VerifyThis 2018 - Polished Isabelle Solutions

Peter Lammich Simon Wimmer

March 17, 2025

Abstract. VerifyThis 2018 http://www.pm.inf.ethz.ch/research/verifythis.html was
a program verification competition associated with ETAPS 2018. It was the 7th
event in the VerifyThis competition series. In this entry, we present polished and
completed versions of our solutions that we created during the competition.

http://www.pm.inf.ethz.ch/research/verifythis.html

Contents

1 Gap Buffer

3

1.1 Challenge
1.2 Solution e

1.2.1
1.2.2
123
1.2.4
1.2.5

Abstract Specification L
Refinement 1: List withGap
Implementation on List-Level
Imperative Arrays and Executable Code
SimpleClient

1.3 Shorter Solution

1.3.1 Abstract Specification

1.3.2 Refinement 1: ListwithGap

1.3.3 Implementation on List-Level

1.3.4 Imperative Arrays ot i i

1.3.5 ExecutableCode
Colored Tiles

2.1 Challenge
22 Solution

221
222
223
224
225

Problem Specification
Derivation of Recursion Equations
Verification of Program
Refinement to Imperative Code
Alternative Problem Specification

Array-Based Queuing Lock
3.1 Challenge
3.2 Solution

3.2.1
322
323
324
3.25
3.2.6

General Definitions
Refinement 1: Ticket Lock with Unbounded Counters

Refinement 2: Bounding the Counters
Refinement 3: Using an Array
TransferSetup
Main Theorems

17
17
18
18
18
20
21
22

CONTENTS

Gap Buffer

1.1 Challenge

A gap buffer is a data structure for the implementation of text editors, which can efficiently
move the cursor, as well add and delete characters.

The idea is simple: the editor’s content is represented as a character array a of length n,
which has a gap of unused entries all],...,a[r — 1], with respect to two indices [< r. The
data it represents is composed as a[0],...,a[l — 1],a[r],...,a[n —1].

The current cursor position is at the left index [/, and if we type a character, it is written to
a[l] and [is increased. When the gap becomes empty, the array is enlarged and the data
from r is shifted to the right.

Implementation task. Implement the following four operations in the language of
your tool: Procedures left() and right() move the cursor by one character; insert()
places a character at the beginning of the gap a[l]; delete() removes the character at a/]
from the range of text.

procedure left() procedure insert(x: char)
if 1 != 0 then if 1 == r then
1:=1-1 // see extended task
r:=r -1 grow()
alr] := a[l] end-if
end-if al[l] := x
end-procedure 1L:=1+1

end-procedure

procedure right() procedure delete()
// your task: similar to left() if 1 != 0 then
// but pay attention to the 1:=1-1
// order of statements end-if

end-procedure end-procedure

Verification task. Specify the intended behavior of the buffer in terms of a contiguous
representation of the editor content. This can for example be based on strings, functional
arrays, sequences, or lists. Verify that the gap buffer implementation satisfies this specifi-
cation, and that every access to the array is within bounds.

6 CHAPTER 1. GAP BUFFER

Hint: For this task you may assume that insert () has the precondition / < r and remove
the call to grow(). Alternatively, assume a contract for grow() that ensures that this call
does not change the abstract representation.

Extended verification task. Implement the operation grow(), specify its behavior
in a way that lets you verify insert() in a modular way (i.e. not by referring to the
implementation of grow()), and verify that grow() satisfies this specification.

Hint: You may assume that the allocation of the new buffer always succeeds. If your
tool/language supports copying array ranges (such as System.arraycopy () in Java), con-
sider using these primitives instead of the loops in the pseudo-code below.

procedure grow()
var b := new char[a.length + K]

// b[0O..1] := al0..1]
for i =0tol -1 do
b[i] := a[i]

end-for

// blr + K..] :=a[r..]
for i = r to a.length - 1 do
b[i + K] := a[il

end-for
r:=r +K
a:=b

end-procedure

Resources
* https://en.wikipedia.org/wiki/Gap_buffer
* http://scienceblogs.com/goodmath/2009/02/18/gap-buffers-or-why-bother-with- 1

https://en.wikipedia.org/wiki/Gap_buffer
http://scienceblogs.com/goodmath/2009/02/18/gap-buffers-or-why-bother-with-1

1.2. SOLUTION 7

1.2 Solution

theory Challengel
imports lib/VTcomp
begin

Fully fledged specification of textbuffer ADT, and its implementation by a gap
buffer.

1.2.1 Abstract Specification

Initially, we modelled the abstract text as a cursor position and a list. However,
this gives you an invariant on the abstract level. An isomorphic but invariant free
formulation is a pair of lists, representing the text before and after the cursor.

datatype ‘a rextbuffer = BUF 'a list 'a list

The primitive operations are the empty textbuffer, and to extract the text and the
cursor position

definition empty :: 'a textbuffer where empty = BUF || ||
primrec get-text :: 'a textbuffer = 'a list where get-text (BUF a b) = a@b
primrec get-pos :: 'a textbuffer = nat where get-pos (BUF a b) = length a

These are the operations that were specified in the challenge

primrec move-left :: 'a textbuffer = 'a textbuffer where
move-left (BUF a b)
= (if a#]] then BUF (butlast a) (last a#b) else BUF a b)
primrec move-right :: 'a textbuffer = 'a textbuffer where
move-right (BUF a b)
= (if b#[] then BUF (a@|hd b)) (1l b) else BUF a D)
primrec insert :: 'a = 'a textbuffer = 'a textbuffer where
insert x (BUF a b) = BUF (a@|x]) b
primrec delete :: 'a textbuffer = 'a textbuffer where
delete (BUF a b) = BUF (butlast a) b
— Note that butlast [| = [] in Isabelle

We can also assign them a meaning wrt position and text

lemma empty-pos[simp): get-pos empty = 0

(proof)

lemma empty-text[simp|: get-text empty = ||

(proof)
lemma move-left-pos|simp|: get-pos (move-left b) = get-pos b — 1
— Note that 0 — I = 0 in Isabelle

(proof)

lemma move-left-text[simp|: get-text (move-left b) = get-text b

(proof)

lemma move-right-pos[simp|:

8 CHAPTER 1. GAP BUFFER

get-pos (move-right b) = min (get-pos b+1) (length (get-text b))
{proof)

lemma move-right-text[simp)|: get-text (move-right b) = get-text b

(proof)

lemma insert-pos|simp): get-pos (insert x b) = get-pos b + 1

(proof)

lemma insert-text: get-text (insert x b)
= take (get-pos b) (get-text b) @xi#drop (get-pos b) (get-text b)

