
Fundamentals of Unconstrained Optimization

Dustin Bryant

August 1, 2025

Abstract

As formal methods gain traction in machine learning and numerical
analysis, the community needs computer-checked proofs of core opti-
mization results. Existing Isabelle libraries still lack a foundational
framework for unconstrained optimization. We close this gap with a
comprehensive Isabelle/HOL development that formalizes:

(1) minimizers, strict and isolated local minimizers;
(2) first- and second-order optimality conditions for scalar functions

f : R→ R;
(3) first-order optimality conditions for vector functions g : Rn → R;

and
(4) a worked example showing that the continuous function

h(x) =

{
x4

(
cos(1/x) + 2

)
, x 6= 0,

0, x = 0

has a strict but non-isolated local minimizer at x = 0.

The new session Unconstrained_Optimization provides sound, reusable
foundations for future proof-checking tools and mechanized research in
optimization, analysis, and algorithmic correctness.

Contents
1 Auxiliary Facts 2

1.1 Differentiation Lemmas . 2
1.1.1 Transfer Lemmas . 3

1.2 Trigonometric Contraction . 4
1.3 Algebraic Factorizations . 5
1.4 Specific Trigonometric Values 5
1.5 Local Sign Preservation of Continuous Functions 6

1.5.1 Local Positivity . 6
1.5.2 Local Negativity . 6

1

2 Minimizers in Topological and Metric Spaces 7
2.1 Abstract Topological Definitions 7
2.2 Metric Space Reformulations 8

3 Minimizer Implications 11
3.1 Implications for a Given Minimizer Type 11
3.2 Characterization of Non-Isolated Minimizers 13
3.3 First-Order Condition . 16

4 Second-Order Conditions 19
4.1 Necessary Condition . 19
4.2 Sufficient Condition . 22

5 Pathological Example: Non-Isolated Strict Local Minima 25

1 Auxiliary Facts
theory Auxilary-Facts

imports
Sigmoid-Universal-Approximation.Limits-Higher-Order-Derivatives

begin

1.1 Differentiation Lemmas
lemma has-derivative-imp:

fixes f :: real ⇒ real
assumes (f has-derivative f ′) (at x)
shows f differentiable (at x) ∧ deriv f x = f ′ 1

proof safe
show f differentiable at x

by (meson assms differentiableI)
then show deriv f x = f ′ 1

by (metis DERIV-deriv-iff-real-differentiable assms has-derivative-unique
has-field-derivative-imp-has-derivative mult.comm-neutral)

qed

lemma DERIV-inverse-func:
assumes x 6= 0
shows DERIV (λw. 1 / w) x :> −1 / x^2

proof −
have inverse = (/) (1 :: ′a)

using inverse-eq-divide by auto
then show ?thesis

by (metis (no-types) DERIV-inverse assms divide-minus-left numeral-2-eq-2
power-one-over)
qed

lemma power-rule:

2

fixes z :: real and n :: nat
shows deriv (λx. x ^ n) z = (if n = 0 then 0 else real n ∗ z ^ (n − 1))
by(subst deriv-pow, simp-all)

1.1.1 Transfer Lemmas
lemma has-derivative-transfer-on-ball:

fixes f g :: real ⇒ real
assumes eps-gt0 : 0 < ε
assumes eq-on-ball: ∀ y. y ∈ ball x ε −→ f y = g y
assumes f-has-deriv: (f has-derivative D) (at x)
shows (g has-derivative D) (at x)

proof −
from f-has-deriv
have lim: ((λy. (f y − f x − D (y − x)) / |y − x|) −−−→ 0) (at x)

unfolding has-derivative-def
by (simp add: divide-inverse-commute)

— Using [[(?f −−−→ ?l) (at ?a within ?T); open ?s; ?a ∈ ?s;
∧

x. [[x ∈ ?s; x 6=
?a]] =⇒ ?f x = ?g x]] =⇒ (?g −−−→ ?l) (at ?a within ?T), we switch fromf tog in
the difference quotient.

from assms(1 ,2) lim have ((λy. (g y − f x − D (y − x)) / |y − x|) −−−→ 0)
(at x)

by (subst Lim-transform-within-open
[where f = λxa. (f xa − f x − D (xa − x)) / |xa − x| and s = ball x ε],

simp-all)
— Then we replace f(x) by g(x) using the assumption eq_on_ball.

then have ((λy. (g y − g x − D (y − x)) / |y − x|) −−−→ 0) (at x)
by (simp add: assms(1) eq-on-ball)

thus ?thesis
using assms centre-in-ball has-derivative-transform-within-open by blast

qed

corollary field-differentiable-transfer-on-ball:
fixes f g :: real ⇒ real
assumes 0 < ε
assumes eq-on-ball: ∀ y. y ∈ ball x ε −→ f y = g y
assumes f-diff : f field-differentiable at x
shows g field-differentiable at x

proof −
from f-diff obtain d

where f-has-real-deriv: (f has-real-derivative d) (at x)
by (auto simp: field-differentiable-def)

have (g has-real-derivative d) (at x)
by (meson Elementary-Metric-Spaces.open-ball assms(1 ,2) centre-in-ball f-has-real-deriv

has-field-derivative-transform-within-open)
thus ?thesis

3

unfolding field-differentiable-def
by blast

qed

1.2 Trigonometric Contraction
lemma cos-contractive:

fixes x y :: real
shows |cos x − cos y| ≤ |x − y|

proof −
have |cos x − cos y| = |−2 ∗ sin ((x + y) / 2) ∗ sin ((x − y) / 2)|

by (smt (verit) cos-diff-cos mult-minus-left)
also have ... ≤ |sin ((x + y) / 2)| ∗ (2∗ |sin ((x − y) / 2)|)

by (subst abs-mult, force)
also have ... ≤ 2 ∗ |sin ((x − y) / 2)|
proof −

have |sin ((x + y) / 2)| ≤ 1
using abs-sin-le-one by blast

then have |sin ((x + y) / 2)| ∗ (2∗ |sin ((x − y) / 2)|) ≤ 1 ∗ (2∗ |sin ((x −
y) / 2)|)

by(rule mult-right-mono, simp)
then show ?thesis

by linarith
qed
also have ... ≤ 2 ∗ |(x − y) / 2 |

using abs-sin-le-one by (smt (verit, del-insts) abs-sin-x-le-abs-x)
also have ... = |x − y|

by simp
finally show ?thesis.

qed

lemma sin-contractive:
fixes x y :: real
shows |sin x − sin y| ≤ |x − y|

proof −
have |sin x − sin y| = |2 ∗ cos ((x + y) / 2) ∗ sin ((x − y) / 2)|

by (metis (no-types) mult.assoc mult.commute sin-diff-sin)
also have ... ≤ |cos ((x + y) / 2)| ∗ (2 ∗ |sin ((x − y) / 2)|)

by (subst abs-mult, force)
also have ... ≤ 2 ∗ |sin ((x − y) / 2)|
proof −

have |cos ((x + y) / 2)| ≤ 1
using abs-cos-le-one by blast

then have |cos ((x + y) / 2)| ∗ (2 ∗ |sin ((x − y) / 2)|) ≤ 1 ∗ (2 ∗ |sin ((x
− y) / 2)|)

by (rule mult-right-mono, simp)
then show ?thesis

by linarith
qed

4

also have ... ≤ 2 ∗ |(x − y) / 2 |
using abs-sin-le-one by (smt (verit, del-insts) abs-sin-x-le-abs-x)

also have ... = |x − y|
by simp

finally show ?thesis.
qed

1.3 Algebraic Factorizations
lemma biquadrate-diff-biquadrate-factored:

fixes x y::real
shows y^4 − x^4 = (y − x) ∗ (y^3 + y^2 ∗ x + y ∗ x^2 + x^3)

proof −
have y^4 − x^4 = (y^2 − x^2) ∗ (y^2 + x^2)
by (metis mult.commute numeral-Bit0 power-add square-diff-square-factored)

also have ... = (y − x) ∗ (y + x) ∗ (y^2 + x^2)
by (simp add: power2-eq-square square-diff-square-factored)

also have ... = (y − x) ∗ (y^3 + y^2 ∗ x + y ∗ x^2 + x^3)
by (simp add: distrib-left mult.commute power2-eq-square power3-eq-cube)

finally show ?thesis.
qed

1.4 Specific Trigonometric Values
lemma sin-5pi-div-4 : sin (5 ∗ pi / 4) = − (sqrt 2 / 2)
proof −

have 5 ∗ pi / 4 = pi + pi / 4
by simp

moreover have sin (pi + x) = − sin x for x
by (simp add: sin-add)

ultimately show ?thesis
using sin-45 by presburger

qed

lemma cos-5pi-div-4 : cos (5 ∗ pi / 4) = − (sqrt 2 / 2)
proof −

have 5 ∗ pi / 4 = pi + pi / 4
by simp

moreover have cos (pi + x) = − cos x for x
by (simp add: cos-add)

moreover have cos (pi / 4) = sqrt 2 / 2
by (simp add: real-div-sqrt cos-45)

ultimately show ?thesis
by presburger

qed

5

1.5 Local Sign Preservation of Continuous Functions
1.5.1 Local Positivity
lemma cont-at-pos-imp-loc-pos:

fixes g :: real ⇒ real and x :: real
assumes continuous (at x) g and g x > 0
shows ∃ δ > 0 . ∀ y. |y − x| < δ −→ g y > 0

proof −
from assms obtain δ where δ-pos: δ > 0

and ∀ y. |y − x| < δ −→ |g y − g x| < (g x)/2
using continuous-at-eps-delta half-gt-zero by blast

then have ∀ y. |y − x| < δ −→ g y > 0
by (smt (verit, best) field-sum-of-halves)

then show ?thesis
using δ-pos by blast

qed

lemma cont-at-pos-imp-loc-pos ′:
fixes g :: real ⇒ real and x :: real
assumes continuous (at x) g and g x > 0
shows ∃∆ > 0 . ∀ δ. 0 < δ ∧ δ ≤ ∆ −→ (∀ y. |y − x| < δ −→ g y > 0)

proof −
from assms obtain δ where δ-pos: δ > 0 and H : ∀ y. |y − x| < δ −→ g y > 0

using cont-at-pos-imp-loc-pos by blast
have ∀ δ ′ ≤ δ. ∀ y. |y − x| < δ ′ −→ g y > 0
proof clarify

fix δ ′ y :: real
assume δ ′ ≤ δ and |y − x| < δ ′

thus g y > 0 by (auto simp: H)
qed
then show ?thesis

using δ-pos by blast
qed

1.5.2 Local Negativity
lemma cont-at-neg-imp-loc-neg:

fixes g :: real ⇒ real and x :: real
assumes continuous (at x) g and g x < 0
shows ∃ δ > 0 . ∀ y. |y − x| < δ −→ g y < 0

proof −
from assms obtain δ where δ-pos: δ > 0

and ∀ y. |y − x| < δ −→ |g y − g x| < −(g x)/2
by (metis continuous-at-eps-delta half-gt-zero neg-0-less-iff-less)

then have ∀ y. |y − x| < δ −→ − g y > 0
by (smt (verit, best) field-sum-of-halves)

then show ?thesis
using δ-pos neg-0-less-iff-less by blast

qed

6

lemma cont-at-neg-imp-loc-neg ′:
fixes g :: real ⇒ real and x :: real
assumes continuous (at x) g and g x < 0
shows ∃∆ > 0 . ∀ δ. 0 < δ ∧ δ ≤ ∆ −→ (∀ y. |y − x| < δ −→ g y < 0)

proof −
from assms obtain δ where δ-pos: δ > 0

and H : ∀ y. |y − x| < δ −→ −(g y) > 0
by (smt (verit) cont-at-neg-imp-loc-neg)

have ∀ δ ′ ≤ δ. ∀ y. |y − x| < δ ′ −→ −(g y) > 0
proof clarify

fix δ ′ y :: real
assume δ ′ ≤ δ and |y − x| < δ ′

then show −(g y) > 0
using H by auto

qed
then show ?thesis

using δ-pos neg-0-less-iff-less by blast
qed

end

2 Minimizers in Topological and Metric Spaces
theory Minimizers-Definition

imports Auxilary-Facts
begin

2.1 Abstract Topological Definitions
definition global-minimizer :: (′a::topological-space ⇒ real) ⇒ ′a ⇒ bool where

global-minimizer f x-star ←→ (∀ x. f x-star ≤ f x)

definition local-minimizer-on :: (′a::topological-space ⇒ real) ⇒ ′a ⇒ ′a set ⇒
bool where

local-minimizer-on f x-star U ←→ (open U ∧ x-star ∈ U ∧ (∀ x ∈ U . f x-star ≤
f x))

definition local-minimizer :: (′a::topological-space ⇒ real) ⇒ ′a ⇒ bool where
local-minimizer f x-star ←→ (∃U . open U ∧ x-star ∈ U ∧ (∀ x ∈ U . f x-star ≤

f x))

definition isolated-local-minimizer-on :: (′a::topological-space ⇒ real) ⇒ ′a ⇒ ′a
set ⇒ bool where

isolated-local-minimizer-on f x-star U ←→
(local-minimizer-on f x-star U ∧ ({x ∈ U . local-minimizer f x} = {x-star}))

definition isolated-local-minimizer :: (′a::topological-space ⇒ real) ⇒ ′a ⇒ bool
where

7

isolated-local-minimizer f x-star ←→
(∃U . local-minimizer-on f x-star U ∧ ({x ∈ U . local-minimizer f x} = {x-star}))

definition strict-local-minimizer-on :: (′a::topological-space ⇒ real) ⇒ ′a ⇒ ′a set
⇒ bool where

strict-local-minimizer-on f x-star U ←→
(open U ∧ x-star ∈ U ∧ (∀ x ∈ U − {x-star}. f x-star < f x))

definition strict-local-minimizer :: (′a::topological-space ⇒ real) ⇒ ′a ⇒ bool
where

strict-local-minimizer f x-star ←→ (∃U . strict-local-minimizer-on f x-star U)

2.2 Metric Space Reformulations
lemma local-minimizer-on-def2 :

fixes f :: ′a::metric-space ⇒ real
assumes local-minimizer f x-star
shows ∃N > 0 . ∀ x ∈ ball x-star N . f x-star ≤ f x

proof −
from assms obtain U where

open U x-star ∈ U and local-min: ∀ x ∈ U . f x-star ≤ f x
unfolding local-minimizer-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by blast

hence ∀ x ∈ ball x-star N . f x-star ≤ f x
using ball-in-U local-min by auto

thus ?thesis
using N-pos by auto

qed

lemma local-minimizer-def2 :
fixes f :: ′a::metric-space ⇒ real
assumes local-minimizer f x-star
shows ∃N > 0 . ∀ x. dist x x-star < N −→ f x-star ≤ f x

proof −
from assms obtain U where

open U x-star ∈ U and local-min: ∀ x ∈ U . f x-star ≤ f x
unfolding local-minimizer-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by blast

hence ∀ x. dist x x-star < N −→ x ∈ ball x-star N
by (subst mem-ball, simp add: dist-commute)

hence ∀ x. dist x x-star < N −→ f x-star ≤ f x
using ball-in-U local-min by blast

thus ?thesis
using N-pos by auto

qed

lemma isolated-local-minimizer-on-def2 :

