A Generic Framework for Verified Compilers

Martin Desharnais

March 17, 2025

Abstract

This is a generic framework for formalizing compiler transformations. It leverages Isabelle/HOLs locales to abstract over concrete languages and transformations. It states common definitions for language semantics, program behaviours, forward and backward simulations, and compilers. We provide generic operations, such as simulation and compiler composition, and prove general (partial) correctness theorems, resulting in reusable proof components. For more details, please see our paper [1].

Contents

1	Infi	nitely Transitive Closure	2		
2	The Dynamic Representation of a Language				
	2.1	Behaviour of a dynamic execution	4		
	2.2	Safe states	5		
3	The Static Representation of a Language				
	3.1	Program behaviour	6		
4	We	ll-foundedness of Relations Defined as Predicate Func-			
	tior	ıs	6		
	4.1	Lexicographic product	6		
	4.2	Lexicographic list	7		
5	Sim	nulations Between Dynamic Executions	11		
	5.1	Backward simulation	11		
		5.1.1 Preservation of behaviour	12		
	5.2	Forward simulation	12		
		5.2.1 Preservation of behaviour	13		
		5.2.2 Forward to backward	13		
	5.3	Bisimulation	13		
	5.4	Composition of simulations	16		

		5.4.1	Composition of backward simulations	16	
		5.4.2	Composition of forward simulations	16	
		5.4.3	Composition of bisimulations	17	
	5.5	Miscel	laneous	17	
6	Compiler Between Static Representations				
	6.1	Preser	vation of behaviour	19	
	6.2	Comp	osition of compilers	20	
7	Fix	point c	of Converging Program Transformations	20	
the	eory	Behavio	ur		
iı	npor	ts Main			
be	$_{ m gin}$				
	-		$behaviour = \\ ate \mid Diverges \mid is\text{-}wrong: Goes\text{-}wrong 'state$		

Terminating behaviours are annotated with the last state of the execution in order to compare the result of two executions with the *rel-behaviour* relation. The exact meaning of the three behaviours is defined in the semantics locale end

1 Infinitely Transitive Closure

```
theory Inf
  imports Main
begin
coinductive inf :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \Rightarrow bool for r where
   \textit{inf-step: } r \; x \; y \Longrightarrow \textit{inf } r \; y \Longrightarrow \textit{inf } r \; x
coinductive inf-wf :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow ('b \Rightarrow 'b \Rightarrow bool) \Rightarrow 'b \Rightarrow 'a \Rightarrow bool
for r order where
   inf\text{-}wf: order\ n\ m \Longrightarrow inf\text{-}wf\ r\ order\ n\ x \Longrightarrow inf\text{-}wf\ r\ order\ m\ x \mid
  inf\text{-}wf\text{-}step: r^{++} x y \Longrightarrow inf\text{-}wf \ r \ order \ n \ y \Longrightarrow inf\text{-}wf \ r \ order \ m \ x
lemma inf-wf-to-step-inf-wf:
   assumes wfp order
   shows inf-wf r order n x \Longrightarrow \exists y \ m. \ r \ x \ y \land inf-wf \ r \ order \ m \ y
\langle proof \rangle
lemma inf-wf-to-inf:
  assumes wfp order
  shows inf-wf r order n x \Longrightarrow inf r x
\langle proof \rangle
lemma step-inf:
```

```
assumes right-unique r
  shows r x y \Longrightarrow inf r x \Longrightarrow inf r y
  \langle proof \rangle
lemma star-inf:
  assumes right-unique r
  shows r^{**} x y \Longrightarrow inf r x \Longrightarrow inf r y
\langle proof \rangle
end
theory Transfer-Extras
  imports Main
begin
{f lemma}\ rtranclp	ext{-}complete	ext{-}run	ext{-}right	ext{-}unique:
  fixes R::'a \Rightarrow 'a \Rightarrow bool and x y z :: 'a
  assumes right-unique R
  shows R^{**} x y \Longrightarrow (\nexists w. R y w) \Longrightarrow R^{**} x z \Longrightarrow (\nexists w. R z w) \Longrightarrow y = z
\langle proof \rangle
{f lemma}\ tranclp\mbox{-}complete\mbox{-}run\mbox{-}right\mbox{-}unique:
  fixes R :: 'a \Rightarrow 'a \Rightarrow bool \text{ and } x y z :: 'a
  assumes right-unique R
  shows R^{++} x y \Longrightarrow (\nexists w. R y w) \Longrightarrow R^{++} x z \Longrightarrow (\nexists w. R z w) \Longrightarrow y = z
  \langle proof \rangle
end
\mathbf{2}
       The Dynamic Representation of a Language
theory Semantics
  imports Main Behaviour Inf Transfer-Extras begin
The definition of programming languages is separated into two parts: an
abstract semantics and a concrete program representation.
definition finished :: ('a \Rightarrow 'a \Rightarrow bool) \Rightarrow 'a \Rightarrow bool where
  finished r x = (\nexists y. \ r \ x \ y)
lemma finished-star:
  assumes finished r x
  shows r^{**} x y \Longrightarrow x = y
\langle proof \rangle
```

 $step :: 'state \Rightarrow 'state \Rightarrow bool (infix \leftrightarrow 50)$ and

 $\mathit{final}\text{-}\mathit{finished}\colon\mathit{final}\ s\Longrightarrow\mathit{finished}\ \mathit{step}\ s$

locale semantics =

assumes

 $final :: 'state \Rightarrow bool$

begin

The semantics locale represents the semantics as an abstract machine. It is expressed by a transition system with a transition relation (\rightarrow) —usually written as an infix \rightarrow arrow—and final states final.

```
lemma finished-step:
  step \ s \ s' \Longrightarrow \neg finished \ step \ s
\langle proof \rangle
abbreviation eval :: 'state \Rightarrow 'state \Rightarrow bool (infix \langle \rightarrow^* \rangle 50) where
  eval \equiv step^{**}
abbreviation inf-step :: 'state \Rightarrow bool where
  inf-step \equiv inf step
notation
  inf-step (\langle '(\rightarrow^{\infty}')\rangle [] 50) and
  inf-step (\langle - \rightarrow^{\infty} \rangle [55] 50)
lemma inf-not-finished: s \to^{\infty} \implies \neg finished step s
  \langle proof \rangle
{f lemma} eval\text{-}deterministic:
  assumes
     deterministic: \bigwedge x \ y \ z. step x \ y \Longrightarrow step \ x \ z \Longrightarrow y = z and
     s1 \rightarrow^* s2 and s1 \rightarrow^* s3 and finished step s2 and finished step s3
  shows s2 = s3
\langle proof \rangle
lemma step-converges-or-diverges: (\exists s'. s \rightarrow^* s' \land finished step s') \lor s \rightarrow^{\infty}
  \langle proof \rangle
```

