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Abstract

As formal methods gain traction in machine learning and numerical
analysis, the community needs computer-checked proofs of core opti-
mization results. Existing Isabelle libraries still lack a foundational
framework for unconstrained optimization. We close this gap with a
comprehensive Isabelle/HOL development that formalizes:

(1) minimizers, strict and isolated local minimizers;
(2) first- and second-order optimality conditions for scalar functions

f : R→ R;
(3) first-order optimality conditions for vector functions g : Rn → R;

and
(4) a worked example showing that the continuous function

h(x) =

{
x4

(
cos(1/x) + 2

)
, x 6= 0,

0, x = 0

has a strict but non-isolated local minimizer at x = 0.

The new session Unconstrained_Optimization provides sound, reusable
foundations for future proof-checking tools and mechanized research in
optimization, analysis, and algorithmic correctness.
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1 Auxiliary Facts
theory Auxilary-Facts

imports
Sigmoid-Universal-Approximation.Limits-Higher-Order-Derivatives

begin

1.1 Differentiation Lemmas
lemma has-derivative-imp:

fixes f :: real ⇒ real
assumes (f has-derivative f ′) (at x)
shows f differentiable (at x) ∧ deriv f x = f ′ 1

proof safe
show f differentiable at x

by (meson assms differentiableI )
then show deriv f x = f ′ 1

by (metis DERIV-deriv-iff-real-differentiable assms has-derivative-unique
has-field-derivative-imp-has-derivative mult.comm-neutral)

qed

lemma DERIV-inverse-func:
assumes x 6= 0
shows DERIV (λw. 1 / w) x :> −1 / x^2

proof −
have inverse = (/) (1 :: ′a)

using inverse-eq-divide by auto
then show ?thesis

by (metis (no-types) DERIV-inverse assms divide-minus-left numeral-2-eq-2
power-one-over)
qed

lemma power-rule:
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fixes z :: real and n :: nat
shows deriv (λx. x ^ n) z = (if n = 0 then 0 else real n ∗ z ^ (n − 1 ))
by(subst deriv-pow, simp-all)

1.1.1 Transfer Lemmas
lemma has-derivative-transfer-on-ball:

fixes f g :: real ⇒ real
assumes eps-gt0 : 0 < ε
assumes eq-on-ball: ∀ y. y ∈ ball x ε −→ f y = g y
assumes f-has-deriv: (f has-derivative D) (at x)
shows (g has-derivative D) (at x)

proof −
from f-has-deriv
have lim: ((λy. (f y − f x − D (y − x)) / |y − x|) −−−→ 0 ) (at x)

unfolding has-derivative-def
by (simp add: divide-inverse-commute)

— Using [[(?f −−−→ ?l) (at ?a within ?T ); open ?s; ?a ∈ ?s;
∧

x. [[x ∈ ?s; x 6=
?a]] =⇒ ?f x = ?g x]] =⇒ (?g −−−→ ?l) (at ?a within ?T ), we switch fromf tog in
the difference quotient.

from assms(1 ,2 ) lim have ((λy. (g y − f x − D (y − x)) / |y − x|) −−−→ 0 )
(at x)

by (subst Lim-transform-within-open
[where f = λxa. (f xa − f x − D (xa − x)) / |xa − x| and s = ball x ε],

simp-all)
— Then we replace f(x) by g(x) using the assumption eq_on_ball.

then have ((λy. (g y − g x − D (y − x)) / |y − x|) −−−→ 0 ) (at x)
by (simp add: assms(1 ) eq-on-ball)

thus ?thesis
using assms centre-in-ball has-derivative-transform-within-open by blast

qed

corollary field-differentiable-transfer-on-ball:
fixes f g :: real ⇒ real
assumes 0 < ε
assumes eq-on-ball: ∀ y. y ∈ ball x ε −→ f y = g y
assumes f-diff : f field-differentiable at x
shows g field-differentiable at x

proof −
from f-diff obtain d

where f-has-real-deriv: (f has-real-derivative d) (at x)
by (auto simp: field-differentiable-def )

have (g has-real-derivative d) (at x)
by (meson Elementary-Metric-Spaces.open-ball assms(1 ,2 ) centre-in-ball f-has-real-deriv

has-field-derivative-transform-within-open)
thus ?thesis
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unfolding field-differentiable-def
by blast

qed

1.2 Trigonometric Contraction
lemma cos-contractive:

fixes x y :: real
shows |cos x − cos y| ≤ |x − y|

proof −
have |cos x − cos y| = |−2 ∗ sin ((x + y) / 2 ) ∗ sin ((x − y) / 2 )|

by (smt (verit) cos-diff-cos mult-minus-left)
also have ... ≤ |sin ((x + y) / 2 )| ∗ (2∗ |sin ((x − y) / 2 )|)

by (subst abs-mult, force)
also have ... ≤ 2 ∗ |sin ((x − y) / 2 )|
proof −

have |sin ((x + y) / 2 )| ≤ 1
using abs-sin-le-one by blast

then have |sin ((x + y) / 2 )| ∗ (2∗ |sin ((x − y) / 2 )|) ≤ 1 ∗ (2∗ |sin ((x −
y) / 2 )|)

by(rule mult-right-mono, simp)
then show ?thesis

by linarith
qed
also have ... ≤ 2 ∗ |(x − y) / 2 |

using abs-sin-le-one by (smt (verit, del-insts) abs-sin-x-le-abs-x)
also have ... = |x − y|

by simp
finally show ?thesis.

qed

lemma sin-contractive:
fixes x y :: real
shows |sin x − sin y| ≤ |x − y|

proof −
have |sin x − sin y| = |2 ∗ cos ((x + y) / 2 ) ∗ sin ((x − y) / 2 )|

by (metis (no-types) mult.assoc mult.commute sin-diff-sin)
also have ... ≤ |cos ((x + y) / 2 )| ∗ (2 ∗ |sin ((x − y) / 2 )|)

by (subst abs-mult, force)
also have ... ≤ 2 ∗ |sin ((x − y) / 2 )|
proof −

have |cos ((x + y) / 2 )| ≤ 1
using abs-cos-le-one by blast

then have |cos ((x + y) / 2 )| ∗ (2 ∗ |sin ((x − y) / 2 )|) ≤ 1 ∗ (2 ∗ |sin ((x
− y) / 2 )|)

by (rule mult-right-mono, simp)
then show ?thesis

by linarith
qed
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also have ... ≤ 2 ∗ |(x − y) / 2 |
using abs-sin-le-one by (smt (verit, del-insts) abs-sin-x-le-abs-x)

also have ... = |x − y|
by simp

finally show ?thesis.
qed

1.3 Algebraic Factorizations
lemma biquadrate-diff-biquadrate-factored:

fixes x y::real
shows y^4 − x^4 = (y − x) ∗ (y^3 + y^2 ∗ x + y ∗ x^2 + x^3 )

proof −
have y^4 − x^4 = (y^2 − x^2 ) ∗ (y^2 + x^2 )
by (metis mult.commute numeral-Bit0 power-add square-diff-square-factored)

also have ... = (y − x) ∗ (y + x) ∗ (y^2 + x^2 )
by (simp add: power2-eq-square square-diff-square-factored)

also have ... = (y − x) ∗ (y^3 + y^2 ∗ x + y ∗ x^2 + x^3 )
by (simp add: distrib-left mult.commute power2-eq-square power3-eq-cube)

finally show ?thesis.
qed

1.4 Specific Trigonometric Values
lemma sin-5pi-div-4 : sin (5 ∗ pi / 4 ) = − (sqrt 2 / 2 )
proof −

have 5 ∗ pi / 4 = pi + pi / 4
by simp

moreover have sin (pi + x) = − sin x for x
by (simp add: sin-add)

ultimately show ?thesis
using sin-45 by presburger

qed

lemma cos-5pi-div-4 : cos (5 ∗ pi / 4 ) = − (sqrt 2 / 2 )
proof −

have 5 ∗ pi / 4 = pi + pi / 4
by simp

moreover have cos (pi + x) = − cos x for x
by (simp add: cos-add)

moreover have cos (pi / 4 ) = sqrt 2 / 2
by (simp add: real-div-sqrt cos-45 )

ultimately show ?thesis
by presburger

qed
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1.5 Local Sign Preservation of Continuous Functions
1.5.1 Local Positivity
lemma cont-at-pos-imp-loc-pos:

fixes g :: real ⇒ real and x :: real
assumes continuous (at x) g and g x > 0
shows ∃ δ > 0 . ∀ y. |y − x| < δ −→ g y > 0

proof −
from assms obtain δ where δ-pos: δ > 0

and ∀ y. |y − x| < δ −→ |g y − g x| < (g x)/2
using continuous-at-eps-delta half-gt-zero by blast

then have ∀ y. |y − x| < δ −→ g y > 0
by (smt (verit, best) field-sum-of-halves)

then show ?thesis
using δ-pos by blast

qed

lemma cont-at-pos-imp-loc-pos ′:
fixes g :: real ⇒ real and x :: real
assumes continuous (at x) g and g x > 0
shows ∃∆ > 0 . ∀ δ. 0 < δ ∧ δ ≤ ∆ −→ (∀ y. |y − x| < δ −→ g y > 0 )

proof −
from assms obtain δ where δ-pos: δ > 0 and H : ∀ y. |y − x| < δ −→ g y > 0

using cont-at-pos-imp-loc-pos by blast
have ∀ δ ′ ≤ δ. ∀ y. |y − x| < δ ′ −→ g y > 0
proof clarify

fix δ ′ y :: real
assume δ ′ ≤ δ and |y − x| < δ ′

thus g y > 0 by (auto simp: H )
qed
then show ?thesis

using δ-pos by blast
qed

1.5.2 Local Negativity
lemma cont-at-neg-imp-loc-neg:

fixes g :: real ⇒ real and x :: real
assumes continuous (at x) g and g x < 0
shows ∃ δ > 0 . ∀ y. |y − x| < δ −→ g y < 0

proof −
from assms obtain δ where δ-pos: δ > 0

and ∀ y. |y − x| < δ −→ |g y − g x| < −(g x)/2
by (metis continuous-at-eps-delta half-gt-zero neg-0-less-iff-less)

then have ∀ y. |y − x| < δ −→ − g y > 0
by (smt (verit, best) field-sum-of-halves)

then show ?thesis
using δ-pos neg-0-less-iff-less by blast

qed
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lemma cont-at-neg-imp-loc-neg ′:
fixes g :: real ⇒ real and x :: real
assumes continuous (at x) g and g x < 0
shows ∃∆ > 0 . ∀ δ. 0 < δ ∧ δ ≤ ∆ −→ (∀ y. |y − x| < δ −→ g y < 0 )

proof −
from assms obtain δ where δ-pos: δ > 0

and H : ∀ y. |y − x| < δ −→ −(g y) > 0
by (smt (verit) cont-at-neg-imp-loc-neg)

have ∀ δ ′ ≤ δ. ∀ y. |y − x| < δ ′ −→ −(g y) > 0
proof clarify

fix δ ′ y :: real
assume δ ′ ≤ δ and |y − x| < δ ′

then show −(g y) > 0
using H by auto

qed
then show ?thesis

using δ-pos neg-0-less-iff-less by blast
qed

end

2 Minimizers in Topological and Metric Spaces
theory Minimizers-Definition

imports Auxilary-Facts
begin

2.1 Abstract Topological Definitions
definition global-minimizer :: ( ′a::topological-space ⇒ real) ⇒ ′a ⇒ bool where

global-minimizer f x-star ←→ (∀ x. f x-star ≤ f x)

definition local-minimizer-on :: ( ′a::topological-space ⇒ real) ⇒ ′a ⇒ ′a set ⇒
bool where

local-minimizer-on f x-star U ←→ (open U ∧ x-star ∈ U ∧ (∀ x ∈ U . f x-star ≤
f x))

definition local-minimizer :: ( ′a::topological-space ⇒ real) ⇒ ′a ⇒ bool where
local-minimizer f x-star ←→ (∃U . open U ∧ x-star ∈ U ∧ (∀ x ∈ U . f x-star ≤

f x))

definition isolated-local-minimizer-on :: ( ′a::topological-space ⇒ real) ⇒ ′a ⇒ ′a
set ⇒ bool where

isolated-local-minimizer-on f x-star U ←→
(local-minimizer-on f x-star U ∧ ({x ∈ U . local-minimizer f x} = {x-star}))

definition isolated-local-minimizer :: ( ′a::topological-space ⇒ real) ⇒ ′a ⇒ bool
where
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isolated-local-minimizer f x-star ←→
(∃U . local-minimizer-on f x-star U ∧ ({x ∈ U . local-minimizer f x} = {x-star}))

definition strict-local-minimizer-on :: ( ′a::topological-space ⇒ real) ⇒ ′a ⇒ ′a set
⇒ bool where

strict-local-minimizer-on f x-star U ←→
(open U ∧ x-star ∈ U ∧ (∀ x ∈ U − {x-star}. f x-star < f x))

definition strict-local-minimizer :: ( ′a::topological-space ⇒ real) ⇒ ′a ⇒ bool
where

strict-local-minimizer f x-star ←→ (∃U . strict-local-minimizer-on f x-star U )

2.2 Metric Space Reformulations
lemma local-minimizer-on-def2 :

fixes f :: ′a::metric-space ⇒ real
assumes local-minimizer f x-star
shows ∃N > 0 . ∀ x ∈ ball x-star N . f x-star ≤ f x

proof −
from assms obtain U where

open U x-star ∈ U and local-min: ∀ x ∈ U . f x-star ≤ f x
unfolding local-minimizer-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by blast

hence ∀ x ∈ ball x-star N . f x-star ≤ f x
using ball-in-U local-min by auto

thus ?thesis
using N-pos by auto

qed

lemma local-minimizer-def2 :
fixes f :: ′a::metric-space ⇒ real
assumes local-minimizer f x-star
shows ∃N > 0 . ∀ x. dist x x-star < N −→ f x-star ≤ f x

proof −
from assms obtain U where

open U x-star ∈ U and local-min: ∀ x ∈ U . f x-star ≤ f x
unfolding local-minimizer-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by blast

hence ∀ x. dist x x-star < N −→ x ∈ ball x-star N
by (subst mem-ball, simp add: dist-commute)

hence ∀ x. dist x x-star < N −→ f x-star ≤ f x
using ball-in-U local-min by blast

thus ?thesis
using N-pos by auto

qed

lemma isolated-local-minimizer-on-def2 :
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fixes f :: ′a::metric-space ⇒ real
assumes isolated-local-minimizer-on f x-star U
shows ∃N > 0 . ∀ x ∈ ball x-star N . (local-minimizer f x −→ x = x-star)

proof −
from assms have

local-minimizer-on f x-star U
and unique-min: {x ∈ U . local-minimizer f x} = {x-star}
unfolding isolated-local-minimizer-on-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by (metis local-minimizer-on-def )

have ∀ x ∈ ball x-star N . local-minimizer f x −→ x = x-star
proof(clarify)

fix x
assume x ∈ ball x-star N
then have x ∈ U using ball-in-U by auto
moreover assume local-minimizer f x
hence x ∈ {x ∈ U . local-minimizer f x} using ‹x ∈ U › by auto
hence x ∈ {x-star} using unique-min by auto
ultimately show x = x-star

by simp
qed
thus ?thesis using N-pos by auto

qed

lemma isolated-local-minimizer-def2 :
fixes f :: ′a::metric-space ⇒ real
assumes isolated-local-minimizer f x-star
shows ∃N > 0 . ∀ x ∈ ball x-star N . (local-minimizer f x −→ x = x-star)

