A Generic Framework for Verified Compilers

Martin Desharnais

March 17, 2025

Abstract

This is a generic framework for formalizing compiler transforma-
tions. It leverages Isabelle/HOLs locales to abstract over concrete
languages and transformations. It states common definitions for lan-
guage semantics, program behaviours, forward and backward simula-
tions, and compilers. We provide generic operations, such as simula-
tion and compiler composition, and prove general (partial) correctness
theorems, resulting in reusable proof components. For more details,
please see our paper [1].

Contents
1 Infinitely Transitive Closure
2 The Dynamic Representation of a Language
2.1 Behaviour of a dynamic execution
2.2 Safestates L
3 The Static Representation of a Language
3.1 Program behaviour L oL
4 Well-foundedness of Relations Defined as Predicate Func-
tions
4.1 Lexicographic product
4.2 Lexicographiclist 0oL
5 Simulations Between Dynamic Executions

5.1 Backward simulation
5.1.1 Preservation of behaviour
5.2 Forward simulation,
5.2.1 Preservation of behaviour
5.2.2 Forward to backward
5.3 Bisimulation.o
5.4 Composition of simulations

5.4.1 Composition of backward simulations 16

5.4.2 Composition of forward simulations 16

5.4.3 Composition of bisimulations 17

5.5 Miscellaneous 17

6 Compiler Between Static Representations 18
6.1 Preservation of behaviour 19
6.2 Composition of compilers 20

7 Fixpoint of Converging Program Transformations 20

theory Behaviour
imports Main
begin

datatype ’'state behaviour =
Terminates 'state | Diverges | is-wrong: Goes-wrong 'state

Terminating behaviours are annotated with the last state of the execution in
order to compare the result of two executions with the rel-behaviour relation.

The exact meaning of the three behaviours is defined in the semantics locale

end

1 Infinitely Transitive Closure

theory Inf
imports Main
begin

coinductive inf :: (‘a = 'a = bool) = 'a = bool for r where
inf-step: Ty = infry = infrax

coinductive inf-wf :: (‘a = 'a = bool) = ('b = 'b = bool) = 'b = 'a = bool
for r order where

inf-wf: order n m = inf-wf r order n x = inf-wf r order m x |

inf-wf-step: ™ 1y = inf-wf r order n y = inf-wf r order m x

lemma inf-wf-to-step-inf-wf:
assumes wfp order
shows inf-wf r order n x = Iy m. r z y A inf-wf r order m y

(proof)

lemma inf-wf-to-inf:
assumes wfp order
shows inf-wf r order n xt = infrx

(proof)

lemma step-inf:

assumes right-unique r
shows rzy = infrz = infry
{proof)

lemma star-inf:

assumes right-unique r

shows r* 2y = infrz = infry
(proof)

end

theory Transfer-Extras
imports Main

begin

lemma rtranclp-complete-run-right-unique:
fixes R:: '‘a = 'a= booland zy z :: a
assumes right-unique R
shows R** 1y = (Jw. Ryw) = R* 12 = (Pw. Rzw) = y =2

(proof)

lemma tranclp-complete-run-right-unique:
fixes R :: ‘a = 'a = bool and z y z :: 'a
assumes right-unique R
shows R** 2y = (Bw. Ryw) = R*T 22= Bw. Rzw) = y =z

{proof)

end

2 The Dynamic Representation of a Language

theory Semantics
imports Main Behaviour Inf Transfer-Extras begin

The definition of programming languages is separated into two parts: an
abstract semantics and a concrete program representation.

definition finished :: ('a = 'a = bool) = 'a = bool where
finished r v = (By. rx y)

lemma finished-star:
assumes finished r
shows r"* zy = 2 =y
(proof)

locale semantics =
fixes
step :: 'state = 'state = bool (infix «—> 50) and
final :: 'state = bool
assumes
final-finished: final s = finished step s

begin

The semantics locale represents the semantics as an abstract machine. It
is expressed by a transition system with a transition relation (—)—usually
written as an infix — arrow—and final states final.

lemma finished-step:
step s ' = —finished step s

(proof)

abbreviation eval :: 'state = ‘state = bool (infix «<—*» 50) where
eval = step™™

abbreviation inf-step :: ‘state = bool where
inf-step = inf step

notation
inf-step (<'(—=>°")» [] 50) and
inf-step (<- =% [55] 50)

lemma inf-not-finished: s —°° = - finished step s
(proof)

lemma eval-deterministic:
assumes
deterministic: \x y z. step x y = step v z =— y = z and
sl —* s2 and s1 —* s3 and finished step s2 and finished step s3
shows s2 = s3

