Abstract. VerifyThis 2018 [http://www.pm.inf.ethz.ch/research/verifythis.html was a program verification competition associated with ETAPS 2018. It was the 7th event in the VerifyThis competition series. In this entry, we present polished and completed versions of our solutions that we created during the competition.
Contents

1 Gap Buffer
1.1 Challenge .. 5
1.2 Solution .. 7
 1.2.1 Abstract Specification 7
 1.2.2 Refinement 1: List with Gap 9
 1.2.3 Implementation on List-Level 9
 1.2.4 Imperative Arrays and Executable Code 11
 1.2.5 Simple Client 12
1.3 Shorter Solution .. 13
 1.3.1 Abstract Specification 13
 1.3.2 Refinement 1: List with Gap 13
 1.3.3 Implementation on List-Level 13
 1.3.4 Imperative Arrays 16
 1.3.5 Executable Code 17

2 Colored Tiles ... 19
2.1 Challenge .. 19
2.2 Solution .. 20
 2.2.1 Problem Specification 20
 2.2.2 Derivation of Recursion Equations 20
 2.2.3 Verification of Program 25
 2.2.4 Refinement to Imperative Code 26
 2.2.5 Alternative Problem Specification 27

3 Array-Based Queuing Lock 33
3.1 Challenge .. 33
3.2 Solution .. 35
 3.2.1 General Definitions 35
 3.2.2 Refinement 1: Ticket Lock with Unbounded Counters 36
 3.2.3 Refinement 2: Bounding the Counters 46
 3.2.4 Refinement 3: Using an Array 53
 3.2.5 Transfer Setup 57
 3.2.6 Main Theorems 58
Gap Buffer

1.1 Challenge

A gap buffer is a data structure for the implementation of text editors, which can efficiently move the cursor, as well add and delete characters. The idea is simple: the editor’s content is represented as a character array a of length n, which has a gap of unused entries $a[l], \ldots, a[r-1]$, with respect to two indices $l \leq r$. The data it represents is composed as $a[0], \ldots, a[l-1], a[r], \ldots, a[n-1]$. The current cursor position is at the left index l, and if we type a character, it is written to $a[l]$ and l is increased. When the gap becomes empty, the array is enlarged and the data from r is shifted to the right.

Implementation task. Implement the following four operations in the language of your tool: Procedures left() and right() move the cursor by one character; insert() places a character at the beginning of the gap $a[l]$; delete() removes the character at $a[l]$ from the range of text.

procedure left()
 if $l \neq 0$ then
 $l := l - 1$
 $r := r - 1$
 $a[r] := a[l]$
 end-if
end-procedure

procedure insert(x: char)
 if $l == r$ then
 // see extended task
 grow()
 end-if
 $a[l] := x$
 $l := l + 1$
end-procedure

procedure right()
 // your task: similar to left()
 // but pay attention to the
 // order of statements
end-procedure

procedure delete()
 if $l \neq 0$ then
 $l := l - 1$
 end-if
end-procedure

Verification task. Specify the intended behavior of the buffer in terms of a contiguous representation of the editor content. This can for example be based on strings, functional arrays, sequences, or lists. Verify that the gap buffer implementation satisfies this specification, and that every access to the array is within bounds.
CHAPTER 1. GAP BUFFER

Hint: For this task you may assume that insert() has the precondition \(l < r \) and remove the call to grow(). Alternatively, assume a contract for grow() that ensures that this call does not change the abstract representation.

Extended verification task. Implement the operation grow(), specify its behavior in a way that lets you verify insert() in a modular way (i.e., not by referring to the implementation of grow()), and verify that grow() satisfies this specification.

Hint: You may assume that the allocation of the new buffer always succeeds. If your tool/language supports copying array ranges (such as System.arraycopy() in Java), consider using these primitives instead of the loops in the pseudo-code below.

```plaintext
procedure grow()
    var b := new char[a.length + K]

    // b[0..l] := a[0..l]
    for i = 0 to l - 1 do
        b[i] := a[i]
    end-for

    // b[r+K..] := a[r..]
    for i = r to a.length - 1 do
        b[i + K] := a[i]
    end-for

    r := r + K
    a := b
end-procedure
```

Resources

1.2. Solution

theory Challenge1
imports lib/VTcomp
begin

Fully fledged specification of textbuffer ADT, and its implementation by a gap buffer.

1.2.1 Abstract Specification

Initially, we modelled the abstract text as a cursor position and a list. However, this gives you an invariant on the abstract level. An isomorphic but invariant free formulation is a pair of lists, representing the text before and after the cursor.

datatype 'a textbuffer = BUF 'a list 'a list

The primitive operations are the empty textbuffer, and to extract the text and the cursor position

definition empty :: 'a textbuffer where empty = BUF [] []
primrec get-text :: 'a textbuffer ⇒ 'a list where get-text (BUF a b) = a @ b
primrec get-pos :: 'a textbuffer ⇒ nat where get-pos (BUF a b) = length a

These are the operations that were specified in the challenge

primrec move-left :: 'a textbuffer ⇒ 'a textbuffer where move-left (BUF a b)
= (if a ≠ [] then BUF (butlast a) (last a # b) else BUF a b)
primrec move-right :: 'a textbuffer ⇒ 'a textbuffer where move-right (BUF a b)
= (if b ≠ [] then BUF (a @ [hd b]) (tl b) else BUF a b)
primrec insert :: 'a ⇒ 'a textbuffer ⇒ 'a textbuffer where insert x (BUF a b) = BUF (a @ [x]) b
primrec delete :: 'a textbuffer ⇒ 'a textbuffer where delete (BUF a b) = BUF (butlast a) b
— Note that butlast [] = [] in Isabelle

We can also assign them a meaning wrt position and text

lemma empty-pos[simp]: get-pos empty = 0
unfolding empty-def by auto
lemma empty-text[simp]: get-text empty = []
unfolding empty-def by auto
lemma move-left-pos[simp]: get-pos (move-left b) = get-pos b - 1
— Note that 0 - 1 = 0 in Isabelle
by (cases b) auto
lemma move-left-text[simp]: get-text (move-left b) = get-text b
by (cases b) auto

lemma move-right-pos[simp]:
CHAPTER 1. GAP BUFFER

get-pos \((\text{move-right } b) = \min (\text{get-pos } b + 1) (\text{length } (\text{get-text } b)) \)
by (cases \(b \)) auto

\textbf{lemma} move-right-text[simp]: \(\text{get-text } (\text{move-right } b) = \text{get-text } b \)
by (cases \(b \)) auto

\textbf{lemma} insert-pos[simp]: \(\text{get-pos } (\text{insert } x b) = \text{get-pos } b + 1 \)
by (cases \(b \)) auto

\textbf{lemma} insert-text: \(\text{get-text } (\text{insert } x b) = \text{take } (\text{get-pos } b) \text{@} x \text{drop } (\text{get-pos } b) \text{get-text } b \)
by (cases \(b \)) auto

\textbf{lemma} delete-pos[simp]: \(\text{get-pos } (\text{delete } b) = \text{get-pos } b - 1 \)
by (cases \(b \)) auto

\textbf{lemma} delete-text: \(\text{get-text } (\text{delete } b) = \text{take } (\text{get-pos } b - 1) \text{@} \text{drop } (\text{get-pos } b) \text{get-text } b \)
by (cases \(b \)) auto

For the zero case, we can prove a simpler (equivalent) lemma

\textbf{lemma} delete-text0[simp]: \(\text{get-pos } b = 0 \Rightarrow \text{get-text } (\text{delete } b) = \text{get-text } b \)
by (cases \(b \)) auto

To fully exploit the capabilities of our tool, we can (optionally) show that the operations of a text buffer are parametric in its content. Then, we can automatically refine the representation of the content.

\textbf{definition} [no-relAPP]:
\(\text{textbuffer-rel } A \equiv \{(\text{BUF } a b, \text{BUF } a' b') \mid a b a' b', (a,a') \in (A)\text{-list-rel} \land (b,b') \in (A)\text{-list-rel}\} \)

\textbf{lemma} [param]: \((\text{BUF, BUF}) \in (A)\text{-list-rel} \Rightarrow (A)\text{-list-rel} \Rightarrow (A)\text{-textbuffer-rel} \)
by (auto simp: textbuffer-rel-def)

\textbf{lemma} [param]: \(\text{(rec-textbuffer, rec-textbuffer)} \in ((A)\text{-list-rel} \Rightarrow (A)\text{-list-rel} \Rightarrow B) \Rightarrow (A)\text{-textbuffer-rel} \Rightarrow B \)
by (auto simp: textbuffer-rel-def) parametricity

\textbf{context}
notes[simp] =
empty-def get-text-def get-pos-def move-left-def move-right-def
insert-def delete-def conv-to-is-Nil

\textbf{begin}
sepref-decl-op (no-def) empty :: (A)textbuffer-rel .
sepref-decl-op (no-def) get-text :: (A)textbuffer-rel \Rightarrow (A)list-rel .
sepref-decl-op (no-def) get-pos :: (A)textbuffer-rel \Rightarrow \text{nat-rel} .
sepref-decl-op (no-def) move-left :: (A)textbuffer-rel \Rightarrow (A)textbuffer-rel .
sepref-decl-op (no-def) move-right :: (A)textbuffer-rel \Rightarrow (A)textbuffer-rel .
sepref-decl-op (no-def) insert :: A \Rightarrow (A)textbuffer-rel \Rightarrow (A)textbuffer-rel .
sepref-decl-op (no-def) delete :: (A)textbuffer-rel \Rightarrow (A)textbuffer-rel .
\textbf{end}
1.2. SOLUTION

1.2.2 Refinement 1: List with Gap

1.2.3 Implementation on List-Level

\[a \text{ gap-buffer} = \text{nat} \times \text{nat} \times a \text{ list} \]

Abstraction Relation

Also called coupling relation sometimes. Can be any relation, here we define it by an invariant and an abstraction function.

\[\text{definition gap-\alpha} \equiv \lambda (l, r, buf). \begin{array}{l}
\text{BUF} \ (\text{take l buf}) \ (\text{drop r buf})
\end{array} \]

\[\text{definition gap-invar} \equiv \lambda (l, r, buf). \begin{array}{l}
\text{true} \end{array} \]

\[\text{abbreviation gap-rel} \equiv \text{br gap-\alpha gap-invar} \]

Empty

\[\text{definition empty1} \equiv \text{RETURN (0, 0, [])} \]

\[\text{lemma empty1-correct: (empty1, RETURN empty) \in \langle gap-rel \rangle nres-rel} \]

Unfolding

\[\text{by (auto simp: in-br-conv gap-\alpha-def gap-invar-def)} \]

Left

\[\text{definition move-left1} \equiv \lambda (l, r, buf). \begin{array}{l}
\text{doN} \{ \begin{array}{l}
\text{if l \neq 0 then doN} \{ \\
\text{ASSERT (r - 1 < length buf \land l - 1 < length buf)}; \\
\text{RETURN (l - 1, r - 1, buf \[r - 1 : = buf ![l - 1]])} \\
\text{else RETURN (l, r, buf)}
\end{array} \}
\end{array} \]

Lemma

\[\text{lemma move-left1-correct: (move-left1, RETURN o move-left) \in gap-rel \rightarrow \langle gap-rel \rangle nres-rel} \]

Unfolding

\[\text{by (auto simp: in-br-conv gap-\alpha-def gap-invar-def move-left1-def)} \]

Right

\[\text{definition move-right1} \equiv \lambda (l, r, buf). \text{doN} \{ \]
if $r < \text{length buf}$ then doN {
 ASSERT $(l < \text{length buf})$;
 RETURN $(l+1, r+1, \text{buf}[l:=\text{buf}[r])$
} else RETURN (l, r, buf)
}

Lemma move-right1-correct:

$(\text{move-right1}.\text{RETURN o move-right}) \in \text{gap-rel} \rightarrow (\text{gap-rel})\text{res-rel}$

apply clarsimp

unfolding move-right1-def

apply refine-vcg

unfolding gap-\alpha-def gap-invar-def

apply (auto
 simp: in-br-conv hd-drop-conv-nth take-update-last
 split: prod.split)

by (simp add: drop-Suc tl-drop)

Insert and Grow

Definition can-insert $\equiv \lambda (l, r, \text{buf}). l < r$

Definition grow1 $K \equiv \lambda (l, r, \text{buf}), \text{doN} \{$

let $b = \text{op-array-replicate (length buf + } K\text{) default};$

$b \leftarrow \text{mop-list-blit buf 0 } b 0 l;$

$b \leftarrow \text{mop-list-blit buf } r b (r + K) (\text{length buf} - r);$

RETURN $(l, r + K, b)$

}

Lemma grow1-correct[THEN SPEC-trans, refine-vcg]:

assumes gap-invar gb

shows grow1 K $gb \leq (\text{SPEC } (\lambda gb'.
 \text{gap-invar } gb'\
 \land \text{gap-\alpha } gb' = \text{gap-\alpha } gb\
 \land (K > 0 \rightarrow \text{can-insert } gb')))$

unfolding grow1-def

apply refine-vcg

using assms

unfolding gap-\alpha-def gap-invar-def can-insert-def

apply clarsimp-all

apply (auto simp: op-list-blit-def)

by (simp add: min-def)