proof −
from assms obtain U where

local-minimizer-on f x-star U
and unique-min: {x ∈ U . local-minimizer f x} = {x-star}
unfolding isolated-local-minimizer-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by (metis local-minimizer-on-def )

have ∀ x ∈ ball x-star N . local-minimizer f x −→ x = x-star
proof(clarify)

fix x
assume x ∈ ball x-star N
then have x ∈ U using ball-in-U by auto
moreover assume local-minimizer f x
hence x ∈ {x ∈ U . local-minimizer f x} using ‹x ∈ U › by auto
hence x ∈ {x-star} using unique-min by auto
ultimately show x = x-star by simp

qed
thus ?thesis using N-pos by auto

qed

lemma strict-local-minimizer-on-def2 :
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fixes f :: ′a::metric-space ⇒ real
assumes strict-local-minimizer-on f x-star U
shows ∃N > 0 . ∀ x ∈ ball x-star N − {x-star}. f x-star < f x

proof −
from assms have

open U x-star ∈ U and strict-min: ∀ x ∈ U − {x-star}. f x-star < f x
unfolding strict-local-minimizer-on-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by metis

have ∀ x ∈ ball x-star N − {x-star}. f x-star < f x
proof

fix x
assume x ∈ ball x-star N − {x-star}
hence x ∈ U − {x-star} using ball-in-U by auto
thus f x-star < f x

using strict-min by auto
qed
thus ?thesis using N-pos by auto

qed

lemma strict-local-minimizer-def2 :
fixes f :: ′a::metric-space ⇒ real
assumes strict-local-minimizer f x-star
shows ∃N > 0 . ∀ x ∈ ball x-star N − {x-star}. f x-star < f x

proof −
from assms obtain U where

strict-local-minimizer-on f x-star U
unfolding strict-local-minimizer-def by auto

then have
open U x-star ∈ U and strict-min: ∀ x ∈ U − {x-star}. f x-star < f x
unfolding strict-local-minimizer-on-def by auto

then obtain N where N-pos: N > 0 and ball-in-U : ball x-star N ⊆ U
using open-contains-ball by metis

have ∀ x ∈ ball x-star N − {x-star}. f x-star < f x
proof

fix x
assume x ∈ ball x-star N − {x-star}
hence x ∈ U − {x-star} using ball-in-U by auto
thus f x-star < f x

using strict-min by auto
qed
thus ?thesis using N-pos by auto

qed

lemma local-minimizer-neighborhood:
fixes f :: real ⇒ real
assumes loc-min: local-minimizer f x-min
shows ∃ δ > 0 . ∀ h. |h| < δ −→ f (x-min + h) ≥ f x-min

proof −
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obtain N where N-pos: N > 0 and N-prop: ∀ x. dist x x-min < N −→ f x-min
≤ f x

using local-minimizer-def2 [OF loc-min] by auto
then have ∀ h. abs h < N −→ f (x-min + h) ≥ f x-min

by (simp add: dist-real-def )
then show ?thesis

using N-pos by blast
qed

lemma local-minimizer-from-neighborhood:
fixes f :: real ⇒ real and x-min :: real
assumes ∃ δ > 0 . ∀ x. |x − x-min| < δ −→ f x-min ≤ f x
shows local-minimizer f x-min

proof −
from assms obtain δ where δ-pos: δ > 0 and H : ∀ x. |x − x-min| < δ −→ f

x-min ≤ f x
by auto

obtain U where U-def : U = {x. |x − x-min| < δ}
by simp

then have open U
by (smt (verit) dist-commute dist-real-def mem-Collect-eq metric-space-class.open-ball

subsetI topological-space-class.openI )
moreover have x-min ∈ U

using U-def δ-pos by force
moreover have ∀ x ∈ U . f x-min ≤ f x

using H U-def by blast
ultimately show ?thesis

unfolding local-minimizer-def by auto
qed

end

3 Minimizer Implications
theory First-Order-Conditions

imports Minimizers-Definition
begin

notation norm (‖-‖)

3.1 Implications for a Given Minimizer Type
lemma strict-local-minimizer-imp-local-minimizer :

assumes strict-local-minimizer f x-star
shows local-minimizer f x-star
by (smt (verit) Diff-iff assms local-minimizer-def singletonD strict-local-minimizer-def

strict-local-minimizer-on-def )

lemma isolated-local-minimizer-imp-strict:
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assumes isolated-local-minimizer f x-star
shows strict-local-minimizer f x-star

proof −
— From isolated_local_minimizer we obtain an open set U such that x? is the

only local minimizer.
from assms obtain U where iso-props:

isolated-local-minimizer-on f x-star U
unfolding isolated-local-minimizer-def
using isolated-local-minimizer-on-def by blast

— Unpack isolated_local_minimizer_on: x? is a local_minimizer_on U , and
x? is unique.

from iso-props have lm-on: local-minimizer-on f x-star U
unfolding isolated-local-minimizer-on-def using local-minimizer-on-def by

presburger
moreover from iso-props have unique-min: {x ∈ U . local-minimizer f x} =
{x-star}

unfolding isolated-local-minimizer-on-def by auto

— From local_minimizer_on, we have: U open, x? ∈ U , and ∀x ∈ U. f(x?) ≤
f(x).

from lm-on have open-U : open U and x-in-U : x-star ∈ U and le-prop: ∀ x ∈
U . f x-star ≤ f x

unfolding local-minimizer-on-def by auto

— Assume, for contradiction, that x? is not a strict local minimizer. Then there
exists y ∈ U \ {x?} with f(y) ≤ f(x?).

show strict-local-minimizer f x-star
proof (rule ccontr)

assume ¬ strict-local-minimizer f x-star
then obtain y where y-props:

y ∈ U − {x-star} and f y ≤ f x-star
unfolding strict-local-minimizer-def strict-local-minimizer-on-def
by (smt (verit, ccfv-SIG) open-U x-in-U )

from y-props have y ∈ U and y 6= x-star
by auto

— We already have f(x?) ≤ f(y) from ∀ x∈U . f x-star ≤ f x and y ∈ U .
Together with f(y) ≤ f(x?), this yields f(x?) = f(y).

from le-prop ‹y ∈ U › have f x-star ≤ f y
by auto

with ‹f y ≤ f x-star› have f x-star = f y
by auto
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— Now we show that y is also a local minimizer, contradicting the uniqueness of
x?. To prove this, we must exhibit an open set V around y such that f(y) ≤ f(x)
for all x ∈ V .

have local-minimizer f y
proof −

— Since U is open and y ∈ U , there exists an open set V ⊆ U containing y.
obtain V where open V and y ∈ V and V ⊆ U

using ‹open U › ‹y ∈ U › open-subset by auto

— On this subset, f(y) = f(x?) ≤ f(x) for all x ∈ V (since V ⊆ U).

moreover from le-prop and ‹f x-star = f y› have ∀ x ∈ V . f y ≤ f x
using calculation(3 ) by auto

ultimately show local-minimizer f y
unfolding local-minimizer-def local-minimizer-on-def by auto

qed

— Since y is a local minimizer and y ∈ U , we have y ∈ {x ∈ U. local_minimizer f x}.
By uniqueness, {x ∈ U. local_minimizer f x} = {x?}, hence y = x?, contradicting
y 6= x?.

hence y ∈ {x ∈ U . local-minimizer f x}
by (simp add: ‹y ∈ U ›)

with unique-min have y = x-star by auto
thus False using ‹y 6= x-star› by contradiction

qed
— Having reached a contradiction under the assumption that x? is not a strict

local minimizer, it follows that x? must indeed be a strict local minimizer.
qed

3.2 Characterization of Non-Isolated Minimizers
lemma not-isolated-minimizer-def :

assumes local-minimizer f x-star
shows (∃ x-seq::nat ⇒ real. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= x-star)
∧ ((x-seq −−−→ x-star) at-top)) = (¬ isolated-local-minimizer f x-star)
proof(safe)

show
∧

x-seq. isolated-local-minimizer f x-star =⇒ ∀n. local-minimizer f (x-seq
n) ∧ x-seq n 6= x-star =⇒ x-seq −−−−→ x-star =⇒ False

proof −
fix x-seq :: nat ⇒ real
assume x-star-isolated-minimizer : isolated-local-minimizer f x-star

assume with-sequence-of-local-miniziers: ∀n. local-minimizer f (x-seq n) ∧ x-seq
n 6= x-star

assume converging-to-x-star : x-seq −−−−→ x-star
have open-ball-with-unique-min: ∃N > 0 . ∀ x ∈ ball x-star N . (local-minimizer

f x −→ x = x-star)
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by (simp add: isolated-local-minimizer-def2 x-star-isolated-minimizer)
then obtain N where N-pos: N > 0 and N-prop: ∀ x ∈ ball x-star N .

(local-minimizer f x −→ x = x-star)
by blast

— Use convergence to show xseq eventually lies in ball(x?, N).
from converging-to-x-star have ∃M . ∀n ≥ M . x-seq n ∈ ball x-star N

by (metis LIMSEQ-iff-nz N-pos dist-commute mem-ball)
then obtain M where M-def : ∀n ≥ M . x-seq n ∈ ball x-star N

by auto
then show False
by (meson N-prop linorder-not-le order-less-irrefl with-sequence-of-local-miniziers)

qed
next
show ¬ isolated-local-minimizer f x-star =⇒ ∃ x-seq. (∀n. local-minimizer f (x-seq

n) ∧ x-seq n 6= x-star) ∧ x-seq −−−−→ x-star
proof(rule ccontr)

assume not-isolated-minimizer : ¬isolated-local-minimizer f x-star
assume BWOC : @ x-seq. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= x-star)

∧ x-seq −−−−→ x-star

have ∃N > 0 . ∀ x. dist x x-star < N −→ f x-star ≤ f x
by (simp add: assms local-minimizer-def2 )

then obtain N where N-pos: (N ::nat) > 0 and x-star-min-on-N-ball: ∀ x.
dist x x-star < 1/ real N −→ f x-star ≤ f x

by (metis dual-order .strict-trans ex-inverse-of-nat-less inverse-eq-divide)

obtain S-n :: nat ⇒ real set where S-n-def : S-n = (λn. {x. dist x x-star < 1
/ (real n + N ) ∧ x 6= x-star ∧ local-minimizer f x})

by blast

from not-isolated-minimizer
have non-isolated: ∀U . local-minimizer-on f x-star U −→ (∃ y ∈ U . y 6= x-star

∧ local-minimizer f y)
by (smt (verit, best) Collect-cong assms isolated-local-minimizer-def lo-

cal-minimizer-on-def singleton-conv2 )

have ∀n::nat. ∃ x. x ∈ S-n n
proof (intro allI )

fix n::nat
have pos-radius: 1 / (real n + N ) > 0

using N-pos by simp

obtain U where U-def : U = ball x-star (1 / (real n + N )) and open-U :
open U and U-contains-x-star : x-star ∈ U

using pos-radius by auto

have U-contained-in-Inverse-N-Ball: ∀ x ∈ U . dist x x-star < 1 / N
proof(safe)

fix x:: real
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assume x-in-U : x ∈ U
then have dist x x-star < (1 / (real n + N ))

by (simp add: U-def dist-commute)
also have ... ≤ 1 / real N

by (simp add: N-pos frac-le)
finally show dist x x-star < 1 / real N .

qed

have ball-non-empty: ∃ y ∈ U . y 6= x-star ∧ local-minimizer f y
proof −

have local-minimizer-on f x-star U
by (simp add: U-contains-x-star U-contained-in-Inverse-N-Ball local-minimizer-on-def

open-U x-star-min-on-N-ball)
then show ∃ y∈U . y 6= x-star ∧ local-minimizer f y

by (simp add: non-isolated)
qed
then obtain y where y-in-ball: y ∈ U and y 6= x-star and local-minimizer

f y
by blast

then show ∃ x. x ∈ S-n n
by (smt (verit, best) S-n-def U-def dist-commute mem-Collect-eq mem-ball)

qed
then obtain x-seq where x-seq-def : ∀n. x-seq n ∈ S-n n

by metis
have x-seq-converges-to-x-star : x-seq −−−−→ x-star
proof (rule LIMSEQ-I )

fix r :: real
assume r-pos: 0 < r
obtain n-min where n-min-def : 1 / (real n-min + N ) < r

using real-arch-inverse N-pos r-pos
by (smt (verit, ccfv-SIG) frac-le inverse-eq-divide inverse-positive-iff-positive)
show ∃no. ∀n≥no. norm (x-seq n − x-star) < r
proof (intro exI allI impI )

fix n
assume n ≥ n-min
then have n-large-enough: 1 / (real n + N ) ≤ 1 / (real n-min + N )

using N-pos by (subst frac-le, simp-all)
have dist (x-seq n) x-star < 1 / (real n + N )

using x-seq-def S-n-def by auto
also have ... ≤ 1 / (real n-min + N )

using n-large-enough by auto
also have ... < r

using n-min-def by auto
finally show norm (x-seq n − x-star) < r

by (simp add: dist-real-def )
qed

qed
have ∃ x-seq. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= x-star) ∧ x-seq

−−−−→ x-star

15



using S-n-def x-seq-converges-to-x-star x-seq-def by blast
then show False

using BWOC by auto
qed

qed

3.3 First-Order Condition
theorem Fermat ′s-theorem-on-stationary-points:

fixes f :: real ⇒ real
assumes (f has-derivative f ′) (at x-min)
assumes local-minimizer f x-min
shows (deriv f ) x-min = 0
by (metis assms has-derivative-imp differential-zero-maxmin local-minimizer-def )

definition stand-basis-vector :: ′n::finite ⇒ real^ ′n — the i-th standard basis
vector

where stand-basis-vector i = (χ j. if j = i then 1 else 0 )

lemma stand-basis-vector-index[simp]: (stand-basis-vector i) $ j = (if j = i then
(1 ::real) else 0 )

by (simp add: stand-basis-vector-def )

lemma stand-basis-vector-nonzero[simp]: stand-basis-vector i 6= 0
by (smt (verit, del-insts) stand-basis-vector-index zero-index)

lemma norm-stand-basis-vector [simp]: norm (stand-basis-vector i) = 1
by (smt (verit, best) axis-nth component-le-norm-cart norm-axis-1 norm-le-componentwise-cart

real-norm-def stand-basis-vector-index)

lemma inner-stand-basis-vector [simp]: inner (stand-basis-vector i) (stand-basis-vector
j) = (if i = j then 1 else 0 )
by (metis axis-nth cart-eq-inner-axis norm-eq-1 norm-stand-basis-vector stand-basis-vector-index

vector-eq)

lemma Basis-characterisation:
stand-basis-vector i ∈ (Basis :: (real^ ′n) set) and
∀ b∈(Basis::(real^ ′n)set). ∃ i. b = stand-basis-vector i
by (metis (no-types, lifting) Basis-real-def axis-in-Basis-iff cart-eq-inner-axis

inner-stand-basis-vector insert-iff norm-axis-1 norm-eq-1 stand-basis-vector-index
vector-eq,

metis axis-index axis-nth cart-eq-inner-axis inner-stand-basis-vector stand-basis-vector-index
vector-eq)

lemma stand-basis-expansion:
fixes x :: real^ ′n
shows x = (

∑
j∈UNIV . (x $ j) ∗R stand-basis-vector j)

proof −
have (

∑
j∈UNIV . (x $ j) ∗R stand-basis-vector j) $ k = x $ k for k
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proof −
have (

∑
j∈UNIV . (x $ j) ∗R stand-basis-vector j) $ k

= (
∑

j∈UNIV . (x $ j) ∗ (stand-basis-vector j $ k))
by simp

also have . . . = (
∑

j∈UNIV . (x $ j) ∗ (if j = k then 1 else 0 ))
by (smt (verit, best) stand-basis-vector-index sum.cong)

also have . . . = (
∑

j∈UNIV . (if j = k then x $ j else 0 ))
by (smt (verit, best) mult-cancel-left1 mult-cancel-right1 sum.cong)

also have . . . = x $ k
by (subst sum.delta, simp-all)

finally show ?thesis.
qed
thus ?thesis

by (simp add: vec-eq-iff )
qed

lemma has-derivative-affine:
fixes a v :: ′a::real-normed-vector
shows ((λt. a + t ∗R v) has-derivative (λh. h ∗R v)) (at x)
unfolding has-derivative-def

proof safe
have a + y ∗R v − (a + netlimit (at x) ∗R v) − (y − netlimit (at x)) ∗R v = 0

if y 6= netlimit (at x) for y
by (simp add: cross3-simps(32 ))

then show (λy. (a + y ∗R v − (a + netlimit (at x) ∗R v) − (y − netlimit (at
x)) ∗R v) /R ‖y − netlimit (at x)‖) −x→ 0

by (simp add: scaleR-left-diff-distrib)
show bounded-linear (λh. h ∗R v)

by (simp add: bounded-linearI ′ vector-space-assms(2 ))
qed

theorem Fermat ′s-theorem-on-stationary-points-mult:
fixes f :: real ^ ′n ⇒ real
assumes der-f : (f has-derivative f ′) (at x-min)
assumes min-f : local-minimizer f x-min
shows GDERIV f x-min :> 0

proof −
— Show that f ′ kills every standard-basis vector.

