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Abstract

VerifyThis 2019 (http://www.pm.inf.ethz.ch/research/verifythis.html)
was a program verification competition associated with ETAPS 2019.
It was the 8th event in the VerifyThis competition series. In this entry,
we present polished and completed versions of our solutions that we
created during the competition.
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1 Challenge 1.A
theory Challenge1A
imports Main
begin

Problem definition: https://ethz.ch/content/dam/ethz/special-interest/infk/
chair-program-method/pm/documents/Verify%20This/Challenges%202019/
ghc_sort.pdf

1.1 Implementation

We phrase the algorithm as a functional program. Instead of a list of indexes
for segment boundaries, we return a list of lists, containing the segments.

We start with auxiliary functions to take the longest increasing/decreasing
sequence from the start of the list

fun take-incr :: int list ⇒ - where
take-incr [] = []
| take-incr [x] = [x]
| take-incr (x#y#xs) = (if x<y then x#take-incr (y#xs) else [x])

fun take-decr :: int list ⇒ - where
take-decr [] = []
| take-decr [x] = [x]
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| take-decr (x#y#xs) = (if x≥y then x#take-decr (y#xs) else [x])

fun take where
take [] = []
| take [x] = [x]
| take (x#y#xs) = (if x<y then take-incr (x#y#xs) else take-decr (x#y#xs))

definition take2 xs ≡ let l=take xs in (l,drop (length l) xs)
— Splits of a longest increasing/decreasing sequence from the list

The main algorithm then iterates until the whole input list is split
function cuts where

cuts xs = (if xs=[] then [] else let (c,xs) = take2 xs in c#cuts xs)
by pat-completeness auto

1.2 Termination

First, we show termination. This will give us induction and proper unfolding
lemmas.

lemma take-non-empty:
take xs 6= [] if xs 6= []
using that
apply (cases xs)
apply clarsimp

subgoal for x ys
apply (cases ys)
apply auto

done
done

termination
apply (relation measure length)
apply (auto simp: take2-def Let-def )

using take-non-empty
apply auto
done

declare cuts.simps[simp del]

1.3 Correctness
1.3.1 Property 1: The Exact Sequence is Covered

lemma tdconc: ∃ ys. xs = take-decr xs @ ys
apply (induction xs rule: take-decr .induct)
apply auto
done
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lemma ticonc: ∃ ys. xs = take-incr xs @ ys
apply (induction xs rule: take-incr .induct)
apply auto
done

lemma take-conc: ∃ ys. xs = take xs@ys
using tdconc ticonc
apply (cases xs rule: take.cases)
by auto

theorem concat-cuts: concat (cuts xs) = xs
apply (induction xs rule: cuts.induct)
apply (subst cuts.simps)
apply (auto simp: take2-def Let-def )
by (metis append-eq-conv-conj take-conc)

1.3.2 Property 2: Monotonicity

We define constants to specify increasing/decreasing sequences.
fun incr where

incr [] ←→ True
| incr [-] ←→ True
| incr (x#y#xs) ←→ x<y ∧ incr (y#xs)

fun decr where
decr [] ←→ True
| decr [-] ←→ True
| decr (x#y#xs) ←→ x≥y ∧ decr (y#xs)

lemma tki: incr (take-incr xs)
apply (induction xs rule: take-incr .induct)
apply auto
apply (case-tac xs)
apply auto
done

lemma tkd: decr (take-decr xs)
apply (induction xs rule: take-decr .induct)
apply auto
apply (case-tac xs)
apply auto
done

lemma icod: incr (take xs) ∨ decr (take xs)
apply (cases xs rule: take.cases)
apply (auto simp: tki tkd simp del: take-incr .simps take-decr .simps)
done

theorem cuts-incr-decr : ∀ c∈set (cuts xs). incr c ∨ decr c
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apply (induction xs rule: cuts.induct)
apply (subst cuts.simps)
apply (auto simp: take2-def Let-def )
using icod by blast

1.3.3 Property 3: Maximality

Specification of a cut that consists of maximal segments: The segements are
non-empty, and for every two neighbouring segments, the first value of the
last segment cannot be used to continue the first segment:

fun maxi where
maxi [] ←→ True
| maxi [c] ←→ c 6=[]
| maxi (c1#c2#cs) ←→ (c1 6=[] ∧ c2 6=[] ∧ maxi (c2#cs) ∧ (

incr c1 ∧ ¬(last c1 < hd c2 )
∨ decr c1 ∧ ¬(last c1 ≥ hd c2 )
))

Obviously, our specification implies that there are no empty segments
lemma maxi-imp-non-empty: maxi xs =⇒ []/∈set xs

by (induction xs rule: maxi.induct) auto

lemma tdconc ′: xs 6=[] =⇒
∃ ys. xs = take-decr xs @ ys ∧ (ys 6=[]
−→ ¬(last (take-decr xs) ≥ hd ys))

apply (induction xs rule: take-decr .induct)
apply auto
apply (case-tac xs) apply (auto split: if-splits)
done

lemma ticonc ′: xs 6=[] =⇒ ∃ ys. xs = take-incr xs @ ys ∧ (ys 6=[] −→ ¬(last
(take-incr xs) < hd ys))

apply (induction xs rule: take-incr .induct)
apply auto
apply (case-tac xs) apply (auto split: if-splits)
done

lemma take-conc ′: xs 6=[] =⇒ ∃ ys. xs = take xs@ys ∧ (ys 6=[] −→ (
take xs=take-incr xs ∧ ¬(last (take-incr xs) < hd ys)
∨ take xs=take-decr xs ∧ ¬(last (take-decr xs) ≥ hd ys)
))