(proof)

lemma step-converges-or-diverges: (3s’. s —=* s’ A finished step s') V s —°
(proof)

2.1 Behaviour of a dynamic execution

inductive state-behaves :: 'state = 'state behaviour = bool (infix <}» 50) where
state-terminates:
s1 —* s2 = finished step s2 = final s2 = s1 | (Terminates s2) |
state-diverges:
s1 = = s1 | Diverges |
state-goes-wrong:
s1 —* s2 = finished step s2 = — final s2 = s1 | (Goes-wrong s2)

Even though the (—) transition relation in the semantics locale need not be
deterministic, if it happens to be, then the behaviour of a program becomes
deterministic too.

lemma right-unique-state-behaves:
assumes
right-unique (—)
shows right-unique (J)

(proof)

lemma left-total-state-behaves: left-total (])
(proof)

2.2 Safe states

definition safe where
safe s +— (Vs step™ s s’ — final 'V (Is”. step s’ s”))

lemma final-safel: final s = safe s
(proof)

lemma step-safe: step s s' = safe s = safe s’
(proof)

lemma steps-safe: step** s s’ = safe s = safe s’

(proof)

lemma safe-state-behaves-not-wrong:
assumes safe s and s | b
shows — is-wrong b
(proof)

end

end

3 The Static Representation of a Language

theory Language
imports Semantics
begin

locale language =
semantics step final
for
step :: 'state = 'state = bool and
final :: 'state = bool +
fixes
load :: 'prog = 'state = bool

context language begin

The language locale represents the concrete program representation (type
variable 'prog), which can be transformed into a program state (type variable
'state) by the load function. The set of initial states of the transition system
is implicitly defined by the codomain of load.

3.1 Program behaviour

definition prog-behaves :: 'prog = 'state behaviour = bool (infix «|}» 50) where
prog-behaves = load OO state-behaves

If both the load and step relations are deterministic, then so is the behaviour
of a program.

lemma right-unique-prog-behaves:
assumes
right-unique-load: right-unique load and
right-unique-step: right-unique step
shows right-unique prog-behaves
(proof)

end

end

4 Well-foundedness of Relations Defined as Pred-
icate Functions

theory Well-founded
imports Main
begin

4.1 Lexicographic product

context
fixes
rl :: 'a = 'a = bool and
r2 2 'b = 'b = bool
begin

definition lez-prodp :: 'a x 'b = 'a x 'b = bool where
lex-prodp xy = rl1 (fst z) (fst y) V fst x = fst y A 12 (snd z) (snd y)

lemma lex-prodp-lex-prod:
shows lex-prodp © y <— (z, y) € lez-prod { (z, y). rizy } { (z, y). r2zy }

(proof)

lemma lex-prodp-wfP:
assumes
wfp r1 and
wfp r2
shows wfp lez-prodp
(proof)

end

4.2 Lexicographic list

context
fixes order :: 'a = 'a = bool
begin

inductive lexp :: ‘a list = 'a list = bool where
lexp-head: order x y = length xs = length ys = lexp (z # xs) (y # ys) |
lexp-tail: lexp xs ys = lexp (z # xs) (z # ys)

end

lemma lezp-prepend: lexp order ys zs = lexp order (zs Q ys) (xs @ zs)
(proof)

lemma lexp-lex: lexp order zs ys «— (zs, ys) € lex {(z, y). order z y}

(proof)

lemma lez-list-wfP: wfP order = wfP (lexp order)
(proof)

end

theory Lifting-Simulation-To-Bisimulation
imports Well-founded

begin

definition stuck-state :: (‘a = 'b = bool) = 'a = bool where
stuck-state R s +— (Ps’. R s s)

definition simulation ::
('a = 'a = bool) = ('b = 'b = bool) = ("¢ = 'a = b= bool) = ('c = 'c =
bool) = bool
where
stmulation R1 Ro match order <—
(Vi sl s2s1' matchisl s2 — Ry sl s1' —
(Fs2' " Rott 52 52" A match i’ s1’ s2') Vv (Fi’. match i’ s1' s2 A order i’

i)

lemma finite-progress:
fixes
stepl :: 's1 = 's1 = bool and
step2 :: 's2 = 's2 = bool and
match 2 't = 's1 = 's2 = bool and
order :: 'i = i = bool
assumes
matching-states-agree-on-stuck:
Vi sl s2. match © s1 s2 — stuck-state stepl s1 <— stuck-state step2 s2 and
well-founded-order: wfp order and
sim: simulation stepl step2 match order
shows match i s1 s2 = stepl sl s1' =