(proof)

lemma delete-pos|simp]: get-pos (delete b) = get-pos b — 1
{proof)

lemma delete-text: get-text (delete b)
= take (get-pos b—1) (get-text b) @drop (get-pos b) (get-text b)

(proof)

For the zero case, we can prove a simpler (equivalent) lemma

lemma delete-textO[simp)|: get-pos b=0 = get-text (delete b) = get-text b

(proof)

To fully exploit the capabilities of our tool, we can (optionally) show that the op-
erations of a text buffer are parametric in its content. Then, we can automatically

refine the representation of the content.

definition [ro-relAPP]:
textbuffer-rel A= {(BUF a b, BUF a’b’) |aba'b’.
(a,a’)e(A)list-rel A (b,b")E(A)list-rel}

lemma [param|: (BUF ,BUF) € (A)list-rel — (A)list-rel — (A)textbuffer-rel
(proof)

lemma [param|: (rec-textbuffer,rec-textbuffer)
€ ((A)list-rel — (A)list-rel—B) — (A)textbuffer-rel — B
(proof)

context
notes|sinmp| =
empty-def get-text-def get-pos-def move-left-def move-right-def
insert-def delete-def conv-to-is-Nil
begin
sepref-decl-op (no-def) empty :: (A)textbuffer-rel {proof)
sepref-decl-op (no-def) get-text :: (A)textbuffer-rel — (A)list-rel {proof)
sepref-decl-op (no-def) get-pos :: (A)textbuffer-rel — nat-rel {proof)
sepref-decl-op (no-def) move-left :: (A)textbuffer-rel — (A)textbuffer-rel (proof’)
sepref-decl-op (no-def) move- rlght (A)textbuffer-rel — (A)textbuffer-rel (proof’)
sepref-decl-op (no-def) insert :: A—(A)textbuffer-rel — (A)textbuffer-rel (proof)
sepref-decl-op (no-def) delete :: < Yeextbuffer-rel — (A)textbuffer-rel {proof’)
end

1.2. SOLUTION 9

1.2.2 Refinement 1: List with Gap

1.2.3 Implementation on List-Level

type-synonym ‘a gap-buffer = nat x nat x 'a list

Abstraction Relation

Also called coupling relation sometimes. Can be any relation, here we define it by
an invariant and an abstraction function.

definition gap-a = A (L,r,buf). BUF (take | buf) (drop r buf)

definition gap-invar = A (Lr,buf). I<r N\ r<length buf

abbreviation gap-rel = br gap-a. gap-invar

Empty

definition empryl = RETURN (0,0,]])
lemma emptyl-correct: (emptyl, RETURN empty) € (gap-rel)nres-rel

(proof)

Left

definition move-left] = A(L,r,buf). doN {
if 170 then doN {
ASSERT (r—1<length buf N I—1<length buf);
RETURN (I—1,r—1,buf[r—I:=buf \(I—1)])
} else RETURN (I,r,buf)

}

lemma move-leftl-correct:
(move-leftl, RETURN o move-left) € gap-rel — (gap-rel)nres-rel

(proof)

Right
definition move-rightl = A(1,r,buf). doN {
if r<length buf then doN {

ASSERT (I<length buf);
RETURN (I+1,r-+1,buf [l:=buf 'r])
} else RETURN (1,r,buf)
}

lemma move-rightl-correct:
(move-right] RETURN o move-right) € gap-rel — {(gap-rel)nres-rel

(proof)

Insert and Grow

definition can-insert = A (L,r,buf). I<r

10 CHAPTER 1. GAP BUFFER

definition grow! K = A(I,r,buf). doN {
let b = op-array-replicate (length buf + K) default,
b < mop-list-blit buf 0 b 0 I,
b + mop-list-blit buf r b (r+K) (length buf — r);
RETURN (I,r+K b)

}

lemma growl-correct|THEN SPEC-trans, refine-vcg|:
assumes gap-invar gb
shows growl K gb < (SPEC (Agb'.
gap-invar gb’
A gap-o gb’ = gap-o gb
A (K>0 — can-insert gb")))

(proof)

definition insertl x = A(I,r,buf). doN {
(Lr,buf) +
if (I=r) then growl (length buf+1) (I,r,buf) else RETURN (l,r,buf);
ASSERT (I<length buf);
RETURN (I+1,r,buf [I:=x])
}

lemma insertl-correct:
(insert] RETURN oo insert) € Id — gap-rel — (gap-rel)nres-rel

(proof)

Delete

definition deletel

= A(Lr,buf). if >0 then RETURN (I—1,r,buf) else RETURN (I,r,buf)
lemma deletel-correct:

(deletel RETURN o delete) € gap-rel — (gap-rel)nres-rel

(proof)

1.2.4 Imperative Arrays and Executable Code

abbreviation gap-impl-assn = nat-assn X, nat-assn X, array-assn id-assn
definition gap-assn A
= hr-comp (hr-comp gap-impl-assn gap-rel) ({the-pure A)textbuffer-rel)

context
notes gap-assn-def [symmetric fcomp-norm-unfold)
begin
sepref-definition empry-impl
is uncurry0 emptyl :: unit-assn*— ,gap-impl-assn
(proof)
sepref-decl-impl empty-impl: empty-impl.refine[FCOMP emptyl-correct] {proof)

1.2. SOLUTION 11

sepref-definition move-left-impl
is move-left] :: gap-impl-assn®— ,gap-impl-assn
(proof)
sepref-decl-impl move-left-impl: move-left-impl.refine[FCOMP move-leftl-correct| {proof)

sepref-definition move-right-impl
is move-rightl :: gap-impl-assn®— ,gap-impl-assn
(proof)
sepref-decl-impl move-right-impl: move-right-impl.refine[FCOMP move-rightl-correct

(proof)

sepref-definition insert-impl
is uncurry insertl :: id-assn*x,gap-impl-assn®— ,gap-impl-assn
(proof)

sepref-decl-impl insert-impl: insert-impl.refine[FCOMP insertI-correct] (proof’)

sepref-definition delete-impl
is deletel :: gap-impl-assn®— ,gap-impl-assn
(proof)
sepref-decl-impl delete-impl: delete-impl.refine][FCOMP deletel-correct] {proof)

end

The above setup generated the following refinement theorems, connecting the im-
plementations with our abstract specification:

(uncurryO Challengel .empty-impl, uncurry0 (RETURN Challengel.empty))
€ id-assn* —, gap-assn ?A

(move-left-impl, RETURN o move-left) € (gap-assn ?A)? —, gap-assn ?A
(move-right-impl, RETURN o move-right) € (gap-assn ?A)? —, gap-assn ?A
CONSTRAINT is-pure A —

