
Van der Waerden’s Theorem

Katharina Kreuzer, Manuel Eberl

March 17, 2025

Abstract

This article formalises the proof of Van der Waerden’s Theorem
from Ramsey theory.

Van der Waerden’s Theorem states that for integers k and l there
exists a number N which guarantees that if an integer interval of length
at least N is coloured with k colours, there will always be an arithmetic
progression of length l of the same colour in said interval. The proof
goes along the lines of Swan [1].

The smallest number Nk,l fulfilling Van der Waerden’s Theorem
is then called the Van der Waerden Number. Finding the Van der
Waerden Number is still an open problem for most values of k and l.

1

Contents
1 Representation of integers in different bases 3

2 Van der Waerden’s Theorem 8
2.1 Arithmetic progressions . 8
2.2 Van der Waerden’s Theorem 10

2

theory Digits
imports Complex_Main

begin

1 Representation of integers in different bases

First, we look at some useful lemmas for splitting sums.
lemma split_sum_first_elt_less: assumes "n<m"

shows "(
∑

i∈{n..<m}. f i) = f n + (
∑

i∈{Suc n ..<m}. f i)"
using sum.atLeast_Suc_lessThan assms by blast

lemma split_sum_mid_less: assumes "i<(n::nat)"
shows "(

∑
j<n. f j) = (

∑
j<i. f j) + (

∑
j=i..<n. f j)"

proof -
have "(

∑
j<n. f j) = (

∑
j∈{..<i} ∪ {i..<n}. f j)"

using ‹i < n› by (intro sum.cong) auto
also have " . . . = (

∑
j<i. f j) + (

∑
j=i..<n. f j)"

by (subst sum.union_disjoint) auto
finally show "(

∑
j<n. f j) = (

∑
j<i. f j) + (

∑
j=i..<n. f j)" .

qed

In order to use representation of numbers in a basis base and to calculate
the conversion to and from integers, we introduce the following locale.
locale digits =

fixes base :: nat
assumes base_pos: "base > 0"

begin

Conversion from basis base to integers: from_digits n d

n: nat length of representation in basis base
d: nat ⇒ nat function of digits in basis base where d i is the

i-th digit in basis base
output: nat natural number corresponding to

d(n− 1) . . . d(0) as integer
fun from_digits :: "nat ⇒ (nat ⇒ nat) ⇒ nat" where

"from_digits 0 d = 0"
| "from_digits (Suc n) d = d 0 + base * from_digits n (d ◦ Suc)"

Alternative definition using sum:
lemma from_digits_altdef: "from_digits n d = (

∑
i<n. d i * base ^ i)"

by (induction n d rule: from_digits.induct)
(auto simp add: sum.lessThan_Suc_shift o_def sum_distrib_left

sum_distrib_right mult_ac simp del: sum.lessThan_Suc)

Digit in basis base of some integer number: digit x i

3

x: nat integer
i: nat index
output: nat i-th digit of representation in basis base of x

fun digit :: "nat ⇒ nat ⇒ nat" where
"digit x 0 = x mod base"

| "digit x (Suc i) = digit (x div base) i"

Alternative definition using divisor and modulo:
lemma digit_altdef: "digit x i = (x div (base ^ i)) mod base"

by (induction x i rule: digit.induct) (auto simp: div_mult2_eq)

Every digit must be smaller that the base.
lemma digit_less_base: "digit x i < base"

using base_pos by (auto simp: digit_altdef)

A representation in basis base of length n must be less than basen.
lemma from_digits_less:

assumes "∀ i<n. d i < base"
shows "from_digits n d < base ^ n"

using assms proof (induct n d rule: from_digits.induct)
case (2 n d)
have "from_digits n (d ◦ Suc) ≤ base ^ n -1" using 2

by (metis One_nat_def Suc_leI Suc_pred base_pos comp_apply
less_Suc_eq_le zero_less_power)

moreover have "d 0 ≤ base -1" using 2
by (metis One_nat_def Suc_pred base_pos less_Suc_eq_0_disj

less_Suc_eq_le)
ultimately have "d 0 + base * from_digits n (d ◦ Suc) ≤

base - 1 + base * (base^(n) - 1)"
by (simp add: add_mono_thms_linordered_semiring(1))

then show "from_digits (Suc n) d < base ^ Suc n"
using base_pos by (auto simp:comp_def)
(metis Suc_pred add_gr_0 le_imp_less_Suc mult_Suc_right

zero_less_power)
qed auto

Lemmas for mod and div in number systems of basis base :
lemma mod_base: assumes "

∧
i. i<n =⇒ d i < base" "n>0"

shows "from_digits n d mod base = d 0 "
proof -

have "(
∑

i<n. d i * base ^ i) mod base =
(
∑

i<n. d i * base ^ i mod base) mod base"
by (subst mod_sum_eq[symmetric]) simp
then show ?thesis using assms

sum.lessThan_Suc_shift[of "(λi. d i * base ^ i mod base)" "n-1"]
unfolding from_digits_altdef by simp

qed

4

lemma mod_base_i:
assumes "

∧
i. i<n =⇒ d i < base" "n>0" "i<n"

shows "(
∑

j=i..<n. d j * base ^ (j-i)) mod base = d i "
proof -

have "(
∑

j=i..<n. d j * base ^ (j-i)) mod base =
(
∑

j=i..<n. d j * base ^ (j-i) mod base) mod base"
by (subst mod_sum_eq[symmetric]) simp

then show ?thesis
using assms split_sum_first_elt_less[where

f = "(λj. d j * base ^ (j-i) mod base)"]
unfolding from_digits_altdef by simp

qed

lemma div_base_i:
assumes "

∧
i. i<n =⇒ d i < base" "n>0" "i<n"

shows "from_digits n d div (base ^i) = (
∑

j=i..<n. d j * base ^ (j-i))"
unfolding from_digits_altdef proof -
have base_exp: "base^(j) = base^(j-i) * base^i"

if "j∈{i..<n}" for j
by (metis Nat.add_diff_assoc2 add_diff_cancel_right’ atLeastLessThan_iff

power_add that)
have first:"(

∑
j<i. d j * base ^ j)< base ^ i"

using assms from_digits_less[where n="i"]
unfolding from_digits_altdef by auto

have "(
∑

j<n. d j * base ^ j) =
(
∑

j<i. d j * base ^ j) + (
∑

j=i..<n. d j * base ^ j)"
using assms split_sum_mid_less[where f="(λj. d j * base^j)"] by auto

then have split_sum: "(
∑

j<n. d j * base ^ j) =
(
∑

j<i. d j * base ^ j) + base^i * (
∑

j=i..<n. d j * base ^ (j-i))"
using base_exp mult.assoc sum_distrib_right
by (smt (z3) mult.commute sum.cong)

then show "(
∑

i<n. d i * base ^ i) div base ^ i =
(
∑

j = i..<n. d j * base ^ (j - i))"
using first by (simp add:split_sum base_pos)

qed

Conversions are inverse to each other.
lemma digit_from_digits:

assumes "
∧

j. j<n =⇒ d j < base" "n>0" "i<n"
shows "digit (from_digits n d) i = d i"
using assms proof (cases "i=0")
case True
then show ?thesis

by (simp add: assms(1) assms(2) digits.mod_base digits_axioms)
next

case False
have "from_digits n d div base^i mod base = d i"

using assms by (auto simp add: div_base_i mod_base_i)