Im s1" ns2" i (stepl "7 m) s1’ s1” A (step2 7 Suc n) s2 s2" A match i’
S.Z/, 52/,
{proof)

context begin

private inductive match-bisim
for Ri :: 'a = 'a = bool and R» :: 'b = 'b = bool and
match : 'c = 'a = 'b = bool and order :: 'c = 'c = bool
where
bisim-stuck: stuck-state Ry s1 = stuck-state Ro s2 = match i s1 s2 —>
match-bisim R1 Ra match order (0, 0) sl s2 |

bisim-steps: match i s1g s29 = R1** slg s1 = (R1 ~ Suc m) sl s1' =
Ro** 820 s2 = (Ry ~ Suc n) s2 s2' = match i’ s1’ s2' =
match-bisim Ry Ro match order (m, n) sl s2

theorem lift-strong-simulation-to-bisimulation:
fixes
stepl :: 's1 = sl = bool and
step2 :: 's2 = 's2 = bool and
match :: i = 's1 = 's2 = bool and
order :: i = i = bool
assumes
matching-states-agree-on-stuck:
Vi sl s2. match i s1 s2 — stuck-state stepl s1 <+— stuck-state step2 s2 and
well-founded-order: wfp order and
sim: simulation stepl step2 match order
obtains
MATCH :: nat X nat = ’s1 = ’s2 = bool and
ORDER :: nat x nat = nat X nat = bool
where
Ni sl s2. match i s1 s2 = (3j. MATCH j s1 s2)
Nj sl s2. MATCH j s1 s2 =
(Fi. stuck-state stepl s1 A stuck-state step2 s2 A match i s1 s2) V
(Fis1’ 2" stepl ™ s1 51’ A step2t+ s2 52’ A\ match i s1’ s2’) and
wfp ORDER and
right-unique stepl = simulation stepl step2 (\i sl s2. MATCH i s1 s2)
ORDER and
right-unique step2 —> simulation step2 stepl (\i s2 s1. MATCH i s1 s2)
ORDER

(proof)
end

definition safe-state where
safe-state R F s «— (Vs'. R** s 8’ — stuck-state R 8" — F s')

lemma step-preserves-safe-state:

R s ' = safe-state R F s = safe-state R F s’
{proof)

lemma rtranclp-step-preserves-safe-state:
R** s s’ = safe-state R F s = safe-state R F s’

{proof)

lemma tranclp-step-preserves-safe-state:
RTT s 8/ = safe-state R F s = safe-state R F s’

(proof)

lemma safe-state-before-step-if-safe-state-after:
assumes right-unique R
shows R s s’ = safe-state R F s’ = safe-state R F s

(proof)

lemma safe-state-before-rtranclp-step-if-safe-state-after:
assumes right-unique R
shows R** s s’ = safe-state R F s’ = safe-state R F s

{proof)

lemma safe-state-before-tranclp-step-if-safe-state-after:
assumes right-unique R
shows RT" s s’ = safe-state R F s’ = safe-state R F s

{proof)

lemma safe-state-if-all-states-safe:
fixes R F s
assumes As. F sV (s R s s')
shows safe-state R F s

(proof)

lemma
fixes R F s
shows safe-state R F s = F sV (Is". R s s')

{proof)

lemma matching-states-agree-on-stuck-if-they-agree-on-final:
assumes
finall-stuck: ¥ s1. finall s1 — (Hs1’. stepl s1 s1') and
final2-stuck: ¥ s2. final2 s2 — (Hs2'. step2 s2 s2') and
matching-states-agree-on-final: ¥ i s1 s2. match i s1 s2 — finall s1 <— final2
s2 and
matching-states-are-safe:
Vi sl s2. match i s1 s2 — safe-state stepl finall s1 N safe-state step2 final2
s2
shows Vi s1 s2. match i s1 s2 — stuck-state stepl sl <— stuck-state step2 s2

