
Undirected Graph Theory

Chelsea Edmonds

March 17, 2025

Abstract

This entry presents a general library for undirected graph theory -
enabling reasoning on simple graphs and undirected graphs with loops.
It primarily builds off Noschinski’s basic ugraph definition [4], however
generalises it in a number of ways and significantly expands on the
range of basic graph theory definitions formalised. Notably, this li-
brary removes the constraint of vertices being a type synonym with
the natural numbers which causes issues in more complex mathemati-
cal reasoning using graphs, such as the Balog Szemeredi Gowers theo-
rem which this library is used for. Secondly this library also presents
a locale-centric approach, enabling more concise, flexible, and reusable
modelling of different types of graphs. Using this approach enables
easy links to be made with more expansive formalisations of other
combinatorial structures, such as incidence systems, as well as various
types of formal representations of graphs. Further inspiration is also
taken from Noschinski’s [5] Directed Graph library for some proofs and
definitions on walks, paths and cycles, however these are much simpli-
fied using the set based representation of graphs, and also extended on
in this formalisation.

Contents
1 Undirected Graph Theory Basics 3

1.1 Miscellaneous Extras . 3
1.2 Initial Set up . 3
1.3 Graph System Locale . 5
1.4 Undirected Graph with Loops 7
1.5 Edge Density . 13
1.6 Simple Graphs . 14
1.7 Subgraph Basics . 16

2 Walks, Paths and Cycles 18
2.1 Walks . 18
2.2 Paths . 21
2.3 Cycles . 22

1

3 Connectivity 24
3.1 Connecting Walks and Paths 24
3.2 Vertex Connectivity . 26
3.3 Graph Properties on Connectivity 27
3.4 We define a connected graph as a non-empty graph (the empty

set is not usually considered connected by convention), where
the vertex set is connected . 30

4 Girth and Independence 32

5 Triangles in Graph 34
5.1 Preliminaries on Triangles in Graphs 35

6 Bipartite Graphs 37
6.1 Bipartite Set Up . 37
6.2 Bipartite Graph Locale . 38

7 Graph Theory Inheritance 42
7.1 Design Inheritance . 42
7.2 Adjacency Relation Definition 43

Acknowledgements

Chelsea Edmonds is jointly funded by the Cambridge Trust (Cambridge Aus-
tralia Scholarship) and a Cambridge Department of Computer Science and
Technology Premium Research Studentship. The ALEXANDRIA project is
funded by the European Research Council, Advanced Grant GA 742178.

2

This library aims to present a general theory for undirected graphs.
The formalisation approach models edges as sets with two elements, and
is inspired in part by the graph theory basics defined by Lars Noschinski in
[4] which are used in [2, 1]. Crucially this library makes the definition more
flexible by removing the type synonym from vertices to natural numbers.
This is limiting in more advanced mathematical applications, where it is
common for vertices to represent elements of some other set. It additionally
extends significantly on basic graph definitions.

The approach taken in this formalisation is the "locale-centric" approach
for modelling different graph properties, which has been successfully used in
other combinatorial structure formalisations.

1 Undirected Graph Theory Basics
This first theory focuses on the basics of graph theory (vertices, edges, de-
gree, incidence, neighbours etc), as well as defining a number of different
types of basic graphs. This theory draws inspiration from [4, 2, 1]
theory Undirected-Graph-Basics imports Main HOL−Library.Multiset HOL−Library.Disjoint-Sets

HOL−Library.Extended-Real Girth-Chromatic.Girth-Chromatic-Misc
begin

1.1 Miscellaneous Extras
Useful concepts on lists and sets
lemma distinct-tl-rev:

assumes hd xs = last xs
shows distinct (tl xs) ←→ distinct (tl (rev xs))
〈proof 〉

lemma last-in-list-set: length xs ≥ 1 =⇒ last xs ∈ set (xs)
〈proof 〉

lemma last-in-list-tl-set:
assumes length xs ≥ 2
shows last xs ∈ set (tl xs)
〈proof 〉

lemma length-list-decomp-lt: ys 6= [] =⇒ length (xs @zs) < length (xs@ys@zs)
〈proof 〉

1.2 Initial Set up
For convenience and readability, some functions and type synonyms are de-
fined outside locale context

3

fun mk-triangle-set :: (′a × ′a × ′a) ⇒ ′a set
where mk-triangle-set (x, y, z) = {x,y,z}

type-synonym ′a edge = ′a set

type-synonym ′a pregraph = (′a set) × (′a edge set)

abbreviation gverts :: ′a pregraph ⇒ ′a set where
gverts H ≡ fst H

abbreviation gedges :: ′a pregraph ⇒ ′a edge set where
gedges H ≡ snd H

fun mk-edge :: ′a × ′a ⇒ ′a edge where
mk-edge (u,v) = {u,v}

All edges is simply the set of subsets of a set S of size 2
definition all-edges S ≡ {e . e ⊆ S ∧ card e = 2}

Note, this is a different definition to Noschinski’s [4] ugraph which uses
the mk-edge function unnecessarily

Basic properties of these functions
lemma all-edges-mono:

vs ⊆ ws =⇒ all-edges vs ⊆ all-edges ws
〈proof 〉

lemma all-edges-alt: all-edges S = {{x, y} | x y . x ∈ S ∧ y ∈ S ∧ x 6= y}
〈proof 〉

lemma all-edges-alt-pairs: all-edges S = mk-edge ‘ {uv ∈ S × S . fst uv 6= snd uv}
〈proof 〉

lemma all-edges-subset-Pow: all-edges A ⊆ Pow A
〈proof 〉

lemma all-edges-disjoint: S ∩ T = {} =⇒ all-edges S ∩ all-edges T = {}
〈proof 〉

lemma card-all-edges: finite A =⇒ card (all-edges A) = card A choose 2
〈proof 〉

lemma finite-all-edges: finite S =⇒ finite (all-edges S)
〈proof 〉

lemma in-mk-edge-img: (a,b) ∈ A ∨ (b,a) ∈ A =⇒ {a,b} ∈ mk-edge ‘ A
〈proof 〉

4

thm in-mk-edge-img
lemma in-mk-uedge-img-iff : {a,b} ∈ mk-edge ‘ A ←→ (a,b) ∈ A ∨ (b,a) ∈ A
〈proof 〉

lemma inj-on-mk-edge: X ∩ Y = {} =⇒ inj-on mk-edge (X × Y)
〈proof 〉

definition complete-graph :: ′a set ⇒ ′a pregraph where
complete-graph S ≡ (S , all-edges S)

definition all-edges-loops:: ′a set ⇒ ′a edge setwhere
all-edges-loops S ≡ all-edges S ∪ {{v} | v. v ∈ S}

lemma all-edges-loops-alt: all-edges-loops S = {e . e ⊆ S ∧ (card e = 2 ∨ card e
= 1)}
〈proof 〉

lemma loops-disjoint: all-edges S ∩ {{v} | v. v ∈ S} = {}
〈proof 〉

lemma all-edges-loops-ss: all-edges S ⊆ all-edges-loops S {{v} | v. v ∈ S} ⊆
all-edges-loops S
〈proof 〉

lemma finite-singletons: finite S =⇒ finite ({{v} | v. v ∈ S})
〈proof 〉

lemma card-singletons:
assumes finite S shows card {{v} | v. v ∈ S} = card S
〈proof 〉

lemma finite-all-edges-loops: finite S =⇒ finite (all-edges-loops S)
〈proof 〉

lemma card-all-edges-loops:
assumes finite S
shows card (all-edges-loops S) = (card S choose 2) + card S
〈proof 〉

1.3 Graph System Locale
A generic incidence set system re-labeled to graph notation, where repeated
edges are not allowed. All the definitions here do not need the "edge" size
to be constrained to make sense.
locale graph-system =

fixes vertices :: ′a set (‹V ›)
fixes edges :: ′a edge set (‹E›)
assumes wellformed: e ∈ E =⇒ e ⊆ V

begin

5

abbreviation gorder :: nat where
gorder ≡ card (V)

abbreviation graph-size :: nat where
graph-size ≡ card E

definition vincident :: ′a ⇒ ′a edge ⇒ bool where
vincident v e ≡ v ∈ e

lemma incident-edge-in-wf : e ∈ E =⇒ vincident v e =⇒ v ∈ V
〈proof 〉

definition incident-edges :: ′a ⇒ ′a edge set where
incident-edges v ≡{e . e ∈ E ∧ vincident v e}

lemma incident-edges-empty: ¬ (v ∈ V) =⇒ incident-edges v = {}
〈proof 〉

lemma finite-incident-edges: finite E =⇒ finite (incident-edges v)
〈proof 〉

definition edge-adj :: ′a edge ⇒ ′a edge ⇒ bool where
edge-adj e1 e2 ≡ e1 ∩ e2 6= {} ∧ e1 ∈ E ∧ e2 ∈ E

lemma edge-adj-inE : edge-adj e1 e2 =⇒ e1 ∈ E ∧ e2 ∈ E
〈proof 〉

lemma edge-adjacent-alt-def : e1 ∈ E =⇒ e2 ∈ E =⇒ ∃ x . x ∈ V ∧ x ∈ e1 ∧ x
∈ e2 =⇒ edge-adj e1 e2
〈proof 〉

lemma wellformed-alt-fst: {x, y} ∈ E =⇒ x ∈ V
〈proof 〉

lemma wellformed-alt-snd: {x, y} ∈ E =⇒ y ∈ V
〈proof 〉

end

Simple constraints on a graph system may include finite and non-empty
constraints
locale fin-graph-system = graph-system +