{
fix i :: ′n
— Define the 1D slice gi(t) = f(xmin + t · ei).
let ?g = λt::real. f (x-min + t ∗R stand-basis-vector i)

— Chain rule gives g′i(0) = f ′(ei).
from has-derivative-affine have g-der :

((λt. f (x-min + t ∗R stand-basis-vector i))
has-derivative (λh. f ′ (h ∗R stand-basis-vector i))) (at 0 )

by (metis (no-types) arithmetic-simps(50 ) der-f has-derivative-compose scaleR-simps(1 ))
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— 0 is a local minimizer of gi because xmin is one for f .
have g-min: local-minimizer ?g 0
proof(rule local-minimizer-from-neighborhood)

obtain δ where δ-pos: δ > 0
and mono:

∧
x. dist x-min x < δ =⇒ f x ≥ f x-min

by (metis assms(2 ) dist-commute local-minimizer-def2 )

have ∀ x. |x − 0 | < δ −→ f (x-min + 0 ∗R stand-basis-vector i) ≤ f (x-min
+ x ∗R stand-basis-vector i)

using mono by (simp add: dist-norm)
then show ∃ δ>0 . ∀ x. |x − 0 | < δ −→ f (x-min + 0 ∗R stand-basis-vector

i) ≤ f (x-min + x ∗R stand-basis-vector i)
using δ-pos by blast

qed

— Apply the 1-D Fermat lemma to gi.
from Fermat ′s-theorem-on-stationary-points
have f ′ (stand-basis-vector i) = 0

using g-der g-min by (metis has-derivative-imp scale-one)
}

— Collecting the result for every i:
hence zero-on-basis:

∧
i. f ′ (stand-basis-vector i) = 0 .

— Use linearity and the coordinate expansion to show f ′ = 0 everywhere.
{

fix v :: real^ ′n
— Expand v =

∑
j vj · ej and push f ′ through the finite sum.

have f ′ v = 0
proof −

have f ′ v = f ′ (
∑

j∈UNIV . (v $ j) ∗R stand-basis-vector j)
by (metis stand-basis-expansion)

also have . . . = (
∑

j∈UNIV . (v $ j) ∗R f ′ (stand-basis-vector j))
by (smt (verit) assms differential-zero-maxmin local-minimizer-def scale-eq-0-iff

sum.neutral)
also have . . . = 0

using zero-on-basis by simp
finally show ?thesis.

qed
}
hence f ′-zero: f ′ = (λ-. 0 )

by (simp add: fun-eq-iff )

— Translate f ′ = 0 into the gradient statement.
have (f has-derivative (λh. 0 )) (at x-min)

using der-f f ′-zero by simp
hence GDERIV f x-min :> (0 ::real^ ′n)

by (simp add: gderiv-def )
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thus ?thesis.
qed

end

4 Second-Order Conditions
theory Second-Derivative-Test

imports First-Order-Conditions
begin

4.1 Necessary Condition
lemma snd-derivative-nonneg-at-local-min-necessary:

fixes f :: real ⇒ real
assumes C2-cont-diff-at-xmin: C-k-on 2 f (U :: real set)
assumes min-in-U : (x-min :: real) ∈ U
assumes loc-min: local-minimizer f x-min
shows deriv (deriv f ) x-min ≥ 0

proof −
have (∃ ε. 0 < ε ∧ {x-min − ε .. x-min + ε} ⊂ U )
proof −

have (∃ ε. 0 < ε ∧ ball x-min ε ⊂ U )
by (smt C2-cont-diff-at-xmin C-k-on-def assms(2 ) ball-subset-cball cball-eq-ball-iff

open-contains-cball-eq order-le-less-trans psubsetI )
then show ?thesis

by (metis Elementary-Metric-Spaces.open-ball cball-eq-atLeastAtMost cen-
tre-in-ball

open-contains-cball order-trans-rules(21 ))
qed
then obtain ε where ε-pos: 0 < ε and ε-def : {x-min − ε .. x-min + ε} ⊂ U

by blast
have f-diff : (∀ y ∈ U . (f has-real-derivative (deriv f ) y) (at y))

using C2-cont-diff C2-cont-diff-at-xmin by blast
have f ′-diff : (∀ y ∈ U . (deriv f has-real-derivative (deriv (deriv f )) y) (at y))

using C2-cont-diff C2-cont-diff-at-xmin by blast
have f ′′-contin: continuous-on U (deriv (deriv f ))

using C2-cont-diff assms(1 ) by blast

have f ′-0 : (deriv f ) x-min = 0
using Fermat ′s-theorem-on-stationary-points
by (meson assms(2 ,3 ) f-diff has-field-derivative-imp-has-derivative)

— By local minimality at xmin, there is a δ > 0 such that for all h with |h| < δ,
we have f(xmin + h) ≥ f(xmin).

obtain δ where δ-pos: δ > 0 and δ-prop: ∀ h. |h| < δ −→ f (x-min + h) ≥ f
x-min

by (meson assms(3 ) local-minimizer-neighborhood)

19



from f ′-0 have second-deriv-limit-at-x-min:
((λh. (deriv f (x-min + h)) / h) −−−→ deriv (deriv f ) x-min) (at 0 )
by (smt (verit, best) DERIV-def Lim-cong-within assms(2 ) f ′-diff )

show ?thesis
proof(rule ccontr)

assume ¬ 0 ≤ deriv (deriv f ) x-min
then have BWOC : 0 > deriv (deriv f ) x-min

by auto
then obtain ∆ where ∆-pos: ∆ > 0 and

∆-def : ∀ δ. 0 < δ ∧ δ ≤ ∆ −→ (∀ y. |y − x-min| < δ −→ deriv (deriv f ) y
< 0 )

by (metis C2-cont-diff-at-xmin C-k-on-def min-in-U at-within-open cont-at-neg-imp-loc-neg ′

continuous-on-eq-continuous-within f ′′-contin)

— Choose h with 0 < h < min{δ,∆} so that xmin + h ∈ U .
obtain h where h-def : h = min ε (min (δ/2 ) ∆) and h-pos: 0 < h

using ε-pos δ-pos ∆-pos by fastforce
have h-lt: h ≤ ε ∧ h < δ ∧ h ≤ ∆

using δ-pos h-def by linarith
have neigh-in-U : x-min + h ∈ {x-min − ε .. x-min + ε}

using h-def h-pos by fastforce

have f (x-min + h) < f x-min
proof(rule DERIV-neg-imp-decreasing-open[where a = x-min and f = f and

b = x-min + h])
show x-min < x-min + h

using h-pos by simp
next

have {x-min..x-min + h} ⊂ U
using ε-def dual-order .strict-trans2 neigh-in-U by auto

then show continuous-on {x-min..x-min + h} f
by (meson C2-cont-diff C2-cont-diff-at-xmin continuous-on-subset

differentiable-imp-continuous-on le-less)
next

show
∧

x. [[x-min < x; x < x-min + h]] =⇒ ∃ y. (f has-real-derivative y) (at
x) ∧ y < 0

proof −
fix x :: real
assume x-min-lt-x: x-min < x
assume x-lt-xmin-pls-h: x < x-min + h

have xmin-x-subset: {x-min .. x} ⊆ {x-min − ε .. x-min + ε}
using neigh-in-U x-lt-xmin-pls-h by auto

— By the Mean Value Theorem applied to f ′ on [xmin, x], there exists some
c with xmin < c < x such that:

have ∃ z > x-min. z < x ∧ deriv f (x) − deriv f x-min = (x − x-min) ∗
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deriv(deriv f ) z
proof(rule MVT2 )

show x-min < x
using x-min-lt-x by auto

next
fix y :: real
assume x-min-leq-y: x-min ≤ y
assume y-leq-x: y ≤ x

from xmin-x-subset have y ∈ U
using ε-def atLeastAtMost-iff x-min-leq-y y-leq-x by blast

then show (deriv f has-real-derivative deriv (deriv f ) y) (at y)
using f ′-diff by blast

qed
then obtain z where z-gt-x-min: z > x-min and

z-lt-x: z < x and
z-def : deriv f (x) − deriv f x-min = (x − x-min) ∗ deriv

(deriv f ) z
by blast

then have mvt-f ′: deriv f (x) = (x − x-min) ∗ deriv (deriv f ) z
by (simp add: f ′-0 )

then have x-diff-xmin-pos: x − x-min > 0
using ‹x-min < x› by simp

then have left-bound-satisfied: |z − x-min| < x − x-min
using ‹x-min < z› ‹z < x› by auto

then have x − x-min < h
using ‹x < x-min + h› by simp

then have |z − x-min| < h
using left-bound-satisfied by fastforce

then have deriv (deriv f ) z < 0
using ∆-def h-lt h-pos by blast

then have deriv f x < 0
by (metis x-diff-xmin-pos mvt-f ′ mult-pos-neg)

moreover have x ∈ U
using xmin-x-subset
by (meson ε-def atLeastAtMost-iff dual-order .strict-iff-not

subset-eq verit-comp-simplify(2 ) x-min-lt-x)
ultimately show ∃ y. (f has-real-derivative y) (at x) ∧ y < 0

using f-diff by blast
qed

qed
then show False

by (smt (verit, best) δ-prop h-lt h-pos)
qed

qed
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4.2 Sufficient Condition
lemma second-derivative-test:

fixes f :: real ⇒ real and a :: real and b :: real and x-min :: real
assumes valid-interval: a < b
assumes twice-continuously-differentiable: C-k-on 2 f {a <..< b}
assumes min-exists: x-min ∈ {a <..< b}
assumes fst-deriv-req: (deriv f ) x-min = 0
assumes snd-deriv-req: deriv (deriv f ) x-min > 0
shows loc-min: local-minimizer f x-min

proof −
from twice-continuously-differentiable
have f ′′-cont: continuous-on {a <..< b} (deriv (deriv f ))

by (metis C-k-on-def Suc-1 lessI nat.simps(2 ) second-derivative-alt-def )
then obtain ∆ where ∆-pos: ∆ > 0

and ∆-prop: ∀ δ. 0 < δ ∧ δ ≤ ∆ −→ (∀ y. |y − x-min| < δ −→ deriv (deriv f )
y > 0 )

by (metis assms(3 ,5 ) at-within-open cont-at-pos-imp-loc-pos ′ continuous-on-eq-continuous-within

open-real-greaterThanLessThan)

obtain δ where δ-min: δ = min ∆ (min ((x-min − a) / 2 ) ((b − x-min) / 2 ))
by blast

have δ-pos: δ > 0
proof (cases δ = ∆)

show δ = ∆ =⇒ 0 < δ
by (simp add: ∆-pos)

next
assume δ 6= ∆
then have δ = min ((x-min − a) / 2 ) ((b − x-min) / 2 )

using δ-min by linarith
then show 0 < δ

using min-exists by force
qed

have neigh-of-x-min-contained-in-ab: a < x-min − δ ∧ x-min + δ < b
by (smt (z3 ) δ-min δ-pos field-sum-of-halves)

have local-min: ∀ x. |x − x-min| < δ −→ f x ≥ f x-min
proof clarify

fix x
assume A: |x − x-min| < δ
consider (eq) x = x-min | (lt) x < x-min | (gt) x > x-min

by linarith
then show f x ≥ f x-min
proof cases

case eq
then show ?thesis

by simp
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next
case lt
have a-lt-x-and-xmin-lt-b: a < x ∧ x-min < b

using A neigh-of-x-min-contained-in-ab by linarith
have f x > f x-min
proof (rule DERIV-neg-imp-decreasing-open[where a = x])

show x < x-min
by (simp add: lt)

next
fix y :: real
assume x-lt-y: x < y
assume y-lt-x-min: y < x-min
— For x < xmin, apply the Mean Value Theorem to f on [x, xmin].
have ∃ z > y. z < x-min ∧ deriv f x-min − deriv f y = (x-min − y) ∗ deriv

(deriv f ) z
proof (rule MVT2 [where a = y and b = x-min and f = deriv f and f ′

= deriv (deriv f )])
show y < x-min

by (simp add: y-lt-x-min)
next

fix z :: real
assume y-lt-z: y ≤ z
assume z-lt-x-min: z ≤ x-min
show (deriv f has-real-derivative (deriv (deriv f )) z) (at z)
proof (subst C2-cont-diff [where f = f , where U = {a <..< b}])

show C-k-on 2 f {a<..<b}
by (simp add: assms(2 ))

show z ∈ {a<..<b} and True
using a-lt-x-and-xmin-lt-b x-lt-y y-lt-z z-lt-x-min by auto

qed
qed
then obtain z where

z-props: y < z z < x-min and
eq: deriv f x-min − deriv f y = (x-min − y) ∗ deriv (deriv f ) z
by blast

have deriv f x-min = 0
using fst-deriv-req by simp

hence deriv f y = − (x-min − y) ∗ deriv (deriv f ) z
using eq by linarith

moreover have x-min − x > 0
using lt by simp

have deriv (deriv f ) z > 0
by (smt (verit) A ∆-prop δ-min x-lt-y z-props)

ultimately have deriv f y < 0
by (simp add: mult-less-0-iff y-lt-x-min)

then show ∃ z. (f has-real-derivative z) (at y) ∧ z < 0
by (meson C2-cont-diff a-lt-x-and-xmin-lt-b assms(2 ) dual-order .strict-trans

greaterThanLessThan-iff x-lt-y y-lt-x-min)
next
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have continuous-on {a <..< b} f
by (simp add: C2-cont-diff assms(2 ) differentiable-imp-continuous-on)

then show continuous-on {x..x-min} f
by (smt (verit, del-insts) a-lt-x-and-xmin-lt-b atLeastAtMost-iff

continuous-on-subset greaterThanLessThan-iff subsetI )
qed
then show f x-min ≤ f x

by simp
next

case gt
have a-lt-xmin-and-x-lt-b: a < x-min ∧ x < b

using A ‹a < x-min − δ ∧ x-min + δ < b› by linarith
have f x > f x-min
proof (rule DERIV-pos-imp-increasing-open[where a = x-min])

show x-min < x
by (simp add: gt)

next
fix y :: real
assume y-gt-xmin: x-min < y
assume y-lt-x: y < x
— For xmin < y, apply the Mean Value Theorem to f ′ on [xmin, y].
have ∃ z > x-min. z < y ∧ deriv f y − deriv f x-min = (y − x-min) ∗ deriv

