
Verification of the UpDown scheme

Johannes Hölzl

17. März 2025

Zusammenfassung

The UpDown scheme is a recursive scheme used to compute the
stiffness matrix on a special form of sparse grids. Usually, when discretizing
a Euclidean space of dimension d we need O(nd) points, for n points
along each dimension. Sparse grids are a hierarchical representation
where the number of points is reduced to O(n·log(n)d). One disadvantage
of such sparse grids is that the algorithm now operate recursively in
the dimensions and levels of the sparse grid.

The UpDown scheme allows us to compute the stiffness matrix on
such a sparse grid. The stiffness matrix represents the influence of
each representation function on the L2 scalar product. For a detailed
description see Pflüger’s PhD thesis [2]. This formalization was developed
as an interdisciplinary project (IDP) at the TU München [1].

Note: This development has two main theories. The correctnes of the
UpDown scheme, and a verification of an imperative version of it. Both
theories can not be merged, as they use different orders on the product
type.

Inhaltsverzeichnis
1 Grid Points 2

2 Sparse Grids 6
2.1 Vectors . 6
2.2 Inductive enumeration of all grid points 6
2.3 Grid Restricted to a Level . 18
2.4 Unbounded Sparse Grid . 18
2.5 Sparse Grid . 19
2.6 Compute Sparse Grid Points 20
2.7 Base Points . 24
2.8 Lift Operation over all Grid Points 31
2.9 Parent Points . 32

3 Hat Functions 38

1

4 UpDown Scheme 47

5 Up Part 48

6 Down part 54

7 UpDown 58

8 Imperative Version 67

1 Grid Points
theory Grid-Point
imports HOL−Analysis.Multivariate-Analysis
begin

type-synonym grid-point = (nat × int) list

definition lv :: grid-point ⇒ nat ⇒ nat
where lv p d = fst (p ! d)

definition ix :: grid-point ⇒ nat ⇒ int
where ix p d = snd (p ! d)

definition level :: grid-point ⇒ nat
where level p = (

∑
i < length p. lv p i)

lemma level-all-eq:
assumes

∧
d. d < length p =⇒ lv p d = lv p ′ d

and length p = length p ′

shows level p ′ = level p
unfolding level-def using assms by auto

datatype dir = left | right

fun sgn :: dir ⇒ int
where

sgn left = −1
| sgn right = 1

fun inv :: dir ⇒ dir
where

inv left = right
| inv right = left

lemma inv-inv[simp]: inv (inv dir) = dir
by (cases dir) simp-all

lemma sgn-inv[simp]: sgn (inv dir) = − sgn dir

2

by (cases dir , auto)

definition child :: grid-point ⇒ dir ⇒ nat ⇒ grid-point
where child p dir d = p[d := (lv p d + 1 , 2 ∗ (ix p d) + sgn dir)]

lemma child-length[simp]: length (child p dir d) = length p
unfolding child-def by simp

lemma child-odd[simp]: d < length p =⇒ odd (ix (child p dir d) d)
unfolding child-def ix-def by (cases dir , auto)

lemma child-eq: p ! d = (l, i) =⇒ ∃ j. child p dir d = p[d := (l + 1 , j)]
by (auto simp add: child-def ix-def lv-def)

lemma child-other : d 6= d ′ =⇒ child p dir d ! d ′ = p ! d ′

unfolding child-def lv-def ix-def by (cases d ′ < length p, auto)

lemma child-invariant: assumes d ′ < length p shows (child p dir d ! d ′ = p ! d ′)
= (d 6= d ′)
proof −

obtain l i where p ! d ′ = (l, i) using prod.exhaust .
with assms show ?thesis

unfolding child-def ix-def lv-def by auto
qed

lemma child-single-level: d < length p =⇒ lv (child p dir d) d > lv p d
unfolding lv-def child-def by simp

lemma child-lv: d < length p =⇒ lv (child p dir d) d = lv p d + 1
unfolding child-def lv-def by simp

lemma child-lv-other : assumes d ′ 6= d shows lv (child p dir d ′) d = lv p d
using child-other [OF assms] unfolding lv-def by simp

lemma child-ix-left: d < length p =⇒ ix (child p left d) d = 2 ∗ ix p d − 1
unfolding child-def ix-def by simp

lemma child-ix-right: d < length p =⇒ ix (child p right d) d = 2 ∗ ix p d + 1
unfolding child-def ix-def by simp

lemma child-ix: d < length p =⇒ ix (child p dir d) d = 2 ∗ ix p d + sgn dir
unfolding child-def ix-def by simp

lemma child-level[simp]: assumes d < length p
shows level (child p dir d) = level p + 1

proof −
have inter : {0 ..<length p} ∩ {d} = {d} using assms by auto

have level (child p dir d) =

3

(
∑

d ′ = 0 ..<length p. if d ′ ∈ {d} then lv p d + 1 else lv p d ′)
by (auto intro!: sum.cong simp add: child-lv-other child-lv level-def)

moreover have level p + 1 =
(
∑

d ′ = 0 ..<length p. if d ′ ∈ {d} then lv p d else lv p d ′) + 1
by (auto intro!: sum.cong simp add: child-lv-other child-lv level-def)

ultimately show ?thesis
unfolding sum.If-cases[OF finite-atLeastLessThan] inter
using assms by auto

qed

lemma child-ex-neighbour : ∃ b ′. child b dir d = child b ′ (inv dir) d
proof

show child b dir d = child (b[d := (lv b d, ix b d + sgn dir)]) (inv dir) d
unfolding child-def ix-def lv-def by (cases d < length b, auto simp add:

algebra-simps)
qed

lemma child-level-gt[simp]: level (child p dir d) >= level p
by (cases d < length p, simp, simp add: child-def)

lemma child-estimate-child:
assumes d < length p

and l ≤ lv p d
and i ′-range: ix p d < (i + 1) ∗ 2^(lv p d − l) ∧

ix p d > (i − 1) ∗ 2^(lv p d − l)
(is ?top p ∧ ?bottom p)

and is-child: p ′ = child p dir d
shows ?top p ′ ∧ ?bottom p ′

proof
from is-child and ‹d < length p›
have lv p ′ d = lv p d + 1 by (auto simp add: child-def ix-def lv-def)
hence lv p ′ d − l = lv p d − l + 1 using ‹lv p d >= l› by auto
hence pow-l ′′: (2^(lv p ′ d − l) :: int) = 2 ∗ 2^(lv p d − l) by auto

show ?top p ′

proof −
from is-child and ‹d < length p›
have ix p ′ d ≤ 2 ∗ (ix p d) + 1

by (cases dir , auto simp add: child-def lv-def ix-def)
also have . . . < (i + 1) ∗ (2 ∗ 2^(lv p d − l)) using i ′-range by auto
finally show ?thesis using pow-l ′′ by auto

qed

show ?bottom p ′

proof −
have (i − 1) ∗ 2^(lv p ′ d − l) = 2 ∗ ((i − 1) ∗ 2^(lv p d − l))

using pow-l ′′ by simp
also have . . . < 2 ∗ ix p d − 1 using i ′-range by auto
finally show ?thesis using is-child and ‹d < length p›

4

by (cases dir , auto simp add: child-def lv-def ix-def)
qed

qed

lemma child-neighbour : assumes child p (inv dir) d = child ps dir d (is ?c-p =
?c-ps)

shows ps = p[d := (lv p d, ix p d − sgn dir)] (is - = ?ps)
proof (rule nth-equalityI)

have length ?c-ps = length ?c-p using ‹?c-p = ?c-ps› by simp
hence len-eq: length ps = length p by simp
thus length ps = length ?ps by simp

show ps ! i = ?ps ! i if i < length ps for i
proof −

have i < length p
using that len-eq by auto

show ps ! i = ?ps ! i
proof (cases d = i)

case [simp]: True

have ?c-p ! i = ?c-ps ! i using ‹?c-p = ?c-ps› by auto
hence ix p i = ix ps d + sgn dir and lv p i = lv ps i

by (auto simp add: child-def
nth-list-update-eq[OF ‹i < length p›]
nth-list-update-eq[OF ‹i < length ps›])

thus ?thesis by (simp add: lv-def ix-def ‹i < length p›)
next

assume d 6= i
with child-other [OF this, of ps dir] child-other [OF this, of p inv dir]
show ?thesis using assms by auto

qed
qed

qed

definition start :: nat ⇒ grid-point
where

start dm = replicate dm (0 , 1)

lemma start-lv[simp]: d < dm =⇒ lv (start dm) d = 0
unfolding start-def lv-def by simp

lemma start-ix[simp]: d < dm =⇒ ix (start dm) d = 1
unfolding start-def ix-def by simp

lemma start-length[simp]: length (start dm) = dm
unfolding start-def by auto

lemma level-start-0 [simp]: level (start dm) = 0

5

using level-def by auto

end

2 Sparse Grids
theory Grid
imports Grid-Point
begin

2.1 Vectors
type-synonym vector = grid-point ⇒ real

definition null-vector :: vector
where null-vector ≡ λ p. 0

definition sum-vector :: vector ⇒ vector ⇒ vector
where sum-vector α β ≡ λ p. α p + β p

2.2 Inductive enumeration of all grid points
inductive-set

grid :: grid-point ⇒ nat set ⇒ grid-point set
for b :: grid-point and ds :: nat set

where
Start[intro!]: b ∈ grid b ds
| Child[intro!]: [[p ∈ grid b ds ; d ∈ ds]] =⇒ child p dir d ∈ grid b ds

lemma grid-length[simp]: p ′ ∈ grid p ds =⇒ length p ′ = length p
by (erule grid.induct, auto)

lemma grid-union-dims: [[ds ⊆ ds ′ ; p ∈ grid b ds]] =⇒ p ∈ grid b ds ′

by (erule grid.induct, auto)

lemma grid-transitive: [[a ∈ grid b ds ; b ∈ grid c ds ′ ; ds ′ ⊆ ds ′′ ; ds ⊆ ds ′′]]
=⇒ a ∈ grid c ds ′′

by (erule grid.induct, auto simp add: grid-union-dims)

lemma grid-child[intro?]: assumes d ∈ ds and p-grid: p ∈ grid (child b dir d) ds
shows p ∈ grid b ds
using ‹d ∈ ds› grid-transitive[OF p-grid] by auto

lemma grid-single-level[simp]: assumes p ∈ grid b ds and d < length b
shows lv b d ≤ lv p d
using assms

proof induct
case (Child p ′ d ′ dir)
thus ?case by (cases d ′ = d, auto simp add: child-def ix-def lv-def)

6

qed auto

lemma grid-child-level:
assumes d < length b
and p-grid: p ∈ grid (child b dir d) ds
shows lv b d < lv p d

proof −
have lv b d < lv (child b dir d) d using child-lv[OF ‹d < length b›] by auto
also have . . . ≤ lv p d using p-grid assms by (intro grid-single-level) auto
finally show ?thesis .

qed

lemma child-out: length p ≤ d =⇒ child p dir d = p
unfolding child-def by auto

lemma grid-dim-remove:
assumes inset: p ∈ grid b ({d} ∪ ds)
and eq: d < length b =⇒ p ! d = b ! d
shows p ∈ grid b ds
using inset eq

proof induct
case (Child p ′ d ′ dir)
show ?case
proof (cases d ′ ≥ length p ′)

case True with child-out[OF this]
show ?thesis using Child by auto

next
case False hence d ′ < length p ′ by simp
show ?thesis
proof (cases d ′ = d)

case True
hence lv b d ≤ lv p ′ d and lv p ′ d < lv (child p ′ dir d) d

using child-single-level Child ‹d ′ < length p ′› by auto
hence False using Child and ‹d ′ = d› and lv-def and ‹¬ d ′ ≥ length p ′›

by auto
thus ?thesis ..

next
case False
hence d ′ ∈ ds using Child by auto
moreover have d < length b =⇒ p ′ ! d = b ! d
proof −

assume d < length b
hence d < length p ′ using Child by auto
hence child p ′ dir d ′ ! d = p ′ ! d using child-invariant and False by auto
thus ?thesis using Child and ‹d < length b› by auto

qed
hence p ′ ∈ grid b ds using Child by auto
ultimately show ?thesis using grid.Child by auto

qed

7

qed
qed auto

lemma gridgen-dim-restrict:
assumes inset: p ∈ grid b (ds ′ ∪ ds)
and eq: ∀ d ∈ ds ′. d ≥ length b
shows p ∈ grid b ds
using inset eq

proof induct
case (Child p ′ d dir)
thus ?case
proof (cases d ∈ ds)

case False thus ?thesis using Child and child-def by auto
qed auto

qed auto

lemma grid-dim-remove-outer : grid b ds = grid b {d ∈ ds. d < length b}
proof

have {d ∈ ds. d < length b} ⊆ ds by auto
from grid-union-dims[OF this]
show grid b {d ∈ ds. d < length b} ⊆ grid b ds by auto

have ds = (ds − {d ∈ ds. d < length b}) ∪ {d ∈ ds. d < length b} by auto
moreover
have grid b ((ds − {d ∈ ds. d < length b}) ∪ {d ∈ ds. d < length b}) ⊆ grid b
{d ∈ ds. d < length b}

proof
fix p
assume p ∈ grid b (ds − {d ∈ ds. d < length b} ∪ {d ∈ ds. d < length b})
moreover have ∀ d ∈ (ds − {d ∈ ds. d < length b}). d ≥ length b by auto

ultimately show p ∈ grid b {d ∈ ds. d < length b} by (rule gridgen-dim-restrict)
qed
ultimately show grid b ds ⊆ grid b {d ∈ ds. d < length b} by auto

qed

lemma grid-level[intro]: assumes p ∈ grid b ds shows level b ≤ level p
proof −

have ∗: length p = length b using grid-length assms by auto
{ fix i assume i ∈ {0 ..< length p}

hence lv b i ≤ lv p i using ‹p ∈ grid b ds› and grid-single-level ∗ by auto
} thus ?thesis unfolding level-def ∗ by (auto intro!: sum-mono)

qed
lemma grid-empty-ds[simp]: grid b {} = { b }
proof −

have !! z. z ∈ grid b {} =⇒ z = b
by (erule grid.induct, auto)

thus ?thesis by auto
qed
lemma grid-Start: assumes inset: p ∈ grid b ds and eq: level p = level b shows

8

p = b
using inset eq

proof induct
case (Child p d dir)
show ?case
proof (cases d < length b)

case True
from Child
have level p ≥ level b by auto
moreover
have level p ≤ level (child p dir d) by (rule child-level-gt)
hence level p ≤ level b using Child by auto
ultimately have level p = level b by auto
hence p = b using Child(2) by auto
with Child(4) have level (child b dir d) = level b by auto
moreover have level (child b dir d) 6= level b using child-level and ‹d <

length b› by auto
ultimately show ?thesis by auto

next
case False
with Child have length p = length b by auto
with False have child p dir d = p using child-def by auto
moreover with Child have level p = level b by auto
with Child(2) have p = b by auto
ultimately show ?thesis by auto

qed
qed auto
lemma grid-estimate:

assumes d < length b and p-grid: p ∈ grid b ds
shows ix p d < (ix b d + 1) ∗ 2^(lv p d − lv b d) ∧ ix p d > (ix b d − 1) ∗

2^(lv p d − lv b d)
using p-grid

proof induct
case (Child p d ′ dir)
show ?case
proof (cases d = d ′)

case False with Child show ?thesis unfolding child-def lv-def ix-def by auto
next

case True with child-estimate-child and Child and ‹d < length b›
show ?thesis using grid-single-level by auto

qed
qed auto
lemma grid-odd: assumes d < length b and p-diff : p ! d 6= b ! d and p-grid: p
∈ grid b ds

shows odd (ix p d)
using p-grid and p-diff

proof induct
case (Child p d ′ dir)
show ?case

9

proof (cases d = d ′)
case True with child-odd and ‹d < length b› and Child show ?thesis by auto

next
case False with Child and ‹d < length b› show ?thesis using child-def and

ix-def and lv-def by auto
qed

qed auto
lemma grid-invariant: assumes d < length b and d /∈ ds and p-grid: p ∈ grid b
ds

shows p ! d = b ! d
using p-grid

proof (induct)
case (Child p d ′ dir) hence d ′ 6= d using ‹d /∈ ds› by auto
thus ?case using child-def and Child by auto

qed auto
lemma grid-part: assumes d < length b and p-valid: p ∈ grid b {d} and p ′-valid:
p ′ ∈ grid b {d}

and level: lv p ′ d ≥ lv p d
and right: ix p ′ d ≤ (ix p d + 1) ∗ 2^(lv p ′ d − lv p d) (is ?right p p ′ d)
and left: ix p ′ d ≥ (ix p d − 1) ∗ 2^(lv p ′ d − lv p d) (is ?left p p ′ d)
shows p ′ ∈ grid p {d}
using p ′-valid left right level and p-valid

proof induct
case (Child p ′ d ′ dir)
hence d = d ′ by auto
let ?child = child p ′ dir d ′

show ?case
proof (cases lv p d = lv ?child d)

case False
moreover have lv ?child d = lv p ′ d + 1 using child-lv and ‹d < length b›

and Child and ‹d = d ′› by auto
ultimately have lv p d < lv p ′ d + 1 using Child by auto
hence lv: Suc (lv p ′ d) − lv p d = Suc (lv p ′ d − lv p d) by auto

have ?left p p ′ d ∧ ?right p p ′ d
proof (cases dir)

case left
with Child have 2 ∗ ix p ′ d − 1 ≤ (ix p d + 1) ∗ 2^(Suc (lv p ′ d) − lv p d)
using ‹d = d ′› and ‹d < length b› by (auto simp add: child-def ix-def lv-def)
also have . . . = 2 ∗ (ix p d + 1) ∗ 2^(lv p ′ d − lv p d) using lv by auto
finally have 2 ∗ ix p ′ d − 2 < 2 ∗ (ix p d + 1) ∗ 2^(lv p ′ d − lv p d) by

auto
also have . . . = 2 ∗ ((ix p d + 1) ∗ 2^(lv p ′ d − lv p d)) by auto
finally have left-r : ix p ′ d ≤ (ix p d + 1) ∗ 2^(lv p ′ d − lv p d) by auto

have 2 ∗ ((ix p d − 1) ∗ 2^(lv p ′ d − lv p d)) = 2 ∗ (ix p d − 1) ∗ 2^(lv p ′

d − lv p d) by auto
also have . . . = (ix p d − 1) ∗ 2^(Suc (lv p ′ d) − lv p d) using lv by auto

10

also have . . . ≤ 2 ∗ ix p ′ d − 1
using left and Child and ‹d = d ′› and ‹d < length b› by (auto simp add:

child-def ix-def lv-def)
finally have right-r : ((ix p d − 1) ∗ 2^(lv p ′ d − lv p d)) ≤ ix p ′ d by auto

show ?thesis using left-r and right-r by auto
next

case right
with Child have 2 ∗ ix p ′ d + 1 ≤ (ix p d + 1) ∗ 2^(Suc (lv p ′ d) − lv p d)
using ‹d = d ′› and ‹d < length b› by (auto simp add: child-def ix-def lv-def)
also have . . . = 2 ∗ (ix p d + 1) ∗ 2^(lv p ′ d − lv p d) using lv by auto
finally have 2 ∗ ix p ′ d < 2 ∗ (ix p d + 1) ∗ 2^(lv p ′ d − lv p d) by auto
also have . . . = 2 ∗ ((ix p d + 1) ∗ 2^(lv p ′ d − lv p d)) by auto
finally have left-r : ix p ′ d ≤ (ix p d + 1) ∗ 2^(lv p ′ d − lv p d) by auto

have 2 ∗ ((ix p d − 1) ∗ 2^(lv p ′ d − lv p d)) = 2 ∗ (ix p d − 1) ∗ 2^(lv p ′

d − lv p d) by auto
also have . . . = (ix p d − 1) ∗ 2^(Suc (lv p ′ d) − lv p d) using lv by auto
also have . . . ≤ 2 ∗ ix p ′ d + 1
using right and Child and ‹d = d ′› and ‹d < length b› by (auto simp add:

child-def ix-def lv-def)
also have . . . < 2 ∗ (ix p ′ d + 1) by auto
finally have right-r : ((ix p d − 1) ∗ 2^(lv p ′ d − lv p d)) ≤ ix p ′ d by auto

show ?thesis using left-r and right-r by auto
qed
with Child and lv have p ′ ∈ grid p {d} by auto
thus ?thesis using ‹d = d ′› by auto

next
case True
moreover with Child have ?left p ?child d ∧ ?right p ?child d by auto
ultimately have range: ix p d − 1 ≤ ix ?child d ∧ ix ?child d ≤ ix p d + 1

by auto

have p ! d 6= b ! d
proof (rule ccontr)

assume ¬ (p ! d 6= b ! d)
with ‹lv p d = lv ?child d› have lv b d = lv ?child d by (auto simp add:

lv-def)
hence lv b d = lv p ′ d + 1 using ‹d = d ′› and Child and ‹d < length b›

and child-lv by auto
moreover have lv b d ≤ lv p ′ d using ‹d = d ′› and Child and ‹d < length

b› and grid-single-level by auto
ultimately show False by auto

qed
hence odd (ix p d) using grid-odd and ‹p ∈ grid b {d}› and ‹d < length b›

by auto
hence ¬ odd (ix p d + 1) and ¬ odd (ix p d − 1) by auto

11

have d < length p ′ using ‹p ′ ∈ grid b {d}› and ‹d < length b› by auto
hence odd-child: odd (ix ?child d) using child-odd and ‹d = d ′› by auto

have ix p d − 1 6= ix ?child d
proof (rule ccontr)

assume ¬ (ix p d − 1 6= ix ?child d)
hence odd (ix p d − 1) using odd-child by auto
thus False using ‹¬ odd (ix p d − 1)› by auto

qed
moreover
have ix p d + 1 6= ix ?child d
proof (rule ccontr)

assume ¬ (ix p d + 1 6= ix ?child d)
hence odd (ix p d + 1) using odd-child by auto
thus False using ‹¬ odd (ix p d + 1)› by auto

qed
ultimately have ix p d = ix ?child d using range by auto
with True have d-eq: p ! d = (?child) ! d by (auto simp add: prod-eqI ix-def

lv-def)

have length p = length ?child using ‹p ∈ grid b {d}› and ‹p ′ ∈ grid b {d}›
by auto

moreover have p ! d ′′ = ?child ! d ′′ if d ′′ < length p for d ′′

proof −
have d ′′ < length b using that ‹p ∈ grid b {d}› by auto
show p ! d ′′ = ?child ! d ′′

proof (cases d = d ′′)
case True with d-eq show ?thesis by auto

next
case False hence d ′′ /∈ {d} by auto
from ‹d ′′ < length b› and this and ‹p ∈ grid b {d}›
have p ! d ′′ = b ! d ′′ by (rule grid-invariant)
also have . . . = p ′ ! d ′′ using ‹d ′′ < length b› and ‹d ′′ /∈ {d}› and ‹p ′ ∈

grid b {d}›
by (rule grid-invariant[symmetric])

also have . . . = ?child ! d ′′

proof −
have d ′′ < length p ′ using ‹d ′′ < length b› and ‹p ′ ∈ grid b {d}› by auto
hence ?child ! d ′′ = p ′ ! d ′′ using child-invariant and ‹d 6= d ′′› and ‹d

