VectorSpace

Holden Lee*

September 13, 2023

Abstract

I present a formalisation of basic linear algebra based completely on locales, building off HOL-Algebra. It includes the following: 1. basic definitions: linear combinations, span, linear independence 2. linear transformations 3. interpretation of function spaces as vector spaces 4. direct sum of vector spaces, sum of subspaces 5. the replacement theorem 6. existence of bases in finite-dimensional vector spaces, definition of dimension 7. rank-nullity theorem.

Note that some concepts are actually defined and proved for modules as they also apply there.

In the process, I also prove some basic facts about rings, modules, and fields, as well as finite sums in monoids/modules.

Note that infinite-dimensional vector spaces are supported, but dimension is only supported for finite-dimensional vector spaces.

The proofs are standard; the proofs of the replacement theorem and rank-nullity theorem roughly follow the presentation in [?]. The ranknullity theorem generalises the existing development in [?] (originally using type classes, now using a mix of type classes and locales).

Contents

1 Basic facts about rings and modules 1
1.1 Basic facts 2
1.2 Units group 3
2 Basic lemmas about functions 4
3 Sums in monoids 4

[^0]4 Linear Combinations 7
4.1 Lemmas for simplification 7
4.2 Linear combinations 8
4.3 Linear dependence and independence. 10
4.4 Submodules 14
5 The direct sum of modules. 27
6 Basic theory of vector spaces, using locales 32
6.1 Basic definitions and facts carried over from modules 32
6.1.1 Facts specific to vector spaces 37
6.2 Basic facts about span and linear independence 39
6.3 The Replacement Theorem 40
6.4 Defining dimension and bases. 43
6.5 The rank-nullity (dimension) theorem 53

1 Basic facts about rings and modules

theory RingModuleFacts
imports Main
HOL-Algebra.Module
HOL-Algebra.Coset

begin

1.1 Basic facts

In a field, every nonzero element has an inverse.

```
lemma (in field) inverse-exists [simp, intro]:
    assumes h1:a\incarrier R and h2: a\not=\mp@subsup{0}{R}{}
    shows inv R}a\in\mathrm{ carrier R
proof -
    have 1: Units R= carrier R - {0}\mp@subsup{\mathbf{0}}{R}{}}\mathrm{ by (rule field-Units)
    from h1 h2 1 show ?thesis by auto
qed
```

Multiplication by 0 in R gives 0 . (Note that this fact encompasses smult-l-null as this is for module while that is for algebra, so smult-l-null is redundant.)
lemma (in module) lmult-0 [simp]:
assumes 1: mecarrier M
shows $\mathbf{0}_{R} \odot_{M} m=\mathbf{0}_{M}$
proof -
from 1 have $0: \mathbf{0}_{R} \odot_{M} m \in$ carrier M by simp
from 1 have 2: $\mathbf{0}_{R} \odot_{M} m=\left(\mathbf{0}_{R} \oplus_{R} \mathbf{0}_{R}\right) \odot_{M} m$ by simp
from 1 have 3: $\left(\mathbf{0}_{R} \oplus_{R} \mathbf{0}_{R}\right) \odot_{M} m=\left(\mathbf{0}_{R} \odot_{M} m\right) \oplus_{M}\left(\mathbf{0}_{R} \odot_{M} m\right)$
using [[simp-trace, simp-trace-depth-limit=3]]
by (simp add: smult-l-distr del: R.add.r-one R.add.l-one)

```
from 2 3 have 4: 0
from 04 show ?thesis
    using M.l-neg M.r-neg1 by fastforce
qed
```

Multiplication by 0 in M gives 0 .
lemma (in module) rmult-0 [simp]:
assumes 0: recarrier R
shows $r \odot_{M} \mathbf{0}_{M}=\mathbf{0}_{M}$
by (metis M.zero-closed R.zero-closed assms lmult-0 r-null smult-assoc1)
Multiplication by -1 is the same as negation. May be useful as a simp rule.

```
lemma (in module) smult-minus-1:
    fixes \(v\)
    assumes \(0: v \in\) carrier \(M\)
    shows \(\left(\ominus_{R} \mathbf{1}_{R}\right) \odot_{M} v=\left(\ominus_{M} v\right)\)
proof -
    from 0 have \(a 0: \mathbf{1}_{R} \odot_{M} v=v\) by simp
    from 0 have 1: \(\left(\left(\ominus_{R} \mathbf{1}_{R}\right) \oplus_{R} \mathbf{1}_{R}\right) \odot_{M} v=\mathbf{0}_{M}\)
        by (simp add:R.l-neg)
    from 0 have 2: \(\left(\left(\ominus_{R} \mathbf{1}_{R}\right) \oplus_{R} \mathbf{1}_{R}\right) \odot_{M} v=\left(\ominus_{R} \mathbf{1}_{R}\right) \odot_{M} v \oplus_{M}\)
\(\mathbf{1}_{R} \odot_{M}{ }^{v}\)
            by (simp add: smult-l-distr)
    from 12 show?thesis by (metis M.minus-equality R.add.inv-closed
        a0 assms one-closed smult-closed)
qed
```

The version with equality reversed.
lemmas (in module) smult-minus-1-back $=$ smult-minus-1[THEN sym $]$
-1 is not 0
lemma (in field) neg-1-not-0 [simp]: $\ominus_{R} \mathbf{1}_{R} \neq \mathbf{0}_{R}$
by (metis minus-minus minus-zero one-closed zero-not-one)
Note smult-assoc1 is the wrong way around for simplification.
This is the reverse of smult-assoc1.
lemma (in module) smult-assoc-simp:
[| $a \in$ carrier $R ; b \in$ carrier $R ; x \in$ carrier $M \mid]==>$
$a \odot_{M}\left(b \odot_{M} x\right)=(a \otimes b) \odot_{M} x$
by (auto simp add: smult-assoc1)
lemmas (in abelian-group) show-r-zero $=$ add.l-cancel-one
lemmas (in abelian-group) show-l-zero=add.r-cancel-one

```
A nontrivial ring has \(0 \neq 1\).
lemma (in ring) nontrivial-ring [simp]:
    assumes carrier \(R \neq\left\{\mathbf{0}_{R}\right\}\)
    shows \(\mathbf{0}_{R} \neq \mathbf{1}_{R}\)
proof (rule ccontr)
    assume 1: \(\neg\left(\mathbf{0}_{R} \neq \mathbf{1}_{R}\right)\)
    \{
        fix \(r\)
        assume 2: \(r \in\) carrier \(R\)
        from 12 have \(3: \mathbf{1}_{R} \otimes_{R} r=\mathbf{0}_{R} \otimes_{R} r\) by auto
        from 23 have \(r=\mathbf{0}_{R}\) by auto
    \}
    from this assms show False by auto
qed
```

Use as simp rule. To show $a-b=0$, it suffices to show $a=b$.
lemma (in abelian-group) minus-other-side [simp]:
$\llbracket a \in$ carrier $G ; b \in$ carrier $G \rrbracket \Longrightarrow\left(a \ominus{ }_{G} b=\mathbf{0}_{G}\right)=(a=b)$
by (metis a-minus-def add.inv-closed add.m-comm r-neg r-neg2)

1.2 Units group

Define the units group R^{\times}and show it is actually a group.
definition units-group ::('a,'b) ring-scheme \Rightarrow 'a monoid
where units-group $R=\left(\right.$ carrier $=$ Units R, mult $=\left(\lambda x y . x \otimes_{R} y\right)$, one $=\mathbf{1}_{R}$)

The units form a group.
lemma (in ring) units-form-group: group (units-group R)
apply (intro groupI)
apply (unfold units-group-def, auto)
apply (intro m-assoc)
apply auto
apply (unfold Units-def)
apply auto
done
The units of a cring form a commutative group.
lemma (in cring) units-form-cgroup: comm-group (units-group R)
apply (intro comm-groupI)
apply (unfold units-group-def) apply auto
apply (intro m-assoc) apply auto
apply (unfold Units-def) apply auto
apply (rule m-comm) apply auto
done
end

2 Basic lemmas about functions

theory FunctionLemmas
imports Main
HOL-Library.FuncSet
begin

These are used in simplification. Note that the difference from $\mathrm{Pi}-\mathrm{mem}$ is that the statement about the function comes first, so Isabelle can more easily figure out what S is.

```
lemma PiE-mem2: }f\inS\mp@subsup{->}{E}{}T\Longrightarrowx\inS\Longrightarrowfx\in
    unfolding PiE-def by auto
lemma Pi-mem2: }f\inS->T\Longrightarrowx\inS\Longrightarrowfx\in
    unfolding Pi-def by auto
end
```


3 Sums in monoids

theory MonoidSums

imports Main
HOL-Algebra.Module
RingModuleFacts
FunctionLemmas
begin
We build on the finite product simplifications in FiniteProduct.thy and the analogous ones for finite sums (see "lemmas" in Ring.thy).

Use as an intro rule
lemma (in comm-monoid) factors-equal:
$\llbracket a=b ; c=d \rrbracket \Longrightarrow a \otimes_{G^{c}}=b \otimes_{G} d$
by simp
lemma (in comm-monoid) extend-prod:
fixes $a A S$
assumes fin: finite S and subset: $A \subseteq S$ and $a: a \in A \rightarrow$ carrier G
shows $\left(\otimes_{G} x \in S\right.$. (if $x \in A$ then a x else $\left.\left.\mathbf{1}_{G}\right)\right)=\left(\otimes_{G} x \in A\right.$. a $\left.x\right)$
$\left(\right.$ is $\left(\otimes_{G} x \in S\right.$. ?b $\left.x\right)=\left(\bigotimes_{G} x \in A\right.$. a $\left.\left.x\right)\right)$
proof -
from subset have uni:S $=A \cup(S-A)$ by auto
from assms subset show ?thesis
apply (subst uni)
apply (subst finprod-Un-disjoint, auto)
by (auto cong: finprod-cong if-cong elim: finite-subset simp add:Pi-def finite-subset)

qed

Scalar multiplication distributes over scalar multiplication (on left).
lemma (in module) finsum-smult:
$[\mid c \in$ carrier $R ; g \in A \rightarrow$ carrier $M \mid]==>$
$\left(c \odot_{M}\right.$ finsum $\left.M g A\right)=$ finsum $M\left(\% x . c \odot_{M} g x\right) A$
proof (induct A rule: infinite-finite-induct)
case (insert a A)
from insert.hyps insert.prems have 1: finsum $M g($ insert $a A)=g$
$a \oplus_{M}$ finsum $M g A$
by (intro finsum-insert, auto)
from insert.hyps insert.prems have 2: $\left(\bigoplus_{M} x \in\right.$ insert a A. $c \odot_{M} g$
$x)=c \odot_{M} g a \oplus_{M}\left(\bigoplus_{M}^{x \in A . c} \odot_{M} g x\right)$
by (intro finsum-insert, auto)
from insert.hyps insert.prems show ?case
by (auto simp add:1 2 smult-r-distr)
qed auto
Scalar multiplication distributes over scalar multiplication (on right).
lemma (in module) finsum-smult-r:
$[\mid v \in$ carrier $M ; f \in A \rightarrow$ carrier $R \mid]==>$
$\left(\right.$ finsum $\left.R f A \odot_{M} v\right)=$ finsum $M\left(\% x . f x \odot_{M} v\right) A$
proof (induct A rule: infinite-finite-induct)
case (insert a A)
from insert.hyps insert.prems have 1: finsum $R f($ insert a $A)=f$
$a \oplus_{R}$ finsum $R f A$
by (intro R.finsum-insert, auto)
from insert.hyps insert.prems have 2: $\left(\bigoplus_{M^{x \in i n s e r t ~ a ~} A . f x \odot_{M}}\right.$
$v)=f a \odot_{M} v \oplus_{M}\left(\oplus_{M} x \in A . f x \odot_{M} v\right)$
by (intro finsum-insert, auto)
from insert.hyps insert.prems show ?case
by (auto simp add:1 2 smult-l-distr)
qed auto
A sequence of lemmas that shows that the product does not depend on the ambient group. Note I had to dig back into the definitions of foldSet to show this.
lemma foldSet-not-depend:
fixes $A E$
assumes $h 1: D \subseteq E$
shows foldSetD D fe \subseteq foldSetD $E f e$
proof -
from h1 have 1: $\bigwedge x 1 x 2 .(x 1, x 2) \in \operatorname{foldSetD} D f e \Longrightarrow(x 1, x 2) \in$ foldSetD E fe

```
    proof -
    fix x1 x2
    assume 2: (x1,x2) \in foldSetD D fe
    from h1 2 show ?thesis x1 x2
    apply (intro foldSetD.induct[where ? D=D and ?f=f and ?e=e
and ?x1.0 = x1 and ? x2.0 = x2
            and ?P = \lambdax1 x2. ((x1, x2) f foldSetD E fe)])
        apply auto
    apply (intro emptyI, auto)
    by (intro insertI, auto)
    qed
    from 1 show ?thesis by auto
qed
lemma foldD-not-depend:
    fixes DE B f e A
    assumes h1:LCD B Df and h2:LCD BEf and h3: D\subseteqE and
h4:e\inD and h5:A\subseteqB and h6: finite B
    shows foldD D f e A = foldD E f e A
proof -
    from assms have 1: \existsy. (A,y)\infoldSetD D f e
        apply (intro finite-imp-foldSetD, auto)
            apply (metis finite-subset)
            by (unfold LCD-def, auto)
    from 1 obtain y where 2: (A,y)\infoldSetD D fe by auto
    from assms 2 have 3: foldD D f e A=y by (intro LCD.foldD-equality[of
B], auto)
    from h3 have 4: foldSetD D f e\subseteq foldSetD E f e by (rule fold-
Set-not-depend)
    from 24 have 5: (A,y)\infoldSetD E fe by auto
    from assms 5 have 6: foldD E f e A=y by (intro LCD.foldD-equality[of
B], auto)
    from 3 6 show ?thesis by auto
qed
lemma (in comm-monoid) finprod-all1[simp]:
    assumes all1: \bigwedgea. a\inA\Longrightarrowf a=1 ( 
    shows }(\mp@subsup{\otimes}{G}{}a\inA.fa)=\mp@subsup{\mathbf{1}}{G}{
proof -
    from assms show ?thesis
            by (simp cong: finprod-cong)
qed
context abelian-monoid
begin
lemmas summands-equal = add.factors-equal
lemmas extend-sum = add.extend-prod
```

```
lemmas finsum-all0 = add.finprod-all1
end
end
```


4 Linear Combinations

theory LinearCombinations
imports Main
HOL-Algebra.Module
HOL-Algebra.Coset
RingModuleFacts
MonoidSums
FunctionLemmas
begin

4.1 Lemmas for simplification

The following are helpful in certain simplifications (esp. congruence rules). Warning: arbitrary use leads to looping.

```
lemma (in ring) coeff-in-ring:
    \(\llbracket a \in A \rightarrow\) carrier \(R ; x \in A \rrbracket \Longrightarrow a x \in\) carrier \(R\)
by (rule Pi-mem)
lemma (in ring) coeff-in-ring2:
    \(\llbracket x \in A ; a \in A \rightarrow\) carrier \(R \rrbracket \Longrightarrow a x \in\) carrier \(R\)
by (metis Pi-mem)
lemma ring-subset-carrier:
    \(\llbracket x \in A ; A \subseteq\) carrier \(R \rrbracket \Longrightarrow x \in\) carrier \(R\)
by auto
lemma disj-if:
    \(\llbracket A \cap B=\{ \} ; x \in B \rrbracket \Longrightarrow(\) if \(x \in A\) then \(f x\) else \(g x)=g x\)
by auto
lemmas (in module) sum-simp \(=\) ring-subset-carrier
```


4.2 Linear combinations

A linear combination is $\sum_{v \in A} a_{v} v .\left(a_{v}\right)_{v \in S}$ is a function $A \rightarrow K$, where $A \subseteq K$.
definition (in module) lincomb::: ${ }^{\prime} c \Rightarrow{ }^{\prime} a$, ' c set $] \Rightarrow{ }^{\prime} c$ where lincomb a $A=\left(\oplus_{M} \quad v \in A .\left(\right.\right.$ a $\left.\left.v \odot_{M} v\right)\right)$
lemma (in module) summands-valid:

```
    fixes A a
    assumes h2:A\subseteq carrier M and h3: a\in(A->carrier R)
    shows }\forallv\inA.(((av)\mp@subsup{\odot}{M}{}v)\in\operatorname{carrier M)
proof -
    from assms show ?thesis by auto
qed
lemma (in module) lincomb-closed [simp, intro]:
    fixes }S
    assumes h2: S\subseteq carrier M and h3: a\in(S->carrier R)
    shows lincomb a S carrier M
proof -
    from h2 h3 show ?thesis by (unfold lincomb-def, auto intro:finsum-closed)
qed
```

lemma (in comm-monoid) finprod-cong2:
[| $A=B$;
$!!i . i \in B==>f i=g i ; f \in B \rightarrow$ carrier $G \mid]==>$
finprod $G f A=$ finprod $G g B$
by (intro finprod-cong, auto)
lemmas (in abelian-monoid) finsum-cong2 $=$ add.finprod-cong2
lemma (in module) lincomb-cong:
assumes $h 2: A=B$ and $h 3: A \subseteq$ carrier M
and $h_{4}: \bigwedge v . v \in A \Longrightarrow a v=b v$ and $h 5: b \in B \rightarrow$ carrier R
shows lincomb a $A=$ lincomb b B
using assms
by (simp cong: finsum-cong2 add: lincomb-def summands-valid ring-subset-carrier)
lemma (in module) lincomb-union:
fixes $a A B$
assumes h1: finite $(A \cup B)$ and $h 3: A \cup B \subseteq$ carrier M
and $h_{4}: A \cap B=\{ \}$ and $h 5: a \in(A \cup B \rightarrow$ carrier $R)$
shows lincomb a $(A \cup B)=$ lincomb a $A \oplus_{M}$ lincomb a B
using assms
by (auto cong: finsum-cong2 simp add: lincomb-def finsum-Un-disjoint summands-valid ring-subset-carrier)

