
Universal Hash Families

Emin Karayel

March 17, 2025

Abstract

A k-universal hash family is a probability space of functions, which
have uniform distribution and form k-wise independent random vari-
ables.

They can often be used in place of classic (or cryptographic) hash
functions and allow the rigorous analysis of the performance of ran-
domized algorithms and data structures that rely on hash functions.

In 1981 Wegman and Carter [4] introduced a generic construction
for such families with arbitrary k using polynomials over a finite field.
This entry contains a formalization of them and establishes the prop-
erty of k-universality.

To be useful the formalization also provides an explicit construction
of finite fields using the factor ring of integers modulo a prime. Ad-
ditionally, some generic results about independent families are shown
that might be of independent interest.

1 Introduction and Definition
theory Universal-Hash-Families

imports HOL−Probability.Independent-Family
begin

Universal hash families are commonly used in randomized algorithms and
data structures to randomize the input of algorithms, such that probabilistic
methods can be employed without requiring any assumptions about the
input distribution.
If we regard a family of hash functions from a domain D to a finite range R
as a uniform probability space, then the family is k-universal if:

• For each x ∈ D the evaluation of the functions at x forms a uniformly
distributed random variable on R.

• The evaluation random variables for k or fewer distinct domain ele-
ments form an independent family of random variables.

1

This definition closely follows the definition from Vadhan [3, §3.5.5], with
the minor modification that independence is required not only for exactly k,
but also for fewer than k distinct domain elements. The correction is due
to the fact that in the corner case where D has fewer than k elements, the
second part of their definition becomes void. In the formalization this helps
avoid an unnecessary assumption in the theorems.
The following definition introduces the notion of k-wise independent random
variables:
definition (in prob-space) k-wise-indep-vars where

k-wise-indep-vars k M ′ X I =
(∀ J ⊆ I . card J ≤ k −→ finite J −→ indep-vars M ′ X J)

lemma (in prob-space) k-wise-indep-vars-subset:
assumes k-wise-indep-vars k M ′ X I
assumes J ⊆ I
assumes finite J
assumes card J ≤ k
shows indep-vars M ′ X J
using assms
by (simp add:k-wise-indep-vars-def)

lemma (in prob-space) k-wise-indep-subset:
assumes J ⊆ I
assumes k-wise-indep-vars k M ′ X ′ I
shows k-wise-indep-vars k M ′ X ′ J
using assms unfolding k-wise-indep-vars-def by simp

Similarly for a finite non-empty set A the predicate uniform-on X A indicates
that the random variable is uniformly distributed on A:
definition (in prob-space) uniform-on X A = (

distr M (count-space UNIV) X = uniform-measure (count-space UNIV) A ∧
A 6= {} ∧ finite A ∧ random-variable (count-space UNIV) X)

lemma (in prob-space) uniform-onD:
assumes uniform-on X A
shows prob {ω ∈ space M . X ω ∈ B} = card (A ∩ B) / card A

proof −
have prob {ω ∈ space M . X ω ∈ B} = prob (X −‘ B ∩ space M)

by (subst Int-commute, simp add:vimage-def Int-def)
also have ... = measure (distr M (count-space UNIV) X) B

using assms by (subst measure-distr , auto simp:uniform-on-def)
also have ... = measure (uniform-measure (count-space UNIV) A) B

using assms by (simp add:uniform-on-def)
also have ... = card (A ∩ B) / card A

using assms by (subst measure-uniform-measure, auto simp:uniform-on-def)+
finally show ?thesis by simp

qed

2

With the two previous definitions it is possible to define the k-universality
condition for a family of hash functions from D to R:
definition (in prob-space) k-universal k X D R = (

k-wise-indep-vars k (λ-. count-space UNIV) X D ∧
(∀ i ∈ D. uniform-on (X i) R))

Note: The definition is slightly more generic then the informal specification
from above. This is because usually a family is formed by a single function
with a variable seed parameter. Instead of choosing a random function from
a probability space, a random seed is chosen from the probability space
which parameterizes the hash function.
The following section contains some preliminary results about independent
families of random variables. Section 3 introduces the Carter-Wegman hash
family, which is an explicit construction of k-universal families for arbitrary
k using polynomials over finite fields. The last section contains a proof that
the factor ring of the integers modulo a prime ideal is a finite field, followed
by an isomorphic construction of prime fields over an initial segment of the
natural numbers.
end

2 Preliminary Results
theory Universal-Hash-Families-More-Independent-Families

imports
Universal-Hash-Families
HOL−Probability.Stream-Space
HOL−Probability.Probability-Mass-Function

begin

lemma set-comp-image-cong:
assumes

∧
x. P x =⇒ f x = h (g x)

shows {f x| x. P x} = h ‘ {g x| x. P x}
using assms by (auto simp: setcompr-eq-image)

lemma (in prob-space) k-wise-indep-vars-compose:
assumes k-wise-indep-vars k M ′ X I
assumes

∧
i. i ∈ I =⇒ Y i ∈ measurable (M ′ i) (N i)

shows k-wise-indep-vars k N (λi x. Y i (X i x)) I
using indep-vars-compose2 [where N=N and X=X and Y=Y and M ′=M ′]

assms
by (simp add: k-wise-indep-vars-def subsetD)

lemma (in prob-space) k-wise-indep-vars-triv:
assumes indep-vars N T I
shows k-wise-indep-vars k N T I
using assms indep-vars-subset unfolding k-wise-indep-vars-def by auto

3

The following two lemmas are of independent interest, they help infer inde-
pendence of events and random variables on distributions. (Candidates for
HOL−Probability.Independent-Family).
lemma (in prob-space) indep-sets-distr :

fixes A
assumes random-variable N f
defines F ≡ (λi. (λa. f −‘ a ∩ space M) ‘ A i)
assumes indep-F : indep-sets F I
assumes sets-A:

∧
i. i ∈ I =⇒ A i ⊆ sets N

shows prob-space.indep-sets (distr M N f) A I
proof (rule prob-space.indep-setsI)

show
∧

A ′ J . J 6= {} =⇒ J ⊆ I =⇒ finite J =⇒ ∀ j∈J . A ′ j ∈ A j =⇒
measure (distr M N f) (

⋂
(A ′ ‘ J)) = (

∏
j∈J . measure (distr M N f) (A ′ j))

proof −
fix A ′ J
assume a:J ⊆ I finite J J 6= {} ∀ j ∈ J . A ′ j ∈ A j

define F ′ where F ′ = (λi. f −‘ A ′ i ∩ space M)

have
⋂

(F ′ ‘ J) = f −‘ (
⋂

(A ′ ‘ J)) ∩ space M
unfolding set-eq-iff F ′-def using a(3) by simp

moreover have
⋂

(A ′ ‘ J) ∈ sets N
by (metis a sets-A sets.finite-INT subset-iff)

ultimately have b:
measure (distr M N f) (

⋂
(A ′ ‘ J)) = measure M (

⋂
(F ′ ‘ J))

by (metis assms(1) measure-distr)

have
∧

j. j ∈ J =⇒ F ′ j ∈ F j
using a(4) F ′-def F-def by blast

hence c:measure M (
⋂

(F ′ ‘ J)) = (
∏

j∈ J . measure M (F ′ j))
by (metis indep-F indep-setsD a(1 ,2 ,3))

have
∧

j. j ∈ J =⇒ F ′ j = f −‘ A ′ j ∩ space M
by (simp add:F ′-def)

moreover have
∧

j. j ∈ J =⇒ A ′ j ∈ sets N
using a(1 ,4) sets-A by blast

ultimately have d:∧
j. j ∈ J =⇒ measure M (F ′ j) = measure (distr M N f) (A ′ j)

using assms(1) measure-distr by metis

show
measure (distr M N f) (

⋂
(A ′ ‘ J)) = (

∏
j∈J . measure (distr M N f) (A ′ j))

using b c d by auto
qed
show prob-space (distr M N f) using prob-space-distr assms by blast
show

∧
i. i ∈ I =⇒ A i ⊆ sets (distr M N f) using sets-A sets-distr by blast

qed

lemma (in prob-space) indep-vars-distr :

4

assumes f ∈ measurable M N
assumes

∧
i. i ∈ I =⇒ X ′ i ∈ measurable N (M ′ i)

assumes indep-vars M ′ (λi. (X ′ i) ◦ f) I
shows prob-space.indep-vars (distr M N f) M ′ X ′ I

proof −
interpret D: prob-space (distr M N f)

using prob-space-distr [OF assms(1)] by simp

have a: f ∈ space M → space N using assms(1) by (simp add:measurable-def)

have D.indep-sets (λi. {X ′ i −‘ A ∩ space N |A. A ∈ sets (M ′ i)}) I
proof (rule indep-sets-distr [OF assms(1)])

have
∧

i. i ∈ I =⇒ {(X ′ i ◦ f) −‘ A ∩ space M |A. A ∈ sets (M ′ i)} =
(λa. f −‘ a ∩ space M) ‘ {X ′ i −‘ A ∩ space N |A. A ∈ sets (M ′ i)}
by (rule set-comp-image-cong, simp add:set-eq-iff , use a in blast)

thus indep-sets (λi. (λa. f −‘ a ∩ space M) ‘
{X ′ i −‘ A ∩ space N |A. A ∈ sets (M ′ i)}) I

using assms(3) by (simp add:indep-vars-def2 cong:indep-sets-cong)
next

fix i
assume i ∈ I
thus {X ′ i −‘ A ∩ space N |A. A ∈ sets (M ′ i)} ⊆ sets N

using assms(2) measurable-sets by blast
qed
thus ?thesis

using assms by (simp add:D.indep-vars-def2)
qed

lemma range-inter : range ((∩) F) = Pow F
unfolding image-def by auto

The singletons and the empty set form an intersection stable generator of a
countable discrete σ-algebra:
lemma sigma-sets-singletons-and-empty:

assumes countable M
shows sigma-sets M (insert {} ((λk. {k}) ‘ M)) = Pow M

proof −
have sigma-sets M ((λk. {k}) ‘ M) = Pow M

using assms sigma-sets-singletons by auto
hence Pow M ⊆ sigma-sets M (insert {} ((λk. {k}) ‘ M))

by (metis sigma-sets-subseteq subset-insertI)
moreover have (insert {} ((λk. {k}) ‘ M)) ⊆ Pow M by blast
hence sigma-sets M (insert {} ((λk. {k}) ‘ M)) ⊆ Pow M

by (meson sigma-algebra.sigma-sets-subset sigma-algebra-Pow)
ultimately show ?thesis by force

qed

In some of the following theorems, the premise M = measure-pmf p is used.
This allows stating theorems that hold for pmfs more concisely, for example,

5

instead of measure-pmf .prob p A ≤ measure-pmf .prob p B we can just write
M = measure-pmf p =⇒ prob A ≤ prob B in the locale prob-space.
lemma prob-space-restrict-space:

assumes [simp]:M = measure-pmf p
shows prob-space (restrict-space M (set-pmf p))
by (rule prob-spaceI , auto simp:emeasure-restrict-space emeasure-pmf)