= d ′› by auto
thus ?thesis by auto

qed
finally show ?thesis .

qed
qed
ultimately have p = ?child by (rule nth-equalityI)
thus ?child ∈ grid p {d} by auto

qed
next

12

case Start
moreover hence lv b d ≤ lv p d using grid-single-level and ‹d < length b› by

auto
ultimately have lv b d = lv p d by auto

have level p = level b
proof −

{ fix d ′

assume d ′ < length b
have lv b d ′ = lv p d ′

proof (cases d = d ′)
case True with ‹lv b d = lv p d› show ?thesis by auto

next
case False hence d ′ /∈ {d} by auto
from ‹d ′ < length b› and this and ‹p ∈ grid b {d}›
have p ! d ′ = b ! d ′ by (rule grid-invariant)
thus ?thesis by (auto simp add: lv-def)

qed }
moreover have length b = length p using ‹p ∈ grid b {d}› by auto
ultimately show ?thesis by (rule level-all-eq)

qed
hence p = b using grid-Start and ‹p ∈ grid b {d}› by auto
thus ?case by auto

qed
lemma grid-disjunct: assumes d < length p

shows grid (child p left d) ds ∩ grid (child p right d) ds = {}
(is grid ?l ds ∩ grid ?r ds = {})

proof (intro set-eqI iffI)
fix x
assume x ∈ grid ?l ds ∩ grid ?r ds
hence ix x d < (ix ?l d + 1) ∗ 2^(lv x d − lv ?l d)

and ix x d > (ix ?r d − 1) ∗ 2^(lv x d − lv ?r d)
using grid-estimate ‹d < length p› by auto

thus x ∈ {} using ‹d < length p› and child-lv and child-ix by auto
qed auto

lemma grid-level-eq: assumes eq: ∀ d ∈ ds. lv p d = lv b d and grid: p ∈ grid b
ds

shows level p = level b
proof (rule level-all-eq)

{ fix i assume i < length b
show lv b i = lv p i
proof (cases i ∈ ds)

case True with eq show ?thesis by auto
next case False with ‹i < length b› and grid show ?thesis

using lv-def ix-def grid-invariant by auto
qed }

show length b = length p using grid by auto
qed

13

lemma grid-partition:
grid p {d} = {p} ∪ grid (child p left d) {d} ∪ grid (child p right d) {d}
(is - = - ∪ grid ?l {d} ∪ grid ?r {d})

proof −
have !! x. [[x ∈ grid p {d} ; x 6= p ; x /∈ grid ?r {d}]] =⇒ x ∈ grid ?l {d}
proof (cases d < length p)

case True
fix x

let ?nr-r p = ix x d > (ix p d + 1) ∗ 2 ^ (lv x d − lv p d)
let ?nr-l p = (ix p d − 1) ∗ 2 ^ (lv x d − lv p d) > ix x d

have ix-r-eq: ix ?r d = 2 ∗ ix p d + 1 using ‹d < length p› and child-ix by
auto

have lv-r-eq: lv ?r d = lv p d + 1 using ‹d < length p› and child-lv by auto

have ix-l-eq: ix ?l d = 2 ∗ ix p d − 1 using ‹d < length p› and child-ix by
auto

have lv-l-eq: lv ?l d = lv p d + 1 using ‹d < length p› and child-lv by auto

assume x ∈ grid p {d} and x 6= p and x /∈ grid ?r {d}
hence lv p d ≤ lv x d using grid-single-level and ‹d < length p› by auto
moreover have lv p d 6= lv x d
proof (rule ccontr)

assume ¬ lv p d 6= lv x d
hence level x = level p using ‹x ∈ grid p {d}› and grid-level-eq[where

ds={d}] by auto
hence x = p using grid-Start and ‹x ∈ grid p {d}› by auto
thus False using ‹x 6= p› by auto

qed
ultimately have lv p d < lv x d by auto
hence lv ?r d ≤ lv x d and ?r ∈ grid p {d} using child-lv and ‹d < length p›

by auto
with ‹d < length p› and ‹x ∈ grid p {d}›
have r-range: ¬ ?nr-r ?r ∧ ¬ ?nr-l ?r =⇒ x ∈ grid ?r {d}

using grid-part[where p=?r and p ′=x and b=p and d=d] by auto
have x /∈ grid ?r {d} =⇒ ?nr-l ?r ∨ ?nr-r ?r by (rule ccontr , auto simp add:

r-range)
hence ?nr-l ?r ∨ ?nr-r ?r using ‹x /∈ grid ?r {d}› by auto

have gt0 : lv x d − lv p d > 0 using ‹lv p d < lv x d› by auto

have ix-shift: ix ?r d = ix ?l d + 2 and lv-lr : lv ?r d = lv ?l d and right1 : !!
x :: int. x + 2 − 1 = x + 1

using ‹d < length p› and child-ix and child-lv by auto

have lv x d − lv p d = Suc (lv x d − (lv p d + 1))
using gt0 by auto

14

hence lv-shift: !! y :: int. y ∗ 2 ^ (lv x d − lv p d) = y ∗ 2 ∗ 2 ^ (lv x d − (lv
p d + 1))

by auto

have ix x d < (ix p d + 1) ∗ 2 ^ (lv x d − lv p d)
using ‹x ∈ grid p {d}› grid-estimate and ‹d < length p› by auto

also have . . . = (ix ?r d + 1) ∗ 2 ^ (lv x d − lv ?r d)
using ‹lv p d < lv x d› and ix-r-eq and lv-r-eq lv-shift[where y=ix p d + 1]

by auto
finally have ?nr-l ?r using ‹?nr-l ?r ∨ ?nr-r ?r› by auto
hence r-bound: (ix ?l d + 1) ∗ 2 ^ (lv x d − lv ?l d) > ix x d

unfolding ix-shift lv-lr using right1 by auto

have (ix ?l d − 1) ∗ 2 ^ (lv x d − lv ?l d) = (ix p d − 1) ∗ 2 ∗ 2 ^ (lv x d −
(lv p d + 1))

unfolding ix-l-eq lv-l-eq by auto
also have . . . = (ix p d − 1) ∗ 2 ^ (lv x d − lv p d)

using lv-shift[where y=ix p d − 1] by auto
also have . . . < ix x d

using ‹x ∈ grid p {d}› grid-estimate and ‹d < length p› by auto
finally have l-bound: (ix ?l d − 1) ∗ 2 ^ (lv x d − lv ?l d) < ix x d .

from l-bound r-bound ‹d < length p› and ‹x ∈ grid p {d}› ‹lv ?r d ≤ lv x d›
and lv-lr

show x ∈ grid ?l {d} using grid-part[where p=?l and p ′=x and d=d] by
auto

qed (auto simp add: child-def)
thus ?thesis by (auto intro: grid-child)

qed
lemma grid-change-dim: assumes grid: p ∈ grid b ds

shows p[d := X] ∈ grid (b[d := X]) ds
using grid

proof induct
case (Child p d ′ dir)
show ?case
proof (cases d 6= d ′)

case True
have (child p dir d ′)[d := X] = child (p[d := X]) dir d ′

unfolding child-def and ix-def and lv-def
unfolding list-update-swap[OF ‹d 6= d ′›] and nth-list-update-neq[OF ‹d 6=

d ′›] ..
thus ?thesis using Child by auto

next
case False hence d = d ′ by auto
with Child show ?thesis unfolding child-def ‹d = d ′› list-update-overwrite

by auto
qed

qed auto
lemma grid-change-dim-child: assumes grid: p ∈ grid b ds and d /∈ ds

15

shows child p dir d ∈ grid (child b dir d) ds
proof (cases d < length b)

case True thus ?thesis using grid-change-dim[OF grid]
unfolding child-def lv-def ix-def grid-invariant[OF True ‹d /∈ ds› grid] by auto

next
case False hence length b ≤ d and length p ≤ d using grid by auto
thus ?thesis unfolding child-def using list-update-beyond assms by auto

qed
lemma grid-split: assumes grid: p ∈ grid b (ds ′ ∪ ds) shows ∃ x ∈ grid b ds. p
∈ grid x ds ′

using grid
proof induct

case (Child p d dir)
show ?case
proof (cases d ∈ ds ′)

case True with Child show ?thesis by auto
next

case False
hence d ∈ ds using Child by auto
obtain x where x ∈ grid b ds and p ∈ grid x ds ′ using Child by auto
hence child x dir d ∈ grid b ds using ‹d ∈ ds› by auto
moreover have child p dir d ∈ grid (child x dir d) ds ′

using ‹p ∈ grid x ds ′› False and grid-change-dim-child by auto
ultimately show ?thesis by auto

qed
qed auto
lemma grid-union-eq: (

⋃
p ∈ grid b ds. grid p ds ′) = grid b (ds ′ ∪ ds)

using grid-split and grid-transitive[where ds ′′=ds ′∪ ds and ds=ds ′ and ds ′=ds,
OF - - Un-upper2 Un-upper1] by auto
lemma grid-onedim-split:

grid b (ds ∪ {d}) = grid b ds ∪ grid (child b left d) (ds ∪ {d}) ∪ grid (child b
right d) (ds ∪ {d})
(is - = ?g ∪ ?l (ds ∪ {d}) ∪ ?r (ds ∪ {d}))

proof −
have ?g ∪ ?l (ds ∪ {d}) ∪ ?r (ds ∪ {d}) = ?g ∪ (

⋃
p ∈ ?l {d}. grid p ds) ∪

(
⋃

p ∈ ?r {d}. grid p ds)
unfolding grid-union-eq ..

also have . . . = (
⋃

p ∈ ({b} ∪ ?l {d} ∪ ?r {d}). grid p ds) by auto
also have . . . = (

⋃
p ∈ grid b {d}. grid p ds) unfolding grid-partition[where

p=b] ..
finally show ?thesis unfolding grid-union-eq by auto

qed
lemma grid-child-without-parent: assumes grid: p ∈ grid (child b dir d) ds (is p
∈ grid ?c ds) and d < length b

shows p 6= b
proof −

have level ?c ≤ level p using grid by (rule grid-level)
hence level b < level p using child-level and ‹d < length b› by auto
thus ?thesis by auto

16

qed
lemma grid-disjunct ′:

assumes p ∈ grid b ds and p ′ ∈ grid b ds and x ∈ grid p ds ′ and p 6= p ′ and
ds ∩ ds ′ = {}

shows x /∈ grid p ′ ds ′

proof (rule ccontr)
assume ¬ x /∈ grid p ′ ds ′ hence x ∈ grid p ′ ds ′ by auto
have l: length b = length p and l ′: length b = length p ′ using ‹p ∈ grid b ds›

and ‹p ′ ∈ grid b ds› by auto
hence length p ′ = length p by auto
moreover have ∀ d < length p ′. p ′ ! d = p ! d
proof (rule allI , rule impI)

fix d assume dl ′: d < length p ′ hence d < length b using l ′ by auto
hence dl: d < length p using l by auto
show p ′ ! d = p ! d
proof (cases d ∈ ds ′)

case True with ‹ds ∩ ds ′ = {}› have d /∈ ds by auto
hence p ′ ! d = b ! d and p ! d = b ! d
using ‹d < length b› ‹p ′ ∈ grid b ds› and ‹p ∈ grid b ds› and grid-invariant

by auto
thus ?thesis by auto

next
case False
show ?thesis

using grid-invariant[OF dl ′ False ‹x ∈ grid p ′ ds ′›]
and grid-invariant[OF dl False ‹x ∈ grid p ds ′›] by auto

qed
qed
ultimately have p ′ = p by (metis nth-equalityI)
thus False using ‹p 6= p ′› by auto

qed
lemma grid-split1 : assumes grid: p ∈ grid b (ds ′ ∪ ds) and ds ∩ ds ′ = {}

shows ∃ ! x ∈ grid b ds. p ∈ grid x ds ′

proof (rule ex-ex1I)
obtain x where x ∈ grid b ds and p ∈ grid x ds ′ using grid-split[OF grid] by

auto
thus ∃ x. x ∈ grid b ds ∧ p ∈ grid x ds ′ by auto

next
fix x y
assume x ∈ grid b ds ∧ p ∈ grid x ds ′ and y ∈ grid b ds ∧ p ∈ grid y ds ′

hence x ∈ grid b ds and p ∈ grid x ds ′ and y ∈ grid b ds and p ∈ grid y ds ′

by auto
show x = y
proof (rule ccontr)

assume x 6= y
from grid-disjunct ′[OF ‹x ∈ grid b ds› ‹y ∈ grid b ds› ‹p ∈ grid x ds ′› this ‹ds

∩ ds ′ = {}›]
show False using ‹p ∈ grid y ds ′› by auto

qed

17

qed

2.3 Grid Restricted to a Level
definition lgrid :: grid-point ⇒ nat set ⇒ nat ⇒ grid-point set
where lgrid b ds lm = { p ∈ grid b ds. level p < lm }

lemma lgridI [intro]:
[[p ∈ grid b ds ; level p < lm]] =⇒ p ∈ lgrid b ds lm
unfolding lgrid-def by simp

lemma lgridE [elim]:
assumes p ∈ lgrid b ds lm
assumes [[p ∈ grid b ds ; level p < lm]] =⇒ P
shows P
using assms unfolding lgrid-def by auto

lemma lgridI-child[intro]:
d ∈ ds =⇒ p ∈ lgrid (child b dir d) ds lm =⇒ p ∈ lgrid b ds lm
by (auto intro: grid-child)

lemma lgrid-empty[simp]: lgrid p ds (level p) = {}
proof (rule equals0I)

fix p ′ assume p ′ ∈ lgrid p ds (level p)
hence level p ′ < level p and level p ≤ level p ′ by auto
thus False by auto

qed

lemma lgrid-empty ′: assumes lm ≤ level p shows lgrid p ds lm = {}
proof (rule equals0I)

fix p ′ assume p ′ ∈ lgrid p ds lm
hence level p ′ < lm and level p ≤ level p ′ by auto
thus False using ‹lm ≤ level p› by auto

qed

lemma grid-not-child:
assumes [simp]: d < length p
shows p /∈ grid (child p dir d) ds

proof (rule ccontr)
assume ¬ ?thesis
have level p < level (child p dir d) by auto
with grid-level[OF ‹¬ ?thesis›[unfolded not-not]]
show False by auto

qed

2.4 Unbounded Sparse Grid
definition sparsegrid ′ :: nat ⇒ grid-point set
where

sparsegrid ′ dm = grid (start dm) { 0 ..< dm }

18

lemma grid-subset-alldim:
assumes p: p ∈ grid b ds
defines dm ≡ length b
shows p ∈ grid b {0 ..<dm}

proof −
have ds ∩ {dm..} ∪ ds ∩ {0 ..<dm} = ds by auto
from gridgen-dim-restrict[where ds=ds ∩ {0 ..<dm} and ds ′=ds ∩ {dm..}] this
have ds ∩ {0 ..<dm} ⊆ {0 ..<dm}

and p ∈ grid b (ds ∩ {0 ..<dm}) using p unfolding dm-def by auto
thus ?thesis by (rule grid-union-dims)

qed

lemma sparsegrid ′-length[simp]:
b ∈ sparsegrid ′ dm =⇒ length b = dm unfolding sparsegrid ′-def by auto

lemma sparsegrid ′I [intro]:
assumes b: b ∈ sparsegrid ′ dm and p: p ∈ grid b ds
shows p ∈ sparsegrid ′ dm
using sparsegrid ′-length[OF b] b

grid-transitive[OF grid-subset-alldim[OF p], where c=start dm and ds ′′={0 ..<dm}]
unfolding sparsegrid ′-def by auto

lemma sparsegrid ′-start:
assumes b ∈ grid (start dm) ds
shows b ∈ sparsegrid ′ dm
unfolding sparsegrid ′-def
using grid-subset-alldim[OF assms] by simp

2.5 Sparse Grid
definition sparsegrid :: nat ⇒ nat ⇒ grid-point set
where

sparsegrid dm lm = lgrid (start dm) { 0 ..< dm } lm

lemma sparsegrid-length: p ∈ sparsegrid dm lm =⇒ length p = dm
by (auto simp: sparsegrid-def)

lemma sparsegrid-subset[intro]: p ∈ sparsegrid dm lm =⇒ p ∈ sparsegrid ′ dm
unfolding sparsegrid-def sparsegrid ′-def lgrid-def by auto

lemma sparsegridI [intro]:
assumes p ∈ sparsegrid ′ dm and level p < lm
shows p ∈ sparsegrid dm lm
using assms unfolding sparsegrid ′-def sparsegrid-def lgrid-def by auto

lemma sparsegrid-start:
assumes b ∈ lgrid (start dm) ds lm
shows b ∈ sparsegrid dm lm

19

proof
have b ∈ grid (start dm) ds using assms by auto
thus b ∈ sparsegrid ′ dm by (rule sparsegrid ′-start)

qed (insert assms, auto)

lemma sparsegridE [elim]:
assumes p ∈ sparsegrid dm lm
shows p ∈ sparsegrid ′ dm and level p < lm
using assms unfolding sparsegrid ′-def sparsegrid-def lgrid-def by auto

2.6 Compute Sparse Grid Points
fun gridgen :: grid-point ⇒ nat set ⇒ nat ⇒ grid-point list
where

gridgen p ds 0 = []
| gridgen p ds (Suc l) = (let

sub = λ d. gridgen (child p left d) { d ′ ∈ ds . d ′ ≤ d } l @
gridgen (child p right d) { d ′ ∈ ds . d ′ ≤ d } l

in p # concat (map sub [d ← [0 ..< length p]. d ∈ ds]))

lemma gridgen-lgrid-eq: set (gridgen p ds l) = lgrid p ds (level p + l)
proof (induct l arbitrary: p ds)

case (Suc l)
let ?subg dir d = set (gridgen (child p dir d) { d ′ ∈ ds . d ′ ≤ d } l)
let ?sub dir d = lgrid (child p dir d) { d ′ ∈ ds . d ′ ≤ d } (level p + Suc l)
let ?union F dm = {p} ∪ (

⋃
d ∈ { d ∈ ds. d < dm }. F left d ∪ F right d)

have hyp: !! dir d. d < length p =⇒ ?subg dir d = ?sub dir d
using Suc.hyps using child-level by auto

{ fix dm assume dm ≤ length p
hence ?union ?sub dm = lgrid p {d ∈ ds. d < dm} (level p + Suc l)
proof (induct dm)

case (Suc dm)
hence dm ≤ length p by auto

let ?l = child p left dm and ?r = child p right dm

have p-lgrid: p ∈ lgrid p {d ∈ ds. d < dm} (level p + Suc l) by auto

show ?case
proof (cases dm ∈ ds)

case True
let ?ds = {d ∈ ds. d < dm} ∪ {dm}
have ds-eq: {d ′ ∈ ds. d ′ ≤ dm} = ?ds using True by auto
have ds-eq ′: {d ∈ ds. d < Suc dm} = {d ∈ ds. d < dm } ∪ {dm} using

True by auto

have ?union ?sub (Suc dm) = ?union ?sub dm ∪ ({p} ∪ ?sub left dm ∪

20

?sub right dm)
unfolding ds-eq ′ by auto

also have . . . = lgrid p {d ∈ ds. d < dm} (level p + Suc l) ∪ ?sub left dm
∪ ?sub right dm

unfolding Suc.hyps[OF ‹dm ≤ length p›] using p-lgrid by auto
also have . . . = {p ′ ∈ grid p {d ∈ ds. d<dm} ∪ (grid ?l ?ds) ∪ (grid ?r

?ds).
level p ′ < level p + Suc l} unfolding lgrid-def ds-eq by auto

also have . . . = lgrid p {d ∈ ds. d < Suc dm} (level p + Suc l)
unfolding lgrid-def ds-eq ′ unfolding grid-onedim-split[where b=p] ..

finally show ?thesis .
next

case False hence {d ∈ ds. d < Suc dm} = {d ∈ ds. d < dm ∨ d = dm}
by auto

hence ds-eq: {d ∈ ds. d < Suc dm} = {d ∈ ds. d < dm} using ‹dm /∈ ds›
by auto

show ?thesis unfolding ds-eq Suc.hyps[OF ‹dm ≤ length p›] ..
qed

next case 0 thus ?case unfolding lgrid-def by auto
qed }

hence ?union ?sub (length p) = lgrid p {d ∈ ds. d < length p} (level p + Suc l)
by auto

hence union-lgrid-eq: ?union ?sub (length p) = lgrid p ds (level p + Suc l)
unfolding lgrid-def using grid-dim-remove-outer by auto

have set (gridgen p ds (Suc l)) = ?union ?subg (length p)
unfolding gridgen.simps and Let-def by auto

hence set (gridgen p ds (Suc l)) = ?union ?sub (length p)
using hyp by auto

also have . . . = lgrid p ds (level p + Suc l)
using union-lgrid-eq .