(proof)

locale wellbehaved-transition-system =
fixes R :: 's = 's = bool and F :: 's = bool and S :: 's = bool
assumes
determ: right-unique R and
stuck-if-final: Nx. F © = stuck-state R x and
safe-if-invar: Nx. S ¥ = safe-state R F x

lemma (in wellbehaved-transition-system) final-iff-stuck-if-invar:
fixes z
assumes S z
shows F © <— stuck-state R =

(proof)

lemma wellbehaved-transition-systems-agree-on-final-iff-agree-on-stuck:
fixes
R it 'a = 'a = bool and F, :: 'a = bool and
Ry 2 'b = b = bool and Fy :: 'b = bool and
M i = 'a = b = bool
assumes
wellbehaved-transition-system Ry Fq (Aa. 3¢ b. M i a b) and
wellbehaved-transition-system Ry Fp (Ab. Iia. M i a b) and
Miab
shows (F, a <— Fp b) «— (stuck-state R, a <— stuck-state Ry b)
(proof)

corollary lift-strong-simulation-to-bisimulation’:

fixes
stepl :: 's1 = 's1 = bool and
step2 :: 's2 = 's2 = bool and
match :: i = ‘sl = 's2 = bool and
order :: i = i = bool

assumes
right-unique step! and
right-unique step?2 and
finall-stuck: ¥ s1. finall s1 — (Hs1’. stepl s1 s1') and
final2-stuck: ¥ s2. final2 s2 — (Hs2'. step2 s2 s2') and
matching-states-agree-on-final:

Vi sl s2. match i sl s2 — finall s1 <— final2 s2 and
matching-states-are-safe:
Vi sl s2. match i s1 s2 — safe-state stepl finall s1 N safe-state step2 final2
s2 and

order-well-founded: wfp order and
sim: simulation stepl step2 match order

obtains
MATCH :: nat X nat = ’s1 = 's2 = bool and
ORDER :: nat x nat = nat X nat = bool

where
Ni s1 s2. match i s1 s2 = (3j. MATCH j s1 s2)
Nj sl s2. MATCH j s1 s2 = finall sl <— final2 s2 and

10

Nj sl s2. MATCH j sl s2 = stuck-state stepl sl <+— stuck-state step2 s2
and

Nj sl s2. MATCH j s1 s2 = safe-state stepl finall sl A safe-state step2 final2
s2 and

wfp ORDER and

simulation stepl step2 (\i s1 s2. MATCH i s1 s2) ORDER and

stmulation step?2 stepl (i s2 s1. MATCH i s1 s2) ORDER

(proof)

end

5 Simulations Between Dynamic Executions

theory Simulation
imports
Semantics
Inf
Well-founded
Lifting-Simulation-To- Bisimulation
begin

5.1 Backward simulation

locale backward-simulation =
L1: semantics stepl finall +
L2: semantics step2 final2
for
stepl :: 'statel = 'statel = bool and finall :: 'statel = bool and
step2 :: 'state2 = 'state2 = bool and final2 :: 'state2 = bool +
fixes
match :: 'index = 'statel = 'state2 = bool and
order :: 'index = 'index = bool (infix «T» 70)
assumes
wfp-order:
wfp (C) and
match-final:
match i s1 s2 = final2 s2 = finall s1 and
simulation:
match i s1 s2 = step2 s2 s2' —>
(Fi" s1’. stepl T s1 s1' A match i’ s1’ s2") v (3i’. match i’ s1 82’ N i’ C
i
begin
A simulation is defined between two semantics L1 and L2. A match pred-
icate expresses that two states from L1 and L2 are equivalent. The match
predicate is also parameterized with an ordering used to avoid stuttering.

The only two assumptions of a backward simulation are that a final state
in L2 will also be a final in L1,and that a step in L2 will either represent a

11

non-empty sequence of steps in L1 or will result in an equivalent state. Stut-
tering is ruled out by the requirement that the index on the match predicate
decreases with respect to the well-founded () ordering.

lemma lift-simulation-plus:
step2tT 52 52’ = match il 51 s2 =
(342 s1’. step1 ™t s1 s1’ A match i2 s1' s2') V
(342. match i2 s1 s2' N order™™ 42 il)
thm tranclp-induct

(proof)

lemma [lift-simulation-eval:
L2.eval 52 s2' = match il s1 s2 = 342 s1’. L1.eval s1 s1’' N\ match i2 s1' s2’

(proof)

lemma match-inf:
assumes
match i s1 s2 and
inf step2 s2
shows inf stepl s1
(proof)