Definition insert1 $x \equiv \lambda (l, r, \text{buf}), \text{doN} \{$

$(l, r, \text{buf}) \leftarrow$

if $(l=r)$ then grow1 $(\text{length buf} + 1) (l, r, \text{buf})$ else RETURN (l, r, buf);

ASSERT $(l<\text{length buf})$;

RETURN $(l+1, r, \text{buf}[l:=x])$

}

1.2. SOLUTION

lemma insert1-correct:
(insert1.RETURN oo insert) ∈ Id → gap-rel → (gap-rel)nres-rel
apply clarsimp
unfolding insert1-def
apply refine-vcg
unfolding insert-def gap-α-def gap-invar-def can-insert-def
apply (auto simp: in-br-conv take-update-last split: prod.split)
done

Delete

definition delete1
≡ λ(l,r,buf). if l>0 then RETURN (l−1,r,buf) else RETURN (l,r,buf)

lemma delete1-correct:
(delete1.RETURN o delete) ∈ gap-rel → (gap-rel)nres-rel
apply clarsimp
unfolding delete1-def
apply refine-vcg
unfolding gap-α-def gap-invar-def
by (auto simp: in-br-conv butlast-take split: prod.split)

1.2.4 Imperative Arrays and Executable Code

abbreviation gap-impl-assn ≡ nat-assn ×ₐ nat-assn ×ₐ array-assn id-assn

definition gap-assn A
≡ hr-comp (hr-comp gap-impl-assn gap-rel) ((the-pure A)textbuffer-rel)

custom
notes gap-assn-def[symmetric fcomp-norm-unfold]
begin
sepref-definition empty-impl
 is uncurry0 empty1 :: unit-assnₜ →ₜ gap-impl-assn
 unfolding empty1-def array.fold-custom-empty
 by sepref

sepref-definition move-left-impl
 is move-left1 :: gap-impl-assnₜ →ₜ gap-impl-assn
 unfolding move-left1-def by sepref

sepref-definition move-right-impl
 is move-right1 :: gap-impl-assnₜ →ₜ gap-impl-assn
 unfolding move-right1-def by sepref
sepref-decl-impl move-right-impl: move-right-impl.refine[FCOMP move-right1-correct]

sepref-definition insert-impl
 is uncurry insert1 :: id-assnₖ∗ₜ gap-impl-assnₜ →ₜ gap-impl-assn
1.2.5 Simple Client

definition client \equiv \text{RETURN} \ (\text{fold} \ (\lambda f. f) \ [\
\ \begin{array}{l}
\text{insert} \ (1::\text{int}), \\
\text{insert} \ (2::\text{int}), \\
\text{insert} \ (3::\text{int}), \\
\text{insert} \ (5::\text{int}), \\
\text{move-left}, \\
\text{insert} \ (4::\text{int}), \\
\text{move-right}, \\
\text{insert} \ (6::\text{int}), \\
\text{delete} \\
\] \text{empty} \\
\end{array} \])
\leq \text{SPEC} \ (\lambda r. \ \text{get-text} \ r = [1,2,3,4,5])

\text{unfolding} \ \text{client-def}
\text{by} \ (\text{simp add: delete-text insert-text})

\text{sepref-definition} \ \text{client-impl}
\text{is} \ \text{uncurry0 client} :: \text{unit-assn}^k \rightarrow_a \text{gap-assn id-assn}
\text{unfolding} \ \text{client-def} \ \text{fold}. \ \text{.simps id-def comp-def}
1.3. SHORTER SOLUTION

by sepref

ML-val
@
{code client-impl} ()
)

end

1.3 Shorter Solution

theory Challenge1-short
imports lib/VTcomp
begin

Small specification of textbuffer ADT, and its implementation by a gap buffer.
Annotated and elaborated version of just the challenge requirements.

1.3.1 Abstract Specification

datatype 'a textbuffer = BUF (pos: nat) (text: 'a list)
— Note that we do not model the abstract invariant — pos in range — here, as it is not
strictly required for the challenge spec.

These are the operations that were specified in the challenge. Note: Isabelle has
type inference, so we do not need to specify types. Note: We exploit that, in Is-
abelle, we have $0 - 1 = 0$.

primrec move-left where move-left (BUF p t) = BUF (p - 1) t
primrec move-right where move-right (BUF p t) = BUF (min (length t) (p + 1)) t
primrec insert where insert x (BUF p t) = BUF (p + 1) (take p t @ x# drop p t)
primrec delete where delete (BUF p t) = BUF (p - 1) (take (p - 1) t @ drop p t)

1.3.2 Refinement 1: List with Gap

1.3.3 Implementation on List-Level

type-synonym 'a gap-buffer = nat × nat × 'a list

Abstraction Relation

We define an invariant on the concrete gap-buffer, and its mapping to the abstract
model. From these two, we define a relation gap-rel between concrete and abstract
buffers.

definition gap-α ≡ λ(l,r,buf). BUF l (take l buf @ drop r buf)
definition gap-invar ≡ λ(l,r,buf). l ≤ r ∧ r ≤ length buf
abbreviation gap-rel ≡ br gap-α gap-invar
Left

For the operations, we insert assertions. These are not required to prove the list-level specification correct (during the proof, they are inferred easily). However, they are required in the subsequent automatic refinement step to arrays, to give our tool the information that all indexes are, indeed, in bounds.

definition move-left1 ≡ \(\lambda (l,r,buf). \) doN {
 if \(l \neq 0 \) then doN {
 ASSERT \((r−1) < \text{length buf} \land l−1 < \text{length buf}\);
 RETURN \((l−1,r−1,buf[r−1:=buf![l−1]])\)
 } else RETURN \((l,r,buf)\)
}

lemma move-left1-correct:
\((\text{move-left1, RETURN o move-left}) \in \text{gap-rel} \rightarrow \langle \text{gap-rel}\rangle nres-rel\)
apply clarsimp
unfolding move-left1-def
apply refine-vcg
apply (auto simp: in-br-conv gap-\alpha-def gap-invar-def move-left1-def
split: prod.splits)

by (smt Cons-nth-drop-Suc Suc-pred append assoc append-Cons append-nil
diff-Suc-less drop-update-cancel hd-drop-com-nth length-list-update
less-le-trans nth-list-update-eq take-hd-drop)

Right

definition move-right1 ≡ \(\lambda (l,r,buf). \) doN {
 if \(r < \text{length buf} \) then doN {
 ASSERT \((l < \text{length buf})\);
 RETURN \((l+1,r+1,buf[l:=buf!r])\)
 } else RETURN \((l,r,buf)\)
}

lemma move-right1-correct:
\((\text{move-right1, RETURN o move-right}) \in \text{gap-rel} \rightarrow \langle \text{gap-rel}\rangle nres-rel\)
apply clarsimp
unfolding move-right1-def
apply refine-vcg
unfolding gap-\alpha-def gap-invar-def
apply (auto simp: in-br-conv split: prod.split)

by (metis Cons-eq-appendI Cons-nth-drop-Suc append-eq-append-conv2
atd-lem drop-0 dual-order.strict-trans2 take-eq-nil take-update-last)

Insert and Grow

definition can-insert ≡ \(\lambda (l,r,buf). l < r \)
1.3. SHORTER SOLUTION

definition grow1 \(K \equiv \lambda (l,r,buf). \text{do} \{\)**

\[
\begin{align*}
& \text{let } b = \text{op-array-replicate} \ (\text{length } buf + K) \ \text{default}; \\
& b \leftarrow \text{mop-list-blit} \ \text{buf} \ 0 \ b \ 0 \ l; \\
& b \leftarrow \text{mop-list-blit} \ \text{buf} \ r \ b \ (r+K) \ (\text{length } buf - r); \\
& \text{RETURN} \ (l, r+K, b) \\
\end{align*}
\]

— Note: Most operations have also a variant prefixed with \textit{mop}. These are defined in the refinement monad and already contain the assertion of their precondition. The backside is that they cannot be easily used in as part of expressions, e.g., in \(\text{buf}[l := \text{buf} ! r]\), we would have to explicitly bind each intermediate value: \textit{mop-list-get} \ \text{buf} \ r > > = \textit{mop-list-set} \ \text{buf} \ l.

lemma grow1-correct[THEN SPEC-trans, refine-vcg]:

— Declares this as a rule to be used by the VCG

\[
\text{assumes gap-invar } gb \\
\text{shows } \text{grow1 } K \ gb \leq (\text{SPEC } (\lambda gb'. \\
& \text{gap-invar } gb' \\
& \land \text{gap-} \alpha \ gb' = \text{gap-} \alpha \ gb \\
& \land (K > 0 \rightarrow \text{can-insert } gb'))) \\
\text{unfolding grow1-def} \\
\text{apply refine-vcg} \\
\text{using assms} \\
\text{unfolding gap-} \alpha \text{-def gap-invar-def can-insert-def} \\
\text{apply clarsimp-all} \\
\text{by (simp add: min-def)}
\]

definition insert1 \(x \equiv \lambda (l,r,buf). \text{do} \{\)**

\[
\begin{align*}
& (l,r,buf) \leftarrow \text{if } (l=r) \ \text{then } \text{grow1} \ (\text{length } buf + 1) \ (l,r,buf) \ \text{else } \text{RETURN} \ (l,r,buf); \\
& \text{ASSERT} \ (l<\text{length } buf); \\
& \text{RETURN} \ (l+1, r, buf[!l:=x]) \\
\end{align*}
\]

lemma insert1-correct:

\[
(\text{insert1 } \text{RETURN} \ oo \ \text{insert}) \in \text{Id} \rightarrow \text{gap-rel} \rightarrow (\text{gap-rel}) \text{nres-rel} \\
\text{apply clarsimp} \\
\text{unfolding insert1-def} \\
\text{apply refine-vcg — VCG knows the rule for grow1 already} \\
\text{unfolding insert-def gap-} \alpha \text{-def gap-invar-def can-insert-def} \\
\text{apply (auto simp: op-list-blit-def)} \\
\text{by (simp add: min-def)}
\]

Delete

definition delete1 \(\equiv \lambda (l,r,buf). \text{if } l>0 \ \text{then } \text{RETURN} \ (l-1,r,buf) \ \text{else } \text{RETURN} \ (l,r,buf)\)

lemma delete1-correct:

\[
(\text{delete1 } \text{RETURN} \ oo \ \text{delete}) \in \text{gap-rel} \rightarrow (\text{gap-rel}) \text{nres-rel}
\]
apply clarsimp
unfolding delete1-def
apply refine-vcg
unfolding gap-α-def gap-invar-def
by (auto simp: in-br-conv butlast-take split: prod.split)

1.3.4 Imperative Arrays

The following indicates how we will further refine the gap-buffer: The list will become an array, the indices and the content will not be refined (expressed by nat-assn and id-assn).

abbreviation gap-impl-assn ≡ nat-assn × a nat-assn × a array-assn id-assn

sepref-definition move-left-impl
is move-left1 :: gap-impl-assnd → a gap-impl-assn
unfolding move-left1-def by sepref

sepref-definition move-right-impl
is move-right1 :: gap-impl-assnd → a gap-impl-assn
unfolding move-right1-def by sepref

sepref-definition insert-impl
is uncurry insert1 :: id-assn k ∗ a gap-impl-assnd → a gap-impl-assn
unfolding insert1-def grow1-def by sepref
— We inline grow1 here

sepref-definition delete-impl
is delete1 :: gap-impl-assnd → a gap-impl-assn
unfolding delete1-def by sepref

Finally, we combine the two refinement steps, to get overall correctness theorems

definition gap-assn ≡ hr-comp gap-impl-assn gap-rel
— hr-comp is composition of refinement relations
context notes gap-assn-def [symmetric, fcomp-norm-unfold] begin
lemmas move-left-impl-correct = move-left-impl.refine[FCOMP move-left1-correct]
and move-right-impl-correct = move-right-impl.refine[FCOMP move-right1-correct]
and insert-impl-correct = insert-impl.refine[FCOMP insert1-correct]
and delete-impl-correct = delete-impl.refine[FCOMP delete1-correct]

Proves:

(move-left-impl, RETURN ◦ move-left) ∈ gap-assn

(move-right-impl, RETURN ◦ move-right) ∈ gap-assn

(uncurry Challenge1-short.insert-impl,
 uncurry (RETURN ◦ Challenge1-short.insert))
 ∈ id-assn k ∗ a gap-assnd → a gap-assn
1.3. SHORTER SOLUTION

\[(\text{delete-impl}, \text{RETURN } \circ \text{delete}) \in \text{gap-assn} \rightarrow_a \text{gap-assn}\]

end

1.3.5 Executable Code

Isabelle/HOL can generate code in various target languages.

\begin{verbatim}
export-code move-left-impl move-right-impl insert-impl delete-impl
in SML-imp module-name Gap-Buffer
in OCaml-imp module-name Gap-Buffer
in Haskell module-name Gap-Buffer
in Scala module-name Gap-Buffer
\end{verbatim}

end
2.1 Challenge

This problem is based on Project Euler problem #114. Alice and Bob are decorating their kitchen, and they want to add a single row of fifty tiles on the edge of the kitchen counter. Tiles can be either red or black, and for aesthetic reasons, Alice and Bob insist that red tiles come by blocks of at least three consecutive tiles. Before starting, they wish to know how many ways there are of doing this. They come up with the following algorithm:

```plaintext
var count[51] // count[i] is the number of valid rows of size i
count[0] := 1 // []
count[1] := 1 // [B] - cannot have a single red tile
count[2] := 1 // [BB] - cannot have one or two red tiles
for n = 4 to 50 do
    count[n] := count[n-1] // either the row starts with a black tile
    for k = 3 to n-1 do // or it starts with a block of k red tiles
        count[n] := count[n] + count[n-k-1] // followed by a black one
    end-for
    count[n] := count[n]+1 // or the entire row is red
end-for
```

Verification tasks. You should verify that at the end, count[50] will contain the right number.

