Verification of the UpDown scheme

Johannes Hölzl

13. September 2023

Zusammenfassung

The UpDown scheme is a recursive scheme used to compute the stiffness matrix on a special form of sparse grids. Usually, when discretizing a Euclidean space of dimension d we need $O\left(n^{d}\right)$ points, for n points along each dimension. Sparse grids are a hierarchical representation where the number of points is reduced to $O\left(n \cdot \log (n)^{d}\right)$. One disadvantage of such sparse grids is that the algorithm now operate recursively in the dimensions and levels of the sparse grid.

The UpDown scheme allows us to compute the stiffness matrix on such a sparse grid. The stiffness matrix represents the influence of each representation function on the L^{2} scalar product. For a detailed description see Pflüger's PhD thesis [2]. This formalization was developed as an interdisciplinary project (IDP) at the TU München [1].

Note: This development has two main theories. The correctnes of the UpDown scheme, and a verification of an imperative version of it. Both theories can not be merged, as they use different orders on the product type.

Inhaltsverzeichnis

1 Grid Points 2
2 Sparse Grids 6
2.1 Vectors 6
2.2 Inductive enumeration of all grid points 6
2.3 Grid Restricted to a Level 18
2.4 Unbounded Sparse Grid 18
2.5 Sparse Grid 19
2.6 Compute Sparse Grid Points 20
2.7 Base Points 24
2.8 Lift Operation over all Grid Points 31
2.9 Parent Points 32
3 Hat Functions 38
4 UpDown Scheme 47
5 Up Part 48
6 Down part 54
7 UpDown 58
8 Imperative Version 67

1 Grid Points

theory Grid-Point

imports HOL-Analysis.Multivariate-Analysis
begin
type-synonym grid-point $=($ nat \times int $)$ list
definition $l v::$ grid-point \Rightarrow nat \Rightarrow nat
where $l v p d=f s t(p!d)$
definition $i x$:: grid-point \Rightarrow nat \Rightarrow int where $i x p d=\operatorname{snd}(p!d)$
definition level :: grid-point \Rightarrow nat
where level $p=\left(\sum i<\right.$ length p. lv $\left.p i\right)$
lemma level-all-eq:
assumes $\bigwedge d . d<$ length $p \Longrightarrow l v p d=l v p^{\prime} d$
and length $p=$ length p^{\prime}
shows level $p^{\prime}=$ level p
unfolding level-def using assms by auto
datatype dir $=$ left \mid right
fun $\operatorname{sgn}::$ dir \Rightarrow int
where
sgn left $=-1$
$\mid \operatorname{sgn}$ right $=1$
fun $i n v::$ dir $\Rightarrow d i r$
where
inv left $=$ right
| inv right $=$ left
lemma $\operatorname{inv-inv[simp]:inv(inv~dir)=dir~}$ by (cases dir) simp-all

> by (cases dir, auto)
definition child $::$ grid-point \Rightarrow dir \Rightarrow nat \Rightarrow grid-point
where child p dir $d=p[d:=(l v p d+1,2 *(i x p d)+$ sgn dir $)]$
lemma child-length $[\operatorname{simp}]:$ length $($ child p dir $d)=$ length p unfolding child-def by simp
lemma child-odd $[\operatorname{simp}]: d<$ length $p \Longrightarrow$ odd $($ ix $(\operatorname{child} p$ dir d) $d)$ unfolding child-def ix-def by (cases dir, auto)
lemma child-eq: $p!d=(l, i) \Longrightarrow \exists j$. child p dir $d=p[d:=(l+1, j)]$ by (auto simp add: child-def ix-def lv-def)
lemma child-other: $d \neq d^{\prime} \Longrightarrow$ child p dir $d!d^{\prime}=p!d^{\prime}$ unfolding child-def lv-def ix-def by (cases $d^{\prime}<$ length p, auto)
lemma child-invariant: assumes $d^{\prime}<$ length p shows (child p dir $d!d^{\prime}=p!d^{\prime}$) $=\left(d \neq d^{\prime}\right)$
proof -
obtain $l i$ where $p!d^{\prime}=(l, i)$ using prod.exhaust. with assms show ?thesis unfolding child-def ix-def lv-def by auto

qed

lemma child-single-level: $d<$ length $p \Longrightarrow l v($ child p dir $d) d>l v p d$ unfolding $l v$-def child-def by simp
lemma child-lv: $d<$ length $p \Longrightarrow l v($ child p dir $d) d=l v p d+1$ unfolding child-def lv-def by simp
lemma child-lv-other: assumes $d^{\prime} \neq d$ shows $l v\left(c h i l d p\right.$ dir $\left.d^{\prime}\right) d=l v p d$ using child-other[OF assms] unfolding $l v$-def by simp
lemma child-ix-left: $d<$ length $p \Longrightarrow i x($ child p left $d) d=2 * i x p d-1$ unfolding child-def ix-def by simp
lemma child-ix-right: $d<$ length $p \Longrightarrow i x($ child p right $d) d=2 * i x p d+1$ unfolding child-def ix-def by simp
lemma child-ix: $d<$ length $p \Longrightarrow i x($ child $p \operatorname{dir} d) d=2 * i x p d+s g n \operatorname{dir}$ unfolding child-def ix-def by simp
lemma child-level[simp]: assumes $d<$ length p
shows level (child p dir $d)=$ level $p+1$
proof -
have inter: $\{0 . .<$ length $p\} \cap\{d\}=\{d\}$ using assms by auto
have level $($ child p dir $d)=$

```
    (\sum d'=0..<length p. if d'}\mp@subsup{d}{}{\prime}\in{d}\mathrm{ then lv pd + 1 else lv p d')
    by (auto intro!: sum.cong simp add: child-lv-other child-lv level-def)
    moreover have level p+1=
    (\sum d}=0..<length p. if d' 利{d} then lv p d else lv p d')+
    by (auto intro!: sum.cong simp add: child-lv-other child-lv level-def)
    ultimately show ?thesis
        unfolding sum.If-cases[OF finite-atLeastLessThan] inter
        using assms by auto
qed
lemma child-ex-neighbour: \exists b}\mp@subsup{}{}{\prime}.\mathrm{ child b dir d = child b}\mp@subsup{b}{}{\prime}(\mathrm{ inv dir) d
proof
    show child b dir d= child (b[d := (lv b d, ix b d + sgn dir)]) (inv dir)d
        unfolding child-def ix-def lv-def by (cases d < length b, auto simp add:
algebra-simps)
qed
lemma child-level-gt[simp]: level (child p dir d) >= level p
    by (cases d< length p, simp, simp add: child-def)
lemma child-estimate-child:
    assumes d< length p
    and l\leqlv pd
    and \mp@subsup{i}{}{\prime}-range: ix pd< (i+1)* 2`(lv pd - l)^
                ix pd> (i-1)* 2`(lv pd-l)
                    (is ?top p ^?bottom p)
    and is-child: p' = child p dir d
    shows ?top p'^ ?bottom p
proof
    from is-child and <d< length p>
    have lv p' d = lv p d + 1 by (auto simp add: child-def ix-def lv-def)
    hence lv p}\mp@subsup{p}{}{\prime}d-l=lvpd-l+1 using <lv pd>= l> by aut
    hence pow-l':( (``(lv p'd - l) :: int) = 2 * 2`(lv pd - l) by auto
    show ?top p'
    proof -
    from is-child and <d < length p>
    have ix p'd\leq2*(ixpd)+1
            by (cases dir, auto simp add: child-def lv-def ix-def)
    also have }\ldots<(i+1)*(2*\mathcal{Z}`(lv pd-l)) using i'-range by aut
    finally show ?thesis using pow-l'" by auto
    qed
    show ?bottom p'
    proof -
    have }(i-1)*\mp@subsup{\mathscr{Z}}{}{`}(lv \mp@subsup{p}{}{\prime}d-l)=2 * ((i-1)*\mathscr{2}(lv pd-l)
            using pow-l'l}\mathrm{ by simp
    also have \ldots<2*ixpd-1 using i'-range by auto
    finally show ?thesis using is-child and <d< length p>
```

```
        by (cases dir, auto simp add: child-def lv-def ix-def)
    qed
qed
lemma child-neighbour: assumes child p (inv dir) d= child ps dir d (is ?c-p =
?c-ps)
    shows ps = p[d:= (lv pd,ixpd - sgn dir)] (is - = ?ps)
proof (rule nth-equalityI)
    have length ?c-ps = length ?c-p using <?c-p = ?c-ps> by simp
    hence len-eq: length ps = length p by simp
    thus length ps = length ?ps by simp
    show ps!i=?ps!i if i< length ps for }
    proof -
        have i< length p
            using that len-eq by auto
        show ps!i=?ps!i
        proof (cases d=i)
            case [simp]: True
            have ?c-p!i=?c-ps!i using <?c-p = ?c-ps\rangle by auto
            hence ix pi=ix ps d+ sgn dir and lv pi=lv ps i
            by (auto simp add: child-def
                    nth-list-update-eq[OF <i < length p>]
                nth-list-update-eq[OF <i< length ps>])
            thus ?thesis by (simp add:lv-def ix-def <i< length p〉)
        next
            assume d 
            with child-other[OF this, of ps dir] child-other[OF this, of p inv dir]
            show ?thesis using assms by auto
        qed
    qed
qed
definition start :: nat }=>\mathrm{ grid-point
where
    start dm = replicate dm (0, 1)
lemma start-lv[simp]:d<dm\Longrightarrowlv (start dm) d=0
    unfolding start-def lv-def by simp
lemma start-ix[simp]:d<dm\Longrightarrow ix (start dm) d = 1
    unfolding start-def ix-def by simp
lemma start-length[simp]: length (start dm) = dm
    unfolding start-def by auto
lemma level-start-0 [simp]:level (start dm) = 0
```

using level-def by auto
end

2 Sparse Grids

theory Grid
imports Grid-Point
begin

2.1 Vectors

```
type-synonym vector = grid-point }=>\mathrm{ real
definition null-vector :: vector
where null-vector }\equiv\lambdap.
definition sum-vector :: vector }=>\mathrm{ vector }=>\mathrm{ vector
where sum-vector \alpha \beta \equiv\lambda p.\alpha p+\betap
```


2.2 Inductive enumeration of all grid points

inductive-set

grid :: grid-point \Rightarrow nat set \Rightarrow grid-point set
for $b::$ grid-point and $d s::$ nat set

where

Start[intro!]: $b \in \operatorname{grid} b d s$
\mid Child[intro!]: $\llbracket p \in$ grid $b d s ; d \in d s \rrbracket \Longrightarrow$ child p dir $d \in$ grid $b d s$
lemma grid-length $[\operatorname{simp}]: p^{\prime} \in$ grid $p d s \Longrightarrow$ length $p^{\prime}=$ length p
by (erule grid.induct, auto)
lemma grid-union-dims: $\llbracket d s \subseteq d s^{\prime} ; p \in$ grid $b d s \rrbracket \Longrightarrow p \in$ grid $b d s^{\prime}$ by (erule grid.induct, auto)
lemma grid-transitive: $\llbracket a \in \operatorname{grid} b d s ; b \in \operatorname{grid} c d s^{\prime} ; d s^{\prime} \subseteq d s^{\prime \prime} ; d s \subseteq d s^{\prime \prime} \rrbracket$ $\Longrightarrow a \in \operatorname{grid} c d s^{\prime \prime}$
by (erule grid.induct, auto simp add: grid-union-dims)
lemma grid-child[intro?]: assumes $d \in d s$ and p-grid: $p \in$ grid (child bdir d)ds shows $p \in$ grid $b d s$
using $\langle d \in d s\rangle$ grid-transitive $[$ OF p-grid] by auto
lemma grid-single-level[simp]: assumes $p \in$ grid $b d s$ and $d<l e n g t h ~ b$
shows $l v b d \leq l v p d$
using assms
proof induct
case (Child $p^{\prime} d^{\prime}$ dir)
thus ?case by (cases $d^{\prime}=d$, auto simp add: child-def ix-def lv-def)
lemma grid-child-level:
assumes $d<$ length b
and p-grid: $p \in$ grid (child b dir d) ds
shows $l v b d<l v p d$
proof -
have $l v b d<l v($ child b dir $d) d$ using child-lv $[O F\langle d<l e n g t h b\rangle]$ by auto
also have $\ldots \leq l v p d$ using p-grid assms by (intro grid-single-level) auto
finally show? thesis.
qed
lemma child-out: length $p \leq d \Longrightarrow$ child p dir $d=p$
unfolding child-def by auto
lemma grid-dim-remove:
assumes inset: $p \in$ grid $b(\{d\} \cup d s)$
and eq: $d<$ length $b \Longrightarrow p!d=b!d$
shows $p \in$ grid $b d s$
using inset eq
proof induct
case (Child $p^{\prime} d^{\prime}$ dir)
show ?case
proof (cases $d^{\prime} \geq$ length p^{\prime})
case True with child-out[OF this]
show ?thesis using Child by auto
next
case False hence $d^{\prime}<$ length p^{\prime} by simp
show ?thesis
proof (cases $d^{\prime}=d$)
case True
hence $l v b d \leq l v p^{\prime} d$ and $l v p^{\prime} d<l v\left(\right.$ child p^{\prime} dir $\left.d\right) d$
using child-single-level Child $\left\langle d^{\prime}<\right.$ length $\left.p^{\prime}\right\rangle$ by auto
hence False using Child and $\left\langle d^{\prime}=d\right\rangle$ and $l v$-def and $\left\langle\neg d^{\prime} \geq\right.$ length $\left.p^{\prime}\right\rangle$
by auto
thus ?thesis ..
next
case False
hence $d^{\prime} \in d s$ using Child by auto
moreover have $d<$ length $b \Longrightarrow p^{\prime}!d=b!d$
proof -
assume $d<$ length b
hence $d<$ length p^{\prime} using Child by auto
hence child p^{\prime} dir $d^{\prime}!d=p^{\prime}!d$ using child-invariant and False by auto
thus ?thesis using Child and $\langle d<$ length $b\rangle$ by auto
qed
hence $p^{\prime} \in$ grid $b d s$ using Child by auto
ultimately show ?thesis using grid.Child by auto
qed
qed
qed auto
lemma gridgen-dim-restrict:
assumes inset: $p \in \operatorname{grid} b\left(d s^{\prime} \cup d s\right)$
and eq: $\forall d \in d s^{\prime} . d \geq$ length b
shows $p \in$ grid $b d s$
using inset eq
proof induct
case (Child p ${ }^{\prime}$ d dir)
thus ?case
proof (cases $d \in d s$)
case False thus ?thesis using Child and child-def by auto
qed auto
qed auto
lemma grid-dim-remove-outer: grid $b d s=$ grid $b\{d \in d s . d<$ length $b\}$
proof
have $\{d \in d s . d<$ length $b\} \subseteq d s$ by auto
from grid-union-dims[OF this]
show grid $b\{d \in d s . d<$ length $b\} \subseteq$ grid $b d s$ by auto
have $d s=(d s-\{d \in d s . d<$ length $b\}) \cup\{d \in d s . d<$ length $b\}$ by auto
moreover
have grid $b((d s-\{d \in d s . d<$ length $b\}) \cup\{d \in d s . d<$ length $b\}) \subseteq$ grid b $\{d \in d s . d<$ length $b\}$
proof
fix p
assume $p \in$ grid $b(d s-\{d \in d s . d<$ length $b\} \cup\{d \in d s . d<$ length $b\})$
moreover have $\forall d \in(d s-\{d \in d s$. $d<$ length $b\}) . d \geq$ length b by auto
ultimately show $p \in$ grid $b\{d \in d s$. $d<$ length $b\}$ by (rule gridgen-dim-restrict)
qed
ultimately show grid $b d s \subseteq$ grid $b\{d \in d s . d<$ length $b\}$ by auto
qed
lemma grid-level[intro]: assumes $p \in$ grid $b d s$ shows level $b \leq$ level p proof -
have $*$: length $p=$ length b using grid-length assms by auto
$\{$ fix i assume $i \in\{0 . .<$ length $p\}$
hence lv $b i \leq l v p i$ using $\langle p \in$ grid $b d s\rangle$ and grid-single-level $*$ by auto
\} thus ?thesis unfolding level-def $*$ by (auto intro!: sum-mono)
qed
lemma grid-empty-ds[simp]: grid $b\}=\{b\}$
proof -
have !! $z . z \in$ grid $b\} \Longrightarrow z=b$
by (erule grid.induct, auto)
thus?thesis by auto
qed
lemma grid-Start: assumes inset: $p \in$ grid $b d s$ and eq: level $p=$ level b shows

```
\(p=b\)
    using inset eq
proof induct
    case (Child p d dir)
    show ?case
    proof (cases \(d<\) length \(b\) )
        case True
        from Child
        have level \(p \geq\) level \(b\) by auto
    moreover
    have level \(p \leq\) level (child \(p\) dir \(d\) ) by (rule child-level-gt)
    hence level \(p \leq\) level \(b\) using Child by auto
    ultimately have level \(p=\) level \(b\) by auto
    hence \(p=b\) using Child(2) by auto
    with Child(4) have level (child b dir \(d\) ) \(=\) level \(b\) by auto
    moreover have level (child b dir \(d\) ) \(\neq\) level \(b\) using child-level and \(\langle d<\)
length \(b\) > by auto
    ultimately show? ?thesis by auto
    next
    case False
    with Child have length \(p=\) length \(b\) by auto
    with False have child \(p\) dir \(d=p\) using child-def by auto
    moreover with Child have level \(p=\) level \(b\) by auto
    with Child(2) have \(p=b\) by auto
    ultimately show ?thesis by auto
    qed
qed auto
lemma grid-estimate:
    assumes \(d<\) length \(b\) and \(p\)-grid: \(p \in\) grid \(b d s\)
    shows \(i x p d<(i x b d+1) * \mathcal{2}^{\wedge}(l v p d-l v b d) \wedge i x p d>(i x b d-1) *\)
\(2^{\wedge}(l v p d-l v b d)\)
    using \(p\)-grid
proof induct
    case (Child p d' dir)
    show ? case
    proof (cases \(d=d^{\prime}\) )
        case False with Child show ?thesis unfolding child-def lv-def ix-def by auto
    next
        case True with child-estimate-child and Child and \(\langle d<l e n g t h ~ b\rangle\)
        show ?thesis using grid-single-level by auto
    qed
qed auto
lemma grid-odd: assumes \(d<\) length \(b\) and \(p\)-diff: \(p!d \neq b!d\) and \(p\)-grid: \(p\)
\(\in\) grid \(b\) ds
    shows odd (ix pd)
    using \(p\)-grid and \(p\)-diff
proof induct
    case (Child p d' dir)
    show ?case
```

proof (cases $d=d^{\prime}$)
case True with child-odd and $\langle d<l e n g t h ~ b\rangle$ and Child show ?thesis by auto next
case False with Child and $\langle d<l e n g t h ~ b\rangle$ show ?thesis using child-def and $i x-d e f$ and $l v-d e f$ by auto
qed
qed auto
lemma grid-invariant: assumes $d<l e n g t h ~ b$ and $d \notin d s$ and p-grid: $p \in$ grid b $d s$
shows $p!d=b!d$
using p-grid
proof (induct)
case (Child $p d^{\prime}$ dir) hence $d^{\prime} \neq d$ using $\langle d \notin d s\rangle$ by auto
thus ?case using child-def and Child by auto
qed auto
lemma grid-part: assumes $d<$ length b and p-valid: $p \in$ grid $b\{d\}$ and p^{\prime}-valid: $p^{\prime} \in \operatorname{grid} b\{d\}$
and level: $l v p^{\prime} d \geq l v p d$
and right: $i x p^{\prime} d \leq(i x p d+1) * 2^{\wedge}\left(l v p^{\prime} d-l v p d\right)\left(\right.$ is ? right $\left.p p^{\prime} d\right)$
and left: ix $p^{\prime} d \geq(i x p d-1) * \mathcal{L}^{\wedge}\left(l v p^{\prime} d-l v p d\right)$ (is ?left $\left.p p^{\prime} d\right)$
shows $p^{\prime} \in \operatorname{grid} p\{d\}$
using p^{\prime}-valid left right level and p-valid
proof induct
case (Child $p^{\prime} d^{\prime}$ dir)
hence $d=d^{\prime}$ by auto
let ?child $=$ child p^{\prime} dir d^{\prime}
show ?case
proof (cases lv pd=lv ?child d)
case False
moreover have $l v$?child $d=l v p^{\prime} d+1$ using child-lv and $\langle d<l e n g t h ~ b\rangle$
and Child and $\left\langle d=d^{\prime}\right\rangle$ by auto
ultimately have $l v p d<l v p^{\prime} d+1$ using Child by auto
hence $l v$: Suc $\left(l v p^{\prime} d\right)-l v p d=S u c\left(l v p^{\prime} d-l v p d\right)$ by auto
have ?left $p p^{\prime} d \wedge$? right $p p^{\prime} d$
proof (cases dir)
case left
with Child have $2 * i x p^{\prime} d-1 \leq(i x p d+1) * \mathscr{2}^{\wedge}\left(S u c\left(l v p^{\prime} d\right)-l v p d\right)$ using $\left\langle d=d^{\prime}\right\rangle$ and $\langle d<$ length $b\rangle$ by (auto simp add: child-def ix-def lv-def) also have $\ldots=2 *(i x p d+1) * \mathcal{L}^{\wedge}\left(l v p^{\prime} d-l v p d\right)$ using $l v$ by auto finally have $2 * i x p^{\prime} d-2<2 *(i x p d+1) * 2 \uparrow\left(l v p^{\prime} d-l v p d\right)$ by auto
also have $\ldots=2 *\left((i x p d+1) * \mathcal{L}^{\wedge}\left(l v p^{\prime} d-l v p d\right)\right)$ by auto finally have left-r: ix $p^{\prime} d \leq(i x p d+1) * \mathcal{Z}^{\Upsilon}\left(l v p^{\prime} d-l v p d\right)$ by auto
have $2 *\left((i x p d-1) * \mathfrak{Z}^{〔}\left(l v p^{\prime} d-l v p d\right)\right)=2 *(i x p d-1) * \mathcal{Z}^{〔}\left(l v p^{\prime}\right.$ $d-l v p d)$ by auto
also have $\ldots=(i x p d-1) * \mathscr{Z}^{\wedge}\left(S u c\left(l v p^{\prime} d\right)-l v p d\right)$ using $l v$ by auto
also have $\ldots \leq 2 * i x p^{\prime} d-1$
using left and Child and $\left\langle d=d^{\prime}\right\rangle$ and $\langle d<$ length $b\rangle$ by (auto simp add: child-def ix-def lv-def)
finally have right-r: $\left((i x p d-1) * \mathcal{L}^{\wedge}\left(\operatorname{lv} p^{\prime} d-l v p d\right)\right) \leq i x p^{\prime} d$ by auto
show ?thesis using left-r and right- r by auto

next

case right
with Child have 2*ix $p^{\prime} d+1 \leq(i x p d+1) * 2^{\wedge}\left(S u c\left(l v p^{\prime} d\right)-l v p d\right)$ using $\left\langle d=d^{\prime}\right\rangle$ and $\langle d<$ length $b\rangle$ by (auto simp add: child-def ix-def lv-def) also have $\ldots=2 *(i x p d+1) * \mathscr{2}^{\wedge}\left(l v p^{\prime} d-l v p d\right)$ using $l v$ by auto finally have $2 * i x p^{\prime} d<2 *(i x p d+1) * \mathcal{Z}^{\wedge}\left(l v p^{\prime} d-l v p d\right)$ by auto also have $\ldots=2 *\left((i x p d+1) * \mathcal{V}^{\wedge}\left(l v p^{\prime} d-l v p d\right)\right)$ by auto
finally have left-r: ix $p^{\prime} d \leq(i x p d+1) * \mathcal{Z}^{\wedge}\left(l v p^{\prime} d-l v p d\right)$ by auto
have $2 *\left((i x p d-1) * \mathfrak{2}^{\wedge}\left(l v p^{\prime} d-l v p d\right)\right)=2 *(i x p d-1) * \mathcal{Z}^{\wedge}\left(l v p^{\prime}\right.$ $d-l v p d)$ by auto
also have $\ldots=(i x p d-1) * \mathfrak{2}^{〔}\left(S u c\left(l v p^{\prime} d\right)-l v p d\right)$ using $l v$ by auto also have $\ldots \leq 2 * i x p^{\prime} d+1$
using right and Child and $\left\langle d=d^{\prime}\right\rangle$ and $\langle d<$ length $b\rangle$ by (auto simp add: child-def ix-def lv-def)
also have $\ldots<2 *\left(i x p^{\prime} d+1\right)$ by auto
finally have right- $r:\left((i x p d-1) * \mathcal{R}^{\wedge}\left(l v p^{\prime} d-l v p d\right)\right) \leq i x p^{\prime} d$ by auto
show ?thesis using left-r and right-r by auto
qed
with Child and $l v$ have $p^{\prime} \in \operatorname{grid} p\{d\}$ by auto
thus ?thesis using $\left\langle d=d^{\prime}\right\rangle$ by auto

next

case True
moreover with Child have ?left p ?child $d \wedge$? right p ? child d by auto
ultimately have range: ix p d-1 $\leq i x$?child $d \wedge i x$?child $d \leq i x p d+1$
by auto
have $p!d \neq b!d$
proof (rule ccontr)
assume $\neg(p!d \neq b!d)$
with $\langle l v p d=l v$?child $d\rangle$ have $l v b d=l v$?child d by (auto simp add: $l v-d e f)$
hence $l v b d=l v p^{\prime} d+1$ using $\left\langle d=d^{\prime}\right\rangle$ and Child and $\langle d<$ length $b\rangle$ and child-lv by auto
moreover have $l v b d \leq l v p^{\prime} d$ using $\left\langle d=d^{\prime}\right\rangle$ and Child and $\langle d<l e n g t h$ b) and grid-single-level by auto
ultimately show False by auto
qed
hence odd (ixpr) using grid-odd and $\langle p \in$ grid $b\{d\}\rangle$ and $\langle d<$ length $b\rangle$ by auto
hence \neg odd $(i x p d+1)$ and \neg odd $(i x p d-1)$ by auto
have $d<$ length p^{\prime} using $\left\langle p^{\prime} \in\right.$ grid $\left.b\{d\}\right\rangle$ and $\langle d<$ length $b\rangle$ by auto hence odd-child: odd (ix ?child d) using child-odd and $\left\langle d=d^{\prime}\right\rangle$ by auto

```
    have \(i x p d-1 \neq i x\) ? child \(d\)
    proof (rule ccontr)
        assume \(\neg(i x p d-1 \neq i x\) ? child \(d)\)
        hence odd (ix pd-1) using odd-child by auto
        thus False using \(\prec \neg\) odd \((i x p d-1)\) ) by auto
    qed
    moreover
    have \(i x p d+1 \neq i x\) ?child \(d\)
    proof (rule ccontr)
        assume \(\neg(i x p d+1 \neq i x\) ? child \(d)\)
        hence odd (ixpd+1) using odd-child by auto
        thus False using «ᄀ odd (ix p d + 1) 〉 by auto
    qed
    ultimately have \(i x p d=i x\) ? child \(d\) using range by auto
    with True have \(d\)-eq: \(p!d=(?\) child \()!d\) by (auto simp add: prod-eqI ix-def
\(l v-d e f)\)
```

have length $p=$ length ?child using $\langle p \in$ grid $b\{d\}\rangle$ and $\left\langle p^{\prime} \in \operatorname{grid} b\{d\}\right\rangle$ by auto
moreover have $p!d^{\prime \prime}=$? child $!d^{\prime \prime}$ if $d^{\prime \prime}<$ length p for $d^{\prime \prime}$
proof -
have $d^{\prime \prime}<$ length b using that $\langle p \in$ grid $b\{d\}\rangle$ by auto
show $p!d^{\prime \prime}=$?child $!d^{\prime \prime}$
proof (cases $d=d^{\prime \prime}$)
case True with $d-e q$ show ?thesis by auto
next
case False hence $d^{\prime \prime} \notin\{d\}$ by auto
from $\left\langle d^{\prime \prime}<\right.$ length $\left.b\right\rangle$ and this and $\langle p \in$ grid $b\{d\}\rangle$
have $p!d^{\prime \prime}=b!d^{\prime \prime}$ by (rule grid-invariant)
also have $\ldots=p^{\prime}!d^{\prime \prime}$ using $\left\langle d^{\prime \prime}<\right.$ length $\left.b\right\rangle$ and $\left\langle d^{\prime \prime} \notin\{d\}\right\rangle$ and $\left\langle p^{\prime} \in\right.$ grid $b\{d\}$ >
by (rule grid-invariant[symmetric])
also have $\ldots=$?child ! $d^{\prime \prime}$
proof -
have $d^{\prime \prime}<$ length p^{\prime} using $\left\langle d^{\prime \prime}<\right.$ length $\left.b\right\rangle$ and $\left\langle p^{\prime} \in\right.$ grid $\left.b\{d\}\right\rangle$ by auto
hence ?child ! $d^{\prime \prime}=p^{\prime}!d^{\prime \prime}$ using child-invariant and $\left\langle d \neq d^{\prime \prime}\right\rangle$ and $\langle d$ $=d^{\prime}>$ by auto
thus?thesis by auto
qed
finally show ?thesis.
qed
qed
ultimately have $p=$? child by (rule nth-equalityI)
thus ?child \in grid $p\{d\}$ by auto
qed
next

```
    case Start
    moreover hence lv b d\leqlv pd using grid-single-level and <d<length b> by
auto
    ultimately have lv b d = lv pd by auto
    have level p=level b
    proof -
        {fix d}\mp@subsup{|}{}{\prime
            assume d'< length b
            have lv b d'}=lvp\mp@subsup{d}{}{\prime
            proof (cases d = d')
            case True with <lv b d = lv pd` show ?thesis by auto
            next
                case False hence d}\mp@subsup{d}{}{\prime}\not\in{d}\mathrm{ by auto
                from }\langle\mp@subsup{d}{}{\prime}<length b\rangle and this and <p\in grid b{d}>
                    have p!d' = b!d' by (rule grid-invariant)
                    thus ?thesis by (auto simp add: lv-def)
        qed }
    moreover have length b= length p using <p\in grid b {d}> by auto
    ultimately show ?thesis by (rule level-all-eq)
    qed
    hence p=b using grid-Start and }\langlep\ingrid b{d}> by aut
    thus ?case by auto
qed
lemma grid-disjunct: assumes d< length p
    shows grid (child p left d)ds \cap grid (child p right d)ds={}
    (is grid ?l ds \cap grid ?r ds = {})
proof (intro set-eqI iffI)
    fix }
    assume x grid ?l ds \cap grid ?r ds
    hence ix x d< (ix ?l d + 1) * 2`(lv x d - lv ?l d)
        and ix x d> (ix ?r d - 1)* 2^(lv x d - lv ?r d)
        using grid-estimate < d < length p> by auto
    thus }x\in{}\mathrm{ using <d< length p> and child-lv and child-ix by auto
qed auto
lemma grid-level-eq: assumes eq:}\foralld\inds.lv pd=lvbd and grid: p \in grid b
ds
    shows level p= level b
proof (rule level-all-eq)
    {fix i assume i< length b
        show lv bi=lvpi
        proof (cases i }\inds\mathrm{ )
            case True with eq show ?thesis by auto
        next case False with <i< length b> and grid show ?thesis
            using lv-def ix-def grid-invariant by auto
        qed }
    show length b = length p using grid by auto
qed
```


lemma grid-partition:

$$
\text { grid } p\{d\}=\{p\} \cup \text { grid (child p left } d)\{d\} \cup \text { grid (child p right } d)\{d\}
$$