using tdconc ′ ticonc ′

apply (cases xs rule: take.cases)
by auto

lemma take-decr-non-empty:
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take-decr xs 6= [] if xs 6= []
using that
apply (cases xs)
apply auto

subgoal for x ys
apply (cases ys)
apply (auto split: if-split-asm)

done
done

lemma take-incr-non-empty:
take-incr xs 6= [] if xs 6= []
using that
apply (cases xs)
apply auto

subgoal for x ys
apply (cases ys)
apply (auto split: if-split-asm)

done
done

lemma take-conc ′′: xs 6=[] =⇒ ∃ ys. xs = take xs@ys ∧ (ys 6=[] −→ (
incr (take xs) ∧ ¬(last (take xs) < hd ys)
∨ decr (take xs) ∧ ¬(last (take xs) ≥ hd ys)
))

using tdconc ′ ticonc ′ tki tkd
apply (cases xs rule: take.cases)
apply auto
apply (auto simp add: take-incr-non-empty)
apply (simp add: take-decr-non-empty)
apply (metis list.distinct(1 ) take-incr .simps(3 ))
by (smt (verit) list.simps(3 ) take-decr .simps(3 ))

lemma [simp]: cuts [] = []
apply (subst cuts.simps) by auto

lemma [simp]: cuts xs 6= [] ←→ xs 6= []
apply (subst cuts.simps)
apply (auto simp: take2-def Let-def )
done

lemma inv-cuts: cuts xs = c#cs =⇒ ∃ ys. c=take xs ∧ xs=c@ys ∧ cs = cuts ys
apply (subst (asm) cuts.simps)
apply (cases xs rule: cuts.cases)
apply (auto split: if-splits simp: take2-def Let-def )
by (metis append-eq-conv-conj take-conc)
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theorem maximal-cuts: maxi (cuts xs)
apply (induction cuts xs arbitrary: xs rule: maxi.induct)
subgoal by auto
subgoal for c xs

apply (drule sym; simp)
apply (subst (asm) cuts.simps)
apply (auto split: if-splits prod.splits simp: take2-def Let-def take-non-empty)
done

subgoal for c1 c2 cs xs
apply (drule sym)
apply simp
apply (drule inv-cuts; clarsimp)
apply auto
subgoal by (metis cuts.simps list.distinct(1 ) take-non-empty)
subgoal by (metis append.left-neutral inv-cuts not-Cons-self )
subgoal using icod by blast
subgoal by (metis

Nil-is-append-conv cuts.simps hd-append2 inv-cuts list.distinct(1 )
same-append-eq take-conc ′′ take-non-empty)

subgoal by (metis
append-is-Nil-conv cuts.simps hd-append2 inv-cuts list.distinct(1 )
same-append-eq take-conc ′′ take-non-empty)

done
done

1.3.4 Equivalent Formulation Over Indexes

After the competition, we got the comment that a specification of monotonic
sequences via indexes might be more readable.
We show that our functional specification is equivalent to a specification
over indexes.

fun ii-induction where
ii-induction [] = ()
| ii-induction [-] = ()
| ii-induction (-#y#xs) = ii-induction (y#xs)

locale cnvSpec =
fixes fP P
assumes [simp]: fP [] ←→ True
assumes [simp]: fP [x] ←→ True
assumes [simp]: fP (a#b#xs) ←→ P a b ∧ fP (b#xs)

begin

lemma idx-spec: fP xs ←→ (∀ i<length xs − 1 . P (xs!i) (xs!Suc i))
apply (induction xs rule: ii-induction.induct)
using less-Suc-eq-0-disj
by auto
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end

locale cnvSpec ′ =
fixes fP P P ′

assumes [simp]: fP [] ←→ True
assumes [simp]: fP [x] ←→ P ′ x
assumes [simp]: fP (a#b#xs) ←→ P ′ a ∧ P ′ b ∧ P a b ∧ fP (b#xs)

begin

lemma idx-spec: fP xs ←→ (∀ i<length xs. P ′ (xs!i)) ∧ (∀ i<length xs − 1 . P
(xs!i) (xs!Suc i))

apply (induction xs rule: ii-induction.induct)
apply auto []
apply auto []
apply clarsimp
by (smt less-Suc-eq-0-disj nth-Cons-0 nth-Cons-Suc)

end

interpretation INCR: cnvSpec incr (<)
apply unfold-locales by auto

interpretation DECR: cnvSpec decr (≥)
apply unfold-locales by auto

interpretation MAXI : cnvSpec ′ maxi λc1 c2 . ( (
incr c1 ∧ ¬(last c1 < hd c2 )
∨ decr c1 ∧ ¬(last c1 ≥ hd c2 )
))

λx. x 6= []
apply unfold-locales by auto

lemma incr-by-idx: incr xs = (∀ i<length xs − 1 . xs ! i < xs ! Suc i)
by (rule INCR.idx-spec)

lemma decr-by-idx: decr xs = (∀ i<length xs − 1 . xs ! i ≥ xs ! Suc i)
by (rule DECR.idx-spec)

lemma maxi-by-idx: maxi xs ←→
(∀ i<length xs. xs ! i 6= []) ∧
(∀ i<length xs − 1 .

incr (xs ! i) ∧ ¬ last (xs ! i) < hd (xs ! Suc i)
∨ decr (xs ! i) ∧ ¬ hd (xs ! Suc i) ≤ last (xs ! i)

