
Universal Hash Families

Emin Karayel

March 17, 2025

Abstract

A k-universal hash family is a probability space of functions, which
have uniform distribution and form k-wise independent random vari-
ables.

They can often be used in place of classic (or cryptographic) hash
functions and allow the rigorous analysis of the performance of ran-
domized algorithms and data structures that rely on hash functions.

In 1981 Wegman and Carter [4] introduced a generic construction
for such families with arbitrary k using polynomials over a finite field.
This entry contains a formalization of them and establishes the prop-
erty of k-universality.

To be useful the formalization also provides an explicit construction
of finite fields using the factor ring of integers modulo a prime. Ad-
ditionally, some generic results about independent families are shown
that might be of independent interest.

1 Introduction and Definition
theory Universal-Hash-Families

imports HOL−Probability.Independent-Family
begin

Universal hash families are commonly used in randomized algorithms and
data structures to randomize the input of algorithms, such that probabilistic
methods can be employed without requiring any assumptions about the
input distribution.
If we regard a family of hash functions from a domain D to a finite range R
as a uniform probability space, then the family is k-universal if:

• For each x ∈ D the evaluation of the functions at x forms a uniformly
distributed random variable on R.

• The evaluation random variables for k or fewer distinct domain ele-
ments form an independent family of random variables.

1

This definition closely follows the definition from Vadhan [3, §3.5.5], with
the minor modification that independence is required not only for exactly k,
but also for fewer than k distinct domain elements. The correction is due
to the fact that in the corner case where D has fewer than k elements, the
second part of their definition becomes void. In the formalization this helps
avoid an unnecessary assumption in the theorems.
The following definition introduces the notion of k-wise independent random
variables:
definition (in prob-space) k-wise-indep-vars where

k-wise-indep-vars k M ′ X I =
(∀ J ⊆ I . card J ≤ k −→ finite J −→ indep-vars M ′ X J)

lemma (in prob-space) k-wise-indep-vars-subset:
assumes k-wise-indep-vars k M ′ X I
assumes J ⊆ I
assumes finite J
assumes card J ≤ k
shows indep-vars M ′ X J
〈proof 〉

lemma (in prob-space) k-wise-indep-subset:
assumes J ⊆ I
assumes k-wise-indep-vars k M ′ X ′ I
shows k-wise-indep-vars k M ′ X ′ J
〈proof 〉

Similarly for a finite non-empty set A the predicate uniform-on X A indicates
that the random variable is uniformly distributed on A:
definition (in prob-space) uniform-on X A = (

distr M (count-space UNIV) X = uniform-measure (count-space UNIV) A ∧
A 6= {} ∧ finite A ∧ random-variable (count-space UNIV) X)

lemma (in prob-space) uniform-onD:
assumes uniform-on X A
shows prob {ω ∈ space M . X ω ∈ B} = card (A ∩ B) / card A
〈proof 〉

With the two previous definitions it is possible to define the k-universality
condition for a family of hash functions from D to R:
definition (in prob-space) k-universal k X D R = (

k-wise-indep-vars k (λ-. count-space UNIV) X D ∧
(∀ i ∈ D. uniform-on (X i) R))

Note: The definition is slightly more generic then the informal specification
from above. This is because usually a family is formed by a single function
with a variable seed parameter. Instead of choosing a random function from

2

a probability space, a random seed is chosen from the probability space
which parameterizes the hash function.
The following section contains some preliminary results about independent
families of random variables. Section 3 introduces the Carter-Wegman hash
family, which is an explicit construction of k-universal families for arbitrary
k using polynomials over finite fields. The last section contains a proof that
the factor ring of the integers modulo a prime ideal is a finite field, followed
by an isomorphic construction of prime fields over an initial segment of the
natural numbers.
end

2 Preliminary Results
theory Universal-Hash-Families-More-Independent-Families

imports
Universal-Hash-Families
HOL−Probability.Stream-Space
HOL−Probability.Probability-Mass-Function

begin

lemma set-comp-image-cong:
assumes

∧
x. P x =⇒ f x = h (g x)

shows {f x| x. P x} = h ‘ {g x| x. P x}
〈proof 〉

lemma (in prob-space) k-wise-indep-vars-compose:
assumes k-wise-indep-vars k M ′ X I
assumes

∧
i. i ∈ I =⇒ Y i ∈ measurable (M ′ i) (N i)

shows k-wise-indep-vars k N (λi x. Y i (X i x)) I
〈proof 〉

lemma (in prob-space) k-wise-indep-vars-triv:
assumes indep-vars N T I
shows k-wise-indep-vars k N T I
〈proof 〉

