
VerifyThis 2019 – Polished Isabelle Solutions

Peter Lammich Simon Wimmer

September 13, 2023

Abstract

VerifyThis 2019 (http://www.pm.inf.ethz.ch/research/verifythis.html)
was a program verification competition associated with ETAPS 2019.
It was the 8th event in the VerifyThis competition series. In this entry,
we present polished and completed versions of our solutions that we
created during the competition.

Contents
1 Challenge 1.A 1

1.1 Implementation . 1
1.2 Termination . 2
1.3 Correctness . 2

1.3.1 Property 1: The Exact Sequence is Covered 2
1.3.2 Property 2: Monotonicity 2
1.3.3 Property 3: Maximality 3
1.3.4 Equivalent Formulation Over Indexes 4

2 Challenge 1.B 6
2.1 Merging Two Segments . 6
2.2 Merging a List of Segments 6
2.3 GHC-Sort . 7
2.4 Correctness Lemmas . 7
2.5 Executable Code . 8

3 Challenge 2.A 8
3.1 Specification . 8
3.2 Auxiliary Theory . 8

3.2.1 Has-Left and The-Left 9
3.2.2 Derived Stack . 9

3.3 Abstract Implementation . 10
3.4 Correctness Proof . 10

3.4.1 Popping From the Stack 10
3.4.2 Main Algorithm . 11

1

http://www.pm.inf.ethz.ch/research/verifythis.html

3.5 Implementation With Arrays 11
3.5.1 Implementation of Pop 11
3.5.2 Implementation of Main Algorithm 12
3.5.3 Correctness Theorem for Concrete Algorithm 12

3.6 Code Generation . 12

4 Challenge 2.B 13
4.1 Basic Definitions . 13
4.2 Specification of the Parent . 13
4.3 The Heap Property (Task 2) 13

5 Iterating a Commutative Computation Concurrently 14
5.1 Misc . 14
5.2 The Concurrent System . 14

6 Challenge 3 16
6.1 Single-Threaded Implementation 17
6.2 Specification . 17
6.3 Correctness . 17
6.4 Multi-Threaded Implementation 18

1 Challenge 1.A
theory Challenge1A
imports Main
begin

Problem definition: https://ethz.ch/content/dam/ethz/special-interest/infk/
chair-program-method/pm/documents/Verify%20This/Challenges%202019/
ghc_sort.pdf

1.1 Implementation

We phrase the algorithm as a functional program. Instead of a list of indexes
for segment boundaries, we return a list of lists, containing the segments.

We start with auxiliary functions to take the longest increasing/decreasing
sequence from the start of the list

fun take-incr :: int list ⇒ - where
take-incr [] = []
| take-incr [x] = [x]
| take-incr (x#y#xs) = (if x<y then x#take-incr (y#xs) else [x])

fun take-decr :: int list ⇒ - where
take-decr [] = []
| take-decr [x] = [x]

2

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/ghc_sort.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/ghc_sort.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/ghc_sort.pdf

| take-decr (x#y#xs) = (if x≥y then x#take-decr (y#xs) else [x])

fun take where
take [] = []
| take [x] = [x]
| take (x#y#xs) = (if x<y then take-incr (x#y#xs) else take-decr (x#y#xs))

definition take2 xs ≡ let l=take xs in (l,drop (length l) xs)
— Splits of a longest increasing/decreasing sequence from the list

The main algorithm then iterates until the whole input list is split
function cuts where

cuts xs = (if xs=[] then [] else let (c,xs) = take2 xs in c#cuts xs)
〈proof 〉

1.2 Termination

First, we show termination. This will give us induction and proper unfolding
lemmas.

lemma take-non-empty:
take xs 6= [] if xs 6= []
〈proof 〉

termination
〈proof 〉

declare cuts.simps[simp del]

1.3 Correctness
1.3.1 Property 1: The Exact Sequence is Covered

lemma tdconc: ∃ ys. xs = take-decr xs @ ys
〈proof 〉

lemma ticonc: ∃ ys. xs = take-incr xs @ ys
〈proof 〉

lemma take-conc: ∃ ys. xs = take xs@ys
〈proof 〉

theorem concat-cuts: concat (cuts xs) = xs
〈proof 〉

1.3.2 Property 2: Monotonicity

We define constants to specify increasing/decreasing sequences.