assumes finV : finite V
begin

lemma fin-edges: finite E
〈proof 〉

6

end

locale ne-graph-system = graph-system +
assumes not-empty: V 6= {}

1.4 Undirected Graph with Loops
This formalisation models a loop by a singleton set. In this case a graph has
the edge size criteria if it has edges of size 1 or 2. Notably this removes the
option for an edge to be empty
locale ulgraph = graph-system +

assumes edge-size: e ∈ E =⇒ card e > 0 ∧ card e ≤ 2

begin

lemma alt-edge-size: e ∈ E =⇒ card e = 1 ∨ card e = 2
〈proof 〉

definition is-loop:: ′a edge ⇒ bool where
is-loop e ≡ card e = 1

definition is-sedge :: ′a edge ⇒ bool where
is-sedge e ≡ card e = 2

lemma is-edge-or-loop: e ∈ E =⇒ is-loop e ∨ is-sedge e
〈proof 〉

lemma edges-split-loop: E = {e ∈ E . is-loop e } ∪ {e ∈ E . is-sedge e}
〈proof 〉

lemma edges-split-loop-inter-empty: {} = {e ∈ E . is-loop e } ∩ {e ∈ E . is-sedge
e}
〈proof 〉

definition vert-adj :: ′a ⇒ ′a ⇒ bool where — Neighbor in graph from Roth [1]
vert-adj v1 v2 ≡ {v1 , v2} ∈ E

lemma vert-adj-sym: vert-adj v1 v2 ←→ vert-adj v2 v1
〈proof 〉

lemma vert-adj-imp-inV : vert-adj v1 v2 =⇒ v1 ∈ V ∧ v2 ∈ V
〈proof 〉

lemma vert-adj-inc-edge-iff : vert-adj v1 v2 ←→ vincident v1 {v1 , v2} ∧ vincident
v2 {v1 , v2} ∧ {v1 , v2} ∈ E
〈proof 〉

lemma not-vert-adj[simp]: ¬ vert-adj v u =⇒ {v, u} /∈ E
〈proof 〉

7

definition neighborhood :: ′a ⇒ ′a set where — Neighbors in Roth Development
[1]
neighborhood x ≡ {v ∈ V . vert-adj x v}

lemma neighborhood-incident: u ∈ neighborhood v ←→ {u, v} ∈ incident-edges v
〈proof 〉

definition neighbors-ss :: ′a ⇒ ′a set ⇒ ′a set where
neighbors-ss x Y ≡ {y ∈ Y . vert-adj x y}

lemma vert-adj-edge-iff2 :
assumes v1 6= v2
shows vert-adj v1 v2 ←→ (∃ e ∈ E . vincident v1 e ∧ vincident v2 e)
〈proof 〉

Incident simple edges, i.e. excluding loops
definition incident-sedges :: ′a ⇒ ′a edge set where
incident-sedges v ≡ {e ∈ E . vincident v e ∧ card e = 2}

lemma finite-inc-sedges: finite E =⇒ finite (incident-sedges v)
〈proof 〉

lemma incident-sedges-empty[simp]: v /∈ V =⇒ incident-sedges v = {}
〈proof 〉

definition has-loop :: ′a ⇒ bool where
has-loop v ≡ {v} ∈ E

lemma has-loop-in-verts: has-loop v =⇒ v ∈ V
〈proof 〉

lemma is-loop-set-alt: {{v} | v . has-loop v} = {e ∈ E . is-loop e}
〈proof 〉

definition incident-loops :: ′a ⇒ ′a edge set where
incident-loops v ≡ {e ∈ E . e = {v}}

lemma card1-incident-imp-vert: vincident v e ∧ card e = 1 =⇒ e = {v}
〈proof 〉

lemma incident-loops-alt: incident-loops v = {e ∈ E . vincident v e ∧ card e = 1}
〈proof 〉

lemma incident-loops-simp: has-loop v =⇒ incident-loops v = {{v}} ¬ has-loop v
=⇒ incident-loops v = {}
〈proof 〉

lemma incident-loops-union:
⋃

(incident-loops ‘ V) = {e ∈ E . is-loop e}

8

〈proof 〉

lemma finite-incident-loops: finite (incident-loops v)
〈proof 〉

lemma incident-loops-card: card (incident-loops v) ≤ 1
〈proof 〉

lemma incident-edges-union: incident-edges v = incident-sedges v ∪ incident-loops
v
〈proof 〉

lemma incident-edges-sedges[simp]: ¬ has-loop v =⇒ incident-edges v = inci-
dent-sedges v
〈proof 〉

lemma incident-sedges-union:
⋃

(incident-sedges ‘ V) = {e ∈ E . is-sedge e}
〈proof 〉

lemma empty-not-edge: {} /∈ E
〈proof 〉

The degree definition is complicated by loops - each loop contributes two
to degree. This is required for basic counting properties on the degree to
hold
definition degree :: ′a ⇒ nat where
degree v ≡ card (incident-sedges v) + 2 ∗ (card (incident-loops v))

lemma degree-no-loops[simp]: ¬ has-loop v =⇒ degree v = card (incident-edges v)
〈proof 〉

lemma degree-none[simp]: ¬ v ∈ V =⇒ degree v = 0
〈proof 〉

lemma degree0-inc-edges-empt-iff :
assumes finite E
shows degree v = 0 ←→ incident-edges v = {}
〈proof 〉

lemma incident-edges-neighbors-img: incident-edges v = (λ u . {v, u}) ‘ (neighborhood
v)
〈proof 〉

lemma card-incident-sedges-neighborhood: card (incident-edges v) = card (neighborhood
v)
〈proof 〉

lemma degree0-neighborhood-empt-iff :
assumes finite E

9

shows degree v = 0 ←→ neighborhood v = {}
〈proof 〉

definition is-isolated-vertex:: ′a ⇒ bool where
is-isolated-vertex v ≡ v ∈ V ∧ (∀ u ∈ V . ¬ vert-adj u v)

lemma is-isolated-vertex-edge: is-isolated-vertex v =⇒ (
∧

e. e ∈ E =⇒ ¬ (vincident
v e))
〈proof 〉

lemma is-isolated-vertex-no-loop: is-isolated-vertex v =⇒ ¬ has-loop v
〈proof 〉

lemma is-isolated-vertex-degree0 : is-isolated-vertex v =⇒ degree v = 0
〈proof 〉

lemma iso-vertex-empty-neighborhood: is-isolated-vertex v =⇒ neighborhood v =
{}
〈proof 〉

definition max-degree :: nat where
max-degree ≡ Max {degree v | v. v ∈ V }

definition min-degree :: nat where
min-degree ≡ Min {degree v | v . v ∈ V }

definition is-edge-between :: ′a set ⇒ ′a set ⇒ ′a edge ⇒ bool where
is-edge-between X Y e ≡ ∃ x y. e = {x, y} ∧ x ∈ X ∧ y ∈ Y

All edges between two sets of vertices, X and Y, in a graph, G. Inspired
by Szemeredi development [2] and generalised here
definition all-edges-between :: ′a set ⇒ ′a set ⇒ (′a × ′a) set where
all-edges-between X Y ≡ {(x, y) . x ∈ X ∧ y ∈ Y ∧ {x, y} ∈ E}

lemma all-edges-betw-D3 : (x, y) ∈ all-edges-between X Y =⇒ {x, y} ∈ E
〈proof 〉

lemma all-edges-betw-I : x ∈ X =⇒ y ∈ Y =⇒ {x, y} ∈ E =⇒ (x, y) ∈ all-edges-between
X Y
〈proof 〉

lemma all-edges-between-subset: all-edges-between X Y ⊆ X×Y
〈proof 〉

lemma all-edges-between-E-ss: mk-edge ‘ all-edges-between X Y ⊆ E
〈proof 〉

lemma all-edges-between-rem-wf : all-edges-between X Y = all-edges-between (X ∩
V) (Y ∩ V)

10

〈proof 〉

lemma all-edges-between-empty [simp]:
all-edges-between {} Z = {} all-edges-between Z {} = {}
〈proof 〉

lemma all-edges-between-disjnt1 : disjnt X Y =⇒ disjnt (all-edges-between X Z)
(all-edges-between Y Z)
〈proof 〉

lemma all-edges-between-disjnt2 : disjnt Y Z =⇒ disjnt (all-edges-between X Y)
(all-edges-between X Z)
〈proof 〉

lemma max-all-edges-between:
assumes finite X finite Y
shows card (all-edges-between X Y) ≤ card X ∗ card Y
〈proof 〉

lemma all-edges-between-Un1 :
all-edges-between (X ∪ Y) Z = all-edges-between X Z ∪ all-edges-between Y Z
〈proof 〉

lemma all-edges-between-Un2 :
all-edges-between X (Y ∪ Z) = all-edges-between X Y ∪ all-edges-between X Z
〈proof 〉

lemma finite-all-edges-between:
assumes finite X finite Y
shows finite (all-edges-between X Y)
〈proof 〉

lemma all-edges-between-Union1 :
all-edges-between (Union X) Y = (

⋃
X∈X . all-edges-between X Y)

〈proof 〉

lemma all-edges-between-Union2 :
all-edges-between X (Union Y) = (

⋃
Y∈Y. all-edges-between X Y)

〈proof 〉

lemma all-edges-between-disjoint1 :
assumes disjoint R
shows disjoint ((λX . all-edges-between X Y) ‘ R)
〈proof 〉

lemma all-edges-between-disjoint2 :
assumes disjoint R
shows disjoint ((λY . all-edges-between X Y) ‘ R)
〈proof 〉