(is $-=-\cup$ grid ?l $\{d\} \cup$ grid $? r\{d\}$)
proof -
have !! x. $\llbracket x \in \operatorname{grid} p\{d\} ; x \neq p ; x \notin \operatorname{grid} ? r\{d\} \rrbracket \Longrightarrow x \in \operatorname{grid} ? l\{d\}$
proof (cases $d<$ length p)
case True
fix x
let ? $n r-r p=i x x d>(i x p d+1) * 2^{\wedge}(l v x d-l v p d)$
let ? $n r-l p=(i x p d-1) * 2^{\wedge}(l v x d-l v p d)>i x x d$
have $i x-r-e q$: $i x$? $r d=2 * i x p d+1$ using $\langle d<$ length $p\rangle$ and child-ix by auto
have $l v-r-e q: l v ? r d=l v p d+1$ using $\langle d<l e n g t h ~ p\rangle$ and child-lv by auto
have $i x$-l-eq: ix ?l $d=2 * i x p d-1$ using $\langle d<l e n g t h ~ p\rangle$ and child-ix by auto
have $l v-l-e q: l v ? l d=l v p d+1$ using $\langle d<l e n g t h ~ p\rangle$ and child-lv by auto
assume $x \in \operatorname{grid} p\{d\}$ and $x \neq p$ and $x \notin$ grid $? r\{d\}$
hence $l v p d \leq l v x d$ using grid-single-level and $\langle d<l e n g t h ~ p\rangle$ by auto
moreover have $l v p d \neq l v x d$
proof (rule ccontr)
assume $\neg l v p d \neq l v x d$
hence level $x=$ level p using $\langle x \in$ grid $p\{d\}\rangle$ and grid-level-eq[where $d s=\{d\}]$ by auto
hence $x=p$ using grid-Start and $\langle x \in$ grid $p\{d\}\rangle$ by auto
thus False using $\langle x \neq p\rangle$ by auto
qed
ultimately have $l v p d<l v x d$ by auto
hence $l v ? r d \leq l v x d$ and $? r \in$ grid $p\{d\}$ using child-lv and $\langle d<$ length $p\rangle$ by auto
with $\langle d<$ length $p\rangle$ and $\langle x \in$ grid $p\{d\}\rangle$
have r-range: \neg ? $n r-r$? $r \wedge \neg$? $n r-l$? $r \Longrightarrow x \in$ grid $? r\{d\}$
using grid-part[where $p=? r$ and $p^{\prime}=x$ and $b=p$ and $\left.d=d\right]$ by auto
have $x \notin$ grid ?r $\{d\} \Longrightarrow$?nr-l ? $r \vee$? $n r-r$? r by (rule ccontr, auto simp add: r-range)
hence ?nr-l ? $r \vee$?nr-r ? r using $\langle x \notin$ grid ? $r\{d\}$ 〉 by auto
have $g t 0$: lv $x d-l v p d>0$ using $\langle l v p d<l v x d\rangle$ by auto
have $i x$-shift: $i x$? $r d=i x ? l d+2$ and $l v-l r: l v$?r $d=l v$?l d and right1 $:!!$ $x::$ int. $x+2-1=x+1$
using $\langle d<$ length p and child-ix and child-lv by auto
have $l v x d-l v p d=S u c(l v x d-(l v p d+1))$
using gt0 by auto
hence lv-shift: !! $y::$ int. $y * 2^{\wedge}(l v x d-l v p d)=y * 2 * 2^{\wedge}(l v x d-(l v$ $p d+1)$)
by auto
have $i x x d<(i x p d+1) * 2^{\wedge}(l v x d-l v p d)$
using $\langle x \in \operatorname{grid} p\{d\}\rangle$ grid-estimate and $\langle d<$ length $p\rangle$ by auto
also have $\ldots=(i x$? $r d+1) * 2^{\wedge}(l v x d-l v$? $r d)$
using $\langle l v p d<l v x d\rangle$ and $i x-r-e q$ and $l v-r-e q l v$-shift [where $y=i x p d+1]$ by auto
finally have ? $n r-l$? r using 〈? $n r-l$? r V ? $n r-r$? r 〉 by auto
hence r-bound: $(i x ? l d+1) * 2^{\wedge}(l v x d-l v ? l d)>i x x d$
unfolding ix-shift lv-lr using right1 by auto
have $(i x ? l d-1) * 2^{\wedge}(l v x d-l v ? l d)=(i x p d-1) * 2 * 2^{\wedge}(l v x d-$ (lv $p d+1)$)
unfolding $i x-l-e q ~ l v-l-e q$ by auto
also have $\ldots=(i x p d-1) * 2^{\wedge}(l v x d-l v p d)$
using lv-shift $[$ where $y=i x p d-1]$ by auto
also have $\ldots<i x x d$
using $\langle x \in$ grid $p\{d\}\rangle$ grid-estimate and $\langle d<$ length $p\rangle$ by auto
finally have l-bound: $(i x ? l d-1) * 2^{\wedge}(l v x d-l v ? l d)<i x x d$.
from l-bound r-bound $\langle d<$ length $p\rangle$ and $\langle x \in \operatorname{grid} p\{d\}\rangle\langle l v$? $r d \leq l v x d\rangle$ and $l v-l r$
show $x \in$ grid ?l $\{d\}$ using grid-part[where $p=? l$ and $p^{\prime}=x$ and $\left.d=d\right]$ by auto qed (auto simp add: child-def)
thus ?thesis by (auto intro: grid-child)
qed
lemma grid-change-dim: assumes grid: $p \in$ grid $b d s$
shows $p[d:=X] \in \operatorname{grid}(b[d:=X]) d s$
using grid
proof induct
case (Child p d' dir)
show ? case
proof (cases $d \neq d^{\prime}$)
case True
have (child p dir $\left.d^{\prime}\right)[d:=X]=\operatorname{child}(p[d:=X])$ dir d^{\prime}
unfolding child-def and $i x$-def and lv-def
unfolding list-update-swap $\left.\left[O F \prec d \neq d^{\prime}\right\rangle\right]$ and nth-list-update-neq $[O F \prec d \neq$ $\left.\left.d^{\prime}\right\rangle\right] .$.
thus ?thesis using Child by auto
next
case False hence $d=d^{\prime}$ by auto
with Child show ?thesis unfolding child-def $\left\langle d=d^{\prime}\right\rangle$ list-update-overwrite by auto
qed
qed auto
lemma grid-change-dim-child: assumes grid: $p \in \operatorname{grid} b d s$ and $d \notin d s$

```
    shows child p dir d \in grid (child b dir d) ds
proof (cases d< length b)
    case True thus ?thesis using grid-change-dim[OF grid]
    unfolding child-def lv-def ix-def grid-invariant[OF True «d &ds` grid] by auto
next
    case False hence length b\leqd and length p\leqd using grid by auto
    thus ?thesis unfolding child-def using list-update-beyond assms by auto
qed
lemma grid-split: assumes grid: p\ingrid b (ds'\cupds) shows \exists x grid b ds. p
\in grid x ds'
    using grid
proof induct
    case (Child p d dir)
    show ?case
    proof (cases d\inds')
        case True with Child show ?thesis by auto
    next
        case False
        hence d}\inds\mathrm{ using Child by auto
        obtain }x\mathrm{ where }x\in\mathrm{ grid }bds\mathrm{ and p grid x ds' using Child by auto
        hence child x dir d \in grid b ds using }\langled\inds\rangle\mathrm{ by auto
        moreover have child p dir d \in grid (child x dir d) ds'
            using }<p\in\mathrm{ grid }xd\mp@subsup{s}{}{\prime}\rangle False and grid-change-dim-child by aut
    ultimately show ?thesis by auto
    qed
qed auto
lemma grid-union-eq: ( }\bigcupp\in\mathrm{ grid b ds. grid p ds') = grid b (ds'}\cupds
    using grid-split and grid-transitive[where }d\mp@subsup{s}{}{\prime\prime}=d\mp@subsup{s}{}{\prime}\cupds\mathrm{ and }ds=d\mp@subsup{s}{}{\prime}\mathrm{ ' and }d\mp@subsup{s}{}{\prime}=ds\mathrm{ ,
OF - - Un-upper2 Un-upper1] by auto
lemma grid-onedim-split:
    grid b}(ds\cup{d})= grid b ds \cup grid (child b left d) (ds \cup{d})\cup grid (child b
right d) (ds \cup{d})
    (is - = ?g\cup?l (ds\cup{d})\cup?r (ds\cup{d}))
proof -
    have ?g\cup?l (ds\cup{d})\cup?r (ds\cup{d})=??g\cup(\bigcup p\in?l {d}.grid pds)\cup
(\bigcup p\in?r {d}. grid p ds)
    unfolding grid-union-eq ..
    also have ... =(\bigcupp\in({b}\cup?l{d}\cup?r {d}). grid p ds) by auto
    also have ... =(\bigcup p\in grid b {d}.grid p ds) unfolding grid-partition[where
p=b] ..
    finally show ?thesis unfolding grid-union-eq by auto
qed
lemma grid-child-without-parent: assumes grid: p \in grid (child b dir d) ds (is p
grid?c ds) and d<length b
    shows p\not=b
proof -
    have level ?c \leq level p using grid by (rule grid-level)
    hence level b< level p using child-level and <d< < length b> by auto
    thus ?thesis by auto
```


qed

lemma grid-disjunct':
assumes $p \in \operatorname{grid} b d s$ and $p^{\prime} \in \operatorname{grid} b d s$ and $x \in \operatorname{grid} p d s^{\prime}$ and $p \neq p^{\prime}$ and $d s \cap d s^{\prime}=\{ \}$
shows $x \notin$ grid $p^{\prime} d s^{\prime}$
proof (rule ccontr)
assume $\neg x \notin$ grid $p^{\prime} d s^{\prime}$ hence $x \in$ grid $p^{\prime} d s^{\prime}$ by auto
have l : length $b=$ length p and l^{\prime} : length $b=$ length p^{\prime} using $\langle p \in$ grid b ds \rangle and $\left\langle p^{\prime} \in\right.$ grid $\left.b d s\right\rangle$ by auto
hence length $p^{\prime}=$ length p by auto
moreover have $\forall d<$ length $p^{\prime} . p^{\prime}!d=p!d$
proof (rule allI, rule impI)
fix d assume $d l^{\prime}: d<$ length p^{\prime} hence $d<$ length b using l^{\prime} by auto
hence $d l$: $d<$ length p using l by auto
show $p^{\prime}!d=p!d$
proof (cases $d \in d s^{\prime}$)
case True with $\left\langle d s \cap d s^{\prime}=\{ \}\right\rangle$ have $d \notin d s$ by auto
hence $p^{\prime}!d=b!d$ and $p!d=b!d$
using $\langle d<$ length $b\rangle\left\langle p^{\prime} \in\right.$ grid $\left.b d s\right\rangle$ and $\langle p \in$ grid $b d s\rangle$ and grid-invariant
by auto
thus ?thesis by auto
next
case False
show ?thesis
using grid-invariant[OF dl ${ }^{\prime}$ False $\left\langle x \in\right.$ grid $\left.\left.p^{\prime} d s^{\prime}\right\rangle\right]$
and grid-invariant[OF dl False $\left\langle x \in\right.$ grid $\left.\left.p d s^{\prime}\right\rangle\right]$ by auto
qed
qed
ultimately have $p^{\prime}=p$ by (metis nth-equalityI)
thus False using $\left\langle p \neq p^{\prime}\right\rangle$ by auto
qed
lemma grid-split1: assumes grid: $p \in$ grid $b\left(d s^{\prime} \cup d s\right)$ and $d s \cap d s^{\prime}=\{ \}$
shows $\exists!x \in \operatorname{grid} b d s . p \in \operatorname{grid} x d s^{\prime}$
proof (rule ex-ex1I)
obtain x where $x \in \operatorname{grid} b d s$ and $p \in \operatorname{grid} x d s^{\prime}$ using grid-split[OF grid] by auto
thus $\exists x . x \in \operatorname{grid} b d s \wedge p \in \operatorname{grid} x d s^{\prime}$ by auto
next
fix $x y$
assume $x \in \operatorname{grid} b d s \wedge p \in \operatorname{grid} x d s^{\prime}$ and $y \in \operatorname{grid} b d s \wedge p \in \operatorname{grid} y d s^{\prime}$
hence $x \in$ grid $b d s$ and $p \in \operatorname{grid} x d s^{\prime}$ and $y \in \operatorname{grid} b d s$ and $p \in$ grid $y d s^{\prime}$ by auto
show $x=y$
proof (rule ccontr)
assume $x \neq y$
from grid-disjunct ${ }^{\prime}\left[O F\langle x \in\right.$ grid $b d s\rangle\langle y \in$ grid $b d s\rangle\left\langle p \in\right.$ grid $\left.x d s s^{\prime}\right\rangle$ this $\langle d s$ $\left.\left.\cap d s^{\prime}=\{ \}\right\rangle\right]$
show False using $\left\langle p \in\right.$ grid $\left.y d s^{\prime}\right\rangle$ by auto
qed

2.3 Grid Restricted to a Level

definition lgrid $::$ grid-point \Rightarrow nat set \Rightarrow nat \Rightarrow grid-point set where lgrid b ds $l m=\{p \in$ grid b ds. level $p<l m\}$

lemma lgridI[intro]:

$\llbracket p \in$ grid $b d s ;$ level $p<l m \rrbracket \Longrightarrow p \in \operatorname{lgrid} b d s l m$
unfolding lgrid-def by simp
lemma lgridE[elim]:
assumes $p \in \operatorname{lgrid} b d s l m$
assumes $\llbracket p \in$ grid $b d s ;$ level $p<l m \rrbracket \Longrightarrow P$
shows P
using assms unfolding lgrid-def by auto
lemma lgridI-child[intro]:
$d \in d s \Longrightarrow p \in \operatorname{lgrid}$ (child b dir d) ds lm $\Longrightarrow p \in \operatorname{lgrid} b d s l m$ by (auto intro: grid-child)
lemma lgrid-empty[simp]: lgrid $p d s($ level $p)=\{ \}$ proof (rule equals0I)
fix p^{\prime} assume $p^{\prime} \in \operatorname{lgrid} p d s($ level $p)$
hence level $p^{\prime}<$ level p and level $p \leq$ level p^{\prime} by auto
thus False by auto
qed
lemma lgrid-empty': assumes $l m \leq$ level p shows lgrid $p d s l m=\{ \}$
proof (rule equalsOI)
fix p^{\prime} assume $p^{\prime} \in \operatorname{lgrid} p d s l m$
hence level $p^{\prime}<l m$ and level $p \leq$ level p^{\prime} by auto
thus False using 〈lm \leq level $p\rangle$ by auto
qed
lemma grid-not-child:
assumes [simp]: $d<$ length p
shows $p \notin$ grid (child p dir $d) d s$
proof (rule ccontr)
assume \neg ?thesis
have level $p<$ level (child p dir d) by auto
with grid-level[OF «ᄀ?thesis〉[unfolded not-not]]
show False by auto
qed

2.4 Unbounded Sparse Grid

definition sparsegrid ${ }^{\prime}::$ nat \Rightarrow grid-point set where

```
sparsegrid' dm = grid (start dm) { 0 ..<dm }
```

```
lemma grid-subset-alldim:
    assumes p: p\ingrid b ds
    defines dm\equiv length b
    shows p}\in\mathrm{ grid b {0..<dm}
proof -
    have ds\cap{dm..}\cupds\cap{0..<dm}=ds by auto
    from gridgen-dim-restrict[where ds=ds \cap{0..<dm} and ds'=ds\cap{dm..}] this
    have ds\cap{0..<dm}\subseteq{0..<dm}
        and p}\in\mathrm{ grid b (ds }\cap{0..<dm}) using p unfolding dm-def by aut
    thus ?thesis by (rule grid-union-dims)
qed
lemma sparsegrid'-length[simp]:
    b}\in\mathrm{ sparsegrid' dm ב length b=dm unfolding sparsegrid'-def by auto
lemma sparsegrid'I[intro]:
    assumes b:b\in sparsegrid' dm and p: p\in grid b ds
    shows }p\in\mathrm{ sparsegrid' dm
    using sparsegrid'-length[OF b] b
        grid-transitive[OF grid-subset-alldim[OF p], where c=start dm and ds'"={0..<dm}]
    unfolding sparsegrid'-def by auto
lemma sparsegrid'-start:
    assumes b grid (start dm) ds
    shows b f sparsegrid' dm
    unfolding sparsegrid'-def
    using grid-subset-alldim[OF assms] by simp
```


2.5 Sparse Grid

definition sparsegrid $::$ nat \Rightarrow nat \Rightarrow grid-point set where
sparsegrid dm lm $=$ lgrid $($ start $d m)\{0 . .<d m\} \operatorname{lm}$
lemma sparsegrid-length: $p \in$ sparsegrid $d m \operatorname{lm} \Longrightarrow$ length $p=d m$
by (auto simp: sparsegrid-def)
lemma sparsegrid-subset[intro]: $p \in$ sparsegrid $d m \operatorname{lm} \Longrightarrow p \in$ sparsegrid $^{\prime} d m$
unfolding sparsegrid-def sparsegrid'-def lgrid-def by auto
lemma sparsegridI $[$ intro $]$:
assumes $p \in$ sparsegrid' $^{\prime} d m$ and level $p<l m$
shows $p \in$ sparsegrid $d m \mathrm{~lm}$
using assms unfolding sparsegrid'-def sparsegrid-def lgrid-def by auto
lemma sparsegrid-start:
assumes $b \in$ lgrid (start dm) ds lm
shows $b \in$ sparsegrid $d m \operatorname{lm}$

proof

have $b \in$ grid (start $d m$) ds using assms by auto
thus $b \in$ sparsegrid' $d m$ by (rule sparsegrid'-start)
qed (insert assms, auto)
lemma sparsegridE[elim]:
assumes $p \in$ sparsegrid $d m \mathrm{~lm}$
shows $p \in$ sparsegrid' $d m$ and level $p<l m$
using assms unfolding sparsegrid'-def sparsegrid-def lgrid-def by auto

2.6 Compute Sparse Grid Points

fun gridgen :: grid-point \Rightarrow nat set \Rightarrow nat \Rightarrow grid-point list

where

gridgen p ds $0=[]$
\mid gridgen $p d s($ Suc $l)=($ let
sub $=\lambda d$. gridgen $($ child p left $d)\left\{d^{\prime} \in d s . d^{\prime} \leq d\right\} l @$ gridgen (child p right $d)\left\{d^{\prime} \in d s . d^{\prime} \leq d\right\} l$
in $p \#$ concat (map sub $[d \leftarrow[0 . .<$ length $p] . d \in d s])$)
lemma gridgen-lgrid-eq: set (gridgen $p d s l)=\operatorname{lgrid} p d s($ level $p+l)$
proof (induct l arbitrary: $p d s$)
case (Suc l)
let ?subg dir $d=\operatorname{set}\left(\right.$ gridgen $($ child $\left.p \operatorname{dir} d)\left\{d^{\prime} \in d s . d^{\prime} \leq d\right\} l\right)$
let ?sub dir $d=$ lgrid (child p dir $d)\left\{d^{\prime} \in d s . d^{\prime} \leq d\right\}($ level $p+$ Suc $l)$
let ?union $F d m=\{p\} \cup(\bigcup d \in\{d \in d s$. $d<d m\}$. F left $d \cup F$ right $d)$
have hyp: !! dir d. $d<$ length $p \Longrightarrow$?subg dir $d=$?sub dir d
using Suc.hyps using child-level by auto
$\{$ fix $d m$ assume $d m \leq$ length p
hence ?union ?sub $d m=\operatorname{lgrid} p\{d \in d s . d<d m\}($ level $p+$ Suc $l)$
proof (induct dm)
case (Suc dm)
hence $d m \leq$ length p by auto
let $? l=$ child p left $d m$ and $? r=$ child p right $d m$
have p-lgrid: $p \in \operatorname{lgrid} p\{d \in d s . d<d m\}($ level $p+$ Suc $l)$ by auto
show ?case
proof (cases $d m \in d s$)
case True
let $? d s=\{d \in d s . d<d m\} \cup\{d m\}$
have $d s$-eq: $\left\{d^{\prime} \in d s . d^{\prime} \leq d m\right\}=$? $d s$ using True by auto
have $d s$-eq': $\{d \in d s . d<$ Suc $d m\}=\{d \in d s . d<d m\} \cup\{d m\}$ using True by auto
have ?union ?sub $($ Suc $d m)=$?union ?sub $d m \cup(\{p\} \cup$?sub left $d m \cup$

?sub right dm)

unfolding $d s-e q^{\prime}$ by auto
also have $\ldots=\operatorname{lgrid} p\{d \in d s . d<d m\}($ level $p+S u c l) \cup$?sub left $d m$
\cup ?sub right dm
unfolding Suc.hyps[OF $\langle d m \leq$ length $p\rangle]$ using p-lgrid by auto
also have $\ldots=\left\{p^{\prime} \in\right.$ grid $p\{d \in d s . d<d m\} \cup($ grid ?l ?ds $) \cup($ grid ?r
? ds).
level $p^{\prime}<$ level $\left.p+S u c l\right\}$ unfolding lgrid-def ds-eq by auto
also have $\ldots=\operatorname{lgrid} p\{d \in d s . d<$ Suc $d m\}$ (level $p+$ Suc l)
unfolding lgrid-def $d s$-eq' unfolding grid-onedim-split[where $b=p]$..
finally show ?thesis.
next
case False hence $\{d \in d s . d<$ Suc $d m\}=\{d \in d s . d<d m \vee d=d m\}$
by auto
hence $d s$-eq: $\{d \in d s . d<$ Suc $d m\}=\{d \in d s . d<d m\}$ using $\langle d m \notin d s\rangle$ by auto
show ?thesis unfolding $d s$-eq Suc.hyps $[O F 〈 d m \leq l e n g t h ~ p\rangle]$..
qed
next case 0 thus ? case unfolding lgrid-def by auto
qed $\}$
hence ?union ?sub (length $p)=$ lgrid $p\{d \in d s . d<$ length $p\}($ level $p+$ Suc $l)$
by auto
hence union-lgrid-eq: ?union ?sub (length $p)=$ lgrid p ds (level $p+$ Suc l)
unfolding lgrid-def using grid-dim-remove-outer by auto
have set (gridgen pds (Suc l)) = ?union ?subg (length p)
unfolding gridgen.simps and Let-def by auto
hence set (gridgen pds (Suc l)) = ?union ?sub (length p)
using hyp by auto
also have $\ldots=\operatorname{lgrid} p d s($ level $p+S u c l)$
using union-lgrid-eq.
finally show ?case .
qed auto
lemma gridgen-distinct: distinct (gridgen $p d s l$)
proof (induct larbitrary: $p d s$)
case (Suc l)
let ? $d s=[d \leftarrow[0 . .<$ length $p] . d \in d s]$
let ?left $d=$ gridgen (child pleft d) $\left\{d^{\prime} \in d s . d^{\prime} \leq d\right\} l$
and ? right $d=$ gridgen (child pright d) $\left\{d^{\prime} \in d s . d^{\prime} \leq d\right\} l$
let ?sub $d=$?left d @ ?right d
have distinct (concat (map ?sub ?ds))
proof (cases l)
case (Suc l')
have inj-on: inj-on ?sub (set?ds)
proof (rule inj-onI, rule ccontr)
fix $d d^{\prime}$ assume $d \in$ set ?ds and $d^{\prime} \in$ set ?ds

```
hence d< length p and d\in set ?ds and d' < length p by auto
assume *: ?sub d = ?sub d'
have in-d: child p left d \in set (?sub d)
    using <d \in set ?ds` Suc
    by (auto simp add: gridgen-lgrid-eq lgrid-def grid-Start)
have in-d': child p left d' }\mp@subsup{d}{}{\prime}\mathrm{ set (?sub d')
    using <d \in set ?ds` Suc
    by (auto simp add: gridgen-lgrid-eq lgrid-def grid-Start)
    { fix pod assume d \in set?ds and p'\in set (?sub d)
    hence lv pd<lv p'd
        using grid-child-level
        by (auto simp add: gridgen-lgrid-eq lgrid-def grid-child-level) }
note level-less = this
assume d\not=\mp@subsup{d}{}{\prime}
show False
proof (cases d' < d)
    case True
    with in-d'\?sub d = ?sub d'> level-less[OF <d \in set ?ds`]
    have lv pd<lv(child p left d') d by simp
    thus False unfolding lv-def
        using child-invariant [OF <d< length p>, of left d\rceil \d }\not=\mp@subsup{|}{}{\prime}
        by auto
next
    case False hence d< d' using <d}\not=\mp@subsup{d}{}{\prime}>\mathrm{ by auto
    with in-d<?sub d = ?sub d'> level-less[OF <d' \in set ?ds`]
    have lv p d'<lv (child p left d) d' by simp
    thus False unfolding lv-def
        using child-invariant[OF}\langle\mp@subsup{d}{}{\prime}<length p\rangle,of left d] <d\not= d'〉
        by auto
    qed
qed
show ?thesis
proof (rule distinct-concat)
    show distinct (map ?sub ?ds)
        unfolding distinct-map using inj-on by simp
next
    fix ys assume ys \in set (map ?sub ?ds)
    then obtain d}\mathrm{ where d}\inds\mathrm{ and }d<l\mathrm{ length p
        and *:ys =?sub d by auto
    show distinct ys unfolding *
        using grid-disjunct[OF <d < length p>, of {d'}\inds. d' \d ]
            gridgen-lgrid-eq lgrid-def 〈distinct (?left d)\rangle\langledistinct (?right d)>
        by auto
next
```

```
fix ys zs
assume ys\in set (map ?sub ?ds)
then obtain d}\mathrm{ where ys: ys =?sub d and d fet ?ds by auto
hence d< length p by auto
assume zs \in set (map ?sub ?ds)
then obtain d' where zs:zs=?sub d' and d'\in set?ds by auto
hence d' < length p by auto
assume ys \not=zs
hence d}\mp@subsup{d}{}{\prime}\not=d\mathrm{ unfolding ys zs by auto
```

```
show set \(y s \cap\) set \(z s=\{ \}\)
```