3

fun incr where
incr [] ←→ True
| incr [-] ←→ True
| incr (x#y#xs) ←→ x<y ∧ incr (y#xs)

fun decr where
decr [] ←→ True
| decr [-] ←→ True
| decr (x#y#xs) ←→ x≥y ∧ decr (y#xs)

lemma tki: incr (take-incr xs)
〈proof 〉

lemma tkd: decr (take-decr xs)
〈proof 〉

lemma icod: incr (take xs) ∨ decr (take xs)
〈proof 〉

theorem cuts-incr-decr : ∀ c∈set (cuts xs). incr c ∨ decr c
〈proof 〉

1.3.3 Property 3: Maximality

Specification of a cut that consists of maximal segments: The segements are
non-empty, and for every two neighbouring segments, the first value of the
last segment cannot be used to continue the first segment:

fun maxi where
maxi [] ←→ True
| maxi [c] ←→ c 6=[]
| maxi (c1#c2#cs) ←→ (c1 6=[] ∧ c2 6=[] ∧ maxi (c2#cs) ∧ (

incr c1 ∧ ¬(last c1 < hd c2)
∨ decr c1 ∧ ¬(last c1 ≥ hd c2)
))

Obviously, our specification implies that there are no empty segments
lemma maxi-imp-non-empty: maxi xs =⇒ []/∈set xs
〈proof 〉

lemma tdconc ′: xs 6=[] =⇒
∃ ys. xs = take-decr xs @ ys ∧ (ys 6=[]
−→ ¬(last (take-decr xs) ≥ hd ys))
〈proof 〉

lemma ticonc ′: xs 6=[] =⇒ ∃ ys. xs = take-incr xs @ ys ∧ (ys 6=[] −→ ¬(last
(take-incr xs) < hd ys))
〈proof 〉

4

lemma take-conc ′: xs 6=[] =⇒ ∃ ys. xs = take xs@ys ∧ (ys 6=[] −→ (
take xs=take-incr xs ∧ ¬(last (take-incr xs) < hd ys)
∨ take xs=take-decr xs ∧ ¬(last (take-decr xs) ≥ hd ys)
))
〈proof 〉

lemma take-decr-non-empty:
take-decr xs 6= [] if xs 6= []
〈proof 〉

lemma take-incr-non-empty:
take-incr xs 6= [] if xs 6= []
〈proof 〉

lemma take-conc ′′: xs 6=[] =⇒ ∃ ys. xs = take xs@ys ∧ (ys 6=[] −→ (
incr (take xs) ∧ ¬(last (take xs) < hd ys)
∨ decr (take xs) ∧ ¬(last (take xs) ≥ hd ys)
))
〈proof 〉

lemma [simp]: cuts [] = []
〈proof 〉

lemma [simp]: cuts xs 6= [] ←→ xs 6= []
〈proof 〉

lemma inv-cuts: cuts xs = c#cs =⇒ ∃ ys. c=take xs ∧ xs=c@ys ∧ cs = cuts ys
〈proof 〉

theorem maximal-cuts: maxi (cuts xs)
〈proof 〉

1.3.4 Equivalent Formulation Over Indexes

After the competition, we got the comment that a specification of monotonic
sequences via indexes might be more readable.
We show that our functional specification is equivalent to a specification
over indexes.