Hint: Since the algorithm works by enumerating the valid colorings, we expect you to give a nice specification of a valid coloring and to prove the following properties:

1. Each coloring counted by the algorithm is valid.
2. No coloring is counted twice.
3. No valid coloring is missed.
2.2 Solution

theory Challenge2
imports lib/VTcomp
begin

The algorithm describes a dynamic programming scheme.
Instead of proving the 3 properties stated in the challenge separately, we approach
the problem by

1. Giving a natural specification of a valid tiling as a grammar
2. Deriving a recursion equation for the number of valid tilings
3. Verifying that the program returns the correct number (which obviously im-
 plies all three properties stated in the challenge)

2.2.1 Problem Specification

Colors

datatype color = R | B

Direct Natural Definition of a Valid Line

inductive valid where
valid []
valid xs ⇒ valid (B # xs)
valid xs ⇒ n ≥ 3 ⇒ valid (replicate n R @ xs)

definition lcount n = card {l. length l=n ∧ valid l}

2.2.2 Derivation of Recursion Equations

This alternative variant helps us to prove the split lemma below.

inductive valid' where
valid' []
n ≥ 3 ⇒ valid' (replicate n R)
valid' xs ⇒ valid' (B # xs)
valid' xs ⇒ n ≥ 3 ⇒ valid' (replicate n R @ B # xs)

lemma valid-valid':
valid l ⇒ valid' l
by (induction rule: valid.induct)
(auto 4 4 intro; valid'.intros elim; valid'.cases
 simp: replicate-add[symmetric] append-assoc[symmetric]
)

lemmas valid-red = valid.intros(3)[OF valid.intros(1), simplified]

lemma valid'-valid:
valid' l \implies valid l
by (induction rule: valid'.induct) (auto intro: valid.intros valid-red)

lemma valid-eq-valid':
valid' l = valid l
using valid-valid' valid'-valid by metis

Additional Facts on Replicate

lemma replicate-iff:
(\forall i<\text{length} l. \, l ! i = R) \iff (\exists n. \, l = \text{replicate} n R)
by auto (metis (full-types) in-set-nth replicate-eqI)

lemma replicate-iff2:
(\forall i<n. \, l ! i = R) \iff (\exists l'. \, l = \text{replicate} n R @ l') \text{ if } n < \text{length} l
using that by (auto simp: list-eq-iff-nth-eq nth-append intro: exI[where x = drop n l])

lemma replicate-Cons-eq:
\text{replicate} n x = y # ys \iff (\exists n'. \, n = \text{Suc} n' \land x = y \land \text{replicate} n' x = ys)
by (cases n) auto

Main Case Analysis on \texttt{term valid}

lemma valid-split:
valid l \iff
l = s [\lor
(l!0 = B \land valid (tl l)) \lor
\text{length} l \geq 3 \land (\forall i < \text{length} l. \, l ! i = R) \lor
(\exists j < \text{length} l. j \geq 3 \land (\forall i < j. \, l ! i = R) \land l ! j = B \land valid (\text{drop} (j+1) l))
unfolding valid-eq-valid'[symmetric]
apply standard
subgoal
by (erule valid'.cases) (auto simp: nth-append nth-Cons split: nat.splits)
subgoal
by (auto intro: valid'.intros simp: replicate-iff elim!: disjE1)
(fastforce intro: valid'.intros simp: neq-Nil-conv replicate-iff2 nth-append)+ done

Base cases

lemma lc0-aux:
\{ l. \, l = s \land valid l \} = \{ [] \}
by (auto intro: valid.intros)

lemma lc0: lcount 0 = 1
by (auto simp: lc0-aux lcount-def)

lemma lc1aux: \{l. length l = 1 ∧ valid l\} = \{[B]\}
 by (auto intro: valid.intros elim: valid.cases simp: replicate-Cons-eq)

lemma lc2aux: \{l. length l = 2 ∧ valid l\} = \{[B,B]\}
 by (auto 4 3 intro: valid.intros elim: valid.cases simp: replicate-Cons-eq)

lemma lc3-aux: \{l. length l = 3 ∧ valid l\} = \{[B,B,B], [R,R,R]\}
 by (auto 4 4 intro: valid.intros valid-red[of 3, simplified] elim: valid.cases simp: replicate-Cons-eq)

lemma lcounts-init: lcount 0 = 1 lcount 1 = 1 lcount 2 = 1 lcount 3 = 2
 using lc0 lc1aux lc2aux lc3-aux unfolding lcount-def by simp-all

The Recursion Case

lemma finite-valid-length: finite \{l. length l = n ∧ valid l\} (is \finite \?S)
 proof –
 have \?S ⊆ lists \{R, B\} ∩ \{l. length l = n\}
 by (auto intro: color.exhaust)
 moreover have __
 by (auto intro: lists-of-len-fin1)
 ultimately show ?thesis
 by (rule finite-subset)
 qed

lemma valid-line-just-B:
 valid (replicate n B)
 by (induction n) (auto intro: valid.intros)

lemma valid-line-aux:
 \{l. length l = n ∧ valid l\} ≠ \{\} (is \?S ≠ \{\})
 using valid-line-just-B[of n] by force

lemma replicate-unequal-aux:
 replicate x R @ B # l ≠ replicate y R @ B # l' (is \?l ≠ \?r) if \(x < y\) for \l \l'
 proof –
 have \?l ! x = B ?r ! x = R
 using that by (auto simp: nth-append)
 then show ?thesis
 by auto
 qed

lemma valid-prepend-B-iff:
 valid (B # xs) ⟷ valid xs
 by (auto intro: valid.intros elim: valid.cases simp: Cons-replicate-eq Cons-eq-append-conv)
lemma lcrec: lcount n = lcount (n-1) + l + (∑ i=3..<n. lcount (n-i-1)) if n>3
proof
have {l. length l = n ∧ valid l} = {l. length l = n ∧ valid (tl l) ∧ !0=B}
 ∪ {l. length l = n ∧
 (∃ i. i < n ∧ i ≥ 3 ∧ (∀ k < i. !l!k = R) ∧ !li = B ∧ valid (drop (i + 1) l))}
 ∪ {l. length l = n ∧ (∀ i<n. !li=R)}
 (is ?A = ?B ∪ ?D ∪ ?C)
using n > 3; by (subst valid-split) auto

let ?B1 = (op # B) · {l. length l = n − Suc 0 ∧ valid l}
from n > 3 have ?B = ?B1
apply safe
subgoal for l
 by (cases l) (auto simp: valid-prepend-B-iff)
 by auto
have 1: card ?B1 = lcount (n−1)
unfolding lcount-def by (auto intro: card-image)

have ?C = {replicate n R}
 by (auto simp: nth-equalityI)
have 2: card {replicate n R} = 1
 by auto

let ?D1 = (∪ i ∈ {3..<n}. (λ l. replicate i R @ B # l) · {l. length l = n − i − 1 ∧ valid l})
have ?D =
 (∪ i ∈ {3..<n}. {l. length l = n ∧ (∀ k < i. !l!k = R) ∧ !li = B ∧ valid (drop (i + 1) l)})
 by auto
have {l. length l = n ∧ (∀ k < i. !l!k = R) ∧ !li = B ∧ valid (drop (i + 1) l)}
 = (λ l. replicate i R @ B # l) · {l. length l = n − i − 1 ∧ valid l}
if i < n 2 < i for i
apply safe
subgoal for l
 apply (rule image-eqI[where x = drop (i + 1) l])
 apply (rule nth-equalityI)
 using that
 apply (simp-all split: nat.split add: nth-Cons nth-append)
 using add-diff-inverse-nat apply fastforce
done
using that by (simp add: nth-append; fail)+
then have D-eq: ?D = ?D1
unfolding ?D = ? by auto

have inj: inj-on (λ l. replicate x R @ B # l) {l. length l = n − Suc x ∧ valid l} for x
unfolding inj-on-def by auto
24

CHAPTER 2. COLORED TILES

have *:
(\lambda l. replicate x R @ B # l) \cdot \{l. length l = n - Suc x \land valid l\} \cap
(\lambda l. replicate y R @ B # l) \cdot \{l. length l = n - Suc y \land valid l\} = \{
if 3 \leq x < y < n \text{ for } x y
using that replicate-unequal-aux[\text{OF } x < y] \text{ by auto}

have 3: card ?D1 = (\sum_{i=3..<n}. lcount (n-i-1))
proof (subt card-Union-disjoint, goal-cases)
case 3
show ?case
proof (clarsimp, goal-cases)
case prems: (I x y)
from prems show ?case
apply −
apply (rule linorder-cases[of x y])
apply (rule *; assumption)
apply (simp; fail)
apply (subst Int-commute; rule *; assumption)
done
qed
next
case 4
show ?case
proof (subt sum.reindex, unfold inj-on-def, clarsimp, goal-cases)
case prems: (I x y)
with *[of y x] *[of x y] valid-line-aux[of n - Suc x] show ?case
by (rule linorder-cases[of x y], auto)
next
case 2
then show ?case
by (simp add: lcount-def card-image[of inj])
qed
qed (auto intro: finite-subset[OF finite-valid-length])

show ?thesis
apply (subst lcount-def)
unfolding A = - B = - C = - D-eq
apply (subt card-Un-disjoint)

apply (blast intro: finite-subset[OF finite-valid-length])+

subgoal
using Cons-replicate-eq[of B - n R] replicate-unequal-aux by fastforce
apply (subt card-Un-disjoint)

apply (blast intro: finite-subset[OF finite-valid-length])+

unfolding 1 2 3
by (auto simp: Cons-replicate-eq Cons-eq-append-conv)
2.2. SOLUTION

qed

2.2.3 Verification of Program

Inner Loop: Summation

definition sum-prog \(\Phi l u f \) ≡
nfoldli [l..<u] (λ- True) (λi s. doN {
 ASSERT (\Phi i);
 RETURN (s+f i)
 }) 0

lemma sum-spec[THEN SPEC-trans, refine-vcg]:
assumes \(l \leq u \)
assumes \(\forall i. l \leq i \implies i < u \implies \Phi i \)
shows sum-prog \(\Phi l u f \leq \text{SPEC} (\lambda r. r=(\sum i=l..<u. f i)) \)
unfolding sum-prog-def
supply nfoldli-upt-rule[where \(l=\lambda j s. s=(\sum i=l..<j. f i) \), refine-vcg]
apply refine-vcg
using assms
apply auto
done

Main Program

definition icount M ≡ doN {
 ASSERT (M>2);
 let c = op-array-replicate (M+1) 0;
 let c = c[0:=1, 1:=1, 2:=1, 3:=2];

 ASSERT (\forall i<4. c!i = lcount i);

 c←nfoldli [4..<M+1] (λ- True) (λn c. doN {
 (*let sum = (\sum i=3..<n. c!(n-1-i));*)
 sum ← sum-prog (λi. n−i−1 < length c) 3 n (λi. c!(n−i−1));
 ASSERT (n−1<length c \& n<length c);
 RETURN (c[n := c!(n−1) + 1 + sum])
 }) c;

 ASSERT (\forall i\leq M. c!i = lcount i);

 ASSERT (M < length c);
 RETURN (c!M)
}

Abstract Correctness Statement

theorem icount-correct: \(M>2 \implies icount M \leq \text{SPEC} (\lambda r. r=lcount M) \)
unfolding icount-def
thm nfoldli-upt-rule
2.2.4 Refinement to Imperative Code

```plaintext
sepre-definition icount-impl is icount :: nat-assn → nat-assn
unfolding icount-def sum-prog-def
by sepref
```

Main Correctness Statement

As the main theorem, we prove the following Hoare triple, stating: starting from the empty heap, our program will compute the correct result (lcount M).

```plaintext
theorem icount-impl-correct:
M > 2 \implies \langle \text{emp} \rangle \text{icount-impl } M \langle r. \uparrow (r = lcount M) \rangle_1
proof –
  note A = icount-impl,refine[to-hnr, THEN hn-refineD]
  note A = A[unfolded autoref-tag-defs]
  note A = A[unfolded hn-ctxt-def pure-def, of M M, simplified]
  note [sep-heap-rules] = A

  assume M > 2

  show ?thesis
    using icount-correct[OF M>2]
    by (sep-auto simp: refine-pw-simps pw-le-iff)
qed
```