)
by (rule MAXI .idx-spec)

theorem all-correct:
concat (cuts xs) = xs
∀ c∈set (cuts xs). incr c ∨ decr c
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maxi (cuts xs)
[] /∈ set (cuts xs)
using cuts-incr-decr concat-cuts maximal-cuts

maxi-imp-non-empty[OF maximal-cuts]
by auto

end

2 Challenge 1.B
theory Challenge1B

imports Challenge1A HOL−Library.Multiset
begin

lemma mset-concat:
mset (concat xs) = fold (+) (map mset xs) {#}

proof −
have mset (concat xs) + a = fold (+) (map mset xs) a for a
proof (induction xs arbitrary: a)

case Nil
then show ?case

by auto
next

case (Cons x xs)
show ?case

using Cons.IH [of mset x + a, symmetric] by simp
qed
from this[of {#}] show ?thesis

by auto
qed

2.1 Merging Two Segments
fun merge :: ′a::{linorder} list ⇒ ′a list ⇒ ′a list where

merge [] l2 = l2
| merge l1 [] = l1
| merge (x1 # l1 ) (x2 # l2 ) =
(if (x1 < x2 ) then x1 # (merge l1 (x2 # l2 )) else x2 # (merge (x1 # l1 ) l2 ))

lemma merge-correct:
assumes sorted l1
assumes sorted l2
shows

sorted (merge l1 l2 )
∧ mset (merge l1 l2 ) = mset l1 + mset l2
∧ set (merge l1 l2 ) = set l1 ∪ set l2
using assms

proof (induction l1 arbitrary: l2 )
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case Nil thus ?case
by simp

next
case (Cons x1 l1 l2 )
note IH = Cons.IH

show ?case
using Cons.prems

proof (induction l2 )
case Nil then show ?case

by simp
next

case (Cons x2 l2 )
then show ?case

using IH by (force split: if-split-asm)
qed

qed

2.2 Merging a List of Segments
function merge-list :: ′a::{linorder} list list ⇒ ′a list list ⇒ ′a list where

merge-list [] [] = []
| merge-list [] [l] = l
| merge-list (la # acc2 ) [] = merge-list [] (la # acc2 )
| merge-list (la # acc2 ) [l] = merge-list [] (l # la # acc2 )
| merge-list acc2 (l1 # l2 # ls) =

merge-list ((merge l1 l2 ) # acc2 ) ls
by pat-completeness simp-all
termination by (relation measure (λ(acc, ls). 3 ∗ length acc + 2 ∗ length ls);
simp)

lemma merge-list-correct:
assumes

∧
l. l ∈ set ls =⇒ sorted l

assumes
∧

l. l ∈ set as =⇒ sorted l
shows

sorted (merge-list as ls)
∧ mset (merge-list as ls) = mset (concat (as @ ls))
∧ set (merge-list as ls) = set (concat (as @ ls))
using assms
proof (induction as ls rule: merge-list.induct)
next

case (4 la acc2 l)
then show ?case

by (auto simp: algebra-simps)
next

case (5 acc2 l1 l2 ls)
have sorted (merge-list (merge l1 l2 # acc2 ) ls)
∧ mset (merge-list (merge l1 l2 # acc2 ) ls) = mset (concat ((merge l1 l2 #

acc2 ) @ ls))
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∧ set (merge-list (merge l1 l2 # acc2 ) ls) = set (concat ((merge l1 l2 # acc2 )
@ ls))

using 5 (2−) merge-correct[of l1 l2 ] by (intro 5 (1 )) auto
then show ?case

using merge-correct[of l1 l2 ] 5 (2−) by auto
qed simp+

2.3 GHC-Sort
definition

ghc-sort xs = merge-list [] (map (λys. if decr ys then rev ys else ys) (cuts xs))

lemma decr-sorted:
assumes decr xs
shows sorted (rev xs)
using assms by (induction xs rule: decr .induct) (auto simp: sorted-append)

lemma incr-sorted:
assumes incr xs
shows sorted xs
using assms by (induction xs rule: incr .induct) auto

lemma reverse-phase-sorted:
∀ ys ∈ set (map (λys. if decr ys then rev ys else ys) (cuts xs)). sorted ys
using cuts-incr-decr by (auto intro: decr-sorted incr-sorted)

lemma reverse-phase-elements:
set (concat (map (λys. if decr ys then rev ys else ys) (cuts xs))) = set xs

proof −
have set (concat (map (λys. if decr ys then rev ys else ys) (cuts xs)))
= set (concat (cuts xs))
by auto

also have . . . = set xs
by (simp add: concat-cuts)

finally show ?thesis .
qed

lemma reverse-phase-permutation:
mset (concat (map (λys. if decr ys then rev ys else ys) (cuts xs))) = mset xs

proof −
have mset (concat (map (λys. if decr ys then rev ys else ys) (cuts xs)))
= mset (concat (cuts xs))
unfolding mset-concat by (auto simp: comp-def intro!: arg-cong2 [where f =

fold (+)])
also have . . . = mset xs

by (simp add: concat-cuts)
finally show ?thesis .

qed
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2.4 Correctness Lemmas

The result is sorted and a permutation of the original elements.
theorem sorted-ghc-sort:

sorted (ghc-sort xs)
unfolding ghc-sort-def using reverse-phase-sorted
by (intro merge-list-correct[THEN conjunct1 ]) auto

theorem permutation-ghc-sort:
mset (ghc-sort xs) = mset xs
unfolding ghc-sort-def
apply (subst merge-list-correct[THEN conjunct2 ])
subgoal

using reverse-phase-sorted by auto
subgoal

using reverse-phase-sorted by auto
apply (subst (2 ) reverse-phase-permutation[symmetric])
apply simp
done

corollary elements-ghc-sort: set (ghc-sort xs) = set xs
using permutation-ghc-sort by (metis set-mset-mset)

2.5 Executable Code
export-code ghc-sort checking SML Scala OCaml? Haskell?

value [code] ghc-sort [1 ,2 ,7 ,3 ,5 ,6 ,9 ,8 ,4 ]

end

3 Challenge 2.A
theory Challenge2A
imports lib/VTcomp
begin

Problem definition: https://ethz.ch/content/dam/ethz/special-interest/infk/
chair-program-method/pm/documents/Verify%20This/Challenges%202019/
cartesian_trees.pdf

Polished and worked-over version.