The following two lemmas are of independent interest, they help infer inde-
pendence of events and random variables on distributions. (Candidates for
HOL−Probability.Independent-Family).
lemma (in prob-space) indep-sets-distr :

fixes A
assumes random-variable N f
defines F ≡ (λi. (λa. f −‘ a ∩ space M) ‘ A i)
assumes indep-F : indep-sets F I
assumes sets-A:

∧
i. i ∈ I =⇒ A i ⊆ sets N

shows prob-space.indep-sets (distr M N f) A I
〈proof 〉

3

lemma (in prob-space) indep-vars-distr :
assumes f ∈ measurable M N
assumes

∧
i. i ∈ I =⇒ X ′ i ∈ measurable N (M ′ i)

assumes indep-vars M ′ (λi. (X ′ i) ◦ f) I
shows prob-space.indep-vars (distr M N f) M ′ X ′ I
〈proof 〉

lemma range-inter : range ((∩) F) = Pow F
〈proof 〉

The singletons and the empty set form an intersection stable generator of a
countable discrete σ-algebra:
lemma sigma-sets-singletons-and-empty:

assumes countable M
shows sigma-sets M (insert {} ((λk. {k}) ‘ M)) = Pow M
〈proof 〉

In some of the following theorems, the premise M = measure-pmf p is used.
This allows stating theorems that hold for pmfs more concisely, for example,
instead of measure-pmf .prob p A ≤ measure-pmf .prob p B we can just write
M = measure-pmf p =⇒ prob A ≤ prob B in the locale prob-space.
lemma prob-space-restrict-space:

assumes [simp]:M = measure-pmf p
shows prob-space (restrict-space M (set-pmf p))
〈proof 〉

The abbreviation below is used to specify the discrete σ-algebra on UNIV
as a measure space. It is used in places where the existing definitions, such
as indep-vars, expect a measure space even though only a measurable space
is really needed, i.e., in cases where the property is invariant with respect
to the actual measure.
hide-const (open) discrete

abbreviation discrete ≡ count-space UNIV

lemma (in prob-space) indep-vars-restrict-space:
assumes [simp]:M = measure-pmf p
assumes

prob-space.indep-vars (restrict-space M (set-pmf p)) (λ-. discrete) X I
shows indep-vars (λ-. discrete) X I
〈proof 〉

lemma (in prob-space) measure-pmf-eq:
assumes M = measure-pmf p
assumes

∧
x. x ∈ set-pmf p =⇒ (x ∈ P) = (x ∈ Q)

shows prob P = prob Q
〈proof 〉

4

The following lemma is an intro rule for the independence of random vari-
ables defined on pmfs. In that case it is possible, to check the independence
of random variables point-wise.
The proof relies on the fact that the support of a pmf is countable and the
σ-algebra of such a set can be generated by singletons.
lemma (in prob-space) indep-vars-pmf :

assumes [simp]:M = measure-pmf p
assumes

∧
a J . J ⊆ I =⇒ finite J =⇒

prob {ω. ∀ i ∈ J . X i ω = a i} = (
∏

i ∈ J . prob {ω. X i ω = a i})
shows indep-vars (λ-. discrete) X I
〈proof 〉

lemma (in prob-space) split-indep-events:
assumes M = measure-pmf p
assumes indep-vars (λi. discrete) X ′ I
assumes K ⊆ I finite K
shows prob {ω. ∀ x ∈ K . P x (X ′ x ω)} = (

∏
x ∈ K . prob {ω. P x (X ′ x ω)})

〈proof 〉

lemma pmf-of-set-eq-uniform:
assumes finite A A 6= {}
shows measure-pmf (pmf-of-set A) = uniform-measure discrete A
〈proof 〉

lemma (in prob-space) uniform-onI :
assumes M = measure-pmf p
assumes finite A A 6= {}
assumes

∧
a. prob {ω. X ω = a} = indicator A a / card A

shows uniform-on X A
〈proof 〉

end

3 Carter-Wegman Hash Family
theory Carter-Wegman-Hash-Family

imports
Interpolation-Polynomials-HOL-Algebra.Interpolation-Polynomial-Cardinalities
Universal-Hash-Families-More-Independent-Families

begin

The Carter-Wegman hash family is a generic method to obtain k-universal
hash families for arbitrary k. (There are faster solutions, such as tabulation
hashing, which are limited to a specific k. See for example [2].)
The construction was described by Wegman and Carter [4], it is a hash
family between the elements of a finite field and works by choosing randomly
a polynomial over the field with degree less than k. The hash function is

