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Abstract

We present the Unified Policy Framework (UPF), a generic framework
for modelling security (access-control) policies; in Isabelle/HOL. UPF
emphasizes the view that a policy is a policy decision function that
grants or denies access to resources, permissions, etc. In other words,
instead of modelling the relations of permitted or prohibited requests
directly, we model the concrete function that implements the policy
decision point in a system, seen as an “aspect” of “wrapper” around
the business logic of a system. In more detail, UPF is based on the
following four principles: 1. Functional representation of policies, 2. No
conflicts are possible, 3. Three-valued decision type (allow, deny, un-
defined), 4. Output type not containing the decision only.
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1 Introduction

Access control, i.e., restricting the access to information or resources, is an important
pillar of today’s information security portfolio. Thus the large number of access control
models (e.g., [1, 5, 6, 15-17, 19, 21]) and variants thereof (e.g., [2, 2, 4, 7, 14, 18, 22|)
is not surprising. On the one hand, this variety of specialized access control models
allows concise representation of access control policies. On the other hand, the lack of a
common foundations makes it difficult to compare and analyze different access control
models formally.

We present formalization of the Unified Policy Framework (UPF) [13] that provides
a formal semantics for the core concepts of access control policiesb. It can serve as a
meta-model for a large set of well-known access control policies and moreover, serve as
a framework for analysis and test generation tools addressing common ground in policy
models. Thus, UPF for comparing different access control models, including a formal
correctness proof of a specific embedding, for example, implementing a role-based access
control policy in terms of a discretionary access enforcement architecture. Moreover,
defining well-known access control models by instantiating a unified policy framework
allows to re-use tools, such as test-case generators, that are already provided for the uni-
fied policy framework. As the instantiation of a unified policy framework may also define
a domain-specific (i. e., access control model specific) set of policy combinators (syntax),
such an approach still provides the usual notations and thus a concise representation of
access control policies.

UPF was already successful used as a basis for large scale access control policies in the
health care domain [10] as well as in the domain of firewall and router policies [12]. In
both domains, the formal policy specifications served as basis for the generation, using
HOL-TestGen [9], of test cases that can be used for validating the compliance of an
implementation to the formal model. UPF is based on the following four principles:

1. policies are represented as functions (rather than relations),
2. policy combination avoids conflicts by construction,
3. the decision type is three-valued (allow, deny, undefined),

4. the output type does not only contain the decision but also a ‘slot’ for arbitrary
result data.

UPF is related to the state-exception monad modeling failing computations; in some
cases our UPF model makes explicit use of this connection, although it is not central.
The used theory for state-exception monads can be found in the appendix.






2 The Unified Policy Framework (UPF)

2.1 The Core of the Unified Policy Framework (UPF)

theory
UPFCore
imports
Monads
begin

2.1.1 Foundation

The purpose of this theory is to formalize a somewhat non-standard view on the funda-
mental concept of a security policy which is worth outlining. This view has arisen from
prior experience in the modelling of network (firewall) policies. Instead of regarding
policies as relations on resources, sets of permissions, etc., we emphasise the view that
a policy is a policy decision function that grants or denies access to resources, permis-
sions, etc. In other words, we model the concrete function that implements the policy
decision point in a system, and which represents a "wrapper" around the business logic.
An advantage of this view is that it is compatible with many different policy models,
enabling a uniform modelling framework to be defined. Furthermore, this function is
typically a large cascade of nested conditionals, using conditions referring to an internal
state and security contexts of the system or a user. This cascade of conditionals can
easily be decomposed into a set of test cases similar to transformations used for binary
decision diagrams (BDD), and motivate equivalence class testing for unit test and se-
quence test scenarios. From the modelling perspective, using HOLas its input language,
we will consequently use the expressive power of its underlying functional programming
language, including the possibility to define higher-order combinators.

In more detail, we model policies as partial functions based on input data « (argu-
ments, system state, security context, ...) to output data 3:

datatype '« decision = allow '« | deny '«

type-synonym (‘a,’8) policy = ' — '8 decision (infixr <|—>» 0)

In the following, we introduce a number of shortcuts and alternative notations. The
type of policies is represented as:

translations (type) ‘o |—> '8 <= (type) '@ — 'B decision
type-notation policy (infixr «—» 0)



.. allowing the notation ‘a0 — '8 for the policy type and the alternative notations for
None and Some of the HOLlibrary ‘a option type:

notation  None (<L»)
notation  Some (<|-]» 80)

Thus, the range of a policy may consist of |accept z| data, of |deny z| data, as well
as L modeling the undefinedness of a policy, i.e. a policy is considered as a partial
function. Partial functions are used since we describe elementary policies by partial
system behaviour, which are glued together by operators such as function override and
functional composition.

We define the two fundamental sets, the allow-set Allow and the deny-set Deny (writ-
ten A and D set for short), to characterize these two main sets of the range of a policy.

definition Allow :: (‘a decision) set

where Allow = range allow

definition Deny :: (‘a decision) set
where Deny = range deny

2.1.2 Policy Constructors

Most elementary policy constructors are based on the update operation Fun.fun-upd-def
f(%a = ?b) = (Az. if x = %a then ?b else ?f x) and the maplet-notation a(z — y) used
for a(z — y).

Furthermore, we add notation adopted to our problem domain:

nonterminal policylets and policylet

syntax
-policylet! :: ['a, 'a] => policylet (- /=>4 )
-policylet2 :: ['a, 'a] => policylet (- J=>_/] =)
:: policylet => policylets (¢-))
-Maplets  :: [policylet, policylets] => policylets (¢-,/ -»)
-Maplets  :: [policylet, policylets] => policylets (<-,/ -»)
-MapUpd i ['a |=> ', policylets] => "a |—> b («-/'(-")» [900,0]900)
-emptypolicy :: 'a |[—> 'b («0»)

syntax-consts
-policylet] = allow and
-policylet? = deny and
-Maplets -MapUpd = fun-upd and
-emptypolicy = Map.empty
translations
-MapUpd m (-Maplets xy ms) = -MapUpd (-MapUpd m xy) ms
-MapUpd m (-policylet] x y) = m(z := CONST Some (CONST allow y))



-MapUpd m (-policylet? z y) = m(xz := CONST Some (CONST deny y))
0 = CONST Map.empty

Here are some lemmas essentially showing syntactic equivalences:

lemma test: O(z—ya, y—_b) = 0(z —4 a, y —_ b) (proof)

lemma test2: p(z—ya,0—_b) = p(w—_b) (proof)
We inherit a fairly rich theory on policy updates from Map here. Some examples are:

lemma pol-upd-trivl: t k = |allow x| = t(k—4x) =t

(proof )

lemma pol-upd-triv2: t k = |deny x| = t(k—_z) =t

(proof )

lemma pol-upd-allow-nonempty: t(k—yz) # 0
(proof )

lemma pol-upd-deny-nonempty: t(k—_x) # 0
(proof)

lemma pol-upd-eqD1 : m(a—iz) = n(a—4y) = =y

(proof )

lemma pol-upd-eqD2 : m(a—_z) = n(a—_y) = x =y

(proof )

lemma pol-upd-neql [simp]: m(a—yz) # n(a—_y)

(proof)

2.1.3 Override Operators

Key operators for constructing policies are the override operators. There are four differ-
ent versions of them, with one of them being the override operator from the Map theory.
As it is common to compose policy rules in a “left-to-right-first-fit”-manner, that one
is taken as default, defined by a syntax translation from the provided override operator
from the Map theory (which does it in reverse order).

syntax

-policyoverride :: ['a — 'b, 'a — 'b] = 'a — 'b (infixl «@>» 100)
syntax-consts

-policyoverride = map-add
translations

p@® a=gqg++p

Some elementary facts inherited from Map are:



lemma override-empty: p @ 0 = p

(proof)

lemma empty-override: 0 @ p = p
(proof)

lemma override-assoc: p1 €@ (p2 @ p3) = (p1 P p2) P p3
(proof)

The following two operators are variants of the standard override. For override_ A,
an allow of wins over a deny. For override_ D, the situation is dual.

definition override-A :: ['aw—'8, '‘a—'] = 'a—'f (infix] ++'-4A> 100)
where m2 ++-4A m1 =
(Az. (case m1 x of
lallow a] = |allow a]
| |[deny a] = (case m2 x of |allow b] = |allow b]
|- = [deny o))
| L = m2ux)

syntax

-policyoverride-A :: ['a — 'b, 'a — 'b] = 'a — b (infixl <P 4> 100)
syntax-consts

-policyoverride-A = override-A
translations

p@ag=p++-Agq

lemma override-A-empty[simpl: p @ a4 0 = p
(proof )

lemma empty-override-A[simp]: 0 @ a p = p
(proof)

lemma override-A-assoc: p1 @ 4 (p2 @ a4 p3) = (p1 G a p2) B a p3
(proof)

definition override-D :: ['a—'B, 'a—'8] = 'a—'f (infixl «++"-D» 100)
where m1 ++4-D m2 =
(Az. case m2 x of
|deny a] = |deny af
| |allow a| = (case m1 x of |deny b| = |deny b|
| - = |allow a))
| L= mlz

10



syntax

-policyoverride-D :: ['a — 'b, 'a — 'b] = 'a — 'b (infix] «@ p> 100)
syntax-consts

-policyoverride-D = override-D
translations

p@pg=p++-Dyg

lemma override-D-empty[simp]: p @ p 0 = p
(proof)

lemma empty-override-D[simp]: 0 @ p p = p
(proof )

lemma override-D-assoc: p1 @ p (p2 P p p3) = (p1 &b p2) B p p3
(proof)

2.1.4 Coercion Operators

Often, especially when combining policies of different type, it is necessary to adapt the
input or output domain of a policy to a more refined context.

An analogous for the range of a policy is defined as follows:

definition policy-range-comp :: ['B="y, '‘a—'8] = 'a —'y (infixl <o’-f> 55)
where
fo-fp= (\x. case p = of
lallow y| = [allow (f y)]

| Ldeny y| = |deny (fy)]
| L= 1)

syntax

-policy-range-comp :: ['B="y, ‘a—'B] = ‘o =’y (infixl <op> 55)
syntax-consts

-policy-range-comp = policy-range-comp
translations

pofq=po-fq

lemma policy-range-comp-strict : for O =0

(proof )

A generalized version is, where separate coercion functions are applied to the result
depending on the decision of the policy is as follows:

definition range-split :: [('B="y)x('B="y),/a — B8] = ‘a — 'y

11



(infixr «V» 100)
where (P) V p = (Az. case p x of
|allow y| = |allow ((fst P) y)|
| [deny y] = [deny ((snd P) y)]
| L = 1)

lemma range-split-strict[simp]: P V 0 = ()
(proof)

lemma range-split-charn:
(f,9) V p = (Az. case p = of
lallow z| = |allow (f z)]
| [deny z| = |deny (g z)]
| L = 1)
(proof )

The connection between these two becomes apparent if considering the following
lemma:

lemma range-split-vs-range-compose: (f.f) V.p = fos p

(proof )

lemma range-split-id [simp]: (id,id) V p = p
(proof )

lemma range-split-bi-compose [simpl: (f1,f2) V (g1,92) V p = (fl 0 g1,f2 0 ¢g2) V p
(proof)

The next three operators are rather exotic and in most cases not used.