5

then show "digit (from_digits n d) i = d i"
unfolding digit_altdef by auto

qed

lemma div_distrib: assumes "i<n"
shows "(a*base^n + b) div base^i mod base = b div base^i mod base"

proof -
have "base^i dvd (a*base^n)" using assms

by (simp add: le_imp_power_dvd)
moreover have "a*base^n div base^i mod base = 0"

by (metis Suc_leI assms dvd_imp_mod_0 dvd_mult
dvd_mult_imp_div le_imp_power_dvd power_Suc)

ultimately show ?thesis
by (metis add.right_neutral div_mult_mod_eq

div_plus_div_distrib_dvd_left mod_mult_self3)
qed

lemma from_digits_digit:
assumes "x < base ^ n"
shows "from_digits n (digit x) = x"
using assms unfolding digit_altdef from_digits_altdef

proof (induction n arbitrary: x)
case 0
then show ?case by simp

next
case (Suc n)
define x_less where "x_less = x mod base^n"
define x_n where "x_n = x div base^n"
have "x_less < base^n"

using x_less_def base_pos mod_less_divisor by presburger
then have IH_x_less:

"(
∑

i<n. x_less div base ^ i mod base * base ^ i) = x_less"
using Suc.IH by simp

have "x_n < base" using ‹x<base^Suc n›
by auto (metis less_mult_imp_div_less x_n_def)

then have "x_n mod base = x_n" by simp
have x_less_i_eq_x_i:"x mod base^n div base ^i mod base =

x div base^i mod base" if "i<n" for i
proof -

have "x div base^i mod base =
((x div base^n) * base^n + x mod base^n) div base^i mod base"

using div_mult_mod_eq[of x "base^n"] by simp
also have " . . . = x mod base^n div base^i mod base"

using div_distrib[where a="x div base^n" and b = "x mod base^n"]
that by auto

finally show ?thesis by simp
qed
have "x = (x_n mod base)*base^n + x_less"

unfolding ‹x_n mod base=x_n›

6

using x_n_def x_less_def div_mod_decomp by blast
also have " . . . = (x div base^n mod base) * base^n +

(
∑

i<n. x div base ^ i mod base * base ^ i)"
using IH_x_less x_less_def x_less_i_eq_x_i x_n_def by auto

finally show ?case using sum.atMost_Suc
by (simp add: add.commute)

qed

Stronger formulation of above lemma.
lemma from_digits_digit’:

"from_digits n (digit x) = x mod (base ^ n)"
unfolding from_digits_altdef digit_altdef

proof (induction n arbitrary: x)
case 0
then show ?case by simp

next
case (Suc n)
define x_less where "x_less = x mod base^n"
define x_n where "x_n = x div base^n mod base"
have "x_less < base^n" using x_less_def base_pos

mod_less_divisor by presburger
then have IH_x_less:

"(
∑

i<n. x_less div base ^ i mod base * base ^ i) = x_less"
using Suc.IH by simp

have "x_n < base" using base_pos mod_less_divisor x_n_def
by blast

then have "x_n mod base = x_n" by simp
have x_less_i_eq_x_i:"x mod base^n div base ^i mod base =

x div base^i mod base" if "i<n" for i
proof -

have "x div base^i mod base =
((x div base^n) * base^n + x mod base^n) div base^i mod base"
using div_mult_mod_eq[of x "base^n"] by simp

also have " . . . = x mod base^n div base^i mod base"
using div_distrib[where a="x div base^n" and b = "x mod base^n"]

that by auto
finally show ?thesis by simp

qed
have "x mod base^Suc n = x_n*base^n + x_less"

by (metis mod_mult2_eq mult.commute power_Suc2 x_less_def x_n_def)
also have " . . . = (x div base^n mod base) * base^n +

(
∑

i<n. x div base ^ i mod base * base ^ i)"
using IH_x_less x_less_def x_less_i_eq_x_i x_n_def by auto

finally show ?case using sum.atMost_Suc
by (simp add: add.commute)

qed

end

7

end
theory Van_der_Waerden

imports Main "HOL-Library.FuncSet" Digits
begin

2 Van der Waerden’s Theorem

In combinatorics, Van der Waerden’s Theorem is about arithmetic progres-
sions of a certain length of the same colour in a colouring of an interval. In
order to state the theorem and to prove it, we need to formally introduce
arithmetic progressions. We will express k-colourings as functions mapping
an integer interval to the set {0, . . . , k − 1} of colours.

2.1 Arithmetic progressions

A sequence of integer numbers with the same step size is called an arith-
metic progression. We say an m-fold arithmetic progression is an arithmetic
progression with multiple step lengths.

Arithmetic progressions are defined in the following using the variables:
start: int starting value
step: nat positive integer for step length
i: nat i-th value in the arithmetic progression

definition arith_prog :: "int ⇒ nat ⇒ nat ⇒ int"
where "arith_prog start step i = start + int (i * step)"

An m-fold arithmetic progression (which we will also call a multi-arithmetic
progression) is defined in the following using the variables:
dims: nat number of dimensions/step directions of m-fold

arithmetic progression
start: int starting value
steps: nat ⇒ nat function of steps, returns step in i-th dimension

for i ∈ [0.. < dims]
c: nat ⇒ nat function of coefficients, returns coefficient in i-th

dimension for i ∈ [0.. < dims]

definition multi_arith_prog ::
"nat ⇒ int ⇒ (nat ⇒ nat) ⇒ (nat ⇒ nat) ⇒ int"

where "multi_arith_prog dims start steps c =
start + int (

∑
i<dims. c i * steps i)"

An m-fold arithmetic progression of dimension 1 is also an arithmetic pro-
gression and vice versa. This is shown in the following lemmas.
lemma multi_to_arith_prog:

"multi_arith_prog 1 start steps c =

8

arith_prog start (steps 0) (c 0)"
unfolding multi_arith_prog_def arith_prog_def by auto

lemma arith_prog_to_multi:
"arith_prog start step c =

multi_arith_prog 1 start (λ_. step) (λ_. c)"
unfolding multi_arith_prog_def arith_prog_def by auto

To show that an arithmetic progression is well-defined, we introduce the fol-
lowing predicate. It assures that arith_prog start step ‘ [0..<l] is con-
tained in the integer interval [a..b].
definition is_arith_prog_on ::

"nat ⇒ int ⇒ nat ⇒ int ⇒ int ⇒ bool"
where "is_arith_prog_on l start step a b ←→

(start ≥ a ∧ arith_prog start step (l-1) ≤ b)"