The abbreviation below is used to specify the discrete σ-algebra on UNIV
as a measure space. It is used in places where the existing definitions, such
as indep-vars, expect a measure space even though only a measurable space
is really needed, i.e., in cases where the property is invariant with respect
to the actual measure.
hide-const (open) discrete

abbreviation discrete ≡ count-space UNIV

lemma (in prob-space) indep-vars-restrict-space:
assumes [simp]:M = measure-pmf p
assumes

prob-space.indep-vars (restrict-space M (set-pmf p)) (λ-. discrete) X I
shows indep-vars (λ-. discrete) X I

proof −
have a: id ∈ restrict-space M (set-pmf p) →M M

by (simp add:measurable-def range-inter sets-restrict-space)

have prob-space.indep-vars (distr (restrict-space M (set-pmf p)) M id) (λ-. dis-
crete) X I

using assms a prob-space-restrict-space by (auto intro!:prob-space.indep-vars-distr)
moreover have∧

A. emeasure (distr (restrict-space M (set-pmf p)) M id) A = emeasure M A
using emeasure-distr [OF a]
by (auto simp add: emeasure-restrict-space emeasure-Int-set-pmf)

hence distr (restrict-space M p) M id = M
by (auto intro: measure-eqI)

ultimately show ?thesis by simp
qed

lemma (in prob-space) measure-pmf-eq:
assumes M = measure-pmf p
assumes

∧
x. x ∈ set-pmf p =⇒ (x ∈ P) = (x ∈ Q)

shows prob P = prob Q
unfolding assms(1)
by (rule measure-eq-AE , rule AE-pmfI [OF assms(2)], auto)

The following lemma is an intro rule for the independence of random vari-
ables defined on pmfs. In that case it is possible, to check the independence
of random variables point-wise.
The proof relies on the fact that the support of a pmf is countable and the

6

σ-algebra of such a set can be generated by singletons.
lemma (in prob-space) indep-vars-pmf :

assumes [simp]:M = measure-pmf p
assumes

∧
a J . J ⊆ I =⇒ finite J =⇒

prob {ω. ∀ i ∈ J . X i ω = a i} = (
∏

i ∈ J . prob {ω. X i ω = a i})
shows indep-vars (λ-. discrete) X I

proof −
interpret R:prob-space (restrict-space M (set-pmf p))

using prob-space-restrict-space by auto

have events-eq-pow: R.events = Pow (set-pmf p)
by (simp add:sets-restrict-space range-inter)

define G where G = (λi. {{}} ∪ (λx. {x}) ‘ (X i ‘ set-pmf p))
define F where F = (λi. {X i −‘ a ∩ set-pmf p|a. a ∈ G i})

have sigma-sets-pow:∧
i. i ∈ I =⇒ sigma-sets (X i ‘ set-pmf p) (G i) = Pow (X i ‘ set-pmf p)

by (simp add:G-def , metis countable-image countable-set-pmf sigma-sets-singletons-and-empty)

have F-in-events:
∧

i. i ∈ I =⇒ F i ⊆ Pow (set-pmf p)
unfolding F-def by blast

have as-sigma-sets:∧
i. i ∈ I =⇒ {u. ∃A. u = X i −‘ A ∩ set-pmf p} = sigma-sets (set-pmf p) (F

i)
proof −

fix i
assume a:i ∈ I
have

∧
A. X i −‘ A ∩ set-pmf p = X i −‘ (A ∩ X i ‘ set-pmf p) ∩ set-pmf p

by auto
hence {u. ∃A. u = X i −‘ A ∩ set-pmf p} =

{X i −‘ A ∩ set-pmf p |A. A ⊆ X i ‘ set-pmf p}
by (metis (no-types, opaque-lifting) inf-le2)

also have
... = {X i −‘ A ∩ set-pmf p |A. A ∈ sigma-sets (X i ‘ set-pmf p) (G i)}
using a by (simp add:sigma-sets-pow)

also have ... = sigma-sets (set-pmf p) {X i −‘ a ∩ set-pmf p |a. a ∈ G i}
by (subst sigma-sets-vimage-commute[symmetric], auto)

also have ... = sigma-sets (set-pmf p) (F i)
by (simp add:F-def)

finally show
{u. ∃A. u = X i −‘ A ∩ set-pmf p} = sigma-sets (set-pmf p) (F i)
by simp

qed

have F-Int-stable:
∧

i. i ∈ I =⇒ Int-stable (F i)
proof (rule Int-stableI)

fix i a b

7

assume i ∈ I a ∈ F i b ∈ F i
thus a ∩ b ∈ (F i)

unfolding F-def G-def by (cases a ∩ b = {}, auto)
qed

have F-indep-sets:R.indep-sets F I
proof (rule R.indep-setsI)

fix i
assume i ∈ I
show F i ⊆ R.events

unfolding F-def events-eq-pow by blast
next

fix A
fix J
assume a:J ⊆ I J 6= {} finite J ∀ j∈J . A j ∈ F j
have b:

∧
j. j ∈ J =⇒ A j ⊆ set-pmf p

by (metis PowD a(1 ,4) subsetD F-in-events)
obtain x where x-def :

∧
j. j ∈ J =⇒ A j = X j −‘ x j ∩ set-pmf p ∧ x j ∈ G j

using a by (simp add:Pi-def F-def , metis)

show R.prob (
⋂

(A ‘ J)) = (
∏

j∈J . R.prob (A j))
proof (cases ∃ j ∈ J . A j = {})

case True
hence

⋂
(A ‘ J) = {} by blast

then show ?thesis
using a True by (simp, metis measure-empty)

next
case False
then have

∧
j. j ∈ J =⇒ x j 6= {} using x-def by auto

hence
∧

j. j ∈ J =⇒ x j ∈ (λx. {x}) ‘ X j ‘ set-pmf p
using x-def by (simp add:G-def)

then obtain y where y-def :
∧

j. j ∈ J =⇒ x j = {y j}
by (simp add:image-def , metis)

have
⋂

(A ‘ J) ⊆ set-pmf p using b a(2) by blast
hence R.prob (

⋂
(A ‘ J)) = prob (

⋂
j ∈ J . A j)

by (simp add: measure-restrict-space)
also have ... = prob ({ω. ∀ j ∈ J . X j ω = y j})

using a x-def y-def apply (simp add:vimage-def measure-Int-set-pmf)
by (rule arg-cong2 [where f=measure], auto)

also have ... = (
∏

j∈ J . prob (A j))
using x-def y-def a assms(2)
by (simp add:vimage-def measure-Int-set-pmf)

also have ... = (
∏

j∈J . R.prob (A j))
using b by (simp add: measure-restrict-space cong:prod.cong)

finally show ?thesis by blast
qed

qed

8

have R.indep-sets (λi. sigma-sets (set-pmf p) (F i)) I
using R.indep-sets-sigma[simplified] F-Int-stable F-indep-sets
by (auto simp:space-restrict-space)

hence R.indep-sets (λi. {u. ∃A. u = X i −‘ A ∩ set-pmf p}) I
by (simp add: as-sigma-sets cong:R.indep-sets-cong)

hence R.indep-vars (λ-. discrete) X I
unfolding R.indep-vars-def2
by (simp add:measurable-def sets-restrict-space range-inter)

thus ?thesis
using indep-vars-restrict-space[OF assms(1)] by simp

qed

lemma (in prob-space) split-indep-events:
assumes M = measure-pmf p
assumes indep-vars (λi. discrete) X ′ I
assumes K ⊆ I finite K
shows prob {ω. ∀ x ∈ K . P x (X ′ x ω)} = (

∏
x ∈ K . prob {ω. P x (X ′ x ω)})

proof −
have [simp]: space M = UNIV events = UNIV prob UNIV = 1

by (simp add:assms(1))+

have indep-vars (λ-. discrete) X ′ K
using assms(2 ,3) indep-vars-subset by blast

hence indep-events (λx. {ω ∈ space M . P x (X ′ x ω)}) K
using indep-eventsI-indep-vars by force

hence a:indep-events (λx. {ω. P x (X ′ x ω)}) K
by simp

have prob {ω. ∀ x ∈ K . P x (X ′ x ω)} = prob (
⋂

x ∈ K . {ω. P x (X ′ x ω)})
by (simp add: measure-pmf-eq[OF assms(1)])

also have ... = (
∏

x ∈ K . prob {ω. P x (X ′ x ω)})
using a assms(4) by (cases K = {}, auto simp: indep-events-def)

finally show ?thesis by simp
qed

lemma pmf-of-set-eq-uniform:
assumes finite A A 6= {}
shows measure-pmf (pmf-of-set A) = uniform-measure discrete A

proof −
have a:real (card A) > 0 using assms

by (simp add: card-gt-0-iff)

have b:∧
Y . emeasure (pmf-of-set A) Y = emeasure (uniform-measure discrete A) Y

using assms a
by (simp add: emeasure-pmf-of-set divide-ennreal ennreal-of-nat-eq-real-of-nat)

9

show ?thesis
by (rule measure-eqI , auto simp add: b)

qed

lemma (in prob-space) uniform-onI :
assumes M = measure-pmf p
assumes finite A A 6= {}
assumes

∧
a. prob {ω. X ω = a} = indicator A a / card A

shows uniform-on X A
proof −

have a:
∧

a. measure-pmf .prob p {x. X x = a} = indicator A a / card A
using assms(1 ,4) by simp

have b:map-pmf X p = pmf-of-set A
by (rule pmf-eqI , simp add:assms pmf-map vimage-def a)

have distr M discrete X = map-pmf X p
by (simp add: map-pmf-rep-eq assms(1))

also have ... = measure-pmf (pmf-of-set A)
using b by simp

also have ... = uniform-measure discrete A
by (rule pmf-of-set-eq-uniform[OF assms(2 ,3)])

finally have distr M discrete X = uniform-measure discrete A
by simp

moreover have random-variable discrete X
by (simp add: assms(1))

ultimately show ?thesis using assms(2 ,3)
by (simp add: uniform-on-def)

qed

end

3 Carter-Wegman Hash Family
theory Carter-Wegman-Hash-Family

imports
Interpolation-Polynomials-HOL-Algebra.Interpolation-Polynomial-Cardinalities
Universal-Hash-Families-More-Independent-Families

begin

The Carter-Wegman hash family is a generic method to obtain k-universal
hash families for arbitrary k. (There are faster solutions, such as tabulation
hashing, which are limited to a specific k. See for example [2].)
The construction was described by Wegman and Carter [4], it is a hash
family between the elements of a finite field and works by choosing randomly
a polynomial over the field with degree less than k. The hash function is
the evaluation of a such a polynomial.

