
The Twelvefold Way

Lukas Bulwahn

March 17, 2025

Abstract

This entry provides all cardinality theorems of the Twelvefold Way.
The Twelvefold Way [1, 5, 6] systematically classifies twelve related
combinatorial problems concerning two finite sets, which include count-
ing permutations, combinations, multisets, set partitions and number
partitions. This development builds upon the existing formal develop-
ments [2, 3, 4] with cardinality theorems for those structures. It pro-
vides twelve bijections from the various structures to different equiva-
lence classes on finite functions, and hence, proves cardinality formulae
for these equivalence classes on finite functions.

Contents
1 Preliminaries 4

1.1 Additions to Finite Set Theory 4
1.2 Additions to Equiv Relation Theory 4

1.2.1 Counting Sets by Splitting into Equivalence Classes . 7
1.3 Additions to FuncSet Theory 8
1.4 Additions to Permutations Theory 9
1.5 Additions to List Theory . 10
1.6 Additions to Disjoint Set Theory 12
1.7 Additions to Multiset Theory 13
1.8 Additions to Number Partitions Theory 15
1.9 Cardinality Theorems with Iverson Function 15

2 Main Observations on Operations and Permutations 16
2.1 Range Multiset . 16

2.1.1 Existence of a Suitable Finite Function 16
2.1.2 Existence of Permutation 17

2.2 Domain Partition . 19
2.2.1 Existence of a Suitable Finite Function 19
2.2.2 Equality under Permutation Application 21
2.2.3 Existence of Permutation 21

2.3 Number Partition of Range 26

1

2.3.1 Existence of a Suitable Finite Function 26
2.3.2 Equality under Permutation Application 27
2.3.3 Existence of Permutation 28

2.4 Bijections on Same Domain and Range 35
2.4.1 Existence of Domain Permutation 35
2.4.2 Existence of Range Permutation 36

3 Definition of Equivalence Classes 37
3.1 Permutation on the Domain 37

3.1.1 Respecting Functions 38
3.2 Permutation on the Range . 40

3.2.1 Respecting Functions 41
3.3 Permutation on the Domain and the Range 43

3.3.1 Respecting Functions 45

4 Functions from A to B 49
4.1 Definition of Bijections . 49
4.2 Properties for Bijections . 49
4.3 Bijections . 51
4.4 Cardinality . 52

5 Injections from A to B 53
5.1 Properties for Bijections . 53
5.2 Bijections . 55
5.3 Cardinality . 56

6 Functions from A to B, up to a Permutation of A 57
6.1 Definition of Bijections . 57
6.2 Properties for Bijections . 57
6.3 Bijections . 60
6.4 Cardinality . 61

7 Injections from A to B up to a Permutation of A 61
7.1 Definition of Bijections . 61
7.2 Properties for Bijections . 62
7.3 Bijections . 65
7.4 Cardinality . 67

8 Surjections from A to B up to a Permutation on A 68
8.1 Properties for Bijections . 68
8.2 Bijections . 69
8.3 Cardinality . 70

2

9 Functions from A to B up to a Permutation on B 70
9.1 Definition of Bijections . 70
9.2 Properties for Bijections . 71
9.3 Bijections . 74
9.4 Cardinality . 75

10 Injections from A to B up to a Permutation on B 75
10.1 Properties for Bijections . 75
10.2 Bijections . 77
10.3 Cardinality . 77

11 Surjections from A to B up to a Permutation on B 78
11.1 Properties for Bijections . 78
11.2 Bijections . 80
11.3 Cardinality . 81

12 Surjections from A to B 81

13 Functions from A to B up to a Permutation on A and B 83
13.1 Definition of Bijections . 84
13.2 Properties for Bijections . 84
13.3 Bijections . 88
13.4 Cardinality . 89

14 Injections from A to B up to a permutation on A and B 89
14.1 Properties for Bijections . 89
14.2 Bijections . 91
14.3 Cardinality . 93

15 Surjections from A to B up to a Permutation on A and B 93
15.1 Properties for Bijections . 93
15.2 Bijections . 95
15.3 Cardinality . 96

16 Cardinality of Bijections 96
16.1 Bijections from A to B . 97
16.2 Bijections from A to B up to a Permutation on A 97
16.3 Bijections from A to B up to a Permutation on B 98
16.4 Bijections from A to B up to a Permutation on A and B . . . 99

17 Direct Proofs for Cardinality of Bijections 100
17.1 Bijections from A to B up to a Permutation on A 101

17.1.1 Equivalence Class . 101
17.1.2 Cardinality . 103

17.2 Bijections from A to B up to a Permutation on B 103

3

17.2.1 Equivalence Class . 103
17.2.2 Cardinality . 105

17.3 Bijections from A to B up to a Permutation on A and B . . . 105
17.3.1 Equivalence Class . 105
17.3.2 Cardinality . 107

18 The Twelvefold Way 108

1 Preliminaries
theory Preliminaries
imports

Main
HOL−Library.Multiset
HOL−Library.FuncSet
HOL−Combinatorics.Permutations
HOL−ex.Birthday-Paradox
Card-Partitions.Card-Partitions
Bell-Numbers-Spivey.Bell-Numbers
Card-Multisets.Card-Multisets
Card-Number-Partitions.Card-Number-Partitions

begin

1.1 Additions to Finite Set Theory
lemma subset-with-given-card-exists:

assumes n ≤ card A
shows ∃B ⊆ A. card B = n

using assms proof (induct n)
case 0
then show ?case by auto

next
case (Suc n)
from this obtain B where B ⊆ A card B = n by auto
from this ‹B ⊆ A› ‹card B = n› have card B < card A

using Suc.prems by linarith
from ‹Suc n ≤ card A› card.infinite have finite A by force
from this ‹B ⊆ A› finite-subset have finite B by blast
from ‹card B < card A› ‹B ⊆ A› obtain a where a ∈ A a /∈ B

by (metis less-irrefl subsetI subset-antisym)
have insert a B ⊆ A card (insert a B) = Suc n

using ‹finite B› ‹a ∈ A› ‹a /∈ B› ‹B ⊆ A› ‹card B = n› by auto
then show ?case by blast

qed

1.2 Additions to Equiv Relation Theory
lemmas univ-commute ′ = univ-commute[unfolded Equiv-Relations.proj-def]

4

lemma univ-predicate-impl-forall:
assumes equiv A R
assumes P respects R
assumes X ∈ A // R
assumes univ P X
shows ∀ x∈X . P x

proof −
from assms(1 ,3) obtain x where x ∈ X

by (metis equiv-class-self quotientE)
from ‹x ∈ X› assms(1 ,3) have X = R ‘‘ {x}

by (metis Image-singleton-iff equiv-class-eq quotientE)
from assms(1 ,2 ,4) this show ?thesis

using equiv-class-eq-iff univ-commute ′ by fastforce
qed

lemma univ-preserves-predicate:
assumes equiv A r
assumes P respects r
shows {x ∈ A. P x} // r = {X ∈ A // r . univ P X}

proof
show {x ∈ A. P x} // r ⊆ {X ∈ A // r . univ P X}
proof

fix X
assume X ∈ {x ∈ A. P x} // r
from this obtain x where x ∈ {x ∈ A. P x} and X = r ‘‘ {x}

using quotientE by blast
have X ∈ A // r

using ‹X = r ‘‘ {x}› ‹x ∈ {x ∈ A. P x}›
by (auto intro: quotientI)

moreover have univ P X
using ‹X = r ‘‘ {x}› ‹x ∈ {x ∈ A. P x}› assms
by (simp add: proj-def [symmetric] univ-commute)

ultimately show X ∈ {X ∈ A // r . univ P X} by auto
qed

next
show {X ∈ A // r . univ P X} ⊆ {x ∈ A. P x} // r
proof

fix X
assume X ∈ {X ∈ A // r . univ P X}
from this have X ∈ A // r and univ P X by auto
from ‹X ∈ A // r› obtain x where x ∈ A and X = r ‘‘ {x}

using quotientE by blast
have x ∈ {x ∈ A. P x}

using ‹x ∈ A› ‹X = r ‘‘ {x}› ‹univ P X› assms
by (simp add: proj-def [symmetric] univ-commute)

from this show X ∈ {x ∈ A. P x} // r
using ‹X = r ‘‘ {x}› by (auto intro: quotientI)

qed

5

qed

lemma Union-quotient-restricted:
assumes equiv A r
assumes P respects r
shows

⋃
({x ∈ A. P x} // r) = {x ∈ A. P x}

proof
show

⋃
({x ∈ A. P x} // r) ⊆ {x ∈ A. P x}

proof
fix x
assume x ∈

⋃
({x ∈ A. P x} // r)

from this obtain X where x ∈ X and X ∈ {x ∈ A. P x} // r by blast
from this obtain x ′ where X = r ‘‘ {x ′} and x ′ ∈ {x ∈ A. P x}

using quotientE by blast
from this ‹x ∈ X› have x ∈ A

using ‹equiv A r› by (simp add: equiv-class-eq-iff)
moreover from ‹X = r ‘‘ {x ′}› ‹x ∈ X› ‹x ′ ∈ {x ∈ A. P x}› have P x

using ‹P respects r› congruentD by fastforce
ultimately show x ∈ {x ∈ A. P x} by auto

qed
next

show {x ∈ A. P x} ⊆
⋃
({x ∈ A. P x} // r)

proof
fix x
assume x ∈ {x ∈ A. P x}
from this have x ∈ r ‘‘ {x}

using ‹equiv A r› equiv-class-self by fastforce
from ‹x ∈ {x ∈ A. P x}› have r ‘‘ {x} ∈ {x ∈ A. P x} // r

by (auto intro: quotientI)
from this ‹x ∈ r ‘‘ {x}› show x ∈

⋃
({x ∈ A. P x} // r) by auto

qed
qed

lemma finite-equiv-implies-finite-carrier :
assumes equiv A R
assumes finite (A // R)
assumes ∀X ∈ A // R. finite X
shows finite A

proof −
from ‹equiv A R› have A =

⋃
(A // R)

by (simp add: Union-quotient)
from this ‹finite (A // R)› ‹∀X ∈ A // R. finite X› show finite A

using finite-Union by fastforce
qed

lemma finite-quotient-iff :
assumes equiv A R
shows finite A ←→ (finite (A // R) ∧ (∀X ∈ A // R. finite X))

using assms by (meson equiv-type finite-equiv-class finite-equiv-implies-finite-carrier

6

finite-quotient)

1.2.1 Counting Sets by Splitting into Equivalence Classes
lemma card-equiv-class-restricted:

assumes finite {x ∈ A. P x}
assumes equiv A R
assumes P respects R
shows card {x ∈ A. P x} = sum card ({x ∈ A. P x} // R)

proof −
have card {x ∈ A. P x} = card (

⋃
({x ∈ A. P x} // R))

using ‹equiv A R› ‹P respects R› by (simp add: Union-quotient-restricted)
also have card (

⋃
({x ∈ A. P x} // R)) = (

∑
C∈{x ∈ A. P x} // R. card C)

proof −
from ‹finite {x ∈ A. P x}› have finite ({x ∈ A. P x} // R)

using ‹equiv A R› by (metis finite-imageI proj-image)
moreover from ‹finite {x ∈ A. P x}› have ∀C∈{x ∈ A. P x} // R. finite C

using ‹equiv A R› ‹P respects R› Union-quotient-restricted
Union-upper finite-subset by fastforce

moreover have ∀C1 ∈ {x ∈ A. P x} // R. ∀C2 ∈ {x ∈ A. P x} // R. C1 6=
C2 −→ C1 ∩ C2 = {}

using ‹equiv A R› quotient-disj
by (metis (no-types, lifting) mem-Collect-eq quotientE quotientI)

ultimately show ?thesis
by (subst card-Union-disjoint) (auto simp: pairwise-def disjnt-def)

qed
finally show ?thesis .

qed

lemma card-equiv-class-restricted-same-size:
assumes equiv A R
assumes P respects R
assumes

∧
F . F ∈ {x ∈ A. P x} // R =⇒ card F = k

shows card {x ∈ A. P x} = k ∗ card ({x ∈ A. P x} // R)
proof cases

assume finite {x ∈ A. P x}
have card {x ∈ A. P x} = sum card ({x ∈ A. P x} // R)

using ‹finite {x ∈ A. P x}› ‹equiv A R› ‹P respects R›
by (simp add: card-equiv-class-restricted)

also have sum card ({x ∈ A. P x} // R) = k ∗ card ({x ∈ A. P x} // R)
by (simp add: ‹

∧
F . F ∈ {x ∈ A. P x} // R =⇒ card F = k›)

finally show ?thesis .
next

assume infinite {x ∈ A. P x}
from this have infinite (

⋃
({a ∈ A. P a} // R))

using ‹equiv A R› ‹P respects R› by (simp add: Union-quotient-restricted)
from this have infinite ({x ∈ A. P x} // R) ∨ (∃X ∈ {x ∈ A. P x} // R.

infinite X)
by auto

7

from this show ?thesis
proof

assume infinite ({x ∈ A. P x} // R)
from this ‹infinite {x ∈ A. P x}› show ?thesis by simp

next
assume ∃X ∈ {x ∈ A. P x} // R. infinite X
from this ‹infinite {x ∈ A. P x}› show ?thesis

using ‹
∧

F . F ∈ {x ∈ A. P x} // R =⇒ card F = k› card.infinite by auto
qed

qed

lemma card-equiv-class:
assumes finite A
assumes equiv A R
shows card A = sum card (A // R)

proof −
have (λx. True) respects R by (simp add: congruentI)
from ‹finite A› ‹equiv A R› this show ?thesis

using card-equiv-class-restricted[where P=λx. True] by auto
qed

lemma card-equiv-class-same-size:
assumes equiv A R
assumes

∧
F . F ∈ A // R =⇒ card F = k

shows card A = k ∗ card (A // R)
proof −

have (λx. True) respects R by (simp add: congruentI)
from ‹equiv A R› ‹

∧
F . F ∈ A // R =⇒ card F = k› this show ?thesis

using card-equiv-class-restricted-same-size[where P=λx. True] by auto
qed

1.3 Additions to FuncSet Theory
lemma finite-same-card-bij-on-ext-funcset:

assumes finite A finite B card A = card B
shows ∃ f . f ∈ A →E B ∧ bij-betw f A B

proof −
from assms obtain f ′ where f ′: bij-betw f ′ A B

using finite-same-card-bij by auto
define f where

∧
x. f x = (if x ∈ A then f ′ x else undefined)

have f ∈ A →E B
using f ′ unfolding f-def by (auto simp add: bij-betwE)

moreover have bij-betw f A B
proof −

have bij-betw f ′ A B ←→ bij-betw f A B
unfolding f-def by (auto intro!: bij-betw-cong)

from this ‹bij-betw f ′ A B› show ?thesis by auto
qed
ultimately show ?thesis by auto

8

qed

lemma card-extensional-funcset:
assumes finite A
shows card (A →E B) = card B ^ card A

using assms by (simp add: card-PiE prod-constant)

lemma bij-betw-implies-inj-on-and-card-eq:
assumes finite B
assumes f ∈ A →E B
shows bij-betw f A B ←→ inj-on f A ∧ card A = card B

proof
assume bij-betw f A B
from this show inj-on f A ∧ card A = card B

by (simp add: bij-betw-imp-inj-on bij-betw-same-card)
next

assume inj-on f A ∧ card A = card B
from this have inj-on f A and card A = card B by auto
from ‹f ∈ A →E B› have f ‘ A ⊆ B by auto
from ‹inj-on f A› have card (f ‘ A) = card A by (simp add: card-image)
from ‹f ‘ A ⊆ B› ‹card A = card B› this have f ‘ A = B

by (simp add: ‹finite B› card-subset-eq)
from ‹inj-on f A› this show bij-betw f A B by (rule bij-betw-imageI)

qed

lemma bij-betw-implies-surj-on-and-card-eq:
assumes finite A
assumes f ∈ A →E B
shows bij-betw f A B ←→ f ‘ A = B ∧ card A = card B

proof
assume bij-betw f A B
show f ‘ A = B ∧ card A = card B

using ‹bij-betw f A B› bij-betw-imp-surj-on bij-betw-same-card by blast
next

assume f ‘ A = B ∧ card A = card B
from this have f ‘ A = B and card A = card B by auto
from this have inj-on f A

by (simp add: ‹finite A› inj-on-iff-eq-card)
from this ‹f ‘ A = B› show bij-betw f A B by (rule bij-betw-imageI)

qed

1.4 Additions to Permutations Theory
lemma

assumes f ∈ A →E B f ‘ A = B
assumes p permutes B (∀ x. f ′ x = p (f x))
shows (λb. {x∈A. f x = b}) ‘ B = (λb. {x∈A. f ′ x = b}) ‘ B

proof
show (λb. {x ∈ A. f x = b}) ‘ B ⊆ (λb. {x ∈ A. f ′ x = b}) ‘ B

9

proof
fix X
assume X ∈ (λb. {x ∈ A. f x = b}) ‘ B
from this obtain b where X-eq: X = {x ∈ A. f x = b} and b ∈ B by blast
from assms(3 , 4) have

∧
x. f x = b ←→ f ′ x = p b by (metis permutes-def)

from ‹p permutes B› X-eq this have X = {x ∈ A. f ′ x = p b}
using Collect-cong by auto

moreover from ‹b ∈ B› ‹p permutes B› have p b ∈ B
by (simp add: permutes-in-image)

ultimately show X ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B by blast
qed

next
show (λb. {x ∈ A. f ′ x = b}) ‘ B ⊆ (λb. {x ∈ A. f x = b}) ‘ B
proof

fix X
assume X ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B
from this obtain b where X-eq: X = {x ∈ A. f ′ x = b} and b ∈ B by blast
from assms(3 , 4) have

∧
x. f ′ x = b ←→ f x = inv p b

by (auto simp add: permutes-inverses(1 , 2))
from ‹p permutes B› X-eq this have X = {x ∈ A. f x = inv p b}

using Collect-cong by auto
moreover from ‹b ∈ B› ‹p permutes B› have inv p b ∈ B

by (simp add: permutes-in-image permutes-inv)
ultimately show X ∈ (λb. {x ∈ A. f x = b}) ‘ B by blast

qed
qed

1.5 Additions to List Theory

The theorem card-lists-length-eq contains the superfluous assumption finite
A. Here, we derive that fact without that unnecessary assumption.
lemma lists-length-eq-Suc-eq-image-Cons:
{xs. set xs ⊆ A ∧ length xs = Suc n} = (λ(x, xs). x#xs) ‘ (A × {xs. set xs ⊆ A
∧ length xs = n})
(is ?A = ?B)

proof
show ?A ⊆ ?B
proof

fix xs
assume xs ∈ ?A
from this show xs ∈ ?B by (cases xs) auto

qed
next

show ?B ⊆ ?A by auto
qed

lemma lists-length-eq-Suc-eq-empty-iff :
{xs. set xs ⊆ A ∧ length xs = Suc n} = {} ←→ A = {}

proof (induct n)

10

case 0
have {xs. set xs ⊆ A ∧ length xs = Suc 0} = {x#[] |x. x ∈ A}
proof

show {[x] |x. x ∈ A} ⊆ {xs. set xs ⊆ A ∧ length xs = Suc 0} by auto
next

show {xs. set xs ⊆ A ∧ length xs = Suc 0} ⊆ {[x] |x. x ∈ A}
proof

fix xs
assume xs ∈ {xs. set xs ⊆ A ∧ length xs = Suc 0}
from this have set xs ⊆ A ∧ length xs = Suc 0 by simp
from this have ∃ x. xs = [x] ∧ x ∈ A

by (metis Suc-length-conv insert-subset length-0-conv list.set(2))
from this show xs ∈ {[x] |x. x ∈ A} by simp

qed
qed
then show ?case by simp

next
case (Suc n)
from this show ?case by (auto simp only: lists-length-eq-Suc-eq-image-Cons)

qed

lemma lists-length-eq-eq-empty-iff :
{xs. set xs ⊆ A ∧ length xs = n} = {} ←→ (A = {} ∧ n > 0)

proof (cases n)
case 0
then show ?thesis by auto

next
case (Suc n)
then show ?thesis by (auto simp only: lists-length-eq-Suc-eq-empty-iff)

qed

lemma finite-lists-length-eq-iff :
finite {xs. set xs ⊆ A ∧ length xs = n} ←→ (finite A ∨ n = 0)

proof
assume finite {xs. set xs ⊆ A ∧ length xs = n}
from this show finite A ∨ n = 0
proof (induct n)

case 0
then show ?case by simp

next
case (Suc n)
have inj (λ(x, xs). x#xs)

by (auto intro: inj-onI)
from this Suc(2) have finite (A × {xs. set xs ⊆ A ∧ length xs = n})
using finite-imageD inj-on-subset subset-UNIV lists-length-eq-Suc-eq-image-Cons[of

A n]
by fastforce

from this have finite A
by (cases A = {})

11

(auto simp only: lists-length-eq-eq-empty-iff dest: finite-cartesian-productD1)
from this show ?case by auto

qed
next

assume finite A ∨ n = 0
from this show finite {xs. set xs ⊆ A ∧ length xs = n}

by (auto intro: finite-lists-length-eq)
qed

lemma card-lists-length-eq:
shows card {xs. set xs ⊆ B ∧ length xs = n} = card B ^ n

proof cases
assume finite B
then show ?thesis by (rule card-lists-length-eq)

next
assume infinite B
then show ?thesis
proof cases

assume n = 0
from this have {xs. set xs ⊆ B ∧ length xs = n} = {[]} by auto
from this ‹n = 0 › show ?thesis by simp

next
assume n 6= 0
from this ‹infinite B› have infinite {xs. set xs ⊆ B ∧ length xs = n}

by (simp add: finite-lists-length-eq-iff)
from this ‹infinite B› show ?thesis by auto

qed
qed

1.6 Additions to Disjoint Set Theory
lemma bij-betw-congI :

assumes bij-betw f A A ′

assumes ∀ a ∈ A. f a = g a
shows bij-betw g A A ′

using assms bij-betw-cong by fastforce

lemma disjoint-family-onI [intro]:
assumes

∧
m n. m ∈ S =⇒ n ∈ S =⇒ m 6= n =⇒ A m ∩ A n = {}

shows disjoint-family-on A S
using assms unfolding disjoint-family-on-def by simp

The following lemma is not needed for this development, but is useful and
could be moved to Disjoint Set theory or Equiv Relation theory if translated
from set partitions to equivalence relations.
lemma infinite-partition-on:

assumes infinite A
shows infinite {P. partition-on A P}

proof −

12

from ‹infinite A› obtain x where x ∈ A
by (meson finite.intros(1) finite-subset subsetI)

from ‹infinite A› have infinite (A − {x})
by (simp add: infinite-remove)

define singletons-except-one
where singletons-except-one = (λa ′. (λa. if a = a ′ then {a, x} else {a}) ‘ (A

− {x}))
have infinite (singletons-except-one ‘ (A − {x}))
proof −

have inj-on singletons-except-one (A − {x})
unfolding singletons-except-one-def by (rule inj-onI) auto

from ‹infinite (A − {x})› this show ?thesis
using finite-imageD by blast

qed
moreover have singletons-except-one ‘ (A − {x}) ⊆ {P. partition-on A P}
proof

fix P
assume P ∈ singletons-except-one ‘ (A − {x})
from this obtain a ′ where a ′ ∈ A − {x} and P: P = singletons-except-one

a ′ by blast
have partition-on A ((λa. if a = a ′ then {a, x} else {a}) ‘ (A − {x}))

using ‹x ∈ A› ‹a ′ ∈ A − {x}› by (auto intro: partition-onI)
from this have partition-on A P

unfolding P singletons-except-one-def .
from this show P ∈ {P. partition-on A P} ..

qed
ultimately show ?thesis by (simp add: infinite-super)

qed

lemma finitely-many-partition-on-iff :
finite {P. partition-on A P} ←→ finite A

using finitely-many-partition-on infinite-partition-on by blast

1.7 Additions to Multiset Theory
lemma mset-set-subseteq-mset-set:

assumes finite B A ⊆ B
shows mset-set A ⊆# mset-set B

proof −
from ‹A ⊆ B› ‹finite B› have finite A using finite-subset by blast
{

fix x
have count (mset-set A) x ≤ count (mset-set B) x

using ‹finite A› ‹finite B› ‹A ⊆ B›
by (metis count-mset-set(1 , 3) eq-iff subsetCE zero-le-one)

}
from this show mset-set A ⊆# mset-set B

using mset-subset-eqI by blast
qed

13

lemma mset-set-set-mset:
assumes M ⊆# mset-set A
shows mset-set (set-mset M) = M

proof −
{

fix x
from ‹M ⊆# mset-set A› have count M x ≤ count (mset-set A) x

by (simp add: mset-subset-eq-count)
from this have count (mset-set (set-mset M)) x = count M x

by (metis count-eq-zero-iff count-greater-eq-one-iff count-mset-set
dual-order .antisym dual-order .trans finite-set-mset)

}
from this show ?thesis by (simp add: multiset-eq-iff)

qed

lemma mset-set-set-mset ′:
assumes ∀ x. count M x ≤ 1
shows mset-set (set-mset M) = M

proof −
{

fix x
from assms have count M x = 0 ∨ count M x = 1 by (auto elim: le-SucE)
from this have count (mset-set (set-mset M)) x = count M x

by (metis count-eq-zero-iff count-mset-set(1 ,3) finite-set-mset)
}
from this show ?thesis by (simp add: multiset-eq-iff)

qed

lemma card-set-mset:
assumes M ⊆# mset-set A
shows card (set-mset M) = size M

using assms
by (metis mset-set-set-mset size-mset-set)

lemma card-set-mset ′:
assumes ∀ x. count M x ≤ 1
shows card (set-mset M) = size M

using assms
by (metis mset-set-set-mset ′ size-mset-set)

lemma count-mset-set-leq:
assumes finite A
shows count (mset-set A) x ≤ 1

using assms by (metis count-mset-set(1 ,3) eq-iff zero-le-one)

lemma count-mset-set-leq ′:
assumes finite A
shows count (mset-set A) x ≤ Suc 0

14

using assms count-mset-set-leq by fastforce

lemma msubset-mset-set-iff :
assumes finite A
shows set-mset M ⊆ A ∧ (∀ x. count M x ≤ 1) ←→ (M ⊆# mset-set A)

proof
assume set-mset M ⊆ A ∧ (∀ x. count M x ≤ 1)
from this assms show M ⊆# mset-set A

by (metis count-inI count-mset-set(1) le0 mset-subset-eqI subsetCE)
next

assume M ⊆# mset-set A
from this assms have set-mset M ⊆ A

using mset-subset-eqD by fastforce
moreover {

fix x
from ‹M ⊆# mset-set A› have count M x ≤ count (mset-set A) x

by (simp add: mset-subset-eq-count)
from this ‹finite A› have count M x ≤ 1

by (meson count-mset-set-leq le-trans)
}
ultimately show set-mset M ⊆ A ∧ (∀ x. count M x ≤ 1) by simp

qed

lemma image-mset-fun-upd:
assumes x /∈# M
shows image-mset (f (x := y)) M = image-mset f M

using assms by (induct M) auto

1.8 Additions to Number Partitions Theory
lemma Partition-diag:

shows Partition n n = 1
by (cases n) (auto simp only: Partition-diag Partition.simps(1))

1.9 Cardinality Theorems with Iverson Function
definition iverson :: bool ⇒ nat
where

iverson b = (if b then 1 else 0)

lemma card-partition-on-size1-eq-iverson:
assumes finite A
shows card {P. partition-on A P ∧ card P ≤ k ∧ (∀X∈P. card X = 1)} =

iverson (card A ≤ k)
proof (cases card A ≤ k)

case True
from this ‹finite A› show ?thesis

unfolding iverson-def
using card-partition-on-size1-eq-1 by fastforce

next

15

case False
from this ‹finite A› show ?thesis

unfolding iverson-def
using card-partition-on-size1-eq-0 by fastforce

qed

lemma card-number-partitions-with-only-parts-1 :
card {N . (∀n. n∈# N −→ n = 1) ∧ number-partition n N ∧ size N ≤ x} =

iverson (n ≤ x)
proof −

show ?thesis
proof cases

assume n ≤ x
from this show ?thesis

using card-number-partitions-with-only-parts-1-eq-1
unfolding iverson-def by auto

next
assume ¬ n ≤ x
from this show ?thesis

using card-number-partitions-with-only-parts-1-eq-0
unfolding iverson-def by auto

qed
qed

end

2 Main Observations on Operations and Permu-
tations

theory Twelvefold-Way-Core
imports Preliminaries
begin

2.1 Range Multiset
2.1.1 Existence of a Suitable Finite Function
lemma obtain-function:

assumes finite A
assumes size M = card A
shows ∃ f . image-mset f (mset-set A) = M

using assms
proof (induct arbitrary: M rule: finite-induct)

case empty
from this show ?case by simp

next
case (insert x A)
from insert(1 ,2 ,4) have size M > 0

by (simp add: card-gt-0-iff)

