
VectorSpace

Holden Lee∗

March 17, 2025

Abstract

I present a formalisation of basic linear algebra based completely
on locales, building off HOL-Algebra. It includes the following:

1. basic definitions: linear combinations, span, linear independence
2. linear transformations
3. interpretation of function spaces as vector spaces
4. direct sum of vector spaces, sum of subspaces
5. the replacement theorem
6. existence of bases in finite-dimensional vector spaces, definition

of dimension
7. rank-nullity theorem.

Note that some concepts are actually defined and proved for modules
as they also apply there.

In the process, I also prove some basic facts about rings, modules,
and fields, as well as finite sums in monoids/modules.

Note that infinite-dimensional vector spaces are supported, but di-
mension is only supported for finite-dimensional vector spaces.

The proofs are standard; the proofs of the replacement theorem and
rank-nullity theorem roughly follow the presentation in [?]. The rank-
nullity theorem generalises the existing development in [?] (originally
using type classes, now using a mix of type classes and locales).

Contents
1 Basic facts about rings and modules 1

1.1 Basic facts . 2
1.2 Units group . 3

2 Basic lemmas about functions 4

3 Sums in monoids 4
∗This work was funded by the Post-Masters Consultancy and the Computer Laboratory

at the University of Cambridge.

1

4 Linear Combinations 7
4.1 Lemmas for simplification 7
4.2 Linear combinations . 8
4.3 Linear dependence and independence. 10
4.4 Submodules . 14

5 The direct sum of modules. 27

6 Basic theory of vector spaces, using locales 32
6.1 Basic definitions and facts carried over from modules . . 32

6.1.1 Facts specific to vector spaces 37
6.2 Basic facts about span and linear independence 39
6.3 The Replacement Theorem 40
6.4 Defining dimension and bases. 43
6.5 The rank-nullity (dimension) theorem 53

1 Basic facts about rings and modules
theory RingModuleFacts
imports Main

HOL−Algebra.Module
HOL−Algebra.Coset

begin

1.1 Basic facts

In a field, every nonzero element has an inverse.
lemma (in field) inverse-exists [simp, intro]:

assumes h1 : a∈carrier R and h2 : a 6=0R
shows invR a∈ carrier R

proof −
have 1 : Units R = carrier R − {0R} by (rule field-Units)
from h1 h2 1 show ?thesis by auto

qed

Multiplication by 0 in R gives 0. (Note that this fact encom-
passes smult-l-null as this is for module while that is for algebra,
so smult-l-null is redundant.)
lemma (in module) lmult-0 [simp]:

assumes 1 : m∈carrier M
shows 0R�M m=0M

proof −
from 1 have 0 : 0R�M m∈carrier M by simp
from 1 have 2 : 0R�M m = (0R ⊕R 0R) �M m by simp
from 1 have 3 : (0R ⊕R 0R) �M m=(0R�M m) ⊕M (0R�M m)

using [[simp-trace, simp-trace-depth-limit=3]]
by (simp add: smult-l-distr del: R.add.r-one R.add.l-one)

2

from 2 3 have 4 : 0R�M m =(0R�M m) ⊕M (0R�M m) by auto
from 0 4 show ?thesis

using M .l-neg M .r-neg1 by fastforce
qed

Multiplication by 0 in M gives 0.
lemma (in module) rmult-0 [simp]:

assumes 0 : r∈carrier R
shows r�M 0M=0M

by (metis M .zero-closed R.zero-closed assms lmult-0 r-null smult-assoc1)

Multiplication by −1 is the same as negation. May be useful as
a simp rule.
lemma (in module) smult-minus-1 :

fixes v
assumes 0 :v∈carrier M
shows (R 1R) �M v= (M v)

proof −
from 0 have a0 : 1R �M v = v by simp
from 0 have 1 : ((R 1R)⊕R 1R) �M v=0M

by (simp add:R.l-neg)
from 0 have 2 : ((R 1R)⊕R 1R) �M v=(R 1R) �M v ⊕M

1R�M v
by (simp add: smult-l-distr)

from 1 2 show ?thesis by (metis M .minus-equality R.add.inv-closed

a0 assms one-closed smult-closed)
qed

The version with equality reversed.
lemmas (in module) smult-minus-1-back = smult-minus-1 [THEN
sym]

-1 is not 0
lemma (in field) neg-1-not-0 [simp]: 	R 1R 6= 0R
by (metis minus-minus minus-zero one-closed zero-not-one)

Note smult-assoc1 is the wrong way around for simplification.
This is the reverse of smult-assoc1.
lemma (in module) smult-assoc-simp:
[| a ∈ carrier R; b ∈ carrier R; x ∈ carrier M |] ==>

a �M (b �M x) = (a ⊗ b) �M x
by (auto simp add: smult-assoc1)

lemmas (in abelian-group) show-r-zero= add.l-cancel-one
lemmas (in abelian-group) show-l-zero= add.r-cancel-one

3

A nontrivial ring has 0 6= 1.
lemma (in ring) nontrivial-ring [simp]:

assumes carrier R 6={0R}
shows 0R 6=1R

proof (rule ccontr)
assume 1 : ¬(0R 6=1R)
{

fix r
assume 2 : r∈carrier R
from 1 2 have 3 : 1R⊗R r = 0R⊗R r by auto
from 2 3 have r = 0R by auto

}
from this assms show False by auto

qed

Use as simp rule. To show a− b = 0, it suffices to show a = b.
lemma (in abelian-group) minus-other-side [simp]:
[[a∈carrier G; b∈carrier G]] =⇒ (a	Gb = 0G) = (a=b)
by (metis a-minus-def add.inv-closed add.m-comm r-neg r-neg2)

1.2 Units group

Define the units group R× and show it is actually a group.
definition units-group::(′a, ′b) ring-scheme ⇒ ′a monoid

where units-group R = (|carrier = Units R, mult = (λx y. x⊗R y),
one = 1R|)

The units form a group.
lemma (in ring) units-form-group: group (units-group R)

apply (intro groupI)
apply (unfold units-group-def , auto)
apply (intro m-assoc)
apply auto
apply (unfold Units-def)
apply auto
done

The units of a cring form a commutative group.
lemma (in cring) units-form-cgroup: comm-group (units-group R)

apply (intro comm-groupI)
apply (unfold units-group-def) apply auto
apply (intro m-assoc) apply auto
apply (unfold Units-def) apply auto
apply (rule m-comm) apply auto
done

end

4

2 Basic lemmas about functions
theory FunctionLemmas

imports Main
HOL−Library.FuncSet

begin

These are used in simplification. Note that the difference from
Pi-mem is that the statement about the function comes first, so
Isabelle can more easily figure out what S is.
lemma PiE-mem2 : f ∈ S→E T =⇒ x ∈ S =⇒ f x ∈ T

unfolding PiE-def by auto
lemma Pi-mem2 : f ∈ S→ T =⇒ x ∈ S =⇒ f x ∈ T

unfolding Pi-def by auto

end

3 Sums in monoids
theory MonoidSums

imports Main
HOL−Algebra.Module
RingModuleFacts
FunctionLemmas

begin

We build on the finite product simplifications in FiniteProd-
uct.thy and the analogous ones for finite sums (see "lemmas"
in Ring.thy).

Use as an intro rule
lemma (in comm-monoid) factors-equal:
[[a=b; c=d]] =⇒ a⊗Gc = b⊗Gd
by simp

lemma (in comm-monoid) extend-prod:
fixes a A S
assumes fin: finite S and subset: A⊆S and a: a∈A→carrier G
shows (

⊗
G x∈S . (if x∈A then a x else 1G)) = (

⊗
G x∈A. a x)

(is (
⊗

G x∈S . ?b x) = (
⊗

G x∈A. a x))
proof −

from subset have uni:S = A ∪ (S−A) by auto
from assms subset show ?thesis

apply (subst uni)
apply (subst finprod-Un-disjoint, auto)

5

by (auto cong: finprod-cong if-cong elim: finite-subset simp add:Pi-def
finite-subset)

qed

Scalar multiplication distributes over scalar multiplication (on
left).
lemma (in module) finsum-smult:
[| c∈ carrier R; g ∈ A → carrier M |] ==>
(c �M finsum M g A) = finsum M (%x. c �M g x) A

proof (induct A rule: infinite-finite-induct)
case (insert a A)
from insert.hyps insert.prems have 1 : finsum M g (insert a A) = g

a ⊕M finsum M g A
by (intro finsum-insert, auto)

from insert.hyps insert.prems have 2 : (
⊕

Mx∈insert a A. c �M g
x) = c �M g a ⊕M(

⊕
Mx∈A. c �M g x)

by (intro finsum-insert, auto)
from insert.hyps insert.prems show ?case

by (auto simp add:1 2 smult-r-distr)
qed auto

Scalar multiplication distributes over scalar multiplication (on
right).
lemma (in module) finsum-smult-r :
[| v∈ carrier M ; f ∈ A → carrier R |] ==>
(finsum R f A �M v) = finsum M (%x. f x �M v) A

proof (induct A rule: infinite-finite-induct)
case (insert a A)
from insert.hyps insert.prems have 1 : finsum R f (insert a A) = f

a ⊕R finsum R f A
by (intro R.finsum-insert, auto)

from insert.hyps insert.prems have 2 : (
⊕

Mx∈insert a A. f x �M
v) = f a �M v ⊕M(

⊕
Mx∈A. f x �M v)

by (intro finsum-insert, auto)
from insert.hyps insert.prems show ?case

by (auto simp add:1 2 smult-l-distr)
qed auto

A sequence of lemmas that shows that the product does not
depend on the ambient group. Note I had to dig back into the
definitions of foldSet to show this.
lemma foldSet-not-depend:

fixes A E
assumes h1 : D⊆E
shows foldSetD D f e ⊆foldSetD E f e

proof −
from h1 have 1 :

∧
x1 x2 . (x1 ,x2) ∈ foldSetD D f e =⇒ (x1 , x2) ∈

foldSetD E f e

6

proof −
fix x1 x2
assume 2 : (x1 ,x2) ∈ foldSetD D f e
from h1 2 show ?thesis x1 x2
apply (intro foldSetD.induct[where ?D=D and ?f=f and ?e=e

and ?x1 .0=x1 and ?x2 .0=x2
and ?P = λx1 x2 . ((x1 , x2)∈ foldSetD E f e)])

apply auto
apply (intro emptyI , auto)

by (intro insertI , auto)
qed
from 1 show ?thesis by auto

qed

lemma foldD-not-depend:
fixes D E B f e A
assumes h1 : LCD B D f and h2 : LCD B E f and h3 : D⊆E and

h4 : e∈D and h5 : A⊆B and h6 : finite B
shows foldD D f e A = foldD E f e A

proof −
from assms have 1 : ∃ y. (A,y)∈foldSetD D f e

apply (intro finite-imp-foldSetD, auto)
apply (metis finite-subset)

by (unfold LCD-def , auto)
from 1 obtain y where 2 : (A,y)∈foldSetD D f e by auto
from assms 2 have 3 : foldD D f e A = y by (intro LCD.foldD-equality[of

B], auto)
from h3 have 4 : foldSetD D f e ⊆ foldSetD E f e by (rule fold-

Set-not-depend)
from 2 4 have 5 : (A,y)∈foldSetD E f e by auto
from assms 5 have 6 : foldD E f e A = y by (intro LCD.foldD-equality[of

B], auto)

from 3 6 show ?thesis by auto
qed

lemma (in comm-monoid) finprod-all1 [simp]:
assumes all1 :

∧
a. a∈A=⇒f a = 1G

shows (
⊗

G a∈A. f a) = 1G

proof −
from assms show ?thesis

by (simp cong: finprod-cong)
qed

context abelian-monoid
begin
lemmas summands-equal = add.factors-equal
lemmas extend-sum = add.extend-prod

7

lemmas finsum-all0 = add.finprod-all1
end

end

4 Linear Combinations
theory LinearCombinations
imports Main

HOL−Algebra.Module
HOL−Algebra.Coset
RingModuleFacts
MonoidSums
FunctionLemmas

begin

4.1 Lemmas for simplification

The following are helpful in certain simplifications (esp. congru-
ence rules). Warning: arbitrary use leads to looping.
lemma (in ring) coeff-in-ring:
[[a∈A→carrier R; x∈A]] =⇒ a x ∈carrier R

by (rule Pi-mem)

lemma (in ring) coeff-in-ring2 :
[[x∈A;a∈A→carrier R]] =⇒ a x ∈carrier R

by (metis Pi-mem)

lemma ring-subset-carrier :
[[x ∈A; A⊆carrier R]] =⇒ x ∈carrier R

by auto

lemma disj-if :
[[A∩B={}; x∈ B]] =⇒ (if x∈A then f x else g x) = g x

by auto

lemmas (in module) sum-simp = ring-subset-carrier

4.2 Linear combinations

A linear combination is
∑

v∈A avv. (av)v∈S is a function A→ K,
where A ⊆ K.
definition (in module) lincomb::[′c ⇒ ′a, ′c set]⇒ ′c
where lincomb a A = (

⊕
M v∈A. (a v �M v))

lemma (in module) summands-valid:

8

fixes A a
assumes h2 : A⊆ carrier M and h3 : a∈(A→carrier R)
shows ∀ v∈ A. (((a v) �M v)∈ carrier M)

proof −
from assms show ?thesis by auto

qed

lemma (in module) lincomb-closed [simp, intro]:
fixes S a
assumes h2 : S⊆ carrier M and h3 : a∈(S→carrier R)
shows lincomb a S ∈ carrier M

proof −
from h2 h3 show ?thesis by (unfold lincomb-def , auto intro:finsum-closed)

qed

lemma (in comm-monoid) finprod-cong2 :
[| A = B;

!!i. i ∈ B ==> f i = g i; f ∈ B → carrier G|] ==>
finprod G f A = finprod G g B
by (intro finprod-cong, auto)

lemmas (in abelian-monoid) finsum-cong2 = add.finprod-cong2

lemma (in module) lincomb-cong:
assumes h2 : A=B and h3 : A ⊆ carrier M

and h4 :
∧

v. v∈A =⇒ a v = b v and h5 : b∈ B→carrier R
shows lincomb a A = lincomb b B

using assms
by (simp cong: finsum-cong2 add: lincomb-def summands-valid

ring-subset-carrier)

lemma (in module) lincomb-union:
fixes a A B
assumes h1 : finite (A∪ B) and h3 : A∪B ⊆ carrier M

and h4 : A∩B={} and h5 : a∈(A∪B→carrier R)
shows lincomb a (A∪B) = lincomb a A ⊕M lincomb a B

using assms
by (auto cong: finsum-cong2 simp add: lincomb-def finsum-Un-disjoint

summands-valid ring-subset-carrier)