The following is a variant of range_ split, where the change in the decision depends
on the input instead of the output.

definition dom-split2a :: [('a = "v) x (la ="),)a — B] = ‘a — 'y (infixr

Aay 100)
where P Aa p = (Az. case p z of
|allow y| = |allow (the ((fst P) x))]
| |deny y| = |deny (the ((snd P) z))]
| L = 1)

definition dom-split2 :: [(‘a = ) x ('a ="),/a — B] = 'a— 'y (infixr (A»
100)
where P A p = (A\z. case p = of
lallow y| = |allow ((fst P) x)]
| Ldeny y| = |deny ((snd P) 5)]
| L = 1)

12



definition range-split2 :: [('a = 'v) x (‘a =),/a — 8] = ‘a — ('8 x'y) (infixr
(V2) 100)
where P V2 p = (Az. case p x of
|allow y| = |allow (y,(fst P) x)]
| [deny y] = [deny (y,(snd P) z)]
| L = 1)

The following operator is used for transition policies only: a transition policy is trans-
formed into a state-exception monad. Such a monad can for example be used for test
case generation using HOL-Testgen [9].

definition policy2MON :: ("'x'c — 'ox'c) = (v =('o decision,'c) MONgEg)
where policy2MON p = (A v 0. case p (1,0) of
| (allow (outs,c”))| = |(allow outs, o) |
| |(deny (outs,0”))] = |(deny outs, o’)]
| L = 1)

lemmas UPFCoreDefs = Allow-def Deny-def override-A-def override-D-def pol-
icy-range-comp-def

range-split-def dom-split2-def map-add-def restrict-map-def
end

2.2 Elementary Policies

theory
FElementaryPolicies
imports
UPFCore
begin

In this theory, we introduce the elementary policies of UPF that build the basis for
more complex policies. These complex policies, respectively, embedding of well-known
access control or security models, are build by composing the elementary policies defined
in this theory.

2.2.1 The Core Policy Combinators: Allow and Deny Everything

definition
deny-pfun = (‘o ='B) = (‘a — 'B) (<AlID»)
where
deny-pfun pf = (X z. case pf x of

Lyl = |deny (y)]
|L=1)

13



definition
allow-pfun  :: ('a ='B) = (' — 'B) ( (AllA))
where
allow-pfun pf = (\ z. case pf z of

Ly] = Lallow (y)]
|L=1)

syntax

-allow-pfun :: ("o ='B) = (‘a— 'B) (<Ap)
syntax-consts

-allow-pfun = allow-pfun
translations

Ay f = AlIA f

syntax

-deny-pfun :: (' ='B) = (‘o — 'B) («Dp)
syntax-consts

-deny-pfun = deny-pfun
translations

D, f= AllD f

notation
deny-pfun (binder <V D) 10) and
allow-pfun (binder v A» 10)

lemma AllD-norm[simp|: deny-pfun (id o (A\z. |z])) = (V Dz. |z])
(proof)

lemma AllD-norm?2[simp|: deny-pfun (Some o id) = (V Dz. |z])
(proof)

lemma AllA-norm[simp]: allow-pfun (id o Some) = (V Az. |z])
(proof )

lemma AllA-norm?2[simp]: allow-pfun (Some o id) = (V Az. |z])
(proof)

lemma AllA-apply[simp]: (¥ Az. Some (P z)) z = |allow (P z)]
(proof)

lemma AllD-apply[simp]: (¥ Dz. Some (P z)) x = |deny (P )|
(proof )

lemma neg-Allow-Deny: pf # 0 = (deny-pfun pf) # (allow-pfun pf)

14



(proof )

2.2.2 Common Instances

definition allow-all-fun :: (‘a = 'B) = (‘a — 'B) (<Ap)
where allow-all-fun f = allow-pfun (Some o f)

definition deny-all-fun :: ('a = '8) = (‘a — 'B) («Dp»)
where deny-all-fun f = deny-pfun (Some o f)

definition
deny-all-id :: 'a — 'a (<Dp>) where
deny-all-id = deny-pfun (id o Some)

definition
allow-all-id  :: 'a — 'a (¢Ap») where
allow-all-id = allow-pfun (id o Some)

definition
allow-all  :: ('a — unit) (<Ay>) where
allow-all p = |allow ()]

definition
deny-all :: ('a — unit) («Dy») where
deny-all p = |deny ()]

.. and resulting properties:

lemma A; @ Map.empty = Aj
(proof)

lemma A; f @ Map.empty = Ay f
(proof )

lemma allow-pfun Map.empty = Map.empty
(proof )

lemma allow-left-cancel :dom pf = UNIV = (allow-pfun pf) @ = = (allow-pfun pf)

(proof)

lemma deny-left-cancel :dom pf = UNIV = (deny-pfun pf) @ = = (deny-pfun pf)
(proof)

15



2.2.3 Domain, Range, and Restrictions

Since policies are essentially maps, we inherit the basic definitions for domain and range
on Maps:

Map.dom_def : dom ?m = {a. fm a # L}

whereas range is just an abrreviation for image:

abbreviation range :: "(’a => ’b) => ’b set"
where -- "of function" ‘"range f == f ¢ UNIV"

As a consequence, we inherit the following properties on policies:
o Map.domD %a € dom ?m = 3b. m %a = |b]
e Map.domI ?m %a = |%b] = %a € dom ?m
e Map.domIff (%a € dom ?m) = (Ym %a # 1)
e Map.dom_const dom (Az. | ?fz]) = UNIV
o Map.dom_def dom ?m = {a. fm a # L}
e Map.dom_empty dom (Az. L) = {}
e Map.dom_eq_empty_conv (dom ?f = {}) = (?f = (Az. 1))
o Map.dom_eq_singleton_conv (dom ?f = {?z}) = (Jv. ?f = [%z — v])

o Map.dom_fun_upd dom (?f(%x := %y)) = (if %y = L then dom ?f — {?z} else
insert ?x (dom ?f))

o Map.dom_if dom (Axz. if ¢P x then ?f x else ?g ) = dom ?f N {z. ?P x} U dom
%9 N {z. = ?P z}

e Map.dom_map_add dom (?n @ ?m) = dom ?n U dom ?m

However, some properties are specific to policy concepts:

lemma sub-ran : ran p C Allow U Deny

(proof )

lemma dom-allow-pfun [simp]:dom(allow-pfun f) = dom f

(proof)

lemma dom-allow-all: dom(Ay f) = UNIV
(proof )

lemma dom-deny-pfun [simp]:dom(deny-pfun f) = dom f

16



(proof )

lemma dom-deny-all: dom(Dy f) = UNIV
(proof )

lemma ran-allow-pfun [simpl:ran(allow-pfun f) = allow (ran f)
(proof)

lemma ran-allow-all: ran(Ay id) = Allow

(proof )

lemma ran-deny-pfun[simp]: ran(deny-pfun f) = deny * (ran f)

(proof )

lemma ran-deny-all: ran(Dy id) = Deny
(proof)

Reasoning over dom is most crucial since it paves the way for simplification and reorder-
ing of policies composed by override (i.e. by the normal left-to-right rule composition
method.

Map.dom_map_add dom (%n @ ?m) = dom ?n U dom ?m

Map.inj_on_map_add_dom inj-on (¢m’ @ ¢m) (dom ?m’) = inj-on ?m’ (dom
?m’)

Map.map_add_comm dom ?mI1.0 N dom ?m2.0 = {} = m2.0 @ m1.0 =
m1.0 @ ?m2.0

Map.map_add_dom_app_simps(1) ?m € dom ?12.0 — (?12.0 @ ?11.0) ?m =
212.0 ?m

Map.map_add_dom_app_simps(2) ?m ¢ dom ?11.0 = (?12.0 @ ?11.0) ?m =
202.0 ?m

Map.map_add_dom_app_simps(3) ?m ¢ dom ?12.0 — (?12.0 @ ?11.0) ?m =
211.0 ?m

Map.map_add_upd_left ?m ¢ dom ?e2.0 — %e2.0 @ ?el.0(?m — %ul.0) =
(%e2.0 P ?e1.0)(?m — ?ul.0)

The latter rule also applies to allow- and deny-override.

definition dom-restrict :: ['a set, ‘a—'8] = 'a—'F (infixr «<» 55)
where S <p= (Az. ifz € Sthen p x else L)

lemma dom-dom-restrict[simp] : dom(S < p) = S N dom p
(proof )

17



lemma dom-restrict-idem[simp] : (dom p) < p = p

(proof )

lemma dom-restrict-inter[simp] : T < S<p=TNS <p

(proof)

definition ran-restrict :: ['a—'3,'8 decision set] = 'a —'f (infixr «» 55)
where p> S = (Az. if px € (Some‘S) then p x else L)

definition ran-restrict2 :: ['a—'B,'8 decision set] = ‘o —'B (infixr 2> 55)
where p>2S = (Az. if (the (p x)) € (S) then p x else L)

lemma ran-restrict = ran-restrict2

(proof )

lemma ran-ran-restrict[simp] : ran(p > S) = S N ran p

(proof)

lemma ran-restrict-idem[simp] : p > (ran p) = p

(proof )

lemma ran-restrict-inter[simp] : (p> S)> T =p>T NS

(proof )

lemma ran-gen-A[simp| : (V Az. |P z|) > Allow = (V Az. | P z])
(proof)

lemma ran-gen-D[simp] : (V Dz. |P z]) > Deny = (¥ Dz. | P z|)
(proof)
lemmas FlementaryPoliciesDefs = deny-pfun-def allow-pfun-def allow-all-fun-def
deny-all-fun-def
allow-all-id-def deny-all-id-def allow-all-def deny-all-def

dom-restrict-def ran-restrict-def

end
2.3 Sequential Composition

theory
SeqComposition

18



imports
ElementaryPolicies
begin

Sequential composition is based on the idea that two policies are to be combined
by applying the second policy to the output of the first one. Again, there are four
possibilities how the decisions can be combined.