2.1 Behaviour of a dynamic execution

```
inductive state-behaves :: 'state \Rightarrow 'state behaviour \Rightarrow bool (infix \Leftrightarrow 50) where state-terminates:

s1 \to^* s2 \Longrightarrow finished \ step \ s2 \Longrightarrow final \ s2 \Longrightarrow s1 \downarrow (Terminates \ s2) \mid state-diverges:

s1 \to^\infty \Longrightarrow s1 \downarrow Diverges \mid state-goes-wrong:

s1 \to^* s2 \Longrightarrow finished \ step \ s2 \Longrightarrow \neg \ final \ s2 \Longrightarrow s1 \downarrow (Goes-wrong \ s2)
```

Even though the (\rightarrow) transition relation in the *semantics* locale need not be deterministic, if it happens to be, then the behaviour of a program becomes deterministic too.

```
lemma right-unique-state-behaves:

assumes

right-unique (\rightarrow)

shows right-unique (\downarrow)
```

```
\langle proof \rangle
lemma left-total-state-behaves: left-total (\downarrow)
\langle proof \rangle
2.2
           Safe states
definition safe where
  safe \ s \longleftrightarrow (\forall s'. \ step^{**} \ s \ s' \longrightarrow final \ s' \lor (\exists s''. \ step \ s' \ s''))
lemma final-safeI: final s \Longrightarrow safe s
   \langle proof \rangle
lemma step-safe: step s s' \Longrightarrow safe s \Longrightarrow safe s'
lemma steps-safe: step^{**} s s' \Longrightarrow safe s \Longrightarrow safe s'
   \langle proof \rangle
\mathbf{lemma}\ safe\text{-}state\text{-}behaves\text{-}not\text{-}wrong:
  assumes safe s and s \downarrow b
  shows \neg is-wrong b
  \langle proof \rangle
end
```

3 The Static Representation of a Language

```
theory Language imports Semantics begin  
\begin{aligned} & \textbf{locale } language = \\ & semantics \ step \ final \\ & \textbf{for} \\ & step :: 'state \Rightarrow 'state \Rightarrow bool \ \textbf{and} \\ & final :: 'state \Rightarrow bool + \\ & \textbf{fixes} \\ & load :: 'prog \Rightarrow 'state \Rightarrow bool \end{aligned}
```

context language begin

end

The language locale represents the concrete program representation (type variable 'prog), which can be transformed into a program state (type variable 'state) by the load function. The set of initial states of the transition system is implicitly defined by the codomain of load.

3.1 Program behaviour

```
definition prog-behaves :: 'prog \Rightarrow 'state\ behaviour \Rightarrow bool\ (infix < \Downarrow > 50) where prog-behaves = load OO state-behaves
```

If both the *load* and *step* relations are deterministic, then so is the behaviour of a program.

```
 \begin{array}{c} \textbf{lemma} \ right\text{-}unique\text{-}prog\text{-}behaves\text{:}} \\ \textbf{assumes} \\ right\text{-}unique\text{-}load\text{:} \ right\text{-}unique \ load \ \textbf{and}} \\ right\text{-}unique\text{-}step\text{:} \ right\text{-}unique \ step} \\ \textbf{shows} \ right\text{-}unique \ prog\text{-}behaves} \\ \langle proof \rangle \\ \textbf{end} \\ \end{array}
```

end

4 Well-foundedness of Relations Defined as Predicate Functions

```
theory Well-founded
imports Main
begin
```

4.1 Lexicographic product

```
context
  fixes
    r1 :: 'a \Rightarrow 'a \Rightarrow bool and
    r2 :: 'b \Rightarrow 'b \Rightarrow bool
begin
definition lex-prodp :: 'a \times 'b \Rightarrow 'a \times 'b \Rightarrow bool where
  lex-prodp x y \equiv r1 (fst x) (fst y) \vee fst x = fst y \wedge r2 (snd x) (snd y)
lemma lex-prodp-lex-prod:
  shows lex-prod p(x, y) \in lex-prod \{ (x, y), r1 \ x \ y \} \{ (x, y), r2 \ x \ y \}
  \langle proof \rangle
lemma lex-prodp-wfP:
  assumes
    wfp r1 and
    wfp r2
  \mathbf{shows}\ \mathit{wfp}\ \mathit{lex-prodp}
\langle proof \rangle
end
```