11

lemma all-edges-between-disjoint-family-on1 :
assumes disjoint R
shows disjoint-family-on (λX . all-edges-between X Y) R
〈proof 〉

lemma all-edges-between-disjoint-family-on2 :
assumes disjoint R
shows disjoint-family-on (λY . all-edges-between X Y) R
〈proof 〉

lemma all-edges-between-mono1 :
Y ⊆ Z =⇒ all-edges-between Y X ⊆ all-edges-between Z X
〈proof 〉

lemma all-edges-between-mono2 :
Y ⊆ Z =⇒ all-edges-between X Y ⊆ all-edges-between X Z
〈proof 〉

lemma inj-on-mk-edge: X ∩ Y = {} =⇒ inj-on mk-edge (all-edges-between X Y)
〈proof 〉

lemma all-edges-between-subset-times: all-edges-between X Y ⊆ (X ∩
⋃

E) × (Y
∩

⋃
E)

〈proof 〉

lemma all-edges-betw-prod-def-neighbors: all-edges-between X Y = {(x, y) ∈ X ×
Y . vert-adj x y }
〈proof 〉

lemma all-edges-betw-sigma-neighbor :
all-edges-between X Y = (SIGMA x:X . neighbors-ss x Y)
〈proof 〉

lemma card-all-edges-betw-neighbor :
assumes finite X finite Y
shows card (all-edges-between X Y) = (

∑
x∈X . card (neighbors-ss x Y))

〈proof 〉

lemma all-edges-between-swap:
all-edges-between X Y = (λ(x,y). (y,x)) ‘ (all-edges-between Y X)
〈proof 〉

lemma card-all-edges-between-commute:
card (all-edges-between X Y) = card (all-edges-between Y X)
〈proof 〉

lemma all-edges-between-set: mk-edge ‘ all-edges-between X Y = {{x, y}| x y. x ∈
X ∧ y ∈ Y ∧ {x, y} ∈ E}

12

〈proof 〉

1.5 Edge Density
The edge density between two sets of vertices, X and Y, in G. This is the
same definition as taken in the Szemeredi development, generalised here [2]
definition edge-density X Y ≡ card (all-edges-between X Y)/(card X ∗ card Y)
lemma edge-density-ge0 : edge-density X Y ≥ 0
〈proof 〉

lemma edge-density-le1 : edge-density X Y ≤ 1
〈proof 〉

lemma edge-density-zero: Y = {} =⇒ edge-density X Y = 0
〈proof 〉

lemma edge-density-commute: edge-density X Y = edge-density Y X
〈proof 〉

lemma edge-density-Un:
assumes disjnt X1 X2 finite X1 finite X2 finite Y
shows edge-density (X1 ∪ X2) Y = (edge-density X1 Y ∗ card X1 + edge-density

X2 Y ∗ card X2) / (card X1 + card X2)
〈proof 〉

lemma edge-density-eq0 :
assumes all-edges-between A B = {} and X ⊆ A Y ⊆ B
shows edge-density X Y = 0
〈proof 〉

end

A number of lemmas are limited to a finite graph
locale fin-ulgraph = ulgraph + fin-graph-system
begin

lemma card-is-has-loop-eq: card {e ∈ E . is-loop e} = card {v ∈ V . has-loop v}
〈proof 〉

lemma finite-all-edges-between ′: finite (all-edges-between X Y)
〈proof 〉

lemma card-all-edges-between:
assumes finite Y
shows card (all-edges-between X Y) = (

∑
y∈Y . card (all-edges-between X {y}))

〈proof 〉

end

13

1.6 Simple Graphs
A simple graph (or sgraph) constrains edges to size of two. This is the classic
definition of an undirected graph
locale sgraph = graph-system +

assumes two-edges: e ∈ E =⇒ card e = 2
begin

lemma wellformed-all-edges: E ⊆ all-edges V
〈proof 〉

lemma e-in-all-edges: e ∈ E =⇒ e ∈ all-edges V
〈proof 〉

lemma e-in-all-edges-ss: e ∈ E =⇒ e ⊆ V ′ =⇒ V ′ ⊆ V =⇒ e ∈ all-edges V ′

〈proof 〉

lemma singleton-not-edge: {x} /∈ E — Suggested by Mantas Baksys
〈proof 〉

end

It is easy to proof that sgraph is a sublocale of ulgraph. By using indirect
inheritance, we avoid two unneeded cardinality conditions
sublocale sgraph ⊆ ulgraph V E
〈proof 〉

locale fin-sgraph = sgraph + fin-graph-system
begin

lemma fin-neighbourhood: finite (neighborhood x)
〈proof 〉

lemma fin-all-edges: finite (all-edges V)
〈proof 〉

lemma max-edges-graph: card E ≤ (card V)^2
〈proof 〉

end

sublocale fin-sgraph ⊆ fin-ulgraph
〈proof 〉

context sgraph
begin

lemma no-loops: v ∈ V =⇒ ¬ has-loop v
〈proof 〉

14

Ideally, we’d redefine degree in the context of a simple graph. However,
this requires a named loop locale, which complicates notation unnecessarily.
This is the lemma that should always be used when unfolding the degree
definition in a simple graph context
lemma alt-degree-def [simp]: degree v = card (incident-edges v)
〈proof 〉

lemma alt-deg-neighborhood: degree v = card (neighborhood v)
〈proof 〉

definition degree-set :: ′a set ⇒ nat where
degree-set vs ≡ card {e ∈ E . vs ⊆ e}

definition is-complete-n-graph:: nat ⇒ bool where
is-complete-n-graph n ≡ gorder = n ∧ E = all-edges V

The complement of a graph is a basic concept
definition is-complement :: ′a pregraph ⇒ bool where
is-complement G ≡ V = gverts G ∧ gedges G = all-edges V − E

definition complement-edges :: ′a edge set where
complement-edges ≡ all-edges V − E

lemma is-complement-edges: is-complement (V ′, E ′) ←→ V = V ′ ∧ comple-
ment-edges = E ′

〈proof 〉

interpretation G-comp: sgraph V complement-edges
〈proof 〉

lemma is-complement-edge-iff : e ⊆ V =⇒ e ∈ complement-edges ←→ e /∈ E ∧
card e = 2
〈proof 〉

end

A complete graph is a simple graph
lemma complete-sgraph: sgraph S (all-edges S)
〈proof 〉

interpretation comp-sgraph: sgraph S (all-edges S)
〈proof 〉

lemma complete-fin-sgraph: finite S =⇒ fin-sgraph S (all-edges S)
〈proof 〉

15

1.7 Subgraph Basics
A subgraph is defined as a graph where the vertex and edge sets are subsets
of the original graph. Note that using the locale approach, we require each
graph to be wellformed. This is interestingly omitted in a number of other
formal definitions.
locale subgraph = H : graph-system VH :: ′a set EH + G: graph-system VG :: ′a
set EG for VH EH VG EG +

assumes verts-ss: VH ⊆ VG

assumes edges-ss: EH ⊆ EG

lemma is-subgraphI [intro]: V ′ ⊆ V =⇒ E ′ ⊆ E =⇒ graph-system V ′ E ′ =⇒
graph-system V E =⇒ subgraph V ′ E ′ V E
〈proof 〉

context subgraph
begin

Note: it could also be useful to have similar rules in ulgraph locale etc
with subgraph assumption
lemma is-subgraph-ulgraph:

assumes ulgraph VG EG

shows ulgraph VH EH

〈proof 〉

lemma is-simp-subgraph:
assumes sgraph VG EG

shows sgraph VH EH

〈proof 〉

lemma is-finite-subgraph:
assumes fin-graph-system VG EG

shows fin-graph-system VH EH

〈proof 〉

lemma (in graph-system) subgraph-refl: subgraph V E V E
〈proof 〉

lemma subgraph-trans:
assumes graph-system V E
assumes graph-system V ′ E ′

assumes graph-system V ′′ E ′′

shows subgraph V ′′ E ′′ V ′ E ′ =⇒ subgraph V ′ E ′ V E =⇒ subgraph V ′′ E ′′ V
E
〈proof 〉

lemma subgraph-antisym: subgraph V ′ E ′ V E =⇒ subgraph V E V ′ E ′ =⇒ V =
V ′ ∧ E = E ′

16

〈proof 〉

end

lemma (in sgraph) subgraph-complete: subgraph V E V (all-edges V)
〈proof 〉

We are often interested in the set of subgraphs. This is still very possible
using locale definitions. Interesting Note - random graphs [3] has a different
definition for the well formed constraint to be added in here instead of in
the main subgraph definition
definition (in graph-system) subgraphs:: ′a pregraph set where
subgraphs ≡ {G . subgraph (gverts G) (gedges G) V E}

Induced subgraph - really only affects edges
definition (in graph-system) induced-edges:: ′a set ⇒ ′a edge set where
induced-edges V ′ ≡ {e ∈ E . e ⊆ V ′}

lemma (in sgraph) induced-edges-alt: induced-edges V ′ = E ∩ all-edges V ′

〈proof 〉

lemma (in sgraph) induced-edges-self : induced-edges V = E
〈proof 〉

context graph-system
begin

lemma induced-edges-ss: V ′ ⊆ V =⇒ induced-edges V ′ ⊆ E
〈proof 〉

lemma induced-is-graph-sys: graph-system V ′ (induced-edges V ′)
〈proof 〉

interpretation induced-graph: graph-system V ′ (induced-edges V ′)
〈proof 〉

lemma induced-is-subgraph: V ′ ⊆ V =⇒ subgraph V ′ (induced-edges V ′) V E
〈proof 〉

lemma induced-edges-union:
assumes VH1 ⊆ S VH2 ⊆ T
assumes graph-system VH1 EH1 graph-system VH2 EH2
assumes EH1 ∪ EH2 ⊆ (induced-edges (S ∪ T))
shows EH1 ⊆ (induced-edges S)
〈proof 〉

lemma induced-edges-union-subgraph-single:
assumes VH1 ⊆ S VH2 ⊆ T

17

assumes graph-system VH1 EH1 graph-system VH2 EH2
assumes subgraph (VH1 ∪ VH2) (EH1 ∪ EH2) (S ∪ T) (induced-edges (S ∪