2.3.1 Flattening

A key concept of sequential policy composition is the flattening of nested decisions.
There are four possibilities, and these possibilities will give the various flavours of policy
composition.

fun  flat-orA :: (‘a decision) decision = ('a decision)

where flat-orA(allow(allow y)) = allow y
|flat-orA(allow(deny y)) = allow y
|flat-orA(deny(allow y)) = allow y
|flat-orA(deny(deny y)) = deny vy

lemma flat-orA-deny|dest]:flat-orA © = deny y = = = deny(deny y)
(proof)

lemma flat-orA-allow[dest]: flat-orA z = allow y = x = allow(allow y)
V z = allow(deny y)
V z = deny(allow y)

(proof )

fun  flat-orD :: (‘a decision) decision = (‘a decision)

where flat-orD(allow(allow y)) = allow y
|flat-orD(allow(deny y)) = deny y
|flat-orD(deny(allow y)) = deny y
|flat-orD(deny(deny y)) = deny y

lemma flat-orD-allow|dest]: flat-orD z = allow y = = = allow(allow y)

(proof )

lemma flat-orD-deny|dest]: flat-orD © = deny y — 1z = deny(deny y)
V z = allow(deny y)
vV z = deny(allow y)

(proof)

fun  flat-1 :: ('« decision) decision = (‘a decision)
where flat-1(allow(allow y)) = allow y
|flat-1 (allow(deny y)) = allow y
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|flat-1 (deny(allow y)) = deny y
|flat-1(deny(deny y)) = denyy

lemma flat-1-allow|dest]: flat-1 x = allow y = x = allow(allow y) V = = allow(deny

Y)
(proof)

lemma flat-1-deny|dest]: flat-1 x = deny y = x = deny(deny y) V z = deny(allow

Y)
(proof )

fun  flat-2 :: (‘a decision) decision = ('a decision)
where flat-2(allow(allow y)) = allow y
|flat-2 (allow(deny y)) = deny y
|flat-2(deny(allow y)) = allow y

|flat-2(deny(deny y)) = deny y

lemma flat-2-allow|dest]: flat-2 x = allow y = z = allow(allow y) V z = deny(allow

Y)
(proof)

lemma flat-2-deny[dest]: flat-2 © = deny y = 1z = deny(deny y) V = = allow(deny
y)
(proof)

2.3.2 Policy Composition

The following definition allows to compose two policies. Denies and allows are trans-
ferred.

fun lift :: ("a — 'B) = (‘a decision —'3 decision)
where [lift f (deny s) = (case f s of

ly] = [deny y]
| L= 1)
| lift f (allow s) = (case f s of

ly] = Lallow y]
| L= 1)

lemma lift-mt [simp]: lift ) = ()
(proof)

Since policies are maps, we inherit a composition on them. However, this results in
nestings of decisions—which must be flattened. As we now that there are four different
forms of flattening, we have four different forms of policy composition:

definition
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comp-orA :: ['B—="y, 'a—'8] = 'a—'y (infixl o’-ord) 55) where
p2 o-orA pl = (map-option flat-orA) o (lift p2 oy, p1)

notation
comp-orA (infixl <oy 4> 55)

lemma comp-orA-mt[simpl:p oya 0 = 0

(proof )

lemma mt-comp-orA[simp|:0) oya p =0

(proof )

definition
comp-orD :: ['B="y, ‘"] = ‘a—"y (infixl <o’-orD) 55) where
p2 o-orD p1 = (map-option flat-orD) o (lift p2 o, pl)

notation
comp-orD (infixl <o,rDs 55)

lemma comp-orD-mt[simp):p o-orD ) = ()

(proof )

lemma mt-comp-orD|simpl:0 o-orD p = ()

(proof )

definition
comp-1 :: ['B—="y, 'a—'8] = ‘a—"y (infixl <o’-1» 55) where
p2 o-1 p1 = (map-option flat-1) o (lift p2 oy, pl)

notation
comp-1 (infixl <o1> 55)

lemma comp-1-mt[simp]:p o1 ) = ()

(proof )

lemma mt-comp-1[simp]:0 o1 p = 0
(proof)
definition
comp-2 :: ['B—="y, 'a—'B] = ‘a—'y (infixl <0’-2)> 55) where

p2 0-2 p1 = (map-option flat-2) o (lift p2 oy, pl)

notation
comp-2 (infixl (o9 55)
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lemma comp-2-mt[simp|:p oo O = ()

(proof )

lemma mt-comp-2[simp]:0 o2 p = 0

(proof)

end

2.4 Parallel Composition

theory
ParallelComposition
imports
ElementaryPolicies
begin

The following combinators are based on the idea that two policies are executed in
parallel. Since both input and the output can differ, we chose to pair them.

The new input pair will often contain repetitions, which can be reduced using the
domain-restriction and domain-reduction operators. Using additional range-modifying
operators such as V, decide which result argument is chosen; this might be the first or
the latter or, in case that 8 = -, and 8 underlies a lattice structure, the supremum or
infimum of both, or, an arbitrary combination of them.

In any case, although we have strictly speaking a pairing of decisions and not a nesting
of them, we will apply the same notational conventions as for the latter, i.e. as for
flattening.

2.4.1 Parallel Combinators: Foundations

There are four possible semantics how the decision can be combined, thus there are four
parallel composition operators. For each of them, we prove several properties.

definition prod-orA :['a—'B, v —'5] = (‘ax’y — 'Bx'6) (infixr «@Q va> 55)
where pl @ va p2 =
(Mz,y). (case p1 x of
lallow d1 ] =(case p2 y of
|allow d2] = |allow(d1,d2)]
| |deny d2] = |allow(d1,d2)]
| L= 1)
| |deny d1|=(case p2 y of
|allow d2] = |allow(d1,d2)]
| |deny d2] = |deny (d1,d2)]
| L= 1)
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| L= 1))

lemma prod-orA-mt[simpl:p @ va 0 =0
(proof)

lemma mi-prod-orA[simp]:0) @ va p =0
(proof)

lemma prod-orA-quasi-commute: p2 @ va pl = ((Mz,y). (y,2)) o-f (p1 Qva p2)))
o (M a,b).(b,a))
(proof )

definition prod-orD :['a — 8, v — 5] = (‘a x vy — '8 x §) (infixr «@Q vp>
55)
where p! @ vp p2 =
(Mz,y). (case p1 x of
lallow d1 | =(case p2 y of
|allow d2] = |allow(d1,d2)]
| |deny d2] = |deny(d1,d2)]
| L= 1)
| |deny d1|=(case p2 y of
lallow d2| = | deny(d1,d2)]|
| |deny d2] = |deny (d1,d2)]
| L= 1)
1= 1)

lemma prod-orD-mt[simp]:p @ vp 0 = 0
(proof)

lemma mt-prod-orD[simp|:0 @ vp p =0
(proof)

lemma prod-orD-quasi-commute: p2 @ vp pl = (A (z,y). (y,2)) o-f (p1 @vp p2)))
o (A(a,b).(b,a))
(proof )

The following two combinators are by definition non-commutative, but still strict.

definition prod-1 : ['a—'8, v =] = (‘ax’y — 'Bx'5) (infixr «Q 1> 55)
where p! @1 p2 =
(Mz,y). (case p1 z of
|allow d1 |=(case p2 y of
|allow d2] = |allow(d1,d2)]
| |deny d2] = |allow(d1,d2)]
| L= 1)
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| |deny d1| =(case p2 y of
|allow d2] = |deny(d1,d2)]
| |deny d2] = |deny(d1,d2)|
| L= 1)
L= 1))

lemma prod-1-mt[simp|:p @1 0 = 0
(proof)

lemma mt-prod-1[simp]:0 Q1 p =0
(proof)

definition prod-2 :: ['a—'3, v —0] = (‘ax’y — Bx%) (infixr «Q) 2> 55)
where pl Q2 p2 =
(Mz,y). (case p1 = of
|allow d1] =(case p2 y of
|allow d2] = |allow(d1,d2)]
| |deny d2] = |deny (d1,d2)]
| L= 1)
| |deny d1|=(case p2 y of
|allow d2]| = |allow(d1,d2)|
| |[deny d2] = |deny (d1,d2)]
| L= 1)
L =1))

lemma prod-2-mt[simp|:p Q2 0 = 0
(proof )

lemma mt-prod-2[simp):0 Qo2 p =0
(proof)

definition prod-1-id ::['aw—'5, ‘a—"y] = (‘a — Bx'y) (infixr «Q 11> 55)
where p @17 ¢ = (p &1 ¢) 0 (Az. (2,7))

lemma prod-1-id-mt[simpl:p Q17 0 = 0
(proof )

lemma mt-prod-1-id[simp]:0) Q17 p = 0
(proof)

definition prod-2-id ::['a—'g, ‘a—"y] = (‘a — 'Bx"y) (infixr «Q) 21> 55)
wherep @27 ¢ = (p @2 q) o (Az. (z,2))

lemma prod-2-id-mt[simp|:p Q27 0 = 0
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(proof )

lemma mt-prod-2-id[simp|:0) Q27 p = 0
(proof)

2.4.2 Combinators for Transition Policies

For constructing transition policies, two additional combinators are required: one com-
bines state transitions by pairing the states, the other works equivalently on general
maps.

definition parallel-map :: (‘a — '8) = (6 — ) =
(la x '§ — B x ') (infixr «Q) rr> 60)
where pI Q@ p2 = (A (z,y). case pl xz of |dl| =
(case p2 y of |d2]| = [(d1,d2)]
| L= 1)
| L= 1)

definition parallel-st :: (i x ‘o0 = ‘o) = (i x ‘o' = o) =
(i x 'o x "o = "o x ‘o) (infixr «Q s> 60)
where
Pl Qs p2 = (p1 @um p2) o (A (a,b,¢). ((a,0),a,c))

2.4.3 Range Splitting

The following combinator is a special case of both a parallel composition operator and
a range splitting operator. Its primary use case is when combining a policy with state
transitions.

definition comp-ran-split :: [('a = v) x (‘a =), 'd — 'B] = ('d x 'a) = (B x )
(infixr «Q) v> 100)
where P @ v p = Az. case p (fst x) of
lallow y| = (case ((fst P) (snd z)) of L = L | |z] = |allow

(4:2)])
(4:2)])

| |deny y| = (case ((snd P) (snd x)) of L = L | |z] = |deny

| L= 1
An alternative characterisation of the operator is as follows:

lemma comp-ran-split-charn:

(fu g) ®V b= (
(((p > Allow)Qva (4 f)) B
((p > Deny) @va (Dp g))))
(proof)
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2.4.4 Distributivity of the parallel combinators

lemma distr-orl-a: (F = F1 @ F2) = (N @1 F)of) =
(oroof) (N1 F1)of) @ (N &1 F2) o))
proof

lemma distr-orl: (F = F1 @ F2) = ((g o-f (N @1 F) )
((go-f (NQ1F1)of) D (90f (N1 F2) of)))

(proof )

lemma distr-or2-a: (F = F1 @ F2) = ((N @2 F) of) =
(oroof) (N®2F1)of) @ (N Q2 F2) of)))
Proo

lemma distr-or2: (F = F1 @ F2) = ((ro-f (N @2 F) of)) =
(oroof) ((ro-f (N2 F1)of)) @ (rof (N Q2F2) of)))
proo

lemma distr-orA: (F = F1 @ F2) = ((g o-f (N Qva F) of)) =
(oroof) (g o-f (N Qva F1) 0 f)) @ (90f (N Qva F2) 0/)))
proo

lemma distr-orD: (F = F1 @ F2) = ((g o-f (N Qvp F) of)) =
(oroof) (g o-f (N Qvp F1) 0f)) @ (90f (NQvp F2) o[))))
proof

lemma coerc-assoc: (r o-f P) o d = 1 o-f (P o d)

(proof )

lemmas ParallelDefs = prod-orA-def prod-orD-def prod-1-def prod-2-def paral-
lel-map-def

parallel-st-def comp-ran-split-def
end

2.5 Properties on Policies

theory
Analysis
imports
ParallelComposition
SeqComposition
begin

In this theory, several standard policy properties are paraphrased in UPF terms.
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2.5.1 Basic Properties
A Policy Has no Gaps

definition gap-free :: (‘a — 'b) = bool
where  gap-free p = (dom p = UNIV)

Comparing Policies
Policy p is more defined than q:

definition more-defined :: (‘a — 'b) =('a — 'b) = bool
where more-defined p ¢ = (dom g C dom p)

definition strictly-more-defined :: (‘a — 'b) =("a — 'b) = bool
where  strictly-more-defined p ¢ = (dom q C dom p)

lemma strictly-more-vs-more: strictly-more-defined p ¢ = more-defined p q

(proof)

Policy p is more permissive than q:

definition more-permissive :: (‘a — 'b) = (‘a — 'b) = bool (infixl «C 4> 60)
where pCy4 g = (V z. (case ¢ x of |allow y] = (3 z. (p z = |allow z]))

| |deny y| = True

| L = True))

lemma more-permissive-refl : p C4 p

(proof )

lemma more-permissive-trans : p T4 p’' = p' T4 p”’ = p T4 p”

(proof )

Policy p is more rejective than q:

definition more-rejective :: (‘a — 'b) = ('a — 'b) = bool (infixl <Cp» 60)
where p Cp ¢ = (Y z. (case q x of |deny y| = (3 2. (p v = |deny z]))

| lallow y| = True

| L = True))

lemma more-rejective-trans : p Cp p’ = p' Cp p”’ = p Cp p"”

(proof)

lemma more-rejective-refl : p Cp p
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(proof )

lemma Ay f E4 p

(proof )

lemma A; T4 p

(proof )

2.5.2 Combined Data-Policy Refinement

definition policy-refinement ::
('a— ") = ("a’ = 'a) =" = 'b) = (‘a’ — 'b’) = bool
(- C._ - [50,50,50,50]50)
where P Eabs,,absy, 4 =
(V a. case p a of
L = True
| lallow y| = (V a’€{z. abs, z=a}.
3 0. qa' = |allow b’|
A absy b' = y)
| Ldeny y] = (V a’e{z. abs, x=a}.
3 b qga’ = |deny b’
A absy b' = y))

theorem polref-refl: p Tiq ;0 p

(proof )

theorem polref-trans:
assumes A: p Cy g p’
and B:p’ Ty’ p”
shows p Cy,pr0p g p”
(proof)

2.5.3 Equivalence of Policies
Equivalence over domain D

definition p-eq-dom :: ('a — 'b) = 'a set = (‘a — 'b) =bool («- ~. -» [60,60,60]60)
where p=~pq = (VzeD. pz = qux)
p and q have no conflicts

definition no-conflicts :: (‘a — 'b) =('a — 'b) =-bool where
no-conflicts p ¢ = (dom p = dom q N\ (VY z&€(dom p).

(case p x of |allow y| = (3z. ¢z = |allow z])
| [deny y] = (32 gz = |deny z]))))
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lemma policy-eq:
assumes p-over-qgA: p C4 ¢
and qg-over-pA: qLCap
and p-over-gD: qCpp
and g¢-over-pD: p LCp g

and dom-eq: dom p = dom q
shows no-conflicts p q
(proof )

Miscellaneous

lemma dom-inter: [dom p N dom q ={};pz = |y]] = qz =1
(proof)

lemma dom-eq: domp Ndomq={} = pPaqg=pPbp ¢
(proof )

lemma dom-split-alt-def : (f, g) A p = (dom(p > Allow) < (As f)) @ (dom(p > Deny)
< (Dy 9))
(proof)

end

2.6 Policy Transformations

theory
Normalisation
imports
SeqComposition
ParallelComposition
begin

This theory provides the formalisations required for the transformation of UPF poli-
cies. A typical usage scenario can be observed in the firewall case study [12].

2.6.1 Elementary Operators

We start by providing several operators and theorems useful when reasoning about a list
of rules which should eventually be interpreted as combined using the standard override
operator.

The following definition takes as argument a list of rules and returns a policy where
the rules are combined using the standard override operator.

definition list2policy::('a — 'b) list = (‘a — 'b) where
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list2policy | = foldr Az y. (x @ y)) 1 0
Determine the position of element of a list.

fun position :: ' = '« list = nat where
position a || =0
|(position a (z#xs)) = (if a = x then 1 else (Suc (position a zs)))

Provides the first applied rule of a policy given as a list of rules.

fun applied-rule where
applied-rule C a (z#xs) = (if a € dom (C z) then (Some x)
else (applied-rule C a zs))
|applied-rule C a [] = None

The following is used if the list is constructed backwards.

definition applied-rule-rev where
applied-rule-rev C a x = applied-rule C a (rev x)

The following is a typical policy transformation. It can be applied to any type of
policy and removes all the rules from a policy with an empty domain. It takes two
arguments: a semantic interpretation function and a list of rules.

fun rm-MT-rules where
rm-MT-rules C (z#xs) = (if dom (C z)= {}
then rm-MT-rules C xs
else z#(rm-MT-rules C xs))
|rm-MT-rules C [] = ||

The following invariant establishes that there are no rules with an empty domain in a
list of rules.

fun none-MT-rules where
none-MT-rules C (z#xs) = (dom (C z) # {} A (none-MT-rules C xs))
|none-MT-rules C' || = True

The following related invariant establishes that the policy has not a completely empty
domain.

fun not-MT where
not-MT C (z#xs) = (if (dom (C z) = {}) then (not-MT C xs) else True)
|not-MT C' [] = False

Next, a few theorems about the two invariants and the transformation:
lemma none-MT-rules-vs-notMT: none-MT-rules Cp = p # [|] = not-MT C p
(proof)

lemma rmnMT: none-MT-rules C (rm-MT-rules C p)
(proof)
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lemma rmnMT2: none-MT-rules C p = (rm-MT-rules C'p) = p
(proof)

lemma nMTcharn: none-MT-rules C'p = (¥ r € set p. dom (Cr) # {})
(proof)

lemma nMTeqSet: set p = set s = none-MT-rules C' p = none-MT-rules C s

(proof)

lemma notMTnMT: [a € set p; none-MT-rules C p] = dom (C a) # {}
(proof )

lemma none-MT-rulesconc: none-MT-rules C (a@Q[b]) = none-MT-rules C a

(proof )

lemma nMTtail: none-MT-rules C p = none-MT-rules C (tl p)
(proof)

lemma not-MTimpnotMT|[simp|: not-MT C p = p # |
(proof )

lemma SRSnMT: — not-MT C p = rm-MT-rules C' p = ||
(proof)

lemma NMPcharn: [a € set p; dom (C a) # {}] = not-MT C p
(proof )

lemma NMPrm: not-MT C p = not-MT C (rm-MT-rules C p)
(proof)

Next, a few theorems about applied_ rule:

lemma mrconc: applied-rule-rev C z p = Some a = applied-rule-rev C x (b#p) =
Some a

(proof )

lemma mreg-end: [applied-rule-rev C' z b = Some r; applied-rule-rev C' z ¢ = Some ]
_—

applied-rule-rev C © (a#b) = applied-rule-rev C = (a#c)

(proof )

lemma mrconcNone: applied-rule-rev C'z p = None —
applied-rule-rev C © (b#p) = applied-rule-rev C z [b]
(proof)
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lemma mreg-endNone: [applied-rule-rev C z b = None; applied-rule-rev C z ¢ = None]
—
applied-rule-rev C z (a#b) = applied-rule-rev C = (a#tc)
(proof )

lemma mreg-end2: applied-rule-rev C x b = applied-rule-rev C x ¢ =
applied-rule-rev C x (a#b) = applied-rule-rev C z (a#c)
(proof)

lemma mreg-end3: applied-rule-rev C x p # None —>
applied-rule-rev C x (b # p) = applied-rule-rev C x (p)
(proof)

lemma mrNoneMT: [r € set p; applied-rule-rev C' x p = None] =

z ¢ dom (C'r)
(proof)

2.6.2 Distributivity of the Transformation.

The scenario is the following (can be applied iteratively):
e Two policies are combined using one of the parallel combinators
o (e.g. P =P1 P2) (At least) one of the constituent policies has
e a normalisation procedures, which as output produces a list of
e policies that are semantically equivalent to the original policy if

e combined from left to right using the override operator.