(deriv f ) z
proof (rule MVT2 [where a = x-min and b = y and f = deriv f and f ′

= deriv (deriv f )])
show x-min < y

by (simp add: y-gt-xmin)
next

fix z :: real
assume z-ge-xmin: x-min ≤ z
assume z-le-y: z ≤ y
show (deriv f has-real-derivative (deriv (deriv f )) z) (at z)
proof (subst C2-cont-diff [where f = f and U = {a<..<b}])

show C-k-on 2 f {a<..<b}
by (simp add: assms(2 ))

show z ∈ {a<..<b} and True
using a-lt-xmin-and-x-lt-b y-lt-x z-ge-xmin z-le-y by auto

qed
qed
then obtain z where

z-props: x-min < z z < y
and eq: deriv f y − deriv f x-min = (y − x-min) ∗ deriv (deriv f ) z
by blast

have deriv f x-min = 0
using fst-deriv-req by simp

hence deriv f y = (y − x-min) ∗ deriv (deriv f ) z
using eq by simp

moreover have y − x-min > 0
using y-gt-xmin by simp
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moreover have deriv (deriv f ) z > 0
by (smt (verit, best) A ∆-prop δ-min y-lt-x z-props(1 ,2 ))

ultimately have deriv f y > 0
by auto

then show ∃ d. (f has-real-derivative d) (at y) ∧ d > 0
by (meson C2-cont-diff a-lt-xmin-and-x-lt-b assms(2 ) dual-order .strict-trans

greaterThanLessThan-iff y-lt-x y-gt-xmin)
next

have continuous-on {a <..< b} f
by (simp add: C2-cont-diff assms(2 ) differentiable-imp-continuous-on)

then show continuous-on {x-min..x} f
by (smt (verit, del-insts) a-lt-xmin-and-x-lt-b atLeastAtMost-iff

continuous-on-subset greaterThanLessThan-iff subsetI )
qed
then show ?thesis

by simp
qed

qed
show ?thesis

by (rule local-minimizer-from-neighborhood, smt δ-pos local-min)
qed

end

5 Pathological Example: Non-Isolated Strict Local
Minima

theory Cont-Nonisolated-Strict-Local-Minimizer-Exists
imports Second-Derivative-Test HOL−Library.Quadratic-Discriminant

begin

Idea of the example. We construct a continuous function

f(x) =

x4
(
cos(1/x) + 2

)
, x 6= 0,

0, x = 0

whose oscillations speed up as x → 0 because of the cos(1/x) term.
Multiplying by x4 makes the function and its first derivative vanish at the
origin, ensuring that x = 0 is a strict local minimizer, while the shifted cosine
creates infinitely many additional strict local minimizers that accumulate at
0. Hence the minimizer at 0 is strict but not isolated.
theorem Exists-Continuous-Func-with-non-isolated-strict-local-minimizer :
∃ f ::real ⇒ real. continuous-on � f ∧

(∃ x-star . strict-local-minimizer f x-star ∧ ¬ isolated-local-minimizer f x-star)
proof −
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obtain f where f-def : f = (λ(x::real). if x 6= 0 then x^4 ∗ (cos (1 / x) + 2 )
else 0 )

by simp

have deriv-f :
∧

x::real. deriv f x = (if x = 0 then 0 else x2 ∗ sin (1 / x) +
4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 )

∧ (λx. f x) differentiable-on UNIV
∧ deriv (deriv f ) x = (if x = 0 then 0 else 6∗x ∗ sin (1 / x) +

(12∗x2 − 1 )∗ cos (1 / x) + 24∗x2)
∧ (deriv f ) differentiable-on UNIV

proof (safe)
— First we compute the derivative away from 0, then we compute it at 0.
have deriv-f-at-nonzero:∧

x. x 6= 0 −→ deriv f x = (x2 ∗ sin (1 / x) + 4∗x^3 ∗ cos (1 / x) + 8∗x^3 )
∧ f field-differentiable at x

proof (safe)
fix x :: real
assume x-type: x 6= 0

have cos-inverse-diff : (λw. cos (1 / w)) field-differentiable at x
proof −

have f1 : (λw. 1 / w) field-differentiable at x
by (simp add: field-differentiable-divide x-type)

have (λz. cos z) field-differentiable at (1 / x)
by (simp add: field-differentiable-within-cos)

then show ?thesis
by (metis DERIV-chain2 f1 field-differentiable-def )

qed
then have (λx. cos (1 / x) + 2 ) field-differentiable at x

by (simp add: Derivative.field-differentiable-add)
then have f2 : (λx. x^4 ∗ (cos (1 / x) + 2 )) field-differentiable at x

by (subst field-differentiable-mult, simp add: field-differentiable-power ,
simp-all)
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have deriv-2nd-part: deriv (λw. (λx. cos (1 / x) + 2 ) w) x = (sin (1 / x))
/ x2

proof −
have deriv (λw. (λx. cos (1 / x) + 2 ) w) x =

(deriv (λw. (λx. cos (1 / x)) w) x + deriv (λw. (λx. 2 ) w) x)
by (rule deriv-add, simp add: cos-inverse-diff , simp)

also have ... = (sin (1 / x)) / x2

proof −
have f1 : DERIV (λz. cos z) (1 / x) :> −sin (1 / x)

by simp
have f2 : DERIV (λw. 1 / w) x :> −1 / x2

using DERIV-inverse-func x-type by blast
from f1 f2 have DERIV ((λz. cos z) ◦ (λw. 1 / w)) x :> (−sin (1 / x))

∗ (−1 / x2)
by (rule DERIV-chain)

then show ?thesis
by (simp add: DERIV-imp-deriv o-def )

qed
finally show ?thesis.

qed

show deriv f x = x2 ∗ sin (1 / x) + 4∗x^3 ∗ cos (1 / x) + 8∗x^3
proof −

have deriv f x = deriv (λx. x^4 ∗ (cos (1 / x) + 2 )) x
by (metis (no-types, lifting) f-def mult-eq-0-iff power-zero-numeral)

also have ... = x^4 ∗ deriv (λx. cos (1 / x) + 2 ) x +
deriv (λx. x^4 ) x ∗ (cos (1 / x) + 2 )

by (rule deriv-mult, simp add: field-differentiable-power ,
simp add: Derivative.field-differentiable-add cos-inverse-diff )

also have ... = x^4 ∗ (sin (1 / x)) / x2 +
deriv (λx. x^4 ) x ∗ (cos (1 / x) + 2 )

by (simp add: deriv-2nd-part)
also have ... = x^4 ∗ (sin (1 / x)) / x2 + (4∗x^3 ) ∗ (cos (1 / x) + 2 )

by (subst power-rule, simp)
also have ... = x2 ∗ (sin (1 / x)) + (4∗x^3 ) ∗ (cos (1 / x) + 2 )

by (simp add: power2-eq-square power4-eq-xxxx)
also have ... = x2 ∗ sin (1 / x) + 4∗x^3 ∗ cos (1 / x) + 8∗x^3

by (simp add: Rings.ring-distribs(2 ) mult.commute)
finally show ?thesis.

qed
from x-type f-def f2 show f field-differentiable at x

by (subst field-differentiable-transfer-on-ball[where f = λ x. (x^4 ∗ (cos (1
/ x) + 2 ))

and ε = |x|], simp-all)
qed

have deriv-f-at-0 : deriv f 0 = 0 ∧ f field-differentiable at 0
proof −
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— By the definition of deriv, we need to show the limit of the difference quotient
is 0.

have dq-limit: ((λh. (f (0 + h) − f 0 ) / h) −−−→ 0 ) (at 0 )
proof

fix ε :: real
assume ε-pos: 0 < ε
— Choose δ > 0 to make |difference quotient| < ε.
obtain δ where δ-def : δ = (ε / 3 ) powr (1 / 3 )

by simp
— A reasonable δ based on the growth of |h3|.
have δ-pos: δ > 0

using ε-pos by (simp add: δ-def )
have ∃ δ>0 . ∀ h. 0 < |h| ∧ |h| < δ −→ |(f (0 + h) − f 0 ) / h − 0 | < ε
proof (intro exI [where x=δ], intro conjI insert δ-pos, clarify)

fix h :: real
assume h-pos: 0 < |h|
assume h-lt-δ: |h| < δ

have |(f (0 + h) − f 0 ) / h − 0 | = |f h / h|
by (simp add: f-def )

also have ... = |h^4 ∗ (cos (1 / h) + 2 ) / h|
using f-def by presburger

also have ... = |h^3 ∗ (cos (1 / h) + 2 )|
by (simp add: power3-eq-cube power4-eq-xxxx vector-space-over-itself .scale-scale)
also have ... ≤ |h^3 | ∗ |cos (1 / h) + 2 |

by (metis abs-mult order .refl)
also have ... ≤ |h^3 | ∗ (|cos (1 / h)| + |2 |)

by (simp add: mult-left-mono)
also have ... ≤ |h^3 | ∗ (1 + 2 )

by (simp add: mult-left-mono)
also have ... = 3 ∗ |h^3 |

by simp
also have ... < 3 ∗ δ^3

using power-strict-mono[of |h| δ 3 ] by (simp add: h-lt-δ power-abs)
also have ... = 3 ∗ (ε / 3 )

by (metis δ-def ε-pos div-self less-le more-arith-simps(5 )
mult-eq-0-iff pos-le-divide-eq powr-numeral powr-one-gt-zero-iff

powr-powr times-divide-eq-left verit-comp-simplify(19 )
zero-neq-numeral)

also have ... = ε
by simp

finally show |(f (0 + h) − f 0 ) / h − 0 | < ε.
qed
then show ∃ d>0 .∀ x∈UNIV . 0 < dist x 0 ∧ dist x 0 < d −→ dist ((f (0

+ x) − f 0 ) / x) 0 ≤ ε
by (metis arithmetic-simps(57 ) dist-real-def less-le)

qed
then show ?thesis

using DERIV-def DERIV-imp-deriv field-differentiable-def by blast
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qed

show deriv-f :
∧

x. deriv f x =
(if x = 0 then 0 else x2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 )
using deriv-f-at-0 deriv-f-at-nonzero by presburger

show f-is-differentiable: (λx. f x) differentiable-on UNIV
by (metis deriv-f-at-0 deriv-f-at-nonzero differentiable-on-def

field-differentiable-imp-differentiable)

have snd-deriv-f-at-nonzero:∧
x. x 6= 0 −→ deriv (deriv f ) x = (6∗x ∗ sin (1 / x) + (12∗x2 − 1 )∗ cos

(1 / x) + 24∗x2)
∧ (deriv f ) field-differentiable at x

proof (safe)
fix x :: real
assume x-type: x 6= 0

have fst-term-diff : (λw. w2 ∗ sin (1 / w)) field-differentiable at x
proof −

have f1 : (λw. w2) field-differentiable at x
by (simp add: field-differentiable-power)

have (λw. sin (1 / w)) field-differentiable at x
by (metis DERIV-chain2 DERIV-inverse-func field-differentiable-at-sin

field-differentiable-def x-type)
then show ?thesis

by (simp add: f1 field-differentiable-mult)
qed

have fst-term-deriv: deriv (λw. w^2 ∗ sin (1 / w)) x = 2 ∗ x ∗ sin (1 / x)
− cos (1 / x)

proof −
have deriv (λx. x^2 ∗ sin (1 / x)) x =

x^2 ∗ deriv (λx. sin (1 / x)) x + deriv (λx. x^2 ) x ∗ sin (1 / x)
by (rule deriv-mult, simp add: field-differentiable-power ,

metis DERIV-chain2 DERIV-inverse-func field-differentiable-at-sin
field-differentiable-def x-type)

moreover have deriv (λx. x^2 ) x = 2 ∗ x
using power-rule by auto

moreover have deriv (λx. sin (1 / x)) x = −cos (1 / x) / x^2
proof −

have f1 : DERIV (λz. sin z) (1 / x) :> cos (1 / x)
by simp

have f2 : DERIV (λx. 1 / x) x :> −1 / x^2
using DERIV-inverse-func x-type by blast

from f1 f2 have DERIV ((λz. sin z) ◦ (λx. 1 / x)) x :> cos (1 / x) ∗
(−1 / x^2 )

by (rule DERIV-chain)
then show ?thesis
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by (simp add: DERIV-imp-deriv o-def )
qed
ultimately show ?thesis

by (simp add: x-type)
qed

have snd-term-diff : (λx. 4 ∗ x^3 ∗ cos (1 / x)) field-differentiable at x
proof −

have t1 : (λx. 4 ∗ x^3 ) field-differentiable at x
by (simp add: field-differentiable-power field-differentiable-mult)

have t2 : (λx. cos (1 / x)) field-differentiable at x
by (metis DERIV-chain2 DERIV-inverse-func field-differentiable-at-cos

field-differentiable-def x-type)
show ?thesis

by (simp add: t1 t2 field-differentiable-mult)
qed

have snd-term-diff ′: (λw. 4 ∗ w ^ 3 ∗ cos (1 / w) + 8 ∗ w ^ 3 ) field-differentiable
at x

proof −
have t3 : (λx. 8 ∗ x^3 ) field-differentiable at x

by (simp add: field-differentiable-mult field-differentiable-power)
show ?thesis

by (simp add: Derivative.field-differentiable-add t3 snd-term-diff )
qed

have snd-term-deriv:
deriv (λx. 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 ) x =
12 ∗ x^2 ∗ cos (1 / x) + 4 ∗ x ∗ sin (1 / x) + 24 ∗ x^2

proof −
have deriv (λx. 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 ) x =

deriv (λx. 4 ∗ x^3 ∗ cos (1 / x)) x + deriv (λx. 8 ∗ x^3 ) x
by (rule deriv-add, simp add: snd-term-diff ,

simp add: field-differentiable-mult field-differentiable-power)
also have ... = (4∗x^3 ) ∗ (deriv (λx. cos (1 / x)) x) +

((12 ∗ x^2 ) ∗ (cos (1 / x))) + deriv (λx. 8 ∗ x^3 ) x
proof −

have deriv (λx. 4 ∗ x^3 ∗ cos (1 / x)) x =
(4∗x^3 ) ∗ (deriv (λx. cos (1 / x)) x) +
(deriv (λx. 4 ∗ x^3 ) x) ∗ (cos (1 / x))

by (rule deriv-mult, simp add: field-differentiable-mult field-differentiable-power ,
metis DERIV-fun-cos DERIV-inverse-func field-differentiable-def

x-type)
then have deriv (λx. 4 ∗ x^3 ) x = 12 ∗ x^2
proof −

have deriv (λx. 4 ∗ x^3 ) x = 4 ∗ deriv (λx. x^3 ) x
by (rule deriv-cmult, simp add: field-differentiable-power)

then show ?thesis
by (simp add: power-rule)

qed
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then show ?thesis
using ‹deriv (λx. 4 ∗ x^3 ∗ cos (1 / x)) x = (4∗x^3 ) ∗ (deriv (λx. cos