This is useful as a simp rule sometimes, for combining linear combinations.
lemma (in module) lincomb-union2:
fixes $a b A B$
assumes $h 1$: finite $(A \cup B)$ and $h 3: A \cup B \subseteq$ carrier M
and $h 4: A \cap B=\{ \}$ and $h 5: a \in A \rightarrow$ carrier R and $h 6: b \in B \rightarrow$ carrier
R
shows lincomb a $A \oplus_{M}$ lincomb b $B=\operatorname{lincomb}(\lambda v$. if $(v \in A)$ then

```
a v else b v) ( }A\cupB
    (is lincomb a }A\mp@subsup{\oplus}{M}{}\mathrm{ lincomb b B=lincomb ?c ( }A\cupB)
using assms
    by (auto cong: finsum-cong2
        simp add: lincomb-def finsum-Un-disjoint summands-valid
ring-subset-carrier disj-if)
lemma (in module) lincomb-del2:
    fixes S av
    assumes h1: finite S and h2: S\subseteq carrier M and h3: a\in(S->carrier
R) and h4:v\inS
    shows lincomb a S = ((av) \odot }\mp@subsup{M}{M}{}v)\mp@subsup{\oplus}{M}{}\mathrm{ lincomb a (S-{v})
proof -
    from h4 have 1:S={v}\cup(S-{v}) by (metis insert-Diff insert-is-Un)
    from assms show ?thesis
    apply (subst 1)
    apply (subst lincomb-union, auto)
    by (unfold lincomb-def, auto simp add: coeff-in-ring)
qed
lemma (in module) lincomb-insert:
    fixes S av
    assumes h1: finite S and h2: S\subseteq carrier M and h3: a\in(S\cup{v}->carrier
R) and h4:v\not\inS and
h5:v\in carrier M
    shows lincomb a (S\cup{v})=((av) \odot M v) \mp@subsup{\oplus}{M}{}\mathrm{ lincomb a S}
using assms
    by (auto cong: finsum-cong2
                            simp add: lincomb-def finsum-Un-disjoint summands-valid
ring-subset-carrier disj-if)
lemma (in module) lincomb-elim-if [simp]:
    fixes b cS
    assumes h1:S\subseteqcarrier M and h2: \bigwedgev.v\inS\Longrightarrow\negPv and h3:
c\inS->carrier R
    shows lincomb (\lambdaw. if P w then b w else c w) S=lincomb c S
using assms
    by (auto cong: finsum-cong2
                            simp add: lincomb-def finsum-Un-disjoint summands-valid
ring-subset-carrier disj-if)
lemma (in module) lincomb-smult:
    fixes Ac
    assumes h2: A\subseteqcarrier M and h3: a\inA->carrier R and h4:
c\incarrier R
    shows lincomb (\lambdaw.c\otimes R a w) A = c\odot M (lincomb a A)
using assms
```

by (auto cong: finsum-cong2
simp add: lincomb-def finsum-Un-disjoint finsum-smult ring-subset-carrier disj-if smult-assoc1 coeff-in-ring)

4.3 Linear dependence and independence.

A set S in a module/vectorspace is linearly dependent if there is a finite set $A \subseteq S$ and coefficients $\left(a_{v}\right)_{v \in A}$ such that $\operatorname{sum}_{v \in A} a_{v} v=$ 0 and for some $v, a_{v} \neq 0$.
definition (in module) lin-dep where
lin-dep $S=(\exists A$ a v. (finite $A \wedge A \subseteq S \wedge(a \in(A \rightarrow$ carrier $R)) \wedge$ $\left(\right.$ lincomb a $\left.\left.\left.A=\mathbf{0}_{M}\right) \wedge(v \in A) \wedge\left(a v \neq \mathbf{0}_{R}\right)\right)\right)$
abbreviation (in module) lin-indpt::'c set \Rightarrow bool
where lin-indpt $S \equiv \neg$ lin-dep S
In the finite case, we can take $A=S$. This may be more convenient (e.g., when adding two linear combinations.

```
lemma (in module) finite-lin-dep:
    fixes }
    assumes finS:finite S and ld:lin-dep S and inC:S\subseteqcarrier M
    shows \existsav. (a\in(S->\mathrm{ carrier R)) ^(lincomb a S=0}
(av\not=\mp@subsup{\mathbf{0}}{R}{})
proof -
    from ld obtain A av where A: (A\subseteqS ^(a\in(A->carrier R)) ^
(lincomb a A = 0}\mp@subsup{\mathbf{0}}{M}{})\wedge(v\inA)\wedge(av\not=\mp@subsup{\mathbf{0}}{R}{})
    by (unfold lin-dep-def, auto)
    let ?b=\lambdaw. if w\inA then a w else }\mp@subsup{\mathbf{0}}{R}{
    from finS inC A have if-in: ( \bigoplus Mv\inS. (if v\inA then a v else 0)
\odot
    apply auto
        apply (intro finsum-cong')
    by (auto simp add: coeff-in-ring)
    from finS inC A have b: lincomb ?b S=0
    apply (unfold lincomb-def)
    apply (subst if-in)
    by (subst extend-sum, auto)
    from A b show ?thesis
    apply (rule-tac x=?b in exI)
    apply (rule-tac x=v in exI)
    by auto
qed
Criteria of linear dependency in a easy format to apply: apply (rule lin-dep-crit)
lemma (in module) lin-dep-crit:
fixes \(A S\) av
```

assumes fin: finite A and subset: $A \subseteq S$ and $h 1:(a \in(A \rightarrow$ carrier $R)$) and $h 2: v \in A$
and $h 3: a v \neq \mathbf{0}_{R}$ and $h 4$: (lincomb a $\left.A=\mathbf{0}_{M}\right)$
shows lin-dep S
proof -
from assms show ?thesis
by (unfold lin-dep-def, auto)
qed
If $\sum_{v \in A} a_{v} v=0$ implies $a_{v}=0$ for all $v \in S$, then A is linearly independent.

```
lemma (in module) finite-lin-indpt2:
    fixes \(A\)
    assumes \(A\)-fin: finite \(A\) and \(A\) in \(C: A \subseteq\) carrier \(M\) and
        \(l c 0: \bigwedge a . a \in(A \rightarrow\) carrier \(R) \Longrightarrow\left(\right.\) lincomb \(\left.a A=\mathbf{0}_{M}\right) \Longrightarrow(\forall v \in A\).
a \(v=\mathbf{0}_{R}\) )
    shows lin-indpt \(A\)
proof (rule ccontr)
    assume \(\neg\) lin-indpt \(A\)
    from \(A\)-fin AinC this obtain \(a v\) where \(a v\) :
            \((a \in(A \rightarrow\) carrier \(R)) \wedge\left(\right.\) lincomb a \(\left.A=\mathbf{0}_{M}\right) \wedge(v \in A) \wedge\left(\right.\) a \(\left.v \neq \mathbf{0}_{R}\right)\)
            by (metis finite-lin-dep)
    from av lc0 show False by auto
qed
```

Any set containing 0 is linearly dependent.

```
lemma (in module) zero-lin-dep:
    assumes \(0: \mathbf{0}_{M} \in S\) and nonzero: carrier \(R \neq\left\{\mathbf{0}_{R}\right\}\)
    shows lin-dep \(S\)
proof -
    from nonzero have zero-not-one: \(\mathbf{0}_{R} \neq \mathbf{1}_{R}\) by (rule nontrivial-ring)
    from 0 zero-not-one show ?thesis
            apply (unfold lin-dep-def)
            apply (rule-tac \(x=\left\{\mathbf{0}_{M}\right\}\) in exI)
            apply (rule-tac \(x=\left(\lambda v . \mathbf{1}_{R}\right)\) in \(\left.e x I\right)\)
            apply (rule-tac \(x=\mathbf{0}_{M}\) in exI)
            by (unfold lincomb-def, auto)
qed
lemma (in module) zero-nin-lin-indpt:
    assumes \(h 2: S \subseteq\) carrier \(M\) and \(l i\) : \(\neg\) (lin-dep \(S)\) and nonzero: carrier
\(R \neq\left\{\mathbf{0}_{R}\right\}\)
    shows \(\mathbf{0}_{M} \notin S\)
proof (rule ccontr)
    assume a1: \(\neg\left(0_{M} \notin S\right)\)
    from a1 have \(a 2: \mathbf{0}_{M} \in S\) by auto
    from a2 nonzero have ld: lin-dep \(S\) by (rule zero-lin-dep)
    from li ld show False by auto
qed
```

The span of S is the set of linear combinations with $A \subseteq S$.
definition (in module) span: $:$ 'c set $\Rightarrow{ }^{\prime} c$ set
where span $S=\{$ lincomb a $A \mid$ a A. finite $A \wedge A \subseteq S \wedge a \in(A \rightarrow$ carrier R) \}

The span interpreted as a module or vectorspace.
abbreviation (in module) span-vs::'c set $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} c,{ }^{\prime} d\right)$ module-scheme
where span-vs $S \equiv M$ (carrier $:=$ span S)
In the finite case, we can take $A=S$ without loss of generality.

```
lemma (in module) finite-span:
    assumes fin: finite \(S\) and inC: \(S \subseteq\) carrier \(M\)
    shows span \(S=\{\) lincomb a \(S \mid\) a. \(a \in(S \rightarrow\) carrier \(R)\}\)
proof (rule equalityI)
    \{
        fix \(A a\)
        assume subset: \(A \subseteq S\) and \(a: a \in A \rightarrow\) carrier \(R\)
        let \(? b=(\lambda v\). if \(v \in \bar{A}\) then \(a v\) else \(\mathbf{0})\)
            from fin inC subset a have if-in: \(\left(\bigoplus_{M} v \in S\right.\). ?b \(\left.v \odot_{M} v\right)=\)
\(\left(\bigoplus_{M} v \in S\right.\). (if \(v \in A\) then a \(v \odot_{M} v\) else \(\left.\mathbf{0}_{M}\right)\) )
            apply (intro finsum-cong')
                by (auto simp add: coeff-in-ring)
    from fin inC subset \(a\) have \(\exists b\). lincomb a \(A=\operatorname{lincomb} b S \wedge b \in\)
\(S \rightarrow\) carrier \(R\)
            apply (rule-tac \(x=? b\) in exI)
            apply (unfold lincomb-def, auto)
            apply (subst if-in)
            by (subst extend-sum, auto)
    \}
    from this show span \(S \subseteq\{\) lincomb a \(S \mid a . a \in S \rightarrow\) carrier \(R\}\)
        by (unfold span-def, auto)
next
    from fin show \(\{\) lincomb a \(S \mid a . a \in S \rightarrow\) carrier \(R\} \subseteq\) span \(S\)
        by (unfold span-def, auto)
qed
```

If $v \in \operatorname{span} \mathrm{~S}$, then we can find a linear combination. This is in an easy to apply format (e.g. obtain a A where...)

```
lemma (in module) in-span:
    fixes }S
    assumes h2: S\subseteqcarrier V and h3:v\inspan S
    shows \existsa A. (A\subseteqS\wedge (a\inA->carrier R)^(lincomb a A=v))
proof -
    from h2 h3 show ?thesis
        apply (unfold span-def)
        by auto
qed
```

In the finite case, we can take $A=S$.
lemma (in module) finite-in-span:
fixes $S v$
assumes fin: finite S and h2: $S \subseteq$ carrier M and $h 3: v \in \operatorname{span} S$
shows $\exists a .(a \in S \rightarrow$ carrier $R) \wedge($ lincomb $a S=v)$
proof -
from fin h2 have fin-span: span $S=\{$ lincomb a $S \mid a . a \in S \rightarrow$ carrier $R\}$ by (rule finite-span)
from $h 3$ fin-span show ?thesis by auto qed

If a subset is linearly independent, then any linear combination that is 0 must have a nonzero coefficient outside that set.

```
lemma (in module) lincomb-must-include:
    fixes \(A S T b v\)
    assumes inC: \(T \subseteq\) carrier \(M\) and li: lin-indpt \(S\) and \(S\) sub: \(S \subseteq T\)
and \(S s u b: A \subseteq T\)
    and fin: finite \(A\)
    and \(b: b \in A \rightarrow\) carrier \(R\) and \(l c\) : lincomb \(b A=\mathbf{0}_{M}\) and \(v\)-in: \(v \in A\)
    and nz-coeff: \(b v \neq \mathbf{0}_{R}\)
    shows \(\exists w \in A-S . b \quad w \neq \mathbf{0}_{R}\)
proof (rule ccontr)
    assume \(0: \neg\left(\exists w \in A-S . b w \neq \mathbf{0}_{R}\right)\)
    from 0 have 1: \(\bigwedge w . w \in A-S \Longrightarrow b w=\mathbf{0}_{R}\) by auto
    have Auni: \(A=(S \cap A) \cup(A-S)\) by auto
    from fin \(b\) Ssub inC 1 have 2: lincomb b \(A=\operatorname{lincomb} b(S \cap A)\)
        apply (subst Auni)
        apply (subst lincomb-union, auto)
        apply (unfold lincomb-def)
        apply (subst (2) finsum-all0, auto)
        by (subst show-r-zero, auto intro!: finsum-closed)
    from 12 assms have ld: lin-dep \(S\)
        apply (intro lin-dep-crit[where \(? A=S \cap A\) and \(? a=b\) and \(? v=v]\) )
        by auto
    from \(l d l i\) show False by auto
qed
```

A generating set is a set such that the span of S is all of M.
abbreviation (in module) gen-set::'c set \Rightarrow bool where gen-set $S \equiv(\operatorname{span} S=$ carrier $M)$

4.4 Submodules

lemma module-criteria:
fixes R and M
assumes cring: cring R and zero: $\mathbf{0}_{M} \in$ carrier M
and add: $\forall v w . v \in$ carrier $M \wedge w \in$ carrier $M \longrightarrow v \oplus_{M} w \in$ carrier M
and neg: $\forall v \in$ carrier $M .\left(\exists\right.$ neg- $v \in$ carrier $\left.M . v \oplus_{M} n e g-v=\mathbf{0}_{M}\right)$ and smult: $\forall c$ v. $c \in$ carrier $R \wedge v \in$ carrier $M \longrightarrow c \odot_{M} v \in$ carrier M
and comm: $\forall v w . v \in$ carrier $M \wedge w \in \operatorname{carrier} M \longrightarrow v \oplus_{M} w=w \oplus_{M}$ v
and assoc: $\forall v w x . v \in$ carrier $M \wedge w \in$ carrier $M \wedge x \in$ carrier $M \longrightarrow\left(v \oplus_{M} w\right) \oplus_{M} x=v \oplus_{M}\left(w \oplus_{M} x\right)$
and add-id: $\forall v \in$ carrier $M .\left(v \oplus_{M} \mathbf{0}_{M}=v\right)$
and compat: $\forall a b v . a \in$ carrier $R \wedge b \in$ carrier $R \wedge v \in$ carrier $M \longrightarrow\left(a \otimes_{R} b\right) \odot_{M} v=a \odot_{M}\left(b \odot_{M} v\right)$
and smult-id: $\forall v \in$ carrier $M .\left(\mathbf{1}_{R} \odot_{M} v=v\right)$
and dist-f: $\forall a b$ v. $a \in$ carrier $R \wedge b \in$ carrier $R \wedge v \in$ carrier $M \longrightarrow\left(a \oplus_{R} b\right) \odot_{M} v=\left(a \odot_{M} v\right) \oplus_{M}\left(b \odot_{M} v\right)$
and dist-add: \forall a v w. $a \in$ carrier $R \wedge v \in$ carrier $M \wedge w \in$ carrier $M \longrightarrow a \odot_{M}\left(v \oplus_{M} w\right)=\left(a \odot_{M} v\right) \oplus_{M}\left(a \odot_{M} w\right)$
shows module R M proof -
from assms have 2: abelian-group M
by (intro abelian-groupI, auto)
from assms have 3: module-axioms $R M$
by (unfold module-axioms-def, auto)
from 23 cring show ?thesis
by (unfold module-def module-def, auto)
qed
A submodule is $N \subseteq M$ that is closed under addition and scalar multiplication, and contains 0 (so is not empty).

```
locale submodule =
    fixes }R\mathrm{ and }N\mathrm{ and M (structure)
    assumes module: module R M
    and subset: N\subseteqcarrier M
    and m-closed [\overline{intro, simp]:}\llbracketv\inN;w\inN\rrbracket\Longrightarrowv\oplusw\inN
    and zero-closed [simp]: 0 \inN
    and smult-closed [intro, simp]:\llbracketc\in carrier R;v\inN\rrbracket\Longrightarrowc\odotv\in
N
```

abbreviation (in module) $m d::^{\prime} c$ set $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} c,{ }^{\prime} d\right)$ module-scheme
where $m d N \equiv M($ carrier $:=N)$
lemma (in module) carrier-vs-is-self [simp]:
carrier $(m d N)=N$
by auto
lemma (in module) submodule-is-module:
fixes $N::^{\prime} c$ set
assumes 0: submodule R N M
shows module $R(m d N)$
proof (unfold module-def, auto)
show 1: cring R..
next
from assms show 2: abelian-group ($m d N$)
apply (unfold submodule-def)
apply (intro abelian-groupI, auto)
apply (metis (no-types, opaque-lifting) M.add.m-assoc con-
tra-subsetD)
apply (metis (no-types, opaque-lifting) M.add.m-comm contra-subsetD) apply (rename-tac v)

The inverse of v under addition is $-v$
apply (rule-tac $x=\ominus_{M} v$ in bexI)
apply (metis M.l-neg contra-subsetD)
by (metis R.add.inv-closed one-closed smult-minus-1 subset-iff) next
from assms show 3: module-axioms R ($m d N$)
apply (unfold module-axioms-def submodule-def, auto)
apply (metis (no-types, opaque-lifting) smult-l-distr contra-subsetD)
apply (metis (no-types, opaque-lifting) smult-r-distr contra-subsetD)
by (metis (no-types, opaque-lifting) smult-assoc1 contra-subsetD)
qed
$N_{1}+N_{2}=\left\{x+y \mid x \in N_{1}, y \in N_{2}\right\}$
definition (in module) submodule-sum:: ['c set, 'c set $] \Rightarrow{ }^{\prime}$ c set where submodule-sum N1 N2 $=\left(\lambda(x, y) . x \oplus_{M} y\right)$ ' $\{(x, y) . x \in N 1$
$\wedge y \in N 2\}$
A module homomorphism $M \rightarrow N$ preserves addition and scalar multiplication.
definition module-hom:: [('a, 'c0) ring-scheme,
('a,'b1,'c1) module-scheme, ('a,'b2,'c2) module-scheme $] \Rightarrow\left({ }^{\prime} b 1 \Rightarrow^{\prime} b 2\right)$ set
where module-hom $R M N=\{f$.
$((f \in$ carrier $M \rightarrow$ carrier $N)$
$\wedge\left(\forall m 1\right.$ m2. $m 1 \in$ carrier $M \wedge m 2 \in$ carrier $M \longrightarrow f\left(m 1 \oplus_{M} m 2\right)$ $\left.=(f m 1) \oplus_{N}(f m 2)\right)$
$\wedge\left(\forall r m . r \in\right.$ carrier $R \wedge m \in$ carrier $M \longrightarrow f\left(r \odot_{M} m\right)=r \odot_{N}(f$ $m))$) $\}$
lemma module-hom-closed: $f \in$ module-hom $R M N \Longrightarrow f \in$ carrier M \rightarrow carrier N
by (unfold module-hom-def, auto)
lemma module-hom-add: $\llbracket f \in$ module-hom R M N; m1 \in carrier M; $m 2 \in$ carrier $M \rrbracket \Longrightarrow f\left(m 1 \oplus_{M} m 2\right)=(f m 1) \oplus_{N}(f m 2)$
by (unfold module-hom-def, auto)

```
lemma module-hom-smult: \(\llbracket f \in\) module-hom \(R\) M \(N ; r \in\) carrier \(R\);
\(m \in\) carrier \(M \rrbracket \Longrightarrow f\left(r \odot_{M} m\right)=r \odot_{N}(f m)\)
by (unfold module-hom-def, auto)
locale mod-hom \(=\)
    M?: module \(R M+N\) ?: module \(R N\)
        for \(R\) and \(M\) and \(N+\)
    fixes \(f\)
    assumes \(f\)-hom: \(f \in\) module-hom \(R M N\)
    notes \(f\)-add \([\) simp \(]=\) module-hom-add \([\) OF f-hom \(]\)
        and \(f\)-smult \([\) simp \(]=\) module-hom-smult \([\) OF f-hom \(]\)
```