8

fixes f :: ′a::metric-space ⇒ real
assumes isolated-local-minimizer-on f x-star U
shows ∃N > 0 . ∀ x ∈ ball x-star N . (local-minimizer f x −→ x = x-star)

proof −
from assms have

local-minimizer-on f x-star U
and unique-min: {x ∈ U . local-minimizer f x} = {x-star}
unfolding isolated-local-minimizer-on-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by (metis local-minimizer-on-def)

have ∀ x ∈ ball x-star N . local-minimizer f x −→ x = x-star
proof(clarify)

fix x
assume x ∈ ball x-star N
then have x ∈ U using ball-in-U by auto
moreover assume local-minimizer f x
hence x ∈ {x ∈ U . local-minimizer f x} using ‹x ∈ U › by auto
hence x ∈ {x-star} using unique-min by auto
ultimately show x = x-star

by simp
qed
thus ?thesis using N-pos by auto

qed

lemma isolated-local-minimizer-def2 :
fixes f :: ′a::metric-space ⇒ real
assumes isolated-local-minimizer f x-star
shows ∃N > 0 . ∀ x ∈ ball x-star N . (local-minimizer f x −→ x = x-star)

proof −
from assms obtain U where

local-minimizer-on f x-star U
and unique-min: {x ∈ U . local-minimizer f x} = {x-star}
unfolding isolated-local-minimizer-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by (metis local-minimizer-on-def)

have ∀ x ∈ ball x-star N . local-minimizer f x −→ x = x-star
proof(clarify)

fix x
assume x ∈ ball x-star N
then have x ∈ U using ball-in-U by auto
moreover assume local-minimizer f x
hence x ∈ {x ∈ U . local-minimizer f x} using ‹x ∈ U › by auto
hence x ∈ {x-star} using unique-min by auto
ultimately show x = x-star by simp

qed
thus ?thesis using N-pos by auto

qed

lemma strict-local-minimizer-on-def2 :

9

fixes f :: ′a::metric-space ⇒ real
assumes strict-local-minimizer-on f x-star U
shows ∃N > 0 . ∀ x ∈ ball x-star N − {x-star}. f x-star < f x

proof −
from assms have

open U x-star ∈ U and strict-min: ∀ x ∈ U − {x-star}. f x-star < f x
unfolding strict-local-minimizer-on-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by metis

have ∀ x ∈ ball x-star N − {x-star}. f x-star < f x
proof

fix x
assume x ∈ ball x-star N − {x-star}
hence x ∈ U − {x-star} using ball-in-U by auto
thus f x-star < f x

using strict-min by auto
qed
thus ?thesis using N-pos by auto

qed

lemma strict-local-minimizer-def2 :
fixes f :: ′a::metric-space ⇒ real
assumes strict-local-minimizer f x-star
shows ∃N > 0 . ∀ x ∈ ball x-star N − {x-star}. f x-star < f x

proof −
from assms obtain U where

strict-local-minimizer-on f x-star U
unfolding strict-local-minimizer-def by auto

then have
open U x-star ∈ U and strict-min: ∀ x ∈ U − {x-star}. f x-star < f x
unfolding strict-local-minimizer-on-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by metis

have ∀ x ∈ ball x-star N − {x-star}. f x-star < f x
proof

fix x
assume x ∈ ball x-star N − {x-star}
hence x ∈ U − {x-star} using ball-in-U by auto
thus f x-star < f x

using strict-min by auto
qed
thus ?thesis using N-pos by auto

qed

lemma local-minimizer-neighborhood:
fixes f :: real ⇒ real
assumes loc-min: local-minimizer f x-min
shows ∃ δ > 0 . ∀ h. |h| < δ −→ f (x-min + h) ≥ f x-min

proof −

10

obtain N where N-pos: N > 0 and N-prop: ∀ x. dist x x-min < N −→ f x-min
≤ f x

using local-minimizer-def2 [OF loc-min] by auto
then have ∀ h. abs h < N −→ f (x-min + h) ≥ f x-min

by (simp add: dist-real-def)
then show ?thesis

using N-pos by blast
qed

lemma local-minimizer-from-neighborhood:
fixes f :: real ⇒ real and x-min :: real
assumes ∃ δ > 0 . ∀ x. |x − x-min| < δ −→ f x-min ≤ f x
shows local-minimizer f x-min

proof −
from assms obtain δ where δ-pos: δ > 0 and H : ∀ x. |x − x-min| < δ −→ f

x-min ≤ f x
by auto

obtain U where U-def : U = {x. |x − x-min| < δ}
by simp

then have open U
by (smt (verit) dist-commute dist-real-def mem-Collect-eq metric-space-class.open-ball

subsetI topological-space-class.openI)
moreover have x-min ∈ U

using U-def δ-pos by force
moreover have ∀ x ∈ U . f x-min ≤ f x

using H U-def by blast
ultimately show ?thesis

unfolding local-minimizer-def by auto
qed

end

3 Minimizer Implications
theory First-Order-Conditions

imports Minimizers-Definition
begin

notation norm (‖-‖)

3.1 Implications for a Given Minimizer Type
lemma strict-local-minimizer-imp-local-minimizer :

assumes strict-local-minimizer f x-star
shows local-minimizer f x-star
by (smt (verit) Diff-iff assms local-minimizer-def singletonD strict-local-minimizer-def

strict-local-minimizer-on-def)

lemma isolated-local-minimizer-imp-strict:

11

assumes isolated-local-minimizer f x-star
shows strict-local-minimizer f x-star

proof −
— From isolated_local_minimizer we obtain an open set U such that x? is the

only local minimizer.
from assms obtain U where iso-props:

isolated-local-minimizer-on f x-star U
unfolding isolated-local-minimizer-def
using isolated-local-minimizer-on-def by blast

— Unpack isolated_local_minimizer_on: x? is a local_minimizer_on U , and
x? is unique.

from iso-props have lm-on: local-minimizer-on f x-star U
unfolding isolated-local-minimizer-on-def using local-minimizer-on-def by

presburger
moreover from iso-props have unique-min: {x ∈ U . local-minimizer f x} =
{x-star}

unfolding isolated-local-minimizer-on-def by auto

— From local_minimizer_on, we have: U open, x? ∈ U , and ∀x ∈ U. f(x?) ≤
f(x).

from lm-on have open-U : open U and x-in-U : x-star ∈ U and le-prop: ∀ x ∈
U . f x-star ≤ f x

unfolding local-minimizer-on-def by auto

— Assume, for contradiction, that x? is not a strict local minimizer. Then there
exists y ∈ U \ {x?} with f(y) ≤ f(x?).

show strict-local-minimizer f x-star
proof (rule ccontr)

assume ¬ strict-local-minimizer f x-star
then obtain y where y-props:

y ∈ U − {x-star} and f y ≤ f x-star
unfolding strict-local-minimizer-def strict-local-minimizer-on-def
by (smt (verit, ccfv-SIG) open-U x-in-U)

from y-props have y ∈ U and y 6= x-star
by auto

— We already have f(x?) ≤ f(y) from ∀ x∈U . f x-star ≤ f x and y ∈ U .
Together with f(y) ≤ f(x?), this yields f(x?) = f(y).

from le-prop ‹y ∈ U › have f x-star ≤ f y
by auto

with ‹f y ≤ f x-star› have f x-star = f y
by auto

12

— Now we show that y is also a local minimizer, contradicting the uniqueness of
x?. To prove this, we must exhibit an open set V around y such that f(y) ≤ f(x)
for all x ∈ V .

have local-minimizer f y
proof −

— Since U is open and y ∈ U , there exists an open set V ⊆ U containing y.
obtain V where open V and y ∈ V and V ⊆ U

using ‹open U › ‹y ∈ U › open-subset by auto

— On this subset, f(y) = f(x?) ≤ f(x) for all x ∈ V (since V ⊆ U).

moreover from le-prop and ‹f x-star = f y› have ∀ x ∈ V . f y ≤ f x
using calculation(3) by auto

ultimately show local-minimizer f y
unfolding local-minimizer-def local-minimizer-on-def by auto

qed

— Since y is a local minimizer and y ∈ U , we have y ∈ {x ∈ U. local_minimizer f x}.
By uniqueness, {x ∈ U. local_minimizer f x} = {x?}, hence y = x?, contradicting
y 6= x?.

hence y ∈ {x ∈ U . local-minimizer f x}
by (simp add: ‹y ∈ U ›)

with unique-min have y = x-star by auto
thus False using ‹y 6= x-star› by contradiction

qed
— Having reached a contradiction under the assumption that x? is not a strict

local minimizer, it follows that x? must indeed be a strict local minimizer.
qed

3.2 Characterization of Non-Isolated Minimizers
lemma not-isolated-minimizer-def :

assumes local-minimizer f x-star
shows (∃ x-seq::nat ⇒ real. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= x-star)
∧ ((x-seq −−−→ x-star) at-top)) = (¬ isolated-local-minimizer f x-star)
proof(safe)

show
∧

x-seq. isolated-local-minimizer f x-star =⇒ ∀n. local-minimizer f (x-seq
n) ∧ x-seq n 6= x-star =⇒ x-seq −−−−→ x-star =⇒ False

proof −
fix x-seq :: nat ⇒ real
assume x-star-isolated-minimizer : isolated-local-minimizer f x-star

assume with-sequence-of-local-miniziers: ∀n. local-minimizer f (x-seq n) ∧ x-seq
n 6= x-star

assume converging-to-x-star : x-seq −−−−→ x-star
have open-ball-with-unique-min: ∃N > 0 . ∀ x ∈ ball x-star N . (local-minimizer

f x −→ x = x-star)

13

by (simp add: isolated-local-minimizer-def2 x-star-isolated-minimizer)
then obtain N where N-pos: N > 0 and N-prop: ∀ x ∈ ball x-star N .

(local-minimizer f x −→ x = x-star)
by blast

— Use convergence to show xseq eventually lies in ball(x?, N).
from converging-to-x-star have ∃M . ∀n ≥ M . x-seq n ∈ ball x-star N

by (metis LIMSEQ-iff-nz N-pos dist-commute mem-ball)
then obtain M where M-def : ∀n ≥ M . x-seq n ∈ ball x-star N

by auto
then show False
by (meson N-prop linorder-not-le order-less-irrefl with-sequence-of-local-miniziers)

qed
next
show ¬ isolated-local-minimizer f x-star =⇒ ∃ x-seq. (∀n. local-minimizer f (x-seq

n) ∧ x-seq n 6= x-star) ∧ x-seq −−−−→ x-star
proof(rule ccontr)

assume not-isolated-minimizer : ¬isolated-local-minimizer f x-star
assume BWOC : @ x-seq. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= x-star)

∧ x-seq −−−−→ x-star

have ∃N > 0 . ∀ x. dist x x-star < N −→ f x-star ≤ f x
by (simp add: assms local-minimizer-def2)

then obtain N where N-pos: (N ::nat) > 0 and x-star-min-on-N-ball: ∀ x.
dist x x-star < 1/ real N −→ f x-star ≤ f x

by (metis dual-order .strict-trans ex-inverse-of-nat-less inverse-eq-divide)

obtain S-n :: nat ⇒ real set where S-n-def : S-n = (λn. {x. dist x x-star < 1
/ (real n + N) ∧ x 6= x-star ∧ local-minimizer f x})

by blast

from not-isolated-minimizer
have non-isolated: ∀U . local-minimizer-on f x-star U −→ (∃ y ∈ U . y 6= x-star

∧ local-minimizer f y)
by (smt (verit, best) Collect-cong assms isolated-local-minimizer-def lo-

cal-minimizer-on-def singleton-conv2)

have ∀n::nat. ∃ x. x ∈ S-n n
proof (intro allI)

fix n::nat
have pos-radius: 1 / (real n + N) > 0

using N-pos by simp

obtain U where U-def : U = ball x-star (1 / (real n + N)) and open-U :
open U and U-contains-x-star : x-star ∈ U

using pos-radius by auto

have U-contained-in-Inverse-N-Ball: ∀ x ∈ U . dist x x-star < 1 / N
proof(safe)

fix x:: real

14

assume x-in-U : x ∈ U
then have dist x x-star < (1 / (real n + N))

by (simp add: U-def dist-commute)
also have ... ≤ 1 / real N

by (simp add: N-pos frac-le)
finally show dist x x-star < 1 / real N .

qed

have ball-non-empty: ∃ y ∈ U . y 6= x-star ∧ local-minimizer f y
proof −

have local-minimizer-on f x-star U
by (simp add: U-contains-x-star U-contained-in-Inverse-N-Ball local-minimizer-on-def

open-U x-star-min-on-N-ball)
then show ∃ y∈U . y 6= x-star ∧ local-minimizer f y

by (simp add: non-isolated)
qed
then obtain y where y-in-ball: y ∈ U and y 6= x-star and local-minimizer

f y
by blast

then show ∃ x. x ∈ S-n n
by (smt (verit, best) S-n-def U-def dist-commute mem-Collect-eq mem-ball)

qed
then obtain x-seq where x-seq-def : ∀n. x-seq n ∈ S-n n

by metis
have x-seq-converges-to-x-star : x-seq −−−−→ x-star
proof (rule LIMSEQ-I)

fix r :: real
assume r-pos: 0 < r
obtain n-min where n-min-def : 1 / (real n-min + N) < r

using real-arch-inverse N-pos r-pos
by (smt (verit, ccfv-SIG) frac-le inverse-eq-divide inverse-positive-iff-positive)
show ∃no. ∀n≥no. norm (x-seq n − x-star) < r
proof (intro exI allI impI)

fix n
assume n ≥ n-min
then have n-large-enough: 1 / (real n + N) ≤ 1 / (real n-min + N)

using N-pos by (subst frac-le, simp-all)
have dist (x-seq n) x-star < 1 / (real n + N)

using x-seq-def S-n-def by auto
also have ... ≤ 1 / (real n-min + N)

using n-large-enough by auto
also have ... < r

using n-min-def by auto
finally show norm (x-seq n − x-star) < r

by (simp add: dist-real-def)
qed

qed
have ∃ x-seq. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= x-star) ∧ x-seq