T))
shows subgraph VH1 EH1 S (induced-edges S)
〈proof 〉

lemma induced-union-subgraph:
assumes VH1 ⊆ S and VH2 ⊆ T
assumes graph-system VH1 EH1 graph-system VH2 EH2
shows subgraph VH1 EH1 S (induced-edges S) ∧ subgraph VH2 EH2 T (induced-edges

T) ←→
subgraph (VH1 ∪ VH2) (EH1 ∪ EH2) (S ∪ T) (induced-edges (S ∪ T))

〈proof 〉

end
end
theory Undirected-Graph-Walks imports Undirected-Graph-Basics
begin

2 Walks, Paths and Cycles
The definition of walks, paths, cycles, and related concepts are foundations
of graph theory, yet there can be some differences in literature between
definitions. This formalisation draws inspiration from Noschinski’s Graph
Library [5], however focuses on an undirected graph context compared to
a directed graph context, and extends on some definitions, as required to
formalise Balog Szemeredi Gowers theorem.
context ulgraph
begin

2.1 Walks
This definition is taken from the directed graph library, however edges are
undirected
fun walk-edges :: ′a list ⇒ ′a edge list where

walk-edges [] = []
| walk-edges [x] = []
| walk-edges (x # y # ys) = {x,y} # walk-edges (y # ys)

lemma walk-edges-app: walk-edges (xs @ [y, x]) = walk-edges (xs @ [y]) @ [{y, x}]
〈proof 〉

lemma walk-edges-tl-ss: set (walk-edges (tl xs)) ⊆ set (walk-edges xs)
〈proof 〉

lemma walk-edges-rev: rev (walk-edges xs) = walk-edges (rev xs)
〈proof 〉

18

lemma walk-edges-append-ss1 : set (walk-edges (ys)) ⊆ set (walk-edges (xs@ys))
〈proof 〉

lemma walk-edges-append-ss2 : set (walk-edges (xs)) ⊆ set (walk-edges (xs@ys))
〈proof 〉

lemma walk-edges-singleton-app: ys 6= [] =⇒ walk-edges ([x]@ys) = {x, hd ys} #
walk-edges ys
〈proof 〉

lemma walk-edges-append-union: xs 6= [] =⇒ ys 6= [] =⇒
set (walk-edges (xs@ys)) = set (walk-edges (xs)) ∪ set (walk-edges ys) ∪ {{last

xs, hd ys}}
〈proof 〉

lemma walk-edges-decomp-ss: set (walk-edges (xs@[y]@zs)) ⊆ set (walk-edges (xs@[y]@ys@[y]@zs))
〈proof 〉

definition walk-length :: ′a list ⇒ nat where
walk-length p ≡ length (walk-edges p)

lemma walk-length-conv: walk-length p = length p − 1
〈proof 〉

lemma walk-length-rev: walk-length p = walk-length (rev p)
〈proof 〉

lemma walk-length-app: xs 6= [] =⇒ ys 6= [] =⇒ walk-length (xs @ ys) = walk-length
xs + walk-length ys + 1
〈proof 〉

lemma walk-length-app-ineq: walk-length (xs @ ys) ≥ walk-length xs + walk-length
ys ∧

walk-length (xs @ ys) ≤ walk-length xs + walk-length ys + 1
〈proof 〉

Note that while the trivial walk is allowed, the empty walk is not
definition is-walk :: ′a list ⇒ bool where
is-walk xs ≡ set xs ⊆ V ∧ set (walk-edges xs) ⊆ E ∧ xs 6= []

lemma is-walkI : set xs ⊆ V =⇒ set (walk-edges xs) ⊆ E =⇒ xs 6= [] =⇒ is-walk
xs
〈proof 〉

lemma is-walk-wf : is-walk xs =⇒ set xs ⊆ V
〈proof 〉

19

lemma is-walk-wf-hd: is-walk xs =⇒ hd xs ∈ V
〈proof 〉

lemma is-walk-wf-last: is-walk xs =⇒ last xs ∈ V
〈proof 〉

lemma is-walk-singleton: u ∈ V =⇒ is-walk [u]
〈proof 〉

lemma is-walk-not-empty: is-walk xs =⇒ xs 6= []
〈proof 〉

lemma is-walk-not-empty2 : is-walk [] = False
〈proof 〉

Reasoning on transformations of a walk
lemma is-walk-rev: is-walk xs ←→ is-walk (rev xs)
〈proof 〉

lemma is-walk-tl: length xs ≥ 2 =⇒ is-walk xs =⇒ is-walk (tl xs)
〈proof 〉

lemma is-walk-append:
assumes is-walk xs
assumes is-walk ys
assumes last xs = hd ys
shows is-walk (xs @ (tl ys))
〈proof 〉

lemma is-walk-decomp:
assumes is-walk (xs@[y]@ys@[y]@zs) (is is-walk ?w)
shows is-walk (xs@[y]@zs)
〈proof 〉

lemma is-walk-hd-tl:
assumes is-walk (y # ys)
assumes {x, y} ∈ E
shows is-walk (x # y # ys)
〈proof 〉

lemma is-walk-drop-hd:
assumes ys 6= []
assumes is-walk (y # ys)
shows is-walk ys
〈proof 〉

lemma walk-edges-index:
assumes i ≥ 0 i < walk-length w
assumes is-walk w

20

shows (walk-edges w) ! i ∈ E
〈proof 〉

lemma is-walk-index:
assumes i ≥ 0 Suc i < (length w)
assumes is-walk w
shows {w ! i, w ! (i + 1)} ∈ E
〈proof 〉

lemma is-walk-take:
assumes is-walk w
assumes n > 0
assumes n ≤ length w
shows is-walk (take n w)
〈proof 〉

lemma is-walk-drop:
assumes is-walk w
assumes n < length w
shows is-walk (drop n w)
〈proof 〉

definition walks :: ′a list set where
walks ≡ {p. is-walk p}

definition is-open-walk :: ′a list ⇒ bool where
is-open-walk xs ≡ is-walk xs ∧ hd xs 6= last xs

lemma is-open-walk-rev: is-open-walk xs ←→ is-open-walk (rev xs)
〈proof 〉

definition is-closed-walk :: ′a list ⇒ bool where
is-closed-walk xs ≡ is-walk xs ∧ hd xs = last xs

lemma is-closed-walk-rev: is-closed-walk xs ←→ is-closed-walk (rev xs)
〈proof 〉

definition is-trail :: ′a list ⇒ bool where
is-trail xs ≡ is-walk xs ∧ distinct (walk-edges xs)

lemma is-trail-rev: is-trail xs ←→ is-trail (rev xs)
〈proof 〉

2.2 Paths
There are two common definitions of a path. The first, given below, excludes
the case where a path is a cycle. Note this also excludes the trivial path [x]

definition is-path :: ′a list ⇒ bool where
is-path xs ≡ (is-open-walk xs ∧ distinct (xs))

21

lemma is-path-rev: is-path xs ←→ is-path (rev xs)
〈proof 〉

lemma is-path-walk: is-path xs =⇒ is-walk xs
〈proof 〉

definition paths :: ′a list set where
paths ≡ {p . is-path p}

lemma paths-ss-walk: paths ⊆ walks
〈proof 〉

A more generic definition of a path - used when a cycle is considered a
path, and therefore includes the trivial path [x]

definition is-gen-path:: ′a list ⇒ bool where
is-gen-path p ≡ is-walk p ∧ ((distinct (tl p) ∧ hd p = last p) ∨ distinct p)

lemma is-path-gen-path: is-path p =⇒ is-gen-path p
〈proof 〉

lemma is-gen-path-rev: is-gen-path p ←→ is-gen-path (rev p)
〈proof 〉

lemma is-gen-path-distinct: is-gen-path p =⇒ hd p 6= last p =⇒ distinct p
〈proof 〉

lemma is-gen-path-distinct-tl:
assumes is-gen-path p and hd p = last p
shows distinct (tl p)
〈proof 〉

lemma is-gen-path-trivial: x ∈ V =⇒ is-gen-path [x]
〈proof 〉

definition gen-paths :: ′a list set where
gen-paths ≡ {p . is-gen-path p}

lemma gen-paths-ss-walks: gen-paths ⊆ walks
〈proof 〉

2.3 Cycles
Note, a cycle must be non trivial (i.e. have an edge), but as we let a loop
by a cycle we broaden the definition in comparison to Noschinski [5] for a
cycle to be of length greater than 1 rather than 3
definition is-cycle :: ′a list ⇒ bool where
is-cycle xs ≡ is-closed-walk xs ∧ walk-length xs ≥ 1 ∧ distinct (tl xs)