5

the evaluation of a such a polynomial.
Using the property that the fraction of polynomials interpolating a given set
of s ≤ k points is 1 / real (card (carrier R))s, which is shown in [1], it is
possible to obtain both that the hash functions are k-wise independent and
uniformly distributed.
In the following two locales are introduced, the main reason for both is to
make the statements of the theorems and proofs more concise. The first
locale poly-hash-family fixes a finite ring R and the probability space of the
polynomials of degree less than k. Because the ring is not a field, the family
is not yet k-universal, but it is still possible to state a few results such as
the fact that the range of the hash function is a subset of the carrier of the
ring.
The second locale carter-wegman-hash-family is an extension of the former
with the assumption that R is a field with which the k-universality follows.
The reason for using two separate locales is to support use cases, where the
ring is only probably a field. For example if it is the set of integers modulo
an approximate prime, in such a situation a subset of the properties of an
algorithm using approximate primes would need to be verified even if R is
only a ring.
definition (in ring) hash x ω = eval ω x

locale poly-hash-family = ring +
fixes k :: nat
assumes finite-carrier [simp]: finite (carrier R)
assumes k-ge-0 : k > 0

begin

definition space where space = bounded-degree-polynomials R k
definition M where M = measure-pmf (pmf-of-set space)

lemma finite-space[simp]:finite space
〈proof 〉

lemma non-empty-bounded-degree-polynomials[simp]:space 6= {}
〈proof 〉

This is to add carrier-not-empty to the simp set in the context of poly-hash-family:
lemma non-empty-carrier [simp]: carrier R 6= {}
〈proof 〉

sublocale prob-space M
〈proof 〉

lemma hash-range[simp]:
assumes ω ∈ space
assumes x ∈ carrier R

6

shows hash x ω ∈ carrier R
〈proof 〉

lemma hash-range-2 :
assumes ω ∈ space
shows (λx. hash x ω) ‘ carrier R ⊆ carrier R
〈proof 〉

lemma integrable-M [simp]:
fixes f :: ′a list ⇒ ′c::{banach, second-countable-topology}
shows integrable M f
〈proof 〉

end

locale carter-wegman-hash-family = poly-hash-family +
assumes field-R: field R

begin
sublocale field
〈proof 〉

abbreviation field-size ≡ card (carrier R)

lemma poly-cards:
assumes K ⊆ carrier R
assumes card K ≤ k
assumes y ‘ K ⊆ (carrier R)
shows

card {ω ∈ space. (∀ k ∈ K . eval ω k = y k)} = field-size^(k−card K)
〈proof 〉

lemma poly-cards-single:
assumes x ∈ carrier R
assumes y ∈ carrier R
shows card {ω ∈ space. eval ω x = y} = field-size^(k−1)
〈proof 〉

lemma hash-prob:
assumes K ⊆ carrier R
assumes card K ≤ k
assumes y ‘ K ⊆ carrier R
shows

prob {ω. (∀ x ∈ K . hash x ω = y x)} = 1/(real field-size)^card K
〈proof 〉

lemma prob-single:
assumes x ∈ carrier R y ∈ carrier R
shows prob {ω. hash x ω = y} = 1/(real field-size)
〈proof 〉

7

lemma prob-range:
assumes [simp]:x ∈ carrier R
shows prob {ω. hash x ω ∈ A} = card (A ∩ carrier R) / field-size
〈proof 〉

lemma indep:
assumes J ⊆ carrier R
assumes card J ≤ k
shows indep-vars (λ-. discrete) hash J
〈proof 〉

lemma k-wise-indep:
k-wise-indep-vars k (λ-. discrete) hash (carrier R)
〈proof 〉

lemma inj-if-degree-1 :
assumes ω ∈ space
assumes degree ω = 1
shows inj-on (λx. hash x ω) (carrier R)
〈proof 〉

lemma uniform:
assumes i ∈ carrier R
shows uniform-on (hash i) (carrier R)
〈proof 〉

This the main result of this section - the Carter-Wegman hash family is
k-universal.
theorem k-universal:

k-universal k hash (carrier R) (carrier R)
〈proof 〉

end

lemma poly-hash-familyI :
assumes ring R
assumes finite (carrier R)
assumes 0 < k
shows poly-hash-family R k
〈proof 〉

lemma carter-wegman-hash-familyI :
assumes field F
assumes finite (carrier F)
assumes 0 < k
shows carter-wegman-hash-family F k
〈proof 〉