10

Using the property that the fraction of polynomials interpolating a given set
of s ≤ k points is 1 / real (card (carrier R))s, which is shown in [1], it is
possible to obtain both that the hash functions are k-wise independent and
uniformly distributed.
In the following two locales are introduced, the main reason for both is to
make the statements of the theorems and proofs more concise. The first
locale poly-hash-family fixes a finite ring R and the probability space of the
polynomials of degree less than k. Because the ring is not a field, the family
is not yet k-universal, but it is still possible to state a few results such as
the fact that the range of the hash function is a subset of the carrier of the
ring.
The second locale carter-wegman-hash-family is an extension of the former
with the assumption that R is a field with which the k-universality follows.
The reason for using two separate locales is to support use cases, where the
ring is only probably a field. For example if it is the set of integers modulo
an approximate prime, in such a situation a subset of the properties of an
algorithm using approximate primes would need to be verified even if R is
only a ring.
definition (in ring) hash x ω = eval ω x

locale poly-hash-family = ring +
fixes k :: nat
assumes finite-carrier [simp]: finite (carrier R)
assumes k-ge-0 : k > 0

begin

definition space where space = bounded-degree-polynomials R k
definition M where M = measure-pmf (pmf-of-set space)

lemma finite-space[simp]:finite space
unfolding space-def using fin-degree-bounded finite-carrier by simp

lemma non-empty-bounded-degree-polynomials[simp]:space 6= {}
unfolding space-def using non-empty-bounded-degree-polynomials by simp

This is to add carrier-not-empty to the simp set in the context of poly-hash-family:
lemma non-empty-carrier [simp]: carrier R 6= {}

by (simp add:carrier-not-empty)

sublocale prob-space M
by (simp add:M-def prob-space-measure-pmf)

lemma hash-range[simp]:
assumes ω ∈ space
assumes x ∈ carrier R
shows hash x ω ∈ carrier R

11

using assms unfolding hash-def space-def bounded-degree-polynomials-def
by (simp, metis eval-in-carrier polynomial-incl univ-poly-carrier)

lemma hash-range-2 :
assumes ω ∈ space
shows (λx. hash x ω) ‘ carrier R ⊆ carrier R
using hash-range assms by auto

lemma integrable-M [simp]:
fixes f :: ′a list ⇒ ′c::{banach, second-countable-topology}
shows integrable M f

unfolding M-def
by (rule integrable-measure-pmf-finite, simp)

end

locale carter-wegman-hash-family = poly-hash-family +
assumes field-R: field R

begin
sublocale field

using field-R by simp

abbreviation field-size ≡ card (carrier R)

lemma poly-cards:
assumes K ⊆ carrier R
assumes card K ≤ k
assumes y ‘ K ⊆ (carrier R)
shows

card {ω ∈ space. (∀ k ∈ K . eval ω k = y k)} = field-size^(k−card K)
unfolding space-def
using interpolating-polynomials-card[where n=k−card K and K=K] assms
using finite-carrier finite-subset by fastforce

lemma poly-cards-single:
assumes x ∈ carrier R
assumes y ∈ carrier R
shows card {ω ∈ space. eval ω x = y} = field-size^(k−1)
using poly-cards[where K={x} and y=λ-. y, simplified] assms k-ge-0 by simp

lemma hash-prob:
assumes K ⊆ carrier R
assumes card K ≤ k
assumes y ‘ K ⊆ carrier R
shows

prob {ω. (∀ x ∈ K . hash x ω = y x)} = 1/(real field-size)^card K
proof −

have 0 ∈ carrier R by simp

12

hence a:field-size > 0
using finite-carrier card-gt-0-iff by blast

have b:real (card {ω ∈ space. ∀ x∈K . eval ω x = y x}) / real (card space) =
1 / real field-size ^ card K
using a assms(2)

apply (simp add: frac-eq-eq poly-cards[OF assms(1 ,2 ,3)] power-add[symmetric])
by (simp add:space-def bounded-degree-polynomials-card)

show ?thesis
unfolding M-def
by (simp add:hash-def measure-pmf-of-set Int-def b)

qed

lemma prob-single:
assumes x ∈ carrier R y ∈ carrier R
shows prob {ω. hash x ω = y} = 1/(real field-size)
using hash-prob[where K={x}] assms finite-carrier k-ge-0 by simp

lemma prob-range:
assumes [simp]:x ∈ carrier R
shows prob {ω. hash x ω ∈ A} = card (A ∩ carrier R) / field-size

proof −
have prob {ω. hash x ω ∈ A} = prob (

⋃
a ∈ A ∩ carrier R. {ω. hash x ω = a})

by (rule measure-pmf-eq, auto simp:M-def)
also have ... = (

∑
a ∈ (A ∩ carrier R). prob {ω. hash x ω = a})

by (rule measure-finite-Union, auto simp:M-def disjoint-family-on-def)
also have ... = (

∑
a ∈ (A ∩ carrier R). 1/(real field-size))

by (rule sum.cong, auto simp:prob-single)
also have ... = card (A ∩ carrier R) / field-size

by simp
finally show ?thesis by simp

qed

lemma indep:
assumes J ⊆ carrier R
assumes card J ≤ k
shows indep-vars (λ-. discrete) hash J

proof −
have 0 ∈ carrier R by simp
hence card-R-ge-0 :field-size > 0

using card-gt-0-iff finite-carrier by blast

have fin-J : finite J
using finite-carrier assms(1) finite-subset by blast

show ?thesis
proof (rule indep-vars-pmf [OF M-def])

fix a

13

fix J ′

assume a: J ′ ⊆ J finite J ′

have card-J ′: card J ′ ≤ k
by (metis card-mono order-trans a(1) assms(2) fin-J)

have J ′-in-carr : J ′ ⊆ carrier R by (metis order-trans a(1) assms(1))

show prob {ω. ∀ x∈J ′. hash x ω = a x} = (
∏

x∈J ′. prob {ω. hash x ω = a x})
proof (cases a ‘ J ′ ⊆ carrier R)

case True
have a-carr :

∧
x. x ∈ J ′ =⇒ a x ∈ carrier R using True by force

have prob {ω. ∀ x∈J ′. hash x ω = a x} =
real (card {ω ∈ space. ∀ x∈J ′. eval ω x = a x}) / real (card space)
by (simp add:M-def measure-pmf-of-set Int-def hash-def)

also have ... = real (field-size ^ (k − card J ′)) / real (card space)
using True by (simp add: poly-cards[OF J ′-in-carr card-J ′])

also have
... = real field-size ^ (k − card J ′) / real field-size ^ k
by (simp add:space-def bounded-degree-polynomials-card)

also have
... = real field-size ^ ((k − 1) ∗ card J ′) / real field-size ^ (k ∗ card J ′)
using card-J ′ by (simp add:power-add[symmetric] power-mult[symmetric]

diff-mult-distrib frac-eq-eq add.commute)
also have
... = (real field-size ^ (k − 1)) ^ card J ′ / (real field-size ^ k) ^ card J ′

by (simp add:power-add power-mult)
also have
... = (

∏
x∈J ′. real (card {ω ∈ space. eval ω x = a x}) / real (card space))

using a-carr poly-cards-single[OF subsetD[OF J ′-in-carr]]
by (simp add:space-def bounded-degree-polynomials-card power-divide)

also have ... = (
∏

x∈J ′. prob {ω. hash x ω = a x})
by (simp add:measure-pmf-of-set M-def Int-def hash-def)

finally show ?thesis by simp
next

case False
then obtain j where j-def : j ∈ J ′ a j /∈ carrier R by blast
have {ω ∈ space. hash j ω = a j} ⊆ {ω ∈ space. hash j ω /∈ carrier R}

by (rule subsetI , simp add:j-def)
also have ... ⊆ {} using j-def (1) J ′-in-carr hash-range by blast
finally have b:{ω ∈ space. hash j ω = a j} = {} by simp
hence real (card ({ω ∈ space. hash j ω = a j})) = 0 by simp
hence (

∏
x∈J ′. real (card {ω ∈ space. hash x ω = a x})) = 0

using a(2) prod-zero[OF a(2)] j-def (1) by auto
moreover have
{ω ∈ space. ∀ x∈J ′. hash x ω = a x} ⊆ {ω ∈ space. hash j ω = a j}
using j-def by blast

hence {ω ∈ space. ∀ x∈J ′. hash x ω = a x} = {} using b by blast
ultimately show ?thesis

by (simp add:measure-pmf-of-set M-def Int-def prod-dividef)
qed

14

qed
qed

lemma k-wise-indep:
k-wise-indep-vars k (λ-. discrete) hash (carrier R)
unfolding k-wise-indep-vars-def using indep by simp

lemma inj-if-degree-1 :
assumes ω ∈ space
assumes degree ω = 1
shows inj-on (λx. hash x ω) (carrier R)
using assms eval-inj-if-degree-1
by (simp add:M-def space-def bounded-degree-polynomials-def hash-def)

lemma uniform:
assumes i ∈ carrier R
shows uniform-on (hash i) (carrier R)

proof −
have a:∧

a. prob {ω. hash i ω ∈ {a}} = indicat-real (carrier R) a / real field-size
by (subst prob-range[OF assms], simp add:indicator-def)

show ?thesis
by (rule uniform-onI , use a M-def in auto)

qed

This the main result of this section - the Carter-Wegman hash family is
k-universal.
theorem k-universal:

k-universal k hash (carrier R) (carrier R)
using uniform k-wise-indep by (simp add:k-universal-def)

end

lemma poly-hash-familyI :
assumes ring R
assumes finite (carrier R)
assumes 0 < k
shows poly-hash-family R k
using assms
by (simp add:poly-hash-family-def poly-hash-family-axioms-def)

lemma carter-wegman-hash-familyI :
assumes field F
assumes finite (carrier F)
assumes 0 < k
shows carter-wegman-hash-family F k
using assms field.is-ring[OF assms(1)] poly-hash-familyI
by (simp add:carter-wegman-hash-family-def carter-wegman-hash-family-axioms-def)

15

lemma hash-k-wise-indep:
assumes field F ∧ finite (carrier F)
assumes 1 ≤ n
shows

prob-space.k-wise-indep-vars (pmf-of-set (bounded-degree-polynomials F n)) n
(λ-. pmf-of-set (carrier F)) (ring.hash F) (carrier F)

proof −
interpret carter-wegman-hash-family F n

using assms carter-wegman-hash-familyI by force
have k-wise-indep-vars n (λ-. pmf-of-set (carrier F)) hash (carrier F)

by (rule k-wise-indep-vars-compose[OF k-wise-indep], simp)
thus ?thesis

by (simp add:M-def space-def)
qed

lemma hash-prob-single:
assumes field F ∧ finite (carrier F)
assumes x ∈ carrier F
assumes 1 ≤ n
assumes y ∈ carrier F
shows
P(ω in pmf-of-set (bounded-degree-polynomials F n). ring.hash F x ω = y)
= 1/(real (card (carrier F)))

proof −
interpret carter-wegman-hash-family F n

using assms carter-wegman-hash-familyI by force
show ?thesis

using prob-single[OF assms(2 ,4)] by (simp add:M-def space-def)
qed

end

4 Indexed Products of Probability Mass Functions
theory Universal-Hash-Families-More-Product-PMF

imports
Concentration-Inequalities.Concentration-Inequalities-Preliminary
Finite-Fields.Finite-Fields-More-Bijections
Universal-Hash-Families-More-Independent-Families

begin

hide-const (open) Isolated.discrete

This section introduces a restricted version of Pi-pmf where the default
value is undefined and contains some additional results about that case in
addition to HOL−Probability.Product-PMF
abbreviation prod-pmf where prod-pmf I M ≡ Pi-pmf I undefined M