5.1.1 Preservation of behaviour

The main correctness theorem states that, for any two matching programs,
any not wrong behaviour of the later is also a behaviour of the former. In
other words, if the compiled program does not crash, then its behaviour,
whether it terminates or not, is a also a valid behaviour of the source pro-
gram.

lemma simulation-behaviour :
L2 .state-behaves so by = —is-wrong by = match i s1 s, =
3by i'. L1.state-behaves s1 by A rel-behaviour (match i’) by by

(proof)

end

5.2 Forward simulation

locale forward-simulation =
L1: semantics stepl finall +
L2: semantics step2 final2
for
stepl :: 'statel = 'statel = bool and finall :: 'statel = bool and
step2 :: 'state2 = 'state2 = bool and final2 :: 'state2 = bool +
fixes
match :: "index = 'statel = 'state2 = bool and
order :: "index = "index = bool (infix «T» 70)
assumes
wfp-order:

12

wfp (C) and
match-final:
match i s1 s2 = finall s1 = final2 s2 and
simulation:
match i s1 s2 = stepl sl s1' —
(Fi" s2'. step2tT s2 82’ A match i’ s1' s2') vV (i’ match i’ s1' s2 N i’ C
i

begin

lemma [lift-simulation-plus:
steplt+ s1 s1' = match i s1 52 =
(Fi’ s2'. step2tt 52 s2' A match i’ s1’ s2') V
(Fi'. match i’ s1' s2 N order™ i’ i)
(proof)

lemma [lift-simulation-eval:
L1.eval s1 s1’ = match i s1 s2 = 3¢’ s2’. L2.eval s2 s2’ N\ match i’ s1' s2’

(proof)

lemma match-inf:
assumes match i s1 s2 and inf stepl s1
shows inf step2 s2

(proof)

5.2.1 Preservation of behaviour

lemma simulation-behaviour :
L1 .state-behaves s1 b1 =—> — is-wrong bl = match i s1 s2 —
302 i'. L2.state-behaves s2 b2 A rel-behaviour (match i') b1 b2

(proof)

5.2.2 Forward to backward

lemma state-behaves-forward-to-backward:
assumes
match-s1-s2: match i s1 s2 and
safe-s1: L1.safe s1 and
behaves-s2: L2.state-behaves s2 b2 and
right-unique2: right-unique step2
shows b1 i. L1.state-behaves s1 bl A rel-behaviour (match i) b1 b2
(proof)

end

5.3 Bisimulation

locale bisimulation =
Jorward-simulation stepl finall step2 final2 match ordery +
backward-simulation stepl finall step2 final2 match ordery
for

13

stepl :: 'statel = 'statel = bool and finall :: 'statel = bool and
step2 :: 'state2 = 'state2 = bool and final2 :: 'state2 = bool and
match :: "index = 'statel = 'state2 = bool and

ordery :: 'index = 'index = bool and

ordery :: "index = 'index = bool

lemma (in bisimulation) agree-on-final:
assumes match i s1 s2
shows finall s1 +— final2 s2
(proof)

lemma obtains-bisimulation-from-forward-simulation:

fixes
stepl :: 'statel = 'statel = bool and finall :: 'statel = bool and
step2 :: 'state2 = 'state2 = bool and final2 :: 'state2 = bool and
match :: "index = 'statel = 'state2 = bool and
It :: "index = 'index = bool

assumes right-unique stepl and right-unique step2 and
finall-stuck: ¥ s1. finall s1 — (Hs1’. stepl s1 s1’) and
final2-stuck: ¥ s2. final2 s2 — (Hs2'. step2 s2 s2') and

matching-states-agree-on-final: ¥ i s1 s2. match i s1 s2 — finall s1 <— final2
s2 and

matching-states-are-safe:

Vi sl s2. match i s1 s2 — safe-state stepl finall s1 N safe-state step2 final2
s2 and

wfP It and
fsim: Vi s1 s2 s1'. match i s1 s2 — stepl s1 s1’ —
(Fi’ 527, step2™T s2 s2' A match i’ s1’ s2') vV (Fi’. match i’ s1’ s2 N It i’ i)
obtains
MATCH :: nat X nat = ’'statel = 'state2 = bool and