8

lemma hash-k-wise-indep:
assumes field F ∧ finite (carrier F)
assumes 1 ≤ n
shows

prob-space.k-wise-indep-vars (pmf-of-set (bounded-degree-polynomials F n)) n
(λ-. pmf-of-set (carrier F)) (ring.hash F) (carrier F)

〈proof 〉

lemma hash-prob-single:
assumes field F ∧ finite (carrier F)
assumes x ∈ carrier F
assumes 1 ≤ n
assumes y ∈ carrier F
shows
P(ω in pmf-of-set (bounded-degree-polynomials F n). ring.hash F x ω = y)
= 1/(real (card (carrier F)))

〈proof 〉

end

4 Indexed Products of Probability Mass Functions
theory Universal-Hash-Families-More-Product-PMF

imports
Concentration-Inequalities.Concentration-Inequalities-Preliminary
Finite-Fields.Finite-Fields-More-Bijections
Universal-Hash-Families-More-Independent-Families

begin

hide-const (open) Isolated.discrete

This section introduces a restricted version of Pi-pmf where the default
value is undefined and contains some additional results about that case in
addition to HOL−Probability.Product-PMF
abbreviation prod-pmf where prod-pmf I M ≡ Pi-pmf I undefined M

lemma measure-pmf-cong:
assumes

∧
x. x ∈ set-pmf p =⇒ x ∈ P ←→ x ∈ Q

shows measure (measure-pmf p) P = measure (measure-pmf p) Q
〈proof 〉

lemma pmf-mono:
assumes

∧
x. x ∈ set-pmf p =⇒ x ∈ P =⇒ x ∈ Q

shows measure (measure-pmf p) P ≤ measure (measure-pmf p) Q
〈proof 〉

lemma pmf-add:
assumes

∧
x. x ∈ P =⇒ x ∈ set-pmf p =⇒ x ∈ Q ∨ x ∈ R

9

shows measure p P ≤ measure p Q + measure p R
〈proof 〉

lemma pmf-prod-pmf :
assumes finite I
shows pmf (prod-pmf I M) x = (if x ∈ extensional I then

∏
i ∈ I . (pmf (M i))

(x i) else 0)
〈proof 〉

lemma PiE-defaut-undefined-eq: PiE-dflt I undefined M = PiE I M
〈proof 〉

lemma set-prod-pmf :
assumes finite I
shows set-pmf (prod-pmf I M) = PiE I (set-pmf ◦ M)
〈proof 〉

A more general version of measure-Pi-pmf-Pi.
lemma prob-prod-pmf ′:

assumes finite I
assumes J ⊆ I
shows measure (measure-pmf (Pi-pmf I d M)) (Pi J A) = (

∏
i ∈ J . measure

(M i) (A i))
〈proof 〉

lemma prob-prod-pmf-slice:
assumes finite I
assumes i ∈ I
shows measure (measure-pmf (prod-pmf I M)) {ω. P (ω i)} = measure (M i)
{ω. P ω}
〈proof 〉

definition restrict-dfl where restrict-dfl f A d = (λx. if x ∈ A then f x else d)

lemma pi-pmf-decompose:
assumes finite I
shows Pi-pmf I d M = map-pmf (λω. restrict-dfl (λi. ω (f i) i) I d) (Pi-pmf (f

‘ I) (λ-. d) (λj. Pi-pmf (f −‘ {j} ∩ I) d M))
〈proof 〉

lemma restrict-dfl-iter : restrict-dfl (restrict-dfl f I d) J d = restrict-dfl f (I ∩ J)
d
〈proof 〉

lemma indep-vars-restrict ′:
assumes finite I
shows prob-space.indep-vars (Pi-pmf I d M) (λ-. discrete) (λi ω. restrict-dfl ω