fun ii-induction where
ii-induction [] = ()
| ii-induction [-] = ()
| ii-induction (-#y#xs) = ii-induction (y#xs)

locale cnvSpec =

5

fixes fP P
assumes [simp]: fP [] ←→ True
assumes [simp]: fP [x] ←→ True
assumes [simp]: fP (a#b#xs) ←→ P a b ∧ fP (b#xs)

begin

lemma idx-spec: fP xs ←→ (∀ i<length xs − 1 . P (xs!i) (xs!Suc i))
〈proof 〉

end

locale cnvSpec ′ =
fixes fP P P ′

assumes [simp]: fP [] ←→ True
assumes [simp]: fP [x] ←→ P ′ x
assumes [simp]: fP (a#b#xs) ←→ P ′ a ∧ P ′ b ∧ P a b ∧ fP (b#xs)

begin

lemma idx-spec: fP xs ←→ (∀ i<length xs. P ′ (xs!i)) ∧ (∀ i<length xs − 1 . P
(xs!i) (xs!Suc i))

〈proof 〉

end

interpretation INCR: cnvSpec incr (<)
〈proof 〉

interpretation DECR: cnvSpec decr (≥)
〈proof 〉

interpretation MAXI : cnvSpec ′ maxi λc1 c2 . ((
incr c1 ∧ ¬(last c1 < hd c2)
∨ decr c1 ∧ ¬(last c1 ≥ hd c2)
))

λx. x 6= []
〈proof 〉

lemma incr-by-idx: incr xs = (∀ i<length xs − 1 . xs ! i < xs ! Suc i)
〈proof 〉

lemma decr-by-idx: decr xs = (∀ i<length xs − 1 . xs ! i ≥ xs ! Suc i)
〈proof 〉

lemma maxi-by-idx: maxi xs ←→
(∀ i<length xs. xs ! i 6= []) ∧
(∀ i<length xs − 1 .

incr (xs ! i) ∧ ¬ last (xs ! i) < hd (xs ! Suc i)
∨ decr (xs ! i) ∧ ¬ hd (xs ! Suc i) ≤ last (xs ! i)

)

6

〈proof 〉

theorem all-correct:
concat (cuts xs) = xs
∀ c∈set (cuts xs). incr c ∨ decr c
maxi (cuts xs)
[] /∈ set (cuts xs)
〈proof 〉

end

2 Challenge 1.B
theory Challenge1B

imports Challenge1A HOL−Library.Multiset
begin

lemma mset-concat:
mset (concat xs) = fold (+) (map mset xs) {#}
〈proof 〉

2.1 Merging Two Segments
fun merge :: ′a::{linorder} list ⇒ ′a list ⇒ ′a list where

merge [] l2 = l2
| merge l1 [] = l1
| merge (x1 # l1) (x2 # l2) =
(if (x1 < x2) then x1 # (merge l1 (x2 # l2)) else x2 # (merge (x1 # l1) l2))

lemma merge-correct:
assumes sorted l1
assumes sorted l2
shows

sorted (merge l1 l2)
∧ mset (merge l1 l2) = mset l1 + mset l2
∧ set (merge l1 l2) = set l1 ∪ set l2
〈proof 〉

2.2 Merging a List of Segments
function merge-list :: ′a::{linorder} list list ⇒ ′a list list ⇒ ′a list where

merge-list [] [] = []
| merge-list [] [l] = l
| merge-list (la # acc2) [] = merge-list [] (la # acc2)
| merge-list (la # acc2) [l] = merge-list [] (l # la # acc2)
| merge-list acc2 (l1 # l2 # ls) =

merge-list ((merge l1 l2) # acc2) ls
〈proof 〉

7

termination 〈proof 〉

lemma merge-list-correct:
assumes

∧
l. l ∈ set ls =⇒ sorted l

assumes
∧

l. l ∈ set as =⇒ sorted l
shows

sorted (merge-list as ls)
∧ mset (merge-list as ls) = mset (concat (as @ ls))
∧ set (merge-list as ls) = set (concat (as @ ls))
〈proof 〉