show set $y s \cap$ set $z s=\{ \}$
proof (rule ccontr)
proof (rule ccontr)
assume \neg ?thesis
assume \neg ?thesis
then obtain p^{\prime} where $p^{\prime} \in \operatorname{set}(? s u b d)$ and $p^{\prime} \in \operatorname{set}\left(? s u b d^{\prime}\right)$
then obtain p^{\prime} where $p^{\prime} \in \operatorname{set}(? s u b d)$ and $p^{\prime} \in \operatorname{set}\left(? s u b d^{\prime}\right)$
unfolding $y s z s$ by auto
unfolding $y s z s$ by auto
hence lv pd<lv p'd lv p d'<lv p' d'
using grid-child-level }\langled\in\mathrm{ set ?ds> 〈d'}\in set ?ds>
by (auto simp add: gridgen-lgrid-eq lgrid-def grid-child-level)
show False
proof (cases d<d')
case True
from <p'\in set (?sub d)\rangle
have p! d' = p
using grid-invariant[of d' child p right d { d '}\inds.\mp@subsup{d}{}{\prime}\leqd}
using grid-invariant[of d d' child p left d { d '
using child-invariant[of d d}--d]\langled<d'\rangle\langle\mp@subsup{d}{}{\prime}<length p
using gridgen-lgrid-eq lgrid-def by auto
thus False using <lv p d'<lv p' d'> unfolding lv-def by auto
next
case False hence }\mp@subsup{d}{}{\prime}<d\mathrm{ using <d'}\not=d\rangle\mathrm{ by simp
from }\langle\mp@subsup{p}{}{\prime}\in\operatorname{set}(?sub\mp@subsup{d}{}{\prime})
have p!d= p'!d
using grid-invariant[of d child p right d' {d \inds.d\leq d'}]
using grid-invariant[of d child p left d' }\mp@subsup{d}{}{\prime}{d\inds.d\leq\mp@subsup{d}{}{\prime}}
using child-invariant[of d - - d}]\langle\mp@subsup{d}{}{\prime}<d\rangle\langled<length p
using gridgen-lgrid-eq lgrid-def by auto
thus False using <lv pd<lv p'd> unfolding lv-def by auto
qed
qed
qed
qed (simp add: map-replicate-const)
moreover
have p\not\in set (concat (map ?sub ?ds))
using gridgen-lgrid-eq lgrid-def grid-not-child[of - p] by simp
ultimately show ?case

```
unfolding gridgen.simps Let-def distinct.simps by simp qed auto
lemma lgrid-finite: finite (lgrid b ds lm)
proof (cases level \(b \leq l m\) )
case True from iffD 1 [OF le-iff-add True]
obtain \(l\) where \(l: l m=\) level \(b+l\) by auto
show ?thesis unfolding l gridgen-lgrid-eq[symmetric] by auto
next
case False hence !! \(x . x \in\) grid \(b d s \Longrightarrow(\neg\) level \(x<l m)\)
proof -
fix \(x\) assume \(x \in\) grid \(b d s\)
from grid-level[OF this] show \(\neg\) level \(x<l m\) using False by auto
qed
hence lgrid bds lm =\{\} unfolding lgrid-def by auto
thus ?thesis by auto
qed
lemma lgrid-sum:
fixes \(F::\) grid-point \(\Rightarrow\) real
assumes \(d<\) length \(b\) and level \(b<l m\)
shows \(\left(\sum p \in \operatorname{lgrid} b\{d\} \operatorname{lm} . F p\right)=\)
\(\left(\sum p \in \operatorname{lgrid}(\right.\) child \(b\) left d) \(\{d\}\) lm. \(F p)+\left(\sum p \in \operatorname{lgrid}\right.\) (child b right
d) \(\{d\} \operatorname{lm} . F p)+F b\)
(is \(\left(\sum p \in\right.\) ? grid b. \(\left.F p\right)=\left(\sum p \in\right.\) ?grid ?l. \(\left.F p\right)+(\) ?sum \((? g r i d\) ? \(\left.r))+F b\right)\) proof -
have !! dir. \(b \notin\) ? grid (child b dir d)
using grid-child-without-parent \([\) where \(d s=\{d\}]\) and \(\langle d<\) length \(b\rangle\) and lgrid-def
by auto
hence \(b\)-distinct: \(b \notin(?\) grid ?l \(\cup\) ?grid ?r) by auto
have ? grid ?l \(\cap\) ? grid ? \(r=\{ \}\)
unfolding lgrid-def using grid-disjunct and \(\langle d<\) length \(b\rangle\) by auto
from lgrid-finite lgrid-finite and this
have child-eq: ?sum \(((\) ?grid ?l) \(\cup(\) ?grid ?r \())=\) ?sum (?grid ?l) + ?sum \((\) ?grid ? \(r\) )
by (rule sum.union-disjoint)
have ?grid \(b=\{b\} \cup(\) ?grid ?l) \(\cup(\) ?grid ?r) unfolding lgrid-def grid-partition \([\) where \(p=b]\) using assms by auto
hence ?sum \((\) ?grid \(b)=F b+\) ?sum \(((? g r i d ? l) \cup(\) ?grid ?r) \()\) using b-distinct and lgrid-finite by auto
thus ?thesis using child-eq by auto
qed

\subsection*{2.7 Base Points}
definition base \(::\) nat set \(\Rightarrow\) grid-point \(\Rightarrow\) grid-point
where base ds \(p=(\) THE b. b \(\in\) grid (start (length \(p))(\{0 . .<\) length \(p\}-d s) \wedge\)
```

$p \in \operatorname{grid} b d s)$
lemma baseE: assumes p-grid: $p \in$ sparsegrid' $^{\prime} d m$
shows base ds $p \in$ grid (start dm) $(\{0 . .<d m\}-d s)$
and $p \in$ grid (base ds p) ds
proof -
from p-grid[unfolded sparsegrid'-def]
have $*: \exists!x \in$ grid (start dm $)(\{0 . .<d m\}-d s) . p \in$ grid $x d s$
by (intro grid-split1) (auto intro: grid-union-dims)
then obtain x where x-eq: $x \in \operatorname{grid}($ start $d m)(\{0 . .<d m\}-d s) \wedge p \in \operatorname{grid} x$
ds
by auto
with $*$ have base ds $p=x$ unfolding base-def by auto
thus base $d s p \in \operatorname{grid}($ start $d m)(\{0 . .<d m\}-d s)$ and $p \in$ grid (base ds $p) d s$
using x-eq by auto
qed
lemma baseI: assumes x-grid: $x \in$ grid (start $d m)(\{0 . .<d m\}-d s)$ and p-xgrid:
$p \in$ grid $x d s$
shows base ds $p=x$
proof -
have $p \in \operatorname{grid}($ start $d m)(d s \cup(\{0 . .<d m\}-d s))$
using grid-transitive $\left[O F\right.$-xgrid x-grid, where $\left.d s^{\prime \prime}=d s \cup(\{0 . .<d m\}-d s)\right]$
by auto
moreover have $d s \cap(\{0 . .<d m\}-d s)=\{ \}$ by auto
ultimately have $\exists!x \in$ grid (start dm) $(\{0 . .<d m\}-d s) . p \in \operatorname{grid} x d s$
using grid-split1 [where $p=p$ and $b=s t a r t ~ d m$ and $d s^{\prime}=d s$ and $d s=\{0 . .<d m\}$

- ds] by auto
thus base ds $p=x$ using x-grid p-xgrid unfolding base-def by auto
qed
lemma base-empty: assumes p-grid: $p \in$ sparsegrid' $^{\prime} d m$ shows base $\} p=p$
using grid-empty-ds and p-grid and grid-split1 [where $d s=\{0 . .<d m\}$ and $\left.d s^{\prime}=\{ \}\right]$
unfolding base-def sparsegrid'-def by auto
lemma base-start-eq: assumes p-spg: $p \in$ sparsegrid $d m \mathrm{~lm}$
shows start $d m=$ base $\{0 . .<d m\} p$
proof -
from p-spg
have start $d m \in$ grid (start $d m)(\{0 . .<d m\}-\{0 . .<d m\})$
and $p \in$ grid (start $d m$) $\{0 . .<d m\}$ using sparsegrid' $'$ def by auto
from baseI[OF this(1) this(2)] show ?thesis by auto
qed
lemma base-in-grid: assumes p-grid: $p \in$ sparsegrid' $^{\prime} d m$ shows base ds $p \in$ grid
(start $d m$) $\{0 . .<d m\}$
proof -
let ? $d s=d s \cup\{0 . .<d m\}$
have $d s$-eq: $\{d \in ?$?ds. $d<$ length $($ start $d m)\}=\{0 . .<d m\}$

```
unfolding start-def by auto
have base ds \(p \in\) grid (start dm) ?ds
using grid-union-dims \([O F\) - baseE (1) [OF p-grid, where \(d s=d s]\), where \(d s^{\prime}=\) ? \(\left.d s\right]\) by auto
thus ?thesis using grid-dim-remove-outer [where \(b=s t a r t ~ d m\) and \(d s=\) ? \(d s\) ] unfolding \(d s-e q\) by auto
qed
lemma base-grid: assumes p-grid: \(p \in\) sparsegrid' \(d m\) shows grid (base ds \(p\) ) \(d s\) \(\subseteq\) sparsegrid' \(d m\)

\section*{proof}
fix \(x\) assume xgrid: \(x \in\) grid (base ds \(p\) ) ds
have ds-eq: \(\{d \in\{0 . .<d m\} \cup d s . d<\) length \((\) start \(d m)\}=\{0 . .<d m\}\) by auto
from grid-transitive \(\left[O F\right.\) xgrid base-in-grid \(\left[\right.\) OF \(p\)-grid], where \(d s^{\prime \prime}=\{0 . .<d m\} \cup\) \(d s]\)
show \(x \in\) sparsegrid' \(d m\) unfolding sparsegrid'-def
using grid-dim-remove-outer[where \(b=s t a r t d m\) and \(d s=\{0 . .<d m\} \cup d s]\)
unfolding \(d s-e q\) unfolding \(U n-a c(3)[o f\{0 . .<d m\}]\)
by auto
qed
lemma base-length[simp]: assumes \(p\)-grid: \(p \in\) sparsegrid' dm shows length (base \(d s p)=d m\)
proof -
from baseE[OF p-grid] have base ds \(p \in \operatorname{grid}(\) start \(d m)(\{0 . .<d m\}-d s)\) by auto
thus ?thesis by auto
qed
lemma base-in[simp]: assumes \(d<d m\) and \(d \in d s\) and \(p\)-grid: \(p \in\) sparsegrid \(^{\prime}\) \(d m\) shows base \(d s p!d=\) start \(d m!d\) proof -
have \(d s: d \notin\{0 . .<d m\}-d s\) using \(\langle d \in d s\rangle\) by auto
have \(d<\) length (start \(d m\) ) using \(\langle d<d m\rangle\) by auto
with grid-invariant [OF this ds] baseE(1)[OF p-grid] show ?thesis by auto
qed
lemma base-out \([\) simp \(]\) : assumes \(d<d m\) and \(d \notin d s\) and \(p\)-grid: \(p \in\) sparsegrid \(^{\prime}\) \(d m\) shows base \(d s p!d=p!d\)
proof -
have \(d<\) length (base ds \(p\) ) using base-length[OF p-grid] \(\langle d<d m\rangle\) by auto
with grid-invariant[OF this \(\langle d \notin d s\rangle]\) baseE(2)[OF p-grid] show ?thesis by auto qed
lemma base-base: assumes \(p\)-grid: \(p \in\) sparsegrid' \(d m\) shows base ds (base ds \({ }^{\prime} p\) )
\(=\) base \(\left(d s \cup d s^{\prime}\right) p\)
proof (rule nth-equalityI)
have \(b\)-spg: base \(d s^{\prime} p \in\) sparsegrid' \(^{\prime} d m\) unfolding sparsegrid'-def
using grid-union-dims[OF Diff-subset \([\) where \(A=\{0 . .<d m\}\) and \(B=d s\) '] baseE(1)[OF p-grid]] .
from base-length \([O F\) b-spg] base-length \([O F\) p-grid] show length (base ds (base ds' \(p))=\) length \(\left(\right.\) base \(\left.\left(d s \cup d s^{\prime}\right) p\right)\) by auto
show base ds (base \(\left.d s^{\prime} p\right)!i=\) base \(\left(d s \cup d s^{\prime}\right) p!i\) if \(i<\) length (base ds (base \(\left.d s^{\prime} p\right)\) ) for \(i\)
proof -
have \(i<d m\) using that base-length[OF b-spg] by auto
show base ds (base \(\left.d s^{\prime} p\right)!i=\) base \(\left(d s \cup d s^{\prime}\right) p!i\)
proof (cases \(\left.i \in d s \cup d s^{\prime}\right)\)
case True
show ?thesis
proof (cases \(i \in d s\) )
case True from base-in \(\left[\right.\) OF \(\left.\langle i<d m\rangle\left\langle i \in d s \cup d s^{\prime}\right\rangle p-g r i d\right]\) base-in[OF \(\langle i\)
\(<d m>\) this \(b-s p g]\) show ?thesis by auto
next
case False hence \(i \in d s^{\prime}\) using \(\left\langle i \in d s \cup d s^{\prime}\right\rangle\) by auto
from base-in \(\left[O F\langle i<d m\rangle\left\langle i \in d s \cup d s^{\prime}\right\rangle p\right.\)-grid] base-out[OF \(\langle i<d m\rangle\langle i\)
\(\notin d s\rangle b\)-spg] base-in[OF \(\left.\langle i<d m\rangle\left\langle i \in d s^{\prime}\right\rangle p-g r i d\right]\) show ?thesis by auto
qed
next
case False hence \(i \notin d s\) and \(i \notin d s^{\prime}\) by auto
from base-out \(\left[O F\langle i<d m\rangle\left\langle i \notin d s \cup d s^{\prime}\right\rangle\right.\) p-grid \(]\) base-out \([O F\langle i<d m\rangle\langle i\) \(\notin d s\rangle b\)-spg \(]\) base-out \(\left[O F\langle i<d m\rangle\left\langle i \notin d s^{\prime}\right\rangle\right.\) p-grid] show ?thesis by auto qed
qed
qed
lemma grid-base-out: assumes \(d<d m\) and \(d \notin d s\) and \(p\)-grid: \(b \in\) sparsegrid \(^{\prime}\) \(d m\) and \(p \in\) grid (base ds b) \(d s\)
shows \(p!d=b!d\)
proof -
have base \(d s b!d=b!d\) using assms by auto
moreover have \(d<\) length (base ds b) using assms by auto
from grid-invariant[OF this]
have \(p!d=\) base \(d s b!d\) using assms by auto
ultimately show ?thesis by auto
qed
lemma grid-grid-inj-on: assumes \(d s \cap d s^{\prime}=\{ \}\) shows inj-on snd \(\left(\bigcup p^{\prime} \in\right.\) grid \(b\)
\(d s . \bigcup p^{\prime \prime} \in\) grid \(\left.p^{\prime} d s^{\prime} .\left\{\left(p^{\prime}, p^{\prime \prime}\right)\right\}\right)\)
proof (rule inj-onI)
fix \(x y\)
assume \(x \in\left(\bigcup p^{\prime} \in\right.\) grid \(b d s . \bigcup p^{\prime \prime} \in\) grid \(\left.p^{\prime} d s^{\prime} .\left\{\left(p^{\prime}, p^{\prime \prime}\right)\right\}\right)\)
hence snd \(x \in\) grid \((\) fst \(x) d s^{\prime}\) and fst \(x \in\) grid \(b d s\) by auto
assume \(y \in\left(\bigcup p^{\prime} \in\right.\) grid \(b d s . \bigcup p^{\prime \prime} \in\) grid \(\left.p^{\prime} d s^{\prime} .\left\{\left(p^{\prime}, p^{\prime \prime}\right)\right\}\right)\)
hence snd \(y \in \operatorname{grid}(f s t y) d s^{\prime}\) and fst \(y \in \operatorname{grid} b d s\) by auto
assume snd \(x=\) snd \(y\)
have \(f\) st \(x=\) fst \(y\)
proof (rule ccontr)
assume fst \(x \neq f s t y\)
from grid-disjunct \({ }^{\prime}[O F\langle f s t x \in\) grid \(b d s\rangle\langle f s t y \in\) grid \(b d s\rangle\langle s n d x \in\) grid \((f s t\)
x) \(\left.d s^{\prime}\right\rangle\) this \(\left.\left\langle d s \cap d s^{\prime}=\{ \}\right\rangle\right]\)
show False using \(\left\langle s n d y \in \operatorname{grid}(f s t y) d s^{\prime}\right\rangle\) unfolding \(\langle s n d x=\) snd \(y\rangle\) by auto
qed
show \(x=y\) using \(\operatorname{prod-eqI[OF\langle fst~} x=\) fst \(y\rangle\langle s n d x=\) snd \(y\rangle]\).
qed
lemma grid-level-d: assumes \(d<\) length \(b\) and \(p\)-grid: \(p \in\) grid \(b\{d\}\) and \(p \neq\) \(b\) shows \(l v p d>l v b d\)
proof -
from \(p\)-grid[unfolded grid-partition[where \(p=b]\) ]
show ?thesis using grid-child-level using assms by auto
qed
lemma grid-base-base: assumes \(b \in\) sparsegrid \({ }^{\prime} d m\) shows base \(d s^{\prime} b \in\) grid (base ds (base \(\left.\left.d s^{\prime} b\right)\right)\left(d s \cup d s^{\prime}\right)\)
proof -
from base-grid \(\left[O F\left\langle b \in\right.\right.\) sparsegrid \(\left.\left.^{\prime} d m\right\rangle\right]\) have base \(d s^{\prime} b \in\) sparsegrid \(^{\prime} d m\) by auto
from grid-union-dims[OF - baseE(2)[OF this], of ds \(d s \cup d s]\) show ?thesis by auto
qed
lemma grid-base-union: assumes \(b\)-spg: \(b \in\) sparsegrid' \(^{\prime} d m\) and \(p\)-grid: \(p \in\) grid (base ds b) \(d s\) and \(x\)-grid: \(x \in\) grid (base \(d s^{\prime} p\) ) \(d s^{\prime}\)
shows \(x \in\) grid (base \(\left.\left(d s \cup d s^{\prime}\right) b\right)\left(d s \cup d s^{\prime}\right)\)
proof -
have \(d s\)-union: \(d s \cup d s^{\prime}=d s^{\prime} \cup\left(d s \cup d s^{\prime}\right)\) by auto
from base-grid [OF b-spg] p-grid have \(p\)-spg: \(p \in\) sparsegrid' \(d m\) by auto
with assms and grid-base-base have base-b': base ds' \(p \in\) grid (base ds (base ds' \(p))\left(d s \cup d s^{\prime}\right)\) by auto
moreover have base \(d s^{\prime}(\) base ds \(b)=\) base \(d s^{\prime}(\) base ds \(p)(\) is \(? b=? p)\)
proof (rule nth-equalityI)
have bb-spg: base ds \(b \in\) sparsegrid' \(d m\) using base-grid [OF b-spg] grid.Start by auto
hence \(d m=\) length (base ds b) by auto
have bp-spg: base ds \(p \in\) sparsegrid' dm using base-grid[OF p-spg] grid.Start by auto
show length \(? b=\) length \(? p\) using base-length[OF bp-spg] base-length[OF bb-spg] by auto
show ?b \(!i=? p!i\) if \(i<\) length ?b for \(i\)
proof -
have \(i<d m\) and \(i<\) length (base \(d s\) b) using that base-length[OF bb-spg] \(\langle d m=\) length (base ds b) > by auto
show ? \(b!i=? p!i\)
proof (cases \(i \in d s \cup d s^{\prime}\) )
case True
hence !! \(x\). base ds \(x \in\) sparsegrid \({ }^{\prime} d m \Longrightarrow x \in\) sparsegrid \(^{\prime} d m \Longrightarrow\) base \(d s^{\prime}\) (base ds \(x\) )! \(i=(\) start \(d m)!i\)
proof - fix \(x\) assume \(x\)-spg: \(x \in\) sparsegrid \({ }^{\prime} d m\) and \(x b\)-spg: base \(d s x \in\) sparsegrid' \(d m\)
show base ds' (base ds \(x)!i=(\) start \(d m)!i\)
proof (cases \(i \in d s^{\prime}\) )
case True from base-in \([O F\langle i<d m\rangle\) this \(x b-s p g]\) show ?thesis .
next
case False hence \(i \in d s\) using \(\left\langle i \in d s \cup d s^{\prime}\right\rangle\) by auto
from base-out[OF \(\langle i<d m\rangle\) False \(x b-s p g]\) base-in[OF \(\langle i<d m\rangle\) this \(x\)-spg] show ?thesis by auto
qed
qed
from this \([O F b p-s p g ~ p-s p g]\) this \([O F\) bb-spg \(b\)-spg] show ?thesis by auto next
case False hence \(i \notin d s\) and \(i \notin d s^{\prime}\) by auto
from grid-invariant \([O F\langle i<\) length (base ds b) \(\langle\langle i \notin d s\rangle p\)-grid] base-out \(\left[O F\langle i<d m\rangle\left\langle i \notin d s^{\prime}\right\rangle b p-s p g\right]\) base-out \([O F\langle i<d m\rangle\langle i \notin d s\rangle\) p-spg] base-out[ \(\left.O F\langle i<d m\rangle\left\langle i \notin d s^{\prime}\right\rangle b b-s p g\right]\)
show ?thesis by auto
qed
qed
qed
ultimately have base \(d s^{\prime} p \in \operatorname{grid}\) (base \(\left.\left(d s \cup d s^{\prime}\right) b\right)\left(d s \cup d s^{\prime}\right)\)
by (simp only: base-base[OF p-spg] base-base[OF b-spg] Un-ac(3))
from grid-transitive[OF x-grid this] show ?thesis using ds-union by auto
qed
lemma grid-base-dim-add: assumes \(d s^{\prime} \subseteq d s\) and \(b\)-spg: \(b \in\) sparsegrid \(^{\prime} d m\) and p-grid: \(p \in\) grid (base \(d s^{\prime} b\) ) ds \(s^{\prime}\)
shows \(p \in\) grid (base \(d s b\) ) ds
proof -
have \(d s\)-eq: \(d s^{\prime} \cup d s=d s\) using assms by auto
have \(p \in\) sparsegrid' \(d m\) using base-grid \([O F b\)-spg \(] p\)-grid by auto
hence \(p \in\) grid (base \(d s p\) ) ds using baseE by auto
from grid-base-union[OF b-spg p-grid this]
show ?thesis using \(d s\)-eq by auto
qed
lemma grid-replace-dim: assumes \(d<\) length \(b^{\prime}\) and \(d<\) length \(b\) and \(p\)-grid: \(p\) \(\in\) grid \(b d s\) and \(p^{\prime}\)-grid: \(p^{\prime} \in\) grid \(b^{\prime} d s\)
shows \(p\left[d:=p^{\prime}!d\right] \in \operatorname{grid}\left(b\left[d:=b^{\prime}!d\right]\right) d s(\) is \(-\in \operatorname{grid} ? b d s)\)
using \(p^{\prime}\)-grid and \(p\)-grid
proof induct
case (Child \(p^{\prime \prime} d^{\prime}\) dir)
hence \(p^{\prime \prime}\)-grid: \(p\left[d:=p^{\prime \prime}!d\right] \in\) grid ?b \(d s\) and \(d<\) length \(p^{\prime \prime}\) using assms by auto
have \(d<\) length \(p\) using \(p\)-grid assms by auto
thus ?case
proof (cases \(d^{\prime}=d\) )
case True
from grid.Child \(\left[\right.\) OF \(p^{\prime \prime}\)-grid \(\left.\left\langle d^{\prime} \in d s\right\rangle\right]\)
show ?thesis unfolding child-def ix-def lv-def list-update-overwrite \(\left\langle d^{\prime}=d\right\rangle\) nth-list-update-eq[OF \(\left\langle d<\right.\) length \(\left.\left.p^{\prime \prime}\right\rangle\right]\) nth-list-update-eq[OF \(\langle d<\) length \(\left.p\rangle\right]\).
next
case False
show ?thesis unfolding child-def nth-list-update-neq[OF False] using Child by auto
qed
qed (rule grid-change-dim)
lemma grid-shift-base:
assumes \(d s\) - \(d j: d s \cap d s^{\prime}=\{ \}\) and \(b\)-spg: \(b \in\) sparsegrid \(^{\prime} d m\) and \(p\)-grid: \(p \in\) grid (base \(\left.\left(d s^{\prime} \cup d s\right) b\right)\left(d s^{\prime} \cup d s\right)\)
shows base \(d s^{\prime} p \in\) grid (base \(\left.\left(d s \cup d s^{\prime}\right) b\right) d s\)
proof -
from grid-split[OF p-grid]
obtain \(x\) where \(x\)-grid: \(x \in\) grid (base \(\left(d s^{\prime} \cup d s\right) b\) ) ds and \(p\)-xgrid: \(p \in\) grid \(x\) \(d s^{\prime}\) by auto
from grid-union-dims[OF - this(1)]
have \(x\)-spg: \(x \in\) sparsegrid' \(d m\) using base-grid \([O F\) b-spg] by auto
have b-len: length \(\left(\right.\) base \(\left.\left(d s^{\prime} \cup d s\right) b\right)=d m\) using base-length[OF b-spg] by auto
define \(d^{\prime}\) where \(d^{\prime}=d m\)
moreover have \(d^{\prime} \leq d m \Longrightarrow x \in \operatorname{grid}(\) start \(d m)\left(\{0 . .<d m\}-\left\{d \in d s^{\prime} . d<\right.\right.\) \(\left.d^{\prime}\right\}\) )
proof (induct d')
case (Suc d')
with \(b\)-len have \(d^{\prime}-b: d^{\prime}<\) length \(\left(b a s e\left(d s^{\prime} \cup d s\right) b\right)\) by auto
show ?case
proof (cases \(\left.d^{\prime} \in d s^{\prime}\right)\)
case True hence \(d^{\prime} \notin d s\) and \(d^{\prime} \in d s^{\prime} \cup d s\) using \(d s-d j\) by auto
have \(\{0 . .<d m\}-\left\{d \in d s^{\prime} . d<d^{\prime}\right\}=\left(\{0 . .<d m\}-\left\{d \in d s^{\prime} . d<d^{\prime}\right\}\right)-\)
\(\left\{d^{\prime}\right\} \cup\left\{d^{\prime}\right\}\) using \(\left\langle S u c d^{\prime} \leq d m\right\rangle\) by auto
also have \(\ldots=\left(\{0 . .<d m\}-\left\{d \in d s^{\prime} . d<\right.\right.\) Suc \(\left.\left.d^{\prime}\right\}\right) \cup\left\{d^{\prime}\right\}\) by auto
finally have \(x-g: x \in\) grid (start \(d m)\left(\left\{d^{\prime}\right\} \cup\left(\{0 . .<d m\}-\left\{d \in d s^{\prime} . d<\right.\right.\right.\) Suc \(\left.\left.d^{\prime}\right\}\right)\) ) using Suc by auto
from grid-invariant \(\left[O F \quad d^{\prime}-b\left\langle d^{\prime} \notin d s\right\rangle x\right.\)-grid \(]\) base-in \(\left[O F-\left\langle d^{\prime} \in d s^{\prime} \cup d s\right\rangle\right.\)
\(b-s p g]\left\langle S u c d^{\prime} \leq d m\right\rangle\)
have \(x!d^{\prime}=\) start \(d m!d^{\prime}\) by auto
from grid-dim-remove \([O F x\)-g this] show ?thesis .
next
case False
hence \(\left\{d \in d s^{\prime} . d<\right.\) Suc \(\left.d^{\prime}\right\}=\left\{d \in d s^{\prime} . d<d^{\prime} \vee d=d^{\prime}\right\}\) by auto
also have \(\ldots=\left\{d \in d s^{\prime} . d<d^{\prime}\right\}\) using False by auto
finally show ?thesis using Suc by auto
qed
next
case 0 show ?case using \(x\)-spg[unfolded sparsegrid'-def] by auto
qed
moreover have \(\{0 . .<d m\}-d s^{\prime}=\{0 . .<d m\}-\left\{d \in d s^{\prime} . d<d m\right\}\) by auto ultimately have \(x \in\) grid (start \(d m)\left(\{0 . .<d m\}-d s^{\prime}\right)\) by auto
from baseI \([O F\) this \(p\)-xgrid] and \(x\)-grid
show ?thesis by (auto simp: Un-ac(3))
qed

\subsection*{2.8 Lift Operation over all Grid Points}
definition lift \(::(\) nat \(\Rightarrow\) nat \(\Rightarrow\) grid-point \(\Rightarrow\) vector \(\Rightarrow\) vector \() \Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) vector \(\Rightarrow\) vector
where lift \(f d m \operatorname{lm} d=\) foldr \((\lambda p . f d(l m-\) level \(p) p)(\) gridgen \((\) start \(d m)(\{0\) \(. .<d m\}-\{d\}) l m\) )
lemma lift:
assumes \(d<d m\) and \(p \in\) sparsegrid \(d m \mathrm{~lm}\)
and Fintro: \(\bigwedge l b p \alpha . \llbracket b \in\) lgrid (start dm) \((\{0 . .<d m\}-\{d\}) l m ;\)
\[
\begin{aligned}
& l+\text { level } b=\operatorname{lm} ; p \in \text { sparsegrid dm lm } \\
& \Longrightarrow F d l b \alpha p=(\text { if } b=\text { base }\{d\} p \\
& \text { then }\left(\sum p^{\prime} \in \operatorname{lgrid} b\{d\} \operatorname{lm} . S\left(\alpha p^{\prime}\right) p p^{\prime}\right) \\
& \quad \text { else } \alpha p)
\end{aligned}
\]
shows lift \(F d m \operatorname{lm} d \alpha p=\left(\sum p^{\prime} \in \operatorname{lgrid}(\right.\) base \(\left.\{d\} p)\{d\} \operatorname{lm} . S\left(\alpha p^{\prime}\right) p p^{\prime}\right)\) (is?lift =? \(S p \alpha\) )

\section*{proof -}
let ?gridgen \(=\) gridgen \((\) start \(d m)(\{0 . .<d m\}-\{d\}) l m\)
let ?f \(p=F d(l m-l e v e l ~ p) p\)
\(\{\operatorname{fix} b s \beta b\)
assume set \(b s \subseteq\) set ?gridgen and distinct \(b s\) and \(p \in\) sparsegrid dm lm
hence foldr ?f bs \(\beta p=(\) if base \(\{d\} p \in\) set bs then ?S \(p \beta\) else \(\beta p)\)
proof (induct bs arbitrary: p)
case (Cons b bs)
hence \(b \in \operatorname{lgrid}(\) start \(d m)(\{0 . .<d m\}-\{d\}) l m\)
and \((l m-\) level \(b)+\) level \(b=l m\)
and b-grid: \(b \in \operatorname{grid}(\) start \(d m)(\{0 . .<d m\}-\{d\})\)
using lgrid-def gridgen-lgrid-eq by auto
note \(F=\) Fintro \([\) OF this \((1,2)\langle p \in\) sparsegrid \(d m l m\rangle]\)
have \(b \notin\) set \(b s\) using 〈distinct \((b \# b s)\rangle\) by auto
show ?case
proof (cases base \(\{d\} p \in \operatorname{set}(b \# b s))\)
case True note base-in-set \(=\) this
show ?thesis
proof (cases \(b=\) base \(\{d\} p\) )
case True
moreover
\(\left\{\right.\) fix \(p^{\prime}\) assume \(p^{\prime} \in \operatorname{lgrid} b\{d\} l m\)
```