16

from this obtain y where y ∈# M
using gr0-implies-Suc size-eq-Suc-imp-elem by blast

from insert(1 ,2 ,4) this have size (M − {#y#}) = card A
by (simp add: Diff-insert-absorb card-Diff-singleton-if insertI1 size-Diff-submset)
from insert.hyps this obtain f ′ where image-mset f ′ (mset-set A) = M −
{#y#} by blast

from this have image-mset (f ′(x := y)) (mset-set (insert x A)) = M
using ‹finite A› ‹x /∈ A› ‹y ∈# M › by (simp add: image-mset-fun-upd)

from this show ?case by blast
qed

lemma obtain-function-on-ext-funcset:
assumes finite A
assumes size M = card A
shows ∃ f ∈ A →E set-mset M . image-mset f (mset-set A) = M

proof −
obtain f where range-eq-M : image-mset f (mset-set A) = M

using obtain-function ‹finite A› ‹size M = card A› by blast
let ?f = λx. if x ∈ A then f x else undefined
have ?f ∈ A →E set-mset M

using range-eq-M ‹finite A› by auto
moreover have image-mset ?f (mset-set A) = M

using range-eq-M ‹finite A› by (auto intro: multiset.map-cong0)
ultimately show ?thesis by auto

qed

2.1.2 Existence of Permutation
lemma image-mset-eq-implies-bij-betw:

fixes f :: ′a1 ⇒ ′b and f ′ :: ′a2 ⇒ ′b
assumes finite A finite A ′

assumes mset-eq: image-mset f (mset-set A) = image-mset f ′ (mset-set A ′)
obtains bij where bij-betw bij A A ′ and ∀ x∈A. f x = f ′ (bij x)

proof −
from ‹finite A› have [simp]: finite {a ∈ A. f a = (b:: ′b)} for b by auto
from ‹finite A ′› have [simp]: finite {a ∈ A ′. f ′ a = (b:: ′b)} for b by auto
have f ‘ A = f ′ ‘ A ′

proof −
have f ‘ A = f ‘ (set-mset (mset-set A)) using ‹finite A› by simp
also have . . . = f ′ ‘ (set-mset (mset-set A ′))

by (metis mset-eq multiset.set-map)
also have . . . = f ′ ‘ A ′ using ‹finite A ′› by simp
finally show ?thesis .

qed
have ∀ b∈(f ‘ A). ∃ bij. bij-betw bij {a ∈ A. f a = b} {a ∈ A ′. f ′ a = b}
proof

fix b
from mset-eq have

count (image-mset f (mset-set A)) b = count (image-mset f ′ (mset-set A ′)) b

17

by simp
from this have card {a ∈ A. f a = b} = card {a ∈ A ′. f ′ a = b}

using ‹finite A› ‹finite A ′›
by (simp add: count-image-mset-eq-card-vimage)

from this show ∃ bij. bij-betw bij {a ∈ A. f a = b} {a ∈ A ′. f ′ a = b}
by (intro finite-same-card-bij) simp-all

qed
from bchoice [OF this]
obtain bij where bij: ∀ b∈f ‘ A. bij-betw (bij b) {a ∈ A. f a = b} {a ∈ A ′. f ′ a

= b}
by auto

define bij ′ where bij ′ = (λa. bij (f a) a)
have bij-betw bij ′ A A ′

proof −
have disjoint-family-on (λi. {a ∈ A ′. f ′ a = i}) (f ‘ A)

unfolding disjoint-family-on-def by auto
moreover have bij-betw (λa. bij (f a) a) {a ∈ A. f a = b} {a ∈ A ′. f ′ a = b}

if b: b ∈ f ‘ A for b
using bij b by (subst bij-betw-cong[where g=bij b]) auto

ultimately have bij-betw (λa. bij (f a) a) (
⋃

b∈f ‘ A. {a ∈ A. f a = b}) (
⋃

b∈f
‘ A. {a ∈ A ′. f ′ a = b})

by (rule bij-betw-UNION-disjoint)
moreover have (

⋃
b∈f ‘ A. {a ∈ A. f a = b}) = A by auto

moreover have (
⋃

b∈f ‘ A. {a ∈ A ′. f ′ a = b}) = A ′ using ‹f ‘ A = f ′ ‘ A ′›
by auto

ultimately show bij-betw bij ′ A A ′

unfolding bij ′-def by (subst bij-betw-cong[where g=(λa. bij (f a) a)]) auto
qed
moreover from bij have ∀ x∈A. f x = f ′ (bij ′ x)

unfolding bij ′-def using bij-betwE by fastforce
ultimately show ?thesis by (rule that)

qed

lemma image-mset-eq-implies-permutes:
fixes f :: ′a ⇒ ′b
assumes finite A
assumes mset-eq: image-mset f (mset-set A) = image-mset f ′ (mset-set A)
obtains p where p permutes A and ∀ x∈A. f x = f ′ (p x)

proof −
from assms obtain b where bij-betw b A A and ∀ x∈A. f x = f ′ (b x)

using image-mset-eq-implies-bij-betw by blast
define p where p = (λa. if a ∈ A then b a else a)
have p permutes A
proof (rule bij-imp-permutes)

show bij-betw p A A
unfolding p-def by (simp add: ‹bij-betw b A A› bij-betw-cong)

next
fix x
assume x /∈ A

18

from this show p x = x
unfolding p-def by simp

qed
moreover from ‹∀ x∈A. f x = f ′ (b x)› have ∀ x∈A. f x = f ′ (p x)

unfolding p-def by simp
ultimately show ?thesis by (rule that)

qed

2.2 Domain Partition
2.2.1 Existence of a Suitable Finite Function
lemma obtain-function-with-partition:

assumes finite A finite B
assumes partition-on A P
assumes card P ≤ card B
shows ∃ f ∈ A →E B. (λb. {x ∈ A. f x = b}) ‘ B − {{}} = P

proof −
obtain g ′ where bij-betw g ′ P (g ′ ‘ P) and g ′ ‘ P ⊆ B

by (meson assms card-le-inj finite-elements inj-on-imp-bij-betw)
define f where

∧
a. f a = (if a ∈ A then g ′ (THE X . a ∈ X ∧ X ∈ P) else

undefined)
have f ∈ A →E B
unfolding f-def
using ‹g ′ ‘ P ⊆ B› assms(3) partition-on-the-part-mem by fastforce
moreover have (λb. {x ∈ A. f x = b}) ‘ B − {{}} = P
proof

show (λb. {x ∈ A. f x = b}) ‘ B − {{}} ⊆ P
proof

fix X
assume X :X ∈ (λb. {x ∈ A. f x = b}) ‘ B − {{}}
from this obtain b where b ∈ B and X = {x ′ ∈ A. f x ′ = b} by auto
from this X obtain a where a ∈ A and a ∈ X and f a = b by blast
have (THE X . a ∈ X ∧ X ∈ P) ∈ P
using ‹a ∈ A› ‹partition-on A P› by (simp add: partition-on-the-part-mem)

from ‹X = {x ′ ∈ A. f x ′ = b}› have X-eq1 : X = {x ′ ∈ A. g ′ (THE X . x ′ ∈
X ∧ X ∈ P) = b}

unfolding f-def by auto
also have . . . = {x ′ ∈ A. (THE X . x ′ ∈ X ∧ X ∈ P) = inv-into P g ′ b}
proof −

{
fix x ′

assume x ′ ∈ A
have (THE X . x ′ ∈ X ∧ X ∈ P) ∈ P

using ‹partition-on A P› ‹x ′∈ A› by (simp add: partition-on-the-part-mem)
from X-eq1 ‹a ∈ X› have g ′ (THE X . a ∈ X ∧ X ∈ P) = b

unfolding f-def by auto
from this ‹(THE X . a ∈ X ∧ X ∈ P) ∈ P› have b ∈ g ′ ‘ P by auto
have (g ′ (THE X . x ′ ∈ X ∧ X ∈ P) = b) ←→ ((THE X . x ′ ∈ X ∧ X ∈

P) = inv-into P g ′ b)

19

proof −
from ‹(THE X . x ′ ∈ X ∧ X ∈ P) ∈ P›
have (g ′ (THE X . x ′ ∈ X ∧ X ∈ P) = b) ←→ (inv-into P g ′ (g ′ (THE

X . x ′ ∈ X ∧ X ∈ P)) = inv-into P g ′ b)
using ‹b ∈ g ′ ‘ P› by (auto intro: inv-into-injective)

moreover have inv-into P g ′ (g ′ (THE X . x ′ ∈ X ∧ X ∈ P)) = (THE
X . x ′ ∈ X ∧ X ∈ P)

using ‹bij-betw g ′ P (g ′ ‘ P)› ‹(THE X . x ′ ∈ X ∧ X ∈ P) ∈ P›
by (simp add: bij-betw-inv-into-left)

ultimately show ?thesis by simp
qed

}
from this show ?thesis by auto

qed
finally have X-eq: X = {x ′ ∈ A. (THE X . x ′ ∈ X ∧ X ∈ P) = inv-into P

g ′ b} .
moreover have inv-into P g ′ b ∈ P
proof −

from X-eq have eq: inv-into P g ′ b = (THE X . a ∈ X ∧ X ∈ P)
using ‹a ∈ X› ‹a ∈ A› by auto

from this show ?thesis
using ‹(THE X . a ∈ X ∧ X ∈ P) ∈ P› by simp

qed
ultimately have X = inv-into P g ′ b

using partition-on-all-in-part-eq-part[OF ‹partition-on A P›] by blast
from this ‹inv-into P g ′ b ∈ P› show X ∈ P by blast

qed
next

show P ⊆ (λb. {x ∈ A. f x = b}) ‘ B − {{}}
proof

fix X
assume X ∈ P
from assms(3) this have X 6= {}

by (auto elim: partition-onE)
moreover have X ∈ (λb. {x ∈ A. f x = b}) ‘ B
proof

show g ′ X ∈ B
using ‹X ∈ P› ‹g ′ ‘ P ⊆ B› by blast

show X = {x ∈ A. f x = g ′ X}
proof

show X ⊆ {x ∈ A. f x = g ′ X}
proof

fix x
assume x ∈ X
from this have x ∈ A

using ‹X ∈ P› assms(3) by (fastforce elim: partition-onE)
have (THE X . x ∈ X ∧ X ∈ P) = X

using ‹X ∈ P› ‹x ∈ X› assms(3) partition-on-the-part-eq by fastforce
from this ‹x ∈ A› have f x = g ′ X

20

unfolding f-def by auto
from this ‹x ∈ A› show x ∈ {x ∈ A. f x = g ′ X} by auto

qed
next

show {x ∈ A. f x = g ′ X} ⊆ X
proof

fix x
assume x ∈ {x ∈ A. f x = g ′ X}
from this have x ∈ A and g-eq: g ′ (THE X . x ∈ X ∧ X ∈ P) = g ′ X

unfolding f-def by auto
from ‹x ∈ A› have (THE X . x ∈ X ∧ X ∈ P) ∈ P

using assms(3) by (simp add: partition-on-the-part-mem)
from this g-eq have (THE X . x ∈ X ∧ X ∈ P) = X

using ‹X ∈ P› ‹bij-betw g ′ P (g ′ ‘ P)›
by (metis bij-betw-inv-into-left)

from this ‹x ∈ A› assms(3) show x ∈ X
using partition-on-in-the-unique-part by fastforce

qed
qed

qed
ultimately show X ∈ (λb. {x ∈ A. f x = b}) ‘ B − {{}}

by auto
qed

qed
ultimately show ?thesis by blast

qed

2.2.2 Equality under Permutation Application
lemma permutes-implies-inv-image-on-eq:

assumes p permutes B
shows (λb. {x ∈ A. p (f x) = b}) ‘ B = (λb. {x ∈ A. f x = b}) ‘ B

proof −
have ∀ b ∈ B. ∀ x ∈ A. p (f x) = b ←→ f x = inv p b

using ‹p permutes B› by (auto simp add: permutes-inverses)
from this have (λb. {x ∈ A. p (f x) = b}) ‘ B = (λb. {x ∈ A. f x = inv p b}) ‘

B
using image-cong by blast

also have . . . = (λb. {x ∈ A. f x = b}) ‘ inv p ‘ B
by (auto simp add: image-comp)

also have . . . = (λb. {x ∈ A. f x = b}) ‘ B
by (simp add: ‹p permutes B› permutes-inv permutes-image)

finally show ?thesis .
qed

2.2.3 Existence of Permutation
lemma the-elem:

assumes f ∈ A →E B f ′ ∈ A →E B

21

assumes partitions-eq: (λb. {x ∈ A. f x = b}) ‘ B − {{}} = (λb. {x ∈ A. f ′ x
= b}) ‘ B − {{}}

assumes x ∈ A
shows the-elem (f ‘ {xa ∈ A. f ′ xa = f ′ x}) = f x

proof −
from ‹x ∈ A› have x: x ∈ {x ′ ∈ A. f ′ x ′ = f ′ x} by blast
have f ′ x ∈ B

using ‹x ∈ A› ‹f ′ ∈ A →E B› by blast
from this have {x ′ ∈ A. f ′ x ′ = f ′ x} ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}

using ‹x ∈ A› by blast
from this have {x ′ ∈ A. f ′ x ′ = f ′ x} ∈ (λb. {x ∈ A. f x = b}) ‘ B − {{}}

using partitions-eq by blast
from this obtain b where eq: {x ′ ∈ A. f ′ x ′ = f ′ x} = {x ′ ∈ A. f x ′ = b} by

blast
also from x this show the-elem (f ‘ {x ′ ∈ A. f ′ x ′ = f ′ x}) = f x
by (metis (mono-tags, lifting) empty-iff mem-Collect-eq the-elem-image-unique)

qed

lemma the-elem-eq:
assumes f ∈ A →E B
assumes b ∈ f ‘ A
shows the-elem (f ‘ {x ′ ∈ A. f x ′ = b}) = b

proof −
from ‹b ∈ f ‘ A› obtain a where a ∈ A and b = f a by blast
from this show the-elem (f ‘ {x ′ ∈ A. f x ′ = b}) = b

using the-elem[OF ‹f ∈ A →E B› ‹f ∈ A →E B›] by simp
qed

lemma partitions-eq-implies:
assumes f ∈ A →E B f ′ ∈ A →E B
assumes partitions-eq: (λb. {x ∈ A. f x = b}) ‘ B − {{}} = (λb. {x ∈ A. f ′ x

= b}) ‘ B − {{}}
assumes x ∈ A x ′ ∈ A
assumes f x = f x ′

shows f ′ x = f ′ x ′

proof −
have f x ∈ B and x ∈ {a ∈ A. f a = f x} and x ′ ∈ {a ∈ A. f a = f x}

using ‹f ∈ A →E B› ‹x ∈ A› ‹x ′ ∈ A› ‹f x = f x ′› by auto
moreover have {a ∈ A. f a = f x} ∈ (λb. {x ∈ A. f x = b}) ‘ B − {{}}

using ‹f x ∈ B› ‹x ∈ {a ∈ A. f a = f x}› by auto
ultimately obtain b where x ∈ {a ∈ A. f ′ a = b} and x ′ ∈ {a ∈ A. f ′ a = b}

using partitions-eq by (metis (no-types, lifting) Diff-iff imageE)
from this show f ′ x = f ′ x ′ by auto

qed

lemma card-domain-partitions:
assumes f ∈ A →E B
assumes finite B
shows card ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) = card (f ‘ A)

22

proof −
note [simp] = the-elem-eq[OF ‹f ∈ A →E B›]
have bij-betw (λX . the-elem (f ‘ X)) ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) (f ‘ A)
proof (rule bij-betw-imageI)

show inj-on (λX . the-elem (f ‘ X)) ((λb. {x ∈ A. f x = b}) ‘ B − {{}})
proof (rule inj-onI)

fix X X ′

assume X : X ∈ (λb. {x ∈ A. f x = b}) ‘ B − {{}}
assume X ′: X ′ ∈ (λb. {x ∈ A. f x = b}) ‘ B − {{}}
assume eq: the-elem (f ‘ X) = the-elem (f ‘ X ′)
from X obtain b where b ∈ B and X-eq: X = {x ∈ A. f x = b} by blast
from X this have b ∈ f ‘ A

using Collect-empty-eq Diff-iff image-iff insertCI by auto
from X ′ obtain b ′ where b ′ ∈ B and X ′-eq: X ′ = {x ∈ A. f x = b ′} by

blast
from X ′ this have b ′ ∈ f ‘ A

using Collect-empty-eq Diff-iff image-iff insertCI by auto
from X-eq X ′-eq eq ‹

∧
b. b ∈ f ‘ A =⇒ the-elem (f ‘ {x ′ ∈ A. f x ′ = b}) = b›

‹b ∈ f ‘ A› ‹b ′ ∈ f ‘ A›
have b = b ′ by auto

from this show X = X ′

using X-eq X ′-eq by simp
qed
show (λX . the-elem (f ‘ X)) ‘ ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) = f ‘ A
proof

show (λX . the-elem (f ‘ X)) ‘ ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) ⊆ f ‘ A
using ‹

∧
b. b ∈ f ‘ A =⇒ the-elem (f ‘ {x ′ ∈ A. f x ′ = b}) = b› by auto

next
show f ‘ A ⊆ (λX . the-elem (f ‘ X)) ‘ ((λb. {x ∈ A. f x = b}) ‘ B − {{}})
proof

fix b
assume b ∈ f ‘ A
from this have b = the-elem (f ‘ {x ∈ A. f x = b})

using ‹
∧

b. b ∈ f ‘ A =⇒ the-elem (f ‘ {x ′ ∈ A. f x ′ = b}) = b› by auto
moreover from ‹b ∈ f ‘ A› have {x ∈ A. f x = b} ∈ (λb. {x ∈ A. f x =

b}) ‘ B − {{}}
using ‹f ∈ A →E B› by auto

ultimately show b ∈ (λX . the-elem (f ‘ X)) ‘ ((λb. {x ∈ A. f x = b}) ‘ B
− {{}}) ..

qed
qed

qed
from this show ?thesis by (rule bij-betw-same-card)

qed

lemma partitions-eq-implies-permutes:
assumes f ∈ A →E B f ′ ∈ A →E B
assumes finite B
assumes partitions-eq: (λb. {x ∈ A. f x = b}) ‘ B − {{}} = (λb. {x ∈ A. f ′ x

23

= b}) ‘ B − {{}}
shows ∃ p. p permutes B ∧ (∀ x∈A. f x = p (f ′ x))

proof −
have card-eq: card (f ′ ‘ A) = card (f ‘ A)

using card-domain-partitions[OF ‹f ∈ A →E B› ‹finite B›]
using card-domain-partitions[OF ‹f ′ ∈ A →E B› ‹finite B›]
using partitions-eq by simp

have f ′ ‘ A ⊆ B f ‘ A ⊆ B
using ‹f ∈ A →E B› ‹f ′ ∈ A →E B› by auto

from this card-eq have card (B − f ′ ‘ A) = card (B − f ‘ A)
using ‹finite B› by (auto simp add: card-Diff-subset finite-subset)

from this obtain p ′ where bij-betw p ′ (B − f ′ ‘ A) (B − f ‘ A)
using ‹finite B› by (metis finite-same-card-bij finite-Diff)

from this have p ′ ‘ (B − f ′ ‘ A) = (B − f ‘ A)
by (simp add: bij-betw-imp-surj-on)

define p where
∧

b. p b = (if b ∈ B then
(if b ∈ f ′ ‘ A then the-elem (f ‘ {x ∈ A. f ′ x = b}) else p ′ b) else b)

have ∀ x∈A. f x = p (f ′ x)
proof

fix x
assume x ∈ A
from this partitions-eq have the-elem (f ‘ {xa ∈ A. f ′ xa = f ′ x}) = f x

using the-elem[OF ‹f ∈ A →E B› ‹f ′ ∈ A →E B›] by auto
from this show f x = p (f ′ x)

using ‹x ∈ A› p-def ‹f ′ ∈ A →E B› by auto
qed
moreover have p permutes B
proof (rule bij-imp-permutes)

let ?invp = λb. if b ∈ f ‘ A then the-elem (f ′ ‘ {x ∈ A. f x = b}) else b
note [simp] = the-elem[OF ‹f ∈ A →E B› ‹f ′ ∈ A →E B› partitions-eq]
show bij-betw p B B
proof (rule bij-betw-imageI)

show p ‘ B = B
proof

have (λb. the-elem (f ‘ {x ∈ A. f ′ x = b})) ‘ (f ′ ‘ A) ⊆ B
using ‹f ∈ A →E B› by auto

from ‹p ′ ‘ (B − f ′ ‘ A) = (B − f ‘ A)› this show p ‘ B ⊆ B
unfolding p-def ‹f ∈ A →E B› by force

next
show B ⊆ p ‘ B
proof

fix b
assume b ∈ B
show b ∈ p ‘ B
proof (cases b ∈ f ‘ A)

assume b /∈ f ‘ A
note ‹p ′ ‘ (B − f ′ ‘ A) = (B − f ‘ A)›
from this ‹b ∈ B› ‹b /∈ f ‘ A› show ?thesis

unfolding p-def by auto

24

next
assume b ∈ f ‘ A
from this ‹∀ x∈A. f x = p (f ′ x)› ‹b ∈ B› show ?thesis

using ‹f ′ ∈ A →E B› by auto
qed

qed
qed

next
show inj-on p B
proof (rule inj-onI)

fix b b ′

assume b ∈ B b ′ ∈ B p b = p b ′

have b ∈ f ′ ‘ A ←→ b ′ ∈ f ′ ‘ A
proof −

have b ∈ f ′ ‘ A ←→ p b ∈ f ‘ A
unfolding p-def using ‹b ∈ B› ‹p ′ ‘ (B − f ′ ‘ A) = B − f ‘ A› by auto

also have p b ∈ f ‘ A ←→ p b ′ ∈ f ‘ A
using ‹p b = p b ′› by simp

also have p b ′ ∈ f ‘ A ←→ b ′ ∈ f ′ ‘ A
unfolding p-def using ‹b ′ ∈ B› ‹p ′ ‘ (B − f ′ ‘ A) = B − f ‘ A› by auto

finally show ?thesis .
qed
from this have (b ∈ f ′ ‘ A ∧ b ′ ∈ f ′ ‘ A) ∨ (b /∈ f ′ ‘ A ∧ b ′ /∈ f ′ ‘ A) by

blast
from this show b = b ′

proof
assume b ∈ f ′ ‘ A ∧ b ′ ∈ f ′ ‘ A
from this obtain a a ′ where a ∈ A b = f ′ a and a ′ ∈ A b ′ = f ′ a ′ by

auto
from this ‹b ∈ B› ‹b ′ ∈ B› have p b = f a p b ′ = f a ′

unfolding p-def by auto
from this ‹p b = p b ′› have f a = f a ′ by simp
from this have f ′ a = f ′ a ′

using partitions-eq-implies[OF ‹f ∈ A→E B› ‹f ′ ∈ A→E B› partitions-eq]
using ‹a ∈ A› ‹a ′ ∈ A› by blast

from this show b = b ′

using ‹b ′ = f ′ a ′› ‹b = f ′ a› by simp
next

assume b /∈ f ′ ‘ A ∧ b ′ /∈ f ′ ‘ A
from this ‹b ∈ B› ‹b ′ ∈ B› have p b ′ = p ′ b ′ p b = p ′ b

unfolding p-def by auto
from this ‹p b = p b ′› have p ′ b = p ′ b ′ by simp
moreover have b ∈ B − f ′ ‘ A b ′ ∈ B − f ′ ‘ A

using ‹b ∈ B› ‹b ′ ∈ B› ‹b /∈ f ′ ‘ A ∧ b ′ /∈ f ′ ‘ A› by auto
ultimately show b = b ′

using ‹bij-betw p ′ - -› by (metis bij-betw-inv-into-left)
qed

qed
qed

25

next
fix x
assume x /∈ B
from this show p x = x

using ‹f ′ ∈ A →E B› p-def by auto
qed
ultimately show ?thesis by blast

qed

2.3 Number Partition of Range
2.3.1 Existence of a Suitable Finite Function
lemma obtain-partition:

assumes finite A
assumes number-partition (card A) N
shows ∃P. partition-on A P ∧ image-mset card (mset-set P) = N

using assms
proof (induct N arbitrary: A)

case empty
from this have A = {}

unfolding number-partition-def by auto
from this have partition-on A {} by (simp add: partition-on-empty)
moreover have image-mset card (mset-set {}) = {#} by simp
ultimately show ?case by blast

next
case (add x N)
from add.prems(2) have 0 /∈# add-mset x N and sum-mset (add-mset x N) =

card A
unfolding number-partition-def by auto

from this have x ≤ card A by auto
from this obtain X where X ⊆ A and card X = x

using subset-with-given-card-exists by auto
from this have X 6= {}

using ‹0 /∈# add-mset x N › ‹finite A› by auto
have sum-mset N = card (A − X)

using ‹sum-mset (add-mset x N) = card A› ‹card X = x› ‹X ⊆ A›
by (metis add.commute add.prems(1) add-diff-cancel-right ′ card-Diff-subset

infinite-super sum-mset.add-mset)
from this ‹0 /∈# add-mset x N › have number-partition (card (A − X)) N

unfolding number-partition-def by auto
from this obtain P where partition-on (A − X) P and eq-N : image-mset card

(mset-set P) = N
using add.hyps ‹finite A› by auto

from ‹partition-on (A − X) P› have finite P
using ‹finite A› finite-elements by blast

from ‹partition-on (A − X) P› have X /∈ P
using ‹X 6= {}› partition-onD1 by fastforce

have partition-on A (insert X P)
using ‹partition-on (A − X) P› ‹X ⊆ A› ‹X 6= {}›

26

by (rule partition-on-insert ′)
moreover have image-mset card (mset-set (insert X P)) = add-mset x N

using eq-N ‹card X = x› ‹finite P› ‹X /∈ P› by simp
ultimately show ?case by blast

qed

lemma obtain-extensional-function-from-number-partition:
assumes finite A finite B
assumes number-partition (card A) N
assumes size N ≤ card B
shows ∃ f∈A →E B. image-mset (λX . card X) (mset-set (((λb. {x ∈ A. f x =

b})) ‘ B − {{}})) = N
proof −

obtain P where partition-on A P and eq-N : image-mset card (mset-set P) =
N

using assms obtain-partition by blast
from eq-N [symmetric] ‹size N ≤ card B› have card P ≤ card B by simp
from ‹partition-on A P› this obtain f where f ∈ A →E B

and eq-P: (λb. {x ∈ A. f x = b}) ‘ B − {{}} = P
using obtain-function-with-partition[OF ‹finite A› ‹finite B›] by blast

have image-mset (λX . card X) (mset-set (((λb. {x ∈ A. f x = b})) ‘ B − {{}}))
= N

using eq-P eq-N by simp
from this ‹f ∈ A →E B› show ?thesis by auto

qed

2.3.2 Equality under Permutation Application
lemma permutes-implies-multiset-of-partition-cards-eq:

assumes pA permutes A pB permutes B
shows image-mset card (mset-set ((λb. {x ∈ A. pB (f ′ (pA x)) = b}) ‘ B −
{{}})) = image-mset card (mset-set ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}))
proof −

have inj-on ((‘) (inv pA)) ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}})
by (meson ‹pA permutes A› inj-image-eq-iff inj-onI permutes-surj surj-imp-inj-inv)

have image-mset card (mset-set ((λb. {x ∈ A. pB (f ′ (pA x)) = b}) ‘ B − {{}}))
=

image-mset card (mset-set ((λX . inv pA ‘ X) ‘ ((λb. {x ∈ A. f ′ x = b}) ‘ B −
{{}})))

proof −
have (λb. {x ∈ A. pB (f ′ (pA x)) = b}) ‘ B − {{}} = (λb. {x ∈ A. f ′ (pA x)

= b}) ‘ B − {{}}
using permutes-implies-inv-image-on-eq[OF ‹pB permutes B›] by metis

also have . . . = (λb. inv pA ‘ {x ∈ A. f ′ x = b}) ‘ B − {{}}
proof −

have {x ∈ A. f ′ (pA x) = b} = inv pA ‘ {x ∈ A. f ′ x = b} for b
proof

show {x ∈ A. f ′ (pA x) = b} ⊆ inv pA ‘ {x ∈ A. f ′ x = b}
proof

27

fix x
assume x ∈ {x ∈ A. f ′ (pA x) = b}
from this have x ∈ A f ′ (pA x) = b by auto

moreover from this ‹pA permutes A› have pA x ∈ A by (simp add:
permutes-in-image)

moreover from ‹pA permutes A› have x = inv pA (pA x)
using permutes-inverses(2) by fastforce

ultimately show x ∈ inv pA ‘ {x ∈ A. f ′ x = b} by auto
qed

next
show inv pA ‘ {x ∈ A. f ′ x = b} ⊆ {x ∈ A. f ′ (pA x) = b}
proof

fix x
assume x ∈ inv pA ‘ {x ∈ A. f ′ x = b}
from this obtain x ′ where x: x = inv pA x ′ x ′ ∈ A f ′ x ′ = b by auto
from this ‹pA permutes A› have x ∈ A by (simp add: permutes-in-image

permutes-inv)
from ‹x = inv pA x ′› ‹f ′ x ′ = b› have f ′ (pA x) = b

using ‹pA permutes A› permutes-inverses(1) by fastforce
from this ‹x ∈ A› show x ∈ {x ∈ A. f ′ (pA x) = b} by auto

qed
qed
from this show ?thesis by blast

qed
also have . . . = (λX . inv pA ‘ X) ‘ ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}) by

auto
finally show ?thesis by simp

qed
also have . . . = image-mset (λX . card (inv pA ‘ X)) (mset-set ((λb. {x ∈ A. f ′

x = b}) ‘ B − {{}}))
using ‹inj-on ((‘) (inv pA)) ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}})›
by (simp only: image-mset-mset-set[symmetric] image-mset.compositionality)

(meson comp-apply)
also have . . . = image-mset card (mset-set ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}))
using ‹pA permutes A› by (simp add: card-image inj-on-inv-into permutes-surj)

finally show ?thesis .
qed

2.3.3 Existence of Permutation
lemma partition-implies-permutes:

assumes finite A
assumes partition-on A P partition-on A P ′

assumes image-mset card (mset-set P ′) = image-mset card (mset-set P)
obtains p where p permutes A P ′ = (λX . p ‘ X) ‘ P

proof −
from ‹partition-on A P› ‹partition-on A P ′› have finite P finite P ′

using ‹finite A› finite-elements by blast+
from this ‹image-mset card (mset-set P ′) = image-mset card (mset-set P)›