4.2 Lexicographic list

```
context
  fixes order :: 'a \Rightarrow 'a \Rightarrow bool
begin
inductive lexp :: 'a \ list \Rightarrow 'a \ list \Rightarrow bool \ \mathbf{where}
  lexp-head: order x \ y \Longrightarrow length \ xs = length \ ys \Longrightarrow lexp \ (x \# xs) \ (y \# ys)
  lexp-tail: lexp xs ys \Longrightarrow lexp (x \# xs) (x \# ys)
end
lemma lexp-prepend: lexp order ys zs \Longrightarrow lexp order (xs @ ys) (xs @ zs)
  \langle proof \rangle
lemma lexp-lex: lexp order xs ys \longleftrightarrow (xs, ys) \in lex \{(x, y). order x y\}
\langle proof \rangle
lemma lex-list-wfP: wfP order \implies wfP (lexp order)
  \langle proof \rangle
theory Lifting-Simulation-To-Bisimulation
  imports Well-founded
begin
definition stuck-state :: ('a \Rightarrow 'b \Rightarrow bool) \Rightarrow 'a \Rightarrow bool where
  stuck-state \mathcal{R} \ s \longleftrightarrow (\nexists s'. \ \mathcal{R} \ s \ s')
\mathbf{definition} simulation:
  bool) \Rightarrow bool
where
  simulation \mathcal{R}_1 \mathcal{R}_2 match order \longleftrightarrow
    (\forall i \ s1 \ s2 \ s1'. \ match \ i \ s1 \ s2 \longrightarrow \mathcal{R}_1 \ s1 \ s1' \longrightarrow
      (\exists s2' i'. \mathcal{R}_2^{++} s2 s2' \land match i' s1' s2') \lor (\exists i'. match i' s1' s2 \land order i')
i))
lemma finite-progress:
  fixes
    step1 :: 's1 \Rightarrow 's1 \Rightarrow bool and
    step2 :: 's2 \Rightarrow 's2 \Rightarrow bool and
    match :: 'i \Rightarrow 's1 \Rightarrow 's2 \Rightarrow bool and
    order :: 'i \Rightarrow 'i \Rightarrow bool
  assumes
     matching-states-agree-on-stuck:
      \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow stuck\text{-state step1} \ s1 \longleftrightarrow stuck\text{-state step2} \ s2 \ \mathbf{and}
    well-founded-order: wfp order and
    sim: simulation step1 step2 match order
  shows match i s1 s2 \Longrightarrow step1 s1 s1' \Longrightarrow
```

```
\exists m \ s1'' \ n \ s2'' \ i'. \ (step1 \frown m) \ s1' \ s1'' \land (step2 \frown Suc \ n) \ s2 \ s2'' \land match \ i'
s1" s2"
  \langle proof \rangle
context begin
private inductive match-bisim
  for \mathcal{R}_1 :: 'a \Rightarrow 'a \Rightarrow bool and \mathcal{R}_2 :: 'b \Rightarrow 'b \Rightarrow bool and
     match :: 'c \Rightarrow 'a \Rightarrow 'b \Rightarrow bool \text{ and } order :: 'c \Rightarrow 'c \Rightarrow bool
   bisim-stuck: stuck-state \mathcal{R}_1 s1 \Longrightarrow stuck-state \mathcal{R}_2 s2 \Longrightarrow match i s1 s2 \Longrightarrow
     match-bisim \mathcal{R}_1 \mathcal{R}_2 match order (0, 0) s1 s2
   bisim-steps: match i s1_0 s2_0 \Longrightarrow \mathcal{R}_1^{**} s1_0 s1 \Longrightarrow (\mathcal{R}_1 \stackrel{\frown}{\longrightarrow} Suc m) s1 s1' \Longrightarrow
     \mathcal{R}_2^{**} s2_0 s2 \Longrightarrow (\mathcal{R}_2 \stackrel{\frown}{\longrightarrow} Suc \ n) \ s2 \ s2' \Longrightarrow match \ i' \ s1' \ s2' \Longrightarrow
     match-bisim \mathcal{R}_1 \mathcal{R}_2 match order (m, n) s1 s2
{\bf theorem}\ \textit{lift-strong-simulation-to-bisimulation}:
  fixes
     step1 :: 's1 \Rightarrow 's1 \Rightarrow bool and
     step2 :: 's2 \Rightarrow 's2 \Rightarrow bool and
     match :: 'i \Rightarrow 's1 \Rightarrow 's2 \Rightarrow bool and
     order :: 'i \Rightarrow 'i \Rightarrow bool
   assumes
     matching-states-agree-on-stuck:
       \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow stuck\text{-state step1} \ s1 \longleftrightarrow stuck\text{-state step2} \ s2 \ \mathbf{and}
     well-founded-order: wfp order and
     sim: simulation step1 step2 match order
  obtains
     MATCH :: nat \times nat \Rightarrow 's1 \Rightarrow 's2 \Rightarrow bool  and
     ORDER :: nat \times nat \Rightarrow nat \times nat \Rightarrow bool
     \bigwedge i \ s1 \ s2. \ match \ i \ s1 \ s2 \Longrightarrow (\exists j. \ MATCH \ j \ s1 \ s2)
     \bigwedge j \ s1 \ s2. \ MATCH \ j \ s1 \ s2 \Longrightarrow
        (\exists i. stuck\text{-state step1 s1} \land stuck\text{-state step2 s2} \land match i s1 s2) \lor
        (\exists i \ s1' \ s2'. \ step1^{++} \ s1 \ s1' \land step2^{++} \ s2 \ s2' \land match \ i \ s1' \ s2') and
     wfp \ ORDER \ \mathbf{and}
       right-unique step1 \implies simulation \ step1 \ step2 \ (\lambda i \ s1 \ s2. \ MATCH \ i \ s1 \ s2)
ORDER and
       right-unique step2 \implies simulation step2 step1 (<math>\lambda i \ s2 \ s1. MATCH i \ s1 \ s2)
ORDER
\langle proof \rangle
end
definition safe-state where
  safe-state \mathcal{R} \ \mathcal{F} \ s \longleftrightarrow (\forall s'. \ \mathcal{R}^{**} \ s \ s' \longrightarrow stuck-state \ \mathcal{R} \ s' \longrightarrow \mathcal{F} \ s')
```