−−−−→ x-star

15

using S-n-def x-seq-converges-to-x-star x-seq-def by blast
then show False

using BWOC by auto
qed

qed

3.3 First-Order Condition
theorem Fermat ′s-theorem-on-stationary-points:

fixes f :: real ⇒ real
assumes (f has-derivative f ′) (at x-min)
assumes local-minimizer f x-min
shows (deriv f) x-min = 0
by (metis assms has-derivative-imp differential-zero-maxmin local-minimizer-def)

definition stand-basis-vector :: ′n::finite ⇒ real^ ′n — the i-th standard basis
vector

where stand-basis-vector i = (χ j. if j = i then 1 else 0)

lemma stand-basis-vector-index[simp]: (stand-basis-vector i) $ j = (if j = i then
(1 ::real) else 0)

by (simp add: stand-basis-vector-def)

lemma stand-basis-vector-nonzero[simp]: stand-basis-vector i 6= 0
by (smt (verit, del-insts) stand-basis-vector-index zero-index)

lemma norm-stand-basis-vector [simp]: norm (stand-basis-vector i) = 1
by (smt (verit, best) axis-nth component-le-norm-cart norm-axis-1 norm-le-componentwise-cart

real-norm-def stand-basis-vector-index)

lemma inner-stand-basis-vector [simp]: inner (stand-basis-vector i) (stand-basis-vector
j) = (if i = j then 1 else 0)
by (metis axis-nth cart-eq-inner-axis norm-eq-1 norm-stand-basis-vector stand-basis-vector-index

vector-eq)

lemma Basis-characterisation:
stand-basis-vector i ∈ (Basis :: (real^ ′n) set) and
∀ b∈(Basis::(real^ ′n)set). ∃ i. b = stand-basis-vector i
by (metis (no-types, lifting) Basis-real-def axis-in-Basis-iff cart-eq-inner-axis

inner-stand-basis-vector insert-iff norm-axis-1 norm-eq-1 stand-basis-vector-index
vector-eq,

metis axis-index axis-nth cart-eq-inner-axis inner-stand-basis-vector stand-basis-vector-index
vector-eq)

lemma stand-basis-expansion:
fixes x :: real^ ′n
shows x = (

∑
j∈UNIV . (x $ j) ∗R stand-basis-vector j)

proof −
have (

∑
j∈UNIV . (x $ j) ∗R stand-basis-vector j) $ k = x $ k for k

16

proof −
have (

∑
j∈UNIV . (x $ j) ∗R stand-basis-vector j) $ k

= (
∑

j∈UNIV . (x $ j) ∗ (stand-basis-vector j $ k))
by simp

also have . . . = (
∑

j∈UNIV . (x $ j) ∗ (if j = k then 1 else 0))
by (smt (verit, best) stand-basis-vector-index sum.cong)

also have . . . = (
∑

j∈UNIV . (if j = k then x $ j else 0))
by (smt (verit, best) mult-cancel-left1 mult-cancel-right1 sum.cong)

also have . . . = x $ k
by (subst sum.delta, simp-all)

finally show ?thesis.
qed
thus ?thesis

by (simp add: vec-eq-iff)
qed

lemma has-derivative-affine:
fixes a v :: ′a::real-normed-vector
shows ((λt. a + t ∗R v) has-derivative (λh. h ∗R v)) (at x)
unfolding has-derivative-def

proof safe
have a + y ∗R v − (a + netlimit (at x) ∗R v) − (y − netlimit (at x)) ∗R v = 0

if y 6= netlimit (at x) for y
by (simp add: cross3-simps(32))

then show (λy. (a + y ∗R v − (a + netlimit (at x) ∗R v) − (y − netlimit (at
x)) ∗R v) /R ‖y − netlimit (at x)‖) −x→ 0

by (simp add: scaleR-left-diff-distrib)
show bounded-linear (λh. h ∗R v)

by (simp add: bounded-linearI ′ vector-space-assms(2))
qed

theorem Fermat ′s-theorem-on-stationary-points-mult:
fixes f :: real ^ ′n ⇒ real
assumes der-f : (f has-derivative f ′) (at x-min)
assumes min-f : local-minimizer f x-min
shows GDERIV f x-min :> 0

proof −
— Show that f ′ kills every standard-basis vector.

{
fix i :: ′n
— Define the 1D slice gi(t) = f(xmin + t · ei).
let ?g = λt::real. f (x-min + t ∗R stand-basis-vector i)

— Chain rule gives g′i(0) = f ′(ei).
from has-derivative-affine have g-der :

((λt. f (x-min + t ∗R stand-basis-vector i))
has-derivative (λh. f ′ (h ∗R stand-basis-vector i))) (at 0)

by (metis (no-types) arithmetic-simps(50) der-f has-derivative-compose scaleR-simps(1))

17

— 0 is a local minimizer of gi because xmin is one for f .
have g-min: local-minimizer ?g 0
proof(rule local-minimizer-from-neighborhood)

obtain δ where δ-pos: δ > 0
and mono:

∧
x. dist x-min x < δ =⇒ f x ≥ f x-min

by (metis assms(2) dist-commute local-minimizer-def2)

have ∀ x. |x − 0 | < δ −→ f (x-min + 0 ∗R stand-basis-vector i) ≤ f (x-min
+ x ∗R stand-basis-vector i)

using mono by (simp add: dist-norm)
then show ∃ δ>0 . ∀ x. |x − 0 | < δ −→ f (x-min + 0 ∗R stand-basis-vector

i) ≤ f (x-min + x ∗R stand-basis-vector i)
using δ-pos by blast

qed

— Apply the 1-D Fermat lemma to gi.
from Fermat ′s-theorem-on-stationary-points
have f ′ (stand-basis-vector i) = 0

using g-der g-min by (metis has-derivative-imp scale-one)
}

— Collecting the result for every i:
hence zero-on-basis:

∧
i. f ′ (stand-basis-vector i) = 0 .

— Use linearity and the coordinate expansion to show f ′ = 0 everywhere.
{

fix v :: real^ ′n
— Expand v =

∑
j vj · ej and push f ′ through the finite sum.

have f ′ v = 0
proof −

have f ′ v = f ′ (
∑

j∈UNIV . (v $ j) ∗R stand-basis-vector j)
by (metis stand-basis-expansion)

also have . . . = (
∑

j∈UNIV . (v $ j) ∗R f ′ (stand-basis-vector j))
by (smt (verit) assms differential-zero-maxmin local-minimizer-def scale-eq-0-iff

sum.neutral)
also have . . . = 0

using zero-on-basis by simp
finally show ?thesis.

qed
}
hence f ′-zero: f ′ = (λ-. 0)

by (simp add: fun-eq-iff)

— Translate f ′ = 0 into the gradient statement.
have (f has-derivative (λh. 0)) (at x-min)

using der-f f ′-zero by simp
hence GDERIV f x-min :> (0 ::real^ ′n)

by (simp add: gderiv-def)

18

thus ?thesis.
qed

end

4 Second-Order Conditions
theory Second-Derivative-Test

imports First-Order-Conditions
begin

4.1 Necessary Condition
lemma snd-derivative-nonneg-at-local-min-necessary:

fixes f :: real ⇒ real
assumes C2-cont-diff-at-xmin: C-k-on 2 f (U :: real set)
assumes min-in-U : (x-min :: real) ∈ U
assumes loc-min: local-minimizer f x-min
shows deriv (deriv f) x-min ≥ 0

proof −
have (∃ ε. 0 < ε ∧ {x-min − ε .. x-min + ε} ⊂ U)
proof −

have (∃ ε. 0 < ε ∧ ball x-min ε ⊂ U)
by (smt C2-cont-diff-at-xmin C-k-on-def assms(2) ball-subset-cball cball-eq-ball-iff

open-contains-cball-eq order-le-less-trans psubsetI)
then show ?thesis

by (metis Elementary-Metric-Spaces.open-ball cball-eq-atLeastAtMost cen-
tre-in-ball

open-contains-cball order-trans-rules(21))
qed
then obtain ε where ε-pos: 0 < ε and ε-def : {x-min − ε .. x-min + ε} ⊂ U

by blast
have f-diff : (∀ y ∈ U . (f has-real-derivative (deriv f) y) (at y))

using C2-cont-diff C2-cont-diff-at-xmin by blast
have f ′-diff : (∀ y ∈ U . (deriv f has-real-derivative (deriv (deriv f)) y) (at y))

using C2-cont-diff C2-cont-diff-at-xmin by blast
have f ′′-contin: continuous-on U (deriv (deriv f))

using C2-cont-diff assms(1) by blast

have f ′-0 : (deriv f) x-min = 0
using Fermat ′s-theorem-on-stationary-points
by (meson assms(2 ,3) f-diff has-field-derivative-imp-has-derivative)

— By local minimality at xmin, there is a δ > 0 such that for all h with |h| < δ,
we have f(xmin + h) ≥ f(xmin).

obtain δ where δ-pos: δ > 0 and δ-prop: ∀ h. |h| < δ −→ f (x-min + h) ≥ f
x-min

by (meson assms(3) local-minimizer-neighborhood)

19

from f ′-0 have second-deriv-limit-at-x-min:
((λh. (deriv f (x-min + h)) / h) −−−→ deriv (deriv f) x-min) (at 0)
by (smt (verit, best) DERIV-def Lim-cong-within assms(2) f ′-diff)

show ?thesis
proof(rule ccontr)

assume ¬ 0 ≤ deriv (deriv f) x-min
then have BWOC : 0 > deriv (deriv f) x-min

by auto
then obtain ∆ where ∆-pos: ∆ > 0 and

∆-def : ∀ δ. 0 < δ ∧ δ ≤ ∆ −→ (∀ y. |y − x-min| < δ −→ deriv (deriv f) y
< 0)

by (metis C2-cont-diff-at-xmin C-k-on-def min-in-U at-within-open cont-at-neg-imp-loc-neg ′

continuous-on-eq-continuous-within f ′′-contin)

— Choose h with 0 < h < min{δ,∆} so that xmin + h ∈ U .
obtain h where h-def : h = min ε (min (δ/2) ∆) and h-pos: 0 < h

using ε-pos δ-pos ∆-pos by fastforce
have h-lt: h ≤ ε ∧ h < δ ∧ h ≤ ∆

using δ-pos h-def by linarith
have neigh-in-U : x-min + h ∈ {x-min − ε .. x-min + ε}

using h-def h-pos by fastforce

have f (x-min + h) < f x-min
proof(rule DERIV-neg-imp-decreasing-open[where a = x-min and f = f and

b = x-min + h])
show x-min < x-min + h

using h-pos by simp
next

have {x-min..x-min + h} ⊂ U
using ε-def dual-order .strict-trans2 neigh-in-U by auto

then show continuous-on {x-min..x-min + h} f
by (meson C2-cont-diff C2-cont-diff-at-xmin continuous-on-subset

differentiable-imp-continuous-on le-less)
next

show
∧

x. [[x-min < x; x < x-min + h]] =⇒ ∃ y. (f has-real-derivative y) (at
x) ∧ y < 0

proof −
fix x :: real
assume x-min-lt-x: x-min < x
assume x-lt-xmin-pls-h: x < x-min + h

have xmin-x-subset: {x-min .. x} ⊆ {x-min − ε .. x-min + ε}
using neigh-in-U x-lt-xmin-pls-h by auto

— By the Mean Value Theorem applied to f ′ on [xmin, x], there exists some
c with xmin < c < x such that:

have ∃ z > x-min. z < x ∧ deriv f (x) − deriv f x-min = (x − x-min) ∗

20

deriv(deriv f) z
proof(rule MVT2)

show x-min < x
using x-min-lt-x by auto

next
fix y :: real
assume x-min-leq-y: x-min ≤ y
assume y-leq-x: y ≤ x

from xmin-x-subset have y ∈ U
using ε-def atLeastAtMost-iff x-min-leq-y y-leq-x by blast

then show (deriv f has-real-derivative deriv (deriv f) y) (at y)
using f ′-diff by blast

qed
then obtain z where z-gt-x-min: z > x-min and

z-lt-x: z < x and
z-def : deriv f (x) − deriv f x-min = (x − x-min) ∗ deriv

(deriv f) z
by blast

then have mvt-f ′: deriv f (x) = (x − x-min) ∗ deriv (deriv f) z
by (simp add: f ′-0)

then have x-diff-xmin-pos: x − x-min > 0
using ‹x-min < x› by simp

then have left-bound-satisfied: |z − x-min| < x − x-min
using ‹x-min < z› ‹z < x› by auto

then have x − x-min < h
using ‹x < x-min + h› by simp

then have |z − x-min| < h
using left-bound-satisfied by fastforce

then have deriv (deriv f) z < 0
using ∆-def h-lt h-pos by blast

then have deriv f x < 0
by (metis x-diff-xmin-pos mvt-f ′ mult-pos-neg)

moreover have x ∈ U
using xmin-x-subset
by (meson ε-def atLeastAtMost-iff dual-order .strict-iff-not

subset-eq verit-comp-simplify(2) x-min-lt-x)
ultimately show ∃ y. (f has-real-derivative y) (at x) ∧ y < 0

using f-diff by blast
qed

qed
then show False

by (smt (verit, best) δ-prop h-lt h-pos)
qed

qed

21

4.2 Sufficient Condition
lemma second-derivative-test:

fixes f :: real ⇒ real and a :: real and b :: real and x-min :: real
assumes valid-interval: a < b
assumes twice-continuously-differentiable: C-k-on 2 f {a <..< b}
assumes min-exists: x-min ∈ {a <..< b}
assumes fst-deriv-req: (deriv f) x-min = 0
assumes snd-deriv-req: deriv (deriv f) x-min > 0
shows loc-min: local-minimizer f x-min

proof −
from twice-continuously-differentiable
have f ′′-cont: continuous-on {a <..< b} (deriv (deriv f))

by (metis C-k-on-def Suc-1 lessI nat.simps(2) second-derivative-alt-def)
then obtain ∆ where ∆-pos: ∆ > 0

and ∆-prop: ∀ δ. 0 < δ ∧ δ ≤ ∆ −→ (∀ y. |y − x-min| < δ −→ deriv (deriv f)
y > 0)

by (metis assms(3 ,5) at-within-open cont-at-pos-imp-loc-pos ′ continuous-on-eq-continuous-within

open-real-greaterThanLessThan)

obtain δ where δ-min: δ = min ∆ (min ((x-min − a) / 2) ((b − x-min) / 2))
by blast

have δ-pos: δ > 0
proof (cases δ = ∆)

show δ = ∆ =⇒ 0 < δ
by (simp add: ∆-pos)

next
assume δ 6= ∆
then have δ = min ((x-min − a) / 2) ((b − x-min) / 2)

using δ-min by linarith
then show 0 < δ

using min-exists by force
qed

have neigh-of-x-min-contained-in-ab: a < x-min − δ ∧ x-min + δ < b
by (smt (z3) δ-min δ-pos field-sum-of-halves)

have local-min: ∀ x. |x − x-min| < δ −→ f x ≥ f x-min
proof clarify

fix x
assume A: |x − x-min| < δ
consider (eq) x = x-min | (lt) x < x-min | (gt) x > x-min

by linarith
then show f x ≥ f x-min
proof cases

case eq
then show ?thesis

by simp

22

next
case lt
have a-lt-x-and-xmin-lt-b: a < x ∧ x-min < b

using A neigh-of-x-min-contained-in-ab by linarith
have f x > f x-min
proof (rule DERIV-neg-imp-decreasing-open[where a = x])

show x < x-min
by (simp add: lt)

next
fix y :: real
assume x-lt-y: x < y
assume y-lt-x-min: y < x-min
— For x < xmin, apply the Mean Value Theorem to f on [x, xmin].
have ∃ z > y. z < x-min ∧ deriv f x-min − deriv f y = (x-min − y) ∗ deriv

(deriv f) z
proof (rule MVT2 [where a = y and b = x-min and f = deriv f and f ′

= deriv (deriv f)])
show y < x-min

by (simp add: y-lt-x-min)
next

fix z :: real
assume y-lt-z: y ≤ z
assume z-lt-x-min: z ≤ x-min
show (deriv f has-real-derivative (deriv (deriv f)) z) (at z)
proof (subst C2-cont-diff [where f = f , where U = {a <..< b}])

show C-k-on 2 f {a<..<b}
by (simp add: assms(2))

show z ∈ {a<..<b} and True
using a-lt-x-and-xmin-lt-b x-lt-y y-lt-z z-lt-x-min by auto

qed
qed
then obtain z where

z-props: y < z z < x-min and
eq: deriv f x-min − deriv f y = (x-min − y) ∗ deriv (deriv f) z
by blast

have deriv f x-min = 0
using fst-deriv-req by simp

hence deriv f y = − (x-min − y) ∗ deriv (deriv f) z
using eq by linarith

moreover have x-min − x > 0
using lt by simp

have deriv (deriv f) z > 0
by (smt (verit) A ∆-prop δ-min x-lt-y z-props)

ultimately have deriv f y < 0
by (simp add: mult-less-0-iff y-lt-x-min)

then show ∃ z. (f has-real-derivative z) (at y) ∧ z < 0
by (meson C2-cont-diff a-lt-x-and-xmin-lt-b assms(2) dual-order .strict-trans

greaterThanLessThan-iff x-lt-y y-lt-x-min)
next

23

have continuous-on {a <..< b} f
by (simp add: C2-cont-diff assms(2) differentiable-imp-continuous-on)

then show continuous-on {x..x-min} f
by (smt (verit, del-insts) a-lt-x-and-xmin-lt-b atLeastAtMost-iff

continuous-on-subset greaterThanLessThan-iff subsetI)
qed
then show f x-min ≤ f x

by simp
next

case gt
have a-lt-xmin-and-x-lt-b: a < x-min ∧ x < b

using A ‹a < x-min − δ ∧ x-min + δ < b› by linarith
have f x > f x-min
proof (rule DERIV-pos-imp-increasing-open[where a = x-min])

show x-min < x
by (simp add: gt)

next
fix y :: real
assume y-gt-xmin: x-min < y
assume y-lt-x: y < x
— For xmin < y, apply the Mean Value Theorem to f ′ on [xmin, y].
have ∃ z > x-min. z < y ∧ deriv f y − deriv f x-min = (y − x-min) ∗ deriv