ORDER :: nat x nat = nat X nat = bool
where

bisimulation stepl finall step2 final2 MATCH ORDER ORDER
(proof)

corollary ex-bisimulation-from-forward-simulation:

fixes
stepl :: 'statel = 'statel = bool and finall :: 'statel = bool and
step2 :: 'state2 = 'state2 = bool and final2 :: 'state2 = bool and
match :: 'index = 'statel = 'state2 = bool and
It :: "index = 'index = bool

assumes right-unique stepl and right-unique step2 and
finall-stuck: ¥ s1. finall s1 — (#s1’. stepl s1 s1') and
final2-stuck: ¥ s2. final2 s2 — (Hs2'. step2 s2 s2") and

matching-states-agree-on-final: ¥ i s1 s2. match i s1 s2 — finall s1 <— final2
s2 and

matching-states-are-safe:

Vi sl s2. match i s1 s2 — safe-state stepl finall s1 A safe-state step2 final2
s2 and

14

wfP It and
fsim: Yi s1 s2 s1'. match i s1 s2 —> stepl s1 s1' —
(3i’ s27. step2™T s2 s2' A match i’ s1’ s2') vV (3i'. match i’ s1’ s2 N It i’ Q)
shows 3 (MATCH :: nat x nat = 'statel = 'state2 = bool) ORDERy ORDER;,.

bisimulation stepl finall step2 final2 MATCH ORDERy ORDERy
(proof)

lemma obtains-bisimulation-from-backward-simulation:

fixes
stepl :: 'statel = 'statel = bool and finall :: 'statel = bool and
step2 :: 'state2 = 'state2 = bool and final2 :: 'state2 = bool and
match :: 'index = 'statel = ’'state2 = bool and
It :: "index = 'index = bool

assumes right-unique stepl and right-unique step2 and
finall-stuck: ¥ s1. finall s1 — (Hs1’. stepl s1 s1’) and
final2-stuck: ¥ s2. final2 s2 — (Hs2'. step2 52 s2') and

matching-states-agree-on-final: Vi s1 s2. match i s1 s2 — finall s1 <— final2
s2 and

matching-states-are-safe:

Vi sl s2. match i s1 s2 — safe-state stepl finall s1 N safe-state step2 final2
s2 and

wfP It and
bsim: Vi s1 s2 s2’. match i s1 s2 —> step2 s2 s2' —
(Fi’ s1'. step1 ™t s1 s1’ AN match i’ s1’ s27) vV (3i’. match i’ s1 s2’ N It i’ i)
obtains
MATCH :: nat x nat = ’'statel = 'state2 = bool and
ORDER :: nat X nat = nat X nat = bool
where

bisimulation stepl finall step2 final2 MATCH ORDER ORDER
(proof)

corollary ex-bisimulation-from-backward-simulation:

fixes
stepl :: 'statel = 'statel = bool and finall :: 'statel = bool and
step2 :: 'state2 = 'state2 = bool and final2 :: 'state2 = bool and
match :: "index = 'statel = 'state2 = bool and
It :: "inder = "index = bool

assumes right-unique stepl and right-unique step2 and
finall-stuck: ¥ s1. finall s1 — (Hs1’. stepl s1 s1') and
final2-stuck: ¥ s2. final2 s2 — (Hs2'. step2 s2 s2") and

matching-states-agree-on-final: ¥ i s1 s2. match i s1 s2 — finall s1 <— final2
s2 and

matching-states-are-safe:

Visl s2. match i s1 s2 — safe-state stepl finall s1 A safe-state step2 final2
s2 and

wfP It and
bsim: Vi s1 82 s2'. match i s1 s2 — step2 s2 s2' —
(Fi’ s1'. stepl ™t s1 s1’ A match i’ s1’ s2') vV (3i’. match i’ s1 s2’ N It i’ i)
shows 3 (MATCH :: nat x nat = 'statel = 'state2 = bool) ORDER; ORDER,,.

15

bisimulation stepl finall step? final2 MATCH ORDERy ORDERy
(proof)

5.4 Composition of simulations

definition rel-comp ::

(la="b='c= bool) = ('d = 'c = 'e = bool) = (‘a x 'd) = b= "e = bool
where

rel-comp r1 r2 i = (r1 (fst i) OO0 r2 (snd 1))

5.4.1 Composition of backward simulations

lemma backward-simulation-composition:
assumes
backward-simulation stepl finall step2 final2 matchl orderl
backward-simulation step2 final2 step8 final3 match?2 order2
shows
backward-simulation stepl finall step3 final3
(rel-comp matchl match2) (lex-prodp orderl ™™ order2)