(uncurry Challengel .insert-impl, uncurry (RETURN oo Challengel .insert))
€ 2A% x, (gap-assn ?A)? —, gap-assn ?A

(delete-impl, RETURN o delete) € (gap-assn ?A)? —, gap-assn ?A

export-code move-left-impl move-right-impl insert-impl delete-impl
in SML-imp module-name Gap-Buffer
in OCaml-imp module-name Gap-Buffer
in Haskell module-name Gap-Buffer
in Scala module-name Gap-Buffer

1.2.5 Simple Client

definition client = RETURN (fold (Af.f) |
insert (1::int),
insert (2::int),
insert (3::
insert (5::
move-left,
insert (4::int),

int),
int)

)

12 CHAPTER 1. GAP BUFFER

move-right,
insert (6::int),
delete

| empty)

lemma client < SPEC (Ar. get-text r=[1,2,3,4,5))
(proof)

sepref-definition client-impl
is uncurry0 client :: unit-assn* —, gap-assn id-assn

(proof)
(ML)

end

1.3 Shorter Solution

theory Challengel-short
imports lib/VTcomp
begin

Small specification of textbuffer ADT, and its implementation by a gap bufter.
Annotated and elaborated version of just the challenge requirements.

1.3.1 Abstract Specification

datatype 'a rextbuffer = BUF (pos: nat) (text: 'a list)
— Note that we do not model the abstract invariant — pos in range — here, as it is not
strictly required for the challenge spec.

These are the operations that were specified in the challenge. Note: Isabelle has
type inference, so we do not need to specify types. Note: We exploit that, in Is-
abelle, we have 0 — 1 = 0.

primrec move-left where move-left (BUF p t) = BUF (p—1) t
primrec move-right where move-right (BUF p t) = BUF (min (length t) (p+1)) t

primrec insert where insert x (BUF p t) = BUF (p+1) (take p t@x#tdrop p 1)
primrec delete where delete (BUF p t) = BUF (p—1) (take (p—1) t@drop p t)

1.3.2 Refinement 1: List with Gap

1.3.3 Implementation on List-Level

type-synonym 'a gap-buffer = nat x nat x 'a list

1.3. SHORTER SOLUTION 13

Abstraction Relation

We define an invariant on the concrete gap-buffer, and its mapping to the abstract
model. From these two, we define a relation gap-rel between concrete and abstract
buffers.

definition gap-oc = A (L,r,buf). BUF [(take [buf @ drop r buf)

definition gap-invar = A (Lr.buf). I<r N\ r<length buf

abbreviation gap-rel = br gap-o gap-invar

Left

For the operations, we insert assertions. These are not required to prove the list-
level specification correct (during the proof, they are inferred easily). However,
they are required in the subsequent automatic refinement step to arrays, to give our
tool the information that all indexes are, indeed, in bounds.
definition move-leftl = A(L,r,buf). doN {
if 10 then doN {
ASSERT (r—1<length buf N 1—1<length buf);
RETURN (I—1,r—1,buf[r—1:=buf(I-1)))
} else RETURN (1,r,buf)
}

lemma move-leftl-correct:
(move-leftl, RETURN o move-left) € gap-rel — (gap-rel)nres-rel
(proof)

Right
definition move-rightl = A (L,r,buf). doN {
if r<length buf then doN {

ASSERT (I<length buf);
RETURN (I+1,r+1,buf [l:=buf !r])
} else RETURN (L,r,buf)
}

lemma move-rightl-correct:
(move-right] RETURN o move-right) € gap-rel — (gap-rel)nres-rel
(proof)

Insert and Grow

definition can-insert = A (L,r,buf). I<r

definition grow! K = A(I,r,buf). doN {
let b = op-array-replicate (length buf + K) default,
b < mop-list-blit buf 0 b 0 I,
b < mop-list-blit buf r b (r+K) (length buf — r);
RETURN (I,r+K b)

14 CHAPTER 1. GAP BUFFER

}

— Note: Most operations have also a variant prefixed with mop. These are defined in the
refinement monad and already contain the assertion of their precondition. The backside is
that they cannot be easily used in as part of expressions, e.g., in buf [l := buf ! r], we would
have to explicitly bind each intermediate value: mop-list-get buf r >= mop-list-set buf l.

lemma grow!-correct|THEN SPEC-trans, refine-vcg|:
— Declares this as a rule to be used by the VCG
assumes gap-invar gb
shows growl K gb < (SPEC (Agb'.
gap-invar gb’

A gap-o gb’ = gap-a gb

A (K>0 — can-insert gb")))
(proof)

definition insertl x = A(I,r,buf). doN {
(Lr,buf) +
if (I=r) then growl (length buf+1) (L,r,buf) else RETURN (l,r,buf);
ASSERT (I<length buf);
RETURN (I+1,r,buf [I:=x])

}

lemma insertl-correct:
(insert] RETURN oo insert) € Id — gap-rel — (gap-rel)nres-rel

(proof)

Delete

definition deletel

= A(Lr,buf). if >0 then RETURN (I—1,r,buf) else RETURN (I,r,buf)
lemma deletel-correct:

(delete]l RETURN o delete) € gap-rel — {gap-rel)nres-rel

(proof)

1.3.4 Imperative Arrays

The following indicates how we will further refine the gap-buffer: The list will
become an array, the indices and the content will not be refined (expressed by
nat-assn and id-assn).

abbreviation gap-impl-assn = nat-assn X, nat-assn X, array-assn id-assn

sepref-definition move-left-impl
is move-leftl :: gap-impl-assn®— ,gap-impl-assn

(proof)

sepref-definition move-right-impl
is move-rightl :: gap-impl-assn®— ,gap-impl-assn

(proof)

1.3. SHORTER SOLUTION 15

sepref-definition insert-impl
is uncurry insertl :: id-assn*x,gap-impl-assn

(proof)

4 .gap-impl-assn

sepref-definition delete-impl
is deletel :: gap-impl-assn® — ,gap-impl-assn

(proof)

Finally, we combine the two refinement steps, to get overall correctness theorems

definition gap-assn = hr-comp gap-impl-assn gap-rel
— hr-comp is composition of refinement relations
context notes gap-assn-def [symmetric fcomp-norm-unfold] begin
lemmas move-left-impl-correct = move-left-impl.refine][FCOMP move-leftl-correct|
and move-right-impl-correct = move-right-impl.refine[FCOMP move-rightl-correct]
and insert-impl-correct = insert-impl.refine[FCOMP insertl-correct]
and delete-impl-correct = delete-impl.refine[FCOMP deletel-correct]

Proves:

(move-left-impl, RETURN o move-left) € gap-assn® —, gap-assn
(move-right-impl, RETURN o move-right) € gap-assn’ —, gap-assn
(uncurry Challengel-short.insert-impl,

uncurry (RETURN oo Challengel-short.insert))

€ id-assn* x, gap-assn® —, gap-assn

(delete-impl, RETURN o delete) € gap-assn —, gap-assn
end

1.3.5 Executable Code

Isabelle/HOL can generate code in various target languages.

export-code move-left-impl move-right-impl insert-impl delete-impl
in SML-imp module-name Gap-Buffer
in OCaml-imp module-name Gap-Buffer
in Haskell module-name Gap-Buffer
in Scala module-name Gap-Buffer

end

16

CHAPTER 1. GAP BUFFER

Colored Tiles

2.1 Challenge

This problem is based on Project Euler problem #114.