22

lemma is-gen-path-cycle: is-cycle p =⇒ is-gen-path p
〈proof 〉

lemma is-cycle-alt-gen-path: is-cycle xs ←→ is-gen-path xs ∧ walk-length xs ≥ 1
∧ hd xs = last xs
〈proof 〉

lemma is-cycle-alt: is-cycle xs ←→ is-walk xs ∧ distinct (tl xs) ∧ walk-length xs
≥ 1 ∧ hd xs = last xs
〈proof 〉

lemma is-cycle-rev: is-cycle xs ←→ is-cycle (rev xs)
〈proof 〉

lemma cycle-tl-is-path: is-cycle xs ∧ walk-length xs ≥ 3 =⇒ is-path (tl xs)
〈proof 〉

lemma is-gen-path-path:
assumes is-gen-path p and walk-length p > 0 and (¬ is-cycle p)
shows is-path p
〈proof 〉

lemma is-gen-path-options: is-gen-path p ←→ is-cycle p ∨ is-path p ∨ (∃ v ∈ V .
p = [v])
〈proof 〉

definition cycles :: ′a list set where
cycles ≡ {p. is-cycle p}

lemma cycles-ss-gen-paths: cycles ⊆ gen-paths
〈proof 〉

lemma gen-paths-ss: gen-paths ⊆ cycles ∪ paths ∪ {[v] | v. v ∈ V }
〈proof 〉

Walk edges are distinct in a path and cycle
lemma distinct-edgesI :

assumes distinct p shows distinct (walk-edges p)
〈proof 〉

lemma scycles-distinct-edges:
assumes c ∈ cycles 3 ≤ walk-length c shows distinct (walk-edges c)
〈proof 〉

end

context fin-ulgraph
begin

23

lemma finite-paths: finite paths
〈proof 〉

lemma finite-cycles: finite (cycles)
〈proof 〉

lemma finite-gen-paths: finite (gen-paths)
〈proof 〉

end

end

3 Connectivity
This theory defines concepts around the connectivity of a graph and its
vertices, as well as graph properties that depend on connectivity definitions,
such as shortest path, radius, diameter, and eccentricity
theory Connectivity imports Undirected-Graph-Walks
begin

context ulgraph
begin

3.1 Connecting Walks and Paths
definition connecting-walk :: ′a ⇒ ′a ⇒ ′a list ⇒ bool where
connecting-walk u v xs ≡ is-walk xs ∧ hd xs= u ∧ last xs = v

lemma connecting-walk-rev: connecting-walk u v xs ←→ connecting-walk v u (rev
xs)
〈proof 〉

lemma connecting-walk-wf : connecting-walk u v xs =⇒ u ∈ V ∧ v ∈ V
〈proof 〉

lemma connecting-walk-self : u ∈ V =⇒ connecting-walk u u [u] = True
〈proof 〉

We define two definitions of connecting paths. The first uses the gen-path
definition, which allows for trivial paths and cycles, the second uses the
stricter definition of a path which requires it to be an open walk
definition connecting-path :: ′a ⇒ ′a ⇒ ′a list ⇒ bool where
connecting-path u v xs ≡ is-gen-path xs ∧ hd xs = u ∧ last xs = v

definition connecting-path-str :: ′a ⇒ ′a ⇒ ′a list ⇒ bool where
connecting-path-str u v xs ≡ is-path xs ∧ hd xs = u ∧ last xs = v

24

lemma connecting-path-rev: connecting-path u v xs ←→ connecting-path v u (rev
xs)
〈proof 〉

lemma connecting-path-walk: connecting-path u v xs =⇒ connecting-walk u v xs
〈proof 〉

lemma connecting-path-str-gen: connecting-path-str u v xs =⇒ connecting-path u
v xs
〈proof 〉

lemma connecting-path-gen-str : connecting-path u v xs =⇒ (¬ is-cycle xs) =⇒
walk-length xs > 0 =⇒ connecting-path-str u v xs
〈proof 〉

lemma connecting-path-alt-def : connecting-path u v xs ←→ connecting-walk u v xs
∧ is-gen-path xs
〈proof 〉

lemma connecting-path-length-bound: u 6= v =⇒ connecting-path u v p =⇒ walk-length
p ≥ 1
〈proof 〉

lemma connecting-path-self : u ∈ V =⇒ connecting-path u u [u] = True
〈proof 〉

lemma connecting-path-singleton: connecting-path u v xs =⇒ length xs = 1 =⇒ u
= v
〈proof 〉

lemma connecting-walk-path:
assumes connecting-walk u v xs
shows ∃ ys . connecting-path u v ys ∧ walk-length ys ≤ walk-length xs
〈proof 〉

lemma connecting-walk-split:
assumes connecting-walk u v xs assumes connecting-walk v z ys
shows connecting-walk u z (xs @ (tl ys))
〈proof 〉

lemma connecting-path-split:
assumes connecting-path u v xs connecting-path v z ys
obtains p where connecting-path u z p and walk-length p ≤ walk-length (xs @

(tl ys))
〈proof 〉

lemma connecting-path-split-length:
assumes connecting-path u v xs connecting-path v z ys
obtains p where connecting-path u z p and walk-length p ≤ walk-length xs +

25

walk-length ys
〈proof 〉

3.2 Vertex Connectivity
Two vertices are defined to be connected if there exists a connecting path.
Note that the more general version of a connecting path is again used as a
vertex should be considered as connected to itself
definition vert-connected :: ′a ⇒ ′a ⇒ bool where
vert-connected u v ≡ ∃ xs . connecting-path u v xs

lemma vert-connected-rev: vert-connected u v ←→ vert-connected v u
〈proof 〉

lemma vert-connected-id: u ∈ V =⇒ vert-connected u u = True
〈proof 〉

lemma vert-connected-trans: vert-connected u v =⇒ vert-connected v z =⇒ vert-connected
u z
〈proof 〉

lemma vert-connected-wf : vert-connected u v =⇒ u ∈ V ∧ v ∈ V
〈proof 〉

definition vert-connected-n :: ′a ⇒ ′a ⇒ nat ⇒ bool where
vert-connected-n u v n ≡ ∃ p. connecting-path u v p ∧ walk-length p = n

lemma vert-connected-n-imp: vert-connected-n u v n =⇒ vert-connected u v
〈proof 〉

lemma vert-connected-n-rev: vert-connected-n u v n ←→ vert-connected-n v u n
〈proof 〉

definition connecting-paths :: ′a ⇒ ′a ⇒ ′a list set where
connecting-paths u v ≡ {xs . connecting-path u v xs}

lemma connecting-paths-self : u ∈ V =⇒ [u] ∈ connecting-paths u u
〈proof 〉

lemma connecting-paths-empty-iff : vert-connected u v ←→ connecting-paths u v 6=
{}
〈proof 〉

lemma elem-connecting-paths: p ∈ connecting-paths u v =⇒ connecting-path u v p
〈proof 〉

lemma connecting-paths-ss-gen: connecting-paths u v ⊆ gen-paths
〈proof 〉

26

lemma connecting-paths-sym: xs ∈ connecting-paths u v ←→ rev xs ∈ connect-
ing-paths v u
〈proof 〉

A set is considered to be connected, if all the vertices within that set are
pairwise connected
definition is-connected-set :: ′a set ⇒ bool where
is-connected-set V ′ ≡ (∀ u v . u ∈ V ′ −→ v ∈ V ′ −→ vert-connected u v)

lemma is-connected-set-empty: is-connected-set {}
〈proof 〉

lemma is-connected-set-singleton: x ∈ V =⇒ is-connected-set {x}
〈proof 〉

lemma is-connected-set-wf : is-connected-set V ′ =⇒ V ′ ⊆ V
〈proof 〉

lemma is-connected-setD: is-connected-set V ′=⇒ u ∈ V ′=⇒ v ∈ V ′=⇒ vert-connected
u v
〈proof 〉

lemma not-connected-set: ¬ is-connected-set V ′ =⇒ u ∈ V ′ =⇒ ∃ v ∈ V ′ . ¬
vert-connected u v
〈proof 〉

3.3 Graph Properties on Connectivity
The shortest path is defined to be the infinum of the set of connecting path
walk lengths. Drawing inspiration from [4], we use the infinum and enats as
this enables more natural reasoning in a non-finite setting, while also being
useful for proofs of a more probabilistic or analysis nature
definition shortest-path :: ′a ⇒ ′a ⇒ enat where
shortest-path u v ≡ INF p∈ connecting-paths u v. enat (walk-length p)

lemma shortest-path-walk-length: shortest-path u v = n =⇒ p ∈ connecting-paths
u v =⇒ walk-length p ≥ n
〈proof 〉

lemma shortest-path-lte:
∧

p . p ∈ connecting-paths u v =⇒ shortest-path u v ≤
walk-length p
〈proof 〉

lemma shortest-path-obtains:
assumes shortest-path u v = n
assumes n 6= top
obtains p where p ∈ connecting-paths u v and walk-length p = n
〈proof 〉

27

lemma shortest-path-intro:
assumes n 6= top
assumes (∃ p ∈ connecting-paths u v . walk-length p = n)
assumes (

∧
p. p ∈ connecting-paths u v =⇒ n ≤ walk-length p)

shows shortest-path u v = n
〈proof 〉

lemma shortest-path-self :
assumes u ∈ V
shows shortest-path u u = 0
〈proof 〉

lemma connecting-paths-sym-length: i ∈ connecting-paths u v =⇒ ∃ j∈connecting-paths
v u. (walk-length j) = (walk-length i)
〈proof 〉

lemma shortest-path-sym: shortest-path u v = shortest-path v u
〈proof 〉

lemma shortest-path-inf : ¬ vert-connected u v =⇒ shortest-path u v = ∞
〈proof 〉

lemma shortest-path-not-inf :
assumes vert-connected u v
shows shortest-path u v 6= ∞
〈proof 〉

lemma shortest-path-obtains2 :
assumes vert-connected u v
obtains p where p ∈ connecting-paths u v and walk-length p = shortest-path u

v
〈proof 〉

lemma shortest-path-split: shortest-path x y ≤ shortest-path x z + shortest-path z
y
〈proof 〉

lemma shortest-path-invalid-v: v /∈ V ∨ u /∈ V =⇒ shortest-path u v = ∞
〈proof 〉

lemma shortest-path-lb:
assumes u 6= v
assumes vert-connected u v
shows shortest-path u v > 0
〈proof 〉

Eccentricity of a vertex v is the furthest distance between it and a (dif-
ferent) vertex