28

obtain bij where bij-betw bij P P ′ and ∀X∈P. card X = card (bij X)
using image-mset-eq-implies-bij-betw by metis

have ∀X∈P. ∃ p ′. bij-betw p ′ X (bij X)
proof

fix X
assume X ∈ P
from this have X ⊆ A

using ‹partition-on A P› partition-onD1 by fastforce
from this have finite X

using ‹finite A› rev-finite-subset by blast
from ‹X ∈ P› have bij X ∈ P ′

using ‹bij-betw bij P P ′› bij-betwE by blast
from this have bij X ⊆ A

using ‹partition-on A P ′› partition-onD1 by fastforce
from this have finite (bij X)

using ‹finite A› rev-finite-subset by blast
from ‹X ∈ P› have card X = card (bij X)

using ‹∀X∈P. card X = card (bij X)› by blast
from this show ∃ p ′. bij-betw p ′ X (bij X)

using ‹finite (bij X)› ‹finite X› finite-same-card-bij by blast
qed
from this have ∃ p ′. ∀X∈P. bij-betw (p ′ X) X (bij X) by metis
from this obtain p ′ where p ′: ∀X∈P. bij-betw (p ′ X) X (bij X) ..
define p where

∧
a. p a = (if a ∈ A then p ′ (THE X . a ∈ X ∧ X ∈ P) a else

a)
have p permutes A
proof −

have bij-betw p A A
proof −

have disjoint-family-on bij P
proof

fix X X ′

assume XX ′: X ∈ P X ′ ∈ P X 6= X ′

from this have bij X ∈ P ′ bij X ′ ∈ P ′

using ‹bij-betw bij P P ′› bij-betwE by blast+
moreover from XX ′ have bij X 6= bij X ′

using ‹bij-betw bij P P ′› by (metis bij-betw-inv-into-left)
ultimately show bij X ∩ bij X ′ = {}

using ‹partition-on A P ′› by (meson partition-onE)
qed
moreover have bij-betw (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) X (bij X) if

X ∈ P for X
proof −

from ‹X ∈ P› have bij-betw (p ′ X) X (bij X)
using ‹∀X∈P. bij-betw (p ′ X) X (bij X)› by blast

moreover from ‹X ∈ P› have ∀ a∈X . (THE X . a ∈ X ∧ X ∈ P) = X
using ‹partition-on A P› partition-on-the-part-eq by fastforce

ultimately show ?thesis by (auto intro: bij-betw-congI)
qed

29

ultimately have bij-betw (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) (
⋃

X∈P. X)
(
⋃

X∈P. bij X)
by (rule bij-betw-UNION-disjoint)

moreover have (
⋃

X∈P. X) = A (
⋃

X∈P ′. X) = A
using ‹partition-on A P› ‹partition-on A P ′› partition-onD1 by auto

moreover have (
⋃

X∈P. bij X) = (
⋃

X∈P ′. X)
using ‹bij-betw bij P P ′› bij-betw-imp-surj-on by force

ultimately have bij-betw (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) A A by simp
moreover have ∀ a ∈ A. p ′ (THE X . a ∈ X ∧ X ∈ P) a = p a

unfolding p-def by auto
ultimately show ?thesis by (rule bij-betw-congI)

qed
moreover have p x = x if x /∈ A for x

using ‹x /∈ A› p-def by auto
ultimately show ?thesis by (rule bij-imp-permutes)

qed
moreover have P ′ = (λX . p ‘ X) ‘ P
proof

show P ′ ⊆ (λX . p ‘ X) ‘ P
proof

fix X
assume X ∈ P ′

have in-P: the-inv-into P bij X ∈ P
using ‹X ∈ P ′› ‹bij-betw bij P P ′› bij-betwE bij-betw-the-inv-into by blast

have eq-X : bij (the-inv-into P bij X) = X
using ‹X ∈ P ′› ‹bij-betw bij P P ′›
by (meson f-the-inv-into-f-bij-betw)

have X = p ‘ (the-inv-into P bij X)
proof

from in-P have the-inv-into P bij X ⊆ A
using ‹partition-on A P› partition-onD1 by fastforce

have (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ the-inv-into P bij X = X
proof

show (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ the-inv-into P bij X ⊆ X
proof

fix x
assume x ∈ (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ the-inv-into P bij X
from this obtain a where a-in: a ∈ the-inv-into P bij X

and x-eq: x = p ′ (THE X . a ∈ X ∧ X ∈ P) a by blast
have (THE X . a ∈ X ∧ X ∈ P) = the-inv-into P bij X

using a-in in-P ‹partition-on A P› partition-on-the-part-eq
by fastforce

from this x-eq have x-eq: x = p ′ (the-inv-into P bij X) a
by auto

from this have x ∈ bij (the-inv-into P bij X)
using a-in in-P bij-betwE p ′ by blast

from this eq-X show x ∈ X by blast
qed

next

30

show X ⊆ (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ the-inv-into P bij X
proof

fix x
assume x ∈ X
let ?X ′ = the-inv-into P bij X
define x ′ where x ′ = the-inv-into ?X ′ (p ′ ?X ′) x
from in-P p ′ eq-X have bij-betw: bij-betw (p ′ ?X ′) ?X ′ X by auto
from bij-betw ‹x ∈ X› have x ′ ∈ ?X ′

unfolding x ′-def
using bij-betwE bij-betw-the-inv-into by blast

from this in-P have (THE X . x ′ ∈ X ∧ X ∈ P) = ?X ′

using ‹partition-on A P› partition-on-the-part-eq by fastforce
from this ‹x ∈ X› have x = p ′ (THE X . x ′ ∈ X ∧ X ∈ P) x ′

unfolding x ′-def
using bij-betw f-the-inv-into-f-bij-betw by fastforce

from this ‹x ′ ∈ ?X ′› show x ∈ (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘
the-inv-into P bij X ..

qed
qed
from this ‹the-inv-into P bij X ⊆ A› show X ⊆ p ‘ the-inv-into P bij X

unfolding p-def by auto
next

show p ‘ the-inv-into P bij X ⊆ X
proof

fix x
assume x ∈ p ‘ the-inv-into P bij X
from this obtain x ′ where x = p x ′ and x ′ ∈ the-inv-into P bij X

by auto
have x ′ ∈ A

using ‹x ′ ∈ the-inv-into P bij X› assms(2) in-P partition-onD1 by
fastforce

have eq: (THE X . x ′ ∈ X ∧ X ∈ P) = the-inv-into P bij X
using ‹x ′ ∈ the-inv-into P bij X› assms(2) in-P partition-on-the-part-eq

by fastforce
have p ′: p ′ (the-inv-into P bij X) x ′ ∈ X

using ‹x ′ ∈ the-inv-into P bij X› bij-betwE eq-X in-P p ′ by blast
from ‹x = p x ′› ‹x ′ ∈ A› eq p ′ show x ∈ X

unfolding p-def by auto
qed

qed
moreover from ‹X ∈ P ′› ‹bij-betw bij P P ′› have the-inv-into P bij X ∈ P

using bij-betwE bij-betw-the-inv-into by blast
ultimately show X ∈ (λX . p ‘ X) ‘ P ..

qed
next

show (λX . p ‘ X) ‘ P ⊆ P ′

proof
fix X ′

assume X ′ ∈ (λX . p ‘ X) ‘ P

31

from this obtain X where X ′-eq: X ′ = p ‘ X and X ∈ P ..
from ‹X ∈ P› have X ⊆ A

using assms(2) partition-onD1 by force
from ‹X ∈ P› p ′ have bij: bij-betw (p ′ X) X (bij X) by auto
have p ‘ X ∈ P ′

proof −
from ‹X ∈ P› ‹bij-betw bij P P ′› have bij X ∈ P ′

using bij-betwE by blast
moreover have (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ X = bij X
proof

show (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ X ⊆ bij X
proof

fix x ′

assume x ′ ∈ (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ X
from this obtain x where x ∈ X and x ′-eq: x ′ = p ′ (THE X . x ∈ X ∧

X ∈ P) x ..
from ‹X ∈ P› ‹x ∈ X› have eq-X : (THE X . x ∈ X ∧ X ∈ P) = X

using assms(2) partition-on-the-part-eq by fastforce
from bij ‹x ∈ X› x ′-eq eq-X show x ′ ∈ bij X

using bij-betwE by blast
qed

next
show bij X ⊆ (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ X
proof

fix x ′

assume x ′ ∈ bij X
let ?x = inv-into X (p ′ X) x ′

from ‹x ′ ∈ bij X› bij have ?x ∈ X
by (metis bij-betw-imp-surj-on inv-into-into)

from this ‹X ∈ P› have (THE X . ?x ∈ X ∧ X ∈ P) = X
using assms(2) partition-on-the-part-eq by fastforce

from this ‹x ′ ∈ bij X› bij have x ′ = p ′ (THE X . ?x ∈ X ∧ X ∈ P) ?x
using bij-betw-inv-into-right by fastforce

moreover from ‹x ′ ∈ bij X› bij have ?x ∈ X
by (metis bij-betw-imp-surj-on inv-into-into)

ultimately show x ′ ∈ (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ X ..
qed

qed
ultimately have (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ X ∈ P ′ by simp
have (λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ X = (λa. if a ∈ A then p ′

(THE X . a ∈ X ∧ X ∈ P) a else a) ‘ X
using ‹X ⊆ A› by (auto intro: image-cong)

from this show ?thesis
using ‹(λa. p ′ (THE X . a ∈ X ∧ X ∈ P) a) ‘ X ∈ P ′› unfolding p-def

by auto
qed
from this X ′-eq show X ′ ∈ P ′ by simp

qed
qed

32

ultimately show thesis using that by blast
qed

lemma permutes-domain-partition-eq:
assumes f ∈ A → B
assumes pA permutes A
assumes b ∈ B
shows pA ‘ {x ∈ A. f x = b} = {x ∈ A. f (inv pA x) = b}

proof
show pA ‘ {x ∈ A. f x = b} ⊆ {x ∈ A. f (inv pA x) = b}

using ‹pA permutes A› permutes-in-image permutes-inverses(2) by fastforce
next

show {x ∈ A. f (inv pA x) = b} ⊆ pA ‘ {x ∈ A. f x = b}
proof

fix x
assume x ∈ {x ∈ A. f (inv pA x) = b}
from this have x ∈ A f (inv pA x) = b by auto
from ‹x ∈ A› have x = pA (inv pA x)

using ‹pA permutes A› permutes-inverses(1) by fastforce
moreover from ‹f (inv pA x) = b› ‹x ∈ A› have inv pA x ∈ {x ∈ A. f x = b}

by (simp add: ‹pA permutes A› permutes-in-image permutes-inv)
ultimately show x ∈ pA ‘ {x ∈ A. f x = b} ..

qed
qed

lemma image-domain-partition-eq:
assumes f ∈ A →E B
assumes pA permutes A
shows (λX . pA ‘ X) ‘ ((λb. {x ∈ A. f x = b}) ‘ B) = (λb. {x ∈ A. f (inv pA x)

= b}) ‘ B
proof

from ‹f ∈ A →E B› have f ∈ A → B by auto
note eq = permutes-domain-partition-eq[OF ‹f ∈ A → B› ‹pA permutes A›]
show (λX . pA ‘ X) ‘ (λb. {x ∈ A. f x = b}) ‘ B ⊆ (λb. {x ∈ A. f (inv pA x) =

b}) ‘ B
proof

fix X
assume X ∈ (λX . pA ‘ X) ‘ (λb. {x ∈ A. f x = b}) ‘ B
from this obtain b where b ∈ B and X-eq: X = pA ‘ {x ∈ A. f x = b} by

auto
from this eq have X = {x ∈ A. f (inv pA x) = b} by simp
from this ‹b ∈ B› show X ∈ (λb. {x ∈ A. f (inv pA x) = b}) ‘ B ..

qed
next

from ‹f ∈ A →E B› have f ∈ A → B by auto
note eq = permutes-domain-partition-eq[OF ‹f ∈ A → B› ‹pA permutes A›,

symmetric]
show (λb. {x ∈ A. f (inv pA x) = b}) ‘ B ⊆ (λX . pA ‘ X) ‘ (λb. {x ∈ A. f x =

b}) ‘ B

33

proof
fix X
assume X ∈ (λb. {x ∈ A. f (inv pA x) = b}) ‘ B
from this obtain b where b ∈ B and X-eq: X = {x ∈ A. f (inv pA x) = b}

by auto
from this eq have X = pA ‘ {x ∈ A. f x = b} by simp
from this ‹b ∈ B› show X ∈ (λX . pA ‘ X) ‘ (λb. {x ∈ A. f x = b}) ‘ B by

auto
qed

qed

lemma multiset-of-partition-cards-eq-implies-permutes:
assumes finite A finite B f ∈ A →E B f ′ ∈ A →E B
assumes eq: image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}})) =

image-mset card (mset-set ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}))
obtains pA pB where pA permutes A pB permutes B ∀ x∈A. f x = pB (f ′ (pA

x))
proof −

have partition-on A ((λb. {x ∈ A. f x = b}) ‘ B − {{}})
using ‹f ∈ A →E B› by (auto intro!: partition-onI)

moreover have partition-on A ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}})
using ‹f ′ ∈ A →E B› by (auto intro!: partition-onI)

moreover note partition-implies-permutes[OF ‹finite A› - - eq]
ultimately obtain pA where pA permutes A and

inv-image-eq: (λb. {x ∈ A. f x = b}) ‘ B − {{}} =
(‘) pA ‘ ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}) by blast

from ‹pA permutes A› have inj ((‘) pA)
by (meson injI inj-image-eq-iff permutes-inj)

have inv-image-eq ′: (λb. {x ∈ A. f x = b}) ‘ B − {{}} = (λb. {x ∈ A. f ′ (inv
pA x) = b}) ‘ B − {{}}

proof −
note inv-image-eq
also have (λX . pA ‘ X) ‘ ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}) = (λb. {x ∈

A. f ′ (inv pA x) = b}) ‘ B − {{}}
using image-domain-partition-eq[OF ‹f ′ ∈ A →E B› ‹pA permutes A›]
by (simp add: image-set-diff [OF ‹inj ((‘) pA)›])

finally show ?thesis .
qed
from ‹pA permutes A› have inv pA permutes A

using permutes-inv by blast
have (λx. f ′ (inv pA x)) ∈ A →E B

using ‹f ′ ∈ A →E B› ‹inv pA permutes A› permutes-in-image by fastforce
from ‹f ∈ A →E B› this ‹finite B› obtain pB

where pB permutes B and eq ′′: ∀ x∈A. f x = pB (f ′ (inv pA x))
using partitions-eq-implies-permutes[OF - - - inv-image-eq ′] by blast

from ‹inv pA permutes A› ‹pB permutes B› eq ′′ that show thesis by blast
qed

34

2.4 Bijections on Same Domain and Range
2.4.1 Existence of Domain Permutation
lemma obtain-domain-permutation-for-two-bijections:

assumes bij-betw f A B bij-betw f ′ A B
obtains p where p permutes A and ∀ a∈A. f a = f ′ (p a)

proof −
let ?p = λa. if a ∈ A then the-inv-into A f ′ (f a) else a
have ?p permutes A
proof (rule bij-imp-permutes)

show bij-betw ?p A A
proof (rule bij-betw-imageI)

show inj-on ?p A
proof (rule inj-onI)

fix a a ′

assume a ∈ A a ′ ∈ A ?p a = ?p a ′

from this have the-inv-into A f ′ (f a) = the-inv-into A f ′ (f a ′)
using ‹a ∈ A› ‹a ′ ∈ A› by simp

from this have f a = f a ′

using ‹a ∈ A› ‹a ′ ∈ A› assms
by (metis bij-betwE f-the-inv-into-f-bij-betw)

from this show a = a ′

using ‹a ∈ A› ‹a ′ ∈ A› assms
by (metis bij-betw-inv-into-left)

qed
next

show ?p ‘ A = A
proof

show ?p ‘ A ⊆ A
proof

fix a
assume a ∈ ?p ‘ A
from this obtain a ′ where a ′ ∈ A and a = the-inv-into A f ′ (f a ′) by

auto
from this assms show a ∈ A

by (metis bij-betwE bij-betw-imp-inj-on bij-betw-imp-surj-on subset-iff
the-inv-into-into)

qed
next

show A ⊆ ?p ‘ A
proof

fix a
assume a ∈ A
from this assms have the-inv-into A f (f ′ a) ∈ A

by (meson bij-betwE bij-betw-the-inv-into)
moreover from ‹a ∈ A› assms have a = the-inv-into A f ′ (f (the-inv-into

A f (f ′ a)))
by (metis bij-betwE bij-betw-imp-inj-on f-the-inv-into-f-bij-betw the-inv-into-f-eq)
ultimately show a ∈ ?p ‘ A by auto

35

qed
qed

qed
next

fix a
assume a /∈ A
from this show ?p a = a by auto

qed
moreover have ∀ a∈A. f a = f ′ (?p a)

using ‹bij-betw f A B› ‹bij-betw f ′ A B›
using bij-betwE f-the-inv-into-f-bij-betw by fastforce

moreover note that
ultimately show thesis by auto

qed

2.4.2 Existence of Range Permutation
lemma obtain-range-permutation-for-two-bijections:

assumes bij-betw f A B bij-betw f ′ A B
obtains p where p permutes B and ∀ a∈A. f a = p (f ′ a)

proof −
let ?p = λb. if b ∈ B then f (inv-into A f ′ b) else b
have ?p permutes B
proof (rule bij-imp-permutes)

show bij-betw ?p B B
proof (rule bij-betw-imageI)

show inj-on ?p B
proof (rule inj-onI)

fix b b ′

assume b ∈ B b ′ ∈ B ?p b = ?p b ′

from this have f (inv-into A f ′ b) = f (inv-into A f ′ b ′)
using ‹b ∈ B› ‹b ′ ∈ B› by simp

from this have inv-into A f ′ b = inv-into A f ′ b ′

using ‹b ∈ B› ‹b ′ ∈ B› assms
by (metis bij-betw-imp-surj-on bij-betw-inv-into-left inv-into-into)

from this show b = b ′

using ‹b ∈ B› ‹b ′ ∈ B› assms(2)
by (metis bij-betw-inv-into-right)

qed
next

show ?p ‘ B = B
proof

from assms show ?p ‘ B ⊆ B
by (auto simp add: bij-betwE bij-betw-def inv-into-into)

next
show B ⊆ ?p ‘ B
proof

fix b
assume b ∈ B

36

from this assms have f ′ (inv-into A f b) ∈ B
by (metis bij-betwE bij-betw-imp-surj-on inv-into-into)

moreover have b = ?p (f ′ (inv-into A f b))
using assms ‹f ′ (inv-into A f b) ∈ B› ‹b ∈ B›

by (auto simp add: bij-betw-imp-surj-on bij-betw-inv-into-left bij-betw-inv-into-right
inv-into-into)

ultimately show b ∈ ?p ‘ B by auto
qed

qed
qed

next
fix b
assume b /∈ B
from this show ?p b = b by auto

qed
moreover have ∀ a∈A. f a = ?p (f ′ a)

using ‹bij-betw f ′ A B› bij-betw-inv-into-left bij-betwE by fastforce
moreover note that
ultimately show thesis by auto

qed

end

3 Definition of Equivalence Classes
theory Equiv-Relations-on-Functions
imports

Preliminaries
Twelvefold-Way-Core

begin

3.1 Permutation on the Domain
definition domain-permutation
where

domain-permutation A B = {(f , f ′) ∈ (A →E B) × (A →E B). ∃ p. p permutes
A ∧ (∀ x ∈ A. f x = f ′ (p x))}

lemma equiv-domain-permutation:
equiv (A →E B) (domain-permutation A B)

proof (rule equivI)
show refl-on (A →E B) (domain-permutation A B)
proof (rule refl-onI)

show domain-permutation A B ⊆ (A →E B) × (A →E B)
unfolding domain-permutation-def by auto

next
fix f
assume f ∈ A →E B
from this show (f , f) ∈ domain-permutation A B

37

using permutes-id unfolding domain-permutation-def by fastforce
qed

next
show sym (domain-permutation A B)
proof (rule symI)

fix f f ′

assume (f , f ′) ∈ domain-permutation A B
from this obtain p where p permutes A and ∀ x∈A. f x = f ′ (p x)

unfolding domain-permutation-def by auto
from ‹(f , f ′) ∈ domain-permutation A B› have f ∈ A →E B f ′ ∈ A →E B

unfolding domain-permutation-def by auto
moreover from ‹p permutes A› have inv p permutes A

by (simp add: permutes-inv)
moreover from ‹p permutes A› ‹∀ x∈A. f x = f ′ (p x)› have ∀ x∈A. f ′ x = f

(inv p x)
using permutes-in-image permutes-inverses(1) by (metis (mono-tags, opaque-lifting))
ultimately show (f ′, f) ∈ domain-permutation A B

unfolding domain-permutation-def by auto
qed

next
show trans (domain-permutation A B)
proof (rule transI)

fix f f ′ f ′′

assume (f , f ′) ∈ domain-permutation A B (f ′, f ′′) ∈ domain-permutation A B
from ‹(f , f ′) ∈ -› obtain p where p permutes A and ∀ x∈A. f x = f ′ (p x)

unfolding domain-permutation-def by auto
from ‹(f ′, f ′′) ∈ -› obtain p ′ where p ′ permutes A and ∀ x∈A. f ′ x = f ′′ (p ′

x)
unfolding domain-permutation-def by auto

from ‹(f , f ′) ∈ domain-permutation A B› have f ∈ A →E B
unfolding domain-permutation-def by auto

moreover from ‹(f ′, f ′′) ∈ domain-permutation A B› have f ′′ ∈ A →E B
unfolding domain-permutation-def by auto

moreover from ‹p permutes A› ‹p ′ permutes A› have (p ′ ◦ p) permutes A
by (simp add: permutes-compose)

moreover have ∀ x∈A. f x = f ′′ ((p ′ ◦ p) x)
using ‹∀ x∈A. f x = f ′ (p x)› ‹∀ x∈A. f ′ x = f ′′ (p ′ x)› ‹p permutes A›
by (simp add: permutes-in-image)

ultimately show (f , f ′′) ∈ domain-permutation A B
unfolding domain-permutation-def by auto

qed
qed

3.1.1 Respecting Functions
lemma inj-on-respects-domain-permutation:
(λf . inj-on f A) respects domain-permutation A B

proof (rule congruentI)
fix f f ′

38

assume (f , f ′) ∈ domain-permutation A B
from this obtain p where p: p permutes A ∀ x∈A. f x = f ′ (p x)

unfolding domain-permutation-def by auto
have inv-p: ∀ x∈A. f ′ x = f (inv p x)

using p by (metis permutes-inverses(1) permutes-not-in)
show inj-on f A ←→ inj-on f ′ A
proof

assume inj-on f A
show inj-on f ′ A
proof (rule inj-onI)

fix a a ′

assume a ∈ A a ′ ∈ A f ′ a = f ′ a ′

from this ‹p permutes A› have inv p a ∈ A inv p a ′ ∈ A
by (simp add: permutes-in-image permutes-inv)+

have f (inv p a) = f (inv p a ′)
using ‹f ′ a = f ′ a ′› ‹a ∈ A› ‹a ′ ∈ A› inv-p by auto

from ‹inj-on f A› this ‹inv p a ∈ A› ‹inv p a ′ ∈ A› have inv p a = inv p a ′

using inj-on-contraD by fastforce
from this show a = a ′

by (metis ‹p permutes A› permutes-inverses(1))
qed

next
assume inj-on f ′ A
from this p show inj-on f A

unfolding inj-on-def
by (metis inj-on-contraD permutes-in-image permutes-inj-on)

qed
qed

lemma image-respects-domain-permutation:
(λf . f ‘ A) respects (domain-permutation A B)

proof (rule congruentI)
fix f f ′

assume (f , f ′) ∈ domain-permutation A B
from this obtain p where p: p permutes A and f-eq: ∀ x∈A. f x = f ′ (p x)

unfolding domain-permutation-def by auto
show f ‘ A = f ′ ‘ A
proof

from p f-eq show f ‘ A ⊆ f ′ ‘ A
by (auto simp add: permutes-in-image)

next
from ‹p permutes A› ‹∀ x∈A. f x = f ′ (p x)› have ∀ x∈A. f ′ x = f (inv p x)
using permutes-in-image permutes-inverses(1) by (metis (mono-tags, opaque-lifting))
from this show f ′ ‘ A ⊆ f ‘ A

using ‹p permutes A› by (auto simp add: permutes-inv permutes-in-image)
qed

qed

lemma surjective-respects-domain-permutation:

39

(λf . f ‘ A = B) respects domain-permutation A B
by (metis image-respects-domain-permutation congruentD congruentI)

lemma bij-betw-respects-domain-permutation:
(λf . bij-betw f A B) respects domain-permutation A B

proof (rule congruentI)
fix f f ′

assume (f , f ′) ∈ domain-permutation A B
from this obtain p where p permutes A and ∀ x∈A. f x = f ′ (p x)

unfolding domain-permutation-def by auto
have bij-betw f A B ←→ bij-betw (f ′ o p) A B

using ‹∀ x∈A. f x = f ′ (p x)›
by (metis (mono-tags, opaque-lifting) bij-betw-cong comp-apply)

also have ... ←→ bij-betw f ′ A B
using ‹p permutes A›
by (auto intro!: bij-betw-comp-iff [symmetric] permutes-imp-bij)

finally show bij-betw f A B ←→ bij-betw f ′ A B .
qed

lemma image-mset-respects-domain-permutation:
shows (λf . image-mset f (mset-set A)) respects (domain-permutation A B)

proof (rule congruentI)
fix f f ′

assume (f , f ′) ∈ domain-permutation A B
from this obtain p where p permutes A and ∀ x∈A. f x = f ′ (p x)

unfolding domain-permutation-def by auto
from this show image-mset f (mset-set A) = image-mset f ′ (mset-set A)

using permutes-implies-image-mset-eq by fastforce
qed

3.2 Permutation on the Range
definition range-permutation
where

range-permutation A B = {(f , f ′) ∈ (A →E B) × (A →E B). ∃ p. p permutes B
∧ (∀ x ∈ A. f x = p (f ′ x))}

lemma equiv-range-permutation:
equiv (A →E B) (range-permutation A B)

proof (rule equivI)
show refl-on (A →E B) (range-permutation A B)
proof (rule refl-onI)

show range-permutation A B ⊆ (A →E B) × (A →E B)
unfolding range-permutation-def by auto

next
fix f
assume f ∈ A →E B
from this show (f , f) ∈ range-permutation A B

using permutes-id unfolding range-permutation-def by fastforce

40

qed
next

show sym (range-permutation A B)
proof (rule symI)

fix f f ′

assume (f , f ′) ∈ range-permutation A B
from this obtain p where p permutes B and ∀ x∈A. f x = p (f ′ x)

unfolding range-permutation-def by auto
from ‹(f , f ′) ∈ range-permutation A B› have f ∈ A →E B f ′ ∈ A →E B

unfolding range-permutation-def by auto
moreover from ‹p permutes B› have inv p permutes B

by (simp add: permutes-inv)
moreover from ‹p permutes B› ‹∀ x∈A. f x = p (f ′ x)› have ∀ x∈A. f ′ x =

inv p (f x)
by (simp add: permutes-inverses(2))

ultimately show (f ′, f) ∈ range-permutation A B
unfolding range-permutation-def by auto

qed
next

show trans (range-permutation A B)
proof (rule transI)

fix f f ′ f ′′

assume (f , f ′) ∈ range-permutation A B (f ′, f ′′) ∈ range-permutation A B
from ‹(f , f ′) ∈ -› obtain p where p permutes B and ∀ x∈A. f x = p (f ′ x)

unfolding range-permutation-def by auto
from ‹(f ′, f ′′) ∈ -› obtain p ′ where p ′ permutes B and ∀ x∈A. f ′ x = p ′ (f ′′

x)
unfolding range-permutation-def by auto

from ‹(f , f ′) ∈ range-permutation A B› have f ∈ A →E B
unfolding range-permutation-def by auto

moreover from ‹(f ′, f ′′) ∈ range-permutation A B› have f ′′ ∈ A →E B
unfolding range-permutation-def by auto

moreover from ‹p permutes B› ‹p ′ permutes B› have (p ◦ p ′) permutes B
by (simp add: permutes-compose)

moreover have ∀ x∈A. f x = (p ◦ p ′) (f ′′ x)
using ‹∀ x∈A. f x = p (f ′ x)› ‹∀ x∈A. f ′ x = p ′ (f ′′ x)› by auto

ultimately show (f , f ′′) ∈ range-permutation A B
unfolding range-permutation-def by auto

qed
qed

3.2.1 Respecting Functions
lemma inj-on-respects-range-permutation:
(λf . inj-on f A) respects range-permutation A B

proof (rule congruentI)
fix f f ′

assume (f , f ′) ∈ range-permutation A B
from this obtain p where p: p permutes B ∀ x∈A. f x = p (f ′ x)