The following function is crucial for the distribution. Its arguments are a policy, a list
of policies, a parallel combinator, and a range and a domain coercion function.

fun prod-list :: (‘a —'8) = (('y =) list) =
((la ="8) = (v ='0) = ((a x y) = ('B x 9))) =
(B x ) = ') = (s = (‘a x 7)) >
(("'z — 'y) list) (infixr «Q) 1> 5/) where
prod-list x (y#ys) par-comb ran-adapt dom-adapt =
((ran-adapt o-f ((par-comb z y) o dom-adapt))#(prod-list x ys par-comb ran-adapt
dom-adapt))
| prod-list x [| par-comb ran-adapt dom-adapt = ||

An instance, as usual there are four of them.

definition prod-2-list :: [(‘a —'B), (("y —'0) list)] =
(8 5) = ) = (2 = (o x ) >
(("'z — 'y) list) (infixr <) 27> 55) where
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Qo y= Adr. (zQry) (Q2) dr)

lemma list2listNMT: = # [] = map sem z # |]
(proof)

lemma two-conc: (prod-list © (y#ys) p r d) = ((r o-f ((p x y) o d))#(prod-list x ys p
rd))
(proof)

The following two invariants establish if the law of distributivity holds for a combinator
and if an operator is strict regarding undefinedness.

definition is-distr where
is-distrp = (N gf. (W NP1 P2 ((go-f ((p N(P1 & P2))of)) =
((gof (p NP1)of) D (gof (p NP2) o0f)))))

definition is-strict where
is-strict p = (A rd. ¥ P1.(ro-f (p P1 0 o d)) =0)

lemma is-distr-orD: is-distr (Qvp) d r
(proof )

lemma is-strict-orD: is-strict (Qvp) d r

(proof )

lemma is-distr-2: is-distr (Q)2) d r
(proof )

lemma is-strict-2: is-strict (Q2) d r

(proof)

lemma domStart: t € dom pl = (p1 @ p2) t=plt
(proof )

lemma notDom: z € dom A = — A z = None

(proof )

The following theorems are crucial: they establish the correctness of the distribution.

lemma Norm-Distr-1: ((r o-f (((Q1) P1 (list2policy P2)) o d)) x =
oo ((list2policy (P1 QL P2) (Q1) r d)) z))
proof

lemma Norm-Distr-2: ((r o-f (Q2) P1 (list2policy P2)) o d)) z =
(listzpolicy ((P1 @1 P2) (®2)  d)) 2))(proof)
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lemma Norm-Distr-A: ((r o-f (Qva) P1 (list2policy P2)) o d)) x =
(oroof) ((list2policy ((P1 Q@1 P2) (Qva) rd)) z))
proof

lemma Norm-Distr-D: ((r o-f (((Q vp) P1 (list2policy P2)) o d)) z
((listepolicy (P1 @ P2) (®vp) rd)) z))

(proof )

Some domain reasoning

lemma domSubsetDistrl: dom A = UNIV = dom ((A(z, y). ) o-f (A Q1 B) o (A
z. (z,z))) = dom B
(proof)

lemma domSubsetDistr2: dom A = UNIV = dom ((A(z, y). ) o-f (A @2 B) o (A
z. (z,x))) = dom B
(proof)

lemma domSubsetDistrA: dom A = UNIV = dom ((A(z, y). ) o-f (A Qva B) o
(A z. (z,z))) = dom B
(proof)

lemma domSubsetDistrD: dom A = UNIV = dom ((A(z, y). z) o-f (A @vp B) o
(A z. (z,x))) = dom B
(proof)

end

2.7 Policy Transformation for Testing

theory
Normalisation TestSpecification
imports
Normalisation
begin

This theory provides functions and theorems which are useful if one wants to test
policy which are transformed. Most exist in two versions: one where the domains of the
rules of the list (which is the result of a transformation) are pairwise disjoint, and one
where this applies not for the last rule in a list (which is usually a default rules).

The examples in the firewall case study provide a good documentation how these
theories can be applied.

This invariant establishes that the domains of a list of rules are pairwise disjoint.

fun disjDom where

34



disjDom (z#xs) = ((Vy€(set xs). dom x N dom y = {}) A disjDom xs)
|disiDom [| = True

fun PUTList :: ('a — 'b) = 'a = (‘a — 'b) list = bool

where

PUTList PUT z (p#ps) = ((z € dom p — (PUT z = p x)) A (PUTList PUT x ps))
|PUTList PUT z [| = True

lemma distrPUTL1: x € dom P = (list2policy PL) x = P x
= (PUTList PUT © PL = (PUT z = P x))

(proof )

lemma PUTList-None: x ¢ dom (list2policy list) = PUTList PUT z list
(proof)

lemma PUTList-DomMT"
(Vyeset list. dom a N dom y = {}) = x € (dom a) = = ¢ dom (list2policy list)

(proof )

lemma distrPUTL2:

r € dom P = (list2policy PL) © = P v = disjDom PL = (PUT z = P 1) =
PUTList PUT z PL

(proof )

lemma distrPUTL:

[z € dom P; (list2policy PL) x = P z; disjDom PL| = (PUT © = P ) = PUTList
PUT z PL

(proo)

It makes sense to cater for the common special case where the normalisation returns
a list where the last element is a default-catch-all rule. It seems easier to cater for this
globally, rather than to require the normalisation procedures to do this.

fun gatherDomain-aur where

gatherDomain-auz (z#xs) = (dom z U (gatherDomain-auz xs))
|gatherDomain-aux || = {}
definition gatherDomain where gatherDomain p = (gatherDomain-auz (butlast p))
definition PUTListGD where PUTListGD PUT z p =

(((z ¢ (gatherDomain p) A z € dom (last p)) — PUT z = (last p) x) A
(PUTList PUT z (butlast p)))

definition disjiDomGD where disjDomGD p = disjDom (butlast p)
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lemma distrPUTLG1: [z € dom P; (list2policy PL) © = P x; PUTListGD PUT z PL]
= PUT'z = Px

(proof )

lemma distrPUTLG2:
PL # || = z € dom P = (list2policy (PL)) © = P © = disjDomGD PL —
(PUT z = P z) = PUTListGD PUT =z (PL)

(proof )

lemma distrPUTLG:
[z € dom P; (list2policy PL) x = P x; disjDomGD PL; PL # []] =
(PUT x = P x) = PUTListGD PUT x PL
(proof )

end

2.8 Putting Everything Together: UPF

theory
UPF
imports
Normalisation
NormalisationTestSpecification
Analysis
begin

This is the top-level theory for the Unified Policy Framework (UPF) and, thus, builds
the base theory for using UPF. For the moment, we only define a set of lemmas for all
core UPF definitions that is useful for using UPF:

lemmas UPFDefs = UPFCoreDefs ParallelDefs ElementaryPoliciesDefs
end
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3 Example

In this chapter, we present a small example application of UPF for modeling access
control for a Web service that might be used in a hospital. This scenario is motivated
by our formalization of the NHS system [10, 13].

UPF was also successfully used for modeling network security policies such as the ones
enforced by firewalls [12, 13]. These models were also used for generating test cases using
HOL-TestGen [9)].

3.1 Secure Service Specification

theory
Service
imports
UPF
begin

In this section, we model a simple Web service and its access control model that allows
the staff in a hospital to access health care records of patients.

3.1.1 Datatypes for Modelling Users and Roles
Users

First, we introduce a type for users that we use to model that each staff member has a
unique id:

type-synonym user = int
Similarly, each patient has a unique id:

type-synonym patient = int

Roles and Relationships
In our example, we assume three different roles for members of the clinical staff:
datatype role = ClinicalPractitioner | Nurse | Clerical

We model treatment relationships (legitimate relationships) between staff and patients
(respectively, their health records. This access control model is inspired by our detailed
NHS model.
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type-synonym Ir-id = int
type-synonym LR = Ir-id — (user set)

The security context stores all the existing LRs.
type-synonym Y = patient — LR
The user context stores the roles the users are in.

type-synonym v = user — role

3.1.2 Modelling Health Records and the Web Service API
Health Records

The content and the status of the entries of a health record

datatype data = dummyContent
datatype status = Open | Closed
type-synonym entry-id = int

type-synonym entry = status X user X data
type-synonym SCR = (entry-id — entry)
type-synonym DB = patient — SCR

The Web Service API

The operations provided by the service:

datatype Operation = createSCR user role patient
| appendEntry user role patient entry-id entry
| deleteEntry user role patient entry-id
| readEntry user role patient entry-id
| readSCR user role patient
| addLR wuser role patient Ir-id (user set)
| remove LR user role patient Ir-id
| changeStatus user role patient entry-id status
| deleteSCR wuser role patient
| editEntry user role patient entry-id entry

fun is-createSCR where

is-createSCR (createSCR u r p) = True
|is-createSCR © = False
fun is-appendEntry where

is-appendEntry (appendEntry u r p e ei) = True
|is-appendEntry x = False

fun is-deleteEntry where
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is-deleteEntry (deleteEntry u r p e-id) = True
|is-deleteEntry © = False

fun is-readEntry where
is-readEntry (readEntry u r p e) = True
|is-readEntry x = False

fun is-readSCR where
is-readSCR (readSCR u r p) = True
|is-readSCR x = False

fun is-changeStatus where
is-changeStatus (changeStatus u r p s ei) = True
|is-changeStatus © = False

fun is-deleteSCR where
is-deleteSCR (deleteSCR u r p) = True
|is-deleteSCR = = False

fun is-addLR where
is-addLR (addLR w r lrid Ir us) = True
|is-addLR © = False

fun is-removeLR where
is-removeLR (removeLR u r p Ir) = True
|is-removelL R x = False

fun is-editEntry where
is-editEntry (editEntry u r p e-id s) = True
|is-editEntry x = False

fun SCROp :: (Operation x DB) — SCR where
SCROp ((createSCR u r p), S) = Sp

(
|SCROp ((appendEntry uw rp eie), S) = Sp
|SCROp ((deleteEntry u r p e-id), S) = S p
|SCROp ((readEntry urpe), S)=Sp
|SCROp ((readSCR uw rp), S) =Sp
|SCROp ((changeStatus u rp s €i),S) = S p
|SCROp ((deleteSCR u r p),S) = Sp
|SCROp ((editEntry u r p e-id s),S) = S p

|ISCROp z = L

fun patientOfOp :: Operation = patient where
patientOfOp (createSCR uw r p) = p
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|patientOfOp (appendEntry v rp e ei) = p
|patientOfOp (deleteEntry u r p e-id) = p
|patientOfOp (readEntry wrpe) = p
|patientOfOp (readSCR u r p) = p
|patientOfOp (changeStatus uw rp s ei) = p
|patientOfOp (deleteSCR u r p) = p
|patientOfOp (addLR w r p lr ei) = p
|patientOfOp (removeLR uw rplr) = p
|patientOfOp (editEntry u r p e-id s) = p
fun userOfOp :: Operation = user where
userOfOp (createSCR u r p) = u
|userOfOp (appendEntry uw rp e ei) = u
|userOfOp (deleteEntry u r p e-id) = u
|userOfOp (readEntry u rp e) = u
|userOfOp (readSCR w r p) = u
|userOfOp (changeStatus u rp s ei) = u
|userOfOp (deleteSCR u r p) = u
|userOfOp (editEntry u r p e-id s) = u
|userOfOp (addLR w rp lrei) = u
|userOfOp (removeLR uwrplr) = u

fun roleOfOp :: Operation = role where
roleOfOp (createSCR u r p) = r
|roleOfOp (appendEntry u r p e ei) = r
|roleOfOp (deleteEntry u r p e-id) = 1
|roleOfOp (readEntry urpe) = r
|roleOfOp (readSCR w r p) = r
|roleOfOp (changeStatus v r p s ei) = r
|roleOfOp (deleteSCR uw r p) = r
|roleOfOp (editEntry w r p e-id s) = r
|roleOfOp (addLR wr p lr ei) = r
|roleOfOp (removeLR w rp lr) = r

fun contentOfOp :: Operation = data where
contentOfOp (appendEntry u r p ei e) = (snd (snd e))
|contentOfOp (editEntry u r p ei e) = (snd (snd e))

fun contentStatic :: Operation = bool where
contentStatic (appendEntry uw r p ei e) = ((snd (snd e)) = dummyContent)
|contentStatic (editEntry uw r p ei e) = ((snd (snd e)) = dummyContent)

|contentStatic x = True

fun allContentStatic where

40



allContentStatic (z#xs) = (contentStatic x A allContentStatic xs)
|allContentStatic || = True

3.1.3 Modelling Access Control

In the following, we define a rather complex access control model for our scenario that
extends traditional role-based access control (RBAC) [20] with treatment relationships
and sealed envelopes. Sealed envelopes (see [13] for details) are a variant of break-the-
glass access control (see [8] for a general motivation and explanation of break-the-glass
access control).