(deriv f) z
proof (rule MVT2 [where a = x-min and b = y and f = deriv f and f ′

= deriv (deriv f)])
show x-min < y

by (simp add: y-gt-xmin)
next

fix z :: real
assume z-ge-xmin: x-min ≤ z
assume z-le-y: z ≤ y
show (deriv f has-real-derivative (deriv (deriv f)) z) (at z)
proof (subst C2-cont-diff [where f = f and U = {a<..<b}])

show C-k-on 2 f {a<..<b}
by (simp add: assms(2))

show z ∈ {a<..<b} and True
using a-lt-xmin-and-x-lt-b y-lt-x z-ge-xmin z-le-y by auto

qed
qed
then obtain z where

z-props: x-min < z z < y
and eq: deriv f y − deriv f x-min = (y − x-min) ∗ deriv (deriv f) z
by blast

have deriv f x-min = 0
using fst-deriv-req by simp

hence deriv f y = (y − x-min) ∗ deriv (deriv f) z
using eq by simp

moreover have y − x-min > 0
using y-gt-xmin by simp

24

moreover have deriv (deriv f) z > 0
by (smt (verit, best) A ∆-prop δ-min y-lt-x z-props(1 ,2))

ultimately have deriv f y > 0
by auto

then show ∃ d. (f has-real-derivative d) (at y) ∧ d > 0
by (meson C2-cont-diff a-lt-xmin-and-x-lt-b assms(2) dual-order .strict-trans

greaterThanLessThan-iff y-lt-x y-gt-xmin)
next

have continuous-on {a <..< b} f
by (simp add: C2-cont-diff assms(2) differentiable-imp-continuous-on)

then show continuous-on {x-min..x} f
by (smt (verit, del-insts) a-lt-xmin-and-x-lt-b atLeastAtMost-iff

continuous-on-subset greaterThanLessThan-iff subsetI)
qed
then show ?thesis

by simp
qed

qed
show ?thesis

by (rule local-minimizer-from-neighborhood, smt δ-pos local-min)
qed

end

5 Pathological Example: Non-Isolated Strict Local
Minima

theory Cont-Nonisolated-Strict-Local-Minimizer-Exists
imports Second-Derivative-Test HOL−Library.Quadratic-Discriminant

begin

Idea of the example. We construct a continuous function

f(x) =

x4
(
cos(1/x) + 2

)
, x 6= 0,

0, x = 0

whose oscillations speed up as x → 0 because of the cos(1/x) term.
Multiplying by x4 makes the function and its first derivative vanish at the
origin, ensuring that x = 0 is a strict local minimizer, while the shifted cosine
creates infinitely many additional strict local minimizers that accumulate at
0. Hence the minimizer at 0 is strict but not isolated.
theorem Exists-Continuous-Func-with-non-isolated-strict-local-minimizer :
∃ f ::real ⇒ real. continuous-on � f ∧

(∃ x-star . strict-local-minimizer f x-star ∧ ¬ isolated-local-minimizer f x-star)
proof −

25

obtain f where f-def : f = (λ(x::real). if x 6= 0 then x^4 ∗ (cos (1 / x) + 2)
else 0)

by simp

have deriv-f :
∧

x::real. deriv f x = (if x = 0 then 0 else x2 ∗ sin (1 / x) +
4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3)

∧ (λx. f x) differentiable-on UNIV
∧ deriv (deriv f) x = (if x = 0 then 0 else 6∗x ∗ sin (1 / x) +

(12∗x2 − 1)∗ cos (1 / x) + 24∗x2)
∧ (deriv f) differentiable-on UNIV

proof (safe)
— First we compute the derivative away from 0, then we compute it at 0.
have deriv-f-at-nonzero:∧

x. x 6= 0 −→ deriv f x = (x2 ∗ sin (1 / x) + 4∗x^3 ∗ cos (1 / x) + 8∗x^3)
∧ f field-differentiable at x

proof (safe)
fix x :: real
assume x-type: x 6= 0

have cos-inverse-diff : (λw. cos (1 / w)) field-differentiable at x
proof −

have f1 : (λw. 1 / w) field-differentiable at x
by (simp add: field-differentiable-divide x-type)

have (λz. cos z) field-differentiable at (1 / x)
by (simp add: field-differentiable-within-cos)

then show ?thesis
by (metis DERIV-chain2 f1 field-differentiable-def)

qed
then have (λx. cos (1 / x) + 2) field-differentiable at x

by (simp add: Derivative.field-differentiable-add)
then have f2 : (λx. x^4 ∗ (cos (1 / x) + 2)) field-differentiable at x

by (subst field-differentiable-mult, simp add: field-differentiable-power ,
simp-all)

26

have deriv-2nd-part: deriv (λw. (λx. cos (1 / x) + 2) w) x = (sin (1 / x))
/ x2

proof −
have deriv (λw. (λx. cos (1 / x) + 2) w) x =

(deriv (λw. (λx. cos (1 / x)) w) x + deriv (λw. (λx. 2) w) x)
by (rule deriv-add, simp add: cos-inverse-diff , simp)

also have ... = (sin (1 / x)) / x2

proof −
have f1 : DERIV (λz. cos z) (1 / x) :> −sin (1 / x)

by simp
have f2 : DERIV (λw. 1 / w) x :> −1 / x2

using DERIV-inverse-func x-type by blast
from f1 f2 have DERIV ((λz. cos z) ◦ (λw. 1 / w)) x :> (−sin (1 / x))

∗ (−1 / x2)
by (rule DERIV-chain)

then show ?thesis
by (simp add: DERIV-imp-deriv o-def)

qed
finally show ?thesis.

qed

show deriv f x = x2 ∗ sin (1 / x) + 4∗x^3 ∗ cos (1 / x) + 8∗x^3
proof −

have deriv f x = deriv (λx. x^4 ∗ (cos (1 / x) + 2)) x
by (metis (no-types, lifting) f-def mult-eq-0-iff power-zero-numeral)

also have ... = x^4 ∗ deriv (λx. cos (1 / x) + 2) x +
deriv (λx. x^4) x ∗ (cos (1 / x) + 2)

by (rule deriv-mult, simp add: field-differentiable-power ,
simp add: Derivative.field-differentiable-add cos-inverse-diff)

also have ... = x^4 ∗ (sin (1 / x)) / x2 +
deriv (λx. x^4) x ∗ (cos (1 / x) + 2)

by (simp add: deriv-2nd-part)
also have ... = x^4 ∗ (sin (1 / x)) / x2 + (4∗x^3) ∗ (cos (1 / x) + 2)

by (subst power-rule, simp)
also have ... = x2 ∗ (sin (1 / x)) + (4∗x^3) ∗ (cos (1 / x) + 2)

by (simp add: power2-eq-square power4-eq-xxxx)
also have ... = x2 ∗ sin (1 / x) + 4∗x^3 ∗ cos (1 / x) + 8∗x^3

by (simp add: Rings.ring-distribs(2) mult.commute)
finally show ?thesis.

qed
from x-type f-def f2 show f field-differentiable at x

by (subst field-differentiable-transfer-on-ball[where f = λ x. (x^4 ∗ (cos (1
/ x) + 2))

and ε = |x|], simp-all)
qed

have deriv-f-at-0 : deriv f 0 = 0 ∧ f field-differentiable at 0
proof −

27

— By the definition of deriv, we need to show the limit of the difference quotient
is 0.

have dq-limit: ((λh. (f (0 + h) − f 0) / h) −−−→ 0) (at 0)
proof

fix ε :: real
assume ε-pos: 0 < ε
— Choose δ > 0 to make |difference quotient| < ε.
obtain δ where δ-def : δ = (ε / 3) powr (1 / 3)

by simp
— A reasonable δ based on the growth of |h3|.
have δ-pos: δ > 0

using ε-pos by (simp add: δ-def)
have ∃ δ>0 . ∀ h. 0 < |h| ∧ |h| < δ −→ |(f (0 + h) − f 0) / h − 0 | < ε
proof (intro exI [where x=δ], intro conjI insert δ-pos, clarify)

fix h :: real
assume h-pos: 0 < |h|
assume h-lt-δ: |h| < δ

have |(f (0 + h) − f 0) / h − 0 | = |f h / h|
by (simp add: f-def)

also have ... = |h^4 ∗ (cos (1 / h) + 2) / h|
using f-def by presburger

also have ... = |h^3 ∗ (cos (1 / h) + 2)|
by (simp add: power3-eq-cube power4-eq-xxxx vector-space-over-itself .scale-scale)
also have ... ≤ |h^3 | ∗ |cos (1 / h) + 2 |

by (metis abs-mult order .refl)
also have ... ≤ |h^3 | ∗ (|cos (1 / h)| + |2 |)

by (simp add: mult-left-mono)
also have ... ≤ |h^3 | ∗ (1 + 2)

by (simp add: mult-left-mono)
also have ... = 3 ∗ |h^3 |

by simp
also have ... < 3 ∗ δ^3

using power-strict-mono[of |h| δ 3] by (simp add: h-lt-δ power-abs)
also have ... = 3 ∗ (ε / 3)

by (metis δ-def ε-pos div-self less-le more-arith-simps(5)
mult-eq-0-iff pos-le-divide-eq powr-numeral powr-one-gt-zero-iff

powr-powr times-divide-eq-left verit-comp-simplify(19)
zero-neq-numeral)

also have ... = ε
by simp

finally show |(f (0 + h) − f 0) / h − 0 | < ε.
qed
then show ∃ d>0 .∀ x∈UNIV . 0 < dist x 0 ∧ dist x 0 < d −→ dist ((f (0

+ x) − f 0) / x) 0 ≤ ε
by (metis arithmetic-simps(57) dist-real-def less-le)

qed
then show ?thesis

using DERIV-def DERIV-imp-deriv field-differentiable-def by blast

28

qed

show deriv-f :
∧

x. deriv f x =
(if x = 0 then 0 else x2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3)
using deriv-f-at-0 deriv-f-at-nonzero by presburger

show f-is-differentiable: (λx. f x) differentiable-on UNIV
by (metis deriv-f-at-0 deriv-f-at-nonzero differentiable-on-def

field-differentiable-imp-differentiable)

have snd-deriv-f-at-nonzero:∧
x. x 6= 0 −→ deriv (deriv f) x = (6∗x ∗ sin (1 / x) + (12∗x2 − 1)∗ cos

(1 / x) + 24∗x2)
∧ (deriv f) field-differentiable at x

proof (safe)
fix x :: real
assume x-type: x 6= 0

have fst-term-diff : (λw. w2 ∗ sin (1 / w)) field-differentiable at x
proof −

have f1 : (λw. w2) field-differentiable at x
by (simp add: field-differentiable-power)

have (λw. sin (1 / w)) field-differentiable at x
by (metis DERIV-chain2 DERIV-inverse-func field-differentiable-at-sin

field-differentiable-def x-type)
then show ?thesis

by (simp add: f1 field-differentiable-mult)
qed

have fst-term-deriv: deriv (λw. w^2 ∗ sin (1 / w)) x = 2 ∗ x ∗ sin (1 / x)
− cos (1 / x)

proof −
have deriv (λx. x^2 ∗ sin (1 / x)) x =

x^2 ∗ deriv (λx. sin (1 / x)) x + deriv (λx. x^2) x ∗ sin (1 / x)
by (rule deriv-mult, simp add: field-differentiable-power ,

metis DERIV-chain2 DERIV-inverse-func field-differentiable-at-sin
field-differentiable-def x-type)

moreover have deriv (λx. x^2) x = 2 ∗ x
using power-rule by auto

moreover have deriv (λx. sin (1 / x)) x = −cos (1 / x) / x^2
proof −

have f1 : DERIV (λz. sin z) (1 / x) :> cos (1 / x)
by simp

have f2 : DERIV (λx. 1 / x) x :> −1 / x^2
using DERIV-inverse-func x-type by blast

from f1 f2 have DERIV ((λz. sin z) ◦ (λx. 1 / x)) x :> cos (1 / x) ∗
(−1 / x^2)

by (rule DERIV-chain)
then show ?thesis

29

by (simp add: DERIV-imp-deriv o-def)
qed
ultimately show ?thesis

by (simp add: x-type)
qed

have snd-term-diff : (λx. 4 ∗ x^3 ∗ cos (1 / x)) field-differentiable at x
proof −

have t1 : (λx. 4 ∗ x^3) field-differentiable at x
by (simp add: field-differentiable-power field-differentiable-mult)

have t2 : (λx. cos (1 / x)) field-differentiable at x
by (metis DERIV-chain2 DERIV-inverse-func field-differentiable-at-cos

field-differentiable-def x-type)
show ?thesis

by (simp add: t1 t2 field-differentiable-mult)
qed

have snd-term-diff ′: (λw. 4 ∗ w ^ 3 ∗ cos (1 / w) + 8 ∗ w ^ 3) field-differentiable
at x

proof −
have t3 : (λx. 8 ∗ x^3) field-differentiable at x

by (simp add: field-differentiable-mult field-differentiable-power)
show ?thesis

by (simp add: Derivative.field-differentiable-add t3 snd-term-diff)
qed

have snd-term-deriv:
deriv (λx. 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3) x =
12 ∗ x^2 ∗ cos (1 / x) + 4 ∗ x ∗ sin (1 / x) + 24 ∗ x^2

proof −
have deriv (λx. 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3) x =

deriv (λx. 4 ∗ x^3 ∗ cos (1 / x)) x + deriv (λx. 8 ∗ x^3) x
by (rule deriv-add, simp add: snd-term-diff ,

simp add: field-differentiable-mult field-differentiable-power)
also have ... = (4∗x^3) ∗ (deriv (λx. cos (1 / x)) x) +

((12 ∗ x^2) ∗ (cos (1 / x))) + deriv (λx. 8 ∗ x^3) x
proof −

have deriv (λx. 4 ∗ x^3 ∗ cos (1 / x)) x =
(4∗x^3) ∗ (deriv (λx. cos (1 / x)) x) +
(deriv (λx. 4 ∗ x^3) x) ∗ (cos (1 / x))

by (rule deriv-mult, simp add: field-differentiable-mult field-differentiable-power ,
metis DERIV-fun-cos DERIV-inverse-func field-differentiable-def

x-type)
then have deriv (λx. 4 ∗ x^3) x = 12 ∗ x^2
proof −

have deriv (λx. 4 ∗ x^3) x = 4 ∗ deriv (λx. x^3) x
by (rule deriv-cmult, simp add: field-differentiable-power)

then show ?thesis
by (simp add: power-rule)

qed

30

then show ?thesis
using ‹deriv (λx. 4 ∗ x^3 ∗ cos (1 / x)) x = (4∗x^3) ∗ (deriv (λx. cos