 $\mathbf{lemma}\ step entropy preserves entropy safe entropy s$

```
\mathcal{R} \ s \ s' \Longrightarrow safe\text{-state} \ \mathcal{R} \ \mathcal{F} \ s \Longrightarrow safe\text{-state} \ \mathcal{R} \ \mathcal{F} \ s'
   \langle proof \rangle
{f lemma}\ rtranclp-step-preserves-safe-state:
   \mathcal{R}^{**} s s' \Longrightarrow safe\text{-state } \mathcal{R} \mathcal{F} s \Longrightarrow safe\text{-state } \mathcal{R} \mathcal{F} s'
   \langle proof \rangle
lemma tranclp-step-preserves-safe-state:
   \mathcal{R}^{++} s s' \Longrightarrow safe-state \mathcal{R} \mathcal{F} s \Longrightarrow safe-state \mathcal{R} \mathcal{F} s'
   \langle proof \rangle
\mathbf{lemma}\ safe\text{-}state\text{-}before\text{-}step\text{-}if\text{-}safe\text{-}state\text{-}after:}
   assumes right-unique R
   shows \mathcal{R} \ s \ s' \Longrightarrow safe\text{-state} \ \mathcal{R} \ \mathcal{F} \ s' \Longrightarrow safe\text{-state} \ \mathcal{R} \ \mathcal{F} \ s
   \langle proof \rangle
{f lemma}\ safe-state-before-rtranclp-step-if-safe-state-after:
   assumes right-unique R
  shows \mathcal{R}^{**} s s' \Longrightarrow safe-state \mathcal{R} \mathcal{F} s' \Longrightarrow safe-state \mathcal{R} \mathcal{F} s
   \langle proof \rangle
\mathbf{lemma}\ safe\text{-}state\text{-}before\text{-}tranclp\text{-}step\text{-}if\text{-}safe\text{-}state\text{-}after:}
   assumes right-unique R
   shows \mathcal{R}^{++} s s' \Longrightarrow safe-state \mathcal{R} \mathcal{F} s' \Longrightarrow safe-state \mathcal{R} \mathcal{F} s
   \langle proof \rangle
\mathbf{lemma}\ safe\text{-}state\text{-}if\text{-}all\text{-}states\text{-}safe:
   fixes \mathcal{R} \mathcal{F} s
   assumes \bigwedge s. \mathcal{F} s \vee (\exists s'. \mathcal{R} s s')
  shows safe-state \mathcal{R} \mathcal{F} s
   \langle proof \rangle
lemma
   fixes \mathcal{R} \mathcal{F} s
   shows safe-state \mathcal{R} \mathcal{F} s \Longrightarrow \mathcal{F} s \lor (\exists s'. \mathcal{R} \ s \ s')
   \langle proof \rangle
lemma matching-states-agree-on-stuck-if-they-agree-on-final:
   assumes
      final1-stuck: \forall s1. final1 s1 \longrightarrow (\nexists s1'. step1 s1 s1') and
      final2\text{-}stuck: \forall s2. final2 \ s2 \longrightarrow (\nexists s2'. step2 \ s2 \ s2') \ \mathbf{and}
     matching-states-agree-on-final: \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow final1 \ s1 \longleftrightarrow final2
s2 and
      matching-states-are-safe:
        \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow safe\text{-state step1 final1 } s1 \ \land \ safe\text{-state step2 final2}
s2
  shows \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow stuck\text{-state step1 } s1 \longleftrightarrow stuck\text{-state step2 } s2
      \langle proof \rangle
```

```
locale wellbehaved-transition-system =
   fixes \mathcal{R} :: 's \Rightarrow 's \Rightarrow bool \text{ and } \mathcal{F} :: 's \Rightarrow bool \text{ and } \mathcal{S} :: 's \Rightarrow bool
  assumes
      determ: right-unique R and
     stuck-if-final: \bigwedge x. \mathcal{F} x \Longrightarrow stuck-state \mathcal{R} x and
     safe-if-invar: \bigwedge x. S x \Longrightarrow safe-state R F x
lemma (in wellbehaved-transition-system) final-iff-stuck-if-invar:
   fixes x
  assumes S x
  shows \mathcal{F} x \longleftrightarrow stuck\text{-}state \ \mathcal{R} x
{\bf lemma}\ well behave d\text{-}transition\text{-}systems\text{-}agree\text{-}on\text{-}final\text{-}iff\text{-}agree\text{-}on\text{-}stuck:}
     \mathcal{R}_a :: 'a \Rightarrow 'a \Rightarrow bool \text{ and } \mathcal{F}_a :: 'a \Rightarrow bool \text{ and }
     \mathcal{R}_b :: 'b \Rightarrow 'b \Rightarrow bool \text{ and } \mathcal{F}_b :: 'b \Rightarrow bool \text{ and }
     \mathcal{M} :: 'i \Rightarrow 'a \Rightarrow 'b \Rightarrow bool
  assumes
     wellbehaved-transition-system \mathcal{R}_a \mathcal{F}_a (\lambda a. \exists i \ b. \ \mathcal{M} \ i \ a \ b) and
     wellbehaved-transition-system \mathcal{R}_b \mathcal{F}_b (\lambda b. \exists i \ a. \ \mathcal{M} \ i \ a \ b) and
  shows (\mathcal{F}_a \ a \longleftrightarrow \mathcal{F}_b \ b) \longleftrightarrow (stuck\text{-state } \mathcal{R}_a \ a \longleftrightarrow stuck\text{-state } \mathcal{R}_b \ b)
  \langle proof \rangle
corollary lift-strong-simulation-to-bisimulation':
     step1 :: 's1 \Rightarrow 's1 \Rightarrow bool and
     step2 :: 's2 \Rightarrow 's2 \Rightarrow bool and
     match :: 'i \Rightarrow 's1 \Rightarrow 's2 \Rightarrow bool and
     order :: 'i \Rightarrow 'i \Rightarrow bool
   assumes
     right-unique step1 and
     right-unique step2 and
     final1-stuck: \forall s1. final1 s1 \longrightarrow (\nexists s1'. step1 s1 s1') and
     final2-stuck: \forall s2. final2 s2 \longrightarrow (\nexists s2'. step2 s2 s2') and
     matching	ext{-}states	ext{-}agree	ext{-}on	ext{-}final:
        \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow final1 \ s1 \longleftrightarrow final2 \ s2 \ {\bf and}
      matching-states-are-safe:
       \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow safe\text{-state step1 final1 } s1 \ \land \ safe\text{-state step2 final2}
s2 and
      order-well-founded: wfp order and
     sim: simulation step1 step2 match order
  obtains
      MATCH :: nat \times nat \Rightarrow 's1 \Rightarrow 's2 \Rightarrow bool  and
      ORDER :: nat \times nat \Rightarrow nat \times nat \Rightarrow bool
     \bigwedge i \ s1 \ s2. \ match \ i \ s1 \ s2 \Longrightarrow (\exists j. \ MATCH \ j \ s1 \ s2)
     \bigwedge j \ s1 \ s2. \ MATCH \ j \ s1 \ s2 \Longrightarrow final1 \ s1 \longleftrightarrow final2 \ s2 \ and
```

end

5 Simulations Between Dynamic Executions

```
theory Simulation
imports
Semantics
Inf
Well-founded
Lifting-Simulation-To-Bisimulation
begin
```