Some basic simplification rules for module homomorphisms.

```
context mod-hom
begin
lemma f-im [simp, intro]:
assumes v\incarrier M
shows fv\in carrier N
proof -
    have 0:mod-hom R M Nf..
    from 0 assms show ?thesis
        apply (unfold mod-hom-def module-hom-def mod-hom-axioms-def
Pi-def)
        by auto
qed
definition im:: 'e set
    where im = f'(carrier M)
definition ker:: 'c set
    where ker ={v.v\in carrier M&fv=\mp@subsup{\mathbf{0}}{N}{}}
lemma f0-is-O[simp]: f 0}\mp@subsup{\mathbf{0}}{M}{}=\mp@subsup{\mathbf{0}}{N}{
proof -
    have 1:f 0}\mp@subsup{\mathbf{M}}{M}{}=f(\mp@subsup{\mathbf{0}}{R}{}\mp@subsup{\odot}{M}{M}\mp@subsup{\mathbf{0}}{M}{})\mathrm{ by simp
    have 2: }f(\mp@subsup{\mathbf{0}}{R}{}\mp@subsup{\odot}{M}{}\mp@subsup{\mathbf{0}}{M}{})=\mp@subsup{\mathbf{0}}{N}{
        using M.M.zero-closed N.lmult-0 R.zero-closed f-im f-smult by
presburger
    from 12 show ?thesis by auto
qed
lemma f-neg [simp]:v\in carrier M\Longrightarrowf(}\mp@subsup{\ominus}{M}{}v)=\mp@subsup{\ominus}{N}{}f
    by (simp flip:M.smult-minus-1 N.smult-minus-1)
lemma f-minus [simp]:\llbracketv\incarrier M; w\incarrier M\rrbracket\Longrightarrowf(v\ominus
fv}\mp@subsup{\ominus}{N}{}f
    by (simp add: a-minus-def)
```

```
lemma ker-is-submodule: submodule R ker M
proof -
    have 0:mod-hom R M Nf..
    from 0 have 1: module R M by (unfold mod-hom-def, auto)
    show ?thesis
        by (rule submodule.intro, auto simp add: ker-def, rule 1)
qed
lemma im-is-submodule: submodule R im N
proof -
    have 1: im\subseteq carrier N by (auto simp add: im-def image-def mod-hom-def
module-hom-def f-im)
    have 2: \ \w1 w2.\llbracketw1\inim;w2 \inim\rrbracket\Longrightarroww1 ¢ \ w2 \inim
    proof -
        fix w1 w2
        assume w1:w1\inim and w2: w2\in im
        from w1 obtain v1 where 3: v1\in carrier M ^fv1=w1 by
(unfold im-def, auto)
    from w2 obtain v2 where 4: v2\in carrier M}\wedgefv2=w2 by
(unfold im-def, auto)
    from 3 4 have 5: f(v1\mp@subsup{\oplus}{M}{v2})=w1 \mp@subsup{\oplus}{N}{}w2 by simp
    from 34 have 6:v1\oplus}\mp@subsup{M}{M}{}v2\in\mathrm{ carrier M by simp
    from 5 6 have 7: \existsx\incarrier M. w1 \oplus}\mp@subsup{N}{N}{}w2=fx by meti
    from 7 show ?thesis w1 w2 by (unfold im-def image-def, auto)
    qed
    have 3: }\mp@subsup{\mathbf{0}}{N}{}\ini
    proof -
    have 8: f }\mp@subsup{\mathbf{0}}{M}{}=\mp@subsup{\mathbf{0}}{N}{}\wedge\mp@subsup{\mathbf{0}}{M}{}\in\mathrm{ carrier }M\mathrm{ by auto
    from 8 have 9: \existsx\incarrier M. 0
    from 9 show ?thesis by (unfold im-def image-def, auto)
    qed
```



```
    proof -
        fix cw
    assume c:c\in carrier R and w:w\inim
    from w obtain v}\mathrm{ where 10:vє carrier M}\wedgefv=w by (unfold
im-def, auto)
    from c 10 have 11:f (c\odot MM v)=c\odot N w^ (c \odot }\mp@subsup{M}{M}{}v\in\mathrm{ carrier M)
by auto
    from 11 have 12: \existsv1\incarrier M. c\odot N w=f v1 by metis
    from 12 show ?thesis c w by (unfold im-def image-def, auto)
    qed
    from 12 34 show ?thesis by (unfold-locales, auto)
qed
lemma (in mod-hom) f-ker:
    v\inker \Longrightarrowfv=\mp@subsup{\mathbf{0}}{N}{}
by (unfold ker-def, auto)
end
```

We will show that for any set S ，the space of functions $S \rightarrow K$ forms a vector space．

```
definition (in ring) func-space:: 'z set }=>('a,('z=>'a)) module
    where func-space S=\ carrier =S }\mp@subsup{->}{E}{\prime}\mathrm{ carrier R,
                mult = (\lambda f g. restrict (\lambdav.0}\mp@subsup{\mathbf{0}}{R}{})S)
    one = restrict (\lambdav.0}\mp@subsup{\mathbf{0}}{R}{})S
    zero = restrict (\lambdav.0}\mp@subsup{\mathbf{0}}{R}{\prime})S
    add =(\lambda fg.restrict (\lambdav.fv v}\mp@subsup{\oplus}{R}{g}v)S)
    smult =(\lambdacf.restrict (\lambdav.c*⿴囗⿱一一⿱一𫝀口
lemma (in cring) func-space-is-module:
    fixes S
    shows module R (func-space S)
proof -
have 0: cring R..
from 0 show ?thesis
    apply (auto intro!: module-criteria simp add: func-space-def)
            apply (auto simp add: module-def)
            apply (rename-tac f)
            apply (rule-tac x=restrict ( }\lambda\mp@subsup{v}{}{\prime}.\mp@subsup{\ominus}{R}{}(f\mp@subsup{v}{}{\prime}))S\mathrm{ in bexI)
            apply (auto simp add:restrict-def cong: if-cong split: if-split-asm,
auto)
            apply (auto simp add: a-ac PiE-mem2 r-neg)
            apply (unfold PiE-def extensional-def Pi-def)
            by (auto simp add: m-assoc l-distr r-distr)
qed
```

Note：one can define M^{n} from this．
A linear combination is a module homomorphism from the space of coefficients to the module，$\left(a_{v}\right) \mapsto \sum_{v \in S} a_{v} v$ ．
lemma（in module）lincomb－is－mod－hom：
fixes S
assumes h ：finite S and $h 2: S \subseteq$ carrier M
shows mod－hom R（func－space S ）M（ λ a．lincomb a S ）
proof－
have 0 ：module $R M$ ．．
\｛
fix $m 1$ m2
assume m1：$m 1 \in S \rightarrow_{E}$ carrier R and $m 2: m 2 \in S \rightarrow_{E}$ carrier R
from h h2 $m 1 \mathrm{~m} 2$ have a1：$\left(\bigoplus_{M^{v} \in S . ~}\left(\lambda v \in S . m 1 v \oplus_{R} m 2 v\right) v\right.$ $\left.\odot_{M} v\right)=$
$\left(\oplus_{M} v \in S . m 1 v \odot_{M} v \oplus_{M} m 2 v \odot_{M} v\right)$
by（intro finsum－cong＇，auto simp add：smult－l－distr PiE－mem2）
from $h h 2 m 1 m 2$ have $a 2:\left(\oplus_{M^{v}} \in S . m 1 v \odot_{M} v \oplus_{M} m 2 v \odot_{M}\right.$ $v)=$
$\left(\oplus_{M^{v} \in S . m 1} v \odot_{M} v\right) \oplus_{M}\left(\oplus_{M^{v} \in S .} . m 2 v \odot_{M} v\right)$
by（intro finsum－addf，auto）

```
    from a1 a2 have (\bigoplus M}v\inS.(\lambdav\inS.m1v\oplusm2v)v\mp@subsup{\odot}{M}{}v)
        (}\mp@subsup{\bigoplus}{M}{v\inS.m1v }\mp@subsup{\odot}{M}{}v)\mp@subsup{\oplus}{M}{}(\mp@subsup{\bigoplus}{M}{
    }
    hence 1: \bigwedgem1 m2.
        m1 }\inS\mp@subsup{->}{E}{}\mathrm{ carrier }R
        m2 }\inS\mp@subsup{->}{E}{}\mathrm{ carrier R C( }\mp@subsup{\bigoplus}{M}{v\inS. (\lambdav\inS.m1v }\oplus\mathrm{ m2 v)v
\odot M
        (}\mp@subsup{\bigoplus}{M}{v\inS.m1 v \odot }\mp@subsup{M}{}{v}v)\mp@subsup{\oplus}{M}{M}(\mp@subsup{\bigoplus}{M}{v\inS.m2 v \odot }\mp@subsup{M}{M}{v
    {
    fix r m
    assume r:r carrier R and m: m G S -> 
    from h h2 rm have b1: r \odot M
r \odot }\mp@subsup{M}{}{(mv}\mp@subsup{\odot}{M}{}v)
        by (intro finsum-smult, auto)
    from h h2 r m have b2: (\bigoplus Mv\inS. (\lambdav\inS.r\otimesmv)v \odot \ v v)=
r \odot M
            apply (subst b1)
            apply (intro finsum-cong', auto)
            by (subst smult-assoc1, auto)
}
    hence 2: \bigwedgerm.r carrier R\Longrightarrow
            m\inS 餀 carrier R\Longrightarrow(\bigoplus M
v)=r \odot }\mp@subsup{M}{(}{(\mp@subsup{\bigoplus}{M}{v\inS.mv \odot }
            by auto
    from h h2 0 1 2 show ?thesis
    apply (unfold mod-hom-def, auto)
        apply (rule func-space-is-module)
        apply (unfold mod-hom-axioms-def module-hom-def, auto)
            apply (rule lincomb-closed, unfold func-space-def, auto)
        apply (unfold lincomb-def)
        by auto
qed
```

lemma (in module) lincomb-sum:
assumes A-fin: finite A and A inC $: A \subseteq$ carrier M and a-fun: $a \in A \rightarrow$ carrier R and
b-fun: $b \in A \rightarrow$ carrier R
shows lincomb $\left(\lambda v . a v \oplus_{R} b v\right) A=\operatorname{lincomb} a A \oplus_{M}$ lincomb b A proof -
from A-fin A inC interpret $m h$: mod-hom R func-space $A M$ (λa.
lincomb a A) by (rule
lincomb-is-mod-hom)
let ? $a=$ restrict $a A$
let $? b=$ restrict $b A$
from a-fun b-fun A-fin AinC
have 1: LinearCombinations.module.lincomb $M\left({ }^{?}{ }^{2} \oplus_{(\text {LinearCombinations.ring.func-space } R} A\right)$
?b) A
$=$ LinearCombinations.module.lincomb $M\left(\lambda x . a x \oplus_{R} b x\right) A$
by (auto simp add: func-space-def Pi-iff restrict-apply' cong: lin-comb-cong)
from a-fun b-fun A-fin AinC
have 2: LinearCombinations.module.lincomb M ?a $A \oplus_{M}$
LinearCombinations.module.lincomb M ?b $A=$ LinearCombinations.module.lincomb M a $A \oplus_{M}$

LinearCombinations.module.lincomb $M b A$
by (simp-all add: sum-simp cong: lincomb-cong)
from a-fun b-fun have ainC: ? a \in carrier (LinearCombinations.ring.func-space R A)
and binC: ?b carrier (LinearCombinations.ring.func-space R A)
by (unfold func-space-def, auto)
from ainC binC have LinearCombinations.module.lincomb $M\left(? a \oplus{ }_{(\text {LinearCombinations.ring.func-space }}\right.$
?b) A
$=$ LinearCombinations.module.lincomb M ?a $A \oplus_{M}$
LinearCombinations.module.lincomb M ?b A
by (simp cong: lincomb-cong)
with 12 show ?thesis by auto
qed
The negative of a function is just pointwise negation.

```
lemma (in cring) func-space-neg:
    fixes f
    assumes f\in carrier (func-space S)
    shows }\mp@subsup{\ominus}{\mathrm{ func-space S}}{}f=(\lambdav. if (v\inS) then 林ominus R f v else undefined)
proof -
    interpret fs:module R func-space S by (rule func-space-is-module)
    from assms show ?thesis
        apply (intro fs.minus-equality)
            apply (unfold func-space-def PiE-def extensional-def)
            apply auto
            apply (intro restrict-ext, auto)
        by (simp add: l-neg coeff-in-ring)
qed
```

Ditto for subtraction. Note the above is really a special case, when a is the 0 function.
lemma (in module) lincomb-diff:
assumes A-fin: finite A and A inC: $A \subseteq$ carrier M and a-fun: $a \in A \rightarrow$ carrier
R and
b-fun: $b \in A \rightarrow$ carrier R
shows lincomb $\left(\lambda v . a v \ominus_{R} b v\right) A=\operatorname{lincomb} a A \ominus_{M}$ lincomb b A proof -
from A-fin A inC interpret mh: mod-hom R func-space $A M$ (λa.
lincomb a A) by (rule
lincomb-is-mod-hom)
let ? $a=$ restrict $a A$
let ? $b=$ restrict $b A$
from a-fun b-fun have ainC: ? $a \in$ carrier (LinearCombinations.ring.func-space R A)
and binC: ?b b carrier (LinearCombinations.ring.func-space $R A$) by (unfold func-space-def, auto)
from a-fun b-fun ainC binC A-fin AinC
have 1: LinearCombinations.module.lincomb $M\left(?{ }^{?}{ }_{(\text {func-space } A)}\right.$
?b) A
$=$ LinearCombinations.module.lincomb $M\left(\lambda x . a x \ominus_{R} b x\right) A$
apply (subst mh.M.M.minus-eq)
apply (intro lincomb-cong, auto)
apply (subst func-space-neg, auto)
apply (simp add: restrict-def func-space-def)
by (subst R.minus-eq, auto)
from a-fun b-fun A-fin AinC
have 2: LinearCombinations.module.lincomb M ?a $A \ominus_{M}$
LinearCombinations.module.lincomb M ?b $A=$ LinearCombina-
tions.module.lincomb M a $A \ominus_{M}$
LinearCombinations.module.lincomb Mb A
by (simp cong: lincomb-cong)
from ainC binC have LinearCombinations.module.lincomb $M\left(? a \ominus{ }_{(\text {LinearCombinations.ring.func-space }}\right.$
?b) A
$=$ LinearCombinations.module.lincomb M ?a $A \ominus_{M}$
LinearCombinations.module.lincomb M ?b A
by (simp cong: lincomb-cong)
with 12 show ?thesis by auto qed