41

unfolding range-permutation-def by auto
have inv-p: ∀ x∈A. f ′ x = inv p (f x)

using p by (simp add: permutes-inverses(2))
show inj-on f A ←→ inj-on f ′ A
proof

assume inj-on f A
from this p show inj-on f ′ A

unfolding inj-on-def by auto
next

assume inj-on f ′ A
from this inv-p show inj-on f A

unfolding inj-on-def by auto
qed

qed

lemma surj-on-respects-range-permutation:
(λf . f ‘ A = B) respects range-permutation A B

proof (rule congruentI)
fix f f ′

assume a: (f , f ′) ∈ range-permutation A B
from this have f ∈ A →E B f ′ ∈ A →E B

unfolding range-permutation-def by auto
from a obtain p where p: p permutes B ∀ x∈A. f x = p (f ′ x)

unfolding range-permutation-def by auto
have 1 : f ‘ A = (λx. p (f ′ x)) ‘ A

using p by (meson image-cong)
have 2 : inv p ‘ ((λx. p (f ′ x)) ‘ A) = f ′ ‘ A

using p by (simp add: image-image image-inv-f-f permutes-inj)
show (f ‘ A = B) = (f ′ ‘ A = B)
proof

assume f ‘ A = B
from this 1 2 show f ′ ‘ A = B

using p by (simp add: permutes-image permutes-inv)
next

assume f ′ ‘ A = B
from this 1 2 show f ‘ A = B

using p by (metis image-image permutes-image)
qed

qed

lemma bij-betw-respects-range-permutation:
(λf . bij-betw f A B) respects range-permutation A B

proof (rule congruentI)
fix f f ′

assume (f , f ′) ∈ range-permutation A B
from this obtain p where p permutes B and ∀ x∈A. f x = p (f ′ x)

and f ′ ∈ A →E B
unfolding range-permutation-def by auto

have bij-betw f A B ←→ bij-betw (p o f ′) A B

42

using ‹∀ x∈A. f x = p (f ′ x)›
by (metis (mono-tags, opaque-lifting) bij-betw-cong comp-apply)

also have ... ←→ bij-betw f ′ A B
using ‹f ′ ∈ A →E B› ‹p permutes B›
by (auto intro!: bij-betw-comp-iff2 [symmetric] permutes-imp-bij)

finally show bij-betw f A B ←→ bij-betw f ′ A B .
qed

lemma domain-partitions-respects-range-permutation:
(λf . (λb. {x ∈ A. f x = b}) ‘ B − {{}}) respects range-permutation A B

proof (rule congruentI)
fix f f ′

assume (f , f ′) ∈ range-permutation A B
from this obtain p where p: p permutes B ∀ x ∈ A. f x = p (f ′ x)

unfolding range-permutation-def by blast
have {} ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B ←→ ¬ (∀ b ∈ B. ∃ x ∈ A. f ′ x = b) by

auto
also have (∀ b ∈ B. ∃ x ∈ A. f ′ x = b) ←→ (∀ b ∈ B. ∃ x ∈ A. p (f ′ x) = b)
proof

assume ∀ b∈B. ∃ x∈A. f ′ x = b
from this show ∀ b∈B. ∃ x∈A. p (f ′ x) = b

using ‹p permutes B› unfolding permutes-def by metis
next

assume ∀ b∈B. ∃ x∈A. p (f ′ x) = b
from this show ∀ b∈B. ∃ x∈A. f ′ x = b
using ‹p permutes B› by (metis bij-betwE permutes-imp-bij permutes-inverses(2))

qed
also have ¬ (∀ b∈B. ∃ x∈A. p (f ′ x) = b) ←→ {} ∈ (λb. {x ∈ A. p (f ′ x) = b})

‘ B by auto
finally have {} ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B ←→ {} ∈ (λb. {x ∈ A. p (f ′ x)

= b}) ‘ B .
moreover have (λb. {x ∈ A. f ′ x = b}) ‘ B = (λb. {x ∈ A. p (f ′ x) = b}) ‘ B

using ‹p permutes B› permutes-implies-inv-image-on-eq by blast
ultimately have (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}} = (λb. {x ∈ A. p (f ′ x) =

b}) ‘ B − {{}} by auto
also have . . . = (λb. {x ∈ A. f x = b}) ‘ B − {{}}

using ‹∀ x ∈ A. f x = p (f ′ x)› Collect-cong image-cong by auto
finally show (λb. {x ∈ A. f x = b}) ‘ B − {{}} = (λb. {x ∈ A. f ′ x = b}) ‘ B
− {{}} ..
qed

3.3 Permutation on the Domain and the Range
definition domain-and-range-permutation
where

domain-and-range-permutation A B = {(f , f ′) ∈ (A →E B) × (A →E B).
∃ pA pB . pA permutes A ∧ pB permutes B ∧ (∀ x ∈ A. f x = pB (f ′ (pA x)))}

lemma equiv-domain-and-range-permutation:

43

equiv (A →E B) (domain-and-range-permutation A B)
proof (rule equivI)

show refl-on (A →E B) (domain-and-range-permutation A B)
proof (rule refl-onI)

show domain-and-range-permutation A B ⊆ (A →E B) × (A →E B)
unfolding domain-and-range-permutation-def by auto

next
fix f
assume f ∈ A →E B
from this show (f , f) ∈ domain-and-range-permutation A B

using permutes-id[of A] permutes-id[of B]
unfolding domain-and-range-permutation-def by fastforce

qed
next

show sym (domain-and-range-permutation A B)
proof (rule symI)

fix f f ′

assume (f , f ′) ∈ domain-and-range-permutation A B
from this obtain pA pB where pA permutes A pB permutes B and ∀ x∈A. f

x = pB (f ′ (pA x))
unfolding domain-and-range-permutation-def by auto

from ‹(f , f ′) ∈ domain-and-range-permutation A B› have f : f ∈ A →E B f ′

∈ A →E B
unfolding domain-and-range-permutation-def by auto

moreover from ‹pA permutes A› ‹pB permutes B› have inv pA permutes A
inv pB permutes B

by (auto simp add: permutes-inv)
moreover from ‹∀ x∈A. f x = pB (f ′ (pA x))› have ∀ x∈A. f ′ x = inv pB (f

(inv pA x))
using ‹pA permutes A› ‹pB permutes B› ‹inv pA permutes A› ‹inv pB permutes

B›
by (metis (no-types, lifting) bij-betwE bij-inv-eq-iff permutes-bij permutes-imp-bij)
ultimately show (f ′, f) ∈ domain-and-range-permutation A B

unfolding domain-and-range-permutation-def by auto
qed

next
show trans (domain-and-range-permutation A B)
proof (rule transI)

fix f f ′ f ′′

assume (f , f ′) ∈ domain-and-range-permutation A B
assume (f ′, f ′′) ∈ domain-and-range-permutation A B
from ‹(f , f ′) ∈ -› obtain pA pB where

pA permutes A pB permutes B and ∀ x∈A. f x = pB (f ′ (pA x))
unfolding domain-and-range-permutation-def by auto

from ‹(f ′, f ′′) ∈ -› obtain p ′
A p ′

B where
p ′

A permutes A p ′
B permutes B and ∀ x∈A. f ′ x = p ′

B (f ′′ (p ′
A x))

unfolding domain-and-range-permutation-def by auto
from ‹(f , f ′) ∈ domain-and-range-permutation A B› have f ∈ A →E B

unfolding domain-and-range-permutation-def by auto

44

moreover from ‹(f ′, f ′′) ∈ domain-and-range-permutation A B› have f ′′ ∈ A
→E B

unfolding domain-and-range-permutation-def by auto
moreover from ‹pA permutes A› ‹p ′

A permutes A› have (p ′
A ◦ pA) permutes

A
by (simp add: permutes-compose)

moreover from ‹pB permutes B› ‹p ′
B permutes B› have (pB ◦ p ′

B) permutes
B

by (simp add: permutes-compose)
moreover have ∀ x∈A. f x = (pB ◦ p ′

B) (f ′′ ((p ′
A ◦ pA) x))

using ‹∀ x∈A. f ′ x = p ′
B (f ′′ (p ′

A x))› ‹∀ x∈A. f x = pB (f ′ (pA x))› ‹pA

permutes A›
by (simp add: permutes-in-image)

ultimately show (f , f ′′) ∈ domain-and-range-permutation A B
unfolding domain-and-range-permutation-def by fastforce

qed
qed

3.3.1 Respecting Functions
lemma inj-on-respects-domain-and-range-permutation:
(λf . inj-on f A) respects domain-and-range-permutation A B

proof (rule congruentI)
fix f f ′

assume (f , f ′) ∈ domain-and-range-permutation A B
from this obtain pA pB where pA permutes A pB permutes B and ∀ x∈A. f x

= pB (f ′ (pA x))
unfolding domain-and-range-permutation-def by auto

from ‹(f , f ′) ∈ domain-and-range-permutation A B› have f ′ ‘ A ⊆ B
unfolding domain-and-range-permutation-def by auto

from ‹pA permutes A› have pA ‘ A = A by (auto simp add: permutes-image)
from ‹pA permutes A› have inj-on pA A

using bij-betw-imp-inj-on permutes-imp-bij by blast
from ‹pB permutes B› have inj-on pB B

using bij-betw-imp-inj-on permutes-imp-bij by blast
show inj-on f A ←→ inj-on f ′ A
proof −

have inj-on f A ←→ inj-on (λx. pB (f ′ (pA x))) A
using ‹∀ x∈A. f x = pB (f ′ (pA x))› inj-on-cong comp-apply by fastforce

have inj-on f A ←→ inj-on (pB o f ′ o pA) A
by (simp add: ‹∀ x∈A. f x = pB (f ′ (pA x))› inj-on-def)

also have inj-on (pB o f ′ o pA) A ←→ inj-on (pB o f ′) A
using ‹inj-on pA A› ‹pA ‘ A = A›
by (auto dest: inj-on-imageI intro: comp-inj-on)

also have inj-on (pB o f ′) A ←→ inj-on f ′ A
using ‹inj-on pB B› ‹f ′ ‘ A ⊆ B›
by (auto dest: inj-on-imageI2 intro: comp-inj-on subset-inj-on)

finally show ?thesis .
qed

45

qed

lemma surjective-respects-domain-and-range-permutation:
(λf . f ‘ A = B) respects domain-and-range-permutation A B

proof (rule congruentI)
fix f f ′

assume (f , f ′) ∈ domain-and-range-permutation A B
from this obtain pA pB where

permutes: pA permutes A pB permutes B and ∀ x∈A. f x = pB (f ′ (pA x))
unfolding domain-and-range-permutation-def by auto

from permutes have pA ‘ A = A pB ‘ B = B by (auto simp add: permutes-image)
from ‹pB permutes B› have inj pB by (simp add: permutes-inj)
show (f ‘ A = B) ←→ (f ′ ‘ A = B)
proof −

have f ‘ A = B ←→ (λx. pB (f ′ (pA x))) ‘ A = B
using ‹∀ x∈A. f x = pB (f ′ (pA x))› by (metis (mono-tags, lifting) image-cong)
also have (λx. pB (f ′ (pA x))) ‘ A = B ←→ (λx. pB (f ′ x)) ‘ A = B

using ‹pA ‘ A = A› by (metis image-image)
also have (λx. pB (f ′ x)) ‘ A = B ←→ (f ′ ‘ A = B)

using ‹pB ‘ B = B› ‹inj pB› by (metis image-image image-inv-f-f)
finally show ?thesis .

qed
qed

lemma bij-betw-respects-domain-and-range-permutation:
(λf . bij-betw f A B) respects domain-and-range-permutation A B

proof (rule congruentI)
fix f f ′

assume (f , f ′) ∈ domain-and-range-permutation A B
from this obtain pA pB where pA permutes A pB permutes B

and ∀ x∈A. f x = pB (f ′ (pA x)) and f ′ ∈ A →E B
unfolding domain-and-range-permutation-def by auto

have bij-betw f A B ←→ bij-betw (pB o f ′ o pA) A B
using ‹∀ x∈A. f x = pB (f ′ (pA x))› bij-betw-congI by fastforce

also have ... ←→ bij-betw (pB o f ′) A B
using ‹pA permutes A›
by (auto intro!: bij-betw-comp-iff [symmetric] permutes-imp-bij)

also have ... ←→ bij-betw f ′ A B
using ‹f ′ ∈ A →E B› ‹pB permutes B›
by (auto intro!: bij-betw-comp-iff2 [symmetric] permutes-imp-bij)

finally show bij-betw f A B ←→ bij-betw f ′ A B .
qed

lemma count-image-mset ′:
count (image-mset f A) x = sum (count A) {x ′ ∈ set-mset A. f x ′ = x}

proof −
have count (image-mset f A) x = sum (count A) (f −‘ {x} ∩ set-mset A)

unfolding count-image-mset ..
also have . . . = sum (count A) {x ′ ∈ set-mset A. f x ′ = x}

46

proof −
have (f −‘ {x} ∩ set-mset A) = {x ′ ∈ set-mset A. f x ′ = x} by blast
from this show ?thesis by simp

qed
finally show ?thesis .

qed

lemma multiset-of-partition-cards-respects-domain-and-range-permutation:
assumes finite B
shows (λf . image-mset (λX . card X) (mset-set (((λb. {x ∈ A. f x = b})) ‘ B −
{{}}))) respects domain-and-range-permutation A B
proof (rule congruentI)

fix f f ′

assume (f , f ′) ∈ domain-and-range-permutation A B
from this obtain pA pB where pA permutes A pB permutes B ∀ x∈A. f x = pB

(f ′ (pA x))
unfolding domain-and-range-permutation-def by auto

have (λb. {x ∈ A. f x = b}) ‘ B = (λb. {x ∈ A. pB (f ′ (pA x)) = b}) ‘ B
using ‹∀ x∈A. f x = pB (f ′ (pA x))› by auto

from this have image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))
=

image-mset card (mset-set ((λb. {x ∈ A. pB (f ′ (pA x)) = b}) ‘ B − {{}})) by
simp

also have image-mset card (mset-set ((λb. {x ∈ A. pB (f ′ (pA x)) = b}) ‘ B −
{{}})) =

image-mset card (mset-set ((λb. {x ∈ A. f ′ (pA x) = b}) ‘ B − {{}}))
using permutes-implies-inv-image-on-eq[OF ‹pB permutes B›, of A] by metis

also have image-mset card (mset-set ((λb. {x ∈ A. f ′ (pA x) = b}) ‘ B − {{}}))
=

image-mset card (mset-set ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}))
proof (rule multiset-eqI)

fix n
have bij-betw (λX . pA ‘ X) {X ∈ (λb. {x ∈ A. f ′ (pA x) = b}) ‘ B − {{}}.

card X = n} {X ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}. card X = n}
proof (rule bij-betw-byWitness)

show ∀X∈{X ∈ (λb. {x ∈ A. f ′ (pA x) = b}) ‘ B − {{}}. card X = n}. inv
pA ‘ pA ‘ X = X

by (meson ‹pA permutes A› image-inv-f-f permutes-inj)
show ∀X∈{X ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}. card X = n}. pA ‘ inv

pA ‘ X = X
by (meson ‹pA permutes A› image-f-inv-f permutes-surj)

show (λX . pA ‘ X) ‘ {X ∈ (λb. {x ∈ A. f ′ (pA x) = b}) ‘ B − {{}}. card X
= n} ⊆ {X ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}. card X = n}

proof −
have card (pA ‘ {x ∈ A. f ′ (pA x) = b}) = card {x ∈ A. f ′ (pA x) = b} for

b
proof −

have inj-on pA {x ∈ A. f ′ (pA x) = b}
by (metis (no-types, lifting) ‹pA permutes A› injD inj-onI permutes-inj)

47

from this show ?thesis by (simp add: card-image)
qed
moreover have pA ‘ {x ∈ A. f ′ (pA x) = b} = {x ∈ A. f ′ x = b} for b
proof

show pA ‘ {x ∈ A. f ′ (pA x) = b} ⊆ {x ∈ A. f ′ x = b}
by (auto simp add: ‹pA permutes A› permutes-in-image)

show {x ∈ A. f ′ x = b} ⊆ pA ‘ {x ∈ A. f ′ (pA x) = b}
proof

fix x
assume x ∈ {x ∈ A. f ′ x = b}
moreover have pA (inv pA x) = x

using ‹pA permutes A› permutes-inverses(1) by fastforce
moreover from ‹x ∈ {x ∈ A. f ′ x = b}› have inv pA x ∈ A

by (simp add: ‹pA permutes A› permutes-in-image permutes-inv)
ultimately show x ∈ pA ‘ {x ∈ A. f ′ (pA x) = b}

by (auto intro: image-eqI [where x=inv pA x])
qed

qed
ultimately show ?thesis by auto

qed
show (λX . inv pA ‘ X) ‘ {X ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}. card X

= n} ⊆ {X ∈ (λb. {x ∈ A. f ′ (pA x) = b}) ‘ B − {{}}. card X = n}
proof −

have card (inv pA ‘ {x ∈ A. f ′ x = b}) = card {x ∈ A. f ′ x = b} for b
proof −

have inj-on (inv pA) {x ∈ A. f ′ x = b}
by (metis (no-types, lifting) ‹pA permutes A› injD inj-onI permutes-surj

surj-imp-inj-inv)
from this show ?thesis by (simp add: card-image)

qed
moreover have inv pA ‘ {x ∈ A. f ′ x = b} = {x ∈ A. f ′ (pA x) = b} for b
proof

show inv pA ‘ {x ∈ A. f ′ x = b} ⊆ {x ∈ A. f ′ (pA x) = b}
using ‹pA permutes A›

by (auto simp add: permutes-in-image permutes-inv permutes-inverses(1))
show {x ∈ A. f ′ (pA x) = b} ⊆ inv pA ‘ {x ∈ A. f ′ x = b}
proof

fix x
assume x ∈ {x ∈ A. f ′ (pA x) = b}
moreover have inv pA (pA x) = x

by (meson ‹pA permutes A› permutes-inverses(2))
moreover from ‹x ∈ {x ∈ A. f ′ (pA x) = b}› have pA x ∈ A

by (simp add: ‹pA permutes A› permutes-in-image)
ultimately show x ∈ inv pA ‘ {x ∈ A. f ′ x = b}

by (auto intro: image-eqI [where x=pA x])
qed

qed
ultimately show ?thesis by auto

qed

48

qed
from this have card {x ′ ∈ (λb. {x ∈ A. f ′ (pA x) = b}) ‘ B − {{}}. card x ′ =

n} = card {x ′ ∈ (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}. card x ′ = n}
by (rule bij-betw-same-card)

from this show count (image-mset card (mset-set ((λb. {x ∈ A. f ′ (pA x) =
b}) ‘ B − {{}}))) n =

count (image-mset card (mset-set ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}))) n
using ‹finite B› by (simp add: count-image-mset ′)

qed
finally show image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}})) =

image-mset card (mset-set ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}})) .
qed

end

4 Functions from A to B
theory Twelvefold-Way-Entry1
imports Preliminaries
begin

Note that the cardinality theorems of both structures, lists and finite func-
tions, are already available. Hence, this development creates the bijection
between those two structures and transfers the one cardinality theorem to
the other structures and vice versa, although not strictly needed as both
cardinality theorems were already available.

4.1 Definition of Bijections
definition sequence-of :: ′a set ⇒ (nat ⇒ ′a) ⇒ (′a ⇒ ′b) ⇒ ′b list
where

sequence-of A enum f = map (λn. f (enum n)) [0 ..<card A]

definition function-of :: ′a set ⇒ (nat ⇒ ′a) ⇒ ′b list ⇒ (′a ⇒ ′b)
where

function-of A enum xs = (λa. if a ∈ A then xs ! inv-into {0 ..<length xs} enum
a else undefined)

4.2 Properties for Bijections
lemma nth-sequence-of :

assumes i < card A
shows (sequence-of A enum f) ! i = f (enum i)

using assms unfolding sequence-of-def by auto

lemma nth-sequence-of-inv-into:
assumes bij-betw enum {0 ..<card A} A
assumes a ∈ A

49

shows (sequence-of A enum f) ! (inv-into {0 ..<card A} enum a) = f a
proof −

have inv-into {0 ..<card A} enum a ∈ {0 ..<card A}
using assms bij-betwE bij-betw-inv-into by blast

from this assms show (sequence-of A enum f) ! (inv-into {0 ..<card A} enum a)
= f a

unfolding sequence-of-def by (simp add: bij-betw-inv-into-right)
qed

lemma set-sequence-of :
assumes bij-betw enum {0 ..<card A} A
assumes f ∈ A →E B
shows set (sequence-of A enum f) ⊆ B

using PiE bij-betwE assms
unfolding sequence-of-def by fastforce

lemma length-sequence-of :
assumes bij-betw enum {0 ..<card A} A
assumes f ∈ A →E B
shows length (sequence-of A enum f) = card A

using assms unfolding sequence-of-def by simp

lemma function-of-enum:
assumes bij-betw enum {0 ..<card A} A
assumes length xs = card A
assumes i < card A
shows function-of A enum xs (enum i) = xs ! i

using assms unfolding function-of-def
by (auto simp add: bij-betw-inv-into-left bij-betwE)

lemma function-of-in-extensional-funcset:
assumes bij-betw enum {0 ..<card A} A
assumes set xs ⊆ B length xs = card A
shows function-of A enum xs ∈ A →E B

proof
fix x
assume x ∈ A
have inv-into {0 ..<length xs} enum x ∈ {0 ..<length xs}

using ‹x ∈ A› assms(1 , 3) by (metis bij-betw-def inv-into-into)
from this have xs ! inv-into {0 ..<length xs} enum x ∈ set xs by simp
from this ‹set xs ⊆ B› show function-of A enum xs x ∈ B

using ‹x ∈ A› unfolding function-of-def by auto
next

fix x
assume x /∈ A
from this show function-of A enum xs x = undefined

unfolding function-of-def by simp
qed

50

lemma sequence-of-function-of :
assumes bij-betw enum {0 ..<card A} A
assumes set xs ⊆ B length xs = card A
shows sequence-of A enum (function-of A enum xs) = xs

proof (rule nth-equalityI)
have function-of A enum xs ∈ A →E B

using assms by (rule function-of-in-extensional-funcset)
from this show length (sequence-of A enum (function-of A enum xs)) = length

xs
using assms(1 ,3) by (simp add: length-sequence-of)

from this show
∧

i. i < length (sequence-of A enum (function-of A enum xs))
=⇒ sequence-of A enum (function-of A enum xs) ! i = xs ! i

using assms by (auto simp add: nth-sequence-of function-of-enum)
qed

lemma function-of-sequence-of :
assumes bij-betw enum {0 ..<card A} A
assumes f ∈ A →E B
shows function-of A enum (sequence-of A enum f) = f

proof
fix x
show function-of A enum (sequence-of A enum f) x = f x

using assms unfolding function-of-def
by (auto simp add: length-sequence-of nth-sequence-of-inv-into)

qed

4.3 Bijections
lemma bij-betw-sequence-of :

assumes bij-betw enum {0 ..<card A} A
shows bij-betw (sequence-of A enum) (A →E B) {xs. set xs ⊆ B ∧ length xs =

card A}
proof (rule bij-betw-byWitness[where f ′=function-of A enum])

show ∀ f∈A →E B. function-of A enum (sequence-of A enum f) = f
using assms by (simp add: function-of-sequence-of)

show ∀ xs∈{xs. set xs ⊆ B ∧ length xs = card A}. sequence-of A enum (function-of
A enum xs) = xs

using assms by (auto simp add: sequence-of-function-of)
show sequence-of A enum ‘ (A →E B) ⊆ {xs. set xs ⊆ B ∧ length xs = card A}

using assms set-sequence-of [OF assms] length-sequence-of by auto
show function-of A enum ‘ {xs. set xs ⊆ B ∧ length xs = card A} ⊆ A →E B

using assms function-of-in-extensional-funcset by blast
qed

lemma bij-betw-function-of :
assumes bij-betw enum {0 ..<card A} A
shows bij-betw (function-of A enum) {xs. set xs ⊆ B ∧ length xs = card A} (A
→E B)
proof (rule bij-betw-byWitness[where f ′=sequence-of A enum])

51

show ∀ f∈A →E B. function-of A enum (sequence-of A enum f) = f
using assms by (simp add: function-of-sequence-of)

show ∀ xs∈{xs. set xs ⊆ B ∧ length xs = card A}. sequence-of A enum (function-of
A enum xs) = xs

using assms by (auto simp add: sequence-of-function-of)
show sequence-of A enum ‘ (A →E B) ⊆ {xs. set xs ⊆ B ∧ length xs = card A}

using assms set-sequence-of [OF assms] length-sequence-of by auto
show function-of A enum ‘ {xs. set xs ⊆ B ∧ length xs = card A} ⊆ A →E B

using assms function-of-in-extensional-funcset by blast
qed

4.4 Cardinality
lemma

assumes finite A
shows card (A →E B) = card B ^ card A

proof −
obtain enum where bij-betw enum {0 ..<card A} A

using ‹finite A› ex-bij-betw-nat-finite by blast
have bij-betw (sequence-of A enum) (A →E B) {xs. set xs ⊆ B ∧ length xs =

card A}
using ‹bij-betw enum {0 ..<card A} A› by (rule bij-betw-sequence-of)

from this have card (A →E B) = card {xs. set xs ⊆ B ∧ length xs = card A}
by (rule bij-betw-same-card)

also have card {xs. set xs ⊆ B ∧ length xs = card A} = card B ^ card A
by (rule card-lists-length-eq)

finally show ?thesis .
qed

lemma card-sequences:
assumes finite A
shows card {xs. set xs ⊆ B ∧ length xs = card A} = card B ^ card A

proof −
obtain enum where bij-betw enum {0 ..<card A} A

using ‹finite A› ex-bij-betw-nat-finite by blast
have bij-betw (function-of A enum) {xs. set xs ⊆ B ∧ length xs = card A} (A
→E B)

using ‹bij-betw enum {0 ..<card A} A› by (rule bij-betw-function-of)
from this have card {xs. set xs ⊆ B ∧ length xs = card A} = card (A →E B)

by (rule bij-betw-same-card)
also have card (A →E B) = card B ^ card A

using ‹finite A› by (rule card-extensional-funcset)
finally show ?thesis .

qed

lemma
shows card {xs. set xs ⊆ A ∧ length xs = n} = card A ^ n

proof −
have card {xs. set xs ⊆ A ∧ length xs = n} = card {xs. set xs ⊆ A ∧ length xs

52

= card {0 ..<n}}
by auto

also have . . . = card A ^ card {0 ..<n} by (subst card-sequences) auto
also have . . . = card A ^ n by auto
finally show ?thesis .

qed

end

5 Injections from A to B
theory Twelvefold-Way-Entry2
imports Twelvefold-Way-Entry1
begin

Note that the cardinality theorems of both structures, distinct lists and finite
injective functions, are already available. Hence, this development creates
the bijection between those two structures and transfers the one cardinality
theorem to the other structures and vice versa, although not strictly needed
as both cardinality theorems were already available.