Furthermore, we have monotonicity for arithmetic progressions.
lemma arith_prog_mono:

assumes "c ≤ c’"
shows "arith_prog start step c ≤ arith_prog start step c’"
using assms unfolding arith_prog_def by (auto intro: mult_mono)

Now, we state the well-definedness of an arithmetic progression of length l
in an integer interval [a..b]. Indeed, is_arith_prog_on guarantees that every
element of arith_prog start step of length l lies in [a..b].
lemma is_arith_prog_onD:

assumes "is_arith_prog_on l start step a b"
assumes "c ∈ {0..<l}"
shows "arith_prog start step c ∈ {a..b}"

proof -
have "arith_prog start step 0 ≤ arith_prog start step c"

by (rule arith_prog_mono) auto
hence "arith_prog start step c ≥ a"

using assms by (simp add: arith_prog_def is_arith_prog_on_def
add_increasing2)

moreover have "arith_prog start step (l-1) ≥
arith_prog start step c"

by (rule arith_prog_mono) (use assms(2) in auto)
hence "arith_prog start step c ≤ b"

using assms unfolding arith_prog_def is_arith_prog_on_def
by linarith

ultimately show ?thesis
by auto

qed

We also need a predicate for an m-fold arithmetic progression to be well-
defined. It assures that multi_arith_prog start step ‘ [0..<l]^m is con-
tained in [a..b].

9

definition is_multi_arith_prog_on ::
"nat ⇒ nat ⇒ int ⇒ (nat ⇒ nat) ⇒ int ⇒ int ⇒ bool"

where "is_multi_arith_prog_on l m start steps a b ←→
(start ≥ a ∧ multi_arith_prog m start steps (λ_. l-1) ≤ b)"

Moreover, we have monotonicity for m-fold arithmetic progressions as well.
lemma multi_arith_prog_mono:

assumes "
∧

i. i < m =⇒ c i ≤ c’ i"
shows "multi_arith_prog m start steps c ≤

multi_arith_prog m start steps c’"
using assms unfolding multi_arith_prog_def
by (auto intro!: sum_mono intro: mult_right_mono)

Finally, we get the well-definedness for m-fold arithmetic progressions of
length l. Here, is_multi_arith_prog_on guarantees that every element of
multi_arith_prog start step of length l lies in [a..b].
lemma is_multi_arith_prog_onD:

assumes "is_multi_arith_prog_on l m start steps a b"
assumes "c ∈ {0..<m} → {0..<l}"
shows "multi_arith_prog m start steps c ∈ {a..b}"

proof -
have "multi_arith_prog m start steps (λ_. 0) ≤

multi_arith_prog m start steps c"
by (rule multi_arith_prog_mono) auto

hence "multi_arith_prog m start steps c ≥ a"
using assms by (simp add: multi_arith_prog_def

is_multi_arith_prog_on_def)
moreover have "multi_arith_prog m start steps (λ_. l-1) ≥

multi_arith_prog m start steps c"
by (rule multi_arith_prog_mono) (use assms in force)

hence "multi_arith_prog m start steps c ≤ b"
using assms by (simp add: multi_arith_prog_def

is_multi_arith_prog_on_def)
ultimately show ?thesis

by auto
qed

2.2 Van der Waerden’s Theorem

The property for a number n to fulfill Van der Waerden’s theorem is the
following:
For a k-colouring col of [a..b] there exist

• start: starting value of an arithmetic progression

• step: step length of an arithmetic progression

• j: colour

10

such that arith_prog start step is a valid arithmetic progression of length
l lying in [a..b] of the same colour j.
The following variables will be used:
k: nat number of colours in segment colouring on [a..b]
l: nat length of arithmetic progression
n: nat number fulfilling Van der Waerden’s Theorem

definition vdw ::
"nat ⇒ nat ⇒ nat ⇒ bool"

where "vdw k l n ←→
(∀ a b col. b + 1 ≥ a + int n ∧ col ∈ {a..b} → {..<k} −→

(∃ j start step. j < k ∧ step > 0 ∧
is_arith_prog_on l start step a b ∧
arith_prog start step ‘ {..<l} ⊆ col -‘ {j} ∩ {a..b}))"

To better work with the property of Van der Waerden’s theorem, we intro-
duce an elimination rule.
lemma vdwE:

assumes "vdw k l n"
"b + 1 ≥ a + int n"
"col ∈ {a..b} → {..<k}"

obtains j start step where
"j < k" "step > 0"
"is_arith_prog_on l start step a b"
"arith_prog start step ‘ {..<l} ⊆ col -‘ {j} ∩ {a..b}"

using assms that unfolding vdw_def by metis

Van der Waerden’s theorem implies that the number fulfilling it is positive.
This is show in the following lemma.
lemma vdw_imp_pos:

assumes "vdw k l n"
"l > 0"

shows "n > 0"
proof (rule Nat.gr0I)

assume [simp]: "n = 0"
show False

using assms
by (elim vdwE[where a = 1 and b = 0 and col = "λ_. 0"])

(auto simp: lessThan_empty_iff)
qed

Van der Waerden’s Theorem is trivial for a non-existent colouring. It also
makes no sense for arithmetic progressions of length 0.
lemma vdw_0_left [simp, intro]: "n>0 =⇒ vdw 0 l n"

by (auto simp: vdw_def)

In the case of k = 1, Van der Waerden’s Theorem holds. Then every number
has the same colour, hence also the arithmetic progression. A possible choice
for the number fulfilling Van der Waerden Theorem is l.

11

lemma vdw_1_left:
assumes "l>0"
shows "vdw 1 l l"

unfolding vdw_def
proof (safe, goal_cases)

case (1 a b col)
have "arith_prog a 1 ‘ {..<l} ⊆ {a..b}"

using 1(1) by (auto simp: arith_prog_def)
also have "{a..b} = col -‘ {0} ∩ {a..b}"

using 1(2) by auto
finally have "arith_prog a 1 ‘ {..<l} ⊆ col -‘ {0} ∩ {a..b}"

by auto
moreover have "is_arith_prog_on l a 1 a b"

unfolding is_arith_prog_on_def arith_prog_def using 1 assms
by auto

ultimately show "∃ j start step. j < 1 ∧ 0 < step ∧
is_arith_prog_on l start step a b ∧
arith_prog start step ‘ {..<l} ⊆ col -‘ {j} ∩ {a..b}"

by auto
qed

In the case l = 1, Van der Waerden’s Theorem holds. As the length of
the arithmetic progression is 1, it consists of just one element. Thus every
nonempty integer interval fulfills the Van der Waerden property. We can
prove Nk,1 to be 1.
lemma vdw_1_right: "vdw k 1 1"
unfolding vdw_def
proof safe

fix a b :: int and col :: "int ⇒ nat"
assume *: "a + int 1 ≤ b + 1" "col ∈ {a..b} → {..<k}"
have "col a < k" using * by auto
have "arith_prog a 1 ‘ {..<1} = {a}"

using *(1) by (auto simp: arith_prog_def)
also have "{a} ⊆ col -‘ {col a} ∩ {a..b}"

using * by auto
finally have "arith_prog a 1 ‘ {..<1} ⊆ col -‘ {col a} ∩ {a..b}"

by auto
moreover have "is_arith_prog_on 1 a 1 a b"

unfolding is_arith_prog_on_def arith_prog_def
using * by auto

ultimately show "∃ j start step.
j < k ∧ 0 < step ∧ is_arith_prog_on 1 start step a b ∧
arith_prog start step ‘ {..<1} ⊆ col -‘ {j} ∩ {a..b}"

using ‹col a <k› by blast
qed

In the case l = 2, Van der Waerden’s Theorem holds as well. Here, any
two distinct numbers form an arithmetic progression of length 2. Thus we
only have to find two numbers with the same colour. Using the pigeonhole