The union of nested submodules is a submodule. We will use this to show that span of any set is a submodule.
lemma (in module) nested-union-vs:
fixes $I N N^{\prime}$
assumes subm: $\bigwedge i$. $i \in I \Longrightarrow$ submodule $R(N i) M$ and max-exists: $\bigwedge i j . i \in I \Longrightarrow j \in I \Longrightarrow(\exists k . k \in I \wedge N i \subseteq N k \wedge N j$ $\subseteq N k)$ and $u n i: N^{\prime}=(\bigcup i \in I . N i)$
and $n e: I \neq\{ \}$
shows submodule $R N^{\prime} M$
proof -
have 1: module R M..
from subm have all-in: $\bigwedge i . i \in I \Longrightarrow N i \subseteq$ carrier M
by (unfold submodule-def, auto)
from uni all-in have 2: $\bigwedge x . x \in N^{\prime} \Longrightarrow x \in$ carrier M
by auto
from uni have 3: $\bigwedge v w . v \in N^{\prime} \Longrightarrow w \in N^{\prime} \Longrightarrow v \oplus_{M} w \in N^{\prime}$
proof -
fix $v w$
assume $v: v \in N^{\prime}$ and $w: w \in N^{\prime}$
from uni $v w$ obtain $i j$ where $i: i \in I \wedge v \in N i$ and $j: j \in I \wedge w \in$
$N j$ by auto
from max-exists $i j$ obtain k where $k: k \in I \wedge N i \subseteq N k \wedge N j$ $\subseteq N k$ by presburger
from $v w i j k$ have $v 2: v \in N k$ and $w 2: w \in N k$ by auto
from $v 2$ w2 k subm[of k] have $v w: v \oplus_{M} w \in N k$ apply (unfold submodule-def) by auto
from $k v w$ uni show ?thesis $v w$ by auto
qed
have $4: \mathbf{0}_{M} \in N^{\prime}$
proof -
from ne obtain i where i : $i \in I$ by auto
from i subm have $z i$: $\mathbf{0}_{M} \in N i$ by (unfold submodule-def, auto)
from i zi uni show ?thesis by auto
qed
from uni subm have 5: ^cv. $c \in$ carrier $R \Longrightarrow v \in N^{\prime} \Longrightarrow c \odot_{M}$ $v \in N^{\prime}$
by (unfold submodule-def, auto)
from 12345 show ?thesis by (unfold submodule-def, auto)
qed
lemma (in module) span-is-monotone:
fixes $S T$
assumes subs: $S \subseteq T$
shows span $S \subseteq$ span T
proof -
from subs show ?thesis
by (unfold span-def, auto)
qed
lemma (in module) span-is-submodule:
fixes S
assumes $h 2: S \subseteq$ carrier M
shows submodule $R(\operatorname{span} S) M$
proof (cases $S=\{ \}$)
case True
moreover have module R M..
ultimately show ?thesis apply (unfold submodule-def span-def lin-
comb-def, auto) done
next
case False
show ?thesis
proof (rule nested-union-vs[where ? $I=\{F . F \subseteq S \wedge$ finite $F\}$ and $? N=\lambda F$. span F and $? N^{\prime}=$ span $\left.S\right]$)
show $\bigwedge F . F \in\{F . F \subseteq S \wedge$ finite $F\} \Longrightarrow$ submodule $R($ span $F)$ M
proof -
fix F
assume $F: F \in\{F . F \subseteq S \wedge$ finite $F\}$
from F have $h 1$: finite F by auto

```
    from F h2 have inC: F\subseteqcarrier M by auto
    from h1 inC interpret mh: mod-hom R (func-space F)M (\lambdaa.
lincomb a F)
    by (rule lincomb-is-mod-hom)
    from h1 inC have 1: mh.im = span F
    apply (unfold mh.im-def)
    apply (unfold func-space-def, simp)
    apply (subst finite-span, auto)
    apply (unfold image-def, auto)
    apply (rule-tac x=restrict a F in bexI)
    by (auto intro!: lincomb-cong)
    from 1 show submodule R (span F) M by (metis mh.im-is-submodule)
    qed
    next
    show \ij.i\in{F.F\subseteqS^ finite F}\Longrightarrow
            j\in{F.F\subseteqS^ finite F}\Longrightarrow
            \existsk.k\in{F.F\subseteqS\wedge finite F}^ span i\subseteq\operatorname{span}k\wedge span j
span k
    proof -
            fix ij
            assume i:i\in{F.F\subseteqS^ finite F} and j:j\in{F.F\subseteqS^
finite F}
            from ij show ?thesis i j
            apply (rule-tac x=i\cupj in exI)
            apply (auto del: subsetI)
            by (intro span-is-monotone, auto del: subsetI)+
    qed
    next
        show span S=(\bigcup i\in{F.F\subseteqS^ finite F}. span i)
                by (unfold span-def,auto)
    next
            have ne: S\not={} by fact
            from ne show {F.F\subseteqS\wedge finite F}}\not={}\mathrm{ by auto
    qed
qed
A finite sum does not depend on the ambient module. This can be done for monoid, but "submonoid" isn't currently defined. (It can be copied, however, for groups...) This lemma requires a somewhat annoying lemma foldD-not-depend. Then we show that linear combinations, linear independence, span do not depend on the ambient module.
lemma (in module) finsum-not-depend:
fixes \(a A N\)
assumes \(h 1\) : finite \(A\) and \(h 2: A \subseteq N\) and \(h 3\) : submodule \(R\) N \(M\) and \(h 4: f: A \rightarrow N\)
shows \(\left(\bigoplus_{(m d N)} v \in A . f v\right)=\left(\bigoplus_{M} v \in A . f v\right)\)
proof -
```

```
    from h1 h2 h3 h4 show ?thesis
    apply (unfold finsum-def finprod-def)
    apply simp
    apply (intro foldD-not-depend[where ? B=A])
        apply (unfold submodule-def LCD-def, auto)
    apply (meson M.add.m-lcomm PiE subsetCE)+
    done
qed
lemma (in module) lincomb-not-depend:
    fixes a A N
    assumes h1: finite A and h2: A\subseteqN and h3: submodule R N M
and h4:a:A->carrier R
    shows lincomb a }A=\mathrm{ module.lincomb (md N) a A
proof -
    from h3 interpret N: module R(md N) by (rule submodule-is-module)
    have 3: N=carrier (md N) by auto
    have 4:(smult M)=(smult (md N)) by auto
    from h1 h2 h3 h4 have ( }\mp@subsup{\bigoplus}{(mdN)}{}v\inA. av \odot <Mv)=(\mp@subsup{\bigoplus}{M}{v\inA.a
v \odot M}
    apply (intro finsum-not-depend)
    using N.summands-valid by auto
    from this show?thesis by (unfold lincomb-def N.lincomb-def, simp)
qed
lemma (in module) span-li-not-depend:
    fixes S N
    assumes h2: S\subseteqN and h3: submodule R N M
    shows module.span R (md N)S=module.span R M S
        and module.lin-dep R (md N)S=module.lin-dep R M S
proof -
    from h3 interpret w: module R(md N) by (rule submodule-is-module)
    from h2 have 1:submodule R (module.span R (md N)S) (md N)
        by (intro w.span-is-submodule, simp)
    have 3: \a A. (finite }A\wedgeA\subseteqS\wedgea\inA->\mathrm{ carrier R C
        module.lincomb Ma A = module.lincomb (md N) a A)
    proof -
        fix a A
        assume 31: finite }A\wedgeA\subseteqS\wedgea\inA->\mathrm{ carrier R
        from assms 31 show ?thesis a A
            by (intro lincomb-not-depend, auto)
    qed
    from 3 show 4:module.span R (md N)S=module.span R M S
        apply (unfold span-def w.span-def)
        apply auto
        by (metis)
    have zeros: }\mp@subsup{\mathbf{0}}{mdN}{}=\mp@subsup{\mathbf{0}}{M}{}\mathrm{ by auto
    from assms 3 show 5: module.lin-dep R (md N)S= module.lin-dep
RMS
```

```
    apply (unfold lin-dep-def w.lin-dep-def)
    apply (subst zeros)
    by metis
qed
lemma (in module) span-is-subset:
    fixes SN
    assumes h2: S\subseteqN and h3: submodule R NM
    shows span S\subseteqN
proof -
    from h3 interpret w: module R(md N) by (rule submodule-is-module)
    from h2 have 1:submodule R (module.span R (md N)S)(mdN)
        by (intro w.span-is-submodule, simp)
    from assms have 4:module.span R (md N)S=module.span R M
S
            by (rule span-li-not-depend)
    from 14 have 5: submodule R (module.span R M S)(md N) by
auto
    from 5 show ?thesis by (unfold submodule-def, simp)
qed
lemma (in module) span-is-subset2:
    fixes }
    assumes h2: S\subseteqcarrier M
    shows span S\subseteq carrier M
proof -
    have 0: module R M..
    from 0 have h3: submodule R (carrier M) M by (unfold submod-
ule-def, auto)
    from h2 h3 show ?thesis by (rule span-is-subset)
qed
lemma (in module) in-own-span:
    fixes }
    assumes inC:S\subseteqcarrier M
    shows S\subseteq\operatorname{span}S
proof -
    from inC show ?thesis
        apply (unfold span-def, auto)
        apply (rename-tac v)
        apply (rule-tac x=( }\lambda\mathrm{ w. if ( w=v) then 1}\mp@subsup{\mathbf{1}}{R}{}\mathrm{ else 0}\mp@subsup{\mathbf{0}}{R}{})\mathrm{ in exI)
        apply (rule-tac x={v} in exI)
        apply (unfold lincomb-def)
        by auto
qed
lemma (in module) supset-ld-is-ld:
    fixes }A
```

```
    assumes ld: lin-dep A and sub: A\subseteqB
    shows lin-dep B
proof -
    from ld obtain A' a v where 1:(finite A'^ A'\subseteqA\wedge (a\in( (A'->carrier
R)) \wedge(lincomb a A' = \mathbf{0}}\mp@subsup{M}{}{\prime})\wedge(v\in\mp@subsup{A}{}{\prime})\wedge(av\not=\mp@subsup{\mathbf{0}}{R}{})
    by (unfold lin-dep-def, auto)
    from 1 sub show ?thesis
    apply (unfold lin-dep-def)
    apply (rule-tac x=A' in exI)
    apply (rule-tac x=a in exI)
    apply (rule-tac x=v in exI)
    by auto
qed
lemma (in module) subset-li-is-li:
    fixes }A
    assumes li: lin-indpt A and sub: B\subseteqA
    shows lin-indpt B
proof (rule ccontr)
    assume ld: }\neg\mathrm{ lin-indpt B
    from ld sub have ldA: lin-dep A by (metis supset-ld-is-ld)
    from li ldA show False by auto
qed
lemma (in mod-hom) hom-sum:
    fixes }AB
    assumes h2:A\subseteqcarrier M and h3:g:A->carrier M
    shows f(\mp@subsup{\bigoplus}{M}{}a\inA.ga)=(\mp@subsup{\bigoplus}{N}{}a\inA.f(ga))
proof -
    from h2 h3 show ?thesis
    proof (induct A rule: infinite-finite-induct)
        case (insert a A)
        then have (\bigoplus Na\ininsert a A.f(ga))=f(ga) \mp@subsup{\oplus}{N}{}(\mp@subsup{\bigoplus}{N}{N}\mp@code{a\inA.f}
    (g a))
            by (intro finsum-insert, auto)
        with insert.prems insert.hyps show ?case
            by simp
    qed auto
qed
end
```


5 The direct sum of modules.

```
theory SumSpaces
imports Main
    HOL-Algebra.Module
    HOL-Algebra.Coset
```


RingModuleFacts

MonoidSums
FunctionLemmas
LinearCombinations
begin
We define the direct sum $M_{1} \oplus M_{2}$ of 2 vector spaces as the set $M_{1} \times M_{2}$ under componentwise addition and scalar multiplication.
definition direct-sum:: ('a,'b, 'd) module-scheme $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} c\right.$, 'e) mod-ule-scheme $\Rightarrow\left({ }^{\prime} a,\left({ }^{\prime} b \times^{\prime} c\right)\right)$ module
where direct-sum M1 M2 $=($ carrier $=$ carrier M1 \times carrier M2, mult $=\left(\lambda v w .\left(\mathbf{0}_{M 1}, \mathbf{0}_{M 2}\right)\right)$,
one $=\left(\mathbf{0}_{\text {M1 }}, \mathbf{0}_{\text {M2 }}\right)$,
zero $=\left(\mathbf{0}_{M 1}, \mathbf{0}_{\text {M2 }}\right)$,
$a d d=\left(\lambda v w\right.$. (fst $v \oplus_{M 1}$ fst w, snd $v \oplus_{M 2}$ snd $\left.\left.w\right)\right)$,
smult $=\left(\lambda c v .\left(c \odot_{M 1}\right.\right.$ fst $v, c \odot_{M 2}$ snd $\left.\left.v\right)\right) D$
lemma direct-sum-is-module:
fixes R M1 M2
assumes h1: module R M1 and h2: module R M2
shows module R (direct-sum M1 M2)
proof -
from $h 1$ have 1 : cring R by (unfold module-def, auto)
from $h 1$ interpret $v 1$: module $R M 1$ by auto
from $h 2$ interpret $v 2$: module R M2 by auto
from h1 h2 have 2: abelian-group (direct-sum M1 M2)
apply (intro abelian-groupI, auto)
apply (unfold direct-sum-def, auto)
by (auto simp add: v1.a-ac v2.a-ac)
from h1 h2 assms have 3: module-axioms R (direct-sum M1 M2)
apply (unfold module-axioms-def, auto)
apply (unfold direct-sum-def, auto)
by (auto simp add: v1.smult-l-distr v2.smult-l-distr v1.smult-r-distr
v2.smult-r-distr
v1.smult-assoc1 v2.smult-assoc1)
from 123 show ?thesis by (unfold module-def, auto)
qed
definition inj1:: ($\left.{ }^{\prime} a,{ }^{\prime} b\right)$ module $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} c\right)$ module $\Rightarrow\left({ }^{\prime} b \Rightarrow\left({ }^{\prime} b \times^{\prime} c\right)\right)$
where $\operatorname{inj1}$ M1 M2 $=\left(\lambda v .\left(v, \mathbf{0}_{M 2}\right)\right)$
definition inj2:: ('a,'b) module $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} c\right)$ module $\Rightarrow\left({ }^{\prime} c \Rightarrow\left({ }^{\prime} b \times^{\prime} c\right)\right)$
where inj2 M1 M2 $=\left(\lambda v .\left(\mathbf{0}_{M 1}, v\right)\right)$
lemma inj1-hom:
fixes R M1 M2
assumes h1: module R M1 and h2: module R M2
shows mod-hom R M1 (direct-sum M1 M2) (inj1 M1 M2)

```
proof -
    from h1 interpret v1:module R M1 by auto
    from h2 interpret v2:module R M2 by auto
    from h1 h2 show ?thesis
        apply (unfold mod-hom-def module-hom-def mod-hom-axioms-def
inj1-def, auto)
        apply (rule direct-sum-is-module, auto)
        by (unfold direct-sum-def, auto)
qed
lemma inj2-hom:
    fixes R M1 M2
    assumes h1: module R M1 and h2: module R M2
    shows mod-hom R M2 (direct-sum M1 M2) (inj2 M1 M2)
proof -
    from h1 interpret v1:module R M1 by auto
    from h2 interpret v2:module R M2 by auto
    from h1 h2 show ?thesis
        apply (unfold mod-hom-def module-hom-def mod-hom-axioms-def
inj2-def, auto)
            apply (rule direct-sum-is-module, auto)
            by (unfold direct-sum-def, auto)
qed
For submodules \(M_{1}, M_{2} \subseteq M\), the map \(M_{1} \oplus M_{2} \rightarrow M\) given by \(\left(m_{1}, m_{2}\right) \mapsto m_{1}+m_{2}\) is linear.
lemma (in module) sum-map-hom:
fixes M1 M2
assumes h1: submodule \(R\) M1 M and h2: submodule \(R\) M2 M
shows mod-hom \(R\) (direct-sum (md M1) (md M2)) M ( \(\lambda v\). (fst \(v\) )
\(\left.\oplus_{M}(s n d v)\right)\)
proof -
have 0: module \(R\) M..
from \(h 1\) have 1: module \(R\) ( \(m\) M1 ) by (rule submodule-is-module)
from h2 have 2: module \(R\) (md M2) by (rule submodule-is-module)
from \(h 1\) interpret \(w 1\) : module \(R\) (md M1) by (rule submodule-is-module)
from \(h 2\) interpret \(w 2\) : module \(R\) (md M2) by (rule submodule-is-module)
from 0 h1 h2 12 show ?thesis
apply (unfold mod-hom-def mod-hom-axioms-def module-hom-def, auto)
apply (rule direct-sum-is-module, auto)
apply (unfold direct-sum-def, auto)
apply (unfold submodule-def, auto)
by (auto simp add: a-ac smult-r-distr ring-subset-carrier)
qed
lemma (in module) sum-is-submodule:
fixes N1 N2
```

```
    assumes h1: submodule R N1 M and h2: submodule R N2 M
    shows submodule R (submodule-sum N1 N2) M
proof -
    from h1 h2 interpret l: mod-hom R (direct-sum (md N1) (md N2))
M(\lambdav.(fst v) \oplus M (snd v))
    by (rule sum-map-hom)
    have 1:l.im =submodule-sum N1 N2
        apply (unfold l.im-def submodule-sum-def)
        apply (unfold direct-sum-def, auto)
        by (unfold image-def, auto)
    have 2: submodule R (l.im) M by (rule l.im-is-submodule)
    from 12 show ?thesis by auto
qed
lemma (in module) in-sum:
    fixes N1 N2
    assumes h1: submodule R N1 M and h2: submodule R N2 M
    shows N1\subseteq submodule-sum N1 N2
proof -
    from h1 h2 show ?thesis
        apply auto
        apply (unfold submodule-sum-def image-def, auto)
        apply (rename-tac v)
        apply (rule-tac x=v in bexI)
        apply (rule-tac x=0}\mp@subsup{\mathbf{M}}{M}{}\mathrm{ in bexI)
            by (unfold submodule-def, auto)
qed
lemma (in module) msum-comm:
    fixes N1 N2
    assumes h1: submodule R N1 M and h2: submodule R N2 M
    shows (submodule-sum N1 N2) = (submodule-sum N2 N1)
proof -
    from h1 h2 show ?thesis
        apply (unfold submodule-sum-def image-def, auto)
        apply (unfold submodule-def)
        apply (rename-tac v w)
        by (metis (full-types) M.add.m-comm subsetD)+
qed
```

If $M_{1}, M_{2} \subseteq M$ are submodules, then $M_{1}+M_{2}$ is the minimal subspace such that both $M_{1} \subseteq M$ and $M_{2} \subseteq M$.
lemma (in module) sum-is-minimal:
fixes N N1 $N 2$
assumes h1: submodule R N1 M and h2: submodule R N2 M and h3: submodule R N M
shows $($ submodule-sum N1 N2) $\subseteq N \longleftrightarrow N 1 \subseteq N \wedge N 2 \subseteq N$

```
proof -
    have 1:(submodule-sum N1 N2) \subseteqN\LongrightarrowN1\subseteqN^N2\subseteqN
    proof -
    assume 10:(submodule-sum N1 N2) \subseteq N
    from h1 h2 have 11: N1\subseteqsubmodule-sum N1 N2 by (rule in-sum)
    from h2 h1 have 12: N2\subseteqsubmodule-sum N2 N1 by (rule in-sum)
        from 12 h1 h2 have 13: N2\subseteqsubmodule-sum N1 N2 by (metis
msum-comm)
        from 10 11 13 show ?thesis by auto
    qed
    have 2: N1\subseteqN^N2\subseteqN\Longrightarrow(submodule-sum N1 N2)\subseteqN
    proof -
        assume 19:N1\subseteqN\wedgeN2\subseteqN
    {
    fix v
    assume 20:v\insubmodule-sum N1 N2
    from 20 obtain w1 w2 where 21: w1\inN1 and 22: w2\inN2 and
23: v=w1 }\mp@subsup{\oplus}{M}{}w
                by (unfold submodule-sum-def image-def, auto)
    from 1921 22 23 h3 have v\inN
                apply (unfold submodule-def, auto)
                by (metis (poly-guards-query) contra-subsetD)
    }
    thus ?thesis
        by (metis subset-iff)
    qed
    from 1 2 show ?thesis by metis
qed
span}A\cupB=\operatorname{span}A+\operatorname{span}
lemma (in module) span-union-is-sum:
    fixes }A
    assumes h2: A\subseteqcarrier M and h3: B\subseteqcarrier M
    shows span ( }A\cupB)=\mathrm{ submodule-sum (span A) (span B)
proof
    let ?AplusB=submodule-sum (span A) (span B)
    from h2 have s0: submodule R (span A) M by (rule span-is-submodule)
    from h3 have s1: submodule R (span B) M by (rule span-is-submodule)
    from s0 have s0-1: (span A)\subseteqcarrier M by (unfold submodule-def,
auto)
    from s1 have s1-1: (span B)\subseteqcarrier M by (unfold submodule-def,
auto)
    from h2 h3 have 1: A\cupB\subseteqcarrier M by auto
    from 1 have 2: submodule R (span ( }A\cupB))M\mathrm{ by (rule span-is-submodule)
    from s0 s1 have 3: submodule R?AplusB M by (rule sum-is-submodule)
    have c1: span ( }A\cupB)\subseteq\mathrm{ ?AplusB
    proof -
```

```
    from h2 have a1:A\subseteqspan A by (rule in-own-span)
    from s0 s1 have a2: span A\subseteq?AplusB by (rule in-sum)
    from a1 a2 have a3: A\subseteq?AplusB by auto
    from h3 have b1: B\subseteqspan B by (rule in-own-span)
    from s1 s0 have b2: span B\subseteq?AplusB by (metis in-sum msum-comm)
    from b1 b2 have b3: B\subseteq? AplusB by auto
    from a3 b3 have 5: A\cupB\subseteq? AplusB by auto
    from 5 3 show ?thesis by (rule span-is-subset)
    qed
    have c2:?AplusB\subseteq\operatorname{span}(A\cupB)
    proof -
    have 11:}A\subseteqA\cupB\mathrm{ by auto
    have 12: }B\subseteqA\cupB\mathrm{ by auto
    from 11 have 21:span }A\subseteq\operatorname{span}(A\cupB)\mathrm{ by (rule span-is-monotone)
    from 12 have 22:span B\subseteqspan ( }A\cupB)\mathrm{ by (rule span-is-monotone)
    from s0 s12 21 22 show ?thesis by (auto simp add: sum-is-minimal)
    qed
    from c1 c2 show ?thesis by auto
qed
end
```