(1 / x)) x) +
(deriv (λx. 4 ∗ x^3 ) x) ∗ (cos (1 / x))›

by auto
qed
also have ... = (4∗x^3 ) ∗ (deriv (λx. cos (1 / x)) x) +

((12 ∗ x^2 ) ∗ (cos (1 / x))) + 24 ∗ x^2
proof −

have deriv (λx. 8 ∗ x^3 ) x = 24 ∗ x^2
proof −

have deriv (λx. 8 ∗ x^3 ) x = 8 ∗ deriv (λx. x^3 ) x
by (rule deriv-cmult, simp add: field-differentiable-power)

then show ?thesis
by (simp add: power-rule)

qed
then show ?thesis

by auto
qed
also have ... = (4∗x^3 ) ∗ sin (1 / x) / x^2 + ((12 ∗ x^2 ) ∗ (cos (1 / x)))

+ 24 ∗ x^2
proof −

have deriv (λx. cos (1 / x)) x = sin (1 / x) / x^2
proof −

have f1 : DERIV (λz. cos z) (1 / x) :> −sin (1 / x)
by simp

have f2 : DERIV (λx. 1 / x) x :> −1 / x^2
using DERIV-inverse-func x-type by blast

from f1 f2 have DERIV ((λz. cos z) ◦ (λx. 1 / x)) x :> (−sin (1 / x))
∗ (−1 / x^2 )

by (rule DERIV-chain)
then show ?thesis

by (simp add: DERIV-imp-deriv o-def )
qed
then show ?thesis

by auto
qed
also have ... = ((12 ∗ x^2 ) ∗ (cos (1 / x))) + (4∗x^3 ) ∗ sin (1 / x) / x^2

+ 24 ∗ x^2
by linarith

also have ... = (12 ∗ x^2 ) ∗ (cos (1 / x)) + 4∗x ∗ sin (1 / x) + 24 ∗ x^2
proof −

have (4∗x^3 ) ∗ sin (1 / x) / x^2 = 4∗x ∗ sin (1 / x)
by (simp add: power2-eq-square power3-eq-cube)

then show ?thesis
by presburger

qed
finally show ?thesis.

qed
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show deriv (deriv f ) x = (6∗x ∗ sin (1 / x) + (12∗x2 − 1 )∗ cos (1 / x) +
24∗x2)

proof −
have deriv (deriv f ) x = deriv (λx. x2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 /

x) + 8 ∗ x^3 ) x
by (metis (no-types, opaque-lifting) deriv-f mult-cancel-left2 mult-cancel-right2

power-zero-numeral pth-7 (2 ))
also have ... = deriv (λx. x2 ∗ sin (1 / x) + (4 ∗ x^3 ∗ cos (1 / x) + 8 ∗

x^3 )) x
by (meson Groups.add-ac(1 ))

also have ... = deriv (λx. x^2 ∗ sin (1 / x)) x +
deriv (λx. 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 ) x

by (rule deriv-add, simp add: fst-term-diff , simp add: snd-term-diff ′)
also have ... = 2 ∗ x ∗ sin (1 / x) − cos (1 / x) +

deriv (λx. 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 ) x
by (simp add: fst-term-deriv)

also have ... = 2 ∗ x ∗ sin (1 / x) − cos (1 / x) +
12 ∗ x^2 ∗ cos (1 / x) + 4 ∗ x ∗ sin (1 / x) + 24 ∗ x^2

by (simp add: snd-term-deriv)
also have ... = 2 ∗ x ∗ sin (1 / x) + 4 ∗ x ∗ sin (1 / x) +

12 ∗ x^2 ∗ cos (1 / x) − cos (1 / x) + 24 ∗ x^2
by simp

also have ... = (6∗x ∗ sin (1 / x) + (12∗x2 − 1 )∗ cos (1 / x) + 24∗x2)
by (smt (verit, best) cos-add cos-zero mult-diff-mult sin-zero)

finally show ?thesis.
qed

show (deriv f ) field-differentiable at x
proof (rule field-differentiable-transfer-on-ball

[where f = λ x. (x2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 )
and ε = |x|])

show 0 < |x|
by (simp add: x-type)

show ∀ y. y ∈ ball x |x| −→ y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗ cos (1 / y) +
8 ∗ y ^ 3 =

deriv f y
by (simp add: deriv-f )
show (λx. x2 ∗ sin (1 / x) + 4 ∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x ^

3 )field-differentiable at x
by (simp add: Derivative.field-differentiable-add fst-term-diff is-num-normalize(1 )

snd-term-diff ′)
qed

qed

have deriv2-f-at-0 :
deriv (deriv f ) 0 = 0 ∧ (deriv f ) field-differentiable at 0
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proof −
— By the definition of deriv, we need to show the limit of the difference

quotient of f ′ is 0.
have dq-limit: ((λh. (deriv f (0 + h) − deriv f 0 ) / h) −−−→ 0 ) (at 0 )
proof

fix ε :: real
assume ε-pos: 0 < ε
have ∃ δ>0 . ∀ h. 0 < |h| ∧ |h| < δ −→ |(deriv f (0 + h) − deriv f 0 ) / h

− 0 | < ε
proof (cases ε < 1/6 )

assume eps-lt-inv6 : ε < 1/6
— Choose δ > 0 to ensure |difference quotient| < ε.
obtain δ where δ-def : δ = ε / 2

by blast
have δ-pos: δ > 0

using ε-pos by (simp add: δ-def )
show ∃ δ>0 . ∀ h. 0 < |h| ∧ |h| < δ −→ |(deriv f (0 + h) − deriv f 0 ) /

h − 0 | < ε
proof (intro exI [where x=δ], intro conjI insert δ-pos, clarify)

fix h :: real
assume h-pos: 0 < |h|
assume h-lt-δ: |h| < δ

have h-bound1 : |h| < ε / 2
using h-lt-δ by (simp add: δ-def )

have h-bound2 : 12 ∗ |h^2 | < ε / 2
proof −

have |h| < ε / 2 using h-bound1 by blast
then have |h^2 | < (ε / 2 )^2

by (metis abs-ge-zero abs-power2 power2-abs power-strict-mono
zero-less-numeral)

then have 12 ∗ |h^2 | < 12 ∗ (ε / 2 )^2
by (simp add: mult-strict-left-mono)

also have ... = 12 ∗ (ε^2 / 4 )
by (simp add: power2-eq-square)

also have ... = 3 ∗ ε^2
by simp

also have ... < ε/2
proof −

have ε ∗ 6 < 1
by (meson eps-lt-inv6 less-divide-eq-numeral1 (1 ))

then show ?thesis
by (simp add: ε-pos power2-eq-square)

qed
finally show ?thesis.

qed
have |(deriv f (0 + h) − deriv f 0 ) / h − 0 | = |deriv f h / h|

by (simp add: deriv-f-at-0 )
also have ... = |(h2 ∗ sin (1 / h) + 4∗h^3 ∗ cos (1 / h) + 8∗h^3 ) / h|
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using deriv-f by presburger
also have ... = |(h2 ∗ sin (1 / h) / h) + (4∗h^3 ∗ cos (1 / h)) / h +

(8∗h^3 ) / h|
by (simp add: add-divide-distrib)

also have ... = |h ∗ sin (1 / h) + (4∗h^2 ∗ cos (1 / h)) + 8 ∗ h^2 |
by (simp add: more-arith-simps(11 ) power2-eq-square power3-eq-cube)

also have ... ≤ |h ∗ sin (1 / h)| + |4∗h^2 ∗ cos (1 / h)| + |8 ∗ h^2 |
by linarith

also have ... ≤ |h| ∗ |sin (1 / h)| + 4 ∗ |h^2 | ∗ |cos (1 / h)| + 8 ∗ |h^2 |
by (simp add: abs-mult)

also have ... ≤ |h| + 4 ∗ |h^2 | + 8 ∗ |h^2 |
proof −

have i1 : |h| ∗ |sin (1 / h)| ≤ |h|
using h-pos by fastforce

have |h| ∗ |cos (1 / h)| ≤ |h|
by (simp add: mult-left-le)

then show ?thesis
by (smt (verit) cos-ge-minus-one cos-le-one i1 mult-left-le)

qed
also have ... = |h| + 12 ∗ |h^2 |

by simp
also have ... < ε

using h-bound1 h-bound2 by auto
finally show |(deriv f (0 + h) − deriv f 0 ) / h − 0 | < ε.

qed
next

assume ¬ ε < 1/6
then have ε ≥ 1/6 by linarith
then have eps-half : ε / 2 ≥ 1/12 by linarith
obtain δ where δ-def : δ = (1 ::real)/12 by blast
have δ-pos: δ > 0 using ε-pos by (simp add: δ-def )
show ∃ δ>0 . ∀ h. 0 < |h| ∧ |h| < δ −→ |(deriv f (0 + h) − deriv f 0 ) /

h − 0 | < ε
proof (intro exI [where x=δ], intro conjI insert δ-pos, clarify)

fix h :: real
assume h-pos: 0 < |h|
assume h-lt-δ: |h| < δ
have h-bound1 : |h| < ε / 2
proof −

have |h| < δ using h-lt-δ by blast
also have ... = (1 ::real)/12 by (simp add: δ-def )
also have ... ≤ ε / 2 using eps-half by blast
finally show ?thesis.

qed
have h-bound2 : 12 ∗ |h|^2 < ε / 2
proof −

from h-bound1 have |h|^2 < (1/12 )^2
by (metis δ-def abs-ge-zero h-lt-δ power-strict-mono zero-less-numeral)
hence 12 ∗ |h|^2 < 12 ∗ (1/12 )^2
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by (rule mult-strict-left-mono, simp-all)
also have ... = 1/12 by (simp add: power-one-over)
also have ... ≤ ε / 2 using eps-half by blast
finally show ?thesis.

qed
have |(deriv f (0 + h) − deriv f 0 ) / h − 0 | = |deriv f h / h|

by (simp add: deriv-f-at-0 )
also have ... = |(h2 ∗ sin (1 / h) + 4∗h^3 ∗ cos (1 / h) + 8∗h^3 ) / h|

using deriv-f by presburger
also have ... = |(h2 ∗ sin (1 / h) / h) + (4∗h^3 ∗ cos (1 / h)) / h +

(8∗h^3 ) / h|
by (simp add: add-divide-distrib)

also have ... = |h ∗ sin (1 / h) + (4∗h^2 ∗ cos (1 / h)) + 8 ∗ h^2 |
by (simp add: more-arith-simps(11 ) power2-eq-square power3-eq-cube)

also have ... ≤ |h ∗ sin (1 / h)| + |4∗h^2 ∗ cos (1 / h)| + |8 ∗ h^2 |
by linarith

also have ... ≤ |h| ∗ |sin (1 / h)| + 4 ∗ |h^2 | ∗ |cos (1 / h)| + 8 ∗ |h^2 |
by (simp add: abs-mult)

also have ... ≤ |h| + 4 ∗ |h^2 | + 8 ∗ |h^2 |
proof −

have i1 : |h| ∗ |sin (1 / h)| ≤ |h|
using h-pos by fastforce

have |h| ∗ |cos (1 / h)| ≤ |h|
by (simp add: mult-left-le)

then show ?thesis
by (smt (verit) cos-ge-minus-one cos-le-one i1 mult-left-le)

qed
also have ... = |h| + 12 ∗ |h^2 |

by simp
also have ... < ε

using h-bound1 h-bound2 by auto
finally show |(deriv f (0 + h) − deriv f 0 ) / h − 0 | < ε.

qed
qed
then show ∃ d>0 . ∀ x∈UNIV . 0 < dist x 0 ∧ dist x 0 < d −→

dist ((deriv f (0 + x) − deriv f 0 ) / x) 0 ≤ ε
by (metis cancel-comm-monoid-add-class.diff-zero dist-real-def le-less)

qed
then show ?thesis

using DERIV-def DERIV-imp-deriv field-differentiable-def by blast
qed

show
∧

x. deriv (deriv f ) x = (if x = 0 then 0 else 6 ∗ x ∗ sin (1 / x)
+ (12 ∗ x2 − 1 ) ∗ cos (1 / x)
+ 24 ∗ x2)

using snd-deriv-f-at-nonzero deriv2-f-at-0 by presburger

show (deriv f ) differentiable-on UNIV
by (metis deriv2-f-at-0 differentiable-on-def
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field-differentiable-imp-differentiable snd-deriv-f-at-nonzero)
qed
then have f-cont: continuous-on � f
by (meson continuous-on-subset differentiable-imp-continuous-on top.extremum)

have f ′-cont: continuous-on � (deriv f )
by (meson continuous-on-subset deriv-f differentiable-imp-continuous-on top.extremum)

obtain U where U-def : U = {x :: real. −1 < x ∧ x < 1}
by blast

then have open-neighborhood-of-zero: open U ∧ 0 ∈ U
using lemma-interval-lt by (subst open-dist, subst dist-real-def ,fastforce)

have strict-local-minimizer-at-0 : strict-local-minimizer f 0
unfolding strict-local-minimizer-def strict-local-minimizer-on-def

proof (intro exI [where x=U ],(subst sym[OF conj-assoc],rule conjI ), rule open-neighborhood-of-zero)
show ∀ x ∈ U − {0}. f 0 < f x
proof

fix x
assume x-type: x ∈ U − {0}
then have x-nonzero: x 6= 0

by blast
have cos(1/x) + 2 ≥ 1

by (smt (verit) cos-ge-minus-one)
then have x^4 ∗ (cos(1/x) + 2 ) ≥ x^4 ∗ 1

by (rule mult-left-mono, force)
then have f x ≥ x^4

by (simp add: f-def x-nonzero)
then have f x > 0
by (smt (verit, del-insts) mult-le-0-iff power4-eq-xxxx x-nonzero zero-le-mult-iff )
then show f 0 < f x

using f-def by force
qed

qed
then have zero-min: local-minimizer f 0

by (simp add: strict-local-minimizer-imp-local-minimizer)
have (∃ x-seq::nat ⇒ real. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= 0 ) ∧

((x-seq −−−→ 0 ) at-top))
proof −

obtain left-seq :: nat ⇒ real where left-seq-def : ∀n ∈ �. n 6= 0 −→
left-seq n = inverse ((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi)

by force
obtain right-seq :: nat ⇒ real where right-seq-def : ∀n ∈ �. n 6= 0 −→

right-seq n = inverse (pi + 2 ∗ real n ∗ pi)
by force

have zero-lt-left-seq-lt-right-seq-both-pos: ∀n ∈ �. n 6= 0 −→
0 < left-seq n ∧ left-seq n < right-seq n

proof clarify
fix n::nat
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assume n-pos: 0 < n
then have inv-left: inverse (left-seq n) = (5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi

by (metis bot-nat-0 .not-eq-extremum id-apply inverse-inverse-eq left-seq-def
of-nat-eq-id

of-nat-in-Nats)

have inv-right: inverse (right-seq n) = pi + 2 ∗ real n ∗ pi
by (metis bot-nat-0 .not-eq-extremum id-apply inverse-inverse-eq n-pos

of-nat-eq-id
of-nat-in-Nats right-seq-def )

have denom-ineq: (pi + 2 ∗ real n ∗ pi) < ((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi)
proof −

have (5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi = 2 ∗ real n ∗ pi + (5 ∗ pi / 4 )
by simp

have ((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi) − (pi + 2 ∗ real n ∗ pi) =
(5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi − pi − 2 ∗ real n ∗ pi

by simp
also have ... = (5 ∗ pi / 4 ) − pi

by simp
also have ... = (5 ∗ pi / 4 ) − (4 ∗ pi / 4 )

by simp
also have ... = (5 − 4 ) ∗ pi / 4

by simp
also have ... = pi / 4

by simp
then show ?thesis

by simp
qed
then have left-seq n < right-seq n
by (smt (verit) inv-left inv-right inverse-positive-iff-positive le-imp-inverse-le

mult-nonneg-nonneg of-nat-less-0-iff pi-gt3 )
then show 0 < left-seq n ∧ left-seq n < right-seq n
by (smt (verit, best) denom-ineq inv-left inverse-positive-iff-positive mult-nonneg-nonneg

of-nat-less-0-iff pi-gt3 )
qed
have first-and-second-order-conditions: ∀n. n 6= 0 −→