(1 / x)) x) +
(deriv (λx. 4 ∗ x^3) x) ∗ (cos (1 / x))›

by auto
qed
also have ... = (4∗x^3) ∗ (deriv (λx. cos (1 / x)) x) +

((12 ∗ x^2) ∗ (cos (1 / x))) + 24 ∗ x^2
proof −

have deriv (λx. 8 ∗ x^3) x = 24 ∗ x^2
proof −

have deriv (λx. 8 ∗ x^3) x = 8 ∗ deriv (λx. x^3) x
by (rule deriv-cmult, simp add: field-differentiable-power)

then show ?thesis
by (simp add: power-rule)

qed
then show ?thesis

by auto
qed
also have ... = (4∗x^3) ∗ sin (1 / x) / x^2 + ((12 ∗ x^2) ∗ (cos (1 / x)))

+ 24 ∗ x^2
proof −

have deriv (λx. cos (1 / x)) x = sin (1 / x) / x^2
proof −

have f1 : DERIV (λz. cos z) (1 / x) :> −sin (1 / x)
by simp

have f2 : DERIV (λx. 1 / x) x :> −1 / x^2
using DERIV-inverse-func x-type by blast

from f1 f2 have DERIV ((λz. cos z) ◦ (λx. 1 / x)) x :> (−sin (1 / x))
∗ (−1 / x^2)

by (rule DERIV-chain)
then show ?thesis

by (simp add: DERIV-imp-deriv o-def)
qed
then show ?thesis

by auto
qed
also have ... = ((12 ∗ x^2) ∗ (cos (1 / x))) + (4∗x^3) ∗ sin (1 / x) / x^2

+ 24 ∗ x^2
by linarith

also have ... = (12 ∗ x^2) ∗ (cos (1 / x)) + 4∗x ∗ sin (1 / x) + 24 ∗ x^2
proof −

have (4∗x^3) ∗ sin (1 / x) / x^2 = 4∗x ∗ sin (1 / x)
by (simp add: power2-eq-square power3-eq-cube)

then show ?thesis
by presburger

qed
finally show ?thesis.

qed

31

show deriv (deriv f) x = (6∗x ∗ sin (1 / x) + (12∗x2 − 1)∗ cos (1 / x) +
24∗x2)

proof −
have deriv (deriv f) x = deriv (λx. x2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 /

x) + 8 ∗ x^3) x
by (metis (no-types, opaque-lifting) deriv-f mult-cancel-left2 mult-cancel-right2

power-zero-numeral pth-7 (2))
also have ... = deriv (λx. x2 ∗ sin (1 / x) + (4 ∗ x^3 ∗ cos (1 / x) + 8 ∗

x^3)) x
by (meson Groups.add-ac(1))

also have ... = deriv (λx. x^2 ∗ sin (1 / x)) x +
deriv (λx. 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3) x

by (rule deriv-add, simp add: fst-term-diff , simp add: snd-term-diff ′)
also have ... = 2 ∗ x ∗ sin (1 / x) − cos (1 / x) +

deriv (λx. 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3) x
by (simp add: fst-term-deriv)

also have ... = 2 ∗ x ∗ sin (1 / x) − cos (1 / x) +
12 ∗ x^2 ∗ cos (1 / x) + 4 ∗ x ∗ sin (1 / x) + 24 ∗ x^2

by (simp add: snd-term-deriv)
also have ... = 2 ∗ x ∗ sin (1 / x) + 4 ∗ x ∗ sin (1 / x) +

12 ∗ x^2 ∗ cos (1 / x) − cos (1 / x) + 24 ∗ x^2
by simp

also have ... = (6∗x ∗ sin (1 / x) + (12∗x2 − 1)∗ cos (1 / x) + 24∗x2)
by (smt (verit, best) cos-add cos-zero mult-diff-mult sin-zero)

finally show ?thesis.
qed

show (deriv f) field-differentiable at x
proof (rule field-differentiable-transfer-on-ball

[where f = λ x. (x2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3)
and ε = |x|])

show 0 < |x|
by (simp add: x-type)

show ∀ y. y ∈ ball x |x| −→ y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗ cos (1 / y) +
8 ∗ y ^ 3 =

deriv f y
by (simp add: deriv-f)
show (λx. x2 ∗ sin (1 / x) + 4 ∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x ^

3)field-differentiable at x
by (simp add: Derivative.field-differentiable-add fst-term-diff is-num-normalize(1)

snd-term-diff ′)
qed

qed

have deriv2-f-at-0 :
deriv (deriv f) 0 = 0 ∧ (deriv f) field-differentiable at 0

32

proof −
— By the definition of deriv, we need to show the limit of the difference

quotient of f ′ is 0.
have dq-limit: ((λh. (deriv f (0 + h) − deriv f 0) / h) −−−→ 0) (at 0)
proof

fix ε :: real
assume ε-pos: 0 < ε
have ∃ δ>0 . ∀ h. 0 < |h| ∧ |h| < δ −→ |(deriv f (0 + h) − deriv f 0) / h

− 0 | < ε
proof (cases ε < 1/6)

assume eps-lt-inv6 : ε < 1/6
— Choose δ > 0 to ensure |difference quotient| < ε.
obtain δ where δ-def : δ = ε / 2

by blast
have δ-pos: δ > 0

using ε-pos by (simp add: δ-def)
show ∃ δ>0 . ∀ h. 0 < |h| ∧ |h| < δ −→ |(deriv f (0 + h) − deriv f 0) /

h − 0 | < ε
proof (intro exI [where x=δ], intro conjI insert δ-pos, clarify)

fix h :: real
assume h-pos: 0 < |h|
assume h-lt-δ: |h| < δ

have h-bound1 : |h| < ε / 2
using h-lt-δ by (simp add: δ-def)

have h-bound2 : 12 ∗ |h^2 | < ε / 2
proof −

have |h| < ε / 2 using h-bound1 by blast
then have |h^2 | < (ε / 2)^2

by (metis abs-ge-zero abs-power2 power2-abs power-strict-mono
zero-less-numeral)

then have 12 ∗ |h^2 | < 12 ∗ (ε / 2)^2
by (simp add: mult-strict-left-mono)

also have ... = 12 ∗ (ε^2 / 4)
by (simp add: power2-eq-square)

also have ... = 3 ∗ ε^2
by simp

also have ... < ε/2
proof −

have ε ∗ 6 < 1
by (meson eps-lt-inv6 less-divide-eq-numeral1 (1))

then show ?thesis
by (simp add: ε-pos power2-eq-square)

qed
finally show ?thesis.

qed
have |(deriv f (0 + h) − deriv f 0) / h − 0 | = |deriv f h / h|

by (simp add: deriv-f-at-0)
also have ... = |(h2 ∗ sin (1 / h) + 4∗h^3 ∗ cos (1 / h) + 8∗h^3) / h|

33

using deriv-f by presburger
also have ... = |(h2 ∗ sin (1 / h) / h) + (4∗h^3 ∗ cos (1 / h)) / h +

(8∗h^3) / h|
by (simp add: add-divide-distrib)

also have ... = |h ∗ sin (1 / h) + (4∗h^2 ∗ cos (1 / h)) + 8 ∗ h^2 |
by (simp add: more-arith-simps(11) power2-eq-square power3-eq-cube)

also have ... ≤ |h ∗ sin (1 / h)| + |4∗h^2 ∗ cos (1 / h)| + |8 ∗ h^2 |
by linarith

also have ... ≤ |h| ∗ |sin (1 / h)| + 4 ∗ |h^2 | ∗ |cos (1 / h)| + 8 ∗ |h^2 |
by (simp add: abs-mult)

also have ... ≤ |h| + 4 ∗ |h^2 | + 8 ∗ |h^2 |
proof −

have i1 : |h| ∗ |sin (1 / h)| ≤ |h|
using h-pos by fastforce

have |h| ∗ |cos (1 / h)| ≤ |h|
by (simp add: mult-left-le)

then show ?thesis
by (smt (verit) cos-ge-minus-one cos-le-one i1 mult-left-le)

qed
also have ... = |h| + 12 ∗ |h^2 |

by simp
also have ... < ε

using h-bound1 h-bound2 by auto
finally show |(deriv f (0 + h) − deriv f 0) / h − 0 | < ε.

qed
next

assume ¬ ε < 1/6
then have ε ≥ 1/6 by linarith
then have eps-half : ε / 2 ≥ 1/12 by linarith
obtain δ where δ-def : δ = (1 ::real)/12 by blast
have δ-pos: δ > 0 using ε-pos by (simp add: δ-def)
show ∃ δ>0 . ∀ h. 0 < |h| ∧ |h| < δ −→ |(deriv f (0 + h) − deriv f 0) /

h − 0 | < ε
proof (intro exI [where x=δ], intro conjI insert δ-pos, clarify)

fix h :: real
assume h-pos: 0 < |h|
assume h-lt-δ: |h| < δ
have h-bound1 : |h| < ε / 2
proof −

have |h| < δ using h-lt-δ by blast
also have ... = (1 ::real)/12 by (simp add: δ-def)
also have ... ≤ ε / 2 using eps-half by blast
finally show ?thesis.

qed
have h-bound2 : 12 ∗ |h|^2 < ε / 2
proof −

from h-bound1 have |h|^2 < (1/12)^2
by (metis δ-def abs-ge-zero h-lt-δ power-strict-mono zero-less-numeral)
hence 12 ∗ |h|^2 < 12 ∗ (1/12)^2

34

by (rule mult-strict-left-mono, simp-all)
also have ... = 1/12 by (simp add: power-one-over)
also have ... ≤ ε / 2 using eps-half by blast
finally show ?thesis.

qed
have |(deriv f (0 + h) − deriv f 0) / h − 0 | = |deriv f h / h|

by (simp add: deriv-f-at-0)
also have ... = |(h2 ∗ sin (1 / h) + 4∗h^3 ∗ cos (1 / h) + 8∗h^3) / h|

using deriv-f by presburger
also have ... = |(h2 ∗ sin (1 / h) / h) + (4∗h^3 ∗ cos (1 / h)) / h +

(8∗h^3) / h|
by (simp add: add-divide-distrib)

also have ... = |h ∗ sin (1 / h) + (4∗h^2 ∗ cos (1 / h)) + 8 ∗ h^2 |
by (simp add: more-arith-simps(11) power2-eq-square power3-eq-cube)

also have ... ≤ |h ∗ sin (1 / h)| + |4∗h^2 ∗ cos (1 / h)| + |8 ∗ h^2 |
by linarith

also have ... ≤ |h| ∗ |sin (1 / h)| + 4 ∗ |h^2 | ∗ |cos (1 / h)| + 8 ∗ |h^2 |
by (simp add: abs-mult)

also have ... ≤ |h| + 4 ∗ |h^2 | + 8 ∗ |h^2 |
proof −

have i1 : |h| ∗ |sin (1 / h)| ≤ |h|
using h-pos by fastforce

have |h| ∗ |cos (1 / h)| ≤ |h|
by (simp add: mult-left-le)

then show ?thesis
by (smt (verit) cos-ge-minus-one cos-le-one i1 mult-left-le)

qed
also have ... = |h| + 12 ∗ |h^2 |

by simp
also have ... < ε

using h-bound1 h-bound2 by auto
finally show |(deriv f (0 + h) − deriv f 0) / h − 0 | < ε.

qed
qed
then show ∃ d>0 . ∀ x∈UNIV . 0 < dist x 0 ∧ dist x 0 < d −→

dist ((deriv f (0 + x) − deriv f 0) / x) 0 ≤ ε
by (metis cancel-comm-monoid-add-class.diff-zero dist-real-def le-less)

qed
then show ?thesis

using DERIV-def DERIV-imp-deriv field-differentiable-def by blast
qed

show
∧

x. deriv (deriv f) x = (if x = 0 then 0 else 6 ∗ x ∗ sin (1 / x)
+ (12 ∗ x2 − 1) ∗ cos (1 / x)
+ 24 ∗ x2)

using snd-deriv-f-at-nonzero deriv2-f-at-0 by presburger

show (deriv f) differentiable-on UNIV
by (metis deriv2-f-at-0 differentiable-on-def

35

field-differentiable-imp-differentiable snd-deriv-f-at-nonzero)
qed
then have f-cont: continuous-on � f
by (meson continuous-on-subset differentiable-imp-continuous-on top.extremum)

have f ′-cont: continuous-on � (deriv f)
by (meson continuous-on-subset deriv-f differentiable-imp-continuous-on top.extremum)

obtain U where U-def : U = {x :: real. −1 < x ∧ x < 1}
by blast

then have open-neighborhood-of-zero: open U ∧ 0 ∈ U
using lemma-interval-lt by (subst open-dist, subst dist-real-def ,fastforce)

have strict-local-minimizer-at-0 : strict-local-minimizer f 0
unfolding strict-local-minimizer-def strict-local-minimizer-on-def

proof (intro exI [where x=U],(subst sym[OF conj-assoc],rule conjI), rule open-neighborhood-of-zero)
show ∀ x ∈ U − {0}. f 0 < f x
proof

fix x
assume x-type: x ∈ U − {0}
then have x-nonzero: x 6= 0

by blast
have cos(1/x) + 2 ≥ 1

by (smt (verit) cos-ge-minus-one)
then have x^4 ∗ (cos(1/x) + 2) ≥ x^4 ∗ 1

by (rule mult-left-mono, force)
then have f x ≥ x^4

by (simp add: f-def x-nonzero)
then have f x > 0
by (smt (verit, del-insts) mult-le-0-iff power4-eq-xxxx x-nonzero zero-le-mult-iff)
then show f 0 < f x

using f-def by force
qed

qed
then have zero-min: local-minimizer f 0

by (simp add: strict-local-minimizer-imp-local-minimizer)
have (∃ x-seq::nat ⇒ real. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= 0) ∧

((x-seq −−−→ 0) at-top))
proof −

obtain left-seq :: nat ⇒ real where left-seq-def : ∀n ∈ �. n 6= 0 −→
left-seq n = inverse ((5 ∗ pi / 4) + 2 ∗ real n ∗ pi)

by force
obtain right-seq :: nat ⇒ real where right-seq-def : ∀n ∈ �. n 6= 0 −→

right-seq n = inverse (pi + 2 ∗ real n ∗ pi)
by force

have zero-lt-left-seq-lt-right-seq-both-pos: ∀n ∈ �. n 6= 0 −→
0 < left-seq n ∧ left-seq n < right-seq n

proof clarify
fix n::nat

36

assume n-pos: 0 < n
then have inv-left: inverse (left-seq n) = (5 ∗ pi / 4) + 2 ∗ real n ∗ pi

by (metis bot-nat-0 .not-eq-extremum id-apply inverse-inverse-eq left-seq-def
of-nat-eq-id

of-nat-in-Nats)

have inv-right: inverse (right-seq n) = pi + 2 ∗ real n ∗ pi
by (metis bot-nat-0 .not-eq-extremum id-apply inverse-inverse-eq n-pos

of-nat-eq-id
of-nat-in-Nats right-seq-def)

have denom-ineq: (pi + 2 ∗ real n ∗ pi) < ((5 ∗ pi / 4) + 2 ∗ real n ∗ pi)
proof −

have (5 ∗ pi / 4) + 2 ∗ real n ∗ pi = 2 ∗ real n ∗ pi + (5 ∗ pi / 4)
by simp

have ((5 ∗ pi / 4) + 2 ∗ real n ∗ pi) − (pi + 2 ∗ real n ∗ pi) =
(5 ∗ pi / 4) + 2 ∗ real n ∗ pi − pi − 2 ∗ real n ∗ pi

by simp
also have ... = (5 ∗ pi / 4) − pi

by simp
also have ... = (5 ∗ pi / 4) − (4 ∗ pi / 4)

by simp
also have ... = (5 − 4) ∗ pi / 4

by simp
also have ... = pi / 4

by simp
then show ?thesis

by simp
qed
then have left-seq n < right-seq n
by (smt (verit) inv-left inv-right inverse-positive-iff-positive le-imp-inverse-le

mult-nonneg-nonneg of-nat-less-0-iff pi-gt3)
then show 0 < left-seq n ∧ left-seq n < right-seq n
by (smt (verit, best) denom-ineq inv-left inverse-positive-iff-positive mult-nonneg-nonneg

of-nat-less-0-iff pi-gt3)
qed
have first-and-second-order-conditions: ∀n. n 6= 0 −→