6 Basic theory of vector spaces, using locales

theory VectorSpace
imports Main
HOL-Algebra.Module
HOL-Algebra.Coset
RingModuleFacts
MonoidSums
LinearCombinations
SumSpaces
begin

6.1 Basic definitions and facts carried over from modules

A vectorspace is a module where the ring is a field. Note that we switch notation from (R, M) to (K, V).
locale vectorspace $=$
module?: module $K V+$ field?: field K
for K and V
A subspace of a vectorspace is a nonempty subset that is closed
under addition and scalar multiplication. These properties have already been defined in submodule. Caution: W is a set, while V is a module record. To get W as a vectorspace, write vs W .

```
locale subspace =
    fixes }K\mathrm{ and W and V (structure)
    assumes vs: vectorspace K V
        and submod: submodule K W V
lemma (in vectorspace) is-module[simp]:
    subspace K W V\Longrightarrowsubmodule K W V
by (unfold subspace-def, auto)
```

We introduce some basic facts and definitions copied from module. We introduce some abbreviations, to match convention.
abbreviation (in vectorspace) vs::'c set $\Rightarrow\left({ }^{\prime} a,{ }^{\prime} c\right.$, 'd) module-scheme where vs $W \equiv V($ carrier $:=W)$
lemma (in vectorspace) carrier-vs-is-self [simp]:
carrier $(v s W)=W$
by auto
lemma (in vectorspace) subspace-is-vs:
fixes $W::^{\prime} c$ set
assumes 0: subspace $K W V$
shows vectorspace K (vs W)
proof -
from 0 show ?thesis
apply (unfold vectorspace-def subspace-def, auto)
by (intro submodule-is-module, auto)
qed
abbreviation (in module) subspace-sum:: ['c set, 'c set] $\Rightarrow{ }^{\prime}$ c set where subspace-sum W1 W2 三submodule-sum W1 W2
lemma (in vectorspace) vs-zero-lin-dep:
assumes $h 2: S \subseteq$ carrier V and $h 3$: lin-indpt S
shows $\mathbf{0}_{V} \notin S$
proof -
have vs: vectorspace $K V$..
from vs have nonzero: carrier $K \neq\left\{\mathbf{0}_{K}\right\}$ by (metis one-zeroI zero-not-one)
from h2 h3 nonzero show ?thesis by (rule zero-nin-lin-indpt)
qed
A linear-map is a module homomorphism between 2 vectorspaces over the same field.
locale linear-map $=$

```
    V?: vectorspace K V + W?: vectorspace K W
    + mod-hom?: mod-hom K V W T
    for }K\mathrm{ and }V\mathrm{ and }W\mathrm{ and T
context linear-map
begin
lemmas T-hom = f-hom
lemmas T-add = f-add
lemmas T-smult =f-smult
lemmas T-im =f-im
lemmas T-neg =f-neg
lemmas T-minus =f-minus
lemmas T-ker = f-ker
abbreviation imT:: 'e set
    where imT \equiv mod-hom.im
abbreviation kerT:: 'c set
    where kerT \equiv mod-hom.ker
lemmas T0-is-0[simp] = f0-is-0
lemma kerT-is-subspace: subspace K ker V
proof -
    have vs: vectorspace K V .
    from vs show ?thesis
        apply (unfold subspace-def, auto)
        by (rule ker-is-submodule)
qed
lemma imT-is-subspace: subspace K imT W
proof -
    have vs: vectorspace K W..
    from vs show ?thesis
        apply (unfold subspace-def, auto)
        by (rule im-is-submodule)
qed
end
lemma vs-criteria:
    fixes }K\mathrm{ and }
    assumes field: field K
        and zero: }\mp@subsup{\mathbf{0}}{V}{}\in\mathrm{ carrier V
        and add: }\forallvw.v\incarrier V ^w\incarrier V\longrightarrowv\mp@subsup{\oplus}{V}{}w\in\mathrm{ carrier
V
            and neg: }\forallv\incarrier V. (\exists neg-v\incarrier V.v\oplus Vneg-v=0 0 V )
        and smult: }\forallcv.c\in\mathrm{ carrier }K\wedgev\incarrier V\longrightarrowc\odot \ v v carrier
V
        and comm: \forallv w.v\incarrier V \ w\incarrier V\longrightarrowv\oplus V w=w\oplus V
```

 and \(a d d\) - \(i d\) : \(\forall v \in\) carrier \(V .\left(v \oplus_{V} \mathbf{0}_{V}=v\right)\)
 and compat: \(\forall a b v . a \in\) carrier \(K \wedge b \in\) carrier \(K \wedge v \in\) carrier
 $V \longrightarrow\left(a \otimes_{K} b\right) \odot_{V} v=a \odot_{V}\left(b \odot_{V} v\right)$
and smult-id: $\forall v \in$ carrier $V .\left(\mathbf{1}_{K} \odot_{V} v=v\right)$
and dist-f: $\forall a b$ v. $a \in$ carrier $K \wedge b \in$ carrier $K \wedge v \in$ carrier
$V \longrightarrow\left(a \oplus_{K} b\right) \odot_{V} v=\left(a \odot_{V} v\right) \oplus_{V}\left(b \odot_{V} v\right)$
and dist-add: $\forall a v w . a \in$ carrier $K \wedge v \in$ carrier $V \wedge w \in$ carrier
$V \longrightarrow a \odot_{V}\left(v \oplus_{V} w\right)=\left(a \odot_{V} v\right) \oplus_{V}\left(a \odot_{V} w\right)$
shows vectorspace $K V$
proof -
from field have 1 : cring K by (unfold field-def domain-def, auto)
from assms 1 have 2: module $K V$ by (intro module-criteria, auto)
from field 2 show ?thesis by (unfold vectorspace-def module-def,
auto)
qed

For any set S, the space of functions $S \rightarrow K$ forms a vector space.

```
lemma (in vectorspace) func-space-is-vs:
    fixes }
    shows vectorspace K (func-space S)
proof -
    have 0: field K..
    have 1: module K (func-space S) by (rule func-space-is-module)
    from 01 show ?thesis by (unfold vectorspace-def module-def, auto)
qed
```

lemma direct-sum-is-vs:
fixes K V1 $V 2$
assumes $h 1$: vectorspace $K V 1$ and $h 2$: vectorspace K V2
shows vectorspace K (direct-sum V1 V2)
proof -
from h1 h2 have mod: module K (direct-sum V1 V2) by (unfold
vectorspace-def, intro direct-sum-is-module, auto)
from mod h1 show ?thesis by (unfold vectorspace-def, auto)
qed
lemma inj1-linear:
fixes K V1 V2
assumes $h 1$: vectorspace $K V 1$ and $h 2$: vectorspace K V2
shows linear-map K V1 (direct-sum V1 V2) (inj1 V1 V2)
proof -
from h1 h2 have mod: mod-hom K V1 (direct-sum V1 V2) (inj1
V1 V2) by (unfold vectorspace-def, intro inj1-hom, auto)
from mod h1 h2 show ?thesis

```
    by (unfold linear-map-def vectorspace-def, auto, intro direct-sum-is-module,
auto)
qed
lemma inj2-linear:
    fixes K V1 V2
    assumes h1: vectorspace K V1 and h2: vectorspace K V2
    shows linear-map K V2 (direct-sum V1 V2) (inj2 V1 V2)
proof -
    from h1 h2 have mod: mod-hom K V2 (direct-sum V1 V2) (inj2
V1 V2) by (unfold vectorspace-def, intro inj2-hom, auto)
    from mod h1 h2 show ?thesis
    by (unfold linear-map-def vectorspace-def, auto, intro direct-sum-is-module,
auto)
qed
For subspaces }\mp@subsup{V}{1}{},\mp@subsup{V}{2}{}\subseteqV\mathrm{ , the map }\mp@subsup{V}{1}{}\oplus\mp@subsup{V}{2}{}->V\mathrm{ given by
(v},\mp@subsup{v}{2}{})\mapsto\mp@subsup{v}{1}{}+\mp@subsup{v}{2}{}\mathrm{ is linear.
lemma (in vectorspace) sum-map-linear:
    fixes V1 V2
    assumes h1: subspace K V1 V and h2: subspace K V2 V
    shows linear-map K (direct-sum (vs V1) (vs V2)) V (\lambda v. (fst v)
\oplus}\mp@subsup{V}{V}{(snd v))
proof -
    from h1 h2 have mod: mod-hom K (direct-sum (vs V1) (vs V2)) V
(\lambdav. (fst v) \oplus V (snd v))
    by (intro sum-map-hom, unfold subspace-def, auto)
    from mod h1 h2 show ?thesis
    apply (unfold linear-map-def, auto) apply (intro direct-sum-is-vs
subspace-is-vs, auto)..
qed
lemma (in vectorspace) sum-is-subspace:
    fixes W1 W2
    assumes h1: subspace K W1 V and h2: subspace K W2 V
    shows subspace K (subspace-sum W1 W2) V
proof -
    from h1 h2 have mod: submodule K (submodule-sum W1 W2) V
    by ( intro sum-is-submodule, unfold subspace-def, auto)
    from mod h1 h2 show ?thesis
        by (unfold subspace-def, auto)
qed
If }\mp@subsup{W}{1}{},\mp@subsup{W}{2}{}\subseteqV\mathrm{ are subspaces, W}\mp@subsup{W}{1}{}\subseteq\mp@subsup{W}{1}{}+\mp@subsup{W}{2}{
lemma (in vectorspace) in-sum-vs:
    fixes W1 W2
    assumes h1: subspace K W1 V and h2: subspace K W2 V
    shows W1\subseteq subspace-sum W1 W2
proof -
```

from h1 h2 show ?thesis by (intro in-sum, unfold subspace-def, auto)
qed
lemma (in vectorspace) vsum-comm:
fixes W1 W2
assumes h1: subspace $K W 1 V$ and h2: subspace $K W 2 V$
shows (subspace-sum W1 W2) $=($ subspace-sum W2 W1)
proof -
from h1 h2 show ?thesis by (intro msum-comm, unfold subspace-def, auto)
qed
If $W_{1}, W_{2} \subseteq V$ are subspaces, then $W_{1}+W_{2}$ is the minimal subspace such that both $W_{1} \subseteq W$ and $W_{2} \subseteq W$.
lemma (in vectorspace) vsum-is-minimal:
fixes W W1 W2
assumes h1: subspace $K W 1 V$ and h2: subspace $K W 2 V$ and $h 3$:
subspace $K W$ V
shows (subspace-sum $W 1 W 2) \subseteq W \longleftrightarrow W 1 \subseteq W \wedge W 2 \subseteq W$ proof -
from h1 h2 h3 show ?thesis by (intro sum-is-minimal, unfold sub-space-def, auto)
qed
lemma (in vectorspace) span-is-subspace:
fixes S
assumes $h 2: S \subseteq$ carrier V
shows subspace $K($ span $S) V$
proof -
have 0 : vectorspace K V..
from h2 have 1: submodule K (span S) V by (rule span-is-submodule)
from 01 show ?thesis by (unfold subspace-def mod-hom-def lin-ear-map-def, auto)
qed

6.1.1 Facts specific to vector spaces

If $a v=w$ and $a \neq 0, v=a^{-1} w$.
lemma (in vectorspace) mult-inverse:
assumes $h 1: a \in$ carrier K and $h 2: v \in$ carrier V and $h 3: a \odot_{V} v=$ w and $h_{4}: a \neq \mathbf{0}_{K}$
shows $v=\left(i n v_{K} a\right) \odot_{V} w$
proof -
from $h 1$ h2 $h 3$ have 1: wecarrier V by auto
from $h 31$ have 2: $\left(i n v_{K} a\right) \odot_{V}\left(a \odot_{V} v\right)=\left(i n v_{K} a\right) \odot_{V} w$ by auto from $h 1 h_{4}$ have 3: inv ${ }_{K}$ a carrier K by auto
interpret g : group (units-group K) by (rule units-form-group)

```
have \(f\) : field \(K\)..
from f h1 \(h_{4}\) have 4: áUnits K
    by (unfold field-def field-axioms-def, simp)
    from \(4 h 1 h_{4}\) have 5: \(\left(\right.\) inv \(\left.\left._{K} a\right) \otimes_{K} a\right)=\mathbf{1}_{K}\)
    by (intro Units-l-inv, auto)
    from 5 have 6: \(\left(i n v_{K} a\right) \odot_{V}\left(a \odot_{V} v\right)=v\)
    proof -
    from h1 h2 h4 have 7: \(\left(\right.\) inv \(\left._{K} a\right) \odot_{V}\left(a \odot_{V} v\right)=\left(i n v_{K} a \otimes_{K} a\right)\)
\(\odot_{V} v\) by (auto simp add: smult-assoc 1 )
    from \(5 h 2\) have 8: \(\left(i n v{ }_{K} a \otimes_{K} a\right) \odot_{V} v=v\) by auto
    from 78 show ?thesis by auto
    qed
    from 26 show ?thesis by auto
qed
If \(w \in S\) and \(\sum_{w \in S} a_{w} w=0\), we have \(v=\sum_{w \notin S} a_{v}^{-1} a_{w} w\)
lemma (in vectorspace) lincomb-isolate:
    fixes \(A v\)
    assumes \(h 1\) : finite \(A\) and \(h 2: A \subseteq\) carrier \(V\) and \(h 3: a \in A \rightarrow\) carrier
\(K\) and \(h_{4}: v \in A\)
    and \(h 5: a v \neq \mathbf{0}_{K}\) and \(h 6\) : lincomb a \(A=\mathbf{0}_{V}\)
    shows \(v=\operatorname{lincomb}\left(\lambda w . \ominus_{K}\left(i n v_{K}(a v)\right) \otimes_{K} a w\right)(A-\{v\})\) and \(v \in\)
span \((A-\{v\})\)
proof -
    from h1 h2 h3 h4 have 1: lincomb a \(A=\left((a v) \odot_{V} v\right) \oplus_{V}\) lincomb
\(a(A-\{v\})\)
    by (rule lincomb-del2)
    from 1 have 2: \(\mathbf{0}_{V}=\left((a v) \odot_{V} v\right) \oplus_{V}\) lincomb \(a(A-\{v\})\) by (simp
add: h6)
    from \(h 1\) h2 \(h 3\) have 5: lincomb \(a(A-\{v\}) \in\) carrier \(V\) by auto
    from \(2 h 1\) h2 \(h 3 h_{4}\) have 3: \(\ominus_{V}\) lincomb \(a(A-\{v\})=\left((a v) \odot_{V}\right.\)
\(v)\)
    by (auto intro!: M.minus-equality)
    have \(6: v=\left(\ominus_{K}\left(i n v_{K}(a v)\right)\right) \odot_{V}\) lincomb a \((A-\{v\})\)
    proof -
        from h2 h3 h4 h5 3 have 7: v=inv \({ }_{K}(a v) \odot_{V}\left(\ominus_{V}\right.\) lincomb a
( \(A-\{v\})\) )
            by (intro mult-inverse, auto)
            from assms have 8: inv \({ }_{K}(a v) \in\) carrier \(K\) by auto
    from assms 58 have 9: inv \({ }_{K}(a v) \odot_{V}\left(\ominus_{V}\right.\) lincomb \(\left.a(A-\{v\})\right)\)
            \(=\left(\ominus_{K}\left(i n v_{K}(a v)\right)\right) \odot_{V}\) lincomb a \((A-\{v\})\)
            by (simp add: smult-assoc-simp smult-minus-1-back r-minus)
    from 79 show ?thesis by auto
    qed
    from \(h 1\) have 10: finite \((A-\{v\})\) by auto
    from assms have 11: \(\left(\ominus_{K}\left(\operatorname{inv}_{K}(a v)\right)\right) \in\) carrier \(K\) by auto
    from assms have 12: lincomb ( \(\left.\lambda w . \ominus_{K}\left(i n v_{K}(a v)\right) \otimes_{K} a w\right)\)
\((A-\{v\})=\)
    \(\left(\ominus_{K}\left(i n v_{K}(a v)\right)\right) \odot_{V}\) lincomb \(a(A-\{v\})\)
```

by (intro lincomb-smult, auto)
from 612 show $v=\operatorname{lincomb}\left(\lambda w . \ominus_{K}\left(i n v_{K}(a v)\right) \otimes_{K} a w\right)(A-\{v\})$
by auto
with assms show $v \in \operatorname{span}(A-\{v\})$
unfolding span-def
by (force simp add: 11 ring-subset-carrier)
qed
The map $(S \rightarrow K) \mapsto V$ given by $\left(a_{v}\right)_{v \in S} \mapsto \sum_{v \in S} a_{v} v$ is linear.
lemma (in vectorspace) lincomb-is-linear:
fixes S
assumes h : finite S and $h 2: S \subseteq$ carrier V
shows linear-map K (func-space S) V (λ a. lincomb a S)
proof -
have 0: vectorspace K V..
from h h2 have 1: mod-hom $K($ func-space $S) V(\lambda a$. lincomb a $S)$
by (rule lincomb-is-mod-hom)
from 01 show ?thesis by (unfold vectorspace-def mod-hom-def lin-ear-map-def, auto)
qed