3.1 Specification

We first fix the input, a list of integers
context fixes xs :: int list begin
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We then specify the desired output: For each index j, return the greatest
index i<j such that xs!i < xs!j, or None if no such index exists.
Note that our indexes start at zero, and we use an option datatype to model
that no left-smaller value may exists.
definition

left-spec j = (if (∃ i<j. xs ! i < xs ! j) then Some (GREATEST i. i < j ∧ xs ! i
< xs ! j) else None)

The output of the algorithm should be an array lf, containing the indexes
of the left-smaller values:
definition all-left-spec lf ≡ length lf = length xs ∧ (∀ i<length xs. lf !i = left-spec
i)

3.2 Auxiliary Theory

We derive some theory specific to this algorithm

3.2.1 Has-Left and The-Left

We split the specification of nearest left value into a predicate and a total
function
definition has-left j = (∃ i<j. xs ! i < xs ! j)
definition the-left j = (GREATEST i. i < j ∧ xs ! i < xs ! j)

lemma left-alt: left-spec j = (if has-left j then Some (the-left j) else None)
by (auto simp: left-spec-def has-left-def the-left-def )

lemma the-leftI : has-left j =⇒ the-left j < j ∧ xs!the-left j < xs!j
apply (clarsimp simp: has-left-def the-left-def )
by (metis (no-types, lifting) GreatestI-nat less-le-not-le nat-le-linear pinf (5 ))

lemma the-left-decr [simp]: has-left i =⇒ the-left i < i
by (simp add: the-leftI )

lemma le-the-leftI :
assumes i≤j xs!i < xs!j
shows i ≤ the-left j
using assms unfolding the-left-def
by (metis (no-types, lifting)

Greatest-le-nat le-less-linear less-imp-not-less less-irrefl
order .not-eq-order-implies-strict)

lemma the-left-leI :
assumes ∀ k. j<k ∧ k<i −→ ¬xs!k<xs!i
assumes has-left i
shows the-left i ≤ j
using assms
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unfolding the-left-def has-left-def
apply auto
by (metis (full-types) the-leftI assms(2 ) not-le the-left-def )

3.2.2 Derived Stack

We note that the stack in the algorithm doesn’t contain any extra informa-
tion. It can be derived from the left neighbours that have been computed
so far: The first element of the stack is the current index - 1, and each next
element is the nearest left smaller value of the previous element:
fun der-stack where

der-stack i = (if has-left i then the-left i # der-stack (the-left i) else [])
declare der-stack.simps[simp del]

Although the refinement framework would allow us to phrase the algorithm
without a stack first, and then introduce the stack in a subsequent refinement
step (or omit it altogether), for simplicity of presentation, we decided to
model the algorithm with a stack in first place. However, the invariant will
account for the stack being derived.
lemma set-der-stack-lt: k ∈ set (der-stack i0) =⇒ k<i0

apply (induction i0 rule: der-stack.induct)
apply (subst (asm) der-stack.simps)
apply auto
using less-trans the-leftI by blast

3.3 Abstract Implementation

We first implement the algorithm on lists. The assertions that we annotated
into the algorithm ensure that all list index accesses are in bounds.
definition pop stk v ≡ dropWhile (λj. xs!j≥v) stk

lemma pop-Nil[simp]: pop [] v = [] by (auto simp: pop-def )
lemma pop-cons: pop (j#js) v = (if xs!j ≥ v then pop js v else j#js)

by (simp add: pop-def )

definition all-left ≡ doN {
(-,lf ) ← nfoldli [0 ..<length xs] (λ-. True) (λi (stk,lf ). doN {

ASSERT (set stk ⊆ {0 ..<length xs} );
let stk = pop stk (xs!i);
ASSERT (stk = der-stack i);
ASSERT (i<length lf );
if (stk = []) then doN {

let lf = lf [i:=None];
RETURN (i#stk,lf )
} else doN {

let lf = lf [i:= Some (hd stk)];
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RETURN (i#stk,lf )
}
}) ([],replicate (length xs) None);
RETURN lf
}

3.4 Correctness Proof
3.4.1 Popping From the Stack

We show that the abstract algorithm implements its specification. The main
idea here is the popping of the stack. Top obtain a left smaller value, it is
enough to follow the left-values of the left-neighbour, until we have found
the value or there are no more left-values.
The following theorem formalizes this idea:
theorem find-left-rl:

assumes i0 < length xs
assumes i<i0
assumes left-spec i0 ≤ Some i
shows if xs!i < xs!i0 then left-spec i0 = Some i

else left-spec i0 ≤ left-spec i
using assms
apply (simp; intro impI conjI ; clarsimp)
subgoal

apply (auto simp: left-alt split: if-splits)
apply (simp add: le-antisym le-the-leftI )
apply (auto simp: has-left-def )
done

subgoal
apply (auto simp: left-alt split: if-splits)
subgoal

apply (drule the-leftI )
using nat-less-le by (auto simp: has-left-def )

subgoal
using le-the-leftI the-leftI by fastforce

done
done

Using this lemma, we can show that the stack popping procedure preserves
the form of the stack.
lemma pop-aux: [[ k<i0; i0<length xs; left-spec i0 ≤ Some k ]] =⇒ pop (k #
der-stack k) (xs!i0) = der-stack i0

apply (induction k rule: nat-less-induct)
apply (clarsimp)
by (smt der-stack.simps left-alt pop-def the-leftI dropWhile.simps(1 ) find-left-rl

leD less-option-None-Some option.inject pop-cons)
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3.4.2 Main Algorithm