This is useful as a simp rule sometimes, for combining linear
combinations.
lemma (in module) lincomb-union2 :

fixes a b A B
assumes h1 : finite (A∪ B) and h3 : A∪B ⊆ carrier M

and h4 : A∩B={} and h5 : a∈A→carrier R and h6 : b∈B→carrier
R

shows lincomb a A ⊕M lincomb b B = lincomb (λv. if (v∈A) then

9

a v else b v) (A∪B)
(is lincomb a A ⊕M lincomb b B = lincomb ?c (A∪B))

using assms
by (auto cong: finsum-cong2

simp add: lincomb-def finsum-Un-disjoint summands-valid
ring-subset-carrier disj-if)

lemma (in module) lincomb-del2 :
fixes S a v
assumes h1 : finite S and h2 : S⊆ carrier M and h3 : a∈(S→carrier

R) and h4 :v∈S
shows lincomb a S = ((a v) �M v) ⊕M lincomb a (S−{v})

proof −
from h4 have 1 : S={v}∪(S−{v}) by (metis insert-Diff insert-is-Un)

from assms show ?thesis
apply (subst 1)
apply (subst lincomb-union, auto)
by (unfold lincomb-def , auto simp add: coeff-in-ring)

qed

lemma (in module) lincomb-insert:
fixes S a v
assumes h1 : finite S and h2 : S⊆ carrier M and h3 : a∈(S∪{v}→carrier

R) and h4 :v /∈S and
h5 :v∈ carrier M

shows lincomb a (S∪{v}) = ((a v) �M v) ⊕M lincomb a S
using assms

by (auto cong: finsum-cong2
simp add: lincomb-def finsum-Un-disjoint summands-valid

ring-subset-carrier disj-if)

lemma (in module) lincomb-elim-if [simp]:
fixes b c S
assumes h1 : S ⊆ carrier M and h2 :

∧
v. v∈S=⇒ ¬P v and h3 :

c∈S→carrier R
shows lincomb (λw. if P w then b w else c w) S = lincomb c S

using assms
by (auto cong: finsum-cong2

simp add: lincomb-def finsum-Un-disjoint summands-valid
ring-subset-carrier disj-if)

lemma (in module) lincomb-smult:
fixes A c
assumes h2 : A⊆carrier M and h3 : a∈A→carrier R and h4 :

c∈carrier R
shows lincomb (λw. c⊗R a w) A = c�M (lincomb a A)

using assms

10

by (auto cong: finsum-cong2
simp add: lincomb-def finsum-Un-disjoint finsum-smult ring-subset-carrier

disj-if smult-assoc1 coeff-in-ring)

4.3 Linear dependence and independence.

A set S in a module/vectorspace is linearly dependent if there is a
finite set A ⊆ S and coefficients (av)v∈A such that sumv∈Aavv =
0 and for some v, av 6= 0.
definition (in module) lin-dep where

lin-dep S = (∃A a v. (finite A ∧ A⊆S ∧ (a∈ (A→carrier R)) ∧
(lincomb a A = 0M) ∧ (v∈A) ∧ (a v 6= 0R)))

abbreviation (in module) lin-indpt:: ′c set ⇒ bool
where lin-indpt S ≡ ¬lin-dep S

In the finite case, we can take A = S. This may be more conve-
nient (e.g., when adding two linear combinations.
lemma (in module) finite-lin-dep:

fixes S
assumes finS :finite S and ld: lin-dep S and inC : S⊆carrier M
shows ∃ a v. (a∈ (S→carrier R)) ∧ (lincomb a S = 0M) ∧ (v∈S) ∧

(a v 6= 0R)
proof −

from ld obtain A a v where A: (A⊆S ∧ (a∈ (A→carrier R)) ∧
(lincomb a A = 0M) ∧ (v∈A) ∧ (a v 6= 0R))

by (unfold lin-dep-def , auto)
let ?b=λw. if w∈A then a w else 0R
from finS inC A have if-in: (

⊕
Mv∈S . (if v ∈ A then a v else 0)

�M v) = (
⊕

Mv∈S . (if v ∈ A then a v �M v else 0M))
apply auto

apply (intro finsum-cong ′)
by (auto simp add: coeff-in-ring)

from finS inC A have b: lincomb ?b S = 0M
apply (unfold lincomb-def)
apply (subst if-in)
by (subst extend-sum, auto)

from A b show ?thesis
apply (rule-tac x=?b in exI)
apply (rule-tac x=v in exI)
by auto

qed

Criteria of linear dependency in a easy format to apply: apply
(rule lin-dep-crit)
lemma (in module) lin-dep-crit:

fixes A S a v

11

assumes fin: finite A and subset: A⊆S and h1 : (a∈ (A→carrier
R)) and h2 : v∈ A

and h3 :a v 6= 0R and h4 : (lincomb a A = 0M)
shows lin-dep S

proof −
from assms show ?thesis

by (unfold lin-dep-def , auto)
qed

If
∑

v∈A avv = 0 implies av = 0 for all v ∈ S, then A is linearly
independent.
lemma (in module) finite-lin-indpt2 :

fixes A
assumes A-fin: finite A and AinC : A⊆carrier M and

lc0 :
∧

a. a∈ (A→carrier R) =⇒ (lincomb a A = 0M) =⇒ (∀ v∈A.
a v= 0R)

shows lin-indpt A
proof (rule ccontr)

assume ¬lin-indpt A
from A-fin AinC this obtain a v where av:
(a∈ (A→carrier R)) ∧ (lincomb a A = 0M) ∧ (v∈A) ∧ (a v 6= 0R)
by (metis finite-lin-dep)

from av lc0 show False by auto
qed

Any set containing 0 is linearly dependent.
lemma (in module) zero-lin-dep:

assumes 0 : 0M ∈ S and nonzero: carrier R 6= {0R}
shows lin-dep S

proof −
from nonzero have zero-not-one: 0R 6= 1R by (rule nontrivial-ring)
from 0 zero-not-one show ?thesis

apply (unfold lin-dep-def)
apply (rule-tac x={0M} in exI)
apply (rule-tac x=(λv. 1R) in exI)
apply (rule-tac x=0M in exI)
by (unfold lincomb-def , auto)

qed

lemma (in module) zero-nin-lin-indpt:
assumes h2 : S⊆carrier M and li: ¬(lin-dep S) and nonzero: carrier

R 6= {0R}
shows 0M /∈ S

proof (rule ccontr)
assume a1 : ¬(0M /∈ S)
from a1 have a2 : 0M ∈ S by auto
from a2 nonzero have ld: lin-dep S by (rule zero-lin-dep)
from li ld show False by auto

qed

12

The span of S is the set of linear combinations with A ⊆ S.
definition (in module) span:: ′c set ⇒ ′c set
where span S = {lincomb a A | a A. finite A ∧ A⊆S ∧ a∈ (A→carrier

R)}

The span interpreted as a module or vectorspace.
abbreviation (in module) span-vs:: ′c set ⇒ (′a, ′c, ′d) module-scheme

where span-vs S ≡ M (|carrier := span S |)

In the finite case, we can take A = S without loss of generality.
lemma (in module) finite-span:

assumes fin: finite S and inC : S⊆carrier M
shows span S = {lincomb a S | a. a∈ (S→carrier R)}

proof (rule equalityI)
{

fix A a
assume subset: A ⊆ S and a: a ∈ A → carrier R
let ?b=(λv. if v ∈ A then a v else 0)

from fin inC subset a have if-in: (
⊕

Mv∈S . ?b v �M v) =
(
⊕

Mv∈S . (if v ∈ A then a v �M v else 0M))
apply (intro finsum-cong ′)

by (auto simp add: coeff-in-ring)
from fin inC subset a have ∃ b. lincomb a A = lincomb b S ∧ b ∈

S → carrier R
apply (rule-tac x=?b in exI)
apply (unfold lincomb-def , auto)
apply (subst if-in)
by (subst extend-sum, auto)

}
from this show span S ⊆ {lincomb a S |a. a ∈ S → carrier R}

by (unfold span-def , auto)
next

from fin show {lincomb a S |a. a ∈ S → carrier R} ⊆ span S
by (unfold span-def , auto)

qed

If v ∈ span S, then we can find a linear combination. This is in
an easy to apply format (e.g. obtain a A where. . .)
lemma (in module) in-span:

fixes S v
assumes h2 : S⊆carrier V and h3 : v∈span S
shows ∃ a A. (A⊆S ∧ (a∈A→carrier R) ∧ (lincomb a A=v))

proof −
from h2 h3 show ?thesis

apply (unfold span-def)
by auto

qed

13

In the finite case, we can take A = S.
lemma (in module) finite-in-span:

fixes S v
assumes fin: finite S and h2 : S⊆carrier M and h3 : v∈span S
shows ∃ a. (a∈S→carrier R) ∧ (lincomb a S=v)

proof −
from fin h2 have fin-span: span S = {lincomb a S |a. a ∈ S →

carrier R} by (rule finite-span)
from h3 fin-span show ?thesis by auto

qed

If a subset is linearly independent, then any linear combination
that is 0 must have a nonzero coefficient outside that set.
lemma (in module) lincomb-must-include:

fixes A S T b v
assumes inC : T⊆carrier M and li: lin-indpt S and Ssub: S⊆T

and Ssub: A⊆T
and fin: finite A
and b: b∈A→carrier R and lc: lincomb b A=0M and v-in: v∈A
and nz-coeff : b v 6=0R

shows ∃w∈A−S . b w 6=0R
proof (rule ccontr)

assume 0 : ¬(∃ w∈A−S . b w 6=0R)
from 0 have 1 :

∧
w. w∈A−S=⇒ b w=0R by auto

have Auni: A=(S∩A) ∪(A−S) by auto
from fin b Ssub inC 1 have 2 : lincomb b A = lincomb b (S∩A)

apply (subst Auni)
apply (subst lincomb-union, auto)

apply (unfold lincomb-def)
apply (subst (2) finsum-all0 , auto)
by (subst show-r-zero, auto intro!: finsum-closed)

from 1 2 assms have ld: lin-dep S
apply (intro lin-dep-crit[where ?A=S∩A and ?a=b and ?v=v])
by auto

from ld li show False by auto
qed

A generating set is a set such that the span of S is all of M .
abbreviation (in module) gen-set:: ′c set ⇒ bool

where gen-set S ≡ (span S = carrier M)

4.4 Submodules
lemma module-criteria:

fixes R and M
assumes cring: cring R

and zero: 0M∈ carrier M

14

and add: ∀ v w. v∈carrier M ∧ w∈carrier M−→ v⊕M w∈ carrier
M

and neg: ∀ v∈carrier M . (∃neg-v∈carrier M . v⊕Mneg-v=0M)
and smult: ∀ c v. c∈ carrier R ∧ v∈carrier M−→ c�M v ∈

carrier M
and comm: ∀ v w. v∈carrier M ∧ w∈carrier M−→ v⊕M w=w⊕M

v
and assoc: ∀ v w x. v∈carrier M ∧ w∈carrier M ∧ x∈carrier

M−→ (v⊕M w)⊕M x= v⊕M (w⊕M x)
and add-id: ∀ v∈carrier M . (v⊕M 0M =v)
and compat: ∀ a b v. a∈ carrier R ∧ b∈ carrier R ∧ v∈carrier

M−→ (a⊗R b)�M v =a�M (b�M v)
and smult-id: ∀ v∈carrier M . (1R �M v =v)
and dist-f : ∀ a b v. a∈ carrier R ∧ b∈ carrier R ∧ v∈carrier

M−→ (a⊕R b)�M v =(a�M v) ⊕M (b�M v)
and dist-add: ∀ a v w. a∈ carrier R ∧ v∈carrier M ∧ w∈carrier

M−→ a�M (v⊕M w) =(a�M v) ⊕M (a�M w)
shows module R M

proof −
from assms have 2 : abelian-group M

by (intro abelian-groupI , auto)
from assms have 3 : module-axioms R M

by (unfold module-axioms-def , auto)
from 2 3 cring show ?thesis

by (unfold module-def module-def , auto)
qed

A submodule is N ⊆M that is closed under addition and scalar
multiplication, and contains 0 (so is not empty).
locale submodule =

fixes R and N and M (structure)
assumes module: module R M

and subset: N ⊆ carrier M
and m-closed [intro, simp]: [[v ∈ N ; w ∈ N]] =⇒ v ⊕ w ∈ N
and zero-closed [simp]: 0 ∈ N
and smult-closed [intro, simp]: [[c ∈ carrier R; v ∈ N]] =⇒ c�v ∈

N

abbreviation (in module) md:: ′c set ⇒ (′a, ′c, ′d) module-scheme
where md N ≡ M (|carrier :=N |)

lemma (in module) carrier-vs-is-self [simp]:
carrier (md N) = N
by auto

lemma (in module) submodule-is-module:
fixes N :: ′c set
assumes 0 : submodule R N M
shows module R (md N)

15

proof (unfold module-def , auto)
show 1 : cring R..

next
from assms show 2 : abelian-group (md N)

apply (unfold submodule-def)
apply (intro abelian-groupI , auto)

apply (metis (no-types, opaque-lifting) M .add.m-assoc con-
tra-subsetD)

apply (metis (no-types, opaque-lifting) M .add.m-comm contra-subsetD)
apply (rename-tac v)

The inverse of v under addition is −v

apply (rule-tac x=	Mv in bexI)
apply (metis M .l-neg contra-subsetD)

by (metis R.add.inv-closed one-closed smult-minus-1 subset-iff)
next

from assms show 3 : module-axioms R (md N)
apply (unfold module-axioms-def submodule-def , auto)
apply (metis (no-types, opaque-lifting) smult-l-distr contra-subsetD)
apply (metis (no-types, opaque-lifting) smult-r-distr contra-subsetD)
by (metis (no-types, opaque-lifting) smult-assoc1 contra-subsetD)

qed

N1 +N2 = {x+ y|x ∈ N1, y ∈ N2}
definition (in module) submodule-sum:: [′c set, ′c set] ⇒ ′c set

where submodule-sum N1 N2 = (λ (x,y). x ⊕M y) ‘{(x,y). x∈ N1
∧ y∈ N2}

A module homomorphism M → N preserves addition and scalar
multiplication.
definition module-hom:: [(′a, ′c0) ring-scheme,
(′a, ′b1 , ′c1) module-scheme, (′a, ′b2 , ′c2) module-scheme]⇒(′b1⇒ ′b2)

set
where module-hom R M N = {f .
((f∈ carrier M → carrier N)
∧ (∀m1 m2 . m1∈carrier M∧ m2∈carrier M −→ f (m1 ⊕M m2)

= (f m1) ⊕N (f m2))
∧ (∀ r m. r∈carrier R∧ m∈carrier M −→f (r �M m) = r �N (f

m)))}

lemma module-hom-closed: f∈ module-hom R M N =⇒ f∈ carrier M
→ carrier N
by (unfold module-hom-def , auto)

lemma module-hom-add: [[f∈ module-hom R M N ; m1∈carrier M ;
m2∈carrier M]] =⇒ f (m1 ⊕M m2) = (f m1) ⊕N (f m2)
by (unfold module-hom-def , auto)