finally show ?case .
qed auto

lemma gridgen-distinct: distinct (gridgen p ds l)
proof (induct l arbitrary: p ds)

case (Suc l)
let ?ds = [d ← [0 ..<length p]. d ∈ ds]
let ?left d = gridgen (child p left d) { d ′ ∈ ds . d ′ ≤ d } l
and ?right d = gridgen (child p right d) { d ′ ∈ ds . d ′ ≤ d } l
let ?sub d = ?left d @ ?right d

have distinct (concat (map ?sub ?ds))
proof (cases l)

case (Suc l ′)

have inj-on: inj-on ?sub (set ?ds)
proof (rule inj-onI , rule ccontr)

fix d d ′ assume d ∈ set ?ds and d ′ ∈ set ?ds

21

hence d < length p and d ∈ set ?ds and d ′ < length p by auto
assume ∗: ?sub d = ?sub d ′

have in-d: child p left d ∈ set (?sub d)
using ‹d ∈ set ?ds› Suc
by (auto simp add: gridgen-lgrid-eq lgrid-def grid-Start)

have in-d ′: child p left d ′ ∈ set (?sub d ′)
using ‹d ∈ set ?ds› Suc
by (auto simp add: gridgen-lgrid-eq lgrid-def grid-Start)

{ fix p ′ d assume d ∈ set ?ds and p ′ ∈ set (?sub d)
hence lv p d < lv p ′ d

using grid-child-level
by (auto simp add: gridgen-lgrid-eq lgrid-def grid-child-level) }

note level-less = this

assume d 6= d ′

show False
proof (cases d ′ < d)

case True
with in-d ′ ‹?sub d = ?sub d ′› level-less[OF ‹d ∈ set ?ds›]
have lv p d < lv (child p left d ′) d by simp
thus False unfolding lv-def

using child-invariant[OF ‹d < length p›, of left d ′] ‹d 6= d ′›
by auto

next
case False hence d < d ′ using ‹d 6= d ′› by auto
with in-d ‹?sub d = ?sub d ′› level-less[OF ‹d ′ ∈ set ?ds›]
have lv p d ′ < lv (child p left d) d ′ by simp
thus False unfolding lv-def

using child-invariant[OF ‹d ′ < length p›, of left d] ‹d 6= d ′›
by auto

qed
qed

show ?thesis
proof (rule distinct-concat)

show distinct (map ?sub ?ds)
unfolding distinct-map using inj-on by simp

next
fix ys assume ys ∈ set (map ?sub ?ds)
then obtain d where d ∈ ds and d < length p

and ∗: ys = ?sub d by auto

show distinct ys unfolding ∗
using grid-disjunct[OF ‹d < length p›, of {d ′ ∈ ds. d ′ ≤ d}]

gridgen-lgrid-eq lgrid-def ‹distinct (?left d)› ‹distinct (?right d)›
by auto

next

22

fix ys zs
assume ys ∈ set (map ?sub ?ds)
then obtain d where ys: ys = ?sub d and d ∈ set ?ds by auto
hence d < length p by auto

assume zs ∈ set (map ?sub ?ds)
then obtain d ′ where zs: zs = ?sub d ′ and d ′ ∈ set ?ds by auto
hence d ′ < length p by auto

assume ys 6= zs
hence d ′ 6= d unfolding ys zs by auto

show set ys ∩ set zs = {}
proof (rule ccontr)

assume ¬ ?thesis
then obtain p ′ where p ′ ∈ set (?sub d) and p ′ ∈ set (?sub d ′)

unfolding ys zs by auto

hence lv p d < lv p ′ d lv p d ′ < lv p ′ d ′

using grid-child-level ‹d ∈ set ?ds› ‹d ′ ∈ set ?ds›
by (auto simp add: gridgen-lgrid-eq lgrid-def grid-child-level)

show False
proof (cases d < d ′)

case True
from ‹p ′ ∈ set (?sub d)›
have p ! d ′ = p ′ ! d ′

using grid-invariant[of d ′ child p right d {d ′ ∈ ds. d ′ ≤ d}]
using grid-invariant[of d ′ child p left d {d ′ ∈ ds. d ′ ≤ d}]
using child-invariant[of d ′ - - d] ‹d < d ′› ‹d ′ < length p›
using gridgen-lgrid-eq lgrid-def by auto

thus False using ‹lv p d ′ < lv p ′ d ′› unfolding lv-def by auto
next

case False hence d ′ < d using ‹d ′ 6= d› by simp
from ‹p ′ ∈ set (?sub d ′)›
have p ! d = p ′ ! d

using grid-invariant[of d child p right d ′ {d ∈ ds. d ≤ d ′}]
using grid-invariant[of d child p left d ′ {d ∈ ds. d ≤ d ′}]
using child-invariant[of d - - d ′] ‹d ′ < d› ‹d < length p›
using gridgen-lgrid-eq lgrid-def by auto

thus False using ‹lv p d < lv p ′ d› unfolding lv-def by auto
qed

qed
qed

qed (simp add: map-replicate-const)
moreover
have p /∈ set (concat (map ?sub ?ds))

using gridgen-lgrid-eq lgrid-def grid-not-child[of - p] by simp
ultimately show ?case

23

unfolding gridgen.simps Let-def distinct.simps by simp
qed auto

lemma lgrid-finite: finite (lgrid b ds lm)
proof (cases level b ≤ lm)

case True from iffD1 [OF le-iff-add True]
obtain l where l: lm = level b + l by auto
show ?thesis unfolding l gridgen-lgrid-eq[symmetric] by auto

next
case False hence !! x. x ∈ grid b ds =⇒ (¬ level x < lm)
proof −

fix x assume x ∈ grid b ds
from grid-level[OF this] show ¬ level x < lm using False by auto

qed
hence lgrid b ds lm = {} unfolding lgrid-def by auto
thus ?thesis by auto

qed

lemma lgrid-sum:
fixes F :: grid-point ⇒ real
assumes d < length b and level b < lm
shows (

∑
p ∈ lgrid b {d} lm. F p) =

(
∑

p ∈ lgrid (child b left d) {d} lm. F p) + (
∑

p ∈ lgrid (child b right
d) {d} lm. F p) + F b
(is (

∑
p ∈ ?grid b. F p) = (

∑
p ∈ ?grid ?l . F p) + (?sum (?grid ?r)) + F b)

proof −
have !! dir . b /∈ ?grid (child b dir d)
using grid-child-without-parent[where ds={d}] and ‹d < length b› and lgrid-def

by auto
hence b-distinct: b /∈ (?grid ?l ∪ ?grid ?r) by auto

have ?grid ?l ∩ ?grid ?r = {}
unfolding lgrid-def using grid-disjunct and ‹d < length b› by auto

from lgrid-finite lgrid-finite and this
have child-eq: ?sum ((?grid ?l) ∪ (?grid ?r)) = ?sum (?grid ?l) + ?sum (?grid

?r)
by (rule sum.union-disjoint)

have ?grid b = {b} ∪ (?grid ?l) ∪ (?grid ?r) unfolding lgrid-def grid-partition[where
p=b] using assms by auto

hence ?sum (?grid b) = F b + ?sum ((?grid ?l) ∪ (?grid ?r)) using b-distinct
and lgrid-finite by auto

thus ?thesis using child-eq by auto
qed

2.7 Base Points
definition base :: nat set ⇒ grid-point ⇒ grid-point
where base ds p = (THE b. b ∈ grid (start (length p)) ({0 ..< length p} − ds) ∧

24

p ∈ grid b ds)

lemma baseE : assumes p-grid: p ∈ sparsegrid ′ dm
shows base ds p ∈ grid (start dm) ({0 ..<dm} − ds)
and p ∈ grid (base ds p) ds

proof −
from p-grid[unfolded sparsegrid ′-def]
have ∗: ∃ ! x ∈ grid (start dm) ({0 ..<dm} − ds). p ∈ grid x ds

by (intro grid-split1) (auto intro: grid-union-dims)
then obtain x where x-eq: x ∈ grid (start dm) ({0 ..<dm} − ds) ∧ p ∈ grid x

ds
by auto

with ∗ have base ds p = x unfolding base-def by auto
thus base ds p ∈ grid (start dm) ({0 ..<dm} − ds) and p ∈ grid (base ds p) ds

using x-eq by auto
qed

lemma baseI : assumes x-grid: x ∈ grid (start dm) ({0 ..<dm} − ds) and p-xgrid:
p ∈ grid x ds

shows base ds p = x
proof −

have p ∈ grid (start dm) (ds ∪ ({0 ..<dm} − ds))
using grid-transitive[OF p-xgrid x-grid, where ds ′′=ds ∪ ({0 ..<dm} − ds)]

by auto
moreover have ds ∩ ({0 ..<dm} − ds) = {} by auto
ultimately have ∃ ! x ∈ grid (start dm) ({0 ..<dm} − ds). p ∈ grid x ds

using grid-split1 [where p=p and b=start dm and ds ′=ds and ds={0 ..<dm}
− ds] by auto

thus base ds p = x using x-grid p-xgrid unfolding base-def by auto
qed

lemma base-empty: assumes p-grid: p ∈ sparsegrid ′ dm shows base {} p = p
using grid-empty-ds and p-grid and grid-split1 [where ds={0 ..<dm} and ds ′={}]

unfolding base-def sparsegrid ′-def by auto

lemma base-start-eq: assumes p-spg: p ∈ sparsegrid dm lm
shows start dm = base {0 ..<dm} p

proof −
from p-spg
have start dm ∈ grid (start dm) ({0 ..<dm} − {0 ..<dm})

and p ∈ grid (start dm) {0 ..<dm} using sparsegrid ′-def by auto
from baseI [OF this(1) this(2)] show ?thesis by auto

qed

lemma base-in-grid: assumes p-grid: p ∈ sparsegrid ′ dm shows base ds p ∈ grid
(start dm) {0 ..<dm}
proof −

let ?ds = ds ∪ {0 ..<dm}
have ds-eq: { d ∈ ?ds. d < length (start dm) } = { 0 ..< dm}

25

unfolding start-def by auto
have base ds p ∈ grid (start dm) ?ds
using grid-union-dims[OF - baseE(1)[OF p-grid, where ds=ds], where ds ′=?ds]

by auto
thus ?thesis using grid-dim-remove-outer [where b=start dm and ds=?ds] unfolding

ds-eq by auto
qed

lemma base-grid: assumes p-grid: p ∈ sparsegrid ′ dm shows grid (base ds p) ds
⊆ sparsegrid ′ dm
proof

fix x assume xgrid: x ∈ grid (base ds p) ds
have ds-eq: { d ∈ {0 ..<dm} ∪ ds. d < length (start dm) } = {0 ..<dm} by auto
from grid-transitive[OF xgrid base-in-grid[OF p-grid], where ds ′′={0 ..<dm} ∪

ds]
show x ∈ sparsegrid ′ dm unfolding sparsegrid ′-def

using grid-dim-remove-outer [where b=start dm and ds={0 ..<dm} ∪ ds]
unfolding ds-eq unfolding Un-ac(3)[of {0 ..<dm}]

by auto
qed
lemma base-length[simp]: assumes p-grid: p ∈ sparsegrid ′ dm shows length (base
ds p) = dm
proof −

from baseE [OF p-grid] have base ds p ∈ grid (start dm) ({0 ..<dm} − ds) by
auto

thus ?thesis by auto
qed
lemma base-in[simp]: assumes d < dm and d ∈ ds and p-grid: p ∈ sparsegrid ′

dm shows base ds p ! d = start dm ! d
proof −

have ds: d /∈ {0 ..<dm} − ds using ‹d ∈ ds› by auto
have d < length (start dm) using ‹d < dm› by auto
with grid-invariant[OF this ds] baseE(1)[OF p-grid] show ?thesis by auto

qed
lemma base-out[simp]: assumes d < dm and d /∈ ds and p-grid: p ∈ sparsegrid ′

dm shows base ds p ! d = p ! d
proof −

have d < length (base ds p) using base-length[OF p-grid] ‹d < dm› by auto
with grid-invariant[OF this ‹d /∈ ds›] baseE(2)[OF p-grid] show ?thesis by auto

qed
lemma base-base: assumes p-grid: p ∈ sparsegrid ′ dm shows base ds (base ds ′ p)
= base (ds ∪ ds ′) p
proof (rule nth-equalityI)

have b-spg: base ds ′ p ∈ sparsegrid ′ dm unfolding sparsegrid ′-def
using grid-union-dims[OF Diff-subset[where A={0 ..<dm} and B=ds ′] baseE(1)[OF

p-grid]] .
from base-length[OF b-spg] base-length[OF p-grid] show length (base ds (base ds ′

p)) = length (base (ds ∪ ds ′) p) by auto

26

show base ds (base ds ′ p) ! i = base (ds ∪ ds ′) p ! i if i < length (base ds (base
ds ′ p)) for i

proof −
have i < dm using that base-length[OF b-spg] by auto
show base ds (base ds ′ p) ! i = base (ds ∪ ds ′) p ! i
proof (cases i ∈ ds ∪ ds ′)

case True
show ?thesis
proof (cases i ∈ ds)

case True from base-in[OF ‹i < dm› ‹i ∈ ds ∪ ds ′› p-grid] base-in[OF ‹i
< dm› this b-spg] show ?thesis by auto

next
case False hence i ∈ ds ′ using ‹i ∈ ds ∪ ds ′› by auto
from base-in[OF ‹i < dm› ‹i ∈ ds ∪ ds ′› p-grid] base-out[OF ‹i < dm› ‹i

/∈ ds› b-spg] base-in[OF ‹i < dm› ‹i ∈ ds ′› p-grid] show ?thesis by auto
qed

next
case False hence i /∈ ds and i /∈ ds ′ by auto
from base-out[OF ‹i < dm› ‹i /∈ ds ∪ ds ′› p-grid] base-out[OF ‹i < dm› ‹i

/∈ ds› b-spg] base-out[OF ‹i < dm› ‹i /∈ ds ′› p-grid] show ?thesis by auto
qed

qed
qed
lemma grid-base-out: assumes d < dm and d /∈ ds and p-grid: b ∈ sparsegrid ′

dm and p ∈ grid (base ds b) ds
shows p ! d = b ! d

proof −
have base ds b ! d = b ! d using assms by auto
moreover have d < length (base ds b) using assms by auto
from grid-invariant[OF this]
have p ! d = base ds b ! d using assms by auto
ultimately show ?thesis by auto

qed

lemma grid-grid-inj-on: assumes ds ∩ ds ′ = {} shows inj-on snd (
⋃

p ′∈grid b
ds.

⋃
p ′′∈grid p ′ ds ′. {(p ′, p ′′)})

proof (rule inj-onI)
fix x y
assume x ∈ (

⋃
p ′∈grid b ds.

⋃
p ′′∈grid p ′ ds ′. {(p ′, p ′′)})

hence snd x ∈ grid (fst x) ds ′ and fst x ∈ grid b ds by auto

assume y ∈ (
⋃

p ′∈grid b ds.
⋃

p ′′∈grid p ′ ds ′. {(p ′, p ′′)})
hence snd y ∈ grid (fst y) ds ′ and fst y ∈ grid b ds by auto

assume snd x = snd y
have fst x = fst y
proof (rule ccontr)

assume fst x 6= fst y
from grid-disjunct ′[OF ‹fst x ∈ grid b ds› ‹fst y ∈ grid b ds› ‹snd x ∈ grid (fst

27

x) ds ′› this ‹ds ∩ ds ′ = {}›]
show False using ‹snd y ∈ grid (fst y) ds ′› unfolding ‹snd x = snd y› by

auto
qed
show x = y using prod-eqI [OF ‹fst x = fst y› ‹snd x = snd y›] .

qed

lemma grid-level-d: assumes d < length b and p-grid: p ∈ grid b {d} and p 6=
b shows lv p d > lv b d
proof −

from p-grid[unfolded grid-partition[where p=b]]
show ?thesis using grid-child-level using assms by auto

qed

lemma grid-base-base: assumes b ∈ sparsegrid ′ dm
shows base ds ′ b ∈ grid (base ds (base ds ′ b)) (ds ∪ ds ′)

proof −
from base-grid[OF ‹b ∈ sparsegrid ′ dm›] have base ds ′ b ∈ sparsegrid ′ dm by

auto
from grid-union-dims[OF - baseE(2)[OF this], of ds ds ∪ ds ′] show ?thesis by

auto
qed

lemma grid-base-union: assumes b-spg: b ∈ sparsegrid ′ dm and p-grid: p ∈ grid
(base ds b) ds and x-grid: x ∈ grid (base ds ′ p) ds ′

shows x ∈ grid (base (ds ∪ ds ′) b) (ds ∪ ds ′)
proof −

have ds-union: ds ∪ ds ′ = ds ′ ∪ (ds ∪ ds ′) by auto

from base-grid[OF b-spg] p-grid have p-spg: p ∈ sparsegrid ′ dm by auto
with assms and grid-base-base have base-b ′: base ds ′ p ∈ grid (base ds (base ds ′

p)) (ds ∪ ds ′) by auto
moreover have base ds ′ (base ds b) = base ds ′ (base ds p) (is ?b = ?p)
proof (rule nth-equalityI)

have bb-spg: base ds b ∈ sparsegrid ′ dm using base-grid[OF b-spg] grid.Start
by auto

hence dm = length (base ds b) by auto
have bp-spg: base ds p ∈ sparsegrid ′ dm using base-grid[OF p-spg] grid.Start

by auto

show length ?b = length ?p using base-length[OF bp-spg] base-length[OF bb-spg]
by auto

show ?b ! i = ?p ! i if i < length ?b for i
proof −

have i < dm and i < length (base ds b) using that base-length[OF bb-spg]
‹dm = length (base ds b)› by auto

show ?b ! i = ?p ! i
proof (cases i ∈ ds ∪ ds ′)

case True

28

hence !! x. base ds x ∈ sparsegrid ′ dm =⇒ x ∈ sparsegrid ′ dm =⇒ base ds ′

(base ds x) ! i = (start dm) ! i
proof − fix x assume x-spg: x ∈ sparsegrid ′ dm and xb-spg: base ds x ∈

sparsegrid ′ dm
show base ds ′ (base ds x) ! i = (start dm) ! i
proof (cases i ∈ ds ′)

case True from base-in[OF ‹i < dm› this xb-spg] show ?thesis .
next

case False hence i ∈ ds using ‹i ∈ ds ∪ ds ′› by auto
from base-out[OF ‹i < dm› False xb-spg] base-in[OF ‹i < dm› this x-spg]

show ?thesis by auto
qed

qed
from this[OF bp-spg p-spg] this[OF bb-spg b-spg] show ?thesis by auto

next
case False hence i /∈ ds and i /∈ ds ′ by auto
from grid-invariant[OF ‹i < length (base ds b)› ‹i /∈ ds› p-grid]

base-out[OF ‹i < dm› ‹i /∈ ds ′› bp-spg] base-out[OF ‹i < dm› ‹i /∈ ds›
p-spg] base-out[OF ‹i < dm› ‹i /∈ ds ′› bb-spg]

show ?thesis by auto
qed

qed
qed
ultimately have base ds ′ p ∈ grid (base (ds ∪ ds ′) b) (ds ∪ ds ′)

by (simp only: base-base[OF p-spg] base-base[OF b-spg] Un-ac(3))
from grid-transitive[OF x-grid this] show ?thesis using ds-union by auto

qed
lemma grid-base-dim-add: assumes ds ′ ⊆ ds and b-spg: b ∈ sparsegrid ′ dm and
p-grid: p ∈ grid (base ds ′ b) ds ′

shows p ∈ grid (base ds b) ds
proof −

have ds-eq: ds ′ ∪ ds = ds using assms by auto

have p ∈ sparsegrid ′ dm using base-grid[OF b-spg] p-grid by auto
hence p ∈ grid (base ds p) ds using baseE by auto
from grid-base-union[OF b-spg p-grid this]
show ?thesis using ds-eq by auto

qed
lemma grid-replace-dim: assumes d < length b ′ and d < length b and p-grid: p
∈ grid b ds and p ′-grid: p ′ ∈ grid b ′ ds

shows p[d := p ′ ! d] ∈ grid (b[d := b ′ ! d]) ds (is - ∈ grid ?b ds)
using p ′-grid and p-grid

proof induct
case (Child p ′′ d ′ dir)
hence p ′′-grid: p[d := p ′′ ! d] ∈ grid ?b ds and d < length p ′′ using assms by

auto
have d < length p using p-grid assms by auto
thus ?case
proof (cases d ′ = d)

29

case True
from grid.Child[OF p ′′-grid ‹d ′ ∈ ds›]
show ?thesis unfolding child-def ix-def lv-def list-update-overwrite ‹d ′ = d›

nth-list-update-eq[OF ‹d < length p ′′›] nth-list-update-eq[OF ‹d < length p›] .
next

case False
show ?thesis unfolding child-def nth-list-update-neq[OF False] using Child by

auto
qed

qed (rule grid-change-dim)
lemma grid-shift-base:

assumes ds-dj: ds ∩ ds ′ = {} and b-spg: b ∈ sparsegrid ′ dm and p-grid: p ∈
grid (base (ds ′ ∪ ds) b) (ds ′ ∪ ds)

shows base ds ′ p ∈ grid (base (ds ∪ ds ′) b) ds
proof −

from grid-split[OF p-grid]
obtain x where x-grid: x ∈ grid (base (ds ′ ∪ ds) b) ds and p-xgrid: p ∈ grid x

ds ′ by auto
from grid-union-dims[OF - this(1)]
have x-spg: x ∈ sparsegrid ′ dm using base-grid[OF b-spg] by auto

have b-len: length (base (ds ′ ∪ ds) b) = dm using base-length[OF b-spg] by auto

define d ′ where d ′ = dm
moreover have d ′ ≤ dm =⇒ x ∈ grid (start dm) ({0 ..<dm} − {d ∈ ds ′. d <

d ′})
proof (induct d ′)

case (Suc d ′)
with b-len have d ′-b: d ′ < length (base (ds ′ ∪ ds) b) by auto
show ?case
proof (cases d ′ ∈ ds ′)

case True hence d ′ /∈ ds and d ′ ∈ ds ′ ∪ ds using ds-dj by auto
have {0 ..<dm} − {d ∈ ds ′. d < d ′} = ({0 ..<dm} − {d ∈ ds ′. d < d ′}) −