16

lemma measure-pmf-cong:
assumes

∧
x. x ∈ set-pmf p =⇒ x ∈ P ←→ x ∈ Q

shows measure (measure-pmf p) P = measure (measure-pmf p) Q
using assms
by (intro finite-measure.finite-measure-eq-AE AE-pmfI) auto

lemma pmf-mono:
assumes

∧
x. x ∈ set-pmf p =⇒ x ∈ P =⇒ x ∈ Q

shows measure (measure-pmf p) P ≤ measure (measure-pmf p) Q
proof −

have measure (measure-pmf p) P = measure (measure-pmf p) (P ∩ (set-pmf p))
by (intro measure-pmf-cong) auto

also have ... ≤ measure (measure-pmf p) Q
using assms by (intro finite-measure.finite-measure-mono) auto

finally show ?thesis by simp
qed

lemma pmf-add:
assumes

∧
x. x ∈ P =⇒ x ∈ set-pmf p =⇒ x ∈ Q ∨ x ∈ R

shows measure p P ≤ measure p Q + measure p R
proof −

have measure p P ≤ measure p (Q ∪ R)
using assms by (intro pmf-mono) blast

also have ... ≤ measure p Q + measure p R
by (rule measure-subadditive, auto)

finally show ?thesis by simp
qed

lemma pmf-prod-pmf :
assumes finite I
shows pmf (prod-pmf I M) x = (if x ∈ extensional I then

∏
i ∈ I . (pmf (M i))

(x i) else 0)
by (simp add: pmf-Pi[OF assms(1)] extensional-def)

lemma PiE-defaut-undefined-eq: PiE-dflt I undefined M = PiE I M
by (simp add:PiE-dflt-def PiE-def extensional-def Pi-def set-eq-iff) blast

lemma set-prod-pmf :
assumes finite I
shows set-pmf (prod-pmf I M) = PiE I (set-pmf ◦ M)
by (simp add:set-Pi-pmf [OF assms] PiE-defaut-undefined-eq)

A more general version of measure-Pi-pmf-Pi.
lemma prob-prod-pmf ′:

assumes finite I
assumes J ⊆ I
shows measure (measure-pmf (Pi-pmf I d M)) (Pi J A) = (

∏
i ∈ J . measure

(M i) (A i))
proof −

17

have a:Pi J A = Pi I (λi. if i ∈ J then A i else UNIV)
using assms by (simp add:Pi-def set-eq-iff , blast)

show ?thesis
using assms
by (simp add:if-distrib a measure-Pi-pmf-Pi[OF assms(1)] prod.If-cases[OF

assms(1)] Int-absorb1)
qed

lemma prob-prod-pmf-slice:
assumes finite I
assumes i ∈ I
shows measure (measure-pmf (prod-pmf I M)) {ω. P (ω i)} = measure (M i)
{ω. P ω}

using prob-prod-pmf ′[OF assms(1), where J={i} and M=M and A=λ-. Col-
lect P]

by (simp add:assms Pi-def)

definition restrict-dfl where restrict-dfl f A d = (λx. if x ∈ A then f x else d)

lemma pi-pmf-decompose:
assumes finite I
shows Pi-pmf I d M = map-pmf (λω. restrict-dfl (λi. ω (f i) i) I d) (Pi-pmf (f

‘ I) (λ-. d) (λj. Pi-pmf (f −‘ {j} ∩ I) d M))
proof −

have fin-F-I :finite (f ‘ I) using assms by blast

have finite I =⇒ ?thesis
using fin-F-I

proof (induction f ‘ I arbitrary: I rule:finite-induct)
case empty
then show ?case by (simp add:restrict-dfl-def)

next
case (insert x F)
have a: (f −‘ {x} ∩ I) ∪ (f −‘ F ∩ I) = I

using insert(4) by blast
have b: F = f ‘ (f −‘ F ∩ I) using insert(2 ,4)

by (auto simp add:set-eq-iff image-def vimage-def)
have c: finite (f −‘ F ∩ I) using insert by blast
have d:

∧
j. j ∈ F =⇒ (f −‘ {j} ∩ (f −‘ F ∩ I)) = (f −‘ {j} ∩ I)

using insert(4) by blast

have Pi-pmf I d M = Pi-pmf ((f −‘ {x} ∩ I) ∪ (f −‘ F ∩ I)) d M
by (simp add:a)

also have ... = map-pmf (λ(g, h) i. if i ∈ f −‘ {x} ∩ I then g i else h i)
(pair-pmf (Pi-pmf (f −‘ {x} ∩ I) d M) (Pi-pmf (f −‘ F ∩ I) d M))
using insert by (subst Pi-pmf-union) auto

also have ... = map-pmf (λ(g,h) i. if f i = x ∧ i ∈ I then g i else if f i ∈ F ∧
i ∈ I then h (f i) i else d)

(pair-pmf (Pi-pmf (f −‘ {x} ∩ I) d M) (Pi-pmf F (λ-. d) (λj. Pi-pmf (f −‘

18

{j} ∩ (f −‘ F ∩ I)) d M)))
by (simp add:insert(3)[OF b c] map-pmf-comp case-prod-beta ′ apsnd-def

map-prod-def
pair-map-pmf2 b[symmetric] restrict-dfl-def) (metis fst-conv snd-conv)

also have ... = map-pmf (λ(g,h) i. if i ∈ I then (h(x := g)) (f i) i else d)
(pair-pmf (Pi-pmf (f −‘ {x} ∩ I) d M) (Pi-pmf F (λ-. d) (λj. Pi-pmf (f −‘

{j} ∩ I) d M)))
using insert(4) d
by (intro arg-cong2 [where f=map-pmf] ext) (auto simp add:case-prod-beta ′

cong:Pi-pmf-cong)
also have ... = map-pmf (λω i. if i ∈ I then ω (f i) i else d) (Pi-pmf (insert

x F) (λ-. d) (λj. Pi-pmf (f −‘ {j} ∩ I) d M))
by (simp add:Pi-pmf-insert[OF insert(1 ,2)] map-pmf-comp case-prod-beta ′)

finally show ?case by (simp add:insert(4) restrict-dfl-def)
qed
thus ?thesis using assms by blast

qed

lemma restrict-dfl-iter : restrict-dfl (restrict-dfl f I d) J d = restrict-dfl f (I ∩ J)
d

by (rule ext, simp add:restrict-dfl-def)

lemma indep-vars-restrict ′:
assumes finite I
shows prob-space.indep-vars (Pi-pmf I d M) (λ-. discrete) (λi ω. restrict-dfl ω

(f −‘ {i} ∩ I) d) (f ‘ I)
proof −

let ?Q = (Pi-pmf (f ‘ I) (λ-. d) (λi. Pi-pmf (I ∩ f −‘ {i}) d M))
have a:prob-space.indep-vars ?Q (λ-. discrete) (λi ω. ω i) (f ‘ I)

using assms by (intro indep-vars-Pi-pmf , blast)
have b: AE x in measure-pmf ?Q. ∀ i∈f ‘ I . x i = restrict-dfl (λi. x (f i) i) (I ∩

f −‘ {i}) d
using assms
by (auto simp add:PiE-dflt-def restrict-dfl-def AE-measure-pmf-iff set-Pi-pmf

comp-def Int-commute)
have prob-space.indep-vars ?Q (λ-. discrete) (λi x. restrict-dfl (λi. x (f i) i) (I
∩ f −‘ {i}) d) (f ‘ I)

by (rule prob-space.indep-vars-cong-AE [OF prob-space-measure-pmf b a], simp)
thus ?thesis

using prob-space-measure-pmf
by (auto intro!:prob-space.indep-vars-distr simp:pi-pmf-decompose[OF assms,

where f=f]
map-pmf-rep-eq comp-def restrict-dfl-iter Int-commute)

qed

lemma indep-vars-restrict-intro ′:
assumes finite I
assumes

∧
i ω. i ∈ J =⇒ X ′ i ω = X ′ i (restrict-dfl ω (f −‘ {i} ∩ I) d)

assumes J = f ‘ I

19

assumes
∧
ω i. i ∈ J =⇒ X ′ i ω ∈ space (M ′ i)

shows prob-space.indep-vars (measure-pmf (Pi-pmf I d p)) M ′ (λi ω. X ′ i ω) J
proof −

define M where M ≡ measure-pmf (Pi-pmf I d p)
interpret prob-space M

using M-def prob-space-measure-pmf by blast
have indep-vars (λ-. discrete) (λi x. restrict-dfl x (f −‘ {i} ∩ I) d) (f ‘ I)

unfolding M-def by (rule indep-vars-restrict ′[OF assms(1)])
hence indep-vars M ′ (λi ω. X ′ i (restrict-dfl ω (f −‘ {i} ∩ I) d)) (f ‘ I)

using assms(4)
by (intro indep-vars-compose2 [where Y=X ′ and N=M ′ and M ′=λ-. discrete])

(auto simp:assms(3))
hence indep-vars M ′ (λi ω. X ′ i ω) (f ‘ I)

using assms(2)[symmetric]
by (simp add:assms(3) cong:indep-vars-cong)

thus ?thesis
unfolding M-def using assms(3) by simp

qed

lemma
fixes f :: ′b ⇒ (′c :: {second-countable-topology,banach,real-normed-field})
assumes finite I
assumes i ∈ I
assumes integrable (measure-pmf (M i)) f
shows integrable-Pi-pmf-slice: integrable (Pi-pmf I d M) (λx. f (x i))
and expectation-Pi-pmf-slice: integralL (Pi-pmf I d M) (λx. f (x i)) = integralL

(M i) f
proof −

have a:distr (Pi-pmf I d M) (M i) (λω. ω i) = distr (Pi-pmf I d M) discrete
(λω. ω i)

by (rule distr-cong, auto)

have b: measure-pmf .random-variable (M i) borel f
using assms(3) by simp

have c:integrable (distr (Pi-pmf I d M) (M i) (λω. ω i)) f
using assms(1 ,2 ,3)
by (subst a, subst map-pmf-rep-eq[symmetric], subst Pi-pmf-component, auto)

show integrable (Pi-pmf I d M) (λx. f (x i))
by (rule integrable-distr [where f=f and M ′=M i]) (auto intro: c)

have integralL (Pi-pmf I d M) (λx. f (x i)) = integralL (distr (Pi-pmf I d M)
(M i) (λω. ω i)) f

using b by (intro integral-distr [symmetric], auto)
also have ... = integralL (map-pmf (λω. ω i) (Pi-pmf I d M)) f

by (subst a, subst map-pmf-rep-eq[symmetric], simp)
also have ... = integralL (M i) f

using assms(1 ,2) by (simp add: Pi-pmf-component)

20

finally show integralL (Pi-pmf I d M) (λx. f (x i)) = integralL (M i) f by simp
qed

This is an improved version of expectation-prod-Pi-pmf. It works for general
normed fields instead of non-negative real functions .
lemma expectation-prod-Pi-pmf :

fixes f :: ′a ⇒ ′b ⇒ (′c :: {second-countable-topology,banach,real-normed-field})
assumes finite I
assumes