(proof)

context
fixes r :: i = 'a = 'a = bool
begin

fun rel-comp-pow where
rel-comp-pow || z y = False |
rel-comp-pow [{| cy=rizy |
rel-comp-pow (i # is) x z = (Jy. r iz y A rel-comp-pow is y z)

end

lemma backward-simulation-pow:
assumes
backward-simulation step final step final match order
shows
backward-simulation step final step final (rel-comp-pow match) (lexp order™™)

(proof)

5.4.2 Composition of forward simulations

lemma forward-simulation-composition:
assumes
forward-simulation stepl finall step2 final2 matchl orderl
forward-simulation step2 final2 step3 final3 match2 order2
defines ORDER =)i i'. lex-prodp order2+™ orderl (prod.swap i) (prod.swap
i)
shows forward-simulation stepl finall step3 final3 (rel-comp matchl match2)
ORDER

(proof)

16

5.4.3 Composition of bisimulations

lemma bisimulation-composition:
fixes
stepl :: 's1 = 's1 = bool and finall :: 's1 = bool and
step2 :: 's2 = 's2 = bool and final2 :: 's2 = bool and
stepd :: 's8 = 's8 = bool and final3 :: 's8 = bool and
matchl :: 't = 's1 = 's2 = bool and orderl; orderly :: i = "i = bool and
match? :: 'j = 's2 = 's3 = bool and order2; order2y :: 'j = 'j = bool
assumes
bisimulation stepl finall step2 final2 matchl orderl ¢ orderly
bisimulation step2 final2 stepSd final3 match2 order2y order2;
obtains
ORDERy; :: i x 'j = 'i x 'j = bool and
ORDERy :: i x 'j = 'i x 'j = bool and
MATCH :: i x 'j = 's1 = 's8 = bool
where bisimulation stepl finall step3 finals MATCH ORDERy ORDER,
(proof)

5.5 Miscellaneous

definition lockstep-backward-simulation where
lockstep-backward-simulation stepl step2 match =
Vsl s2 s2'. match s1 s2 — step2 s2 s2' — (Isl’. stepl s1 s1’ N\ match s1’
s2")

definition plus-backward-simulation where
plus-backward-simulation stepl step2 match =
Vsl 52 s2'. match sl s2 — step2 s2 s2' —» (Is1’. stepl ™+ s1 s1' A\ match
s1’s2")

lemma
assumes lockstep-backward-simulation stepl step2 match
shows plus-backward-simulation stepl step2 match

(proof)

lemma lockstep-to-plus-backward-simulation:
fixes
match :: 'statel = 'state2 = bool and
stepl :: 'statel = 'statel = bool and
step2 :: 'state2 = 'state2 = bool
assumes
lockstep-simulation: N\s1 s2 s2'. match sl s2 = step2 s2 s2' = (I s1’. stepl
s1 s1' A match s1' s2’) and
match: match s1 s2 and
step: step2 s2 s2'
shows 3s1’. stepl ™ s1 s1' A match s1' 52’

(proof)

lemma lockstep-to-option-backward-simulation:

17

fixes
match :: 'statel = ’'state2 = bool and
stepl :: 'statel = 'statel = bool and
step2 :: 'state2 = 'state2 = bool and
measure :: 'state2 = nat
assumes
lockstep-simulation: N\s1 s2 s2'. match s1 s2 = step2 s2 s2' — (I s1’. stepl
s1 s1’ A\ match s1' s2’) and
match: match s1 s2 and
step: step? s2 s2'
shows (Js1'. stepl s1 s1’ A match s1' s2’) V match sl s2' A measure s2’ <
measure s2

{proof)

lemma plus-to-star-backward-simulation:
fixes
match :: 'statel = 'state2 = bool and
stepl :: 'statel = 'statel = bool and
step2 :: 'state2 = 'state2 = bool and
measure :: 'state2 = nat
assumes
star-simulation: \s1 s2 s2'. match s1 s2 = step2 s2 s2' = (Is1’. stepl T+
s1 s1' A match s1' s2’) and
match: match s1 s2 and
step: step2 s2 s2'
shows (3s1'. stepl ™t s1 s1’ A match s1’ s2') V match s1 s2' \ measure s2' <
measure s2

