Uncertainty Principle

Alexander Treml

March 17, 2025

Abstract
This is a formal proof of the uncertainty principle known from

quantum mechanics. It is based upon work on complex vector spaces
contained in the QHLProver session[1]. The formalization follows the
proof outlined in the book "Quantum computation and quantum in-
formation" by Nielsen and Chuang][2].

Contents

1 Setup

2 Auxiliary Lemmas

3 Main Proof

theory Uncertainty-Principle
imports QHLProver.Complex-Matrix
begin

1 Setup

abbreviation bra-ket («(-|-)»)
where (u|v) = inner-prod u v

Fix an n-dimensional normalized quantum state).

locale quantum-state =
fixes n:: nat
and v:: complex Matrixz.vec
assumes dim[simpl: 1 € carrier-vec n
and normalized[simp]: (Y|¢) = 1

begin
Observables on ¢ are hermitian matrices of appropriate dimensions.

abbreviation observable:: complex Matriz.mat = bool where
observable A = A € carrier-mat n n A\ hermitian A

The mean value of an observable A is defined as (1|A|Y). It is useful
to have a scalar matrix of appropriate dimension containing this value. On
paper, this is usually implicit.
abbreviation mean-mat :: complex Matriz.mat = complex Matriz.mat (<{-)»)

where <<A>> = <77[J| A *o 1/1> ‘m 1m n

The standard deviation of an observable A = \/(¢[A%[¢)) — (Y| A|y))2.
Since the standard deviation is real (see lemma std-dev-real), we can define
it as being of type real using norm. This simultaneously restricts it to
positive values. (powers of two are expanded for simplicity)

abbreviation std-dev :: complex Matriz.mat = real (<A»)

where A A = norm (csqrt ((Y| (A * A %, ¥)) — (] A %,) x (Y| A x, U)))
end
abbreviation commutator :: complexr Matriz.mat = complex Matriz.mat = com-
plex Matriz.mat (<[-,-]»)

where commutator A B= (A +« B — B x A)
abbreviation anticommutator :: complex Matriz.mat = complex Matriz.mat =

complex Matriz.mat (<{-,->)
where anticommutator A B= (A« B+ B x A)

2 Auxiliary Lemmas

lemma inner-prod-distrib-add-mat:

fixes u v :: complex vec
assumes
u € carrier-vec n
v € carrier-vec m
A € carrier-mat n m
B € carrier-mat n m
shows (u| (A + B) x, v) = {u| A *, v) + (u| B %, v)
apply (subst add-mult-distrib-mat-vec)
using assms by (auto intro: inner-prod-distrib-right)

lemma inner-prod-distrib-minus-mat:
fixes u v :: complex vec
assumes
u € carrier-vec n
v € carrier-vec m
A € carrier-mat n m
B € carrier-mat n m
shows (u| (A — B) %, v) = (u| A *, v) — (u| B %, v)
apply (subst minus-mult-distrib-mat-vec)
using assms by (auto intro: inner-prod-minus-distrib-right)

Proving the usual Cauchy-Schwarz inequality using its formulation for
complex vector spaces.

lemma Cauchy-Schwarz:
assumes v € carrier-vec n u € carrier-vec n
shows norm ((u|v)) "2 < Re ((u|u) * (v|v))
proof—
have norm ({u|v)) 2 < ((u|u) * (v|v))
using assms
by (metis Cauchy-Schwarz-complez-vec complex-norm-square conjugate-complez-def
inner-prod-swap)
moreover have ((u|u) * (v|v)) € R
by (simp add: complez-is-Real-iff)
ultimately show ?thesis by (simp add: less-eq-complex-def)
qed

context quantum-state
begin

Show that the the standard deviation yields a real value. This justifies
our definition in terms of the norm.