2.3 GHC-Sort
definition

ghc-sort xs = merge-list [] (map (λys. if decr ys then rev ys else ys) (cuts xs))

lemma decr-sorted:
assumes decr xs
shows sorted (rev xs)
〈proof 〉

lemma incr-sorted:
assumes incr xs
shows sorted xs
〈proof 〉

lemma reverse-phase-sorted:
∀ ys ∈ set (map (λys. if decr ys then rev ys else ys) (cuts xs)). sorted ys
〈proof 〉

lemma reverse-phase-elements:
set (concat (map (λys. if decr ys then rev ys else ys) (cuts xs))) = set xs
〈proof 〉

lemma reverse-phase-permutation:
mset (concat (map (λys. if decr ys then rev ys else ys) (cuts xs))) = mset xs
〈proof 〉

2.4 Correctness Lemmas

The result is sorted and a permutation of the original elements.
theorem sorted-ghc-sort:

sorted (ghc-sort xs)
〈proof 〉

theorem permutation-ghc-sort:
mset (ghc-sort xs) = mset xs
〈proof 〉

8

corollary elements-ghc-sort: set (ghc-sort xs) = set xs
〈proof 〉

2.5 Executable Code
export-code ghc-sort checking SML Scala OCaml? Haskell?

value [code] ghc-sort [1 ,2 ,7 ,3 ,5 ,6 ,9 ,8 ,4]

end

3 Challenge 2.A
theory Challenge2A
imports lib/VTcomp
begin

Problem definition: https://ethz.ch/content/dam/ethz/special-interest/infk/
chair-program-method/pm/documents/Verify%20This/Challenges%202019/
cartesian_trees.pdf

Polished and worked-over version.

3.1 Specification

We first fix the input, a list of integers
context fixes xs :: int list begin

We then specify the desired output: For each index j, return the greatest
index i<j such that xs!i < xs!j, or None if no such index exists.
Note that our indexes start at zero, and we use an option datatype to model
that no left-smaller value may exists.
definition

left-spec j = (if (∃ i<j. xs ! i < xs ! j) then Some (GREATEST i. i < j ∧ xs ! i
< xs ! j) else None)

The output of the algorithm should be an array lf, containing the indexes
of the left-smaller values:
definition all-left-spec lf ≡ length lf = length xs ∧ (∀ i<length xs. lf !i = left-spec
i)

3.2 Auxiliary Theory

We derive some theory specific to this algorithm

9

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/cartesian_trees.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/cartesian_trees.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/cartesian_trees.pdf

3.2.1 Has-Left and The-Left

We split the specification of nearest left value into a predicate and a total
function
definition has-left j = (∃ i<j. xs ! i < xs ! j)
definition the-left j = (GREATEST i. i < j ∧ xs ! i < xs ! j)

lemma left-alt: left-spec j = (if has-left j then Some (the-left j) else None)
〈proof 〉

lemma the-leftI : has-left j =⇒ the-left j < j ∧ xs!the-left j < xs!j
〈proof 〉

lemma the-left-decr [simp]: has-left i =⇒ the-left i < i
〈proof 〉

lemma le-the-leftI :
assumes i≤j xs!i < xs!j
shows i ≤ the-left j
〈proof 〉

lemma the-left-leI :
assumes ∀ k. j<k ∧ k<i −→ ¬xs!k<xs!i
assumes has-left i
shows the-left i ≤ j
〈proof 〉

3.2.2 Derived Stack

We note that the stack in the algorithm doesn’t contain any extra informa-
tion. It can be derived from the left neighbours that have been computed
so far: The first element of the stack is the current index - 1, and each next
element is the nearest left smaller value of the previous element:
fun der-stack where

der-stack i = (if has-left i then the-left i # der-stack (the-left i) else [])
declare der-stack.simps[simp del]

Although the refinement framework would allow us to phrase the algorithm
without a stack first, and then introduce the stack in a subsequent refinement
step (or omit it altogether), for simplicity of presentation, we decided to
model the algorithm with a stack in first place. However, the invariant will
account for the stack being derived.
lemma set-der-stack-lt: k ∈ set (der-stack i0) =⇒ k<i0
〈proof 〉