(∃ y ∈ {left-seq n .. right-seq n}. (y^2 ∗ sin (1 / y) + 4 ∗ y^3 ∗ cos (1 / y) +
8 ∗ y^3) = 0 ∧

(6∗y ∗ sin (1 / y) + (12∗y2 − 1)∗ cos (1 / y) + 24∗y2) > 0) ∧
((left-seq n)^2 ∗ sin (1 /(left-seq n)) + 4 ∗ (left-seq n)^3 ∗ cos (1 / (left-seq n))

+
8 ∗ (left-seq n)^3) < 0 ∧

((right-seq n)^2 ∗ sin (1 /(right-seq n)) + 4 ∗ (right-seq n)^3 ∗ cos (1 / (right-seq
n))

+ 8 ∗ (right-seq n)^3) > 0
proof(clarify)

37

fix n:: nat
assume n-pos: 0 < n
then have n-ge-1 : 1 ≤ n

by simp
show (∃ y∈{left-seq n..right-seq n}. y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗ cos (1 /

y) + 8 ∗ y ^ 3 = 0 ∧ 0 < 6 ∗ y ∗ sin (1 / y) + (12 ∗ y2 − 1) ∗ cos (1 / y) +
24 ∗ y2) ∧

(left-seq n)2 ∗ sin (1 / left-seq n) + 4 ∗ left-seq n ^ 3 ∗ cos (1 / left-seq
n) + 8 ∗ left-seq n ^ 3 < 0 ∧

0 < (right-seq n)2 ∗ sin (1 / right-seq n) + 4 ∗ right-seq n ^ 3 ∗ cos
(1 / right-seq n) + 8 ∗ right-seq n ^ 3

proof safe
show left-seq-less-zero: (λx. x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8

∗ x^3) (left-seq n) < 0
proof −

obtain x where x-def : x = left-seq n
by blast

— Rewrite 1/x in terms of 5π
4 + 2nπ.

then have inv-x-eqs: inverse x = inverse (inverse ((5 ∗ pi / 4) + 2 ∗ real
n ∗ pi))

by (metis bot-nat-0 .not-eq-extremum id-apply left-seq-def n-pos of-nat-eq-id
of-nat-in-Nats)

then have x-inv: 1/x = (5 ∗ pi / 4) + 2 ∗ real n ∗ pi
by (simp add: inverse-eq-divide)

— Evaluate sin(1/x) and cos(1/x).
have sin-inv-x: sin (1 / x) = − (sqrt 2 / 2)
proof −

have sin (1 / x) = sin ((5 ∗ pi / 4) + 2 ∗ real n ∗ pi)
using x-inv by presburger

also have ... = sin (5 ∗ pi / 4)
by (simp add: sin-add)

also have ... = − (sqrt 2 / 2)
using sin-5pi-div-4 by blast

finally show sin (1 / x) = − (sqrt 2 / 2).
qed

have cos-inv-x: cos (1 / x) = − (sqrt 2 / 2)
proof −

have cos-val: cos (1 / x) = cos ((5 ∗ pi / 4) + 2 ∗ real n ∗ pi)
using x-inv by presburger

also have ... = cos (5 ∗ pi / 4)
by (simp add: cos-add)

also have ... = − (sqrt 2 / 2)
using cos-5pi-div-4 by linarith

finally show cos (1 / x) = − (sqrt 2 / 2).
qed

38

— Substitute these into the expression.
have expr : x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3

= − (sqrt 2 / 2) ∗ x^2 + (8 − 2 ∗ sqrt 2) ∗ x^3
proof −

have x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3
= (x^2 ∗ − (sqrt 2 / 2)) + 4 ∗ x^3 ∗ (−(sqrt 2 / 2)) + 8 ∗ x^3

by (simp add: cos-inv-x sin-inv-x)

also have ... = x^2 ∗ − (sqrt 2 / 2) + (−2 ∗ sqrt 2) ∗ x^3 + 8 ∗ x^3
by simp

also have ... = − (sqrt 2 / 2) ∗ x^2 + (8 − 2 ∗ sqrt 2) ∗ x^3
proof −

have − (sqrt 2 / 2) + (x ^ 3 ∗ (sqrt 2 ∗ − 2) + x ^ 3 ∗ 8) =
− (sqrt 2 / 2) + x ^ 3 ∗ (sqrt 2 ∗ − 2 + 8)

by (metis (no-types) nat-distrib(2))
then show ?thesis

by (simp add: Groups.mult-ac(2))
qed
finally show rewrite-expr :

x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3
= − (sqrt 2 / 2) ∗ x^2 + (8 − 2 ∗ sqrt 2) ∗ x^3 .

qed

— Factor out x3, and rewrite x3 as
(

5π
4 + 2nπ

)−1.

have deriv-right-seq-eval: sin (1 / x) ∗ x^2 + 4 ∗ x^3 ∗ cos (1 / x) + 8
∗ x^3 =

(− (sqrt 2 / 2)∗((5 ∗ pi / 4) + 2 ∗ real n ∗ pi) + (8 − 2 ∗ sqrt 2))
∗ x^3

proof −
have sin (1 / x) ∗ x^2 + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 =
− (sqrt 2 / 2)∗inverse x ∗ x^3 + (8 − 2 ∗ sqrt 2) ∗ x^3

by (smt (verit, del-insts) Groups.mult-ac(2) cos-inv-x cos-zero di-
vide-eq-0-iff expr

left-inverse more-arith-simps(11) one-power2 power2-eq-square
power3-eq-cube

power-minus sin-inv-x sin-zero)
also have ... = (− (sqrt 2 / 2)∗inverse x + (8 − 2 ∗ sqrt 2)) ∗ x^3

by (metis (no-types) distrib-right)
also have ... = (− (sqrt 2 / 2)∗((5 ∗ pi / 4) + 2 ∗ real n ∗ pi) +

(8 − 2 ∗ sqrt 2)) ∗ x^3
by (simp add: inv-x-eqs)

finally show ?thesis.
qed

— Combine into a single fraction and show negativity.
have first-term-eval: x^3 > 0

by (smt (verit) mult-nonneg-nonneg of-nat-0-le-iff pi-gt3 x-inv zero-compare-simps(7)

39

zero-less-power)
have neg-term: (−(sqrt 2 / 2)∗((5 ∗ pi / 4) + 2 ∗ real n ∗ pi) + (8 −

2 ∗ sqrt 2)) < 0
proof −

have n-ge1 : n ≥ 1
using n-ge-1 by auto

have lower-bound: 2 ∗ real n ∗ pi ≥ 2 ∗ pi
using n-ge1 by (simp add: mult-left-mono)

then have mult-bound: − (sqrt 2 / 2) ∗ ((5 ∗ pi / 4) + 2 ∗ real n ∗
pi)

≤ − (sqrt 2 / 2) ∗ (5 ∗ pi / 4 + 2 ∗ pi)
by (simp add: mult-left-mono)

moreover have (− (sqrt 2 / 2) ∗ (5 ∗ pi / 4 + 2 ∗ pi) + (8 − 2 ∗
sqrt 2)) < 0

proof −
have 5 ∗ pi / 4 + 2 ∗ pi = 13 ∗ pi / 4

by simp
then have simpification: (− (sqrt 2 / 2) ∗ (5 ∗ pi / 4 + 2 ∗ pi) +

(8 − 2 ∗ sqrt 2))
= (64 − 16 ∗ sqrt 2 − 13 ∗ pi ∗ sqrt 2) / 8

by (simp add: field-simps)
have sufficies-to-show-numerator-neg:((64 − 16 ∗ sqrt 2 − 13 ∗ pi

∗ sqrt 2) / 8 < 0)
= (64 − 16 ∗ sqrt 2 − 13 ∗ pi ∗ sqrt 2 < 0)

by simp
have sqrt 2 ∗ (16 + 13 ∗ pi) > 64
proof −

have pi-gt-3 : pi > 3
by (simp add: pi-gt3)

hence 16 + 13 ∗ pi > 16 + 13 ∗ 3
by (simp add: mult-strict-left-mono)

hence 16 + 13 ∗ pi > 55
by simp

then have sqrt 2 ∗ (16 + 13 ∗ pi) > sqrt 2 ∗ 55
by (simp add: mult-strict-left-mono)

moreover have sqrt 2 ∗ 55 > 64
proof −

have (sqrt 2 ∗ 55)^2 = 2 ∗ 55^2
by (simp add: power-mult-distrib)

also have ... = 2 ∗ (55∗55)
by auto

also have ... = 6050
by simp

also have ... > 64∗64
by eval

moreover have sqrt 2 ∗ 55 > 0
by simp

ultimately show sqrt 2 ∗ 55 > 64
using power-mono-iff

40

by (metis less-le power2-eq-square zero-less-numeral)
qed
ultimately show ?thesis

by linarith
qed
then have 64 − 16 ∗ sqrt 2 − 13 ∗ pi ∗ sqrt 2 < 0

by (simp add: Groups.mult-ac(2) distrib-left)
then show ?thesis

using simpification sufficies-to-show-numerator-neg by presburger
qed
then show ?thesis

using mult-bound by linarith
qed
then show (left-seq n)2 ∗ sin (1 / left-seq n) +

4 ∗ left-seq n ^ 3 ∗ cos (1 / left-seq n) + 8 ∗ left-seq n ^ 3 < 0
by (metis deriv-right-seq-eval first-term-eval mult.commute x-def

zero-compare-simps(10))
qed
show right-seq-greater-zero:(λx. x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 /

x) + 8 ∗ x^3)
(right-seq n) > 0

proof −
obtain x where x-def : x = right-seq n

by blast
then have inv-x-eqs: inverse x = inverse (inverse (pi + 2 ∗ real n ∗ pi))

by (metis id-apply n-pos of-nat-eq-id of-nat-in-Nats of-nat-less-0-iff
right-seq-def)

have x-inv: 1 / x = pi + 2 ∗ real n ∗ pi
unfolding right-seq-def by (metis inv-x-eqs inverse-eq-divide in-

verse-inverse-eq)

have sin-inv-x: sin (1 / x) = 0
by (metis add.inverse-neutral sin-2npi sin-periodic-pi2 x-inv)

have cos-inv-x: cos (1 / x) = −1
using cos-2npi cos-periodic-pi2 x-inv by presburger

have f-x: x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 = 4 ∗ x^3
by (simp add: cos-inv-x sin-inv-x)

have x-pos: x > 0
unfolding right-seq-def

by (smt (verit) mult-nonneg-nonneg of-nat-less-0-iff pi-gt-zero x-inv
zero-less-divide-iff)

then show 0 < (right-seq n)2 ∗ sin (1 / right-seq n) + 4 ∗ right-seq n ^
3 ∗ cos (1 / right-seq n) + 8 ∗ right-seq n ^ 3

using cos-inv-x sin-inv-x x-def by fastforce
qed

41

show ∃ y∈{left-seq n..right-seq n}. y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗ cos (1 /
y) + 8 ∗ y ^ 3 =

0 ∧ 0 < 6 ∗ y ∗ sin (1 / y) + (12 ∗ y2 − 1) ∗ cos (1 /
y) + 24 ∗ y2

proof −
have existence-of-minimizing-sequence: ∃ y∈{left-seq n..right-seq n}. y2 ∗

sin (1 / y) + 4 ∗ y ^ 3 ∗ cos (1 / y) + 8 ∗ y ^ 3 = 0
proof −
have ∃ x≥left-seq n. x ≤ right-seq n ∧ (λx. x^2 ∗ sin (1 / x) + 4 ∗ x^3

∗ cos (1 / x) + 8 ∗ x^3) x = 0
proof(rule IVT ′)
show (left-seq n)2 ∗ sin (1 / left-seq n) + 4 ∗ left-seq n ^ 3 ∗ cos (1 /

left-seq n) + 8 ∗ left-seq n ^ 3 ≤ 0
using left-seq-less-zero by auto

show 0 ≤ (right-seq n)2 ∗ sin (1 / right-seq n) + 4 ∗ right-seq n ^ 3
∗ cos (1 / right-seq n) + 8 ∗ right-seq n ^ 3

using right-seq-greater-zero by linarith
show left-seq n ≤ right-seq n
by (metis id-apply leD linorder-linear n-pos of-nat-eq-id of-nat-in-Nats

zero-lt-left-seq-lt-right-seq-both-pos)
show continuous-on {left-seq n..right-seq n} (λx. x2 ∗ sin (1 / x) + 4

∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x ^ 3)
proof − — We prove continuity by establishing it is differentiable.
— First, note that left_seqn is positive, so the interval does not contain

0.
have left-seq-pos: left-seq n > 0

by (metis bot-nat-0 .extremum-strict id-apply n-pos of-nat-eq-id
of-nat-in-Nats zero-lt-left-seq-lt-right-seq-both-pos)

— Transfer global differentiability to local differentiability of deriv f .

have
∧

x. x ∈ {left-seq n..right-seq n} −→ (λx. x2 ∗ sin (1 / x) + 4
∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x ^ 3) field-differentiable at x

proof clarify
fix x::real
assume x-type: x ∈ {left-seq n..right-seq n}
show (λx. x2 ∗ sin (1 / x) + 4 ∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x ^ 3)

field-differentiable at x
proof(rule field-differentiable-transfer-on-ball[where f = deriv f

and ε = x])
show 0 < x

using left-seq-pos x-type by auto
show ∀ y. y ∈ ball x x −→ deriv f y = y2 ∗ sin (1 / y) + 4 ∗ y ^

3 ∗ cos (1 / y) + 8 ∗ y ^ 3
by (simp add: deriv-f)

show deriv f field-differentiable at x
by (meson UNIV-I deriv-f differentiable-on-def field-differentiable-def

real-differentiableE)
qed

42

qed
then have (λx. x2 ∗ sin (1 / x) + 4 ∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x