(∃ y ∈ {left-seq n .. right-seq n}. (y^2 ∗ sin (1 / y) + 4 ∗ y^3 ∗ cos (1 / y) +
8 ∗ y^3 ) = 0 ∧

(6∗y ∗ sin (1 / y) + (12∗y2 − 1 )∗ cos (1 / y) + 24∗y2) > 0 ) ∧
((left-seq n)^2 ∗ sin (1 /(left-seq n)) + 4 ∗ (left-seq n)^3 ∗ cos (1 / (left-seq n))

+
8 ∗ (left-seq n)^3 ) < 0 ∧

((right-seq n)^2 ∗ sin (1 /(right-seq n)) + 4 ∗ (right-seq n)^3 ∗ cos (1 / (right-seq
n))

+ 8 ∗ (right-seq n)^3 ) > 0
proof(clarify)

37



fix n:: nat
assume n-pos: 0 < n
then have n-ge-1 : 1 ≤ n

by simp
show (∃ y∈{left-seq n..right-seq n}. y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗ cos (1 /

y) + 8 ∗ y ^ 3 = 0 ∧ 0 < 6 ∗ y ∗ sin (1 / y) + (12 ∗ y2 − 1 ) ∗ cos (1 / y) +
24 ∗ y2) ∧

(left-seq n)2 ∗ sin (1 / left-seq n) + 4 ∗ left-seq n ^ 3 ∗ cos (1 / left-seq
n) + 8 ∗ left-seq n ^ 3 < 0 ∧

0 < (right-seq n)2 ∗ sin (1 / right-seq n) + 4 ∗ right-seq n ^ 3 ∗ cos
(1 / right-seq n) + 8 ∗ right-seq n ^ 3

proof safe
show left-seq-less-zero: (λx. x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8

∗ x^3 ) (left-seq n) < 0
proof −

obtain x where x-def : x = left-seq n
by blast

— Rewrite 1/x in terms of 5π
4 + 2nπ.

then have inv-x-eqs: inverse x = inverse (inverse ((5 ∗ pi / 4 ) + 2 ∗ real
n ∗ pi))

by (metis bot-nat-0 .not-eq-extremum id-apply left-seq-def n-pos of-nat-eq-id
of-nat-in-Nats)

then have x-inv: 1/x = (5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi
by (simp add: inverse-eq-divide)

— Evaluate sin(1/x) and cos(1/x).
have sin-inv-x: sin (1 / x) = − (sqrt 2 / 2 )
proof −

have sin (1 / x) = sin ((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi)
using x-inv by presburger

also have ... = sin (5 ∗ pi / 4 )
by (simp add: sin-add)

also have ... = − (sqrt 2 / 2 )
using sin-5pi-div-4 by blast

finally show sin (1 / x) = − (sqrt 2 / 2 ).
qed

have cos-inv-x: cos (1 / x) = − (sqrt 2 / 2 )
proof −

have cos-val: cos (1 / x) = cos ((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi)
using x-inv by presburger

also have ... = cos (5 ∗ pi / 4 )
by (simp add: cos-add)

also have ... = − (sqrt 2 / 2 )
using cos-5pi-div-4 by linarith

finally show cos (1 / x) = − (sqrt 2 / 2 ).
qed
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— Substitute these into the expression.
have expr : x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3

= − (sqrt 2 / 2 ) ∗ x^2 + (8 − 2 ∗ sqrt 2 ) ∗ x^3
proof −

have x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3
= (x^2 ∗ − (sqrt 2 / 2 )) + 4 ∗ x^3 ∗ (−(sqrt 2 / 2 )) + 8 ∗ x^3

by (simp add: cos-inv-x sin-inv-x)

also have ... = x^2 ∗ − (sqrt 2 / 2 ) + (−2 ∗ sqrt 2 ) ∗ x^3 + 8 ∗ x^3
by simp

also have ... = − (sqrt 2 / 2 ) ∗ x^2 + (8 − 2 ∗ sqrt 2 ) ∗ x^3
proof −

have − (sqrt 2 / 2 ) + (x ^ 3 ∗ (sqrt 2 ∗ − 2 ) + x ^ 3 ∗ 8 ) =
− (sqrt 2 / 2 ) + x ^ 3 ∗ (sqrt 2 ∗ − 2 + 8 )

by (metis (no-types) nat-distrib(2 ))
then show ?thesis

by (simp add: Groups.mult-ac(2 ))
qed
finally show rewrite-expr :

x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3
= − (sqrt 2 / 2 ) ∗ x^2 + (8 − 2 ∗ sqrt 2 ) ∗ x^3 .

qed

— Factor out x3, and rewrite x3 as
(

5π
4 + 2nπ

)−1.

have deriv-right-seq-eval: sin (1 / x) ∗ x^2 + 4 ∗ x^3 ∗ cos (1 / x) + 8
∗ x^3 =

(− (sqrt 2 / 2 )∗((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi) + (8 − 2 ∗ sqrt 2 ))
∗ x^3

proof −
have sin (1 / x) ∗ x^2 + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 =
− (sqrt 2 / 2 )∗inverse x ∗ x^3 + (8 − 2 ∗ sqrt 2 ) ∗ x^3

by (smt (verit, del-insts) Groups.mult-ac(2 ) cos-inv-x cos-zero di-
vide-eq-0-iff expr

left-inverse more-arith-simps(11 ) one-power2 power2-eq-square
power3-eq-cube

power-minus sin-inv-x sin-zero)
also have ... = (− (sqrt 2 / 2 )∗inverse x + (8 − 2 ∗ sqrt 2 )) ∗ x^3

by (metis (no-types) distrib-right)
also have ... = (− (sqrt 2 / 2 )∗((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi) +

(8 − 2 ∗ sqrt 2 )) ∗ x^3
by (simp add: inv-x-eqs)

finally show ?thesis.
qed

— Combine into a single fraction and show negativity.
have first-term-eval: x^3 > 0

by (smt (verit) mult-nonneg-nonneg of-nat-0-le-iff pi-gt3 x-inv zero-compare-simps(7 )
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zero-less-power)
have neg-term: (−(sqrt 2 / 2 )∗((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi) + (8 −

2 ∗ sqrt 2 )) < 0
proof −

have n-ge1 : n ≥ 1
using n-ge-1 by auto

have lower-bound: 2 ∗ real n ∗ pi ≥ 2 ∗ pi
using n-ge1 by (simp add: mult-left-mono)

then have mult-bound: − (sqrt 2 / 2 ) ∗ ((5 ∗ pi / 4 ) + 2 ∗ real n ∗
pi)

≤ − (sqrt 2 / 2 ) ∗ (5 ∗ pi / 4 + 2 ∗ pi)
by (simp add: mult-left-mono)

moreover have (− (sqrt 2 / 2 ) ∗ (5 ∗ pi / 4 + 2 ∗ pi) + (8 − 2 ∗
sqrt 2 )) < 0

proof −
have 5 ∗ pi / 4 + 2 ∗ pi = 13 ∗ pi / 4

by simp
then have simpification: (− (sqrt 2 / 2 ) ∗ (5 ∗ pi / 4 + 2 ∗ pi) +

(8 − 2 ∗ sqrt 2 ))
= (64 − 16 ∗ sqrt 2 − 13 ∗ pi ∗ sqrt 2 ) / 8

by (simp add: field-simps)
have sufficies-to-show-numerator-neg:((64 − 16 ∗ sqrt 2 − 13 ∗ pi

∗ sqrt 2 ) / 8 < 0 )
= (64 − 16 ∗ sqrt 2 − 13 ∗ pi ∗ sqrt 2 < 0 )

by simp
have sqrt 2 ∗ (16 + 13 ∗ pi) > 64
proof −

have pi-gt-3 : pi > 3
by (simp add: pi-gt3 )

hence 16 + 13 ∗ pi > 16 + 13 ∗ 3
by (simp add: mult-strict-left-mono)

hence 16 + 13 ∗ pi > 55
by simp

then have sqrt 2 ∗ (16 + 13 ∗ pi) > sqrt 2 ∗ 55
by (simp add: mult-strict-left-mono)

moreover have sqrt 2 ∗ 55 > 64
proof −

have (sqrt 2 ∗ 55 )^2 = 2 ∗ 55^2
by (simp add: power-mult-distrib)

also have ... = 2 ∗ (55∗55 )
by auto

also have ... = 6050
by simp

also have ... > 64∗64
by eval

moreover have sqrt 2 ∗ 55 > 0
by simp

ultimately show sqrt 2 ∗ 55 > 64
using power-mono-iff

40



by (metis less-le power2-eq-square zero-less-numeral)
qed
ultimately show ?thesis

by linarith
qed
then have 64 − 16 ∗ sqrt 2 − 13 ∗ pi ∗ sqrt 2 < 0

by (simp add: Groups.mult-ac(2 ) distrib-left)
then show ?thesis

using simpification sufficies-to-show-numerator-neg by presburger
qed
then show ?thesis

using mult-bound by linarith
qed
then show (left-seq n)2 ∗ sin (1 / left-seq n) +

4 ∗ left-seq n ^ 3 ∗ cos (1 / left-seq n) + 8 ∗ left-seq n ^ 3 < 0
by (metis deriv-right-seq-eval first-term-eval mult.commute x-def

zero-compare-simps(10 ))
qed
show right-seq-greater-zero:(λx. x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 /

x) + 8 ∗ x^3 )
(right-seq n) > 0

proof −
obtain x where x-def : x = right-seq n

by blast
then have inv-x-eqs: inverse x = inverse (inverse (pi + 2 ∗ real n ∗ pi))

by (metis id-apply n-pos of-nat-eq-id of-nat-in-Nats of-nat-less-0-iff
right-seq-def )

have x-inv: 1 / x = pi + 2 ∗ real n ∗ pi
unfolding right-seq-def by (metis inv-x-eqs inverse-eq-divide in-

verse-inverse-eq)

have sin-inv-x: sin (1 / x) = 0
by (metis add.inverse-neutral sin-2npi sin-periodic-pi2 x-inv)

have cos-inv-x: cos (1 / x) = −1
using cos-2npi cos-periodic-pi2 x-inv by presburger

have f-x: x^2 ∗ sin (1 / x) + 4 ∗ x^3 ∗ cos (1 / x) + 8 ∗ x^3 = 4 ∗ x^3
by (simp add: cos-inv-x sin-inv-x)

have x-pos: x > 0
unfolding right-seq-def

by (smt (verit) mult-nonneg-nonneg of-nat-less-0-iff pi-gt-zero x-inv
zero-less-divide-iff )

then show 0 < (right-seq n)2 ∗ sin (1 / right-seq n) + 4 ∗ right-seq n ^
3 ∗ cos (1 / right-seq n) + 8 ∗ right-seq n ^ 3

using cos-inv-x sin-inv-x x-def by fastforce
qed
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show ∃ y∈{left-seq n..right-seq n}. y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗ cos (1 /
y) + 8 ∗ y ^ 3 =

0 ∧ 0 < 6 ∗ y ∗ sin (1 / y) + (12 ∗ y2 − 1 ) ∗ cos (1 /
y) + 24 ∗ y2

proof −
have existence-of-minimizing-sequence: ∃ y∈{left-seq n..right-seq n}. y2 ∗

sin (1 / y) + 4 ∗ y ^ 3 ∗ cos (1 / y) + 8 ∗ y ^ 3 = 0
proof −
have ∃ x≥left-seq n. x ≤ right-seq n ∧ (λx. x^2 ∗ sin (1 / x) + 4 ∗ x^3

∗ cos (1 / x) + 8 ∗ x^3 ) x = 0
proof(rule IVT ′)
show (left-seq n)2 ∗ sin (1 / left-seq n) + 4 ∗ left-seq n ^ 3 ∗ cos (1 /

left-seq n) + 8 ∗ left-seq n ^ 3 ≤ 0
using left-seq-less-zero by auto

show 0 ≤ (right-seq n)2 ∗ sin (1 / right-seq n) + 4 ∗ right-seq n ^ 3
∗ cos (1 / right-seq n) + 8 ∗ right-seq n ^ 3

using right-seq-greater-zero by linarith
show left-seq n ≤ right-seq n
by (metis id-apply leD linorder-linear n-pos of-nat-eq-id of-nat-in-Nats

zero-lt-left-seq-lt-right-seq-both-pos)
show continuous-on {left-seq n..right-seq n} (λx. x2 ∗ sin (1 / x) + 4

∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x ^ 3 )
proof − — We prove continuity by establishing it is differentiable.
— First, note that left_seqn is positive, so the interval does not contain

0.
have left-seq-pos: left-seq n > 0

by (metis bot-nat-0 .extremum-strict id-apply n-pos of-nat-eq-id
of-nat-in-Nats zero-lt-left-seq-lt-right-seq-both-pos)

— Transfer global differentiability to local differentiability of deriv f .

have
∧

x. x ∈ {left-seq n..right-seq n} −→ (λx. x2 ∗ sin (1 / x) + 4
∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x ^ 3 ) field-differentiable at x

proof clarify
fix x::real
assume x-type: x ∈ {left-seq n..right-seq n}
show (λx. x2 ∗ sin (1 / x) + 4 ∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x ^ 3 )

field-differentiable at x
proof(rule field-differentiable-transfer-on-ball[where f = deriv f

and ε = x])
show 0 < x

using left-seq-pos x-type by auto
show ∀ y. y ∈ ball x x −→ deriv f y = y2 ∗ sin (1 / y) + 4 ∗ y ^

3 ∗ cos (1 / y) + 8 ∗ y ^ 3
by (simp add: deriv-f )

show deriv f field-differentiable at x
by (meson UNIV-I deriv-f differentiable-on-def field-differentiable-def

real-differentiableE)
qed
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qed
then have (λx. x2 ∗ sin (1 / x) + 4 ∗ x ^ 3 ∗ cos (1 / x) + 8 ∗ x