lemma std-dev-real:
assumes observable A
shows csqrt (Y| (A = A =,) — (| A %y) x (Y] A %,) €R
proof (subst csqrt-of-real-nonneg)
— The term under the square root is real ...
have ((|A * A *,) — (YA % ¥) * (Y|4 %, ¥)) € R
apply (intro Reals-diff Reals-mult hermitian-inner-prod-real)
using assms by (auto simp: hermitian-def adjoint-mult)

then show Im ((V|A x A %, ¥) — (Y|A *, V) * (P|A %, ¥)) = 0
using complex-is-Real-iff by simp
next
have x:adjoint A = A using assms hermitian-def by blast
— ... and positive (Cauchy-Schwarz)
have (Y|A x, ¥) x (P|A *x,) < (Y|) * (V[A x A x, ¥)
apply (subst assoc-mult-mat-vec) prefer /
apply (subst (2) adjoint-def-alter) prefer /
apply (subst (2) adjoint-def-alter) prefer /
apply (subst (1 2) x)
apply (rule Cauchy-Schwarz-complez-vec|OF dim))
using assms by auto
then show 0 < Re ((¢|A * A x,) — (YA %, ¥) * (Y|A *, ¥))
by (simp add: less-eq-complez-def)
— Thus the result of the complex square root is real
qed simp

This is an alternative way of formulating the standard deviation.

lemma std-dev-alt:
assumes observable A
shof\jvs A A = norm (esqrt ({(¢] (A — (A)) * (A — (A)) *, ¥)))
p— Expand the matrix term
have (A4 — {A)) * (A — {A)) = (A + — (4)) * (4 + — {4))
using assms minus-add-uminus-mat by force
also have x: ... = A« A+ Ax — (A) + — (A) x A + — (A) = — (4)
apply (mat-assoc n)
using assms by auto
also have ... = A« A — (A) x A — (A) = A + (A) = (4)
using uminus-mult-right-mat assms by auto
also have ... = A x A — (Y| A %y V) -y A — (Y| A %, V) -y A+ (A) % (4)
using assms by auto
finally have 1:
(W] (A = (A)) = (A = (A)) = ¥) =
Yy simp

— The mean is linear, so it distributes over the matrix term ...
have 2:
<'¢|A * A *y ¢> - <¢|<¢‘A *y ¢> ‘m A *o ¢> - <¢|<¢|A *y ¢> ‘m A *v ¢> +

(I(A) * (A) *)
apply (subst inner-prod-distrib-add-mat) prefer 5

apply (subst inner-prod-distrib-minus-mat) prefer 5
apply (subst inner-prod-distrib-minus-mat)
using assms by auto

— ... and a scaling factor can be pulled outside

have 3: (Y[(Y|A #y) -m A %y) = (YA %y) * (V[A %y V)

by (metis assms dim inner-prod-smult-left mult-mat-vec-carrier smult-mat-mult-mat-vec-assoc)

— This also means that this is just the mean squared
have ([{A) * (A}, 1) = (GIA 5, ¥) * (BI{A) *, ¥)
apply (subst mult-smult-assoc-mat) prefer 3
apply (subst smult-mat-mult-mat-vec-assoc) prefer 3
apply (subst inner-prod-smult-left)
using assms by (auto introl: mult-mat-vec-carrier)
also have ... = (Y|4 %, P) x (Y|A *x,)
apply (subst smult-mat-mult-mat-vec-assoc) prefer 3
apply (subst inner-prod-smult-left[where n = n|)
using assms by auto

finally have 4: (¥[(A) « (A) *, ¥) = (V[A *, ¥) * (Y|A %, ¢) by simp

— With these four equivalences we can rewrite the standard deviation as specified
show ?thesis
by (simp add: 1 2 3 4)
qed

3 Main Proof

Note that when swapping two observables inside an inner product, it is the
same as conjugating the result.

lemma cnj-observables:

assumes observable A observable B

shows cnj (1| (A x B) , ¥) = (| (B * A) x, ¥)
proof —

have cnj (conjugate (A * B *, ¥|¢)) = (adjoint (B x A) x, ¥|1)

using assms by (metis (full-types) adjoint-mult complex-cnj-cnj conjugate-complex-def
hermitian-def)

then show ?thesis

using assms by (metis adjoint-def-alter dim inner-prod-swap mult-carrier-mat

mult-mat-vec-carrier)
qed

With the above lemma we can make two observations about the be-
haviour of the commutator/ anticommutator inside an inner product.