{d ′} ∪ {d ′} using ‹Suc d ′ ≤ dm› by auto
also have . . . = ({0 ..<dm} − {d ∈ ds ′. d < Suc d ′}) ∪ {d ′} by auto
finally have x-g: x ∈ grid (start dm) ({d ′} ∪ ({0 ..<dm} − {d ∈ ds ′. d <

Suc d ′})) using Suc by auto
from grid-invariant[OF d ′-b ‹d ′ /∈ ds› x-grid] base-in[OF - ‹d ′ ∈ ds ′ ∪ ds›

b-spg] ‹Suc d ′ ≤ dm›
have x ! d ′ = start dm ! d ′ by auto
from grid-dim-remove[OF x-g this] show ?thesis .

next
case False
hence {d ∈ ds ′. d < Suc d ′} = {d ∈ ds ′. d < d ′ ∨ d = d ′} by auto
also have . . . = {d ∈ ds ′. d < d ′} using False by auto
finally show ?thesis using Suc by auto

qed
next

case 0 show ?case using x-spg[unfolded sparsegrid ′-def] by auto

30

qed
moreover have {0 ..<dm} − ds ′ = {0 ..<dm} − {d ∈ ds ′. d < dm} by auto
ultimately have x ∈ grid (start dm) ({0 ..<dm} − ds ′) by auto
from baseI [OF this p-xgrid] and x-grid
show ?thesis by (auto simp: Un-ac(3))

qed

2.8 Lift Operation over all Grid Points
definition lift :: (nat ⇒ nat ⇒ grid-point ⇒ vector ⇒ vector) ⇒ nat ⇒ nat ⇒
nat ⇒ vector ⇒ vector
where lift f dm lm d = foldr (λ p. f d (lm − level p) p) (gridgen (start dm) ({ 0
..< dm } − { d }) lm)

lemma lift:
assumes d < dm and p ∈ sparsegrid dm lm
and Fintro:

∧
l b p α. [[b ∈ lgrid (start dm) ({0 ..<dm} − {d}) lm ;

l + level b = lm ; p ∈ sparsegrid dm lm]]
=⇒ F d l b α p = (if b = base {d} p

then (
∑

p ′ ∈ lgrid b {d} lm. S (α p ′) p p ′)
else α p)

shows lift F dm lm d α p = (
∑

p ′ ∈ lgrid (base {d} p) {d} lm. S (α p ′) p p ′)
(is ?lift = ?S p α)

proof −
let ?gridgen = gridgen (start dm) ({0 ..<dm} − {d}) lm
let ?f p = F d (lm − level p) p

{ fix bs β b
assume set bs ⊆ set ?gridgen and distinct bs and p ∈ sparsegrid dm lm
hence foldr ?f bs β p = (if base {d} p ∈ set bs then ?S p β else β p)
proof (induct bs arbitrary: p)

case (Cons b bs)
hence b ∈ lgrid (start dm) ({0 ..<dm} − {d}) lm

and (lm − level b) + level b = lm
and b-grid: b ∈ grid (start dm) ({0 ..<dm} − {d})
using lgrid-def gridgen-lgrid-eq by auto

note F = Fintro[OF this(1 ,2) ‹p ∈ sparsegrid dm lm›]

have b /∈ set bs using ‹distinct (b#bs)› by auto

show ?case
proof (cases base {d} p ∈ set (b#bs))

case True note base-in-set = this

show ?thesis
proof (cases b = base {d} p)

case True
moreover
{ fix p ′ assume p ′ ∈ lgrid b {d} lm

31

hence p ′ ∈ grid b {d} and level p ′ < lm unfolding lgrid-def by auto
from grid-transitive[OF this(1) b-grid, of {0 ..<dm}] ‹d < dm›

baseI [OF b-grid ‹p ′ ∈ grid b {d}›] ‹b /∈ set bs›
Cons.prems Cons.hyps[of p ′] this(2)

have foldr ?f bs β p ′ = β p ′ unfolding sparsegrid-def lgrid-def by auto
}

ultimately show ?thesis
using F base-in-set by auto

next
case False
with base-in-set have base {d} p ∈ set bs by auto
with Cons.hyps[of p] Cons.prems
have foldr ?f bs β p = ?S p β by auto
thus ?thesis using F base-in-set False by auto

qed
next

case False
hence b 6= base {d} p by auto
from False Cons.hyps[of p] Cons.prems
have foldr ?f bs β p = β p by auto
thus ?thesis using False F ‹b 6= base {d} p› by auto

qed
qed auto

}
moreover have base {d} p ∈ set ?gridgen
proof −

have p ∈ grid (base {d} p) {d}
using ‹p ∈ sparsegrid dm lm›[THEN sparsegrid-subset] by (rule baseE)

from grid-level[OF this] baseE(1)[OF sparsegrid-subset[OF ‹p ∈ sparsegrid dm
lm›]]

show ?thesis using ‹p ∈ sparsegrid dm lm›
unfolding gridgen-lgrid-eq sparsegrid ′-def lgrid-def sparsegrid-def
by auto

qed
ultimately show ?thesis unfolding lift-def

using gridgen-distinct ‹p ∈ sparsegrid dm lm› by auto
qed

2.9 Parent Points
definition parents :: nat ⇒ grid-point ⇒ grid-point ⇒ grid-point set
where parents d b p = { x ∈ grid b {d}. p ∈ grid x {d} }

lemma parents-split: assumes p-grid: p ∈ grid (child b dir d) {d}
shows parents d b p = { b } ∪ parents d (child b dir d) p

proof (intro set-eqI iffI)
let ?chd = child b dir d and ?chid = child b (inv dir) d
fix x assume x ∈ parents d b p
hence x ∈ grid b {d} and p ∈ grid x {d} unfolding parents-def by auto

32

hence x-split: x ∈ {b} ∪ grid ?chd {d} ∪ grid ?chid {d} using grid-onedim-split[where
ds={} and b=b] and grid-empty-ds

by (cases dir , auto)
thus x ∈ {b} ∪ parents d (child b dir d) p
proof (cases x = b)

case False
have d < length b
proof (rule ccontr)

assume ¬ d < length b hence empty: {d ′ ∈ {d}. d ′ < length b} = {} by
auto

have x = b using ‹x ∈ grid b {d}›
unfolding grid-dim-remove-outer [where ds={d} and b=b] empty
using grid-empty-ds by auto

thus False using ‹¬ x = b› by auto
qed
have x /∈ grid ?chid {d}
proof (rule ccontr)

assume ¬ x /∈ grid ?chid {d}
hence p ∈ grid ?chid {d} using grid-transitive[OF ‹p ∈ grid x {d}›, where

ds ′={d}]
by auto

hence p /∈ grid ?chd {d} using grid-disjunct[OF ‹d < length b›] by (cases
dir , auto)

thus False using ‹p ∈ grid ?chd {d}› ..
qed
with False and x-split
have x ∈ grid ?chd {d} by auto
thus ?thesis unfolding parents-def using ‹p ∈ grid x {d}› by auto

qed auto
next

let ?chd = child b dir d and ?chid = child b (inv dir) d
fix x assume x-in: x ∈ {b} ∪ parents d ?chd p
thus x ∈ parents d b p
proof (cases x = b)

case False
hence x ∈ parents d ?chd p using x-in by auto
thus ?thesis unfolding parents-def using grid-child[where b=b] by auto

next
from p-grid have p ∈ grid b {d} using grid-child[where b=b] by auto
case True thus ?thesis unfolding parents-def using ‹p ∈ grid b {d}› by auto

qed
qed

lemma parents-no-parent: assumes d < length b shows b /∈ parents d (child b dir
d) p (is - /∈ parents - ?ch -)
proof

assume b ∈ parents d ?ch p hence b ∈ grid ?ch {d} unfolding parents-def by
auto

from grid-level[OF this]

33

have level b + 1 ≤ level b unfolding child-level[OF ‹d < length b›] .
thus False by auto

qed

lemma parents-subset-lgrid: parents d b p ⊆ lgrid b {d} (level p + 1)
proof

fix x assume x ∈ parents d b p
hence x ∈ grid b {d} and p ∈ grid x {d} unfolding parents-def by auto
moreover hence level x ≤ level p using grid-level by auto
hence level x < level p + 1 by auto
ultimately show x ∈ lgrid b {d} (level p + 1) unfolding lgrid-def by auto

qed

lemma parents-finite: finite (parents d b p)
using finite-subset[OF parents-subset-lgrid lgrid-finite] .

lemma parent-sum: assumes p-grid: p ∈ grid (child b dir d) {d} and d < length
b

shows (
∑

x ∈ parents d b p. F x) = F b + (
∑

x ∈ parents d (child b dir d) p.
F x)

unfolding parents-split[OF p-grid] using parents-no-parent[OF ‹d < length b›,
where dir=dir and p=p] using parents-finite

by auto

lemma parents-single: parents d b b = { b }
proof

have parents d b b ⊆ lgrid b {d} (level b + (Suc 0)) using parents-subset-lgrid
by auto

also have . . . = {b} unfolding gridgen-lgrid-eq[symmetric] gridgen.simps Let-def
by auto

finally show parents d b b ⊆ { b } .
next

have b ∈ parents d b b unfolding parents-def by auto
thus { b } ⊆ parents d b b by auto

qed

lemma grid-single-dimensional-specification:
assumes d < length b
and odd i
and lv b d + l ′ = l
and i < (ix b d + 1) ∗ 2^l ′
and i > (ix b d − 1) ∗ 2^l ′
shows b[d := (l,i)] ∈ grid b {d}

using assms proof (induct l ′ arbitrary: b)
case 0
hence i = ix b d and l = lv b d by auto
thus ?case unfolding ix-def lv-def by auto

next
case (Suc l ′)

34

have d ∈ {d} by auto

show ?case
proof (rule linorder-cases)

assume i = ix b d ∗ 2^(Suc l ′)
hence even i by auto
thus ?thesis using ‹odd i› by blast

next
assume ∗: i < ix b d ∗ 2^(Suc l ′)

let ?b = child b left d

have d < length ?b using Suc by auto
moreover note ‹odd i›
moreover have lv ?b d + l ′ = l

and i < (ix ?b d + 1) ∗ 2^l ′
and (ix ?b d − 1) ∗ 2^l ′ < i
unfolding child-ix-left[OF Suc.prems(1)]
using Suc.prems ∗ child-lv by (auto simp add: field-simps)

ultimately have ?b[d := (l,i)] ∈ grid ?b {d}
by (rule Suc.hyps)

thus ?thesis
by (auto intro!: grid-child[OF ‹d ∈ {d}›, of - b left]

simp add: child-def)
next

assume ∗: ix b d ∗ 2^(Suc l ′) < i

let ?b = child b right d

have d < length ?b using Suc by auto
moreover note ‹odd i›
moreover have lv ?b d + l ′ = l

and i < (ix ?b d + 1) ∗ 2^l ′
and (ix ?b d − 1) ∗ 2^l ′ < i
unfolding child-ix-right[OF Suc.prems(1)]
using Suc.prems ∗ child-lv by (auto simp add: field-simps)

ultimately have ?b[d := (l,i)] ∈ grid ?b {d}
by (rule Suc.hyps)

thus ?thesis
by (auto intro!: grid-child[OF ‹d ∈ {d}›, of - b right]

simp add: child-def)
qed

qed

lemma grid-multi-dimensional-specification:
assumes dm ≤ length b and length p = length b
and

∧
d. d < dm =⇒

odd (ix p d) ∧

35

lv b d ≤ lv p d ∧
ix p d < (ix b d + 1) ∗ 2^(lv p d − lv b d) ∧
ix p d > (ix b d − 1) ∗ 2^(lv p d − lv b d)
(is

∧
d. d < dm =⇒ ?bounded p d)

and
∧

d. [[dm ≤ d ; d < length b]] =⇒ p ! d = b ! d
shows p ∈ grid b {0 ..<dm}

using assms proof (induct dm arbitrary: p)
case 0
hence p = b by (auto intro!: nth-equalityI)
thus ?case by auto

next
case (Suc dm)
hence dm ≤ length b

and dm < length p by auto

let ?p = p[dm := b ! dm]

note ‹dm ≤ length b›
moreover have length ?p = length b using ‹length p = length b› by simp
moreover
{

fix d assume d < dm
hence ∗: d < Suc dm and dm 6= d by auto
have ?p ! d = p ! d

by (rule nth-list-update-neq[OF ‹dm 6= d›])
hence ?bounded ?p d

using Suc.prems(3)[OF ∗] lv-def ix-def
by simp

}
moreover
{

fix d assume dm ≤ d and d < length b
have ?p ! d = b ! d
proof (cases d = dm)

case True thus ?thesis using ‹d < length b› ‹length p = length b› by auto
next

case False
hence Suc dm ≤ d using ‹dm ≤ d› by auto
thus ?thesis using Suc.prems(4) ‹d < length b› by auto

qed
}
ultimately
have ∗: ?p ∈ grid b {0 ..<dm}

by (auto intro!: Suc.hyps)

have lv b dm ≤ lv p dm using Suc.prems(3)[OF lessI] by simp

have [simp]: lv ?p dm = lv b dm using lv-def ‹dm < length p› by auto
have [simp]: ix ?p dm = ix b dm using ix-def ‹dm < length p› by auto

36

have [simp]: p[dm := (lv p dm, ix p dm)] = p
using lv-def ix-def ‹dm < length p› by auto

have dm < length ?p and
[simp]: lv b dm + (lv p dm − lv b dm) = lv p dm
using ‹dm < length p› ‹lv b dm ≤ lv p dm› by auto

from grid-single-dimensional-specification[OF this(1),
where l=lv p dm and i=ix p dm and l ′=lv p dm − lv b dm, simplified]

have p ∈ grid ?p {dm}
using Suc.prems(3)[OF lessI] by blast

from grid-transitive[OF this ∗]
show ?case by auto

qed

lemma sparsegrid:
sparsegrid dm lm = {p.

length p = dm ∧ level p < lm ∧
(∀ d < dm. odd (ix p d) ∧ 0 < ix p d ∧ ix p d < 2^(lv p d + 1))}

(is - = ?set)
proof (rule equalityI [OF subsetI subsetI])

fix p
assume ∗: p ∈ sparsegrid dm lm
hence length p = dm and level p < lm unfolding sparsegrid-def by auto
moreover
{ fix d assume d < dm

hence ∗∗: p ∈ grid (start dm) {0 ..<dm} and d < length (start dm)
using ∗ unfolding sparsegrid-def by auto

have odd (ix p d)
proof (cases p ! d = start dm ! d)

case True
thus ?thesis unfolding start-def using ‹d < dm› ix-def by auto

next
case False
from grid-odd[OF - this ∗∗]
show ?thesis using ‹d < dm› by auto

qed
hence odd (ix p d) ∧ 0 < ix p d ∧ ix p d < 2^(lv p d + 1)

using grid-estimate[OF ‹d < length (start dm)› ∗∗]
unfolding ix-def lv-def start-def using ‹d < dm› by auto

}
ultimately show p ∈ ?set

using sparsegrid-def lgrid-def by auto
next

fix p
assume p ∈ ?set
with grid-multi-dimensional-specification[of dm start dm p]
have p ∈ grid (start dm) {0 ..<dm} and level p < lm

by auto
thus p ∈ sparsegrid dm lm

unfolding sparsegrid-def lgrid-def by auto

37

qed

end

3 Hat Functions
theory Triangular-Function
imports
HOL−Analysis.Equivalence-Lebesgue-Henstock-Integration
Grid

begin

lemma continuous-on-max[continuous-intros]:
fixes f :: - ⇒ ′a::linorder-topology
shows continuous-on S f =⇒ continuous-on S g =⇒ continuous-on S (λx. max

(f x) (g x))
by (auto simp: continuous-on-def intro: tendsto-max)

definition ϕ :: (nat × int) ⇒ real ⇒ real where
ϕ ≡ (λ(l,i) x. max 0 (1 − | x ∗ 2^(l + 1) − real-of-int i |))

definition Φ :: (nat × int) list ⇒ (nat ⇒ real) ⇒ real where
Φ p x = (

∏
d<length p. ϕ (p ! d) (x d))

definition l2-ϕ where
l2-ϕ p1 p2 = (

∫
x. ϕ p1 x ∗ ϕ p2 x ∂lborel)

definition l2 where
l2 a b = (

∫
x. Φ a x ∗ Φ b x ∂(ΠM d∈{..<length a}. lborel))

lemma measurable-ϕ[measurable]: ϕ p ∈ borel-measurable borel
by (cases p) (simp add: ϕ-def)

lemma ϕ-nonneg: 0 ≤ ϕ p x
by (simp add: ϕ-def split: prod.split)

lemma ϕ-zero-iff :
ϕ (l,i) x = 0 ←→ x /∈ {real-of-int (i − 1) / 2^(l + 1) <..< real-of-int (i + 1)

/ 2^(l + 1)}
by (auto simp: ϕ-def field-simps split: split-max)

lemma ϕ-zero: x /∈ {real-of-int (i − 1) / 2^(l + 1) <..< real-of-int (i + 1) / 2^(l
+ 1)} =⇒ ϕ (l,i) x = 0

unfolding ϕ-zero-iff by simp

lemma ϕ-eq-0 : assumes x: x < 0 ∨ 1 < x and i: 0 < i i < 2^Suc l shows ϕ
(l, i) x = 0

using x
proof

38

assume x < 0
also have 0 ≤ real-of-int (i − 1) / 2^(l + 1)

using i by (auto simp: field-simps)
finally show ?thesis

by (auto intro!: ϕ-zero simp: field-simps)
next

have real-of-int (i + 1) / 2^(l + 1) ≤ 1
using i by (subst divide-le-eq-1-pos) (auto simp del: of-int-add power-Suc)

also assume 1 < x
finally show ?thesis

by (auto intro!: ϕ-zero simp: field-simps)
qed

lemma ix-lt: p ∈ sparsegrid dm lm =⇒ d < dm =⇒ ix p d < 2^(lv p d + 1)
unfolding sparsegrid-def lgrid-def
using grid-estimate[of d start dm p {0 ..< dm}] by auto

lemma ix-gt: p ∈ sparsegrid dm lm =⇒ d < dm =⇒ 0 < ix p d
unfolding sparsegrid-def lgrid-def
using grid-estimate[of d start dm p {0 ..< dm}] by auto

lemma Φ-eq-0 : assumes x: ∃ d<length p. x d < 0 ∨ 1 < x d and p: p ∈ sparsegrid
dm lm shows Φ p x = 0

unfolding Φ-def
proof (rule prod-zero)

from x obtain d where d < length p ∧ (x d < 0 ∨ 1 < x d) ..
with p[THEN ix-lt, of d] p[THEN ix-gt, of d] p
show ∃ a∈{..<length p}. ϕ (p ! a) (x a) = 0

apply (cases p!d)
apply (intro bexI [of - d])
apply (auto intro!: ϕ-eq-0 simp: sparsegrid-length ix-def lv-def)
done

qed simp

lemma ϕ-left-support ′:
x ∈ {real-of-int (i − 1) / 2^(l + 1) .. real-of-int i / 2^(l + 1)} =⇒ ϕ (l,i) x =

1 + x ∗ 2^(l + 1) − real-of-int i
by (auto simp: ϕ-def field-simps split: split-max)

lemma ϕ-left-support: x ∈ {−1 .. 0 ::real} =⇒ ϕ (l,i) ((x + real-of-int i) / 2^(l
+ 1)) = 1 + x

by (auto simp: ϕ-def field-simps split: split-max)

lemma ϕ-right-support ′:
x ∈ {real-of-int i / 2^(l + 1) .. real-of-int (i + 1) / 2^(l + 1)} =⇒ ϕ (l,i) x =

1 − x ∗ 2^(l + 1) + real-of-int i
by (auto simp: ϕ-def field-simps split: split-max)

lemma ϕ-right-support:

39

x ∈ {0 .. 1 ::real} =⇒ ϕ (l,i) ((x + real i) / 2^(l + 1)) = 1 − x
by (auto simp: ϕ-def field-simps split: split-max)

lemma integrable-ϕ: integrable lborel (ϕ p)
proof (induct p)

case (Pair l i)
have integrable lborel (λx. indicator {real-of-int (i − 1) / 2^(l + 1) .. real-of-int

(i + 1) / 2^(l + 1)} x ∗R ϕ (l, i) x)
unfolding ϕ-def by (intro borel-integrable-compact) (auto intro!: continuous-intros)

then show ?case
by (rule Bochner-Integration.integrable-cong[THEN iffD1 , rotated −1]) (auto

simp: ϕ-zero-iff)
qed

lemma integrable-ϕ2 : integrable lborel (λx. ϕ p x ∗ ϕ q x)
proof (cases p q rule: prod.exhaust[case-product prod.exhaust])

case (Pair-Pair l i l ′ i ′)
have integrable lborel

(λx. indicator {real-of-int (i − 1) / 2^(l + 1) .. real-of-int (i + 1) / 2^(l +
1)} x ∗R (ϕ (l, i) x ∗ ϕ (l ′, i ′) x))

unfolding ϕ-def by (intro borel-integrable-compact) (auto intro!: continuous-intros)
then show ?thesis unfolding Pair-Pair

by (rule Bochner-Integration.integrable-cong[THEN iffD1 , rotated −1]) (auto
simp: ϕ-zero-iff)
qed

lemma l2-ϕI-DERIV :
assumes n:

∧
x. x ∈ { (real-of-int i ′ − 1) / 2^(l ′ + 1) .. real-of-int i ′ / 2^(l ′ +

1) } =⇒
DERIV Φ-n x :> (ϕ (l ′, i ′) x ∗ ϕ (l, i) x) (is

∧
x. x ∈ {?a..?b} =⇒ DERIV -

- :> ?P x)
and p:

∧
x. x ∈ { real-of-int i ′ / 2^(l ′ + 1) .. (real-of-int i ′ + 1) / 2^(l ′ + 1)