28

definition eccentricity :: ′a ⇒ enat where
eccentricity v ≡ SUP u ∈ V − {v}. shortest-path v u

lemma eccentricity-empty-vertices: V = {} =⇒ eccentricity v = 0
V = {v} =⇒ eccentricity v = 0
〈proof 〉

lemma eccentricity-bot-iff : eccentricity v = 0 ←→ V = {} ∨ V = {v}
〈proof 〉

lemma eccentricity-invalid-v:
assumes v /∈ V
assumes V 6= {}
shows eccentricity v = ∞
〈proof 〉

lemma eccentricity-gt-shortest-path:
assumes u ∈ V
shows eccentricity v ≥ shortest-path v u
〈proof 〉

lemma eccentricity-disconnected-graph:
assumes ¬ is-connected-set V
assumes v ∈ V
shows eccentricity v = ∞
〈proof 〉

The diameter is the largest distance between any two vertices
definition diameter :: enat where
diameter ≡ SUP v ∈ V . eccentricity v

lemma diameter-gt-eccentricity: v ∈ V =⇒ diameter ≥ eccentricity v
〈proof 〉

lemma diameter-disconnected-graph:
assumes ¬ is-connected-set V
shows diameter = ∞
〈proof 〉

lemma diameter-empty: V = {} =⇒ diameter = 0
〈proof 〉

lemma diameter-singleton: V = {v} =⇒ diameter = eccentricity v
〈proof 〉

The radius is the smallest "shortest" distance between any two vertices
definition radius :: enat where
radius ≡ INF v ∈ V . eccentricity v

29

lemma radius-lt-eccentricity: v ∈ V =⇒ radius ≤ eccentricity v
〈proof 〉

lemma radius-disconnected-graph: ¬ is-connected-set V =⇒ radius = ∞
〈proof 〉

lemma radius-empty: V = {} =⇒ radius = ∞
〈proof 〉

lemma radius-singleton: V = {v} =⇒ radius = eccentricity v
〈proof 〉

The centre of the graph is all vertices whose eccentricity equals the radius
definition centre :: ′a set where
centre ≡ {v ∈ V . eccentricity v = radius }

lemma centre-disconnected-graph: ¬ is-connected-set V =⇒ centre = V
〈proof 〉

end

lemma (in fin-ulgraph) fin-connecting-paths: finite (connecting-paths u v)
〈proof 〉

3.4 We define a connected graph as a non-empty graph (the
empty set is not usually considered connected by con-
vention), where the vertex set is connected

locale connected-ulgraph = ulgraph + ne-graph-system +
assumes connected: is-connected-set V

begin

lemma vertices-connected: u ∈ V =⇒ v ∈ V =⇒ vert-connected u v
〈proof 〉

lemma vertices-connected-path: u ∈ V =⇒ v ∈ V =⇒ ∃ p. connecting-path u v p
〈proof 〉

lemma connecting-paths-not-empty: u ∈ V =⇒ v ∈ V =⇒ connecting-paths u v
6= {}
〈proof 〉

lemma min-shortest-path: assumes u ∈ V v ∈ V u 6= v
shows shortest-path u v > 0
〈proof 〉

The eccentricity, diameter, radius, and centre definitions tend to be only
used in a connected context, as otherwise they are the INF/SUP value. In
these contexts, we can obtain the vertex responsible

30

lemma eccentricity-obtains-inf :
assumes V 6= {v}
shows eccentricity v = ∞ ∨ (∃ u ∈ (V − {v}) . shortest-path v u = eccentricity

v)
〈proof 〉

lemma diameter-obtains: diameter = ∞ ∨ (∃ v ∈ V . eccentricity v = diameter)
〈proof 〉

lemma radius-diameter-singleton-eq: assumes card V = 1 shows radius = di-
ameter
〈proof 〉

end

locale fin-connected-ulgraph = connected-ulgraph + fin-ulgraph
begin

In a finite context the supremum/infinum are equivalent to the Max/Min
of the sets respectively. This can make reasoning easier
lemma shortest-path-Min-alt:

assumes u ∈ V v ∈ V
shows shortest-path u v = Min ((λ p. enat (walk-length p)) ‘ (connecting-paths

u v)) (is shortest-path u v = Min ?A)
〈proof 〉

lemma eccentricity-Max-alt:
assumes v ∈ V
assumes V 6= {v}
shows eccentricity v = Max ((λ u. shortest-path v u) ‘ (V − {v}))
〈proof 〉

lemma diameter-Max-alt: diameter = Max ((λ v. eccentricity v) ‘ V)
〈proof 〉

lemma radius-Min-alt: radius = Min ((λ v. eccentricity v) ‘ V)
〈proof 〉

lemma eccentricity-obtains:
assumes v ∈ V
assumes V 6= {v}
obtains u where u ∈ V and u 6= v and shortest-path u v = eccentricity v
〈proof 〉

lemma radius-obtains:
obtains v where v ∈ V and radius = eccentricity v
〈proof 〉

lemma radius-obtains-path-vertices:

31

assumes card V ≥ 2
obtains u v where u ∈ V and v ∈ V and u 6= v and radius = shortest-path

u v
〈proof 〉

lemma diameter-obtains:
obtains v where v ∈ V and diameter = eccentricity v
〈proof 〉

lemma diameter-obtains-path-vertices:
assumes card V ≥ 2
obtains u v where u ∈ V and v ∈ V and u 6= v and diameter = shortest-path

u v
〈proof 〉

lemma radius-diameter-bounds:
shows radius ≤ diameter diameter ≤ 2 ∗ radius
〈proof 〉

end

We define various subclasses of the general connected graph, using the
functor locale pattern
locale connected-sgraph = sgraph + ne-graph-system +

assumes connected: is-connected-set V

sublocale connected-sgraph ⊆ connected-ulgraph
〈proof 〉

locale fin-connected-sgraph = connected-sgraph + fin-sgraph

sublocale fin-connected-sgraph ⊆ fin-connected-ulgraph
〈proof 〉

end
theory Girth-Independence imports Connectivity
begin

4 Girth and Independence
We translate and extend on a number of definitions and lemmas on girth
and independence from Noschinski’s ugraph representation [4].
context sgraph
begin

definition girth :: enat where
girth ≡ INF p∈ cycles. enat (walk-length p)

32

lemma girth-acyclic: cycles = {} =⇒ girth = ∞
〈proof 〉

lemma girth-lte: c ∈ cycles =⇒ girth ≤ walk-length c
〈proof 〉

lemma girth-obtains:
assumes girth 6= top
obtains c where c ∈ cycles and walk-length c = girth
〈proof 〉

lemma girthI :
assumes c ′ ∈ cycles
assumes

∧
c . c ∈ cycles =⇒ walk-length c ′ ≤ walk-length c

shows girth = walk-length c ′

〈proof 〉

lemma (in fin-sgraph) girth-min-alt:
assumes cycles 6= {}
shows girth = Min ((λ c . enat (walk-length c)) ‘ cycles) (is girth = Min ?A)
〈proof 〉

definition is-independent-set :: ′a set ⇒ bool where
is-independent-set vs ≡ vs ⊆ V ∧ (all-edges vs) ∩ E = {}

A More mathematical way of thinking about it
lemma is-independent-alt: is-independent-set vs ←→ vs ⊆ V ∧ (∀ v ∈ vs. ∀ u ∈
vs. ¬ vert-adj v u)
〈proof 〉

lemma singleton-independent-set: v ∈ V =⇒ is-independent-set {v}
〈proof 〉

definition independent-sets :: ′a set set where
independent-sets ≡ {vs. is-independent-set vs}

definition independence-number :: enat where
independence-number ≡ SUP vs ∈ independent-sets. enat (card vs)

abbreviation α ≡ independence-number

lemma independent-sets-mono:
vs ∈ independent-sets =⇒ us ⊆ vs =⇒ us ∈ independent-sets
〈proof 〉

lemma le-independence-iff :
assumes 0 < k
shows k ≤ α ←→ k ∈ card ‘ independent-sets (is ?L ←→ ?R)
〈proof 〉

33

lemma zero-less-independence:
assumes V 6= {}
shows 0 < α
〈proof 〉

end

context fin-sgraph
begin
lemma fin-independent-sets: finite (independent-sets)
〈proof 〉

lemma independence-le-card:
shows α ≤ card V
〈proof 〉

lemma independence-fin: α 6= ∞
〈proof 〉

lemma independence-max-alt: V 6= {} =⇒ α = Max ((λ vs . enat (card vs)) ‘
independent-sets)
〈proof 〉

lemma independent-sets-ne:
assumes V 6= {}
shows independent-sets 6= {}
〈proof 〉

lemma independence-obtains:
assumes V 6= {}
obtains vs where is-independent-set vs and card vs = α
〈proof 〉
end
end

5 Triangles in Graph
Triangles are an important tool in graph theory. This theory presents a
number of basic definitions/lemmas which are useful for general reasoning
using triangles. The definitions and lemmas in this theory are adapted from
previous less general work in [2] and [1]
theory Graph-Triangles imports Undirected-Graph-Basics

HOL−Combinatorics.Multiset-Permutations
begin

Triangles don’t make as much sense in a loop context, hence we restrict
this to simple graphs

34

context sgraph
begin

definition triangle-in-graph :: ′a ⇒ ′a ⇒ ′a ⇒ bool where
triangle-in-graph x y z ≡ ({x,y} ∈ E) ∧ ({y,z} ∈ E) ∧ ({x,z} ∈E)

lemma triangle-in-graph-edge-empty: E = {} =⇒ ¬ triangle-in-graph x y z
〈proof 〉

definition triangle-triples where
triangle-triples X Y Z ≡ {(x,y,z) ∈ X × Y × Z . triangle-in-graph x y z }

definition
unique-triangles
≡ ∀ e ∈ E . ∃ !T . ∃ x y z. T = {x,y,z} ∧ triangle-in-graph x y z ∧ e ⊆ T

definition triangle-set :: ′a set set
where triangle-set ≡ { {x,y,z} | x y z. triangle-in-graph x y z}