Alice and Bob are decorating their kitchen, and they want to add a single row of fifty
tiles on the edge of the kitchen counter. Tiles can be either red or black, and for aesthetic
reasons, Alice and Bob insist that red tiles come by blocks of at least three consecutive
tiles. Before starting, they wish to know how many ways there are of doing this. They
come up with the following algorithm:

var count[51] // count[i] is the number of valid rows of size i
count[0] =1 // []

count[1] :=1 // [B] - cannot have a single red tile

count[2] :=1 // [BB] - cannot have one or two red tiles

count[3] :=2 // [BBB] or [RRR]

for n = 4 to 50 do
count[n] := count[n-1]1 // either the row starts with a black tile
for k = 3 to n-1 do // or it starts with a block of k red tiles

count[n] := count[n] + count[n-k-11 // followed by a black one

end-for
count[n] := count[n]+l // or the entire row is red

end- for

Verification tasks. You should verify that at the end, count[50] will contain the right
number.

Hint: Since the algorithm works by enumerating the valid colorings, we expect you to give
a nice specification of a valid coloring and to prove the following properties:

1. Each coloring counted by the algorithm is valid.

2. No coloring is counted twice.

3. No valid coloring is missed.

17

18 CHAPTER 2. COLORED TILES

2.2 Solution

theory Challenge?2
imports /ib/VTcomp
begin

The algorithm describes a dynamic programming scheme.

Instead of proving the 3 properties stated in the challenge separately, we approach
the problem by

1. Giving a natural specification of a valid tiling as a grammar
2. Deriving a recursion equation for the number of valid tilings

3. Verifying that the program returns the correct number (which obviously im-
plies all three properties stated in the challenge)

2.2.1 Problem Specification

Colors

datatype color =R | B

Direct Natural Definition of a Valid Line

inductive valid where
valid [] |
valid xs = valid (B # xs) |
valid xs => n > 3 = valid (replicate n R @ xs)

definition lcount n = card {I. length I=n A valid I}

2.2.2 Derivation of Recursion Equations

This alternative variant helps us to prove the split lemma below.

inductive valid’ where
valid'|] |
n >3 = valid’ (replicate n R) |
valid' xs = valid' (B # xs) |
valid' xs = n > 3 = valid’ (replicate n R @ B # xs)

lemma valid-valid’:
valid | = valid'l

(proof)

lemmas valid-red = valid.intros(3)[OF valid.intros(1), simplified)

2.2. SOLUTION

lemma valid'-valid:
valid' | = valid |

(proof)

lemma valid-eq-valid":
valid' | = valid |
(proof)

Additional Facts on Replicate

lemma replicate-iff:
(Vi<lengthl.1!i=R) +— (3 n.l = replicate n R)
(proof)

lemma replicate-iff2:
(Vi<n. 1'i=R)+— (3 I'.1=replicaten R @ I') if n < length |
(proof)

lemma replicate-Cons-eq:
replicate n x =y #ys < (3 n’.n = Suc n’ A x =y A replicate n’ x = ys)

(proof)

Main Case Analysis on @term valid

lemma valid-split:
valid | +—
I=[vV
(!0 =B Avalid (1)) V
lengthl>3 N (VY i<lengthl.l1'i=R)V
(Fj<lengthl.j>3NNi<jl'i=R)ANI!j=B Avalid (drop (j+ 1)1))
{proof)

Base cases

lemma /cO-aux:
{l.1=Avalidl} ={])}
(proof)

lemma [c0: lcount 0 = 1

(proof)

lemma Ic/aux: {I. length I=1 A valid I} = {|B]}
(proof)

lemma Ic2aux: {I. length I=2 A valid I} = {[B,B]}
(proof)

lemma valid-3R: walid [R, R, R)>
(proof)

19

20 CHAPTER 2. COLORED TILES

lemma Ic3-aux: {I. length =3 A valid I} = {[B,B,B], [R,R,R|}
(proof)

lemma [counts-init: Icount O = 1 Icount 1 = 1 lcount 2 = I lcount 3 = 2

(proof)

The Recursion Case

lemma finite-valid-length:
finite {l. length | = n A valid [} (is finite ?S)
(proof)

lemma valid-line-just-B:
valid (replicate n B)
(proof)

lemma valid-line-aux:
{l. length l =n Avalid I} # {} (is ?S # {})
(proof)

lemma replicate-unequal-aux:
replicate x R @ B # 1 + replicate y R @ B#1' (is 21 # ?r) if «c < y> for [I'
{proof)

lemma valid-prepend-B-iff :
valid (B # xs) <— valid xs

(proof)

lemma [crec: lcount n = lcount (n—1) + 1 + (Y i=3..<n. lcount (n—i—1)) if >3

(proof)

2.2.3 Verification of Program

Inner Loop: Summation

definition sum-prog ® lu f =
nfoldli [I..<u] (A-. True) (Ais. doN {
ASSERT (@ i):
RETURN (s+f1i)
1o

lemma sum-spec[THEN SPEC-trans, refine-vcg]:
assumes [<u
assumes \i. I<i = i<u=—= D i
shows sum-prog ® luf < SPEC (Ar. r=(Yi=l..<u. fi))

(proof)

2.2. SOLUTION 21

Main Program

definition icount M = doN {
ASSERT (M>2);
let ¢ = op-array-replicate (M+1) 0;
letc = c[0:=1, I:=1, 2:=1, 3:=2];

ASSERT (Vi<4. cli = lcount i);

c<nfoldli [4..<M+1] (A-. True) (An c. doN {

ST 11 AL LU A D4

sum < sum-prog (Ai. n—i—1 < length ¢) 3 n (Ai. c!(n—i—1));
ASSERT (n—1<length ¢ A\ n<length c);

RETURN (c[n = c!(n—1) + I + sum))
he

ASSERT (Vi<M. cli = lcount i);