^ 3) differentiable-on {left-seq n..right-seq n}
by (meson differentiable-at-imp-differentiable-on field-differentiable-imp-differentiable)

then show ?thesis
using differentiable-imp-continuous-on by blast

qed
qed
then show ∃ y∈{left-seq n..right-seq n}. y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗

cos (1 / y) + 8 ∗ y ^ 3 = 0
by presburger

qed
then obtain min-n where min-n-def : min-n ∈{left-seq n..right-seq n} ∧

min-n2 ∗ sin (1 / min-n) + 4 ∗ min-n ^ 3 ∗ cos (1 / min-n) + 8 ∗ min-n ^ 3 =
0

by blast
have

∧
y. y ∈ {left-seq n .. right-seq n} −→ 0 < 6 ∗ y ∗ sin (1 / y) +

(12 ∗ y2 − 1) ∗ cos (1 / y) + 24 ∗ y2

proof (clarify)
fix y :: real
assume y-int: y ∈ {left-seq n .. right-seq n}
— Since left_seqn > 0, every y in the interval is positive.
then have y-pos: y > 0
by (metis atLeastAtMost-iff bot-nat-0 .extremum id-apply linorder-not-less

n-pos
of-nat-eq-id of-nat-in-Nats order-less-le-trans zero-lt-left-seq-lt-right-seq-both-pos)

have ∃ x-nc :: real ⇒ real. ∀ c ∈ {0 ..pi/4}. x-nc c = inverse (pi + c
+ 2∗pi∗real n)

by auto
then obtain x-nc :: real ⇒ real where x-nc-def : ∀ c ∈ {0 ..pi/4}. x-nc

c = inverse (pi + c + 2∗pi∗real n)
by auto

have ∃ x-nc :: real ⇒ real. ∀ c ∈ {0 ..pi/4}. x-nc c = inverse (pi + c
+ 2∗pi∗real n)

by auto
then obtain x-nc :: real ⇒ real where x-nc-def : ∀ c ∈ {0 ..pi/4}. x-nc

c = inverse (pi + c + 2∗pi∗real n)
by auto

have continuous-on-subinterval: continuous-on {0 ..pi/4} x-nc
proof −
have cont-denom: continuous-on {0 ..pi/4} (λc. pi + c + 2∗pi∗real n)
proof −

have continuous-on {0 ..pi/4} (λc. c)
using continuous-on-id by blast

moreover have continuous-on {0 ..pi/4} (λc. pi + 2∗pi∗real n)
using continuous-on-const by blast

ultimately show ?thesis
by (simp add: continuous-on-add)

43

qed
then have continuous-on {0 ..pi/4} (λx. inverse ((λc. pi + c +

2∗pi∗real n) x))
by(rule continuous-on-inverse,

smt (verit) add-mono-thms-linordered-field(4) atLeastAtMost-iff
of-nat-less-0-iff pi-neq-zero pi-not-less-zero zero-compare-simps(4))

then show ?thesis
using continuous-on-cong x-nc-def by fastforce

qed

have minimizer-dom: ∃ x. 0 ≤ x ∧ x ≤ pi/4 ∧ x-nc x = y
proof(rule IVT2 ′)

show x-nc (pi / 4) ≤ y
proof −

have x-nc (pi / 4) = inverse (pi + pi / 4 + 2 ∗ real n ∗ pi)
by (metis (no-types, opaque-lifting) atLeastAtMost-iff divide-eq-imp
divide-real-def linorder-not-less mult.left-commute mult.right-neutral

mult-le-0-iff nle-le of-nat-0-le-iff of-nat-numeral pi-gt-zero x-nc-def

zero-neq-numeral)
also have ... = inverse ((5 ∗ pi / 4) + 2 ∗ real n ∗ pi)

by simp
also have ... = left-seq n

by (metis bot-nat-0 .not-eq-extremum id-apply left-seq-def n-pos
of-nat-eq-id of-nat-in-Nats)

also have ... ≤ y
using y-int by presburger

finally show ?thesis.
qed
show y ≤ x-nc 0
proof −

have y ≤ right-seq n
using y-int by presburger

also have ... = inverse (pi + 2 ∗ real n ∗ pi)
by (metis bot-nat-0 .not-eq-extremum id-apply n-pos of-nat-eq-id

of-nat-in-Nats right-seq-def)
also have ... = x-nc 0

using x-nc-def by auto
finally show ?thesis.

qed
show 0 ≤ pi / 4

by simp
show continuous-on {0 ..pi / 4} x-nc

using continuous-on-subinterval by simp
qed
then have minimizer-dom ′: ∃ c ∈ {0 ..pi/4}. y = x-nc c

using atLeastAtMost-iff by blast

44

— We will show that f ′′(xnc(c)) > 0 for all c ∈ [0, 1], then use the fact that
left_seqn ≤ xnc(c) ≤ right_seqn together with the IVT to establish the existence
of c ∈ [0, π

4] such that xnc(c) = y, and then conclude that f ′′(y) > 0.

have snd-deriv-positive-in-neighborhood: ∀ c ∈ {0 ..pi/4}. left-seq n ≤
x-nc c ∧ x-nc c ≤ right-seq n ∧ deriv (deriv f) (x-nc c) > 0

proof (safe)
fix c :: real
assume c-type: c ∈ {0 ..pi/4}
then have c-bounds: 0 ≤ c ∧ c ≤ pi/4

by simp

have x-nc-eqs: x-nc c = inverse (pi + c + 2∗pi∗real n)
using c-bounds inverse-eq-divide pi-half-le-two x-nc-def by auto

show left-seq n ≤ x-nc c
proof −

have f1 : left-seq n = inverse ((5 ∗ pi / 4) + 2 ∗ real n ∗ pi)
by (metis bot-nat-0 .not-eq-extremum id-apply left-seq-def n-pos

of-nat-eq-id of-nat-in-Nats)
from c-bounds have 1/ ((5 ∗ pi / 4) + 2 ∗ real n ∗ pi) ≤ 1/ (pi +

c + 2∗pi∗real n)
by(subst frac-le, simp-all, simp add: add-sign-intros(1))

then show ?thesis
by (simp add: f1 x-nc-eqs inverse-eq-divide)

qed

then have x-nc-pos: x-nc c > 0
by (metis id-apply n-pos of-nat-eq-id of-nat-in-Nats order-less-le-trans

zero-lt-left-seq-lt-right-seq-both-pos zero-order(5))

show x-nc c ≤ right-seq n
proof −

have f1 : right-seq n = inverse (pi + 2 ∗ real n ∗ pi)
by (metis bot-nat-0 .not-eq-extremum id-apply n-pos of-nat-eq-id

of-nat-in-Nats right-seq-def)
from c-bounds have 1/ (pi + c + 2∗pi∗real n) ≤ 1 /(pi + 2 ∗ real

n ∗ pi)
by(subst frac-le, simp-all, smt (verit, del-insts) m2pi-less-pi

mult-sign-intros(1) of-nat-less-0-iff)
then show ?thesis

by (simp add: f1 x-nc-eqs inverse-eq-divide)
qed

— Bounds on sin(c) and cos(c).
have pi + c + 2∗pi∗real n ≥ 3∗pi
proof −

have pi + c + 2∗pi∗real n ≥ pi + 0 + 2∗pi∗real 1
by (smt (verit, best) Num.of-nat-simps(2) c-bounds mult-left-mono

45

n-ge-1
pi-not-less-zero real-of-nat-ge-one-iff)

then show ?thesis
by linarith

qed
then have x-nc-bound: x-nc c ≤ inverse(3∗pi)

by (smt (verit) le-imp-inverse-le pi-gt-zero x-nc-eqs)
then have cos-coef-bound: (1− 12 ∗ (x-nc c)2) ≥ (1− 12 ∗

(inverse(3∗pi))2)
using x-nc-pos by force

have sin-bound: 0 ≤ sin c ∧ sin c ≤ sqrt(2)/2
proof safe

show 0 ≤ sin c
using c-bounds sin-ge-zero by auto

show sin c ≤ sqrt(2)/2
by (smt (verit, best) c-bounds frac-le pi-not-less-zero sin-45

sin-mono-less-eq)
qed
have cos-bound: sqrt(2)/2 ≤ cos c ∧ cos c ≤ 1
proof safe

show sqrt 2 / 2 ≤ cos c
by (smt (verit) c-bounds cos-45 cos-monotone-0-pi-le machin

pi-machin)
show cos c ≤ 1

by simp
qed

show 0 < deriv (deriv f) (x-nc c)
proof −

— Lower bound of f ′′(xnc).
have snd-deriv-at-x-nc: deriv (deriv f) (x-nc c) = (1− 12 ∗ (x-nc

c)2) ∗ cos c − 6 ∗ (x-nc c) ∗ sin c + 24 ∗ (x-nc c)2

proof−
have f1 : sin (1 / (x-nc c)) = −sin c
proof −

have sin (1 / (x-nc c)) = sin (pi + c + 2∗pi∗real n)
by (simp add: inverse-eq-divide x-nc-eqs)

also have ... = sin (pi + c)
by (metis Groups.mult-ac(2) id-apply of-real-eq-id sin.plus-of-nat)
also have ... = −sin c

by simp
finally show ?thesis.

qed
have f2 : cos (1 / (x-nc c)) = −cos c
proof −

have cos (1 / (x-nc c)) = cos (pi + c + 2∗pi∗real n)
by (simp add: inverse-eq-divide x-nc-eqs)

also have ... = cos (pi + c)

46

by (metis Groups.mult-ac(2) id-apply of-real-eq-id cos.plus-of-nat)
also have ... = −cos c

by simp
finally show ?thesis.

qed

have deriv (deriv f) (x-nc c) = (12∗(x-nc c)2 − 1)∗ cos (1 / (x-nc
c)) + 6∗(x-nc c) ∗ sin (1 / (x-nc c)) + 24∗(x-nc c)2

using deriv-f x-nc-pos by auto
also have ... = (1− 12 ∗ (x-nc c)2) ∗ cos c − 6 ∗ (x-nc c) ∗ sin c

+ 24 ∗ (x-nc c)2

by (smt (verit) f1 f2 minus-mult-commute more-arith-simps(8))
finally show ?thesis.

qed
have snd-deriv-bound: deriv (deriv f) (x-nc c) ≥ (1 − 12 ∗ (x-nc c)2

− 6 ∗ (x-nc c)) ∗ (sqrt 2 / 2)
proof −

have deriv (deriv f) (x-nc c) ≥ (1− 12 ∗ (x-nc c)2) ∗ cos c − 6 ∗
(x-nc c) ∗ (sqrt(2)/2) + 24 ∗ (x-nc c)2

using snd-deriv-at-x-nc sin-bound x-nc-pos by auto
also have ... ≥ (1 − 12 ∗ (x-nc c)2 − 6 ∗ (x-nc c)) ∗ (sqrt 2 / 2)

by (smt (verit, best) calculation cos-bound divide-pos-pos one-power2
real-le-rsqrt right-diff-distrib ′ sum-le-prod1 vector-space-over-itself .scale-left-diff-distrib
zero-compare-simps(12))

then show ?thesis.
qed

show 0 < deriv (deriv f) (x-nc c)
proof −
obtain h :: real ⇒ real where h-def : h = (λx. − 12 ∗ x2 − 6 ∗ x

+ 1)
by auto

have diff-h: ∀ x. h field-differentiable at x
unfolding h-def

proof clarify
fix x::real
have d1 : (λx. − 12 ∗ x2) field-differentiable at x

by(rule field-differentiable-mult, simp, simp add: field-differentiable-power)
have d2 : (λx. − 6 ∗ x) field-differentiable at x

by(rule field-differentiable-mult, simp, simp add: field-differentiable-power)
from d1 d2 show (λx. − 12 ∗ x2 − 6 ∗ x + 1) field-differentiable

at x
by(subst field-differentiable-add, simp add: Derivative.field-differentiable-diff ,

simp-all)
qed

have h-roots: ∀ x. h x = 0 ←→ x = (−6 + sqrt 84) / 24 ∨ x =
(−6 − sqrt 84) / 24

proof(clarify)

47

fix x ::real
have roots: (12 ∗ x2 + 6 ∗ x + (−1) = 0) = (x = (− 6 + sqrt

(6 2 − 4 ∗ 12 ∗ (−1))) / (2 ∗ 12) ∨ x = (− 6 − sqrt (6 2 − 4 ∗ 12 ∗ (−1))) /
(2 ∗ 12))

using discrim-def by(subst discriminant-iff , eval, force)

then show (h x = 0) = (x = (− 6 + sqrt 84) / 24 ∨ x = (− 6
− sqrt 84) / 24)

using h-def by auto
qed

have right-root-positive: (− 6 + sqrt 84) / 24 > 0
proof −

have − 6 + sqrt 84 > − 6 + sqrt 64
by (smt (verit) real-sqrt-less-mono)

then show (− 6 + sqrt 84) / 24 > 0
by simp

qed
then have left-root-neg: 0 > (− 6 − sqrt 84) / 24

by fastforce
have h-pos-on-interval: ∀ x ∈ {0 ..<(−6 + sqrt 84) / 24}. h x > 0
proof(rule ccontr)

assume ¬ (∀ x∈{0 ..<(− 6 + sqrt 84) / 24}. 0 < h x)
then obtain z where z-def : z ∈ {0 ..<(− 6 + sqrt 84) / 24} ∧

0 ≥ h z
by fastforce

then have z-not-root: z 6= (− 6 + sqrt 84) / 24 ∧ z 6= (− 6 −
sqrt 84) / 24

using z-def by force
show False
proof(cases h z = 0)

show h z = 0 =⇒ False
using h-roots z-not-root by blast

next
assume h z 6= 0
then have hz-neg: h z < 0

using z-def by auto
have ∃ x. 0 ≤ x ∧ x ≤ z ∧ h x = 0
proof(rule IVT2 ′)

show h z ≤ 0
by (simp add: z-def)

show 0 ≤ h 0
by (simp add: h-def)

show 0 ≤ z
using z-def by fastforce

show continuous-on {0 ..z} h
by (meson continuous-at-imp-continuous-on diff-h

field-differentiable-imp-continuous-at)
qed

48

then show False
by (metis atLeastLessThan-iff h-roots left-root-neg not-less z-def)

qed
qed

have (−6 + sqrt 84) / 24 > 1 / (3 ∗ pi)
proof −

have i1 : 64 / pi^2 < 8
proof −

have pi∗pi > 3∗3
by (meson pi-gt3 mult-strict-mono pi-gt-zero verit-comp-simplify(7))

then have pi^2 > 9
by (simp add: power2-eq-square)

then have 64/pi^2 < 64/8
by (smt (verit) frac-less2)

also have ... = 8
by eval

finally show ?thesis.
qed

have i2 : 96/pi < 32
proof −

have 96/pi < 96/3
by (meson frac-less2 order .refl pi-gt3 verit-comp-simplify(19))

also have ... = 32
by eval

finally show ?thesis.
qed

have (8/pi + 6)2 < 84
proof −

have ((8 ::real)/pi + 6)2 = (8/pi)2 + 2∗(8/pi)∗6 + 6 2

by (simp add: power2-sum)
also have ... = 8 2/pi2 + 2∗(8/pi)∗6 + 6 2

by (simp add: power-divide)
also have ... = 64/pi2 +96/pi + 36

by simp
also have ... < 84

using i1 i2 by linarith
finally show ?thesis.

qed
then have lt-sqrt84 : 8/pi + 6 < sqrt(84)

using real-less-rsqrt by presburger
have lt-3pi-sqrt84 : 24 + 18∗pi < 3 ∗ pi ∗ sqrt (84)
proof −

have 24 + 18∗pi = 3∗8 + 3∗6∗pi
by simp

also have ... = 3∗pi∗(8/pi) + 3∗pi∗6
by simp

49

also have ... = 3∗pi∗((8/pi)+6)
by (simp add: distrib-left)

also have ... < 3 ∗ pi ∗ sqrt(84)
by (simp add: lt-sqrt84)

finally show ?thesis.
qed
have (−6+sqrt(84))∗(3∗pi) > 24
proof −

have (−6+sqrt(84))∗(3∗pi) = −6∗(3∗pi) + sqrt(84)∗(3∗pi)
by (meson ring-class.ring-distribs(2))

also have ... = −18∗pi + 3∗pi ∗ sqrt(84)
by simp

also have ... > 24
using lt-3pi-sqrt84 by auto

finally show ?thesis.
qed
then have (−6+sqrt(84))∗(3∗pi) / 24 > 1

by simp
then show (−6+sqrt(84)) / 24 > 1 / (3∗pi)

by (metis pi-gt-zero pos-divide-less-eq times-divide-eq-left
zero-compare-simps(6) zero-less-numeral)

qed
then have x-nc c < (−6+sqrt(84)) / 24

by (metis dual-order .strict-trans2 inverse-eq-divide x-nc-bound)
then have h-x-nc-pos: h (x-nc c) > 0

by (simp add: h-pos-on-interval less-eq-real-def x-nc-pos)

have deriv (deriv f) (x-nc c) ≥ (sqrt(2)/2) ∗ h (x-nc c)
by (metis Groups.mult-ac(2) snd-deriv-bound diff-add-eq h-def

mult-minus-left uminus-add-conv-diff)
then show ?thesis

by (smt (verit) h-x-nc-pos half-gt-zero-iff mult-pos-pos real-sqrt-gt-0-iff)
qed

qed
qed

then show 0 < 6 ∗ y ∗ sin (1 / y) + (12 ∗ y2 − 1) ∗ cos (1 / y) +
24 ∗ y2

by (smt (verit, best) deriv-f minimizer-dom ′)
qed

then show ∃ y∈{left-seq n..right-seq n}. y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗
cos (1 / y) + 8 ∗ y ^ 3 = 0 ∧ 0 < 6 ∗ y ∗ sin (1 / y) + (12 ∗ y2 − 1) ∗ cos (1
/ y) + 24 ∗ y2

using min-n-def by blast
qed

qed
qed

have optimality-conditions: ∀n. n 6= 0 −→ (∃ y ∈ {left-seq n .. right-seq n}.