5.1 Preliminaries on Triangles in Graphs
lemma card-triangle-triples-rotate: card (triangle-triples X Y Z) = card (triangle-triples
Y Z X)
〈proof 〉

lemma triangle-commu1 :
assumes triangle-in-graph x y z
shows triangle-in-graph y x z
〈proof 〉

lemma triangle-vertices-distinct1 :
assumes tri: triangle-in-graph x y z
shows x 6= y
〈proof 〉

lemma triangle-vertices-distinct2 :
assumes triangle-in-graph x y z
shows y 6= z
〈proof 〉

lemma triangle-vertices-distinct3 :
assumes triangle-in-graph x y z
shows z 6= x
〈proof 〉

lemma triangle-in-graph-edge-point: triangle-in-graph x y z ←→ {y, z} ∈ E ∧
vert-adj x y ∧ vert-adj x z
〈proof 〉

35

lemma edge-vertices-not-equal:
assumes {x,y} ∈ E
shows x 6= y
〈proof 〉

lemma edge-btw-vertices-not-equal:
assumes (x, y) ∈ all-edges-between X Y
shows x 6= y
〈proof 〉

lemma mk-triangle-from-ss-edges:
assumes (x, y) ∈ all-edges-between X Y and (x, z) ∈ all-edges-between X Z and
(y, z) ∈ all-edges-between Y Z
shows (triangle-in-graph x y z)
〈proof 〉

lemma triangle-in-graph-verts:
assumes triangle-in-graph x y z
shows x ∈ V y ∈ V z∈ V
〈proof 〉

lemma convert-triangle-rep-ss:
assumes X ⊆ V and Y ⊆ V and Z ⊆ V
shows mk-triangle-set ‘ {(x, y, z) ∈ X × Y × Z . (triangle-in-graph x y z)} ⊆

triangle-set
〈proof 〉

lemma (in fin-sgraph) finite-triangle-set: finite (triangle-set)
〈proof 〉

lemma card-triangle-3 :
assumes t ∈ triangle-set
shows card t = 3
〈proof 〉

lemma triangle-set-power-set-ss: triangle-set ⊆ Pow V
〈proof 〉

lemma triangle-in-graph-ss:
assumes E ′ ⊆ E
assumes sgraph.triangle-in-graph E ′ x y z
shows triangle-in-graph x y z
〈proof 〉

lemma triangle-set-graph-edge-ss:
assumes E ′ ⊆ E
shows (sgraph.triangle-set E ′) ⊆ (triangle-set)
〈proof 〉

36

lemma (in fin-sgraph) triangle-set-graph-edge-ss-bound:
assumes E ′ ⊆ E
shows card (triangle-set) ≥ card (sgraph.triangle-set E ′)
〈proof 〉

end

locale triangle-free-graph = sgraph +
assumes tri-free: ¬(∃ x y z. triangle-in-graph x y z)

lemma triangle-free-graph-empty: E = {} =⇒ triangle-free-graph V E
〈proof 〉

context fin-sgraph
begin

Converting between ordered and unordered triples for reasoning on car-
dinality
lemma card-convert-triangle-rep:

assumes X ⊆ V and Y ⊆ V and Z ⊆ V
shows card (triangle-set) ≥ 1/6 ∗ card {(x, y, z) ∈ X × Y × Z . (triangle-in-graph

x y z)}
(is - ≥ 1/6 ∗ card ?TT)

〈proof 〉

lemma card-convert-triangle-rep-bound:
fixes t :: real
assumes card {(x, y, z) ∈ X × Y × Z . (triangle-in-graph x y z)} ≥ t
assumes X ⊆ V and Y ⊆ V and Z ⊆ V
shows card (triangle-set) ≥ 1/6 ∗t
〈proof 〉
end
end
theory Bipartite-Graphs imports Undirected-Graph-Walks
begin

6 Bipartite Graphs
An introductory library for reasoning on bipartite graphs.

6.1 Bipartite Set Up
All "edges", i.e. pairs, between any two sets
definition all-bi-edges :: ′a set ⇒ ′a set ⇒ ′a edge set where
all-bi-edges X Y ≡ mk-edge ‘ (X × Y)

lemma all-bi-edges-alt:
assumes X ∩ Y = {}

37

shows all-bi-edges X Y = {e . card e = 2 ∧ e ∩ X 6= {} ∧ e ∩ Y 6= {}}
〈proof 〉

lemma all-bi-edges-alt2 : all-bi-edges X Y = {{x, y} | x y. x ∈ X ∧ y ∈ Y }
〈proof 〉

lemma all-bi-edges-wf : e ∈ all-bi-edges X Y =⇒ e ⊆ X ∪ Y
〈proof 〉

lemma all-bi-edges-2 : X ∩ Y = {} =⇒ e ∈ all-bi-edges X Y =⇒ card e = 2
〈proof 〉

lemma all-bi-edges-main: X ∩ Y = {} =⇒ all-bi-edges X Y ⊆ all-edges (X ∪ Y)
〈proof 〉

lemma all-bi-edges-finite: finite X =⇒ finite Y =⇒ finite (all-bi-edges X Y)
〈proof 〉

lemma all-bi-edges-not-ssX : X ∩ Y = {} =⇒ e ∈ all-bi-edges X Y =⇒ ¬ e ⊆ X
〈proof 〉

lemma all-bi-edges-sym: all-bi-edges X Y = all-bi-edges Y X
〈proof 〉

lemma all-bi-edges-not-ssY : X ∩ Y = {} =⇒ e ∈ all-bi-edges X Y =⇒ ¬ e ⊆ Y
〈proof 〉

lemma card-all-bi-edges:
assumes finite X finite Y
assumes X ∩ Y = {}
shows card (all-bi-edges X Y) = card X ∗ card Y
〈proof 〉

lemma (in sgraph) all-edges-between-bi-subset: mk-edge ‘ all-edges-between X Y ⊆
all-bi-edges X Y
〈proof 〉

6.2 Bipartite Graph Locale
For reasoning purposes, it is useful to explicitly label the two sets of vertices
as X and Y. These are parameters in the locale
locale bipartite-graph = graph-system +

fixes X Y :: ′a set
assumes partition: partition-on V {X , Y }
assumes ne: X 6= Y
assumes edge-betw: e ∈ E =⇒ e ∈ all-bi-edges X Y

begin

lemma part-intersect-empty: X ∩ Y = {}

38

〈proof 〉

lemma X-not-empty: X 6= {}
〈proof 〉

lemma Y-not-empty: Y 6= {}
〈proof 〉

lemma XY-union: X ∪ Y = V
〈proof 〉

lemma card-edges-two: e ∈ E =⇒ card e = 2
〈proof 〉

lemma partitions-ss: X ⊆ V Y ⊆ V
〈proof 〉

end

By definition, we say an edge must be between X and Y, i.e. contains
two vertices
sublocale bipartite-graph ⊆ sgraph
〈proof 〉

context bipartite-graph
begin

abbreviation density ≡ edge-density X Y

lemma bipartite-sym: bipartite-graph V E Y X
〈proof 〉

lemma X-verts-not-adj:
assumes x1 ∈ X x2 ∈ X
shows ¬ vert-adj x1 x2
〈proof 〉

lemma Y-verts-not-adj:
assumes y1 ∈ Y y2 ∈ Y
shows ¬ vert-adj y1 y2
〈proof 〉

lemma X-vert-adj-Y : x ∈X =⇒ vert-adj x y =⇒ y ∈ Y
〈proof 〉

lemma Y-vert-adj-X : y ∈Y =⇒ vert-adj y x =⇒ x ∈ X
〈proof 〉

lemma neighbors-ss-eq-neighborhoodX : v ∈ X =⇒ neighborhood v = neighbors-ss

39

v Y
〈proof 〉

lemma neighbors-ss-eq-neighborhoodY : v ∈ Y =⇒ neighborhood v = neighbors-ss
v X
〈proof 〉

lemma neighborhood-subset-oppX : v ∈ X =⇒ neighborhood v ⊆ Y
〈proof 〉

lemma neighborhood-subset-oppY : v ∈ Y =⇒ neighborhood v ⊆ X
〈proof 〉

lemma degree-neighbors-ssX : v ∈ X =⇒ degree v = card (neighbors-ss v Y)
〈proof 〉

lemma degree-neighbors-ssY : v ∈ Y =⇒ degree v = card (neighbors-ss v X)
〈proof 〉

definition is-bicomplete:: bool where
is-bicomplete ≡ E = all-bi-edges X Y

lemma edge-betw-indiv:
assumes e ∈ E
obtains x y where x ∈ X ∧ y ∈ Y ∧ e = {x, y}
〈proof 〉

lemma edges-between-equals-edge-set: mk-edge ‘ (all-edges-between X Y) = E
〈proof 〉

Lemmas for reasoning on walks and paths in a bipartite graph
lemma walk-alternates:

assumes is-walk w
assumes Suc i < length w i ≥ 0
shows w ! i ∈ X ←→ w ! (i + 1) ∈ Y
〈proof 〉