ASSERT (M < length ¢);
RETURN (C!M)

Abstract Correctness Statement

theorem icount-correct: M>2 = icount M < SPEC (Ar. r=Icount M)

(proof)

2.2.4 Refinement to Imperative Code

sepref-definition icount-impl is icount :: nat-assn® —, nat-assn

(proof)

Main Correctness Statement

As the main theorem, we prove the following Hoare triple, stating: starting from
the empty heap, our program will compute the correct result (Icount M).

theorem icount-impl-correct:
M>2 = <emp> icount-impl M <Ar. {(r = lcount M)>,

(proof)

Code Export

export-code icount-impl in SML-imp module-name 7iling
export-code icount-impl in OCaml-imp module-name Tiling
export-code icount-impl in Haskell module-name Tiling
export-code icount-impl in Scala-imp module-name Tiling

22 CHAPTER 2. COLORED TILES

2.2.5 Alternative Problem Specification

Alternative definition of a valid line that we used in the competition

context fixes [:: color list begin

inductive valid-point where
[i+2<length I; 'i=R; I'(i+1) = R; I!(i+2) = R | = valid-point i
| [I<isi+1<length I; 1!(i—1)=R; I'(i) = R; I!(i+1) = R | => valid-point i
| [2<i; i<length I; 1!(i—2)=R; I!(i—1) = R; I'(i) = R | = valid-point i
| [i<length I; I'i=B] = valid-point i

definition valid-line = (Vi<length l. valid-point i)
end

lemma valid-linel:
assumes A i. i < length | => valid-point | i
shows valid-line |

(proof)

lemma valid-B-first:
valid-point xs | => i < length xs = valid-point (B # xs) (i + 1)

(proof)

lemma valid-line-prepend-B:
valid-line (B # xs) if valid-line xs
(proof)

lemma valid-drop-B:
valid-point xs (i — 1) if valid-point (B #xs)ii > 0
(proof)

lemma valid-line-drop-B:
valid-line xs if valid-line (B # xs)
(proof)

lemma valid-line-prepend-B-iff
valid-line (B # xs) <— valid-line xs

(proof)

lemma cases-valid-line:

assumes
I=]V
(1'0 = B A valid-line (¢l 1)) V
lengthl >3 N (Vi<lengthl 1'i=R)V
(Fj<lengthl.j>3AN(NNi<jlli=R)AIl!j=BAvalid-line (drop (j+ 1) 1))
(is?aV ?bV ?2cV ?2d)

shows valid-line |

(proof)

2.2. SOLUTION

lemma valid-line-cases:
I=[vVv
(1'0 = B A valid-line (¢l 1)) V
lengthl >3 N (Vi<lengthl 1'i=R)V
(Fj<lengthl.j>3AN(NNi<jl!'i=R)AIl!j=BAvalid-line (drop (j+ 1) 1))
if valid-line [

(proof)

lemma valid-line-split:
valid-line | <—
I=]vV
(1'0 = B A valid-line (il 1)) V
lengthl >3 N (Vi<lengthl. 1'i=R)V
(Fj<lengthl. j>3AN(NNi<jlli=R)AIl!j=BAvalid-line (drop (j+ 1) 1))
{proof)

Connection to the easier definition given above

lemma valid-valid-line:
valid | +— valid-line |

(proof)

end

23

24

CHAPTER 2. COLORED TILES

Array-Based Queuing Lock

3.1 Challenge

Array-Based Queuing Lock (ABQL) is a variation of the Ticket Lock algorithm with a
bounded number of concurrent threads and improved scalability due to better cache be-
haviour.

We assume that there are N threads and we allocate a shared Boolean array pass[] of length
N. We also allocate a shared integer value next. In practice, next is an unsigned bounded
integer that wraps to 0 on overflow, and we assume that the maximal value of next is of the
form kN — 1. Finally, we assume at our disposal an atomic fetch_and_add instruction, such
that fetch_and_add(next, 1) increments the value of next by 1 and returns the original
value of next.

The elements of pass[] are spinlocks, assigned individually to each thread in the waiting
queue. Initially, each element of pass[] is set to false, except pass[0] which is set to
true, allowing the first coming thread to acquire the lock. Variable next contains the
number of the first available place in the waiting queue and is initialized to O.

Here is an implementation of the locking algorithm in pseudocode:

procedure abql_init()
for i =1toN - 1 do
pass[i] := false
end-for
pass[0] := true
next := 0
end-procedure

function abql_acquire()
var my_ticket := fetch_and_add(next,1) mod N
while not pass[my_ticket] do
end-while
return my_ticket
end-function

procedure abql_release(my_ticket)
pass[my_ticket] := false
pass[(my_ticket + 1) mod N] := true
end-procedure

Each thread that acquires the lock must eventually release it by calling abql_release(my_ticket),

25

26 CHAPTER 3. ARRAY-BASED QUEUING LOCK

where my_ticket is the return value of the earlier call of abql_acquire(). We assume

that no thread tries to re-acquire the lock while already holding it, neither it attempts to
release the lock which it does not possess.

Notice that the first assignment in abql_release() can be moved at the end of abql_acquire().

Verification task 1. Verify the safety of ABQL under the given assumptions. Specifically,
you should prove that no two threads can hold the lock at any given time.

Verification task 2. Verify the fairness, namely that the threads acquire the lock in order
of request.

Verification task 3. Verify the liveness under a fair scheduler, namely that each thread
requesting the lock will eventually acquire it.

You have liberty of adapting the implementation and specification of the concurrent setting
as best suited for your verification tool. In particular, solutions with a fixed value of N
are acceptable. We expect, however, that the general idea of the algorithm and the non-
deterministic behaviour of the scheduler shall be preserved.

3.2. SOLUTION 27

3.2 Solution

theory Challenge3
imports lib/VTcomp lib/ DF-System
begin

The Isabelle Refinement Framework does not support concurrency. However, Is-
abelle is a general purpose theorem prover, thus we can model the problem as a
state machine, and prove properties over runs.

For this polished solution, we make use of a small library for transition systems
and simulations: VerifyThis2018.DF-System. Note, however, that our definitions
are still quite ad-hoc, and there are lots of opportunities to define libraries that
make similar proofs simpler and more canonical.

We approach the final ABQL with three refinement steps:

1. We model a ticket lock with unbounded counters, and prove safety, fairness,
and liveness.

2. We bound the counters by mod N and mod (kxN) respectively

3. We implement the current counter by an array, yielding exactly the algorithm
described in the challenge.

With a simulation argument, we transfer the properties of the abstract system over
the refinements.