Sealed Envelopes

type-synonym SEPolicy = (Operation x DB — wunit)

definition get-entry:: DB = patient = entry-id = entry option where
get-entry S p e-id = (case Sp of L = L
| |Ser] = Ser e-id)

definition userHasAccess:: user = entry = bool where
userHasAccess u e = ((fst ) = Open V (fst (snd e) = u))

definition readEntrySE :: SEPolicy where
readEntrySE x = (case x of (readEntry u r p e-id,S) = (case get-entry S p e-id of
1l =1
| le] = (if (userHasAccess u e)
then |allow ()|

else deny ()] )
|z = 1)

definition deleteEntrySE :: SEPolicy where
deleteEntrySE © = (case x of (deleteEntry u r p e-id,S) = (case get-entry S p e-id of
1L =1
| le] = (if (userHasAccess u e)
then |allow ()|

else [deny ()]))
| 2= 1)

definition editEntrySE :: SEPolicy where
editEntrySE © = (case z of (editEntry u r p e-id s,5) = (case get-entry S p e-id of
1l=1
| le] = (if (userHasAccess u e)
then |allow ()]

else [deny ()]))
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|z = 1)

definition SEPolicy :: SEPolicy where
SEPolicy = editEntrySE @ deleteEntrySE @ readEntrySE @@ Au

lemmas SEsimps = SEPolicy-def get-entry-def userHasAccess-def
editEntrySE-def deleteEntrySE-def readEntrySE-def

Legitimate Relationships

type-synonym LRPolicy = (Operation x 3, unit) policy

fun hasLR:: user = patient = 3> = bool where
hasLR u p ¥ = (case ¥ p of L = False
| lirs|] = 3lr. lre(ran lrs) A u € Ir))

definition LRPolicy :: LRPolicy where

LRPolicy = (Mz,y). (if hasLR (userOfOp z) (patientOfOp x) y
then |allow ()|
else |deny ())))

definition createSCRPolicy :: LRPolicy where
createSCRPolicy x = (if (is-createSCR (fst z))
then |allow ()|
else 1)

definition addLRPolicy :: LRPolicy where
addLRPolicy © = (if (is-addLR (fst x))
then |allow ()|
else 1)

definition LR-Policy where LR-Policy = createSCRPolicy @ addLRPolicy @ LR-
Policy @ Ay

lemmas LRsimps = LR-Policy-def createSCRPolicy-def addLRPolicy-def LRPolicy-def
type-synonym FunPolicy = (Operation x DB x X unit) policy
fun createFunPolicy :: FunPolicy where
createFunPolicy ((createSCR u r p),(D,S)) = (if p € dom D
then | deny ()]

else |allow ()])
|createFunPolicy x = L
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fun addLRFunPolicy :: FunPolicy where
addLRFunPolicy ((addLR u r p l us),(D,S)) = (if | € dom S
then |deny ()]
else |allow ()])
|addLRFunPolicy x = L

fun removeL RFunPolicy :: FunPolicy where
removeLRFunPolicy ((removeLR u r p 1),(D,S)) = (if | € dom S
then | allow ()]

else | deny ()])
|removeLRFunPolicy v = L

fun readSCRFunPolicy :: FunPolicy where
readSCRFunPolicy ((readSCR u r p),(D,S)) = (if p € dom D
then |allow ()]

else | deny ()])
|readSCRFunPolicy x = L

fun deleteSCRFunPolicy :: FunPolicy where
deleteSCRFunPolicy ((deleteSCR u r p),(D,S)) = (if p € dom D
then |allow ()]

else | deny ()])
|deleteSCRFunPolicy x = L

fun changeStatusFunPolicy :: FunPolicy where
changeStatusFunPolicy (changeStatus u r p e s,(d,S)) =
(case d p of |z| = (if e € dom x
then | allow ()|
else |deny ()])

| - = ldeny ()])
|changeStatusFunPolicy x = L

fun deleteEntryFunPolicy :: FunPolicy where
deleteEntryFunPolicy (deleteEntry u r p e,(d,S)) =
(case d p of |z| = (if e € dom z
then |allow ()|
else | deny ()])

| - = [deny ()])
|delete EntryFunPolicy x = L

fun readEntryFunPolicy :: FunPolicy where
readEntryFunPolicy (readEntry u r p e,(d,S)) =
(case d p of |z| = (if e € dom z
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then |allow ()|

else |deny ()])

| - = Ldeny ()])
|read EntryFunPolicy x = L

fun appendEntryFunPolicy :: FunPolicy where
appendEntryFunPolicy (appendEntry u r p e ed,(d,S)) =
(case d p of |z| = (if e € domz
then | deny ()]
else |allow ()])

| - = Ldeny ()])
|appendEntryFunPolicy x = L

fun editEntryFunPolicy :: FunPolicy where
editEntryFunPolicy (editEntry u r p ei e,(d,S)) =
(case d p of |z| = (if ei € dom x
then |allow ()]
else | deny ()])

| - = Ldeny ()])
|editEntryFunPolicy v = L

definition FunPolicy where

FunPolicy = editEntryFunPolicy @ appendEntryFunPolicy €

readEntryFunPolicy @ deleteEntryFunPolicy @
changeStatusFunPolicy @ deleteSCRFunPolicy
removeLRFunPolicy @ readSCRFunPolicy
addLRFunPolicy @ createFunPolicy @ Ay

Modelling Core RBAC

type-synonym RBACPolicy = Operation X v — unit

definition RBAC :: (role x Operation) set where
RBAC = {(r,f). r = Nurse A is-readEntry f} U

{(r,f). r = Nurse A is-readSCR f} U

{(r.f). r = ClinicalPractitioner A is-appendEntry f} U
{(r.f). r = ClinicalPractitioner A is-deleteEntry f} U
{(r.f). r = ClinicalPractitioner A is-readEntry f} U
{(r.f). r = ClinicalPractitioner A is-readSCR f} U
{(r.f). r = ClinicalPractitioner A is-changeStatus f} U
{(r.f). r = ClinicalPractitioner A is-editEntry f} U
{(r.f). r = Clerical A is-createSCR f} U

{(r,f). r = Clerical A is-deleteSCR f} U

{(r,f). r = Clerical A is-addLR f} U
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{(r.f). r = Clerical A is-removeLR f}

definition RBACPolicy :: RBACPolicy where

RBACPolicy = (X (f,uc).
if  ((roleOfOp f,f) € RBAC A |roleOfOp f| = uc (userOfOp f))
then | allow ()]

else | deny ()])

3.1.4 The State Transitions and Output Function
State Transition

fun OpSuccessDB :: (Operation x DB) — DB where
OpSuccessDB (createSCR u r p,S) = (case S p of L = |S(p—0)]
1) = 1S))
|OpSuccessDB ((appendEntry u r p ei e),S) =
(case Spof L = |5]
| |z] = ((if et € (dom x)
then | S]
else | S(p — z(ei—e))])))
|OpSuccessDB ((deleteSCR u r p),S) = (Some (S(p:=1)))
|OpSuccessDB ((deleteEntry u r p ei),S) =
(case Sp of L = |S]
| L) = Some (S(p>(a(eiz=1)))))
|OpSuccessDB ((changeStatus u r p ei s),S) =
(case Sp of L = |S|
| |z] = (case x ei of
le] = |S(p — z(ei—(s,snd ¢€)))]
| L= [5])
|OpSuccessDB ((editEntry u r p et e),S) =
(case Sp of L =|5]
| |z] = (case x ei of
Le] = |S(p—=(z(ei—(e))))]
| L= 15])
|OpSuccessDB (z,5) = | S]

fun OpSuccessSigma :: (Operation x ¥) — ¥ where
OpSuccessSigma (addLR u r p lr-id us,S) =
(case S p of |lrs|] = (case (Irs lr-id) of
1L = |S(p—(lrs(lr-id—us))) |
| [z] = [S])
| L = [S(p—(Map.empty(lr-id—us)))])
| OpSuccessSigma (removeLR u r p Ir-id,S) =
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(case S p of Some lrs = | S(p—(Irs(lr-id:=1)))]
| L= 1[5])
| OpSuccessSigma (z,5) = | S|

fun OpSuccessUC :: (Operation x v) — v where
OpSuccessUC (f,u) = |u]

Output

type-synonym Output = unit

fun OpSuccessOutput :: (Operation) — Output where
OpSuccessOutput z = | ()]

fun OpFailOutput :: Operation — Output where
OpFailOutput © = [()]