16

lemma module-hom-smult: [[f∈ module-hom R M N ; r∈carrier R;
m∈carrier M]] =⇒ f (r �M m) = r �N (f m)
by (unfold module-hom-def , auto)

locale mod-hom =
M?: module R M + N?: module R N

for R and M and N +
fixes f
assumes f-hom: f ∈ module-hom R M N
notes f-add [simp] = module-hom-add [OF f-hom]

and f-smult [simp] = module-hom-smult [OF f-hom]

Some basic simplification rules for module homomorphisms.
context mod-hom
begin

lemma f-im [simp, intro]:
assumes v ∈ carrier M
shows f v ∈ carrier N
proof −

have 0 : mod-hom R M N f ..
from 0 assms show ?thesis

apply (unfold mod-hom-def module-hom-def mod-hom-axioms-def
Pi-def)

by auto
qed

definition im:: ′e set
where im = f‘(carrier M)

definition ker :: ′c set
where ker = {v. v ∈ carrier M & f v = 0N}

lemma f0-is-0 [simp]: f 0M=0N
proof −

have 1 : f 0M = f (0R �M 0M) by simp
have 2 : f (0R �M 0M) = 0N

using M .M .zero-closed N .lmult-0 R.zero-closed f-im f-smult by
presburger

from 1 2 show ?thesis by auto
qed

lemma f-neg [simp]: v ∈ carrier M=⇒f (M v) = 	N f v
by (simp flip: M .smult-minus-1 N .smult-minus-1)

lemma f-minus [simp]: [[v∈carrier M ; w∈carrier M]]=⇒f (v	Mw) =
f v 	N f w

by (simp add: a-minus-def)

17

lemma ker-is-submodule: submodule R ker M
proof −

have 0 : mod-hom R M N f ..
from 0 have 1 : module R M by (unfold mod-hom-def , auto)
show ?thesis

by (rule submodule.intro, auto simp add: ker-def , rule 1)
qed

lemma im-is-submodule: submodule R im N
proof −
have 1 : im ⊆ carrier N by (auto simp add: im-def image-def mod-hom-def

module-hom-def f-im)
have 2 :

∧
w1 w2 .[[w1 ∈ im; w2 ∈ im]] =⇒ w1 ⊕N w2 ∈ im

proof −
fix w1 w2
assume w1 : w1 ∈ im and w2 : w2∈ im
from w1 obtain v1 where 3 : v1∈ carrier M ∧ f v1 = w1 by

(unfold im-def , auto)
from w2 obtain v2 where 4 : v2∈ carrier M ∧ f v2 = w2 by

(unfold im-def , auto)
from 3 4 have 5 : f (v1⊕Mv2) = w1 ⊕N w2 by simp
from 3 4 have 6 : v1⊕Mv2∈ carrier M by simp
from 5 6 have 7 : ∃ x∈carrier M . w1 ⊕N w2 = f x by metis
from 7 show ?thesis w1 w2 by (unfold im-def image-def , auto)

qed
have 3 : 0N ∈ im
proof −

have 8 : f 0M = 0N ∧ 0M∈carrier M by auto
from 8 have 9 : ∃ x∈carrier M . 0N = f x by metis
from 9 show ?thesis by (unfold im-def image-def , auto)

qed
have 4 :

∧
c w. [[c ∈ carrier R; w ∈ im]] =⇒ c�N w ∈ im

proof −
fix c w
assume c: c ∈ carrier R and w: w ∈ im
from w obtain v where 10 : v∈ carrier M ∧ f v = w by (unfold

im-def , auto)
from c 10 have 11 : f (c�M v) = c�N w∧ (c �M v∈carrier M)

by auto
from 11 have 12 : ∃ v1∈carrier M . c�N w=f v1 by metis
from 12 show ?thesis c w by (unfold im-def image-def , auto)

qed
from 1 2 3 4 show ?thesis by (unfold-locales, auto)

qed

lemma (in mod-hom) f-ker :
v∈ker =⇒ f v=0N

by (unfold ker-def , auto)
end

18

We will show that for any set S, the space of functions S → K
forms a vector space.
definition (in ring) func-space:: ′z set⇒(′a,(′z ⇒ ′a)) module

where func-space S = (|carrier = S→Ecarrier R,
mult = (λ f g. restrict (λv. 0R) S),
one = restrict (λv. 0R) S ,
zero = restrict (λv. 0R) S ,
add = (λ f g. restrict (λv. f v ⊕R g v) S),
smult = (λ c f . restrict (λv. c ⊗R f v) S)|)

lemma (in cring) func-space-is-module:
fixes S
shows module R (func-space S)

proof −
have 0 : cring R..
from 0 show ?thesis

apply (auto intro!: module-criteria simp add: func-space-def)
apply (auto simp add: module-def)

apply (rename-tac f)
apply (rule-tac x=restrict (λv ′. 	R (f v ′)) S in bexI)

apply (auto simp add:restrict-def cong: if-cong split: if-split-asm,
auto)

apply (auto simp add: a-ac PiE-mem2 r-neg)
apply (unfold PiE-def extensional-def Pi-def)
by (auto simp add: m-assoc l-distr r-distr)

qed

Note: one can define Mn from this.

A linear combination is a module homomorphism from the space
of coefficients to the module, (av) 7→

∑
v∈S avv.

lemma (in module) lincomb-is-mod-hom:
fixes S
assumes h: finite S and h2 : S⊆carrier M
shows mod-hom R (func-space S) M (λa. lincomb a S)

proof −
have 0 : module R M ..
{

fix m1 m2
assume m1 : m1 ∈ S →E carrier R and m2 : m2 ∈ S →E carrier

R
from h h2 m1 m2 have a1 : (

⊕
Mv∈S . (λv∈S . m1 v ⊕R m2 v) v

�M v) =
(
⊕

Mv∈S . m1 v �M v ⊕M m2 v �M v)
by (intro finsum-cong ′, auto simp add: smult-l-distr PiE-mem2)

from h h2 m1 m2 have a2 : (
⊕

Mv∈S . m1 v �M v ⊕M m2 v �M
v) =

(
⊕

Mv∈S . m1 v �M v) ⊕M (
⊕

Mv∈S . m2 v �M v)
by (intro finsum-addf , auto)

19

from a1 a2 have (
⊕

Mv∈S . (λv∈S . m1 v ⊕ m2 v) v �M v) =
(
⊕

Mv∈S . m1 v �M v) ⊕M (
⊕

Mv∈S . m2 v �M v) by auto
}
hence 1 :

∧
m1 m2 .

m1 ∈ S →E carrier R =⇒
m2 ∈ S →E carrier R =⇒ (

⊕
Mv∈S . (λv∈S . m1 v ⊕ m2 v) v

�M v) =
(
⊕

Mv∈S . m1 v �M v) ⊕M (
⊕

Mv∈S . m2 v �M v) by auto
{

fix r m
assume r : r ∈ carrier R and m: m ∈ S →E carrier R

from h h2 r m have b1 : r �M (
⊕

Mv∈S . m v �M v) = (
⊕

Mv∈S .
r �M(m v �M v))

by (intro finsum-smult, auto)
from h h2 r m have b2 : (

⊕
Mv∈S . (λv∈S . r ⊗ m v) v �M v) =

r �M (
⊕

Mv∈S . m v �M v)
apply (subst b1)
apply (intro finsum-cong ′, auto)
by (subst smult-assoc1 , auto)

}
hence 2 :

∧
r m. r ∈ carrier R =⇒

m ∈ S →E carrier R =⇒ (
⊕

Mv∈S . (λv∈S . r ⊗ m v) v �M
v) = r �M (

⊕
Mv∈S . m v �M v)

by auto
from h h2 0 1 2 show ?thesis

apply (unfold mod-hom-def , auto)
apply (rule func-space-is-module)

apply (unfold mod-hom-axioms-def module-hom-def , auto)
apply (rule lincomb-closed, unfold func-space-def , auto)

apply (unfold lincomb-def)
by auto

qed

lemma (in module) lincomb-sum:
assumes A-fin: finite A and AinC : A⊆carrier M and a-fun: a∈A→carrier

R and
b-fun: b∈A→carrier R

shows lincomb (λv. a v ⊕R b v) A = lincomb a A ⊕M lincomb b A
proof −

from A-fin AinC interpret mh: mod-hom R func-space A M (λa.
lincomb a A) by (rule

lincomb-is-mod-hom)
let ?a=restrict a A
let ?b=restrict b A
from a-fun b-fun A-fin AinC
have 1 : LinearCombinations.module.lincomb M (?a⊕(LinearCombinations.ring.func-space R A)

?b) A
= LinearCombinations.module.lincomb M (λx. a x ⊕R b x) A

20

by (auto simp add: func-space-def Pi-iff restrict-apply ′ cong: lin-
comb-cong)

from a-fun b-fun A-fin AinC
have 2 : LinearCombinations.module.lincomb M ?a A ⊕M

LinearCombinations.module.lincomb M ?b A = LinearCombina-
tions.module.lincomb M a A ⊕M

LinearCombinations.module.lincomb M b A
by (simp-all add: sum-simp cong: lincomb-cong)

from a-fun b-fun have ainC : ?a∈carrier (LinearCombinations.ring.func-space
R A)

and binC : ?b∈carrier (LinearCombinations.ring.func-space R A)
by (unfold func-space-def , auto)
from ainC binC have LinearCombinations.module.lincomb M (?a⊕(LinearCombinations.ring.func-space R A)

?b) A
= LinearCombinations.module.lincomb M ?a A ⊕M

LinearCombinations.module.lincomb M ?b A
by (simp cong: lincomb-cong)

with 1 2 show ?thesis by auto
qed

The negative of a function is just pointwise negation.
lemma (in cring) func-space-neg:

fixes f
assumes f∈ carrier (func-space S)
shows 	func-space S f = (λ v. if (v∈S) then 	R f v else undefined)

proof −
interpret fs: module R func-space S by (rule func-space-is-module)
from assms show ?thesis

apply (intro fs.minus-equality)
apply (unfold func-space-def PiE-def extensional-def)
apply auto

apply (intro restrict-ext, auto)
by (simp add: l-neg coeff-in-ring)

qed

Ditto for subtraction. Note the above is really a special case,
when a is the 0 function.
lemma (in module) lincomb-diff :
assumes A-fin: finite A and AinC : A⊆carrier M and a-fun: a∈A→carrier

R and
b-fun: b∈A→carrier R

shows lincomb (λv. a v 	R b v) A = lincomb a A 	M lincomb b A
proof −

from A-fin AinC interpret mh: mod-hom R func-space A M (λa.
lincomb a A) by (rule

lincomb-is-mod-hom)
let ?a=restrict a A
let ?b=restrict b A

21

from a-fun b-fun have ainC : ?a∈carrier (LinearCombinations.ring.func-space
R A)

and binC : ?b∈carrier (LinearCombinations.ring.func-space R A)
by (unfold func-space-def , auto)

from a-fun b-fun ainC binC A-fin AinC
have 1 : LinearCombinations.module.lincomb M (?a	(func-space A)

?b) A
= LinearCombinations.module.lincomb M (λx. a x 	R b x) A
apply (subst mh.M .M .minus-eq)
apply (intro lincomb-cong, auto)
apply (subst func-space-neg, auto)
apply (simp add: restrict-def func-space-def)
by (subst R.minus-eq, auto)

from a-fun b-fun A-fin AinC
have 2 : LinearCombinations.module.lincomb M ?a A 	M

LinearCombinations.module.lincomb M ?b A = LinearCombina-
tions.module.lincomb M a A 	M

LinearCombinations.module.lincomb M b A
by (simp cong: lincomb-cong)

from ainC binC have LinearCombinations.module.lincomb M (?a	(LinearCombinations.ring.func-space R A)
?b) A

= LinearCombinations.module.lincomb M ?a A 	M
LinearCombinations.module.lincomb M ?b A

by (simp cong: lincomb-cong)
with 1 2 show ?thesis by auto

qed

The union of nested submodules is a submodule. We will use
this to show that span of any set is a submodule.
lemma (in module) nested-union-vs:

fixes I N N ′

assumes subm:
∧

i. i∈I=⇒ submodule R (N i) M
and max-exists:

∧
i j. i∈I=⇒j∈I=⇒ (∃ k. k∈I ∧ N i⊆N k ∧ N j

⊆N k)
and uni: N ′=(

⋃
i∈I . N i)

and ne: I 6={}
shows submodule R N ′ M

proof −
have 1 : module R M ..
from subm have all-in:

∧
i. i∈I =⇒ N i ⊆ carrier M

by (unfold submodule-def , auto)
from uni all-in have 2 :

∧
x. x ∈ N ′ =⇒ x ∈ carrier M

by auto
from uni have 3 :

∧
v w. v ∈ N ′ =⇒ w ∈ N ′ =⇒ v ⊕M w ∈ N ′

proof −
fix v w
assume v: v ∈ N ′ and w: w ∈ N ′

from uni v w obtain i j where i: i∈I∧ v∈ N i and j: j∈I∧ w∈
N j by auto

22

from max-exists i j obtain k where k: k∈I ∧ N i ⊆ N k ∧ N j
⊆ N k by presburger

from v w i j k have v2 : v∈N k and w2 : w∈ N k by auto
from v2 w2 k subm[of k] have vw: v ⊕M w ∈ N k apply (unfold

submodule-def) by auto
from k vw uni show ?thesis v w by auto

qed
have 4 : 0M ∈ N ′

proof −
from ne obtain i where i: i∈I by auto
from i subm have zi: 0M∈N i by (unfold submodule-def , auto)
from i zi uni show ?thesis by auto

qed
from uni subm have 5 :

∧
c v. c ∈ carrier R =⇒ v ∈ N ′ =⇒ c �M

v ∈ N ′

by (unfold submodule-def , auto)
from 1 2 3 4 5 show ?thesis by (unfold submodule-def , auto)

qed

lemma (in module) span-is-monotone:
fixes S T
assumes subs: S⊆T
shows span S ⊆ span T

proof −
from subs show ?thesis

by (unfold span-def , auto)
qed

lemma (in module) span-is-submodule:
fixes S
assumes h2 : S⊆carrier M
shows submodule R (span S) M

proof (cases S={})
case True
moreover have module R M ..
ultimately show ?thesis apply (unfold submodule-def span-def lin-

comb-def , auto) done
next

case False
show ?thesis
proof (rule nested-union-vs[where ?I={F . F⊆S ∧ finite F} and

?N=λF . span F and ?N ′=span S])
show

∧
F . F ∈ {F . F ⊆ S ∧ finite F} =⇒ submodule R (span F)

M
proof −

fix F
assume F : F ∈ {F . F ⊆ S ∧ finite F}
from F have h1 : finite F by auto

23

from F h2 have inC : F⊆carrier M by auto
from h1 inC interpret mh: mod-hom R (func-space F) M (λa.