Code Export

```plaintext
export-code icount-impl in SML-imp module-name Tiling
export-code icount-impl in OCaml-imp module-name Tiling
export-code icount-impl in Haskell module-name Tiling
```
2.2. SOLUTION

export-code icount-impl in Scala-impl module-name Tiling

2.2.5 Alternative Problem Specification

Alternative definition of a valid line that we used in the competition

context fixes l :: color list begin

inductive valid-point where
 [i+2<length l; l!i=R; l!(i+1) = R; l!(i+2) = R] \implies valid-point i
 [i\leq;i+1<length l; l!(i-1)=R; l!(i) = R; l!(i+1) = R] \implies valid-point i
 [2\leq;i; i<length l; l!(i-2) = R; l!(i-1) = R; l!(i) = R] \implies valid-point i
 [i<length l; l!i=B] \implies valid-point i

definition valid-line = (\forall i<length l. valid-point i)
end

lemma valid-lineI:
 assumes \forall i. i < length l \implies valid-point l i
 shows valid-line l
 using assms unfolding valid-line-def by auto

lemma valid-B-first:
 valid-point xs i \implies i < length xs \implies valid-point (B#xs) (i+1)
 by (auto intro: valid-point.intros simp: numeral-2-eq-2 elim!: valid-point.cases)

lemma valid-line-prepend-B:
 valid-line (B#xs) if valid-line xs
 using that
 apply –
 apply (rule valid-line1)
 subgoal for i
 by (cases i) (auto intro: valid-B-first[simplified] valid-point.intros simp: valid-line-def)
 done

lemma valid-drop-B:
 valid-point xs (i-1) if valid-point (B#xs) i i>0
 using that
 apply cases
 apply (fastforce intro: valid-point.intros)
 subgoal
 by (cases i = 1) (auto intro: valid-point.intros(2))
 subgoal
 unfolding numeral-nat by (cases i = 2) (auto intro: valid-point.intros(3))
 apply (fastforce intro: valid-point.intros)
 done

lemma valid-line-drop-B:
 valid-line xs if valid-line (B#xs)
using that unfolding valid-line-def
proof (safe, goal-cases)
case (1 i)
with valid-drop-B[of xs i + 1] show ?case
 by auto
qed

lemma valid-line-prepend-B-iff:
valid-line (B # xs) \iff valid-line xs
using valid-line-prepend-B valid-line-drop-B by metis

lemma cases-valid-line:
assumes
dl = [] \lor
 (!l0 = B \land valid-line (tl l)) \lor
length l \geq 3 \land (\forall i < length l. l ! i = R) \lor
 (\exists j < length l. j \geq 3 \land (\forall i < j. l ! i = R) \land l ! j = B \land valid-line (drop (j + 1) l))
(is ?a \lor ?b \lor ?c \lor ?d)
shows valid-line l
proof
 from assms consider (empty) ?a | (B) \not\sim ?a \land ?b | (all-red) ?c | (R-B) ?d
 by blast
 then show ?thesis
proof cases
 case empty
 then show ?thesis
 by (simp add: valid-line-def)
next
 case B
 then show ?thesis
 by (cases l) (auto simp: valid-line-prepend-B-iff)
next
 case prems: all-red
 show ?thesis
proof (rule valid-lineI)
 fix i assume i < length l
 consider i = 0 | i = 1 | i > 1
 by atomize-elim auto
 then show valid-point l i
 using (i < _ _ _ _ _ _ _ _ _ prems by cases (auto 4 4 intro: valid-point.intros)
 qed
next
 case R-B
 then obtain j where j:
 j < length l \land j \leq j (\forall i < j. l ! i = R) \land l ! j = B valid-line (drop (j + 1) l)
 by blast
 show ?thesis
proof (rule valid-lineI)
 fix i assume i < length l
2.2. SOLUTION

with \(j \geq 3 \): consider \(i \leq j - 3 \mid i = j - 2 \mid i = j - 1 \mid i = j \mid i > j \)
by atomize-elim auto
then show valid-point \(l \ i \)
proof cases
 case 5
 with \(\text{valid-line} \cdot i < \text{length} \ l \) have valid-point (drop \((j + 1) \ l \)) \((i - j - 1) \)
 unfolding valid-line-def by auto
then show \(\text{thesis} \)
 using \(i > j \) by cases (auto intro: valid-point.intros)
qed (use \(j \) in \(\text{auto intro: valid-point.intros} \))
qed

lemma valid-line-cases:
\[l = \emptyset \lor \]
\(\lnot l = 0 = B \land \text{valid-line} (tl \ l) \lor \]
\text{length} \(l \geq 3 \land (\forall i < \text{length} \ l \ l ! i = R) \lor \]
\(\exists j < \text{length} \ l \ j \geq 3 \land (\forall i < j. \ l ! i = R) \land l ! j = B \land \text{valid-line} (\text{drop} \ (j + 1) \ l) \)
if valid-line \(l \)
proof (cases \(l = \emptyset \))
 case True
 then show \(\text{thesis} \)
 by (simp add: valid-line-def)
next
case False
show \(\text{thesis} \)
proof (cases \(l \ l ! 0 = B \))
 case True
 with \(l \neq \emptyset \) have \(l = B \# tl \ l \)
 by (cases \(l \) auto
 with \(\text{valid-line} \ b \ True \) show \(\text{thesis} \)
 by (metis valid-line-prepend-B-iff)
next
case False
from \(\text{valid-line} \ l \ l ! \neq \emptyset \) have valid-point \(l \ 0 \)
unfolding valid-line-def by auto
with False have red-start: \(\text{length} \ l \geq 3 \ l ! 0 = R \ l ! 1 = R \ l ! 2 = R \)
by (auto elim!: valid-point.cases simp: numeral-2-eq-2)
show \(\text{thesis} \)
proof (cases \(\forall i < \text{length} \ l. \ l ! i = R \))
 case True
 with \(\text{length} \ l \geq 3 \) show \(\text{thesis} \)
 by auto
next
case False
let \(S = \{ j. \ j < \text{length} \ l \land j \geq 3 \land l ! j = B \} \) let \(j = \text{Min} \ S \)
have B-ge-3: \(i \geq 3 \) if \(l ! i = B \) for \(i \)
proof --
consider \(i = 0 \mid i = 1 \mid i = 2 \mid i \geq 3 \)

by \atomize\-elim \atomize\ auto
then show \(i \geq 3 \)

using \red\-start \(l ! i = B \) by \cases\ auto

qed

from \False\ obtain \(i \) where \(l ! i = B \) \(i < \text{length } l \) \(i \geq 3 \)

by \(\begin{cases} \text{auto intro: B-ge-3 color.exhaust} \\ \text{rule Min-in, auto} \end{cases} \)

have \(\forall i < ?j. l ! i = R \)

proof

\begin{cases}
\fix i \assume i < ?j \ l ! i = B \\
\then have \(i \geq 3 \)
\by \(\begin{cases} \text{auto intro: B-ge-3} \\ \text{auto} \end{cases} \)
\with \begin{cases} \text{auto intro: Min-le} \\ \text{simp} \end{cases} \)
\then have \begin{cases} ?j \leq i \\
\with \begin{cases} \text{auto intro: Min-le} \\
\text{simp} \end{cases} \)
\have \begin{cases} \text{auto intro: color.exhaust} \\
\end{cases} \)
\then show \begin{cases} ?\thesis \\
\end{cases} \)
\end{cases}

qed

moreover have valid-line \(\begin{cases} \text{drop } (j + 1) \ l \end{cases} \)

proof \(\begin{cases} \text{rule valid-lineI} \\
\fix i \assume i < \text{length } \text{drop } (j + 1) \ l \\
\with \begin{cases} \text{auto intro: valid-line} \\
\end{cases} \)
\then show \begin{cases} \text{valid-point } \l (j + i + 1) \\
\end{cases} \)
\end{cases}

proof \cases

\case 2
then show \begin{cases} ?\thesis \\
\end{cases} \)

using \(j \) \(\begin{cases} \text{cases } i \text{ intro: valid-point.intros} \\
\end{cases} \)

next

\case \begin{cases} \text{prems: } 3 \\
\end{cases} \)

consider \(i = 0 \mid i = 1 \mid i > 1 \)

by \atomize\-elim \atomize\ auto
then show \begin{cases} ?\thesis \\
\end{cases} \)

using \(j \) \prems \by \cases \(\begin{cases} \text{auto intro: valid-point.intros} \\
\end{cases} \)

qed \(\begin{cases} \text{auto intro: valid-point.intros} \\
\end{cases} \)

qed

ultimately show \begin{cases} ?\thesis \\
\end{cases} \)

by \atomize\ auto

qed

qed
2.2. SOLUTION

qed

lemma valid-line-split:

\[l = \emptyset \lor (l!0 = B \land \text{valid-line} (\text{tl } l)) \lor \]
\[\text{length } l \geq 3 \land (\forall i < \text{length } l. l!i = R) \lor \]
\[(\exists j < \text{length } l. j \geq 3 \land (\forall i < j. l!i = R) \land l!j = B \land \text{valid-line} (\text{drop } (j + 1) l)) \]

using valid-line-cases cases-valid-line **by** blast

Connection to the easier definition given above

lemma valid-valid-line:

\[\text{valid } l \leftrightarrow \text{valid-line } l \]

by (induction \(l \) rule: length-induct, subst valid-line-split, subst valid-split, auto)

end
Array-Based Queuing Lock

3.1 Challenge

Array-Based Queuing Lock (ABQL) is a variation of the Ticket Lock algorithm with a bounded number of concurrent threads and improved scalability due to better cache behaviour.

We assume that there are N threads and we allocate a shared Boolean array $\text{pass}[]$ of length N. We also allocate a shared integer value $next$. In practice, $next$ is an unsigned bounded integer that wraps to 0 on overflow, and we assume that the maximal value of $next$ is of the form $kN - 1$. Finally, we assume at our disposal an atomic fetch_and_add instruction, such that $\text{fetch_and_add}(next, 1)$ increments the value of $next$ by 1 and returns the original value of $next$.

The elements of $\text{pass}[]$ are spinlocks, assigned individually to each thread in the waiting queue. Initially, each element of $\text{pass}[]$ is set to false, except $\text{pass}[0]$ which is set to true, allowing the first coming thread to acquire the lock. Variable $next$ contains the number of the first available place in the waiting queue and is initialized to 0.

Here is an implementation of the locking algorithm in pseudocode:

```plaintext
procedure abql_init()
    for i = 1 to N - 1 do
        pass[i] := false
    end-for
    pass[0] := true
    next := 0
end-procedure

function abql_acquire()
    var my_ticket := fetch_and_add(next, 1) mod N
    while not pass[my_ticket] do
        end-while
    return my_ticket
end-function

procedure abql_release(my_ticket)
    pass[my_ticket] := false
    pass[(my_ticket + 1) mod N] := true
end-procedure
```

Each thread that acquires the lock must eventually release it by calling $\text{abql_release}(\text{my_ticket})$.
where my_ticket is the return value of the earlier call of abql_acquire(). We assume that no thread tries to re-acquire the lock while already holding it, neither it attempts to release the lock which it does not possess. Notice that the first assignment in abql_release() can be moved at the end of abql_acquire().

Verification task 1. Verify the safety of ABQL under the given assumptions. Specifically, you should prove that no two threads can hold the lock at any given time.

Verification task 2. Verify the fairness, namely that the threads acquire the lock in order of request.

Verification task 3. Verify the liveness under a fair scheduler, namely that each thread requesting the lock will eventually acquire it.

You have liberty of adapting the implementation and specification of the concurrent setting as best suited for your verification tool. In particular, solutions with a fixed value of N are acceptable. We expect, however, that the general idea of the algorithm and the non-deterministic behaviour of the scheduler shall be preserved.
3.2 Solution

theory Challenge3
imports lib/Vcomp lib/DF-System
begin

The Isabelle Refinement Framework does not support concurrency. However, Isabelle is a general purpose theorem prover, thus we can model the problem as a state machine, and prove properties over runs.

For this polished solution, we make use of a small library for transition systems and simulations: DF-System. Note, however, that our definitions are still quite ad-hoc, and there are lots of opportunities to define libraries that make similar proofs simpler and more canonical.

We approach the final ABQL with three refinement steps:

1. We model a ticket lock with unbounded counters, and prove safety, fairness, and liveness.
2. We bound the counters by $\mod N$ and $\mod (k\times N)$ respectively
3. We implement the current counter by an array, yielding exactly the algorithm described in the challenge.

With a simulation argument, we transfer the properties of the abstract system over the refinements.

The final theorems proving safety, fairness, and liveness can be found at the end of this chapter, in Subsection 3.2.6.