(f −‘ {i} ∩ I) d) (f ‘ I)
〈proof 〉

10

lemma indep-vars-restrict-intro ′:
assumes finite I
assumes

∧
i ω. i ∈ J =⇒ X ′ i ω = X ′ i (restrict-dfl ω (f −‘ {i} ∩ I) d)

assumes J = f ‘ I
assumes

∧
ω i. i ∈ J =⇒ X ′ i ω ∈ space (M ′ i)

shows prob-space.indep-vars (measure-pmf (Pi-pmf I d p)) M ′ (λi ω. X ′ i ω) J
〈proof 〉

lemma
fixes f :: ′b ⇒ (′c :: {second-countable-topology,banach,real-normed-field})
assumes finite I
assumes i ∈ I
assumes integrable (measure-pmf (M i)) f
shows integrable-Pi-pmf-slice: integrable (Pi-pmf I d M) (λx. f (x i))
and expectation-Pi-pmf-slice: integralL (Pi-pmf I d M) (λx. f (x i)) = integralL

(M i) f
〈proof 〉

This is an improved version of expectation-prod-Pi-pmf. It works for general
normed fields instead of non-negative real functions .
lemma expectation-prod-Pi-pmf :

fixes f :: ′a ⇒ ′b ⇒ (′c :: {second-countable-topology,banach,real-normed-field})
assumes finite I
assumes

∧
i. i ∈ I =⇒ integrable (measure-pmf (M i)) (f i)

shows integralL (Pi-pmf I d M) (λx. (
∏

i ∈ I . f i (x i))) = (
∏

i ∈ I . integralL
(M i) (f i))
〈proof 〉

lemma variance-prod-pmf-slice:
fixes f :: ′a ⇒ real
assumes i ∈ I finite I
assumes integrable (measure-pmf (M i)) (λω. f ω^2)
shows prob-space.variance (Pi-pmf I d M) (λω. f (ω i)) = prob-space.variance

(M i) f
〈proof 〉

lemma Pi-pmf-bind-return:
assumes finite I
shows Pi-pmf I d (λi. M i >>= (λx. return-pmf (f i x))) = Pi-pmf I d ′ M >>=

(λx. return-pmf (λi. if i ∈ I then f i (x i) else d))
〈proof 〉

lemma pmf-of-set-prod-eq:
assumes A 6= {} finite A
assumes B 6= {} finite B
shows pmf-of-set (A × B) = pair-pmf (pmf-of-set A) (pmf-of-set B)
〈proof 〉

11

lemma split-pmf-mod-div ′:
assumes a > (0 ::nat)
assumes b > 0
shows map-pmf (λx. (x mod a, x div a)) (pmf-of-set {..<a ∗ b}) = pmf-of-set

({..<a} × {..<b})
〈proof 〉

lemma split-pmf-mod-div:
assumes a > (0 ::nat)
assumes b > 0
shows map-pmf (λx. (x mod a, x div a)) (pmf-of-set {..<a ∗ b}) =

pair-pmf (pmf-of-set {..<a}) (pmf-of-set {..<b})
〈proof 〉

end

5 Pseudorandom Objects
theory Pseudorandom-Objects

imports Universal-Hash-Families-More-Product-PMF
begin

This section introduces a combinator library for pseudorandom objects [3].
These can be thought of as PRNGs but with rigorous mathematical proper-
ties, which can be used to in algorithms to reduce their randomness usage.
Such an object represents a non-empty multiset, with an efficient mechanism
to sample from it. They have a natural interpretation as a probability space
(each element is selected with a probability proportional to its occurrence
count in the multiset).
The following section will introduce a construction of k-independent hash
families as a pseudorandom object. The AFP entry Expander_Graphs then
follows up with expander walks as pseudorandom objects.
record ′a pseudorandom-object =

pro-last :: nat
pro-select :: nat ⇒ ′a

definition pro-size where pro-size S = pro-last S + 1
definition sample-pro where sample-pro S = map-pmf (pro-select S) (pmf-of-set
{0 ..pro-last S})

declare [[coercion sample-pro]]

abbreviation pro-set where pro-set S ≡ set-pmf (sample-pro S)

lemma sample-pro-alt: sample-pro S = map-pmf (pro-select S) (pmf-of-set {..<pro-size
S})
〈proof 〉