lincomb a F)
by (rule lincomb-is-mod-hom)

from h1 inC have 1 : mh.im = span F
apply (unfold mh.im-def)
apply (unfold func-space-def , simp)
apply (subst finite-span, auto)
apply (unfold image-def , auto)
apply (rule-tac x=restrict a F in bexI)
by (auto intro!: lincomb-cong)

from 1 show submodule R (span F) M by (metis mh.im-is-submodule)
qed

next
show

∧
i j. i ∈ {F . F ⊆ S ∧ finite F} =⇒

j ∈ {F . F ⊆ S ∧ finite F} =⇒
∃ k. k ∈ {F . F ⊆ S ∧ finite F} ∧ span i ⊆ span k ∧ span j

⊆ span k
proof −

fix i j
assume i: i ∈ {F . F ⊆ S ∧ finite F} and j: j ∈ {F . F ⊆ S ∧

finite F}
from i j show ?thesis i j

apply (rule-tac x=i∪j in exI)
apply (auto del: subsetI)
by (intro span-is-monotone, auto del: subsetI)+

qed
next

show span S=(
⋃

i∈{F . F ⊆ S ∧ finite F}. span i)
by (unfold span-def ,auto)

next
have ne: S 6={} by fact
from ne show {F . F ⊆ S ∧ finite F} 6= {} by auto

qed
qed

A finite sum does not depend on the ambient module. This can
be done for monoid, but "submonoid" isn’t currently defined. (It
can be copied, however, for groups. . .) This lemma requires a
somewhat annoying lemma foldD-not-depend. Then we show
that linear combinations, linear independence, span do not de-
pend on the ambient module.
lemma (in module) finsum-not-depend:

fixes a A N
assumes h1 : finite A and h2 : A⊆N and h3 : submodule R N M

and h4 : f :A→N
shows (

⊕
(md N) v∈A. f v) = (

⊕
M v∈A. f v)

proof −

24

from h1 h2 h3 h4 show ?thesis
apply (unfold finsum-def finprod-def)
apply simp
apply (intro foldD-not-depend[where ?B=A])

apply (unfold submodule-def LCD-def , auto)
apply (meson M .add.m-lcomm PiE subsetCE)+
done

qed

lemma (in module) lincomb-not-depend:
fixes a A N
assumes h1 : finite A and h2 : A⊆N and h3 : submodule R N M

and h4 : a:A→carrier R
shows lincomb a A = module.lincomb (md N) a A

proof −
from h3 interpret N : module R (md N) by (rule submodule-is-module)
have 3 : N=carrier (md N) by auto
have 4 : (smult M) = (smult (md N)) by auto
from h1 h2 h3 h4 have (

⊕
(md N)v∈A. a v �M v) = (

⊕
Mv∈A. a

v �M v)
apply (intro finsum-not-depend)
using N .summands-valid by auto

from this show ?thesis by (unfold lincomb-def N .lincomb-def , simp)
qed

lemma (in module) span-li-not-depend:
fixes S N
assumes h2 : S⊆N and h3 : submodule R N M
shows module.span R (md N) S = module.span R M S

and module.lin-dep R (md N) S = module.lin-dep R M S
proof −
from h3 interpret w: module R (md N) by (rule submodule-is-module)
from h2 have 1 :submodule R (module.span R (md N) S) (md N)

by (intro w.span-is-submodule, simp)
have 3 :

∧
a A. (finite A ∧ A⊆S ∧ a ∈ A → carrier R =⇒

module.lincomb M a A = module.lincomb (md N) a A)
proof −

fix a A
assume 31 : finite A ∧ A⊆S ∧ a ∈ A → carrier R
from assms 31 show ?thesis a A

by (intro lincomb-not-depend, auto)
qed
from 3 show 4 : module.span R (md N) S = module.span R M S

apply (unfold span-def w.span-def)
apply auto
by (metis)

have zeros: 0md N=0M by auto
from assms 3 show 5 : module.lin-dep R (md N) S = module.lin-dep

R M S

25

apply (unfold lin-dep-def w.lin-dep-def)
apply (subst zeros)
by metis

qed

lemma (in module) span-is-subset:
fixes S N
assumes h2 : S⊆N and h3 : submodule R N M
shows span S ⊆ N

proof −
from h3 interpret w: module R (md N) by (rule submodule-is-module)
from h2 have 1 :submodule R (module.span R (md N) S) (md N)

by (intro w.span-is-submodule, simp)
from assms have 4 : module.span R (md N) S = module.span R M

S
by (rule span-li-not-depend)

from 1 4 have 5 : submodule R (module.span R M S) (md N) by
auto

from 5 show ?thesis by (unfold submodule-def , simp)
qed

lemma (in module) span-is-subset2 :
fixes S
assumes h2 : S⊆carrier M
shows span S ⊆ carrier M

proof −
have 0 : module R M ..
from 0 have h3 : submodule R (carrier M) M by (unfold submod-

ule-def , auto)
from h2 h3 show ?thesis by (rule span-is-subset)

qed

lemma (in module) in-own-span:
fixes S
assumes inC :S⊆carrier M
shows S ⊆ span S

proof −
from inC show ?thesis

apply (unfold span-def , auto)
apply (rename-tac v)
apply (rule-tac x=(λ w. if (w=v) then 1R else 0R) in exI)
apply (rule-tac x={v} in exI)
apply (unfold lincomb-def)
by auto

qed

lemma (in module) supset-ld-is-ld:
fixes A B

26

assumes ld: lin-dep A and sub: A ⊆ B
shows lin-dep B

proof −
from ld obtain A ′ a v where 1 : (finite A ′∧ A ′⊆A ∧ (a∈ (A ′→carrier

R)) ∧ (lincomb a A ′ = 0M) ∧ (v∈A ′) ∧ (a v 6= 0R))
by (unfold lin-dep-def , auto)

from 1 sub show ?thesis
apply (unfold lin-dep-def)
apply (rule-tac x=A ′ in exI)
apply (rule-tac x=a in exI)
apply (rule-tac x=v in exI)
by auto

qed

lemma (in module) subset-li-is-li:
fixes A B
assumes li: lin-indpt A and sub: B ⊆ A
shows lin-indpt B

proof (rule ccontr)
assume ld: ¬lin-indpt B
from ld sub have ldA: lin-dep A by (metis supset-ld-is-ld)
from li ldA show False by auto

qed

lemma (in mod-hom) hom-sum:
fixes A B g
assumes h2 : A⊆carrier M and h3 : g:A→carrier M
shows f (

⊕
M a∈A. g a) = (

⊕
N a∈A. f (g a))

proof −
from h2 h3 show ?thesis
proof (induct A rule: infinite-finite-induct)

case (insert a A)
then have (

⊕
Na∈insert a A. f (g a)) = f (g a) ⊕N (

⊕
Na∈A. f

(g a))
by (intro finsum-insert, auto)

with insert.prems insert.hyps show ?case
by simp

qed auto
qed

end

5 The direct sum of modules.
theory SumSpaces
imports Main

HOL−Algebra.Module
HOL−Algebra.Coset

27

RingModuleFacts
MonoidSums
FunctionLemmas
LinearCombinations

begin

We define the direct sum M1 ⊕M2 of 2 vector spaces as the set
M1 ×M2 under componentwise addition and scalar multiplica-
tion.
definition direct-sum:: (′a, ′b, ′d) module-scheme ⇒ (′a, ′c, ′e) mod-
ule-scheme ⇒(′a, (′b× ′c)) module

where direct-sum M1 M2 = (|carrier = carrier M1 × carrier M2 ,
mult = (λ v w. (0M1, 0M2)),
one = (0M1, 0M2),
zero = (0M1, 0M2),
add = (λ v w. (fst v ⊕M1 fst w, snd v ⊕M2 snd w)),
smult = (λ c v. (c �M1 fst v, c �M2 snd v))|)

lemma direct-sum-is-module:
fixes R M1 M2
assumes h1 : module R M1 and h2 : module R M2
shows module R (direct-sum M1 M2)

proof −
from h1 have 1 : cring R by (unfold module-def , auto)
from h1 interpret v1 : module R M1 by auto
from h2 interpret v2 : module R M2 by auto
from h1 h2 have 2 : abelian-group (direct-sum M1 M2)

apply (intro abelian-groupI , auto)
apply (unfold direct-sum-def , auto)

by (auto simp add: v1 .a-ac v2 .a-ac)
from h1 h2 assms have 3 : module-axioms R (direct-sum M1 M2)

apply (unfold module-axioms-def , auto)
apply (unfold direct-sum-def , auto)

by (auto simp add: v1 .smult-l-distr v2 .smult-l-distr v1 .smult-r-distr
v2 .smult-r-distr

v1 .smult-assoc1 v2 .smult-assoc1)
from 1 2 3 show ?thesis by (unfold module-def , auto)

qed

definition inj1 :: (′a, ′b) module ⇒ (′a, ′c) module ⇒(′b⇒(′b× ′c))
where inj1 M1 M2 = (λv. (v, 0M2))

definition inj2 :: (′a, ′b) module ⇒ (′a, ′c) module ⇒(′c⇒(′b× ′c))
where inj2 M1 M2 = (λv. (0M1, v))

lemma inj1-hom:
fixes R M1 M2
assumes h1 : module R M1 and h2 : module R M2
shows mod-hom R M1 (direct-sum M1 M2) (inj1 M1 M2)

28

proof −
from h1 interpret v1 :module R M1 by auto
from h2 interpret v2 :module R M2 by auto
from h1 h2 show ?thesis

apply (unfold mod-hom-def module-hom-def mod-hom-axioms-def
inj1-def , auto)

apply (rule direct-sum-is-module, auto)
by (unfold direct-sum-def , auto)

qed

lemma inj2-hom:
fixes R M1 M2
assumes h1 : module R M1 and h2 : module R M2
shows mod-hom R M2 (direct-sum M1 M2) (inj2 M1 M2)

proof −
from h1 interpret v1 :module R M1 by auto
from h2 interpret v2 :module R M2 by auto
from h1 h2 show ?thesis

apply (unfold mod-hom-def module-hom-def mod-hom-axioms-def
inj2-def , auto)

apply (rule direct-sum-is-module, auto)
by (unfold direct-sum-def , auto)

qed

For submodules M1,M2 ⊆M , the map M1⊕M2 →M given by
(m1,m2) 7→ m1 +m2 is linear.
lemma (in module) sum-map-hom:

fixes M1 M2
assumes h1 : submodule R M1 M and h2 : submodule R M2 M
shows mod-hom R (direct-sum (md M1) (md M2)) M (λ v. (fst v)
⊕M (snd v))
proof −

have 0 : module R M ..
from h1 have 1 : module R (md M1) by (rule submodule-is-module)
from h2 have 2 : module R (md M2) by (rule submodule-is-module)
from h1 interpret w1 : module R (md M1) by (rule submodule-is-module)
from h2 interpret w2 : module R (md M2) by (rule submodule-is-module)
from 0 h1 h2 1 2 show ?thesis

apply (unfold mod-hom-def mod-hom-axioms-def module-hom-def ,
auto)

apply (rule direct-sum-is-module, auto)
apply (unfold direct-sum-def , auto)
apply (unfold submodule-def , auto)

by (auto simp add: a-ac smult-r-distr ring-subset-carrier)

qed

lemma (in module) sum-is-submodule:
fixes N1 N2

29

assumes h1 : submodule R N1 M and h2 : submodule R N2 M
shows submodule R (submodule-sum N1 N2) M

proof −
from h1 h2 interpret l: mod-hom R (direct-sum (md N1) (md N2))

M (λ v. (fst v) ⊕M (snd v))
by (rule sum-map-hom)

have 1 : l.im =submodule-sum N1 N2
apply (unfold l.im-def submodule-sum-def)
apply (unfold direct-sum-def , auto)
by (unfold image-def , auto)

have 2 : submodule R (l.im) M by (rule l.im-is-submodule)
from 1 2 show ?thesis by auto

qed

lemma (in module) in-sum:
fixes N1 N2
assumes h1 : submodule R N1 M and h2 : submodule R N2 M
shows N1 ⊆ submodule-sum N1 N2

proof −
from h1 h2 show ?thesis

apply auto
apply (unfold submodule-sum-def image-def , auto)
apply (rename-tac v)
apply (rule-tac x=v in bexI)
apply (rule-tac x=0M in bexI)
by (unfold submodule-def , auto)

qed

lemma (in module) msum-comm:
fixes N1 N2
assumes h1 : submodule R N1 M and h2 : submodule R N2 M
shows (submodule-sum N1 N2) = (submodule-sum N2 N1)

proof −

from h1 h2 show ?thesis
apply (unfold submodule-sum-def image-def , auto)
apply (unfold submodule-def)
apply (rename-tac v w)
by (metis (full-types) M .add.m-comm subsetD)+

qed

If M1,M2 ⊆ M are submodules, then M1 + M2 is the minimal
subspace such that both M1 ⊆M and M2 ⊆M .
lemma (in module) sum-is-minimal:

fixes N N1 N2
assumes h1 : submodule R N1 M and h2 : submodule R N2 M and

h3 : submodule R N M
shows (submodule-sum N1 N2) ⊆ N ←→ N1 ⊆ N ∧ N2 ⊆ N

30

proof −
have 1 : (submodule-sum N1 N2) ⊆ N =⇒ N1 ⊆ N ∧ N2 ⊆ N
proof −

assume 10 : (submodule-sum N1 N2) ⊆ N
from h1 h2 have 11 : N1⊆submodule-sum N1 N2 by (rule in-sum)
from h2 h1 have 12 : N2⊆submodule-sum N2 N1 by (rule in-sum)
from 12 h1 h2 have 13 : N2⊆submodule-sum N1 N2 by (metis

msum-comm)
from 10 11 13 show ?thesis by auto

qed
have 2 : N1 ⊆ N ∧ N2 ⊆ N =⇒ (submodule-sum N1 N2) ⊆ N
proof −

assume 19 : N1 ⊆ N ∧ N2 ⊆ N
{
fix v
assume 20 : v∈submodule-sum N1 N2
from 20 obtain w1 w2 where 21 : w1∈N1 and 22 : w2∈N2 and

23 : v=w1⊕M w2
by (unfold submodule-sum-def image-def , auto)

from 19 21 22 23 h3 have v ∈ N
apply (unfold submodule-def , auto)
by (metis (poly-guards-query) contra-subsetD)