∧
i. i ∈ I =⇒ integrable (measure-pmf (M i)) (f i)

shows integralL (Pi-pmf I d M) (λx. (
∏

i ∈ I . f i (x i))) = (
∏

i ∈ I . integralL
(M i) (f i))
proof −

have a: prob-space.indep-vars (measure-pmf (Pi-pmf I d M)) (λ-. borel) (λi ω. f
i (ω i)) I

by (intro prob-space.indep-vars-compose2 [where Y=f and M ′=λ-. discrete]
prob-space-measure-pmf indep-vars-Pi-pmf assms(1)) auto

have integralL (Pi-pmf I d M) (λx. (
∏

i ∈ I . f i (x i))) = (
∏

i ∈ I . integralL
(Pi-pmf I d M) (λx. f i (x i)))

by (intro prob-space.indep-vars-lebesgue-integral prob-space-measure-pmf assms(1 ,2)
a integrable-Pi-pmf-slice) auto

also have ... = (
∏

i ∈ I . integralL (M i) (f i))
by (intro prod.cong expectation-Pi-pmf-slice assms(1 ,2)) auto

finally show ?thesis by simp
qed

lemma variance-prod-pmf-slice:
fixes f :: ′a ⇒ real
assumes i ∈ I finite I
assumes integrable (measure-pmf (M i)) (λω. f ω^2)
shows prob-space.variance (Pi-pmf I d M) (λω. f (ω i)) = prob-space.variance

(M i) f
proof −

have a:integrable (measure-pmf (M i)) f
using assms(3) measure-pmf .square-integrable-imp-integrable by auto

have b: integrable (measure-pmf (Pi-pmf I d M)) (λx. (f (x i))2)
by (rule integrable-Pi-pmf-slice[OF assms(2) assms(1)], metis assms(3))

have c: integrable (measure-pmf (Pi-pmf I d M)) (λx. (f (x i)))
by (rule integrable-Pi-pmf-slice[OF assms(2) assms(1)], metis a)

have measure-pmf .expectation (Pi-pmf I d M) (λx. (f (x i))2) − (measure-pmf .expectation
(Pi-pmf I d M) (λx. f (x i)))2 =

measure-pmf .expectation (M i) (λx. (f x)2) − (measure-pmf .expectation (M
i) f)2

using assms a b c by ((subst expectation-Pi-pmf-slice[OF assms(2 ,1)])?, simp)+

thus ?thesis
using assms a b c by (simp add: measure-pmf .variance-eq)

qed

21

lemma Pi-pmf-bind-return:
assumes finite I
shows Pi-pmf I d (λi. M i >>= (λx. return-pmf (f i x))) = Pi-pmf I d ′ M >>=

(λx. return-pmf (λi. if i ∈ I then f i (x i) else d))
using assms by (simp add: Pi-pmf-bind[where d ′=d ′])

lemma pmf-of-set-prod-eq:
assumes A 6= {} finite A
assumes B 6= {} finite B
shows pmf-of-set (A × B) = pair-pmf (pmf-of-set A) (pmf-of-set B)

proof −
have indicat-real (A × B) (i, j) = indicat-real A i ∗ indicat-real B j for i j

by (cases i ∈ A; cases j ∈ B) auto
hence pmf (pmf-of-set (A × B)) (i,j) = pmf (pair-pmf (pmf-of-set A) (pmf-of-set

B)) (i,j)
for i j using assms by (simp add:pmf-pair)

thus ?thesis
by (intro pmf-eqI) auto

qed

lemma split-pmf-mod-div ′:
assumes a > (0 ::nat)
assumes b > 0
shows map-pmf (λx. (x mod a, x div a)) (pmf-of-set {..<a ∗ b}) = pmf-of-set

({..<a} × {..<b})
using assms by (intro map-pmf-of-set-bij-betw bij-betw-prod finite-lessThan)
(simp add: lessThan-empty-iff)

lemma split-pmf-mod-div:
assumes a > (0 ::nat)
assumes b > 0
shows map-pmf (λx. (x mod a, x div a)) (pmf-of-set {..<a ∗ b}) =

pair-pmf (pmf-of-set {..<a}) (pmf-of-set {..<b})
using assms by (auto intro!: pmf-of-set-prod-eq simp add:split-pmf-mod-div ′)

end

5 Pseudorandom Objects
theory Pseudorandom-Objects

imports Universal-Hash-Families-More-Product-PMF
begin

This section introduces a combinator library for pseudorandom objects [3].
These can be thought of as PRNGs but with rigorous mathematical proper-
ties, which can be used to in algorithms to reduce their randomness usage.
Such an object represents a non-empty multiset, with an efficient mechanism
to sample from it. They have a natural interpretation as a probability space

22

(each element is selected with a probability proportional to its occurrence
count in the multiset).
The following section will introduce a construction of k-independent hash
families as a pseudorandom object. The AFP entry Expander_Graphs then
follows up with expander walks as pseudorandom objects.
record ′a pseudorandom-object =

pro-last :: nat
pro-select :: nat ⇒ ′a

definition pro-size where pro-size S = pro-last S + 1
definition sample-pro where sample-pro S = map-pmf (pro-select S) (pmf-of-set
{0 ..pro-last S})

declare [[coercion sample-pro]]

abbreviation pro-set where pro-set S ≡ set-pmf (sample-pro S)

lemma sample-pro-alt: sample-pro S = map-pmf (pro-select S) (pmf-of-set {..<pro-size
S})

unfolding pro-size-def sample-pro-def
using Suc-eq-plus1 atLeast0AtMost lessThan-Suc-atMost by presburger

lemma pro-size-gt-0 : pro-size S > 0
unfolding pro-size-def by auto

lemma set-sample-pro: pro-set S = pro-select S ‘ {..<pro-size S}
using pro-size-gt-0 unfolding sample-pro-alt set-map-pmf
by (subst set-pmf-of-set) auto

lemma set-pmf-of-set-sample-size[simp]:
set-pmf (pmf-of-set {..<pro-size S}) = {..<pro-size S}
using pro-size-gt-0 by (intro set-pmf-of-set) auto

lemma pro-select-in-set: pro-select S (x mod pro-size S) ∈ pro-set S
unfolding set-sample-pro by (intro imageI) (simp add:pro-size-gt-0)

lemma finite-pro-set: finite (pro-set S)
unfolding set-sample-pro by (intro finite-imageI) auto

lemma integrable-sample-pro[simp]:
fixes f :: ′a ⇒ ′c::{banach, second-countable-topology}
shows integrable (measure-pmf (sample-pro S)) f
by (intro integrable-measure-pmf-finite finite-pro-set)

definition list-pro :: ′a list ⇒ ′a pseudorandom-object where
list-pro ls = (| pro-last = length ls − 1 , pro-select = (!) ls |)

23

lemma list-pro:
assumes xs 6= []
shows sample-pro (list-pro xs) = pmf-of-multiset (mset xs) (is ?L = ?R)

proof −
have ?L = map-pmf ((!) xs) (pmf-of-set {..<length xs})

using assms unfolding list-pro-def sample-pro-alt pro-size-def by simp
also have ... = pmf-of-multiset (image-mset ((!) xs) (mset-set {..<length xs}))

using assms by (subst map-pmf-of-set) auto
also have ... = ?R

by (metis map-nth mset-map mset-set-upto-eq-mset-upto)
finally show ?thesis by simp

qed

lemma list-pro-2 :
assumes xs 6= [] distinct xs
shows sample-pro (list-pro xs) = pmf-of-set (set xs) (is ?L = ?R)

proof −
have ?L = map-pmf ((!) xs) (pmf-of-set {..<length xs})

using assms unfolding list-pro-def sample-pro-alt pro-size-def by simp
also have ... = pmf-of-set ((!) xs ‘ {..<length xs})

using assms nth-eq-iff-index-eq by (intro map-pmf-of-set-inj inj-onI) auto
also have ... = ?R
by (intro arg-cong[where f=pmf-of-set]) (metis atLeast-upt list.set-map map-nth)

finally show ?thesis by simp
qed

lemma list-pro-size:
assumes xs 6= []
shows pro-size (list-pro xs) = length xs
using assms unfolding pro-size-def list-pro-def by auto

lemma list-pro-set:
assumes xs 6= []
shows pro-set (list-pro xs) = set xs

proof −
have (!) xs ‘ {..<length xs} = set xs by (metis atLeast-upt list.set-map map-nth)
thus ?thesis unfolding set-sample-pro list-pro-size[OF assms] by (simp add:list-pro-def)

qed

definition nat-pro :: nat ⇒ nat pseudorandom-object where
nat-pro n = (| pro-last = n−1 , pro-select = id |)

lemma nat-pro-size:
assumes n > 0
showspro-size (nat-pro n) = n
using assms unfolding nat-pro-def pro-size-def by auto

24

lemma nat-pro:
assumes n > 0
shows sample-pro (nat-pro n) = pmf-of-set {..<n}
unfolding sample-pro-alt nat-pro-size[OF assms] by (simp add:nat-pro-def)

lemma nat-pro-set:
assumes n > 0
shows pro-set (nat-pro n) = {..<n}
using assms unfolding nat-pro[OF assms] by (simp add: lessThan-empty-iff)

fun count-zeros :: nat ⇒ nat ⇒ nat where
count-zeros 0 k = 0 |
count-zeros (Suc n) k = (if odd k then 0 else 1 + count-zeros n (k div 2))

lemma count-zeros-iff : j ≤ n =⇒ count-zeros n k ≥ j ←→ 2^j dvd k
proof (induction j arbitrary: n k)

case 0
then show ?case by simp

next
case (Suc j)
then obtain n ′ where n-def : n = Suc n ′ using Suc-le-D by presburger
show ?case using Suc unfolding n-def by auto

qed

lemma count-zeros-max:
count-zeros n k ≤ n
by (induction n arbitrary: k) auto

definition geom-pro :: nat ⇒ nat pseudorandom-object where
geom-pro n = (| pro-last = 2^n − 1 , pro-select = count-zeros n |)

lemma geom-pro-size: pro-size (geom-pro n) = 2^n
unfolding geom-pro-def pro-size-def by simp

lemma geom-pro-range: pro-set (geom-pro n) ⊆ {..n}
using count-zeros-max unfolding sample-pro-alt unfolding geom-pro-def by

auto

lemma geom-pro-prob:
measure (sample-pro (geom-pro n)) {ω. ω ≥ j} = of-bool (j ≤ n) / 2^j (is ?L =