^ 3 ) differentiable-on {left-seq n..right-seq n}
by (meson differentiable-at-imp-differentiable-on field-differentiable-imp-differentiable)

then show ?thesis
using differentiable-imp-continuous-on by blast

qed
qed
then show ∃ y∈{left-seq n..right-seq n}. y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗

cos (1 / y) + 8 ∗ y ^ 3 = 0
by presburger

qed
then obtain min-n where min-n-def : min-n ∈{left-seq n..right-seq n} ∧

min-n2 ∗ sin (1 / min-n) + 4 ∗ min-n ^ 3 ∗ cos (1 / min-n) + 8 ∗ min-n ^ 3 =
0

by blast
have

∧
y. y ∈ {left-seq n .. right-seq n} −→ 0 < 6 ∗ y ∗ sin (1 / y) +

(12 ∗ y2 − 1 ) ∗ cos (1 / y) + 24 ∗ y2

proof (clarify)
fix y :: real
assume y-int: y ∈ {left-seq n .. right-seq n}
— Since left_seqn > 0, every y in the interval is positive.
then have y-pos: y > 0
by (metis atLeastAtMost-iff bot-nat-0 .extremum id-apply linorder-not-less

n-pos
of-nat-eq-id of-nat-in-Nats order-less-le-trans zero-lt-left-seq-lt-right-seq-both-pos)

have ∃ x-nc :: real ⇒ real. ∀ c ∈ {0 ..pi/4}. x-nc c = inverse (pi + c
+ 2∗pi∗real n)

by auto
then obtain x-nc :: real ⇒ real where x-nc-def : ∀ c ∈ {0 ..pi/4}. x-nc

c = inverse (pi + c + 2∗pi∗real n)
by auto

have ∃ x-nc :: real ⇒ real. ∀ c ∈ {0 ..pi/4}. x-nc c = inverse (pi + c
+ 2∗pi∗real n)

by auto
then obtain x-nc :: real ⇒ real where x-nc-def : ∀ c ∈ {0 ..pi/4}. x-nc

c = inverse (pi + c + 2∗pi∗real n)
by auto

have continuous-on-subinterval: continuous-on {0 ..pi/4} x-nc
proof −
have cont-denom: continuous-on {0 ..pi/4} (λc. pi + c + 2∗pi∗real n)
proof −

have continuous-on {0 ..pi/4} (λc. c)
using continuous-on-id by blast

moreover have continuous-on {0 ..pi/4} (λc. pi + 2∗pi∗real n)
using continuous-on-const by blast

ultimately show ?thesis
by (simp add: continuous-on-add)
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qed
then have continuous-on {0 ..pi/4} (λx. inverse ((λc. pi + c +

2∗pi∗real n) x))
by(rule continuous-on-inverse,

smt (verit) add-mono-thms-linordered-field(4 ) atLeastAtMost-iff
of-nat-less-0-iff pi-neq-zero pi-not-less-zero zero-compare-simps(4 ))

then show ?thesis
using continuous-on-cong x-nc-def by fastforce

qed

have minimizer-dom: ∃ x. 0 ≤ x ∧ x ≤ pi/4 ∧ x-nc x = y
proof(rule IVT2 ′)

show x-nc (pi / 4 ) ≤ y
proof −

have x-nc (pi / 4 ) = inverse ( pi + pi / 4 + 2 ∗ real n ∗ pi)
by (metis (no-types, opaque-lifting) atLeastAtMost-iff divide-eq-imp
divide-real-def linorder-not-less mult.left-commute mult.right-neutral

mult-le-0-iff nle-le of-nat-0-le-iff of-nat-numeral pi-gt-zero x-nc-def

zero-neq-numeral)
also have ... = inverse ((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi)

by simp
also have ... = left-seq n

by (metis bot-nat-0 .not-eq-extremum id-apply left-seq-def n-pos
of-nat-eq-id of-nat-in-Nats)

also have ... ≤ y
using y-int by presburger

finally show ?thesis.
qed
show y ≤ x-nc 0
proof −

have y ≤ right-seq n
using y-int by presburger

also have ... = inverse (pi + 2 ∗ real n ∗ pi)
by (metis bot-nat-0 .not-eq-extremum id-apply n-pos of-nat-eq-id

of-nat-in-Nats right-seq-def )
also have ... = x-nc 0

using x-nc-def by auto
finally show ?thesis.

qed
show 0 ≤ pi / 4

by simp
show continuous-on {0 ..pi / 4} x-nc

using continuous-on-subinterval by simp
qed
then have minimizer-dom ′: ∃ c ∈ {0 ..pi/4}. y = x-nc c

using atLeastAtMost-iff by blast
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— We will show that f ′′(xnc(c)) > 0 for all c ∈ [0, 1], then use the fact that
left_seqn ≤ xnc(c) ≤ right_seqn together with the IVT to establish the existence
of c ∈ [0, π

4 ] such that xnc(c) = y, and then conclude that f ′′(y) > 0.

have snd-deriv-positive-in-neighborhood: ∀ c ∈ {0 ..pi/4}. left-seq n ≤
x-nc c ∧ x-nc c ≤ right-seq n ∧ deriv (deriv f ) (x-nc c) > 0

proof (safe)
fix c :: real
assume c-type: c ∈ {0 ..pi/4}
then have c-bounds: 0 ≤ c ∧ c ≤ pi/4

by simp

have x-nc-eqs: x-nc c = inverse (pi + c + 2∗pi∗real n)
using c-bounds inverse-eq-divide pi-half-le-two x-nc-def by auto

show left-seq n ≤ x-nc c
proof −

have f1 : left-seq n = inverse ((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi)
by (metis bot-nat-0 .not-eq-extremum id-apply left-seq-def n-pos

of-nat-eq-id of-nat-in-Nats)
from c-bounds have 1/ ((5 ∗ pi / 4 ) + 2 ∗ real n ∗ pi) ≤ 1/ (pi +

c + 2∗pi∗real n)
by(subst frac-le, simp-all, simp add: add-sign-intros(1 ))

then show ?thesis
by (simp add: f1 x-nc-eqs inverse-eq-divide)

qed

then have x-nc-pos: x-nc c > 0
by (metis id-apply n-pos of-nat-eq-id of-nat-in-Nats order-less-le-trans

zero-lt-left-seq-lt-right-seq-both-pos zero-order(5 ))

show x-nc c ≤ right-seq n
proof −

have f1 : right-seq n = inverse (pi + 2 ∗ real n ∗ pi)
by (metis bot-nat-0 .not-eq-extremum id-apply n-pos of-nat-eq-id

of-nat-in-Nats right-seq-def )
from c-bounds have 1/ (pi + c + 2∗pi∗real n) ≤ 1 /(pi + 2 ∗ real

n ∗ pi)
by(subst frac-le, simp-all, smt (verit, del-insts) m2pi-less-pi

mult-sign-intros(1 ) of-nat-less-0-iff )
then show ?thesis

by (simp add: f1 x-nc-eqs inverse-eq-divide)
qed

— Bounds on sin(c) and cos(c).
have pi + c + 2∗pi∗real n ≥ 3∗pi
proof −

have pi + c + 2∗pi∗real n ≥ pi + 0 + 2∗pi∗real 1
by (smt (verit, best) Num.of-nat-simps(2 ) c-bounds mult-left-mono
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n-ge-1
pi-not-less-zero real-of-nat-ge-one-iff )

then show ?thesis
by linarith

qed
then have x-nc-bound: x-nc c ≤ inverse(3∗pi)

by (smt (verit) le-imp-inverse-le pi-gt-zero x-nc-eqs)
then have cos-coef-bound: (1− 12 ∗ (x-nc c)2) ≥ (1− 12 ∗

(inverse(3∗pi))2)
using x-nc-pos by force

have sin-bound: 0 ≤ sin c ∧ sin c ≤ sqrt(2 )/2
proof safe

show 0 ≤ sin c
using c-bounds sin-ge-zero by auto

show sin c ≤ sqrt(2 )/2
by (smt (verit, best) c-bounds frac-le pi-not-less-zero sin-45

sin-mono-less-eq)
qed
have cos-bound: sqrt(2 )/2 ≤ cos c ∧ cos c ≤ 1
proof safe

show sqrt 2 / 2 ≤ cos c
by (smt (verit) c-bounds cos-45 cos-monotone-0-pi-le machin

pi-machin)
show cos c ≤ 1

by simp
qed

show 0 < deriv (deriv f ) (x-nc c)
proof −

— Lower bound of f ′′(xnc).
have snd-deriv-at-x-nc: deriv (deriv f ) (x-nc c) = (1− 12 ∗ (x-nc

c)2) ∗ cos c − 6 ∗ (x-nc c) ∗ sin c + 24 ∗ (x-nc c)2

proof−
have f1 : sin (1 / (x-nc c)) = −sin c
proof −

have sin (1 / (x-nc c)) = sin (pi + c + 2∗pi∗real n)
by (simp add: inverse-eq-divide x-nc-eqs)

also have ... = sin (pi + c)
by (metis Groups.mult-ac(2 ) id-apply of-real-eq-id sin.plus-of-nat)
also have ... = −sin c

by simp
finally show ?thesis.

qed
have f2 : cos (1 / (x-nc c)) = −cos c
proof −

have cos (1 / (x-nc c)) = cos (pi + c + 2∗pi∗real n)
by (simp add: inverse-eq-divide x-nc-eqs)

also have ... = cos (pi + c)
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by (metis Groups.mult-ac(2 ) id-apply of-real-eq-id cos.plus-of-nat)
also have ... = −cos c

by simp
finally show ?thesis.

qed

have deriv (deriv f ) (x-nc c) = (12∗(x-nc c)2 − 1 )∗ cos (1 / (x-nc
c)) + 6∗(x-nc c) ∗ sin (1 / (x-nc c)) + 24∗(x-nc c)2

using deriv-f x-nc-pos by auto
also have ... = (1− 12 ∗ (x-nc c)2) ∗ cos c − 6 ∗ (x-nc c) ∗ sin c

+ 24 ∗ (x-nc c)2

by (smt (verit) f1 f2 minus-mult-commute more-arith-simps(8 ))
finally show ?thesis.

qed
have snd-deriv-bound: deriv (deriv f ) (x-nc c) ≥ (1 − 12 ∗ (x-nc c)2

− 6 ∗ (x-nc c)) ∗ (sqrt 2 / 2 )
proof −

have deriv (deriv f ) (x-nc c) ≥ (1− 12 ∗ (x-nc c)2) ∗ cos c − 6 ∗
(x-nc c) ∗ (sqrt(2 )/2 ) + 24 ∗ (x-nc c)2

using snd-deriv-at-x-nc sin-bound x-nc-pos by auto
also have ... ≥ (1 − 12 ∗ (x-nc c)2 − 6 ∗ (x-nc c)) ∗ (sqrt 2 / 2 )

by (smt (verit, best) calculation cos-bound divide-pos-pos one-power2
real-le-rsqrt right-diff-distrib ′ sum-le-prod1 vector-space-over-itself .scale-left-diff-distrib
zero-compare-simps(12 ))

then show ?thesis.
qed

show 0 < deriv (deriv f ) (x-nc c)
proof −
obtain h :: real ⇒ real where h-def : h = (λx. − 12 ∗ x2 − 6 ∗ x

+ 1 )
by auto

have diff-h: ∀ x. h field-differentiable at x
unfolding h-def

proof clarify
fix x::real
have d1 : (λx. − 12 ∗ x2) field-differentiable at x

by(rule field-differentiable-mult, simp, simp add: field-differentiable-power)
have d2 : (λx. − 6 ∗ x) field-differentiable at x

by(rule field-differentiable-mult, simp, simp add: field-differentiable-power)
from d1 d2 show (λx. − 12 ∗ x2 − 6 ∗ x + 1 ) field-differentiable

at x
by(subst field-differentiable-add, simp add: Derivative.field-differentiable-diff ,

simp-all)
qed

have h-roots: ∀ x. h x = 0 ←→ x = (−6 + sqrt 84 ) / 24 ∨ x =
(−6 − sqrt 84 ) / 24

proof(clarify)
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fix x ::real
have roots: (12 ∗ x2 + 6 ∗ x + (−1 ) = 0 ) = (x = (− 6 + sqrt

(6 2 − 4 ∗ 12 ∗ (−1 ))) / (2 ∗ 12 ) ∨ x = (− 6 − sqrt (6 2 − 4 ∗ 12 ∗ (−1 ))) /
(2 ∗ 12 ))

using discrim-def by(subst discriminant-iff , eval, force)

then show (h x = 0 ) = (x = (− 6 + sqrt 84 ) / 24 ∨ x = (− 6
− sqrt 84 ) / 24 )

using h-def by auto
qed

have right-root-positive: (− 6 + sqrt 84 ) / 24 > 0
proof −

have − 6 + sqrt 84 > − 6 + sqrt 64
by (smt (verit) real-sqrt-less-mono)

then show (− 6 + sqrt 84 ) / 24 > 0
by simp

qed
then have left-root-neg: 0 > (− 6 − sqrt 84 ) / 24

by fastforce
have h-pos-on-interval: ∀ x ∈ {0 ..<(−6 + sqrt 84 ) / 24}. h x > 0
proof(rule ccontr)

assume ¬ (∀ x∈{0 ..<(− 6 + sqrt 84 ) / 24}. 0 < h x)
then obtain z where z-def : z ∈ {0 ..<(− 6 + sqrt 84 ) / 24} ∧

0 ≥ h z
by fastforce

then have z-not-root: z 6= (− 6 + sqrt 84 ) / 24 ∧ z 6= (− 6 −
sqrt 84 ) / 24

using z-def by force
show False
proof(cases h z = 0 )

show h z = 0 =⇒ False
using h-roots z-not-root by blast

next
assume h z 6= 0
then have hz-neg: h z < 0

using z-def by auto
have ∃ x. 0 ≤ x ∧ x ≤ z ∧ h x = 0
proof(rule IVT2 ′)

show h z ≤ 0
by (simp add: z-def )

show 0 ≤ h 0
by (simp add: h-def )

show 0 ≤ z
using z-def by fastforce

show continuous-on {0 ..z} h
by (meson continuous-at-imp-continuous-on diff-h

field-differentiable-imp-continuous-at)
qed
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then show False
by (metis atLeastLessThan-iff h-roots left-root-neg not-less z-def )

qed
qed

have (−6 + sqrt 84 ) / 24 > 1 / (3 ∗ pi)
proof −

have i1 : 64 / pi^2 < 8
proof −

have pi∗pi > 3∗3
by (meson pi-gt3 mult-strict-mono pi-gt-zero verit-comp-simplify(7 ))

then have pi^2 > 9
by (simp add: power2-eq-square)

then have 64/pi^2 < 64/8
by (smt (verit) frac-less2 )

also have ... = 8
by eval

finally show ?thesis.
qed

have i2 : 96/pi < 32
proof −

have 96/pi < 96/3
by (meson frac-less2 order .refl pi-gt3 verit-comp-simplify(19 ))

also have ... = 32
by eval

finally show ?thesis.
qed

have (8/pi + 6 )2 < 84
proof −

have ((8 ::real)/pi + 6 )2 = (8/pi)2 + 2∗(8/pi)∗6 + 6 2

by (simp add: power2-sum)
also have ... = 8 2/pi2 + 2∗(8/pi)∗6 + 6 2

by (simp add: power-divide)
also have ... = 64/pi2 +96/pi + 36

by simp
also have ... < 84

using i1 i2 by linarith
finally show ?thesis.

qed
then have lt-sqrt84 : 8/pi + 6 < sqrt(84 )

using real-less-rsqrt by presburger
have lt-3pi-sqrt84 : 24 + 18∗pi < 3 ∗ pi ∗ sqrt (84 )
proof −

have 24 + 18∗pi = 3∗8 + 3∗6∗pi
by simp

also have ... = 3∗pi∗(8/pi) + 3∗pi∗6
by simp
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also have ... = 3∗pi∗((8/pi)+6 )
by (simp add: distrib-left)

also have ... < 3 ∗ pi ∗ sqrt(84 )
by (simp add: lt-sqrt84 )

finally show ?thesis.
qed
have (−6+sqrt(84 ))∗(3∗pi) > 24
proof −

have (−6+sqrt(84 ))∗(3∗pi) = −6∗(3∗pi) + sqrt(84 )∗(3∗pi)
by (meson ring-class.ring-distribs(2 ))

also have ... = −18∗pi + 3∗pi ∗ sqrt(84 )
by simp

also have ... > 24
using lt-3pi-sqrt84 by auto

finally show ?thesis.
qed
then have (−6+sqrt(84 ))∗(3∗pi) / 24 > 1

by simp
then show (−6+sqrt(84 )) / 24 > 1 / (3∗pi)

by (metis pi-gt-zero pos-divide-less-eq times-divide-eq-left
zero-compare-simps(6 ) zero-less-numeral)

qed
then have x-nc c < (−6+sqrt(84 )) / 24

by (metis dual-order .strict-trans2 inverse-eq-divide x-nc-bound)
then have h-x-nc-pos: h (x-nc c) > 0

by (simp add: h-pos-on-interval less-eq-real-def x-nc-pos)

have deriv (deriv f ) (x-nc c) ≥ (sqrt(2 )/2 ) ∗ h (x-nc c)
by (metis Groups.mult-ac(2 ) snd-deriv-bound diff-add-eq h-def

mult-minus-left uminus-add-conv-diff )
then show ?thesis

by (smt (verit) h-x-nc-pos half-gt-zero-iff mult-pos-pos real-sqrt-gt-0-iff )
qed

qed
qed

then show 0 < 6 ∗ y ∗ sin (1 / y) + (12 ∗ y2 − 1 ) ∗ cos (1 / y) +
24 ∗ y2

by (smt (verit, best) deriv-f minimizer-dom ′)
qed

then show ∃ y∈{left-seq n..right-seq n}. y2 ∗ sin (1 / y) + 4 ∗ y ^ 3 ∗
cos (1 / y) + 8 ∗ y ^ 3 = 0 ∧ 0 < 6 ∗ y ∗ sin (1 / y) + (12 ∗ y2 − 1 ) ∗ cos (1
/ y) + 24 ∗ y2

using min-n-def by blast
qed

qed
qed

have optimality-conditions: ∀n. n 6= 0 −→ (∃ y ∈ {left-seq n .. right-seq n}.