The final theorems proving safety, fairness, and liveness can be found at the end of
this chapter, in Subsection 3.2.6.

3.2.1 General Definitions

We fix a positive number N of threads

consts N :: nat
specification (N) N-notO[simp, intro!]: N0 (proof)
lemma N-gt0[simp, intro!]: O<N {proof)

A thread’s state, representing the sequence points in the given algorithm. This will
not change over the refinements.

datatype thread =
INIT
| is-WAIT: WAIT (ticket: nat)
| is-HOLD: HOLD (ticket: nat)
| is-REL: REL (ticket: nat)

28 CHAPTER 3. ARRAY-BASED QUEUING LOCK

3.2.2 Refinement 1: Ticket Lock with Unbounded Counters

System’s state: Current ticket, next ticket, thread states

type-synonym asfate = nat X nat x (nat = thread)

abbreviation cc = fst
abbreviation nn s = fst (snd)
abbreviation s s = snd (snd s)

The step relation of a single thread

inductive astep-sng where
enter-wait: astep-sng (c,n,INIT) (c,(n+1),WAIT n)
| loop-wait: c#k = astep-sng (c,n,WAIT k) (c,n,WAIT k)
| exit-wait: astep-sng (c,n,WAIT ¢) (¢,n,HOLD c)
| start-release: astep-sng (¢c,n,HOLD k) (c,n,REL k)
| release: astep-sng (c,n,REL k) (k+1,n,INIT)

The step relation of the system

inductive alstep for t where
[t<N; astep-sng (c,n,ts t) (c',n's’) |
= alstep 1 (c,nts) (c';n' ts(r:=s"))
Initial state of the system

definition asy = (0, 0, A-. INIT)
interpretation A: system asg alstep (proof’)

In our system, each thread can always perform a step

lemma never-blocked: A.can-step I s +— <N

(proof)

Thus, our system is in particular deadlock free

interpretation A: df-system asg alstep

(proof)

Safety: Mutual Exclusion

Predicates to express that a thread uses or holds a ticket

definition has-ticket s k = s=WAIT k \/ s=HOLD k \ s=REL k
lemma has-ticket-simps[simp]:

—has-ticket INIT k

has-ticket (WAIT k) k'«— k'=k

has-ticket (HOLD k) k'+— k'=k

has-ticket (REL k) k'+— k'=k

(proof)

definition locks-ticket s k = s=HOLD k VV s=REL k

3.2. SOLUTION 29

lemma locks-ticket-simps|simp]:
—locks-ticket INIT k
—locks-ticket (WAIT k) k'
locks-ticket (HOLD k) k'« k'=k
locks-ticket (REL k) k'+— k'=k
{proof)

lemma holds-imp-uses: locks-ticket s k = has-ticket s k

(proof)

We show the following invariant. Intuitively, it can be read as follows:

* Current lock is less than or equal next lock

* For all threads that use a ticket (i.e., are waiting, holding, or releasing):

— The ticket is in between current and next
— No other thread has the same ticket
— Only the current ticket can be held (or released)

definition invarl = A(c,n,ts).
c<n
A (Yt k. t<N A has-ticket (ts t) k —
c<kNk<n
A (Vt'k'. t'<N A has-ticket (s t') k' N t£t" — k£k')
A (Vk. k¢ — —locks-ticket (ts t) k)

lemma is-invarl: A.is-invar invarl

(proof)

From the above invariant, it’s straightforward to show mutual exclusion
theorem mutual-exclusion: [A.reachable s,
t<N; t'<N; t#t'; is-HOLD (tts s t); is-HOLD (tts s t')
| = Faise

(proof)

lemma mutual-exclusion’: [A.reachable s;
t<N; t'<N; t£t';
locks-ticket (tts s t) tk; locks-ticket (its s t') tk’
| = Faise

(proof)

Fairness: Ordered Lock Acquisition

We first show an auxiliary lemma: Consider a segment of a run from i to j. Every
thread that waits for a ticket in between the current ticket at i and the current ticket
at j will be granted the lock in between i and j.

30 CHAPTER 3. ARRAY-BASED QUEUING LOCK

lemma fair-aux:
assumes R: A.is-run s
assumes A: i<j cc (si) < kk <cc (sj) t<Ntts (si) t=WAIT k
shows 31 i<INI<jAtts (s])t = HOLD k

{proof)

lemma s-case-expand:
(case s of (c,n,ts) = Pcnts) =P (ccs) (nns) (tts s)

(proof)

A version of the fairness lemma which is very detailed on the actual ticket numbers.
We will weaken this later.

lemma fair-aux2:
assumes RUN: A.is-run s
assumes ACQ: t<N tts (s i) t=INIT tts (s (Suc i)) t=WAIT k
assumes HOLD: i<j tts (s j) t = HOLD k
assumes WAIT: t'<N its (s i) t' = WAIT k'
obtains [where i</ [<jits (s [) t' = HOLD k'

{proof)

lemma find-hold-position:
assumes RUN: A.is-run s
assumes WAIT: t<N 1ts (s i) t = WAIT tk
assumes NWAIT: i<j tts (s j) t = WAIT tk
obtains / where i</ [<jrts (s) t = HOLD tk

(proof)

Finally we can show fairness, which we state as follows: Whenever a thread ¢ gets
a ticket, all other threads ¢’ waiting for the lock will be granted the lock before z.

theorem fair:

assumes RUN: A.is-run s

assumes ACQ: t<N tts (s i) t=INIT is-WAIT (tts (s (Suc i)) t)
— Thread ¢ calls acquire in step i

assumes HOLD: i<j is-HOLD (tts (s j) t)
— Thread ¢ holds lock in step j

assumes WAIT: t'<N is-WAIT (tts (s i) t')
— Thread ¢’ waits for lock at step i

obtains / where i</ [<j is-HOLD (tts (s [) 1)
— Then, ¢’ gets lock earlier

(proof)

Liveness
For all tickets in between the current and the next ticket, there is a thread that has
this ticket

definition invar2
= Ale,n,ts). V. c<k N k<n — (Jt<N. has-ticket (ts t) k)

3.2. SOLUTION 31

lemma is-invar2: A.is-invar invar2

(proof)

If a thread t is waiting for a lock, the current lock is also used by a thread

corollary current-lock-used:
assumes R: A.reachable (c,n,ts)
assumes WAIT: t<Ntst = WAIT k
obtains ¢’ where t'<N has-ticket (ts t') ¢

(proof)

Used tickets are unique (Corollary from invariant 1)

lemma has-ticket-unique: [A.reachable (c,n,ts);
t<N; has-ticket (ts 1) k; t'<N; has-ticket (ts t') k
| =t'=t

