metis Diff-iff Pow-iff

in-mono)
have ?f1 g = ?f2 g
proof −
have

∧
x1 x2. (x1, g) ∈ x2 × finestpart Ω ∨ x1 /∈ x2 by (metis 0 mem-Sigma-iff )

then have (pseudoAllocation a <| (N × finestpart Ω)) (fst pair , g) =
maxbidAlg a N Ω (fst pair , g)

unfolding toFunctionWithFallbackAlg-def maxbidAlg-def
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by (metis (no-types) domainCharacteristicFunction UnCI assms(1 ) toFunc-
tion-def )

thus ?thesis unfolding maxbidAlg-def by blast
qed

}
thus ?thesis using sum.cong by simp

qed

corollary lm10 :
assumes pair ∈ N × (Pow Ω − {{}})
shows summedBid (toFunction (bidMaximizedBy a N Ω)) pair =

summedBid ((bidMaximizedBy a N Ω) Elsee 0 ) pair
proof −

have fst pair ∈ N using assms by force
moreover have snd pair ∈ Pow Ω − {{}} using assms(1 ) by force
ultimately show ?thesis using lm09 by blast

qed

corollary lm11 :
∀ pair ∈ N × (Pow Ω − {{}}).
summedBid (toFunction (bidMaximizedBy a N Ω)) pair =
summedBid ((bidMaximizedBy a N Ω) Elsee 0 ) pair

using lm10 by blast

corollary lm12 :
(summedBid (toFunction (bidMaximizedBy a N Ω))) ‘ (N × (Pow Ω − {{}}))=
(summedBid ((bidMaximizedBy a N Ω) Elsee 0 )) ‘ (N × (Pow Ω − {{}}))
(is ?f1 ‘ ?Z = ?f2 ‘ ?Z )

proof −
have ∀ z ∈ ?Z . ?f1 z = ?f2 z by (rule lm11 )
thus ?thesis by (rule functionEquivalenceOnSets)

qed

corollary lm13 :
summedBidVectorRel (toFunction (bidMaximizedBy a N Ω)) N Ω =
summedBidVectorRel ((bidMaximizedBy a N Ω) Elsee 0 ) N Ω

using lm12 by metis

corollary maxbidEquivalence:
summedBidVectorRel (maxbid a N Ω) N Ω =
summedBidVectorRel (maxbidAlg a N Ω) N Ω

unfolding maxbidAlg-def using lm13 by metis

lemma summedBidVectorEquivalence:
assumes x ∈ (N × (Pow Ω − {{}}))
shows summedBidVector (maxbid a N Ω) N Ω x = summedBidVectorAlg (maxbidAlg

a N Ω) N Ω x
(is ?f1 ?g1 N Ω x = ?f2 ?g2 N Ω x)
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proof −
let ?h1 = maxbid a N Ω
let ?h2 = maxbidAlg a N Ω
have summedBidVectorRel ?h1 N Ω = summedBidVectorRel ?h2 N Ω

using maxbidEquivalence by metis
moreover have summedBidVectorAlg ?h2 N Ω = (summedBidVectorRel ?h2 N

Ω) Elsee 0
unfolding summedBidVectorAlg-def by fast

ultimately have summedBidVectorAlg ?h2 N Ω=summedBidVectorRel ?h1 N
Ω Elsee 0 by simp

moreover have ... x = (toFunction (summedBidVectorRel ?h1 N Ω)) x
using assms functionCompletion summedBidVectorCharacterization by (metis

(mono-tags))
ultimately have summedBidVectorAlg ?h2 N Ω x = (toFunction (summedBidVectorRel

?h1 N Ω)) x
by (metis (lifting, no-types))

thus ?thesis by simp
qed

corollary chosenAllocationEquivalence:
assumes card N > 0 and distinct Ω
shows chosenAllocation N Ω b r = chosenAllocationAlg N Ω b r
using assms allAllocationsBridgingLemma
by (metis (no-types) chosenAllocationAlg-def comp-apply)

corollary tiebidsBridgingLemma:
assumes x ∈ (N × (Pow Ω − {{}}))
shows tiebids a N Ω x = tiebidsAlg a N Ω x
(is ?L=-)

proof −
have ?L = summedBidVector (maxbid a N Ω) N Ω x by fast
moreover have ...= summedBidVectorAlg (maxbidAlg a N Ω) N Ω x

using assms by (rule summedBidVectorEquivalence)
ultimately show ?thesis unfolding tiebidsAlg-def by fast

qed

definition tiebids ′=tiebids
corollary tiebidsBridgingLemma ′:

assumes x ∈ (N × (Pow Ω − {{}}))
shows tiebids ′ a N Ω x = tiebidsAlg a N Ω x

using assms tiebidsBridgingLemma tiebids ′-def by metis

abbreviation resolvingBid ′ N G bids random ==
tiebids ′ (chosenAllocation N G bids random) N (set G)

lemma resolvingBidEquivalence:
assumes x ∈ (N × (Pow (set Ω) − {{}})) card N > 0 distinct Ω
shows resolvingBid ′ N Ω b r x = resolvingBidAlg N Ω b r x
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using assms chosenAllocationEquivalence tiebidsBridgingLemma ′ resolvingBidAlg-def
by metis

lemma sumResolvingBidEquivalence:
assumes card N > 0 distinct Ω a ⊆ (N × (Pow (set Ω) − {{}}))
shows sum (resolvingBid ′ N Ω b r) a = sum (resolvingBidAlg N Ω b r) a
(is ?L=?R)

proof −
have ∀ x∈a. resolvingBid ′ N Ω b r x = resolvingBidAlg N Ω b r x

using assms resolvingBidEquivalence by blast
thus ?thesis using sum.cong by force

qed

lemma resolvingBidBridgingLemma:
assumes card N > 0 distinct Ω a ⊆ (N × (Pow (set Ω) − {{}}))
shows sum (resolvingBid N Ω b r) a = sum (resolvingBidAlg N Ω b r) a
(is ?L=?R)

proof −
have ?L=sum (resolvingBid ′ N Ω b r) a unfolding tiebids ′-def by fast
moreover have ...=?R
using assms by (rule sumResolvingBidEquivalence)
ultimately show ?thesis by simp

qed

lemma allAllocationsInPowerset:
allAllocations N Ω ⊆ Pow (N × (Pow Ω − {{}}))
by (metis PowI allocationPowerset subsetI )

corollary resolvingBidBridgingLemmaVariant1 :
assumes card N > 0 distinct Ω a ∈ allAllocations N (set Ω)
shows sum (resolvingBid N Ω b r) a = sum (resolvingBidAlg N Ω b r) a

proof −
have a ⊆ N × (Pow (set Ω) − {{}}) using assms(3 ) allAllocationsInPowerset

by blast
thus ?thesis using assms(1 ,2 ) resolvingBidBridgingLemma by blast

qed

corollary resolvingBidBridgingLemmaVariant2 :
assumes finite N distinct Ω a ∈ maximalStrictAllocations N (set Ω) b
shows sum (randomBids N Ω b r) a = sum (randomBidsAlg N Ω b r) a

proof −
have card (N∪{seller}) > 0 using assms(1 ) sup-eq-bot-iff insert-not-empty

by (metis card-gt-0-iff finite.emptyI finite.insertI finite-UnI )
moreover have distinct Ω using assms(2 ) by simp
moreover have a ∈ allAllocations (N∪{seller}) (set Ω) using assms(3 ) by

fastforce
ultimately show ?thesis unfolding randomBidsAlg-def by (rule resolvingBid-

BridgingLemmaVariant1 )
qed
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corollary tiebreakingGivesSingleton:
assumes distinct Ω set Ω 6= {} finite N
shows card (argmax (sum (randomBidsAlg N Ω b r))

(maximalStrictAllocations N (set Ω) b)) =
1

proof −
have ∀ a ∈ maximalStrictAllocations N (set Ω) b.

sum (randomBids N Ω b r) a = sum (randomBidsAlg N Ω b r) a
using assms(3 ,1 ) resolvingBidBridgingLemmaVariant2 by blast

then have argmax (sum (randomBidsAlg N Ω b r)) (maximalStrictAllocations
N (set Ω) b) =

argmax (sum (randomBids N Ω b r)) (maximalStrictAllocations N (set
Ω) b)

using argmaxEquivalence by blast
moreover have card ... = 1 using assms by (rule vcgaDefinitenessVariant)
ultimately show ?thesis by simp

qed

theorem maximalAllocationBridgingTheorem:
assumes finite N distinct Ω
shows maximalStrictAllocations N (set Ω) b = maximalStrictAllocationsAlg N

Ω b
proof −

let ?N = {seller} ∪ N
have card ?N>0 using assms(1 )

by (metis (full-types) card-gt-0-iff finite-insert insert-is-Un insert-not-empty)
thus ?thesis using assms(2 ) allAllocationsBridgingLemma by metis

qed

theorem vcgaAlgDefinedness:
assumes distinct Ω set Ω 6= {} finite N
shows card (argmax (sum (randomBidsAlg N Ω b r)) (maximalStrictAllocationsAlg