?R)
proof (cases j ≤ n)

case True
have a:{..<(2^n)::nat} 6= {}

by (simp add: lessThan-empty-iff)
have b:finite {..<(2^n)::nat} by simp

25

define f :: nat ⇒ nat where f = (λx. x ∗ 2^j)
have d:inj-on f {..<2^(n−j)} unfolding f-def by (intro inj-onI) simp

have e:2^j > (0 ::nat) by simp

have y ∈ f ‘ {..< 2^(n−j)} ←→ y ∈ {x. x < 2^n ∧ 2^j dvd x} for y :: nat
proof −

have y ∈ f ‘ {..< 2^(n−j)} ←→ (∃ x. x < 2 ^ (n − j) ∧ y = 2 ^ j ∗ x)
unfolding f-def by auto

also have ... ←→ (∃ x. 2^j ∗ x < 2^j ∗ 2 ^ (n−j) ∧ y = 2 ^ j ∗ x)
using e by simp

also have ... ←→ (∃ x. 2^j ∗ x < 2^n ∧ y = 2 ^ j ∗ x)
using True by (subst power-add[symmetric]) simp

also have ... ←→ (∃ x. y < 2^n ∧ y = x ∗ 2 ^ j)
by (metis Groups.mult-ac(2))

also have ... ←→ y ∈ {x. x < 2^n ∧ 2^j dvd x} by auto
finally show ?thesis by simp

qed

hence c:f ‘ {..< 2^(n−j)} = {x. x < 2^n ∧ 2^j dvd x} by auto

have ?L = measure (pmf-of-set {..<2^n}) {ω. count-zeros n ω ≥ j}
unfolding sample-pro-alt geom-pro-size by (simp add:geom-pro-def)

also have ... = real (card {x::nat. x < 2^n ∧ 2^j dvd x}) / 2^n
by (simp add: measure-pmf-of-set[OF a b] count-zeros-iff [OF True])
(simp add:lessThan-def Collect-conj-eq)

also have ... = real (card (f ‘ {..<2^(n−j)})) / 2^n
by (simp add:c)

also have ... = real (card ({..<(2^(n−j)::nat)})) / 2^n
by (simp add: card-image[OF d])

also have ... = ?R
using True by (simp add:frac-eq-eq power-add[symmetric])

finally show ?thesis by simp
next

case False
have set-pmf (sample-pro (geom-pro n)) ⊆ {..n}

using geom-pro-range by simp
hence ?L = measure (sample-pro (geom-pro n)) {}

using False by (intro measure-pmf-cong) auto
also have ... = ?R

using False by simp
finally show ?thesis

by simp
qed

lemma geom-pro-prob-single:
measure (sample-pro (geom-pro n)) {j} ≤ 1 / 2^j (is ?L ≤ ?R)

proof −

26

have ?L = measure (sample-pro (geom-pro n)) ({j..}−{j+1 ..})
by (intro measure-pmf-cong) auto

also have ... = measure (sample-pro (geom-pro n)) {j..} − measure (sample-pro
(geom-pro n)) {j+1 ..}

by (intro measure-Diff) auto
also have ... = measure (sample-pro (geom-pro n)) {ω. ω ≥ j}−measure (sample-pro

(geom-pro n)) {ω. ω ≥ (j+1)}
by (intro arg-cong2 [where f=(−)] measure-pmf-cong) auto

also have ... = of-bool (j ≤ n) ∗ 1 / 2 ^ j − of-bool (j + 1 ≤ n) / 2 ^ (j + 1)
unfolding geom-pro-prob by simp

also have ... ≤ 1/2^j − 0
by (intro diff-mono) auto

also have ... = ?R by simp
finally show ?thesis by simp

qed

definition prod-pro ::
′a pseudorandom-object ⇒ ′b pseudorandom-object ⇒ (′a × ′b) pseudorandom-object
where

prod-pro P Q =
(| pro-last = pro-size P ∗ pro-size Q − 1 ,
pro-select = (λk. (pro-select P (k mod pro-size P), pro-select Q (k div pro-size

P))) |)

lemma prod-pro-size:
pro-size (prod-pro P Q) = pro-size P ∗ pro-size Q
unfolding prod-pro-def by (subst pro-size-def) (simp add:pro-size-gt-0)

lemma prod-pro:
sample-pro (prod-pro P Q) = pair-pmf (sample-pro P) (sample-pro Q) (is ?L =

?R)
proof −

let ?p = pro-size P
let ?q = pro-size Q
have ?L = map-pmf (λk. (pro-select P (k mod ?p),pro-select Q (k div ?p)))

(pmf-of-set{..<?p∗?q})
unfolding sample-pro-alt prod-pro-size by (simp add:prod-pro-def)

also have ... = map-pmf (map-prod (pro-select P) (pro-select Q))
(map-pmf (λk. (k mod ?p, k div ?p)) (pmf-of-set{..<?p∗?q}))
unfolding map-pmf-comp by simp

also have ... = ?R
unfolding split-pmf-mod-div[OF pro-size-gt-0 pro-size-gt-0] sample-pro-alt map-prod-def

map-pair
by simp

finally show ?thesis by simp
qed

27

lemma prod-pro-set:
pro-set (prod-pro P Q) = pro-set P × pro-set Q
unfolding prod-pro set-pair-pmf by simp

end

6 K-Independent Hash Families as Pseudorandom
Objects

theory Pseudorandom-Objects-Hash-Families
imports

Pseudorandom-Objects
Finite-Fields.Find-Irreducible-Poly
Carter-Wegman-Hash-Family
Universal-Hash-Families-More-Product-PMF

begin

hide-const (open) Numeral-Type.mod-ring
hide-const (open) Divisibility.prime
hide-const (open) Isolated.discrete

definition hash-space ′ ::
(′a, ′b) idx-ring-enum-scheme ⇒ nat ⇒ (′c, ′d) pseudorandom-object-scheme
⇒ (nat ⇒ ′c) pseudorandom-object
where hash-space ′ R k S = (
(|

pro-last = idx-size R ^k−1 ,
pro-select = (λx i.

pro-select S
(idx-enum-inv R (poly-eval R (poly-enum R k x) (idx-enum R i)) mod pro-size

S))
|))

lemma hash-prob-single ′:
assumes field F finite (carrier F)
assumes x ∈ carrier F
assumes 1 ≤ n
shows measure (pmf-of-set (bounded-degree-polynomials F n)) {ω. ring.hash F x

ω = y} =
of-bool (y∈ carrier F)/(real (card (carrier F))) (is ?L = ?R)

proof (cases y ∈ carrier F)
case True
have ?L = P(ω in pmf-of-set (bounded-degree-polynomials F n). ring.hash F x ω

= y) by simp
also have ... = 1 / (real (card (carrier F))) by (intro hash-prob-single assms

conjI True)
also have ... = ?R using True by simp
finally show ?thesis by simp

28

next
case False
interpret field F using assms by simp
have fin-carr : finite (carrier F) using assms by simp
note S = non-empty-bounded-degree-polynomials fin-degree-bounded[OF fin-carr]
let ?S = bounded-degree-polynomials F n

have hash x f 6= y if f ∈ ?S for f
proof −

have hash x f ∈ carrier F
using that unfolding hash-def bounded-degree-polynomials-def
by (intro eval-in-carrier assms) (simp add: polynomial-incl univ-poly-carrier)

thus ?thesis using False by auto
qed
hence ?L = measure (pmf-of-set (bounded-degree-polynomials F n)) {}

using S by (intro measure-eq-AE AE-pmfI) simp-all
also have ... = ?R using False by simp
finally show ?thesis by simp

qed

lemma hash-k-wise-indep ′:
assumes field F ∧ finite (carrier F)
assumes 1 ≤ n
shows prob-space.k-wise-indep-vars (pmf-of-set (bounded-degree-polynomials F

n)) n
(λ-. discrete) (ring.hash F) (carrier F)

by (intro prob-space.k-wise-indep-vars-compose[OF - hash-k-wise-indep[OF assms]]
prob-space-measure-pmf) auto

lemma hash-space ′:
fixes R :: (′a, ′b) idx-ring-enum-scheme
assumes enumC R fieldC R
assumes pro-size S dvd order (ring-of R)
assumes I ⊆ {..<order (ring-of R)} card I ≤ k
shows map-pmf (λf . (λi∈I . f i)) (sample-pro (hash-space ′ R k S)) = prod-pmf I

(λ-. sample-pro S)
(is ?L = ?R)

proof (cases I = {})
case False
let ?b = idx-size R
let ?s = pro-size S
let ?t = ?b div ?s
let ?g = λx i. poly-eval R (poly-enum R k x) (idx-enum R i)
let ?f = λx. pro-select S (idx-enum-inv R x mod ?s)
let ?R-pmf = pmf-of-set (carrier (ring-of R))
let ?S = {xs ∈ carrier (poly-ring (ring-of R)). length xs ≤ k}
let ?T = pmf-of-set (bounded-degree-polynomials (ring-of R) k)

interpret field ring-of R using assms(2) unfolding fieldC-def by auto

29

have ring-c: ringC R using field-c-imp-ring assms(2) by auto
note enum-c = enum-cD[OF assms(1)]

have fin-carr : finite (carrier (ring-of R)) using enum-c by simp

have 0 < card I using False assms(4) card-gt-0-iff finite-nat-iff-bounded by blast
also have ... ≤ k using assms(5) by simp
finally have k-gt-0 : k > 0 by simp
have b-gt-0 : ?b > 0 unfolding enum-c(2) using fin-carr order-gt-0-iff-finite by

blast
hence t-gt-0 : ?t > 0 using enum-c(2) assms(3) dvd-div-gt0 by simp
have b-k-gt-0 : ?b ^ k > 0 using b-gt-0 by simp

have fin-I : finite I using assms(4) finite-subset by auto

have inj: inj-on (idx-enum R) I
using assms(4) unfolding enum-c(2)
by (intro inj-on-subset[OF bij-betw-imp-inj-on[OF enum-c(3)]])

have card (idx-enum R ‘ I) ≤ k
using assms(5) unfolding card-image[OF inj] by auto

hence prob-space.indep-vars ?T (λ-. discrete) hash (idx-enum R ‘ I)
using assms(4) k-gt-0 fin-I bij-betw-apply[OF enum-c(3)] enum-c(2)
by (intro prob-space.k-wise-indep-vars-subset[OF - hash-k-wise-indep ′]

prob-space-measure-pmf conjI fin-carr field-axioms) auto
hence prob-space.indep-vars ?T ((λ-. discrete) ◦ idx-enum R) (λx ω. eval ω

(idx-enum R x)) I
using inj unfolding hash-def
by (intro prob-space.indep-vars-reindex prob-space-measure-pmf) auto

hence indep: prob-space.indep-vars ?T (λ-. discrete) (λx ω. eval ω (idx-enum R
x)) I

by (simp add:comp-def)

have 0 : pmf (map-pmf (λx. λi∈I . eval x (idx-enum R i)) ?T) ω = pmf (prod-pmf
I (λ-. ?R-pmf)) ω

(is ?L1 = ?R1) for ω
proof (cases ω ∈ extensional I)

case True
have ?L1 = measure ?T {x. (λi∈I . eval x (idx-enum R i)) = ω}

by (simp add:pmf-map vimage-def)
also have ... = measure ?T {x. (∀ i∈I . eval x (idx-enum R i) = ω i)}

using True unfolding restrict-def extensional-def
by (intro arg-cong2 [where f=measure] refl Collect-cong) auto

also have ... = (
∏

i∈I . measure ?T {x. eval x (idx-enum R i) = ω i})
by (intro prob-space.split-indep-events[where I=I and p=?T] prob-space-measure-pmf

fin-I refl prob-space.indep-vars-compose2 [OF - indep]) auto
also have ... = (

∏
i∈I . measure ?T {x. hash (idx-enum R i) x = ω i})

unfolding hash-def by simp

30

also have ... = (
∏

i∈I . of-bool(ω i ∈ carrier (ring-of R))/real (card (carrier
(ring-of R))))

using k-gt-0 assms(4) by (intro prod.cong refl hash-prob-single ′

bij-betw-apply[OF enum-c(3)] fin-carr field-axioms) (auto simp:enum-c)
also have ... = (