(proof)
We define the thread that holds a specified ticket

definition rkt-thread = Ats k. THE t. t<N A has-ticket (ts 1) k
lemma tkt-thread-eq:

assumes R: A.reachable (c,n,ts)

assumes A: 1<N has-ticket (ts 1) k

shows tkt-thread ts k =t

(proof)

lemma holds-only-current:
assumes R: A.reachable (c,n,ts)
assumes A: 1<N locks-ticket (ts t) k
shows k=c

(proof)

For the inductive argument, we will use this measure, that decreases as a single
thread progresses through its phases.

definition rweight s =
case s of WAIT - = 3::nat | HOLD - = 2 | REL - = 1 | INIT = 0

We show progress: Every thread that waits for the lock will eventually hold the
lock.

theorem progress:
assumes FRUN: A.is-fair-run s
assumes A: t<N is-WAIT (tts (s i) t)
shows 3j>i. is-HOLD (its (s j) t)
(proof)

3.2.3 Refinement 2: Bounding the Counters

We fix the k from the task description, which must be positive

consts k::nat

32 CHAPTER 3. ARRAY-BASED QUEUING LOCK

specification (k) k-notO[simp)|: k#0 (proof)
lemma k-gt0[simp]: 0<k (proof)
System’s state: Current ticket, next ticket, thread states

type-synonym bstate = nat X nat x (nat = thread)

The step relation of a single thread

inductive bstep-sng where
enter-wait: bstep-sng (c,n,INIT) (c,(n+1) mod (k«xN),WAIT (n mod N))
| loop-wait: c#tk = bstep-sng (c,n,WAIT tk) (c,n,WAIT tk)
| exit-wait: bstep-sng (c,n,WAIT c) (c,n,HOLD c)
| start-release: bstep-sng (c¢,n,HOLD tk) (c,n,REL tk)
| release: bstep-sng (c,n,REL tk) ((tk+1) mod N n,INIT)

The step relation of the system, labeled with the thread ¢ that performs the step
inductive bistep for t where
[t<N; bstep-sng (c,n,ts t) (c';n',s’) |
= blstep 1 (c,nts) (c';n' ts(r:=s"))
Initial state of the system
definition bsy = (0, 0, A-. INIT)
interpretation B: system bsg bistep (proof’)

lemma b-never-blocked: B.can-step | s <— [<N

(proof)

interpretation B: df-system bsg blstep

(proof)

Simulation

We show that the abstract system simulates the concrete one.

A few lemmas to ease the automation further below

lemma nat-sum-gtZ-iff [simp):
Sfinite s => sum f s # (0::nat) +— (Ix€Es. fx # 0)
(proof)

lemma n-eq-Suc-subl-conv[simp|: n = Suc (n — Suc 0) +— n#0 (proof’)

lemma mod-mult-mod-eq[mod-simps): x mod (k * N) mod N = x mod N

(proof)

lemma mod-eq-imp-eq-aux: b mod N = (a::nat) mod N = a<b —> b<a+N = b=a

(proof)

lemma mod-eq-imp-eq:

3.2. SOLUTION 33

[b<x;x<b+N;b<y,y<b+ N;xmodN=ymodN]| = x=y
{proof)

Map the ticket of a thread

fun map-ticket where
map-ticket f INIT = INIT
| map-ticket f (WAIT tk) = WAIT (f tk)
| map-ticket f (HOLD tk) = HOLD (f tk)
| map-ticket f (REL tk) = REL (ftk)

lemma map-ticket-addsimps|simp):
map-ticket f t = INIT <— t=INIT
map-ticket f t = WAIT tk <— (3tk’. tk=f tk' N\ =WAIT tk")
map-ticket ft = HOLD tk «— (3tk’. tk=ftk' A t=HOLD tk’)
map-ticket f t = REL tk <+— (3tk’. tk=ftk' A\ t=REL tk’)
(proof)

We define the number of threads that use a ticket
fun ni-weight :: thread = nat where

ni-weight INIT = 0 | ni-weight - = 1

lemma ni-weight-lel[simp): ni-weight s < Suc 0

(proof)

definition num-ni ts = Y, i=0..<N. ni-weight (ts i)
lemma num-ni-init[simp|: num-ni (A-. INIT) = 0 (proof)

lemma num-ni-upd:
t<N = num-ni (ts(t:=s)) = num-ni ts — ni-weight (ts t) + ni-weight s

(proof)

lemma num-ni-nz-if [simp|: [t < N; ts t # INIT| = num-ni ts # 0

(proof)

lemma num-ni-leN: num-ni ts < N

(proof)

We provide an additional invariant, considering the distance of ¢ and n. Although
we could probably get this from the previous invariants, it is easy enough to prove
directly.

definition invar3 = A(c,n,ts). n = ¢ + num-ni ts

lemma is-invar3: A.is-invar invar3

(proof)

We establish a simulation relation: The concrete counters are the abstract ones,
wrapped around.

definition sim-rell = A(c,n,ts) (ci,nitsi).

34 CHAPTER 3. ARRAY-BASED QUEUING LOCK

ci =cmod N
A ni = n mod (kxN)
A tsi = (map-ticket (At. t mod N)) o ts

lemma sraux:
sim-rell (c,n,ts) (ci,nitsi) = c¢i = ¢ mod N A ni = n mod (kxN)

(proof)

lemma sraux2: [sim-rell (c,n,ts) (ci,ni,tsi); t<N]
= tsi t = map-ticket (Ax. x mod N) (s t)

(proof)

interpretation siml: simulationl asg alstep bsq blstep sim-rell

(proof)

Transfer of Properties

We transfer a few properties over the simulation, which we need for the next re-
finement step.

lemma xfer-locks-ticket:
assumes locks-ticket (map-ticket (At. t mod N) (ts t)) tki
obtains tk where tki=tk mod N locks-ticket (ts t) tk

(proof)

lemma b-holds-only-current:
[B.reachable (c, n, ts); t < N; locks-ticket (ts t) tk] = tk = ¢

(proof)

lemma b-mutual-exclusion”. [B.reachable s,
t<N; t'<N; t#t'; locks-ticket (tts s t) tk; locks-ticket (tts s t') tk’
| = Fulse

(proof)

lemma xfer-has-ticket:
assumes has-ticket (map-ticket (At. t mod N) (ts t)) tki
obtains tk where tki=tk mod N has-ticket (ts t) tk

(proof)

lemma has-ticket-in-range:
assumes Ra: A.reachable (c,n,ts) and t<N and U: has-ticket (ts t) tk
shows c<tk A tk<c+N

(proof)

lemma b-has-ticket-unique: [B.reachable (ci,nitsi);
t<N; has-ticket (tsi t) tki; t'<N; has-ticket (tsi t') tki
| =1t'=t

3.2. SOLUTION 35

(proof)

3.2.4 Refinement 3: Using an Array

Finally, we use an array instead of a counter, thus obtaining the exact data structures
from the challenge assignment.