}
thus ?thesis

by (metis subset-iff)
qed
from 1 2 show ?thesis by metis

qed

spanA ∪B = spanA+ spanB
lemma (in module) span-union-is-sum:

fixes A B
assumes h2 : A⊆carrier M and h3 : B⊆carrier M
shows span (A∪ B) = submodule-sum (span A) (span B)

proof−
let ?AplusB=submodule-sum (span A) (span B)
from h2 have s0 : submodule R (span A) M by (rule span-is-submodule)
from h3 have s1 : submodule R (span B) M by (rule span-is-submodule)
from s0 have s0-1 : (span A)⊆carrier M by (unfold submodule-def ,

auto)
from s1 have s1-1 : (span B)⊆carrier M by (unfold submodule-def ,

auto)
from h2 h3 have 1 : A∪B⊆carrier M by auto
from 1 have 2 : submodule R (span (A∪B)) M by (rule span-is-submodule)
from s0 s1 have 3 : submodule R ?AplusB M by (rule sum-is-submodule)
have c1 : span (A∪B) ⊆ ?AplusB

proof −

31

from h2 have a1 : A⊆span A by (rule in-own-span)
from s0 s1 have a2 : span A ⊆ ?AplusB by (rule in-sum)
from a1 a2 have a3 : A⊆ ?AplusB by auto

from h3 have b1 : B⊆span B by (rule in-own-span)
from s1 s0 have b2 : span B ⊆ ?AplusB by (metis in-sum msum-comm)

from b1 b2 have b3 : B⊆ ?AplusB by auto
from a3 b3 have 5 : A∪B⊆ ?AplusB by auto

from 5 3 show ?thesis by (rule span-is-subset)
qed
have c2 : ?AplusB ⊆ span (A∪B)
proof −

have 11 : A⊆A∪B by auto
have 12 : B⊆A∪B by auto

from 11 have 21 :span A ⊆span (A∪B) by (rule span-is-monotone)
from 12 have 22 :span B ⊆span (A∪B) by (rule span-is-monotone)
from s0 s1 2 21 22 show ?thesis by (auto simp add: sum-is-minimal)

qed
from c1 c2 show ?thesis by auto

qed

end

6 Basic theory of vector spaces, using lo-
cales
theory VectorSpace
imports Main

HOL−Algebra.Module
HOL−Algebra.Coset
RingModuleFacts
MonoidSums
LinearCombinations
SumSpaces

begin

6.1 Basic definitions and facts carried over from
modules

A vectorspace is a module where the ring is a field. Note that
we switch notation from (R,M) to (K,V).
locale vectorspace =

module?: module K V + field?: field K
for K and V

A subspace of a vectorspace is a nonempty subset that is closed

32

under addition and scalar multiplication. These properties have
already been defined in submodule. Caution: W is a set, while
V is a module record. To get W as a vectorspace, write vs W.
locale subspace =

fixes K and W and V (structure)
assumes vs: vectorspace K V

and submod: submodule K W V

lemma (in vectorspace) is-module[simp]:
subspace K W V=⇒submodule K W V

by (unfold subspace-def , auto)

We introduce some basic facts and definitions copied from mod-
ule. We introduce some abbreviations, to match convention.
abbreviation (in vectorspace) vs:: ′c set ⇒ (′a, ′c, ′d) module-scheme

where vs W ≡ V (|carrier :=W |)

lemma (in vectorspace) carrier-vs-is-self [simp]:
carrier (vs W) = W
by auto

lemma (in vectorspace) subspace-is-vs:
fixes W :: ′c set
assumes 0 : subspace K W V
shows vectorspace K (vs W)

proof −
from 0 show ?thesis

apply (unfold vectorspace-def subspace-def , auto)
by (intro submodule-is-module, auto)

qed

abbreviation (in module) subspace-sum:: [′c set, ′c set] ⇒ ′c set
where subspace-sum W1 W2 ≡submodule-sum W1 W2

lemma (in vectorspace) vs-zero-lin-dep:
assumes h2 : S⊆carrier V and h3 : lin-indpt S
shows 0V /∈ S

proof −
have vs: vectorspace K V ..
from vs have nonzero: carrier K 6={0K}

by (metis one-zeroI zero-not-one)
from h2 h3 nonzero show ?thesis by (rule zero-nin-lin-indpt)

qed

A linear-map is a module homomorphism between 2 vectorspaces
over the same field.
locale linear-map =

33

V?: vectorspace K V + W?: vectorspace K W
+ mod-hom?: mod-hom K V W T

for K and V and W and T

context linear-map
begin
lemmas T-hom = f-hom
lemmas T-add = f-add
lemmas T-smult = f-smult
lemmas T-im = f-im
lemmas T-neg = f-neg
lemmas T-minus = f-minus
lemmas T-ker = f-ker

abbreviation imT :: ′e set
where imT ≡ mod-hom.im

abbreviation kerT :: ′c set
where kerT ≡ mod-hom.ker

lemmas T0-is-0 [simp] = f0-is-0

lemma kerT-is-subspace: subspace K ker V
proof −

have vs: vectorspace K V ..
from vs show ?thesis

apply (unfold subspace-def , auto)
by (rule ker-is-submodule)

qed

lemma imT-is-subspace: subspace K imT W
proof −

have vs: vectorspace K W ..
from vs show ?thesis

apply (unfold subspace-def , auto)
by (rule im-is-submodule)

qed
end

lemma vs-criteria:
fixes K and V
assumes field: field K

and zero: 0V∈ carrier V
and add: ∀ v w. v∈carrier V ∧ w∈carrier V−→ v⊕V w∈ carrier

V
and neg: ∀ v∈carrier V . (∃neg-v∈carrier V . v⊕Vneg-v=0V)

and smult: ∀ c v. c∈ carrier K ∧ v∈carrier V−→ c�V v ∈ carrier
V

and comm: ∀ v w. v∈carrier V ∧ w∈carrier V−→ v⊕V w=w⊕V

34

v
and assoc: ∀ v w x. v∈carrier V ∧ w∈carrier V ∧ x∈carrier

V−→ (v⊕V w)⊕V x= v⊕V (w⊕V x)
and add-id: ∀ v∈carrier V . (v⊕V 0V =v)
and compat: ∀ a b v. a∈ carrier K ∧ b∈ carrier K ∧ v∈carrier

V−→ (a⊗K b)�V v =a�V (b�V v)
and smult-id: ∀ v∈carrier V . (1K �V v =v)
and dist-f : ∀ a b v. a∈ carrier K ∧ b∈ carrier K ∧ v∈carrier

V−→ (a⊕K b)�V v =(a�V v) ⊕V (b�V v)
and dist-add: ∀ a v w. a∈ carrier K ∧ v∈carrier V ∧ w∈carrier

V−→ a�V (v⊕V w) =(a�V v) ⊕V (a�V w)
shows vectorspace K V

proof −
from field have 1 : cring K by (unfold field-def domain-def , auto)
from assms 1 have 2 : module K V by (intro module-criteria, auto)
from field 2 show ?thesis by (unfold vectorspace-def module-def ,

auto)
qed

For any set S, the space of functions S → K forms a vector
space.
lemma (in vectorspace) func-space-is-vs:

fixes S
shows vectorspace K (func-space S)

proof −
have 0 : field K ..
have 1 : module K (func-space S) by (rule func-space-is-module)
from 0 1 show ?thesis by (unfold vectorspace-def module-def , auto)

qed

lemma direct-sum-is-vs:
fixes K V1 V2
assumes h1 : vectorspace K V1 and h2 : vectorspace K V2
shows vectorspace K (direct-sum V1 V2)

proof −
from h1 h2 have mod: module K (direct-sum V1 V2) by (unfold

vectorspace-def , intro direct-sum-is-module, auto)
from mod h1 show ?thesis by (unfold vectorspace-def , auto)

qed

lemma inj1-linear :
fixes K V1 V2
assumes h1 : vectorspace K V1 and h2 : vectorspace K V2
shows linear-map K V1 (direct-sum V1 V2) (inj1 V1 V2)

proof −
from h1 h2 have mod: mod-hom K V1 (direct-sum V1 V2) (inj1

V1 V2) by (unfold vectorspace-def , intro inj1-hom, auto)
from mod h1 h2 show ?thesis

35

by (unfold linear-map-def vectorspace-def , auto, intro direct-sum-is-module,
auto)
qed

lemma inj2-linear :
fixes K V1 V2
assumes h1 : vectorspace K V1 and h2 : vectorspace K V2
shows linear-map K V2 (direct-sum V1 V2) (inj2 V1 V2)

proof −
from h1 h2 have mod: mod-hom K V2 (direct-sum V1 V2) (inj2

V1 V2) by (unfold vectorspace-def , intro inj2-hom, auto)
from mod h1 h2 show ?thesis
by (unfold linear-map-def vectorspace-def , auto, intro direct-sum-is-module,

auto)
qed

For subspaces V1, V2 ⊆ V , the map V1 ⊕ V2 → V given by
(v1, v2) 7→ v1 + v2 is linear.
lemma (in vectorspace) sum-map-linear :

fixes V1 V2
assumes h1 : subspace K V1 V and h2 : subspace K V2 V
shows linear-map K (direct-sum (vs V1) (vs V2)) V (λ v. (fst v)
⊕V (snd v))
proof −

from h1 h2 have mod: mod-hom K (direct-sum (vs V1) (vs V2)) V
(λ v. (fst v) ⊕V (snd v))

by (intro sum-map-hom, unfold subspace-def , auto)
from mod h1 h2 show ?thesis

apply (unfold linear-map-def , auto) apply (intro direct-sum-is-vs
subspace-is-vs, auto)..
qed

lemma (in vectorspace) sum-is-subspace:
fixes W1 W2
assumes h1 : subspace K W1 V and h2 : subspace K W2 V
shows subspace K (subspace-sum W1 W2) V

proof −
from h1 h2 have mod: submodule K (submodule-sum W1 W2) V

by (intro sum-is-submodule, unfold subspace-def , auto)
from mod h1 h2 show ?thesis

by (unfold subspace-def , auto)
qed

If W1,W2 ⊆ V are subspaces, W1 ⊆W1 +W2

lemma (in vectorspace) in-sum-vs:
fixes W1 W2
assumes h1 : subspace K W1 V and h2 : subspace K W2 V
shows W1 ⊆ subspace-sum W1 W2

proof −

36

from h1 h2 show ?thesis by (intro in-sum, unfold subspace-def ,
auto)
qed

lemma (in vectorspace) vsum-comm:
fixes W1 W2
assumes h1 : subspace K W1 V and h2 : subspace K W2 V
shows (subspace-sum W1 W2) = (subspace-sum W2 W1)

proof −
from h1 h2 show ?thesis by (intro msum-comm, unfold subspace-def ,

auto)
qed

If W1,W2 ⊆ V are subspaces, then W1 + W2 is the minimal
subspace such that both W1 ⊆W and W2 ⊆W .
lemma (in vectorspace) vsum-is-minimal:

fixes W W1 W2
assumes h1 : subspace K W1 V and h2 : subspace K W2 V and h3 :

subspace K W V
shows (subspace-sum W1 W2) ⊆ W ←→ W1 ⊆ W ∧ W2 ⊆ W

proof −
from h1 h2 h3 show ?thesis by (intro sum-is-minimal, unfold sub-

space-def , auto)
qed

lemma (in vectorspace) span-is-subspace:
fixes S
assumes h2 : S⊆carrier V
shows subspace K (span S) V

proof −
have 0 : vectorspace K V ..
from h2 have 1 : submodule K (span S) V by (rule span-is-submodule)
from 0 1 show ?thesis by (unfold subspace-def mod-hom-def lin-

ear-map-def , auto)
qed

6.1.1 Facts specific to vector spaces

If av = w and a 6= 0, v = a−1w.
lemma (in vectorspace) mult-inverse:

assumes h1 : a∈carrier K and h2 : v∈carrier V and h3 : a �V v =
w and h4 : a 6=0K

shows v = (invK a)�V w
proof −

from h1 h2 h3 have 1 : w∈carrier V by auto
from h3 1 have 2 : (invK a)�V(a �V v) =(invK a)�Vw by auto
from h1 h4 have 3 : invK a∈carrier K by auto
interpret g: group (units-group K) by (rule units-form-group)

37

have f : field K ..
from f h1 h4 have 4 : a∈Units K

by (unfold field-def field-axioms-def , simp)
from 4 h1 h4 have 5 : ((invK a) ⊗Ka) = 1K

by (intro Units-l-inv, auto)
from 5 have 6 : (invK a)�V(a �V v) = v
proof −

from h1 h2 h4 have 7 : (invK a)�V(a �V v) =(invK a ⊗Ka)
�V v by (auto simp add: smult-assoc1)

from 5 h2 have 8 : (invK a ⊗Ka) �V v = v by auto
from 7 8 show ?thesis by auto

qed
from 2 6 show ?thesis by auto

qed

If w ∈ S and
∑

w∈S aww = 0, we have v =
∑

w 6∈S a−1
v aww

lemma (in vectorspace) lincomb-isolate:
fixes A v
assumes h1 : finite A and h2 : A⊆carrier V and h3 : a∈A→carrier

K and h4 : v∈A
and h5 : a v 6= 0K and h6 : lincomb a A=0V

shows v=lincomb (λw. 	K(invK (a v)) ⊗K a w) (A−{v}) and v∈
span (A−{v})
proof −

from h1 h2 h3 h4 have 1 : lincomb a A = ((a v) �V v) ⊕V lincomb
a (A−{v})

by (rule lincomb-del2)
from 1 have 2 : 0V= ((a v) �V v) ⊕V lincomb a (A−{v}) by (simp

add: h6)
from h1 h2 h3 have 5 : lincomb a (A−{v}) ∈carrier V by auto
from 2 h1 h2 h3 h4 have 3 : 	V lincomb a (A−{v}) = ((a v) �V

v)
by (auto intro!: M .minus-equality)

have 6 : v = (K (invK (a v))) �V lincomb a (A−{v})
proof −

from h2 h3 h4 h5 3 have 7 : v = invK (a v) �V (V lincomb a
(A−{v}))

by (intro mult-inverse, auto)
from assms have 8 : invK (a v)∈carrier K by auto
from assms 5 8 have 9 : invK (a v) �V (V lincomb a (A−{v}))
= (K (invK (a v))) �V lincomb a (A−{v})

by (simp add: smult-assoc-simp smult-minus-1-back r-minus)
from 7 9 show ?thesis by auto

qed
from h1 have 10 : finite (A−{v}) by auto
from assms have 11 : (K (invK (a v)))∈ carrier K by auto
from assms have 12 : lincomb (λw. 	K(invK (a v)) ⊗K a w)

(A−{v}) =
(K (invK (a v))) �V lincomb a (A−{v})