 hence }\mp@subsup{p}{}{\prime}\in\mathrm{ grid b {d} and level p' < lm unfolding lgrid-def by auto
 from grid-transitive[OF this(1) b-grid, of {0..<dm}] <d< <dm>
 baseI[OF b-grid <p' }\in\mathrm{ grid b {d}>]<b & set bs`
 Cons.prems Cons.hyps[of p] this(2)
 have foldr ?f bs \beta p'= \beta p' unfolding sparsegrid-def lgrid-def by auto
 }
ultimately show ?thesis
using F base-in-set by auto
next
case False
with base-in-set have base {d} p\in set bs by auto
with Cons.hyps[of p] Cons.prems
have foldr ?f bs \beta p=?S p \beta by auto
thus ?thesis using F base-in-set False by auto
qed
next
case False
hence b}\not=\mathrm{ base {d} p by auto
from False Cons.hyps[of p] Cons.prems
have foldr ?f bs \beta p=\beta p by auto
thus ?thesis using False F}\langleb\not=base {d} p\rangle by aut
qed
qed auto
}
moreover have base {d}p\in set ?gridgen
proof -
have p\in grid (base {d} p) {d}
using < p\in sparsegrid dm lm>[THEN sparsegrid-subset] by (rule baseE)
from grid-level[OF this] baseE(1)[OF sparsegrid-subset[OF<
lm>]]
show ?thesis using }\langlep\in\mathrm{ sparsegrid dm lm>
unfolding gridgen-lgrid-eq sparsegrid'-def lgrid-def sparsegrid-def
by auto
qed
ultimately show ?thesis unfolding lift-def
using gridgen-distinct }\langlep\in\mathrm{ sparsegrid dm lm}>\mathrm{ by auto
qed

```

\subsection*{2.9 Parent Points}
```

definition parents $::$ nat \Rightarrow grid-point \Rightarrow grid-point \Rightarrow grid-point set
where parents d b $p=\{x \in \operatorname{grid} b\{d\} . p \in \operatorname{grid} x\{d\}\}$
lemma parents-split: assumes p-grid: $p \in$ grid (child b dir d) $\{d\}$
shows parents $d b p=\{b\} \cup$ parents $d($ child b dir $d) p$
proof (intro set-eqI iffI)
let ?chd $=$ child b dir d and ?chid $=$ child $b($ inv dir $) d$
fix x assume $x \in$ parents $d b p$
hence $x \in$ grid $b\{d\}$ and $p \in$ grid $x\{d\}$ unfolding parents-def by auto

```
hence \(x\)-split: \(x \in\{b\} \cup\) grid ? chd \(\{d\} \cup\) grid ?chid \(\{d\}\) using grid-onedim-split \([\) where \(d s=\{ \}\) and \(b=b]\) and grid-empty-ds
by (cases dir, auto)
thus \(x \in\{b\} \cup\) parents \(d\) (child b dir d) \(p\)
proof (cases \(x=b\) )
case False
have \(d<\) length \(b\)
proof (rule ccontr)
assume \(\neg d<\) length \(b\) hence empty: \(\left\{d^{\prime} \in\{d\} . d^{\prime}<\right.\) length \(\left.b\right\}=\{ \}\) by auto
have \(x=b\) using \(\langle x \in\) grid \(b\{d\}\rangle\)
unfolding grid-dim-remove-outer \([\) where \(d s=\{d\}\) and \(b=b]\) empty
using grid-empty-ds by auto
thus False using \(\langle\neg x=b\) by auto
qed
have \(x \notin\) grid ? chid \(\{d\}\)
proof (rule ccontr)
assume \(\neg x \notin\) grid ? chid \(\{d\}\)
hence \(p \in\) grid ?chid \(\{d\}\) using grid-transitive \([O F\langle p \in\) grid \(x\{d\}\), where \(\left.d s^{\prime}=\{d\}\right]\)
by auto
hence \(p \notin\) grid ?chd \(\{d\}\) using grid-disjunct \([O F \prec d<\) length \(b\rangle]\) by (cases dir, auto)
thus False using \(\langle p \in\) grid ?chd \(\{d\}\rangle\)..
qed
with False and \(x\)-split
have \(x \in\) grid ? chd \(\{d\}\) by auto
thus ?thesis unfolding parents-def using \(\langle p \in\) grid \(x\{d\}\rangle\) by auto
qed auto
next
let ?chd \(=\) child \(b\) dir \(d\) and ?chid \(=\) child \(b(\) inv dir \() d\)
fix \(x\) assume \(x\)-in: \(x \in\{b\} \cup\) parents \(d\) ? chd \(p\)
thus \(x \in\) parents \(d b p\)
proof (cases \(x=b\) )
case False
hence \(x \in\) parents \(d\) ?chd \(p\) using \(x\)-in by auto
thus ?thesis unfolding parents-def using grid-child[where \(b=b]\) by auto
next
from \(p\)-grid have \(p \in\) grid \(b\{d\}\) using grid-child \([\) where \(b=b]\) by auto
case True thus ?thesis unfolding parents-def using \(\langle p \in\) grid \(b\{d\}\rangle\) by auto qed
qed
lemma parents-no-parent: assumes \(d<\) length \(b\) shows \(b \notin\) parents \(d\) (child \(b\) dir d) \(p\) (is - \(\notin\) parents - ?ch -)
proof
assume \(b \in\) parents \(d\) ?ch \(p\) hence \(b \in\) grid ?ch \(\{d\}\) unfolding parents-def by auto
from grid-level[OF this]
```

 have level b + 1 \leq level b unfolding child-level[OF <d<length b>].
 thus False by auto
 qed
lemma parents-subset-lgrid: parents d b p\subseteqlgrid b {d} (level p+1)
proof
fix }x\mathrm{ assume }x\in\mathrm{ parents d b p
hence }x\in\mathrm{ grid b {d} and }p\in\mathrm{ grid x {d} unfolding parents-def by auto
moreover hence level x}\leq\mathrm{ level p using grid-level by auto
hence level }x<level p+1 by aut
ultimately show }x\inlgrid b{d} (level p+1) unfolding lgrid-def by aut
qed
lemma parents-finite: finite (parents d b p)
using finite-subset[OF parents-subset-lgrid lgrid-finite] .
lemma parent-sum: assumes p-grid: p \in grid (child b dir d) {d} and d<length
b
shows (\sumx\in parents d b p. Fx) =Fb+(\sumx\in parents d (child b dir d) p.
F x)
unfolding parents-split[OF p-grid] using parents-no-parent[OF<d< length b>,
where dir=dir and p=p] using parents-finite
by auto
lemma parents-single: parents dbb={b}
proof
have parents d b b\subseteqlgrid b {d} (level b + (Suc 0)) using parents-subset-lgrid
by auto
also have ... ={b} unfolding gridgen-lgrid-eq[symmetric] gridgen.simps Let-def
by auto
finally show parents d b b\subseteq{ b } .
next
have b \in parents d b b unfolding parents-def by auto
thus { b }\subseteq parents d b b by auto
qed
lemma grid-single-dimensional-specification:
assumes d< length b
and odd i
and lv bd + l' = l
and}i<(ixbd+1)* 2^\mp@subsup{l}{}{\prime
and i> (ix bd - 1)* 2`l'
shows b[d:= (l,i)]\in grid b{d}
using assms proof (induct l' arbitrary: b)
case 0
hence i= ix bd and l=lvbd by auto
thus ?case unfolding ix-def lv-def by auto
next
case (Suc l')

```
```

 have }d\in{d}\mathrm{ by auto
 show ?case
 proof (rule linorder-cases)
 assume i=ix b d* 2`(Suc l')
 hence even i by auto
 thus ?thesis using <odd i> by blast
 next
 assume *:i< ix b d * 2`(Suc l')
 let ?b = child b left d
 have d< length ?b using Suc by auto
 moreover note <odd i>
 moreover have lv ?b d + l' = l
 and}i<(ix?bd+1)* 2`l'
 and (ix ?b d - 1)* 2`l'}<
 unfolding child-ix-left[OF Suc.prems(1)]
 using Suc.prems * child-lv by (auto simp add: field-simps)
 ultimately have ?b[d:= (l,i)]\in grid ?b {d}
 by (rule Suc.hyps)
 thus ?thesis
 by (auto intro!: grid-child[OF <d\in{d}>, of - b left]
 simp add: child-def)
 next
 assume *:ix b d* 2^(Suc l')<i
 let ?b = child b right d
 have d< length ?b using Suc by auto
 moreover note <odd i>
 moreover have lv ?b d + l' = l
 and }i<(ix?bd+1)* 2`l'
 and (ix?b d - 1)* 2`l'<i
 unfolding child-ix-right[OF Suc.prems(1)]
 using Suc.prems * child-lv by (auto simp add: field-simps)
 ultimately have ?b[d:= (l,i)]\in grid ?b {d}
 by (rule Suc.hyps)
 thus ?thesis
 by (auto intro!: grid-child[OF}\langled\in{d}>,of-b right
 simp add: child-def)
 qed
 qed
lemma grid-multi-dimensional-specification:
assumes dm\leq length b and length p length b
and }\d.d<dm
odd (ix p d) ^

```
```

 lv bd\leqlv pd^
 ixpd< (ix bd+1)* 2`(lvpd-lvbd)^
 ix pd> (ixbd-1)* 2`(lv pd - lv bd)
 (is }\wedged.d<dm\Longrightarrow\mathrm{ ?bounded pd)
 and \d.\llbracketdm\leqd;d< length b\rrbracket\Longrightarrow p!d=b!d
 shows p}\in\mathrm{ grid b {0..<dm}
 using assms proof (induct dm arbitrary: p)
case 0
hence p = b by (auto intro!: nth-equalityI)
thus ?case by auto
next
case (Suc dm)
hence dm\leq length b
and dm<length p by auto
let ?p = p[dm:= b!dm]
note <dm \leq length b>
moreover have length ?p = length b using <length p = length b> by simp
moreover
{
fix d assume d<dm
hence *:d<Suc dm and dm f=d by auto
have ?p ! d = p!d
by (rule nth-list-update-neq[OF <dm \not=d>])
hence ?bounded ?p d
using Suc.prems(3)[OF *] lv-def ix-def
by simp
}
moreover
{
fix d assume dm}\leqd\mathrm{ and }d<l=length
have ?p !d = b!d
proof (cases d=dm)
case True thus ?thesis using <d < length b〉<length p = length b> by auto
next
case False
hence Suc dm \leqd using <dm \leqd> by auto
thus ?thesis using Suc.prems(4)<d<length b> by auto
qed
}
ultimately
have *:?p f grid b {0..<dm}
by (auto intro!: Suc.hyps)
have $l v b d m \leq l v p d m$ using Suc.prems(3)[OF lessI] by simp
have $[s i m p]: l v ? p d m=l v b d m$ using $l v$-def $\langle d m<$ length $p\rangle$ by auto
have [simp]: ix ? p dm = ix b dm using ix-def $\langle d m<l e n g t h ~ p\rangle$ by auto

```
```

 have \([s i m p]: p[d m:=(l v p d m, i x p d m)]=p\)
 using \(l v\)-def ix-def \(\langle d m<\) length \(p\rangle\) by auto
 have \(d m<\) length ? \(p\) and
 \([s i m p]: l v b d m+(l v p d m-l v b d m)=l v p d m\)
 using \(\langle d m<\) length \(p\rangle\langle l v b d m \leq l v p d m\rangle\) by auto
 from grid-single-dimensional-specification \([O F\) this(1),
 where \(l=l v p d m\) and \(i=i x p d m\) and \(l^{\prime}=l v p d m-l v b d m\), simplified]
 have \(p \in\) grid ? \(p\{d m\}\)
 using Suc.prems(3)[OF lessI] by blast
 from grid-transitive[OF this \(*\)]
 show ?case by auto
 qed
lemma sparsegrid:
sparsegrid dm lm $=\{p$.
length $p=d m \wedge$ level $p<\operatorname{lm} \wedge$
$\left(\forall d<d m\right.$. odd $\left.\left.(i x p d) \wedge 0<i x p d \wedge i x p d<\mathcal{L}^{\wedge}(l v p d+1)\right)\right\}$
(is - = ?set)
proof (rule equalityI[OF subsetI subsetI $]$)
fix p
assume $*: p \in$ sparsegrid dm lm
hence length $p=d m$ and level $p<l m$ unfolding sparsegrid-def by auto
moreover
$\{$ fix d assume $d<d m$
hence $* *: p \in$ grid (start $d m$) $\{0 . .<d m\}$ and $d<$ length (start dm)
using $*$ unfolding sparsegrid-def by auto
have odd (ix p d)
proof (cases $p!d=$ start $d m!d$)
case True
thus ?thesis unfolding start-def using $\langle d<d m\rangle$ ix-def by auto
next
case False
from grid-odd[OF - this **]
show ?thesis using $\langle d<d m\rangle$ by auto
qed
hence odd $(i x p d) \wedge 0<i x p d \wedge i x p d<\mathcal{Z}^{\wedge}(l v p d+1)$
using grid-estimate[OF $\langle d<$ length (start dm) $\langle * *$]
unfolding ix-def lv-def start-def using $\langle d<d m\rangle$ by auto
\}
ultimately show $p \in$?set
using sparsegrid-def lgrid-def by auto
next
fix p
assume $p \in$? set
with grid-multi-dimensional-specification[of dm start dm p]
have $p \in$ grid (start $d m)\{0 . .<d m\}$ and level $p<l m$
by auto
thus $p \in$ sparsegrid $d m$ lm
unfolding sparsegrid-def lgrid-def by auto

```

\section*{qed}
end

\section*{3 Hat Functions}
```

theory Triangular-Function
imports
HOL-Analysis.Equivalence-Lebesgue-Henstock-Integration
Grid
begin
lemma continuous-on-max[continuous-intros]:
fixes f ::- = 'a::linorder-topology
shows continuous-on S f continuous-on S g continuous-on S (}\lambdax\mathrm{ . max
(fx) (g x))
by (auto simp: continuous-on-def intro: tendsto-max)

```
definition \(\varphi::(\) nat \(\times\) int \() \Rightarrow\) real \(\Rightarrow\) real where
    \(\varphi \equiv\left(\lambda(l, i) x . \max 0\left(1-\mid x * \mathcal{Z}^{\wedge}(l+1)-\right.\right.\) real-of-int \(\left.\left.i \mid\right)\right)\)
definition \(\Phi::(\) nat \(\times\) int \()\) list \(\Rightarrow(\) nat \(\Rightarrow\) real \() \Rightarrow\) real where
    \(\Phi p x=\left(\prod d<\right.\) length \(\left.p . \varphi(p!d)(x d)\right)\)
definition \(12-\varphi\) where
    l2- \(\varphi\) p1 p2 \(=\left(\int x . \varphi p 1 x * \varphi p 2 x\right.\) dlborel \()\)
definition 12 where
    \(l 2 a b=\left(\int x . \Phi a x * \Phi b x \partial\left(\Pi_{M} d \in\{. .<\right.\right.\) length \(a\}\). lborel \(\left.)\right)\)
lemma measurable \(-\varphi[\) measurable \(]: \varphi p \in\) borel-measurable borel
    by (cases \(p\) ) (simp add: \(\varphi\)-def)
lemma \(\varphi\)-nonneg: \(0 \leq \varphi p x\)
    by (simp add: \(\varphi\)-def split: prod.split)
lemma \(\varphi\)-zero-iff:
    \(\varphi(l, i) x=0 \longleftrightarrow x \notin\left\{\right.\) real-of-int \((i-1) /\) 2^ \(^{\wedge}(l+1)<. .<\) real-of-int \((i+1)\)
/ \(\left.\mathbf{2}^{\wedge}(l+1)\right\}\)
    by (auto simp: \(\varphi\)-def field-simps split: split-max)
lemma \(\varphi\)-zero: \(x \notin\left\{\right.\) real-of-int \((i-1) / \mathfrak{2}^{\wedge}(l+1)<. .<\) real-of-int \((i+1) / \mathfrak{2 ヘ}^{\wedge}(l\)
\(+1)\} \Longrightarrow \varphi(l, i) x=0\)
    unfolding \(\varphi\)-zero-iff by simp
lemma \(\varphi\)-eq- 0 : assumes \(x: x<0 \vee 1<x\) and \(i: 0<i i<2 \uparrow S u c l\) shows \(\varphi\)
\((l, i) x=0\)
    using \(x\)
proof
```

 assume }x<
 also have 0\leq real-of-int (i-1)/2`(l + 1)
 using i by (auto simp: field-simps)
 finally show ?thesis
 by (auto intro!: \varphi-zero simp: field-simps)
 next
have real-of-int (i+1) / 2` (l+1) \leq 1 using i by (subst divide-le-eq-1-pos) (auto simp del: of-int-add power-Suc) also assume 1<x finally show ?thesis by (auto intro!: \varphi-zero simp: field-simps) qed lemma ix-lt: p \in sparsegrid dm lm \Longrightarrowd<dm\Longrightarrowix pd< 2`(lv pd +1)
unfolding sparsegrid-def lgrid-def
using grid-estimate[of d start dm p {0 ..<dm}] by auto
lemma ix-gt: p \in sparsegrid dm lm \Longrightarrowd<dm\Longrightarrow0<ix pd
unfolding sparsegrid-def lgrid-def
using grid-estimate[of d start dm p {0 ..<dm}] by auto

```
lemma \(\Phi\)-eq-0: assumes \(x: \exists d<\) length \(p . x d<0 \vee 1<x d\) and \(p: p \in\) sparsegrid
\(d m \operatorname{lm}\) shows \(\Phi p x=0\)
    unfolding \(\Phi\)-def
proof (rule prod-zero)
    from \(x\) obtain \(d\) where \(d<\) length \(p \wedge(x d<0 \vee 1<x d)\)..
    with \(p[\) THEN ix-lt, of \(d] p[\) THEN ix-gt, of \(d] p\)
    show \(\exists a \in\{. .<\) length \(p\} . \varphi(p!a)(x a)=0\)
    apply (cases \(p!d\) )
    apply (intro bexI \([\) of \(-d]\) )
    apply (auto intro!: \(\varphi\)-eq-0 simp: sparsegrid-length ix-def lv-def)
    done
qed simp
lemma \(\varphi\)-left-support':
    \(x \in\left\{\right.\) real-of-int \((i-1) / \mathcal{Z}^{\wedge}(l+1)\).. real-of-int \(\left.i / \mathcal{Z}^{\wedge}(l+1)\right\} \Longrightarrow \varphi(l, i) x=\)
\(1+x * \mathfrak{Z}^{\wedge}(l+1)-\) real-of-int \(i\)
    by (auto simp: \(\varphi\)-def field-simps split: split-max)
lemma \(\varphi\)-left-support: \(x \in\{-1\).. \(0::\) real \(\} \Longrightarrow \varphi(l, i)\left((x+\right.\) real-of-int \(i) / \mathcal{2}^{\wedge}(l\)
\(+1))=1+x\)
    by (auto simp: \(\varphi\)-def field-simps split: split-max)
lemma \(\varphi\)-right-support':
    \(x \in\left\{\right.\) real-of-int \(i / \mathcal{Z}^{\wedge}(l+1)\).. real-of-int \(\left.(i+1) / \mathbb{Z}^{\wedge}(l+1)\right\} \Longrightarrow \varphi(l, i) x=\)
\(1-x * \mathfrak{2}^{\wedge}(l+1)+\) real-of-int \(i\)
    by (auto simp: \(\varphi\)-def field-simps split: split-max)
lemma \(\varphi\)-right-support:
```

 x\in{0 .. 1::real } \Longrightarrow\varphi (l,i)((x+real i)/ 2`(l+1))=1-x
 by (auto simp: }\varphi\mathrm{ -def field-simps split: split-max)
 lemma integrable-\varphi: integrable lborel (}\varphi\mathrm{ p)
proof (induct p)
case (Pair l i)
have integrable lborel (}\lambda\mathrm{ x. indicator {real-of-int (i-1)/ 2` (l+1) .. real-of-int (i+1)/\mathscr{2`}(l+1)}x**
unfolding }\varphi\mathrm{ -def by (intro borel-integrable-compact) (auto intro!: continuous-intros)
then show ?case
by (rule Bochner-Integration.integrable-cong[THEN iffD1, rotated - 1]) (auto
simp: \varphi-zero-iff)
qed
lemma integrable-\varphi2: integrable lborel (}\lambdax.\varphipx*\varphiqx
proof (cases p q rule: prod.exhaust[case-product prod.exhaust])
case (Pair-Pair l i l' i')
have integrable lborel
(\lambdax. indicator {real-of-int (i-1)/ 2`(l+1) .. real-of-int (i+1)/ 2`(l+
1)} x**R(\varphi (l,i) x*\varphi (l', i') x))
unfolding }\varphi\mathrm{ -def by (intro borel-integrable-compact) (auto intro!: continuous-intros)
then show ?thesis unfolding Pair-Pair
by (rule Bochner-Integration.integrable-cong[THEN iffD1, rotated - 1]) (auto
simp: \varphi-zero-iff)
qed
lemma l2-\varphiI-DERIV:
assumes n: \x. x < {(real-of-int i' - 1)/ 2` (l' + 1) .. real-of-int i' / 2`(l' +
1)} \Longrightarrow
DERIV \Phi-n x :> (\varphi (l', i') x*\varphi(l,i) x) (is \bigwedge x. x \in{?a..?b}\LongrightarrowDERIV -