∏
i∈I . pmf (pmf-of-set (carrier (ring-of R))) (ω i))

using fin-carr carrier-not-empty by (simp add:indicator-def)
also have ... = ?R1

using True unfolding pmf-prod-pmf [OF fin-I] by simp
finally show ?thesis by simp

next
case False
have ?L1 = 0 using False unfolding pmf-eq-0-set-pmf set-map-pmf by auto
moreover have ?R1 = 0

using False unfolding pmf-eq-0-set-pmf set-prod-pmf [OF fin-I] PiE-def by
simp

ultimately show ?thesis by simp
qed

have map-pmf (λx. λi∈I . ?g x i) (pmf-of-set {..<?b^k}) =
map-pmf (λx. λi∈I . poly-eval R x (idx-enum R i)) (map-pmf (poly-enum R k)

(pmf-of-set {..<?b^k}))
by (simp add:map-pmf-comp)

also have ... = map-pmf (λx. λi∈I . poly-eval R x (idx-enum R i)) (pmf-of-set
?S)

using b-k-gt-0 by (intro arg-cong2 [where f=map-pmf] refl map-pmf-of-set-bij-betw
bij-betw-poly-enum assms(1 ,2) field-c-imp-ring) blast+

also have ... = map-pmf (λx. λi∈I . poly-eval R x (idx-enum R i)) ?T
using k-gt-0 unfolding bounded-degree-polynomials-def
by (intro map-pmf-cong refl arg-cong[where f=pmf-of-set] restrict-ext ring-c)

auto
also have ... = map-pmf (λx. λi∈I . eval x (idx-enum R i)) ?T

using non-empty-bounded-degree-polynomials fin-degree-bounded[OF fin-carr]
assms(4)

by (intro map-pmf-cong poly-eval refl restrict-ext ring-c bij-betw-apply[OF
enum-c(3)])

(auto simp add:bounded-degree-polynomials-def ring-of-poly[OF ring-c] enum-c(2))
also have ... = prod-pmf I (λ-. ?R-pmf) (is ?L1 = ?R1)

by (intro pmf-eqI 0)
finally have 0 : map-pmf (λx. λi∈I . ?g x i) (pmf-of-set {..<?b^k}) = prod-pmf

I (λ-. ?R-pmf)
by simp

have 1 : map-pmf (λx. x mod ?s) (pmf-of-set {..<?b}) = pmf-of-set {..<?s} (is
?L1=?R1)

proof −
have ?L1 = map-pmf fst (map-pmf (λx. (x mod ?s, x div ?s)) (pmf-of-set

{..<?s∗?t}))
using assms(3) by (simp add:map-pmf-comp enum-c(2))

also have ... = map-pmf fst (pmf-of-set ({..<?s} × {..<?t}))

31

using pro-size-gt-0 t-gt-0 lessThan-empty-iff finite-lessThan
by (intro arg-cong2 [where f=map-pmf] refl map-pmf-of-set-bij-betw bij-betw-prod)

force+
also have ... = map-pmf fst (pair-pmf (pmf-of-set {..<?s}) (pmf-of-set {..<?t}))
using pro-size-gt-0 t-gt-0 by(intro arg-cong2 [where f=map-pmf] pmf-of-set-prod-eq

refl) auto
also have ... = pmf-of-set {..<?s} using map-fst-pair-pmf by blast
finally show ?thesis by simp

qed

have map-pmf ?f ?R-pmf = map-pmf (λx. pro-select S (x mod ?s)) (map-pmf
(idx-enum-inv R) ?R-pmf)

by (simp add:map-pmf-comp)
also have ... = map-pmf (λx. pro-select S (x mod ?s)) (pmf-of-set {..<?b})

using enum-cD(1 ,2 ,4)[OF assms(1)] carrier-not-empty
by (intro arg-cong2 [where f=map-pmf] refl map-pmf-of-set-bij-betw) auto

also have ... = map-pmf (pro-select S) (map-pmf (λx. x mod ?s) (pmf-of-set
{..<?b}))

by (simp add:map-pmf-comp)
also have ... = sample-pro S unfolding sample-pro-alt 1 by simp
finally have 2 :map-pmf ?f ?R-pmf = sample-pro S by simp

have ?L = map-pmf (λx. λi∈I . ?f (?g x i)) (pmf-of-set {..<?b^k})
using b-k-gt-0 unfolding sample-pro-alt hash-space ′-def pro-size-def
by (simp add: map-pmf-comp del:poly-eval.simps)

also have ... = map-pmf (λf . λi∈I . ?f (f i)) (map-pmf (λx. λi∈I . ?g x i)
(pmf-of-set {..<?b^k}))

unfolding map-pmf-comp by (intro arg-cong2 [where f=map-pmf] refl re-
strict-ext ext) simp

also have ... = prod-pmf I (λ-. map-pmf ?f (pmf-of-set (carrier (ring-of R))))
unfolding 0

by (simp add:map-pmf-def Pi-pmf-bind-return[OF fin-I , where d ′=undefined]
restrict-def)

also have ... = ?R unfolding 2 by simp
finally show ?thesis by simp

next
case True
have ?L = map-pmf (λf i. undefined) (sample-pro (hash-space ′ R k S))

using True by (intro map-pmf-cong refl) auto
also have ... = return-pmf (λf . undefined) unfolding map-pmf-const by simp
also have ... = ?R using True by simp
finally show ?L = ?R by simp

qed

lemma hash-space ′-range:
pro-select (hash-space ′ R k S) i j ∈ pro-set S
unfolding hash-space ′-def by (simp add: pro-select-in-set)

definition hash-pro ::

32

nat ⇒ nat ⇒ (′a, ′b) pseudorandom-object-scheme ⇒ (nat ⇒ ′a) pseudoran-
dom-object

where hash-pro k d S = (
let (p,j) = split-power (pro-size S);

l = max j (floorlog p (d−1))
in hash-space ′ (GF (p^l)) k S)

definition hash-pro-spmf ::
nat ⇒ nat ⇒ (′a, ′b) pseudorandom-object-scheme ⇒ (nat ⇒ ′a) pseudoran-

dom-object spmf
where hash-pro-spmf k d S =

do {
let (p,j) = split-power (pro-size S);
let l = max j (floorlog p (d−1));
R ← GFR (p^l);
return-spmf (hash-space ′ R k S)
}

definition hash-pro-pmf ::
nat ⇒ nat ⇒ (′a, ′b) pseudorandom-object-scheme ⇒ (nat ⇒ ′a) pseudoran-

dom-object pmf
where hash-pro-pmf k d S = map-pmf the (hash-pro-spmf k d S)

syntax
-FLIPBIND :: (′a ⇒ ′b) ⇒ ′c ⇒ ′b (infixr ‹=<<› 54)

syntax-consts
-FLIPBIND == Monad-Syntax.bind

translations
-FLIPBIND f g => g >>= f

context
fixes S
fixes d :: nat
fixes k :: nat
assumes size-prime-power : is-prime-power (pro-size S)

begin

private definition p where p = fst (split-power (pro-size S))
private definition j where j = snd (split-power (pro-size S))
private definition l where l = max j (floorlog p (d−1))

private lemma split-power : (p,j) = split-power (pro-size S)
using p-def j-def by auto

private lemma hash-sample-space-alt: hash-pro k d S = hash-space ′ (GF (p^l)) k
S

unfolding hash-pro-def split-power [symmetric] by (simp add:j-def l-def Let-def)

33

private lemma p-prime : prime p and j-gt-0 : j > 0
proof −

obtain q r where 0 :pro-size S = q^r and q-prime: prime q and r-gt-0 : r > 0
using size-prime-power is-prime-power-def by blast

have (p,j) = split-power (q^r) unfolding split-power 0 by simp
also have ... = (q,r) by (intro split-power-prime q-prime r-gt-0)
finally have (p,j) = (q,r) by simp
thus prime p j > 0 using q-prime r-gt-0 by auto

qed

private lemma l-gt-0 : l > 0
unfolding l-def using j-gt-0 by simp

private lemma prime-power : is-prime-power (p^l)
using p-prime l-gt-0 unfolding is-prime-power-def by auto

lemma hash-in-hash-pro-spmf : hash-pro k d S ∈ set-spmf (hash-pro-spmf k d S)
using GF-in-GF-R[OF prime-power]
unfolding hash-pro-def hash-pro-spmf-def split-power [symmetric] l-def by (auto

simp add:set-bind-spmf)

lemma lossless-hash-pro-spmf : lossless-spmf (hash-pro-spmf k d S)
proof −

have lossless-spmf (GFR (p^l)) by (intro galois-field-random-1 prime-power)
thus ?thesis unfolding hash-pro-spmf-def split-power [symmetric] l-def by simp

qed

lemma hashp-eq-hash-pro-spmf : set-pmf (hash-pro-pmf k d S) = set-spmf (hash-pro-spmf
k d S)
unfolding hash-pro-pmf-def using lossless-imp-spmf-of-pmf [OF lossless-hash-pro-spmf]
by (metis set-spmf-spmf-of-pmf)

lemma hashp-in-hash-pro-spmf :
assumes x ∈ set-pmf (hash-pro-pmf k d S)
shows x ∈ set-spmf (hash-pro-spmf k d S)
using hashp-eq-hash-pro-spmf assms by auto

lemma hash-pro-in-hash-pro-pmf : hash-pro k d S ∈ set-pmf (hash-pro-pmf k d S)
unfolding hashp-eq-hash-pro-spmf by (intro hash-in-hash-pro-spmf)

lemma hash-pro-spmf-distr :
assumes s ∈ set-spmf (hash-pro-spmf k d S)
assumes I ⊆ {..<d} card I ≤ k
shows map-pmf (λf . (λi∈I . f i)) (sample-pro s) = prod-pmf I (λ-. sample-pro

S)
proof −

have (d−1) < p^floorlog p (d−1)

34

using floorlog-leD prime-gt-1-nat[OF p-prime] by simp
hence d ≤ p^floorlog p (d−1) by (cases d) auto
also have ... ≤ p^l
using prime-gt-0-nat[OF p-prime] unfolding l-def by (intro power-increasing)

auto
finally have 0 : d ≤ p^l by simp

obtain R where R-in: R ∈ set-spmf (GFR (p^l)) and s-def : s = hash-space ′ R
k S

using assms(1) unfolding hash-pro-spmf-def split-power [symmetric] l-def
by (auto simp add:set-bind-spmf)

have 1 : order (ring-of R) = p ^ l
using galois-field-random-1 (1)[OF prime-power R-in] by auto

have I ⊆ {..<d} using assms by auto
also have ... ⊆ {..<order (ring-of R)} using 0 unfolding 1 by auto
finally have I ⊆ {..<order (ring-of R)} by simp
moreover have j ≤ l unfolding l-def by auto
hence pro-size S dvd order (ring-of R)

unfolding 1 split-power-result[OF split-power] by (intro le-imp-power-dvd)
ultimately show ?thesis

using galois-field-random-1 (1)[OF prime-power R-in] assms(3)
unfolding s-def by (intro hash-space ′) simp-all

qed

lemma hash-pro-spmf-component:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
assumes i < d k > 0
shows map-pmf (λf . f i) (sample-pro s) = sample-pro S (is ?L = ?R)

proof −
have ?L = map-pmf (λf . f i) (map-pmf (λf . (λi∈{i}. f i)) (sample-pro s))

using assms(1) unfolding map-pmf-comp by (intro map-pmf-cong refl) auto
also have ... = map-pmf (λf . f i) (prod-pmf {i} (λ-. sample-pro S))

using assms by (subst hash-pro-spmf-distr [OF assms(1)]) auto
also have ... = ?R by (subst Pi-pmf-component) auto
finally show ?thesis by simp

qed

lemma hash-pro-spmf-indep:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
assumes I ⊆ {..<d} card I ≤ k
shows prob-space.indep-vars (sample-pro s) (λ-. discrete) (λi ω. ω i) I

proof (rule measure-pmf .indep-vars-pmf [OF refl])
fix x J
assume a:J ⊆ I
have 0 :J ⊆ {..<d} using a assms(2) by auto
have card J ≤ card I using finite-subset[OF assms(2)] by (intro card-mono a)

auto
also have ... ≤ k using assms(3) by simp
finally have 1 : card J ≤ k by simp