3.1.5 Combine All Parts

definition SE-LR-Policy :: (Operation x DB x X, unit) policy where
SE-LR-Policy = (A(z,z). ) of (SEPolicy @ vp LR-Policy) o (A(a,b,c). ((a,b),a,c))

definition SE-LR-FUN-Policy :: (Operation x DB x X, unit) policy where
SE-LR-FUN-Policy = ((A(z,z). z) oy (FunPolicy @ vp SE-LR-Policy) o (Aa. (a,a)))

definition SE-LR-RBAC-Policy :: (Operation x DB x ¥ x v, unit) policy where
SE-LR-RBAC-Policy = (A(z,z). x)
of (RBACPolicy @ vp SE-LR-FUN-Policy)
o (A(a,b,c,d). ((a,d),(a,b,c)))

definition ST-Allow :: Operation x DB x ¥ x v — Qutput X DB X ¥ X v

where ST-Allow = ((OpSuccessOutput Q) rr (OpSuccessDB Q) s OpSuccessSigma
Qs OpSuccessUC))

o (((A(a;b,¢). ((a),(a,0,)))))

definition ST-Deny :: Operation X DB x ¥ X v — Qutput X DB x ¥ X v
where  ST-Deny = (X (ope,sp,si,uc). Some ((), sp,si,uc))

definition SE-LR-RBAC-ST-Policy :: Operation x DB x % X v +— Qutput x DB X
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Y X

where  SE-LR-RBAC-ST-Policy = ((X (z,y).y)
o ((ST-Allow,ST-Deny) Qv SE-LR-RBAC-Policy)
0 (\o.(2,2)))

definition PolMon :: Operation = (OQutput decision,DB x ¥ x v) MONgg
where  PolMon = (policy2MON SE-LR-RBAC-ST-Policy)

end

3.2 Instantiating Our Secure Service Example

theory
ServiceExample
imports
Service
begin

In the following, we briefly present an instantiations of our secure service example
from the last section. We assume three different members of the health care stafl and
two patients:

3.2.1 Access Control Configuration

definition alice :: user where alice = 1
definition bob :: user where bob = 2

definition charlie :: user where charlie = 8
definition patient! :: patient where patient] = 5
definition patient2 :: patient where patient2 = 6

definition UCO :: v where
UCO = Map.empty(alice— Nurse, bob— ClinicalPractitioner, charlie— Clerical)

definition entry! :: entry where
entryl = (Open,alice, dummyContent)

definition entry?2 :: entry where
entry2 = (Closed,bob, dummyContent)

definition entry3 :: entry where
entry3 = (Closed,alice, dummyContent)

definition SCRI :: SCR where
SCR1 = (Map.empty(1—entryl))
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definition SCR2 :: SCR where
SCR2 = (Map.empty)

definition Spine0 :: DB where
Spine0 = Map.empty(patient1—SCR1, patient2—SCR2)

definition LR1 :: LR where
LR1 =(Map.empty(1—{alice}))

definition X0 :: ¥ where
X0 = (Map.empty(patient]—LR1))

3.2.2 The Initial System State

definition o0 :: DB x Y xv where
o0 = (Spine0,%0,UC0)

3.2.3 Basic Properties

lemma [simp]: (case a of allow d = |X| | deny d2 = |Y]) = L = False
(proof )

lemma [cong,simp):
((if hasLR urp1-alice 1 ¥0 then |allow ()] else |deny ()]) = L) = False
(proof)

lemmas MonSimps = walid-SE-def unit-SE-def bind-SE-def
lemmas Psplits = option.splits unit.splits prod.splits decision.splits
lemmas PolSimps = valid-SE-def unit-SE-def bind-SE-def if-splits policy2MON-def
SE-LR-RBAC-ST-Policy-def map-add-def id-def LRsimps prod-2-def
RBACPolicy-def
SE-LR-Policy-def SEPolicy-def RBAC-def deleteEntrySE-def editEntrySE-def

readEntrySE-def o0-def Y0-def UCO-def patientl-def patient2-def LR 1-def
alice-def bob-def charlie-def get-entry-def SE-LR-RBAC-Policy-def Allow-def
Deny-def dom-restrict-def policy-range-comp-def prod-orA-def prod-orD-def
ST-Allow-def ST-Deny-def Spine0-def SCR1-def SCR2-def entryl-def

entry2-def
entry3-def FunPolicy-def SE-LR-FUN-Policy-def o-def image-def UPFDefs
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lemma SE-LR-RBAC-Policy ((createSCR alice Clerical patientl),00)= Some (deny ())
(proof)

lemma exBool[simp]: 3 a::bool. a

(proof)

lemma deny-allow[simp]: |deny ()| ¢ Some ‘ range allow
(proof )

lemma allow-deny[simp]: |allow ()| ¢ Some ¢ range deny

(proof )
Policy as monad. Alice using her first urp can read the SCR of patientl.

lemma
(00 = (0s < mbind [(createSCR alice Clerical patient1)] (PolMon);
(return (os = [(deny (Out) )]))))

(proof )

Presenting her other urp, she is not allowed to read it.

lemma SE-LR-RBAC-Policy ((appendEntry alice Clerical patientl ei d),00)= |deny
0]

(proof )

end
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4 Conclusion and Related Work

4.1 Related Work

With Barker [3], our UPF shares the observation that a broad range of access control
models can be reduced to a surprisingly small number of primitives together with a set
of combinators or relations to build more complex policies. We also share the vision that
the semantics of access control models should be formally defined. In contrast to [3], UPF
uses higher-order constructs and, more importantly, is geared towards machine support
for (formally) transforming policies and supporting model-based test case generation
approaches.

4.2 Conclusion Future Work

We have presented a uniform framework for modelling security policies. This might
be regarded as merely an interesting academic exercise in the art of abstraction, espe-
cially given the fact that underlying core concepts are logically equivalent, but presented
remarkably different from—apparently simple—security textbook formalisations. How-
ever, we have successfully used the framework to model fully the large and complex
information governance policy of a national health-care record system as described in
the official documents [10] as well as network policies [12]. Thus, we have shown the
framework being able to accommodate relatively conventional RBAC [20] mechanisms
alongside less common ones such as Legitimate Relationships. These security concepts
are modelled separately and combined into one global access control mechanism. More-
over, we have shown the practical relevance of our model by using it in our test gener-
ation system HOL-TestGen [9], translating informal security requirements into formal
test specifications to be processed to test sequences for a distributed system consisting
of applications accessing a central record storage system.

Besides applying our framework to other access control models, we plan to develop
specific test case generation algorithms. Such domain-specific algorithms allow, by ex-
ploiting knowledge about the structure of access control models, respectively the UPF,
for a deeper exploration of the test space. Finally, this results in an improved test
coverage.
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5 Appendix

5.1 Basic Monad Theory for Sequential Computations

theory
Monads
imports
Main
begin

5.1.1 General Framework for Monad-based Sequence-Test

As such, Higher-order Logic as a purely functional specification formalism has no built-
in mechanism for state and state-transitions. Forms of testing involving state require
therefore explicit mechanisms for their treatment inside the logic; a well-known technique
to model states inside purely functional languages are monads made popular by Wadler
and Moggi and extensively used in Haskell. HOLis powerful enough to represent the
most important standard monads; however, it is not possible to represent monads as
such due to well-known limitations of the Hindley-Milner type-system.

Here is a variant for state-exception monads, that models precisely transition functions
with preconditions. Next, we declare the state-backtrack-monad. In all of them, our
concept of i/o-stepping functions can be formulated; these are functions mapping input
to a given monad. Later on, we will build the usual concepts of:

1. deterministic i/o automata,
2. non-deterministic i/o automata, and

3. labelled transition systems (LTS)

State Exception Monads
type-synonym ('o, '0) MONgg = ‘o — (‘o x o)
definition bind-SE :: (‘o,'0c) MONgsg = (‘o = ('0o’,Jo) MONgsg) = ('0','s) MONgsg
where bind-SE f g = (Mo. case f o of None = None
| Some (out, 0’) = g out o)

notation bind-SE (<bindsg»)
syntax
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-bind-SE :: [pttrn,('o,)c) MON g g,('0",'o) MONsg] = ('0’,)o)MONsg
(«(2-4« - -»[5,8,8]8)
syntax-consts
-bind-SE = bind-SE
translations

z < f; g = CONST bind-SE f (% z . g)

definition unit-SE :: o = (o, '0)MONgsg  («(return -)» 8)
where  unit-SE e = (Ao. Some(e,0))
notation unit-SE (cunitsg>)

definition failsg :: (o, ') MONgp
where  failsgp = (\o. None)
notation failsg (failsp>)

definition assert-SE :: (‘o = bool) = (bool, ') MON s
where  assert-SE P = (A\o. if P o then Some(True,c) else None)
notation assert-SE (<assertsp))

definition assume-SE :: (‘o = bool) = (unit, ') MONgg
where  assume-SE P = (Ao. if 3o . P o then Some((), SOME o . P o) else None)
notation assume-SE (<assumespg))

definition if-SE :: ['c = bool, ('a, ') MONgpg, ('a, '0)MONgg| = (‘a, '0)MON g
where  if-SEc EF = (Ao. if c o then E o else F o)
notation if-SE (<ifsp»)

The standard monad theorems about unit and associativity:

lemma bind-left-unit : (x < return a; k) = k
(proof )

lemma bind-right-unit: (x < m; return ) = m

(proof )

lemma bind-assoc: (y < (z < m; k); h) = (z + m; (y < k; h))

(proof )

In order to express test-sequences also on the object-level and to make our theory
amenable to formal reasoning over test-sequences, we represent them as lists of input and
generalize the bind-operator of the state-exception monad accordingly. The approach is
straightforward, but comes with a price: we have to encapsulate all input and output data
into one type. Assume that we have a typed interface to a module with the operations
op1, Op2, - .., op, with the inputs 1, to, ..., t, (outputs are treated analogously). Then
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we can encode for this interface the general input - type:
datatype in = op1 11| ... | tn

Obviously, we loose some type-safety in this approach; we have to express that in traces
only corresponding input and output belonging to the same operation will occur; this
form of side-conditions have to be expressed inside HOL. From the user perspective, this
will not make much difference, since junk-data resulting from too weak typing can be
ruled out by adopted front-ends.

In order to express test-sequences also on the object-level and to make our theory
amenable to formal reasoning over test-sequences, we represent them as lists of input
and generalize the bind-operator of the state-exception monad accordingly. Thus, the
notion of test-sequence is mapped to the notion of a computation, a semantic notion;
at times we will use reifications of computations, i.e. a data-type in order to make
computation amenable to case-splitting and meta-theoretic reasoning. To this end, we
have to encapsulate all input and output data into one type. Assume that we have a
typed interface to a module with the operations opi, ops, ..., op, with the inputs ¢1,
L2, ..., tn (outputs are treated analogously). Then we can encode for this interface the
general input - type:

datatype in = op1 (1| ... | tn

Obviously, we loose some type-safety in this approach; we have to express that in traces
only corresponding input and output belonging to the same operation will occur; this
form of side-conditions have to be expressed inside HOL. From the user perspective, this
will not make much difference, since junk-data resulting from too weak typing can be
ruled out by adopted front-ends.