6.2 Basic facts about span and linear independence

If S is linearly independent, then $v \in \operatorname{span} S$ iff $S \cup\{v\}$ is linearly dependent.

```
theorem (in vectorspace) lin-dep-iff-in-span:
    fixes \(A \cup S\)
    assumes \(h 1: S \subseteq\) carrier \(V\) and \(h 2\) : lin-indpt \(S\) and \(h 3: v \in\) carrier
    \(V\) and \(h_{4}: v \notin S\)
    shows \(v \in \operatorname{span} S \longleftrightarrow\) lin-dep \((S \cup\{v\})\)
proof -
    let \(? T=S \cup\{v\}\)
    have \(0: v \in\) ?T by auto
    from \(h 1 h 3\) have \(h 1-1: ? T \subseteq\) carrier \(V\) by auto
    have a1:lin-dep ? \(T \Longrightarrow v \in \operatorname{span} S\)
    proof -
        assume a11: lin-dep ?T
            from a11 obtain \(a w A\) where \(a\) : (finite \(A \wedge A \subseteq ? T \wedge(a \in\)
\((A \rightarrow\) carrier \(K)) \wedge\left(\right.\) lincomb a \(\left.\left.A=\mathbf{0}_{V}\right) \wedge(w \in A) \wedge\left(a w \neq \mathbf{0}_{K}\right)\right)\)
            by (metis lin-dep-def)
    from assms a have \(n z 2: \exists v \in A-S\). a \(v \neq \mathbf{0}_{K}\)
            by (intro lincomb-must-include[where ? \(v=w\) and ? \(T=S \cup\{v\}]\),
auto)
    from a nz2 have singleton: \(\{v\}=A-S\) by auto
    from singleton \(n z 2\) have \(n z 3\) : a \(v \neq \mathbf{0}_{K}\) by auto
    let \(? b=\left(\lambda w \cdot \ominus_{K}\left(i n v_{K}(a v)\right) \otimes_{K}(a w)\right)\)
    from singleton have Ains: \((A \cap S)=A-\{v\}\) by auto
```

```
    from assms a singleton nz3 have a31:v= lincomb ?b ( }A\capS
        apply (subst Ains)
        by (intro lincomb-isolate(1), auto)
    from a a31 nz3 singleton show ?thesis
    apply (unfold span-def, auto)
    apply (rule-tac x=?b in exI)
    apply (rule-tac x=A\capS in exI)
    by (auto intro!: m-closed)
    qed
    have a2:v\in (span S)\Longrightarrow lin-dep ?T
    proof -
    assume inspan: v\in (span S)
    from inspan obtain a A where a: A\subseteqS^ finite A\wedge (v= lincomb
a A)^a\inA->carrier K by (simp add: span-def, auto)
    let ?b = \lambdaw. if (w=v) then (}\mp@subsup{\ominus}{K}{}\mp@subsup{\mathbf{1}}{K}{})\mathrm{ else a w
    have lc0: lincomb ?b (A\cup{v})=\mp@subsup{\mathbf{0}}{V}{}
    proof -
        from assms a have lc-ins: lincomb ?b (A\cup{v}) =((?b v) \odot \V v)
\oplus
            by (intro lincomb-insert, auto)
            from assms a have lc-elim: lincomb ?b A=lincomb a A by (intro
lincomb-elim-if, auto)
    from assms lc-ins lc-elim a show ?thesis by (simp add: M.l-neg
smult-minus-1)
    qed
    from a lc0 show ?thesis
        apply (unfold lin-dep-def)
        apply (rule-tac x=A\cup{v} in exI)
        apply (rule-tac x=?b in exI)
        apply (rule-tac x=v in exI)
        by auto
    qed
    from a1 a2 show ?thesis by auto
qed
If v\in\operatorname{span}A\mathrm{ then }\operatorname{span}A=\operatorname{span}(A\cup{v})
lemma (in vectorspace) already-in-span:
    fixes }v
    assumes inC:A\subseteqcarrier V and inspan: v\inspan A
    shows span A= span ( }A\cup{v}
proof -
    from inC inspan have dir1: span A\subseteq span ( }A\cup{v})\mathrm{ by (intro
span-is-monotone, auto)
```

 from inC have inown: \(A \subseteq\) span \(A\) by (rule in-own-span)
 from inC have subm: submodule \(K\) (span \(A\)) \(V\) by (rule span-is-submodule)
 from inown inspan subm have dir2: span \((A \cup\{v\}) \subseteq\) span \(A\) by
 (intro span-is-subset, auto)
from dir1 dir2 show ?thesis by auto qed

6.3 The Replacement Theorem

If $A, B \subseteq V$ are finite, A is linearly independent, B generates W, and $A \subseteq W$, then there exists $C \subseteq V$ disjoint from A such that $\operatorname{span}(A \cup C)=W$ and $|C| \leq|B|-|A|$. In other words, we can complete any linearly independent set to a generating set of W by adding at most $|B|-|A|$ more elements.

```
theorem (in vectorspace) replacement:
    fixes }A
    assumes h1: finite A
            and h2: finite B
            and h3: B\subseteqcarrier V
            and h4: lin-indpt A
            and h5: A\subseteq\operatorname{span B}
    shows \existsC. finite C\wedgeC\subseteqcarrier V\wedgeC\subseteqspan }B\wedgeC\capA={}\wedge in
(card C)\leq(int (card B))-(int (card A))\wedge (span }(A\cupC)=spa
B)
    (is \existsC.?PPABC)
using h1 h2 h3 h4 h5
proof (induct card A arbitrary: A B)
    case 0
    from 0.prems(1) 0.hyps have a0:A={} by auto
    from 0.prems(3) have a3: B\subseteqspan B by (rule in-own-span)
    from a0 a3 0.prems show ?case by (rule-tac x=B in exI, auto)
next
    case (Suc m)
    let ?W=span B
    from Suc.prems(3) have BinC: span B\subseteqcarrier V by (rule span-is-subset2)
    from Suc.prems Suc.hyps BinC have A: finite A lin-indpt A A\subseteqspan
B Suc m= card A A\subseteqcarrier V
    by auto
    from Suc.prems have B: finite B B\subseteqcarrier V by auto
    from Suc.hyps(2) obtain v}\mathrm{ where v: veA by fastforce
    let ? }\mp@subsup{A}{}{\prime}=A-{v
    from A(2) have liA': lin-indpt ? 'A'
    apply (intro subset-li-is-li[of A ?A])
        by auto
    from v liA' Suc.prems Suc.hyps(2) have \exists C'. ?P ?A' B C'
    apply (intro Suc.hyps(1))
            by auto
```

from this obtain C^{\prime} where $C^{\prime}: ? P ? A^{\prime} B C^{\prime}$ by auto
show ?case
proof (cases $v \in C^{\prime}$)
case True
have $\operatorname{vin} C^{\prime}: v \in C^{\prime}$ by fact
from $\operatorname{vin} C^{\prime} v$ have seteq: $A-\{v\} \cup C^{\prime}=A \cup\left(C^{\prime}-\{v\}\right)$ by auto
from C^{\prime} seteq have spaneq: span $\left(A \cup\left(C^{\prime}-\{v\}\right)\right)=\operatorname{span}(B)$
by algebra
from Suc.prems Suc.hyps C^{\prime} vin $C^{\prime} v$ spaneq show ?thesis
apply (rule-tac $x=C^{\prime}-\{v\}$ in $e x I$)
apply (subgoal-tac card $C^{\prime}>0$)
by auto
next
case False
have $f: v \notin C^{\prime}$ by fact
from $A v C^{\prime}$ have $\exists a . a \in\left(? A^{\prime} \cup C^{\prime}\right) \rightarrow$ carrier $K \wedge$ lincomb $a\left(? A^{\prime}\right.$
$\left.\cup C^{\prime}\right)=v$
by (intro finite-in-span, auto)
from this obtain a where $a: a \in\left(? A^{\prime} \cup C^{\prime}\right) \rightarrow$ carrier $K \wedge v=$ lincomb a $\left(? A^{\prime} \cup C^{\prime}\right)$ by metis
let ? $b=\left(\lambda w\right.$. if $(w=v)$ then $\ominus_{K} \mathbf{1}_{K}$ else a $\left.w\right)$
from a have $b: ? b \in A \cup C^{\prime} \rightarrow$ carrier K by auto
from v have rewrite-ins: $A \cup C^{\prime}=\left(? A^{\prime} \cup C^{\prime}\right) \cup\{v\}$ by auto
from f have $v \notin ? A^{\prime} \cup C^{\prime}$ by auto
from this $A C^{\prime} v$ af have $l c b$: lincomb $? b\left(A \cup C^{\prime}\right)=\mathbf{0}_{V}$
apply (subst rewrite-ins)
apply (subst lincomb-insert)
apply (simp-all add: ring-subset-carrier coeff-in-ring)
apply (auto split: if-split-asm)
apply (subst lincomb-elim-if)
by (auto simp add: smult-minus-1 l-neg ring-subset-carrier)
from $C^{\prime} f$ have rewrite-minus: $C^{\prime}=\left(A \cup C^{\prime}\right)-A$ by auto
from $A C^{\prime} b l c b v$ have exw: $\exists w \in C^{\prime}$. ?b $w \neq \mathbf{0}_{K}$
apply (subst rewrite-minus)
apply (intro lincomb-must-include $\left[\right.$ where $? T=A \cup C^{\prime}$ and $\left.? v=v\right]$)
by auto
from exw obtain w where $w: w \in C^{\prime} ? b w \neq \mathbf{0}_{K}$ by auto
from $A C^{\prime} w f b l c b$ have w-in: $w \in \operatorname{span}\left(\left(A \cup C^{\prime}\right)-\{w\}\right)$
apply (intro lincomb-isolate[where $a=? b]$)
by auto
have spaneq2: span $\left(A \cup\left(C^{\prime}-\{w\}\right)\right)=\operatorname{span} B$
proof -
have 1: $\operatorname{span}\left(? A^{\prime} \cup C^{\prime}\right)=\operatorname{span}\left(A \cup C^{\prime}\right)$
proof -
from $A C^{\prime} v$ have $m 1: \operatorname{span}\left(? A^{\prime} \cup C^{\prime}\right)=\operatorname{span}\left(\left(? A^{\prime} \cup C^{\prime}\right) \cup\{v\}\right)$ apply (intro already-in-span)

```
                by auto
                from f m1 show ?thesis by (metis rewrite-ins)
            qed
    have 2: span }(A\cup(\mp@subsup{C}{}{\prime}-{w}))=\operatorname{span}(A\cup\mp@subsup{C}{}{\prime}
    proof -
    from }\mp@subsup{C}{}{\prime}w(1)f\mathrm{ have b60:AЧ(C'-{w})=(AЧ C') -{w} by
auto
            from w(1) have b61:A\cup C'=(A\cupC' -{w})\cup{w} by auto
            from A C' w-in show ?thesis
                apply (subst b61)
                apply (subst b60)
                apply (intro already-in-span)
                    by auto
            qed
    from C'12 show ?thesis by auto
    qed
        from A C' wfv spaneq2 show ?thesis
        apply (rule-tac x=C'-{w} in exI)
        apply (subgoal-tac card C'>0)
        by auto
    qed
qed
```


6.4 Defining dimension and bases.

Finite dimensional is defined as having a finite generating set.
definition (in vectorspace) fin-dim:: bool
where fin-dim $=(\exists A$. $(($ finite $A) \wedge(A \subseteq$ carrier $V) \wedge($ gen-set A)))

The dimension is the size of the smallest generating set. For equivalent characterizations see below.
definition (in vectorspace) dim:: nat
where $\operatorname{dim}=(L E A S T n .(\exists A .(($ finite $A) \wedge($ card $A=n) \wedge(A \subseteq$ carrier $V) \wedge($ gen-set $A))))$

A basis is a linearly independent generating set.
definition (in vectorspace) basis:: 'c set \Rightarrow bool
where basis $A=(($ lin-indpt $A) \wedge($ gen-set $A) \wedge(A \subseteq$ carrier $V))$
From the replacement theorem, any linearly independent set is smaller than any generating set.
lemma (in vectorspace) li-smaller-than-gen:
fixes $A B$
assumes $h 1$: finite A and $h 2$: finite B and $h 3: A \subseteq$ carrier V and h_{4} : $B \subseteq$ carrier V
and $h 5$: lin-indpt A and $h 6:$ gen-set B
shows $\operatorname{card} A \leq \operatorname{card} B$

```
proof -
    from h3 h6 have 1:A\subseteqspan B by auto
    from h1 h2 h4 h5 1 obtain C where
        2: finite C ^ C\subseteqcarrier V }\C\subseteq\mathrm{ span }B\wedgeC\capA={}\wedge int (card
    C)\leqint (card B) - int (card A) ^(span }(A\cupC)=\operatorname{span}B
        by (metis replacement)
    from 2 show ?thesis by arith
qed
The dimension is the cardinality of any basis. (In particular, all bases are the same size.)
```

```
lemma (in vectorspace) dim-basis:
```

lemma (in vectorspace) dim-basis:
fixes A
fixes A
assumes fin: finite A and h2: basis A
assumes fin: finite A and h2: basis A
shows $\operatorname{dim}=\operatorname{card} A$
shows $\operatorname{dim}=\operatorname{card} A$
proof -
proof -
have $0: \wedge B m$. $(($ finite $B) \wedge($ card $B=m) \wedge(B \subseteq$ carrier $V) \wedge$
have $0: \wedge B m$. $(($ finite $B) \wedge($ card $B=m) \wedge(B \subseteq$ carrier $V) \wedge$
$($ gen-set $B)) \Longrightarrow$ card $A \leq m$
$($ gen-set $B)) \Longrightarrow$ card $A \leq m$
proof -
proof -
fix $B m$
fix $B m$
assume 1: $(($ finite $B) \wedge($ card $B=m) \wedge(B \subseteq$ carrier $V) \wedge($ gen-set
assume 1: $(($ finite $B) \wedge($ card $B=m) \wedge(B \subseteq$ carrier $V) \wedge($ gen-set
B))
B))
from 1 fin h2 have 2: card $A \leq \operatorname{card} B$
from 1 fin h2 have 2: card $A \leq \operatorname{card} B$
apply (unfold basis-def)
apply (unfold basis-def)
apply (intro li-smaller-than-gen)
apply (intro li-smaller-than-gen)
by auto
by auto
from 12 show ?thesis $B m$ by auto
from 12 show ?thesis $B m$ by auto
qed
qed
from fin h2 0 show ?thesis
from fin h2 0 show ?thesis
apply (unfold dim-def basis-def)
apply (unfold dim-def basis-def)
apply (intro Least-equality)
apply (intro Least-equality)
apply (rule-tac $x=A$ in exI)
apply (rule-tac $x=A$ in exI)
by auto
by auto
qed

```
qed
```

A maximal set with respect to P is such that if $B \supseteq A$ and P is also satisfied for B, then $B=A$.
definition maximal::'a set $\Rightarrow\left({ }^{\prime}\right.$ a set \Rightarrow bool $) \Rightarrow$ bool
where maximal $A P=((P A) \wedge(\forall B . B \supseteq A \wedge P B \longrightarrow B=A))$
A minimal set with respect to P is such that if $B \subseteq A$ and P is also satisfied for B, then $B=A$.

```
definition minimal::'a set \(\Rightarrow\) ('a set \(\Rightarrow\) bool \() \Rightarrow\) bool
    where minimal \(A P=((P A) \wedge(\forall B . B \subseteq A \wedge P B \longrightarrow B=A))\)
```

A maximal linearly independent set is a generating set.
lemma (in vectorspace) max-li-is-gen:
fixes A

```
    assumes h1: maximal }A(\lambdaS.S\subseteqcarrier V ^ lin-indpt S
    shows gen-set A
proof (rule ccontr)
    assume 0: \neg(gen-set A)
    from h1 have 1: A\subseteq carrier }V\wedge lin-indpt A by (unfold maxi-
mal-def, auto)
    from 1 have 2: span A\subseteqcarrier V by (intro span-is-subset2, auto)
    from 012 have 3: \existsv.v\incarrier V\wedgev\not\in(\operatorname{san}A)
        by auto
    from 3 obtain v}\mathrm{ where 4:vecarrier V }\v\not\in(\operatorname{span A) by auto
    have 5:v\not\inA
    proof -
    from h11 have 51:A\subseteqspan A apply (intro in-own-span) by auto
    from 451 show ?thesis by auto
    qed
    from lin-dep-iff-in-span have 6: \Sv.S\subseteq carrier V^ lin-indpt S
\wedgev\in carrier V ^v\not\existsS
    \wedge v \notin \operatorname { s p a n ~ S \Longrightarrow ( l i n - i n d p t ~ ( S \cup \{ v \} ) ) ~ b y ~ a u t o }
    from 145 have 7: lin-indpt (A\cup{v}) apply (intro 6) by auto
    have 9: \neg(maximal A ( }\lambdaS.S\subseteq\mathrm{ carrier }V\wedge lin-indpt S)
    proof -
    from 1457 have 8: (\existsB.A\subseteqB\wedgeB\subseteqcarrier V^lin-indpt
B\wedgeB\not=A)
            apply (rule-tac x=A\cup{v} in exI)
            by auto
    from 8 show ?thesis
            apply (unfold maximal-def)
            by simp
    qed
    from h1 9 show False by auto
qed
A minimal generating set is linearly independent.
lemma (in vectorspace) min-gen-is-li:
fixes \(A\)
    assumes h1:minimal A ( }\lambdaS.S\subseteq\mathrm{ carrier }V\wedge\mathrm{ gen-set S)
    shows lin-indpt A
proof (rule ccontr)
    assume 0: ᄀlin-indpt A
    from h1 have 1: A\subseteq carrier V \ gen-set A by (unfold minimal-def,
auto)
    from 1 have 2: span }A=\mathrm{ carrier }V\mathrm{ by auto
    from 0 1 obtain av A' where
            3: finite }\mp@subsup{A}{}{\prime}\wedge\mp@subsup{A}{}{\prime}\subseteqA\wedgea\in\mp@subsup{A}{}{\prime}->\mathrm{ carrier }K\wedge\mathrm{ LinearCombina-
tions.module.lincomb V a A' = 0}\mp@subsup{\mathbf{0}}{V}{}\wedgev\in\mp@subsup{A}{}{\prime}\wedge av\not=\mp@subsup{\mathbf{0}}{K}{
    by (unfold lin-dep-def, auto)
    have 4:gen-set (A-{v})
    proof -
```

```
    from 13 have 5:v\inspan ( }\mp@subsup{A}{}{\prime}-{v}
    apply (intro lincomb-isolate[where }a=a\mathrm{ and }v=v]
            by auto
    from 3 5 have 51:v\inspan (A-{v})
    apply (intro subsetD[where ?A=span ( }\mp@subsup{A}{}{\prime}-{v})\mathrm{ and ?B=span
(A-{v}) and ?c=v])
            by (intro span-is-monotone, auto)
    from 1 have 6:A\subseteqspan A apply (intro in-own-span) by auto
    from 151 have 7: span }(A-{v})=\operatorname{span}((A-{v})\cup{v}) appl
(intro already-in-span) by auto
    from 3 have 8:A= ((A-{v})\cup{v}) by auto
    from 2 78 have 9:span (A-{v})= carrier V by auto
    from 9 show ?thesis by auto
    qed
    have 10: }\neg(\mathrm{ minimal }A(\lambdaS.S\subseteq\mathrm{ carrier }V\wedge\mathrm{ gen-set S))
    proof -
    from 134 have 11:(\existsB.A\supseteqB\wedgeB\subseteqcarrier V}\wedge\mathrm{ gen-set }
\wedge B\not=A)
            apply (rule-tac x=A-{v} in exI)
            by auto
    from 11 show ?thesis
            apply (unfold minimal-def)
            by auto
    qed
    from h1 10 show False by auto
qed
Given that some finite set satisfies \(P\), there is a minimal set that satisfies \(P\).
```

```
lemma minimal-exists:
```

