Van der Waerden’s Theorem

Katharina Kreuzer, Manuel Eberl

March 17, 2025

Abstract

This article formalises the proof of Van der Waerden’s Theorem
from Ramsey theory.

Van der Waerden’s Theorem states that for integers k and [there
exists a number N which guarantees that if an integer interval of length
at least IV is coloured with k colours, there will always be an arithmetic
progression of length [of the same colour in said interval. The proof
goes along the lines of Swan [1].

The smallest number Nj; fulfilling Van der Waerden’s Theorem
is then called the Van der Waerden Number. Finding the Van der
Waerden Number is still an open problem for most values of k and .

Contents
1 Representation of integers in different bases

2 Van der Waerden’s Theorem
2.1 Arithmetic progressions
2.2 Van der Waerden’s Theorem

theory Digits
imports Complex_Main
begin

1 Representation of integers in different bases

First, we look at some useful lemmas for splitting sums.

lemma split_sum_first_elt_less: assumes "n<m"
shows "(O i€{n..<m}. £ i) =fn + (3 i€{Sucn ..<m}. £ i)"
(proof)

lemma split_sum_mid_less: assumes "i<(n::nat)"
shows "3 j<n. £ j) = O j<i. £ j) + O j=i..<n. £ j)"
(proof)

In order to use representation of numbers in a basis base and to calculate
the conversion to and from integers, we introduce the following locale.

locale digits =

fixes base :: nat
assumes base_pos: "base > 0"
begin

Conversion from basis base to integers: from_digits n d

n: nat length of representation in basis base
d: nat = nat function of digits in basis base where d i is the
i-th digit in basis base
output: nat natural number corresponding to
d(n—1)...d(0) as integer
fun from_digits :: "nmat = (nat = nat) = nat" where

"from_digits 0 d = 0"
| "from_digits (Suc n) d = d O + base * from_digits n (d o Suc)"

Alternative definition using sum:

lemma from_digits_altdef: "from_digits n d = (). i<n. d i * base ~ i)"

{proof)

Digit in basis base of some integer number: digit x i

X: nat integer

i nat index

output: nat i-th digit of representation in basis base of x
fun digit :: "nat = nat = nat" where

"digit x 0 = x mod base"
| "digit x (Suc i) = digit (x div base) i"

Alternative definition using divisor and modulo:

lemma digit_altdef: "digit x i = (x div (base ~ 1)) mod base"
{proof)

Every digit must be smaller that the base.

lemma digit_less_base: "digit x i < base"

{proof)

A representation in basis base of length n must be less than base™.

lemma from_digits_less:
assumes "Vi<n. d i < base"
shows "from_digits n d < base ~ n

(proof)

n

Lemmas for mod and div in number systems of basis base:

lemma mod_base: assumes "Ai. i<n = d i < base" "n>0"
shows "from_digits n d mod base = d 0 "

(proof)

lemma mod_base_i:

assumes "Ai. i<n = d i < base" "n>0" "i<n"

shows "(> j=i..<n. d j * base ~ (j-i)) mod base = d i "
(proof)

lemma div_base_i:
assumes "Ai. i<n = d i < base" "n>0" "i<n"
shows "from_digits n d div (base i) = (D j=i..<n. d j * base ~ (j-i))"
{proof)

Conversions are inverse to each other.

lemma digit_from_digits:
assumes "Aj. j<n = d j < base" "n>0" "i<n"
shows "digit (from_digits nd) i =d i"
(proof)

lemma div_distrib: assumes "i<n"
shows "(a*base™n + b) div base”i mod base = b div base”i mod base"

(proof)

lemma from_digits_digit:
assumes "x < base T n"
shows "from_digits n (digit x) = x"

(proof)

Stronger formulation of above lemma.

lemma from_digits_digit’:
"from_digits n (digit x) = x mod (base ~ n)"

{proof)

end
end
theory Van_der_Waerden
imports Main "HOL-Library.FuncSet" Digits
begin

2 Van der Waerden’s Theorem

In combinatorics, Van der Waerden’s Theorem is about arithmetic progres-
sions of a certain length of the same colour in a colouring of an interval. In
order to state the theorem and to prove it, we need to formally introduce
arithmetic progressions. We will express k-colourings as functions mapping
an integer interval to the set {0,...,k — 1} of colours.

2.1 Arithmetic progressions

A sequence of integer numbers with the same step size is called an arith-
metic progression. We say an m-fold arithmetic progression is an arithmetic
progression with multiple step lengths.