10

3.3 Abstract Implementation

We first implement the algorithm on lists. The assertions that we annotated
into the algorithm ensure that all list index accesses are in bounds.
definition pop stk v ≡ dropWhile (λj. xs!j≥v) stk

lemma pop-Nil[simp]: pop [] v = [] 〈proof 〉
lemma pop-cons: pop (j#js) v = (if xs!j ≥ v then pop js v else j#js)
〈proof 〉

definition all-left ≡ doN {
(-,lf) ← nfoldli [0 ..<length xs] (λ-. True) (λi (stk,lf). doN {

ASSERT (set stk ⊆ {0 ..<length xs});
let stk = pop stk (xs!i);
ASSERT (stk = der-stack i);
ASSERT (i<length lf);
if (stk = []) then doN {

let lf = lf [i:=None];
RETURN (i#stk,lf)
} else doN {

let lf = lf [i:= Some (hd stk)];
RETURN (i#stk,lf)
}
}) ([],replicate (length xs) None);
RETURN lf
}

3.4 Correctness Proof
3.4.1 Popping From the Stack

We show that the abstract algorithm implements its specification. The main
idea here is the popping of the stack. Top obtain a left smaller value, it is
enough to follow the left-values of the left-neighbour, until we have found
the value or there are no more left-values.
The following theorem formalizes this idea:
theorem find-left-rl:

assumes i0 < length xs
assumes i<i0
assumes left-spec i0 ≤ Some i
shows if xs!i < xs!i0 then left-spec i0 = Some i

else left-spec i0 ≤ left-spec i
〈proof 〉

Using this lemma, we can show that the stack popping procedure preserves
the form of the stack.

11

lemma pop-aux: [[k<i0; i0<length xs; left-spec i0 ≤ Some k]] =⇒ pop (k #
der-stack k) (xs!i0) = der-stack i0
〈proof 〉

3.4.2 Main Algorithm

Ad-Hoc lemmas
lemma swap-adhoc[simp]:

None = left i ←→ left i = None
Some j = left i ←→ left i = Some j 〈proof 〉

lemma left-spec-None-iff [simp]: left-spec i = None ←→ ¬has-left i 〈proof 〉
lemma [simp]: left-spec 0 = None 〈proof 〉
lemma [simp]: has-left 0 = False
〈proof 〉

lemma [simp]: der-stack 0 = []
〈proof 〉

lemma algo-correct: all-left ≤ SPEC all-left-spec
〈proof 〉

3.5 Implementation With Arrays

We refine the algorithm to use actual arrays for the input and output. The
stack remains a list, as pushing and popping from a (functional) list is effi-
cient.

3.5.1 Implementation of Pop

In a first step, we refine the pop function to an explicit loop.
definition pop2 stk v ≡

monadic-WHILEIT
(λ-. set stk ⊆ {0 ..<length xs})
(λ[] ⇒ RETURN False | k#stk ⇒ doN { ASSERT (k<length xs); RETURN

(v ≤ xs!k) })
(λstk. mop-list-tl stk)
stk

lemma pop2-refine-aux: set stk ⊆ {0 ..<length xs} =⇒ pop2 stk v ≤ RETURN
(pop stk v)
〈proof 〉

end — Context fixing the input xs.

The refinement lemma written in higher-order form.

12

lemma pop2-refine: (uncurry2 pop2 , uncurry2 (RETURN ooo pop)) ∈ [λ((xs,stk),v).
set stk ⊆ {0 ..<length xs}]f (Id ×r Id) ×r Id → 〈Id〉nres-rel
〈proof 〉

Next, we use the Sepref tool to synthesize an implementation on arrays.
sepref-definition pop2-impl is uncurry2 pop2 :: (array-assn id-assn)k ∗a (list-assn
id-assn)k ∗a id-assnk →a list-assn id-assn
〈proof 〉

lemmas [sepref-fr-rules] = pop2-impl.refine[FCOMP pop2-refine]

3.5.2 Implementation of Main Algorithm
sepref-definition all-left-impl is all-left :: (array-assn id-assn)k →a array-assn
(option-assn id-assn)
〈proof 〉

3.5.3 Correctness Theorem for Concrete Algorithm

We compose the correctness theorem and the refinement theorem, to get a
correctness theorem for the final implementation.