} =⇒
DERIV Φ-p x :> (ϕ (l ′, i ′) x ∗ ϕ (l, i) x) (is

∧
x. x ∈ {?b..?c} =⇒ -)

shows l2-ϕ (l ′, i ′) (l, i) = (Φ-n ?b − Φ-n ?a) + (Φ-p ?c − Φ-p ?b)
proof −

have has-bochner-integral lborel
(λx. ?P x ∗ indicator {?a..?b} x + ?P x ∗ indicator {?b..?c} x)
((Φ-n ?b − Φ-n ?a) + (Φ-p ?c − Φ-p ?b))

by (intro has-bochner-integral-add has-bochner-integral-FTC-Icc-nonneg n p)
(auto simp: ϕ-nonneg field-simps)

then have has-bochner-integral lborel?P ((Φ-n ?b − Φ-n ?a) + (Φ-p ?c − Φ-p
?b))

by (rule has-bochner-integral-discrete-difference[where X={?b}, THEN iffD1 ,
rotated −1])

(auto simp: power-add intro!: ϕ-zero integral-cong split: split-indicator)
then show ?thesis by (simp add: has-bochner-integral-iff l2-ϕ-def)

qed

40

lemma l2-eq: length a = length b =⇒ l2 a b = (
∏

d<length a. l2-ϕ (a!d) (b!d))
unfolding l2-def l2-ϕ-def Φ-def
apply (simp add: prod.distrib[symmetric])

proof (rule product-sigma-finite.product-integral-prod)
show product-sigma-finite (λd. lborel) ..

qed (auto intro: integrable-ϕ2)

lemma l2-when-disjoint:
assumes l ≤ l ′
defines d == l ′ − l
assumes (i + 1) ∗ 2^d < i ′ ∨ i ′ < (i − 1) ∗ 2^d (is ?right ∨ ?left)
shows l2-ϕ (l ′, i ′) (l, i) = 0

proof −
let ?sup = λl i. {real-of-int (i − 1) / 2^(l + 1) <..< real-of-int (i + 1) / 2^(l

+ 1)}

have l ′: l ′ = l + d
using assms by simp

have ∗:
∧

i l. 2 ^ l = real-of-int (2 ^ l::int)
by simp

have [arith]: 0 < (2^d::int)
by simp

from ‹?right ∨ ?left› ‹l ≤ l ′› have empty-support: ?sup l i ∩ ?sup l ′ i ′ = {}
by (auto simp add: min-def max-def divide-simps l ′ power-add ∗ of-int-mult[symmetric]

simp del: of-int-diff of-int-add of-int-mult of-int-power)
(simp-all add: field-simps)

then have
∧

x. ϕ (l ′, i ′) x ∗ ϕ (l, i) x = 0
unfolding ϕ-zero-iff mult-eq-0-iff by blast

then show ?thesis
by (simp add: l2-ϕ-def del: mult-eq-0-iff vector-space-over-itself .scale-eq-0-iff)

qed

lemma l2-commutative: l2-ϕ p q = l2-ϕ q p
by (simp add: l2-ϕ-def mult.commute)

lemma l2-when-same: l2-ϕ (l, i) (l, i) = 1/3 / 2^l
proof (subst l2-ϕI-DERIV)

let ?l = (2 :: real)^(l + 1)
let ?in = real-of-int i − 1
let ?ip = real-of-int i + 1
let ?ϕ = ϕ (l,i)
let ?ϕ2 = λx. ?ϕ x ∗ ?ϕ x

{ fix x assume x ∈ {?in / ?l .. real-of-int i / ?l}
hence ϕ-eq: ?ϕ x = ?l ∗ x − ?in using ϕ-left-support ′ by auto
show DERIV (λx. x^3 / 3 ∗ ?l^2 + x ∗ ?in^2 − x^2/2 ∗ 2 ∗ ?l ∗ ?in) x :>

?ϕ2 x
by (auto intro!: derivative-eq-intros simp add: power2-eq-square field-simps

41

ϕ-eq) }

{ fix x assume x ∈ {real-of-int i / ?l .. ?ip / ?l}
hence ϕ-eq: ?ϕ x = ?ip − ?l ∗ x using ϕ-right-support ′ by auto
show DERIV (λx. x^3 / 3 ∗ ?l^2 + x ∗ ?ip^2 − x^2/2 ∗ 2 ∗ ?l ∗ ?ip) x :>

?ϕ2 x
by (auto intro!: derivative-eq-intros simp add: power2-eq-square field-simps

ϕ-eq) }
qed (simp-all add: field-simps power-eq-if [of - 2] power-eq-if [of - 3])

lemma l2-when-left-child:
assumes l < l ′
and i ′-bot: i ′ > (i − 1) ∗ 2^(l ′ − l)
and i ′-top: i ′ < i ∗ 2^(l ′ − l)
shows l2-ϕ (l ′, i ′) (l, i) = (1 + real-of-int i ′ / 2^(l ′ − l) − real-of-int i) / 2^(l ′

+ 1)
proof (subst l2-ϕI-DERIV)

let ?l ′ = (2 :: real)^(l ′ + 1)
let ?in ′ = real-of-int i ′ − 1
let ?ip ′ = real-of-int i ′ + 1
let ?l = (2 :: real)^(l + 1)
let ?i = real-of-int i − 1
let ?ϕ ′ = ϕ (l ′,i ′)
let ?ϕ = ϕ (l, i)
let ?ϕ2 x = ?ϕ ′ x ∗ ?ϕ x
define Φ-n where Φ-n x = x^3 / 3 ∗ ?l ′ ∗ ?l + x ∗ ?i ∗ ?in ′ − x^2 / 2 ∗ (?in ′

∗ ?l + ?i ∗ ?l ′) for x
define Φ-p where Φ-p x = x^2 / 2 ∗ (?ip ′ ∗ ?l + ?i ∗ ?l ′) − x^3 / 3 ∗ ?l ′ ∗

?l − x ∗ ?i ∗ ?ip ′ for x

have level-diff : 2^(l ′ − l) = 2^l ′ / (2^l :: real) using power-diff [of 2 ::real l l ′]
‹l < l ′› by auto

{ fix x assume x: x ∈ {?in ′ / ?l ′ .. ?ip ′ / ?l ′}
have ?i ∗ 2^(l ′ − l) ≤ ?in ′

using i ′-bot int-less-real-le by auto
hence ?i / ?l ≤ ?in ′ / ?l ′

using level-diff by (auto simp: field-simps)
hence ?i / ?l ≤ x using x by auto
moreover
have ?ip ′ ≤ real-of-int i ∗ 2^(l ′ − l)

using i ′-top int-less-real-le by auto
hence ip ′-le-i: ?ip ′ / ?l ′ ≤ real-of-int i / ?l

using level-diff by (auto simp: field-simps)
hence x ≤ real-of-int i / ?l using x by auto
ultimately have ?ϕ x = ?l ∗ x − ?i using ϕ-left-support ′ by auto

} note ϕ-eq = this

{ fix x assume x: x ∈ {?in ′ / ?l ′ .. real-of-int i ′ / ?l ′}

42

hence ϕ ′-eq: ?ϕ ′ x = ?l ′ ∗ x − ?in ′ using ϕ-left-support ′ by auto
from x have x ′: x ∈ {?in ′ / ?l ′ .. ?ip ′ / ?l ′} by (auto simp add: field-simps)
show DERIV Φ-n x :> ?ϕ2 x unfolding ϕ-eq[OF x ′] ϕ ′-eq Φ-n-def
by (auto intro!: derivative-eq-intros simp add: power2-eq-square algebra-simps)

}

{ fix x assume x: x ∈ {real-of-int i ′ / ?l ′ .. ?ip ′ / ?l ′}
hence ϕ ′-eq: ?ϕ ′ x = ?ip ′ − ?l ′ ∗ x using ϕ-right-support ′ by auto
from x have x ′: x ∈ {?in ′ / ?l ′ .. ?ip ′ / ?l ′} by (simp add: field-simps)
show DERIV Φ-p x :> ?ϕ2 x unfolding ϕ-eq[OF x ′] ϕ ′-eq Φ-p-def
by (auto intro!: derivative-eq-intros simp add: power2-eq-square algebra-simps)

}
qed (simp-all add: field-simps power-eq-if [of - 2] power-eq-if [of - 3] power-diff [of
2 ::real, OF - ‹l < l ′›[THEN less-imp-le]])

lemma l2-when-right-child:
assumes l < l ′
and i ′-bot: i ′ > i ∗ 2^(l ′ − l)
and i ′-top: i ′ < (i + 1) ∗ 2^(l ′ − l)
shows l2-ϕ (l ′, i ′) (l, i) = (1 − real-of-int i ′ / 2^(l ′ − l) + real-of-int i) / 2^(l ′

+ 1)
proof (subst l2-ϕI-DERIV)

let ?l ′ = (2 :: real)^(l ′ + 1)
let ?in ′ = real-of-int i ′ − 1
let ?ip ′ = real-of-int i ′ + 1
let ?l = (2 :: real)^(l + 1)
let ?i = real-of-int i + 1
let ?ϕ ′ = ϕ (l ′,i ′)
let ?ϕ = ϕ (l, i)
let ?ϕ2 = λx. ?ϕ ′ x ∗ ?ϕ x
define Φ-n where Φ-n x = x^2 / 2 ∗ (?in ′ ∗ ?l + ?i ∗ ?l ′) − x^3 / 3 ∗ ?l ′ ∗

?l − x ∗ ?i ∗ ?in ′ for x
define Φ-p where Φ-p x = x^3 / 3 ∗ ?l ′ ∗ ?l + x ∗ ?i ∗ ?ip ′ − x^2 / 2 ∗ (?ip ′

∗ ?l + ?i ∗ ?l ′) for x

have level-diff : 2^(l ′ − l) = 2^l ′ / (2^l :: real) using power-diff [of 2 ::real l l ′]
‹l < l ′› by auto

{ fix x assume x: x ∈ {?in ′ / ?l ′ .. ?ip ′ / ?l ′}
have real-of-int i ∗ 2^(l ′ − l) ≤ ?in ′

using i ′-bot int-less-real-le by auto
hence real-of-int i / ?l ≤ ?in ′ / ?l ′

using level-diff by (auto simp: field-simps)
hence real-of-int i / ?l ≤ x using x by auto
moreover
have ?ip ′ ≤ ?i ∗ 2^(l ′ − l)

using i ′-top int-less-real-le by auto
hence ip ′-le-i: ?ip ′ / ?l ′ ≤ ?i / ?l

using level-diff by (auto simp: field-simps)

43

hence x ≤ ?i / ?l using x by auto
ultimately have ?ϕ x = ?i − ?l ∗ x using ϕ-right-support ′ by auto

} note ϕ-eq = this

{ fix x assume x: x ∈ {?in ′ / ?l ′ .. real-of-int i ′ / ?l ′}
hence ϕ ′-eq: ?ϕ ′ x = ?l ′ ∗ x − ?in ′ using ϕ-left-support ′ by auto

from x have x ′: x ∈ {?in ′ / ?l ′ .. ?ip ′ / ?l ′} by (simp add: field-simps)
show DERIV Φ-n x :> ?ϕ2 x unfolding Φ-n-def ϕ-eq[OF x ′] ϕ ′-eq

by (auto intro!: derivative-eq-intros simp add: simp add: power2-eq-square
algebra-simps) }

{ fix x assume x: x ∈ {real-of-int i ′ / ?l ′ .. ?ip ′ / ?l ′}
hence ϕ ′-eq: ?ϕ ′ x = ?ip ′ − ?l ′ ∗ x using ϕ-right-support ′ by auto
from x have x ′: x ∈ {?in ′ / ?l ′ .. ?ip ′ / ?l ′} by (auto simp: field-simps)
show DERIV Φ-p x :> ?ϕ2 x unfolding ϕ-eq[OF x ′] ϕ ′-eq Φ-p-def
by (auto intro!: derivative-eq-intros simp add: power2-eq-square algebra-simps)

}
qed (simp-all add: field-simps power-eq-if [of - 2] power-eq-if [of - 3] power-diff [of
2 ::real, OF - ‹l < l ′›[THEN less-imp-le]])

lemma level-shift: lc > l =⇒ (x :: real) / 2 ^ (lc − Suc l) = x ∗ 2 / 2 ^ (lc − l)
by (auto simp add: power-diff)

lemma l2-child: assumes d < length b
and p-grid: p ∈ grid (child b dir d) ds (is p ∈ grid ?child ds)
shows l2-ϕ (p ! d) (b ! d) = (1 − real-of-int (sgn dir) ∗ (real-of-int (ix p d) /

2^(lv p d − lv b d) − real-of-int (ix b d))) /
2^(lv p d + 1)

proof −
have lv ?child d ≤ lv p d using ‹d < length b› and p-grid

using grid-single-level by auto
hence lv b d < lv p d using ‹d < length b› and p-grid

using child-lv by auto

let ?i-c = ix ?child d and ?l-c = lv ?child d
let ?i-p = ix p d and ?l-p = lv p d
let ?i-b = ix b d and ?l-b = lv b d

have (2 ::int) ∗ 2^(?l-p − ?l-c) = 2^Suc (?l-p − ?l-c) by auto
also have . . . = 2^(Suc ?l-p − ?l-c)
proof −

have Suc (?l-p − ?l-c) = Suc ?l-p − ?l-c
using ‹lv ?child d ≤ lv p d› by auto

thus ?thesis by auto
qed
also have . . . = 2^(?l-p − ?l-b)

using ‹d < length b› and ‹lv b d < lv p d›
by (auto simp add: child-def lv-def)

44

finally have level: 2^(?l-p − ?l-b) = (2 ::int) ∗ 2^(?l-p − ?l-c) ..

from ‹d < length b› and p-grid
have range-left: ?i-p > (?i-c − 1) ∗ 2^(?l-p − ?l-c) and

range-right: ?i-p < (?i-c + 1) ∗ 2^(?l-p − ?l-c)
using grid-estimate by auto

show ?thesis
proof (cases dir)

case left
with child-ix-left[OF ‹d < length b›]
have (?i-b − 1) ∗ 2^(?l-p − ?l-b) = (?i-c − 1) ∗ 2^(?l-p − ?l-c) and

?i-b ∗ 2^(?l-p − ?l-b) = (?i-c + 1) ∗ 2^(?l-p − ?l-c) using level by auto
hence ?i-p > (?i-b − 1) ∗ 2^(?l-p − ?l-b) and

?i-p < ?i-b ∗ 2^(?l-p − ?l-b)
using range-left and range-right by auto

with ‹?l-b < ?l-p›
have l2-ϕ (?l-p, ?i-p) (?l-b, ?i-b) =

(1 + real-of-int ?i-p / 2^(?l-p − ?l-b) − real-of-int ?i-b) / 2^(?l-p + 1)
by (rule l2-when-left-child)

thus ?thesis using left by (auto simp add: ix-def lv-def)
next

case right
hence ?i-c = 2 ∗ ?i-b + 1 using child-ix-right and ‹d < length b› by auto
hence ?i-b ∗ 2^(?l-p − ?l-b) = (?i-c − 1) ∗ 2^(?l-p − ?l-c) and
(?i-b + 1) ∗ 2^(?l-p − ?l-b) = (?i-c + 1) ∗ 2^(?l-p − ?l-c) using level by

auto
hence ?i-p > ?i-b ∗ 2^(?l-p − ?l-b) and

?i-p < (?i-b + 1) ∗ 2^(?l-p − ?l-b)
using range-left and range-right by auto

with ‹?l-b < ?l-p›
have l2-ϕ (?l-p, ?i-p) (?l-b, ?i-b) =

(1 − real-of-int ?i-p / 2^(?l-p − ?l-b) + real-of-int ?i-b) / 2^(?l-p + 1)
by (rule l2-when-right-child)

thus ?thesis using right by (auto simp add: ix-def lv-def)
qed

qed

lemma l2-same: l2-ϕ (p!d) (p!d) = 1/3 / 2^(lv p d)
proof −

have l2-ϕ (p!d) (p!d) = l2-ϕ (lv p d, ix p d) (lv p d, ix p d)
by (auto simp add: lv-def ix-def)

thus ?thesis using l2-when-same by auto
qed

lemma l2-disjoint: assumes d < length b and p ∈ grid b {d} and p ′ ∈ grid b {d}
and p ′ /∈ grid p {d} and lv p ′ d ≥ lv p d
shows l2-ϕ (p ′ ! d) (p ! d) = 0

proof −

45

have range: ix p ′ d > (ix p d + 1) ∗ 2^(lv p ′ d − lv p d) ∨ ix p ′ d < (ix p d −
1) ∗ 2^(lv p ′ d − lv p d)

proof (rule ccontr)
assume ¬ ?thesis
hence ix p ′ d ≤ (ix p d + 1) ∗ 2^(lv p ′ d − lv p d) and ix p ′ d ≥ (ix p d −

1) ∗ 2^(lv p ′ d − lv p d) by auto
with ‹p ′ ∈ grid b {d}› and ‹p ∈ grid b {d}› and ‹lv p ′ d ≥ lv p d› and ‹d <

length b›
have p ′ ∈ grid p {d} using grid-part[where p=p and b=b and d=d and

p ′=p ′] by auto
with ‹p ′ /∈ grid p {d}› show False by auto

qed

have l2-ϕ (p ′ ! d) (p ! d) = l2-ϕ (lv p ′ d, ix p ′ d) (lv p d, ix p d) by (auto simp
add: ix-def lv-def)

also have . . . = 0 using range and ‹lv p ′ d ≥ lv p d› and l2-when-disjoint by
auto

finally show ?thesis .
qed

lemma l2-down2 :
fixes pc pd p
assumes d < length pd
assumes pc-in-grid: pc ∈ grid (child pd dir d) {d}
assumes pd-is-child: pd = child p dir d (is pd = ?pd)
shows l2-ϕ (pc ! d) (pd ! d) / 2 = l2-ϕ (pc ! d) (p ! d)

proof −
have d < length p using pd-is-child ‹d < length pd› by auto

moreover
have pc ∈ grid ?pd {d} using pd-is-child and grid-child and pc-in-grid by auto
hence lv p d < lv pc d using grid-child-level and ‹d < length pd› and pd-is-child

by auto

moreover
have real-of-int (sgn dir) ∗ real-of-int (sgn dir) = 1 by (cases dir , auto)

ultimately show ?thesis
unfolding l2-child[OF ‹d < length pd› pc-in-grid]

l2-child[OF ‹d < length p› ‹pc ∈ grid ?pd {d}›]
using child-lv and child-ix and pd-is-child and level-shift
by (auto simp add: algebra-simps diff-divide-distrib add-divide-distrib)

qed

lemma l2-zigzag:
assumes d < length p and p-child: p = child p-p dir d
and p ′-grid: p ′ ∈ grid (child p (inv dir) d) {d}
and ps-intro: child p (inv dir) d = child ps dir d (is ?c-p = ?c-ps)
shows l2-ϕ (p ′ ! d) (p-p ! d) = l2-ϕ (p ′ ! d) (ps ! d) + l2-ϕ (p ′ ! d) (p ! d) / 2

46

proof −
have length p = length ?c-p by auto
also have . . . = length ?c-ps using ps-intro by auto
finally have length p = length ps using ps-intro by auto
hence d < length p-p using p-child and ‹d < length p› by auto

moreover
from ps-intro have ps = p[d := (lv p d, ix p d − sgn dir)] by (rule child-neighbour)
hence lv ps d = lv p d and real-of-int (ix ps d) = real-of-int (ix p d) − real-of-int

(sgn dir)
using lv-def and ix-def and ‹length p = length ps› and ‹d < length p› by

auto

moreover
have d < length ps and ∗: p ′ ∈ grid (child ps dir d) {d}

using p ′-grid ps-intro ‹length p = length ps› ‹d < length p› by auto

have p ′ ∈ grid p {d} using p ′-grid and grid-child by auto
hence p-p-grid: p ′ ∈ grid (child p-p dir d) {d} using p-child by auto
hence lv p ′ d > lv p-p d using grid-child-level and ‹d < length p-p› by auto

moreover
have real-of-int (sgn dir) ∗ real-of-int (sgn dir) = 1 by (cases dir , auto)

ultimately show ?thesis
unfolding l2-child[OF ‹d < length p› p ′-grid] l2-child[OF ‹d < length ps› ∗]

l2-child[OF ‹d < length p-p› p-p-grid]
using child-lv and child-ix and p-child level-shift
by (auto simp add: add-divide-distrib algebra-simps diff-divide-distrib)

qed

end

4 UpDown Scheme
theory UpDown-Scheme

imports Grid
begin

fun down ′ :: nat ⇒ nat ⇒ grid-point ⇒ real ⇒ real ⇒ vector ⇒ vector
where

down ′ d 0 p f l f r α = α
| down ′ d (Suc l) p f l f r α = (let

f m = (f l + f r) / 2 + (α p);
α = α(p := ((f l + f r) / 4 + (1 / 3) ∗ (α p)) / 2 ^ (lv p d));
α = down ′ d l (child p left d) f l f m α;
α = down ′ d l (child p right d) f m f r α

in α)

47

definition down :: nat ⇒ nat ⇒ nat ⇒ vector ⇒ vector where
down = lift (λ d l p. down ′ d l p 0 0)

fun up ′ :: nat ⇒ nat ⇒ grid-point ⇒ vector ⇒ (real ∗ real) ∗ vector where
up ′ d 0 p α = ((0 , 0), α)
| up ′ d (Suc l) p α = (let

((f l, f ml), α) = up ′ d l (child p left d) α;
((f mr, f r), α) = up ′ d l (child p right d) α;
result = (f ml + f mr + (α p) / 2 ^ (lv p d) / 2) / 2

in ((f l + result, f r + result), α(p := f ml + f mr)))

definition up :: nat ⇒ nat ⇒ nat ⇒ vector ⇒ vector where
up = lift (λ d lm p α. snd (up ′ d lm p α))

fun updown ′ :: nat ⇒ nat ⇒ nat ⇒ vector ⇒ vector where
updown ′ dm lm 0 α = α
| updown ′ dm lm (Suc d) α =

(sum-vector (updown ′ dm lm d (up dm lm d α)) (down dm lm d (updown ′ dm
lm d α)))

definition updown :: nat ⇒ nat ⇒ vector ⇒ vector where
updown dm lm α = updown ′ dm lm dm α

end

5 Up Part
theory Up
imports UpDown-Scheme Triangular-Function
begin

lemma up ′-inplace:
assumes p ′-in: p ′ /∈ grid p ds and d ∈ ds
shows snd (up ′ d l p α) p ′ = α p ′

using p ′-in
proof (induct l arbitrary: p α)

case (Suc l)
let ?ch dir = child p dir d
let ?up dir α = up ′ d l (?ch dir) α
let ?upl = snd (?up left α)

from contrapos-nn[OF ‹p ′ /∈ grid p ds› grid-child[OF ‹d ∈ ds›]]
have left: p ′ /∈ grid (?ch left) ds and

right: p ′ /∈ grid (?ch right) ds by auto

have p 6= p ′ using grid.Start Suc.prems by auto
with Suc.hyps[OF left, of α] Suc.hyps[OF right, of ?upl]
show ?case

48

by (cases ?up left α, cases ?up right ?upl, auto simp add: Let-def)
qed auto

lemma up ′-fl-fr :
[[d < length p ; p = (child p-r right d) ; p = (child p-l left d)]]
=⇒ fst (up ′ d lm p α) =

(
∑

p ′ ∈ lgrid p {d} (lm + level p). (α p ′) ∗ l2-ϕ (p ′ ! d) (p-r ! d),∑
p ′ ∈ lgrid p {d} (lm + level p). (α p ′) ∗ l2-ϕ (p ′ ! d) (p-l ! d))

proof (induct lm arbitrary: p p-l p-r α)
case (Suc lm)
note ‹d < length p›[simp]

from child-ex-neighbour
obtain pc-r pc-l

where pc-r-def : child p right d = child pc-r (inv right) d
and pc-l-def : child p left d = child pc-l (inv left) d by blast

define pc where pc dir = (case dir of right ⇒ pc-r | left ⇒ pc-l) for dir
{ fix dir have child p (inv dir) d = child (pc (inv dir)) dir d

by (cases dir , auto simp add: pc-def pc-r-def pc-l-def) } note pc-child = this
{ fix dir have child p dir d = child (pc dir) (inv dir) d

by (cases dir , auto simp add: pc-def pc-r-def pc-l-def) } note pc-child-inv =
this

hence !! dir . length (child p dir d) = length (child (pc dir) (inv dir) d) by auto
hence !! dir . length p = length (pc dir) by auto
hence [simp]: !! dir . d < length (pc dir) by auto

let ?l = λs. lm + level s
let ?C = λp p ′. (α p) ∗ l2-ϕ (p ! d) (p ′ ! d)
let ?sum ′ = λs p ′′.