3.2.1 General Definitions

We fix a positive number N of threads

consts $N :: \text{nat}$

specification $(N) \ N \not= 0 \\{\text{simp, intro!}\}; \ N \not= 0 \ by \ auto$

lemma $N \ gt 0 \\{\text{simp, intro!}\}; \ 0 < N \ by \ (cases \ N) \ auto$

A thread’s state, representing the sequence points in the given algorithm. This will not change over the refinements.

datatype thread =
 INIT
| is-WAIT: \text{WAIT} (ticket: nat)
| is-HOLD: \text{HOLD} (ticket: nat)
| is-REL: \text{REL} (ticket: nat)
3.2.2 Refinement 1: Ticket Lock with Unbounded Counters

System’s state: Current ticket, next ticket, thread states

Type-synonym
\(\text{astate} = \text{nat} \times \text{nat} \times (\text{nat} \Rightarrow \text{thread}) \)

Abbreviation
\(\text{cc} \equiv \text{fst} \)
\(\text{nn} s \equiv \text{fst} (\text{snd} s) \)
\(\text{tts} s \equiv \text{snd} (\text{snd} s) \)

The step relation of a single thread

Inductive
a-step-sng where

- **enter-wait**: \(\text{a-step-sng} (c,n,\text{INIT}) (c,(n+1),\text{WAIT} n) \)
- **loop-wait**: \(c \neq k \Longrightarrow \text{a-step-sng} (c,n,\text{WAIT} k) (c,n,\text{WAIT} k) \)
- **exit-wait**: \(\text{a-step-sng} (c,n,\text{HOLD} c) (c,n,\text{HOLD} c) \)
- **start-release**: \(\text{a-step-sng} (c,n,\text{REL} k) (c,n,\text{REL} k) \)
- **release**: \(\text{a-step-sng} (c,n,\text{REL} k) (k+1,n,\text{INIT}) \)

The step relation of the system

Inductive
a-step for \(t \) where

\[t < N; \text{a-step-sng} (c,n,\text{ts} t) (c',n',s') \]
\(\Longrightarrow \text{a-step} t (c,n,\text{ts} (t:=s')) \)

Initial state of the system

Definition
\(a_0 \equiv (0, 0, \lambda-. \text{INIT}) \)

Interpretation
\(A: \text{system a}_0 \text{ a-step} . \)

In our system, each thread can always perform a step

Lemma
\(\text{never-blocked}: A.\text{can-step} l s \longleftrightarrow l < N \)

Apply
\(\text{cases s; cases ts s l; simp} \)

Unfolding
\(A.\text{can-step-def} \)

Apply
\(\text{clarsimp simp; a-step.simps a-step-sng.simps; blast;} + \)

Done

Thus, our system is in particular deadlock free

Interpretation
\(A: \text{df-system a}_0 \text{ a-step} . \)

Apply
\(\text{unfold-locales} \)

Subgoal
\(\text{for s} \)

Using
\(\text{never-blocked}[\text{of 0 s}] \)

Unfolding
\(A.\text{can-step-def} \)

By
\(\text{auto} \)

Done

Safety: Mutual Exclusion

Predicates to express that a thread uses or holds a ticket

Definition
\(\text{has-ticket} s k \equiv s = \text{WAIT} k \lor s = \text{HOLD} k \lor s = \text{REL} k \)
3.2. SOLUTION

Lemma `has-ticket-simps[simp]`:

- `¬has-ticket INIT k`
- `has-ticket (WAIT k) k′ ←→ k′ = k`
- `has-ticket (HOLD k) k′ ←→ k′ = k`
- `has-ticket (REL k) k′ ←→ k′ = k`

Unfolding `has-ticket-def` **by** `auto`

Definition `locks-ticket s k ≡ s = HOLD k ∨ s = REL k`

Lemma `locks-ticket-simps[simp]`:

- `¬locks-ticket INIT k`
- `locks-ticket (WAIT k) k′ ←→ k′ = k`
- `locks-ticket (HOLD k) k′ ←→ k′ = k`
- `locks-ticket (REL k) k′ ←→ k′ = k`

Unfolding `locks-ticket-def` **by** `auto`

Lemma `holds-imp-uses`: `locks-ticket s k ⇒ has-ticket s k`

Unfolding `locks-ticket-def` **by** `auto`

We show the following invariant. Intuitively, it can be read as follows:

- Current lock is less than or equal next lock
- For all threads that use a ticket (i.e., are waiting, holding, or releasing):
 - The ticket is in between current and next
 - No other thread has the same ticket
 - Only the current ticket can be held (or released)

Definition `invar1 ≡ λ(c, n, ts). c ≤ n ∧ (∀ t, t < N ∧ has-ticket (ts t) k → c ≤ k ∧ k < n ∧ (∀ t′, t′ < N ∧ has-ticket (ts t′) k ∧ t ≠ t′ → k ≠ k′) ∧ (∀ k, k ≠ c → ¬locks-ticket (ts t) k))`

Lemma `is-invar1`: `A.is-invar invar1`

Apply `rule`

Subgoal **by** `(auto simp: invar1-def as0-def)`

Subgoal for `s s'`

Apply `(clarify)`

Apply `(erule alstep.cases)`

Apply `(erule astep-sng.cases)`

Apply `(clarsimp-all simp: invar1-def)`

Apply `fastforce`

Apply `fastforce`

Apply `fastforce`
apply fastforce
by (metis Suc-le-eq holds-imp-uses locks-ticket-def le-neq-implies-less)
done

From the above invariant, it’s straightforward to show mutual exclusion

\[A.\text{reachable } s; \ t<N; t' < N; t \neq t'; \ \text{is-HOLD} (tts s t); \ \text{is-HOLD} (tts s t') \Rightarrow False \]

apply (cases tts s t; simp)
apply (cases tts s t'; simp)
using A.invar-reachable[\(OF \) is-invar1, of s]
apply (auto simp; invar1-def)
by (metis locks-ticket-simps(3) has-ticket-simps(3))

lemma mutual-exclusion': \[A.\text{reachable } s; \ t<N; t' < N; \ t \neq t'; \ \text{locks-ticket} (tts s t) tk; \ \text{locks-ticket} (tts s t') tk' \Rightarrow False \]

apply (cases tts s t; simp; cases tts s t'; simp)
apply (cases tts s t'; simp)
using A.invar-reachable[\(OF \) is-invar1, of s]
apply (clarsimp-all simp; invar1-def)
unfolding locks-ticket-def has-ticket-def
apply metis+
done

Fairness: Ordered Lock Acquisition

We first show an auxiliary lemma: Consider a segment of a run from \(i \) to \(j \). Every thread that waits for a ticket in between the current ticket at \(i \) and the current ticket at \(j \) will be granted the lock in between \(i \) and \(j \).

lemma fair-aux:
assumes \(R: A.\text{is-run } s \)
assumes \(A: i < j \) \(cc \) (s i) \(\leq k k < cc \) (s j) \(t < N \) tts (s i) \(t = \text{WAIT} k \)
shows \(\exists l. i \leq l \land l < j \land \text{tts} (s l) t = \text{HOLD} k \)

proof –
interpret A: run as0 alstep s by unfold-locales fact
from A show \(\text{?thesis} \)
proof (induction \(j-i \) arbitrary: i)
case 0
then show \(\text{?case by auto} \)
next
case \((\text{Suc } i') \)

hence [simp]: \(i' = j - \text{Suc } i \) by auto
note IH=Suc.hyps(1)[\(OF \) this]
obtain t' where \texttt{alistp t' (s i) (s (Suc i))} by (rule A.stepE)

then show \texttt{?case using Suc.prems}

proof cases
 case (1 c n ts c' n' s')
 note [simp] = I(1,2,3)

 from A.run-invar[OF is-invar1, of i] have invar1 (c.n,ts) by auto

 note IH = this[unfolded invar1-def, simplified]

 from I(4) show \texttt{?thesis}
 proof (cases rule: astep-sng,cases)
 case enter-wait
 then show \texttt{?thesis}
 using IH Suc.prems apply (auto)
 by (metis I(2) Suc-leD Suc-lessI fst-conv leD distinct(1))

 next
 case (loop-wait k)
 then show \texttt{?thesis}
 using IH Suc.prems apply (auto)
 by (metis I(2) Suc-leD Suc-lessI fst-conv leD)

 next
 case (start-release k)
 then show \texttt{?thesis}
 apply (cases t'=t)
 subgoal
 using Suc.prems apply clarsimp
 by (metis I(2) Suc-leD Suc-lessI fst-conv leD
 less-or-eq-imp-le snd-conv)
 subgoal
 using Suc.prems IH
 apply auto
 by (metis I(2) Suc-leD Suc-lessI fst-conv leD)
 done

 next
 case (release k)
 then show \texttt{?thesis}
 apply (cases t'=t)
 using IH IH Suc.prems apply (auto)
 by (metis I(2) I(3) Suc-leD Suc-leI Suc-lessI fst-conv
 locks-ticket-simps(4) le-antisym not-less-eq-eq
 has-ticket-simps(2) has-ticket-simps(4))
 qed

 qed
40

CHAPTER 3. ARRAY-BASED QUEUING LOCK

qed

qed

lemma s-case-expand:
\[
(case s of (c, n, ts) \Rightarrow P c n ts) = P (cc s) (nn s) (tts s)
\]
by (auto split: prod.splits)

A version of the fairness lemma which is very detailed on the actual ticket numbers.
We will weaken this later.

lemma fair-aux2:
assumes \textit{RUN}: A.\textit{is-run} s
assumes \textit{ACQ}: \(t < \langle \text{N tts} \rangle (s \langle \text{Suc} \rangle i)) \Rightarrow \text{INIT} \langle \text{N tts} \rangle (s \langle \text{Suc} \rangle i)) \Rightarrow \text{WAIT} k\)
assumes \textit{HOLD}: \(i < j \Rightarrow \text{ts} (s \langle \text{Suc} \rangle i)) \Rightarrow \text{HOLD} k\)
assumes \textit{WAIT}: \(t' < \langle \text{N tts} \rangle (s \langle \text{Suc} \rangle i)) \Rightarrow \text{WAIT} k'\)

obtains \(l\) where \(i < l < j \Rightarrow \text{ts} (s \langle \text{Suc} \rangle l)) \Rightarrow \text{HOLD} k'\)

proof –
interpret A: run as \textit{0-alstep} s by unfold-locales fact

from ACQ \textit{WAIT} have [simp]: \(t \neq t'\) \(t' \neq t\) by auto
from ACQ have [simp]:
\[
nn (s \langle \text{Suc} \rangle i)) = \text{Suc} k
\]
\& \(cc (s \langle \text{Suc} \rangle i)) = cc (s \langle \text{Suc} \rangle i) \& \text{ts} (s \langle \text{Suc} \rangle i)) = (\text{ts} (s \langle \text{Suc} \rangle i)))) (t := \text{WAIT} k)\)
apply (rule-tac A.stepE[of \(i\)])
apply (erule alstep.cases)
apply (erule astep-sng.cases)
by (auto simp: nth-list-update split: if-splits)

from A.run-invar[\textit{OF is-invar1}, of \(i\)] have invar1 \((s \langle \text{Suc} \rangle i)) by auto
note \(\textit{I1} = \text{this}[\text{unfolded invar1-def, unfolded s-case-expand, simplified}]

from \textit{WAIT} \textit{I1} have \(k' < k\) by fastforce
from ACQ \textit{HOLD} have \(\text{Suc} \langle \text{Suc} \rangle i) \neq \langle \text{Suc} \rangle j\) by auto with \textit{HOLD} have \(\text{Suc} i < j\) by auto

have \(\textit{X1}: cc (s \langle \text{Suc} \rangle i)) \leq k'\) using \(\textit{I1} \textit{WAIT}\) by fastforce
have \(\textit{X2}: k' < \langle cc (s \langle \langle \text{Suc} \rangle j)\rangle\)
using A.run-invar[\textit{OF is-invar1}, of \(j\), unfolded invar1-def s-case-expand]
using \(k' < k\) \& \(t < \langle \text{N} \rangle \text{HOLD} (2)\)
apply clarsimp
by (metis locks-ticket-simps(3) has-ticket-simps(3))

from fair-aux[\textit{OF RUN} \textit{Suc} \(i < j\), of \(k' t'\), simplified] obtain \(l\) where
\(l > \text{Suc} i < j \Rightarrow \text{ts} (s \langle \text{Suc} \rangle l) \Rightarrow \text{HOLD} k'\)
using \textit{WAIT} \textit{X1} \textit{X2} by auto

thus \(?thesis\)
apply (rule-tac that[of \(l\)])
by auto

qed
3.2. SOLUTION

Lemma `find-hold-position`:
- Assumes `RUN`: `A.is-run s`
- Assumes `WAIT`: `t < N` `tts (s i) t = WAIT tk`
- Assumes `NWAIT`: `i < j` `tts (s j) t ≠ WAIT tk`
- Obtains `l` where `i < l ≤ j` `tts (s l) t = HOLD tk`

Proof —

Interpret `A`: `run as0 alstep s` by `unfold-locales fact`

From `WAIT(2)` `NWAIT` **have** `∃ l. i < l ∧ l ≤ j` `tts (s l) t = HOLD tk`

Proof (`induction j−i arbitrary: i`)

- **Case** 0 **then show** `?case` by `auto`
- **Next**
 - **Case** `(Suc i')`
 - **Hence** `[simp]: i' = j − Suc i` by `auto`
 - **Note** `IH = Suc.hyps(1)` [OF this]
 - Obtain `t'` where `alstep t' (s i) (s (Suc i))` by (rule `A.stepE`)
 - Then **show** `?case` by (cases `t = t'`; erule `alstep.cases`; erule `astep-sng.cases`)
 - **Apply** `auto`
 - **Using** `IH` `Suc.prems Suc.hyps(2)`
 - **Apply** (auto)
 - **Apply** (metis `Suc-lessD` `Suc-lessI` `fun-upd.same` `snd-conv`)
 - **Apply** (metis `Suc-lessD` `Suc-lessI` `fun-upd-other` `snd-conv`)
 - **Apply** (metis `Suc.prems(1)` `Suc-lessD` `Suc-lessI` `fun-upd-triv`)
 - **Apply** (metis `Suc-lessD` `Suc-lessI` `fun-upd-other` `snd-conv`)
 - **Apply** (metis `Suc-lessD` `Suc-lessI` `fun-upd-other` `snd-conv`)
 - **Apply** (metis `Suc-lessD` `Suc-lessI` `fun-upd-other` `snd-conv`)
 - **Done**
 - **Qed**
 - **Thus** `?thesis` using `that` by `blast`
 - **Qed**

Finally, we can show fairness, which we state as follows: Whenever a thread `t` gets a ticket, all other threads `t'` waiting for the lock will be granted the lock before `t`.