5.1 Properties for Bijections
lemma inj-on-implies-distinct:

assumes bij-betw enum {0 ..<card A} A
assumes f ∈ A →E B
assumes inj-on f A
shows distinct (sequence-of A enum f)

proof −
{

fix i j
assume bounds: i < length (sequence-of A enum f) j < length (sequence-of A

enum f)
assume i 6= j
from bounds assms(1 , 2) have bounds ′: i < card A j < card A

using length-sequence-of by fastforce+
from this assms(1) have in-A: enum i ∈ A enum j ∈ A

using bij-betwE by fastforce+
from ‹i 6= j› bounds ′ assms(1) have enum i 6= enum j

by (metis bij-betw-inv-into-left lessThan-iff atLeast0LessThan)
from this have f (enum i) 6= f (enum j)

using assms(3) in-A inj-onD by fastforce
from this bounds ′ have sequence-of A enum f ! i 6= sequence-of A enum f ! j

by (simp add: nth-sequence-of)
}
from this show ?thesis

by (auto simp add: distinct-conv-nth)
qed

53

lemma distinct-implies-inj-on:
assumes bij-betw enum {0 ..<card A} A
assumes length xs = card A
assumes distinct xs
shows inj-on (function-of A enum xs) A

proof (rule inj-onI)
let ?idx-of = λx. inv-into {0 ..<length xs} enum x
fix x y
assume x ∈ A y ∈ A function-of A enum xs x = function-of A enum xs y
from this have xs ! ?idx-of x = xs ! ?idx-of y

unfolding function-of-def by simp
have ?idx-of x = ?idx-of y
proof −

have ?idx-of x < length xs
using ‹x ∈ A› assms(1 ,2)
by (metis atLeast0LessThan bij-betw-imp-surj-on inv-into-into lessThan-iff)

moreover have ?idx-of y < length xs
using ‹y ∈ A› assms(1 ,2)
by (metis atLeast0LessThan bij-betw-imp-surj-on inv-into-into lessThan-iff)

moreover note ‹xs ! ?idx-of x = xs ! ?idx-of y› ‹distinct xs›
ultimately show ?thesis

by (auto dest: nth-eq-iff-index-eq[where i=?idx-of x and j=?idx-of y])
qed
from this ‹bij-betw - - -› show x = y

by (metis ‹x ∈ A› ‹y ∈ A› ‹length xs = card A› bij-betw-inv-into-right)
qed

lemma image-sequence-of-inj:
assumes bij-betw enum {0 ..<card A} A
shows sequence-of A enum ‘ {f ∈ A →E B. inj-on f A} ⊆ {xs. set xs ⊆ B ∧

length xs = card A ∧ distinct xs}
proof

fix xs
assume xs ∈ sequence-of A enum ‘ {f ∈ A →E B. inj-on f A}
from this obtain f where xs: xs = sequence-of A enum f and f : f ∈ A →E B

inj-on f A by auto
moreover from xs f ‹bij-betw - - -› have set xs ⊆ B

using set-sequence-of subsetCE by blast
moreover from xs f ‹bij-betw - - -› have length xs = card A

using length-sequence-of by auto
moreover from xs f ‹bij-betw - - -› have distinct xs

using inj-on-implies-distinct by simp
ultimately show xs ∈ {xs. set xs ⊆ B ∧ length xs = card A ∧ distinct xs} by

auto
qed

lemma image-function-of-distinct:
assumes bij-betw enum {0 ..<card A} A

54

shows function-of A enum ‘ {xs. set xs ⊆ B ∧ length xs = card A ∧ distinct xs}
⊆ {f ∈ A →E B. inj-on f A}
proof

fix f
assume f : f ∈ function-of A enum ‘ {xs. set xs ⊆ B ∧ length xs = card A ∧

distinct xs}
from f assms have f ∈ A →E B

using function-of-in-extensional-funcset by blast
moreover from f assms have inj-on f A

by (auto simp add: assms distinct-implies-inj-on)
ultimately show f ∈ {f ∈ A →E B. inj-on f A} by auto

qed

5.2 Bijections
lemma bij-betw-sequence-of :

assumes bij-betw enum {0 ..<card A} A
shows bij-betw (sequence-of A enum) {f . f ∈ A →E B ∧ inj-on f A} {xs. set xs
⊆ B ∧ length xs = card A ∧ distinct xs}
proof (rule bij-betw-byWitness[where f ′=function-of A enum])

show ∀ f∈{f ∈ A →E B. inj-on f A}. function-of A enum (sequence-of A enum
f) = f

using assms by (auto simp add: function-of-sequence-of)
show ∀ xs∈{xs. set xs ⊆ B ∧ length xs = card A ∧ distinct xs}. sequence-of A

enum (function-of A enum xs) = xs
using assms by (auto simp add: sequence-of-function-of)

show sequence-of A enum ‘ {f ∈ A →E B. inj-on f A} ⊆ {xs. set xs ⊆ B ∧
length xs = card A ∧ distinct xs}

using assms by (simp add: image-sequence-of-inj)
show function-of A enum ‘ {xs. set xs ⊆ B ∧ length xs = card A ∧ distinct xs}
⊆ {f ∈ A →E B. inj-on f A}

using assms by (simp add: image-function-of-distinct)
qed

lemma bij-betw-function-of :
assumes bij-betw enum {0 ..<card A} A
shows bij-betw (function-of A enum) {xs. set xs ⊆ B ∧ length xs = card A ∧

distinct xs} {f ∈ A →E B. inj-on f A}
proof (rule bij-betw-byWitness[where f ′=sequence-of A enum])

show ∀ f∈{f ∈ A →E B. inj-on f A}. function-of A enum (sequence-of A enum
f) = f

using assms by (auto simp add: function-of-sequence-of)
show ∀ xs∈{xs. set xs ⊆ B ∧ length xs = card A ∧ distinct xs}. sequence-of A

enum (function-of A enum xs) = xs
using assms by (auto simp add: sequence-of-function-of)

show sequence-of A enum ‘ {f ∈ A →E B. inj-on f A} ⊆ {xs. set xs ⊆ B ∧
length xs = card A ∧ distinct xs}

using assms by (simp add: image-sequence-of-inj)
show function-of A enum ‘ {xs. set xs ⊆ B ∧ length xs = card A ∧ distinct xs}

55

⊆ {f ∈ A →E B. inj-on f A}
using assms by (simp add: image-function-of-distinct)

qed

5.3 Cardinality
lemma

assumes finite A finite B card A ≤ card B
shows card {f ∈ A →E B. inj-on f A} =

∏
{card B − card A + 1 ..card B}

proof −
obtain enum where bij-betw enum {0 ..<card A} A

using ‹finite A› ex-bij-betw-nat-finite by blast
have bij-betw (sequence-of A enum) {f ∈ A →E B. inj-on f A} {xs. set xs ⊆ B
∧ length xs = card A ∧ distinct xs}

using ‹bij-betw enum {0 ..<card A} A› by (rule bij-betw-sequence-of)
from this have card {f ∈ A →E B. inj-on f A} = card {xs. set xs ⊆ B ∧ length

xs = card A ∧ distinct xs}
by (rule bij-betw-same-card)

also have card {xs. set xs ⊆ B ∧ length xs = card A ∧ distinct xs} = card {xs.
length xs = card A ∧ distinct xs ∧ set xs ⊆ B}

by meson
also have card {xs. length xs = card A ∧ distinct xs ∧ set xs ⊆ B} =

∏
{card

B − card A + 1 ..card B}
using ‹finite B› ‹card A ≤ card B› by (rule List.card-lists-distinct-length-eq)

finally show ?thesis .
qed

lemma card-sequences:
assumes finite A finite B card A ≤ card B
shows card {xs. set xs ⊆ B ∧ length xs = card A ∧ distinct xs} = fact (card B)

div fact (card B − card A)
proof −

obtain enum where bij-betw enum {0 ..<card A} A
using ‹finite A› ex-bij-betw-nat-finite by blast

have bij-betw (function-of A enum) {xs. set xs ⊆ B ∧ length xs = card A ∧
distinct xs} {f ∈ A →E B. inj-on f A}

using ‹bij-betw enum {0 ..<card A} A› by (rule bij-betw-function-of)
from this have card {xs. set xs ⊆ B ∧ length xs = card A ∧ distinct xs} = card
{f ∈ A →E B. inj-on f A}

by (rule bij-betw-same-card)
also have card {f ∈ A →E B. inj-on f A} = fact (card B) div fact (card B −

card A)
using ‹finite A› ‹finite B› ‹card A ≤ card B› by (rule card-extensional-funcset-inj-on)

finally show ?thesis .
qed

end

56

6 Functions from A to B, up to a Permutation of
A

theory Twelvefold-Way-Entry4
imports Equiv-Relations-on-Functions
begin

6.1 Definition of Bijections
definition msubset-of :: ′a set ⇒ (′a ⇒ ′b) set ⇒ ′b multiset
where

msubset-of A F = univ (λf . image-mset f (mset-set A)) F

definition functions-of :: ′a set ⇒ ′b multiset ⇒ (′a ⇒ ′b) set
where

functions-of A B = {f ∈ A →E set-mset B. image-mset f (mset-set A) = B}

6.2 Properties for Bijections
lemma msubset-of :

assumes F ∈ (A →E B) // domain-permutation A B
shows size (msubset-of A F) = card A
and set-mset (msubset-of A F) ⊆ B

proof −
from ‹F ∈ (A →E B) // domain-permutation A B› obtain f where f ∈ A →E

B
and F-eq: F = domain-permutation A B ‘‘ {f } using quotientE by blast

have msubset-of A F = univ (λf . image-mset f (mset-set A)) F
unfolding msubset-of-def ..

also have . . . = univ (λf . image-mset f (mset-set A)) (domain-permutation A B
‘‘ {f })

unfolding F-eq ..
also have . . . = image-mset f (mset-set A)

using equiv-domain-permutation image-mset-respects-domain-permutation ‹f ∈
A →E B›

by (subst univ-commute ′) auto
finally have msubset-of-eq: msubset-of A F = image-mset f (mset-set A) .
show size (msubset-of A F) = card A
proof −

have size (msubset-of A F) = size (image-mset f (mset-set A))
unfolding msubset-of-eq ..

also have . . . = card A
by (cases ‹finite A›) auto

finally show ?thesis .
qed
show set-mset (msubset-of A F) ⊆ B
proof −

have set-mset (msubset-of A F) = set-mset (image-mset f (mset-set A))
unfolding msubset-of-eq ..

57

also have . . . ⊆ B
using ‹f ∈ A →E B› by (cases finite A) auto

finally show ?thesis .
qed

qed

lemma functions-of :
assumes finite A
assumes set-mset M ⊆ B
assumes size M = card A
shows functions-of A M ∈ (A →E B) // domain-permutation A B

proof −
obtain f where f ∈ A →E set-mset M and image-mset f (mset-set A) = M

using obtain-function-on-ext-funcset ‹finite A› ‹size M = card A› by blast
from ‹f ∈ A →E set-mset M › have f ∈ A →E B

using ‹set-mset M ⊆ B› PiE-iff subset-eq by blast
have functions-of A M = (domain-permutation A B) ‘‘ {f }
proof

show functions-of A M ⊆ domain-permutation A B ‘‘ {f }
proof

fix f ′

assume f ′ ∈ functions-of A M
from this have M = image-mset f ′ (mset-set A) and f ′ ∈ A →E f ′ ‘ A

using ‹finite A› unfolding functions-of-def by auto
from this assms(1 , 2) have f ′ ∈ A →E B

by (simp add: PiE-iff image-subset-iff)
obtain p where p permutes A ∧ (∀ x∈A. f x = f ′ (p x))

using ‹finite A› ‹image-mset f (mset-set A) = M › ‹M = image-mset f ′

(mset-set A)›
image-mset-eq-implies-permutes by blast

from this show f ′ ∈ domain-permutation A B ‘‘ {f }
using ‹f ∈ A →E B› ‹f ′ ∈ A →E B›
unfolding domain-permutation-def by auto

qed
next

show domain-permutation A B ‘‘ {f } ⊆ functions-of A M
proof

fix f ′

assume f ′ ∈ domain-permutation A B ‘‘ {f }
from this have (f , f ′) ∈ domain-permutation A B by auto
from this ‹image-mset f (mset-set A) = M › have image-mset f ′ (mset-set A)

= M
using congruentD[OF image-mset-respects-domain-permutation] by metis

moreover from this ‹(f , f ′) ∈ domain-permutation A B› have f ′ ∈ A →E

set-mset M
using ‹finite A› unfolding domain-permutation-def by auto

ultimately show f ′ ∈ functions-of A M
unfolding functions-of-def by auto

qed

58

qed
from this ‹f ∈ A →E B› show ?thesis by (auto intro: quotientI)

qed

lemma functions-of-msubset-of :
assumes finite A
assumes F ∈ (A →E B) // domain-permutation A B
shows functions-of A (msubset-of A F) = F

proof −
from ‹F ∈ (A →E B) // domain-permutation A B› obtain f where f ∈ A →E

B
and F-eq: F = domain-permutation A B ‘‘ {f } using quotientE by blast

have msubset-of A F = univ (λf . image-mset f (mset-set A)) F
unfolding msubset-of-def ..

also have . . . = univ (λf . image-mset f (mset-set A)) (domain-permutation A B
‘‘ {f })

unfolding F-eq ..
also have . . . = image-mset f (mset-set A)

using equiv-domain-permutation image-mset-respects-domain-permutation ‹f ∈
A →E B›

by (subst univ-commute ′) auto
finally have msubset-of-eq: msubset-of A F = image-mset f (mset-set A) .
show ?thesis
proof

show functions-of A (msubset-of A F) ⊆ F
proof

fix f ′

assume f ′ ∈ functions-of A (msubset-of A F)
from this have f ′: f ′ ∈ A →E f ‘ set-mset (mset-set A)
image-mset f ′ (mset-set A) = image-mset f (mset-set A)

unfolding functions-of-def by (auto simp add: msubset-of-eq)
from ‹f ∈ A →E B› have f ‘ A ⊆ B by auto
note ‹f ∈ A →E B›
moreover from f ′(1) ‹finite A› ‹f ‘ A ⊆ B› have f ′ ∈ A →E B by auto
moreover obtain p where p permutes A ∧ (∀ x∈A. f x = f ′ (p x))

using ‹finite A› ‹image-mset f ′ (mset-set A) = image-mset f (mset-set A)›
by (metis image-mset-eq-implies-permutes)

ultimately show f ′ ∈ F
unfolding F-eq domain-permutation-def by auto

qed
next

show F ⊆ functions-of A (msubset-of A F)
proof

fix f ′

assume f ′ ∈ F
from this have f ′ ∈ A →E B

unfolding F-eq domain-permutation-def by auto
from ‹f ′ ∈ F› obtain p where p permutes A ∧ (∀ x∈A. f x = f ′ (p x))

unfolding F-eq domain-permutation-def by auto

59

from this have eq: image-mset f ′ (mset-set A) = image-mset f (mset-set A)
using permutes-implies-image-mset-eq by blast

moreover have f ′ ∈ A →E set-mset (image-mset f (mset-set A))
using ‹finite A› ‹f ′ ∈ A →E B› eq[symmetric] by auto

ultimately show f ′ ∈ functions-of A (msubset-of A F)
unfolding functions-of-def msubset-of-eq by auto

qed
qed

qed

lemma msubset-of-functions-of :
assumes set-mset M ⊆ B size M = card A finite A
shows msubset-of A (functions-of A M) = M

proof −
from assms have functions-of A M ∈ (A →E B) // domain-permutation A B

using functions-of by fastforce
from this obtain f where f ∈ A→E B and functions-of A M = domain-permutation

A B ‘‘ {f }
by (rule quotientE)

from this have f ∈ functions-of A M
using equiv-domain-permutation equiv-class-self by fastforce

have msubset-of A (functions-of A M) = univ (λf . image-mset f (mset-set A))
(functions-of A M)

unfolding msubset-of-def ..
also have . . . = univ (λf . image-mset f (mset-set A)) (domain-permutation A B

‘‘ {f })
unfolding ‹functions-of A M = domain-permutation A B ‘‘ {f }› ..

also have . . . = image-mset f (mset-set A)
using equiv-domain-permutation image-mset-respects-domain-permutation ‹f ∈

A →E B›
by (subst univ-commute ′) auto

also have image-mset f (mset-set A) = M
using ‹f ∈ functions-of A M › unfolding functions-of-def by simp

finally show ?thesis .
qed

6.3 Bijections
lemma bij-betw-msubset-of :

assumes finite A
shows bij-betw (msubset-of A) ((A →E B) // domain-permutation A B) {M .

set-mset M ⊆ B ∧ size M = card A}
proof (rule bij-betw-byWitness[where f ′=λM . functions-of A M])

show ∀F∈(A →E B) // domain-permutation A B. functions-of A (msubset-of
A F) = F

using ‹finite A› by (auto simp add: functions-of-msubset-of)
show ∀M∈{M . set-mset M ⊆ B ∧ size M = card A}. msubset-of A (functions-of

A M) = M
using ‹finite A› by (auto simp add: msubset-of-functions-of)

60

show msubset-of A ‘ ((A →E B) // domain-permutation A B) ⊆ {M . set-mset
M ⊆ B ∧ size M = card A}

using msubset-of by blast
show functions-of A ‘ {M . set-mset M ⊆ B ∧ size M = card A} ⊆ (A →E B)

// domain-permutation A B
using functions-of ‹finite A› by blast

qed

6.4 Cardinality
lemma

assumes finite A finite B
shows card ((A →E B) // domain-permutation A B) = card B + card A − 1

choose card A
proof −

have bij-betw (msubset-of A) ((A →E B) // domain-permutation A B) {M .
set-mset M ⊆ B ∧ size M = card A}

using ‹finite A› by (rule bij-betw-msubset-of)
from this have card ((A →E B) // domain-permutation A B) = card {M .

set-mset M ⊆ B ∧ size M = card A}
by (rule bij-betw-same-card)

also have card {M . set-mset M ⊆ B ∧ size M = card A} = card B + card A −
1 choose card A

using ‹finite B› by (rule card-multisets)
finally show ?thesis .

qed

end

7 Injections from A to B up to a Permutation of
A

theory Twelvefold-Way-Entry5
imports

Equiv-Relations-on-Functions
begin

7.1 Definition of Bijections
definition subset-of :: ′a set ⇒ (′a ⇒ ′b) set ⇒ ′b set
where

subset-of A F = univ (λf . f ‘ A) F

definition functions-of :: ′a set ⇒ ′b set ⇒ (′a ⇒ ′b) set
where

functions-of A B = {f ∈ A →E B. f ‘ A = B}

61

7.2 Properties for Bijections
lemma functions-of-eq:

assumes finite A
assumes f ∈ {f ∈ A →E B. inj-on f A}
shows functions-of A (f ‘ A) = domain-permutation A B ‘‘ {f }

proof
have bij: bij-betw f A (f ‘ A)

using assms by (simp add: bij-betw-imageI)
show functions-of A (f ‘ A) ⊆ domain-permutation A B ‘‘ {f }
proof

fix f ′

assume f ′ ∈ functions-of A (f ‘ A)
from this have f ′ ∈ A →E f ‘ A and f ′ ‘ A = f ‘ A

unfolding functions-of-def by auto
from this assms have f ′ ∈ A →E B and inj-on f A

using PiE-mem by fastforce+
moreover have ∃ p. p permutes A ∧ (∀ x∈A. f x = f ′ (p x))
proof

let ?p = λx. if x ∈ A then inv-into A f ′ (f x) else x
show ?p permutes A ∧ (∀ x∈A. f x = f ′ (?p x))
proof

show ?p permutes A
proof (rule bij-imp-permutes)

show bij-betw ?p A A
proof (rule bij-betw-imageI)

show inj-on ?p A
proof (rule inj-onI)

fix a a ′

assume a ∈ A a ′ ∈ A ?p a = ?p a ′

from this have inv-into A f ′ (f a) = inv-into A f ′ (f a ′) by auto
from this ‹a ∈ A› ‹a ′ ∈ A› ‹f ′ ‘ A = f ‘ A› have f a = f a ′

using inv-into-injective by fastforce
from this ‹a ∈ A› ‹a ′ ∈ A› show a = a ′

by (metis bij bij-betw-inv-into-left)
qed

next
show ?p ‘ A = A
proof

show ?p ‘ A ⊆ A
using ‹f ′ ‘ A = f ‘ A› by (simp add: image-subsetI inv-into-into)

next
show A ⊆ ?p ‘ A
proof

fix a
assume a ∈ A
have inj-on f ′ A

using ‹finite A› ‹f ′ ‘ A = f ‘ A› ‹inj-on f A›
by (simp add: card-image eq-card-imp-inj-on)

from ‹a ∈ A› ‹f ′ ‘ A = f ‘ A› have inv-into A f (f ′ a) ∈ A

62

by (metis image-eqI inv-into-into)
moreover have a = inv-into A f ′ (f (inv-into A f (f ′ a)))

using ‹a ∈ A› ‹f ′ ‘ A = f ‘ A› ‹inj-on f ′ A›
by (metis f-inv-into-f image-eqI inv-into-f-f)

ultimately show a ∈ ?p ‘ A by auto
qed

qed
qed

next
fix x
assume x /∈ A
from this show ?p x = x by simp

qed
next

from ‹f ′ ‘ A = f ‘ A› show ∀ x∈A. f x = f ′ (?p x)
by (simp add: f-inv-into-f)

qed
qed
moreover have f ∈ A →E B using assms by auto
ultimately show f ′ ∈ domain-permutation A B ‘‘ {f }

unfolding domain-permutation-def by auto
qed

next
show domain-permutation A B ‘‘ {f } ⊆ functions-of A (f ‘ A)
proof

fix f ′

assume f ′ ∈ domain-permutation A B ‘‘ {f }
from this obtain p where p: p permutes A ∀ x∈A. f x = f ′ (p x)

and f ∈ A →E B f ′ ∈ A →E B
unfolding domain-permutation-def by auto

have f ′ ‘ A = f ‘ A
proof

show f ′ ‘ A ⊆ f ‘ A
proof

fix x
assume x ∈ f ′ ‘ A
from this obtain x ′ where x = f ′ x ′ and x ′ ∈ A ..
from this have x = f (inv p x ′)

using p by (metis (mono-tags, lifting) permutes-in-image permutes-inverses(1))
moreover have inv p x ′ ∈ A

using p ‹x ′ ∈ A› by (simp add: permutes-in-image permutes-inv)
ultimately show x ∈ f ‘ A ..

qed
next

show f ‘ A ⊆ f ′ ‘ A
using p permutes-in-image by fastforce

qed
moreover from this ‹f ′ ∈ A →E B› have f ′ ∈ A →E f ‘ A by auto
ultimately show f ′ ∈ functions-of A (f ‘ A)

63

unfolding functions-of-def by auto
qed

qed

lemma subset-of :
assumes F ∈ {f ∈ A →E B. inj-on f A} // domain-permutation A B
shows subset-of A F ⊆ B and card (subset-of A F) = card A

proof −
from assms obtain f where F-eq: F = (domain-permutation A B) ‘‘ {f }

and f : f ∈ A →E B inj-on f A
using mem-Collect-eq quotientE by force

from this have subset-of A (domain-permutation A B ‘‘ {f }) = f ‘ A
using equiv-domain-permutation image-respects-domain-permutation
unfolding subset-of-def by (intro univ-commute ′) auto

from this f F-eq show subset-of A F ⊆ B and card (subset-of A F) = card A
by (auto simp add: card-image)

qed

lemma functions-of :
assumes finite A finite B X ⊆ B card X = card A
shows functions-of A X ∈ {f ∈ A →E B. inj-on f A} // domain-permutation A

B
proof −

from assms obtain f where f : f ∈ A →E X ∧ bij-betw f A X
using ‹finite A› ‹finite B› by (metis finite-same-card-bij-on-ext-funcset fi-

nite-subset)
from this have X = f ‘ A by (simp add: bij-betw-def)
from f ‹X ⊆ B› have f ∈ {f ∈ A →E B. inj-on f A}

by (auto simp add: bij-betw-imp-inj-on)
have functions-of A X = domain-permutation A B ‘‘ {f }

using ‹finite A› ‹X = f ‘ A› ‹f ∈ {f ∈ A →E B. inj-on f A}›
by (simp add: functions-of-eq)

from this show functions-of A X ∈ {f ∈ A→E B. inj-on f A} // domain-permutation
A B

using ‹f ∈ {f ∈ A →E B. inj-on f A}› by (auto intro: quotientI)
qed

lemma subset-of-functions-of :
assumes finite A finite X card A = card X
shows subset-of A (functions-of A X) = X

proof −
from assms obtain f where f ∈ A →E X and bij-betw f A X

using finite-same-card-bij-on-ext-funcset by blast
from this have subset-of : subset-of A (domain-permutation A X ‘‘ {f }) = f ‘ A

using equiv-domain-permutation image-respects-domain-permutation
unfolding subset-of-def by (intro univ-commute ′) auto

from ‹bij-betw f A X› have inj-on f A and f ‘ A = X
by (auto simp add: bij-betw-def)

have subset-of A (functions-of A X) = subset-of A (functions-of A (f ‘ A))

64

using ‹f ‘ A = X› by simp
also have . . . = subset-of A (domain-permutation A X ‘‘ {f })
using ‹finite A› ‹inj-on f A› ‹f ∈ A →E X› by (auto simp add: functions-of-eq)

also have . . . = f ‘ A
using ‹inj-on f A› ‹f ∈ A →E X› by (simp add: subset-of)

also have . . . = X
using ‹f ‘ A = X› by simp

finally show ?thesis .
qed

lemma functions-of-subset-of :
assumes finite A
assumes F ∈ {f ∈ A →E B. inj-on f A} // domain-permutation A B
shows functions-of A (subset-of A F) = F

using assms(2) proof (rule quotientE)
fix f
assume f : f ∈ {f ∈ A →E B. inj-on f A}

and F-eq: F = domain-permutation A B ‘‘ {f }
from this have subset-of A (domain-permutation A B ‘‘ {f }) = f ‘ A

using equiv-domain-permutation image-respects-domain-permutation
unfolding subset-of-def by (intro univ-commute ′) auto

from this f F-eq ‹finite A› show functions-of A (subset-of A F) = F
by (simp add: functions-of-eq)

qed

7.3 Bijections
lemma bij-betw-subset-of :

assumes finite A finite B
shows bij-betw (subset-of A) ({f ∈ A →E B. inj-on f A} // domain-permutation

A B) {X . X ⊆ B ∧ card X = card A}
proof (rule bij-betw-byWitness[where f ′=functions-of A])

show ∀F∈{f ∈ A →E B. inj-on f A} // domain-permutation A B. functions-of
A (subset-of A F) = F

using ‹finite A› functions-of-subset-of by auto
show ∀X∈{X . X ⊆ B ∧ card X = card A}. subset-of A (functions-of A X) = X

using subset-of-functions-of ‹finite A› ‹finite B›
by (metis (mono-tags) finite-subset mem-Collect-eq)

show subset-of A ‘ ({f ∈ A →E B. inj-on f A} // domain-permutation A B) ⊆
{X . X ⊆ B ∧ card X = card A}

using subset-of by fastforce
show functions-of A ‘ {X . X ⊆ B ∧ card X = card A} ⊆ {f ∈ A →E B. inj-on

f A} // domain-permutation A B
using ‹finite A› ‹finite B› functions-of by auto

qed

lemma bij-betw-functions-of :
assumes finite A finite B
shows bij-betw (functions-of A) {X . X ⊆ B ∧ card X = card A} ({f ∈ A →E

65

B. inj-on f A} // domain-permutation A B)
proof (rule bij-betw-byWitness[where f ′=subset-of A])

show ∀F∈{f ∈ A →E B. inj-on f A} // domain-permutation A B. functions-of
A (subset-of A F) = F

using ‹finite A› functions-of-subset-of by auto
show ∀X∈{X . X ⊆ B ∧ card X = card A}. subset-of A (functions-of A X) = X

using subset-of-functions-of ‹finite A› ‹finite B›
by (metis (mono-tags) finite-subset mem-Collect-eq)

show subset-of A ‘ ({f ∈ A →E B. inj-on f A} // domain-permutation A B) ⊆
{X . X ⊆ B ∧ card X = card A}

using subset-of by fastforce
show functions-of A ‘ {X . X ⊆ B ∧ card X = card A} ⊆ {f ∈ A →E B. inj-on

f A} // domain-permutation A B
using ‹finite A› ‹finite B› functions-of by auto

qed

lemma bij-betw-mset-set:
shows bij-betw mset-set {A. finite A} {M . ∀ x. count M x ≤ 1}

proof (rule bij-betw-byWitness[where f ′=set-mset])
show ∀A∈{A. finite A}. set-mset (mset-set A) = A by auto
show ∀M∈{M . ∀ x. count M x ≤ 1}. mset-set (set-mset M) = M

by (auto simp add: mset-set-set-mset ′)
show mset-set ‘ {A. finite A} ⊆ {M . ∀ x. count M x ≤ 1}

using nat-le-linear by fastforce
show set-mset ‘ {M . ∀ x. count M x ≤ 1} ⊆ {A. finite A} by auto

qed

lemma bij-betw-mset-set-card:
assumes finite A
shows bij-betw mset-set {X . X ⊆ A ∧ card X = k} {M . M ⊆# mset-set A ∧

size M = k}
proof (rule bij-betw-byWitness[where f ′=set-mset])

show ∀X∈{X . X ⊆ A ∧ card X = k}. set-mset (mset-set X) = X
using ‹finite A› rev-finite-subset[of A] by auto

show ∀M∈{M . M ⊆# mset-set A ∧ size M = k}. mset-set (set-mset M) = M
by (auto simp add: mset-set-set-mset)

show mset-set ‘ {X . X ⊆ A ∧ card X = k} ⊆ {M . M ⊆# mset-set A ∧ size M
= k}

using ‹finite A› rev-finite-subset[of A]
by (auto simp add: mset-set-subseteq-mset-set)

show set-mset ‘ {M . M ⊆# mset-set A ∧ size M = k} ⊆ {X . X ⊆ A ∧ card X
= k}

using assms mset-subset-eqD card-set-mset by fastforce
qed

lemma bij-betw-mset-set-card ′:
assumes finite A
shows bij-betw mset-set {X . X ⊆ A ∧ card X = k} {M . set-mset M ⊆ A ∧ size

M = k ∧ (∀ x. count M x ≤ 1)}

66

proof (rule bij-betw-byWitness[where f ′=set-mset])
show ∀X∈{X . X ⊆ A ∧ card X = k}. set-mset (mset-set X) = X

using ‹finite A› rev-finite-subset[of A] by auto
show ∀M∈{M . set-mset M ⊆ A ∧ size M = k ∧ (∀ x. count M x ≤ 1)}. mset-set

(set-mset M) = M
by (auto simp add: mset-set-set-mset ′)

show mset-set ‘ {X . X ⊆ A ∧ card X = k} ⊆ {M . set-mset M ⊆ A ∧ size M =
k ∧ (∀ x. count M x ≤ 1)}

using ‹finite A› rev-finite-subset[of A] by (auto simp add: count-mset-set-leq ′)
show set-mset ‘ {M . set-mset M ⊆ A ∧ size M = k ∧ (∀ x. count M x ≤ 1)} ⊆
{X . X ⊆ A ∧ card X = k}

by (auto simp add: card-set-mset ′)
qed

7.4 Cardinality
lemma card-injective-functions-domain-permutation:

assumes finite A finite B
shows card ({f ∈ A →E B. inj-on f A} // domain-permutation A B) = card B

choose card A
proof −

have bij-betw (subset-of A) ({f ∈ A →E B. inj-on f A} // domain-permutation
A B) {X . X ⊆ B ∧ card X = card A}

using ‹finite A› ‹finite B› by (rule bij-betw-subset-of)
from this have card ({f ∈ A →E B. inj-on f A} // domain-permutation A B)

= card {X . X ⊆ B ∧ card X = card A}
by (rule bij-betw-same-card)

also have card {X . X ⊆ B ∧ card X = card A} = card B choose card A
using ‹finite B› by (rule n-subsets)

finally show ?thesis .
qed

lemma card-multiset-only-sets:
assumes finite A
shows card {M . M ⊆# mset-set A ∧ size M = k} = card A choose k

proof −
have bij-betw mset-set {X . X ⊆ A ∧ card X = k} {M . M ⊆# mset-set A ∧ size

M = k}
using ‹finite A› by (rule bij-betw-mset-set-card)

from this have card {M . M ⊆# mset-set A ∧ size M = k} = card {X . X ⊆ A
∧ card X = k}

by (simp add: bij-betw-same-card)
also have card {X . X ⊆ A ∧ card X = k} = card A choose k

using ‹finite A› by (rule n-subsets)
finally show ?thesis .

qed

lemma card-multiset-only-sets ′:
assumes finite A

67

shows card {M . set-mset M ⊆ A ∧ size M = k ∧ (∀ x. count M x ≤ 1)} = card
A choose k
proof −

from ‹finite A› have {M . set-mset M ⊆ A ∧ size M = k ∧ (∀ x. count M x ≤
1)} =
{M . M ⊆# mset-set A ∧ size M = k}
using msubset-mset-set-iff by auto

from this ‹finite A› card-multiset-only-sets show ?thesis by simp
qed

end

8 Surjections from A to B up to a Permutation on
A

theory Twelvefold-Way-Entry6
imports Twelvefold-Way-Entry4
begin

8.1 Properties for Bijections
lemma set-mset-eq-implies-surj-on:

assumes finite A
assumes size M = card A set-mset M = B
assumes f ∈ functions-of A M
shows f ‘ A = B

proof −
from ‹f ∈ functions-of A M › have image-mset f (mset-set A) = M

unfolding functions-of-def by auto
from ‹image-mset f (mset-set A) = M › show f ‘ A = B

using ‹set-mset M = B› ‹finite A› finite-set-mset-mset-set set-image-mset by
force
qed

lemma surj-on-implies-set-mset-eq:
assumes finite A
assumes F ∈ (A →E B) // domain-permutation A B
assumes univ (λf . f ‘ A = B) F
shows set-mset (msubset-of A F) = B

proof −
from ‹F ∈ (A →E B) // domain-permutation A B› obtain f where f ∈ A →E

B
and F-eq: F = domain-permutation A B ‘‘ {f } using quotientE by blast

have msubset-of A F = univ (λf . image-mset f (mset-set A)) F
unfolding msubset-of-def ..

also have . . . = univ (λf . image-mset f (mset-set A)) (domain-permutation A B
‘‘ {f })

unfolding F-eq ..