∑
p ′ ∈ lgrid s {d} (Suc lm + level p). ?C p ′ p ′′

let ?sum = λs dir p.
∑

p ′ ∈ lgrid (child s dir d) {d} (?l (child s dir d)). ?C p ′

p
let ?ch = λdir . child p dir d
let ?f = λdir . ?sum p dir (pc dir)
let ?fm = λdir . ?sum p dir p
let ?result = (?fm left + ?fm right + (α p) / 2 ^ (lv p d) / 2) / 2
let ?up = λlm p α. up ′ d lm p α

define βl where βl = snd (?up lm (?ch left) α)
define βr where βr = snd (?up lm (?ch right) βl)

define p-d where p-d dir = (case dir of right ⇒ p-r | left ⇒ p-l) for dir
have p-d-child: p = child (p-d dir) dir d for dir

using Suc.prems p-d-def by (cases dir) auto
hence

∧
dir . length p = length (child (p-d dir) dir d) by auto

hence
∧

dir . d < length (p-d dir) by auto

{ fix dir

49

{ fix p ′ assume p ′ ∈ lgrid (?ch (inv dir)) {d} (?l (?ch (inv dir)))
hence ?C p ′ (pc (inv dir)) + (?C p ′ p) / 2 = ?C p ′ (p-d dir)

using l2-zigzag[OF - p-d-child[of dir] - pc-child[of dir]]
by (cases dir) (auto simp add: algebra-simps) }

hence inv-dir-sum: ?sum p (inv dir) (pc (inv dir)) + (?sum p (inv dir) p) / 2
= ?sum p (inv dir) (p-d dir)
by (auto simp add: sum.distrib[symmetric] sum-divide-distrib)

have ?sum p dir p / 2 = ?sum p dir (p-d dir)
using l2-down2 [OF - - ‹p = child (p-d dir) dir d›]
by (force intro!: sum.cong simp add: sum-divide-distrib)

moreover
have ?C p (p-d dir) = (α p) / 2 ^ (lv p d) / 4

using l2-child[OF ‹d < length (p-d dir)›, of p dir {d}] p-d-child[of dir]
‹d < length (p-d dir)› child-lv child-ix grid.Start[of p {d}]
by (cases dir) (auto simp add: add-divide-distrib field-simps)

ultimately
have ?sum ′ p (p-d dir) =

?sum p (inv dir) (pc (inv dir)) +
(?sum p (inv dir) p) / 2 + ?sum p dir p / 2 + (α p) / 2 ^ (lv p d) / 4
using lgrid-sum[where b=p] and child-level and inv-dir-sum
by (cases dir) auto

hence ?sum p (inv dir) (pc (inv dir)) + ?result = ?sum ′ p (p-d dir)
by (cases dir) auto }

note this[of left] this[of right]
moreover
note eq = up ′-inplace[OF grid-not-child[OF ‹d < length p›], of d {d} lm]
{ fix p ′ assume p ′ ∈ lgrid (?ch right) {d} (lm + level (?ch right))

with grid-disjunct[of d p] up ′-inplace[of p ′ ?ch left {d} d lm α] βl-def
have βl p ′ = α p ′ by auto }

hence fst (?up (Suc lm) p α) = (?f left + ?result, ?f right + ?result)
using βl-def pc-child-inv[of left] pc-child-inv[of right]

Suc.hyps[of ?ch left pc left p α] eq[of left α]
Suc.hyps[of ?ch right p pc right βl] eq[of right βl]

by (cases ?up lm (?ch left) α, cases ?up lm (?ch right) βl) (simp add: Let-def)
ultimately show ?case by (auto simp add: p-d-def)

next
case 0
show ?case by simp

qed

lemma up ′-β:
[[d < length b ; l + level b = lm ; b ∈ sparsegrid ′ dm ; p ∈ sparsegrid ′ dm]]
=⇒
(snd (up ′ d l b α)) p =
(if p ∈ lgrid b {d} lm
then

∑
p ′ ∈ (lgrid p {d} lm) − {p}. α p ′ ∗ l2-ϕ (p ′ ! d) (p ! d)

else α p)
(is [[- ; - ; - ; -]] =⇒ (?goal l b p α))

50

proof (induct l arbitrary: b p α)
case (Suc l)

let ?l = child b left d and ?r = child b right d
obtain p-l where p-l-def : ?r = child p-l left d using child-ex-neighbour [where

dir=right] by auto
obtain p-r where p-r-def : ?l = child p-r right d using child-ex-neighbour [where

dir=left] by auto

let ?ul = up ′ d l ?l α
let ?ur = up ′ d l ?r (snd ?ul)

let ?C p ′ = α p ′ ∗ l2-ϕ (p ′ ! d) (p ! d)
let ?s s =

∑
p ′ ∈ (lgrid s {d} lm). ?C p ′

from ‹b ∈ sparsegrid ′ dm› have length b = dm unfolding sparsegrid ′-def
start-def

by auto
hence d < dm using ‹d < length b› by auto

{ fix p ′ assume p ′ ∈ grid ?r {d}
hence p ′ /∈ grid ?l {d}

using grid-disjunct[OF ‹d < length b›] by auto
hence snd ?ul p ′ = α p ′ using up ′-inplace by auto

} note eq = this

show ?goal (Suc l) b p α
proof (cases p = b)

case True

let ?C p ′ = α p ′ ∗ l2-ϕ (p ′ ! d) (b ! d)
let ?s s =

∑
p ′ ∈ (lgrid s {d} lm). ?C p ′

have d < length ?l using ‹d < length b› by auto
from up ′-fl-fr [OF this p-r-def]
have fml: snd (fst ?ul) = (

∑
p ′ ∈ lgrid ?l {d} (l + level ?l). ?C p ′) by simp

have d < length ?r using ‹d < length b› by auto
from up ′-fl-fr [OF this - p-l-def , where α=snd ?ul]
have fmr : fst (fst ?ur) = (

∑
p ′ ∈ lgrid ?r {d} (l + level ?r).

((snd ?ul) p ′) ∗ l2-ϕ (p ′ ! d) (b ! d)) by simp

have level b < lm using ‹Suc l + level b = lm› by auto
hence { b } ⊆ lgrid b {d} lm unfolding lgrid-def by auto
from sum-diff [OF lgrid-finite this]
have (

∑
p ′ ∈ (lgrid b {d} lm) − {b}. ?C p ′) = ?s b − ?C b by simp

also have . . . = ?s ?l + ?s ?r
using lgrid-sum and ‹level b < lm› and ‹d < length b› by auto

also have . . . = snd (fst ?ul) + fst (fst ?ur) using fml and fmr

51

and ‹Suc l + level b = lm› and child-level[OF ‹d < length b›]
using eq unfolding True lgrid-def by auto

finally show ?thesis unfolding up ′.simps Let-def and fun-upd-def lgrid-def
using ‹p = b› and ‹level b < lm›
by (cases ?ul, cases ?ur , auto)

next
case False

have ?r ∈ sparsegrid ′ dm and ?l ∈ sparsegrid ′ dm
using ‹b ∈ sparsegrid ′ dm› and ‹d < dm› unfolding sparsegrid ′-def by auto

from Suc.hyps[OF - - this(1)] Suc.hyps[OF - - this(2)]
have ?goal l ?l p α and ?goal l ?r p (snd ?ul)

using ‹d < length b› and ‹Suc l + level b = lm› and ‹p ∈ sparsegrid ′ dm›
by auto

show ?thesis
proof (cases p ∈ lgrid b {d} lm)

case True
hence level p < lm and p ∈ grid b {d} unfolding lgrid-def by auto
hence p ∈ grid ?l {d} ∨ p ∈ grid ?r {d}

unfolding grid-partition[of b] using ‹p 6= b› by auto
thus ?thesis
proof (rule disjE)

assume p ∈ grid (child b left d) {d}
hence p /∈ grid (child b right d) {d}

using grid-disjunct[OF ‹d < length b›] by auto
thus ?thesis

using ‹?goal l ?l p α› and ‹?goal l ?r p (snd ?ul)›
using ‹p 6= b› ‹p ∈ lgrid b {d} lm›
unfolding lgrid-def grid-partition[of b]
by (cases ?ul, cases ?ur , auto simp add: Let-def)

next
assume ∗: p ∈ grid (child b right d) {d}
hence p /∈ grid (child b left d) {d}

using grid-disjunct[OF ‹d < length b›] by auto
moreover
{ fix p ′ assume p ′ ∈ grid p {d}

from grid-transitive[OF this ∗] eq[of p ′]
have snd ?ul p ′ = α p ′ by simp

}
ultimately show ?thesis

using ‹?goal l ?l p α› and ‹?goal l ?r p (snd ?ul)›
using ‹p 6= b› ‹p ∈ lgrid b {d} lm› ∗
unfolding lgrid-def
by (cases ?ul, cases ?ur , auto simp add: Let-def)

qed
next

case False

52

then have p /∈ lgrid ?l {d} lm and p /∈ lgrid ?r {d} lm
unfolding lgrid-def and grid-partition[where p=b] by auto

with False show ?thesis using ‹?goal l ?l p α› and ‹?goal l ?r p (snd ?ul)›
using ‹p 6= b› ‹p /∈ lgrid b {d} lm›
unfolding lgrid-def
by (cases ?ul, cases ?ur , auto simp add: Let-def)

qed
qed

next
case 0
then have lgrid b {d} lm = {}

using lgrid-empty ′[where p=b and lm=lm and ds={d}] by auto
with 0 show ?case unfolding up ′.simps by auto

qed

lemma up:
assumes d < dm and p ∈ sparsegrid dm lm
shows (up dm lm d α) p = (

∑
p ′ ∈ (lgrid p {d} lm) − {p}. α p ′ ∗ l2-ϕ (p ′ ! d)

(p ! d))
proof −

let ?S = λ x p p ′. if p ′ ∈ grid p {d} − {p} then x ∗ l2-ϕ (p ′!d) (p!d) else 0
let ?F = λ d lm p α. snd (up ′ d lm p α)

{ fix p b assume p ∈ grid b {d}
from grid-transitive[OF - this subset-refl subset-refl]
have lgrid b {d} lm ∩ (grid p {d} − {p}) = lgrid p {d} lm − {p}

unfolding lgrid-def by auto
} note lgrid-eq = this

{ fix l b p α
assume b: b ∈ lgrid (start dm) ({0 ..<dm} − {d}) lm
hence b ∈ sparsegrid ′ dm and d < length b using sparsegrid ′-start ‹d < dm›

by auto
assume l: l + level b = lm and p: p ∈ sparsegrid dm lm
note sparsegridE [OF p]

note up ′ = up ′-β[OF ‹d < length b› l ‹b ∈ sparsegrid ′ dm› ‹p ∈ sparsegrid ′

dm›]

have ?F d l b α p =
(if b = base {d} p then (

∑
p ′∈lgrid b {d} lm. ?S (α p ′) p p ′) else α p)

proof (cases b = base {d} p)
case True with baseE(2)[OF ‹p ∈ sparsegrid ′ dm›] ‹level p < lm›
have p ∈ lgrid b {d} lm and p ∈ grid b {d} by auto
show ?thesis

using lgrid-eq[OF ‹p ∈ grid b {d}›]
unfolding up ′ if-P[OF True] if-P[OF ‹p ∈ lgrid b {d} lm›]
by (intro sum.mono-neutral-cong-left lgrid-finite) auto

next

53

case False
moreover have p /∈ lgrid b {d} lm
proof (rule ccontr)

assume ¬ ?thesis
hence base {d} p = b using b by (auto intro!: baseI)
thus False using False by auto

qed
ultimately show ?thesis unfolding up ′ by auto

qed }
with lift[where F = ?F , OF ‹d < dm› ‹p ∈ sparsegrid dm lm›]
have lift-eq: lift ?F dm lm d α p =

(
∑

p ′∈lgrid (base {d} p) {d} lm. ?S (α p ′) p p ′) by auto
from lgrid-eq[OF baseE(2)[OF sparsegrid-subset[OF ‹p ∈ sparsegrid dm lm›]]]
show ?thesis
unfolding up-def lift-eq by (intro sum.mono-neutral-cong-right lgrid-finite) auto

qed

end

6 Down part
theory Down
imports Triangular-Function UpDown-Scheme
begin

lemma sparsegrid ′-parents:
assumes b: b ∈ sparsegrid ′ dm and p ′: p ′ ∈ parents d b p
shows p ′ ∈ sparsegrid ′ dm
using assms parents-def sparsegrid ′I by auto

lemma down ′-β: [[d < length b ; l + level b = lm ; b ∈ sparsegrid ′ dm ; p ∈
sparsegrid ′ dm]] =⇒

down ′ d l b fl fr α p = (if p ∈ lgrid b {d} lm
then
(fl + (fr − fl) / 2 ∗ (real-of-int (ix p d) / 2^(lv p d − lv b d) − real-of-int (ix

b d) + 1)) / 2 ^ (lv p d + 1) +
(
∑

p ′ ∈ parents d b p. (α p ′) ∗ l2-ϕ (p ! d) (p ′ ! d))
else α p)

proof (induct l arbitrary: b α fl fr p)
case (Suc l)

let ?l = child b left d and ?r = child b right d
let ?result = ((fl + fr) / 4 + (1 / 3) ∗ (α b)) / 2 ^ (lv b d)
let ?fm = (fl + fr) / 2 + (α b)
let ?down-l = down ′ d l (child b left d) fl ?fm (α(b := ?result))

have length b = dm using ‹b ∈ sparsegrid ′ dm›
unfolding sparsegrid ′-def start-def by auto

hence d < dm using ‹d < length b› by auto

54

have !!dir . d < length (child b dir d) using ‹d < length b› by auto
have !!dir . l + level (child b dir d) = lm

using ‹d < length b› and ‹Suc l + level b = lm› and child-level by auto
have !!dir . (child b dir d) ∈ sparsegrid ′ dm

using ‹b ∈ sparsegrid ′ dm› and ‹d < dm› and sparsegrid ′-def by auto
note hyps = Suc.hyps[OF ‹!! dir . d < length (child b dir d)›

‹!!dir . l + level (child b dir d) = lm›
‹!!dir . (child b dir d) ∈ sparsegrid ′ dm›]

show ?case
proof (cases p ∈ lgrid b {d} lm)

case False
moreover hence p 6= b and p /∈ lgrid ?l {d} lm

and p /∈ lgrid ?r {d} lm unfolding lgrid-def
unfolding grid-partition[where p=b] using ‹Suc l + level b = lm› by auto

ultimately show ?thesis
unfolding down ′.simps Let-def fun-upd-def hyps[OF ‹p ∈ sparsegrid ′ dm›]
by auto

next
case True hence level p < lm and p ∈ grid b {d} unfolding lgrid-def by auto
let ?lb = lv b d and ?ib = real-of-int (ix b d)
let ?lp = lv p d and ?ip = real-of-int (ix p d)
show ?thesis
proof (cases ∃ dir . p ∈ grid (child b dir d){d})

case True
obtain dir where p-grid: p ∈ grid (child b dir d) {d} using True by auto

hence p ∈ lgrid (child b dir d) {d} lm using ‹level p < lm› unfolding
lgrid-def by auto

have lv b d < lv p d using child-lv[OF ‹d < length b›] and grid-single-level[OF
p-grid ‹d < length (child b dir d)›] by auto

let ?ch = child b dir d
let ?ich = child b (inv dir) d

show ?thesis
proof (cases dir)

case right
hence p ∈ lgrid ?r {d} lm and p ∈ grid ?r {d}
using ‹p ∈ grid ?ch {d}› and ‹level p < lm› unfolding lgrid-def by auto

{ fix p ′ fix fl fr x assume p ′: p ′ ∈ parents d (child b right d) p
hence p ′ ∈ grid (child b right d) {d} unfolding parents-def by simp
hence p ′ /∈ lgrid (child b left d) {d} lm and p ′ 6= b

unfolding lgrid-def
using grid-disjunct[OF ‹d < length b›] grid-not-child by auto

from hyps[OF sparsegrid ′-parents[OF ‹child b right d ∈ sparsegrid ′ dm›
p ′]] this

55

have down ′ d l (child b left d) fl fr (α(b := x)) p ′ = α p ′ by auto }
thus ?thesis

unfolding down ′.simps Let-def hyps[OF ‹p ∈ sparsegrid ′ dm›]
parent-sum[OF ‹p ∈ grid ?r {d}› ‹d < length b›]
l2-child[OF ‹d < length b› ‹p ∈ grid ?r {d}›]

using child-ix child-lv ‹d < length b› level-shift[OF ‹lv b d < lv p d›]
sgn.simps ‹p ∈ lgrid b {d} lm› ‹p ∈ lgrid ?r {d} lm›

by (auto simp add: algebra-simps diff-divide-distrib add-divide-distrib)
next

case left
hence p ∈ lgrid ?l {d} lm and p ∈ grid ?l {d}
using ‹p ∈ grid ?ch {d}› and ‹level p < lm› unfolding lgrid-def by auto

hence ¬ p ∈ lgrid ?r {d} lm
using grid-disjunct[OF ‹d < length b›] unfolding lgrid-def by auto

{ fix p ′ assume p ′: p ′ ∈ parents d (child b left d) p
hence p ′ ∈ grid (child b left d) {d} unfolding parents-def by simp
hence p ′ 6= b using grid-not-child[OF ‹d < length b›] by auto }

thus ?thesis
unfolding down ′.simps Let-def hyps[OF ‹p ∈ sparsegrid ′ dm›]

parent-sum[OF ‹p ∈ grid ?l {d}› ‹d < length b›]
l2-child[OF ‹d < length b› ‹p ∈ grid ?l {d}›] sgn.simps
if-P[OF ‹p ∈ lgrid b {d} lm›] if-P[OF ‹p ∈ lgrid ?l {d} lm›]
if-not-P[OF ‹p /∈ lgrid ?r {d} lm›]

using child-ix child-lv ‹d < length b› level-shift[OF ‹lv b d < lv p d›]
by (auto simp add: algebra-simps diff-divide-distrib add-divide-distrib)

qed
next

case False hence not-child: !! dir . ¬ p ∈ grid (child b dir d) {d} by auto
hence p = b using grid-onedim-split[where ds={} and d=d and b=b] ‹p ∈

grid b {d}› unfolding grid-empty-ds[where b=b] by auto
from not-child have lnot-child: !! dir . ¬ p ∈ lgrid (child b dir d) {d} lm

unfolding lgrid-def by auto
have result: ((fl + fr) / 4 + 1 / 3 ∗ α b) / 2 ^ lv b d = (fl + (fr − fl) / 2)

/ 2 ^ (lv b d + 1) + α b ∗ l2-ϕ (b ! d) (b ! d)
by (auto simp: l2-same diff-divide-distrib add-divide-distrib times-divide-eq-left[symmetric]

algebra-simps)
show ?thesis

unfolding down ′.simps Let-def fun-upd-def hyps[OF ‹p ∈ sparsegrid ′ dm›]
if-P[OF ‹p ∈ lgrid b {d} lm›] if-not-P[OF lnot-child] if-P[OF ‹p = b›]

unfolding ‹p = b› parents-single unfolding result by auto
qed

qed
next

case 0
have p /∈ lgrid b {d} lm
proof (rule ccontr)

assume ¬ p /∈ lgrid b {d} lm
hence p ∈ grid b {d} and level p < lm unfolding lgrid-def by auto
moreover from grid-level[OF ‹p ∈ grid b {d}›] and ‹0 + level b = lm› have

56

lm ≤ level p by auto
ultimately show False by auto

qed
thus ?case unfolding down ′.simps by auto

qed

lemma down: assumes d < dm and p: p ∈ sparsegrid dm lm
shows (down dm lm d α) p = (

∑
p ′ ∈ parents d (base {d} p) p. (α p ′) ∗ l2-ϕ

(p ! d) (p ′ ! d))
proof −

let ?F d l p = down ′ d l p 0 0
let ?S x p p ′ = if p ′ ∈ parents d (base {d} p) p then x ∗ l2-ϕ (p ! d) (p ′ ! d) else

0

{ fix p α assume p ∈ sparsegrid dm lm
from le-less-trans[OF grid-level sparsegridE(2)[OF this]]
have parents d (base {d} p) p ⊆ lgrid (base {d} p) {d} lm

unfolding lgrid-def parents-def by auto
hence (

∑
p ′∈lgrid (base {d} p) {d} lm. ?S (α p ′) p p ′) =

(
∑

p ′∈parents d (base {d} p) p. α p ′ ∗ l2-ϕ (p ! d) (p ′ ! d))
using lgrid-finite by (intro sum.mono-neutral-cong-right) auto

} note sum-eq = this

{ fix l p b α
assume b: b ∈ lgrid (start dm) ({0 ..<dm} − {d}) lm and l + level b = lm

and p ∈ sparsegrid dm lm
hence b-spg: b ∈ sparsegrid ′ dm and p-spg: p ∈ sparsegrid ′ dm and

d < length b and level p < lm
using sparsegrid ′-start sparsegrid-subset ‹d < dm› by auto

have ?F d l b α p = (if b = base {d} p then
∑

p ′∈lgrid b {d} lm. ?S (α p ′) p
p ′ else α p)

proof (cases b = base {d} p)
case True
have p ∈ lgrid (base {d} p) {d} lm

using baseE(2)[OF p-spg] and ‹level p < lm›
unfolding lgrid-def by auto

thus ?thesis unfolding if-P[OF True]
unfolding True sum-eq[OF ‹p ∈ sparsegrid dm lm›]
unfolding down ′-β[OF ‹d < length b› ‹l + level b = lm› b-spg p-spg,

unfolded True] by auto
next

case False
have p /∈ lgrid b {d} lm
proof (rule ccontr)

assume ¬ ?thesis hence p ∈ grid b {d} by auto
from b this have b = base {d} p using baseI by auto
thus False using False by simp

qed
thus ?thesis

57

unfolding if-not-P[OF False]
unfolding down ′-β[OF ‹d < length b› ‹l + level b = lm› b-spg p-spg]
by auto

qed }
from lift[OF ‹d < dm› ‹p ∈ sparsegrid dm lm›, where F = ?F and S = ?S ,

OF this]
show ?thesis

unfolding down-def
unfolding sum-eq[OF p] by simp

qed

end

7 UpDown
theory Up-Down
imports Up Down
begin

lemma updown ′: [[d ≤ dm; p ∈ sparsegrid dm lm]]
=⇒ (updown ′ dm lm d α) p = (

∑
p ′ ∈ lgrid (base {0 ..< d} p) {0 ..< d} lm.