- :> ?P x
and p:\bigwedgex.x\in{real-of-int i' / 2` (l' + 1) .. (real-of-int i' + 1)/ 2` (l' + 1)
}
DERIV \Phi-p x :> (\varphi (l', i') x*\varphi(l,i)x)(is \ x. x \in{?b..?c}\Longrightarrow -)
shows l2-\varphi (l', i')(l,i)=(\Phi-n?b - \Phi-n?a) + (\Phi-p?c - \Phi-p?b)
proof -
have has-bochner-integral lborel
(\lambdax. ?P x* indicator {?a..?b} x + ?P x* indicator {?b..?c} x)
((\Phi-n?b - \Phi-n ?a) + (\Phi-p ?c - \Phi-p ?b))
by (intro has-bochner-integral-add has-bochner-integral-FTC-Icc-nonneg n p)
(auto simp: \varphi-nonneg field-simps)
then have has-bochner-integral lborel?P ((\Phi-n ?b - \Phi-n ?a) + (\Phi-p ?c - \Phi-p
?b))
by (rule has-bochner-integral-discrete-difference[where X={?b}, THEN iffD1,
rotated -1])
(auto simp: power-add intro!: \varphi-zero integral-cong split: split-indicator)
then show ?thesis by (simp add: has-bochner-integral-iff l2-\varphi-def)
qed

```
```

lemma l2-eq: length $a=$ length $b \Longrightarrow$ l2 $a b=\left(\prod d<\right.$ length $\left.a . l 2-\varphi(a!d)(b!d)\right)$
unfolding l2-def l2- φ-def Φ-def
apply (simp add: prod.distrib[symmetric])
proof (rule product-sigma-finite.product-integral-prod)
show product-sigma-finite (λd. lborel) ..
qed (auto intro: integrable- φ 2)
lemma 12-when-disjoint:
assumes $l \leq l^{\prime}$
defines $d==l^{\prime}-l$
assumes $(i+1) * 2 へ d<i^{\prime} \vee i^{\prime}<(i-1) * \mathcal{Z}^{\wedge} d$ (is ?right \vee ?left)
shows $l 2-\varphi\left(l^{\prime}, i^{\prime}\right)(l, i)=0$
proof -
let ? sup $=\lambda l$ i. $\left\{\right.$ real-of-int $(i-1) / \mathbb{Z}^{\wedge}(l+1)<. .<$ real-of-int $(i+1) / \mathcal{Z}^{\wedge}(l$
$+1)\}$
have $l^{\prime}: l^{\prime}=l+d$
using assms by simp
have $*: \bigwedge i l .2^{\wedge} l=$ real-of-int $\left(2^{\wedge} l:: i n t\right)$
by simp
have $[$ arith $]: 0<(2 \widehat{ } d::$ int $)$
by simp
from〈?right \vee ? left〉〈l $\left.\leq l^{\prime}\right\rangle$ have empty-support: ? sup $l i \cap$?sup $l^{\prime} i^{\prime}=\{ \}$
by (auto simp add: min-def max-def divide-simps l' power-add $*$ of-int-mult[symmetric]
simp del: of-int-diff of-int-add of-int-mult of-int-power)
(simp-all add: field-simps)
then have $\bigwedge x . \varphi\left(l^{\prime}, i^{\prime}\right) x * \varphi(l, i) x=0$
unfolding φ-zero-iff mult-eq-0-iff by blast
then show ?thesis
by (simp add: l2- φ-def del: mult-eq-0-iff vector-space-over-itself.scale-eq-0-iff)
qed
lemma l2-commutative: $12-\varphi p q=l 2-\varphi q p$
by (simp add: l2- - -def mult.commute)
lemma l2-when-same: l2- $\varphi(l, i)(l, i)=1 / 3 / 2 \mathfrak{}$ 2 l
proof (subst l2- φ I-DERIV)
let $? l=(2::$ real $) \uparrow(l+1)$
let ? in $=$ real-of-int $i-1$
let ? ip $=$ real-of-int $i+1$
let ? $\varphi=\varphi(l, i)$
let ? $\varphi 2=\lambda x$. ? $\varphi x *$? φx
\{ fix x assume $x \in\{?$ in / ?l .. real-of-int $i / ? l\}$
hence φ-eq: ? $\varphi x=? l * x-$? in using φ-left-support' by auto
show $\operatorname{DERIV}(\lambda x \cdot x$ 3 $/ 3 *$? 1 〔2 $+x *$? in^2 $-x$-2/2 $* 2 * ? l *$? in $) x:>$
? $\varphi 2 x$
by (auto intro!: derivative-eq-intros simp add: power2-eq-square field-simps

```
\[
\varphi-e q)\}
\]
\{ fix \(x\) assume \(x \in\{\) real-of-int \(i / ? l . . ? i p / ? l\}\)
hence \(\varphi\)-eq: ? \(\varphi x=\) ? ip - ?l \(* x\) using \(\varphi\)-right-support' by auto
show \(\operatorname{DERIV}\left(\lambda x . x^{\wedge} 3 / 3 * ? l へ 2+x * ?\right.\) ? \(p^{\wedge} 2-x\)-2/2 \(\left.* 2 * ? l * ? i p\right) x:>\) ? \(\varphi 2 x\)
by (auto intro!: derivative-eq-intros simp add: power2-eq-square field-simps \(\varphi-e q)\}\)
qed (simp-all add: field-simps power-eq-if[of - 2] power-eq-if[of - 3])
lemma l2-when-left-child:
assumes \(l<l^{\prime}\)
and \(i^{\prime}\)-bot: \(i^{\prime}>(i-1) * \mathcal{L}^{\wedge}\left(l^{\prime}-l\right)\)
and \(i^{\prime}\)-top: \(i^{\prime}<i * \mathcal{Z}^{\wedge}\left(l^{\prime}-l\right)\)
shows \(l 2-\varphi\left(l^{\prime}, i^{\prime}\right)(l, i)=\left(1+\right.\) real-of-int \(i^{\prime} / \mathcal{Z}^{\wedge}\left(l^{\prime}-l\right)-\) real-of-int \(\left.i\right) / \mathcal{Z}^{\wedge}\left(l^{\prime}\right.\)
+1 )
proof (subst l2- \(\varphi\) I-DERIV)
let \(? l^{\prime}=(2:: \text { real })^{\wedge}\left(l^{\prime}+1\right)\)
let ? \(\mathrm{in}^{\prime}=\) real-of-int \(i^{\prime}-1\)
let ? \(i^{\prime}{ }^{\prime}=\) real-of-int \(i^{\prime}+1\)
let \(? l=(2::\) real \() \uparrow(l+1)\)
let ? \(i=\) real-of-int \(i-1\)
let ? \(\varphi^{\prime}=\varphi\left(l^{\prime}, i^{\prime}\right)\)
let ? \(\varphi=\varphi(l, i)\)
let ? \(\varphi 2 x=\) ? \(\varphi^{\prime} x *\) ? \(\varphi x\)
define \(\Phi-n\) where \(\Phi-n x=x^{\wedge} 3 / 3 * ? l^{\prime} * ? l+x * ? i * ? n^{\prime}-x^{\wedge} 2 / 2 *\left(? i^{\prime}\right.\)
* ? \(\left.l+? i * ? l^{\prime}\right)\) for \(x\)
define \(\Phi-p\) where \(\Phi-p x=x^{\wedge} 2 / 2 *\left(? i p^{\prime} * ? l+? i * ? l^{\prime}\right)-x\) - \(3 / 3 * ? l^{\prime} *\) ?l \(-x * ? i * ?{ }^{i} p^{\prime}\) for \(x\)
have level-diff: \(\mathfrak{2}^{\wedge}\left(l^{\prime}-l\right)=\) 2^l' \(^{\prime} /(2 \wedge l::\) real) using power-diff[of 2::real l l \(]\) \(\left\langle l<l^{\prime}\right\rangle\) by auto
\{ fix \(x\) assume \(x: x \in\left\{? i n^{\prime} / ? l^{\prime} . . ? i p^{\prime} / ? l^{\prime}\right\}\)
have ? \(i * \mathcal{Z}^{\wedge}\left(l^{\prime}-l\right) \leq\) ? in \(^{\prime}\)
using \(i^{\prime}\)-bot int-less-real-le by auto
hence ?i / ?l \(\leq\) ? in' / ? \(l^{\prime}\) using level-diff by (auto simp: field-simps)
hence ? \(i / ? l \leq x\) using \(x\) by auto
moreover
have ? ip \({ }^{\prime} \leq\) real-of-int \(i * \mathcal{D}^{\wedge}\left(l^{\prime}-l\right)\)
using \(i^{\prime}\)-top int-less-real-le by auto
hence \(i p^{\prime}\)-le-i: ? ip \({ }^{\prime} / ? l^{\prime} \leq\) real-of-int \(i / ? l\)
using level-diff by (auto simp: field-simps)
hence \(x \leq\) real-of-int \(i / ? l\) using \(x\) by auto
ultimately have ? \(\varphi x=? l * x-? i\) using \(\varphi\)-left-support' by auto
\(\}\) note \(\varphi\)-eq \(=\) this
\{ fix \(x\) assume \(x: x \in\left\{?{ }^{\prime} n^{\prime} / ? l^{\prime} .\right.\). real-of-int \(\left.i^{\prime} / ? l^{\prime}\right\}\)
```

 hence }\mp@subsup{\varphi}{}{\prime}\mathrm{ -eq:? ? }\mp@subsup{\varphi}{}{\prime}x=?\mp@subsup{l}{}{\prime}*x-?\mathrm{ ?in' using }\varphi\mathrm{ -left-support' by auto
 from x have }\mp@subsup{x}{}{\prime}:x\in{?i\mp@subsup{n}{}{\prime}/ ?\mp@subsup{l}{}{\prime}..? ?i\mp@subsup{p}{}{\prime}/ ? ?l'} by (auto simp add: field-simps
 show DERIV \Phi-n x :> ?\varphi2 x unfolding \varphi-eq[OF x] \varphi'-eq \Phi-n-def
 by (auto intro!: derivative-eq-intros simp add: power2-eq-square algebra-simps)
 }
{fix }x\mathrm{ assume }x:x\in{real-of-int i' / ?l' .. ?ip' / ?l'
hence }\mp@subsup{\varphi}{}{\prime}\mathrm{ -eq: ? }\mp@subsup{\varphi}{}{\prime}x=?{\mp@subsup{p}{}{\prime}-?\mp@subsup{l}{}{\prime}*x\mathrm{ using }\varphi\mathrm{ -right-support' by auto
from x have \mp@subsup{x}{}{\prime}:}x\in{?in' / ?l' .. ?ip' / ?l'} by (simp add: field-simps

```

```

 by (auto intro!: derivative-eq-intros simp add: power2-eq-square algebra-simps)
 }
qed (simp-all add: field-simps power-eq-if[of - 2] power-eq-if[of-3] power-diff[of
2::real, OF - <l< l'`[THEN less-imp-le]]) lemma l2-when-right-child: assumes l<l' and i'-bot: i'}>i*\mp@subsup{\mathcal{Z}}{}{`}(\mp@subsup{l}{}{\prime}-l
and i'-top: }\mp@subsup{i}{}{\prime}<(i+1)*\mp@subsup{2}{}{`}(\mp@subsup{l}{}{\prime}-l shows l2-\varphi (l', i')(l,i)=(1 - real-of-int i' / 2` (l' - l) + real-of-int i)/ 2`(l'

+ 1)

proof (subst l2-\varphiI-DERIV)
let ?l' = (2 :: real)` (l' + 1)
let ?in' = real-of-int i' - 1
let ?ip' = real-of-int }\mp@subsup{i}{}{\prime}+
let ?l = (2 :: real)^(l + 1)
let ?i = real-of-int i + 1
let ? }\mp@subsup{\varphi}{}{\prime}=\varphi(\mp@subsup{l}{}{\prime},\mp@subsup{i}{}{\prime}
let ? }\varphi=\varphi(l,i
let ? }\varphi\mathcal{Z}=\lambdax\mathrm{ . ? }\mp@subsup{\varphi}{}{\prime}x*\mathrm{ ? }\varphi
define \Phi-n where \Phi-n x = x^2 / 2* (?in'*?l + ?i * ?l') - x^3 / 3*?l'*
?l - x*? i* ?in' for }
define \Phi-p where }\Phi-px=\mp@subsup{x}{}{\wedge}3/3*?\mp@subsup{l}{}{\prime}*?l+x*?i*?ip\prime - x^2 / 2 * (?ip'

* ?l + ? i * ? l') for }
have level-diff: $\mathfrak{Z}^{\wedge}\left(l^{\prime}-l\right)=$ 2^l' $^{\prime} /($ 2ヘl :: real) using power-diff $[$ of $2::$ real $l l]$ $\langle l<l$ ' $>$ by auto

```
\{ fix \(x\) assume \(x: x \in\left\{? i^{\prime} n^{\prime} / ? l^{\prime} .\right.\). ? \(\left.i p^{\prime} / ? l^{\prime}\right\}\)
have real-of-int \(i * \mathcal{Z}^{\wedge}\left(l^{\prime}-l\right) \leq\) ? in \({ }^{\prime}\)
using \(i^{\prime}\)-bot int-less-real-le by auto
hence real-of-int \(i / ? l \leq ? i^{\prime} /\) ? \(l^{\prime}\) using level-diff by (auto simp: field-simps)
hence real-of-int \(i / ? l \leq x\) using \(x\) by auto
moreover
have ? \(i p^{\prime} \leq ? i * \mathcal{D}^{\wedge}\left(l^{\prime}-l\right)\)
using \(i^{\prime}\)-top int-less-real-le by auto
hence \(i p^{\prime}\)-le-i: ? \(i p^{\prime} /\) ? \(l^{\prime} \leq ? i / ? l\) using level-diff by (auto simp: field-simps)
hence \(x \leq ? i / ? l\) using \(x\) by auto
ultimately have ? \(\varphi x=? i-? l * x\) using \(\varphi\)-right-support' by auto
\(\}\) note \(\varphi\)-eq \(=\) this
\{ fix \(x\) assume \(x: x \in\left\{? ?^{\prime} n^{\prime} / ? l^{\prime} .\right.\). real-of-int \(\left.i^{\prime} / ? l^{\prime}\right\}\)
hence \(\varphi^{\prime}\)-eq: ? \(\varphi^{\prime} x=? l^{\prime} * x-\) ? in' using \(\varphi\)-left-support' by auto
from \(x\) have \(x^{\prime}: x \in\left\{?{ }^{i n} n^{\prime} / ? l^{\prime} .\right.\). ? \(i p^{\prime} /\) ? \(\left.l^{\prime}\right\}\) by (simp add: field-simps)
show DERIV \(\Phi-n x:>\) ? \(\varphi 2 x\) unfolding \(\Phi\)-n-def \(\varphi\)-eq[OF \(x] \varphi^{\prime}-e q\)
by (auto intro!: derivative-eq-intros simp add: simp add: power2-eq-square algebra-simps) \}
```

\{fix x assume $x: x \in\left\{\right.$ real-of-int $\left.i^{\prime} / ? l^{\prime} . . ? i p^{\prime} / ? l^{\prime}\right\}$
hence φ^{\prime}-eq: ? $\varphi^{\prime} x=$? $i^{\prime}{ }^{\prime}-? l^{\prime} * x$ using φ-right-support' by auto
from x have $x^{\prime}: x \in\left\{? i^{\prime} /\right.$? l^{\prime}.. ? ip $\left.p^{\prime} / ? l^{\prime}\right\}$ by (auto simp: field-simps)
show DERIV $\Phi-p x$: $>$? $\varphi 2 x$ unfolding φ-eq[OF $x] \varphi^{\prime}-e q \Phi-p$-def
by (auto intro!: derivative-eq-intros simp add: power2-eq-square algebra-simps)
\}
qed (simp-all add: field-simps power-eq-if[of-2] power-eq-if[of - 3] power-diff[of
2::real, OF - <l < l’〉[THEN less-imp-le]])
lemma level-shift: $l c>l \Longrightarrow(x::$ real $) /$ 2^ $^{\wedge}(l c-S u c l)=x * 2 /$ 2 $^{\wedge}(l c-l)$
by (auto simp add: power-diff)
lemma l2-child: assumes $d<$ length b
and p-grid: $p \in$ grid (child b dir d) $d s$ (is $p \in$ grid ?child ds)
shows $l 2-\varphi(p!d)(b!d)=(1-r e a l-o f-i n t(s g n ~ d i r) *(r e a l-o f-i n t(i x p d) /$
2^(lv pd-lvbd)-real-of-int $(i x b d))) /$
$\mathcal{Z}^{\wedge}(\operatorname{lv} p d+1)$
proof -
have $l v$?child $d \leq l v p d$ using $\langle d<l e n g t h ~ b\rangle$ and p-grid
using grid-single-level by auto
hence $l v b d<l v p d$ using $\langle d<$ length $b\rangle$ and p-grid
using child-lv by auto

```
    let \(? i-c=i x\) ?child \(d\) and ?l-c \(=l v\) ?child \(d\)
    let \(? i-p=i x p d\) and ?l- \(p=l v p d\)
    let \(? i-b=i x b d\) and \(? l-b=l v b d\)
    have \((2::\) int \() * \mathfrak{L}^{\wedge}(? l-p-\) ?l-c) \()=2 \wedge S u c(? l-p-\) ?l-c) by auto
    also have \(\ldots=\mathcal{2}^{`}(S u c\) ?l-p - ?l-c \()\)
    proof -
    have Suc (?l-p - ?l-c) = Suc ?l-p - ?l-c
        using 〈lv ?child \(d \leq l v p d\rangle\) by auto
    thus ?thesis by auto
qed
also have \(\ldots=2 \wedge(\) ?l- \(p-\) ?l-b)
    using \(\langle d<l e n g t h ~ b\rangle\) and \(\langle l v b d<l v p d\rangle\)
    by (auto simp add: child-def lv-def)
finally have level: 2^ \(^{\wedge}\) ?l-p - ?l-b \()=(2::\) int \() * 2^{\wedge}(? l-p-\) ?l-c) ..
from \(\langle d<\) length \(b\rangle\) and \(p\)-grid
have range-left: ? i-p \(>(? i-c-1) * 2 \uparrow(? l-p-? l-c)\) and range-right: ? \(i-p<(? i-c+1) *\) 2^ \((? l-p-\) ?l-c)
using grid-estimate by auto
show ?thesis
proof (cases dir)
case left
with child-ix-left \([O F\langle d<\) length \(b\rangle]\)
have \((? i-b-1) * 2 \wedge(? l-p-? l-b)=(? i-c-1) * 2^{\wedge}(? l-p-? l-c)\) and ? i-b * 2^(?l-p - ?l-b \()=(? i-c+1) *\) 2^(?l-p \(-? l-c)\) using level by auto
hence \(? i-p>(? i-b-1) * \mathcal{L}^{\wedge}(? l-p-? l-b)\) and ? i-p < ? i-b * 2^(?l-p - ?l-b)
using range-left and range-right by auto
with \(\langle ? l-b<? l-p\rangle\)
have \(l 2-\varphi(? l-p, ? i-p)(? l-b, ? i-b)=\)
(1 + real-of-int ?i-p / 2^(?l-p - ?l-b) - real-of-int? i-b) / 2^(?l-p + 1)
by (rule l2-when-left-child)
thus ?thesis using left by (auto simp add: ix-def lv-def)
next
case right
hence ? \(i-c=2 *\) ? \(i-b+1\) using child-ix-right and \(\langle d<\) length \(b\rangle\) by auto
hence ? \(i-b * \mathcal{Z}^{\wedge}(? l-p-? l-b)=(? i-c-1) * \mathcal{Z}^{\wedge}(? l-p-? l-c)\) and
\((? i-b+1) * \mathcal{L}^{\wedge}(? l-p-? l-b)=(? i-c+1) * \mathcal{Z}^{\wedge}(? l-p-? l-c)\) using level by
auto
hence ? \(i-p>\) ? \(i-b * 2 \uparrow(? l-p-? l-b)\) and
\(? i-p<(? i-b+1) * 2 `(? l-p-? l-b)\)
using range-left and range-right by auto
with 〈?l-b < ?l-p〉
have \(l 2-\varphi(? l-p\), ? \(i-p)(? l-b, ? i-b)=\)
(1 - real-of-int ? i-p / 2^(?l-p - ?l-b) + real-of-int ?i-b) / 2^(?l-p + 1)
by (rule l2-when-right-child)
thus ?thesis using right by (auto simp add: ix-def lv-def)
qed
qed
lemma l2-same: l2- \(\varphi(p!d)(p!d)=1 / 3 / 2 \mathcal{2}(l v p d)\)
proof -
have \(l 2-\varphi(p!d)(p!d)=l 2-\varphi(l v p d\), ix \(p d)(l v p d\), ix \(p d)\)
by (auto simp add: lv-def ix-def)
thus ?thesis using l2-when-same by auto
qed
lemma l2-disjoint: assumes \(d<\) length \(b\) and \(p \in\) grid \(b\{d\}\) and \(p^{\prime} \in \operatorname{grid} b\{d\}\)
and \(p^{\prime} \notin \operatorname{grid} p\{d\}\) and \(l v p^{\prime} d \geq l v p d\)
shows \(l 2-\varphi\left(p^{\prime}!d\right)(p!d)=0\)
proof -
have range: \(i x p^{\prime} d>(i x p d+1) * \mathcal{Z}^{\wedge}\left(l v p^{\prime} d-l v p d\right) \vee i x p^{\prime} d<(i x p d-\) 1) * \(\mathcal{L}^{\wedge}\left(l v p^{\prime} d-l v p d\right)\)
proof (rule ccontr)
assume \(\neg\) ?thesis
hence \(i x p^{\prime} d \leq(i x p d+1) *{ }^{2}\left(l v p^{\prime} d-l v p d\right)\) and \(i x p^{\prime} d \geq(i x p d-\) 1) \(* 2^{\wedge}\left(l v p^{\prime} d-l v p d\right)\) by auto
with \(\left\langle p^{\prime} \in \operatorname{grid} b\{d\}\right\rangle\) and \(\langle p \in \operatorname{grid} b\{d\}\rangle\) and \(\left\langle l v p^{\prime} d \geq l v p d\right\rangle\) and \(\langle d<\) length \(b\) >
have \(p^{\prime} \in\) grid \(p\{d\}\) using grid-part \([\) where \(p=p\) and \(b=b\) and \(d=d\) and \(\left.p^{\prime}=p\right\}\) by auto
with \(\left\langle p^{\prime} \notin\right.\) grid \(\left.p\{d\}\right\rangle\) show False by auto
qed
have \(l 2-\varphi\left(p^{\prime}!d\right)(p!d)=l 2-\varphi\left(l v p^{\prime} d\right.\), ix \(\left.p^{\prime} d\right)(l v p d\), ix \(p d)\) by (auto simp add: ix-def lv-def)
also have \(\ldots=0\) using range and \(\left\langle l v p^{\prime} d \geq l v p d\right\rangle\) and \(l 2\)-when-disjoint by auto
finally show ?thesis.
qed
lemma l2-down2:
fixes \(p c p d p\)
assumes \(d<\) length \(p d\)
assumes pc-in-grid: pc grid (child pd dir \(d\) ) \(\{d\}\)
assumes \(p d\)-is-child: \(p d=\) child \(p\) dir \(d\) (is \(p d=\) ? \(p d)\)
shows \(l 2-\varphi(p c!d)(p d!d) / 2=l 2-\varphi(p c!d)(p!d)\)
proof -
have \(d<\) length \(p\) using \(p d\)-is-child \(\langle d<\) length \(p d\rangle\) by auto

\section*{moreover}
have \(p c \in\) grid ? \(p d\{d\}\) using \(p d\)-is-child and grid-child and pc-in-grid by auto hence lv p \(d<l v p c d\) using grid-child-level and \(\langle d<l e n g t h ~ p d\rangle\) and \(p d\)-is-child by auto
```

moreover
have real-of-int (sgn dir) * real-of-int (sgn dir)=1 by (cases dir,auto)
ultimately show ?thesis
unfolding l2-child[OF<d< length pd> pc-in-grid]
l2-child[OF <d< length p><pc\in grid ?pd {d}>]
using child-lv and child-ix and pd-is-child and level-shift
by (auto simp add: algebra-simps diff-divide-distrib add-divide-distrib)
qed
lemma l2-zigzag:
assumes d< length p and p-child: p=child p-p dir d
and p}\mp@subsup{p}{}{\prime}\mathrm{ -grid: }\mp@subsup{p}{}{\prime}\in\operatorname{grid}(\mathrm{ child p (inv dir) d) {d}
and ps-intro:child p (inv dir) d = child ps dir d (is ?c-p = ?c-ps)
shows l2-\varphi (p'!d) (p-p!d) = l2-\varphi (p'!d) (ps!d) +l2-\varphi (p'!d) (p!d)/2

```

\section*{proof -}
have length \(p=\) length \(? c-p\) by auto
also have \(\ldots=\) length ? \(c-p s\) using \(p s\)-intro by auto
finally have length \(p=\) length \(p s\) using \(p s\)-intro by auto
hence \(d<\) length \(p\) - \(p\) using \(p\)-child and \(\langle d<\) length \(p\rangle\) by auto

\section*{moreover}
from \(p s\)-intro have \(p s=p[d:=(l v p d, i x p d-s g n d i r)]\) by (rule child-neighbour)
hence \(l v p s d=l v p d\) and real-of-int (ix ps \(d\) ) \(=\) real-of-int (ix pd)-real-of-int (sgn dir)
using lv-def and \(i x\)-def and 〈length \(p=\) length \(p s\rangle\) and \(\langle d<\) length \(p\rangle\) by auto

\section*{moreover}
have \(d<\) length ps and \(*: p^{\prime} \in\) grid (child ps dir \(d\) ) \(\{d\}\) using \(p^{\prime}\)-grid \(p s\)-intro 〈length \(p=\) length \(\left.p s\right\rangle\langle d<\) length \(p\rangle\) by auto
have \(p^{\prime} \in \operatorname{grid} p\{d\}\) using \(p^{\prime}\)-grid and grid-child by auto
hence \(p\)-p-grid: \(p^{\prime} \in\) grid (child \(p\)-p dir \(d\) ) \(\{d\}\) using \(p\)-child by auto
hence \(l v p^{\prime} d>l v p-p d\) using grid-child-level and \(\langle d<l e n g t h ~ p-p\rangle\) by auto

\section*{moreover}
have real-of-int (sgn dir) * real-of-int (sgn dir) \(=1\) by (cases dir, auto)
ultimately show ?thesis
unfolding l2-child \(\left[O F\left\langle d<\right.\right.\) length \(p>p^{\prime}\)-grid] l2-child[OF \(\langle d<\) length \(\left.p s\rangle *\right]\) l2-child \([O F\langle d<\) length \(p-p\rangle p-p\)-grid]
using child-lv and child-ix and p-child level-shift
by (auto simp add: add-divide-distrib algebra-simps diff-divide-distrib)
qed
end

\section*{4 UpDown Scheme}
theory UpDown-Scheme
imports Grid
begin
```

fun down ${ }^{\prime}::$ nat \Rightarrow nat \Rightarrow grid-point \Rightarrow real \Rightarrow real \Rightarrow vector \Rightarrow vector
where
down'd $0 \quad p f_{l} f_{r} \alpha=\alpha$
| down'd (Suc l) $p f_{l} f_{r} \alpha=$ (let
$f_{m}=\left(f_{l}+f_{r}\right) / 2+(\alpha p) ;$
$\alpha=\alpha\left(p:=\left(\left(f_{l}+f_{r}\right) / 4+(1 / 3) *(\alpha p)\right) / 2^{\wedge}(l v p d)\right) ;$
$\alpha=$ down'd l (child p left d) $f_{l} f_{m} \alpha$;
$\alpha=$ down'd l (child p right d) $f_{m} f_{r} \alpha$
in α)

```
```

definition down :: nat \Rightarrow nat \Rightarrow nat \Rightarrow vector \Rightarrow vector where

```

```

fun $u p^{\prime}::$ nat \Rightarrow nat \Rightarrow grid-point \Rightarrow vector $\Rightarrow($ real $*$ real $) *$ vector where
$u p^{\prime} d \quad 0 p \alpha=((0,0), \alpha)$
| up'd (Suc l) $p \alpha=($ let
$\left(\left(f_{l}, f_{m l}\right), \alpha\right)=u p^{\prime} d l($ child p left $d) \alpha$;
$\left(\left(f_{m r}, f_{r}\right), \alpha\right)=u p^{\prime} d l($ child p right $d) \alpha$;
result $=\left(f_{m l}+f_{m r}+(\alpha p) / 2^{\wedge}(l v p d) / 2\right) / 2$
in $\left(\left(f_{l}+\right.\right.$ result, $f_{r}+$ result $\left.\left.), \alpha\left(p:=f_{m l}+f_{m r}\right)\right)\right)$

```
definition \(u p::\) nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) vector \(\Rightarrow\) vector where
    \(u p=\operatorname{lift}\left(\lambda d \operatorname{lm} p \alpha . s n d\left(u p^{\prime} d \operatorname{lm} p \alpha\right)\right)\)
fun updown' :: nat \(\Rightarrow\) nat \(\Rightarrow\) nat \(\Rightarrow\) vector \(\Rightarrow\) vector where
    updown' \(d m \operatorname{lm} 0 \alpha=\alpha\)
| updown' dm lm (Suc d) \(\alpha=\)
    (sum-vector (updown' \(d m \operatorname{lm} d(u p d m \operatorname{lm} d \alpha))(\) down \(d m \operatorname{lm} d\) (updown' \(d m\)
\(\operatorname{lm} d \alpha))\) )
definition updown \(::\) nat \(\Rightarrow\) nat \(\Rightarrow\) vector \(\Rightarrow\) vector where
    updown \(d m \operatorname{lm} \alpha=\) updown \(^{\prime} d m \operatorname{lm} d m \alpha\)
end

\section*{5 Up Part}
theory \(U p\)
imports UpDown-Scheme Triangular-Function
begin
lemma \(u p^{\prime}\)-inplace:
assumes \(p^{\prime}\)-in: \(p^{\prime} \notin\) grid \(p d s\) and \(d \in d s\)
shows snd (up \(d l p \alpha) p^{\prime}=\alpha p^{\prime}\)
using \(p^{\prime}\)-in
proof (induct larbitrary: \(p \alpha\) )
case (Suc l)
let ?ch dir \(=\) child \(p\) dir d
let ?up dir \(\alpha=u p^{\prime} d l(\) ?ch dir) \(\alpha\)
let ?upl \(=\) snd \((\) ? up left \(\alpha)\)
from contrapos-nn[OF \(\left\langle p^{\prime} \notin\right.\) grid \(p\) ds \(>\) grid-child \(\left.[O F\langle d \in d s\rangle]\right]\)
have left: \(p^{\prime} \notin\) grid (?ch left) ds and
right: \(p^{\prime} \notin\) grid (?ch right) ds by auto
have \(p \neq p^{\prime}\) using grid.Start Suc.prems by auto
with Suc.hyps[OF left, of \(\alpha\) ] Suc.hyps[OF right, of ?upl]
show ?case
```