68

also have . . . = image-mset f (mset-set A)
using equiv-domain-permutation image-mset-respects-domain-permutation ‹f ∈

A →E B›
by (subst univ-commute ′) auto

finally have eq: msubset-of A F = image-mset f (mset-set A) .
from iffD1 [OF univ-commute ′, OF equiv-domain-permutation, OF surjective-respects-domain-permutation,

OF ‹f ∈ A →E B›]
‹univ (λf . f ‘ A = B) F› have f ‘ A = B by (simp add: F-eq)

have set-mset (image-mset f (mset-set A)) = B
proof

show set-mset (image-mset f (mset-set A)) ⊆ B
using ‹finite A› ‹f ‘ A = B› by auto

next
show B ⊆ set-mset (image-mset f (mset-set A))

using ‹finite A› by (simp add: ‹f ‘ A = B›[symmetric] in-image-mset)
qed
from this show set-mset (msubset-of A F) = B

unfolding eq .
qed

lemma functions-of-is-surj-on:
assumes finite A
assumes size M = card A set-mset M = B
shows univ (λf . f ‘ A = B) (functions-of A M)

proof −
have functions-of A M ∈ (A →E B) // domain-permutation A B
using functions-of ‹finite A› ‹size M = card A› ‹set-mset M = B› by fastforce

from this obtain f where eq-f : functions-of A M = domain-permutation A B
‘‘ {f } and f ∈ A →E B

using quotientE by blast
from eq-f have f ∈ functions-of A M

using ‹f ∈ A →E B› equiv-domain-permutation equiv-class-self by fastforce
have f ‘ A = B

using ‹f ∈ functions-of A M › assms set-mset-eq-implies-surj-on by fastforce
from this show ?thesis
unfolding eq-f using equiv-domain-permutation surjective-respects-domain-permutation

‹f ∈ A →E B›
by (subst univ-commute ′) assumption+

qed

8.2 Bijections
lemma bij-betw-msubset-of :

assumes finite A
shows bij-betw (msubset-of A) ({f ∈ A→E B. f ‘ A = B} // domain-permutation

A B)
{M . set-mset M = B ∧ size M = card A}
(is bij-betw - ?FSet ?MSet)

proof (rule bij-betw-byWitness[where f ′=λM . functions-of A M])

69

have quotient-eq: ?FSet = {F ∈ ((A →E B) // domain-permutation A B). univ
(λf . f ‘ A = B) F}

using equiv-domain-permutation[of A B] surjective-respects-domain-permutation[of
A B]

by (simp only: univ-preserves-predicate)
show ∀ f∈?FSet. functions-of A (msubset-of A f) = f

using ‹finite A› by (auto simp only: quotient-eq functions-of-msubset-of)
show ∀M∈?MSet. msubset-of A (functions-of A M) = M

using ‹finite A› msubset-of-functions-of by blast
show msubset-of A ‘ ?FSet ⊆ ?MSet

using ‹finite A› by (auto simp add: quotient-eq surj-on-implies-set-mset-eq
msubset-of)

show functions-of A ‘ ?MSet ⊆ ?FSet
using ‹finite A› by (auto simp add: quotient-eq intro: functions-of func-

tions-of-is-surj-on)
qed

8.3 Cardinality
lemma card-surjective-functions-domain-permutation:

assumes finite A finite B
assumes card B ≤ card A
shows card ({f ∈ A →E B. f ‘ A = B} // domain-permutation A B) = (card A
− 1) choose (card A − card B)
proof −

let ?FSet = {f ∈ A →E B. f ‘ A = B} // domain-permutation A B
and ?MSet = {M . set-mset M = B ∧ size M = card A}
have bij-betw (msubset-of A) ?FSet ?MSet

using ‹finite A› by (rule bij-betw-msubset-of)
from this have card ?FSet = card ?MSet

by (rule bij-betw-same-card)
also have card ?MSet = (card A − 1) choose (card A − card B)

using ‹finite B› ‹card B ≤ card A› by (rule card-multisets-covering-set)
finally show ?thesis .

qed

end

9 Functions from A to B up to a Permutation on
B

theory Twelvefold-Way-Entry7
imports Equiv-Relations-on-Functions
begin

9.1 Definition of Bijections
definition partitions-of :: ′a set ⇒ ′b set ⇒ (′a ⇒ ′b) set ⇒ ′a set set
where

70

partitions-of A B F = univ (λf . (λb. {x ∈ A. f x = b}) ‘ B − {{}}) F

definition functions-of :: ′a set set ⇒ ′a set ⇒ ′b set ⇒ (′a ⇒ ′b) set
where

functions-of P A B = {f ∈ A →E B. (λb. {x ∈ A. f x = b}) ‘ B − {{}} = P}

9.2 Properties for Bijections
lemma partitions-of :

assumes finite B
assumes F ∈ (A →E B) // range-permutation A B
shows card (partitions-of A B F) ≤ card B
and partition-on A (partitions-of A B F)

proof −
from ‹F ∈ (A →E B) // range-permutation A B› obtain f where f ∈ A →E

B
and F-eq: F = range-permutation A B ‘‘ {f } using quotientE by blast

have partitions-of A B F = univ (λf . (λb. {x ∈ A. f x = b}) ‘ B − {{}}) F
unfolding partitions-of-def ..

also have . . . = univ (λf . (λb. {x ∈ A. f x = b}) ‘ B − {{}}) (range-permutation
A B ‘‘ {f })

unfolding F-eq ..
also have . . . = (λb. {x ∈ A. f x = b}) ‘ B − {{}}

using equiv-range-permutation domain-partitions-respects-range-permutation ‹f
∈ A →E B›

by (subst univ-commute ′) auto
finally have partitions-of-eq: partitions-of A B F = (λb. {x ∈ A. f x = b}) ‘ B
− {{}} .

show card (partitions-of A B F) ≤ card B
proof −

have card (partitions-of A B F) = card ((λb. {x ∈ A. f x = b}) ‘ B − {{}})
unfolding partitions-of-eq ..

also have . . . ≤ card ((λb. {x ∈ A. f x = b}) ‘ B)
using ‹finite B› by (auto intro: card-mono)

also have . . . ≤ card B
using ‹finite B› by (rule card-image-le)

finally show ?thesis .
qed
show partition-on A (partitions-of A B F)
proof −

have partition-on A ((λb. {x ∈ A. f x = b}) ‘ B − {{}})
using ‹f ∈ A →E B› by (auto intro!: partition-onI)

from this show ?thesis
unfolding partitions-of-eq .

qed
qed

lemma functions-of :
assumes finite A finite B

71

assumes partition-on A P
assumes card P ≤ card B
shows functions-of P A B ∈ (A →E B) // range-permutation A B

proof −
obtain f where f ∈ A →E B and r1 : (λb. {x ∈ A. f x = b}) ‘ B − {{}} = P
using obtain-function-with-partition[OF ‹finite A› ‹finite B› ‹partition-on A P›

‹card P ≤ card B›]
by blast

have functions-of P A B = range-permutation A B ‘‘ {f }
proof

show functions-of P A B ⊆ range-permutation A B ‘‘ {f }
proof

fix f ′

assume f ′ ∈ functions-of P A B
from this have f ′ ∈ A →E B and r2 : (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}

= P
unfolding functions-of-def by auto

from r1 r2
obtain p where p permutes B ∧ (∀ x∈A. f x = p (f ′ x))

using partitions-eq-implies-permutes[OF ‹f ∈ A →E B› ‹f ′ ∈ A →E B›]
‹finite B› by metis

from this show f ′ ∈ range-permutation A B ‘‘ {f }
using ‹f ∈ A →E B› ‹f ′ ∈ A →E B›
unfolding range-permutation-def by auto

qed
next

show range-permutation A B ‘‘ {f } ⊆ functions-of P A B
proof

fix f ′

assume f ′ ∈ range-permutation A B ‘‘ {f }
from this have (f , f ′) ∈ range-permutation A B by auto
from this have f ′ ∈ A →E B

unfolding range-permutation-def by auto
from ‹(f , f ′) ∈ range-permutation A B› have
(λb. {x ∈ A. f x = b}) ‘ B − {{}} = (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}

using congruentD[OF domain-partitions-respects-range-permutation] by blast
from ‹f ′ ∈ A →E B› this r1 show f ′ ∈ functions-of P A B

unfolding functions-of-def by auto
qed

qed
from this ‹f ∈ A →E B› show ?thesis by (auto intro: quotientI)

qed

lemma functions-of-partitions-of :
assumes finite B
assumes F ∈ (A →E B) // range-permutation A B
shows functions-of (partitions-of A B F) A B = F

proof −
from ‹F ∈ (A →E B) // range-permutation A B› obtain f where f ∈ A →E

72

B
and F-eq: F = range-permutation A B ‘‘ {f } using quotientE by blast

have partitions-of-eq: partitions-of A B F = (λb. {x ∈ A. f x = b}) ‘ B − {{}}
unfolding partitions-of-def F-eq

using equiv-range-permutation domain-partitions-respects-range-permutation
‹f ∈ A →E B›

by (subst univ-commute ′) auto
show ?thesis
proof

show functions-of (partitions-of A B F) A B ⊆ F
proof

fix f ′

assume f ′: f ′ ∈ functions-of (partitions-of A B F) A B
from this have (λb. {x ∈ A. f x = b}) ‘ B − {{}} = (λb. {x ∈ A. f ′ x = b})

‘ B − {{}}
unfolding functions-of-def by (auto simp add: partitions-of-eq)

note ‹f ∈ A →E B›
moreover from f ′ have f ′ ∈ A →E B

unfolding functions-of-def by auto
moreover obtain p where p permutes B ∧ (∀ x∈A. f x = p (f ′ x))

using partitions-eq-implies-permutes[OF ‹f ∈ A →E B› ‹f ′ ∈ A →E B›
‹finite B›

‹(λb. {x ∈ A. f x = b}) ‘ B − {{}} = (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}›]
by metis

ultimately show f ′ ∈ F
unfolding F-eq range-permutation-def by auto

qed
next

show F ⊆ functions-of (partitions-of A B F) A B
proof

fix f ′

assume f ′ ∈ F
from this have f ′ ∈ A →E B

unfolding F-eq range-permutation-def by auto
from ‹f ′ ∈ F› obtain p where p permutes B ∀ x∈A. f x = p (f ′ x)

unfolding F-eq range-permutation-def by auto
have eq: (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}} = (λb. {x ∈ A. f x = b}) ‘ B −

{{}}
proof −

have (λb. {x ∈ A. f ′ x = b}) ‘ B − {{}} = (λb. {x ∈ A. p (f ′ x) = b}) ‘ B
− {{}}

using permutes-implies-inv-image-on-eq[OF ‹p permutes B›, of A f ′] by
simp

also have . . . = (λb. {x ∈ A. f x = b}) ‘ B − {{}}
using ‹∀ x∈A. f x = p (f ′ x)› by auto

finally show ?thesis .
qed
from this ‹f ′ ∈ A →E B› show f ′ ∈ functions-of (partitions-of A B F) A B

unfolding functions-of-def partitions-of-eq by auto

73

qed
qed

qed

lemma partitions-of-functions-of :
assumes finite A finite B
assumes partition-on A P
assumes card P ≤ card B
shows partitions-of A B (functions-of P A B) = P

proof −
have functions-of P A B ∈ (A →E B) // range-permutation A B

using ‹finite A› ‹finite B› ‹partition-on A P› ‹card P ≤ card B› by (rule
functions-of)

from this obtain f where f ∈ A →E B and functions-of-eq: functions-of P A
B = range-permutation A B ‘‘ {f }

using quotientE by metis
from functions-of-eq ‹f ∈ A →E B› have f ∈ functions-of P A B

using equiv-range-permutation equiv-class-self by fastforce
have partitions-of A B (functions-of P A B) = univ (λf . (λb. {x ∈ A. f x = b})

‘ B − {{}}) (functions-of P A B)
unfolding partitions-of-def ..

also have . . . = univ (λf . (λb. {x ∈ A. f x = b}) ‘ B − {{}}) (range-permutation
A B ‘‘ {f })

unfolding ‹functions-of P A B = range-permutation A B ‘‘ {f }› ..
also have . . . = (λb. {x ∈ A. f x = b}) ‘ B − {{}}

using equiv-range-permutation domain-partitions-respects-range-permutation ‹f
∈ A →E B›

by (subst univ-commute ′) auto
also have (λb. {x ∈ A. f x = b}) ‘ B − {{}} = P

using ‹f ∈ functions-of P A B› unfolding functions-of-def by simp
finally show ?thesis .

qed

9.3 Bijections
lemma bij-betw-partitions-of :

assumes finite A finite B
shows bij-betw (partitions-of A B) ((A →E B) // range-permutation A B) {P.

partition-on A P ∧ card P ≤ card B}
proof (rule bij-betw-byWitness[where f ′=λP. functions-of P A B])

show ∀F∈(A →E B) // range-permutation A B. functions-of (partitions-of A
B F) A B = F

using ‹finite B› by (simp add: functions-of-partitions-of)
show ∀P∈{P. partition-on A P ∧ card P ≤ card B}. partitions-of A B (functions-of

P A B) = P
using ‹finite A› ‹finite B› by (auto simp add: partitions-of-functions-of)

show partitions-of A B ‘ ((A →E B) // range-permutation A B) ⊆ {P. parti-
tion-on A P ∧ card P ≤ card B}

using ‹finite B› partitions-of by auto

74

show (λP. functions-of P A B) ‘ {P. partition-on A P ∧ card P ≤ card B} ⊆
(A →E B) // range-permutation A B

using functions-of ‹finite A› ‹finite B› by auto
qed

9.4 Cardinality
lemma

assumes finite A finite B
shows card ((A →E B) // range-permutation A B) = (

∑
j≤card B. Stirling

(card A) j)
proof −

have bij-betw (partitions-of A B) ((A →E B) // range-permutation A B) {P.
partition-on A P ∧ card P ≤ card B}

using ‹finite A› ‹finite B› by (rule bij-betw-partitions-of)
from this have card ((A →E B) // range-permutation A B) = card {P. parti-

tion-on A P ∧ card P ≤ card B}
by (rule bij-betw-same-card)

also have card {P. partition-on A P ∧ card P ≤ card B} = (
∑

j≤card B.
Stirling (card A) j)

using ‹finite A› by (rule card-partition-on-at-most-size)
finally show ?thesis .

qed

end

10 Injections from A to B up to a Permutation on
B

theory Twelvefold-Way-Entry8
imports Twelvefold-Way-Entry7
begin

10.1 Properties for Bijections
lemma inj-on-implies-partitions-of :

assumes F ∈ (A →E B) // range-permutation A B
assumes univ (λf . inj-on f A) F
shows ∀X ∈ partitions-of A B F . card X = 1

proof −
from ‹F ∈ (A →E B) // range-permutation A B› obtain f where f ∈ A →E

B
and F-eq: F = range-permutation A B ‘‘ {f } using quotientE by blast

from this ‹univ (λf . inj-on f A) F› have inj-on f A
using univ-commute ′[OF equiv-range-permutation inj-on-respects-range-permutation

‹f ∈ A →E B›] by simp
have ∀X∈(λb. {x ∈ A. f x = b}) ‘ B − {{}}. card X = 1
proof

fix X

75

assume X ∈ (λb. {x ∈ A. f x = b}) ‘ B − {{}}
from this obtain x where X = {xa ∈ A. f xa = f x} x ∈ A by auto
from this have X = {x}

using ‹inj-on f A› by (auto dest!: inj-onD)
from this show card X = 1 by simp

qed
from this show ?thesis

unfolding partitions-of-def F-eq
using equiv-range-permutation domain-partitions-respects-range-permutation ‹f

∈ A →E B›
by (subst univ-commute ′) assumption+

qed

lemma unique-part-eq-singleton:
assumes partition-on A P
assumes ∀X∈P. card X = 1
assumes x ∈ A
shows (THE X . x ∈ X ∧ X ∈ P) = {x}

proof −
have (THE X . x ∈ X ∧ X ∈ P) ∈ P

using ‹partition-on A P› ‹x ∈ A› by (simp add: partition-on-the-part-mem)
from this have card (THE X . x ∈ X ∧ X ∈ P) = 1

using ‹∀X∈P. card X = 1 › by auto
moreover have x ∈ (THE X . x ∈ X ∧ X ∈ P)
using ‹partition-on A P› ‹x ∈ A› by (simp add: partition-on-in-the-unique-part)

ultimately show ?thesis
by (metis card-1-singletonE singleton-iff)

qed

lemma functions-of-is-inj-on:
assumes finite A finite B partition-on A P card P ≤ card B
assumes ∀X∈P. card X = 1
shows univ (λf . inj-on f A) (functions-of P A B)

proof −
have functions-of P A B ∈ (A →E B) // range-permutation A B

using functions-of ‹finite A› ‹finite B› ‹partition-on A P› ‹card P ≤ card B›
by blast

from this obtain f where eq-f : functions-of P A B = range-permutation A B
‘‘ {f } and f ∈ A →E B

using quotientE by blast
from eq-f have f ∈ functions-of P A B

using ‹f ∈ A →E B› equiv-range-permutation equiv-class-self by fastforce
from this have eq: (λb. {x ∈ A. f x = b}) ‘ B − {{}} = P

unfolding functions-of-def by auto
have inj-on f A
proof (rule inj-onI)

fix x y
assume x ∈ A y ∈ A f x = f y
from ‹x ∈ A› have x ∈ {x ′ ∈ A. f x ′ = f x} by auto

76

moreover from ‹y ∈ A› ‹f x = f y› have y ∈ {x ′ ∈ A. f x ′ = f x} by auto
moreover have card {x ′ ∈ A. f x ′ = f x} = 1
proof −

from ‹x ∈ A› ‹f ∈ A →E B› have f x ∈ B by auto
from this ‹x ∈ A› have {x ′ ∈ A. f x ′ = f x} ∈ (λb. {x ∈ A. f x = b}) ‘ B −

{{}} by auto
from this ‹∀X∈P. card X = 1 › eq show ?thesis by auto

qed
ultimately show x = y by (metis card-1-singletonE singletonD)

qed
from this show ?thesis
unfolding eq-f using equiv-range-permutation inj-on-respects-range-permutation

‹f ∈ A →E B›
by (subst univ-commute ′) assumption+

qed

10.2 Bijections
lemma bij-betw-partitions-of :

assumes finite A finite B
shows bij-betw (partitions-of A B) ({f ∈ A→E B. inj-on f A} // range-permutation

A B) {P. partition-on A P ∧ card P ≤ card B ∧ (∀X∈P. card X = 1)}
proof (rule bij-betw-byWitness[where f ′=λP. functions-of P A B])

have quotient-eq: {f ∈ A →E B. inj-on f A} // range-permutation A B = {F ∈
((A →E B) // range-permutation A B). univ (λf . inj-on f A) F}

by (simp add: equiv-range-permutation inj-on-respects-range-permutation univ-preserves-predicate)
show ∀F∈{f ∈ A →E B. inj-on f A} // range-permutation A B. functions-of

(partitions-of A B F) A B = F
using ‹finite B› by (simp add: quotient-eq functions-of-partitions-of)

show ∀P∈{P. partition-on A P ∧ card P ≤ card B ∧ (∀X∈P. card X = 1)}.
partitions-of A B (functions-of P A B) = P

using ‹finite A› ‹finite B› by (simp add: partitions-of-functions-of)
show partitions-of A B ‘ ({f ∈ A →E B. inj-on f A} // range-permutation A B)
⊆ {P. partition-on A P ∧ card P ≤ card B ∧ (∀X∈P. card X = 1)}

using ‹finite B› quotient-eq partitions-of inj-on-implies-partitions-of by fastforce
show (λP. functions-of P A B) ‘ {P. partition-on A P ∧ card P ≤ card B ∧

(∀X∈P. card X = 1)} ⊆ {f ∈ A →E B. inj-on f A} // range-permutation A B
using ‹finite A› ‹finite B› by (auto simp add: quotient-eq intro: functions-of

functions-of-is-inj-on)
qed

10.3 Cardinality
lemma card-injective-functions-range-permutation:

assumes finite A finite B
shows card ({f ∈ A →E B. inj-on f A} // range-permutation A B) = iverson

(card A ≤ card B)
proof −

obtain enum where bij-betw enum {0 ..<card A} A
using ‹finite A› ex-bij-betw-nat-finite by blast

77

have bij-betw (partitions-of A B) ({f ∈ A→E B. inj-on f A} // range-permutation
A B) {P. partition-on A P ∧ card P ≤ card B ∧ (∀X∈P. card X = 1)}

using ‹finite A› ‹finite B› by (rule bij-betw-partitions-of)
from this have card ({f ∈ A →E B. inj-on f A} // range-permutation A B) =

card {P. partition-on A P ∧ card P ≤ card B ∧ (∀X∈P. card X = 1)}
by (rule bij-betw-same-card)

also have card {P. partition-on A P ∧ card P ≤ card B ∧ (∀X∈P. card X =
1)} = iverson (card A ≤ card B)

using ‹finite A› by (rule card-partition-on-size1-eq-iverson)
finally show ?thesis .

qed

end

11 Surjections from A to B up to a Permutation
on B

theory Twelvefold-Way-Entry9
imports Twelvefold-Way-Entry7
begin

11.1 Properties for Bijections
lemma surjective-on-implies-card-eq:

assumes f ‘ A = B
shows card ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) = card B

proof −
from ‹f ‘ A = B› have {} /∈ (λb. {x ∈ A. f x = b}) ‘ B by auto
from ‹f ‘ A = B› have inj-on (λb. {x ∈ A. f x = b}) B by (fastforce intro:

inj-onI)
have card ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) = card ((λb. {x ∈ A. f x = b}) ‘

B)
using ‹{} /∈ (λb. {x ∈ A. f x = b}) ‘ B› by simp

also have . . . = card B
using ‹inj-on (λb. {x ∈ A. f x = b}) B› by (rule card-image)

finally show ?thesis .
qed

lemma card-eq-implies-surjective-on:
assumes finite B f ∈ A →E B
assumes card-eq: card ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) = card B
shows f ‘ A = B

proof
from ‹f ∈ A →E B› show f ‘ A ⊆ B by auto

next
show B ⊆ f ‘ A
proof

fix x

78

assume x ∈ B
have {} /∈ (λb. {x ∈ A. f x = b}) ‘ B
proof (cases card B ≥ 1)

assume ¬ card B ≥ 1
from this have card B = 0 by simp
from this ‹finite B› have B = {} by simp
from this show ?thesis by simp

next
assume card B ≥ 1
show ?thesis
proof (rule ccontr)

assume ¬ {} /∈ (λb. {x ∈ A. f x = b}) ‘ B
from this have {} ∈ (λb. {x ∈ A. f x = b}) ‘ B by simp
moreover have card ((λb. {x ∈ A. f x = b}) ‘ B) ≤ card B

using ‹finite B› card-image-le by blast
moreover have finite ((λb. {x ∈ A. f x = b}) ‘ B)

using ‹finite B› by auto
ultimately have card ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) ≤ card B − 1

by (auto simp add: card-Diff-singleton)
from this card-eq ‹card B ≥ 1 › show False by auto

qed
qed
from this ‹x ∈ B› show x ∈ f ‘ A by force

qed
qed

lemma card-partitions-of :
assumes F ∈ (A →E B) // range-permutation A B
assumes univ (λf . f ‘ A = B) F
shows card (partitions-of A B F) = card B

proof −
from ‹F ∈ (A →E B) // range-permutation A B› obtain f where f ∈ A →E

B
and F-eq: F = range-permutation A B ‘‘ {f } using quotientE by blast

from this ‹univ (λf . f ‘ A = B) F› have f ‘ A = B
using univ-commute ′[OF equiv-range-permutation surj-on-respects-range-permutation

‹f ∈ A →E B›] by simp
have card (partitions-of A B F) = card (univ (λf . (λb. {x ∈ A. f x = b}) ‘ B −
{{}}) F)

unfolding partitions-of-def ..
also have . . . = card (univ (λf . (λb. {x ∈ A. f x = b}) ‘ B − {{}}) (range-permutation

A B ‘‘ {f }))
unfolding F-eq ..

also have . . . = card ((λb. {x ∈ A. f x = b}) ‘ B − {{}})
using equiv-range-permutation domain-partitions-respects-range-permutation ‹f

∈ A →E B›
by (subst univ-commute ′) auto

also from ‹f ‘ A = B› have . . . = card B
using surjective-on-implies-card-eq by auto

79

finally show ?thesis .
qed

lemma functions-of-is-surj-on:
assumes finite A finite B
assumes partition-on A P card P = card B
shows univ (λf . f ‘ A = B) (functions-of P A B)

proof −
have functions-of P A B ∈ (A →E B) // range-permutation A B

using functions-of ‹finite A› ‹finite B› ‹partition-on A P› ‹card P = card B›
by fastforce

from this obtain f where eq-f : functions-of P A B = range-permutation A B
‘‘ {f } and f ∈ A →E B

using quotientE by blast
from eq-f have f ∈ functions-of P A B

using ‹f ∈ A →E B› equiv-range-permutation equiv-class-self by fastforce
from ‹f ∈ functions-of P A B› have eq: (λb. {x ∈ A. f x = b}) ‘ B − {{}} = P

unfolding functions-of-def by auto
from this have card ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) = card B

using ‹card P = card B› by simp
from ‹finite B› ‹f ∈ A →E B› this have f ‘ A = B

using card-eq-implies-surjective-on by blast
from this show ?thesis
unfolding eq-f using equiv-range-permutation surj-on-respects-range-permutation

‹f ∈ A →E B›
by (subst univ-commute ′) assumption+

qed

11.2 Bijections
lemma bij-betw-partitions-of :

assumes finite A finite B
shows bij-betw (partitions-of A B) ({f ∈ A→E B. f ‘ A = B} // range-permutation

A B) {P. partition-on A P ∧ card P = card B}
proof (rule bij-betw-byWitness[where f ′=λP. functions-of P A B])

have quotient-eq: {f ∈ A →E B. f ‘ A = B} // range-permutation A B = {F ∈
((A →E B) // range-permutation A B). univ (λf . f ‘ A = B) F}

using equiv-range-permutation[of A B] surj-on-respects-range-permutation[of A
B] by (simp only: univ-preserves-predicate)

show ∀F∈{f ∈ A →E B. f ‘ A = B} // range-permutation A B. functions-of
(partitions-of A B F) A B = F

using ‹finite B› by (simp add: functions-of-partitions-of quotient-eq)
show ∀P∈{P. partition-on A P ∧ card P = card B}. partitions-of A B (functions-of

P A B) = P
using ‹finite A› ‹finite B› by (auto simp add: partitions-of-functions-of)

show partitions-of A B ‘ ({f ∈ A →E B. f ‘ A = B} // range-permutation A B)
⊆ {P. partition-on A P ∧ card P = card B}

using ‹finite B› quotient-eq card-partitions-of partitions-of by fastforce
show (λP. functions-of P A B) ‘ {P. partition-on A P ∧ card P = card B} ⊆

80

{f ∈ A →E B. f ‘ A = B} // range-permutation A B
using ‹finite A› ‹finite B› by (auto simp add: quotient-eq intro: functions-of

functions-of-is-surj-on)
qed

11.3 Cardinality
lemma card-surjective-functions-range-permutation:

assumes finite A finite B
shows card ({f ∈ A →E B. f ‘ A = B} // range-permutation A B) = Stirling

(card A) (card B)
proof −
have bij-betw (partitions-of A B) ({f ∈ A→E B. f ‘ A = B} // range-permutation

A B) {P. partition-on A P ∧ card P = card B}
using ‹finite A› ‹finite B› by (rule bij-betw-partitions-of)

from this have card ({f ∈ A →E B. f ‘ A = B} // range-permutation A B) =
card {P. partition-on A P ∧ card P = card B}

by (rule bij-betw-same-card)
also have card {P. partition-on A P ∧ card P = card B} = Stirling (card A)

(card B)
using ‹finite A› by (rule card-partition-on)

finally show ?thesis .
qed

end

12 Surjections from A to B
theory Twelvefold-Way-Entry3
imports

Twelvefold-Way-Entry9
begin

lemma card-of-equiv-class:
assumes finite B
assumes F ∈ {f ∈ A →E B. f ‘ A = B} // range-permutation A B
shows card F = fact (card B)

proof −
from ‹F ∈ {f ∈ A →E B. f ‘ A = B} // range-permutation A B› obtain f

where
f ∈ A →E B and f ‘ A = B
and F-eq: F = range-permutation A B ‘‘ {f } using quotientE by blast

have set-eq: range-permutation A B ‘‘ {f } = (λp x. if x ∈ A then p (f x) else
undefined) ‘ {p. p permutes B}

proof
show range-permutation A B ‘‘ {f } ⊆ (λp x. if x ∈ A then p (f x) else undefined)

‘ {p. p permutes B}
proof

fix f ′

81

assume f ′ ∈ range-permutation A B ‘‘ {f }
from this obtain p where p permutes B ∀ x∈A. f x = p (f ′ x)

unfolding range-permutation-def by auto
from ‹f ′ ∈ range-permutation A B ‘‘ {f }› have f ′ ∈ A →E B

unfolding range-permutation-def by auto
have f ′ = (λx. if x ∈ A then inv p (f x) else undefined)
proof

fix x
show f ′ x = (if x ∈ A then inv p (f x) else undefined)

using ‹f ∈ A →E B› ‹f ′ ∈ A →E B› ‹∀ x∈A. f x = p (f ′ x)›
‹p permutes B› permutes-inverses(2) by fastforce

qed
moreover have inv p permutes B using ‹p permutes B› by (simp add:

permutes-inv)
ultimately show f ′ ∈ (λp. (λx. if x ∈ A then p (f x) else undefined)) ‘ {p.