Note that the subsequent notion of a test-sequence allows the io stepping function
(and the special case of a program under test) to stop execution within the sequence;
such premature terminations are characterized by an output list which is shorter than
the input list. Note that our primary notion of multiple execution ignores failure and
reports failure steps only by missing results ...

fun  mbind :: L list = (v = ('o,'0) MONgg) = (‘o list,)o) MONgg
where mbind [] iostep o = Some([], o) |
mbind (a#H) iostep o =
(case iostep a o of
None = Some([], o)
| Some (out, o’) = (case mbind H iostep o’ of
None = Some([out],0”)
| Some(outs, o) = Some(out#outs,c”)))

As mentioned, this definition is fail-safe; in case of an exception, the current state is
maintained, no result is reported. An alternative is the fail-strict variant mbind’ defined
below.

lemma mbind-unit [simp]: mbind [| f = (return [])
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(proof )

lemma mbind-nofailure [simp|: mbind S f o # None

(proof )

The fail-strict version of mbind’ looks as follows:

fun  mbind' :: v list = (= (‘o,'0) MONgsg) = (o list,)Jo) MONgg
where mbind’ || iostep o = Some(][], o) |
mbind’ (a#H) iostep o =
(case iostep a o of
None = None
| Some (out, 0’) = (case mbind H iostep o' of
None = None — fail-strict
| Some(outs, o) = Some(out#outs,c”)))

mbind’ as failure strict operator can be seen as a foldr on bind—if the types would
match ...

definition try-SE :: ('o,'0) MONgg = (‘o option,’0) MONgsg
where try-SE ioprog = (A\o. case ioprog o of
None = Some(None, o)
| Some(outs, ') = Some(Some outs, o))

In contrast mbind as a failure safe operator can roughly be seen as a foldr on bind -
try: m1 ; try m2 ; try m3; .... Note, that the rough equivalence only holds for certain
predicates in the sequence - length equivalence modulo None, for example. However, if
a conditional is added, the equivalence can be made precise:

lemma mbind-try:
(z < mbind (a#S) F; M z) =
(a’ < try-SE(F a);
if a’ = None
then (M [])
else (x < mbind S F; M (the a' # z)))

(proof )

On this basis, a symbolic evaluation scheme can be established that reduces mbind-
code to try-SE-code and If-cascades.
definition alt-SE  :: [(‘o, '0)MONgg, ('o, '0)MONgg| = ('o, '0)MONggp  (infix]
Mgg» 10)

where (f Mgg g9) = (A 0. case f o of None = g o
| Some H = Some H)

definition malt-SE  :: (‘o, '0)MONgpg list = ('o, '0)MONgg
where malt-SE S = foldr alt-SE S failsg
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notation malt-SE ([ ]sg?)

lemma malt-SE-mt [simp]: [|sg [| = failsk

(proof )

lemma malt-SE-cons [simp]: [ |sg (a # S) = (a Nse ([1se 5))
(proof )

State-Backtrack Monads

This subsection is still rudimentary and as such an interesting formal analogue to the
previous monad definitions. It is doubtful that it is interesting for testing and as a
computational structure at all. Clearly more relevant is “sequence” instead of “set,”
which would rephrase Isabelle’s internal tactic concept.

type-synonym ('o, '0) MONgp = ‘o = (‘o x ‘o) set

definition bind-SB :: (o, '0)MONgp = (‘o = ('0/, '0)MONgg) = (o', '0)MONgp
where  bind-SB fgo =J ((Mout, o). (g out o)) *(f o))
notation bind-SB (<bindsp»)

definition unit-SB  :: ‘o = (o, '0)MONgp («(returns -)> 8)
where  unit-SB e = (Mo. {(e,0)})
notation unit-SB (<unitsp>)

syntax -bind-SB :: [pttrn,('0,'0) MONgp,('0’,'s) MONgsg] = ('0o’,/o)MONsp
(2-:=--)»15,8,8]8)

syntax-consts -bind-SB = bind-SB

translations

z:=f; g = CONST bind-SB f (% x . g)

lemma bind-left-unit-SB : (z := returns a; m) = m
(proof )

lemma bind-right-unit-SB: (x := m; returns ) = m

(proof )

lemma bind-assoc-SB: (y := (z := m; k); h) = (z := m; (y := k; h))
(proof)
State Backtrack Exception Monad

The following combination of the previous two Monad-Constructions allows for the se-
mantic foundation of a simple generic assertion language in the style of Schirmer’s Simpl-
Language or Rustan Leino’s Boogie-PL language. The key is to use the exceptional

o7



element None for violations of the assert-statement.
type-synonym (o, ‘o) MONgpr = ‘o0 = (('o x ‘o) set) option

definition bind-SBE :: ('0,)os)MONgpr = (‘o = ('0/,)'s)MONgpr) =
("o",Jo)MONspE
where  bind-SBE f g = (A\o. case f o of None = None
| Some S = (let S" = (M out, ). g out o) S
in if None € S’ then None
else Some(lJ (the ¢ S7))))

syntax -bind-SBE :: [pttrn,('0,/0) MONgspg,('o’,/o)MONspg] = ('0’,/o)MONgspg
(«(2-:=- - [5,8,8]8)
syntax-consts -bind-SBE = bind-SBE
translations
z:=f; g = CONST bind-SBE f (% z . g)

definition unit-SBE :: ‘o = (o, '0)MONgpr («(returning -)» 8)
where  unit-SBE e = (Ao. Some({(e,0)}))

definition assert-SBE  :: (‘o = bool) = (unit, '0) MONspE

where  assert-SBE e = (M\o. if e o then Some({((),0)})
else None)

notation assert-SBE (<assertspg»)

definition assume-SBE :: (‘o = bool) = (unit, '0)MONgspEg
where  assume-SBE e = (Ao. if e o then Some({((),0)})

else Some {})
notation assume-SBE (<assumespp))

definition havoc-SBE :: (unit, 'o)MONgspg
where  havoc-SBE = (Ao. Some({z. True}))
notation havoc-SBE (<havocspg)

lemma bind-left-unit-SBE : (z := returning a; m) = m

(proof )

lemma bind-right-unit-SBE: (z := m; returning ) = m

(proof)

lemmas auzx = trans|OF HOL.neq-commute, OF Option.not-None-eq|

lemma bind-assoc-SBE: (y :
(proof)
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5.1.2 Valid Test Sequences in the State Exception Monad

This is still an unstructured merge of executable monad concepts and specification ori-
ented high-level properties initiating test procedures.

definition valid-SE :: 'oc = (bool,’0) MONgg = bool (infix <=» 15)
where (0 = m) = (m o # None A fst(the (m 0)))

This notation consideres failures as valid—a definition inspired by I/O conformance.
Note that it is not possible to define this concept once and for all in a Hindley-Milner
type-system. For the moment, we present it only for the state-exception monad, although
for the same definition, this notion is applicable to other monads as well.

lemma syntaz-test :
o = (0s < (mbind vs ioprog); return(length s = length os))

(proof )

lemma valid-true[simp|: (o = (s < return x ; return (P s))) = P x
(proof )

Recall mbind_unit for the base case.

lemma valid-failure: ioprog a 0 = None —>
(0 E (s < mbind (a#S) ioprog ; M s)) =
(o = (M)
(proof)

lemma valid-failure” A 0 = None = —(0 = ((s < A ; M s)))

(proof)

lemma valid-successFElem:
M o = Some(f 0,0) = (c =EM)=fo
(proof )

lemma valid-success: ioprog a o = Some(b,0’) =
(0 | (s < mbind (a#S) ioprog ; M s)) =
(0" = (s < mbind S ioprog ; M (b#s)))
(proof )

lemma valid-success’: ioprog a o = Some(b,0c’) =

(0 = (s < mbind (a#S) ioprog ; return (P s))) =
(o' = (s < mbind S ioprog ; return (P (b#s))))
(proof)
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lemma valid-success". A o = Some(b,o’) = (c = ((s < 4 ; M 5))) = (o' = (M b))
(proof)

lemma valid-both: (o |= (s <— mbind (a#S) ioprog ; return (P s))) =
(case ioprog a o of
None = (o = (return (P [])))
| Some(b,c") = (0’ = (s < mbind S ioprog ; return (P (b#s)))))
(proof)

lemma valid-propagate-1 [simp]: (o |= (return P)) = (P)
(proof )

lemma valid-propagate-2: o = ((s +~ A; M s)) = 3 v o' the(A o) = (v,0') N o' |
(M )
(proof )

lemma valid-propagate-2" o = ((s < A ; M s)) = 3 a. (A o) = Some a A (snd a)
= (M (fst a))
(proof)

lemma valid-propagate-2": o = ((s < A; M s)) = 3 v o'. A o = Some(v,0') A o’

= (M v)
(proof )

lemma valid-propoagate-3[simpl: (oo = (Ao. Some (f o, 0))) = (f 00)
(proof )

lemma valid-propoagate-3'[simp]: —(oo = (Ao. None))
(proof)

lemma assert-dischl : P o = (0 = (¢ + assertsg P; M z)) = (0 = (M True))
(proof)

lemma assert-disch2 : = P o = = (0 |= (v < assertsg P ; M s))

(proof )

lemma assert-disch3 : = P o = = (0 |= (assertsg P))

(proof )

lemma assert-D : (0 |= (¢ < assertsg P; M z)) = P o A (0 = (M True))
(proof)

lemma assume-D : (o |= (z + assumesg P; M z)) = 3 0. (Po AN o= (M ()))
(proof )
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These two rule prove that the SE Monad in connection with the notion of valid se-
quence is actually sufficient for a representation of a Boogie-like language. The SBE
monad with explicit sets of states—to be shown below—is strictly speaking not neces-
sary (and will therefore be discontinued in the development).
lemma if-SE-D1 : P 0 = (0 = ifsg P B1 B2) = (0 E B1)

(proof)

lemma if—SE—DQ - Po— (O’ ': Z'fSE P Bl BQ) = (0’ ': Bg)
(proof )

lemma if-SE-split-asm : (0 |= ifsg P B1 Ba) = ((Po A (c = B1)) V(= PoA (o
= B2)))

(proof )
lemma if-SE-split : (0 = ifsg P B1 Bs) = (Po — (6 EB1)) AN (-~ Po— (0

By)))
(proof )

lemma [code]: (0 = m) = (case (m o) of None = Fualse | (Some (z,y)) = x)

(proof )

5.1.3 Valid Test Sequences in the State Exception Backtrack Monad

This is still an unstructured merge of executable monad concepts and specification ori-
ented high-level properties initiating test procedures.

definition valid-SBE :: 'oc = ('a,/'0) MONgpg = bool (infix (=gpp> 15)
where 0 =sprg m = (m o # None)

This notation considers all non-failures as valid.

lemma assume-assert: (0 =spp ( - = assumespp P ; assertspp Q)) = (P o — @
o)
(proof )
lemma assert-intro: Q 0 = o Egpgr (assertspr Q)
(proof)
end
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