lemma commutator-im:
assumes observable A observable B
shows (Y] [A4, B] *, ¥) = 2 x i % Im((p| A * B *, 1))
proof —
have (] [4, B] *, %) = (| A * B *,) — (| B * A %, ¢)
using assms by (auto introl: inner-prod-distrib-minus-mat)
also have ... = (| A x B *,) — cnj (Y| A x B %, 9)
by (subst cnj-observables|OF assms], simp)
finally show ?thesis
using complez-diff-cnj by simp
qed

lemma anticommutator-re:
assumes observable A observable B
shows (Y| {A, B} %, ¥) = 2 % Re((¢)| A % B x, 1))
proof —
have (Y| {A, B} *, ¥) = (| A x B x, ¥) + (| B x A *, 1)
using assms by (auto introl: inner-prod-distrib-add-mat)
also have ... = (¢)| A x B, ¥) 4+ cnj (| A * B %, 1)
by (subst cnj-observables|OF assms], simp)
finally show ?thesis
using complez-add-cnj by simp
qed

This intermediate step already looks similar to the uncertainty principle.
The LHS will play the role of the lower bound in the uncertainty principle.
The RHS will turn into the standard deviation of our observables under a
certain substitution.

lemma commutator-ineq:

assumes observable A observable B

shows (norm (| [A, B] %, ¥)) 72 < 4 % Re ({(¢p| A x A x, ¥) * (Y| B x B %,
V)
proof —

— The inner product of our quantum state under A and B can be expressed in
terms of its real and imaginary part

let %z = Re((¢)| A x B x, 1))

let 2y = Im({()| A x B x, 9))

— These parts can be expressed using the commutator /anticommutator as shown
above
have im: (norm (| [A, B] %,)72 = 4 * 2y"2
apply (subst commutator-im[OF assms))
using cmod-power2 by simp

have re: (norm (| {A, B} %, ¥)) 72 = 4 % 2272
apply (subst anticommutator-re[OF assms])
using cmod-power2 by simp

— Meaning, the sum of the commutator terms gives us 2(¢)|AB|¢). Squared we
get ...
from im re have (norm (| [A, B] %, ¥)) 72 + (norm (| {A, B} %, ¢¥)) 72 =
4 % (2272 + 2y72)
by simp
also have ... = 4 x norm((¢)| A x B x, ¥)) "2
using cmod-power2 by simp
also have ... = 4 % norm((4 %, ¢¥| B *, ¥)) 2
apply (subst assoc-mult-mat-vec) prefer /
apply (subst adjoint-def-alter)
using assms hermitian-def by (auto, force)
— Now we use the Cauchy-Schwarz inequality

also have ... < / x Re ((A x, Y| A %, ¥) * (B %, ¥| B %, 0))

by (smt (verit) assms Cauchy-Schwarz dim mult-mat-vec-carrier)
— Rewrite this term
also have ... = / x Re ((¢| A x A %, ¥) x (| B * B %, 9))

apply (subst (1 2) assoc-mult-mat-vec) prefer 7

apply (subst (8 4) adjoint-def-alter)

using assms by (auto simp: hermitian-def)
— Dropping a positive term on the LHS does not affect the inequality
finally show ?thesis

using norm-ge-zero by (smt (verit, ccfu-threshold) zero-le-power2)

qged

This is part of the substitution we need in the final proof. This lemma
shows that the commutator simplifies nicely under that substitution.

lemma commutator-sub-mean[simp):
assumes A € carrier-mat n n B € carrier-mat n n
sho;vs [A — (A), B — (B)] = [4,B]
p— Simply expand everything. The unary minus signs are deliberate, because we
want to have addition in the parentheses. Otherwise mat-assoc cannot remove the
parentheses.
have [A — (A), B— (B)] = A*x B — (A) * B— A x (B) — (4) * (— (B))
—(Bx A+ (= ((B) x 4) + (= (B * (4))) — (B) * (= (4)))
apply (mat-assoc n)
using assms by auto
— Remove the last subtraction in the parentheses and unnecessary minus signs
also have ... = A« B — (A) *x B — A« (B) — (— ({(4) = (B))) — (Bx A+
(= ((B) * 4)) +b(— (B x (4))) = (= ((B) = (4))))
using assms by auto
also have ... = A« B— (A) * B— A« {(B) + — (— ((4) = (B))) — (B* A
+ (= ((B) * 4)) + (= (B = (4))) + (= (= ((B) = (4)))))
apply (mat-assoc n)
using assms by auto