12

principle on k + 1 values, we can find two integers with the same colour.
lemma vdw_2_right: "vdw k 2 (k+1)"
unfolding vdw_def
proof safe

fix a b :: int and col :: "int ⇒ nat"
assume *: "a + int (k + 1) ≤ b + 1" "col ∈ {a..b} → {..<k}"

have "col ‘ {a..b} ⊆ {..<k}" using *(2) by auto
moreover have "k+1 ≤ card {a..b}" using *(1) by auto
ultimately have "card (col ‘ {a..b}) < card {a..b}" using *

by (metis card_lessThan card_mono finite_lessThan le_less_trans
less_add_one not_le)

then have "¬ inj_on col {a..b}" using pigeonhole[of col "{a..b}"]
by auto

then obtain start start_step
where pigeon: "col start = col start_step"

"start < start_step"
"start ∈ {a..b}"
"start_step ∈ {a..b}"

using inj_onI[of "{a..b}" col]
by (metis not_less_iff_gr_or_eq)

define step where "step = nat (start_step - start)"
define j where "j = col start"

have "j < k" unfolding j_def using *(2) pigeon(3) by auto
moreover have "0 < step" unfolding step_def using pigeon(2) by auto
moreover have "is_arith_prog_on 2 start step a b"

unfolding is_arith_prog_on_def arith_prog_def step_def
using pigeon by auto

moreover {
have "arith_prog start step i ∈ {start, start_step}" if "i<2" for i

using that arith_prog_def step_def by (auto simp: less_2_cases_iff)
also have " . . . ⊆ col -‘ {j} ∩ {a..b}"

using pigeon unfolding j_def by auto
finally have "arith_prog start step ‘ {..<2} ⊆ col -‘ {j} ∩ {a..b}"

by auto
}
ultimately show "∃ j start step.

j < k ∧
0 < step ∧
is_arith_prog_on 2 start step a b ∧
arith_prog start step ‘ {..<2} ⊆ col -‘ {j} ∩ {a..b}" by blast

qed

In order to prove Van der Waerden’s Theorem, we first prove a slightly
different lemma. The statement goes as follows:
For a k-colouring col on [a..b] there exist

13

• start: starting value of an arithmetic progression

• steps: step length of an arithmetic progression

such that f = multi_arith_prog m start step is a valid m-fold arithmetic
progression of length l lying in [a..b] such that for every s < m have: if cj < l
for all j ≤ s then f(c0, c1, . . . , cm−1) and f(0, . . . , 0, cs+1, . . . , cm−1) have the
same colour.
The property of the lemma uses the following variables:
k: nat number of colours in segment colouring of [a..b]
m: nat dimension of m-fold arithmetic progression
l: nat l + 1 is length of m-fold arithmetic progression
n: nat number fulfilling vdw_lemma

definition vdw_lemma :: "nat ⇒ nat ⇒ nat ⇒ nat ⇒ bool" where
"vdw_lemma k m l n ←→

(∀ a b col. b + 1 ≥ a + int n ∧ col ∈ {a..b} → {..<k} −→
(∃ start steps. (∀ i<m. steps i > 0) ∧
is_multi_arith_prog_on (l+1) m start steps a b ∧ (

let f = multi_arith_prog m start steps
in (∀ c ∈ {0..<m} → {0..l}. ∀ s<m. (∀ j ≤ s. c j < l) −→

col (f c) = col (f (λi. if i ≤ s then 0 else c i))))))"

To better work with this property, we introduce an elimination rule for
vdw_lemma.
lemma vdw_lemmaE:

fixes a b :: int
assumes "vdw_lemma k m l n"

"b + 1 ≥ a + int n" "col ∈ {a..b} → {..<k}"
obtains start steps where

"
∧

i. i < m =⇒ steps i > 0"
"is_multi_arith_prog_on (l+1) m start steps a b"
"let f = multi_arith_prog m start steps
in ∀ c ∈ {0..<m} → {0..l}. ∀ s<m. (∀ j ≤ s. c j < l) −→

col (f c) = col (f (λi. if i ≤ s then 0 else c i))"
using assms that unfolding vdw_lemma_def by blast

To simplify the following proof, we show the following formula.
lemma sum_mod_poly:

assumes "(k::nat)>0"
shows "(k - 1) * (

∑
n∈{..<q}. k^n) < k^q "

proof -
have "int ((k - 1) * (

∑
n<q. k ^ n)) =

(int k - 1) * (
∑

n<q. int k ^ n)"
using assms by (simp add: of_nat_diff)

also have " . . . = int k ^ q - 1"
by (induction q) (auto simp: algebra_simps)

also have " . . . < int (k ^ q)"

14

by simp
finally show ?thesis by linarith

qed

The proof of Van der Waerden’s Theorem now proceeds in three steps:

• Firstly, we show that the vdw property for all k proves the vdw_lemma
for fixed l but arbitrary k and m. This is done by induction over m.

• Secondly, we show that vdw_lemma implies the induction step of vdw
using the pigeonhole principle.

• Lastly, we combine the previous steps in an induction over l to show
Van der Waerden’s Theorem in the general setting.