5.1 Backward simulation

```
{\bf locale}\ backward\text{-}simulation =
  L1: semantics step1 final1 +
  L2: semantics step2 final2
     step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool \text{ and } final1 :: 'state1 \Rightarrow bool \text{ and }
     step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool \text{ and } final2 :: 'state2 \Rightarrow bool +
     match :: 'index \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool  and
     order :: 'index \Rightarrow 'index \Rightarrow bool (infix \langle \Box \rangle 70)
  assumes
     wfp-order:
       wfp \ (\Box) \ \mathbf{and}
     match-final:
       match \ i \ s1 \ s2 \Longrightarrow final2 \ s2 \Longrightarrow final1 \ s1 \ {\bf and}
     simulation:
       match \ i \ s1 \ s2 \Longrightarrow step2 \ s2 \ s2' \Longrightarrow
          (\exists i' \ s1'. \ step1^{++} \ s1 \ s1' \land match \ i' \ s1' \ s2') \lor (\exists i'. \ match \ i' \ s1 \ s2' \land i' \sqsubseteq s1')
i)
begin
```

A simulation is defined between two *semantics* L1 and L2. A *match* predicate expresses that two states from L1 and L2 are equivalent. The *match* predicate is also parameterized with an ordering used to avoid stuttering. The only two assumptions of a backward simulation are that a final state in L2 will also be a final in L1, and that a step in L2 will either represent a

non-empty sequence of steps in L1 or will result in an equivalent state. Stuttering is ruled out by the requirement that the index on the match predicate decreases with respect to the well-founded (\Box) ordering.

```
lemma lift-simulation-plus:
step2^{++} s2 s2' \Longrightarrow match \ i1 \ s1 \ s2 \Longrightarrow \\ (\exists \ i2 \ s1'. \ step1^{++} \ s1 \ s1' \land match \ i2 \ s1' \ s2') \lor \\ (\exists \ i2. \ match \ i2 \ s1 \ s2' \land order^{++} \ i2 \ i1) \\ \textbf{thm} \ tranclp-induct} \\ \langle proof \rangle
lemma lift-simulation-eval:
L2.eval \ s2 \ s2' \Longrightarrow match \ i1 \ s1 \ s2 \Longrightarrow \exists \ i2 \ s1'. \ L1.eval \ s1 \ s1' \land match \ i2 \ s1' \ s2' \\ \langle proof \rangle
lemma match-inf:
\textbf{assumes} \\ match \ i \ s1 \ s2 \ \textbf{and} \\ inf \ step2 \ s2 \\ \textbf{shows} \ inf \ step1 \ s1 \\ \langle proof \rangle
```

5.1.1 Preservation of behaviour

The main correctness theorem states that, for any two matching programs, any not wrong behaviour of the later is also a behaviour of the former. In other words, if the compiled program does not crash, then its behaviour, whether it terminates or not, is a also a valid behaviour of the source program.

```
{\bf lemma}\ simulation\text{-}behaviour:
```

```
L2.state-behaves s_2 b_2 \Longrightarrow \neg is-wrong b_2 \Longrightarrow match \ i \ s_1 \ s_2 \Longrightarrow \exists \ b_1 \ i'. \ L1.state-behaves s_1 b_1 \land rel-behaviour (match i') b_1 b_2 \land proof \land
```