p permutes B}
by auto

qed
next

show (λp x. if x ∈ A then p (f x) else undefined) ‘ {p. p permutes B} ⊆
range-permutation A B ‘‘ {f }

proof
fix f ′

assume f ′ ∈ (λp x. if x ∈ A then p (f x) else undefined) ‘ {p. p permutes B}
from this obtain p where p permutes B and f ′-eq: f ′ = (λx. if x ∈ A then

p (f x) else undefined) by auto
from this have f ′ ∈ A →E B

using ‹f ∈ A →E B› permutes-in-image by fastforce
moreover have inv p permutes B using ‹p permutes B› by (simp add:

permutes-inv)
moreover have ∀ x∈A. f x = inv p (f ′ x)

using ‹f ∈ A →E B› ‹f ′ ∈ A →E B› f ′-eq
‹p permutes B› permutes-inverses(2) by fastforce

ultimately show f ′ ∈ range-permutation A B ‘‘ {f }
using ‹f ∈ A →E B› unfolding range-permutation-def by auto

qed
qed
have inj-on (λp x. if x ∈ A then p (f x) else undefined) {p. p permutes B}
proof (rule inj-onI)

fix p p ′

assume p ∈ {p. p permutes B} p ′ ∈ {p. p permutes B}
and eq: (λx. if x ∈ A then p (f x) else undefined) = (λx. if x ∈ A then p ′ (f

x) else undefined)
{

fix x
have p x = p ′ x
proof cases

assume x ∈ B
from this obtain y where y ∈ A and x = f y

82

using ‹f ‘ A = B› by blast
from eq this have p (f y) = p ′ (f y) by meson
from this ‹x = f y› show p x = p ′ x by simp

next
assume x /∈ B
from this show p x = p ′ x

using ‹p ∈ {p. p permutes B}› ‹p ′ ∈ {p. p permutes B}›
by (simp add: permutes-def)

qed
}
from this show p = p ′ by auto

qed
have card F = card ((λp x. if x ∈ A then p (f x) else undefined) ‘ {p. p permutes

B})
unfolding F-eq set-eq ..

also have . . . = card {p. p permutes B}
using ‹inj-on (λp x. if x ∈ A then p (f x) else undefined) {p. p permutes B}›
by (simp add: card-image)

also have . . . = fact (card B)
using ‹finite B› by (simp add: card-permutations)

finally show ?thesis .
qed

lemma card-extensional-funcset-surj-on:
assumes finite A finite B
shows card {f ∈ A →E B. f ‘ A = B} = fact (card B) ∗ Stirling (card A) (card

B) (is card ?F = -)
proof −

have card ?F = fact (card B) ∗ card (?F // range-permutation A B)
using ‹finite B›
by (simp only: card-equiv-class-restricted-same-size[OF equiv-range-permutation

surj-on-respects-range-permutation card-of-equiv-class])
also have . . . = fact (card B) ∗ Stirling (card A) (card B)

using ‹finite A› ‹finite B›
by (simp only: card-surjective-functions-range-permutation)

finally show ?thesis .
qed

end

13 Functions from A to B up to a Permutation on
A and B

theory Twelvefold-Way-Entry10
imports Equiv-Relations-on-Functions
begin

83

13.1 Definition of Bijections
definition number-partition-of :: ′a set ⇒ ′b set ⇒ (′a ⇒ ′b) set ⇒ nat multiset
where

number-partition-of A B F = univ (λf . image-mset (λX . card X) (mset-set ((λb.
{x ∈ A. f x = b}) ‘ B − {{}}))) F

definition functions-of :: ′a set ⇒ ′b set ⇒ nat multiset ⇒ (′a ⇒ ′b) set
where

functions-of A B N = {f ∈ A →E B. image-mset (λX . card X) (mset-set ((λb.
{x ∈ A. f x = b}) ‘ B − {{}})) = N}

13.2 Properties for Bijections
lemma card-setsum-partition:

assumes finite A finite B f ∈ A →E B
shows sum card ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) = card A

proof −
have finite ((λb. {x ∈ A. f x = b}) ‘ B − {{}})

using ‹finite B› by blast
moreover have ∀X∈(λb. {x ∈ A. f x = b}) ‘ B − {{}}. finite X

using ‹finite A› by auto
moreover have

⋃
((λb. {x ∈ A. f x = b}) ‘ B − {{}}) = A

using ‹f ∈ A →E B› by auto
ultimately show ?thesis

by (subst card-Union-disjoint[symmetric]) (auto simp: pairwise-def disjnt-def)
qed

lemma number-partition-of :
assumes finite A finite B
assumes F ∈ (A →E B) // domain-and-range-permutation A B
shows number-partition (card A) (number-partition-of A B F)
and size (number-partition-of A B F) ≤ card B

proof −
from ‹F ∈ (A →E B) // domain-and-range-permutation A B› obtain f where

f ∈ A →E B
and F-eq: F = domain-and-range-permutation A B ‘‘ {f } using quotientE by

blast
have number-partition-of-eq: number-partition-of A B F = image-mset card

(mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))
proof −

have number-partition-of A B F = univ (λf . image-mset card (mset-set ((λb.
{x ∈ A. f x = b}) ‘ B − {{}}))) F

unfolding number-partition-of-def ..
also have . . . = univ (λf . image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘

B − {{}}))) (domain-and-range-permutation A B ‘‘ {f })
unfolding F-eq ..

also have . . . = image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B −
{{}}))

using ‹finite B› equiv-domain-and-range-permutation multiset-of-partition-cards-respects-domain-and-range-permutation

84

‹f ∈ A →E B›
by (subst univ-commute ′) auto

finally show ?thesis .
qed
show number-partition (card A) (number-partition-of A B F)
proof −

have sum-mset (number-partition-of A B F) = card A
using number-partition-of-eq ‹finite A› ‹finite B› ‹f ∈ A →E B›
by (simp only: sum-unfold-sum-mset[symmetric] card-setsum-partition)

moreover have 0 /∈# number-partition-of A B F
proof −

have ∀X ∈ (λb. {x ∈ A. f x = b}) ‘ B. finite X
using ‹finite A› by simp

from this have ∀X ∈ (λb. {x ∈ A. f x = b}) ‘ B − {{}}. card X 6= 0 by
auto

from this show ?thesis
using number-partition-of-eq ‹finite B› by (simp add: image-iff)

qed
ultimately show ?thesis unfolding number-partition-def by simp

qed
show size (number-partition-of A B F) ≤ card B

using number-partition-of-eq ‹finite A› ‹finite B›
by (metis (no-types, lifting) card-Diff1-le card-image-le finite-imageI le-trans

size-image-mset size-mset-set)
qed

lemma functions-of :
assumes finite A finite B
assumes number-partition (card A) N
assumes size N ≤ card B
shows functions-of A B N ∈ (A →E B) // domain-and-range-permutation A B

proof −
obtain f where f ∈ A →E B and eq-N : image-mset (λX . card X) (mset-set

(((λb. {x ∈ A. f x = b})) ‘ B − {{}})) = N
using obtain-extensional-function-from-number-partition ‹finite A› ‹finite B›

‹number-partition (card A) N › ‹size N ≤ card B› by blast
have functions-of A B N = (domain-and-range-permutation A B) ‘‘ {f }
proof

show functions-of A B N ⊆ domain-and-range-permutation A B ‘‘ {f }
proof

fix f ′

assume f ′ ∈ functions-of A B N
from this have eq-N ′: N = image-mset (λX . card X) (mset-set (((λb. {x ∈

A. f ′ x = b})) ‘ B − {{}}))
and f ′ ∈ A →E B
unfolding functions-of-def by auto

from ‹finite A› ‹finite B› ‹f ∈ A →E B› ‹f ′ ∈ A →E B›
obtain pA pB where pA permutes A pB permutes B ∀ x∈A. f x = pB (f ′ (pA

x))

85

using eq-N eq-N ′ multiset-of-partition-cards-eq-implies-permutes[of A B f f ′]
by blast

from this show f ′ ∈ domain-and-range-permutation A B ‘‘ {f }
using ‹f ∈ A →E B› ‹f ′ ∈ A →E B›
unfolding domain-and-range-permutation-def by auto

qed
next

show domain-and-range-permutation A B ‘‘ {f } ⊆ functions-of A B N
proof

fix f ′

assume f ′ ∈ domain-and-range-permutation A B ‘‘ {f }
from this have in-equiv-relation: (f , f ′) ∈ domain-and-range-permutation A

B by auto
from eq-N ‹finite B› have image-mset (λX . card X) (mset-set (((λb. {x ∈

A. f ′ x = b})) ‘ B − {{}})) = N
using congruentD[OF multiset-of-partition-cards-respects-domain-and-range-permutation

in-equiv-relation]
by metis

moreover from ‹(f , f ′) ∈ domain-and-range-permutation A B› have f ′ ∈ A
→E B

unfolding domain-and-range-permutation-def by auto
ultimately show f ′ ∈ functions-of A B N

unfolding functions-of-def by auto
qed

qed
from this ‹f ∈ A →E B› show ?thesis by (auto intro: quotientI)

qed

lemma functions-of-number-partition-of :
assumes finite A finite B
assumes F ∈ (A →E B) // domain-and-range-permutation A B
shows functions-of A B (number-partition-of A B F) = F

proof −
from ‹F ∈ (A →E B) // domain-and-range-permutation A B› obtain f where

f ∈ A →E B
and F-eq: F = domain-and-range-permutation A B ‘‘ {f } using quotientE by

blast
have number-partition-of A B F = univ (λf . image-mset card (mset-set ((λb. {x
∈ A. f x = b}) ‘ B − {{}}))) F

unfolding number-partition-of-def ..
also have . . . = univ (λf . image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘

B − {{}}))) (domain-and-range-permutation A B ‘‘ {f })
unfolding F-eq ..

also have . . . = image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))
using ‹finite B›

using equiv-domain-and-range-permutation multiset-of-partition-cards-respects-domain-and-range-permutation
‹f ∈ A →E B›

by (subst univ-commute ′) auto
finally have number-partition-of-eq: number-partition-of A B F = image-mset

86

card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}})) .
show ?thesis
proof

show functions-of A B (number-partition-of A B F) ⊆ F
proof

fix f ′

assume f ′ ∈ functions-of A B (number-partition-of A B F)
from this have f ′ ∈ A →E B

and eq: image-mset card (mset-set ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}))
= image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))

unfolding functions-of-def by (auto simp add: number-partition-of-eq)
note ‹f ∈ A →E B› ‹f ′ ∈ A →E B›
moreover obtain pA pB where pA permutes A pB permutes B ∀ x∈A. f x

= pB (f ′ (pA x))
using ‹finite A› ‹finite B› ‹f ∈ A →E B› ‹f ′ ∈ A →E B› eq

multiset-of-partition-cards-eq-implies-permutes[of A B f f ′]
by metis

ultimately show f ′ ∈ F
unfolding F-eq domain-and-range-permutation-def by auto

qed
next

show F ⊆ functions-of A B (number-partition-of A B F)
proof

fix f ′

assume f ′ ∈ F
from ‹f ′ ∈ F› obtain pA pB where pA permutes A pB permutes B ∀ x∈A.

f x = pB (f ′ (pA x))
unfolding F-eq domain-and-range-permutation-def by auto

have eq: image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}})) =
image-mset card (mset-set ((λb. {x ∈ A. f ′ x = b}) ‘ B − {{}}))

proof −
have (λb. {x ∈ A. f x = b}) ‘ B = (λb. {x ∈ A. pB (f ′ (pA x)) = b}) ‘ B

using ‹∀ x∈A. f x = pB (f ′ (pA x))› by auto
from this have image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B −

{{}})) =
image-mset card (mset-set ((λb. {x ∈ A. pB (f ′ (pA x)) = b}) ‘ B − {{}}))

by simp
also have . . . = image-mset card (mset-set ((λb. {x ∈ A. f ′ x = b}) ‘ B −

{{}}))
using ‹pA permutes A› ‹pB permutes B› permutes-implies-multiset-of-partition-cards-eq

by blast
finally show ?thesis .

qed
moreover from ‹f ′ ∈ F› have f ′ ∈ A →E B

unfolding F-eq domain-and-range-permutation-def by auto
ultimately show f ′ ∈ functions-of A B (number-partition-of A B F)

unfolding functions-of-def number-partition-of-eq by auto
qed

qed

87

qed

lemma number-partition-of-functions-of :
assumes finite A finite B
assumes number-partition (card A) N size N ≤ card B
shows number-partition-of A B (functions-of A B N) = N

proof −
from assms have functions-of A B N ∈ (A→E B) // domain-and-range-permutation

A B
using functions-of assms by fastforce

from this obtain f where f ∈ A →E B and functions-of A B N = do-
main-and-range-permutation A B ‘‘ {f }

by (meson quotientE)
from this have f ∈ functions-of A B N

using equiv-domain-and-range-permutation equiv-class-self by fastforce
have number-partition-of A B (functions-of A B N) = univ (λf . image-mset card

(mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))) (functions-of A B N)
unfolding number-partition-of-def ..

also have . . . = univ (λf . image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘
B − {{}}))) (domain-and-range-permutation A B ‘‘ {f })

unfolding ‹functions-of A B N = domain-and-range-permutation A B ‘‘ {f }›
..

also have . . . = image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))
using ‹finite B› ‹f ∈ A →E B› equiv-domain-and-range-permutation

multiset-of-partition-cards-respects-domain-and-range-permutation
by (subst univ-commute ′) auto

also have image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}})) = N
using ‹f ∈ functions-of A B N › unfolding functions-of-def by simp

finally show ?thesis .
qed

13.3 Bijections
lemma bij-betw-number-partition-of :

assumes finite A finite B
shows bij-betw (number-partition-of A B) ((A→E B) // domain-and-range-permutation

A B) {N . number-partition (card A) N ∧ size N ≤ card B}
proof (rule bij-betw-byWitness[where f ′=λM . functions-of A B M])

show ∀F∈(A →E B) // domain-and-range-permutation A B. functions-of A B
(number-partition-of A B F) = F

using ‹finite A› ‹finite B› by (auto simp add: functions-of-number-partition-of)
show ∀N∈{N . number-partition (card A) N ∧ size N ≤ card B}. number-partition-of

A B (functions-of A B N) = N
using ‹finite A› ‹finite B› by (auto simp add: number-partition-of-functions-of)

show number-partition-of A B ‘ ((A →E B) // domain-and-range-permutation
A B) ⊆ {N . number-partition (card A) N ∧ size N ≤ card B}

using number-partition-of [of A B] ‹finite A› ‹finite B› by auto
show functions-of A B ‘ {N . number-partition (card A) N ∧ size N ≤ card B}
⊆ (A →E B) // domain-and-range-permutation A B

88

using functions-of ‹finite A› ‹finite B› by blast
qed

13.4 Cardinality
lemma card-domain-and-range-permutation:

assumes finite A finite B
shows card ((A →E B) // domain-and-range-permutation A B) = Partition

(card A + card B) (card B)
proof −
have bij-betw (number-partition-of A B) ((A→E B) // domain-and-range-permutation

A B) {N . number-partition (card A) N ∧ size N ≤ card B}
using ‹finite A› ‹finite B› by (rule bij-betw-number-partition-of)

from this have card ((A →E B) // domain-and-range-permutation A B) = card
{N . number-partition (card A) N ∧ size N ≤ card B}

by (rule bij-betw-same-card)
also have card {N . number-partition (card A) N ∧ size N ≤ card B} = Partition

(card A + card B) (card B)
by (rule card-number-partitions-with-atmost-k-parts)

finally show ?thesis .
qed

end

14 Injections from A to B up to a permutation on
A and B

theory Twelvefold-Way-Entry11
imports Twelvefold-Way-Entry10
begin

14.1 Properties for Bijections
lemma all-one-implies-inj-on:

assumes finite A finite B
assumes ∀n. n∈# N −→ n = 1 number-partition (card A) N size N ≤ card B
assumes f ∈ functions-of A B N
shows inj-on f A

proof −
from ‹f ∈ functions-of A B N › have f ∈ A →E B

and N = image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))
unfolding functions-of-def by auto

from this ‹∀n. n∈# N −→ n = 1 › have parts: ∀ b ∈ B. card {x ∈ A. f x = b}
= 1 ∨ {x ∈ A. f x = b} = {}

using ‹finite B› by auto
show inj-on f A
proof

fix x y
assume a: x ∈ A y ∈ A f x = f y

89

from ‹f ∈ A →E B› ‹x ∈ A› have f x ∈ B by auto
from a have 1 : x ∈ {x ′ ∈ A. f x ′ = f x} y ∈ {x ′ ∈ A. f x ′ = f x} by auto
from this have 2 : card {x ′ ∈ A. f x ′ = f x} = 1

using parts ‹f x ∈ B› by blast
from this have is-singleton {x ′ ∈ A. f x ′ = f x}

by (simp add: is-singleton-altdef)
from 1 this show x = y

by (metis is-singletonE singletonD)
qed

qed

lemma inj-on-implies-all-one:
assumes finite A finite B
assumes F ∈ (A →E B) // domain-and-range-permutation A B
assumes univ (λf . inj-on f A) F
shows ∀n. n∈# number-partition-of A B F −→ n = 1

proof −
from ‹F ∈ (A →E B) // domain-and-range-permutation A B› obtain f where

f ∈ A →E B
and F-eq: F = domain-and-range-permutation A B ‘‘ {f } using quotientE by

blast
have number-partition-of A B F = univ (λf . image-mset card (mset-set ((λb. {x
∈ A. f x = b}) ‘ B − {{}}))) F

unfolding number-partition-of-def ..
also have . . . = univ (λf . image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘

B − {{}}))) (domain-and-range-permutation A B ‘‘ {f })
unfolding F-eq ..

also have . . . = image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))
using ‹finite B› equiv-domain-and-range-permutation multiset-of-partition-cards-respects-domain-and-range-permutation

‹f ∈ A →E B›
by (subst univ-commute ′) auto

finally have eq: number-partition-of A B F = image-mset card (mset-set ((λb.
{x ∈ A. f x = b}) ‘ B − {{}})) .

from iffD1 [OF univ-commute ′, OF equiv-domain-and-range-permutation, OF
inj-on-respects-domain-and-range-permutation, OF ‹f ∈ A →E B›]

assms(4) have inj-on f A by (simp add: F-eq)
have ∀n. n ∈# image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))
−→ n = 1

proof −
have ∀ b ∈ B. card {x ∈ A. f x = b} = 1 ∨ {x ∈ A. f x = b} = {}
proof

fix b
assume b ∈ B
show card {x ∈ A. f x = b} = 1 ∨ {x ∈ A. f x = b} = {}
proof (cases b ∈ f ‘ A)

assume b ∈ f ‘ A
from ‹inj-on f A› this have is-singleton {x ∈ A. f x = b}

by (auto simp add: inj-on-eq-iff intro: is-singletonI ′)
from this have card {x ∈ A. f x = b} = 1

90

by (subst is-singleton-altdef [symmetric])
from this show ?thesis ..

next
assume b /∈ f ‘ A
from this have {x ∈ A. f x = b} = {} by auto
from this show ?thesis ..

qed
qed
from this show ?thesis

using ‹finite B› by auto
qed
from this show ∀n. n∈# number-partition-of A B F −→ n = 1

unfolding eq by auto
qed

lemma functions-of-is-inj-on:
assumes finite A finite B
assumes ∀n. n∈# N −→ n = 1 number-partition (card A) N size N ≤ card B
shows univ (λf . inj-on f A) (functions-of A B N)

proof −
have functions-of A B N ∈ (A →E B) // domain-and-range-permutation A B

using assms functions-of by auto
from this obtain f where eq-f : functions-of A B N = domain-and-range-permutation

A B ‘‘ {f } and f ∈ A →E B
using quotientE by blast

from eq-f have f ∈ functions-of A B N
using ‹f ∈ A →E B› equiv-domain-and-range-permutation equiv-class-self by

fastforce
have inj-on f A

using ‹f ∈ functions-of A B N › assms all-one-implies-inj-on by blast
from this show ?thesis
unfolding eq-f using equiv-domain-and-range-permutation inj-on-respects-domain-and-range-permutation

‹f ∈ A →E B›
by (subst univ-commute ′) assumption+

qed

14.2 Bijections
lemma bij-betw-number-partition-of :

assumes finite A finite B
shows bij-betw (number-partition-of A B) ({f ∈ A →E B. inj-on f A} // do-

main-and-range-permutation A B) {N . (∀n. n∈# N −→ n = 1) ∧ number-partition
(card A) N ∧ size N ≤ card B}
proof (rule bij-betw-byWitness[where f ′=functions-of A B])

have quotient-eq: {f ∈ A →E B. inj-on f A} // domain-and-range-permutation
A B = {F ∈ ((A →E B) // domain-and-range-permutation A B). univ (λf . inj-on
f A) F}

using equiv-domain-and-range-permutation[of A B] inj-on-respects-domain-and-range-permutation[of
A B] by (simp only: univ-preserves-predicate)

91

show ∀F∈{f ∈ A →E B. inj-on f A} // domain-and-range-permutation A B.
functions-of A B (number-partition-of A B F) = F

using ‹finite A› ‹finite B› by (auto simp only: quotient-eq functions-of-number-partition-of)
show ∀N∈ {N . (∀n. n∈# N −→ n = 1) ∧ number-partition (card A) N ∧ size

N ≤ card B}. number-partition-of A B (functions-of A B N) = N
using ‹finite A› ‹finite B› number-partition-of-functions-of by auto

show number-partition-of A B ‘ ({f ∈ A→E B. inj-on f A} // domain-and-range-permutation
A B)
⊆ {N . (∀n. n∈# N −→ n = 1) ∧ number-partition (card A) N ∧ size N ≤

card B}
using ‹finite A› ‹finite B›
by (auto simp add: quotient-eq number-partition-of inj-on-implies-all-one simp

del: One-nat-def)
show functions-of A B ‘ {N . (∀n. n∈# N −→ n = 1) ∧ number-partition (card

A) N ∧ size N ≤ card B}
⊆ {f ∈ A →E B. inj-on f A} // domain-and-range-permutation A B
using ‹finite A› ‹finite B› by (auto simp add: quotient-eq intro: functions-of

functions-of-is-inj-on)
qed

lemma bij-betw-functions-of :
assumes finite A finite B
shows bij-betw (functions-of A B) {N . (∀n. n∈# N −→ n = 1) ∧ num-

ber-partition (card A) N ∧ size N ≤ card B} ({f ∈ A →E B. inj-on f A} //
domain-and-range-permutation A B)
proof (rule bij-betw-byWitness[where f ′=number-partition-of A B])

have quotient-eq: {f ∈ A →E B. inj-on f A} // domain-and-range-permutation
A B = {F ∈ ((A →E B) // domain-and-range-permutation A B). univ (λf . inj-on
f A) F}

using equiv-domain-and-range-permutation[of A B] inj-on-respects-domain-and-range-permutation[of
A B] by (simp only: univ-preserves-predicate)

show ∀F∈{f ∈ A →E B. inj-on f A} // domain-and-range-permutation A B.
functions-of A B (number-partition-of A B F) = F

using ‹finite A› ‹finite B› by (auto simp only: quotient-eq functions-of-number-partition-of)
show ∀N∈ {N . (∀n. n∈# N −→ n = 1) ∧ number-partition (card A) N ∧ size

N ≤ card B}. number-partition-of A B (functions-of A B N) = N
using ‹finite A› ‹finite B› number-partition-of-functions-of by auto

show number-partition-of A B ‘ ({f ∈ A→E B. inj-on f A} // domain-and-range-permutation
A B)
⊆ {N . (∀n. n∈# N −→ n = 1) ∧ number-partition (card A) N ∧ size N ≤

card B}
using ‹finite A› ‹finite B›
by (auto simp add: quotient-eq number-partition-of inj-on-implies-all-one simp

del: One-nat-def)
show functions-of A B ‘ {N . (∀n. n∈# N −→ n = 1) ∧ number-partition (card

A) N ∧ size N ≤ card B}
⊆ {f ∈ A →E B. inj-on f A} // domain-and-range-permutation A B
using ‹finite A› ‹finite B› by (auto simp add: quotient-eq intro: functions-of

functions-of-is-inj-on)

92

qed

14.3 Cardinality
lemma card-injective-functions-domain-and-range-permutation:

assumes finite A finite B
shows card ({f ∈ A →E B. inj-on f A} // domain-and-range-permutation A B)

= iverson (card A ≤ card B)
proof −

have bij-betw (number-partition-of A B) ({f ∈ A →E B. inj-on f A} // do-
main-and-range-permutation A B) {N . (∀n. n∈# N −→ n = 1) ∧ number-partition
(card A) N ∧ size N ≤ card B}

using ‹finite A› ‹finite B› by (rule bij-betw-number-partition-of)
from this have card ({f ∈ A→E B. inj-on f A} // domain-and-range-permutation

A B) = card {N . (∀n. n∈# N −→ n = 1) ∧ number-partition (card A) N ∧ size
N ≤ card B}

by (rule bij-betw-same-card)
also have card {N . (∀n. n∈# N −→ n = 1) ∧ number-partition (card A) N ∧

size N ≤ card B} = iverson (card A ≤ card B)
by (rule card-number-partitions-with-only-parts-1)

finally show ?thesis .
qed

end

15 Surjections from A to B up to a Permutation
on A and B

theory Twelvefold-Way-Entry12
imports Twelvefold-Way-Entry9 Twelvefold-Way-Entry10
begin

15.1 Properties for Bijections
lemma size-eq-card-implies-surj-on:

assumes finite A finite B
assumes size N = card B
assumes f ∈ functions-of A B N
shows f ‘ A = B

proof −
from ‹f ∈ functions-of A B N › have f ∈ A →E B and

N = image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))
unfolding functions-of-def by auto

from this ‹size N = card B› have card ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) =
card B by simp

from this ‹finite B› ‹f ∈ A →E B› show f ‘ A = B
using card-eq-implies-surjective-on by blast

qed

93

lemma surj-on-implies-size-eq-card:
assumes finite A finite B
assumes F ∈ (A →E B) // domain-and-range-permutation A B
assumes univ (λf . f ‘ A = B) F
shows size (number-partition-of A B F) = card B

proof −
from ‹F ∈ (A →E B) // domain-and-range-permutation A B› obtain f where

f ∈ A →E B
and F-eq: F = domain-and-range-permutation A B ‘‘ {f } using quotientE by

blast
have number-partition-of A B F = univ (λf . image-mset card (mset-set ((λb. {x
∈ A. f x = b}) ‘ B − {{}}))) F

unfolding number-partition-of-def ..
also have . . . = univ (λf . image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘

B − {{}}))) (domain-and-range-permutation A B ‘‘ {f })
unfolding F-eq ..

also have . . . = image-mset card (mset-set ((λb. {x ∈ A. f x = b}) ‘ B − {{}}))
using ‹finite B› equiv-domain-and-range-permutation multiset-of-partition-cards-respects-domain-and-range-permutation

‹f ∈ A →E B›
by (subst univ-commute ′) auto

finally have eq: number-partition-of A B F = image-mset card (mset-set ((λb.
{x ∈ A. f x = b}) ‘ B − {{}})) .

from iffD1 [OF univ-commute ′, OF equiv-domain-and-range-permutation, OF
surjective-respects-domain-and-range-permutation, OF ‹f ∈ A →E B›]

assms(4) have f ‘ A = B by (simp add: F-eq)
have size (number-partition-of A B F) = size (image-mset card (mset-set ((λb.
{x ∈ A. f x = b}) ‘ B − {{}})))

unfolding eq ..
also have . . . = card ((λb. {x ∈ A. f x = b}) ‘ B − {{}}) by simp
also from ‹f ‘ A = B› have . . . = card B

using surjective-on-implies-card-eq by auto
finally show ?thesis .

qed

lemma functions-of-is-surj-on:
assumes finite A finite B
assumes number-partition (card A) N size N = card B
shows univ (λf . f ‘ A = B) (functions-of A B N)

proof −
have functions-of A B N ∈ (A →E B) // domain-and-range-permutation A B

using functions-of ‹finite A› ‹finite B› ‹number-partition (card A) N › ‹size N
= card B›

by fastforce
from this obtain f where eq-f : functions-of A B N = domain-and-range-permutation

A B ‘‘ {f } and f ∈ A →E B
using quotientE by blast

from eq-f have f ∈ functions-of A B N
using ‹f ∈ A →E B› equiv-domain-and-range-permutation equiv-class-self by

fastforce

94

have f ‘ A = B
using ‹f ∈ functions-of A B N › assms size-eq-card-implies-surj-on by blast

from this show ?thesis
unfolding eq-f using equiv-domain-and-range-permutation surjective-respects-domain-and-range-permutation

‹f ∈ A →E B›
by (subst univ-commute ′) assumption+

qed

15.2 Bijections
lemma bij-betw-number-partition-of :

assumes finite A finite B
shows bij-betw (number-partition-of A B) ({f ∈ A →E B. f ‘ A = B} // do-

main-and-range-permutation A B) {N . number-partition (card A) N ∧ size N =
card B}
proof (rule bij-betw-byWitness[where f ′=functions-of A B])

have quotient-eq: {f ∈ A →E B. f ‘ A = B} // domain-and-range-permutation
A B = {F ∈ ((A →E B) // domain-and-range-permutation A B). univ (λf . f ‘ A
= B) F}

using equiv-domain-and-range-permutation[of A B] surjective-respects-domain-and-range-permutation[of
A B] by (simp only: univ-preserves-predicate)

show ∀F∈{f ∈ A →E B. f ‘ A = B} // domain-and-range-permutation A B.
functions-of A B (number-partition-of A B F) = F

using ‹finite A› ‹finite B› by (auto simp only: quotient-eq functions-of-number-partition-of)
show ∀N∈{N . number-partition (card A) N ∧ size N = card B}. number-partition-of

A B (functions-of A B N) = N
using ‹finite A› ‹finite B› by (simp add: number-partition-of-functions-of)

show number-partition-of A B ‘ ({f ∈ A→E B. f ‘ A = B} // domain-and-range-permutation
A B)
⊆ {N . number-partition (card A) N ∧ size N = card B}
using ‹finite A› ‹finite B› by (auto simp add: quotient-eq number-partition-of

surj-on-implies-size-eq-card)
show functions-of A B ‘ {N . number-partition (card A) N ∧ size N = card B}
⊆ {f ∈ A →E B. f ‘ A = B} // domain-and-range-permutation A B
using ‹finite A› ‹finite B› by (auto simp add: quotient-eq intro: functions-of

functions-of-is-surj-on)
qed

lemma bij-betw-functions-of :
assumes finite A finite B

shows bij-betw (functions-of A B) {N . number-partition (card A) N ∧ size N =
card B} ({f ∈ A →E B. f ‘ A = B} // domain-and-range-permutation A B)
proof (rule bij-betw-byWitness[where f ′=number-partition-of A B])

have quotient-eq: {f ∈ A →E B. f ‘ A = B} // domain-and-range-permutation
A B = {F ∈ ((A →E B) // domain-and-range-permutation A B). univ (λf . f ‘ A
= B) F}

using equiv-domain-and-range-permutation[of A B] surjective-respects-domain-and-range-permutation[of
A B] by (simp only: univ-preserves-predicate)

show ∀F∈{f ∈ A →E B. f ‘ A = B} // domain-and-range-permutation A B.