Firstly, we need to show that vdw for arbitrary k implies vdw_lemma for fixed
l. As mentioned earlier, we use induction over m.
lemma vdw_imp_vdw_lemma:

fixes l
assumes vdw_assms: "

∧
k’. k’>0 =⇒ ∃ n_k’. vdw k’ l n_k’"

and "l ≥ 2"
and "m > 0"
and "k > 0"

shows "∃ N. vdw_lemma k m l N"
using ‹m>0› ‹k>0› proof (induction m rule: less_induct)

case (less m)
consider "m=1" | "m>1" using less.prems by linarith
then show ?case
proof cases

Case m = 1: Show vdw_lemma for arithmetic progression, Induction start.
assume "m = 1"

obtain n where vdw: "vdw k l n" using vdw_assms ‹k>0› by blast
define N where "N = 2*n"
have "l>0" and "l>1" using ‹l≥2› by auto

have "vdw_lemma k m l N"
unfolding vdw_lemma_def

proof (safe, goal_cases)
case (1 a b col)

Divide [a..b] in two intervals I1, I2 of same length and obtain arithmetic
progression of length l in I1.

have col_restr: "col ∈ {a..a + int n - 1} → {..<k}"
using 1 by (auto simp: N_def)

then obtain j start step where prog:

15

"j < k" "step > 0"
"is_arith_prog_on l start step a (a + int n -1)"
"arith_prog start step ‘ {..<l} ⊆

col -‘ {j} ∩ {a..a + int n - 1}"
using vdw 1 unfolding N_def by (elim vdwE)(auto simp:is_arith_prog_on_def)

have range_prog_lessThan_l:
"arith_prog start step i ∈ {a..a + int n -1}" if "i < l" for i
using that prog by auto

have "{a..a + int n-1}⊆{a..b}" using N_def "1"(1) by auto
then have "a + 2* int n - 1 ≤ b" using 1(1) unfolding N_def

by auto

Show that arith_prog start step is an arithmetic progression of length l+1
in [a..b].

have prog_in_ivl: "arith_prog start step i ∈ {a..b}"
if "i ≤ l" for i

proof (cases "i=l")
case False
have "i<l" using that False by auto
then show ?thesis

using range_prog_lessThan_l ‹{a..a + int n-1}⊆{a..b}› by force
next

case True

Show step ≤ |I1| then have arith_prog start step (l+1)∈[a..b] as arith_prog
start step (l+1) = arith_prog start step l + step

have "start ∈ {a..a + int n -1}"
using range_prog_lessThan_l[of 0]
unfolding arith_prog_def by (simp add: ‹0 < l›)

moreover have "start + int step ∈ {a..a + int n -1}"
using range_prog_lessThan_l[of 1]
unfolding arith_prog_def by (metis ‹1 < l› mult.left_neutral)

ultimately have "step ≤ n" by auto
have "arith_prog start step (l-1) ∈ {a..a + int n -1}"

using range_prog_lessThan_l[of "l-1"] unfolding arith_prog_def
using ‹0 < l› diff_less less_numeral_extra(1) by blast

moreover have "arith_prog start step l =
arith_prog start step (l-1) + int step"

unfolding arith_prog_def using ‹0 < l› mult_eq_if by force
ultimately have "arith_prog start step l ∈ {a..b}"

using ‹step≤n› N_def ‹a + 2* int n -1 ≤ b› by auto
then show ?thesis using range_prog_lessThan_l using True

by force
qed

have col_prog_eq: "col (arith_prog start step k) = j"
if "k < l" for k
using prog that by blast

16

define steps :: "nat ⇒ nat" where steps_def: "steps = (λi. step)"
define f where "f = multi_arith_prog 1 start steps"

have rel_prop_1:
"col (f c) = col (f (λi. if i < s then 0 else c i))"
if "c ∈ {0..<1} → {0..l}" "s<1" "∀ j≤s. c j < l" for c s
using that by auto

have arith_prog_on:
"is_multi_arith_prog_on (l+1) m start steps a b"
using prog(3) unfolding is_arith_prog_on_def is_multi_arith_prog_on_def
using ‹m=1› arith_prog_to_multi steps_def prog_in_ivl by auto

show ?case
by (rule exI[of _ start], rule exI[of _ steps])

(use rel_prop_1 ‹step > 0› ‹m = 1› arith_prog_on col_prog_eq
multi_to_arith_prog in ‹auto simp: f_def Let_def steps_def›)

qed
then show ?case ..

next

Case m > 1: Show vdw_lemma for m-fold arithmetic progression, Induction
step (m− 1) −→ m.

assume "m>1"

obtain q where vdw_lemma_IH:"vdw_lemma k (m-1) l q"
using ‹1 < m› less by force

have "k^q>0" using ‹k>0› by auto
obtain n_kq where vdw: "vdw (k^q) l n_kq"

using vdw_assms ‹k^q>0› by blast
define N where "N = q + 2 * n_kq"

Idea: [a..b] = I1 ∪ I2 where |I1| = 2 ∗ nk,q and |I2| = q. Divide I1 into blocks
of length q and define a new colouring on the set of q-blocks where the colour
of the block is the k-basis representation where the i-th digit corresponds to
the colour of the i-th element in the block. Get an arithmetic progression
of q-blocks of length l + 1 in I1, such that the first l q-blocks have the
same colour. The step of the block-arithmetic progression is going to be the
additional step in the induction over m.

have "vdw_lemma k m l N"
unfolding vdw_lemma_def

proof (safe, goal_cases)
case (1 a b col)
have "n_kq>0" using vdw_imp_pos vdw ‹l≥2› by auto
then have "N>0" by (simp add:N_def)
then have "a≤b" using 1 by auto

17

then have "k>0" using 1 by (intro Nat.gr0I) force
have "l>0" and "l>1" using ‹l≥2› by auto
interpret digits k by (simp add: ‹0 < k› digits_def)
define col1 where "col1 = (λ x. from_digits q (λy. col (x + y)))"

have range_col1: "col1∈{a..a + int n_kq - 1} → {..<k^q}"
unfolding Pi_def
proof safe

fix x assume "x∈{a..a + int n_kq - 1}"
then have col_xn:"col (x + int n)∈{..<k}" if "n<q" for n :: nat

using that 1 PiE N_def by auto
have col_xn_upper_bound:"col (x + int n) ≤ k - 1"

if "n<q" for n ::nat
using that col_xn[of n] ‹k>0› by (auto)

have "(
∑

n<q. col (x + int n) * k ^ n)≤
(
∑

n<q. (k-1) * k ^ n)"
using col_xn_upper_bound by (intro sum_mono mult_right_mono)

auto
also have " . . . = (k-1) * (

∑
n<q. k ^ n)"

by (rule sum_distrib_left[symmetric])
also have " . . . < k^q" using sum_mod_poly ‹k>0› by auto
finally show "col1 x <k^q" unfolding col1_def from_digits_altdef

by auto
qed

obtain j start step where prog:
"j < k^q" "step > 0"
"is_arith_prog_on l start step a (a + int n_kq - 1)"
"arith_prog start step ‘ {..<l} ⊆

col1 -‘ {j} ∩ {a..a + int n_kq -1}"
using vdw range_col1 by (elim vdwE) (auto simp: ‹k>0›)

have range_prog_lessThan_l:
"arith_prog start step i ∈ {a..a + int n_kq -1}"
if "i < l" for i
using that prog by auto

have prog_in_ivl:
"arith_prog start step i ∈ {a..a + 2 * int n_kq -1}"
if "i ≤ l" for i

proof (cases "i=l")
case False
then have "i<l" using that by auto
then show ?thesis using prog by auto

next
case True
have "start ∈ {a..a + int n_kq -1}"