12

lemma pro-size-gt-0 : pro-size S > 0
〈proof 〉

lemma set-sample-pro: pro-set S = pro-select S ‘ {..<pro-size S}
〈proof 〉

lemma set-pmf-of-set-sample-size[simp]:
set-pmf (pmf-of-set {..<pro-size S}) = {..<pro-size S}
〈proof 〉

lemma pro-select-in-set: pro-select S (x mod pro-size S) ∈ pro-set S
〈proof 〉

lemma finite-pro-set: finite (pro-set S)
〈proof 〉

lemma integrable-sample-pro[simp]:
fixes f :: ′a ⇒ ′c::{banach, second-countable-topology}
shows integrable (measure-pmf (sample-pro S)) f
〈proof 〉

definition list-pro :: ′a list ⇒ ′a pseudorandom-object where
list-pro ls = (| pro-last = length ls − 1 , pro-select = (!) ls |)

lemma list-pro:
assumes xs 6= []
shows sample-pro (list-pro xs) = pmf-of-multiset (mset xs) (is ?L = ?R)
〈proof 〉

lemma list-pro-2 :
assumes xs 6= [] distinct xs
shows sample-pro (list-pro xs) = pmf-of-set (set xs) (is ?L = ?R)
〈proof 〉

lemma list-pro-size:
assumes xs 6= []
shows pro-size (list-pro xs) = length xs
〈proof 〉

lemma list-pro-set:
assumes xs 6= []
shows pro-set (list-pro xs) = set xs
〈proof 〉

13

definition nat-pro :: nat ⇒ nat pseudorandom-object where
nat-pro n = (| pro-last = n−1 , pro-select = id |)

lemma nat-pro-size:
assumes n > 0
showspro-size (nat-pro n) = n
〈proof 〉

lemma nat-pro:
assumes n > 0
shows sample-pro (nat-pro n) = pmf-of-set {..<n}
〈proof 〉

lemma nat-pro-set:
assumes n > 0
shows pro-set (nat-pro n) = {..<n}
〈proof 〉

fun count-zeros :: nat ⇒ nat ⇒ nat where
count-zeros 0 k = 0 |
count-zeros (Suc n) k = (if odd k then 0 else 1 + count-zeros n (k div 2))

lemma count-zeros-iff : j ≤ n =⇒ count-zeros n k ≥ j ←→ 2^j dvd k
〈proof 〉

lemma count-zeros-max:
count-zeros n k ≤ n
〈proof 〉

definition geom-pro :: nat ⇒ nat pseudorandom-object where
geom-pro n = (| pro-last = 2^n − 1 , pro-select = count-zeros n |)

lemma geom-pro-size: pro-size (geom-pro n) = 2^n
〈proof 〉

lemma geom-pro-range: pro-set (geom-pro n) ⊆ {..n}
〈proof 〉

lemma geom-pro-prob:
measure (sample-pro (geom-pro n)) {ω. ω ≥ j} = of-bool (j ≤ n) / 2^j (is ?L =

?R)
〈proof 〉

lemma geom-pro-prob-single:
measure (sample-pro (geom-pro n)) {j} ≤ 1 / 2^j (is ?L ≤ ?R)
〈proof 〉

14

definition prod-pro ::
′a pseudorandom-object ⇒ ′b pseudorandom-object ⇒ (′a × ′b) pseudorandom-object
where

prod-pro P Q =
(| pro-last = pro-size P ∗ pro-size Q − 1 ,
pro-select = (λk. (pro-select P (k mod pro-size P), pro-select Q (k div pro-size

P))) |)

lemma prod-pro-size:
pro-size (prod-pro P Q) = pro-size P ∗ pro-size Q
〈proof 〉

lemma prod-pro:
sample-pro (prod-pro P Q) = pair-pmf (sample-pro P) (sample-pro Q) (is ?L =

?R)
〈proof 〉

lemma prod-pro-set:
pro-set (prod-pro P Q) = pro-set P × pro-set Q
〈proof 〉

end

6 K-Independent Hash Families as Pseudorandom
Objects

theory Pseudorandom-Objects-Hash-Families
imports

Pseudorandom-Objects
Finite-Fields.Find-Irreducible-Poly
Carter-Wegman-Hash-Family
Universal-Hash-Families-More-Product-PMF

begin

hide-const (open) Numeral-Type.mod-ring
hide-const (open) Divisibility.prime
hide-const (open) Isolated.discrete

definition hash-space ′ ::
(′a, ′b) idx-ring-enum-scheme ⇒ nat ⇒ (′c, ′d) pseudorandom-object-scheme
⇒ (nat ⇒ ′c) pseudorandom-object
where hash-space ′ R k S = (
(|

pro-last = idx-size R ^k−1 ,
pro-select = (λx i.

pro-select S

15

(idx-enum-inv R (poly-eval R (poly-enum R k x) (idx-enum R i)) mod pro-size
S))
|))

lemma hash-prob-single ′:
assumes field F finite (carrier F)
assumes x ∈ carrier F
assumes 1 ≤ n
shows measure (pmf-of-set (bounded-degree-polynomials F n)) {ω. ring.hash F x