 \mathbf{end}

5.2 Forward simulation

```
locale forward-simulation = L1: semantics step1 final1 + L2: semantics step2 final2 for step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool and final1 :: 'state1 \Rightarrow bool and step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool and final2 :: 'state2 \Rightarrow bool + fixes match :: 'index \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool and order :: 'index \Rightarrow 'index \Rightarrow bool (infix \langle \Box \rangle 70) assumes wfp-order:
```

```
wfp \ (\Box) \ \mathbf{and}
    match-final:
      match \ i \ s1 \ s2 \Longrightarrow final1 \ s1 \Longrightarrow final2 \ s2 \ {\bf and}
    simulation:
      match \ i \ s1 \ s2 \Longrightarrow step1 \ s1 \ s1' \Longrightarrow
        (\exists i' \ s2'. \ step2^{++} \ s2 \ s2' \land match \ i' \ s1' \ s2') \lor (\exists i'. \ match \ i' \ s1' \ s2 \land i' \sqsubseteq s2')
i)
begin
\mathbf{lemma}\ \mathit{lift-simulation-plus} :
  step1^{++} s1 s1' \Longrightarrow match i s1 s2 \Longrightarrow
    (\exists i' \ s2'. \ step2^{++} \ s2 \ s2' \land match \ i' \ s1' \ s2') \lor
    (\exists i'. match i' s1' s2 \land order^{++} i' i)
\langle proof \rangle
lemma lift-simulation-eval:
  L1.eval\ s1\ s1' \Longrightarrow match\ i\ s1\ s2 \Longrightarrow \exists\ i'\ s2'.\ L2.eval\ s2\ s2' \land match\ i'\ s1'\ s2'
\langle proof \rangle
lemma match-inf:
  assumes match\ i\ s1\ s2 and inf\ step1\ s1
  shows inf step2 s2
\langle proof \rangle
5.2.1
           Preservation of behaviour
{f lemma}\ simulation\mbox{-}behaviour:
  L1.state-behaves s1\ b1 \Longrightarrow \neg\ is-wrong b1 \Longrightarrow match\ i\ s1\ s2 \Longrightarrow
    \exists b2 \ i'. \ L2.state-behaves \ s2 \ b2 \land rel-behaviour \ (match \ i') \ b1 \ b2
\langle proof \rangle
5.2.2
           Forward to backward
\mathbf{lemma}\ state-behaves-forward-to-backward:
  assumes
    match-s1-s2: match i s1 s2 and
    safe-s1: L1.safe s1 and
    behaves-s2: L2.state-behaves s2 b2 and
    right-unique2: right-unique step2
  shows \exists b1 \ i. \ L1.state-behaves \ s1 \ b1 \ \land \ rel-behaviour \ (match \ i) \ b1 \ b2
\langle proof \rangle
end
         Bisimulation
5.3
locale bisimulation =
  forward-simulation step1 final1 step2 final2 match order _f +
  backward-simulation step1 final1 step2 final2 match order_b
  for
```

```
step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool \text{ and } final1 :: 'state1 \Rightarrow bool \text{ and }
    step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool \text{ and } final2 :: 'state2 \Rightarrow bool \text{ and }
    match :: 'index \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool \text{ and }
    order_f :: 'index \Rightarrow 'index \Rightarrow bool and
     order_b :: 'index \Rightarrow 'index \Rightarrow bool
lemma (in bisimulation) agree-on-final:
  assumes match i s1 s2
  shows final1 s1 \longleftrightarrow final2 \ s2
  \langle proof \rangle
lemma obtains-bisimulation-from-forward-simulation:
     step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool \text{ and } final1 :: 'state1 \Rightarrow bool \text{ and }
    step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool \text{ and } final2 :: 'state2 \Rightarrow bool \text{ and }
    match :: 'index \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool and
     lt :: 'index \Rightarrow 'index \Rightarrow bool
  assumes right-unique step1 and right-unique step2 and
    final1-stuck: \forall s1. final1 s1 \longrightarrow (\nexists s1'. step1 s1 s1') and
    final2-stuck: \forall s2. final2 s2 \longrightarrow (\nexists s2'. step2 s2 s2') and
    matching\text{-}states\text{-}agree\text{-}on\text{-}final\text{:}} \; \forall \; i \; s1 \; s2. \; match \; i \; s1 \; s2 \; \longrightarrow final1 \; s1 \; \longleftrightarrow final2
s2 and
     matching-states-are-safe:
      \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow safe\text{-state step1 final1 } s1 \ \land \ safe\text{-state step2 final2}
s2 and
     wfP lt and
    fsim: \forall i \ s1 \ s2 \ s1'. \ match \ i \ s1 \ s2 \longrightarrow step1 \ s1 \ s1' \longrightarrow
       (\exists i' \ s2'. \ step2^{++} \ s2 \ s2' \land match \ i' \ s1' \ s2') \lor (\exists i'. \ match \ i' \ s1' \ s2 \land lt \ i' \ i)
  obtains
     MATCH :: nat \times nat \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool  and
     ORDER :: nat \times nat \Rightarrow nat \times nat \Rightarrow bool
     bisimulation step1 final1 step2 final2 MATCH ORDER ORDER
\langle proof \rangle
corollary ex-bisimulation-from-forward-simulation:
  fixes
     step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool \text{ and } final1 :: 'state1 \Rightarrow bool \text{ and }
    step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool \text{ and } final2 :: 'state2 \Rightarrow bool \text{ and }
     match :: 'index \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool  and
     lt :: 'index \Rightarrow 'index \Rightarrow bool
  assumes right-unique step1 and right-unique step2 and
    final1-stuck: \forall s1. final1 s1 \longrightarrow (\nexists s1'. step1 s1 s1') and
    final2\text{-}stuck: \forall s2. final2 \ s2 \longrightarrow (\nexists s2'. \ step2 \ s2 \ s2') and
    matching-states-agree-on-final: \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow final1 \ s1 \longleftrightarrow final2
s2 and
     matching-states-are-safe:
      \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow safe\text{-state step1 final1 } s1 \ \land \ safe\text{-state step2 final2}
s2 and
```

```
wfP lt and
    fsim: \forall i \ s1 \ s2 \ s1'. \ match \ i \ s1 \ s2 \longrightarrow step1 \ s1 \ s1' \longrightarrow
       (\exists i' \ s2'. \ step2^{++} \ s2 \ s2' \land match \ i' \ s1' \ s2') \lor (\exists i'. \ match \ i' \ s1' \ s2 \land \ lt \ i' \ i)
  shows \exists (MATCH :: nat \times nat \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool) ORDER_f ORDER_b.
     bisimulation step1 final1 step2 final2 MATCH ORDER, ORDER,
  \langle proof \rangle
\mathbf{lemma}\ obtains\text{-}bisimulation\text{-}from\text{-}backward\text{-}simulation:}
  fixes
     step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool \text{ and } final1 :: 'state1 \Rightarrow bool \text{ and }
    step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool \text{ and } final2 :: 'state2 \Rightarrow bool \text{ and }
     match :: 'index \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool  and
     lt :: 'index \Rightarrow 'index \Rightarrow bool
  assumes right-unique step1 and right-unique step2 and
    final1-stuck: \forall s1. final1 s1 \longrightarrow (\nexists s1'. step1 s1 s1') and
    final2-stuck: \forall s2. final2 s2 \longrightarrow (\nexists s2'. step2 s2 s2') and
    matching-states-agree-on-final: \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow final1 \ s1 \longleftrightarrow final2
s2 and
     matching-states-are-safe:
      \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow safe-state \ step1 \ final1 \ s1 \ \land safe-state \ step2 \ final2
     w\!f\!P\ lt\ {\bf and}
     bsim: \ \forall \ i \ s1 \ s2 \ s2'. \ match \ i \ s1 \ s2 \ \longrightarrow \ step2 \ s2 \ s2' \ \longrightarrow
       (\exists i' \ s1'. \ step1^{++} \ s1 \ s1' \land match \ i' \ s1' \ s2') \lor (\exists i'. \ match \ i' \ s1 \ s2' \land lt \ i' \ i)
     MATCH :: nat \times nat \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool  and
     ORDER :: nat \times nat \Rightarrow nat \times nat \Rightarrow bool
     bisimulation step1 final1 step2 final2 MATCH ORDER ORDER
\langle proof \rangle
corollary ex-bisimulation-from-backward-simulation:
  fixes
    step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool \text{ and } final1 :: 'state1 \Rightarrow bool \text{ and }
     step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool \text{ and } final2 :: 'state2 \Rightarrow bool \text{ and }
     match :: 'index \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool  and
    lt :: 'index \Rightarrow 'index \Rightarrow bool
  assumes right-unique step1 and right-unique step2 and
    final1-stuck: \forall s1. final1 s1 \longrightarrow (\nexists s1'. step1 s1 s1') and
    final2\text{-}stuck: \forall s2. final2 \ s2 \longrightarrow (\nexists s2'. step2 \ s2 \ s2') \ \mathbf{and}
    matching-states-agree-on-final: \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow final1 \ s1 \longleftrightarrow final2
s2 and
     matching-states-are-safe:
      \forall i \ s1 \ s2. \ match \ i \ s1 \ s2 \longrightarrow safe\text{-state step1 final1 } s1 \ \land \ safe\text{-state step2 final2}
s2 and
     wfP lt and
     bsim: \forall i \ s1 \ s2 \ s2'. \ match \ i \ s1 \ s2 \longrightarrow step2 \ s2 \ s2' \longrightarrow
       (\exists i' \ s1'. \ step1^{++} \ s1 \ s1' \land match \ i' \ s1' \ s2') \lor (\exists i'. \ match \ i' \ s1 \ s2' \land \ lt \ i' \ i)
  shows \exists (MATCH :: nat \times nat \Rightarrow 'state1 \Rightarrow 'state2 \Rightarrow bool) ORDER_f ORDER_b.
```

```
bisimulation step1 final1 step2 final2 MATCH ORDER<sub>f</sub> ORDER<sub>b</sub> \langle proof \rangle
```