18

using range_prog_lessThan_l[of 0] unfolding arith_prog_def
by (simp add: ‹0 < l›)

moreover have "start + step ∈ {a..a + int n_kq -1}"
using range_prog_lessThan_l[of 1] unfolding arith_prog_def
by (metis ‹1 < l› mult.left_neutral)

ultimately have "step ≤ n_kq" by auto
have "arith_prog start step (l-1) ∈ {a..a + int n_kq -1}"

using range_prog_lessThan_l[of "l-1"] unfolding arith_prog_def
using ‹0 < l› diff_less less_numeral_extra(1) by blast

moreover have "arith_prog start step l =
arith_prog start step (l-1) + step"

unfolding arith_prog_def using ‹0 < l› mult_eq_if by force
ultimately have "arith_prog start step l ∈

{a..a + 2 * int n_kq - 1}"
using ‹step≤n_kq› by auto

then show ?thesis using range_prog_lessThan_l using True
by force

qed

have col_prog_eq: "col1 (arith_prog start step k) = j"
if "k < l" for k
using prog that by blast

have digit_col1:"digit (col1 x) y = col (x+int y)"
if "x∈{a..<a + 2*int n_kq}" "y∈{..<q}"
for x::int and y::nat unfolding col1_def using that

proof -
have "

∧
j’. j’<q =⇒ x+j’∈{a..b}"

using "1"(1) N_def that(1) by force
then have "

∧
j’. j’<q =⇒ (λy. col (x+int y)) j’ < k"

using 1 that by auto
then show "digit (from_digits q (λxa. col (x + int xa))) y =

col (x + int y)"
using digit_from_digits that 1 by auto

qed

Impact on the colour when taking the block-step.
have one_step_more:

"col (arith_prog start’ step i) = digit j (nat (start’-start))"

if "start’∈{start..<start+q}" "i∈{..<l}" for start’ i
proof -

have "start ≤ start’" using that by simp
have shift_arith_prog:

"arith_prog start step i + (start’ - start) =
arith_prog start’ step i"

unfolding arith_prog_def by simp
define diff where "diff = nat (start’-start)"

19

have "diff ∈{..<q}" using that unfolding diff_def by auto
have "col (arith_prog start step i + int diff) = digit j diff"
proof -

have "col1 (arith_prog start step i) = j"
using col1_def prog that by blast

moreover have " arith_prog start step i∈{a..a + 2 * int n_kq-1}"
using prog(4) that by auto

ultimately show ?thesis
using digit_col1[where x = "arith_prog start step i"

and y = "diff"]
prog 1 ‹diff ∈{..<q}› by auto

qed
then show ?thesis unfolding diff_def 1

by (auto simp: ‹start≤start’› shift_arith_prog)
qed

have one_step_more’: "col (arith_prog start’ step i) =
col (arith_prog start’ step 0)"
if "start’∈{start..<start+q}" "i∈{..<l}" for start’ i
using that one_step_more[of start’ 0]

one_step_more[of start’ i] by auto

have start_q: "start + int q ≤ start + int q - 1 + 1" by linarith
have "{start..start + int q-1} ⊆ {a..b}"

using prog N_def 1(1) by (force simp: arith_prog_def is_arith_prog_on_def)

then have col’: "col ∈ {start..start + int q-1} → {..<k}"
using 1 prog(4) by auto

Obtain an (m− 1)-fold arithmetic progression in the starting q-bolck of the
block arithmetic progression.

obtain start_m steps_m where
step_m_pos: "

∧
i. i < m - 1 =⇒ 0 < steps_m i" and

is_multi_arith_prog: "is_multi_arith_prog_on (l+1) (m - 1)
start_m steps_m start (start + int q - 1)" and

g_aux: "let g = multi_arith_prog (m - 1) start_m steps_m
in ∀ c∈{0..<m - 1} → {0..l}. ∀ s<m - 1. (∀ j≤s. c j < l) −→
col (g c) = col (g (λi. if i ≤ s then 0 else c i))"

by (rule vdw_lemmaE[OF vdw_lemma_IH start_q col’]) blast

define g where "g = multi_arith_prog (m-1) start_m steps_m"
have g: "col (g c) = col (g (λi. if i ≤ s then 0 else c i))"

if "c ∈ {0..<(m-1)} → {0..l}" "s < m - 1" "∀ j ≤ s. c j < l"
for c s using g_aux that unfolding g_def Let_def by blast

have range_g: "g c ∈ {start..start + int q - 1}"
if "c ∈ {0..<m - 1} → {0..<(l+1)}" for c
using is_multi_arith_prog_onD[OF is_multi_arith_prog that]
by (auto simp: g_def)

20

Obtain an m-fold arithmetic progression by adding the block-step.
define steps :: "nat ⇒ nat" where steps_def:

"steps = (λi. (if i=0 then step else steps_m (i-1)))"
define f where "f = multi_arith_prog m start_m steps"
have f_step_g: "f c = int (c 0*step) + g (c ◦ Suc)" for c
proof -

have "f c = start_m + int (
∑

i<Suc (m-1). c i * steps i)"
using f_def unfolding multi_arith_prog_def
using less.prems by auto

also have " . . . = start_m + int (c 0 * steps 0) +
int (

∑
i<m-1. c (Suc i) * steps (Suc i))"

using sum.lessThan_Suc_shift[where n = "m-1"] by auto
also have " . . . = start_m + int (c 0 * step) +

int (
∑

i<m-1. c (Suc i) * steps_m i)"
using steps_def by (auto split:if_splits)

finally show ?thesis unfolding multi_arith_prog_def g_def
by simp

qed

Show that this m-fold arithmetic progression fulfills all needed properties.
have steps_gr_0: "∀ i<m. 0 < steps i"

unfolding steps_def using step_m_pos prog by auto

have is_multi_on_f:
"is_multi_arith_prog_on (l+1) m start_m steps a b"

proof -
have "a ≤ start_m" using is_multi_arith_prog

unfolding is_multi_arith_prog_on_def
using is_arith_prog_on_def prog(3) by force

moreover {
have "f (λ_. l) = arith_prog (g ((λ_. l) ◦ Suc)) step l"

using f_step_g unfolding arith_prog_def by auto
also have "g ((λ_. l) ◦ Suc) ≤ start + q"

using range_g[of "(λ_. l) ◦ Suc"] by auto
then have "arith_prog (g ((λ_. l) ◦ Suc)) step l ≤

arith_prog start step l + q"
unfolding arith_prog_def by auto

also have " . . .≤ b" using prog_in_ivl[of l]
using is_multi_arith_prog unfolding is_multi_arith_prog_on_def
using "1"(1) N_def by auto

finally have "f (λ_. l) ≤ b" by auto
}
ultimately show ?thesis

unfolding is_multi_arith_prog_on_def f_def by auto
qed

Show the relational property for all s.
have rel_prop_1:

"col (f c) = col (f (λi. if i ≤ s then 0 else c i))"