38

by (intro lincomb-smult, auto)
from 6 12 show v=lincomb (λw. 	K(invK (a v)) ⊗K a w) (A−{v})

by auto
with assms show v∈ span (A−{v})

unfolding span-def
by (force simp add: 11 ring-subset-carrier)

qed

The map (S → K) 7→ V given by (av)v∈S 7→
∑

v∈S avv is linear.
lemma (in vectorspace) lincomb-is-linear :

fixes S
assumes h: finite S and h2 : S⊆carrier V
shows linear-map K (func-space S) V (λa. lincomb a S)

proof −
have 0 : vectorspace K V ..
from h h2 have 1 : mod-hom K (func-space S) V (λa. lincomb a S)

by (rule lincomb-is-mod-hom)
from 0 1 show ?thesis by (unfold vectorspace-def mod-hom-def lin-

ear-map-def , auto)
qed

6.2 Basic facts about span and linear independence

If S is linearly independent, then v ∈ spanS iff S∪{v} is linearly
dependent.
theorem (in vectorspace) lin-dep-iff-in-span:

fixes A v S
assumes h1 : S ⊆ carrier V and h2 : lin-indpt S and h3 : v∈ carrier

V and h4 : v /∈S
shows v∈ span S ←→ lin-dep (S ∪ {v})

proof −
let ?T = S ∪ {v}
have 0 : v∈?T by auto
from h1 h3 have h1-1 : ?T ⊆ carrier V by auto
have a1 :lin-dep ?T =⇒ v∈ span S
proof −

assume a11 : lin-dep ?T
from a11 obtain a w A where a: (finite A ∧ A⊆?T ∧ (a∈

(A→carrier K)) ∧ (lincomb a A = 0V) ∧ (w∈A) ∧ (a w 6= 0K))
by (metis lin-dep-def)

from assms a have nz2 : ∃ v∈A−S . a v 6=0K
by (intro lincomb-must-include[where ?v=w and ?T=S∪{v}],

auto)
from a nz2 have singleton: {v}=A−S by auto
from singleton nz2 have nz3 : a v 6=0K by auto

let ?b=(λw. 	K (invK (a v)) ⊗K (a w))
from singleton have Ains: (A∩S) = A−{v} by auto

39

from assms a singleton nz3 have a31 : v= lincomb ?b (A∩S)
apply (subst Ains)
by (intro lincomb-isolate(1), auto)

from a a31 nz3 singleton show ?thesis
apply (unfold span-def , auto)
apply (rule-tac x=?b in exI)
apply (rule-tac x=A∩S in exI)
by (auto intro!: m-closed)

qed
have a2 : v∈ (span S) =⇒ lin-dep ?T
proof −

assume inspan: v∈ (span S)
from inspan obtain a A where a: A⊆S ∧ finite A ∧ (v = lincomb

a A)∧ a∈A→carrier K by (simp add: span-def , auto)
let ?b = λ w. if (w=v) then (K 1K) else a w
have lc0 : lincomb ?b (A∪{v})=0V
proof −

from assms a have lc-ins: lincomb ?b (A∪{v}) = ((?b v) �V v)
⊕V lincomb ?b A

by (intro lincomb-insert, auto)
from assms a have lc-elim: lincomb ?b A=lincomb a A by (intro

lincomb-elim-if , auto)
from assms lc-ins lc-elim a show ?thesis by (simp add: M .l-neg

smult-minus-1)
qed
from a lc0 show ?thesis

apply (unfold lin-dep-def)
apply (rule-tac x=A∪{v} in exI)
apply (rule-tac x=?b in exI)
apply (rule-tac x=v in exI)
by auto

qed
from a1 a2 show ?thesis by auto

qed

If v ∈ spanA then spanA = span(A ∪ {v})
lemma (in vectorspace) already-in-span:

fixes v A
assumes inC : A⊆carrier V and inspan: v∈span A
shows span A= span (A∪{v})

proof −
from inC inspan have dir1 : span A ⊆ span (A∪{v}) by (intro

span-is-monotone, auto)

from inC have inown: A⊆span A by (rule in-own-span)
from inC have subm: submodule K (span A) V by (rule span-is-submodule)
from inown inspan subm have dir2 : span (A ∪ {v}) ⊆ span A by

(intro span-is-subset, auto)

40

from dir1 dir2 show ?thesis by auto
qed

6.3 The Replacement Theorem

If A,B ⊆ V are finite, A is linearly independent, B generates
W , and A ⊆ W , then there exists C ⊆ V disjoint from A such
that span(A ∪ C) = W and |C| ≤ |B| − |A|. In other words, we
can complete any linearly independent set to a generating set of
W by adding at most |B| − |A| more elements.
theorem (in vectorspace) replacement:

fixes A B
assumes h1 : finite A

and h2 : finite B
and h3 : B⊆carrier V
and h4 : lin-indpt A
and h5 : A⊆span B

shows ∃C . finite C ∧ C⊆carrier V ∧ C⊆span B ∧ C∩A={} ∧ int
(card C) ≤ (int (card B)) − (int (card A)) ∧ (span (A ∪ C) = span
B)
(is ∃C . ?P A B C)

using h1 h2 h3 h4 h5
proof (induct card A arbitrary: A B)

case 0
from 0 .prems(1) 0 .hyps have a0 : A={} by auto
from 0 .prems(3) have a3 : B⊆span B by (rule in-own-span)
from a0 a3 0 .prems show ?case by (rule-tac x=B in exI , auto)

next
case (Suc m)
let ?W=span B
from Suc.prems(3) have BinC : span B⊆carrier V by (rule span-is-subset2)

from Suc.prems Suc.hyps BinC have A: finite A lin-indpt A A⊆span
B Suc m = card A A⊆carrier V

by auto

from Suc.prems have B: finite B B⊆carrier V by auto

from Suc.hyps(2) obtain v where v: v∈A by fastforce
let ?A ′=A−{v}

from A(2) have liA ′: lin-indpt ?A ′

apply (intro subset-li-is-li[of A ?A ′])
by auto

from v liA ′ Suc.prems Suc.hyps(2) have ∃C ′. ?P ?A ′ B C ′

apply (intro Suc.hyps(1))
by auto

41

from this obtain C ′ where C ′: ?P ?A ′ B C ′ by auto

show ?case
proof (cases v∈ C ′)

case True
have vinC ′: v∈C ′ by fact
from vinC ′ v have seteq: A − {v} ∪ C ′ = A ∪ (C ′ − {v}) by

auto
from C ′ seteq have spaneq: span (A ∪ (C ′ − {v})) = span (B)

by algebra
from Suc.prems Suc.hyps C ′ vinC ′ v spaneq show ?thesis

apply (rule-tac x=C ′−{v} in exI)
apply (subgoal-tac card C ′ >0)
by auto

next
case False
have f : v /∈C ′ by fact
from A v C ′ have ∃ a. a∈(?A ′∪C ′)→carrier K ∧ lincomb a (?A ′

∪ C ′) =v
by (intro finite-in-span, auto)

from this obtain a where a: a∈(?A ′∪C ′)→carrier K ∧ v= lin-
comb a (?A ′ ∪ C ′) by metis

let ?b=(λ w. if (w=v) then 	K1K else a w)
from a have b: ?b∈A∪C ′→carrier K by auto
from v have rewrite-ins: A∪C ′=(?A ′∪C ′)∪{v} by auto
from f have v /∈?A ′∪C ′ by auto
from this A C ′ v a f have lcb: lincomb ?b (A ∪ C ′) = 0V

apply (subst rewrite-ins)
apply (subst lincomb-insert)

apply (simp-all add: ring-subset-carrier coeff-in-ring)
apply (auto split: if-split-asm)

apply (subst lincomb-elim-if)
by (auto simp add: smult-minus-1 l-neg ring-subset-carrier)

from C ′ f have rewrite-minus: C ′=(A∪C ′)−A by auto
from A C ′ b lcb v have exw: ∃w∈ C ′. ?b w 6=0K

apply (subst rewrite-minus)
apply (intro lincomb-must-include[where ?T=A∪C ′ and ?v=v])

by auto
from exw obtain w where w: w∈ C ′ ?b w 6=0K by auto
from A C ′ w f b lcb have w-in: w∈span ((A∪ C ′) −{w})

apply (intro lincomb-isolate[where a=?b])
by auto

have spaneq2 : span (A∪(C ′−{w})) = span B
proof −

have 1 : span (?A ′∪C ′) = span (A∪ C ′)
proof −
from A C ′ v have m1 : span (?A ′∪C ′) = span ((?A ′∪ C ′)∪{v})

apply (intro already-in-span)

42

by auto
from f m1 show ?thesis by (metis rewrite-ins)

qed
have 2 : span (A∪ (C ′−{w})) = span (A∪ C ′)
proof −
from C ′ w(1) f have b60 : A∪ (C ′−{w}) = (A∪ C ′) −{w} by

auto
from w(1) have b61 : A∪ C ′= (A∪ C ′ −{w})∪{w} by auto
from A C ′ w-in show ?thesis

apply (subst b61)
apply (subst b60)
apply (intro already-in-span)
by auto

qed
from C ′ 1 2 show ?thesis by auto

qed
from A C ′ w f v spaneq2 show ?thesis

apply (rule-tac x=C ′−{w} in exI)
apply (subgoal-tac card C ′ >0)
by auto

qed
qed

6.4 Defining dimension and bases.

Finite dimensional is defined as having a finite generating set.
definition (in vectorspace) fin-dim:: bool

where fin-dim = (∃ A. ((finite A) ∧ (A ⊆ carrier V) ∧ (gen-set
A)))

The dimension is the size of the smallest generating set. For
equivalent characterizations see below.
definition (in vectorspace) dim:: nat

where dim = (LEAST n. (∃ A. ((finite A) ∧ (card A = n) ∧ (A ⊆
carrier V) ∧ (gen-set A))))

A basis is a linearly independent generating set.
definition (in vectorspace) basis:: ′c set ⇒ bool

where basis A = ((lin-indpt A) ∧ (gen-set A)∧ (A⊆carrier V))

From the replacement theorem, any linearly independent set is
smaller than any generating set.
lemma (in vectorspace) li-smaller-than-gen:

fixes A B
assumes h1 : finite A and h2 : finite B and h3 : A⊆carrier V and

h4 : B⊆carrier V
and h5 : lin-indpt A and h6 : gen-set B

shows card A ≤ card B

43

proof −
from h3 h6 have 1 : A⊆span B by auto
from h1 h2 h4 h5 1 obtain C where

2 : finite C ∧ C⊆carrier V ∧ C⊆span B ∧ C∩A={} ∧ int (card
C) ≤ int (card B) − int (card A) ∧ (span (A ∪ C) = span B)

by (metis replacement)
from 2 show ?thesis by arith

qed

The dimension is the cardinality of any basis. (In particular, all
bases are the same size.)
lemma (in vectorspace) dim-basis:

fixes A
assumes fin: finite A and h2 : basis A
shows dim = card A

proof −
have 0 :

∧
B m. ((finite B) ∧ (card B = m) ∧ (B ⊆ carrier V) ∧

(gen-set B)) =⇒ card A ≤ m
proof −

fix B m
assume 1 : ((finite B) ∧ (card B = m) ∧ (B ⊆ carrier V) ∧ (gen-set

B))
from 1 fin h2 have 2 : card A ≤ card B

apply (unfold basis-def)
apply (intro li-smaller-than-gen)

by auto
from 1 2 show ?thesis B m by auto

qed
from fin h2 0 show ?thesis

apply (unfold dim-def basis-def)
apply (intro Least-equality)
apply (rule-tac x=A in exI)
by auto

qed

A maximal set with respect to P is such that if B ⊇ A and P is
also satisfied for B, then B = A.
definition maximal:: ′a set ⇒ (′a set ⇒ bool) ⇒ bool

where maximal A P = ((P A) ∧ (∀B. B⊇A ∧ P B −→ B = A))

A minimal set with respect to P is such that if B ⊆ A and P is
also satisfied for B, then B = A.
definition minimal:: ′a set ⇒ (′a set ⇒ bool) ⇒ bool

where minimal A P = ((P A) ∧ (∀B. B⊆A ∧ P B −→ B = A))

A maximal linearly independent set is a generating set.
lemma (in vectorspace) max-li-is-gen:

fixes A

44

assumes h1 : maximal A (λS . S⊆carrier V ∧ lin-indpt S)
shows gen-set A

proof (rule ccontr)
assume 0 : ¬(gen-set A)
from h1 have 1 : A⊆ carrier V ∧ lin-indpt A by (unfold maxi-

mal-def , auto)
from 1 have 2 : span A ⊆ carrier V by (intro span-is-subset2 , auto)
from 0 1 2 have 3 : ∃ v. v∈carrier V ∧ v /∈ (span A)

by auto
from 3 obtain v where 4 : v∈carrier V ∧ v /∈ (span A) by auto
have 5 : v /∈A
proof −
from h1 1 have 51 : A⊆span A apply (intro in-own-span) by auto
from 4 51 show ?thesis by auto

qed
from lin-dep-iff-in-span have 6 :

∧
S v. S ⊆ carrier V∧ lin-indpt S

∧ v∈ carrier V ∧ v /∈S
∧ v /∈ span S =⇒ (lin-indpt (S ∪ {v})) by auto

from 1 4 5 have 7 : lin-indpt (A ∪ {v}) apply (intro 6) by auto

have 9 : ¬(maximal A (λS . S⊆carrier V ∧ lin-indpt S))
proof −

from 1 4 5 7 have 8 : (∃B. A ⊆ B ∧ B ⊆ carrier V ∧ lin-indpt
B ∧ B 6= A)

apply (rule-tac x=A∪{v} in exI)
by auto

from 8 show ?thesis
apply (unfold maximal-def)
by simp

qed
from h1 9 show False by auto

qed

A minimal generating set is linearly independent.
lemma (in vectorspace) min-gen-is-li:

fixes A
assumes h1 : minimal A (λS . S⊆carrier V ∧ gen-set S)
shows lin-indpt A

proof (rule ccontr)
assume 0 : ¬lin-indpt A
from h1 have 1 : A⊆ carrier V ∧ gen-set A by (unfold minimal-def ,

auto)
from 1 have 2 : span A = carrier V by auto
from 0 1 obtain a v A ′ where

3 : finite A ′ ∧ A ′⊆A ∧ a ∈ A ′ → carrier K ∧ LinearCombina-
tions.module.lincomb V a A ′ = 0V ∧ v ∈ A ′ ∧ a v 6= 0K

by (unfold lin-dep-def , auto)
have 4 : gen-set (A−{v})
proof −

45

from 1 3 have 5 : v∈span (A ′−{v})
apply (intro lincomb-isolate[where a=a and v=v])

by auto
from 3 5 have 51 : v∈span (A−{v})

apply (intro subsetD[where ?A=span (A ′−{v}) and ?B=span
(A−{v}) and ?c=v])

by (intro span-is-monotone, auto)
from 1 have 6 : A⊆span A apply (intro in-own-span) by auto
from 1 51 have 7 : span (A−{v}) = span ((A−{v})∪{v}) apply