Note that we model the array by a list of Booleans here.

System’s state: Current ticket array, next ticket, thread states

type-synonym cstate = bool list x nat x (nat = thread)

The step relation of a single thread

inductive cstep-sng where
enter-wait: cstep-sng (p,n,INIT) (p,(n+1) mod (kxN),WAIT (n mod N))
| loop-wait: —p!tk = cstep-sng (p,n,WAIT tk) (p,n,WAIT tk)
| exit-wait: p\tk = cstep-sng (p,n,WAIT tk) (p,n,HOLD tk)
| start-release: cstep-sng (p,n,HOLD tk) (p|tk:=False|,n,REL tk)
| release: cstep-sng (p,n,REL tk) (p[(tk+1) mod N := True|,n,INIT)

The step relation of the system, labeled with the thread ¢ that performs the step

inductive cistep for r where
[t<N; estep-sng (c,n,ts t) (¢',n's")]
= clstep t (c,nts) (¢’ .n'ts(t:=s"))
Initial state of the system
definition cso = ((replicate N False)[0:=True], 0, A-. INIT)

interpretation C: system csy clstep (proof)

lemma c-never-blocked: C.can-step | s <— I<N

(proof)

interpretation C: df-system csg clstep
(proof)
We establish another invariant that states that the ticket numbers are bounded.

definition invar4
= Ale,nyts). c<N A (Vi<N.Vtk. has-ticket (ts t) tk — th<N)

lemma is-invar4: B.is-invar invar4

(proof)

We define a predicate that describes that a thread of the system is at the release
sequence point — in this case, the array does not have a set bit, otherwise, the set
bit corresponds to the current ticket.

definition is-REL-state = Ats. At<N. tk. ts t = REL tk

36 CHAPTER 3. ARRAY-BASED QUEUING LOCK

lemma is-REL-state-simps|simp]:
t<N = is-REL-state (ts(t:=REL tk))
t<N = —is-REL (ts t) => —is-REL s’
= is-REL-state (ts(t:=s")) +— is-REL-state ts

(proof)

lemma is-REL-state-auxl:
assumes R: B.reachable (c,n,ts)
assumes REL: is-REL-state ts
assumes <N and [simp]: ts t = WAIT tk
shows tk=-c

(proof)

lemma is-REL-state-aux2:
assumes R: B.reachable (c,n,ts)
assumes A: t<Ntst = REL tk
shows —is-REL-state (ts(t:=INIT))
(proof)

Simulation relation that implements current ticket by array

definition sim-rel2 = A(c,nts) (ci,ni,tsi).
(if is-REL-state ts then
ci = replicate N False

else
ci = (replicate N False)[c:=True]
)
Ani=n
N tsi =ts

interpretation sim2: simulationl bsy blstep csg clstep sim-rel2

{(proof)

3.2.5 Transfer Setup

We set up the final simulation relation, and the transfer of the concepts used in the
correctness statements.

definition sim-rel = sim-rell OO sim-rel2
interpretation sim: simulation asy alstep csg clstep sim-rel

(proof)

lemma xfer-holds:
assumes sim-rel s cs
shows is-HOLD (tts cs t) +— is-HOLD (its s t)

(proof)

lemma xfer-waits:

3.2. SOLUTION 37

assumes sim-rel s cs
shows is-WAIT (tts cs t) +— is-WAIT (tts s t)

(proof)

lemma xfer-init:
assumes sim-rel s cs
shows tts c¢s t = INIT < tts s t = INIT

(proof)

3.2.6 Main Theorems
Trusted Code Base

Note that the trusted code base for these theorems is only the formalization of the
concrete system as defined in Section 3.2.4. The simulation setup and the abstract
systems are only auxiliary constructions for the proof.

For completeness, we display the relevant definitions of reachability, runs, and fair-
ness here:

C.stepss'= (3. clstep I s s”)

C.reachable = C.step** csg

C.s-lrunls=s50=cso A (Vi. clstep (Li) (s i) (s (Suci)))
C.is-run s = 31. C.is-lrunl s

C.is-lfair Is ss =V1i. 3j>i. -~ C.can-step [(ssj) VIsj=1
C.is-fair-run s = 31. C.is-lrun | s A\ C.is-lfair | s

Safety

We show that there is no reachable state in which two different threads hold the
lock.

theorem final-mutual-exclusion: [C.reachable s,
t<N; t'<N; t#t'; is-HOLD (tts s t); is-HOLD (its s t)
| = False

(proof)

Fairness

We show that, whenever a thread ¢ draws a ticket, all other threads #’ waiting for
the lock will be granted the lock before .

theorem final-fair:
assumes RUN: C.is-run s
assumes ACQ: t<N and #ts (s i) t=INIT and is-WAIT (tts (s (Suci)) t)
— Thread ¢ draws ticket in step i
assumes HOLD: i<j and is-HOLD (tts (s j) t)

38 CHAPTER 3. ARRAY-BASED QUEUING LOCK

— Thread ¢ holds lock in step j

assumes WAIT: t'<N and is-WAIT (tts (s i) t')
— Thread ¢’ waits for lock at step i

obtains / where i</ and /<j and is-HOLD (its (s I) t')
— Then, ¢’ gets lock earlier

(proof)

Liveness

We show that, for a fair run, every thread that waits for the lock will eventually
hold the lock.

theorem final-progress:
assumes FRUN: C.is-fair-run s
assumes WAIT: t<N and is-WAIT (its (s i) t)
shows 3j>i. is-HOLD (tts (s j) t)
(proof)

end

	Gap Buffer
	Challenge
	Solution
	Abstract Specification
	Refinement 1: List with Gap
	Implementation on List-Level
	Imperative Arrays and Executable Code
	Simple Client

	Shorter Solution
	Abstract Specification
	Refinement 1: List with Gap
	Implementation on List-Level
	Imperative Arrays
	Executable Code

	Colored Tiles
	Challenge
	Solution
	Problem Specification
	Derivation of Recursion Equations
	Verification of Program
	Refinement to Imperative Code
	Alternative Problem Specification

	Array-Based Queuing Lock
	Challenge
	Solution
	General Definitions
	Refinement 1: Ticket Lock with Unbounded Counters
	Refinement 2: Bounding the Counters
	Refinement 3: Using an Array
	Transfer Setup
	Main Theorems