 by (cases ?up left \alpha, cases ?up right ?upl, auto simp add: Let-def)
 qed auto
lemma up'-fl-fr:
\llbracketd< length p;p=(child p-r right d) ; p=(child p-l left d) \rrbracket
fst (up' d lm p \alpha)=
(\sum \mp@subsup{p}{}{\prime}\inlgrid p{d} (lm + level p). (\alpha p) *l2-\varphi (p'!d) (p-r!d),
\sum p'\inlgrid p{d}(lm + level p). (\alpha p})*l2-\varphi(\mp@subsup{p}{}{\prime}!d)(p-l!d)
proof (induct lm arbitrary: p p-l p-r \alpha)
case (Suc lm)
note <d< length p>[simp]
from child-ex-neighbour
obtain pc-r pc-l
where pc-r-def: child p right d = child pc-r (inv right) d
and pc-l-def: child p left d = child pc-l (inv left) d by blast
define pc where pc dir = (case dir of right }=>\mathrm{ pc-r | left }=>\mathrm{ pc-l) for dir
{fix dir have child p (inv dir) d= child (pc (inv dir)) dir d
by (cases dir, auto simp add: pc-def pc-r-def pc-l-def) } note pc-child = this
{ fix dir have child p dir d = child (pc dir) (inv dir)d
by (cases dir, auto simp add: pc-def pc-r-def pc-l-def) } note pc-child-inv =
this
hence !! dir. length (child p dir d) = length (child (pc dir) (inv dir)d) by auto
hence !! dir. length p = length (pc dir) by auto
hence [simp]: !! dir. d< length (pc dir) by auto
let ?l = \lambdas.lm + level s
let ?C = \lambdap p'. (\alpha p)*l\mathcal{L-\varphi (p!d) (p}\mp@subsup{p}{}{\prime}!d)
let ?sum' = \lambdas p ''. \sum p'\inlgrid s{d} (Suclm + level p). ?C p' p'
let ?sum = \lambdas dir p. \sum p'\inlgrid (child s dir d) {d} (?l (child s dir d)). ?C p'
p
let ?ch = \lambdadir. child p dir d
let ?f = \lambdadir. ?sum p dir (pc dir)
let ?fm=\lambdadir. ?sum p dir p
let ?result =(?fm left + ?fm right + (\alpha p)/ 2^(lvp d)/2)/2
let ?up = \lambdalm p\alpha.up' d lm p\alpha
define }\betal\mathrm{ where }\betal=\mathrm{ snd (?up lm (?ch left) }\alpha\mathrm{)
define }\betar\mathrm{ where }\betar=\mathrm{ snd (?up lm (?ch right) }\betal\mathrm{)
define p-d where p-d dir =(case dir of right }=>p-r|left =>p-l) for dir
have p-d-child: p= child (}p\mathrm{ -d dir) dir d for dir
using Suc.prems p-d-def by (cases dir) auto
hence }
mathrm{ dir. length p = length (child (p-d dir) dir d) by auto
hence }
mathrm{ dir. d< length (p-d dir) by auto
{fix dir

```
\(\left\{\right.\) fix \(p^{\prime}\) assume \(p^{\prime} \in \operatorname{lgrid}(? c h(\) inv dir \())\{d\}(? l(? c h(\) inv dir) \())\)
hence ? \(C p^{\prime}(p c(\) inv dir \())+\left(\right.\) ? \(\left.C p^{\prime} p\right) / 2=\) ? \(C p^{\prime}(p-d\) dir \()\)
using l2-zigzag[OF - p-d-child[of dir] - pc-child[of dir]]
by (cases dir) (auto simp add: algebra-simps) \}
hence inv-dir-sum: ?sum \(p\) (inv dir) \((p c(\) inv dir \())+(\) ?sum \(p(\) inv dir \() p) / 2\)
\(=\) ? sum \(p\) (inv dir \()(p-d\) dir \()\)
by (auto simp add: sum.distrib[symmetric] sum-divide-distrib)
have ? sum \(p \operatorname{dir} p / 2=\) ? sum \(p \operatorname{dir}(p-d \operatorname{dir})\) using l2-down2[OF - \(\langle p=\) child ( \(p-d\) dir) dir \(d\rangle]\)
by (force intro!: sum.cong simp add: sum-divide-distrib)
moreover
have ? \(C p(p-d\) dir \()=(\alpha p) / 2^{\wedge}(l v p d) / 4\)
using l2-child \([O F \prec d<\) length \((p-d\) dir \()\), of \(p\) dir \(\{d\}] p\) - \(d\)-child [of dir] \(\langle d<\) length \((p-d\) dir) \()\) child-lv child-ix grid.Start[of \(p\{d\}]\)
by (cases dir) (auto simp add: add-divide-distrib field-simps)
ultimately
have ? sum' \(p(p-d\) dir \()=\)
? sum \(p\) (inv dir) \((p c(\) inv dir \())+\)
(?sump(inv dir) \(p\) )/2 + ? sum \(p \operatorname{dir} p / 2+(\alpha p) / 2^{\wedge}(l v p d) / 4\)
using lgrid-sum \([\) where \(b=p]\) and child-level and inv-dir-sum
by (cases dir) auto
hence ?sum \(p(\) inv dir \()(p c(\) inv dir \())+\) ?result \(=\) ?sum' \(p(p\)-d dir \()\)
by (cases dir) auto \}
note this[of left] this[of right]
moreover
note \(e q=\) up \(^{\prime}\)-inplace[OF grid-not-child \([O F\langle d<\) length \(p\rangle]\), of \(\left.d\{d\} \operatorname{lm}\right]\)
\(\left\{\right.\) fix \(p^{\prime}\) assume \(p^{\prime} \in \operatorname{lgrid}(?\) ?ch right \()\{d\}(l m+\) level (?ch right \(\left.)\right)\)
with grid-disjunct [of \(d p]\) up'-inplace \(\left[o f p^{\prime}\right.\) ?ch left \(\left.\{d\} d \operatorname{lm} \alpha\right] \beta l\)-def
have \(\beta l p^{\prime}=\alpha p^{\prime}\) by auto \}
hence fst (?up (Suc lm) p \(\alpha)=(\) ?f left + ?result, ?f right + ?result \()\)
using \(\beta l\)-def pc-child-inv[of left] pc-child-inv[of right]
Suc.hyps[of ?ch left pc left p \(\alpha\) ] eq[of left \(\alpha\) ]
Suc.hyps \([o f\) ?ch right \(p\) pc right \(\beta l]\) eq [of right \(\beta l]\)
by (cases ?up lm (?ch left) \(\alpha\), cases ?up lm (?ch right) \(\beta l\) ) (simp add: Let-def)
ultimately show? case by (auto simp add: p-d-def)
next
case 0
show? case by simp
qed
lemma \(u p^{\prime}-\beta\) :
\(\llbracket d<\) length \(b ; l+\) level \(b=l m ; b \in\) sparsegrid \(^{\prime} d m ; p \in\) sparsegrid \(^{\prime} d m \rrbracket\)
\(\Longrightarrow\)
\(\left(\operatorname{snd}\left(u p^{\prime} d l b \alpha\right)\right) p=\) (if \(p \in \operatorname{lgrid} b\{d\} \operatorname{lm}\) then \(\sum p^{\prime} \in(\operatorname{lgrid} p\{d\} \operatorname{lm})-\{p\} . \alpha p^{\prime} * l 2-\varphi\left(p^{\prime}!d\right)(p!d)\) else \(\alpha\) p)
(is \(\llbracket-;-;-;-\rrbracket \Longrightarrow(\) ?goal l b \(p \alpha)\) )
proof (induct l arbitrary: b \(p \alpha\) )
case (Suc l)
let \(? l=\) child \(b\) left \(d\) and \(? r=\) child \(b\) right \(d\)
obtain \(p-l\) where \(p-l-d e f: ? r=\) child \(p-l\) left \(d\) using child-ex-neighbour[where dir=right] by auto
obtain \(p\) - \(r\) where \(p\)-r-def: ?l = child p-r right \(d\) using child-ex-neighbour[where dir \(=\) left \(]\) by auto
let ? \(u l=u p^{\prime} d l\) ? \({ }^{\prime} \alpha\)
let ?ur \(=u p^{\prime} d l\) ? \(r\) (snd ? \(\left.u l\right)\)
let ? \(C p^{\prime}=\alpha p^{\prime} * \operatorname{l2}-\varphi\left(p^{\prime}!d\right)(p!d)\)
let ?s \(s=\sum p^{\prime} \in(\) lgrid \(s\{d\} \operatorname{lm})\). ? \(C p^{\prime}\)
from \(\left\langle b \in\right.\) sparsegrid \(\left.{ }^{\prime} d m\right\rangle\) have length \(b=d m\) unfolding sparsegrid'-def start-def
by auto
hence \(d<d m\) using \(\langle d<\) length \(b\rangle\) by auto
\(\left\{\right.\) fix \(p^{\prime}\) assume \(p^{\prime} \in \operatorname{grid} ? r\{d\}\)
hence \(p^{\prime} \notin\) grid \(? l\{d\}\)
using grid-disjunct \([O F\langle d<\) length \(b\rangle]\) by auto
hence snd ? ul \(p^{\prime}=\alpha p^{\prime}\) using \(u p^{\prime}\)-inplace by auto
\(\}\) note \(e q=\) this
show ?goal (Suc l) b p \(\alpha\)
proof (cases \(p=b\) )
case True
let ? \(C p^{\prime}=\alpha p^{\prime} * l 2-\varphi\left(p^{\prime}!d\right)(b!d)\)
let ?s \(s=\sum p^{\prime} \in(\) lgrid \(s\{d\} \operatorname{lm})\). ? \(C p^{\prime}\)
have \(d<\) length ?l using \(\langle d<\) length \(b\rangle\) by auto
from \(u p^{\prime}\)-fl-fr \([O F\) this \(p-r\)-def \(]\)
have fml: snd \((f s t ? u l)=\left(\sum p^{\prime} \in\right.\) lgrid \(? l\{d\}(l+\) level ?l \()\). ?C \(\left.p^{\prime}\right)\) by simp
have \(d<\) length ?r using \(\langle d<\) length \(b\rangle\) by auto
from \(u p^{\prime}\)-fl-fr[OF this - p-l-def, where \(\alpha=s n d\) ? \(\left.u l\right]\)
have fmr: fst \((f s t\) ? ur \()=\left(\sum p^{\prime} \in\right.\) lgrid \(? r\{d\}(l+\) level ? \(r)\).
\[
\left.\left((s n d ? u l) p^{\prime}\right) * l 2-\varphi\left(p^{\prime}!d\right)(b!d)\right) \text { by simp }
\]
have level \(b<l m\) using \(\langle S u c l+\) level \(b=l m\rangle\) by auto
hence \(\{b\} \subseteq\) lgrid \(b\{d\}\) lm unfolding lgrid-def by auto
from sum-diff [OF lgrid-finite this]
have \(\left(\sum p^{\prime} \in(\right.\) lgrid \(b\{d\} l m)-\{b\}\). ? \(C\) p \(\left.p^{\prime}\right)=\) ?s \(b-\) ? \(C\) b by simp
also have \(\ldots=\) ? \(s ? l+\) ?s ? \(r\)
using lgrid-sum and 〈level \(b<l m\rangle\) and \(\langle d<l e n g t h ~ b\rangle\) by auto
also have \(\ldots=\) snd \((f s t\) ? \(u l)+f s t(f s t\) ? ur \()\) using \(f m l\) and \(f m r\)
```

 and <Suc l + level b = lm> and child-level[OF<d<length b>]
 using eq unfolding True lgrid-def by auto
 finally show ?thesis unfolding up'.simps Let-def and fun-upd-def lgrid-def
 using <p = b> and <level b<lm>
 by (cases ?ul, cases ?ur, auto)
 next
 case False
 have ?r }\in\mathrm{ sparsegrid' dm and ?l }\in\mathrm{ sparsegrid' dm
 using }\langleb\in\mathrm{ sparsegrid' dm> and <d<dm> unfolding sparsegrid'-def by auto
 from Suc.hyps[OF - this(1)] Suc.hyps[OF - this(2)]
 have ?goal l ?l p \alpha and ?goal l ?r p (snd ?ul)
 using <d< length b\rangle and «Suc l + level b =lm` and <p \in sparsegrid}\mp@subsup{}{}{\prime}dm
 by auto
show ?thesis
proof (cases p lgrid b {d}lm)
case True
hence level p<lm and p\in grid b {d} unfolding lgrid-def by auto
hence p\in grid ?l {d} \vee p\ingrid ?r {d}
unfolding grid-partition[of b] using }\langlep\not=b\rangle\mathrm{ by auto
thus ?thesis
proof (rule disjE)
assume p}\in\mathrm{ grid (child b left d) {d}
hence p}\not\in\mathrm{ grid (child b right d) {d}
using grid-disjunct[OF<d< length b>] by auto
thus ?thesis
using〈?goal l ?l p \alpha> and <?goal l ?r p (snd ?ul)>
using }\langlep\not=b\rangle\langlep\inlgrid b{d}lm
unfolding lgrid-def grid-partition[of b]
by (cases ?ul, cases ?ur, auto simp add: Let-def)
next
assume *: p \in grid (child b right d) {d}
hence }p\not\in\mathrm{ grid (child b left d) {d}
using grid-disjunct[OF <d< length b>] by auto
moreover
{ fix p' assume p' f grid p {d}
from grid-transitive[OF this *] eq[of p]
have snd?ul p'=\alpha p' by simp
}
ultimately show ?thesis
using <?goal l ?l p \alpha> and 〈?goal l ?r p (snd ?ul)>
using <p\not= b>\langlep\inlgrid b{d} lm>*
unfolding lgrid-def
by (cases ?ul, cases ?ur, auto simp add: Let-def)
qed
next
case False

```
```

 then have p\not\inlgrid ?l {d} lm and p\not\inlgrid ?r {d} lm
 unfolding lgrid-def and grid-partition[where p=b] by auto
 with False show ?thesis using <?goal l ?l p \alpha> and <?goal l ?r p (snd ?ul)>
 using <p\not= b\rangle\langlep\not\in lgrid b {d} lm>
 unfolding lgrid-def
 by (cases ?ul, cases ?ur, auto simp add: Let-def)
 qed
 qed
 next
case 0
then have lgrid b{d} lm = {}
using lgrid-empty'[where p=b and lm=lm and ds={d}] by auto
with 0 show ?case unfolding up'.simps by auto
qed
lemma up:
assumes d<dm and p\in sparsegrid dm lm
shows (updm lm d \alpha) p=(\sum p'\in(lgrid p{d}lm) - {p}.\alpha p'*l2-\varphi (p'!d)
(p!d))
proof -
let ?S = \lambdax p p'. if p' \in grid p{d} - {p} then x * l2-\varphi (p!d) (p!d) else 0
let ?F = \lambdad lm p \alpha. snd (u\mp@subsup{p}{}{\prime}dlm p\alpha)
{ fix pb assume p\ingrid b{d}
from grid-transitive[OF - this subset-refl subset-refl]
have lgrid b {d} lm \cap(grid p{d}-{p})=lgrid p{d}lm - {p}
unfolding lgrid-def by auto
} note lgrid-eq = this
{ fix lb p \alpha
assume b:b lgrid (start dm) ({0..<dm} - {d})lm
hence b \in sparsegrid' dm and d< length b using sparsegrid'-start }\langled<dm
by auto
assume l:l+ level b=lm}\mathrm{ and p:p}\in\mathrm{ sparsegrid dm lm
note sparsegridE[OF p]
note up' = up'- }\beta[OF<d<length b>l<b\in sparsegrid'dm\rangle\langlep\in sparsegrid'
dm>]
have ?F dlb \alpha p=
(if b b base {d} p then (\sum p'\inlgrid b {d}lm.?S (\alpha p') p p') else \alpha p)
proof (cases b = base {d} p)
case True with baseE(2)[OF<p \in sparsegrid' dm>] <level p <lm>
have p\inlgrid b{d}lm and p\in grid b{d} by auto
show ?thesis
using lgrid-eq[OF <p \in grid b {d}>]
unfolding up' if-P[OF True] if-P[OF <p\in lgrid b {d} lm>]
by (intro sum.mono-neutral-cong-left lgrid-finite) auto
next

```
```

 case False
 moreover have p\not\inlgrid b{d}lm
 proof (rule ccontr)
 assume \neg ?thesis
 hence base {d} p=b using b by (auto intro!: baseI)
 thus False using False by auto
 qed
 ultimately show ?thesis unfolding up' by auto
 qed }
 with lift[where F =? ?F,OF<d< <dm>\langlep\in sparsegrid dm lm>]
 have lift-eq: lift ?F dm lm d \alpha p=
 (\sum\mp@subsup{p}{}{\prime}\inlgrid (base {d} p){d} lm. ?S (}\alpha\mp@subsup{p}{}{\prime})p\mp@subsup{p}{}{\prime})\mathrm{ by auto
 from lgrid-eq[OF baseE(2)[OF sparsegrid-subset[OF <p \in sparsegrid dm lm>]]]
show ?thesis
unfolding up-def lift-eq by (intro sum.mono-neutral-cong-right lgrid-finite) auto
qed
end

```

\section*{6 Down part}
```

theory Down
imports Triangular-Function UpDown-Scheme
begin
lemma sparsegrid'-parents:
assumes b: b \in sparsegrid' dm and p': p' \in parents d b p
shows p' }\in\mathrm{ sparsegrid' dm
using assms parents-def sparsegrid'I by auto
lemma down'- }\beta:\llbracketd<length b;l+ level b=lm ; b\in sparsegrid'dm ; p
sparsegrid' dm \rrbracket\Longrightarrow
down'd l b fl fr \alpha p = (if p\inlgrid b {d} lm
then
(fl + (fr - fl) / 2*(real-of-int (ixpd)/2`(lv pd - lv b d) - real-of-int (ix
bd)+1))/ 2^(lv pd+1)+
(\sum p' f parents d b p. (\alpha p')*l2-\varphi (p!d) (p'!d))
else \alpha p)
proof (induct l arbitrary: b \alpha fl fr p)
case (Suc l)
let ?l = child b left d and ?r = child b right d
let ?result = ((fl + fr)/4 + (1 / 3)* (\alpha b))/ 2 ^ (lv b d)
let ?fm= (fl + fr)/2 + (\alpha b)
let ?down-l = down' d l (child b left d) fl ?fm (}\alpha(b:=\mathrm{ ?result)}
have length b = dm using <b \in sparsegrid' dm>
unfolding sparsegrid'-def start-def by auto
hence }d<dm\mathrm{ using <d< length b> by auto

```
have ！！dir．\(d<\) length（child \(b\) dir \(d\) ）using \(\langle d<\) length \(b\rangle\) by auto have ！！dir．\(l+\) level（child b dir d）\(=l m\) using \(\langle d<\) length \(b\rangle\) and \(\langle S u c l+\) level \(b=l m\rangle\) and child－level by auto have ！！dir．（child b dir d）\(\in\) sparsegrid＇\(d m\)
using \(\left\langle b \in\right.\) sparsegrid \(\left.{ }^{\prime} d m\right\rangle\) and \(\langle d<d m\rangle\) and sparsegrid \({ }^{\prime}\)－def by auto
note hyps \(=\) Suc．hyps \([O F\langle!!\) dir．\(d<\) length \((\) child \(b\) dir \(d)\rangle\)
\(\langle!!d i r . l+\) level \((\) child \(b\) dir \(d)=l m\rangle\)
«！！dir．（child b dir d）\(\in\) sparsegrid \(\left.\left.^{\prime} d m\right\rangle\right]\)
show ？case
proof（cases \(p \in \operatorname{lgrid} b\{d\} \operatorname{lm}\) ）
case False
moreover hence \(p \neq b\) and \(p \notin \operatorname{lgrid} ? l\{d\} l m\) and \(p \notin \operatorname{lgrid} ? r\{d\} \operatorname{lm}\) unfolding lgrid－def
unfolding grid－partition［where \(p=b]\) using \(\langle S u c l+\) level \(b=l m\rangle\) by auto ultimately show ？thesis
unfolding down＇．simps Let－def fun－upd－def hyps \(\left[\right.\) OF \(\left\langle p \in\right.\) sparsegrid \(\left.\left.{ }^{\prime} d m\right\rangle\right]\) by auto
next
case True hence level \(p<l m\) and \(p \in\) grid \(b\{d\}\) unfolding lgrid－def by auto
let \(? l b=l v \quad b \quad d \quad\) and \(? i b=\) real－of－int \((i x b d)\)
let ？lp \(=l v p d\) and ？ip \(=\) real－of－int \((i x p d)\)
show ？thesis
proof（cases \(\exists\) dir．\(p \in\) grid（child b dir \(d)\{d\}\) ）
case True
obtain dir where \(p\)－grid：\(p \in\) grid（child \(b\) dir \(d\) ）\(\{d\}\) using True by auto hence \(p \in\) lgrid（child \(b\) dir \(d\) ）\(\{d\}\) lm using 〈level \(p<l m\rangle\) unfolding lgrid－def by auto
have \(l v b d<l v p d\) using child－lv［OF \(\langle d<\) length \(b\rangle]\) and grid－single－level \([O F\) \(p\)－grid \(\langle d<\) length（child \(b\) dir \(d\) ）〉］by auto
let \(? c h=\) child \(b\) dir \(d\)
let ？ich \(=\) child \(b(\) inv dir \() d\)
show ？thesis
proof（cases dir）
case right
hence \(p \in \operatorname{lgrid}\) ？r \(\{d\} \operatorname{lm}\) and \(p \in\) grid \(? r\{d\}\)
using \(\langle p \in\) grid ？ch \(\{d\}\rangle\) and 〈level \(p<l m\rangle\) unfolding lgrid－def by auto
\(\left\{\right.\) fix \(p^{\prime}\) fix fl fr \(x\) assume \(p^{\prime}: p^{\prime} \in\) parents \(d(\) child b right d）\(p\)
hence \(p^{\prime} \in\) grid（child b right \(d\) ）\(\{d\}\) unfolding parents－def by simp hence \(p^{\prime} \notin\) lgrid（child b left \(d\) ）\(\{d\} l m\) and \(p^{\prime} \neq b\) unfolding lgrid－def using grid－disjunct \([O F\langle d<\) length \(b\rangle]\) grid－not－child by auto
from hyps \(\left[\right.\) OF sparsegrid＇－parents \(\left[\right.\) OF \(\left\langle\right.\) child \(b\) right \(d \in\) sparsegrid \(\left.^{\prime} d m\right\rangle\) p \(]\) ］this
have down'd \(l\left(\right.\) child b left d) fl fr \((\alpha(b:=x)) p^{\prime}=\alpha p^{\prime}\) by auto \(\}\)
thus ?thesis
unfolding down'.simps Let-def hyps \(\left[O F\left\langle p \in\right.\right.\) sparsegrid \(\left.\left.{ }^{\prime} d m\right\rangle\right]\)
parent-sum \([O F\langle p \in\) grid ? \(r\{d\}\langle d<\) length \(b\rangle]\)
l2-child \([O F\langle d<\) length \(b\rangle\langle p \in\) grid ? \(r\) \{ \(\{d\}\rangle]\)
using child-ix child-lv \(\langle d<\) length \(b\rangle\) level-shift \([O F\langle l v b d<l v p d\rangle]\) sgn.simps \(\langle p \in \operatorname{lgrid} b\{d\} \operatorname{lm}\rangle\langle p \in \operatorname{lgrid}\) ? \(r\{d\} \operatorname{lm}\rangle\)
by (auto simp add: algebra-simps diff-divide-distrib add-divide-distrib) next
case left
hence \(p \in\) lgrid ?l \(\{d\} l m\) and \(p \in\) grid \(? l\{d\}\)
using \(\langle p \in\) grid ? ch \(\{d\}\) > and 〈level \(p<l m\rangle\) unfolding lgrid-def by auto
hence \(\neg p \in\) lgrid \(? r\{d\} l m\)
using grid-disjunct \([O F\langle d<\) length \(b\rangle]\) unfolding lgrid-def by auto
\(\left\{\right.\) fix \(p^{\prime}\) assume \(p^{\prime}: p^{\prime} \in\) parents \(d\) (child b left d) \(p\)
hence \(p^{\prime} \in\) grid (child bleft d) \(\{d\}\) unfolding parents-def by simp
hence \(p^{\prime} \neq b\) using grid-not-child \([O F \prec d<\) length \(\left.b\rangle\right]\) by auto \(\}\)
thus ?thesis
unfolding down'.simps Let-def hyps \(\left[O F\left\langle p \in\right.\right.\) sparsegrid \(\left.\left.{ }^{\prime} d m\right\rangle\right]\)
parent-sum \([O F\langle p \in\) grid ?l \(\{d\}\rangle\langle d<\) length \(b\rangle]\)
l2-child \([O F\langle d<\) length \(b\rangle\langle p \in\) grid ? \(l\{d\}\rangle]\) sgn.simps
\(i f-P[O F\langle p \in \operatorname{lgrid} b\{d\} l m\rangle]\) if- \(P[O F\langle p \in \operatorname{lgrid}\) ?l \(\{d\} l m\rangle]\)
\(i f-\) not- \(P[O F\langle p \notin \operatorname{lgrid}\) ?r \(\{d\} l m\rangle]\)
using child-ix child-lv \(\langle d<l e n g t h ~ b\rangle l e v e l-s h i f t[O F 〈 l v b d<l v p d\rangle]\)
by (auto simp add: algebra-simps diff-divide-distrib add-divide-distrib)
qed
next
case False hence not-child: !! dir. \(\neg p \in\) grid (child b dir d) \(\{d\}\) by auto
hence \(p=b\) using grid-onedim-split[where \(d s=\{ \}\) and \(d=d\) and \(b=b]\langle p \in\) grid \(b\{d\}\) > unfolding grid-empty- \(d s[\) where \(b=b]\) by auto
from not-child have lnot-child: !! dir. \(\neg p \in \operatorname{lgrid}(\) child \(b\) dir \(d)\{d\} \operatorname{lm}\) unfolding lgrid-def by auto
have result: \(((f l+f r) / 4+1 / 3 * \alpha b) / 2^{\wedge} l v b d=(f l+(f r-f l) / 2)\) \(/ 2^{\wedge}(l v b d+1)+\alpha b * l 2-\varphi(b!d)(b!d)\)
by (auto simp: l2-same diff-divide-distrib add-divide-distrib times-divide-eq-left[symmetric]
algebra-simps)
show ?thesis
unfolding down'.simps Let-def fun-upd-def hyps \(\left[O F\left\langle p \in\right.\right.\) sparsegrid \(\left.\left.^{\prime} d m\right\rangle\right]\)
\(i f-P[O F\langle p \in \operatorname{lgrid} b\{d\} l m\rangle]\) if-not- \(P[O F\) lnot-child \(] i f-P[O F\langle p=b\rangle]\)
unfolding \(\langle p=b\rangle\) parents-single unfolding result by auto
qed
qed
next
case 0
have \(p \notin \operatorname{lgrid} b\{d\} l m\)
proof (rule ccontr)
assume \(\neg p \notin \operatorname{lgrid} b\{d\} \operatorname{lm}\)
hence \(p \in\) grid \(b\{d\}\) and level \(p<l m\) unfolding lgrid-def by auto
moreover from grid-level[ \(O F\langle p \in\) grid \(b\{d\}\rangle]\) and \(\langle 0+\) level \(b=l m\rangle\) have
```

lm}\leqlevel p by aut
ultimately show False by auto
qed
thus ?case unfolding down'.simps by auto
qed
lemma down: assumes d<dm and p: p\in sparsegrid dm lm
shows (down dm lm d \alpha) p=(\sum p'\in parents d (base {d} p) p. (\alpha p')*l2-\varphi
(p!d) (p'!d))
proof -
let ?F d l p = down' d l p 0 0
let ?S x p p' = if p'\in parents d (base {d} p) p then x * l2-\varphi (p!d) (p'!d) else
0
\{ fix $p \alpha$ assume $p \in$ sparsegrid $d m \mathrm{~lm}$
from le-less-trans[OF grid-level sparsegridE(2)[OF this]]
have parents d (base $\{d\} p) p \subseteq$ lgrid (base $\{d\} p$) $\{d\} \mathrm{lm}$
unfolding lgrid-def parents-def by auto
hence $\left(\sum p^{\prime} \in\right.$ lgrid $($ base $\{d\} p)\{d\} l m$. ? $\left.S\left(\alpha p^{\prime}\right) p p^{\prime}\right)=$ $\left(\sum p^{\prime} \in\right.$ parents $d($ base $\left.\{d\} p) p . \alpha p^{\prime} * l 2-\varphi(p!d)\left(p^{\prime}!d\right)\right)$
using lgrid-finite by (intro sum.mono-neutral-cong-right) auto
\} note sum-eq = this
$\{\operatorname{fix} l p b \alpha$
assume $b: b \in$ lgrid $($ start $d m)(\{0 . .<d m\}-\{d\}) l m$ and $l+$ level $b=l m$ and $p \in$ sparsegrid $d m \mathrm{~lm}$
hence b-spg: $b \in$ sparsegrid $^{\prime} d m$ and p-spg: $p \in$ sparsegrid' $^{\prime} d m$ and $d<$ length b and level $p<l m$
using sparsegrid'-start sparsegrid-subset $\langle d<d m\rangle$ by auto
have ? $F d l b \alpha p=\left(\right.$ if $b=$ base $\{d\} p$ then $\sum p^{\prime} \in \operatorname{lgrid} b\{d\} l m$. ?S $\left(\alpha p^{\prime}\right) p$ p^{\prime} else αp)
proof (cases $b=$ base $\{d\} p$)
case True
have $p \in \operatorname{lgrid}($ base $\{d\} p)\{d\} l m$ using baseE(2)[OF p-spg] and 〈level $p<l m\rangle$ unfolding lgrid-def by auto
thus ?thesis unfolding if- P [OF True]
unfolding True sum-eq[OF $\langle p \in$ sparsegrid $d m \operatorname{lm}\rangle]$
unfolding down'- $\beta[O F\langle d<$ length $b\rangle\langle l+$ level $b=$ lm〉 b-spg p-spg, unfolded True] by auto
next
case False
have $p \notin \operatorname{lgrid} b\{d\} l m$
proof (rule ccontr)
assume \neg ?thesis hence $p \in$ grid $b\{d\}$ by auto
from b this have $b=$ base $\{d\} p$ using baseI by auto
thus False using False by simp
qed
thus ?thesis

```
```