Ad-Hoc lemmas
lemma swap-adhoc[simp]:

None = left i ←→ left i = None
Some j = left i ←→ left i = Some j by auto

lemma left-spec-None-iff [simp]: left-spec i = None ←→ ¬has-left i by (auto simp:
left-alt)
lemma [simp]: left-spec 0 = None by (auto simp: left-spec-def )
lemma [simp]: has-left 0 = False

by (simp add: has-left-def )
lemma [simp]: der-stack 0 = []

by (subst der-stack.simps) auto

lemma algo-correct: all-left ≤ SPEC all-left-spec
unfolding all-left-def all-left-spec-def
apply (refine-vcg nfoldli-upt-rule[where I=
λk (stk,lf ).
(length lf = length xs)
∧ (∀ i<k. lf !i = left-spec i)
∧ (case k of Suc kk ⇒ stk = kk#der-stack kk | - ⇒ stk=[])
])

apply (vc-solve split: nat.splits)
subgoal using set-der-stack-lt by fastforce
subgoal for lf k
by (metis left-alt less-Suc-eq-le less-eq-option-None less-eq-option-Some nat-in-between-eq(2 )

pop-aux the-leftI )
subgoal

by (metis der-stack.simps left-alt less-Suc-eq list.distinct(1 ) nth-list-update)
subgoal

by (metis der-stack.simps left-alt less-Suc-eq list.sel(1 ) nth-list-update)
done

3.5 Implementation With Arrays

We refine the algorithm to use actual arrays for the input and output. The
stack remains a list, as pushing and popping from a (functional) list is effi-
cient.

3.5.1 Implementation of Pop

In a first step, we refine the pop function to an explicit loop.
definition pop2 stk v ≡

monadic-WHILEIT
(λ-. set stk ⊆ {0 ..<length xs})
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(λ[] ⇒ RETURN False | k#stk ⇒ doN { ASSERT (k<length xs); RETURN
(v ≤ xs!k) })

(λstk. mop-list-tl stk)
stk

lemma pop2-refine-aux: set stk ⊆ {0 ..<length xs} =⇒ pop2 stk v ≤ RETURN
(pop stk v)

apply (induction stk)
unfolding pop-def pop2-def
subgoal

apply (subst monadic-WHILEIT-unfold)
by auto

subgoal
apply (subst monadic-WHILEIT-unfold)
unfolding mop-list-tl-def op-list-tl-def by auto

done

end — Context fixing the input xs.

The refinement lemma written in higher-order form.
lemma pop2-refine: (uncurry2 pop2 , uncurry2 (RETURN ooo pop)) ∈ [λ((xs,stk),v).
set stk ⊆ {0 ..<length xs}]f (Id ×r Id) ×r Id → 〈Id〉nres-rel

using pop2-refine-aux
by (auto intro!: frefI nres-relI )

Next, we use the Sepref tool to synthesize an implementation on arrays.
sepref-definition pop2-impl is uncurry2 pop2 :: (array-assn id-assn)k ∗a (list-assn
id-assn)k ∗a id-assnk →a list-assn id-assn

unfolding pop2-def
by sepref

lemmas [sepref-fr-rules] = pop2-impl.refine[FCOMP pop2-refine]

3.5.2 Implementation of Main Algorithm
sepref-definition all-left-impl is all-left :: (array-assn id-assn)k →a array-assn
(option-assn id-assn)

unfolding all-left-def
apply (rewrite at nfoldli - - - (◊,-) HOL-list.fold-custom-empty)
apply (rewrite in nfoldli - - - (-,◊) array-fold-custom-replicate)
by sepref

3.5.3 Correctness Theorem for Concrete Algorithm

We compose the correctness theorem and the refinement theorem, to get a
correctness theorem for the final implementation.

Abstract correctness theorem in higher-order form.
lemma algo-correct ′: (all-left, SPEC o all-left-spec)
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∈ 〈Id〉list-rel → 〈〈〈Id〉option-rel〉list-rel〉nres-rel
using algo-correct by (auto simp: nres-relI )

Main correctness theorem in higher-order form.
theorem algo-impl-correct:

(all-left-impl, SPEC o all-left-spec)
∈ (array-assn int-assn, array-assn int-assn)→a array-assn (option-assn nat-assn)

using all-left-impl.refine[FCOMP algo-correct ′, simplified] .

Main correctness theorem as Hoare-Triple
theorem algo-impl-correct ′:
<array-assn int-assn xs xsi>

all-left-impl xsi
<λlfi. ∃Alf . array-assn int-assn xs xsi

∗ array-assn (option-assn id-assn) lf lfi
∗ ↑(all-left-spec xs lf )>t

apply (rule cons-rule[OF - - algo-impl-correct[to-hnr , THEN hn-refineD, unfolded
autoref-tag-defs]])

apply (simp add: hn-ctxt-def , rule ent-refl)
by (auto simp: hn-ctxt-def )

3.6 Code Generation
export-code all-left-impl checking SML Scala Haskell? OCaml?

The example from the problem description, in ML using the verified algo-
rithm
ML-val ‹
(∗ Convert from option to 1−based indexes ∗)
fun cnv NONE = 0
| cnv (SOME i) = @{code integer-of-nat} i + 1

(∗ The verified algorithm, boxing the input list into an array,
and unboxing the output to a list, and converting it from option to 1−based ∗)

fun all-left xs =
@{code all-left-impl} (Array.fromList (map @{code int-of-integer} xs)) ()

|> Array.foldr (op ::) []
|> map cnv

val test = all-left [ 4 , 7 , 8 , 1 , 2 , 3 , 9 , 5 , 6 ]
›

end

4 Challenge 2.B
theory Challenge2B
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imports Challenge2A
begin

We did not get very far on this part of the competition. Only Task 2 was
finished.