Theorem `fair`:
- Assumes `RUN`: `A.is-run s`
- Assumes `ACQ`: `t < N` `tts (s i) t = INIT is-WAIT (tts (s (Suc i)) t)`
 - **Thread** `t` calls `acquire` in step `i`
- Assumes `HOLD`: `i < j` `is-HOLD (tts (s j) t)`
 - **Thread** `t` holds lock in step `j`
- Assumes `WAIT`: `t' < N` `is-WAIT (tts (s i) t')`
 - **Thread** `t'` waits for lock at step `i`
- Obtains `l` where `i < l < j` `is-HOLD (tts (s l) t')`
 - **Then**, `t'` gets lock earlier
proof –
 obtain \(k \) where \(W_k : \text{tts} (s \ (\text{Suc} \ i)) t = \text{WAIT} \ k \) using \(\text{ACQ} \)
 by \(\langle \text{cases \ tts} (s \ (\text{Suc} \ i)) t \rangle \text{ auto} \)

 obtain \(k' \) where \(W_{k'} : \text{tts} (s \ i) t' = \text{WAIT} \ k' \) using \(\text{WAIT} \)
 by \(\langle \text{cases \ tts} (s \ i) t' \rangle \text{ auto} \)

 from \(\text{ACQ \ HOLD} \) have \(\text{Suc} \ i \neq j \) by \(\text{auto} \) with \(\text{HOLD} \) have \(\text{Suc} \ i < j \) by \(\text{auto} \)

 obtain \(j' \) where \(H'_j : \text{Suc} \ i < j' \leq j \) \(\text{tt} s (s \ j) t' = \text{HOLD} \ k \)
 apply \(\langle \text{rule \ find-hold-position} [\text{OF \ RUN} t < N \ W_k \ (\text{Suc} \ i < j)] \rangle \)
 using \(\text{HOLD} (2) \) by \(\text{auto} \)

 show ?thesis
 apply \(\langle \text{rule \ fair-\text{aux}2} [\text{OF \ RUN \ ACQ} (1,2) W_k - H'_j \ (3) \text{ WAIT} (1) W_k] \rangle \)
 subgoal using \(H'_j (1) \) by \(\text{simp} \)
 subgoal apply \(\langle \text{erule \ that} \rangle \) using \(H'_j (2) \) by \(\text{auto} \)
 done
 qed

Liveness

For all tickets in between the current and the next ticket, there is a thread that has
this ticket

definition \(\text{invar2} \)
\[
\equiv \lambda (c,n,ts). \ \forall k. \ c \leq k \land k < n \implies (\exists t < N. \ \text{has-ticket} (ts \ t) k)
\]

lemma \(\text{is-invar2}: \ A. \text{is-invar} \ \text{invar2} \)
apply \(\text{rule} \)
subgoal by \(\langle \text{auto \ simp: \ invar2-def \ as0-def} \rangle \)
subgoal for \(s \ s' \)
 apply \(\langle \text{clarsimp simp: \ invar2-def} \rangle \)
 apply \(\langle \text{erule \ alstep.cases; \ erule \ astep-sng.cases; \ clarsimp} \rangle \)
 apply \(\langle \text{metis \ less-antisym \ has-ticket-simps(1)} \rangle \)
 subgoal by \(\langle \text{metis \ has-ticket-simps(2)} \rangle \)
 subgoal by \(\langle \text{metis \ has-ticket-simps(2)} \rangle \)
 subgoal by \(\langle \text{metis \ has-ticket-simps(3)} \rangle \)
 subgoal
 apply \(\langle \text{frule A.invar-reachable [OF \ is-invar1]} \rangle \)
 unfolding \(\text{invar1-def} \)
 apply \(\text{clarsimp simp} \)
 by \(\langle \text{metis \ Suc-leD \ locks-ticket-simps(4)} \rangle \)
 not-less-eq-eq \(\text{has-ticket-simps(4)} \)
 done
done

If a thread \(t \) is waiting for a lock, the current lock is also used by a thread

corollary \(\text{current-lock-used} \):
assumes $R: A.reachable (c,n,ts)$
assumes $\text{WAIT}: t<N ts t = \text{WAIT} k$
 obtains t' where $t'<N \text{ has-ticket} (ts t') c$
 using $A.invar-reachable[\text{OF is-invar2} R]$
 and $A.invar-reachable[\text{OF is-invar1} R] \text{ WAIT}$
 unfolding $\text{invar1-def invar2-def}$ apply auto
by (metis (full-types) le-neq-implies-less not-le order-mono-setup refl
 has-ticket-simps (2))

Used tickets are unique (Corollary from invariant 1)

lemma $\text{has-ticket-unique}:[A.reachable (c,n,ts);\
 t<N; \text{has-ticket} (ts t) k; t'<N; \text{has-ticket} (ts t') k] \\
\implies t'=t$
apply (drule $A.invar-reachable[\text{OF is-invar1}]$)
by (auto simp: invar1-def)

We define the thread that holds a specified ticket

definition $\text{tkt-thread} \equiv \lambda ts k. \text{THE} t. t<N \land \text{has-ticket} (ts t) k$
lemma $\text{tkt-thread-eq}:
\text{assumes} R: A.reachable (c,n,ts)$
\text{assumes} $A: t<N \text{ has-ticket} (ts t) k$
\text{shows} $\text{tkt-thread} ts k = t$
using $\text{has-ticket-unique}[\text{OF} R]$
unfolding tkt-thread-def
using A by auto

lemma $\text{holds-only-current}:
\text{assumes} R: A.reachable (c,n,ts)$
\text{assumes} $A: t<N \text{ locks-ticket} (ts t) k$
\text{shows} $k=c$
using $A.invar-reachable[\text{OF is-invar1} R] A \text{ unfolding invar1-def}$
using holds-imp-uses by blast

For the inductive argument, we will use this measure, that decreases as a single thread progresses through its phases.

definition $\text{tweight} s \equiv \text{case} s \text{ of} \text{WAIT} - \Rightarrow 3::\text{nat} | \text{HOLD} - \Rightarrow 2 | \text{REL} - \Rightarrow 1 | \text{INIT} \Rightarrow 0$

We show progress: Every thread that waits for the lock will eventually hold the lock.

theorem $\text{progress}:
\text{assumes} FRUN: A.is-fair-run s
\text{assumes} A: t<N \text{ is-WAIT} (tts (s i) t)$
\text{shows} $\exists j>i. \text{is-HOLD} (tts (s j) t)$
proof –
interpret $A: \text{fair-run as0 alstep} s$ by unfold-locales fact
from A obtain k where $\text{Wk}: tts (s \ i) t = \text{WAIT} k$
We use the following induction scheme:

- Either the current thread increases (if we reach k, we are done)
- (lex) the thread using the current ticket makes a step
- (lex) another thread makes a step

```latex
define \textit{lrel} where \textit{lrel} \equiv 
\text{inv-image} (\text{measure id} <*\text{lex}*>) \text{measure id} <*\text{lex}*> \text{measure id} (\lambda i. (k - \text{cc} (s i), \text{tweight} (\text{tts} (s i) (\text{tkt-thread} (\text{tts} (s i)) (\text{cc} (s i))))), \text{A.dist-step} (\text{tkt-thread} (\text{tts} (s i)) (\text{cc} (s i)))) i)
```

```latex
have wf \textit{lrel} unfolding \textit{lrel-def} by auto
then show \texttt{?thesis} using A(I) Wk
proof (induction i)
  case (less i)
```

We name the components of this and the next state

```latex
obtain c n ts where \texttt{[simp]}: s i = (c,n,ts) by (cases s i)
from A.run-reachable[of i] have R: A.reachable (c,n,ts) by simp
```

```latex
obtain c' n' ts' where \texttt{[simp]}: s (Suc i) = (c',n',ts')
by (cases s (Suc i))
from A.run-reachable[of Suc i] have R': A.reachable (c',n',ts')
by simp
```

```latex
from less.prems have WAIT[\texttt{[simp]}]: ts t = WAIT k by simp
```

If thread t left waiting state, we are done

```latex
assume ts' t \neq \text{WAIT} k
hence ts' t = \text{HOLD} k using less.prems
apply (rule-tac A.stepE[of i])
apply (auto elim!: alstep.cases astep-sng.cases split: if-splits)
done
hence \texttt{?case} by auto
```

```latex
} moreover {
assume [simp]: ts' t = \text{WAIT} k
```

Otherwise, we obtain the thread tt that holds the current lock

```latex
obtain tt where \textit{UTT}: tt < N has-ticket (ts tt) c using current-lock-used[of c n ts t k]
```

```latex
by (cases tts (s i) t) auto
```
3.2. SOLUTION

and less.prems A.run-reachable[of i]
by auto

have [simp]: tkt-thread ts c = tt using tkt-thread-eq[OF R UTT]
note [simp] = tt<N

have A.can-step tt (s i) by (simp add: never-blocked)
hence ?case proof (cases rule: A.rstep-cases)
case (other t') — Another thread than tt makes a step.

The current ticket and tt’s state remain the same

hence [simp]: c' = c ∧ ts' tt = ts tt
using has-ticket-unique[OF R UTT, of t']
unfolding A.rstep-def
using holds-only-current[OF R, of t']
by (force elim!: alstep_cases astep-sng_cases)

Thus, tt is still using the current ticket

have [simp]: tkt-thread ts' c = tt
using UTT tkt-thread-eq[OF R', of tt c] by auto

Only the distance to tt’s next step has decreased

have (Suc i, i) ∈ lrel
unfolding lrel-def tweight-def by (simp add: other)

And we can apply the induction hypothesis

with less.IH[of Suc i] ⟨t<N⟩ show ?thesis
apply (auto) using Suc-lessD by blast
next
case THIS: this — The thread tt that uses the current ticket makes a step

show ?thesis
proof (cases ∃k'. ts tt = REL k')
case True — tt has finished releasing the lock
then have [simp]: ts tt = REL c
using UTT by auto

Thus, current increases

have [simp]: c' = Suc c
using THIS apply —
unfolding A.rstep-def
apply (erule alstep_cases, erule astep-sng_cases)
by auto

But is still less than k

from A.invar-reachable[OF is-invar1 R] have k>c
apply (auto simp: invar1-def)
by (metis UTT WAIT \ts tt = REL c) le-neq-implies-less
less.prems(1) thread.distinct(9) has-ticket-simps(2))

And we can apply the induction hypothesis

hence (Suc i, i) ∈ lrel
unfolding lrel-def by auto
with less.IH[of Suc i] [t<N] show ?thesis
apply (auto) using Suc-lessD by blast
next
case False — tt has acquired the lock, or started releasing it

Hence, current remains the same, but the weight of tt decreases

hence [simp]:
c' = c
∧ tweight (ts tt) > tweight (ts' tt)
∧ has-ticket (ts' tt) c
using THIS UTT apply —
unfolding A.rstep-def
apply (erule alstep.cases, erule astep-sng.cases)
by (auto simp: has-ticket-def twweight-def)

tt still holds the current lock

have [simp]: tkt-thread ts' c = tt
using tkt-thread-eq[OF R' tt<N, of c] by simp

And we can apply the IH

have (Suc i, i) ∈ lrel unfolding lrel-def by auto
with less.IH[of Suc i] [t<N] show ?thesis
qed (auto) using Suc-lessD by blast
qed

3.2.3 Refinement 2: Bounding the Counters

We fix the k from the task description, which must be positive

consts k::nat

specification (k) k-not0[simp]: k≠0 by auto
lemma k-gt0[simp]: 0<k by (cases k) auto

System’s state: Current ticket, next ticket, thread states

type-synonym bstate = nat × nat × (nat ⇒ thread)

The step relation of a single thread
3.2. SOLUTION

Inductive `bstep-sng` where

- `enter-wait: bstep-sng (c,n,INIT) (c,(n+1) mod (k*N),WAIT (n mod N))`
- `loop-wait: c≠tk → bstep-sng (c,n,WAIT tk) (c,n,WAIT tk)`
- `exit-wait: bstep-sng (c,n,WAIT c) (c,n,HOLD c)`
- `start-release: bstep-sng (c,n,HOLD tk) (c,n,REL tk)`
- `release: bstep-sng (c,n,REL tk) ((tk+1) mod N,n,INIT)`

The step relation of the system, labeled with the thread `t` that performs the step

Inductive `blstep` for `t` where

\[
\begin{cases}
\{ t<N; bstep-sng (c,n,ts t) (c',n',s') \} \\
\implies blstep t (c,n,ts) (c',n',ts(t:=s'))
\end{cases}
\]

Initial state of the system

Definition `bs_0 \equiv (0, 0, \lambda - INIT)`

Interpretation `B: system bs_0 blstep`.

Lemma `b-never-blocked: B.can-step l s \iff l < N`

Apply (cases `s`; cases `tts s l`; simp)

Unfolding `B.can-step-def`

Apply (clarsimp simp: `blstep.simps bstep-sng.simps`; blast)+

Done

Interpretation `B: df-system bs_0 blstep`

Apply `unfold-locales`

Subgoal for `s`

Using `b-never-blocked[of 0 s]`

Unfolding `B.can-step-def`

By `auto`

Done

Simulation

We show that the abstract system simulates the concrete one.