{proof)

lemma lockstep-to-plus-forward-simulation:
fixes
match :: 'statel = 'state2 = bool and
stepl :: 'statel = 'statel = bool and
step2 :: 'state2 = 'state2 = bool
assumes
lockstep-simulation: N\s1 s2 s2’. match sl s2 = stepl sl s1' = (I s2’. step2
s2 s2' A match s1' s2’) and
match: match s1 s2 and
step: stepl sl s1’
shows 3s2'. step2t ™ 52 s2' A match s1' 52’

(proof)

end

6 Compiler Between Static Representations
theory Compiler

imports Language Simulation
begin

18

definition option-comp :: (‘a = 'b option) = ('c = 'a option) = ‘¢ = 'b option

(infix <& 50) where
(f € g) = = Option.bind (g) f

context
fixes f :: ("a = 'a option)
begin

fun option-comp-pow :: nat = 'a = 'a option where
option-comp-pow 0 = (A-. None) |
option-comp-pow (Suc 0) = f |
option-comp-pow (Suc n) = (option-comp-pow n < f)

end

locale compiler =
L1: language stepl finall loadl +
L2: language step? final2 load?2 +
backward-simulation stepl finall step2 final2 match order
for
stepl :: 'statel = 'statel = bool and finall and load1
bool and
step2 :: 'state2 = 'state2 = bool and final2 and load?2
bool and

match and

order :: 'index = 'index = bool +
fixes

compile :: 'progl = "prog2 option
assumes

compile-load:

i 'progl = 'statel =

i 'prog2 = 'state2 =

compile p1 = Some p2 — load2 p2 s2 —> I sl i. loadl pl s1 N match i sl

s2
begin

The compiler locale relates two languages, L1 and L2,

by a backward sim-

ulation and provides a compile partial function from a concrete program in
L1 to a concrete program in L2. The only assumption is that a successful

compilation results in a program which, when loaded,

loaded initial program.

6.1 Preservation of behaviour

corollary behaviour-preservation:
assumes
compiles: compile p1 = Some p2 and
behaves: L2.prog-behaves p2 b2 and
not-wrong: — is-wrong b2

is equivalent to the

shows 3b1 i. LI.prog-behaves p1 b1 A rel-behaviour (match i) b1 b2

19

(proof)

end

6.2 Composition of compilers

lemma compiler-composition:
assumes
compiler stepl finall loadl step?2 final2 load2 matchl orderl compilel and
compiler step?2 final2 load2 step3 final3 load3 match2 order2 compile2
shows compiler step! finall loadl step3 final3 load3
(rel-comp matchl match?2) (lex-prodp order1™ T order2) (compile2 < compilel)

(proof)

lemma compiler-composition-pow:
assumes
compiler step final load step final load match order compile
shows compiler step final load step final load
(rel-comp-pow match) (lexp order™™) (option-comp-pow compile n)

(proof)

end

7 Fixpoint of Converging Program Transforma-
tions

theory Fixpoint
imports Compiler
begin

context
fixes
m :: 'a = nat and
f'a = 'a option
begin

function fizpoint :: ‘a = 'a option where
fizpoint z = (
case f x of
None = None |
Some x' = if m ' < m x then fizpoint z’ else Some x’

(proof)
termination

(proof)

end

20

lemma fizpoint-to-comp-pow:
fixpoint m fx = y = I n. option-comp-pow fnx =y
(proof)

lemma fixpoint-eq-comp-pow:
dn. firpoint m fx = option-comp-pow fn x
(proof)

lemma compiler-composition-fizpoint:
assumes
compiler step final load step final load match order compile
shows compiler step final load step final load
(rel-comp-pow match) (lexp order™™) (fizpoint m compile)

(proof)

end

References
[1] M. Desharnais and S. Brunthaler. A generic framework for verified com-

pilers using isabelle/hols locales. 31 éme Journées Francophones des
Langages Applicatifs, page 198, 2020.

21

	Infinitely Transitive Closure
	The Dynamic Representation of a Language
	Behaviour of a dynamic execution
	Safe states

	The Static Representation of a Language
	Program behaviour

	Well-foundedness of Relations Defined as Predicate Functions
	Lexicographic product
	Lexicographic list

	Simulations Between Dynamic Executions
	Backward simulation
	Preservation of behaviour

	Forward simulation
	Preservation of behaviour
	Forward to backward

	Bisimulation
	Composition of simulations
	Composition of backward simulations
	Composition of forward simulations
	Composition of bisimulations

	Miscellaneous

	Compiler Between Static Representations
	Preservation of behaviour
	Composition of compilers

	Fixpoint of Converging Program Transformations