35

let ?s = sample-pro s

have 2 : 0 < k if x ∈ J for x
proof −

have 0 < card J using 0 that card-gt-0-iff finite-nat-iff-bounded by auto
also have ... ≤ k using 1 by simp
finally show ?thesis by simp

qed

have measure ?s {ω. ∀ j∈J . ω j = x j} = measure (map-pmf (λω. λj∈J . ω j)?s)
{ω. ∀ j∈J . ω j = x j}

by auto
also have ... = measure (prod-pmf J (λ-. sample-pro S)) (Pi J (λj. {x j}))

unfolding hash-pro-spmf-distr [OF assms(1) 0 1] by (intro arg-cong2 [where
f=measure]) (auto simp:Pi-def)

also have ... = (
∏

j∈J . measure (sample-pro S) {x j})
using finite-subset[OF a] finite-subset[OF assms(2)] by (intro measure-Pi-pmf-Pi)

auto
also have ... = (

∏
j∈J . measure (map-pmf (λω. ω j) ?s) {x j})

using 0 1 2 by (intro prod.cong arg-cong2 [where f=measure] refl
arg-cong[where f=measure-pmf] hash-pro-spmf-component[OF assms(1),

symmetric]) auto
also have ... = (

∏
j∈J . measure ?s {ω. ω j = x j}) by (simp add:vimage-def)

finally show measure ?s {ω. ∀ j∈J . ω j = x j} = (
∏

j∈J . measure-pmf .prob ?s
{ω. ω j = x j})

by simp
qed

lemma hash-pro-spmf-k-indep:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
shows prob-space.k-wise-indep-vars (sample-pro s) k (λ-. discrete) (λi ω. ω i)
{..<d}

using hash-pro-spmf-indep[OF assms]
unfolding prob-space.k-wise-indep-vars-def [OF prob-space-measure-pmf] by auto

private lemma hash-pro-spmf-size-aux:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
shows pro-size s = (p^l)^k (is ?L = ?R)

proof −
obtain R where R-in: R ∈ set-spmf (GFR (p^l)) and s-def : s = hash-space ′ R

k S
using assms(1) unfolding hash-pro-spmf-def split-power [symmetric] l-def
by (auto simp add:set-bind-spmf)

have 1 : order (ring-of R) = p ^ l and ec: enumC R
using galois-field-random-1 (1)[OF prime-power R-in] by auto

have ?L = idx-size R ^ k − 1 + 1
unfolding s-def pro-size-def hash-space ′-def by simp

36

also have ... = ((p^l)^k − 1) + 1
using 1 enum-cD(2)[OF ec] by simp

also have ... = (p^l)^k using prime-gt-0-nat[OF p-prime] by simp
finally show ?thesis by simp

qed

lemma floorlog-alt-def :
floorlog b a = (if 1 < b then nat dlog (real b) (real a+1)e else 0)

proof (cases a > 0 ∧ 1 < b)
case True
have 1 :log (real b) (real a + 1) > 0 using True by (subst zero-less-log-cancel-iff)

auto

have a < real a + 1 by simp
also have ... = b powr (log b (real a + 1)) using True by simp
also have ... ≤ b powr (dlog b (real a + 1)e)

using True by (intro iffD2 [OF powr-le-cancel-iff]) auto
also have ... = b powr (real (nat dlog b (real a + 1)e))

using 1 by (intro arg-cong2 [where f=(powr)] refl) linarith
also have ... = b ^ nat dlog (real b) (real a + 1)e using True by (subst

powr-realpow) auto
finally have a < b ^ nat dlog (real b) (real a + 1)e by simp
hence 0 :floorlog b a ≤ nat dlog (real b) (real a+1)e using True by (intro

floorlog-leI) auto

have b ^ (nat dlog b (real a + 1)e − 1) = b powr (real (nat dlog b (real a + 1)e
− 1))

using True by (subst powr-realpow) auto
also have ... = b powr (dlog b (real a + 1)e − 1)

using 1 by (intro arg-cong2 [where f=(powr)] refl) linarith
also have ... < b powr (log b (real a + 1)) using True by (intro powr-less-mono)

linarith+
also have ... = real (a + 1) using True by simp
finally have b ^ (nat dlog (real b) (real a + 1)e − 1) < a + 1 by linarith
hence b ^ (nat dlog (real b) (real a + 1)e − 1) ≤ a by simp
hence floorlog b a ≥ nat dlog (real b) (real a+1)e using True by (intro floor-

log-geI) auto
hence floorlog b a = nat dlog (real b) (real a+1)e using 0 by linarith
also have ... = (if 1 < b then nat dlog (real b) (real a+1)e else 0) using True

by simp
finally show ?thesis by simp

next
case False
hence a-eq-0 : a = 0 ∨ ¬(1 < b) by simp
thus ?thesis unfolding floorlog-def by auto

qed

lemma hash-pro-spmf-size:
assumes s ∈ set-spmf (hash-pro-spmf k d S)

37

assumes (p ′,j ′) = split-power (pro-size S)
shows pro-size s = (p ′̂ (max j ′ (floorlog p ′ (d−1))))^k
unfolding hash-pro-spmf-size-aux[OF assms(1)] l-def p-def j-def using assms(2)
by (metis fst-conv snd-conv)

lemma hash-pro-spmf-size ′:
assumes s ∈ set-spmf (hash-pro-spmf k d S) d > 0
assumes (p ′,j ′) = split-power (pro-size S)
shows pro-size s = (p ′̂ (k∗max j ′ (nat dlog p ′ de)))

proof −
have pro-size s = (p^(max j (floorlog p (d−1))))^k

unfolding hash-pro-spmf-size-aux[OF assms(1)] l-def by simp
also have ... = (p^(max j (nat dlog p (real (d−1)+1)e)))^k

using prime-gt-1-nat[OF p-prime] by (simp add:floorlog-alt-def)
also have ... = (p^(max j (nat dlog p de)))^k using assms(2) by (subst of-nat-diff)

auto
also have ... = p^(k∗max j (nat dlog p de)) by (simp add:ac-simps power-mult[symmetric])
also have ... = p ′̂ (k∗max j ′ (nat dlog p ′ de))

using assms(3) p-def j-def by (metis fst-conv snd-conv)
finally show ?thesis by simp

qed

lemma hash-pro-spmf-size-prime-power :
assumes s ∈ set-spmf (hash-pro-spmf k d S)
assumes k > 0
shows is-prime-power (pro-size s)
unfolding hash-pro-spmf-size-aux[OF assms(1)] power-mult[symmetric] is-prime-power-def
using p-prime mult-pos-pos[OF l-gt-0 assms(2)] by blast

lemma hash-pro-smpf-range:
assumes s ∈ set-spmf (hash-pro-spmf k d S)
shows pro-select s i q ∈ pro-set S

proof −
obtain R where R-in: R ∈ set-spmf (GFR (p^l)) and s-def : s = hash-space ′ R

k S
using assms(1) unfolding hash-pro-spmf-def split-power [symmetric] l-def
by (auto simp add:set-bind-spmf)

thus ?thesis
unfolding s-def using hash-space ′-range by auto

qed

lemmas hash-pro-size ′ = hash-pro-spmf-size ′[OF hash-in-hash-pro-spmf]
lemmas hash-pro-size = hash-pro-spmf-size[OF hash-in-hash-pro-spmf]
lemmas hash-pro-size-prime-power = hash-pro-spmf-size-prime-power [OF hash-in-hash-pro-spmf]
lemmas hash-pro-distr = hash-pro-spmf-distr [OF hash-in-hash-pro-spmf]
lemmas hash-pro-component = hash-pro-spmf-component[OF hash-in-hash-pro-spmf]
lemmas hash-pro-indep = hash-pro-spmf-indep[OF hash-in-hash-pro-spmf]
lemmas hash-pro-k-indep = hash-pro-spmf-k-indep[OF hash-in-hash-pro-spmf]
lemmas hash-pro-range = hash-pro-smpf-range[OF hash-in-hash-pro-spmf]

38

lemmas hash-pro-pmf-size ′ = hash-pro-spmf-size ′[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-size = hash-pro-spmf-size[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-size-prime-power = hash-pro-spmf-size-prime-power [OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-distr = hash-pro-spmf-distr [OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-component = hash-pro-spmf-component[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-indep = hash-pro-spmf-indep[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-k-indep = hash-pro-spmf-k-indep[OF hashp-in-hash-pro-spmf]
lemmas hash-pro-pmf-range = hash-pro-smpf-range[OF hashp-in-hash-pro-spmf]

end

open-bundle pseudorandom-object-syntax
begin
notation hash-pro (‹H›)
notation hash-pro-spmf (‹HS›)
notation hash-pro-pmf (‹HP ›)
notation list-pro (‹L›)
notation nat-pro (‹N ›)
notation geom-pro (‹G›)
notation prod-pro (infixr ‹×P › 65)
end

end

References

[1] E. Karayel. Interpolation polynomials (in hol-algebra). Archive of
Formal Proofs, Jan. 2022. https://isa-afp.org/entries/Interpolation_
Polynomials_HOL_Algebra.html, Formal proof development.

[2] M. Thorup and Y. Zhang. Tabulation based 5-universal hashing and
linear probing. In Proceedings of the Meeting on Algorithm Engineering
& Expermiments, ALENEX ’10, pages 62–76, USA, 2010. Society for
Industrial and Applied Mathematics.

[3] S. P. Vadhan. Pseudorandomness. Foundations and Trends®in Theoret-
ical Computer Science, 7(1-3):1–336, 2012.

[4] M. N. Wegman and J. L. Carter. New hash functions and their use
in authentication and set equality. Journal of Computer and System
Sciences, 22(3):265–279, 1981.

39

https://isa-afp.org/entries/Interpolation_Polynomials_HOL_Algebra.html
https://isa-afp.org/entries/Interpolation_Polynomials_HOL_Algebra.html

	Introduction and Definition
	Preliminary Results
	Carter-Wegman Hash Family
	Indexed Products of Probability Mass Functions
	Pseudorandom Objects
	K-Independent Hash Families as Pseudorandom Objects