Abstract correctness theorem in higher-order form.
lemma algo-correct ′: (all-left, SPEC o all-left-spec)
∈ 〈Id〉list-rel → 〈〈〈Id〉option-rel〉list-rel〉nres-rel
〈proof 〉

Main correctness theorem in higher-order form.
theorem algo-impl-correct:

(all-left-impl, SPEC o all-left-spec)
∈ (array-assn int-assn, array-assn int-assn)→a array-assn (option-assn nat-assn)

〈proof 〉

Main correctness theorem as Hoare-Triple
theorem algo-impl-correct ′:
<array-assn int-assn xs xsi>

all-left-impl xsi
<λlfi. ∃Alf . array-assn int-assn xs xsi

∗ array-assn (option-assn id-assn) lf lfi
∗ ↑(all-left-spec xs lf)>t

〈proof 〉

3.6 Code Generation
export-code all-left-impl checking SML Scala Haskell? OCaml?

The example from the problem description, in ML using the verified algo-
rithm

13

〈ML〉

end

4 Challenge 2.B
theory Challenge2B

imports Challenge2A
begin

We did not get very far on this part of the competition. Only Task 2 was
finished.

4.1 Basic Definitions
datatype tree = Leaf | Node int (lc: tree) (rc: tree)

Analogous to left-spec from 2.A.
definition

right-spec xs j =
(if (∃ i>j. xs ! i < xs ! j) then Some (LEAST i. i > j ∧ xs ! i < xs ! j) else

None)

context
fixes xs :: int list
assumes distinct xs

begin

4.2 Specification of the Parent
definition

parent i = (
case (left-spec xs i, right-spec xs i) of
(None, None) ⇒ None
| (Some x, None) ⇒ Some x
| (None, Some y) ⇒ Some y
| (Some x, Some y) ⇒ Some (max x y)

)

4.3 The Heap Property (Task 2)
lemma parent-heap:

assumes parent j = Some p
shows xs ! j > xs ! p
〈proof 〉

end

end

14

5 Iterating a Commutative Computation Concur-
rently

theory Parallel-Multiset-Fold
imports HOL−Library.Multiset

begin

This theory formalizes a deep embedding of a simple parallel computation
model. In this model, we formalize a computation scheme to execute a fold-
function over a commutative operation concurrently, and prove it correct.

5.1 Misc
lemma (in comp-fun-commute) fold-mset-rewr : fold-mset f a (mset l) = fold f l a
〈proof 〉

lemma finite-set-of-finite-maps:
fixes A :: ′a set

and B :: ′b set
assumes finite A

and finite B
shows finite {m. dom m ⊆ A ∧ ran m ⊆ B}
〈proof 〉

lemma wf-rtranclp-ev-induct[consumes 1 , case-names step]:
assumes wf {(x, y). R y x} and step:

∧
x. R∗∗ a x =⇒ P x ∨ (∃ y. R x y)

shows ∃ x. P x ∧ R∗∗ a x
〈proof 〉

5.2 The Concurrent System

A state of our concurrent systems consists of a list of tasks, a partial map
from threads to the task they are currently working on, and the current
computation result.
type-synonym (′a, ′s) state = ′a list × (nat ⇀ ′a) × ′s

context comp-fun-commute
begin

context
fixes n :: nat — The number of threads.
assumes n-gt-0 [simp, intro]: n > 0

begin

A state is final if there are no remaining tasks and if all workers have finished
their work.
definition

15

final ≡ λ(ts, ws, r). ts = [] ∧ dom ws ∩ {0 ..<n} = {}

At any point a thread can:

• pick a new task from the queue if it is currently not busy

• or execute its current task.