ω = y} =
of-bool (y∈ carrier F)/(real (card (carrier F))) (is ?L = ?R)

〈proof 〉

lemma hash-k-wise-indep ′:
assumes field F ∧ finite (carrier F)
assumes 1 ≤ n
shows prob-space.k-wise-indep-vars (pmf-of-set (bounded-degree-polynomials F

n)) n
(λ-. discrete) (ring.hash F) (carrier F)
〈proof 〉

lemma hash-space ′:
fixes R :: (′a, ′b) idx-ring-enum-scheme
assumes enumC R fieldC R
assumes pro-size S dvd order (ring-of R)
assumes I ⊆ {..<order (ring-of R)} card I ≤ k
shows map-pmf (λf . (λi∈I . f i)) (sample-pro (hash-space ′ R k S)) = prod-pmf I

(λ-. sample-pro S)
(is ?L = ?R)

〈proof 〉

lemma hash-space ′-range:
pro-select (hash-space ′ R k S) i j ∈ pro-set S
〈proof 〉

definition hash-pro ::
nat ⇒ nat ⇒ (′a, ′b) pseudorandom-object-scheme ⇒ (nat ⇒ ′a) pseudoran-

dom-object
where hash-pro k d S = (

let (p,j) = split-power (pro-size S);
l = max j (floorlog p (d−1))

in hash-space ′ (GF (p^l)) k S)

definition hash-pro-spmf ::
nat ⇒ nat ⇒ (′a, ′b) pseudorandom-object-scheme ⇒ (nat ⇒ ′a) pseudoran-

dom-object spmf
where hash-pro-spmf k d S =

do {
let (p,j) = split-power (pro-size S);

16

let l = max j (floorlog p (d−1));
R ← GFR (p^l);
return-spmf (hash-space ′ R k S)
}

definition hash-pro-pmf ::
nat ⇒ nat ⇒ (′a, ′b) pseudorandom-object-scheme ⇒ (nat ⇒ ′a) pseudoran-

dom-object pmf
where hash-pro-pmf k d S = map-pmf the (hash-pro-spmf k d S)

syntax
-FLIPBIND :: (′a ⇒ ′b) ⇒ ′c ⇒ ′b (infixr ‹=<<› 54)

syntax-consts
-FLIPBIND == Monad-Syntax.bind

translations
-FLIPBIND f g => g >>= f

context
fixes S
fixes d :: nat
fixes k :: nat
assumes size-prime-power : is-prime-power (pro-size S)

begin

private definition p where p = fst (split-power (pro-size S))
private definition j where j = snd (split-power (pro-size S))
private definition l where l = max j (floorlog p (d−1))

private lemma split-power : (p,j) = split-power (pro-size S)
〈proof 〉 lemma hash-sample-space-alt: hash-pro k d S = hash-space ′ (GF (p^l))

k S
〈proof 〉 lemma p-prime : prime p and j-gt-0 : j > 0
〈proof 〉 lemma l-gt-0 : l > 0
〈proof 〉 lemma prime-power : is-prime-power (p^l)
〈proof 〉

lemma hash-in-hash-pro-spmf : hash-pro k d S ∈ set-spmf (hash-pro-spmf k d S)
〈proof 〉

lemma lossless-hash-pro-spmf : lossless-spmf (hash-pro-spmf k d S)
〈proof 〉

lemma hashp-eq-hash-pro-spmf : set-pmf (hash-pro-pmf k d S) = set-spmf (hash-pro-spmf
k d S)
〈proof 〉

lemma hashp-in-hash-pro-spmf :

17

assumes x ∈ set-pmf (hash-pro-pmf k d S)
shows x ∈ set-spmf (hash-pro-spmf k d S)
〈proof 〉

lemma hash-pro-in-hash-pro-pmf : hash-pro k d S ∈ set-pmf (hash-pro-pmf k d S)
〈proof 〉

lemma hash-pro-spmf-distr :
assumes s ∈ set-spmf (hash-pro-spmf k d S)
assumes I ⊆ {..<d} card I ≤ k
shows map-pmf (λf . (λi∈I . f i)) (sample-pro s) = prod-pmf I (λ-. sample-pro