A few lemmas to ease the automation further below

Lemma `nat-sum-gtZ-iff[simp]`:

\[
finites \implies sum f s \neq (0::nat) \iff (\exists x \in s. f x \neq 0)
\]

By `simp`

Lemma `n-eq-Suc-sub1-conv[simp]`:
\[
n = Suc (n - Suc 0) \iff n\neq0\ by\ auto
\]

Lemma `mod-mult-mod-mod[simp]`:
\[
x\ mod\ (k*N)\ mod\ N = x\ mod\ N\ by\ (meson\ dvd-eq-mod-eq-0\ mod-mod-cancel\ mod-mult-self2-is-0)
\]

Lemma `mod-imp-eq-aux`:
\[
mod\ N = (\alpha::nat)\ mod\ N \then a\leq b \if b\prec a+N \if b = a
\]

By (metis `Divides.mod-less` Groups.add-ac(2) add-0-right)
CHAPTER 3. ARRAY-BASED QUEUING LOCK

le-add-diff-inverse less-diff-conv2 nat-minus-mod
nat-minus-mod-plus-right

lemma mod-eq-imp-eq:
\[[b \leq x; x < b + N; b \leq y; y < b + N; x \mod N = y \mod N] \implies x = y \]
proof
 assume a1: b \leq y
 assume a2: y < b + N
 assume a3: b \leq x
 assume a4: x < b + N
 assume a5: x \mod N = y \mod N
 have f6: x < y + N
 using a4 a1 by linarith
 have y < x + N
 using a3 a2 by linarith
 then show ?thesis
 using f6 a5 by (metis (no-types) mod-eq-imp-eq-aux nat-le-linear)
qed

Map the ticket of a thread

fun map-ticket where
 map-ticket f INIT = INIT |
 map-ticket f (WAIT tk) = WAIT (f tk) |
 map-ticket f (HOLD tk) = HOLD (f tk) |
 map-ticket f (REL tk) = REL (f tk)

lemma map-ticket-addsims[simp]:
 map-ticket f t = INIT \iff t=INIT
 map-ticket f t = WAIT tk \iff (\exists tk'. tk=f tk' \land t=WAIT tk')
 map-ticket f t = HOLD tk \iff (\exists tk'. tk=f tk' \land t=HOLD tk')
 map-ticket f t = REL tk \iff (\exists tk'. tk=f tk' \land t=REL tk')
 by (cases t; auto)+

We define the number of threads that use a ticket

fun ni-weight :: thread \Rightarrow nat where
 ni-weight INIT = 0 | ni-weight - = 1

lemma ni-weight-le1[simp]: ni-weight s \leq Suc 0
 by (cases s) auto

definition num-ni ts \equiv \sum_{i=0..<N. ni-weight (ts i)}

lemma num-ni-init[simp]: num-ni (\lambda-. INIT) = 0 by (auto simp: num-ni-def)

lemma num-ni-upd:
t<N \implies num-ni (ts(t:=s)) = num-ni ts - ni-weight (ts t) + ni-weight s
 by (auto simp: num-ni-def if-distrib[of ni-weight] sum.If-cases algebra-simps
 simp: sum-diff1-nat
)
3.2. SOLUTION

lemma num-ni-nz-if[simp]: \([t < N; ts t \neq INIT] \implies num-ni ts \neq 0\)
apply (cases ts t)
by (simp-all add: num-ni-def) force+

lemma num-ni-leN: num-ni ts \leq N
apply (clarsimp simp: num-ni-def)
apply (rule order-trans)
apply (rule sum-bounded-above[where K=1])
apply auto
done

We provide an additional invariant, considering the distance of \(c\) and \(n\). Although we could probably get this from the previous invariants, it is easy enough to prove directly.

definition invar3 \equiv \lambda (c,n,ts). n = c + num-ni ts

lemma is-invar3: A.is-invar invar3
apply (rule)
subgoal by (auto simp: invar3-def as0-def)
subgoal for s s'
apply clarify
apply (erule alstep.cases, erule astep-sng.cases)
apply (auto simp: invar3-def num-ni-upd)
using holds-only-current by fastforce
done

We establish a simulation relation: The concrete counters are the abstract ones, wrapped around.

definition sim-rel1 \equiv \lambda (c,n,ts) (ci,ni,tsi).
\(ci = c \mod N \land ni = n \mod (k*N) \land tsi = (\text{map-ticket} (\lambda t. t \mod N)) o ts\)

lemma sraux:
sim-rel1 (c,n,ts) (ci,ni,tsi) \implies ci = c \mod N \land ni = n \mod (k*N)
by (auto simp: sim-rel1-def Let-def)

lemma sraux2: \[sim-rel1 (c,n,ts) (ci,ni,tsi); t<N\]
\implies tsi t = map-ticket (\lambda x. x \mod N) (ts t)
by (auto simp: sim-rel1-def Let-def)

interpretation sim1: simulationI as0 alstep bs0 blstep sim-rel1
proof unfold-locales
show sim-rel1 as0 bs0
 by (auto simp: sim-rel1-def as0-def bs0-def)
next
fix as bs t bs'
assume Ra-aux: A.reachable as
 and Rc-aux: B.reachable bs
 and SIM: sim.rel1 as bs
 and CS: blstep t bs bs'
obtain c n ts where [simp]: as=((c,n,ts) by (cases as)
obtain ci ni tsi where [simp]: bs=((ci,ni,tsi) by (cases bs)
obtain c' ni' tsi' where [simp]: bs'=((c'i',ni',tsi') by (cases bs')
from Ra-aux have Ra: A.reachable (c,n,ts) by simp
from Rc-aux have Rc: B.reachable (ci,ni,tsi) by simp

from CS have t<N by cases auto
have [simp]: n = c + num-ni ts
 using A.invar-reachable[of is-invar3 Ra, unfolded invar3-def] by simp
have AUX1: c≤tk tk<c+N if ts t = WAIT tk for tk
 using that A.invarreachable[of is-invar1 Ra]
 apply (auto simp: invar1-def)
 using t<N apply fastforce
 using ⟨t<N⟩ num-ni-leN[of ts] by fastforce

from SIM CS have ∃as'. alstep t as as' ∧ sim.rel1 as' bs'
 apply simp
 apply (erule blstep.cases)
 apply (erule bstep-sng.casesx)
 apply clarsimp-all
subgoal
 apply (intro exI conjI)
 apply (rule alstep.intros)
 apply (simp add: sim.rel1-def Let-def)
 apply (simp add: sraux sraux2)
 apply (rule astep-sng.enter-wait)
 apply (simp add: sim-rel1-def; intro conjI ext)
 apply (auto simp: sim-rel1-def Let-def mod-simps)
 done
subgoal
 apply (clarsimp simp: sraux sraux2)
 apply (intro exI conjI)
 apply (rule alstep.intros)
 apply (simp add: sim-rel1-def Let-def)
 apply clarsimp
 apply (rule astep-sng.loop-wait)
 apply (auto simp: sim-rel1-def Let-def mod-simps)
 done
subgoal
 apply (clarsimp simp: sraux sraux2)
subgoal for tk
3.2. SOLUTION

apply \((\text{subgoal-tac } tk'=c)\)
apply \((\text{intro exI conjI})\)
apply \((\text{rule alstep.intros})\)
apply \((\text{simp add: sim-rel1-def Let-def})\)
apply \(\text{clarsimp}\)
apply \((\text{rule astep-sng.exit-wait})\)
apply \((\text{auto simp: sim-rel1-def Let-def mod-simps})\)
apply \((\text{clarsimp simp: sim-rel1-def Let-def})\)
apply \((\text{erule mod-eq-imp-eq-aux})\)
apply \((\text{auto simp: AUX1})\)
done

subgoal
apply \((\text{clarsimp simp: sraux sraux2})\)
apply \((\text{intro exI conjI})\)
apply \((\text{rule alstep.intros})\)
apply \((\text{simp add: sim-rel1-def Let-def})\)
apply \(\text{clarsimp}\)
apply \((\text{rule astep-sng.start-release})\)
apply \((\text{auto simp: sim-rel1-def Let-def mod-simps})\)
done

subgoal
apply \((\text{clarsimp simp: sraux sraux2})\)
apply \((\text{intro exI conjI})\)
apply \((\text{rule alstep.intros})\)
apply \((\text{simp add: sim-rel1-def Let-def})\)
apply \(\text{clarsimp}\)
apply \((\text{rule astep-sng.release})\)
apply \((\text{auto simp: sim-rel1-def Let-def mod-simps})\)
done
done
then show \(\exists as'. \text{sim-rel1 as'} bs' \land \text{alstep t as as'}\) by blast
next
fix as bs l
assume A.reachable as B.reachable bs sim-rel1 as bs A.can-step l as
then show B.can-step l bs using b-never-blocked never-blocked by simp
qed

Transfer of Properties

We transfer a few properties over the simulation, which we need for the next refinement step.

lemma xfer-locks-ticket:
assumes locks-ticket \(\map{\lambda t. t \mod N } \text{tki}(ts t)\) tk
obtains tk where \(tki=tk \mod N \text{ locks-ticket } (ts t)\) tk
using assms unfolding locks-ticket-def
by auto
lemma \textit{b-holds-only-current}:
\[B.\text{reachable} \quad (c, n, ts); \quad t < N; \quad \text{locks-ticket} \quad (ts \quad t) \quad tk \] \quad \implies \quad tk = c
\begin{align*}
& \text{apply (rule sim1.xfer-reachable, assumption)} \\
& \text{apply (clarsimp simp: sim-relI-def)} \\
& \text{apply (erule xfer-locks-ticket) +} \\
& \text{using holds-only-current by blast}
\end{align*}

lemma \textit{b-mutual-exclusion'}:
\[B.\text{reachable} \quad s; \quad t < N; \quad t' < N; \quad t \neq t'; \quad \text{locks-ticket} \quad (ts \quad s \quad t) \quad tk; \quad \text{locks-ticket} \quad (ts \quad s \quad t') \quad tk' \] \quad \implies \quad False
\begin{align*}
& \text{apply (rule sim1.xfer-reachable, assumption)} \\
& \text{apply (clarsimp simp: sim-relI-def)} \\
& \text{apply (erule xfer-locks-ticket) +} \\
& \text{apply (drule (3) mutual-exclusion'; simp)} \\
& \text{done}
\end{align*}

lemma \textit{xfer-has-ticket}:
\begin{align*}
& \text{assumes has-ticket} \quad (\lambda t \cdot \text{t mod N}) \quad (ts \quad t) \quad tki \\
& \text{obtains tk where} \quad \text{tki}=\text{tk mod N} \quad \text{has-ticket} \quad (ts \quad t) \quad tk \\
& \text{using assms unfolding has-ticket-def} \\
& \text{by auto}
\end{align*}

lemma \textit{has-ticket-in-range}:
\begin{align*}
& \text{assumes Ra: Areachable} \quad (c, n, ts) \ \text{and} \ t < N \ \text{and} \ U: \ \text{has-ticket} \quad (ts \quad t) \quad tk \\
& \text{show} \quad c \leq tk \ \land \ tk < c + N \\
& \text{proof –} \\
& \text{have [simp]:} \ n = c + \text{num-ni ts} \\
& \text{using A.invar-reachable[OF is-invar3 Ra, unfolded invar3-def] by simp} \\
& \text{show} \quad c \leq tk \ \land \ tk < c + N \\
& \text{using A.invar-reachable[OF is-invar1 Ra] U} \\
& \text{apply (auto simp: invar1-def)} \\
& \text{using} \ t < N \ \text{apply fastforce} \\
& \text{using} \ t < N \ \text{num-ni-leN[of ts]} \ \text{by fastforce}
\end{align*}
\text{qed}

lemma \textit{b-has-ticket-unique}:
\[B.\text{reachable} \quad (ci, ni, tsi); \quad t < N; \quad \text{has-ticket} \quad (tsi \quad t) \quad tki; \quad t' < N; \quad \text{has-ticket} \quad (tsi \quad t') \quad tk' \] \quad \implies \quad t' = t
\begin{align*}
& \text{apply (rule sim1.xfer-reachable, assumption)} \\
& \text{apply (auto simp: sim-relI-def)} \\
& \text{subgoal for} \ c \ n \ ts \\
& \quad \text{apply (erule xfer-has-ticket) +} \\
& \quad \text{apply simp} \\
& \quad \text{subgoal for} \ tk \ tk' \\
& \quad \text{apply (subgoal-tac} \ tk = tk') \\
& \quad \text{apply simp}
\end{align*}
3.2. SOLUTION

apply (frule (4) has-ticket-unique, assumption)
apply (frule (2) has-ticket-in-range[where \(tk=\text{tk}\)])
apply (frule (2) has-ticket-in-range[where \(tk=\text{tk}'\)])
apply (auto simp: mod-simps)
done

done

done

3.2.4 Refinement 3: Using an Array

Finally, we use an array instead of a counter, thus obtaining the exact data structures from the challenge assignment.

Note that we model the array by a list of Booleans here.