inductive step :: (′a, ′b) state ⇒ (′a, ′b) state ⇒ bool where
pick: step (t # ts, ws, s) (ts, ws(i := Some t), s) if ws i = None and i < n
| exec: step (ts, ws, s) (ts, ws(i := None), f a s) if ws i = Some a and i < n

lemma no-deadlock:
assumes ¬ final cfg
shows ∃ cfg ′. step cfg cfg ′

〈proof 〉

lemma wf-step:
wf {((ts ′, ws ′, r ′), (ts, ws, r)).

step (ts, ws, r) (ts ′, ws ′, r ′) ∧ set ts ′ ⊆ S ∧ dom ws ⊆ {0 ..<n} ∧ ran ws ⊆ S}
if finite S
〈proof 〉

context
fixes ts :: ′a list and start :: ′b

begin

definition
s0 = (ts, λ-. None, start)

definition reachable ≡ (step∗∗) s0

lemma reachable0 [simp]: reachable s0
〈proof 〉

definition is-invar I ≡ I s0 ∧ (∀ s s ′. reachable s ∧ I s ∧ step s s ′ −→ I s ′)

lemma is-invarI [intro?]:
[[I s0;

∧
s s ′. [[reachable s; I s; step s s ′]] =⇒ I s ′]] =⇒ is-invar I

〈proof 〉

lemma invar-reachable: is-invar I =⇒ reachable s =⇒ I s
〈proof 〉

definition
invar ≡ λ(ts2 , ws, r).
(∃ ts1 .

mset ts = ts1 + {# the (ws i). i ∈# mset-set (dom ws ∩ {0 ..<n}) #} +
mset ts2

16

∧ r = fold-mset f start ts1
∧ set ts2 ⊆ set ts ∧ ran ws ⊆ set ts ∧ dom ws ⊆ {0 ..<n})

lemma invariant:
is-invar invar
〈proof 〉

lemma final-state-correct1 :
assumes invar (ts ′, ms, r) final (ts ′, ms, r)
shows r = fold-mset f start (mset ts)
〈proof 〉

lemma final-state-correct2 :
assumes reachable (ts ′, ms, r) final (ts ′, ms, r)
shows r = fold-mset f start (mset ts)
〈proof 〉

Soundness: whenever we reach a final state, the computation result is correct.
theorem final-state-correct:

assumes reachable (ts ′, ms, r) final (ts ′, ms, r)
shows r = fold f ts start
〈proof 〉

Termination: at any point during the program execution, we can continue
to a final state. That is, the computation always terminates.
theorem termination:

assumes reachable s
shows ∃ s ′. final s ′ ∧ step∗∗ s s ′

〈proof 〉

end

end

end

The main theorems outside the locale:
thm comp-fun-commute.final-state-correct comp-fun-commute.termination

end

6 Challenge 3
theory Challenge3

imports Parallel-Multiset-Fold Refine-Imperative-HOL.IICF
begin

Problem definition: https://ethz.ch/content/dam/ethz/special-interest/infk/

17

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/sparse_matrix_multiplication.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/sparse_matrix_multiplication.pdf

chair-program-method/pm/documents/Verify%20This/Challenges%202019/
sparse_matrix_multiplication.pdf

6.1 Single-Threaded Implementation

We define type synonyms for values (which we fix to integers here) and
triplets, which are a pair of coordinates and a value.
type-synonym val = int
type-synonym triplet = (nat × nat) × val

We fix a size n for the vector.
context

fixes n :: nat
begin

An algorithm finishing triples in any order.
definition

alg (ts :: triplet list) x = fold-mset (λ((r ,c),v) y. y(c:=y c + x r ∗ v)) (λ-. 0 ::
int) (mset ts)

We show that the folding function is commutative, i.e., the order of the
folding does not matter. We will use this below to show that the computation
can be parallelized.

interpretation comp-fun-commute (λ((r , c), v) y. y(c := (y c :: val) + x r ∗
v))
〈proof 〉

6.2 Specification

Abstraction function, mapping a sparse matrix to a function from coordi-
nates to values.