lemma minimal-exists:
fixes }A
fixes }A
assumes h1: finite A and h2: P A
assumes h1: finite A and h2: P A
shows }\existsB.B\subseteqA\wedge\mathrm{ minimal }B
shows }\existsB.B\subseteqA\wedge\mathrm{ minimal }B
using h1 h2
using h1 h2
proof (induct card A arbitrary: A rule: less-induct)
proof (induct card A arbitrary: A rule: less-induct)
case (less A)
case (less A)
show ?case
show ?case
proof (cases card A=0)
proof (cases card A=0)
case True
case True
from True less.hyps less.prems show ?thesis
from True less.hyps less.prems show ?thesis
apply (rule-tac x={} in exI)
apply (rule-tac x={} in exI)
apply (unfold minimal-def)
apply (unfold minimal-def)
by auto
by auto
next
next
case False
case False
show ?thesis
show ?thesis
proof (cases minimal A P)
proof (cases minimal A P)
case True
case True
then show ?thesis

```
                    then show ?thesis
```

```
            apply (rule-tac x=A in exI)
            by auto
        next
        case False
            have 2: \negminimal A P by fact
            from less.prems 2 have 3: \existsB.PB\wedgeB\subseteqA\wedgeB\not=A
                apply (unfold minimal-def)
                by auto
            from 3 obtain B where 4:P B\wedgeB\subsetA\wedgeB\not=A by auto
            from 4 have 5: card B< card A by (metis less.prems(1)
psubset-card-mono)
            from less.hyps less.prems 3 4 5 have 6: }\existsC\subseteqB\mathrm{ . minimal C P
                apply (intro less.hyps)
                    apply auto
                by (metis rev-finite-subset)
            from 6 obtain C where 7: C\subseteqB\wedge minimal C P by auto
            from 4}7\mathrm{ show ?thesis
                apply (rule-tac x=C in exI)
                apply (unfold minimal-def)
                by auto
            qed
    qed
qed
If V is finite-dimensional, then any linearly independent set is
finite.
lemma (in vectorspace) fin-dim-li-fin:
    assumes fd: fin-dim and li: lin-indpt A and inC: A\subseteqcarrier V
    shows fin: finite A
proof (rule ccontr)
    assume A: \negfinite A
    from fd obtain C where C: finite C}\wedge C\subseteqcarrier V \ gen-set C
by (unfold fin-dim-def, auto)
    from A obtain B where B:B\subseteqA\wedge finite B}\wedge card B=\operatorname{card C +
1
            by (metis infinite-arbitrarily-large)
    from Bli have liB: lin-indpt B
            by (intro subset-li-is-li[where ?A=A and ?B=B], auto)
    from B CliB inC have card B\leq card C by (intro li-smaller-than-gen,
auto)
    from this B show False by auto
qed
If \(V\) is finite-dimensional (has a finite generating set), then a finite basis exists.
lemma (in vectorspace) finite-basis-exists:
assumes h1: fin-dim
shows \(\exists \beta\). finite \(\beta \wedge\) basis \(\beta\)
proof -
```

from $h 1$ obtain A where 1: finite $A \wedge A \subseteq$ carrier $V \wedge$ gen-set A by (metis fin-dim-def)
hence 2: $\exists \beta . \beta \subseteq A \wedge$ minimal $\beta(\lambda S . S \subseteq$ carrier $V \wedge$ gen-set $S)$
apply (intro minimal-exists)
by auto
then obtain β where 3: $\beta \subseteq A \wedge$ minimal $\beta(\lambda S . S \subseteq$ carrier $V \wedge$ gen-set S) by auto
hence 4: lin-indpt β apply (intro min-gen-is-li) by auto
moreover from 3 have 5: gen-set $\beta \wedge \beta \subseteq$ carrier V apply (unfold minimal-def) by auto
moreover from 13 have 6: finite β by (auto simp add: finite-subset)
ultimately show ?thesis apply (unfold basis-def) by auto qed

The proof is as follows.

1. Because V is finite-dimensional, there is a finite generating set (we took this as our definition of finite-dimensional).
2. Hence, there is a minimal $\beta \subseteq A$ such that β generates V.
3. β is linearly independent because a minimal generating set is linearly independent.

Finally, β is a basis because it is both generating and linearly independent.

Any linearly independent set has cardinality at most equal to the dimension.

```
lemma (in vectorspace) li-le-dim:
    fixes \(A\)
    assumes \(f d\) : \(f i n\)-dim and \(c: A \subseteq\) carrier \(V\) and \(l\) : lin-indpt \(A\)
    shows finite \(A\) card \(A \leq \operatorname{dim}\)
proof -
    from \(f d c l\) show fa: finite \(A\) by (intro fin-dim-li-fin, auto)
    from fd obtain \(\beta\) where 1 : finite \(\beta \wedge\) basis \(\beta\)
    by (metis finite-basis-exists)
    from assms fa 1 have 2: card \(A \leq \operatorname{card} \beta\)
        apply (intro li-smaller-than-gen, auto)
            by (unfold basis-def, auto)
    from assms 1 have 3: dim \(=\) card \(\beta\) by (intro dim-basis, auto)
    from 23 show card \(A \leq \operatorname{dim}\) by auto
qed
```

Any generating set has cardinality at least equal to the dimension.
lemma (in vectorspace) gen-ge-dim:
fixes A
assumes fa: finite A and $c: A \subseteq$ carrier V and $l:$ gen-set A
shows $\operatorname{card} A \geq \operatorname{dim}$

```
proof -
    from assms have fd: fin-dim by (unfold fin-dim-def, auto)
    from fd obtain }\beta\mathrm{ where 1: finite }\beta\wedge\mathrm{ basis }\beta\mathrm{ by (metis finite-basis-exists)
    from assms 1 have 2: card A \geq card \beta
        apply (intro li-smaller-than-gen, auto)
        by (unfold basis-def, auto)
    from assms 1 have 3: dim = card \beta by (intro dim-basis,auto)
    from 2 3 show ?thesis by auto
qed
If there is an upper bound on the cardinality of sets satisfying \(P\), then there is a maximal set satisfying \(P\).
lemma maximal-exists:
fixes \(P B N\)
assumes maxc: \(\bigwedge A . P A \Longrightarrow\) finite \(A \wedge(\operatorname{card} A \leq N)\) and \(b: P B\)
shows \(\exists\). finite \(A \wedge\) maximal \(A P\)
proof -
let \(? S=\{\operatorname{card} A \mid A . P A\}\)
let ? \(n=M a x\) ? \(S\)
from maxc have 1 :finite? \(S\)
apply (simp add: finite-nat-set-iff-bounded-le) by auto
from 1 have 2: ? \(n \in\) ? \(S\)
by (metis (mono-tags, lifting) Collect-empty-eq Max-in b)
from assms 2 have 3: \(\exists A\). \(P A \wedge\) finite \(A \wedge\) card \(A=\) ?n
by auto
from 3 obtain \(A\) where 4: \(P A \wedge\) finite \(A \wedge\) card \(A=? n\) by auto
from 1 maxc have \(5: \wedge A . P A \Longrightarrow\) finite \(A \wedge(\) card \(A \leq ? n)\)
by (metis (mono-tags, lifting) Max.coboundedI mem-Collect-eq)
from 45 have \(6:\) maximal \(A P\)
apply (unfold maximal-def)
by (metis card-seteq)
from 46 show ?thesis by auto
qed
Any maximal linearly independent set is a basis.
lemma (in vectorspace) max-li-is-basis:
fixes \(A\)
assumes \(h 1\) : maximal \(A(\lambda S . S \subseteq\) carrier \(V \wedge\) lin-indpt \(S)\)
shows basis \(A\)
proof -
from \(h 1\) have 1: gen-set \(A\) by (rule max-li-is-gen)
from assms 1 show ?thesis by (unfold basis-def maximal-def, auto)
qed
Any minimal linearly independent set is a generating set.
lemma (in vectorspace) min-gen-is-basis:
fixes \(A\)
assumes \(h 1\) : minimal \(A(\lambda S . S \subseteq\) carrier \(V \wedge\) gen-set \(S)\)
```

```
    shows basis A
proof -
    from h1 have 1: lin-indpt A by (rule min-gen-is-li)
    from assms 1 show ?thesis by (unfold basis-def minimal-def, auto)
qed
```

Any linearly independent set with cardinality at least the dimension is a basis.
lemma (in vectorspace) dim-li-is-basis:
fixes A
assumes $f d$: fin-dim and fa: finite A and $c a$: $A \subseteq$ carrier V and $l i$: lin-indpt A
and $d:$ card $A \geq \operatorname{dim}$
shows basis A
proof -
from $f d$ have $0: \wedge S . S \subseteq$ carrier $V \wedge$ lin-indpt $S \Longrightarrow$ finite $S \wedge$ card $S \leq \operatorname{dim}$
by (auto intro: li-le-dim)
from 0 assms have $h 1$: finite $A \wedge$ maximal $A(\lambda S$. $S \subseteq$ carrier V \wedge lin-indpt S)
apply (unfold maximal-def)
apply auto
by (metis card-seteq eq-iff)
from h1 show ?thesis by (auto intro: max-li-is-basis)
qed
Any generating set with cardinality at most the dimension is a basis.
lemma (in vectorspace) dim-gen-is-basis:
fixes A
assumes fa: finite A and $c a$: $A \subseteq$ carrier V and $l i$: gen-set A
and d : card $A \leq \operatorname{dim}$
shows basis A
proof -
have $0: \wedge$. finite $S \wedge S \subseteq$ carrier $V \wedge$ gen-set $S \Longrightarrow$ card $S \geq \operatorname{dim}$ by (intro gen-ge-dim, auto)
from 0 assms have $h 1$: minimal $A(\lambda S$. finite $S \wedge S \subseteq$ carrier $V \wedge$ gen-set S)
apply (unfold minimal-def)
apply auto
by (metis card-seteq eq-iff)
from $h 1$ have $h: \wedge B . B \subseteq A \wedge B \subseteq$ carrier $V \wedge$ LinearCombina-tions.module.gen-set $K V B \Longrightarrow B=A$
proof -
fix B

```
    assume asm: \(B \subseteq A \wedge B \subseteq\) carrier \(V \wedge\) LinearCombinations.module.gen-set
K V B
    from asm h1 have finite \(B\)
        apply (unfold minimal-def)
        apply (intro finite-subset \([\) where \(? A=B\) and \(? B=A]\) )
        by auto
    from h1 asm this show ?thesis \(B\) apply (unfold minimal-def) by
simp
    qed
    from \(h 1 h\) have \(h 2\) : minimal \(A(\lambda S . S \subseteq\) carrier \(V \wedge\) gen-set \(S)\)
        apply (unfold minimal-def)
        by presburger
    from h2 show ?thesis by (rule min-gen-is-basis)
qed
\(\beta\) is a basis iff for all \(v \in V\), there exists a unique \(\left(a_{v}\right)_{v \in S}\) such
that \(\sum_{v \in S} a_{v} v=v\).
lemma (in vectorspace) basis-criterion:
    assumes \(A\)-fin: finite \(A\) and \(A\) in \(C: A \subseteq\) carrier \(V\)
    shows basis \(A \longleftrightarrow\left(\forall v . v \in\right.\) carrier \(V \longrightarrow\left(\exists!a . a \in A \rightarrow_{E}\right.\) carrier
\(K \wedge\) lincomb a \(A=v\) ))
proof -
    have 1: \(\neg\left(\forall v . \quad v \in\right.\) carrier \(V \longrightarrow\left(\exists!a . \quad a \in A \rightarrow_{E}\right.\) carrier \(K \wedge\)
lincomb a \(A=v)) \Longrightarrow \neg\) basis \(A\)
    proof -
        assume \(\neg\left(\forall v . \quad v \in\right.\) carrier \(V \longrightarrow\left(\exists!a . \quad a \in A \rightarrow_{E}\right.\) carrier \(K \wedge\)
lincomb a \(A=v\) ))
    then obtain \(v\) where \(v: v \in\) carrier \(V \wedge \neg\left(\exists!a . a \in A \rightarrow_{E}\right.\) carrier
\(K \wedge\) lincomb a \(A=v\) ) by metis
    from \(v\) have \(\operatorname{vinC} C\) : \(v \in\) carrier \(V\) by auto
    from \(v\) have \(\neg\left(\exists a . a \in A \rightarrow_{E}\right.\) carrier \(K \wedge\) lincomb a \(\left.A=v\right) \vee\)
( \(\exists a b\).
            \(a \in A \rightarrow_{E}\) carrier \(K \wedge\) lincomb a \(A=v \wedge b \in A \rightarrow_{E}\) carrier \(K \wedge\)
lincomb \(b A=v\)
        \(\wedge a \neq b)\) by metis
    then show?thesis
    proof
        assume \(a: \neg\left(\exists a . \quad a \in A \rightarrow_{E}\right.\) carrier \(K \wedge\) lincomb \(\left.a A=v\right)\)
        from \(A\)-fin Ain \(C\) have \(\bigwedge a\). \(a \in A \rightarrow\) carrier \(K \Longrightarrow\) lincomb a \(A\)
\(=\) lincomb (restrict a A) A
            unfolding lincomb-def restrict-def
        by (simp cong: finsum-cong add: ring-subset-carrier coeff-in-ring)
        with \(a\) have \(\neg(\exists a . a \in A \rightarrow\) carrier \(K \wedge\) lincomb \(a A=v)\) by
auto
            with \(A\)-fin \(A i n C\) have \(v \notin \operatorname{span} A\)
            using finite-in-span by blast
            with AinC \(v\) show \(\neg(\) basis \(A)\) by (unfold basis-def, auto)
    next
```

assume $a 2$: $(\exists a b$.
$a \in A \rightarrow_{E}$ carrier $K \wedge$ lincomb a $A=v \wedge b \in A \rightarrow_{E}$ carrier $K \wedge$ lincomb $b A=v$ $\wedge a \neq b)$
then obtain $a b$ where $a b: a \in A \rightarrow_{E}$ carrier $K \wedge$ lincomb $a A$ $=v \wedge b \in A \rightarrow_{E}$ carrier $K \wedge$ lincomb $b A=v$
$\wedge a \neq b$ by metis
from $a b$ obtain w where $w: w \in A \wedge a w \neq b w$ apply (unfold PiE-def, auto)
by (metis extensionalityI)
let $? c=\lambda x$. (if $x \in A$ then $\left((a x) \ominus_{K}(b x)\right)$ else undefined $)$
from $a b$ have a-fun: $a \in A \rightarrow$ carrier K
and b-fun: $b \in A \rightarrow$ carrier K
by (unfold PiE-def, auto)
from $w a$-fun b-fun have $a b i n C: a w \in$ carrier $K b w \in$ carrier K by auto
from abinC w have $n z: a w \ominus_{K} b w \neq \mathbf{0}_{K}$
by auto
from A-fin AinC a-fun b-fun $a b$ vin C have $a-b$:
LinearCombinations.module.lincomb $V\left(\lambda x\right.$. if $x \in A$ then a $x \ominus_{K}$ $b x$ else undefined) $A=\mathbf{0}_{V}$
by (simp cong: lincomb-cong add: coeff-in-ring lincomb-diff)
from A-fin AinC ab $w v n z a$-b have lin-dep A
apply (intro lin-dep-crit $[$ where $? A=A$ and $? a=? c$ and $? v=w]$) apply (auto simp add: PiE-def)
by auto
thus \neg basis A by (unfold basis-def, auto)
qed
qed
have 2: $\left(\forall v . v \in\right.$ carrier $V \longrightarrow\left(\exists!a . a \in A \rightarrow_{E}\right.$ carrier $K \wedge$ lincomb a $A=v)) \Longrightarrow$ basis A
proof -
assume b1: $\left(\forall v . v \in\right.$ carrier $V \longrightarrow\left(\exists!a . a \in A \rightarrow_{E}\right.$ carrier $K \wedge$ lincomb a $A=v$))
(is $(\forall v . v \in$ carrier $V \longrightarrow(\exists!a . \quad ? Q$ a $v)))$
from b1 have b2: $(\forall v . \quad v \in$ carrier $V \longrightarrow(\exists a . a \in A \rightarrow$ carrier $K \wedge$ lincomb a $A=v$)
apply (unfold PiE-def)
by blast
from A-fin AinC b2 have gen-set A
apply (unfold span-def)
by blast
from $b 1$ have A-li: lin-indpt A
proof -
let $? z=\lambda x$. (if $(x \in A)$ then $\mathbf{0}_{K}$ else undefined $)$
from A-fin AinC have zero: ? Q ? $z \mathbf{0}_{V}$
by (unfold PiE-def extensional-def lincomb-def, auto simp add: ring-subset-carrier)

```
    from A-fin AinC show ?thesis
    proof (rule finite-lin-indpt2)
        fix }
        assume a-fun: a \in A Carrier K and
            lc-a: LinearCombinations.module.lincomb V a A = \mathbf{0}
    from a-fun have a-res: restrict a A\inA ->e carrier K by auto
        from a-fun A-fin AinC lc-a have
            lc-a-res: LinearCombinations.module.lincomb V (restrict a A)
A= 0
            apply (unfold lincomb-def restrict-def)
            by (simp cong: finsum-cong2 add: coeff-in-ring ring-subset-carrier)
            from a-fun a-res lc-a-res zero b1 have restrict a A =?z by
auto
            from this show }\forallv\inA.av=\mp@subsup{\mathbf{0}}{K}{
                apply (unfold restrict-def)
                by meson
            qed
        qed
        have A-gen: gen-set A
        proof -
        from AinC have dir1: span A\subseteqcarrier V by (rule span-is-subset2)
            have dir2: carrier V\subseteqspan A
            proof (auto)
            fix v
            assume v: v\incarrier V
            from v b2 obtain a where }a\inA->\mathrm{ carrier K \ lincomb a A
=v by auto
            from this A-fin AinC show v\inspan A by (subst finite-span,
auto)
            qed
            from dir1 dir2 show ?thesis by auto
        qed
        from A-li A-gen AinC show basis A by (unfold basis-def, auto)
    qed
    from 12 show ?thesis by satx
qed
lemma (in linear-map) surj-imp-imT-carrier:
    assumes surj: T' (carrier V ) = carrier W
    shows (imT) = carrier W
    by (simp add: surj im-def)
```


6.5 The rank-nullity (dimension) theorem

If V is finite-dimensional and $T: V \rightarrow W$ is a linear map, then $\operatorname{dim}(\operatorname{im}(T))+\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim} V$. Moreover, we prove that if T is surjective linear-map between V and W, where V is finitedimensional, then also W is finite-dimensional.
theorem (in linear-map) rank-nullity-main:
assumes $f d$: V.fin-dim
shows (vectorspace.dim $K(W$.vs imT $))+($ vectorspace.dim $K(V . v s$ $\operatorname{ker} T))=V . \operatorname{dim}$
$T^{\prime}($ carrier $V)=$ carrier $W \Longrightarrow W \cdot$ in-dim
proof -