System’s state: Current ticket array, next ticket, thread states

type-synonym cstate = bool list × nat × (nat ⇒ thread)

The step relation of a single thread

inductive cstep-sng where
 enter-wait: cstep-sng (p,n,INIT) (p,(n+1) mod (k*N),WAIT (n mod N))
| loop-wait: ¬p!tk \implies cstep-sng (p,n,WAIT tk) (p,n,WAIT tk)
| exit-wait: p!tk \implies cstep-sng (p,n,WAIT tk) (p,n,HOLD tk)
| start-release: cstep-sng (p,n,HOLD tk) (p|tk:=False\}_n,REL tk)
| release: cstep-sng (p,n,REL tk) (p|(tk+1) mod N := True\}_n,INIT)

The step relation of the system, labeled with the thread \(t\) that performs the step

inductive clstep for \(t\) where
 \[[t<\text{\texttt{N}}, cstep-sng (c,n,ts t) (c',n',s') \] \implies clstep t (c,n,ts) (c',n',ts(t:=s'))\]

Initial state of the system

definition c\text{\texttt{S}}_0 \equiv ((\text{replicate N False})[0:=\text{True}], 0, λ-. INIT)

interpretation C: system c\text{\texttt{S}}_0 clstep .

lemma c-never-blocked: C.can-step l s \iff l<\text{\texttt{N}}
apply (cases s; cases tss t l; simp)
unfolding C.can-step-def
apply (clarsimp-all simp: clstep.simps cstep-sng.simps)
by metis

interpretation C: df-system c\text{\texttt{S}}_0 clstep
apply unfold-locales
subgoal for \(s\)
using c-never-blocked[of 0 s]
unfolding C.can-step-def
by auto
We establish another invariant that states that the ticket numbers are bounded.

Definition invar4

\[
\equiv \lambda (c,n,ts). c < N \land (\forall t < N. \forall tk. has-ticket (ts t) tk \longrightarrow tk < N)
\]

Lemma is-invar4: B.is-invar invar4

apply (rule)

subgoal for s s'

apply clarify

apply (erule blstep.cases, erule bstep-sng.cases)

unfolding invar4-def

apply safe

apply (metis N-gt0 fun-upd-other fun-upd-same mod-mod-trivial
nat-mod-len has-ticket-simps(2))

apply (metis fun-upd-triv)

apply (metis fun-upd-other fun-upd-same has-ticket-simps(3))

apply (metis fun-upd-other fun-upd-same has-ticket-def has-ticket-simps(4))

using mod-less-divisor apply blast

apply (metis fun-upd-apply thread.distinct(1) thread.distinct(3)
thread.distinct(5) has-ticket-def)

done

done

We define a predicate that describes that a thread of the system is at the release sequence point — in this case, the array does not have a set bit, otherwise, the set bit corresponds to the current ticket.

Definition is-REL-state \(\equiv \lambda ts. \exists t < N. \exists tk. ts t = REL tk \)

Lemma is-REL-state-simps[simp]:

\[t < N \Rightarrow is-REL-state (ts(t := REL tk)) \]

\[t < N \Rightarrow \neg is-REL (ts t) \Rightarrow \neg is-REL s' \]

\[\Rightarrow is-REL-state (ts(t := s')) \Rightarrow is-REL-state ts \]

unfolding is-REL-state-def

apply (auto; fail) []

apply auto []

by (metis thread.distinct(12))

Lemma is-REL-state-aux1:

assumes R: Breachable (c,n,ts)

assumes REL: is-REL-state ts

assumes t < N and [simp]: ts t = WAIT tk

shows tk \(\neq\) c

using REL unfolding is-REL-state-def

apply clarify

subgoal for t' tk'

using b-has-ticket-unique[OF R t < N, of tk t']

using b-holds-only-current[OF R, of t' tk']
by (auto)
done

lemma is-REL-state-aux2:
assumes R: B.reachable (c,n,ts)
assumes A: t<N ts t = REL tk
shows ¬is-REL-state (ts(t:=INIT))
using b-holds-only-current[OF R] A
using b-mutual-exclusion"[OF R]
apply (clarsimp simp: is-REL-state-def)
by fastforce

Simulation relation that implements current ticket by array

definition sim-rel2 ≡ \((c,n,ts)\) (ci,ni,tsi).
(if is-REL-state ts then
 ci = replicate N False
else
 ci = (replicate N False)[c:=True]
)∧ ni = n ∧ tsi = ts

interpretation sim2: simulation1 bs0 blstep cs0 clstep sim-rel2
proof unfold-locales
 show sim-rel2 bs0 cs0
 by (auto simp: sim-rel2-def bs0-def cs0-def is-REL-state-def)
next
 fix bs cs t cs'
 assume Rc-aux: B.reachable bs
 and Rd-aux: C.reachable cs
 and SIM: sim-rel2 bs cs
 and CS: clstep t cs cs'
 obtain c n ts where [simp]: bs=(c,n,ts) by (cases bs)
 obtain ci ni tsi where [simp]: cs=(ci,ni,tsi) by (cases cs)
 obtain ci' ni' tsi' where [simp]: cs'=(ci',ni',tsi') by (cases cs')
 from Rc-aux have Rc: B.reachable (c,n,ts) by simp
 from Rd-aux have Rd: C.reachable (ci,ni,tsi) by simp
 from CS have t<N by cases auto
 have [simp]: tk<N if ts t = WAIT tk for tk
 using B.invar-reachable[OF is-invar4 Rc] that t<N
 by (auto simp: invar4-def)
 have HOLD-AUX: tk=c if ts t = HOLD tk for tk
 using b-holds-only-current[OF Rc t<N, of tk] that by auto
 have REL-AUX: tk=c if ts t = REL tk t<N for t tk
 using b-holds-only-current[OF Rc t<N, of tk] that by auto
have [simp]: $c < N$ using B invar-reachable[OF is-invar4 Rc]
by (auto simp: invar4-def)

have [simp]:
replicate N False $\not\approx$ replicate N False[c := True]
replicate N False[c := True] $\not\approx$ replicate N False
apply (auto simp: list-eq-iff-nth-eq nth-list-update)
using $c < N$ by blast+

have [simp]:
replicate N False[c := True] ! d \iff d if $d < N$ for d
using that
by (auto simp: list-eq-iff-nth-eq nth-list-update)

have [simp]: replicate N False[tk := False] = replicate N False for tk
by (auto simp: list-eq-iff-nth-eq nth-list-update)

from SIM CS have $\exists bs'. blstep t bs bs' \land sim-rel2 bs' cs'$
apply simp
apply (subst (asm) sim-rel2-def)
apply (erule clstep.cases)
apply (erule cstep-sng.cases)
apply clarsimp-all
subgoal
apply (intro exI conjI)
apply (rule blstep.intros)
apply (simp)
applyclarsimp
apply (rule bstep-sng.enter-wait)
apply (auto simp: sim-rel2-def split: if-splits)
done
subgoal for tk'
apply (intro exI conjI)
apply (rule blstep.intros)
apply (simp)
apply(clarsimp)
apply (rule bstep-sng.loop-wait)
subgoal
apply (clarsimp simp: sim-rel2-def split: if-splits)
apply (frule (2) is-REL-state-aux1[OF Rc])
by simp
subgoal by (auto simp: sim-rel2-def split: if-splits)
done
subgoal
apply (intro exI conjI)
apply (rule blstep.intros)
apply (simp)
apply (clarsimp)
apply (clarsimp simp: split: if-splits)
apply (rule bstep-sng.exit-wait)
apply (auto simp: sim-rel2-def split: if-splits)
done

subgoal
apply (intro exI conjI)
apply (rule blstep.intros)
apply (simp)
apply clarsimp
apply (rule bstep-sng.start-release)
apply (auto simp: sim-rel2-def dest: HOLD-AUX split: if-splits)
done

subgoal
apply (intro exI conjI)
apply (rule blstep.intros)
apply (simp)
apply clarsimp
apply (rule bstep-sng.release)
apply (auto simp: sim-rel2-def dest: is-REL-state-aux2[OF Rc]
 split: if-splits)
by (metis fun-upd-triv is-REL-state-simps(1))
done
then show \(\exists bs'. \ simrel2 \ bs' cs' \land \ blstep \ t \ bs \ bs' \) by blast

next
fix bs cs l
assume B. reachable bs C. reachable cs sim-rel2 bs cs B. can-step l bs
then show C. can-step l cs using c-never-blocked b-never-blocked by simp
qed

3.2.5 Transfer Setup

We set up the final simulation relation, and the transfer of the concepts used in the correctness statements.

definition sim-rel \(\equiv \) sim-rel1 OO sim-rel2
interpretation sim: simulation as0 alstep cs0 clstep sim-rel
unfolding sim-rel-def
by (rule sim-trans) unfold-locales

lemma xfer-holds:
 assumes sim-rel s cs
 shows is-HOLD (tts cs t) \(\iff \) is-HOLD (tts s t)
 using assms unfolding sim-rel-def sim-rel1-def sim-rel2-def
 by (cases tts cs t) auto

lemma xfer-waits:
assumes \(\text{sim-rel } s \; cs \)
shows \(\text{is-WAIT} \; (\text{tts} \; cs \; t) \rightleftharpoons \text{is-WAIT} \; (\text{tts} \; s \; t) \)
using \(\text{assms} \; \text{unfolding} \; \text{sim-rel-def} \; \text{sim-rel1-def} \; \text{sim-rel2-def} \)
by \(\text{(cases} \; \text{tts} \; cs \; t) \; \text{auto} \)

Lemma xfer-init:
assumes \(\text{sim-rel } s \; cs \)
shows \(\text{tts} \; cs \; t = \text{INIT} \rightleftharpoons \text{tts} \; s \; t = \text{INIT} \)
using \(\text{assms} \; \text{unfolding} \; \text{sim-rel-def} \; \text{sim-rel1-def} \; \text{sim-rel2-def} \)
by \(\text{auto} \)

3.2.6 Main Theorems

Trusted Code Base

Note that the trusted code base for these theorems is only the formalization of the concrete system as defined in Section 3.2.4. The simulation setup and the abstract systems are only auxiliary constructions for the proof.

For completeness, we display the relevant definitions of reachability, runs, and fairness here:

\[
C.\text{step} \; s \; s' = (\exists l. \; \text{clstep} \; l \; s \; s')
\]

\[
C.\text{reachable} \equiv C.\text{step}^* \; \text{cs}_0
\]

\[
C.\text{is-lrun} \; l \; s \equiv s \; 0 = \text{cs}_0 \land (\forall i. \; \text{clstep} \; (l \; i) \; (s \; i) \; (s \; (\text{Suc} \; i)))
\]

\[
C.\text{is-run} \; s \equiv \exists l. \; C.\text{is-lrun} \; l \; s
\]

\[
C.\text{is-lfair} \; l \; s \; ss \equiv \forall l \; i. \; \exists j \geq i. \; \neg C.\text{can-step} \; l \; (ss \; j) \lor ls \; j = \; l
\]

\[
C.\text{is-fair-run} \; s \equiv \exists l. \; C.\text{is-lrun} \; l \; s \land C.\text{is-lfair} \; l \; s
\]

Safety

We show that there is no reachable state in which two different threads hold the lock.

Theorem final-mutual-exclusion:

\[
[C.\text{reachable} \; s; \; t < N; \; t' < N; \; t \neq t'; \; \text{is-HOLD} \; (\text{tts} \; s \; t); \; \text{is-HOLD} \; (\text{tts} \; s' \; t')] \implies \text{False}
\]

apply \((\text{erule}\; \text{sim.xfer-reachable})\)

apply \((\text{simp add}\; \text{xfer-holds})\)

by \((\text{erule}\; (5)\; \text{mutual-exclusion})\)

Fairness

We show that, whenever a thread \(t \) draws a ticket, all other threads \(t' \) waiting for the lock will be granted the lock before \(t \).

Theorem final-fair:
3.2. SOLUTION

assumes RUN: C.is-run s
assumes ACQ: t<N and tts (s i) t=INIT and is-WAIT (tts (s (Suc i)) t)
— Thread t draws ticket in step i
assumes HOLD: i<j and is-HOLD (tts (s j) t)
— Thread t holds lock in step j
assumes WAIT: t'<N and is-WAIT (tts (s i) t')
— Thread t' waits for lock at step i
obtains l where i<l and l<j and is-HOLD (tts (s l) t')
— Then, t' gets lock earlier
using RUN
proof (rule sim.xfer-run)
fix as
assume Ra: A.is-run as and SIM[rule-format]: \forall i. sim-rel (as i) (s i)

note XFER = xfer-init[OF SIM] xfer-holds[OF SIM] xfer-waits[OF SIM]

show \?thesis
 using assms
 apply (simp add: XFER)
 apply (erule (6) fair[OF Ra])
 apply (erule (1) that)
 apply (simp add: XFER)
 done
qed

Liveness

We show that, for a fair run, every thread that waits for the lock will eventually
hold the lock.

theorem final-progress:
 assumes FRUN: C.is-fair-run s
 assumes WAIT: t<N and is-WAIT (tts (s i) t)
 shows \exists j>i. is-HOLD (tts (s j) t)
 using FRUN
proof (rule sim.xfer-fair-run)
fix as
assume Ra: A.is-fair-run as
 and SIM[rule-format]: \forall i. sim-rel (as i) (s i)

note XFER = xfer-init[OF SIM] xfer-holds[OF SIM] xfer-waits[OF SIM]

show \?thesis
 using assms
 apply (simp add: XFER)
 apply (erule (1) progress[OF Ra])
 done
qed

end