4.1 Basic Definitions
datatype tree = Leaf | Node int (lc: tree) (rc: tree)

Analogous to left-spec from 2.A.
definition

right-spec xs j =
(if (∃ i>j. xs ! i < xs ! j) then Some (LEAST i. i > j ∧ xs ! i < xs ! j) else

None)

context
fixes xs :: int list
assumes distinct xs

begin

4.2 Specification of the Parent
definition

parent i = (
case (left-spec xs i, right-spec xs i) of
(None, None) ⇒ None
| (Some x, None) ⇒ Some x
| (None, Some y) ⇒ Some y
| (Some x, Some y) ⇒ Some (max x y)

)

4.3 The Heap Property (Task 2)
lemma parent-heap:

assumes parent j = Some p
shows xs ! j > xs ! p

proof −
note [simp del] = left-spec-None-iff swap-adhoc
show ?thesis
proof (cases (∃ i<j. xs ! i < xs ! j))

case True
then have ∗: xs ! the (left-spec xs j) < xs ! j left-spec xs j 6= None

unfolding left-spec-def by auto (metis (no-types, lifting) GreatestI-nat True
less-le)

show ?thesis
proof (cases (∃ i>j. xs ! i < xs ! j))

case True
then have xs ! the (right-spec xs j) < xs ! j right-spec xs j 6= None
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unfolding right-spec-def by auto (metis (no-types, lifting) LeastI )
then show ?thesis

using ∗ assms unfolding parent-def by auto
next

case False
then have right-spec xs j = None

unfolding right-spec-def by auto
then show ?thesis

using ∗ assms unfolding parent-def by auto
qed

next
case False
then have [simp]: left-spec xs j = None

unfolding left-spec-def by auto
show ?thesis
proof (cases (∃ i>j. xs ! i < xs ! j))

case True
then have xs ! the (right-spec xs j) < xs ! j right-spec xs j 6= None

unfolding right-spec-def by auto (metis (no-types, lifting) LeastI )
then show ?thesis

using assms unfolding parent-def by auto
next

case False
then have right-spec xs j = None

unfolding right-spec-def by auto
then show ?thesis

using assms unfolding parent-def by auto
qed

qed
qed

end

end

5 Iterating a Commutative Computation Concur-
rently

theory Parallel-Multiset-Fold
imports HOL−Library.Multiset

begin

This theory formalizes a deep embedding of a simple parallel computation
model. In this model, we formalize a computation scheme to execute a fold-
function over a commutative operation concurrently, and prove it correct.
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5.1 Misc
lemma (in comp-fun-commute) fold-mset-rewr : fold-mset f a (mset l) = fold f l a

by (induction l arbitrary: a; clarsimp; metis fold-mset-fun-left-comm)

lemma finite-set-of-finite-maps:
fixes A :: ′a set

and B :: ′b set
assumes finite A

and finite B
shows finite {m. dom m ⊆ A ∧ ran m ⊆ B}

proof −
have {m. dom m ⊆ A ∧ ran m ⊆ B} ⊆ (

⋃
S ∈ {S . S ⊆ A}. {m. dom m = S

∧ ran m ⊆ B})
by auto

moreover have finite . . .
using assms by (auto intro!: finite-set-of-finite-maps intro: finite-subset)

ultimately show ?thesis
by (rule finite-subset)

qed

lemma wf-rtranclp-ev-induct[consumes 1 , case-names step]:
assumes wf {(x, y). R y x} and step:

∧
x. R∗∗ a x =⇒ P x ∨ (∃ y. R x y)

shows ∃ x. P x ∧ R∗∗ a x
proof −

have ∃ y. P y ∧ R∗∗ x y if R∗∗ a x for x
using assms(1 ) that

proof induction
case (less x)
from step[OF ‹R∗∗ a x›] have P x ∨ (∃ y. R x y) .
then show ?case
proof

assume P x
then show ?case

by auto
next

assume ∃ y. R x y
then obtain y where R x y ..
with less(1 )[of y] less(2 ) show ?thesis
by simp (meson converse-rtranclp-into-rtranclp rtranclp.rtrancl-into-rtrancl)

qed
qed
then show ?thesis

by blast
qed
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5.2 The Concurrent System

A state of our concurrent systems consists of a list of tasks, a partial map
from threads to the task they are currently working on, and the current
computation result.
type-synonym ( ′a, ′s) state = ′a list × (nat ⇀ ′a) × ′s

context comp-fun-commute
begin

context
fixes n :: nat — The number of threads.
assumes n-gt-0 [simp, intro]: n > 0

begin

A state is final if there are no remaining tasks and if all workers have finished
their work.
definition

final ≡ λ(ts, ws, r). ts = [] ∧ dom ws ∩ {0 ..<n} = {}

At any point a thread can:

• pick a new task from the queue if it is currently not busy

• or execute its current task.