also have ... = A x B — (A) «x B— A x (B) + (A) = (B) — (Bx A + (—
((B) + A) + (= (B * (A))) + (B) * {4))

by simp

— Remove parentheses

alsohave ... = A« B— (A) * B— Ax (B) + (4) x (B) — Bx A+ (— (—
((B) * A))) + (= (= (B x {4)))) — (B) + (4)

apply (mat-assoc n)
using assms by auto
also have ... =4« B — (A) * B— A% (B) + (A) * (B) — Bx A+ (B) x A
+ B (A) — (B) = (A)
using uminus-uminus-mat by simp
— Commutative mean
also have ..= A x B — (A) * B— Ax (B) + (A) « (B) — Bx A+ A x (B)
+ (A) * B — (A) = (B)
using assms by auto
— Reorder terms

also have ...= A« B— Bx A+ (A) *x B— (A) *x B+ A * (B) — A x (B)
+ (4) = (B) — (4) * (B)
apply (mat-assoc n)
using assms by auto
— Everything but the first two terms are eliminated, resulting in the commutator
finally show ?thesis using assms minus-r-inv-mat by auto
qed

theorem uncertainty-principle:

assumes observable C' observable D

shows A C x A D > norm (Y|[C,D] *, ¥) / 2
proof —

— Perform the substitution

let A =C — (C)

let B =D — (D)

— These matrices are valid observables

from assms have observables-A-B: observable ?A observable ?B
using hermitian-inner-prod-real assms Reals-cnj-iff
by (auto simp: hermitian-def adjoint-minus adjoint-one adjoint-scale)

— Start with commutator-ineq
have (norm (| [?A, ?B] *, ©¥)) 72 < 4 x Re ((¢| 24 * 2A x, ¥)) = ((¢| ?B *
B xy 1))
using commutator-ineq[OF observables-A-B] by auto
— Simplify the commutator
then have (norm (Y| [C, D] *, ¥)) "2 < 4 % Re (((¢| 4 * 24 %, ¥)) * ((¢|
B % 7B x, ¢)))
using assms by simp
— Apply sqrt to both sides
then have sqrt ((norm ((¢| [C, D] =, ¥)))72) < sqrt (4 * Re (({(¢)| 24 = 24
o 0)) + (0] 7B % 7B +, 1))
using real-sqrt-le-mono by blast
— Simplify
then have norm ((¢| [C, D] *, ¥)) < 2 * sqrt (Re (((¢0| 2A x 2A =, ¥)) * ((¢]
?B x 7B *, 9))))
by (auto cong: real-sqrt-mult)
— Because these inner products are positive and real, norm = Re
then have norm ((¢| [C, D] *, ¥)) < 2 x sqrt (|Re (((¢0| 2A * 24 %,) =
(6] 2B * 2B %, ¥))))
by (smt (verit, ccfv-SIG) real-sqrt-le-iff)
then have norm ((¢] [C, D] *, ¥)) < 2 % sqrt (norm (((¢| 2A x 24 %,) *
(6] 7B = 7B =, ¥))))
by (auto simp: in-Reals-norm Reals-cnj-iff cnj-observables observables-A-B)
— Rewrite term to recover the standard deviation (As formulated in std-dev-alt)
then have norm ((¢| [C, D] *, ¥)) < 2 % norm (csqrt ((| 24 % 24 %, 1)) *
norm (csqrt ((¢| ?B *x 2B %, 1)))
by (simp add: norm-mult real-sqrit-mult)

then show A C x A D > norm (Y|[C, D] *,) / 2
using assms by (auto cong: std-dev-alt)
qed

end

end

References

. Liu, B. Zhan, S. Wang, S. Ying, T. Liu, Y. Li, M. Ying, and N. Zhan.

1] J. Liu, B. Zhan, S. W S. Ying, T. Liu, Y. Li, M. Yi d N. Zh
Quantum hoare logic. Archive of Formal Proofs, March 2019. https:
//isa-afp.org/entries/ QHLProver.html, Formal proof development.

[2] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2010.

https://isa-afp.org/entries/QHLProver.html
https://isa-afp.org/entries/QHLProver.html

	Setup
	Auxiliary Lemmas
	Main Proof