A useful reasoning pattern to mimic "wlog" statements for properties
that are symmetric is to interpret the symmetric bipartite graph and then
directly apply the lemma proven earlier
lemma walk-alternates-sym:

assumes is-walk w
assumes Suc i < length w i ≥ 0
shows w ! i ∈ Y ←→ w ! (i + 1) ∈ X
〈proof 〉

lemma walk-length-even:
assumes is-walk w
assumes hd w ∈ X and last w ∈ X

40

shows even (walk-length w)
〈proof 〉

lemma walk-length-even-sym:
assumes is-walk w
assumes hd w ∈ Y
assumes last w ∈ Y
shows even (walk-length w)
〈proof 〉

lemma walk-length-odd:
assumes is-walk w
assumes hd w ∈ X and last w ∈ Y
shows odd (walk-length w)
〈proof 〉

lemma walk-length-odd-sym:
assumes is-walk w
assumes hd w ∈ Y and last w ∈ X
shows odd (walk-length w)
〈proof 〉

lemma walk-length-even-iff :
assumes is-walk w
shows even (walk-length w) ←→ (hd w ∈ X ∧ last w ∈ X) ∨ (hd w ∈ Y ∧ last

w ∈ Y)
〈proof 〉

lemma walk-length-odd-iff :
assumes is-walk w
shows odd (walk-length w) ←→ (hd w ∈ X ∧ last w ∈ Y) ∨ (hd w ∈ Y ∧ last

w ∈ X)
〈proof 〉

Classic basic theorem that a bipartite graph must not have any cycles
with an odd length
lemma no-odd-cycles:

assumes is-walk w
assumes odd (walk-length w)
shows ¬ is-cycle w
〈proof 〉

end

A few properties rely on cardinality definitions that require the vertex
sets to be finite
locale fin-bipartite-graph = bipartite-graph + fin-graph-system
begin

41

lemma fin-bipartite-sym: fin-bipartite-graph V E Y X
〈proof 〉

lemma partitions-finite: finite X finite Y
〈proof 〉

lemma card-edges-between-set: card (all-edges-between X Y) = card E
〈proof 〉

lemma density-simp: density = card (E) / ((card X) ∗ (card Y))
〈proof 〉

lemma edge-size-degree-sumY : card E = (
∑

y ∈ Y . degree y)
〈proof 〉

lemma edge-size-degree-sumX : card E = (
∑

y ∈ X . degree y)
〈proof 〉

end
end

7 Graph Theory Inheritance
This theory aims to demonstrate the use of locales to transfer theorems
between different graph/combinatorial structure representations
theory Graph-Theory-Relations imports Undirected-Graph-Basics Bipartite-Graphs

Design-Theory.Block-Designs Design-Theory.Group-Divisible-Designs
begin

7.1 Design Inheritance
A graph is a type of incidence system, and more specifically a type of com-
binatorial design. This section demonstrates the correspondence between
designs and graphs
sublocale graph-system ⊆ inc: incidence-system V mset-set E
〈proof 〉

sublocale fin-graph-system ⊆ finc: finite-incidence-system V mset-set E
〈proof 〉

sublocale fin-ulgraph ⊆ d: design V mset-set E
〈proof 〉

sublocale fin-ulgraph ⊆ d: simple-design V mset-set E
〈proof 〉

42

locale graph-has-edges = graph-system +
assumes edges-nempty: E 6= {}

locale fin-sgraph-wedges = fin-sgraph + graph-has-edges

The simple graph definition of degree overlaps with the definition of a
point replication number
sublocale fin-sgraph-wedges ⊆ bd: block-design V mset-set E 2

rewrites point-replication-number (mset-set E) x = degree x
and points-index (mset-set E) vs = degree-set vs

〈proof 〉

locale fin-bipartite-graph-wedges = fin-bipartite-graph + fin-sgraph-wedges

sublocale fin-bipartite-graph-wedges ⊆ group-design V mset-set E {X , Y }
〈proof 〉

7.2 Adjacency Relation Definition
Another common formal representation of graphs is as a vertex set and an
adjacency relation This is a useful representation in some contexts - we use
locales to enable the transfer of results between the two representations,
specifically the mutual sublocales approach
locale graph-rel =

fixes vertices :: ′a set (‹V ›)
fixes adj-rel :: ′a rel
assumes wf :

∧
u v. (u, v) ∈ adj-rel =⇒ u ∈ V ∧ v ∈ V

begin

abbreviation adj u v ≡ (u, v) ∈ adj-rel

lemma wf-alt: adj u v =⇒ (u, v) ∈ V × V
〈proof 〉

end

locale ulgraph-rel = graph-rel +
assumes sym-adj: sym adj-rel

begin

This definition makes sense in the context of an undirected graph
definition edge-set:: ′a edge set where
edge-set ≡ {{u, v} | u v. adj u v}

lemma obtain-edge-pair-adj:
assumes e ∈ edge-set
obtains u v where e = {u, v} and adj u v

43

〈proof 〉

lemma adj-to-edge-set-card:
assumes e ∈ edge-set
shows card e = 1 ∨ card e = 2
〈proof 〉

lemma adj-to-edge-set-card-lim:
assumes e ∈ edge-set
shows card e > 0 ∧ card e ≤ 2
〈proof 〉

lemma edge-set-wf : e ∈ edge-set =⇒ e ⊆ V
〈proof 〉

lemma is-graph-system: graph-system V edge-set
〈proof 〉

lemma sym-alt: adj u v ←→ adj v u
〈proof 〉

lemma is-ulgraph: ulgraph V edge-set
〈proof 〉

end

context ulgraph
begin

definition adj-relation :: ′a rel where
adj-relation ≡ {(u, v) | u v . vert-adj u v}

lemma adj-relation-wf : (u, v) ∈ adj-relation =⇒ {u, v} ⊆ V
〈proof 〉

lemma adj-relation-sym: sym adj-relation
〈proof 〉

lemma is-ulgraph-rel: ulgraph-rel V adj-relation
〈proof 〉

Temporary interpretation - mutual sublocale setup
interpretation ulgraph-rel V adj-relation 〈proof 〉

lemma vert-adj-rel-iff :
assumes u ∈ V v ∈ V
shows vert-adj u v ←→ adj u v
〈proof 〉

44

lemma edges-rel-is: E = edge-set
〈proof 〉

end

context ulgraph-rel
begin

Temporary interpretation - mutual sublocale setup
interpretation ulgraph V edge-set 〈proof 〉

lemma rel-vert-adj-iff : vert-adj u v ←→ adj u v
〈proof 〉

lemma rel-item-is: (u, v) ∈ adj-rel ←→ (u, v) ∈ adj-relation
〈proof 〉

lemma rel-edges-is: adj-rel = adj-relation
〈proof 〉

end

sublocale ulgraph-rel ⊆ ulgraph V edge-set
rewrites ulgraph.adj-relation edge-set = adj-rel
〈proof 〉

sublocale ulgraph ⊆ ulgraph-rel V adj-relation
rewrites ulgraph-rel.edge-set adj-relation = E
〈proof 〉

locale sgraph-rel = ulgraph-rel +
assumes irrefl-adj: irrefl adj-rel

begin

lemma irrefl-alt: adj u v =⇒ u 6= v
〈proof 〉

lemma edge-is-card2 :
assumes e ∈ edge-set
shows card e = 2
〈proof 〉

lemma is-sgraph: sgraph V edge-set
〈proof 〉

end

context sgraph
begin

45

lemma is-rel-irrefl-alt:
assumes (u, v) ∈ adj-relation
shows u 6= v
〈proof 〉

lemma is-rel-irrefl: irrefl adj-relation
〈proof 〉

lemma is-sgraph-rel: sgraph-rel V adj-relation
〈proof 〉

end

sublocale sgraph-rel ⊆ sgraph V edge-set
rewrites ulgraph.adj-relation edge-set = adj-rel
〈proof 〉

sublocale sgraph ⊆ sgraph-rel V adj-relation
rewrites ulgraph-rel.edge-set adj-relation = E
〈proof 〉

end
theory Undirected-Graphs-Root imports

Undirected-Graph-Basics
Undirected-Graph-Walks
Connectivity
Girth-Independence
Graph-Triangles
Bipartite-Graphs
Graph-Theory-Relations

begin
end

References
[1] C. Edmonds, A. Koutsoukou-Argyraki, and L. C. Paulson. Roth’s The-

orem on Arithmetic Progressions. Archive of Formal Proofs, Dec. 2021.

[2] C. Edmonds, A. Koutsoukou-Argyraki, and L. C. Paulson. Szemerédi’s
Regularity Lemma. Archive of Formal Proofs, Nov. 2021.

[3] L. Hupel. Properties of random graphs – subgraph containment. Archive
of Formal Proofs, February 2014. https://isa-afp.org/entries/Random_
Graph_Subgraph_Threshold.html, Formal proof development.

[4] L. Noschinski. Proof Pearl: A Probabilistic Proof for the Girth-
Chromatic Number Theorem. In Interactive Theorem Proving. ITP

46

https://isa-afp.org/entries/Random_Graph_Subgraph_Threshold.html
https://isa-afp.org/entries/Random_Graph_Subgraph_Threshold.html

2012., volume 7406 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012.

[5] L. Noschinski. A Graph Library for Isabelle. Math-
ematics in Computer Science, 9(1):23–39, Mar. 2015.
http://link.springer.com/10.1007/s11786-014-0183-z.

47

	Undirected Graph Theory Basics
	Miscellaneous Extras
	Initial Set up
	Graph System Locale
	Undirected Graph with Loops
	Edge Density
	Simple Graphs
	Subgraph Basics

	Walks, Paths and Cycles
	Walks
	Paths
	Cycles

	Connectivity
	Connecting Walks and Paths
	Vertex Connectivity
	Graph Properties on Connectivity
	We define a connected graph as a non-empty graph (the empty set is not usually considered connected by convention), where the vertex set is connected

	Girth and Independence
	Triangles in Graph
	Preliminaries on Triangles in Graphs

	Bipartite Graphs
	Bipartite Set Up
	Bipartite Graph Locale

	Graph Theory Inheritance
	Design Inheritance
	Adjacency Relation Definition