inductive step :: ( ′a, ′b) state ⇒ ( ′a, ′b) state ⇒ bool where
pick: step (t # ts, ws, s) (ts, ws(i := Some t), s) if ws i = None and i < n
| exec: step (ts, ws, s) (ts, ws(i := None), f a s) if ws i = Some a and i < n

lemma no-deadlock:
assumes ¬ final cfg
shows ∃ cfg ′. step cfg cfg ′

using assms
apply (cases cfg)
apply safe
subgoal for ts ws s

by (cases ts; cases ws 0 ) (auto 4 5 simp: final-def intro: step.intros)
done

lemma wf-step:
wf {((ts ′, ws ′, r ′), (ts, ws, r)).

step (ts, ws, r) (ts ′, ws ′, r ′) ∧ set ts ′ ⊆ S ∧ dom ws ⊆ {0 ..<n} ∧ ran ws ⊆ S}
if finite S

proof −
let ?R1 = {(x, y). dom x ⊂ dom y ∧ ran x ⊆ S ∧ dom y ⊆ {0 ..<n} ∧ ran y ⊆

S}
have ?R1 ⊆ {y. dom y ⊆ {0 ..<n} ∧ ran y ⊆ S} × {y. dom y ⊆ {0 ..<n} ∧ ran

y ⊆ S}
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by auto
then have finite ?R1

using ‹finite S› by − (erule finite-subset, auto intro: finite-set-of-finite-maps)
then have [intro]: wf ?R1

apply (rule finite-acyclic-wf )
apply (rule preorder-class.acyclicI-order [where f = λx. n − card (dom x)])
apply clarsimp
by (metis (full-types)

cancel-ab-semigroup-add-class.diff-right-commute diff-diff-cancel domD domI
psubsetI psubset-card-mono subset-eq-atLeast0-lessThan-card
subset-eq-atLeast0-lessThan-finite zero-less-diff )

let ?R = measure length <∗lex∗> ?R1 <∗lex∗> {}
have wf ?R

by auto
then show ?thesis

apply (rule wf-subset)
apply clarsimp
apply (erule step.cases; clarsimp)
by (smt

Diff-iff domIff fun-upd-apply mem-Collect-eq option.simps(3 ) psubsetI ran-def
singletonI subset-iff )

qed

context
fixes ts :: ′a list and start :: ′b

begin

definition
s0 = (ts, λ-. None, start)

definition reachable ≡ (step∗∗) s0

lemma reachable0 [simp]: reachable s0
unfolding reachable-def by auto

definition is-invar I ≡ I s0 ∧ (∀ s s ′. reachable s ∧ I s ∧ step s s ′ −→ I s ′)

lemma is-invarI [intro?]:
[[ I s0;

∧
s s ′. [[ reachable s; I s; step s s ′]] =⇒ I s ′ ]] =⇒ is-invar I

by (auto simp: is-invar-def )

lemma invar-reachable: is-invar I =⇒ reachable s =⇒ I s
unfolding reachable-def
by rotate-tac (induction rule: rtranclp-induct, auto simp: is-invar-def reach-

able-def )

definition
invar ≡ λ(ts2 , ws, r).
(∃ ts1 .
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mset ts = ts1 + {# the (ws i). i ∈# mset-set (dom ws ∩ {0 ..<n}) #} +
mset ts2
∧ r = fold-mset f start ts1
∧ set ts2 ⊆ set ts ∧ ran ws ⊆ set ts ∧ dom ws ⊆ {0 ..<n})

lemma invariant:
is-invar invar
apply rule
subgoal

unfolding s0-def unfolding invar-def by simp
subgoal

unfolding invar-def
apply (elim step.cases)
apply (clarsimp split: option.split-asm)

subgoal for ws i t ts ts1
apply (rule exI [where x = ts1 ])
apply (subst mset-set.insert)

apply (auto intro!: multiset.map-cong0 )
done

apply (clarsimp split!: prod.splits)
subgoal for ws i a ts ts1

apply (rule exI [where x = add-mset a ts1 ])
apply (subst Diff-Int-distrib2 )
apply (subst mset-set.remove)

apply (auto intro!: multiset.map-cong0 split: if-split-asm simp: ran-def )
done

done
done

lemma final-state-correct1 :
assumes invar (ts ′, ms, r) final (ts ′, ms, r)
shows r = fold-mset f start (mset ts)
using assms unfolding invar-def final-def by auto

lemma final-state-correct2 :
assumes reachable (ts ′, ms, r) final (ts ′, ms, r)
shows r = fold-mset f start (mset ts)
using assms by − (rule final-state-correct1 , rule invar-reachable[OF invariant])

Soundness: whenever we reach a final state, the computation result is correct.
theorem final-state-correct:

assumes reachable (ts ′, ms, r) final (ts ′, ms, r)
shows r = fold f ts start
using final-state-correct2 [OF assms] by (simp add: fold-mset-rewr)

Termination: at any point during the program execution, we can continue
to a final state. That is, the computation always terminates.
theorem termination:

assumes reachable s
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shows ∃ s ′. final s ′ ∧ step∗∗ s s ′

proof −
have {(s ′, s). step s s ′ ∧ reachable s} ⊆ {(s ′, s). step s s ′ ∧ reachable s ∧ reachable

s ′}
unfolding reachable-def by auto

also have . . . ⊆ {((ts ′, ws ′, r ′), (ts1 , ws, r)).
step (ts1 , ws, r) (ts ′, ws ′, r ′) ∧ set ts ′ ⊆ set ts ∧ dom ws ⊆ {0 ..<n} ∧ ran ws