5.4 Composition of simulations

```
definition rel-comp ::
 ('a \Rightarrow 'b \Rightarrow 'c \Rightarrow bool) \Rightarrow ('d \Rightarrow 'c \Rightarrow 'e \Rightarrow bool) \Rightarrow ('a \times 'd) \Rightarrow 'b \Rightarrow 'e \Rightarrow bool
where
  rel-comp r1 r2 i \equiv (r1 \ (fst \ i) \ OO \ r2 \ (snd \ i))
           Composition of backward simulations
{f lemma}\ backward	ext{-}simulation	ext{-}composition:
  assumes
    backward-simulation step1 final1 step2 final2 match1 order1
    backward-simulation step2 final2 step3 final3 match2 order2
  shows
    backward-simulation step1 final1 step3 final3
      (rel-comp match1 match2) (lex-prodp order1++ order2)
\langle proof \rangle
context
 \mathbf{fixes}\ r::\ 'i\Rightarrow\ 'a\Rightarrow\ 'a\Rightarrow\ bool
begin
fun rel-comp-pow where
  rel\text{-}comp\text{-}pow \mid x y = False \mid
  rel-comp-pow [i] x y = r i x y
  rel\text{-}comp\text{-}pow\ (i \ \# \ is)\ x\ z = (\exists\ y.\ r\ i\ x\ y\ \land\ rel\text{-}comp\text{-}pow\ is\ y\ z)
end
{f lemma}\ backward	ext{-}simulation	ext{-}pow:
  assumes
    backward-simulation step final step final match order
  shows
    backward-simulation step final step final (rel-comp-pow match) (lexp order<sup>++</sup>)
\langle proof \rangle
5.4.2
           Composition of forward simulations
{f lemma}\ forward\mbox{-}simulation\mbox{-}composition:
  assumes
    forward-simulation step1 final1 step2 final2 match1 order1
    forward-simulation step2 final2 step3 final3 match2 order2
  defines ORDER \equiv \lambda i \ i'. \ lex-prodp \ order2^{++} \ order1 \ (prod.swap \ i) \ (prod.swap
```

shows forward-simulation step1 final1 step3 final3 (rel-comp match1 match2)

 $ORDER \ \langle proof \rangle$

Composition of bisimulations

```
lemma bisimulation-composition:
```

```
fixes
     step1 :: 's1 \Rightarrow 's1 \Rightarrow bool \text{ and } final1 :: 's1 \Rightarrow bool \text{ and }
     step2 :: 's2 \Rightarrow 's2 \Rightarrow bool \text{ and } final2 :: 's2 \Rightarrow bool \text{ and }
     step3 :: 's3 \Rightarrow 's3 \Rightarrow bool \text{ and } final3 :: 's3 \Rightarrow bool \text{ and }
     match1 :: 'i \Rightarrow 's1 \Rightarrow 's2 \Rightarrow bool \text{ and } order1_f \text{ } order1_b :: 'i \Rightarrow 'i \Rightarrow bool \text{ and }
     match2 :: 'j \Rightarrow 's2 \Rightarrow 's3 \Rightarrow bool \text{ and } order2_f \ order2_b :: 'j \Rightarrow 'j \Rightarrow bool
  assumes
     bisimulation step1 final1 step2 final2 match1 order1 f order1 b
     bisimulation step2 final2 step3 final3 match2 order2<sub>f</sub> order2<sub>b</sub>
  obtains
     ORDER_f :: 'i \times 'j \Rightarrow 'i \times 'j \Rightarrow bool and
     ORDER_b^j :: 'i \times 'j \Rightarrow 'i \times 'j \Rightarrow bool and MATCH :: 'i \times 'j \Rightarrow 's1 \Rightarrow 's3 \Rightarrow bool
  where bisimulation step1 final1 step3 final3 MATCH ORDER_f ORDER_b
\langle proof \rangle
5.5
           Miscellaneous
definition lockstep-backward-simulation where
  lockstep-backward-simulation step1 step2 match \equiv
     \forall s1 \ s2 \ s2'. \ match \ s1 \ s2 \longrightarrow step2 \ s2 \ s2' \longrightarrow (\exists s1'. \ step1 \ s1 \ s1' \land \ match \ s1')
```

```
s2')
```

```
definition plus-backward-simulation where
```

```
plus-backward-simulation step1 step2 match \equiv
    \forall s1 \ s2 \ s2'. \ match \ s1 \ s2 \longrightarrow step2 \ s2 \ s2' \longrightarrow (\exists s1'. \ step1^{++} \ s1 \ s1' \land \ match
s1' s2')
```

lemma

```
assumes lockstep-backward-simulation step1 step2 match
 shows plus-backward-simulation step1 step2 match
\langle proof \rangle
```

lemma lockstep-to-plus-backward-simulation:

```
match :: 'state1 \Rightarrow 'state2 \Rightarrow bool  and
    step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool  and
    step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool
  assumes
    lockstep-simulation: \land s1 \ s2 \ s2'. match s1 \ s2 \Longrightarrow step2 \ s2 \ s2' \Longrightarrow (\exists \ s1'. \ step1)
s1 \ s1' \land match \ s1' \ s2') and
    match: match s1 s2 and
    step: step2 s2 s2'
  shows \exists s1'. step1^{++} s1 s1' \land match s1' s2'
\langle proof \rangle
```