definition α :: triplet list ⇒ (nat × nat) ⇒ val where
α = the-default 0 oo map-of

Abstract product.
definition pr m x i ≡

∑
k=0 ..<n. x k ∗ m (k, i)

6.3 Correctness
lemma aux:

distinct (map fst (ts1@ts2)) =⇒
the-default (0 ::val) (case map-of ts1 (k, i) of None ⇒ map-of ts2 (k, i) | Some

x ⇒ Some x)

= the-default 0 (map-of ts1 (k, i)) + the-default 0 (map-of ts2 (k, i))

18

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/sparse_matrix_multiplication.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/sparse_matrix_multiplication.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges%202019/sparse_matrix_multiplication.pdf

〈proof 〉

lemma 1 [simp]: distinct (map fst (ts1@ts2)) =⇒
pr (α (ts1@ts2)) x i = pr (α ts1) x i + pr (α ts2) x i
〈proof 〉

lemmas 2 = 1 [of [((r ,c),v)] ts, simplified] for r c v ts

lemma [simp]: α [] = (λ-. 0) 〈proof 〉

lemma [simp]: pr (λ-. 0 ::val) x = (λ-. 0)
〈proof 〉

lemma aux3 : the-default 0 (if b then Some x else None) = (if b then x else 0)
〈proof 〉

lemma correct-aux: [[distinct (map fst ts); ∀ ((r ,c),-)∈set ts. r<n]]
=⇒ ∀ i. fold (λ((r ,c),v) y. y(c:=y c + x r ∗ v)) ts m i = m i + pr (α ts) x i
〈proof 〉

lemma correct-fold:
assumes distinct (map fst ts)
assumes ∀ ((r ,c),-)∈set ts. r<n
shows fold (λ((r ,c),v) y. y(c:=y c + x r ∗ v)) ts (λ-. 0) = pr (α ts) x
〈proof 〉

lemma alg-by-fold: alg ts x = fold (λ((r ,c),v) y. y(c:=y c + x r ∗ v)) ts (λ-. 0)

〈proof 〉

theorem correct:
assumes distinct (map fst ts)
assumes ∀ ((r ,c),-)∈set ts. r<n
shows alg ts x = pr (α ts) x
〈proof 〉

6.4 Multi-Threaded Implementation

Correctness of the parallel implementation:
theorem parallel-correct:

assumes distinct (map fst ts) ∀ ((r ,c),-)∈set ts. r<n
and 0 < n — At least on thread
— We have reached a final state.
and reachable x n ts (λ-. 0) (ts ′, ms, r) final n (ts ′, ms, r)

shows r = pr (α ts) x
〈proof 〉

19

We also know that the computation will always terminate.
theorem parallel-termination:

assumes 0 < n
and reachable x n ts (λ-. 0) s

shows ∃ s ′. final n s ′ ∧ (step x n)∗∗ s s ′

〈proof 〉

end — Context for fixed n.

end

20

	Challenge 1.A
	Implementation
	Termination
	Correctness
	Property 1: The Exact Sequence is Covered
	Property 2: Monotonicity
	Property 3: Maximality
	Equivalent Formulation Over Indexes

	Challenge 1.B
	Merging Two Segments
	Merging a List of Segments
	GHC-Sort
	Correctness Lemmas
	Executable Code

	Challenge 2.A
	Specification
	Auxiliary Theory
	Has-Left and The-Left
	Derived Stack

	Abstract Implementation
	Correctness Proof
	Popping From the Stack
	Main Algorithm

	Implementation With Arrays
	Implementation of Pop
	Implementation of Main Algorithm
	Correctness Theorem for Concrete Algorithm

	Code Generation

	Challenge 2.B
	Basic Definitions
	Specification of the Parent
	The Heap Property (Task 2)

	Iterating a Commutative Computation Concurrently
	Misc
	The Concurrent System

	Challenge 3
	Single-Threaded Implementation
	Specification
	Correctness
	Multi-Threaded Implementation