Arithmetic progressions are defined in the following using the variables:
start: int starting value
step: nat positive integer for step length
i nat i-th value in the arithmetic progression

definition arith_prog :: "int = nat = nat = int"
where "arith_prog start step i = start + int (i * step)"

An m-fold arithmetic progression (which we will also call a multi-arithmetic
progression) is defined in the following using the variables:

dims: nat number of dimensions/step directions of m-fold
arithmetic progression
start: int starting value

steps: nat = nat function of steps, returns step in i-th dimension
for i € [0.. < dims]

c: nat = nat function of coefficients, returns coefficient in ¢-th
dimension for ¢ € [0.. < dims]

definition multi_arith_prog ::
"nat = int = (nat = nat) = (nat = nat) = int"
where "multi_arith_prog dims start steps c =
start + int () i<dims. ¢ i * steps i)"

An m-fold arithmetic progression of dimension 1 is also an arithmetic pro-
gression and vice versa. This is shown in the following lemmas.

lemma multi_to_arith_prog:

"multi_arith_prog 1 start steps c¢ =
arith_prog start (steps 0) (c 0)"

(proof)

lemma arith_prog to_multi:
"arith_prog start step c =
multi_arith_prog 1 start (A_. step) (A_. c)"

(proof)

To show that an arithmetic progression is well-defined, we introduce the fol-
lowing predicate. It assures that arith_prog start step ¢ [0..<1] is con-
tained in the integer interval [a..b].

definition is_arith_prog on ::
"nat = int = nat = int = int = bool"
where "is_arith_prog on 1 start step a b +—
(start > a A arith_prog start step (1-1) < b)"

Furthermore, we have monotonicity for arithmetic progressions.

lemma arith_prog mono:
assumes "¢ < ¢’"
shows "arith_prog start step ¢ < arith_prog start step c’"

(proof)

Now, we state the well-definedness of an arithmetic progression of length [
in an integer interval [a..b]. Indeed, is_arith_prog_on guarantees that every
element of arith_prog start step of length [lies in [a..b].

lemma is_arith_prog_onD:
assumes "is_arith_prog on 1 start step a b"
assumes "c € {0..<1}"
shows "arith_prog start step ¢ € {a..b}"

(proof)

We also need a predicate for an m-fold arithmetic progression to be well-
defined. It assures that multi_arith_prog start step ‘ [0..<1]°m is con-
tained in [a..b].

definition is_multi_arith_prog on ::
"nat = nat = int = (nat = nat) = int = int = bool"
where "is_multi_arith_prog_on 1 m start steps a b «—
(start > a A multi_arith_prog m start steps (A_. 1-1) < b)"

Moreover, we have monotonicity for m-fold arithmetic progressions as well.

lemma multi_arith_prog mono:
assumes "Ai. i <m = ci < ¢’ i"
shows "multi_arith_prog m start steps c <
multi_arith_prog m start steps c’"

{proof)

Finally, we get the well-definedness for m-fold arithmetic progressions of
length [. Here, is_multi_arith_prog_on guarantees that every element of
multi_arith_prog start step of length [lies in [a..}].

lemma is_multi_arith_prog_onD:
assumes "is_multi_arith_prog_on 1 m start steps a b"
assumes "¢ € {0..<m} — {0..<1}"
shows "multi_arith_prog m start steps c¢ € {a..b}"

(proof)

2.2 Van der Waerden’s Theorem

The property for a number n to fulfill Van der Waerden’s theorem is the
following:
For a k-colouring col of [a..b] there exist

e start: starting value of an arithmetic progression
e step: step length of an arithmetic progression
e j: colour

such that arith_prog start step is a valid arithmetic progression of length
[lying in [a..b] of the same colour j.

The following variables will be used:
k: nat number of colours in segment colouring on [a..b]
I: nat length of arithmetic progression
n: nat number fulfilling Van der Waerden’s Theorem

definition vdw ::
"nat = nat = nat = bool"
where "vdw k 1 n +—
(Wa bcol. b+1 > a+ intn A col € {a..b} — {..<k} —
(3j start step. j < k A step > 0 A
is_arith_prog on 1 start step a b A
arith_prog start step ¢ {..<1} C col -¢ {j} N {a..bP))"

To better work with the property of Van der Waerden’s theorem, we intro-
duce an elimination rule.

lemma vdwE:
assumes "vdw k 1 n"
"b + 1 > a + int n"
"col € {a..b} — {..<k}"
obtains j start step where
Hj < kl! Hstep > OII
"is_arith_prog on 1 start step a b"
"arith_prog start step ¢ {..<1} C col -¢ {j} N {a..b}"
(proof)

Van der Waerden’s theorem implies that the number fulfilling it is positive.
This is show in the following lemma.
lemma vdw_imp_pos:
assumes "vdw k 1 n"
"> 0"
shows "n > 0"
(proof)

Van der Waerden’s Theorem is trivial for a non-existent colouring. It also
makes no sense for arithmetic progressions of length 0.

lemma vdw_0_left [simp, intro]: "n>0 =— vdw 0 1 n"

(proof)

In the case of £ = 1, Van der Waerden’s Theorem holds. Then every number
has the same colour, hence also the arithmetic progression. A possible choice
for the number fulfilling Van der Waerden Theorem is [.