α p ′ ∗ (
∏

d ′ ∈ {0 ..< d}. l2-ϕ (p ′ ! d ′) (p ! d ′)))
(is [[- ; -]] =⇒ - = (

∑
p ′ ∈ ?subgrid d p. α p ′ ∗ ?prod d p ′ p))

proof (induct d arbitrary: α p)
case 0 hence ?subgrid 0 p = {p} using base-empty unfolding lgrid-def and

sparsegrid-def sparsegrid ′-def by auto
thus ?case unfolding updown ′.simps by auto

next
case (Suc d)
let ?leafs p = (lgrid p {d} lm) − {p}
let ?parents = parents d (base {d} p) p
let ?b = base {0 ..<d} p
have d < dm using ‹Suc d ≤ dm› by auto

have p-spg: p ∈ grid (start dm) {0 ..<dm} and p-spg ′: p ∈ sparsegrid ′ dm and
level p < lm using ‹p ∈ sparsegrid dm lm›

unfolding sparsegrid-def and sparsegrid ′-def and lgrid-def by auto
have p ′-in-spg: !! p ′. p ′ ∈ ?subgrid d p =⇒ p ′ ∈ sparsegrid dm lm

using base-grid[OF p-spg ′] unfolding sparsegrid ′-def sparsegrid-def lgrid-def
by auto

from baseE [OF p-spg ′, where ds={0 ..<d}]
have ?b ∈ grid (start dm) {d..<dm} and p-bgrid: p ∈ grid ?b {0 ..<d} by auto
hence d < length ?b using ‹Suc d ≤ dm› by auto
have p ! d = ?b ! d using base-out[OF - - p-spg ′] ‹Suc d ≤ dm› by auto

have length p = dm using ‹p ∈ sparsegrid dm lm› unfolding sparsegrid-def
lgrid-def by auto

hence d < length p using ‹d < dm› by auto

58

have updown ′ dm lm d (up dm lm d α) p =
(
∑

p ′ ∈ ?subgrid d p. (up dm lm d α) p ′ ∗ (?prod d p ′ p))
using Suc by auto

also have . . . = (
∑

p ′ ∈ ?subgrid d p. (
∑

p ′′ ∈ ?leafs p ′. α p ′′ ∗ ?prod (Suc d)
p ′′ p))

proof (intro sum.cong refl)
fix p ′ assume p ′ ∈ ?subgrid d p
hence d < length p ′ unfolding lgrid-def using base-length[OF p-spg ′] ‹Suc d

≤ dm› by auto

have up dm lm d α p ′ ∗ ?prod d p ′ p =
(
∑

p ′′ ∈ ?leafs p ′. α p ′′ ∗ l2-ϕ (p ′′ ! d) (p ′ ! d)) ∗ ?prod d p ′ p
using ‹p ′ ∈ ?subgrid d p› up ‹Suc d ≤ dm› p ′-in-spg by auto

also have . . . = (
∑

p ′′ ∈ ?leafs p ′. α p ′′ ∗ l2-ϕ (p ′′ ! d) (p ′ ! d) ∗ ?prod d p ′

p)
using sum-distrib-right by auto

also have . . . = (
∑

p ′′ ∈ ?leafs p ′. α p ′′ ∗ ?prod (Suc d) p ′′ p)
proof (intro sum.cong refl)

fix p ′′ assume p ′′ ∈ ?leafs p ′

have ?prod d p ′ p = ?prod d p ′′ p
proof (intro prod.cong refl)

fix d ′ assume d ′ ∈ {0 ..<d}
hence d-lt-p: d ′ < length p ′ and d ′-not-d: d ′ /∈ {d} using ‹d < length p ′›

by auto
hence p ′ ! d ′ = p ′′ ! d ′ using ‹p ′′ ∈ ?leafs p ′› grid-invariant[OF d-lt-p

d ′-not-d] unfolding lgrid-def by auto
thus l2-ϕ (p ′!d ′) (p!d ′) = l2-ϕ (p ′′!d ′) (p!d ′) by auto

qed
moreover have p ′ ! d = p ! d

using ‹p ′ ∈ ?subgrid d p› and grid-invariant[OF ‹d < length ?b›, where
p=p ′ and ds={0 ..<d}] unfolding lgrid-def ‹p ! d = ?b ! d› by auto

ultimately have l2-ϕ (p ′′ ! d) (p ′ ! d) ∗ ?prod d p ′ p =
l2-ϕ (p ′′ ! d) (p ! d) ∗ ?prod d p ′′ p by auto

also have . . . = ?prod (Suc d) p ′′ p
proof −

have insert d {0 ..<d} = {0 ..<Suc d} by auto
moreover from prod.insert
have prod (λ d ′. l2-ϕ (p ′′ ! d ′) (p ! d ′)) (insert d {0 ..<d}) =
(λ d ′. l2-ϕ (p ′′ ! d ′) (p ! d ′)) d ∗ prod (λ d ′. l2-ϕ (p ′′ ! d ′) (p ! d ′)) {0 ..<d}
by auto

ultimately show ?thesis by auto
qed
finally show α p ′′ ∗ l2-ϕ (p ′′ ! d) (p ′ ! d) ∗ ?prod d p ′ p = α p ′′ ∗ ?prod (Suc

d) p ′′ p by auto
qed
finally show (up dm lm d α) p ′ ∗ (?prod d p ′ p) = (

∑
p ′′ ∈ ?leafs p ′. α p ′′ ∗

?prod (Suc d) p ′′ p) by auto
qed

59

also have . . . = (
∑

(p ′, p ′′) ∈ Sigma (?subgrid d p) (λp ′. (?leafs p ′)). (α p ′′) ∗
(?prod (Suc d) p ′′ p))

by (rule sum.Sigma, auto simp add: lgrid-finite)
also have . . . = (

∑
p ′′′ ∈ (

⋃
p ′ ∈ ?subgrid d p. (

⋃
p ′′ ∈ ?leafs p ′. { (p ′, p ′′)

})).
(((λ p ′′. α p ′′ ∗ ?prod (Suc d) p ′′ p) o snd) p ′′′)) unfolding Sigma-def by

(rule sum.cong[OF refl], auto)
also have . . . = (

∑
p ′′ ∈ snd ‘ (

⋃
p ′ ∈ ?subgrid d p. (

⋃
p ′′ ∈ ?leafs p ′. { (p ′,

p ′′) })).
α p ′′ ∗ (?prod (Suc d) p ′′ p)) unfolding lgrid-def
by (rule sum.reindex[symmetric],

rule subset-inj-on[OF grid-grid-inj-on[OF ivl-disj-int(15)[where l=0 and
m=d and u=d], where b=?b]])

auto
also have . . . = (

∑
p ′′ ∈ (

⋃
p ′ ∈ ?subgrid d p. (

⋃
p ′′ ∈ ?leafs p ′. snd ‘ { (p ′,

p ′′) })).
α p ′′ ∗ (?prod (Suc d) p ′′ p)) by (auto simp only: image-UN)

also have . . . = (
∑

p ′′ ∈ (
⋃

p ′ ∈ ?subgrid d p. ?leafs p ′). α p ′′ ∗ (?prod (Suc
d) p ′′ p)) by auto

finally have up-part: updown ′ dm lm d (up dm lm d α) p = (
∑

p ′′ ∈ (
⋃

p ′ ∈
?subgrid d p. ?leafs p ′). α p ′′ ∗ (?prod (Suc d) p ′′ p)) .

have down dm lm d (updown ′ dm lm d α) p = (
∑

p ′ ∈ ?parents. (updown ′ dm
lm d α p ′) ∗ l2-ϕ (p ! d) (p ′ ! d))

using ‹Suc d ≤ dm› and down and ‹p ∈ sparsegrid dm lm› by auto
also have . . . = (

∑
p ′ ∈ ?parents.

∑
p ′′ ∈ ?subgrid d p ′. α p ′′ ∗ ?prod (Suc d)

p ′′ p)
proof (rule sum.cong[OF refl])

fix p ′ let ?b ′ = base {d} p
assume p ′ ∈ ?parents
hence p-lgrid: p ′ ∈ lgrid ?b ′ {d} (level p + 1) using parents-subset-lgrid by

auto
hence p ′ ∈ sparsegrid dm lm and p ′-spg ′: p ′ ∈ sparsegrid ′ dm using ‹level p

< lm› base-grid[OF p-spg ′] unfolding sparsegrid-def lgrid-def sparsegrid ′-def by
auto

hence length p ′ = dm unfolding sparsegrid-def lgrid-def by auto
hence d < length p ′ using ‹Suc d ≤ dm› by auto

from p-lgrid have p ′-grid: p ′ ∈ grid ?b ′ {d} unfolding lgrid-def by auto

have (updown ′ dm lm d α p ′) ∗ l2-ϕ (p ! d) (p ′ ! d) = (
∑

p ′′ ∈ ?subgrid d p ′.
α p ′′ ∗ ?prod d p ′′ p ′) ∗ l2-ϕ (p ! d) (p ′ ! d)

using ‹p ′ ∈ sparsegrid dm lm› Suc by auto
also have . . . = (

∑
p ′′ ∈ ?subgrid d p ′. α p ′′ ∗ ?prod d p ′′ p ′ ∗ l2-ϕ (p ! d)

(p ′ ! d))
using sum-distrib-right by auto

also have . . . = (
∑

p ′′ ∈ ?subgrid d p ′. α p ′′ ∗ ?prod (Suc d) p ′′ p)
proof (rule sum.cong[OF refl])

fix p ′′ assume p ′′ ∈ ?subgrid d p ′

60

have ?prod d p ′′ p ′ = ?prod d p ′′ p
proof (rule prod.cong, rule refl)

fix d ′ assume d ′ ∈ {0 ..<d}
hence d ′ < dm and d ′ /∈ {d} using ‹Suc d ≤ dm› by auto
from grid-base-out[OF this p-spg ′ p ′-grid]
show l2-ϕ (p ′′!d ′) (p ′!d ′) = l2-ϕ (p ′′!d ′) (p!d ′) by auto

qed
moreover
have l2-ϕ (p ! d) (p ′ ! d) = l2-ϕ (p ′′ ! d) (p ! d)
proof −

have d < dm and d /∈ {0 ..<d} using ‹Suc d ≤ dm› base-length p ′-spg ′ by
auto

from grid-base-out[OF this p ′-spg ′] ‹p ′′ ∈ ?subgrid d p ′›[unfolded lgrid-def]
show ?thesis using l2-commutative by auto

qed
moreover have ?prod d p ′′ p ∗ l2-ϕ (p ′′ ! d) (p ! d) = ?prod (Suc d) p ′′ p
proof −

have insert d {0 ..<d} = {0 ..<Suc d} by auto
moreover from prod.insert
have (λ d ′. l2-ϕ (p ′′ ! d ′) (p ! d ′)) d ∗ prod (λ d ′. l2-ϕ (p ′′ ! d ′) (p ! d ′))

{0 ..<d} =
prod (λ d ′. l2-ϕ (p ′′ ! d ′) (p ! d ′)) (insert d {0 ..<d})
by auto

hence (prod (λ d ′. l2-ϕ (p ′′ ! d ′) (p ! d ′)) {0 ..<d}) ∗ (λ d ′. l2-ϕ (p ′′ ! d ′)
(p ! d ′)) d =

prod (λ d ′. l2-ϕ (p ′′ ! d ′) (p ! d ′)) (insert d {0 ..<d})
by auto

ultimately show ?thesis by auto
qed
ultimately show α p ′′ ∗ ?prod d p ′′ p ′ ∗ l2-ϕ (p ! d) (p ′ ! d) = α p ′′ ∗ ?prod

(Suc d) p ′′ p by auto
qed
finally show (updown ′ dm lm d α p ′) ∗ l2-ϕ (p ! d) (p ′ ! d) = (

∑
p ′′ ∈ ?subgrid

d p ′. α p ′′ ∗ ?prod (Suc d) p ′′ p) by auto
qed
also have . . . = (

∑
(p ′, p ′′) ∈ (Sigma ?parents (?subgrid d)). α p ′′ ∗ ?prod (Suc

d) p ′′ p)
by (rule sum.Sigma, auto simp add: parents-finite lgrid-finite)

also have . . . = (
∑

p ′′′ ∈ (
⋃

p ′ ∈ ?parents. (
⋃

p ′′ ∈ ?subgrid d p ′. { (p ′, p ′′)
})).

(((λ p ′′. α p ′′ ∗ ?prod (Suc d) p ′′ p) o snd) p ′′′)) unfolding Sigma-def by
(rule sum.cong[OF refl], auto)

also have . . . = (
∑

p ′′ ∈ snd ‘ (
⋃

p ′ ∈ ?parents. (
⋃

p ′′ ∈ ?subgrid d p ′. { (p ′,
p ′′) })). α p ′′ ∗ (?prod (Suc d) p ′′ p))

proof (rule sum.reindex[symmetric], rule inj-onI)
fix x y
assume x ∈ (

⋃
p ′∈parents d (base {d} p) p.

⋃
p ′′∈lgrid (base {0 ..<d} p ′)

{0 ..<d} lm. {(p ′, p ′′)})

61

hence x-snd: snd x ∈ grid (base {0 ..<d} (fst x)) {0 ..<d} and fst x ∈ grid
(base {d} p) {d} and p ∈ grid (fst x) {d}

unfolding parents-def lgrid-def by auto
hence x-spg: fst x ∈ sparsegrid ′ dm using base-grid[OF p-spg ′] by auto

assume y ∈ (
⋃

p ′∈parents d (base {d} p) p.
⋃

p ′′∈lgrid (base {0 ..<d} p ′)
{0 ..<d} lm. {(p ′, p ′′)})

hence y-snd: snd y ∈ grid (base {0 ..<d} (fst y)) {0 ..<d} and fst y ∈ grid
(base {d} p) {d} and p ∈ grid (fst y) {d}

unfolding parents-def lgrid-def by auto
hence y-spg: fst y ∈ sparsegrid ′ dm using base-grid[OF p-spg ′] by auto
hence length (fst y) = dm unfolding sparsegrid ′-def by auto

assume snd x = snd y
have fst x = fst y
proof (rule nth-equalityI)

show l-eq: length (fst x) = length (fst y) using grid-length[OF ‹p ∈ grid (fst
y) {d}›] grid-length[OF ‹p ∈ grid (fst x) {d}›]

by auto
show fst x ! i = fst y ! i if i < length (fst x) for i
proof −

have i < length (fst y) and i < dm using that l-eq and ‹length (fst y) =
dm› by auto

show fst x ! i = fst y ! i
proof (cases i = d)

case False hence i /∈ {d} by auto
with grid-invariant[OF ‹i < length (fst x)› this ‹p ∈ grid (fst x) {d}›]

grid-invariant[OF ‹i < length (fst y)› this ‹p ∈ grid (fst y) {d}›]
show ?thesis by auto

next
case True with grid-base-out[OF ‹i < dm› - y-spg y-snd] grid-base-out[OF

‹i < dm› - x-spg x-snd]
show ?thesis using ‹snd x = snd y› by auto

qed
qed

qed
show x = y using prod-eqI [OF ‹fst x = fst y› ‹snd x = snd y›] .

qed
also have . . . = (

∑
p ′′ ∈ (

⋃
p ′ ∈ ?parents. (

⋃
p ′′ ∈ ?subgrid d p ′. snd ‘ { (p ′,

p ′′) })).
α p ′′ ∗ (?prod (Suc d) p ′′ p)) by (auto simp only: image-UN)

also have . . . = (
∑

p ′′ ∈ (
⋃

p ′ ∈ ?parents. ?subgrid d p ′). α p ′′ ∗ ?prod (Suc
d) p ′′ p) by auto

finally have down-part: down dm lm d (updown ′ dm lm d α) p =
(
∑

p ′′ ∈ (
⋃

p ′ ∈ ?parents. ?subgrid d p ′). α p ′′ ∗ ?prod (Suc d) p ′′ p) .

have updown ′ dm lm (Suc d) α p =
(
∑

p ′′ ∈ (
⋃

p ′ ∈ ?subgrid d p. ?leafs p ′). α p ′′ ∗ ?prod (Suc d) p ′′ p) +
(
∑

p ′′ ∈ (
⋃

p ′ ∈ ?parents. ?subgrid d p ′). α p ′′ ∗ ?prod (Suc d) p ′′ p)

62

unfolding sum-vector-def updown ′.simps down-part and up-part ..
also have . . . = (

∑
p ′′ ∈ (

⋃
p ′ ∈ ?subgrid d p. ?leafs p ′) ∪ (

⋃
p ′ ∈ ?parents.