21

if "c ∈ {0..<m} → {0..l}" "s<m" "∀ j≤s. c j < l" for c s
proof (cases "s = 0")

case True
have "c 0 < l" using that(3) True by auto
have range_c_Suc: "c ◦ Suc ∈ {0..<m-1} → {0..l}"

using that(1) by auto
have "f c = arith_prog (g (c ◦ Suc)) step (c 0)"

using f_step_g unfolding arith_prog_def by auto
then have "col (f c) = col (arith_prog (g (c ◦ Suc)) step 0)"

using one_step_more’[of "g (c ◦ Suc)" "c 0"] ‹c 0 < l›
range_g[of "c ◦ Suc"] range_c_Suc
atLeastLessThanSuc_atLeastAtMost by auto

also {
have "(

∑
x<m - 1. int (c (Suc x)) * int (steps_m x)) =

(
∑

x=1..<m. int(c x) * int (steps x))"
by(rule sum.reindex_bij_witness[of _ "(λx. x-1)" "Suc"])

(auto simp: steps_def split:if_splits)
also have " . . . = (

∑
x<m. int (if x = 0 then 0 else c x) *

int (steps x))"
by (rule sum.mono_neutral_cong_left) auto

finally have "arith_prog (g (c ◦ Suc)) step 0 =
f (λi. if i ≤ s then 0 else c i)"
unfolding f_def g_def multi_arith_prog_def arith_prog_def
using True by auto

}
finally show ?thesis by auto

next
case False
hence s_greater_0: "s > 0" by auto
have range_c_Suc: "c ◦ Suc ∈ {0..<m-1} → {0..l}"

using that(1) by auto
have "c 0 < l" using ‹s>0› that by auto
have g_IH:

"col (g c’) = col (g (λi. if i ≤ s’ then 0 else c’ i))"
if "c’ ∈ {0..<m-1} → {0..l}" "s’<m-1" "∀ j≤s’. c’ j < l"
for c’ s’
using g_aux that unfolding multi_arith_prog_def g_def
by (auto simp: Let_def)

have g_shift_IH: "col (g (c ◦ Suc)) =
col (g ((λi. if i∈{1..t} then 0 else c i) ◦ Suc))"
if "c ∈ {1..<m} → {0..l}" "t∈{1..<m}" "∀ j∈{1..t}. c j < l"
for c t

proof -
have "(λi. (if i ≤ t - 1 then 0 else (c ◦ Suc) i)) =

(λi. (if i ∈ {1..t} then 0 else c i)) ◦ Suc"
using that by (auto split: if_splits simp:fun_eq_iff)

then have right:
"g (λi. if i ≤ (t-1) then 0 else (c ◦ Suc) i) =
g ((λi. if i∈{1..t} then 0 else c i) ◦ Suc)" by auto

22

have "(c ◦ Suc)∈ {0..<m-1} → {0..l}" using that(1) by auto
moreover have "t-1<m-1" using that(2) by auto
moreover have"∀ j≤t-1. (c ◦ Suc) j < l" using that by auto
ultimately have "col (g (c ◦ Suc)) =

col (g (λi. (if i ≤ t-1 then 0 else (c ◦ Suc) i)))"
using g_IH[of "(c ◦ Suc)" "t-1"] by auto

with right show ?thesis by auto
qed

have "col (f c) = col (int (c 0 * step) + g (c ◦ Suc))"
using f_step_g by simp

also have "int (c 0 * step) + g (c ◦ Suc) =
arith_prog (g (c ◦ Suc)) step (c 0)"
by (simp add: arith_prog_def)

also have "col . . . = col (arith_prog (g (c ◦ Suc)) step 0)"
using one_step_more’[of "g (c ◦ Suc)" "c 0"] ‹c 0 < l›

range_g[of "c ◦ Suc"] range_c_Suc
atLeastLessThanSuc_atLeastAtMost by auto

also have " . . . = col (g (c ◦ Suc))"
unfolding arith_prog_def by auto

also have " . . . = col (g ((λi. if i∈{1..s} then 0 else c i) ◦
Suc))" using g_shift_IH[of "c" s] ‹s>0› that by force

also have " . . . = col ((λc. int (c 0 * step) +
g (c ◦ Suc))(λi. if i≤s then 0 else c i))"
by (auto simp: g_def multi_arith_prog_def)

also have " . . . = col (f (λi. if i ≤ s then 0 else c i))"
unfolding f_step_g by auto

finally show ?thesis by simp
qed

show ?case
by (rule exI[of _ start_m], rule exI[of _ steps])

(use steps_gr_0 is_multi_on_f rel_prop_1 in
‹auto simp: f_def Let_def steps_def›)

qed
then show ?case ..

qed
qed

Secondly, we show that vdw_lemma implies the induction step of Van der
Waerden’s Theorem using the pigeonhole principle.
lemma vdw_lemma_imp_vdw:

assumes "vdw_lemma k k l N"
shows "vdw k (Suc l) N"

unfolding vdw_def proof (safe, goal_cases)

Idea: Proof uses pigeonhole principle to guarantee the existence of an arith-
metic progression of length l + 1 with the same colour.

case (1 a b col)

23

obtain start steps where prog:
"
∧

i. i < k =⇒ steps i > 0"
"is_multi_arith_prog_on (l+1) k start steps a b"
"let f = multi_arith_prog k start steps
in ∀ c ∈ {0..<k} → {0..l}. ∀ s<k. (∀ j ≤ s. c j < l) −→

col (f c) = col (f (λi. if i ≤ s then 0 else c i))"
using assms 1
by (elim vdw_lemmaE[where a=a and b=b and col=col and m=k

and k=k and l=l and n=N]) auto

Obtain a k-fold arithmetic progression f of length l from assumptions.
define f where "f = multi_arith_prog k start steps"
have rel_propE: "col (f c) = col (f (λi. if i ≤ s then 0 else c i))"

if "c ∈ {0..<k} → {0..l}" "s<k" "∀ j ≤ s. c j < l"
for c s
using prog(3) that unfolding f_def Let_def by auto

There are k + 1 values ar = f(0, . . . , 0, l, . . . , l) with 0 ≤ r ≤ k zeros.
define a_r where "a_r = (λr. f (λi. (if i<r then 0 else l)))"
have range_col_a_r: "col (a_r x) < k" if "x < k+1" for x
proof -

have "a_r x ∈ {a..b}" unfolding a_r_def f_def
by (intro is_multi_arith_prog_onD[OF prog(2)]) auto

thus ?thesis using 1 by blast
qed
then have "(col ◦ a_r) ‘ {..<k + 1} ⊆ {..<k}" using 1(2) by auto
then have "card ((col ◦ a_r) ‘ {..<k + 1}) ≤ card {..<k}"

by (intro card_mono) auto
then have "¬ inj_on (col ◦ a_r) {..<k+1}"

using pigeonhole[of "col ◦ a_r" "{..<k+1}"] by auto

Using the pigeonhole principle get r1 and r2 where ar1 and ar2 have the
same colour.

then obtain r1 r2 where pigeon_cols:
"r1∈{..<k+1}"
"r2∈{..<k+1}"
"r1 < r2"
"(col ◦ a_r) r1 = (col ◦ a_r) r2"

by (metis (mono_tags, lifting) linear linorder_inj_onI)