N Ω b)) = 1
proof −

have card (argmax (sum (randomBidsAlg N Ω b r)) (maximalStrictAllocations
N (set Ω) b)) = 1

using assms by (rule tiebreakingGivesSingleton)
moreover have maximalStrictAllocations N (set Ω) b = maximalStrictAlloca-

tionsAlg N Ω b
using assms(3 ,1 ) by (rule maximalAllocationBridgingTheorem)

ultimately show ?thesis by metis
qed

end

12 VCG auction: Scala code extraction
theory CombinatorialAuctionCodeExtraction

132



imports
CombinatorialAuction

HOL−Library.Code-Target-Nat
HOL−Library.Code-Target-Int

begin

definition allocationPrettyPrint a =
{map (%x. (x, sorted-list-of-set(a,,x))) ((sorted-list-of-set ◦ Domain) a)}

abbreviation singleBidConverter x == ((fst x, set ((fst o snd) x)), (snd o snd)
x)
definition Bid2funcBid b = set (map singleBidConverter b) Elsee (0 ::integer)

definition participantsSet b = fst ‘ (set b)

definition goodsList b = sorted-list-of-set (Union ((set o fst o snd) ‘(set b)))

definition payments b r n (a::allocation) =
vcgpAlg ((participantsSet b)) (goodsList b) (Bid2funcBid b) r n (a::allocation)

export-code vcgaAlg payments allocationPrettyPrint in Scala module-name VCG

file ‹VCG−withoutWrapper .scala›

end

References

[1] Formare github webpage. https://github.com/formare/auctions/tree/
master/isabelle/Auction/Vcg, 2015. Accessed: 2015-05-08.

[2] Formare project webpage. http://www.cs.bham.ac.uk/research/
projects/formare/, 2015. Accessed: 2015-05-08.

133

https://github.com/formare/auctions/tree/master/isabelle/Auction/Vcg
https://github.com/formare/auctions/tree/master/isabelle/Auction/Vcg
http://www.cs.bham.ac.uk/research/projects/formare/
http://www.cs.bham.ac.uk/research/projects/formare/


[3] M. B. Caminati, M. Kerber, C. Lange, and C. Rowat. Set theory or
higher order logic to represent auction concepts in isabelle? In Intelligent
Computer Mathematics, pages 236–251. Springer, 2014. http://arxiv.
org/abs/1406.0774.

[4] M. B. Caminati, M. Kerber, C. Lange, and C. Rowat. Sound auc-
tion specification and implementation. 16th ACM Conference on
Economics and Computation, 2015. https://doi.org/10.1145/2764468.
2764511, http://www.cs.bham.ac.uk/~mmk/publications/ec2015.pdf.

[5] P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial auc-
tions. MIT Press, 2006.

134

http://arxiv.org/abs/1406.0774
http://arxiv.org/abs/1406.0774
https://doi.org/10.1145/2764468.2764511
https://doi.org/10.1145/2764468.2764511
http://www.cs.bham.ac.uk/~mmk/publications/ec2015.pdf

	Introduction
	Rationale for developing set theory as replacing one bidder in a second price auction
	Bridging
	Main theorems
	Scala code extraction

	Additional material that we would have expected in Set.thy
	Equality
	Trivial sets
	The image of a set under a function
	Big Union
	Miscellaneous

	Partitions of sets
	Locus where a function or a list (of linord type) attains its maximum value
	Additional operators on relations, going beyond Relations.thy, and properties of these operators
	Evaluating a relation as a function
	Restriction
	Relation outside some set
	Flipping pairs of relations
	Evaluation as a function
	Paste

	Additional properties of relations, and operators on relations, as they have been defined by Relations.thy
	Right-Uniqueness
	Converse
	Injectivity

	Toolbox of various definitions and theorems about sets, relations and lists
	Facts and notations about relations, sets and functions.
	Ordered relations
	Indicator function in set-theoretical form.
	Lists
	Computing all the permutations of a list
	A more computable version of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 toFunction.
	Cardinalities of sets.
	Some easy properties on real numbers

	Definitions about those Combinatorial Auctions which are strict (i.e., which assign all the available goods)
	Types
	VCG mechanism

	Sets of injections, partitions, allocations expressed as suitable subsets of the corresponding universes
	Preliminary lemmas
	Definitions of various subsets of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 UNIV.
	Results about the sets defined in the previous section
	Bridging theorem for injections
	Computable injections

	Termination theorem for uniform tie-breaking
	Uniform tie breaking: definitions
	Termination theorem for the uniform tie-breaking scheme
	Results on summed bid vectors
	From Pseudo-allocations to allocations

	VCG auction: definitions and theorems
	Definition of a VCG auction scheme, through the pair 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (vcga, vcgp)
	Computable versions of the VCG formalization

	VCG auction: Scala code extraction