50



(deriv f ) y = 0 ∧ deriv (deriv f ) y > 0 )
proof clarify

fix n::nat
assume 0 < n
then obtain min-n where min-n-def : min-n ∈{left-seq n..right-seq n}

∧ min-n2 ∗ sin (1 / min-n) + 4 ∗ min-n ^ 3 ∗ cos (1
/ min-n) + 8 ∗ min-n ^ 3 = 0

∧ 0 < 6 ∗ min-n ∗ sin (1 / min-n) + (12 ∗ min-n2

− 1 ) ∗ cos (1 / min-n) + 24 ∗ min-n2

using first-and-second-order-conditions bot-nat-0 .not-eq-extremum by pres-
burger

have fst-order-condition: deriv f min-n = 0
using deriv-f min-n-def by presburger

have snd-order-condition: deriv (deriv f ) min-n > 0
using deriv-f min-n-def by fastforce

show ∃ y∈{left-seq n..right-seq n}. deriv f y = 0 ∧ 0 < deriv (deriv f ) y
using fst-order-condition min-n-def snd-order-condition by blast

qed

have seq-of-local-minizers-exists: ∀n. n 6= 0 −→ (∃ y ∈ {left-seq n .. right-seq
n}. local-minimizer f y)

proof(clarify)
fix n::nat
assume n-pos: 0 < n
then obtain y where y-def : (y ∈ {left-seq n .. right-seq n} ∧ (deriv f ) y =

0 ∧ deriv (deriv f ) y > 0 )
using gr-implies-not0 optimality-conditions by presburger

have right-seq-def2 : right-seq n = inverse (pi + 2 ∗ real n ∗ pi)
by (metis id-apply less-not-refl n-pos of-nat-eq-id of-nat-in-Nats right-seq-def )

have y ∈ {left-seq n..right-seq n} ∧ local-minimizer f y
proof(subst second-derivative-test[where a = left-seq n, where b = right-seq

n])
show proper-interval: left-seq n < right-seq n
by (metis (no-types) id-apply n-pos of-nat-eq-id of-nat-in-Nats rel-simps(70 )

zero-lt-left-seq-lt-right-seq-both-pos)
show C-k-on 2 f {left-seq n <..<right-seq n}
proof(rule C-k-on-subset[where U = {0<..<(1 ::real)}])

show f-contin-diff-on-right: C-k-on 2 f {0<..<(1 ::real)}
proof(rule C2-on-open-U-def2 )

show open {0<..<(1 ::real)}
using lemma-interval by(subst open-dist, subst dist-real-def , simp add:

abs-minus-commute lemma-interval-lt)
show f differentiable-on {0<..<(1 ::real)}

by (meson deriv-f differentiable-on-subset top.extremum)
show deriv f differentiable-on {0<..<(1 ::real)}

by (meson deriv-f differentiable-on-subset top.extremum)
show continuous-on {0<..<(1 ::real)} (deriv (deriv f ))
proof −
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have ∀ x ∈ {0<..<1}. deriv (deriv f ) x = 6∗x ∗ sin(1/x) + (12∗x^2
− 1 )∗cos(1/x) + 24∗x^2

by (simp add: deriv-f )
moreover have continuous-on {0<..<(1 ::real)} (λx. 6∗x ∗ sin(1/x)

+ (12∗x^2 − 1 )∗cos(1/x) + 24∗x^2 )
proof −

have {0<..<(1 ::real)} ⊆ {x :: real. x>0}
by fastforce

moreover have continuous-on {x :: real. x>0} (λx. 6∗x ∗ sin(1/x)
+ (12∗x^2 − 1 )∗cos(1/x) + 24∗x^2 )

by (auto intro!: continuous-intros)
ultimately show ?thesis

using continuous-on-subset by blast
qed
ultimately show continuous-on {0<..<1} (deriv (deriv f ))

using continuous-on-cong by fastforce
qed

qed

show open {left-seq n<..<right-seq n} ∧ {left-seq n<..<right-seq n} ⊂
{0<..<1}

proof −
have 0 < left-seq n

by (metis id-apply n-pos of-nat-eq-id of-nat-in-Nats order .asym
zero-lt-left-seq-lt-right-seq-both-pos)

moreover have right-seq n < 1
using right-seq-def2

by (smt (verit, ccfv-SIG) inverse-1 inverse-le-imp-le mult-sign-intros(5 )
n-pos of-nat-0-less-iff pi-gt3 )

ultimately show ?thesis
using proper-interval by fastforce

qed
qed

show y ∈ {left-seq n<..<right-seq n}
proof −

have y ∈ {left-seq n..right-seq n}
using y-def by blast

moreover have y 6= left-seq n
proof(rule ccontr)

assume ¬ y 6= left-seq n
then have deriv f y 6= 0

using deriv-f first-and-second-order-conditions
by (metis n-pos rel-simps(70 ) y-def )

then show False
by (simp add: y-def )

qed
moreover have y 6= right-seq n
proof(rule ccontr)
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assume ¬ y 6= right-seq n
then have deriv f y 6= 0

using deriv-f first-and-second-order-conditions
by (metis n-pos rel-simps(70 ) y-def )

then show False
by (simp add: y-def )

qed
ultimately show y ∈ {left-seq n<..<right-seq n}

by auto
qed
show deriv f y = 0 and 0 < deriv (deriv f ) y

using y-def by auto
show y ∈ {left-seq n..right-seq n} ∧ True

using y-def by blast
qed
then show ∃ y∈{left-seq n..right-seq n}. local-minimizer f y

by blast
qed
show ∃ x-seq. (∀n. local-minimizer f (x-seq n) ∧ x-seq n 6= 0 ) ∧ x-seq −−−−→ 0
proof −

define x-seq where
x-seq n = (SOME y. y ∈ {left-seq (n+1 )..right-seq (n+1 )} ∧ local-minimizer

f y) for n
have x-seq-prop: ∀n. x-seq n ∈ {left-seq (n+1 )..right-seq (n+1 )} ∧ lo-

cal-minimizer f (x-seq n)
by (metis (mono-tags, lifting) seq-of-local-minizers-exists someI-ex verit-eq-simplify(7 )

x-seq-def zero-eq-add-iff-both-eq-0 )

from x-seq-prop have bounds: ∀n. left-seq (n+1 ) ≤ x-seq n ∧ x-seq n ≤
right-seq (n+1 )

by auto

have nonzero: ∀n. x-seq n 6= 0
by (metis Suc-eq-plus1 bounds id-apply nat.simps(3 ) not-less of-nat-eq-id

of-nat-in-Nats zero-lt-left-seq-lt-right-seq-both-pos)

have left-seq-converges: left-seq −−−−→ 0
proof (rule LIMSEQ-I )

fix ε :: real
assume ε-pos: 0 < ε
then obtain N where N-def : (N ::nat) = d1 / (2 ∗ pi ∗ ε)e + 1

by (metis add-mono-thms-linordered-field(5 ) arithmetic-simps(50 ) di-
vide-pos-pos

mult-sign-intros(5 ) pi-gt-zero pos-int-cases semiring-norm(172 )
zero-less-ceiling zero-less-numeral)

then have N-gt-0 : N > 0
by (smt (verit) ε-pos divide-pos-pos gr0I int-ops(1 ) m2pi-less-pi mult-sign-intros(5 )

zero-less-ceiling)
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have ∀n ≥ N . |left-seq n| < ε
proof clarify

fix n :: nat
assume n-ge: n ≥ N
have left-seq-eqs: left-seq n = inverse ((5 ∗ pi / 4 ) + 2 ∗ pi ∗ real n)

unfolding left-seq-def
by (metis N-gt-0 id-apply left-seq-def linorder-not-less mult.commute n-ge

of-nat-eq-id of-nat-in-Nats vector-space-over-itself .scale-scale)
show |left-seq n| < ε
proof −

have |left-seq n| = 1 / ((5 ∗ pi / 4 ) + 2 ∗ pi ∗ real n)
by (simp add: left-seq-eqs inverse-eq-divide)

also have ... ≤ 1 / (2 ∗ pi ∗ real N )
by (smt (verit, best) N-gt-0 divide-nonneg-nonneg frac-le m2pi-less-pi

mult-left-mono mult-sign-intros(5 ) n-ge of-nat-0-less-iff of-nat-mono)
also have ... < 1 / (2 ∗ pi ∗ (d1 / (2 ∗ pi ∗ ε)e))
by (smt (verit, best) N-def ε-pos ceiling-correct divide-pos-pos frac-less2

m2pi-less-pi mult-less-cancel-left-pos mult-sign-intros(5 ) of-int-1 of-int-add of-int-of-nat-eq)
also have ... ≤ 1 / (2 ∗ pi ∗ (1 / (2 ∗ pi ∗ ε)))

by (smt (verit, ccfv-SIG) ε-pos ceiling-correct frac-le mult-left-mono
mult-sign-intros(5 ) pi-gt-zero zero-less-divide-iff )

also have ... = ε
by simp

finally show ?thesis.
qed

qed
then show ∃N . ∀n≥N . ‖left-seq n − 0‖ < ε

by (metis cancel-comm-monoid-add-class.diff-zero real-norm-def )
qed
have right-seq-converges: right-seq −−−−→ 0
proof (rule LIMSEQ-I )

fix ε::real
assume eps-pos: 0 < ε
then obtain N where N-def : (N ::nat) = d1 / (2 ∗ pi ∗ ε)e + 1

by (metis add-mono-thms-linordered-field(5 ) arithmetic-simps(50 ) di-
vide-pos-pos

mult-sign-intros(5 ) pi-gt-zero pos-int-cases semiring-norm(172 )
zero-less-ceiling zero-less-numeral)

hence N-gt-0 : N > 0
by (smt (verit) eps-pos divide-pos-pos gr0I int-ops(1 ) m2pi-less-pi

mult-sign-intros(5 )
zero-less-ceiling)

have ∀n≥N . |right-seq n| < ε
proof clarify

fix n :: nat
assume n-ge: n ≥ N
have right-seq-eqs: right-seq n = inverse (pi + 2 ∗ pi ∗ real n)

unfolding right-seq-def

54



by (metis N-gt-0 id-apply linorder-not-less mult.commute mult.left-commute
n-ge of-nat-eq-id of-nat-in-Nats right-seq-def )

show |right-seq n| < ε
proof −

have |right-seq n| = 1 / (pi + 2 ∗ pi ∗ real n)
by (simp add: right-seq-eqs inverse-eq-divide)

also have ... ≤ 1 / (2 ∗ pi ∗ real N )
by (smt (verit, best) N-gt-0 divide-nonneg-nonneg frac-le m2pi-less-pi

mult-left-mono mult-sign-intros(5 ) n-ge of-nat-0-less-iff
of-nat-mono)

also have ... < 1 / (2 ∗ pi ∗ (d1 / (2 ∗ pi ∗ ε)e))
by (smt (verit, best) N-def eps-pos ceiling-correct divide-pos-pos frac-less2

m2pi-less-pi
mult-less-cancel-left-pos mult-sign-intros(5 ) of-int-1 of-int-add

of-int-of-nat-eq)
also have ... ≤ 1 / (2 ∗ pi ∗ (1 / (2 ∗ pi ∗ ε)))
by (smt (verit, ccfv-SIG) eps-pos ceiling-correct frac-le mult-left-mono

mult-sign-intros(5 ) pi-gt-zero zero-less-divide-iff )
also have ... = ε

by simp
finally show ?thesis

by blast
qed

qed
then show ∃no. ∀n≥no. ‖right-seq n − 0‖ < ε

by (metis cancel-comm-monoid-add-class.diff-zero real-norm-def )
qed
have x-seq-converges: x-seq −−−−→ 0
proof (rule LIMSEQ-I )

fix ε :: real
assume ε-pos: 0 < ε

obtain N 0 where N 0: ∀n≥N 0. ‖left-seq (n+1 ) − 0‖ < ε
using left-seq-converges
by (meson LIMSEQ-iff ε-pos le-diff-conv)

obtain N 1 where N 1: ∀n≥N 1. ‖right-seq (n+1 ) − 0‖ < ε
using right-seq-converges
by (meson LIMSEQ-iff ε-pos le-diff-conv)

obtain N where N = max N 0 N 1

by simp
hence N-def : N ≥ N 0 ∧ N ≥ N 1

by simp

show ∃N . ∀n≥N . ‖x-seq n − 0‖ < ε
proof (intro exI [where x=N ] exI allI impI )

fix n :: nat
assume N-leq-n: N ≤ n
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from bounds have left-seq (n+1 ) ≤ x-seq n ∧ x-seq n ≤ right-seq (n+1 )
by auto

hence ‖x-seq n‖ ≤ ‖left-seq (n+1 )‖ ∨ ‖x-seq n‖ ≤ ‖right-seq (n+1 )‖
by force

moreover have ‖left-seq (n+1 )‖ < ε ∧ ‖right-seq (n+1 )‖ < ε
using N 0 N 1 N-leq-n N-def by auto

ultimately show ‖x-seq n − 0‖ < ε
by auto

qed
qed
then show ?thesis

using nonzero x-seq-prop by blast
qed

qed
then show ?thesis

using zero-min f-cont not-isolated-minimizer-def strict-local-minimizer-at-0 by
auto
qed

end
theory Unconstrained-Optimization

imports Auxilary-Facts
Minimizers-Definition
First-Order-Conditions
Second-Derivative-Test
Cont-Nonisolated-Strict-Local-Minimizer-Exists

begin

end
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