- First interpret kerT, imT as vectorspaces
have subs-ker: subspace $K \operatorname{ker} T V$ by (intro kerT-is-subspace)
from subs-ker have vs-ker: vectorspace K (V.vs kerT) by (rule V.subspace-is-vs)
from vs-ker interpret ker: vectorspace K (V.vs kerT) by auto have kerInC: kerT \subseteq carrier V by (unfold ker-def, auto)
have subs-im: subspace K imT W by (intro imT-is-subspace)
from subs-im have vs-im: vectorspace K (W.vs imT) by (rule W.subspace-is-vs)
from vs-im interpret $i m$: vectorspace $K(W . v s ~ i m T)$ by auto have imInC: imT؟carrier W by (unfold im-def, auto)
have zero-same[simp]: $\mathbf{0}_{V . v s} k e r T=\mathbf{0}_{V}$ apply (unfold ker-def) by auto
- Show ker T has a finite basis. This is not obvious. Show that any linearly independent set has size at most that of V. There exists a maximal linearly independent set, which is the basis.
have every-li-small: $\bigwedge A .(A \subseteq$ ker $T) \wedge$ ker.lin-indpt $A \Longrightarrow$ finite $A \wedge$ card $A \leq V$.dim
proof -
fix A
assume eli-asm: $(A \subseteq k e r T) \wedge$ ker.lin-indpt A
note V.module.span-li-not-depend(2)[where ? $N=k e r T$ and $? S=A]$
from this subs-ker fd eli-asm kerInC show ?thesis A
apply (intro conjI)
by (auto intro!: V.li-le-dim)
qed
from every-li-small have exA:
\exists A. finite $A \wedge$ maximal $A(\lambda S . S \subseteq$ carrier $(V . v s k e r T) \wedge$ ker.lin-indpt
S)
apply (intro maximal-exists $[$ where $? N=V . \operatorname{dim}$ and $? B=\{ \}])$ apply auto
by (unfold ker.lin-dep-def, auto)
from exA obtain A where A : finite $A \wedge$ maximal $A(\lambda S . S \subseteq$ carrier (V.vs kerT) \wedge ker.lin-indpt S)
by blast
hence finA: finite A and Ainker: $A \subseteq$ carrier (V.vs ker T) and A in C : $A \subseteq$ carrier V
by (unfold maximal-def ker-def, auto)
- We obtain the basis A of kerT. It is also linearly independent when
considered in V rather than kerT
from A have Abasis: ker.basis A by (intro ker.max-li-is-basis, auto)
from subs-ker Abasis have spanA: V.module.span $A=k e r T$
apply (unfold ker.basis-def)
by (subst sym[OF V.module.span-li-not-depend(1)[where ? $N=k e r T]$,
auto)
from Abasis have Akerli: ker.lin-indpt A
apply (unfold ker.basis-def)
by auto
from subs-ker Ainker Akerli have Ali: V.module.lin-indpt A by (auto simp add: V.module.span-li-not-depend(2))

Use the replacement theorem to find C such that $A \cup C$ is a basis of V .
from $f d$ obtain B where B : finite $B \wedge V$.basis B by (metis V.finite-basis-exists)
from B have Bfin: finite B and Bbasis: V.basis B by auto
from B have Bcard: V.dim = card B by (intro V.dim-basis, auto)
from Bbasis have 62: V.module.span $B=$ carrier V
by (unfold V.basis-def, auto)
from A Abasis Ali B vs-ker have $\exists C$. finite $C \wedge C \subseteq$ carrier $V \wedge$
$C \subseteq V$.module.span $B \wedge C \cap A=\{ \}$
$\wedge \operatorname{int}(\operatorname{card} C) \leq(\operatorname{int}(\operatorname{card} B))-(\operatorname{int}(\operatorname{card} A)) \wedge(V . m o d u l e . s p a n$
$(A \cup C)=V$. module.span $B)$
apply (intro V.replacement)
apply (unfold vectorspace.basis-def V.basis-def)
by (unfold ker-def, auto)
From replacement we got $|C| \leq|B|-|A|$. Equality must actually hold, because no generating set can be smaller than B. Now $A \cup C$ is a maximal generating set, hence a basis; its cardinality equals the dimension.

We claim that $T(C)$ is basis for $\operatorname{im}(T)$.
then obtain C where C : finite $C \wedge C \subseteq$ carrier $V \wedge C \subseteq V$.module.span
$B \wedge C \cap A=\{ \}$
$\wedge \operatorname{int}(\operatorname{card} C) \leq(\operatorname{int}(\operatorname{card} B))-(\operatorname{int}(\operatorname{card} A)) \wedge(V . m o d u l e . s p a n$
$(A \cup C)=V$. module.span $B)$ by auto
hence Cfin: finite C and C in C : $C \subseteq$ carrier V and CinspanB: $C \subseteq V$.module.span B and CAdis: $C \cap A=\{ \}$
and Ccard: int $(\operatorname{card} C) \leq($ int $(\operatorname{card} B))-($ int $(\operatorname{card} A))$
and ACspanB: $(V . m o d u l e . s p a n ~(A \cup C)=V . m o d u l e . s p a n ~ B)$ by auto
from C have cardLe: card $A+$ card $C \leq$ card B by auto
from $B C$ have ACgen: V.module.gen-set $(A \cup C)$ apply (unfold V.basis-def) by auto
from finA C ACgen AinC B have cardGe: card $(A \cup C) \geq$ card B
by (intro V.li-smaller-than-gen, unfold V.basis-def, auto)
from $\operatorname{fin} A C$ have cardUn: card $(A \cup C) \leq$ card $A+$ card C
by (metis Int-commute card-Un-disjoint le-refl)
from cardLe cardUn cardGe Bcard have cardEq:

```
card (A\cupC) = card A + card C
card (A\cupC) = card B
card (A\cupC) = V.dim
by auto
from Abasis C cardEq have disj: }A\capC={} by aut
from finA AinC C cardEq 62 have ACfin: finite ( }A\cupC)\mathrm{ and ACba-
sis: V.basis (A\cupC)
    by (auto intro!: V.dim-gen-is-basis)
have lm: linear-map K V WT..
```

Let C^{\prime} be the image of C under T. We will show C^{\prime} is a basis for $\operatorname{im}(T)$.

```
let ? }\mp@subsup{C}{}{\prime}=\mp@subsup{T}{}{\prime}
from Cfin have C'fin: finite ? }\mp@subsup{C}{}{\prime}\mathrm{ by auto
from AinC C have cim: ?C'\subseteqimT by (unfold im-def, auto)
```

"There is a subtle detail: we first have to show T is injective on C.
We establish that no nontrivial linear combination of C can have image 0 under T, because that would mean it is a linear combination of A, giving that $A \cup C$ is linearly dependent, contradiction. We use this result in 2 ways: (1) if T is not injective on C, then we obtain $v, w \in C$ such that $v-w$ is in the kernel, contradiction, (2) if $T(C)$ is linearly dependent, taking the inverse image of that linear combination gives a linear combination of C in the kernel, contradiction. Hence T is injective on C and $T(C)$ is linearly independent.

```
have lc-in-ker: \(\bigwedge d D v . \llbracket D \subseteq C ; d \in D \rightarrow\) carrier \(K ; T\) (V.module.lincomb
\(d D)=\mathbf{0}_{W}\);
    \(v \in D ; d v \neq \mathbf{0}_{K} \rrbracket \Longrightarrow\) False
proof -
    fix \(d D v\)
    assume \(D: D \subseteq C\) and \(d: d \in D \rightarrow\) carrier \(K\) and \(T 0: T\) (V.module.lincomb
\(d D)=\mathbf{0}_{W}\)
            and \(v: v \in D\) and \(d v n z: d v \neq \mathbf{0}_{K}\)
    from \(D\) Cfin have \(D\) fin: finite \(D\) by (auto intro: finite-subset)
    from \(D\) CinC have \(\operatorname{DinC}\) : \(D \subseteq\) carrier \(V\) by auto
    from T0 d Dfin DinC have lc-d: V.module.lincomb d \(D \in k e r T\)
        by (unfold ker-def, auto)
    from \(l c-d \operatorname{span} A\) AinC have \(\exists a^{\prime} A^{\prime} . A^{\prime} \subseteq A \wedge a^{\prime} \in A^{\prime} \rightarrow\) carrier \(K\)
\(\wedge\)
            \(V . m o d u l e . l i n c o m b a^{\prime} A^{\prime}=V . m o d u l e . l i n c o m b d D\)
            by (intro V.module.in-span, auto)
    then obtain \(a^{\prime} A^{\prime}\) where \(a^{\prime}: A^{\prime} \subseteq A \wedge a^{\prime} \in A^{\prime} \rightarrow\) carrier \(K \wedge\)
            \(V . m o d u l e . l i n c o m b d D=V . m o d u l e . l i n c o m b a^{\prime} A^{\prime}\)
            by metis
    hence \(A^{\prime}\) sub: \(A^{\prime} \subseteq A\) and \(a^{\prime} f u n: a^{\prime} \in A^{\prime} \rightarrow\) carrier \(K\)
        and \(a^{\prime}\)-lc:V.module.lincomb d \(D=V . m o d u l e . l i n c o m b a^{\prime} A^{\prime}\) by
auto
    from \(a^{\prime}\) finA \(D\) fin have \(A^{\prime}\) fin: finite \(\left(A^{\prime}\right)\) by (auto intro: fi-
nite-subset)
```

from AinC A^{\prime} sub have A^{\prime} in $C: A^{\prime} \subseteq$ carrier V by auto
let $? e=\left(\lambda v\right.$. if $v \in A^{\prime}$ then $a^{\prime} v$ else $\left.\ominus_{K} \mathbf{1}_{K^{\otimes}}{ }_{K} d v\right)$
from a^{\prime} fun d have e-fun: ? $e \in A^{\prime} \cup D \rightarrow$ carrier K
apply (unfold Pi-def)
by auto
from
$A^{\prime} f i n$ Dfin
A^{\prime} inC DinC
a^{\prime} fun $d e$-fun
disj $D A^{\prime}$ sub
have lccomp1:
$V . m o d u l e . l i n c o m b a^{\prime} A^{\prime} \oplus_{V} \ominus_{K} \mathbf{1}_{K} \odot_{V} V$.module.lincomb d $D=$
V.module.lincomb $\left(\lambda v\right.$. if $v \in A^{\prime}$ then $a^{\prime} v$ else $\left.\ominus_{K} \mathbf{1}_{K} \otimes_{K} d v\right)$
$\left(A^{\prime} \cup D\right)$
apply (subst sym[OF V.module.lincomb-smult])
apply (simp-all)
apply (subst V.module.lincomb-union2)
by (auto)
from
A^{\prime} fin
A^{\prime} in C
a^{\prime} fun
have lccomp2:
$V . m o d u l e . l i n c o m b a^{\prime} A^{\prime} \oplus_{V} \ominus_{K} \mathbf{1}_{K} \odot_{V} V$.module.lincomb d $D=$ $\mathbf{0}_{V}$
by (simp add: $a^{\prime}-l c$
V.module.smult-minus-1 V.module.M.r-neg)
from lccomp1 lccomp2 have lc0: V.module.lincomb $\left(\lambda v\right.$. if $v \in A^{\prime}$ then $a^{\prime} v$ else $\left.\ominus_{K} \mathbf{1}_{K} \otimes_{K} d v\right)\left(A^{\prime} \cup D\right)$
$=\mathbf{0}_{V}$ by auto
from disj $a^{\prime} v D$ have v-nin: $v \notin A^{\prime}$ by auto
from A^{\prime} fin D fin
A^{\prime} inC DinC
e-fun d
A'sub D disj
$v d v n z$
lco
have $A C$-ld: V.module.lin-dep $(A \cup C)$
apply (intro V.module.lin-dep-crit[where ? $A=A \cup D$ and
$? S=A \cup C$ and $? a=\lambda v$. if $v \in A^{\prime}$ then $a^{\prime} v$ else $\ominus_{K} \mathbf{1}_{K} \otimes_{K} d v$ and $? v=v]$)

by (auto dest: integral)

from AC-ld ACbasis show False by (unfold V.basis-def, auto)
qed
have C^{\prime}-card: inj-on $T C$ card $C=$ card ? C^{\prime}
proof -
show inj-on $T C$
proof (rule ccontr)
assume \neg inj-on $T C$

```
    then obtain \(v w\) where \(v \in C w \in C v \neq w T v=T w\) by (unfold
inj-on-def, auto)
    from this CinC show False
    apply (intro lc-in-ker[where ? \(D 1=\{v, w\}\) and ? \(d 1=\lambda x\). if \(x=v\)
then \(\mathbf{1}_{K}\) else \(\ominus_{K} \mathbf{1}_{K}\)
            and ? \(v 1=v]\) )
                by (auto simp add: V.module.lincomb-def hom-sum ring-subset-carrier
                    W.module.smult-minus-1 r-neg T-im)
    qed
    from this Cfin show card \(C=\) card ? \(C^{\prime}\)
        by (metis card-image)
    qed
    let \(? f=\) the-inv-into \(C T\)
    have \(f: \wedge x . x \in C \Longrightarrow\) ? \((T x)=x \bigwedge y . y \in ? C^{\prime} \Longrightarrow T(? f y)=y\)
    apply (insert \(C^{\prime}\)-card(1))
        apply (metis the-inv-into-f-f)
    by (metis \(f\)-the-inv-into-f)
    have \(C^{\prime}\)-li: im.lin-indpt? \(C^{\prime}\)
    proof (rule ccontr)
    assume Cld: \(\neg\) im.lin-indpt ? \(C^{\prime}\)
    from Cld cim subs-im have CldW: W.module.lin-dep ? \(C^{\prime}\)
        apply (subst sym[OF W.module.span-li-not-depend(2)[where
\(? S=T^{\prime} C\) and \(\left.\left.\left.? N=i m T\right]\right]\right)\)
        by auto
    from \(C\) Cld \(W\) have \(\exists c^{\prime} v^{\prime} .\left(c^{\prime} \in\left(? C^{\prime} \rightarrow\right.\right.\) carrier \(\left.\left.K\right)\right) \wedge(W\).module.lincomb
\(\left.c^{\prime} ? C^{\prime}=\mathbf{0}_{W}\right)\)
        \(\wedge\left(v^{\prime} \in ? C^{\prime}\right) \wedge\left(c^{\prime} v^{\prime} \neq \mathbf{0}_{K}\right)\) by (intro W.module.finite-lin-dep,
auto)
    then obtain \(c^{\prime} v^{\prime}\) where \(c^{\prime}:\left(c^{\prime} \in\left(? C^{\prime} \rightarrow\right.\right.\) carrier \(\left.\left.K\right)\right) \wedge(W\).module.lincomb
\(c^{\prime}\) ? \(\left.C^{\prime}=\mathbf{0}_{W}\right)\)
        \(\wedge\left(v^{\prime} \in ? C^{\prime}\right) \wedge\left(c^{\prime} v^{\prime} \neq \mathbf{0}_{K}\right)\) by auto
    hence \(c^{\prime} f u n:\left(c^{\prime} \in\left(? C^{\prime} \rightarrow\right.\right.\) carrier \(\left.K\right)\) ) and \(c^{\prime} l c:\) ( \(W\).module.lincomb
\(\left.c^{\prime} ? C^{\prime}=\mathbf{0}_{W}\right)\) and
    \(v^{\prime}:\left(v^{\prime} \in ? C^{\prime}\right)\) and \(c v n z:\left(c^{\prime} v^{\prime} \neq \mathbf{0}_{K}\right)\) by auto
```

We take the inverse image of C^{\prime} under T to get a linear combination of C that is in the kernel and hence a linear combination of A. This contradicts $A \cup C$ being linearly independent.

```
let ? \(c=\lambda v \cdot c^{\prime}(T v)\)
from \(c^{\prime}\) fun have \(c\)-fun: \(? c \in C \rightarrow\) carrier \(K\) by auto
from Cfin
    c-fun \(c^{\prime}\) fun
    \(C^{\prime}\)-card
    CinC
    \(f\)
    \(c^{\prime} l c\)
have \(T\) (V.module.lincomb ?c \(C)=\mathbf{0}_{W}\)
```

```
            apply (unfold V.module.lincomb-def W.module.lincomb-def)
            apply (subst hom-sum, auto)
            apply (simp cong: finsum-cong add: ring-subset-carrier coeff-in-ring)
            apply (subst finsum-reindex[where ?f = \lambdaw. c' w \odot WW w and
?h=T and ?A=C,THEN sym])
            by auto
    with f c'fun cvnz v' show False
    by (intro lc-in-ker[where ?D1=C and ?d1 =?c and ?v1=?f v],
auto)
    qed
    have C''gen: im.gen-set?C'
    proof -
        have }\mp@subsup{C}{}{\prime}\mathrm{ -span: span ? }\mp@subsup{C}{}{\prime}=im
        proof (rule equalityI)
            from cim subs-im show W.module.span?? ' }\subseteqim
            by (intro span-is-subset, unfold subspace-def, auto)
    next
        show imT\subseteqW.module.span?C'
        proof (auto)
            fix w
            assume w: w\inimT
                            from this finA Cfin AinC CinC obtain v where v-inC:
v\incarrier V and w-eq-T-v: w=T v
            by (unfold im-def image-def, auto)
            from finA Cfin AinC CinC v-inC ACgen have \existsa. a \in A\cupC
                \rightarrow \text { carrier K^ V.module.lincomb a ( } A \cup C ) = v
            by (intro V.module.finite-in-span, auto)
            then obtain a where
                    a-fun: }a\inA\cupC->\mathrm{ carrier K and
                    lc-a-v:v=V.module.lincomb a (A\cupC)
            by auto
            let ? a'=\lambdav. a (?f v)
                from finA Cfin AinC CinC a-fun disj Ainker f C'-card have
Tv: Tv=W.module.lincomb ?a' ?C'
            apply (subst lc-a-v)
            apply (subst V.module.lincomb-union, simp-all)
            apply (unfold lincomb-def V.module.lincomb-def)
            apply (subst hom-sum, auto)
            apply (simp add: subsetD coeff-in-ring
                    hom-sum
                    T-ker
                )
                apply (subst finsum-reindex[where ?h=T and ?f = \lambdav. ? a'
v\odot W
            by (auto cong: finsum-cong simp add: coeff-in-ring ring-subset-carrier)
            from a-fun f have }\mp@subsup{a}{}{\prime}\mathrm{ -fun: ? a' }\in
            from C'fin CinC this w-eq-T-v a'-fun Tv show w\inLinearCom-
binations.module.span K W (T'}C
        by (subst finite-span, auto)
```

```
        qed
    qed
    from this subs-im CinC show ?thesis
        apply (subst span-li-not-depend(1))
        by (unfold im-def subspace-def, auto)
    qed
    from C'-li C''gen C cim have C'-basis: im.basis ( }\mp@subsup{T}{}{\prime}C
    by (unfold im.basis-def, auto)
    have C-card-im: card C = (vectorspace.dim K (W.vs imT))
    using C'-basis C'-card(2) C'fin im.dim-basis by auto
    from finA Abasis have ker.dim = card A by (rule ker.dim-basis)
    note * = this C-card-im cardEq
    show (vectorspace.dim K (W.vs imT)) + (vectorspace.dim K (V.vs
kerT))}=V.dim using * by aut
    assume T'(carrier V) = carrier W
    from * surj-imp-imT-carrier[OF this]
    show W.fin-dim using C'-basis C'fin unfolding W.fin-dim-def
im.basis-def by auto
qed
theorem (in linear-map) rank-nullity:
    assumes fd: V.fin-dim
    shows (vectorspace.dim K (W.vs imT)) + (vectorspace.dim K (V.vs
kerT))=V.dim
    by (rule rank-nullity-main[OF fd])
end
```


[^0]: *This work was funded by the Post-Masters Consultancy and the Computer Laboratory at the University of Cambridge.