(intro already-in-span) by auto
from 3 have 8 : A = ((A−{v})∪{v}) by auto
from 2 7 8 have 9 :span (A−{v}) = carrier V by auto
from 9 show ?thesis by auto

qed
have 10 : ¬(minimal A (λS . S⊆carrier V ∧ gen-set S))
proof −

from 1 3 4 have 11 : (∃B. A ⊇ B ∧ B ⊆ carrier V ∧ gen-set B
∧ B 6= A)

apply (rule-tac x=A−{v} in exI)
by auto

from 11 show ?thesis
apply (unfold minimal-def)
by auto

qed
from h1 10 show False by auto

qed

Given that some finite set satisfies P , there is a minimal set that
satisfies P .
lemma minimal-exists:

fixes A P
assumes h1 : finite A and h2 : P A
shows ∃B. B⊆A ∧ minimal B P

using h1 h2
proof (induct card A arbitrary: A rule: less-induct)
case (less A)

show ?case
proof (cases card A = 0)
case True

from True less.hyps less.prems show ?thesis
apply (rule-tac x={} in exI)
apply (unfold minimal-def)
by auto

next
case False

show ?thesis
proof (cases minimal A P)

case True
then show ?thesis

46

apply (rule-tac x=A in exI)
by auto

next
case False

have 2 : ¬minimal A P by fact
from less.prems 2 have 3 : ∃B. P B ∧ B ⊆ A ∧ B 6=A

apply (unfold minimal-def)
by auto

from 3 obtain B where 4 : P B ∧ B ⊂ A ∧ B 6=A by auto
from 4 have 5 : card B < card A by (metis less.prems(1)

psubset-card-mono)
from less.hyps less.prems 3 4 5 have 6 : ∃C⊆B. minimal C P

apply (intro less.hyps)
apply auto

by (metis rev-finite-subset)
from 6 obtain C where 7 : C⊆B ∧ minimal C P by auto
from 4 7 show ?thesis

apply (rule-tac x=C in exI)
apply (unfold minimal-def)
by auto

qed
qed

qed

If V is finite-dimensional, then any linearly independent set is
finite.
lemma (in vectorspace) fin-dim-li-fin:

assumes fd: fin-dim and li: lin-indpt A and inC : A⊆carrier V
shows fin: finite A

proof (rule ccontr)
assume A: ¬finite A
from fd obtain C where C : finite C ∧ C⊆carrier V ∧ gen-set C

by (unfold fin-dim-def , auto)
from A obtain B where B: B⊆A∧ finite B ∧ card B = card C +

1
by (metis infinite-arbitrarily-large)

from B li have liB: lin-indpt B
by (intro subset-li-is-li[where ?A=A and ?B=B], auto)

from B C liB inC have card B ≤ card C by (intro li-smaller-than-gen,
auto)

from this B show False by auto
qed

If V is finite-dimensional (has a finite generating set), then a
finite basis exists.
lemma (in vectorspace) finite-basis-exists:

assumes h1 : fin-dim
shows ∃β. finite β ∧ basis β

proof −

47

from h1 obtain A where 1 : finite A ∧ A⊆carrier V ∧ gen-set A
by (metis fin-dim-def)

hence 2 : ∃β. β⊆A ∧ minimal β (λS . S⊆carrier V ∧ gen-set S)
apply (intro minimal-exists)
by auto

then obtain β where 3 : β⊆A ∧ minimal β (λS . S⊆carrier V ∧
gen-set S) by auto

hence 4 : lin-indpt β apply (intro min-gen-is-li) by auto
moreover from 3 have 5 : gen-set β ∧ β⊆carrier V apply (unfold

minimal-def) by auto
moreover from 1 3 have 6 : finite β by (auto simp add: finite-subset)
ultimately show ?thesis apply (unfold basis-def) by auto

qed

The proof is as follows.

1. Because V is finite-dimensional, there is a finite generating
set (we took this as our definition of finite-dimensional).

2. Hence, there is a minimal β ⊆ A such that β generates V .
3. β is linearly independent because a minimal generating set

is linearly independent.

Finally, β is a basis because it is both generating and linearly
independent.

Any linearly independent set has cardinality at most equal to
the dimension.
lemma (in vectorspace) li-le-dim:

fixes A
assumes fd: fin-dim and c: A⊆carrier V and l: lin-indpt A
shows finite A card A ≤ dim

proof −
from fd c l show fa: finite A by (intro fin-dim-li-fin, auto)
from fd obtain β where 1 : finite β ∧ basis β

by (metis finite-basis-exists)
from assms fa 1 have 2 : card A ≤ card β

apply (intro li-smaller-than-gen, auto)
by (unfold basis-def , auto)

from assms 1 have 3 : dim = card β by (intro dim-basis, auto)
from 2 3 show card A ≤ dim by auto

qed

Any generating set has cardinality at least equal to the dimen-
sion.
lemma (in vectorspace) gen-ge-dim:

fixes A
assumes fa: finite A and c: A⊆carrier V and l: gen-set A
shows card A ≥ dim

48

proof −
from assms have fd: fin-dim by (unfold fin-dim-def , auto)
from fd obtain β where 1 : finite β ∧ basis β by (metis finite-basis-exists)
from assms 1 have 2 : card A ≥ card β

apply (intro li-smaller-than-gen, auto)
by (unfold basis-def , auto)

from assms 1 have 3 : dim = card β by (intro dim-basis, auto)
from 2 3 show ?thesis by auto

qed

If there is an upper bound on the cardinality of sets satisfying
P , then there is a maximal set satisfying P .
lemma maximal-exists:

fixes P B N
assumes maxc:

∧
A. P A =⇒ finite A ∧ (card A ≤N) and b: P B

shows ∃A. finite A ∧ maximal A P
proof −

let ?S={card A| A. P A}
let ?n=Max ?S
from maxc have 1 :finite ?S

apply (simp add: finite-nat-set-iff-bounded-le) by auto
from 1 have 2 : ?n∈?S

by (metis (mono-tags, lifting) Collect-empty-eq Max-in b)
from assms 2 have 3 : ∃A. P A ∧ finite A ∧ card A = ?n

by auto
from 3 obtain A where 4 : P A ∧ finite A ∧ card A = ?n by auto
from 1 maxc have 5 :

∧
A. P A =⇒ finite A ∧ (card A ≤?n)

by (metis (mono-tags, lifting) Max.coboundedI mem-Collect-eq)
from 4 5 have 6 : maximal A P

apply (unfold maximal-def)
by (metis card-seteq)

from 4 6 show ?thesis by auto
qed

Any maximal linearly independent set is a basis.
lemma (in vectorspace) max-li-is-basis:

fixes A
assumes h1 : maximal A (λS . S⊆carrier V ∧ lin-indpt S)
shows basis A

proof −
from h1 have 1 : gen-set A by (rule max-li-is-gen)
from assms 1 show ?thesis by (unfold basis-def maximal-def , auto)

qed

Any minimal linearly independent set is a generating set.
lemma (in vectorspace) min-gen-is-basis:

fixes A
assumes h1 : minimal A (λS . S⊆carrier V ∧ gen-set S)

49

shows basis A
proof −

from h1 have 1 : lin-indpt A by (rule min-gen-is-li)
from assms 1 show ?thesis by (unfold basis-def minimal-def , auto)

qed

Any linearly independent set with cardinality at least the dimen-
sion is a basis.
lemma (in vectorspace) dim-li-is-basis:

fixes A
assumes fd: fin-dim and fa: finite A and ca: A⊆carrier V and li:

lin-indpt A
and d: card A ≥ dim

shows basis A
proof −

from fd have 0 :
∧

S . S⊆carrier V ∧ lin-indpt S =⇒ finite S ∧ card
S ≤dim

by (auto intro: li-le-dim)

from 0 assms have h1 : finite A ∧ maximal A (λS . S⊆carrier V
∧ lin-indpt S)

apply (unfold maximal-def)
apply auto
by (metis card-seteq eq-iff)

from h1 show ?thesis by (auto intro: max-li-is-basis)
qed

Any generating set with cardinality at most the dimension is a
basis.
lemma (in vectorspace) dim-gen-is-basis:

fixes A
assumes fa: finite A and ca: A⊆carrier V and li: gen-set A

and d: card A ≤ dim
shows basis A

proof −
have 0 :

∧
S . finite S∧ S⊆carrier V ∧ gen-set S =⇒ card S ≥dim

by (intro gen-ge-dim, auto)

from 0 assms have h1 : minimal A (λS . finite S ∧ S⊆carrier V ∧
gen-set S)

apply (unfold minimal-def)
apply auto
by (metis card-seteq eq-iff)

from h1 have h:
∧

B. B ⊆ A ∧ B ⊆ carrier V ∧ LinearCombina-
tions.module.gen-set K V B =⇒ B = A

proof −
fix B

50

assume asm: B ⊆ A ∧ B ⊆ carrier V ∧ LinearCombinations.module.gen-set
K V B

from asm h1 have finite B
apply (unfold minimal-def)
apply (intro finite-subset[where ?A=B and ?B=A])
by auto

from h1 asm this show ?thesis B apply (unfold minimal-def) by
simp

qed
from h1 h have h2 : minimal A (λS . S⊆carrier V ∧ gen-set S)

apply (unfold minimal-def)
by presburger

from h2 show ?thesis by (rule min-gen-is-basis)
qed

β is a basis iff for all v ∈ V , there exists a unique (av)v∈S such
that

∑
v∈S avv = v.

lemma (in vectorspace) basis-criterion:
assumes A-fin: finite A and AinC : A⊆carrier V
shows basis A ←→ (∀ v. v∈ carrier V −→(∃ ! a. a∈A →E carrier

K ∧ lincomb a A = v))
proof −

have 1 : ¬(∀ v. v∈ carrier V −→(∃ ! a. a∈A →E carrier K ∧
lincomb a A = v)) =⇒ ¬basis A

proof −
assume ¬(∀ v. v∈ carrier V −→(∃ ! a. a∈A →E carrier K ∧

lincomb a A = v))
then obtain v where v: v∈ carrier V ∧ ¬(∃ ! a. a∈A →E carrier

K ∧ lincomb a A = v) by metis

from v have vinC : v∈carrier V by auto
from v have ¬(∃ a. a∈A →E carrier K ∧ lincomb a A = v) ∨

(∃ a b.
a∈A →E carrier K ∧ lincomb a A = v ∧ b∈A →E carrier K ∧

lincomb b A = v
∧ a 6=b) by metis

then show ?thesis
proof

assume a: ¬(∃ a. a∈A →E carrier K ∧ lincomb a A = v)
from A-fin AinC have

∧
a. a∈A → carrier K =⇒ lincomb a A

= lincomb (restrict a A) A
unfolding lincomb-def restrict-def

by (simp cong: finsum-cong add: ring-subset-carrier coeff-in-ring)
with a have ¬(∃ a. a∈A → carrier K ∧ lincomb a A = v) by

auto
with A-fin AinC have v /∈span A

using finite-in-span by blast
with AinC v show ¬(basis A) by (unfold basis-def , auto)

next

51

assume a2 : (∃ a b.
a∈A →E carrier K ∧ lincomb a A = v ∧ b∈A →E carrier K ∧

lincomb b A = v
∧ a 6=b)

then obtain a b where ab: a∈A →E carrier K ∧ lincomb a A
= v ∧ b∈A →E carrier K ∧ lincomb b A = v

∧ a 6=b by metis
from ab obtain w where w: w∈A ∧ a w 6= b w apply (unfold

PiE-def , auto)
by (metis extensionalityI)

let ?c=λ x. (if x∈A then ((a x) 	K (b x)) else undefined)
from ab have a-fun: a∈A → carrier K

and b-fun: b∈A → carrier K
by (unfold PiE-def , auto)

from w a-fun b-fun have abinC : a w ∈carrier K b w ∈carrier K
by auto

from abinC w have nz: a w 	K b w 6= 0K
by auto

from A-fin AinC a-fun b-fun ab vinC have a-b:
LinearCombinations.module.lincomb V (λx. if x ∈ A then a x 	K

b x else undefined) A = 0V
by (simp cong: lincomb-cong add: coeff-in-ring lincomb-diff)

from A-fin AinC ab w v nz a-b have lin-dep A
apply (intro lin-dep-crit[where ?A=A and ?a=?c and ?v=w])

apply (auto simp add: PiE-def)
by auto

thus ¬basis A by (unfold basis-def , auto)
qed

qed
have 2 : (∀ v. v∈ carrier V −→(∃ ! a. a∈A →E carrier K ∧ lincomb

a A = v)) =⇒ basis A
proof −

assume b1 : (∀ v. v∈ carrier V −→(∃ ! a. a∈A →E carrier K ∧
lincomb a A = v))

(is (∀ v. v∈ carrier V −→(∃ ! a. ?Q a v)))
from b1 have b2 : (∀ v. v∈ carrier V −→(∃ a. a∈A → carrier

K ∧ lincomb a A = v))
apply (unfold PiE-def)
by blast

from A-fin AinC b2 have gen-set A
apply (unfold span-def)
by blast

from b1 have A-li: lin-indpt A
proof −

let ?z=λ x. (if (x∈A) then 0K else undefined)
from A-fin AinC have zero: ?Q ?z 0V

by (unfold PiE-def extensional-def lincomb-def , auto simp add:
ring-subset-carrier)

52

from A-fin AinC show ?thesis
proof (rule finite-lin-indpt2)

fix a
assume a-fun: a ∈ A → carrier K and

lc-a: LinearCombinations.module.lincomb V a A = 0V
from a-fun have a-res: restrict a A ∈ A →E carrier K by auto
from a-fun A-fin AinC lc-a have

lc-a-res: LinearCombinations.module.lincomb V (restrict a A)
A = 0V

apply (unfold lincomb-def restrict-def)
by (simp cong: finsum-cong2 add: coeff-in-ring ring-subset-carrier)

from a-fun a-res lc-a-res zero b1 have restrict a A = ?z by
auto

from this show ∀ v∈A. a v = 0K
apply (unfold restrict-def)
by meson

qed
qed
have A-gen: gen-set A
proof −
from AinC have dir1 : span A⊆carrier V by (rule span-is-subset2)

have dir2 : carrier V⊆span A
proof (auto)

fix v
assume v: v∈carrier V
from v b2 obtain a where a∈A → carrier K ∧ lincomb a A

= v by auto
from this A-fin AinC show v∈span A by (subst finite-span,

auto)
qed
from dir1 dir2 show ?thesis by auto

qed
from A-li A-gen AinC show basis A by (unfold basis-def , auto)

qed
from 1 2 show ?thesis by satx

qed

lemma (in linear-map) surj-imp-imT-carrier :
assumes surj: T‘ (carrier V) = carrier W
shows (imT) = carrier W
by (simp add: surj im-def)

6.5 The rank-nullity (dimension) theorem

If V is finite-dimensional and T : V → W is a linear map, then
dim(im(T)) + dim(ker(T)) = dimV . Moreover, we prove that if
T is surjective linear-map between V and W , where V is finite-
dimensional, then also W is finite-dimensional.