lemma vdw_1_left:

assumes "1>0"
shows "vdw 1 1 1"

(proof)

In the case | = 1, Van der Waerden’s Theorem holds. As the length of
the arithmetic progression is 1, it consists of just one element. Thus every
nonempty integer interval fulfills the Van der Waerden property. We can
prove Ny 1 to be 1.

lemma vdw_1_right: "vdw k 1 1"

(proof)

In the case I = 2, Van der Waerden’s Theorem holds as well. Here, any
two distinct numbers form an arithmetic progression of length 2. Thus we
only have to find two numbers with the same colour. Using the pigeonhole
principle on k£ + 1 values, we can find two integers with the same colour.

lemma vdw_2 _right: "vdw k 2 (k+1)"

(proof)

In order to prove Van der Waerden’s Theorem, we first prove a slightly
different lemma. The statement goes as follows:
For a k-colouring col on [a..b] there exist

e start: starting value of an arithmetic progression
e steps: step length of an arithmetic progression

such that f = multi_arith_prog m start step is a valid m-fold arithmetic
progression of length [lying in [a..b] such that for every s < m have: if ¢j < [
for all 7 < s then f(cg,c1,...,¢m—1) and f(0,...,0,¢Cs41,-..,Cm—1) have the
same colour.

The property of the lemma uses the following variables:
k: nat number of colours in segment colouring of [a..b]
m: nat dimension of m-fold arithmetic progression
I: nat [+ 1islength of m-fold arithmetic progression
n: nat number fulfilling vdw_lemma

definition vdw_lemma :: "nat = nat = nat = nat = bool" where
"vdw_lemma k m 1 n <—
(Wa b col. b+ 1 > a+ intn A col € {a..b} = {..<k} —
(dstart steps. (Vi<m. steps i > 0) A
is_multi_arith_prog on (1+1) m start steps a b A (
let f = multi_arith_prog m start steps
in (Vc € {0..<m} — {0..1}. Vs<m. (V j < s. ¢c j<1l) —
col (f ¢) = col (f (A\i. if i < s then 0 else c i))))))"

To better work with this property, we introduce an elimination rule for
vdw_Ilemma.

lemma vdw_lemmaE:
fixes a b :: int
assumes "vdw_lemma k m 1 n"
"b + 1 > a + int n" "col € {a..b} — {..<k}"
obtains start steps where
"Ai. i <m = steps i > 0"
"is_multi_arith_prog_on (1+1) m start steps a b"
"let f = multi_arith_prog m start steps
in V¢ € {0..<m} — {0..1}. Vs<m. (v j < s. c j<1) —
col (f ¢) = col (f (\i. if i < s then 0 else c i))"

(proof)

To simplify the following proof, we show the following formula.

lemma sum_mod_poly:

assumes "(k::nat)>0"

shows "(k - 1) * (O, ne{..<q}. k™n) < k™q "
(proof)

The proof of Van der Waerden’s Theorem now proceeds in three steps:

e Firstly, we show that the vdw property for all k£ proves the vdw_lemma
for fixed [but arbitrary & and m. This is done by induction over m.

e Secondly, we show that vdw_lemma implies the induction step of vdw
using the pigeonhole principle.

o Lastly, we combine the previous steps in an induction over [to show
Van der Waerden’s Theorem in the general setting.

Firstly, we need to show that vdw for arbitrary k implies vdw_lemma for fixed
[. As mentioned earlier, we use induction over m.

lemma vdw_imp_ vdw_lemma:

fixes 1
assumes vdw_assms: ”/\k’. k’>0 = dn_k’. vdw k’ 1 n_k’"
and "1 > 2"
and "m > 0"
and "k > 0"
shows "IN. vdw_lemma k m 1 N"
(proof)

Secondly, we show that vdw_lemma implies the induction step of Van der
Waerden’s Theorem using the pigeonhole principle.

lemma vdw_lemma_imp_vdw:
assumes "vdw_lemma k k 1 N"
shows "vdw k (Suc 1) N"

(proof)

Lastly, we assemble all lemmas to finally prove Van der Waerden’s Theorem
by induction on [. The cases [= 1 and the induction start [= 2 are treated
separately and have been shown earlier.

theorem van_der_Waerden: assumes "1>0" "k>0" shows "dn. vdw k 1 n"

(proof)

end

References
[1] R. G. Swan. Van der Waerden’s theorem on arithmetic progressions.

Technical report, Department of Mathematics, University of Chicago.
Online at http://www.math.uchicago.edu/~swan/expo/vdW.pdf.

10

http://www.math.uchicago.edu/~swan/expo/vdW.pdf

	Representation of integers in different bases
	Van der Waerden's Theorem
	Arithmetic progressions
	Van der Waerden's Theorem