⊆ set ts}
by (force dest!: invar-reachable[OF invariant] simp: invar-def )

finally have wf {(s ′, s). step s s ′ ∧ reachable s}
by (elim wf-subset[OF wf-step, rotated]) simp

then have ∃ s ′. final s ′ ∧ (λs s ′. step s s ′ ∧ reachable s)∗∗ s s ′

proof (induction rule: wf-rtranclp-ev-induct)
case (step x)
then have (λs s ′. step s s ′)∗∗ s x

by (elim mono-rtranclp[rule-format, rotated] conjE)
with ‹reachable s› have reachable x

unfolding reachable-def by auto
then show ?case

using no-deadlock[of x] by auto
qed
then show ?thesis

apply clarsimp
apply (intro exI conjI , assumption)
apply (rule mono-rtranclp[rule-format])
apply auto

done
qed

end

end

end

The main theorems outside the locale:
thm comp-fun-commute.final-state-correct comp-fun-commute.termination

end

6 Challenge 3
theory Challenge3

imports Parallel-Multiset-Fold Refine-Imperative-HOL.IICF
begin

Problem definition: https://ethz.ch/content/dam/ethz/special-interest/infk/
chair-program-method/pm/documents/Verify%20This/Challenges%202019/
sparse_matrix_multiplication.pdf
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6.1 Single-Threaded Implementation

We define type synonyms for values (which we fix to integers here) and
triplets, which are a pair of coordinates and a value.
type-synonym val = int
type-synonym triplet = (nat × nat) × val

We fix a size n for the vector.
context

fixes n :: nat
begin

An algorithm finishing triples in any order.
definition

alg (ts :: triplet list) x = fold-mset (λ((r ,c),v) y. y(c:=y c + x r ∗ v)) (λ-. 0 ::
int) (mset ts)

We show that the folding function is commutative, i.e., the order of the
folding does not matter. We will use this below to show that the computation
can be parallelized.

interpretation comp-fun-commute (λ((r , c), v) y. y(c := (y c :: val) + x r ∗
v))

apply unfold-locales
apply (auto intro!: ext)
done

6.2 Specification

Abstraction function, mapping a sparse matrix to a function from coordi-
nates to values.

definition α :: triplet list ⇒ (nat × nat) ⇒ val where
α = the-default 0 oo map-of

Abstract product.
definition pr m x i ≡

∑
k=0 ..<n. x k ∗ m (k, i)

6.3 Correctness
lemma aux:

distinct (map fst (ts1@ts2 )) =⇒
the-default (0 ::val) (case map-of ts1 (k, i) of None ⇒ map-of ts2 (k, i) | Some

x ⇒ Some x)

= the-default 0 (map-of ts1 (k, i)) + the-default 0 (map-of ts2 (k, i))

apply (auto split: option.splits)
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by (metis disjoint-iff-not-equal img-fst map-of-eq-None-iff the-default.simps(2 ))

lemma 1 [simp]: distinct (map fst (ts1@ts2 )) =⇒
pr (α (ts1@ts2 )) x i = pr (α ts1 ) x i + pr (α ts2 ) x i
apply (auto simp: pr-def α-def map-add-def aux split: option.splits)
apply (auto simp: algebra-simps)
by (simp add: sum.distrib)

lemmas 2 = 1 [of [((r ,c),v)] ts, simplified] for r c v ts

lemma [simp]: α [] = (λ-. 0 ) by (auto simp: α-def )

lemma [simp]: pr (λ-. 0 ::val) x = (λ-. 0 )
by (auto simp: pr-def [abs-def ])

lemma aux3 : the-default 0 (if b then Some x else None) = (if b then x else 0 )
by auto

lemma correct-aux: [[distinct (map fst ts); ∀ ((r ,c),-)∈set ts. r<n]]
=⇒ ∀ i. fold (λ((r ,c),v) y. y(c:=y c + x r ∗ v)) ts m i = m i + pr (α ts) x i
apply (induction ts arbitrary: m)
apply auto
subgoal

apply (subst 2 )
apply auto
unfolding pr-def α-def
apply (auto split: if-splits cong: sum.cong simp: aux3 )
apply (auto simp: if-distrib[where f=λx. -∗x] cong: sum.cong if-cong)
done

subgoal
apply (subst 2 )
apply auto
unfolding pr-def α-def
apply (auto split: if-splits cong: sum.cong simp: aux3 )
done

done

lemma correct-fold:
assumes distinct (map fst ts)
assumes ∀ ((r ,c),-)∈set ts. r<n
shows fold (λ((r ,c),v) y. y(c:=y c + x r ∗ v)) ts (λ-. 0 ) = pr (α ts) x
apply (rule ext)
using correct-aux[OF assms, rule-format, where m = λ-. 0 , simplified]
by simp

lemma alg-by-fold: alg ts x = fold (λ((r ,c),v) y. y(c:=y c + x r ∗ v)) ts (λ-. 0 )
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unfolding alg-def by (simp add: fold-mset-rewr)

theorem correct:
assumes distinct (map fst ts)
assumes ∀ ((r ,c),-)∈set ts. r<n
shows alg ts x = pr (α ts) x
using alg-by-fold correct-fold[OF assms] by simp

6.4 Multi-Threaded Implementation

Correctness of the parallel implementation:
theorem parallel-correct:

assumes distinct (map fst ts) ∀ ((r ,c),-)∈set ts. r<n
and 0 < n — At least on thread
— We have reached a final state.
and reachable x n ts (λ-. 0 ) (ts ′, ms, r) final n (ts ′, ms, r)

shows r = pr (α ts) x
unfolding final-state-correct[OF assms(3−)] correct[OF assms(1 ,2 )] alg-by-fold[symmetric]

..

We also know that the computation will always terminate.
theorem parallel-termination:

assumes 0 < n
and reachable x n ts (λ-. 0 ) s

shows ∃ s ′. final n s ′ ∧ (step x n)∗∗ s s ′

using assms by (rule termination)

end — Context for fixed n.

end
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