S)
〈proof 〉

lemma hash-pro-spmf-component:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
assumes i < d k > 0
shows map-pmf (λf . f i) (sample-pro s) = sample-pro S (is ?L = ?R)
〈proof 〉

lemma hash-pro-spmf-indep:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
assumes I ⊆ {..<d} card I ≤ k
shows prob-space.indep-vars (sample-pro s) (λ-. discrete) (λi ω. ω i) I
〈proof 〉

lemma hash-pro-spmf-k-indep:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
shows prob-space.k-wise-indep-vars (sample-pro s) k (λ-. discrete) (λi ω. ω i)
{..<d}
〈proof 〉 lemma hash-pro-spmf-size-aux:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
shows pro-size s = (p^l)^k (is ?L = ?R)
〈proof 〉

lemma floorlog-alt-def :
floorlog b a = (if 1 < b then nat dlog (real b) (real a+1)e else 0)
〈proof 〉

lemma hash-pro-spmf-size:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
assumes (p ′,j ′) = split-power (pro-size S)
shows pro-size s = (p ′̂ (max j ′ (floorlog p ′ (d−1))))^k
〈proof 〉

lemma hash-pro-spmf-size ′:
assumes s ∈ set-spmf (hash-pro-spmf k d S) d > 0
assumes (p ′,j ′) = split-power (pro-size S)
shows pro-size s = (p ′̂ (k∗max j ′ (nat dlog p ′ de)))

18

〈proof 〉

lemma hash-pro-spmf-size-prime-power :
assumes s ∈ set-spmf (hash-pro-spmf k d S)
assumes k > 0
shows is-prime-power (pro-size s)
〈proof 〉

lemma hash-pro-smpf-range:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
shows pro-select s i q ∈ pro-set S
〈proof 〉

lemmas hash-pro-size ′ = hash-pro-spmf-size ′[OF hash-in-hash-pro-spmf]
lemmas hash-pro-size = hash-pro-spmf-size[OF hash-in-hash-pro-spmf]
lemmas hash-pro-size-prime-power = hash-pro-spmf-size-prime-power [OF hash-in-hash-pro-spmf]
lemmas hash-pro-distr = hash-pro-spmf-distr [OF hash-in-hash-pro-spmf]
lemmas hash-pro-component = hash-pro-spmf-component[OF hash-in-hash-pro-spmf]
lemmas hash-pro-indep = hash-pro-spmf-indep[OF hash-in-hash-pro-spmf]
lemmas hash-pro-k-indep = hash-pro-spmf-k-indep[OF hash-in-hash-pro-spmf]
lemmas hash-pro-range = hash-pro-smpf-range[OF hash-in-hash-pro-spmf]

lemmas hash-pro-pmf-size ′ = hash-pro-spmf-size ′[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-size = hash-pro-spmf-size[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-size-prime-power = hash-pro-spmf-size-prime-power [OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-distr = hash-pro-spmf-distr [OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-component = hash-pro-spmf-component[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-indep = hash-pro-spmf-indep[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-k-indep = hash-pro-spmf-k-indep[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-range = hash-pro-smpf-range[OF hashp-in-hash-pro-spmf]

end

open-bundle pseudorandom-object-syntax
begin
notation hash-pro (‹H›)
notation hash-pro-spmf (‹HS›)
notation hash-pro-pmf (‹HP ›)
notation list-pro (‹L›)
notation nat-pro (‹N ›)
notation geom-pro (‹G›)
notation prod-pro (infixr ‹×P › 65)
end

end

19

References

[1] E. Karayel. Interpolation polynomials (in hol-algebra). Archive of
Formal Proofs, Jan. 2022. https://isa-afp.org/entries/Interpolation_
Polynomials_HOL_Algebra.html, Formal proof development.

[2] M. Thorup and Y. Zhang. Tabulation based 5-universal hashing and
linear probing. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, ALENEX ’10, pages 62–76, USA, 2010. Society for
Industrial and Applied Mathematics.

[3] S. P. Vadhan. Pseudorandomness. Foundations and Trends®in Theoret-
ical Computer Science, 7(1-3):1–336, 2012.

[4] M. N. Wegman and J. L. Carter. New hash functions and their use
in authentication and set equality. Journal of Computer and System
Sciences, 22(3):265–279, 1981.

20

https://isa-afp.org/entries/Interpolation_Polynomials_HOL_Algebra.html
https://isa-afp.org/entries/Interpolation_Polynomials_HOL_Algebra.html

	Introduction and Definition
	Preliminary Results
	Carter-Wegman Hash Family
	Indexed Products of Probability Mass Functions
	Pseudorandom Objects
	K-Independent Hash Families as Pseudorandom Objects