Show that the following function h is an arithmetic progression which fulfills
all properties for Van der Waerden’s Theorem.

define h where
"h = (λx. f (λi. (if i<r1 then 0 else (if i<r2 then x else l))))"

have "h 0 = a_r r2" unfolding h_def a_r_def using ‹r1<r2›
by (intro arg_cong[where f = f]) auto

moreover have "h l = a_r r1" unfolding h_def a_r_def using ‹r1<r2›
by (metis le_eq_less_or_eq less_le_trans)

24

ultimately have "col (h 0) = col (h l)" using pigeon_cols(4) by auto
have h_col: "col (h 0) = col (h i)" if "i∈{..<l+1}" for i
proof (cases "i=l")

case True
then show ?thesis using ‹col (h 0) = col (h l)› by auto

next
case False
then have "i<l" using that by auto
let ?c = "(λidx. if idx < r1 then 0 else if idx < r2 then i else l)"
have "?c∈{0..<k} → {0..l}"

using that by auto
moreover have "(∀ j≤r2-1. ?c j < l)"

using ‹i<l› pigeon_cols(3) by force
ultimately have "col (f ?c) =

col (f (λi. if i ≤ r2-1 then 0 else ?c i))"
using rel_propE[of ?c "r2-1"] pigeon_cols by simp

then show ?thesis unfolding h_def f_def
by (smt (verit) Nat.lessE One_nat_def add_diff_cancel_left’

le_less less_Suc_eq_le multi_arith_prog_mono plus_1_eq_Suc)
qed

define h_start where "h_start = start + l*(
∑

i∈{r2..<k}. steps i)"
define h_step where "h_step = (

∑
i∈{r1..<r2}. steps i)"

have h_arith_prog: "h = arith_prog h_start h_step"
proof -

have "(
∑

x<k. int (if x < r1 then 0 else if x < r2 then y else l)
* int (steps x)) =

int l * (
∑

x = r2..<k. int (steps x)) +
int y * (

∑
x = r1..<r2. int (steps x))"

for y
proof (cases "r2 = k")

case True
then have "r1<k" using pigeon_cols by auto
with True have

"(
∑

x<k. int (if x < r1 then 0 else if x < r2 then y else l)
* int (steps x)) =

(
∑

x<k. int (if x < r1 then 0 else y) * int (steps x))"
by (intro sum.cong) auto

also have " . . . = (
∑

x<r1. int (if x < r1 then 0 else y) *
int (steps x)) + (

∑
x=r1..<k. int (if x < r1 then 0 else y)

* int (steps x))"
using split_sum_mid_less[of r1 k

"(λx. int (if x < r1 then 0 else y) * int (steps x))"]
‹r1<k› by auto

also have " . . . = (
∑

x=r1..<k. int y * int (steps x))" by auto
also have " . . . = int y * (

∑
x=r1..<k. int (steps x))"

by (auto simp: sum_distrib_left[of "int y"])
finally show ?thesis using True by auto

next

25

case False
then have "r2<k" using pigeon_cols by auto
define aux_left where "aux_left =

(λx. int (if x < r1 then 0 else if x < r2 then y else l)
* int (steps x))"

have "(
∑

x<k. aux_left x) = (
∑

x=r1..<k. aux_left x)"
by (intro sum.mono_neutral_right) (auto simp: aux_left_def)

also have "{r1..<k} = {r1..<r2} ∪ {r2..<k}"
using ‹r1 < r2› ‹r2 < k› by auto

also have "(
∑

x∈. . . . aux_left x) = (
∑

x=r1..<r2. aux_left x) +

(
∑

x=r2..<k. aux_left x)"
by (intro sum.union_disjoint) auto

also have "(
∑

x=r1..<r2. aux_left x) =
(
∑

x=r1..<r2. int y * int (steps x))"
by (intro sum.cong) (auto simp: aux_left_def)

also have "(
∑

x=r2..<k. aux_left x) =
(
∑

x=r2..<k. int l * int (steps x))"
using ‹r1 < r2› by (intro sum.cong) (auto simp: aux_left_def)

finally show ?thesis
by (simp add: aux_left_def sum_distrib_left)

qed
then show ?thesis

unfolding arith_prog_def h_start_def h_step_def h_def f_def
multi_arith_prog_def by (auto split:if_splits)

qed

define j where "j = col (h 0)"
have case_j: "j<k" using 1 range_col_a_r ‹col (h 0) = col (h l)›

‹h l = a_r r1› j_def pigeon_cols(1) by auto
have case_step: "h_step > 0" unfolding h_step_def

using pigeon_cols by (intro sum_pos prog(1)) auto

have range_h: "h i ∈ {a..b}" if "i < l + 1" for i
unfolding h_def f_def by (rule is_multi_arith_prog_onD[OF prog(2)])

(use that in auto)

have case_on: "is_arith_prog_on (l+1) h_start h_step a b"
unfolding is_arith_prog_on_def h_arith_prog
using range_h[of 0] range_h[of l]
by (auto simp: Max_ge[of "{a..b}"] Min_le[of "{a..b}"]

h_arith_prog arith_prog_def)

have case_col: "h ‘ {..<Suc l} ⊆ col -‘ {j} ∩ {a..b}"
using h_col range_h unfolding j_def by auto

show ?case using case_j case_step case_on case_col
by (auto simp: h_arith_prog)

qed

26

Lastly, we assemble all lemmas to finally prove Van der Waerden’s Theorem
by induction on l. The cases l = 1 and the induction start l = 2 are treated
separately and have been shown earlier.
theorem van_der_Waerden: assumes "l>0" "k>0" shows "∃ n. vdw k l n"
using assms proof (induction l arbitrary: k rule: less_induct)

case (less l)
consider "l=1" | "l=2" | "l>2" using less.prems by linarith
then show ?case
proof (cases)

assume "l=1"
then show ?thesis using vdw_1_right by auto

next
assume "l=2"
then show ?thesis using vdw_2_right by auto

next
assume "l > 2"
then have "2≤l-1" by auto
from less.IH[of "l-1"] ‹l>2›
have "

∧
k’. k’>0 =⇒ ∃ n. vdw k’ (l-1) n" by auto

with vdw_imp_vdw_lemma[of "l-1" k k] ‹l-1≥2› ‹k>0›
obtain N where "vdw_lemma k k (l-1) N" by auto

then have "vdw k l N" using vdw_lemma_imp_vdw[of k "l-1" N]
by (simp add: less.prems(1))

then show ?thesis by auto
qed

qed

end

References

[1] R. G. Swan. Van der Waerden’s theorem on arithmetic progressions.
Technical report, Department of Mathematics, University of Chicago.
Online at http://www.math.uchicago.edu/~swan/expo/vdW.pdf.

27

http://www.math.uchicago.edu/~swan/expo/vdW.pdf

	Representation of integers in different bases
	Van der Waerden's Theorem
	Arithmetic progressions
	Van der Waerden's Theorem