 unfolding if-not-P[OF False]
 unfolding down'- }\beta[OF<d<length b><l + level b = lm> b-spg p-spg
 by auto
 qed }
 from lift[OF<d<dm\rangle\langlep\in sparsegrid dm lm>, where F =?F and S=?S,
 OF this]
show ?thesis
unfolding down-def
unfolding sum-eq[OF p] by simp
qed
end

```

\section*{7 UpDown}
theory Up-Down
imports Up Down
begin
begin
lemma updown': \(\llbracket d \leq d m ; p \in\) sparsegrid \(d m\) lm 】
\(\Longrightarrow\) (updown' dm lm d \(\alpha\) ) \(p=\left(\sum p^{\prime} \in \operatorname{lgrid}\right.\) (base \(\left.\{0 . .<d\} p\right)\{0 . .<d\} \operatorname{lm}\). \(\left.\alpha p^{\prime} *\left(\prod d^{\prime} \in\{0 . .<d\} . \operatorname{l2}-\varphi\left(p^{\prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\right)\right)\)
(is \(\llbracket-;-\rrbracket \Longrightarrow-=\left(\sum p^{\prime} \in\right.\) ? subgrid d \(p . \alpha p^{\prime} *\) ?prod \(\left.d p^{\prime} p\right)\) )
proof (induct d arbitrary: \(\alpha p\) )
case 0 hence ? subgrid \(0 p=\{p\}\) using base-empty unfolding lgrid-def and sparsegrid-def sparsegrid'-def by auto
thus ? case unfolding updown'.simps by auto
next
case (Suc d)
let ?leafs \(p=(\) lgrid \(p\{d\} \operatorname{lm})-\{p\}\)
let ?parents \(=\) parents \(d(\) base \(\{d\} p) p\)
let \(? b=\) base \(\{0 . .<d\} p\)
have \(d<d m\) using «Suc \(d \leq d m\) by auto
have \(p\)-spg: \(p \in\) grid (start \(d m\) ) \(\{0 . .<d m\}\) and \(p\)-spg': \(p \in\) sparsegrid \(^{\prime} d m\) and level \(p<l m\) using \(\langle p \in\) sparsegrid \(d m\) lm \(\rangle\)
unfolding sparsegrid-def and sparsegrid'-def and lgrid-def by auto
have \(p^{\prime}\)-in-spg: !! \(p^{\prime} . p^{\prime} \in\) ? subgrid \(d p \Longrightarrow p^{\prime} \in\) sparsegrid dm lm
using base-grid[OF p-spg] unfolding sparsegrid'-def sparsegrid-def lgrid-def
by auto
from base \(E[\) OF p-spg', where \(d s=\{0 . .<d\}]\)
have \(? b \in\) grid \((\) start \(d m)\{d . .<d m\}\) and \(p\)-bgrid: \(p \in\) grid \(? b\{0 . .<d\}\) by auto hence \(d<\) length ?b using \(\langle S u c d \leq d m\rangle\) by auto
have \(p!d=? b!d\) using base-out \([O F-p-s p g]\langle S u c d \leq d m\rangle\) by auto
have length \(p=d m\) using \(\langle p \in\) sparsegrid \(d m\) lm \(\rangle\) unfolding sparsegrid-def lgrid-def by auto
hence \(d<\) length \(p\) using \(\langle d<d m\rangle\) by auto
have updown' \(d m \operatorname{lm} d(u p d m \operatorname{lm} d \alpha) p=\)
\(\left(\sum p^{\prime} \in\right.\) ? subgrid \(\left.d p .(u p d m \operatorname{lm} d \alpha) p^{\prime} *\left(? \operatorname{prod} d p^{\prime} p\right)\right)\)
using Suc by auto
also have \(\ldots=\left(\sum p^{\prime} \in\right.\) ? subgrid \(d p .\left(\sum p^{\prime \prime} \in\right.\) ?leafs \(p^{\prime} . \alpha p^{\prime \prime} *\) ? prod (Suc d) \(\left.p^{\prime \prime} p\right)\) )
proof (intro sum.cong refl)
fix \(p^{\prime}\) assume \(p^{\prime} \in\) ? subgrid \(d p\)
hence \(d<\) length \(p^{\prime}\) unfolding lgrid-def using base-length[OF p-spg] 〈Suc d \(\leq d m>\) by auto
have \(u p d m \operatorname{lm} d \alpha p^{\prime} *\) ?prod \(d p^{\prime} p=\)
\(\left(\sum p^{\prime \prime} \in\right.\) ?leafs \(\left.p^{\prime} . \alpha p^{\prime \prime} * l 2-\varphi\left(p^{\prime \prime}!d\right)\left(p^{\prime}!d\right)\right) *\) ?prod \(d p^{\prime} p\)
using \(\left\langle p^{\prime} \in\right.\) ? subgrid \(\left.d p\right\rangle\) up \(\langle S u c d \leq d m\rangle p^{\prime}\)-in-spg by auto
also have \(\ldots=\left(\sum p^{\prime \prime} \in\right.\) ? leafs \(p^{\prime} . \alpha p^{\prime \prime} * l 2-\varphi\left(p^{\prime \prime}!d\right)\left(p^{\prime}!d\right) *\) ?prod \(d p^{\prime}\) p)
using sum-distrib-right by auto
also have \(\ldots=\left(\sum p^{\prime \prime} \in\right.\) ?leafs \(p^{\prime} . \alpha p^{\prime \prime} *\) ?prod (Suc d) \(\left.p^{\prime \prime} p\right)\)
proof (intro sum.cong refl)
fix \(p^{\prime \prime}\) assume \(p^{\prime \prime} \in\) ? leafs \(p^{\prime}\)
have ?prod \(d p^{\prime} p=\) ?prod \(d p^{\prime \prime} p\)
proof (intro prod.cong refl)
fix \(d^{\prime}\) assume \(d^{\prime} \in\{0 . .<d\}\)
hence \(d\)-lt-p: \(d^{\prime}<\) length \(p^{\prime}\) and \(d^{\prime}\)-not- \(d: d^{\prime} \notin\{d\}\) using \(\left\langle d<\right.\) length \(\left.p^{\prime}\right\rangle\) by auto
hence \(p^{\prime}!d^{\prime}=p^{\prime \prime}!d^{\prime}\) using \(\left\langle p^{\prime \prime} \in\right.\) ?leafs \(\left.p^{\prime}\right\rangle\) grid-invariant \([O F d\)-lt- \(p\) \(d^{\prime}\)-not- \(d\) ] unfolding lgrid-def by auto
thus \(l 2-\varphi\left(p^{\prime}!d^{\prime}\right)\left(p!d^{\prime}\right)=12-\varphi\left(p^{\prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\) by auto
qed
moreover have \(p^{\prime}!d=p!d\)
using \(\left\langle p^{\prime} \in\right.\) ? subgrid \(\left.d p\right\rangle\) and grid-invariant \([O F\langle d<\) length ? \(b\rangle\), where \(p=p^{\prime}\) and \(\left.d s=\{0 . .<d\}\right]\) unfolding lgrid-def \(\langle p!d=? b!d\rangle\) by auto
ultimately have \(l 2-\varphi\left(p^{\prime \prime}!d\right)\left(p^{\prime}!d\right) *\) ?prod \(d p^{\prime} p=\)
\(l 2-\varphi\left(p^{\prime \prime}!d\right)(p!d) *\) ?prod \(d p^{\prime \prime} p\) by auto
also have \(\ldots=\) ? prod (Suc d) \(p^{\prime \prime} p\)
proof -
have insert \(d\{0 . .<d\}=\{0 . .<S u c d\}\) by auto
moreover from prod.insert
have \(\operatorname{prod}\left(\lambda d^{\prime} . l 2-\varphi\left(p^{\prime \prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\right)(\) insert \(d\{0 . .<d\})=\)
\(\left(\lambda d^{\prime} . l 2-\varphi\left(p^{\prime \prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\right) d * \operatorname{prod}\left(\lambda d^{\prime} . l 2-\varphi\left(p^{\prime \prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\right)\{0 . .<d\}\) by auto
ultimately show ?thesis by auto
qed
finally show \(\alpha p^{\prime \prime} * l 2-\varphi\left(p^{\prime \prime}!d\right)\left(p^{\prime}!d\right) * ? p r o d d p^{\prime} p=\alpha p^{\prime \prime} * ? p r o d\) (Suc d) \(p^{\prime \prime} p\) by auto
qed
finally show \((u p d m \operatorname{lm} d \alpha) p^{\prime} *\left(\right.\) ?prod \(\left.d p^{\prime} p\right)=\left(\sum p^{\prime \prime} \in\right.\) ?leafs \(p^{\prime} . \alpha p^{\prime \prime} *\) ?prod (Suc d) \(p^{\prime \prime}\) p) by auto
qed
also have \(\ldots=\left(\sum\left(p^{\prime}, p^{\prime \prime}\right) \in\right.\) Sigma (?subgrid d \(\left.p\right)\left(\lambda p^{\prime}\right.\). (?leafs \(\left.\left.p^{\prime}\right)\right) \cdot\left(\alpha p^{\prime \prime}\right) *\) (?prod (Suc d) \(p^{\prime \prime} p\) ))
by (rule sum.Sigma, auto simp add: lgrid-finite)
also have \(\ldots=\left(\sum p^{\prime \prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ?subgrid d \(p\). \(\left(\bigcup p^{\prime \prime} \in\right.\) ?leafs \(p^{\prime}\). \(\left\{\left(p^{\prime}, p^{\prime \prime}\right)\right.\) \})).
\(\left(\left(\left(\lambda p^{\prime \prime} . \alpha p^{\prime \prime} *\right.\right.\right.\) ?prod \(\left(\right.\) Suc d) \(\left.p^{\prime \prime} p\right)\) o snd) \(\left.\left.p^{\prime \prime \prime}\right)\right)\) unfolding Sigma-def by (rule sum.cong[OF refl], auto)
also have \(\ldots=\left(\sum p^{\prime \prime} \in\right.\) snd ' \(\left(\bigcup p^{\prime} \in\right.\) ? subgrid \(d p .\left(\bigcup p^{\prime \prime} \in\right.\) ?leafs \(p^{\prime} .\left\{\left(p^{\prime}\right.\right.\), \(\left.\left.\left.p^{\prime \prime}\right)\right\}\right)\) ).
\(\left.\alpha p^{\prime \prime} *\left(? p r o d(S u c d) p^{\prime \prime} p\right)\right)\) unfolding lgrid-def
by (rule sum.reindex[symmetric],
rule subset-inj-on[OF grid-grid-inj-on[OF ivl-disj-int(15)[where \(l=0\) and \(m=d\) and \(u=d]\), where \(b=? b]]\) )
auto
also have \(\ldots=\left(\sum p^{\prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ?subgrid \(d p .\left(\bigcup p^{\prime \prime} \in\right.\) ?leafs \(p^{\prime}\). snd ' \(\left\{\left(p^{\prime}\right.\right.\), \(\left.\left.\left.p^{\prime \prime}\right)\right\}\right)\) ).
\(\alpha p^{\prime \prime} *\left(? \operatorname{prod}\left(\right.\right.\) Suc d) \(\left.\left.p^{\prime \prime} p\right)\right)\) by (auto simp only: image-UN)
also have \(\ldots=\left(\sum p^{\prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ? subgrid \(d\) p. ?leafs \(\left.p^{\prime}\right) . \alpha p^{\prime \prime} *(\) ?prod (Suc d) \(p^{\prime \prime} p\) )) by auto
finally have up-part: updown' \(d m \operatorname{lm} d(u p d m \operatorname{lm} d \alpha) p=\left(\sum p^{\prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ?subgrid \(d p\). ?leafs \(\left.p^{\prime}\right) . \alpha p^{\prime \prime} *\left(\right.\) ?prod \(\left(\right.\) Suc d) \(\left.\left.p^{\prime \prime} p\right)\right)\).
have down dm lm \(d\) (updown' dm lm \(d \alpha) p=\left(\sum p^{\prime} \in\right.\) ?parents. (updown' \(d m\) \(\left.\left.\operatorname{lm} d \alpha p^{\prime}\right) * l 2-\varphi(p!d)\left(p^{\prime}!d\right)\right)\)
using \(\langle S u c d \leq d m\rangle\) and down and \(\langle p \in\) sparsegrid \(d m l m\rangle\) by auto
also have \(\ldots=\left(\sum p^{\prime} \in\right.\) ? parents. \(\sum p^{\prime \prime} \in\) ? subgrid \(d p^{\prime} . \alpha p^{\prime \prime} *\) ? prod (Suc d) \(p^{\prime \prime} p\) )
proof (rule sum.cong \([\) OF refl \(]\) )
fix \(p^{\prime}\) let \(? b^{\prime}=\) base \(\{d\} p\)
assume \(p^{\prime} \in\) ?parents
hence \(p\)-lgrid: \(p^{\prime} \in\) lgrid \(? b^{\prime}\{d\}\) (level \(p+1\) ) using parents-subset-lgrid by auto
hence \(p^{\prime} \in\) sparsegrid \(d m \operatorname{lm}\) and \(p^{\prime}-\) spg \(^{\prime}: p^{\prime} \in\) sparsegrid \(d m\) using 〈level \(p\) \(<l m>\) base-grid [OF p-spg] unfolding sparsegrid-def lgrid-def sparsegrid'-def by auto
hence length \(p^{\prime}=d m\) unfolding sparsegrid-def lgrid-def by auto
hence \(d<\) length \(p^{\prime}\) using \(\langle S u c d \leq d m\rangle\) by auto
from \(p\)-lgrid have \(p^{\prime}\)-grid: \(p^{\prime} \in\) grid \(? b^{\prime}\{d\}\) unfolding lgrid-def by auto
have \(\left(\right.\) updown' \(\left.d m \operatorname{lm} d \alpha p^{\prime}\right) * l 2-\varphi(p!d)\left(p^{\prime}!d\right)=\left(\sum p^{\prime \prime} \in\right.\) ? subgrid \(d p^{\prime}\). \(\left.\alpha p^{\prime \prime} * ? p r o d d p^{\prime \prime} p^{\prime}\right) * l 2-\varphi(p!d)\left(p^{\prime}!d\right)\)
using \(\left\langle p^{\prime} \in\right.\) sparsegrid \(d m\) lm \(S u c\) by auto
also have \(\ldots=\left(\sum p^{\prime \prime} \in\right.\) ? subgrid \(d p^{\prime} . \alpha p^{\prime \prime} *\) ?prod d \(p^{\prime \prime} p^{\prime} * l 2-\varphi(p!d)\) \(\left.\left(p^{\prime}!d\right)\right)\)
using sum-distrib-right by auto
also have \(\ldots=\left(\sum p^{\prime \prime} \in\right.\) ? subgrid \(d p^{\prime} . \alpha p^{\prime \prime} *\) ? prod \(\left(\right.\) Suc d) \(\left.p^{\prime \prime} p\right)\)
proof (rule sum.cong[OF refl \(]\) )
fix \(p^{\prime \prime}\) assume \(p^{\prime \prime} \in\) ? subgrid \(d p^{\prime}\)
```

have ?prod $d p^{\prime \prime} p^{\prime}=$? prod $d p^{\prime \prime} p$
proof (rule prod.cong, rule refl)
fix d^{\prime} assume $d^{\prime} \in\{0 . .<d\}$
hence $d^{\prime}<d m$ and $d^{\prime} \notin\{d\}$ using «Suc $\left.d \leq d m\right\rangle$ by auto
from grid-base-out[OF this p-spg' p^{\prime}-grid]
show $l 2-\varphi\left(p^{\prime}!d^{\prime}\right)\left(p^{\prime}!d^{\prime}\right)=12-\varphi\left(p^{\prime}!d^{\prime}\right)\left(p!d^{\prime}\right)$ by auto
qed
moreover

```
have \(l 2-\varphi(p!d)\left(p^{\prime}!d\right)=l 2-\varphi\left(p^{\prime \prime}!d\right)(p!d)\)
proof -
    have \(d<d m\) and \(d \notin\{0 . .<d\}\) using \(\langle S u c d \leq d m\rangle\) base-length \(p^{\prime}\)-spg' by
auto
        from grid-base-out \(\left[\right.\) OF this \(p^{\prime}\)-spg \(]\left\langle p^{\prime \prime} \in\right.\) ? subgrid \(\left.d p^{\prime}\right\rangle[\) unfolded lgrid-def]
        show ?thesis using l2-commutative by auto
    qed
    moreover have ?prod \(d p^{\prime \prime} p * l 2-\varphi\left(p^{\prime \prime}!d\right)(p!d)=\) ?prod (Suc d) \(p^{\prime \prime} p\)
    proof -
        have insert \(d\{0 . .<d\}=\{0 . .<\) Suc \(d\}\) by auto
        moreover from prod.insert
        have \(\left(\lambda d^{\prime} . \operatorname{l2}-\varphi\left(p^{\prime \prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\right) d * \operatorname{prod}\left(\lambda d^{\prime} . l 2-\varphi\left(p^{\prime \prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\right)\)
\(\{0 . .<d\}=\)
            \(\operatorname{prod}\left(\lambda d^{\prime} .{ }^{l 2}-\varphi\left(p^{\prime \prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\right)(\) insert \(d\{0 . .<d\})\)
            by auto
            hence \(\left(\operatorname{prod}\left(\lambda d^{\prime} . l 2-\varphi\left(p^{\prime \prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\right)\{0 . .<d\}\right) *\left(\lambda d^{\prime} . l 2-\varphi\left(p^{\prime \prime}!d^{\prime}\right)\right.\)
\(\left.\left(p!d^{\prime}\right)\right) d=\)
            \(\operatorname{prod}\left(\lambda d^{\prime} \cdot 12-\varphi\left(p^{\prime \prime}!d^{\prime}\right)\left(p!d^{\prime}\right)\right)(\) insert \(d\{0 . .<d\})\)
            by auto
            ultimately show ?thesis by auto
qed
    ultimately show \(\alpha p^{\prime \prime} *\) ? prod \(d p^{\prime \prime} p^{\prime} * l 2-\varphi(p!d)\left(p^{\prime}!d\right)=\alpha p^{\prime \prime} * ? p r o d\)
(Suc d) \(p^{\prime \prime} p\) by auto
    qed
    finally show (updown' \(\left.d m \operatorname{lm} d \alpha p^{\prime}\right) * l 2-\varphi(p!d)\left(p^{\prime}!d\right)=\left(\sum p^{\prime \prime} \in ?\right.\) subgrid
\(d p^{\prime} . \alpha p^{\prime \prime} *\) ? \(p r o d ~(S u c d) p^{\prime \prime} p\) ) by auto
    qed
also have \(\ldots=\left(\sum\left(p^{\prime}, p^{\prime \prime}\right) \in\left(\right.\right.\) Sigma ?parents (?subgrid d)). \(\alpha p^{\prime \prime} *\) ?prod (Suc
d) \(p^{\prime \prime} p\) )
    by (rule sum.Sigma, auto simp add: parents-finite lgrid-finite)
    also have \(\ldots=\left(\sum p^{\prime \prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ?parents. \(\left(\bigcup p^{\prime \prime} \in\right.\) ? subgrid \(d p^{\prime} .\left\{\left(p^{\prime}, p^{\prime \prime}\right)\right.\)
\})).
    \(\left(\left(\left(\lambda p^{\prime \prime} . \alpha p^{\prime \prime} *\right.\right.\right.\) ?prod (Suc d) \(\left.p^{\prime \prime} p\right)\) o snd) \(\left.\left.p^{\prime \prime \prime}\right)\right)\) unfolding Sigma-def by
(rule sum.cong[OF refl], auto)
    also have \(\ldots=\left(\sum p^{\prime \prime} \in\right.\) snd ' \(\left(\bigcup p^{\prime} \in\right.\) ?parents. \(\left(\bigcup p^{\prime \prime} \in\right.\) ?subgrid \(d p^{\prime}\). \{ \(\left(p^{\prime}\right.\),
\(\left.p^{\prime \prime}\right)\) \})). \(\alpha p^{\prime \prime} *\left(\right.\) ?prod (Suc d) \(\left.p^{\prime \prime} p\right)\) )
    proof (rule sum.reindex[symmetric], rule inj-onI)
    fix \(x y\)
    assume \(x \in\left(\bigcup p^{\prime} \in\right.\) parents \(d\) (base \(\left.\{d\} p\right) p . \bigcup p^{\prime \prime} \in\) lgrid (base \(\left.\{0 . .<d\} p^{\prime}\right)\)
\(\left.\{0 . .<d\} \operatorname{lm} .\left\{\left(p^{\prime}, p^{\prime \prime}\right)\right\}\right)\)
hence \(x\)-snd: snd \(x \in\) grid (base \(\{0 . .<d\}(\) fst \(x))\{0 . .<d\}\) and fst \(x \in\) grid (base \(\{d\} p\) ) \(\{d\}\) and \(p \in \operatorname{grid}(\) fst \(x)\{d\}\)
unfolding parents-def lgrid-def by auto
hence \(x\)-spg: fst \(x \in\) sparsegrid' \(d m\) using base-grid[OF p-spg \(]\) by auto
assume \(y \in\left(\bigcup p^{\prime} \in\right.\) parents \(d\) (base \(\left.\{d\} p\right) p . \bigcup p^{\prime \prime} \in\) lgrid (base \(\left.\{0 . .<d\} p^{\prime}\right)\) \(\left.\{0 . .<d\} \operatorname{lm} .\left\{\left(p^{\prime}, p^{\prime \prime}\right)\right\}\right)\)
hence \(y\)-snd: snd \(y \in\) grid (base \(\{0 . .<d\}(\) fst \(y))\{0 . .<d\}\) and fst \(y \in\) grid (base \(\{d\} p\) ) \(\{d\}\) and \(p \in \operatorname{grid}(f s t y)\{d\}\)
unfolding parents-def lgrid-def by auto
hence \(y\)-spg: fst \(y \in\) sparsegrid' dm using base-grid[OF p-spg'] by auto
hence length \((f s t y)=d m\) unfolding sparsegrid'-def by auto
assume snd \(x=\) snd \(y\)
have fst \(x=\) fst \(y\)
proof (rule nth-equalityI)
show l-eq: length \((f s t x)=\) length \((f s t y)\) using grid-length \([O F\langle p \in\) grid \((f s t\) y) \(\{d\}\rangle]\) grid-length \([O F\langle p \in \operatorname{grid}(\) fst \(x)\{d\}\rangle]\)
by auto
show fst \(x!i=f s t y!i\) if \(i<l e n g t h(f s t x)\) for \(i\)
proof -
have \(i<\) length \(\left(f_{s t} y\right)\) and \(i<d m\) using that \(l\)-eq and \(<l e n g t h ~(f s t ~ y)=\) \(d m>\) by auto
show fst \(x!i=f s t y!i\)
proof (cases \(i=d\) )
case False hence \(i \notin\{d\}\) by auto
with grid-invariant \([O F<i<\) length \((\) fst \(x)\rangle\) this \(\langle p \in \operatorname{grid}(f s t x)\{d\}\rangle]\)
grid-invariant \([O F<i<\) length \((\) fst \(y)\rangle\) this \(\langle p \in \operatorname{grid}(\) fst \(y)\{d\}\rangle]\)
show ?thesis by auto

\section*{next}
case True with grid-base-out \([O F\langle i<d m\rangle-y\)-spg \(y\)-snd] grid-base-out \([O F\) \(\langle i<d m\rangle-x\)-spg \(x\)-snd]
show ?thesis using <snd \(x=\) snd \(y\) by auto
qed
qed
qed
show \(x=y\) using prod-eqI[OF〈fst \(x=\) fst \(y\rangle\langle s n d x=\) snd \(y\rangle]\).
qed
also have \(\ldots=\left(\sum p^{\prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ? parents. \(\left(\bigcup p^{\prime \prime} \in\right.\) ? subgrid \(d p^{\prime}\). snd ' \(\left\{\left(p^{\prime}\right.\right.\), \(\left.\left.\left.p^{\prime \prime}\right)\right\}\right)\) ).
\(\alpha p^{\prime \prime} *\left(\right.\) ? prod \(\left(\right.\) Suc d) \(\left.\left.p^{\prime \prime} p\right)\right)\) by (auto simp only: image-UN)
also have \(\ldots=\left(\sum p^{\prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ?parents. ?subgrid d \(\left.p^{\prime}\right)\). \(\alpha p^{\prime \prime} *\) ?prod (Suc d) \(p^{\prime \prime} p\) ) by auto
finally have down-part: down \(d m \operatorname{lm} d\) (updown' \(d m \operatorname{lm} d \alpha) p=\)
\(\left(\sum p^{\prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ?parents. ?subgrid \(\left.d p^{\prime}\right) . \alpha p^{\prime \prime} *\) ?prod \(\left(\right.\) Suc d) \(\left.p^{\prime \prime} p\right)\).
have updown' dm lm (Suc d) \(\alpha p=\)
\(\left(\sum p^{\prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ? subgrid d \(p\). ?leafs \(\left.p^{\prime}\right)\). \(\alpha p^{\prime \prime} *\) ?prod (Suc d) \(\left.p^{\prime \prime} p\right)+\)
\(\left(\sum p^{\prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ?parents. ?subgrid \(\left.d p^{\prime}\right) . \alpha p^{\prime \prime} *\) ?prod \(\left(\right.\) Suc d) \(\left.p^{\prime \prime} p\right)\)
unfolding sum-vector-def updown'.simps down-part and up-part ..
also have \(\ldots=\left(\sum p^{\prime \prime} \in\left(\bigcup p^{\prime} \in\right.\right.\) ? subgrid \(d\) p. ?leafs \(\left.p^{\prime}\right) \cup\left(\bigcup p^{\prime} \in\right.\) ?parents. ?subgrid \(d p^{\prime}\) ). \(\alpha p^{\prime \prime}\) * ?prod (Suc d) \(p^{\prime \prime} p\) )
proof (rule sum.union-disjoint[symmetric], simp add: lgrid-finite, simp add: lgrid-finite parents-finite,
rule iffD2[OF disjoint-iff-not-equal], rule ballI, rule ballI)
fix \(x y\)
assume \(x \in\left(\bigcup p^{\prime} \in\right.\) ? subgrid \(d p\). ?leafs \(\left.p^{\prime}\right)\)
then obtain \(p x\) where \(p x \in\) grid (base \(\{0 . .<d\} p\) ) \(\{0 . .<d\}\) and \(x \in\) grid \(p x\) \(\{d\}\) and \(x \neq p x\) unfolding lgrid-def by auto
with grid-base-out[OF - p-spg' this(1)]〈Suc \(d \leq d m\rangle\) base-length[OF p-spg \(]\) grid-level-d
have \(l v p x d<l v x d\) and \(p x!d=p!d\) by auto
hence \(l v p d<l v x d\) unfolding lv-def by auto
moreover
assume \(y \in\left(\bigcup p^{\prime} \in\right.\) ?parents. ?subgrid d \(\left.p^{\prime}\right)\)
then obtain \(p y\) where \(y\)-grid: \(y \in\) grid (base \(\{0 . .<d\} p y)\{0 . .<d\}\) and \(p y \in\) ?parents unfolding lgrid-def by auto
hence \(p y \in\) grid (base \(\{d\} p)\{d\}\) and \(p \in\) grid \(p y\{d\}\) unfolding parents-def by auto
hence \(p y\)-spg: \(p y \in\) sparsegrid \({ }^{\prime} d m\) using base-grid \([\) OF \(p\)-spg' \(]\) by auto
have \(y!d=p y!d\) using grid-base-out \([O F-p y\)-spg \(y\)-grid \(]\langle S u c d \leq d m\rangle\) by auto
hence \(l v y d \leq l v p d\) using grid-single-level[ \(O F\langle p \in\) grid \(p y\{d\}\rangle\langle\langle u c d \leq\) \(d m>\) and sparsegrid'-length[OF py-spg] unfolding \(l v\)-def by auto
ultimately
show \(x \neq y\) by auto
qed
also have \(\ldots=\left(\sum p^{\prime} \in\right.\) ? subgrid (Suc d) \(p . \alpha p^{\prime} *\) ?prod \(\left.(S u c d) p^{\prime} p\right)\left(\right.\) is \(\left(\sum\right.\) \(x \in\) ?in. ? \(F x)=\left(\sum x \in\right.\) ?out. ? \(\left.F x\right)\) )
proof (rule sum.mono-neutral-left, simp add: lgrid-finite)
show ? in \(\subseteq\) ? out (is? ?hildren \(\cup\) ?siblings \(\subseteq\)-)
proof (rule subsetI)
fix \(x\) assume \(x \in\) ? in
show \(x \in\) ? out
proof (cases \(x \in\) ?children)
case False hence \(x \in\) ? siblings using \(\langle x \in\) ?in〉 by auto
then obtain \(p x\) where \(p x \in\) parents \(d\) (base \(\{d\} p\) ) \(p\) and \(x \in\) lgrid (base \(\{0 . .<d\} p x)\{0 . .<d\} \operatorname{lm}\) by auto
hence level \(x<\operatorname{lm}\) and \(p x \in\) grid (base \(\{d\} p\) ) \(\{d\}\) and \(x \in\) grid (base \(\{0 . .<d\} p x)\{0 . .<d\}\) and \(\{d\} \cup\{0 . .<d\}=\{0 . .<\) Suc \(d\}\) unfolding lgrid-def parents-def by auto
with grid-base-union[OF p-spg' this(2) this(3)] show ?thesis unfolding lgrid-def by auto
next
have \(d\)-eq: \(\{0 . .<\) Suc \(d\} \cup\{d\}=\{0 . .<\) Suc \(d\}\) by auto
case True
then obtain \(p x\) where \(p x \in\) ?subgrid \(d p\) and \(x \in \operatorname{lgrid} p x\{d\} \operatorname{lm}\) and \(x\) \(\neq p x\) by auto
hence \(p x \in\) grid (base \(\{0 . .<d\} p)\{0 . .<d\}\) and \(x \in\) grid \(p x\{d\}\) and level \(x<l m\) and \(\{d\} \cup\{0 . .<d\}=\{0 . .<\) Suc \(d\}\) unfolding lgrid-def by auto
from grid-base-dim-add[OF-p-spg' this(1)]
have \(p x \in\) grid (base \(\{0 . .<\) Suc \(d\} p\) ) \(\{0 . .<\) Suc \(d\}\) by auto
from grid-transitive \([O F\langle x \in\) grid \(p x\{d\}\rangle\) this]
show ?thesis unfolding lgrid-def using 〈level \(x<l m\rangle d\)-eq by auto qed
qed
show \(\forall x \in\) ?out - ?in. ? \(F x=0\)
proof
fix \(x\) assume \(x \in\) ? out - ? in
hence \(x \in\) ? out and up-ps': !! \(p^{\prime} \cdot p^{\prime} \in\) ? subgrid \(d p \Longrightarrow x \notin\) lgrid \(p^{\prime}\{d\}\) lm \(-\left\{p^{\prime}\right\}\)
and down-ps': !! \(p^{\prime} . p^{\prime} \in\) ?parents \(\Longrightarrow x \notin\) ? subgrid d \(p^{\prime}\) by auto
hence \(x\)-eq: \(x \in\) grid (base \(\{0 . .<\) Suc \(d\} p\) ) \(\{0 . .<\) Suc \(d\}\) and level \(x<l m\) unfolding lgrid-def by auto
hence up-ps: !! \(p^{\prime} . p^{\prime} \in\) ? subgrid \(d p \Longrightarrow x \notin \operatorname{grid} p^{\prime}\{d\}-\left\{p^{\prime}\right\}\) and
down-ps: !! \(p^{\prime} . p^{\prime} \in\) ? parents \(\Longrightarrow x \notin\) grid (base \(\left.\{0 . .<d\} p^{\prime}\right)\{0 . .<d\}\)
using up-ps \({ }^{\prime}\) down-ps \(s^{\prime}\) unfolding lgrid-def by auto
have \(d s\)-eq: \(\{0 . .<\) Suc \(d\}=\{0 . .<d\} \cup\{d\}\) by auto
have \(x \notin\) grid (base \(\{0 . .<d\} p\) ) \(\{0 . .<\) Suc \(d\}-\) grid (base \(\{0 . .<d\} p\) ) \(\{0 . .<d\}\) proof
assume \(x \in\) grid (base \(\{0 . .<d\} p)\{0 . .<\) Suc \(d\}-\) grid (base \(\{0 . .<d\} p)\) \(\{0 . .<d\}\)
hence \(x \in\) grid (base \(\{0 . .<d\} p)(\{d\} \cup\{0 . .<d\})\) and -ngrid: \(x \notin\) grid (base \(\{0 . .<d\} p\) ) \(\{0 . .<d\}\) using \(d s-e q\) by auto
from grid-split[OF this(1)] obtain \(p x\) where \(p x\)-grid: \(p x \in\) grid (base \(\{0 . .<d\} p)\{0 . .<d\}\) and \(x \in\) grid \(p x\{d\}\) by auto
from grid-level[OF this(2)] 〈level \(x<l m\rangle\) have level \(p x<l m\) by auto
hence \(p x \in\) ? subgrid \(d p\) using \(p x\)-grid unfolding lgrid-def by auto
hence \(x \notin\) grid \(p x\{d\}-\{p x\}\) using up-ps by auto
moreover have \(x \neq p x\) proof (rule ccontr) assume \(\neg x \neq p x\) with \(p x\)-grid and \(x\)-ngrid show False by auto qed
ultimately show False using \(\langle x \in\) grid \(p x\{d\}\rangle\) by auto
qed
moreover have \(p \in\) ?parents unfolding parents-def using baseE(2)[OF
\(p\)-spg \(]\) by auto
hence \(x \notin\) grid (base \(\{0 . .<d\} p\) ) \(\{0 . .<d\}\) by (rule down-ps)
ultimately have \(x\)-ngrid: \(x \notin\) grid (base \(\{0 . .<d\}\) p) \(\{0 . .<\) Suc \(d\}\) by auto
have \(x\)-spg: \(x \in\) sparsegrid' dm using base-grid[OF p-spg] \(x\)-eq by auto
hence length \(x=d m\) using grid-length by auto
let \(? b x=\) base \(\{0 . .<d\} x\) and \(? b p=\) base \(\{0 . .<d\} p\) and \(? b x 1=\) base \(\{d\} x\) and \(? b p 1=\) base \(\{d\} p\) and \(? p x=p[d:=x!d]\)
```