?subgrid d p ′). α p ′′ ∗ ?prod (Suc d) p ′′ p)
proof (rule sum.union-disjoint[symmetric], simp add: lgrid-finite, simp add:

lgrid-finite parents-finite,
rule iffD2 [OF disjoint-iff-not-equal], rule ballI , rule ballI)

fix x y
assume x ∈ (

⋃
p ′ ∈ ?subgrid d p. ?leafs p ′)

then obtain px where px ∈ grid (base {0 ..<d} p) {0 ..<d} and x ∈ grid px
{d} and x 6= px unfolding lgrid-def by auto

with grid-base-out[OF - - p-spg ′ this(1)] ‹Suc d ≤ dm› base-length[OF p-spg ′]
grid-level-d

have lv px d < lv x d and px ! d = p ! d by auto
hence lv p d < lv x d unfolding lv-def by auto
moreover
assume y ∈ (

⋃
p ′ ∈ ?parents. ?subgrid d p ′)

then obtain py where y-grid: y ∈ grid (base {0 ..<d} py) {0 ..<d} and py ∈
?parents unfolding lgrid-def by auto

hence py ∈ grid (base {d} p) {d} and p ∈ grid py {d} unfolding parents-def
by auto

hence py-spg: py ∈ sparsegrid ′ dm using base-grid[OF p-spg ′] by auto
have y ! d = py ! d using grid-base-out[OF - - py-spg y-grid] ‹Suc d ≤ dm›

by auto
hence lv y d ≤ lv p d using grid-single-level[OF ‹p ∈ grid py {d}›] ‹Suc d ≤

dm› and sparsegrid ′-length[OF py-spg] unfolding lv-def by auto
ultimately
show x 6= y by auto

qed
also have . . . = (

∑
p ′ ∈ ?subgrid (Suc d) p. α p ′ ∗ ?prod (Suc d) p ′ p) (is (

∑
x ∈ ?in. ?F x) = (

∑
x ∈ ?out. ?F x))

proof (rule sum.mono-neutral-left, simp add: lgrid-finite)
show ?in ⊆ ?out (is ?children ∪ ?siblings ⊆ -)
proof (rule subsetI)

fix x assume x ∈ ?in
show x ∈ ?out
proof (cases x ∈ ?children)

case False hence x ∈ ?siblings using ‹x ∈ ?in› by auto
then obtain px where px ∈ parents d (base {d} p) p and x ∈ lgrid (base

{0 ..<d} px) {0 ..<d} lm by auto
hence level x < lm and px ∈ grid (base {d} p) {d} and x ∈ grid (base

{0 ..<d} px) {0 ..<d} and {d} ∪ {0 ..<d} = {0 ..<Suc d} unfolding lgrid-def
parents-def by auto

with grid-base-union[OF p-spg ′ this(2) this(3)] show ?thesis unfolding
lgrid-def by auto

next
have d-eq: {0 ..<Suc d} ∪ {d} = {0 ..<Suc d} by auto
case True
then obtain px where px ∈ ?subgrid d p and x ∈ lgrid px {d} lm and x

6= px by auto

63

hence px ∈ grid (base {0 ..<d} p) {0 ..<d} and x ∈ grid px {d} and level
x < lm and {d} ∪ {0 ..<d} = {0 ..<Suc d} unfolding lgrid-def by auto

from grid-base-dim-add[OF - p-spg ′ this(1)]
have px ∈ grid (base {0 ..<Suc d} p) {0 ..<Suc d} by auto
from grid-transitive[OF ‹x ∈ grid px {d}› this]
show ?thesis unfolding lgrid-def using ‹level x < lm› d-eq by auto

qed
qed

show ∀ x ∈ ?out − ?in. ?F x = 0
proof

fix x assume x ∈ ?out − ?in

hence x ∈ ?out and up-ps ′: !! p ′. p ′ ∈ ?subgrid d p =⇒ x /∈ lgrid p ′ {d} lm
− {p ′}

and down-ps ′: !! p ′. p ′ ∈ ?parents =⇒ x /∈ ?subgrid d p ′ by auto
hence x-eq: x ∈ grid (base {0 ..<Suc d} p) {0 ..<Suc d} and level x < lm

unfolding lgrid-def by auto
hence up-ps: !! p ′. p ′ ∈ ?subgrid d p =⇒ x /∈ grid p ′ {d} − {p ′} and

down-ps: !! p ′. p ′ ∈ ?parents =⇒ x /∈ grid (base {0 ..<d} p ′) {0 ..<d}
using up-ps ′ down-ps ′ unfolding lgrid-def by auto

have ds-eq: {0 ..<Suc d} = {0 ..<d} ∪ {d} by auto
have x /∈ grid (base {0 ..<d} p) {0 ..<Suc d} − grid (base {0 ..<d} p) {0 ..<d}
proof

assume x ∈ grid (base {0 ..<d} p) {0 ..<Suc d} − grid (base {0 ..<d} p)
{0 ..<d}

hence x ∈ grid (base {0 ..<d} p) ({d} ∪ {0 ..<d}) and x-ngrid: x /∈ grid
(base {0 ..<d} p) {0 ..<d} using ds-eq by auto

from grid-split[OF this(1)] obtain px where px-grid: px ∈ grid (base
{0 ..<d} p) {0 ..<d} and x ∈ grid px {d} by auto

from grid-level[OF this(2)] ‹level x < lm› have level px < lm by auto
hence px ∈ ?subgrid d p using px-grid unfolding lgrid-def by auto
hence x /∈ grid px {d} − {px} using up-ps by auto

moreover have x 6= px proof (rule ccontr) assume ¬ x 6= px with px-grid
and x-ngrid show False by auto qed

ultimately show False using ‹x ∈ grid px {d}› by auto
qed
moreover have p ∈ ?parents unfolding parents-def using baseE(2)[OF

p-spg ′] by auto
hence x /∈ grid (base {0 ..<d} p) {0 ..<d} by (rule down-ps)
ultimately have x-ngrid: x /∈ grid (base {0 ..<d} p) {0 ..<Suc d} by auto

have x-spg: x ∈ sparsegrid ′ dm using base-grid[OF p-spg ′] x-eq by auto
hence length x = dm using grid-length by auto

let ?bx = base {0 ..<d} x and ?bp = base {0 ..<d} p and ?bx1 = base {d} x
and ?bp1 = base {d} p and ?px = p[d := x ! d]

64

have x-nochild-p: ?bx /∈ grid ?bp {d}
proof (rule ccontr)

assume ¬ base {0 ..<d} x /∈ grid (base {0 ..<d} p) {d}
hence base {0 ..<d} x ∈ grid (base {0 ..<d} p) {d} by auto
from grid-transitive[OF baseE(2)[OF x-spg] this]
have x ∈ grid (base {0 ..<d} p) {0 ..<Suc d} using ds-eq by auto
thus False using x-ngrid by auto

qed

have d < length ?bx and d < length ?bp and d < length ?bx1 and d < length
?bp1 using base-length[OF x-spg] base-length[OF p-spg ′] and ‹d < dm› by auto

have p-nochild-x: ?bp /∈ grid ?bx {d} (is ?assm)
proof (rule ccontr)

have ds: {0 ..<d} ∪ {0 ..<Suc d} = {d} ∪ {0 ..<d} by auto
have d-sub: {d} ⊆ {0 ..<Suc d} by auto
assume ¬ ?assm hence b-in-bx: base {0 ..<d} p ∈ grid ?bx {d} by auto

have d /∈ {0 ..<d} and d ∈ {d} by auto
from grid-replace-dim[OF ‹d < length ?bx› ‹d < length p› grid.Start[where

b=p and ds={d}] b-in-bx]
have p ∈ grid ?px {d} unfolding base-out[OF ‹d < dm› ‹d /∈ {0 ..<d}›

x-spg] base-out[OF ‹d < dm› ‹d /∈ {0 ..<d}› p-spg ′] list-update-id .
moreover

from grid-replace-dim[OF ‹d < length ?bx1 › ‹d < length ?bp1 › baseE(2)[OF
p-spg ′, where ds={d}] baseE(2)[OF x-spg, where ds={d}]]

have ?px ∈ grid ?bp1 {d} unfolding base-in[OF ‹d < dm› ‹d ∈ {d}› x-spg]
unfolding base-in[OF ‹d < dm› ‹d ∈ {d}› p-spg ′, symmetric] list-update-id .

ultimately
have x /∈ grid (base {0 ..<d} ?px) {0 ..<d} using down-ps[unfolded

parents-def , where p ′=?px] by (auto simp only:)
moreover
have base {0 ..<d} ?px = ?bx
proof (rule nth-equalityI)

from ‹?px ∈ grid ?bp1 {d}› have px-spg: ?px ∈ sparsegrid ′ dm using
base-grid[OF p-spg ′] by auto

from base-length[OF this] base-length[OF x-spg] show l-eq: length (base
{0 ..<d} ?px) = length ?bx by auto

show base {0 ..<d} ?px ! i = ?bx ! i if i < length (base {0 ..<d} ?px) for i
proof −

have i < length ?bx and i < dm using that l-eq and base-length[OF
px-spg] by auto

show base {0 ..<d} ?px ! i = ?bx ! i
proof (cases i < d)

case True hence i ∈ {0 ..<d} by auto
from base-in[OF ‹i < dm› this] show ?thesis using px-spg x-spg by

auto
next

case False hence i /∈ {0 ..<d} by auto
have ?px ! i = x ! i

65

proof (cases i > d)
have i-le: i < length (base {0 ..<Suc d} p) using base-length[OF

p-spg ′] and ‹i < dm› by auto
case True hence i /∈ {0 ..<Suc d} by auto

from grid-invariant[OF i-le this x-eq] base-out[OF ‹i < dm› this
p-spg ′]

show ?thesis using list-update-id and True by auto
next

case False hence d = i using ‹¬ i < d› by auto
thus ?thesis unfolding ‹d = i› using ‹i < dm› ‹length p = dm›

nth-list-update-eq by auto
qed

thus ?thesis using base-out[OF ‹i < dm› ‹i /∈ {0 ..<d}› px-spg]
base-out[OF ‹i < dm› ‹i /∈ {0 ..<d}› x-spg] by auto

qed
qed

qed
ultimately have x /∈ grid ?bx {0 ..<d} by auto
thus False using baseE(2)[OF x-spg] by auto

qed

have x-grid: ?bx ∈ grid (base {0 ..<Suc d} p) {d} using grid-shift-base[OF -
p-spg ′ x-eq[unfolded ds-eq]] unfolding ds-eq by auto

have p-grid: ?bp ∈ grid (base {0 ..<Suc d} p) {d} using grid-shift-base[OF -
p-spg ′ baseE(2)[OF p-spg ′, where ds={0 ..<d} ∪ {d}]] unfolding ds-eq by auto

have l2-ϕ (?bp ! d) (?bx ! d) = 0
proof (cases lv ?bx d ≤ lv ?bp d)

case True from l2-disjoint[OF - x-grid p-grid p-nochild-x this] ‹d < dm›
and base-length[OF p-spg ′]

show ?thesis by auto
next

case False hence lv ?bx d ≥ lv ?bp d by auto
from l2-disjoint[OF - p-grid x-grid x-nochild-p this] ‹d < dm› and base-length[OF

p-spg ′]
show ?thesis by (auto simp: l2-commutative)

qed
hence l2-ϕ (p ! d) (x ! d) = 0 using base-out[OF ‹d < dm›] p-spg ′ x-spg by

auto
hence ∃ d ∈ {0 ..<Suc d}. l2-ϕ (p ! d) (x ! d) = 0 by auto
from prod-zero[OF - this]
show ?F x = 0 by (auto simp: l2-commutative)

qed
qed
finally show ?case .

qed

theorem updown:

66

assumes p-spg: p ∈ sparsegrid dm lm
shows updown dm lm α p = (

∑
p ′ ∈ sparsegrid dm lm. α p ′ ∗ l2 p ′ p)

proof −
have p ∈ sparsegrid ′ dm using p-spg unfolding sparsegrid-def sparsegrid ′-def

lgrid-def by auto
have !!p ′. p ′ ∈ lgrid (base {0 ..<dm} p) {0 ..<dm} lm =⇒ length p ′ = dm
proof −

fix p ′ assume p ′ ∈ lgrid (base {0 ..<dm} p) {0 ..<dm} lm
with base-grid[OF ‹p ∈ sparsegrid ′ dm›] have p ′ ∈ sparsegrid ′ dm unfolding

lgrid-def by auto
thus length p ′ = dm by auto

qed
thus ?thesis

unfolding updown-def sparsegrid-def base-start-eq[OF p-spg]
using updown ′[OF - p-spg, where d=dm] p-spg[unfolded sparsegrid-def lgrid-def]
by (auto simp: atLeast0LessThan p-spg[THEN sparsegrid-length] l2-eq)

qed

corollary
fixes α
assumes p: p ∈ sparsegrid dm lm
defines f α ≡ λx. (

∑
p∈sparsegrid dm lm. α p ∗ Φ p x)

shows updown dm lm α p = (
∫

x. f α x ∗ Φ p x ∂(ΠM d∈{..<dm}. lborel))
unfolding updown[OF p] l2-def f α-def sum-distrib-right
apply (intro has-bochner-integral-integral-eq[symmetric] has-bochner-integral-sum)
apply (subst mult.assoc)
apply (intro has-bochner-integral-mult-right)
apply (simp add: sparsegrid-length)
apply (rule has-bochner-integral-integrable)
using p
apply (simp add: sparsegrid-length Φ-def prod.distrib[symmetric])

proof (rule product-sigma-finite.product-integrable-prod)
show product-sigma-finite (λd. lborel) ..

qed (auto intro: integrable-ϕ2)

end

8 Imperative Version
theory Imperative
imports UpDown-Scheme Separation-Logic-Imperative-HOL.Sep-Main
begin

type-synonym pointmap = grid-point ⇒ nat
type-synonym impgrid = rat array

instance rat :: heap ..

primrec rat-pair where rat-pair (a, b) = (of-rat a, of-rat b)

67

declare rat-pair .simps [simp del]

definition
zipWithA :: (′a::heap ⇒ ′b::heap ⇒ ′a::heap) ⇒ ′a array ⇒ ′b array ⇒ ′a array

Heap
where

zipWithA f a b = do {
n ← Array.len a;
Heap-Monad.fold-map (λn. do {

x ← Array.nth a n ;
y ← Array.nth b n ;
Array.upd n (f x y) a
}) [0 ..<n];
return a
}

theorem zipWithA [sep-heap-rules]:
fixes xs ys :: ′a::heap list
assumes length xs = length ys
shows < a 7→a xs ∗ b 7→a ys > zipWithA f a b < λr . (a 7→a map (case-prod f)

(zip xs ys)) ∗ b 7→a ys ∗ ↑(a = r) >
proof −

{ fix n and xs :: ′a list
let ?part-res = λn xs. (map (case-prod f) (zip (take n xs) (take n ys)) @ drop

n xs)
assume n ≤ length xs length xs = length ys
then have < a 7→a xs ∗ b 7→a ys > Heap-Monad.fold-map (λn. do {

x ← Array.nth a n ;
y ← Array.nth b n ;
Array.upd n (f x y) a
}) [0 ..<n] < λr . a 7→a ?part-res n xs ∗ b 7→a ys >

proof (induct n arbitrary: xs)
case 0 then show ?case by sep-auto

next
case (Suc n)
note Suc.hyps [sep-heap-rules]
have ∗: (?part-res n xs)[n := f (?part-res n xs ! n) (ys ! n)] = ?part-res (Suc

n) xs
using Suc.prems by (simp add: nth-append take-Suc-conv-app-nth upd-conv-take-nth-drop)
from Suc.prems show ?case

by (sep-auto simp add: fold-map-append ∗)
qed }

note this[sep-heap-rules]
show ?thesis

unfolding zipWithA-def
by (sep-auto simp add: assms)

qed

68

definition copy-array :: ′a::heap array ⇒ (′a::heap array) Heap where
copy-array a = Array.freeze a >>= Array.of-list

theorem copy-array [sep-heap-rules]:
< a 7→a xs > copy-array a < λr . a 7→a xs ∗ r 7→a xs >
unfolding copy-array-def
by sep-auto

definition sum-array :: rat array ⇒ rat array ⇒ unit Heap where
sum-array a b = zipWithA (+) a b >> return ()

theorem sum-array [sep-heap-rules]:
fixes xs ys :: rat list
shows length xs = length ys =⇒ < a 7→a xs ∗ b 7→a ys > sum-array a b < λr .

(a 7→a map (λ(a, b). a + b) (zip xs ys)) ∗ b 7→a ys >
unfolding sum-array-def by sep-auto

locale linearization =
fixes dm lm :: nat
fixes pm :: pointmap
assumes pm: bij-betw pm (sparsegrid dm lm) {..< card (sparsegrid dm lm)}

begin

lemma linearizationD:
p ∈ sparsegrid dm lm =⇒ pm p < card (sparsegrid dm lm)
using pm by (auto simp: bij-betw-def)

definition gridI :: impgrid ⇒ (grid-point ⇒ real) ⇒ assn where
gridI a v =
(∃A xs. a 7→a xs ∗ ↑((∀ p∈sparsegrid dm lm. v p = of-rat (xs ! pm p)) ∧ length

xs = card (sparsegrid dm lm)))

lemma gridI-nth-rule [sep-heap-rules]:
g ∈ sparsegrid dm lm =⇒ < gridI a v > Array.nth a (pm g) <λr . gridI a v ∗ ↑

(of-rat r = v g)>
using pm by (sep-auto simp: bij-betw-def gridI-def)

lemma gridI-upd-rule [sep-heap-rules]:
g ∈ sparsegrid dm lm =⇒
< gridI a v > Array.upd (pm g) x a <λa ′. gridI a (fun-upd v g (of-rat x)) ∗

↑(a ′ = a)>
unfolding gridI-def using pm
by (sep-auto simp: bij-betw-def inj-onD intro!: nth-list-update-eq[symmetric] nth-list-update-neq[symmetric])

primrec upI ′ :: nat ⇒ nat ⇒ grid-point ⇒ impgrid ⇒ (rat ∗ rat) Heap where
upI ′ d 0 p a = return (0 , 0) |
upI ′ d (Suc l) p a = do {

(fl, fml) ← upI ′ d l (child p left d) a ;
(fmr , fr) ← upI ′ d l (child p right d) a ;

69

val ← Array.nth a (pm p) ;
Array.upd (pm p) (fml + fmr) a ;
let result = ((fml + fmr + val / 2 ^ (lv p d) / 2) / 2) ;
return (fl + result, fr + result)
}

lemma upI ′ [sep-heap-rules]:
assumes lin[simp]: d < dm

and l: level p + l = lm l = 0 ∨ p ∈ sparsegrid dm lm
shows < gridI a v > upI ′ d l p a <λr . let (r ′, v ′) = up ′ d l p v in gridI a v ′ ∗
↑(rat-pair r = r ′) >

using l
proof (induct l arbitrary: p v)

note rat-pair .simps [simp]
case 0 then show ?case by sep-auto

next
case (Suc l)
from Suc.prems ‹d < dm›
have [simp]: level (child p left d) + l = lm level (child p right d) + l = lm p ∈

sparsegrid dm lm
by (auto simp: sparsegrid-length)

have [simp]: child p left d /∈ sparsegrid dm lm =⇒ l = 0 child p right d /∈
sparsegrid dm lm =⇒ l = 0

using Suc.prems by (auto simp: sparsegrid-def lgrid-def)

note Suc(1)[sep-heap-rules]
show ?case
by (sep-auto split: prod.split simp: of-rat-add of-rat-divide of-rat-power of-rat-mult

rat-pair-def Let-def)
qed

primrec downI ′ :: nat ⇒ nat ⇒ grid-point ⇒ impgrid ⇒ rat ⇒ rat ⇒ unit Heap
where

downI ′ d 0 p a fl fr = return () |
downI ′ d (Suc l) p a fl fr = do {

val ← Array.nth a (pm p) ;
let fm = ((fl + fr) / 2 + val) ;
Array.upd (pm p) (((fl + fr) / 4 + (1 / 3) ∗ val) / 2 ^ (lv p d)) a ;
downI ′ d l (child p left d) a fl fm ;
downI ′ d l (child p right d) a fm fr
}

lemma downI ′ [sep-heap-rules]:
assumes lin[simp]: d < dm

and l: level p + l = lm l = 0 ∨ p ∈ sparsegrid dm lm
shows < gridI a v > downI ′ d l p a fl fr <λr . gridI a (down ′ d l p (of-rat fl)

(of-rat fr) v) >
using l

70

proof (induct l arbitrary: p v fl fr)
note rat-pair .simps [simp]
case 0 then show ?case by sep-auto

next
case (Suc l)
from Suc.prems ‹d < dm›
have [simp]: level (child p left d) + l = lm level (child p right d) + l = lm p ∈

sparsegrid dm lm
by (auto simp: sparsegrid-length)

have [simp]: child p left d /∈ sparsegrid dm lm =⇒ l = 0 child p right d /∈
sparsegrid dm lm =⇒ l = 0

using Suc.prems by (auto simp: sparsegrid-def lgrid-def)

note Suc(1)[sep-heap-rules]
show ?case
by (sep-auto split: prod.split simp: of-rat-add of-rat-divide of-rat-power of-rat-mult

rat-pair-def Let-def fun-upd-def)
qed

definition liftI :: (nat ⇒ nat ⇒ grid-point ⇒ impgrid ⇒ unit Heap) ⇒ nat ⇒
impgrid ⇒ unit Heap where

liftI f d a =
foldr (λ p n. n >> f d (lm − level p) p a) (gridgen (start dm) ({ 0 ..< dm } −

{ d }) lm) (return ())

theorem liftI [sep-heap-rules]:
assumes d < dm
and f [sep-heap-rules]:

∧
v p. p ∈ lgrid (start dm) ({0 ..<dm} − {d}) lm =⇒

< gridI a v > f d (lm − level p) p a <λr . gridI a (f ′ d (lm − level p) p v) >
shows < gridI a v > liftI f d a <λr . gridI a (Grid.lift f ′ dm lm d v) >

proof −
let ?ds = {0 ..<dm} − {d} and ?g = gridI a
{ fix ps assume set ps ⊆ set (gridgen (start dm) ?ds lm) and distinct ps

then have < ?g v >
foldr (λp n. (n :: unit Heap) >> f d (lm − level p) p a) ps (return ())

<λr . ?g (foldr (λp α. f ′ d (lm − level p) p α) ps v) >
by (induct ps arbitrary: v) (sep-auto simp: gridgen-lgrid-eq)+ }

from this[OF subset-refl gridgen-distinct]
show ?thesis

by (simp add: liftI-def Grid.lift-def)
qed

definition upI where upI = liftI (λd l p a. upI ′ d l p a >> return ())

theorem upI [sep-heap-rules]:
assumes [simp]: d < dm
shows < gridI a v > upI d a <λr . gridI a (up dm lm d v) >
unfolding up-def upI-def

71

by (sep-auto simp: lgrid-def sparsegrid-def lgrid-def split: prod.split
intro: grid-union-dims[of {0 ..<dm} − {d} {0 ..<dm}])

definition downI where downI = liftI (λd l p a. downI ′ d l p a 0 0)

theorem downI [sep-heap-rules]:
assumes [simp]: d < dm
shows < gridI a v > downI d a <λr . gridI a (down dm lm d v) >
unfolding down-def downI-def
by (sep-auto simp: lgrid-def sparsegrid-def lgrid-def split: prod.split

intro: grid-union-dims[of {0 ..<dm} − {d} {0 ..<dm}])

theorem copy-array-gridI [sep-heap-rules]:
< gridI a v > copy-array a < λr . gridI a v ∗ gridI r v >
unfolding gridI-def
by sep-auto

theorem sum-array-gridI [sep-heap-rules]:
< gridI a v ∗ gridI b w > sum-array a b < λr . gridI a (sum-vector v w) ∗ gridI

b w >
unfolding gridI-def
by (sep-auto simp: sum-vector-def nth-map linearizationD of-rat-add)

primrec updownI ′ :: nat ⇒ impgrid ⇒ unit Heap where
updownI ′ 0 a = return () |
updownI ′ (Suc d) a = do {

b ← copy-array a ;
upI d a ;
updownI ′ d a ;
updownI ′ d b ;
downI d b ;
sum-array a b
}

theorem updownI ′ [sep-heap-rules]:
d ≤ dm =⇒ < gridI a v > updownI ′ d a <λr . gridI a (updown ′ dm lm d v) >t

proof (induct d arbitrary: a v)
case (Suc d)
note Suc.hyps [sep-heap-rules]
from Suc.prems show ?case

by sep-auto
qed sep-auto

definition updownI where updownI a = updownI ′ dm a

theorem updownI [sep-heap-rules]:
< gridI a v > updownI a <λr . gridI a (updown dm lm v) >t

unfolding updown-def updownI-def by sep-auto

72

end

end

Literatur

[1] J. Hölzl. Automatischer Korrektheitsbeweis von Algorithmen zur
hierarchischen Basistransformation. IDP, Institut für Informatik,
Technische Universität München, 2009.

[2] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional
Problems. Verlag Dr. Hut, München, Aug. 2010.

73