53

theorem (in linear-map) rank-nullity-main:
assumes fd: V .fin-dim
shows (vectorspace.dim K (W .vs imT)) + (vectorspace.dim K (V .vs

kerT)) = V .dim
T ‘ (carrier V) = carrier W =⇒ W .fin-dim

proof −
— First interpret kerT, imT as vectorspaces
have subs-ker : subspace K kerT V by (intro kerT-is-subspace)
from subs-ker have vs-ker : vectorspace K (V .vs kerT) by (rule

V .subspace-is-vs)
from vs-ker interpret ker : vectorspace K (V .vs kerT) by auto
have kerInC : kerT⊆carrier V by (unfold ker-def , auto)

have subs-im: subspace K imT W by (intro imT-is-subspace)
from subs-im have vs-im: vectorspace K (W .vs imT) by (rule

W .subspace-is-vs)
from vs-im interpret im: vectorspace K (W .vs imT) by auto
have imInC : imT⊆carrier W by (unfold im-def , auto)

have zero-same[simp]: 0V .vs kerT = 0V apply (unfold ker-def) by
auto

— Show ker T has a finite basis. This is not obvious. Show that
any linearly independent set has size at most that of V. There exists a
maximal linearly independent set, which is the basis.

have every-li-small:
∧

A. (A ⊆ kerT)∧ ker .lin-indpt A =⇒
finite A ∧ card A ≤ V .dim

proof −
fix A
assume eli-asm: (A ⊆ kerT)∧ ker .lin-indpt A

note V .module.span-li-not-depend(2)[where ?N=kerT and ?S=A]

from this subs-ker fd eli-asm kerInC show ?thesis A
apply (intro conjI)
by (auto intro!: V .li-le-dim)

qed
from every-li-small have exA:
∃A. finite A ∧ maximal A (λS . S⊆carrier (V .vs kerT) ∧ ker .lin-indpt

S)
apply (intro maximal-exists[where ?N=V .dim and ?B={}])
apply auto

by (unfold ker .lin-dep-def , auto)
from exA obtain A where A: finite A ∧ maximal A (λS . S⊆carrier

(V .vs kerT) ∧ ker .lin-indpt S)
by blast

hence finA: finite A and Ainker : A⊆carrier (V .vs kerT) and AinC :
A⊆carrier V

by (unfold maximal-def ker-def , auto)
— We obtain the basis A of kerT. It is also linearly independent when

54

considered in V rather than kerT
from A have Abasis: ker .basis A

by (intro ker .max-li-is-basis, auto)
from subs-ker Abasis have spanA: V .module.span A = kerT

apply (unfold ker .basis-def)
by (subst sym[OF V .module.span-li-not-depend(1)[where ?N=kerT]],

auto)
from Abasis have Akerli: ker .lin-indpt A

apply (unfold ker .basis-def)
by auto

from subs-ker Ainker Akerli have Ali: V .module.lin-indpt A
by (auto simp add: V .module.span-li-not-depend(2))

Use the replacement theorem to find C such that A∪C is a basis of V.

from fd obtain B where B: finite B∧ V .basis B by (metis V .finite-basis-exists)
from B have Bfin: finite B and Bbasis:V .basis B by auto
from B have Bcard: V .dim = card B by (intro V .dim-basis, auto)
from Bbasis have 62 : V .module.span B = carrier V

by (unfold V .basis-def , auto)
from A Abasis Ali B vs-ker have ∃C . finite C ∧ C⊆carrier V ∧

C⊆ V .module.span B ∧ C∩A={}
∧ int (card C) ≤ (int (card B)) − (int (card A)) ∧ (V .module.span

(A ∪ C) = V .module.span B)
apply (intro V .replacement)
apply (unfold vectorspace.basis-def V .basis-def)

by (unfold ker-def , auto)

From replacement we got |C| ≤ |B| − |A|. Equality must actually
hold, because no generating set can be smaller than B. Now A ∪ C
is a maximal generating set, hence a basis; its cardinality equals the
dimension.

We claim that T (C) is basis for im(T).

then obtain C where C : finite C ∧ C⊆carrier V ∧ C⊆ V .module.span
B ∧ C∩A={}
∧ int (card C) ≤ (int (card B)) − (int (card A)) ∧ (V .module.span

(A ∪ C) = V .module.span B) by auto
hence Cfin: finite C and CinC : C⊆carrier V and CinspanB:

C⊆V .module.span B and CAdis: C∩A={}
and Ccard: int (card C) ≤ (int (card B)) − (int (card A))
and ACspanB: (V .module.span (A ∪ C) = V .module.span B) by

auto
from C have cardLe: card A + card C ≤ card B by auto
from B C have ACgen: V .module.gen-set (A∪C) apply (unfold

V .basis-def) by auto
from finA C ACgen AinC B have cardGe: card (A∪C) ≥ card B

by (intro V .li-smaller-than-gen, unfold V .basis-def , auto)
from finA C have cardUn: card (A∪C)≤ card A + card C

by (metis Int-commute card-Un-disjoint le-refl)
from cardLe cardUn cardGe Bcard have cardEq:

55

card (A∪C) = card A + card C
card (A∪C) = card B
card (A∪C) = V .dim
by auto

from Abasis C cardEq have disj: A∩C={} by auto
from finA AinC C cardEq 62 have ACfin: finite (A∪C) and ACba-

sis: V .basis (A∪C)
by (auto intro!: V .dim-gen-is-basis)

have lm: linear-map K V W T ..

Let C ′ be the image of C under T . We will show C ′ is a basis for
im(T).

let ?C ′ = T‘C
from Cfin have C ′fin: finite ?C ′ by auto
from AinC C have cim: ?C ′⊆imT by (unfold im-def , auto)

"There is a subtle detail: we first have to show T is injective on C.

We establish that no nontrivial linear combination of C can have image
0 under T , because that would mean it is a linear combination of A,
giving that A ∪ C is linearly dependent, contradiction. We use this
result in 2 ways: (1) if T is not injective on C, then we obtain v, w ∈ C
such that v − w is in the kernel, contradiction, (2) if T (C) is linearly
dependent, taking the inverse image of that linear combination gives
a linear combination of C in the kernel, contradiction. Hence T is
injective on C and T (C) is linearly independent.

have lc-in-ker :
∧

d D v. [[D⊆C ; d∈D→carrier K ; T (V .module.lincomb
d D) = 0W;

v∈D; d v 6=0K]]=⇒False
proof −

fix d D v
assume D: D⊆C and d: d∈D→carrier K and T0 : T (V .module.lincomb

d D) = 0W
and v: v∈D and dvnz: d v 6=0K

from D Cfin have Dfin: finite D by (auto intro: finite-subset)
from D CinC have DinC : D⊆carrier V by auto
from T0 d Dfin DinC have lc-d: V .module.lincomb d D∈kerT

by (unfold ker-def , auto)
from lc-d spanA AinC have ∃ a ′ A ′. A ′⊆A ∧ a ′∈A ′→carrier K

∧
V .module.lincomb a ′ A ′= V .module.lincomb d D

by (intro V .module.in-span, auto)
then obtain a ′ A ′ where a ′: A ′⊆A ∧ a ′∈A ′→carrier K ∧

V .module.lincomb d D = V .module.lincomb a ′ A ′

by metis
hence A ′sub: A ′⊆A and a ′fun: a ′∈A ′→carrier K

and a ′-lc:V .module.lincomb d D = V .module.lincomb a ′ A ′ by
auto

from a ′ finA Dfin have A ′fin: finite (A ′) by (auto intro: fi-
nite-subset)

56

from AinC A ′sub have A ′inC : A ′⊆carrier V by auto
let ?e = (λv. if v ∈ A ′ then a ′ v else 	K1K⊗K d v)
from a ′fun d have e-fun: ?e ∈ A ′ ∪ D → carrier K

apply (unfold Pi-def)
by auto

from
A ′fin Dfin
A ′inC DinC
a ′fun d e-fun
disj D A ′sub

have lccomp1 :
V .module.lincomb a ′ A ′ ⊕V 	K1K�V V .module.lincomb d D =

V .module.lincomb (λv. if v∈A ′ then a ′ v else 	K1K⊗K d v)
(A ′∪D)

apply (subst sym[OF V .module.lincomb-smult])
apply (simp-all)

apply (subst V .module.lincomb-union2)
by (auto)

from
A ′fin
A ′inC
a ′fun

have lccomp2 :
V .module.lincomb a ′ A ′ ⊕V 	K1K�V V .module.lincomb d D =
0V
by (simp add: a ′-lc

V .module.smult-minus-1 V .module.M .r-neg)
from lccomp1 lccomp2 have lc0 : V .module.lincomb (λv. if v∈A ′

then a ′ v else 	K1K⊗K d v) (A ′∪D)
=0V by auto

from disj a ′ v D have v-nin: v /∈A ′ by auto
from A ′fin Dfin

A ′inC DinC
e-fun d
A ′sub D disj
v dvnz
lc0

have AC-ld: V .module.lin-dep (A∪C)
apply (intro V .module.lin-dep-crit[where ?A=A ′∪D and
?S=A∪C and ?a=λv. if v∈A ′ then a ′ v else 	K1K⊗K d v and

?v=v])
by (auto dest: integral)

from AC-ld ACbasis show False by (unfold V .basis-def , auto)
qed
have C ′-card: inj-on T C card C = card ?C ′

proof −
show inj-on T C
proof (rule ccontr)

assume ¬inj-on T C

57

then obtain v w where v∈C w∈C v 6=w T v = T w by (unfold
inj-on-def , auto)

from this CinC show False
apply (intro lc-in-ker [where ?D1={v,w} and ?d1=λx. if x=v

then 1K else 	K1K
and ?v1=v])

by (auto simp add: V .module.lincomb-def hom-sum ring-subset-carrier

W .module.smult-minus-1 r-neg T-im)
qed
from this Cfin show card C = card ?C ′

by (metis card-image)
qed
let ?f=the-inv-into C T
have f :

∧
x. x∈C =⇒ ?f (T x) = x

∧
y. y∈?C ′ =⇒ T (?f y) = y

apply (insert C ′-card(1))
apply (metis the-inv-into-f-f)

by (metis f-the-inv-into-f)

have C ′-li: im.lin-indpt ?C ′

proof (rule ccontr)
assume Cld: ¬im.lin-indpt ?C ′

from Cld cim subs-im have CldW : W .module.lin-dep ?C ′

apply (subst sym[OF W .module.span-li-not-depend(2)[where
?S=T‘C and ?N=imT]])

by auto
from C CldW have ∃ c ′ v ′. (c ′∈ (?C ′→carrier K)) ∧ (W .module.lincomb

c ′ ?C ′ = 0W)
∧ (v ′∈?C ′) ∧ (c ′ v ′6= 0K) by (intro W .module.finite-lin-dep,

auto)
then obtain c ′ v ′ where c ′: (c ′∈ (?C ′→carrier K)) ∧ (W .module.lincomb

c ′ ?C ′ = 0W)
∧ (v ′∈?C ′) ∧ (c ′ v ′6= 0K) by auto

hence c ′fun: (c ′∈ (?C ′→carrier K)) and c ′lc: (W .module.lincomb
c ′ ?C ′ = 0W) and

v ′:(v ′∈?C ′) and cvnz: (c ′ v ′6= 0K) by auto

We take the inverse image of C ′ under T to get a linear combination
of C that is in the kernel and hence a linear combination of A. This
contradicts A ∪ C being linearly independent.

let ?c=λv. c ′ (T v)
from c ′fun have c-fun: ?c∈ C→carrier K by auto
from Cfin

c-fun c ′fun
C ′-card
CinC
f
c ′lc

have T (V .module.lincomb ?c C) = 0W

58

apply (unfold V .module.lincomb-def W .module.lincomb-def)
apply (subst hom-sum, auto)

apply (simp cong: finsum-cong add: ring-subset-carrier coeff-in-ring)
apply (subst finsum-reindex[where ?f=λw. c ′ w �W w and

?h=T and ?A=C , THEN sym])
by auto

with f c ′fun cvnz v ′ show False
by (intro lc-in-ker [where ?D1=C and ?d1=?c and ?v1=?f v ′],

auto)
qed
have C ′-gen: im.gen-set ?C ′

proof −
have C ′-span: span ?C ′ = imT
proof (rule equalityI)

from cim subs-im show W .module.span ?C ′ ⊆ imT
by (intro span-is-subset, unfold subspace-def , auto)

next
show imT⊆W .module.span ?C ′

proof (auto)
fix w
assume w: w∈imT

from this finA Cfin AinC CinC obtain v where v-inC :
v∈carrier V and w-eq-T-v: w= T v

by (unfold im-def image-def , auto)
from finA Cfin AinC CinC v-inC ACgen have ∃ a. a ∈ A∪C

→ carrier K∧ V .module.lincomb a (A∪C) = v
by (intro V .module.finite-in-span, auto)

then obtain a where
a-fun: a ∈ A∪C → carrier K and
lc-a-v: v= V .module.lincomb a (A∪C)
by auto

let ?a ′=λv. a (?f v)
from finA Cfin AinC CinC a-fun disj Ainker f C ′-card have

Tv: T v = W .module.lincomb ?a ′ ?C ′

apply (subst lc-a-v)
apply (subst V .module.lincomb-union, simp-all)
apply (unfold lincomb-def V .module.lincomb-def)
apply (subst hom-sum, auto)
apply (simp add: subsetD coeff-in-ring

hom-sum
T-ker
)
apply (subst finsum-reindex[where ?h=T and ?f=λv. ?a ′

v�W v], auto)
by (auto cong: finsum-cong simp add: coeff-in-ring ring-subset-carrier)
from a-fun f have a ′-fun: ?a ′∈?C ′→ carrier K by auto

from C ′fin CinC this w-eq-T-v a ′-fun Tv show w ∈ LinearCom-
binations.module.span K W (T ‘ C)

by (subst finite-span, auto)

59

qed
qed
from this subs-im CinC show ?thesis

apply (subst span-li-not-depend(1))
by (unfold im-def subspace-def , auto)

qed
from C ′-li C ′-gen C cim have C ′-basis: im.basis (T‘C)

by (unfold im.basis-def , auto)
have C-card-im: card C = (vectorspace.dim K (W .vs imT))

using C ′-basis C ′-card(2) C ′fin im.dim-basis by auto
from finA Abasis have ker .dim = card A by (rule ker .dim-basis)
note ∗ = this C-card-im cardEq
show (vectorspace.dim K (W .vs imT)) + (vectorspace.dim K (V .vs

kerT)) = V .dim using ∗ by auto
assume T‘ (carrier V) = carrier W
from ∗ surj-imp-imT-carrier [OF this]
show W .fin-dim using C ′-basis C ′fin unfolding W .fin-dim-def

im.basis-def by auto
qed

theorem (in linear-map) rank-nullity:
assumes fd: V .fin-dim
shows (vectorspace.dim K (W .vs imT)) + (vectorspace.dim K (V .vs

kerT)) = V .dim
by (rule rank-nullity-main[OF fd])

end

60

	Basic facts about rings and modules
	Basic facts
	Units group

	Basic lemmas about functions
	Sums in monoids
	Linear Combinations
	Lemmas for simplification
	Linear combinations
	Linear dependence and independence.
	Submodules

	The direct sum of modules.
	Basic theory of vector spaces, using locales
	Basic definitions and facts carried over from modules
	Facts specific to vector spaces

	Basic facts about span and linear independence
	The Replacement Theorem
	Defining dimension and bases.
	The rank-nullity (dimension) theorem