50

(deriv f) y = 0 ∧ deriv (deriv f) y > 0)
proof clarify

fix n::nat
assume 0 < n
then obtain min-n where min-n-def : min-n ∈{left-seq n..right-seq n}

∧ min-n2 ∗ sin (1 / min-n) + 4 ∗ min-n ^ 3 ∗ cos (1
/ min-n) + 8 ∗ min-n ^ 3 = 0

∧ 0 < 6 ∗ min-n ∗ sin (1 / min-n) + (12 ∗ min-n2

− 1) ∗ cos (1 / min-n) + 24 ∗ min-n2

using first-and-second-order-conditions bot-nat-0 .not-eq-extremum by pres-
burger

have fst-order-condition: deriv f min-n = 0
using deriv-f min-n-def by presburger

have snd-order-condition: deriv (deriv f) min-n > 0
using deriv-f min-n-def by fastforce

show ∃ y∈{left-seq n..right-seq n}. deriv f y = 0 ∧ 0 < deriv (deriv f) y
using fst-order-condition min-n-def snd-order-condition by blast

qed

have seq-of-local-minizers-exists: ∀n. n 6= 0 −→ (∃ y ∈ {left-seq n .. right-seq
n}. local-minimizer f y)

proof(clarify)
fix n::nat
assume n-pos: 0 < n
then obtain y where y-def : (y ∈ {left-seq n .. right-seq n} ∧ (deriv f) y =

0 ∧ deriv (deriv f) y > 0)
using gr-implies-not0 optimality-conditions by presburger

have right-seq-def2 : right-seq n = inverse (pi + 2 ∗ real n ∗ pi)
by (metis id-apply less-not-refl n-pos of-nat-eq-id of-nat-in-Nats right-seq-def)

have y ∈ {left-seq n..right-seq n} ∧ local-minimizer f y
proof(subst second-derivative-test[where a = left-seq n, where b = right-seq

n])
show proper-interval: left-seq n < right-seq n
by (metis (no-types) id-apply n-pos of-nat-eq-id of-nat-in-Nats rel-simps(70)

zero-lt-left-seq-lt-right-seq-both-pos)
show C-k-on 2 f {left-seq n <..<right-seq n}
proof(rule C-k-on-subset[where U = {0<..<(1 ::real)}])

show f-contin-diff-on-right: C-k-on 2 f {0<..<(1 ::real)}
proof(rule C2-on-open-U-def2)

show open {0<..<(1 ::real)}
using lemma-interval by(subst open-dist, subst dist-real-def , simp add:

abs-minus-commute lemma-interval-lt)
show f differentiable-on {0<..<(1 ::real)}

by (meson deriv-f differentiable-on-subset top.extremum)
show deriv f differentiable-on {0<..<(1 ::real)}

by (meson deriv-f differentiable-on-subset top.extremum)
show continuous-on {0<..<(1 ::real)} (deriv (deriv f))
proof −

51

have ∀ x ∈ {0<..<1}. deriv (deriv f) x = 6∗x ∗ sin(1/x) + (12∗x^2
− 1)∗cos(1/x) + 24∗x^2

by (simp add: deriv-f)
moreover have continuous-on {0<..<(1 ::real)} (λx. 6∗x ∗ sin(1/x)

+ (12∗x^2 − 1)∗cos(1/x) + 24∗x^2)
proof −

have {0<..<(1 ::real)} ⊆ {x :: real. x>0}
by fastforce

moreover have continuous-on {x :: real. x>0} (λx. 6∗x ∗ sin(1/x)
+ (12∗x^2 − 1)∗cos(1/x) + 24∗x^2)

by (auto intro!: continuous-intros)
ultimately show ?thesis

using continuous-on-subset by blast
qed
ultimately show continuous-on {0<..<1} (deriv (deriv f))

using continuous-on-cong by fastforce
qed

qed

show open {left-seq n<..<right-seq n} ∧ {left-seq n<..<right-seq n} ⊂
{0<..<1}

proof −
have 0 < left-seq n

by (metis id-apply n-pos of-nat-eq-id of-nat-in-Nats order .asym
zero-lt-left-seq-lt-right-seq-both-pos)

moreover have right-seq n < 1
using right-seq-def2

by (smt (verit, ccfv-SIG) inverse-1 inverse-le-imp-le mult-sign-intros(5)
n-pos of-nat-0-less-iff pi-gt3)

ultimately show ?thesis
using proper-interval by fastforce

qed
qed

show y ∈ {left-seq n<..<right-seq n}
proof −

have y ∈ {left-seq n..right-seq n}
using y-def by blast

moreover have y 6= left-seq n
proof(rule ccontr)

assume ¬ y 6= left-seq n
then have deriv f y 6= 0

using deriv-f first-and-second-order-conditions
by (metis n-pos rel-simps(70) y-def)

then show False
by (simp add: y-def)

qed
moreover have y 6= right-seq n
proof(rule ccontr)

52

assume ¬ y 6= right-seq n
then have deriv f y 6= 0

using deriv-f first-and-second-order-conditions
by (metis n-pos rel-simps(70) y-def)

then show False
by (simp add: y-def)

qed
ultimately show y ∈ {left-seq n<..<right-seq n}

by auto
qed
show deriv f y = 0 and 0 < deriv (deriv f) y

using y-def by auto
show y ∈ {left-seq n..right-seq n} ∧ True

using y-def by blast
qed
then show ∃ y∈{left-seq n..right-seq n}. local-minimizer f y

by blast
qed
show ∃ x-seq. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= 0) ∧ x-seq −−−−→ 0
proof −

define x-seq where
x-seq n = (SOME y. y ∈ {left-seq (n+1)..right-seq (n+1)} ∧ local-minimizer

f y) for n
have x-seq-prop: ∀n. x-seq n ∈ {left-seq (n+1)..right-seq (n+1)} ∧ lo-

cal-minimizer f (x-seq n)
by (metis (mono-tags, lifting) seq-of-local-minizers-exists someI-ex verit-eq-simplify(7)

x-seq-def zero-eq-add-iff-both-eq-0)

from x-seq-prop have bounds: ∀n. left-seq (n+1) ≤ x-seq n ∧ x-seq n ≤
right-seq (n+1)

by auto

have nonzero: ∀n. x-seq n 6= 0
by (metis Suc-eq-plus1 bounds id-apply nat.simps(3) not-less of-nat-eq-id

of-nat-in-Nats zero-lt-left-seq-lt-right-seq-both-pos)

have left-seq-converges: left-seq −−−−→ 0
proof (rule LIMSEQ-I)

fix ε :: real
assume ε-pos: 0 < ε
then obtain N where N-def : (N ::nat) = d1 / (2 ∗ pi ∗ ε)e + 1

by (metis add-mono-thms-linordered-field(5) arithmetic-simps(50) di-
vide-pos-pos

mult-sign-intros(5) pi-gt-zero pos-int-cases semiring-norm(172)
zero-less-ceiling zero-less-numeral)

then have N-gt-0 : N > 0
by (smt (verit) ε-pos divide-pos-pos gr0I int-ops(1) m2pi-less-pi mult-sign-intros(5)

zero-less-ceiling)

53

have ∀n ≥ N . |left-seq n| < ε
proof clarify

fix n :: nat
assume n-ge: n ≥ N
have left-seq-eqs: left-seq n = inverse ((5 ∗ pi / 4) + 2 ∗ pi ∗ real n)

unfolding left-seq-def
by (metis N-gt-0 id-apply left-seq-def linorder-not-less mult.commute n-ge

of-nat-eq-id of-nat-in-Nats vector-space-over-itself .scale-scale)
show |left-seq n| < ε
proof −

have |left-seq n| = 1 / ((5 ∗ pi / 4) + 2 ∗ pi ∗ real n)
by (simp add: left-seq-eqs inverse-eq-divide)

also have ... ≤ 1 / (2 ∗ pi ∗ real N)
by (smt (verit, best) N-gt-0 divide-nonneg-nonneg frac-le m2pi-less-pi

mult-left-mono mult-sign-intros(5) n-ge of-nat-0-less-iff of-nat-mono)
also have ... < 1 / (2 ∗ pi ∗ (d1 / (2 ∗ pi ∗ ε)e))
by (smt (verit, best) N-def ε-pos ceiling-correct divide-pos-pos frac-less2

m2pi-less-pi mult-less-cancel-left-pos mult-sign-intros(5) of-int-1 of-int-add of-int-of-nat-eq)
also have ... ≤ 1 / (2 ∗ pi ∗ (1 / (2 ∗ pi ∗ ε)))

by (smt (verit, ccfv-SIG) ε-pos ceiling-correct frac-le mult-left-mono
mult-sign-intros(5) pi-gt-zero zero-less-divide-iff)

also have ... = ε
by simp

finally show ?thesis.
qed

qed
then show ∃N . ∀n≥N . ‖left-seq n − 0‖ < ε

by (metis cancel-comm-monoid-add-class.diff-zero real-norm-def)
qed
have right-seq-converges: right-seq −−−−→ 0
proof (rule LIMSEQ-I)

fix ε::real
assume eps-pos: 0 < ε
then obtain N where N-def : (N ::nat) = d1 / (2 ∗ pi ∗ ε)e + 1

by (metis add-mono-thms-linordered-field(5) arithmetic-simps(50) di-
vide-pos-pos

mult-sign-intros(5) pi-gt-zero pos-int-cases semiring-norm(172)
zero-less-ceiling zero-less-numeral)

hence N-gt-0 : N > 0
by (smt (verit) eps-pos divide-pos-pos gr0I int-ops(1) m2pi-less-pi

mult-sign-intros(5)
zero-less-ceiling)

have ∀n≥N . |right-seq n| < ε
proof clarify

fix n :: nat
assume n-ge: n ≥ N
have right-seq-eqs: right-seq n = inverse (pi + 2 ∗ pi ∗ real n)

unfolding right-seq-def

54

by (metis N-gt-0 id-apply linorder-not-less mult.commute mult.left-commute
n-ge of-nat-eq-id of-nat-in-Nats right-seq-def)

show |right-seq n| < ε
proof −

have |right-seq n| = 1 / (pi + 2 ∗ pi ∗ real n)
by (simp add: right-seq-eqs inverse-eq-divide)

also have ... ≤ 1 / (2 ∗ pi ∗ real N)
by (smt (verit, best) N-gt-0 divide-nonneg-nonneg frac-le m2pi-less-pi

mult-left-mono mult-sign-intros(5) n-ge of-nat-0-less-iff
of-nat-mono)

also have ... < 1 / (2 ∗ pi ∗ (d1 / (2 ∗ pi ∗ ε)e))
by (smt (verit, best) N-def eps-pos ceiling-correct divide-pos-pos frac-less2

m2pi-less-pi
mult-less-cancel-left-pos mult-sign-intros(5) of-int-1 of-int-add

of-int-of-nat-eq)
also have ... ≤ 1 / (2 ∗ pi ∗ (1 / (2 ∗ pi ∗ ε)))
by (smt (verit, ccfv-SIG) eps-pos ceiling-correct frac-le mult-left-mono

mult-sign-intros(5) pi-gt-zero zero-less-divide-iff)
also have ... = ε

by simp
finally show ?thesis

by blast
qed

qed
then show ∃no. ∀n≥no. ‖right-seq n − 0‖ < ε

by (metis cancel-comm-monoid-add-class.diff-zero real-norm-def)
qed
have x-seq-converges: x-seq −−−−→ 0
proof (rule LIMSEQ-I)

fix ε :: real
assume ε-pos: 0 < ε

obtain N 0 where N 0: ∀n≥N 0. ‖left-seq (n+1) − 0‖ < ε
using left-seq-converges
by (meson LIMSEQ-iff ε-pos le-diff-conv)

obtain N 1 where N 1: ∀n≥N 1. ‖right-seq (n+1) − 0‖ < ε
using right-seq-converges
by (meson LIMSEQ-iff ε-pos le-diff-conv)

obtain N where N = max N 0 N 1

by simp
hence N-def : N ≥ N 0 ∧ N ≥ N 1

by simp

show ∃N . ∀n≥N . ‖x-seq n − 0‖ < ε
proof (intro exI [where x=N] exI allI impI)

fix n :: nat
assume N-leq-n: N ≤ n

55

from bounds have left-seq (n+1) ≤ x-seq n ∧ x-seq n ≤ right-seq (n+1)
by auto

hence ‖x-seq n‖ ≤ ‖left-seq (n+1)‖ ∨ ‖x-seq n‖ ≤ ‖right-seq (n+1)‖
by force

moreover have ‖left-seq (n+1)‖ < ε ∧ ‖right-seq (n+1)‖ < ε
using N 0 N 1 N-leq-n N-def by auto

ultimately show ‖x-seq n − 0‖ < ε
by auto

qed
qed
then show ?thesis

using nonzero x-seq-prop by blast
qed

qed
then show ?thesis

using zero-min f-cont not-isolated-minimizer-def strict-local-minimizer-at-0 by
auto
qed

end
theory Unconstrained-Optimization

imports Auxilary-Facts
Minimizers-Definition
First-Order-Conditions
Second-Derivative-Test
Cont-Nonisolated-Strict-Local-Minimizer-Exists

begin

end

References
[1] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assis-

tant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, 2002.

[2] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series
in Operations Research and Financial Engineering. Springer, New York,
second edition, 2006.

56

	Auxiliary Facts
	Differentiation Lemmas
	Transfer Lemmas

	Trigonometric Contraction
	Algebraic Factorizations
	Specific Trigonometric Values
	Local Sign Preservation of Continuous Functions
	Local Positivity
	Local Negativity

	Minimizers in Topological and Metric Spaces
	Abstract Topological Definitions
	Metric Space Reformulations

	Minimizer Implications
	Implications for a Given Minimizer Type
	Characterization of Non-Isolated Minimizers
	First-Order Condition

	Second-Order Conditions
	Necessary Condition
	Sufficient Condition

	Pathological Example: Non-Isolated Strict Local Minima