 have x-nochild-p:?bx & grid ?bp {d}
 proof (rule ccontr)
 assume \neg base {0..<d} x\not\in grid (base {0..<d} p) {d}
 hence base {0..<d} x f grid (base {0..<d} p){d} by auto
 from grid-transitive[OF baseE(2)[OF x-spg] this]
 have x grid (base {0..<d} p) {0..<Suc d} using ds-eq by auto
 thus False using x-ngrid by auto
 qed
    ```
    have \(d<\) length ?bx and \(d<\) length ?bp and \(d<\) length ?bx 1 and \(d<\) length
?bp1 using base-length[OF \(x\)-spg] base-length[OF p-spg] and \(\langle d<d m\rangle\) by auto
    have \(p\)-nochild- \(x\) : ?bp \(\notin\) grid ? \(b x\{d\}\) (is ?assm)
    proof (rule ccontr)
        have \(d s:\{0 . .<d\} \cup\{0 . .<\) Suc \(d\}=\{d\} \cup\{0 . .<d\}\) by auto
        have \(d\)-sub: \(\{d\} \subseteq\{0 . .<\) Suc \(d\}\) by auto
        assume \(\neg\) ? assm hence b-in-bx: base \(\{0 . .<d\} p \in\) grid ? \(b x\{d\}\) by auto
    have \(d \notin\{0 . .<d\}\) and \(d \in\{d\}\) by auto
    from grid-replace-dim \([O F\langle d<\) length \(? b x\rangle\langle d<\) length \(p\rangle\) grid.Start[where
\(b=p\) and \(d s=\{d\}] b-i n-b x]\)
            have \(p \in\) grid ? \(p x\{d\}\) unfolding base-out \([O F\langle d<d m\rangle\langle d \notin\{0 . .<d\}\rangle\)
        \(x\)-spg] base-out[OF \(\langle d<d m\rangle\langle d \notin\{0 . .<d\}\rangle p\)-spg \(]\) list-update-id.
            moreover
            from grid-replace-dim \([O F\langle d<\) length ? bx1〉 \(\langle d<\) length ? bpp1 \(\rangle\) baseE (2) \([O F\)
\(p-s p g^{\prime}\), where \(\left.d s=\{d\}\right]\) baseE (2)[OF \(x\)-spg, where \(\left.d s=\{d\}\right]\) ]
    have ? \(p x \in\) grid ? bp1 \(\{d\}\) unfolding base-in \([O F\langle d<d m\rangle\langle d \in\{d\}\rangle x\)-spg]
unfolding base-in \(\left[O F\langle d<d m\rangle\langle d \in\{d\}\rangle p-\right.\) spg \(^{\prime}\), symmetric \(]\) list-update-id.
    ultimately
            have \(x \notin\) grid (base \(\{0 . .<d\}\) ?px) \(\{0 . .<d\}\) using down-ps[unfolded
parents-def, where \(\left.p^{\prime}=? p x\right]\) by (auto simp only:)

\section*{moreover}
have base \(\{0 . .<d\} ? p x=? b x\)
proof (rule nth-equalityI)
from \(\langle ? p x \in\) grid ?bp1 \(\{d\}\rangle\) have \(p x\)-spg: ?px \(\in\) sparsegrid' \(d m\) using base-grid [OF p-spg] by auto
from base-length \([\) OF this] base-length \([\) OF \(x\)-spg] show l-eq: length (base \(\{0 . .<d\}\) ?p \(x)=\) length ?bx by auto
show base \(\{0 . .<d\}\) ? \(p x!i=? b x!i\) if \(i<l e n g t h(b a s e\{0 . .<d\}\) ? \(p x\) ) for \(i\)
proof -
have \(i<\) length ?bx and \(i<d m\) using that \(l\)-eq and base-length[OF \(p x-s p g]\) by auto
```

show base {0..<d} ?px!i=?bx!i

```
proof (cases \(i<d\) )
case True hence \(i \in\{0 . .<d\}\) by auto
from base-in \([O F\langle i<d m\rangle\) this \(]\) show ?thesis using \(p x\)-spg \(x\)-spg by
auto
next
case False hence \(i \notin\{0 . .<d\}\) by auto
have ? \(p x!i=x!i\)
proof (cases \(i>d\) )
have \(i\)-le: \(i<\) length (base \(\{0 . .<\) Suc d \(\}\) p) using base-length \([O F\) \(p-s p g]\) and \(\langle i<d m\rangle\) by auto
case True hence \(i \notin\{0 . .<\) Suc \(d\}\) by auto
from grid-invariant[OF i-le this \(x\)-eq] base-out \([O F\langle i<d m\rangle\) this
p-spg \(]\)
show ?thesis using list-update-id and True by auto next
case False hence \(d=i\) using \(\langle\neg i<d\rangle\) by auto
thus ?thesis unfolding \(\langle d=i\rangle\) using \(\langle i<d m\rangle\langle l e n g t h ~ p=d m\rangle\)
nth-list-update-eq by auto
qed
thus ?thesis using base-out \([O F\langle i<d m\rangle\langle i \notin\{0 . .<d\}\rangle p x\)-spg]
base-out \([O F\langle i<d m\rangle\langle i \notin\{0 . .<d\}\rangle x-s p g]\) by auto
qed
qed
qed
ultimately have \(x \notin\) grid ? \(b x\{0 . .<d\}\) by auto
thus False using baseE (2) [OF \(x\)-spg \(]\) by auto
qed
have \(x\)-grid: \(? b x \in\) grid (base \(\{0 . .<S u c d\} p)\{d\}\) using grid-shift-base \([O F-\) \(p-s p g^{\prime} x\)-eq[unfolded ds-eq]] unfolding \(d s\)-eq by auto
have \(p\)-grid: \(? b p \in\) grid (base \(\{0 . .<\) Suc \(d\}\) p) \(\{d\}\) using grid-shift-base \([O F\) -\(p-s p g^{\prime}\) baseE(2)[OF p-spg', where \(\left.d s=\{0 . .<d\} \cup\{d\}\right]\) ] unfolding \(d s-e q\) by auto
have \(12-\varphi(? b p!d)(? b x!d)=0\)
proof (cases lv ?bx d \(\leq l v ? b p d\) )
case True from 12-disjoint[OF - x-grid p-grid p-nochild-x this \(]\langle d<d m\rangle\)
and base-length[OF p-spg]
show ?thesis by auto
next
case False hence \(l v ? b x d \geq l v ? b p d\) by auto
from l2-disjoint[OF - p-grid \(x\)-grid \(x\)-nochild-p this] \(\langle d<d m\rangle\) and base-length \([O F\) p-spg']
show ?thesis by (auto simp: 12-commutative)
qed
hence \(l 2-\varphi(p!d)(x!d)=0\) using base-out \([O F\langle d<d m\rangle] p\)-spg' \(x\)-spg by auto
hence \(\exists d \in\{0 . .<\) Suc \(d\} . l 2-\varphi(p!d)(x!d)=0\) by auto
from prod-zero[OF - this]
show ?F \(x=0\) by (auto simp: 12-commutative)
qed
qed
finally show ?case .
qed
theorem updown:
```

 assumes p-spg: p\in sparsegrid dm lm
 shows updown dm lm \alpha p=(\sum p'\in sparsegrid dm lm. \alpha p'*l2 p'p)
 proof -
have p}\in\mathrm{ sparsegrid' dm using p-spg unfolding sparsegrid-def sparsegrid'-def
lgrid-def by auto
have !! p'. p' \in lgrid (base {0..<dm} p) {0..<dm} lm \Longrightarrow length p' = dm
proof -
fix }\mp@subsup{p}{}{\prime}\mathrm{ assume }\mp@subsup{p}{}{\prime}\inlgrid (base {0..<dm} p) {0..<dm}l
with base-grid[OF<p\in sparsegrid' dm>] have p'\in sparsegrid' dm unfolding
lgrid-def by auto
thus length p' = dm by auto
qed
thus ?thesis
unfolding updown-def sparsegrid-def base-start-eq[OF p-spg]
using updown'[OF - p-spg, where d=dm] p-spg[unfolded sparsegrid-def lgrid-def]
by (auto simp: atLeast0LessThan p-spg[THEN sparsegrid-length] l2-eq)
qed
corollary
fixes }
assumes p:p\in sparsegrid dm lm
defines }\mp@subsup{f}{\alpha}{}\equiv\lambdax.(\sump\insparsegrid dm lm. \alpha p*\Phi p x)
shows updown dm lm \alpha p = (\intx. f | x*\Phi px\partial(\Pi}\mp@subsup{\Pi}{M}{}d\in{..<dm}.lborel))
unfolding updown[OF p] l2-def f}\mp@subsup{f}{\alpha}{}\mathrm{ -def sum-distrib-right
apply (intro has-bochner-integral-integral-eq[symmetric] has-bochner-integral-sum)
apply (subst mult.assoc)
apply (intro has-bochner-integral-mult-right)
apply (simp add: sparsegrid-length)
apply (rule has-bochner-integral-integrable)
using }
apply (simp add: sparsegrid-length \Phi-def prod.distrib[symmetric])
proof (rule product-sigma-finite.product-integrable-prod)
show product-sigma-finite (\lambdad. lborel) ..
qed (auto intro: integrable-\varphi2)
end

```

\section*{8 Imperative Version}
theory Imperative
imports UpDown-Scheme Separation-Logic-Imperative-HOL.Sep-Main
begin
type-synonym pointmap \(=\) grid-point \(\Rightarrow\) nat
type-synonym impgrid \(=\) rat array
instance rat :: heap ..
primrec rat-pair where rat-pair \((a, b)=(\) of-rat \(a\), of-rat \(b)\)
```

declare rat-pair.simps [simp del]
definition
zipWith $A::\left({ }^{\prime} a:: h e a p \Rightarrow{ }^{\prime} b:: h e a p \Rightarrow{ }^{\prime} a:: h e a p\right) \Rightarrow{ }^{\prime} a$ array $\Rightarrow{ }^{\prime} b$ array $\Rightarrow{ }^{\prime}$ a array
Heap
where
zipWithA f a $b=$ do \{
$n \leftarrow$ Array.len $a ;$
Heap-Monad.fold-map (λ n. do \{
$x \leftarrow$ Array.nth a n;
$y \leftarrow$ Array.nth $b n$;
Array.upd $n(f x y) a$
\}) $[0 . .<n]$;
return a
\}

```
```

theorem zip WithA [sep-heap-rules]:
fixes xs ys :: 'a::heap list
assumes length $x s=$ length ys
shows $<a \mapsto_{a} x s * b \mapsto_{a} y s>z i p W i t h A f a b<\lambda r .\left(a \mapsto_{a} \operatorname{map}(\right.$ case-prod $f)$
$(z i p x s y s)) * b \mapsto_{a} y s * \uparrow(a=r)>$
proof -
\{ fix n and $x s::{ }^{\prime} a$ list
let ?part-res $=\lambda n x s .(\operatorname{map}($ case-prod $f)($ zip $($ take $n x s)($ take $n y s)) @ d r o p$
$n x s$)
assume $n \leq$ length $x s$ length $x s=$ length $y s$
then have $<a \mapsto_{a} x s * b \mapsto_{a} y s>$ Heap-Monad.fold-map (λn. do \{
$x \leftarrow$ Array.nth a $n ;$
$y \leftarrow$ Array.nth $b n$;
Array.upd $n(f x y) a$
\}) $[0 . .<n]<\lambda r . a \mapsto_{a}$?part-res n xs $* b \mapsto_{a}$ ys $>$
proof (induct n arbitrary: xs)
case 0 then show ?case by sep-auto
next
case (Suc n)
note Suc.hyps [sep-heap-rules]
have *: (?part-res n xs) $[n:=f($?part-res n xs $!n)(y s!n)]=$?part-res (Suc
n) $x s$
using Suc.prems by (simp add: nth-append take-Suc-conv-app-nth upd-conv-take-nth-drop)
from Suc.prems show?case
by (sep-auto simp add: fold-map-append *)
qed $\}$
note this[sep-heap-rules]
show ?thesis
unfolding zipWith A-def
by (sep-auto simp add: assms)
qed

```
```

definition copy-array $::$ ' $a:$:heap array \Rightarrow ('a::heap array) Heap where
copy-array $a=$ Array.freeze $a \gg$ Array.of-list
theorem copy-array [sep-heap-rules]:
$<a \mapsto_{a} x s>$ copy-array $a<\lambda r . a \mapsto_{a} x s * r \mapsto_{a} x s>$
unfolding copy-array-def
by sep-auto
definition sum-array :: rat array \Rightarrow rat array \Rightarrow unit Heap where
sum-array $a b=z i p$ With $A(+) a b \gg r e t u r n()$
theorem sum-array [sep-heap-rules]:
fixes $x s$ ys :: rat list
shows length $x s=$ length ys $\Longrightarrow<a \mapsto_{a} x s * b \mapsto_{a} y s>$ sum-array $a b<\lambda r$.
$\left(a \mapsto_{a} \operatorname{map}(\lambda(a, b) . a+b)(z i p x s y s)\right) * b \mapsto_{a} y s>$
unfolding sum-array-def by sep-auto
locale linearization $=$
fixes $d m \quad l m$:: nat
fixes $p m$:: pointmap
assumes pm: bij-betw pm (sparsegrid dm lm) \{..< card (sparsegrid dm lm) \}
begin
lemma linearizationD:
$p \in$ sparsegrid $d m l m \Longrightarrow p m p<\operatorname{card}$ (sparsegrid dm lm)
using $p m$ by (auto simp: bij-betw-def)
definition gridI :: impgrid \Rightarrow (grid-point \Rightarrow real $) \Rightarrow$ assn where
gridI a $v=$
$\left(\exists_{A}\right.$ xs. $a \mapsto_{a} x s * \uparrow((\forall p \in$ sparsegrid dm lm. $v p=$ of-rat $(x s!p m p)) \wedge$ length
$x s=\operatorname{card}($ sparsegrid dm lm)))
lemma gridI-nth-rule [sep-heap-rules]:
$g \in$ sparsegrid dm lm $\Longrightarrow \quad<$ gridI a $v>$ Array.nth a (pm g) $<\lambda r$. gridI a $v * \uparrow$
(of-rat $r=v g)>$
using $p m$ by (sep-auto simp: bij-betw-def gridI-def)
lemma gridI-upd-rule [sep-heap-rules]:
$g \in$ sparsegrid dm lm \Longrightarrow
$<$ gridI a $v>$ Array.upd $(p m g) x a<\lambda a^{\prime}$. gridI $a(f u n-u p d v g(o f-r a t x)) *$
$\uparrow\left(a^{\prime}=a\right)>$
unfolding gridI-def using $p m$
by (sep-auto simp: bij-betw-def inj-onD intro!: nth-list-update-eq[symmetric] nth-list-update-neq[symmetric])
primrec upI' $::$ nat \Rightarrow nat \Rightarrow grid-point \Rightarrow impgrid \Rightarrow (rat $*$ rat $)$ Heap where
$u p I^{\prime} d \quad 0 p a=\operatorname{return}(0,0) \mid$
$u p I^{\prime} d$ (Suc l) pa=do \{
$(f l, f m l) \leftarrow u p I^{\prime} d l($ child p left d) $a ;$
$(f m r, f r) \leftarrow u p I^{\prime} d l($ child p right d) $a ;$

```
```

 val \leftarrow Array.nth a (pm p);
 Array.upd (pm p) (fml + fmr) a;
 let result = ((fml + fmr + val / 2^(lvpd) / 2) / 2);
 return (fl + result, fr + result)
 }
 lemma upI' [sep-heap-rules]:
assumes lin[simp]:d<dm
and l: level p+l=lm}l=0\veep\in\mathrm{ sparsegrid dm lm

```

```

\uparrow(rat-pair r = r')>
using l
proof (induct l arbitrary: p v)
note rat-pair.simps [simp]
case 0 then show ?case by sep-auto
next
case (Suc l)
from Suc.prems <d< <dm>
have [simp]: level (child p left d) +l=lm level (child p right d) +l=lm p\in
sparsegrid dm lm
by (auto simp: sparsegrid-length)
have [simp]: child p left d \# sparsegrid dm lm \Longrightarrowl=0 child p right d }\not
sparsegrid dm lm \Longrightarrowl=0
using Suc.prems by (auto simp: sparsegrid-def lgrid-def)
note Suc(1)[sep-heap-rules]
show ?case
by (sep-auto split: prod.split simp: of-rat-add of-rat-divide of-rat-power of-rat-mult
rat-pair-def Let-def)
qed
primrec downI' :: nat }=>\mathrm{ nat }=>\mathrm{ grid-point }=>\mathrm{ impgrid }=>\mathrm{ rat }=>\mathrm{ rat }=>\mathrm{ unit Heap
where

```
```

 downI'd d 0 pafl fr = return()|
    ```
    downI'd d 0 pafl fr = return()|
    downI'd (Suc l) p a fl fr = do {
    downI'd (Suc l) p a fl fr = do {
        val }\leftarrow\mathrm{ Array.nth a (pm p);
        val }\leftarrow\mathrm{ Array.nth a (pm p);
        let fm=((fl + fr)/2 + val);
        let fm=((fl + fr)/2 + val);
        Array.upd (pmp) (((fl + fr )/4 + (1 / 3)*val) / 2^ (lvpd)) a;
        Array.upd (pmp) (((fl + fr )/4 + (1 / 3)*val) / 2^ (lvpd)) a;
        downI'd l (child p left d) a fl fm ;
        downI'd l (child p left d) a fl fm ;
        downI' d l (child p right d) a fm fr
        downI' d l (child p right d) a fm fr
    }
    }
lemma downI' [sep-heap-rules]:
    assumes lin[simp]:d<dm
            and l: level }p+l=lml=0\veep\in\mathrm{ sparsegrid dm lm
    shows < gridI a v>downI' d l p a fl fr <\lambdar.gridI a (down'd l p (of-rat fl)
(of-rat fr) v)>
    using l
```

```
proof (induct l arbitrary: p v fl fr)
    note rat-pair.simps [simp]
    case 0 then show ?case by sep-auto
next
    case (Suc l)
    from Suc.prems <d < dm>
    have [simp]:level (child p left d) +l=lm level (child p right d) +l=lm p\in
sparsegrid dm lm
    by (auto simp: sparsegrid-length)
    have [simp]: child p left d # sparsegrid dm lm \Longrightarrowl=0 child p right d }\not
sparsegrid dm lm \Longrightarrowl=0
    using Suc.prems by (auto simp: sparsegrid-def lgrid-def)
    note Suc(1)[sep-heap-rules]
    show ?case
    by (sep-auto split: prod.split simp: of-rat-add of-rat-divide of-rat-power of-rat-mult
rat-pair-def Let-def fun-upd-def)
qed
definition liftI :: (nat }=>\mathrm{ nat }=>\mathrm{ grid-point }=>\mathrm{ impgrid }=>\mathrm{ unit Heap ) }=>\mathrm{ nat }
impgrid }=>\mathrm{ unit Heap where
    liftI fd a=
        foldr (\lambdap n. n>>fd(lm - level p) pa) (gridgen (start dm) ({ 0 ..<dm }-
{d})lm)(return ())
theorem liftI [sep-heap-rules]:
    assumes d<dm
    and f[sep-heap-rules]: \bigwedgev p.p\inlgrid (start dm) ({0..<dm} - {d})lm\Longrightarrow
        < gridI a v>fd(lm - level p) pa<\lambdar.gridI a (f'd (lm - level p) pv)>
    shows < gridI a v> liftIfd a<\lambdar.gridI a (Grid.lift f'dm lm d v)>
proof -
    let ?ds = {0..<dm} - {d} and ?g = gridI a
    { fix ps assume set ps\subseteqset (gridgen (start dm) ?ds lm) and distinct ps
        then have < ?g v>
            foldr (\lambdap n. (n :: unit Heap)>>d (lm - level p) pa) ps (return ())
            <\lambdar.?g (foldr (\lambdap\alpha.f'd (lm - level p) p \alpha) ps v)>
            by (induct ps arbitrary:v) (sep-auto simp: gridgen-lgrid-eq)+ }
    from this[OF subset-refl gridgen-distinct]
    show ?thesis
        by (simp add: liftI-def Grid.lift-def)
qed
definition upI where upI = liftI (\lambdad l p a.upI' d l p a >> return ())
theorem upI [sep-heap-rules]:
    assumes [simp]:d<dm
    shows < gridI a v>upId a<\lambdar.gridI a (updm lm dv)>
    unfolding up-def upI-def
```

by (sep-auto simp: lgrid-def sparsegrid-def lgrid-def split: prod.split intro: grid-union-dims[of $\{0 . .<d m\}-\{d\}\{0 . .<d m\}])$


```
theorem downI [sep-heap-rules]:
    assumes [simp]: d<dm
    shows < gridI a v>downI d a<\lambdar.gridI a (down dm lm d v)>
    unfolding down-def downI-def
    by (sep-auto simp:lgrid-def sparsegrid-def lgrid-def split: prod.split
                intro:grid-union-dims[of {0..<dm} - {d} {0..<dm}])
theorem copy-array-gridI [sep-heap-rules]:
    < gridI a v> copy-array a<\lambdar.gridI a v* gridI rv>
    unfolding gridI-def
    by sep-auto
theorem sum-array-gridI [sep-heap-rules]:
    < gridI a v*gridI b w> sum-array a b<\lambdar.gridI a (sum-vector v w)*gridI
bw>
    unfolding gridI-def
    by (sep-auto simp: sum-vector-def nth-map linearizationD of-rat-add)
primrec updownI' :: nat }=>\mathrm{ impgrid }=>\mathrm{ unit Heap where
    updownI' O a = return ()
    updownI' (Suc d) a = do {
        b\leftarrowcopy-array a;
        upI d a ;
        updownI' d a ;
        updownI' d b ;
        downI d b;
        sum-array a b
    }
```

theorem updownI' [sep-heap-rules]:
$d \leq d m \Longrightarrow<$ gridI $a v>u^{\prime} d o w n I^{\prime} d a<\lambda r$. gridI $a\left(u p d o w n^{\prime} d m \operatorname{lm} d v\right)_{t}$
proof (induct d arbitrary: a v)
case (Suc d)
note Suc.hyps [sep-heap-rules]
from Suc.prems show?case
by sep-auto
qed sep-auto
definition updownI where updownI $a=$ updownI' $d m$ a
theorem updownI [sep-heap-rules]:
$<$ gridI a $v>$ updownI $a<\lambda r$. gridI a (updown dm $\operatorname{lm} v$) $>_{t}$
unfolding updown-def updownI-def by sep-auto
end
end

Literatur

[1] J. Hölzl. Automatischer Korrektheitsbeweis von Algorithmen zur hierarchischen Basistransformation. IDP, Institut für Informatik, Technische Universität München, 2009.
[2] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut, München, Aug. 2010.