 $\mathbf{lemma}\ lockstep-to-option-backward-simulation:$

```
fixes
    match :: 'state1 \Rightarrow 'state2 \Rightarrow bool  and
    step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool  and
    step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool  and
    measure :: 'state2 \Rightarrow nat
  assumes
    lockstep-simulation: \land s1 \ s2 \ s2'. match s1 \ s2 \Longrightarrow step2 \ s2 \ s2' \Longrightarrow (\exists \ s1'. \ step1)
s1 \ s1' \land match \ s1' \ s2') and
    match: match s1 s2 and
    step: step2 s2 s2'
  shows (\exists s1'. step1 s1 s1' \land match s1' s2') \lor match s1 s2' \land measure s2' <
measure\ s2
  \langle proof \rangle
{f lemma}\ plus-to-star-backward-simulation:
  fixes
    match :: 'state1 \Rightarrow 'state2 \Rightarrow bool  and
    step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool and
    step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool and
    measure :: 'state2 \Rightarrow nat
    star-simulation: \bigwedge s1 \ s2 \ s2'. match \ s1 \ s2 \implies step2 \ s2 \ s2' \implies (\exists \ s1'. \ step1^{++}
s1 \ s1' \land match \ s1' \ s2') and
    match: match s1 s2 and
    step: step2 s2 s2'
  shows (\exists s1'. step1^{++} s1 s1' \land match s1' s2') \lor match s1 s2' \land measure s2' <
measure s2
  \langle proof \rangle
{f lemma}\ lockstep-to-plus-forward-simulation:
  fixes
    match :: 'state1 \Rightarrow 'state2 \Rightarrow bool and
    step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool  and
    step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool
  assumes
    lockstep-simulation: \land s1 \ s2 \ s2'. match s1 \ s2 \Longrightarrow step1 \ s1 \ s1' \Longrightarrow (\exists \ s2'. \ step2)
s2 \ s2' \land match \ s1' \ s2') and
    match: match s1 s2 and
    step: step1 s1 s1'
  shows \exists s2'. step2^{++} s2 s2' \land match s1' s2'
\langle proof \rangle
end
```

6 Compiler Between Static Representations

```
theory Compiler
imports Language Simulation
begin
```

```
definition option-comp :: ('a \Rightarrow 'b \ option) \Rightarrow ('c \Rightarrow 'a \ option) \Rightarrow 'c \Rightarrow 'b \ option
(infix \iff 50) where
  (f \Leftarrow g) \ x \equiv Option.bind (g \ x) f
context
  fixes f :: ('a \Rightarrow 'a \ option)
begin
fun option-comp-pow :: nat \Rightarrow 'a \Rightarrow 'a option where
  option\text{-}comp\text{-}pow\ \theta = (\lambda\text{-}.\ None)\ |
  option-comp-pow (Suc \ \theta) = f
  option\text{-}comp\text{-}pow\ (Suc\ n) = (option\text{-}comp\text{-}pow\ n \Leftarrow f)
end
locale compiler =
  L1: language step1 final1 load1 +
  L2: language step2 final2 load2 +
  backward-simulation step1 final1 step2 final2 match order
    step1 :: 'state1 \Rightarrow 'state1 \Rightarrow bool \ \mathbf{and} \ final1 \ \mathbf{and} \ load1 :: 'prog1 \Rightarrow 'state1 \Rightarrow
bool and
    step2 :: 'state2 \Rightarrow 'state2 \Rightarrow bool \text{ and } final2 \text{ and } load2 :: 'prog2 \Rightarrow 'state2 \Rightarrow
bool and
    match and
    order :: 'index \Rightarrow 'index \Rightarrow bool +
    compile :: 'prog1 \Rightarrow 'prog2 \ option
  assumes
    compile-load:
       compile p1 = Some \ p2 \Longrightarrow load2 \ p2 \ s2 \Longrightarrow \exists \ s1 \ i. \ load1 \ p1 \ s1 \ \land \ match \ i \ s1
s2
begin
```

The *compiler* locale relates two languages, L1 and L2, by a backward simulation and provides a *compile* partial function from a concrete program in L1 to a concrete program in L2. The only assumption is that a successful compilation results in a program which, when loaded, is equivalent to the loaded initial program.

6.1 Preservation of behaviour

```
corollary behaviour-preservation:
assumes
compiles: compile p1 = Some \ p2 and
behaves: L2.prog-behaves p2 \ b2 and
not-wrong: \neg is-wrong b2
shows \exists \ b1 \ i. \ L1.prog-behaves p1 \ b1 \ \land \ rel-behaviour (match i) b1 \ b2
```

```
\langle proof \rangle
```

end

end

6.2 Composition of compilers

```
lemma compiler-composition:
   assumes
   compiler step1 final1 load1 step2 final2 load2 match1 order1 compile1 and compiler step2 final2 load2 step3 final3 load3 match2 order2 compile2
   shows compiler step1 final1 load1 step3 final3 load3
   (rel-comp match1 match2) (lex-prodp order1++ order2) (compile2 \Leftarrow compile1) \langle proof \rangle

lemma compiler-composition-pow:
   assumes
   compiler step final load step final load match order compile
   shows compiler step final load step final load
   (rel-comp-pow match) (lexp order++) (option-comp-pow compile n)
\langle proof \rangle

end
```

7 Fixpoint of Converging Program Transformations

```
theory Fixpoint
  imports Compiler
begin
context
  fixes
    m: 'a \Rightarrow nat and
    f :: 'a \Rightarrow 'a \ option
function fixpoint :: 'a \Rightarrow 'a \ option \ \mathbf{where}
  fixpoint x = (
    case f x of
      None \Rightarrow None
      Some x' \Rightarrow if \ m \ x' < m \ x \ then fixpoint \ x' \ else \ Some \ x'
  )
\langle proof \rangle
termination
\langle proof \rangle
```

```
lemma fixpoint-to-comp-pow:
  fixpoint m \ f \ x = y \Longrightarrow \exists \ n. option-comp-pow f \ n \ x = y
\langle proof \rangle

lemma fixpoint-eq-comp-pow:
\exists \ n. fixpoint m \ f \ x = option-comp-pow \ f \ n \ x
\langle proof \rangle

lemma compiler-composition-fixpoint:
  assumes
  compiler step final load step final load match order compile shows compiler step final load step final load
  (rel-comp-pow match) (lexp order^{++}) (fixpoint m \ compile)
\langle proof \rangle
```

References

end

[1] M. Desharnais and S. Brunthaler. A generic framework for verified compilers using isabelle/hols locales. 31 ème Journées Francophones des Langages Applicatifs, page 198, 2020.