95

functions-of A B (number-partition-of A B F) = F
using ‹finite A› ‹finite B› by (auto simp only: quotient-eq functions-of-number-partition-of)

show ∀N∈{N . number-partition (card A) N ∧ size N = card B}. number-partition-of
A B (functions-of A B N) = N

using ‹finite A› ‹finite B› by (simp add: number-partition-of-functions-of)
show number-partition-of A B ‘ ({f ∈ A→E B. f ‘ A = B} // domain-and-range-permutation

A B)
⊆ {N . number-partition (card A) N ∧ size N = card B}
using ‹finite A› ‹finite B› by (auto simp add: quotient-eq number-partition-of

surj-on-implies-size-eq-card)
show functions-of A B ‘ {N . number-partition (card A) N ∧ size N = card B}
⊆ {f ∈ A →E B. f ‘ A = B} // domain-and-range-permutation A B
using ‹finite A› ‹finite B› by (auto simp add: quotient-eq intro: functions-of

functions-of-is-surj-on)
qed

15.3 Cardinality
lemma card-surjective-functions-domain-and-range-permutation:

assumes finite A finite B
shows card ({f ∈ A →E B. f ‘ A = B} // domain-and-range-permutation A B)

= Partition (card A) (card B)
proof −

have bij-betw (number-partition-of A B) ({f ∈ A →E B. f ‘ A = B} // do-
main-and-range-permutation A B) {N . number-partition (card A) N ∧ size N =
card B}

using ‹finite A› ‹finite B› by (rule bij-betw-number-partition-of)
from this have card ({f ∈ A→E B. f ‘ A = B} // domain-and-range-permutation

A B) = card {N . number-partition (card A) N ∧ size N = card B}
by (rule bij-betw-same-card)

also have card {N . number-partition (card A) N ∧ size N = card B} = Partition
(card A) (card B)

by (rule card-partitions-with-k-parts)
finally show ?thesis .

qed

end

16 Cardinality of Bijections
theory Card-Bijections
imports

Twelvefold-Way-Entry2
Twelvefold-Way-Entry3
Twelvefold-Way-Entry5
Twelvefold-Way-Entry6
Twelvefold-Way-Entry8
Twelvefold-Way-Entry9
Twelvefold-Way-Entry11

96

Twelvefold-Way-Entry12
begin

16.1 Bijections from A to B
lemma bij-betw-set-is-empty:

assumes finite A finite B
assumes card A 6= card B
shows {f ∈ A →E B. bij-betw f A B} = {}

using assms bij-betw-same-card by blast

lemma card-bijections-eq-zero:
assumes finite A finite B
assumes card A 6= card B
shows card {f ∈ A →E B. bij-betw f A B} = 0

using bij-betw-set-is-empty[OF assms] by (simp only: card.empty)

Two alternative proofs for the cardinality of bijections up to a permutation
on A.
lemma

assumes finite A finite B
assumes card A = card B
shows card {f ∈ A →E B. bij-betw f A B} = fact (card B)

proof −
have card {f ∈ A →E B. bij-betw f A B} = card {f ∈ A →E B. inj-on f A}
using ‹finite B› ‹card A = card B› by (metis bij-betw-implies-inj-on-and-card-eq)

also have . . . = fact (card B)
using ‹finite A› ‹finite B› ‹card A = card B› by (simp add: card-extensional-funcset-inj-on)

finally show ?thesis .
qed

lemma card-bijections:
assumes finite A finite B
assumes card A = card B
shows card {f ∈ A →E B. bij-betw f A B} = fact (card B)

proof −
have card {f ∈ A →E B. bij-betw f A B} = card {f ∈ A →E B. f ‘ A = B}

using ‹finite A› ‹card A = card B›
by (metis bij-betw-implies-surj-on-and-card-eq)

also have . . . = fact (card B)
using ‹finite A› ‹finite B› ‹card A = card B›
by (simp add: card-extensional-funcset-surj-on)

finally show ?thesis .
qed

16.2 Bijections from A to B up to a Permutation on A
lemma bij-betw-quotient-domain-permutation-eq-empty:

assumes card A 6= card B

97

shows {f ∈ A →E B. bij-betw f A B} // domain-permutation A B = {}
using ‹card A 6= card B› bij-betw-same-card by auto

lemma card-bijections-domain-permutation-eq-0 :
assumes card A 6= card B
shows card ({f ∈ A →E B. bij-betw f A B} // domain-permutation A B) = 0

using bij-betw-quotient-domain-permutation-eq-empty[OF assms] by (simp only:
card.empty)

Two alternative proofs for the cardinality of bijections up to a permutation
on A.
lemma

assumes finite A finite B
assumes card A = card B
shows card ({f ∈ A →E B. bij-betw f A B} // domain-permutation A B) = 1

proof −
from assms have {f ∈ A →E B. bij-betw f A B} // domain-permutation A B
= {f ∈ A →E B. inj-on f A} // domain-permutation A B
by (metis (no-types, lifting) PiE-cong bij-betw-implies-inj-on-and-card-eq)

from this show ?thesis
using assms by (simp add: card-injective-functions-domain-permutation)

qed

lemma card-bijections-domain-permutation-eq-1 :
assumes finite A finite B
assumes card A = card B
shows card ({f ∈ A →E B. bij-betw f A B} // domain-permutation A B) = 1

proof −
from assms have {f ∈ A →E B. bij-betw f A B} // domain-permutation A B
= {f ∈ A →E B. f ‘ A = B} // domain-permutation A B
by (metis (no-types, lifting) PiE-cong bij-betw-implies-surj-on-and-card-eq)

from this show ?thesis
using assms by (simp add: card-surjective-functions-domain-permutation)

qed

lemma card-bijections-domain-permutation:
assumes finite A finite B
shows card ({f ∈ A →E B. bij-betw f A B} // domain-permutation A B) =

iverson (card A = card B)
using assms card-bijections-domain-permutation-eq-0 card-bijections-domain-permutation-eq-1
unfolding iverson-def by auto

16.3 Bijections from A to B up to a Permutation on B
lemma bij-betw-quotient-range-permutation-eq-empty:

assumes card A 6= card B
shows {f ∈ A →E B. bij-betw f A B} // range-permutation A B = {}

using ‹card A 6= card B› bij-betw-same-card by auto

98

lemma card-bijections-range-permutation-eq-0 :
assumes card A 6= card B
shows card ({f ∈ A →E B. bij-betw f A B} // range-permutation A B) = 0

using bij-betw-quotient-range-permutation-eq-empty[OF assms] by (simp only: card.empty)

Two alternative proofs for the cardinality of bijections up to a permutation
on B.
lemma

assumes finite A finite B
assumes card A = card B
shows card ({f ∈ A →E B. bij-betw f A B} // range-permutation A B) = 1

proof −
from assms have {f ∈ A →E B. bij-betw f A B} // range-permutation A B =
{f ∈ A →E B. inj-on f A} // range-permutation A B
by (metis (no-types, lifting) PiE-cong bij-betw-implies-inj-on-and-card-eq)

from this show ?thesis
using assms by (simp add: iverson-def card-injective-functions-range-permutation)

qed

lemma card-bijections-range-permutation-eq-1 :
assumes finite A finite B
assumes card A = card B
shows card ({f ∈ A →E B. bij-betw f A B} // range-permutation A B) = 1

proof −
from assms have {f ∈ A →E B. bij-betw f A B} // range-permutation A B =
{f ∈ A →E B. f ‘ A = B} // range-permutation A B
by (metis (no-types, lifting) PiE-cong bij-betw-implies-surj-on-and-card-eq)

from this show ?thesis
using assms by (simp add: card-surjective-functions-range-permutation)

qed

lemma card-bijections-range-permutation:
assumes finite A finite B
shows card ({f ∈ A→E B. bij-betw f A B} // range-permutation A B) = iverson

(card A = card B)
using assms card-bijections-range-permutation-eq-0 card-bijections-range-permutation-eq-1
unfolding iverson-def by auto

16.4 Bijections from A to B up to a Permutation on A and
B

lemma bij-betw-quotient-domain-and-range-permutation-eq-empty:
assumes card A 6= card B
shows {f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation A B =
{}
using ‹card A 6= card B› bij-betw-same-card by auto

lemma card-bijections-domain-and-range-permutation-eq-0 :
assumes card A 6= card B

99

shows card ({f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation
A B) = 0
using bij-betw-quotient-domain-and-range-permutation-eq-empty[OF assms] by (simp
only: card.empty)

Two alternative proofs for the cardinality of bijections up to a permutation
on A and B.
lemma

assumes finite A finite B
assumes card A = card B
shows card ({f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation

A B) = 1
proof −
from assms have {f ∈ A→E B. bij-betw f A B} // domain-and-range-permutation

A B =
{f ∈ A →E B. inj-on f A} // domain-and-range-permutation A B
by (metis (no-types, lifting) PiE-cong bij-betw-implies-inj-on-and-card-eq)

from this show ?thesis
using assms by (simp add: iverson-def card-injective-functions-domain-and-range-permutation)

qed

lemma card-bijections-domain-and-range-permutation-eq-1 :
assumes finite A finite B
assumes card A = card B
shows card ({f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation

A B) = 1
proof −
from assms have {f ∈ A→E B. bij-betw f A B} // domain-and-range-permutation

A B =
{f ∈ A →E B. f ‘ A = B} // domain-and-range-permutation A B
by (metis (no-types, lifting) PiE-cong bij-betw-implies-surj-on-and-card-eq)

from this show ?thesis
using assms by (simp add: card-surjective-functions-domain-and-range-permutation

Partition-diag)
qed

lemma card-bijections-domain-and-range-permutation:
assumes finite A finite B
shows card ({f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation

A B) = iverson (card A = card B)
using assms card-bijections-domain-and-range-permutation-eq-0 card-bijections-domain-and-range-permutation-eq-1
unfolding iverson-def by auto

end

17 Direct Proofs for Cardinality of Bijections
theory Card-Bijections-Direct
imports

100

Equiv-Relations-on-Functions
Twelvefold-Way-Core

begin

17.1 Bijections from A to B up to a Permutation on A
17.1.1 Equivalence Class
lemma bijections-in-domain-permutation:

assumes finite A finite B
assumes card A = card B
shows {f ∈ A →E B. bij-betw f A B} ∈ {f ∈ A →E B. bij-betw f A B} //

domain-permutation A B
proof −

from assms obtain f where f : f ∈ {f ∈ A →E B. bij-betw f A B}
by (metis finite-same-card-bij-on-ext-funcset mem-Collect-eq)

moreover have proj-f : {f ∈ A →E B. bij-betw f A B} = domain-permutation
A B ‘‘ {f }

proof
from f show {f ∈ A →E B. bij-betw f A B} ⊆ domain-permutation A B ‘‘ {f }

unfolding domain-permutation-def
by (auto elim: obtain-domain-permutation-for-two-bijections)

next
show domain-permutation A B ‘‘ {f } ⊆ {f ∈ A →E B. bij-betw f A B}
proof

fix f ′

assume f ′ ∈ domain-permutation A B ‘‘ {f }
have (f ′, f) ∈ domain-permutation A B

using ‹f ′ ∈ domain-permutation A B ‘‘ {f }› equiv-domain-permutation[of
A B]

by (simp add: equiv-class-eq-iff)
from this obtain p where p permutes A ∀ x∈A. f ′ x = f (p x)

unfolding domain-permutation-def by auto
from this have bij-betw (f ◦ p) A B

using bij-betw-comp-iff f permutes-imp-bij by fastforce
from this have bij-betw f ′ A B

using ‹∀ x∈A. f ′ x = f (p x)›
by (metis (mono-tags, lifting) bij-betw-cong comp-apply)

moreover have f ′ ∈ A →E B
using ‹f ′ ∈ domain-permutation A B ‘‘ {f }›
unfolding domain-permutation-def by auto

ultimately show f ′ ∈ {f ∈ A →E B. bij-betw f A B} by simp
qed

qed
ultimately show ?thesis by (simp add: quotientI)

qed

lemma bij-betw-quotient-domain-permutation-eq:
assumes finite A finite B
assumes card A = card B

101

shows {f ∈ A →E B. bij-betw f A B} // domain-permutation A B = {{f ∈ A
→E B. bij-betw f A B}}
proof

show {{f ∈ A →E B. bij-betw f A B}} ⊆ {f ∈ A →E B. bij-betw f A B} //
domain-permutation A B

by (simp add: bijections-in-domain-permutation[OF assms])
next

show {f ∈ A →E B. bij-betw f A B} // domain-permutation A B ⊆ {{f ∈ A
→E B. bij-betw f A B}}

proof
fix F
assume F-in: F ∈ {f ∈ A →E B. bij-betw f A B} // domain-permutation A B
have {f ∈ A →E B. bij-betw f A B} // domain-permutation A B = {F ∈ ((A

→E B) // domain-permutation A B). univ (λf . bij-betw f A B) F}
using equiv-domain-permutation[of A B] bij-betw-respects-domain-permutation[of

A B] by (simp only: univ-preserves-predicate)
from F-in this have F ∈ (A →E B) // domain-permutation A B

and univ (λf . bij-betw f A B) F
by blast+

have F = {f ∈ A →E B. bij-betw f A B}
proof

have ∀ f ∈ F . f ∈ A →E B
using ‹F ∈ (A →E B) // domain-permutation A B›
by (metis ImageE equiv-class-eq-iff equiv-domain-permutation quotientE)

moreover have ∀ f ∈ F . bij-betw f A B
using univ-predicate-impl-forall[OF equiv-domain-permutation bij-betw-respects-domain-permutation]

using ‹F ∈ (A →E B) // domain-permutation A B› ‹univ (λf . bij-betw f A
B) F›

by auto
ultimately show F ⊆ {f ∈ A →E B. bij-betw f A B} by auto

next
show {f ∈ A →E B. bij-betw f A B} ⊆ F
proof

fix f ′

assume f ′ ∈ {f ∈ A →E B. bij-betw f A B}
from this have f ′ ∈ A →E B bij-betw f ′ A B by auto

obtain f where f ∈ A →E B and F = domain-permutation A B ‘‘ {f }
using ‹F ∈ (A →E B) // domain-permutation A B› by (auto elim:

quotientE)
have bij-betw f A B

using univ-commute ′[OF equiv-domain-permutation bij-betw-respects-domain-permutation]
using ‹f ∈ A →E B› ‹F = domain-permutation A B ‘‘ {f }› ‹univ (λf .

bij-betw f A B) F›
by auto

obtain p where p permutes A ∀ x∈A. f x = f ′ (p x)
using obtain-domain-permutation-for-two-bijections
using ‹bij-betw f A B› ‹bij-betw f ′ A B› by blast

from this ‹f ∈ A →E B› ‹f ′ ∈ A →E B›
have (f , f ′) ∈ domain-permutation A B

102

unfolding domain-permutation-def by auto
from this show f ′ ∈ F

using ‹F = domain-permutation A B ‘‘ {f }› by simp
qed

qed
from this show F ∈ {{f ∈ A →E B. bij-betw f A B}} by simp

qed
qed

17.1.2 Cardinality
lemma

assumes finite A finite B
assumes card A = card B
shows card ({f ∈ A →E B. bij-betw f A B} // domain-permutation A B) = 1

using bij-betw-quotient-domain-permutation-eq[OF assms] by auto

17.2 Bijections from A to B up to a Permutation on B
17.2.1 Equivalence Class
lemma bijections-in-range-permutation:

assumes finite A finite B
assumes card A = card B
shows {f ∈ A →E B. bij-betw f A B} ∈ {f ∈ A →E B. bij-betw f A B} //

range-permutation A B
proof −

from assms obtain f where f : f ∈ {f ∈ A →E B. bij-betw f A B}
by (metis finite-same-card-bij-on-ext-funcset mem-Collect-eq)

moreover have proj-f : {f ∈ A →E B. bij-betw f A B} = range-permutation A
B ‘‘ {f }

proof
from f show {f ∈ A →E B. bij-betw f A B} ⊆ range-permutation A B ‘‘ {f }

unfolding range-permutation-def
by (auto elim: obtain-range-permutation-for-two-bijections)

next
show range-permutation A B ‘‘ {f } ⊆ {f ∈ A →E B. bij-betw f A B}
proof

fix f ′

assume f ′ ∈ range-permutation A B ‘‘ {f }
have (f ′, f) ∈ range-permutation A B

using ‹f ′ ∈ range-permutation A B ‘‘ {f }› equiv-range-permutation[of A B]
by (simp add: equiv-class-eq-iff)

from this obtain p where p permutes B ∀ x∈A. f ′ x = p (f x)
unfolding range-permutation-def by auto

from this have bij-betw (p ◦ f) A B
using bij-betw-comp-iff f permutes-imp-bij by fastforce

from this have bij-betw f ′ A B
using ‹∀ x∈A. f ′ x = p (f x)›
by (metis (mono-tags, lifting) bij-betw-cong comp-apply)

103

moreover have f ′ ∈ A →E B
using ‹f ′ ∈ range-permutation A B ‘‘ {f }›
unfolding range-permutation-def by auto

ultimately show f ′ ∈ {f ∈ A →E B. bij-betw f A B} by simp
qed

qed
ultimately show ?thesis by (simp add: quotientI)

qed

lemma bij-betw-quotient-range-permutation-eq:
assumes finite A finite B
assumes card A = card B
shows {f ∈ A →E B. bij-betw f A B} // range-permutation A B = {{f ∈ A →E

B. bij-betw f A B}}
proof

show {{f ∈ A →E B. bij-betw f A B}} ⊆ {f ∈ A →E B. bij-betw f A B} //
range-permutation A B

by (simp add: bijections-in-range-permutation[OF assms])
next

show {f ∈ A →E B. bij-betw f A B} // range-permutation A B ⊆ {{f ∈ A →E

B. bij-betw f A B}}
proof

fix F
assume F-in: F ∈ {f ∈ A →E B. bij-betw f A B} // range-permutation A B
have {f ∈ A →E B. bij-betw f A B} // range-permutation A B = {F ∈ ((A

→E B) // range-permutation A B). univ (λf . bij-betw f A B) F}
using equiv-range-permutation[of A B] bij-betw-respects-range-permutation[of

A B] by (simp only: univ-preserves-predicate)
from this F-in have F ∈ (A →E B) // range-permutation A B

and univ (λf . bij-betw f A B) F by blast+
have F = {f ∈ A →E B. bij-betw f A B}
proof

have ∀ f ∈ F . f ∈ A →E B
using ‹F ∈ (A →E B) // range-permutation A B›
by (metis ImageE equiv-class-eq-iff equiv-range-permutation quotientE)

moreover have ∀ f ∈ F . bij-betw f A B
using univ-predicate-impl-forall[OF equiv-range-permutation bij-betw-respects-range-permutation]

using ‹F ∈ (A →E B) // range-permutation A B› ‹univ (λf . bij-betw f A
B) F›

by auto
ultimately show F ⊆ {f ∈ A →E B. bij-betw f A B} by auto

next
show {f ∈ A →E B. bij-betw f A B} ⊆ F
proof

fix f ′

assume f ′ ∈ {f ∈ A →E B. bij-betw f A B}
from this have f ′ ∈ A →E B bij-betw f ′ A B by auto

obtain f where f ∈ A →E B and F = range-permutation A B ‘‘ {f }
using ‹F ∈ (A→E B) // range-permutation A B› by (auto elim: quotientE)

104

have bij-betw f A B
using univ-commute ′[OF equiv-range-permutation bij-betw-respects-range-permutation]

using ‹f ∈ A →E B› ‹F = range-permutation A B ‘‘ {f }› ‹univ (λf .
bij-betw f A B) F›

by auto
obtain p where p permutes B ∀ x∈A. f x = p (f ′ x)

using obtain-range-permutation-for-two-bijections
using ‹bij-betw f A B› ‹bij-betw f ′ A B› by blast

from this ‹f ∈ A →E B› ‹f ′ ∈ A →E B›
have (f , f ′) ∈ range-permutation A B

unfolding range-permutation-def by auto
from this show f ′ ∈ F

using ‹F = range-permutation A B ‘‘ {f }› by simp
qed

qed
from this show F ∈ {{f ∈ A →E B. bij-betw f A B}} by simp

qed
qed

17.2.2 Cardinality
lemma card-bijections-range-permutation-eq-1 :

assumes finite A finite B
assumes card A = card B
shows card ({f ∈ A →E B. bij-betw f A B} // range-permutation A B) = 1

using bij-betw-quotient-range-permutation-eq[OF assms] by auto

17.3 Bijections from A to B up to a Permutation on A and
B

17.3.1 Equivalence Class
lemma bijections-in-domain-and-range-permutation:

assumes finite A finite B
assumes card A = card B
shows {f ∈ A →E B. bij-betw f A B} ∈ {f ∈ A →E B. bij-betw f A B} //

domain-and-range-permutation A B
proof −

from assms obtain f where f : f ∈ {f ∈ A →E B. bij-betw f A B}
by (metis finite-same-card-bij-on-ext-funcset mem-Collect-eq)

moreover have proj-f : {f ∈ A→E B. bij-betw f A B} = domain-and-range-permutation
A B ‘‘ {f }

proof
have id permutes A by (simp add: permutes-id)

from f this show {f ∈ A→E B. bij-betw f A B} ⊆ domain-and-range-permutation
A B ‘‘ {f }

unfolding domain-and-range-permutation-def
by (fastforce elim: obtain-range-permutation-for-two-bijections)

next

105

show domain-and-range-permutation A B ‘‘ {f } ⊆ {f ∈ A →E B. bij-betw f A
B}

proof
fix f ′

assume f ′ ∈ domain-and-range-permutation A B ‘‘ {f }
have (f ′, f) ∈ domain-and-range-permutation A B
using ‹f ′∈ domain-and-range-permutation A B ‘‘ {f }› equiv-domain-and-range-permutation[of

A B]
by (simp add: equiv-class-eq-iff)

from this obtain pA pB where pA permutes A pB permutes B
and ∀ x∈A. f ′ x = pB (f (pA x))
unfolding domain-and-range-permutation-def by auto

from this have bij-betw (pB ◦ f ◦ pA) A B
using bij-betw-comp-iff f permutes-imp-bij
by (metis (no-types, lifting) mem-Collect-eq)

from this have bij-betw f ′ A B
using ‹∀ x∈A. f ′ x = pB (f (pA x))›
by (auto intro: bij-betw-congI)

moreover have f ′ ∈ A →E B
using ‹f ′ ∈ domain-and-range-permutation A B ‘‘ {f }›
unfolding domain-and-range-permutation-def by auto

ultimately show f ′ ∈ {f ∈ A →E B. bij-betw f A B} by simp
qed

qed
ultimately show ?thesis by (simp add: quotientI)

qed

lemma bij-betw-quotient-domain-and-range-permutation-eq:
assumes finite A finite B
assumes card A = card B
shows {f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation A B =
{{f ∈ A →E B. bij-betw f A B}}
proof

show {{f ∈ A →E B. bij-betw f A B}}
⊆ {f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation A B
using bijections-in-domain-and-range-permutation[OF assms] by auto

next
show {f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation A B ⊆
{{f ∈ A →E B. bij-betw f A B}}

proof
fix F

assume F-in: F ∈ {f ∈ A→E B. bij-betw f A B} // domain-and-range-permutation
A B

have {f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation A B =
{F ∈ ((A →E B) // domain-and-range-permutation A B). univ (λf . bij-betw f A
B) F}

using equiv-domain-and-range-permutation[of A B] bij-betw-respects-domain-and-range-permutation[of
A B] by (simp only: univ-preserves-predicate)

from F-in this have F ∈ (A →E B) // domain-and-range-permutation A B

106

and univ (λf . bij-betw f A B) F by blast+
have F = {f ∈ A →E B. bij-betw f A B}
proof

have ∀ f ∈ F . f ∈ A →E B
using ‹F ∈ (A →E B) // domain-and-range-permutation A B›

by (metis ImageE equiv-class-eq-iff equiv-domain-and-range-permutation
quotientE)

moreover have ∀ f ∈ F . bij-betw f A B
using univ-predicate-impl-forall[OF equiv-domain-and-range-permutation

bij-betw-respects-domain-and-range-permutation]
using ‹F ∈ (A →E B) // domain-and-range-permutation A B› ‹univ (λf .

bij-betw f A B) F›
by auto

ultimately show F ⊆ {f ∈ A →E B. bij-betw f A B} by auto
next

show {f ∈ A →E B. bij-betw f A B} ⊆ F
proof

fix f ′

assume f ′ ∈ {f ∈ A →E B. bij-betw f A B}
from this have f ′ ∈ A →E B bij-betw f ′ A B by auto
obtain f where f ∈ A →E B and F = domain-and-range-permutation A

B ‘‘ {f }
using ‹F ∈ (A →E B) // domain-and-range-permutation A B› by (auto

elim: quotientE)
have bij-betw f A B

using univ-commute ′[OF equiv-domain-and-range-permutation bij-betw-respects-domain-and-range-permutation]
using ‹f ∈ A →E B› ‹F = domain-and-range-permutation A B ‘‘ {f }›

‹univ (λf . bij-betw f A B) F›
by auto

obtain p where p permutes A ∀ x∈A. f x = f ′ (p x)
using obtain-domain-permutation-for-two-bijections
using ‹bij-betw f A B› ‹bij-betw f ′ A B› by blast

moreover have id permutes B by (simp add: permutes-id)
moreover note ‹f ∈ A →E B› ‹f ′ ∈ A →E B›
ultimately have (f , f ′) ∈ domain-and-range-permutation A B

unfolding domain-and-range-permutation-def id-def by auto
from this show f ′ ∈ F

using ‹F = domain-and-range-permutation A B ‘‘ {f }› by simp
qed

qed
from this show F ∈ {{f ∈ A →E B. bij-betw f A B}} by simp

qed
qed

17.3.2 Cardinality
lemma card-bijections-domain-and-range-permutation-eq-1 :

assumes finite A finite B
assumes card A = card B

107

shows card ({f ∈ A →E B. bij-betw f A B} // domain-and-range-permutation
A B) = 1
using bij-betw-quotient-domain-and-range-permutation-eq[OF assms] by auto

end

18 The Twelvefold Way
theory Twelvefold-Way
imports

Preliminaries
Twelvefold-Way-Core
Equiv-Relations-on-Functions
Twelvefold-Way-Entry1
Twelvefold-Way-Entry2
Twelvefold-Way-Entry4
Twelvefold-Way-Entry5
Twelvefold-Way-Entry6
Twelvefold-Way-Entry7
Twelvefold-Way-Entry8
Twelvefold-Way-Entry9
Twelvefold-Way-Entry3
Twelvefold-Way-Entry10
Twelvefold-Way-Entry11
Twelvefold-Way-Entry12
Card-Bijections
Card-Bijections-Direct

begin

end

References

[1] K. P. Bogart. Combinatorics Through Guided Discovery. 2004.

[2] L. Bulwahn. Cardinality of set partitions. Archive of Formal Proofs, Dec.
2015. http://isa-afp.org/entries/Card_Partitions.shtml, Formal proof
development.

[3] L. Bulwahn. Cardinality of multisets. Archive of Formal Proofs, June
2016. http://isa-afp.org/entries/Card_Multisets.shtml, Formal proof
development.

[4] L. Bulwahn. Cardinality of number partitions. Archive of Formal Proofs,
Jan. 2016. http://isa-afp.org/entries/Card_Number_Partitions.shtml,
Formal proof development.

108

http://isa-afp.org/entries/Card_Partitions.shtml
http://isa-afp.org/entries/Card_Multisets.shtml
http://isa-afp.org/entries/Card_Number_Partitions.shtml

[5] R. P. Stanley. Enumerative Combinatorics. Volume 1. Cambridge studies
in advanced mathematics. Cambridge University Press, Cambridge, New
York, second edition, 2012.

[6] Wikipedia. Twelvefold way — wikipedia, the free encyclopedia, 2016.
[Online; accessed 4-October-2016].

109

	Preliminaries
	Additions to Finite Set Theory
	Additions to Equiv Relation Theory
	Counting Sets by Splitting into Equivalence Classes

	Additions to FuncSet Theory
	Additions to Permutations Theory
	Additions to List Theory
	Additions to Disjoint Set Theory
	Additions to Multiset Theory
	Additions to Number Partitions Theory
	Cardinality Theorems with Iverson Function

	Main Observations on Operations and Permutations
	Range Multiset
	Existence of a Suitable Finite Function
	Existence of Permutation

	Domain Partition
	Existence of a Suitable Finite Function
	Equality under Permutation Application
	Existence of Permutation

	Number Partition of Range
	Existence of a Suitable Finite Function
	Equality under Permutation Application
	Existence of Permutation

	Bijections on Same Domain and Range
	Existence of Domain Permutation
	Existence of Range Permutation

	Definition of Equivalence Classes
	Permutation on the Domain
	Respecting Functions

	Permutation on the Range
	Respecting Functions

	Permutation on the Domain and the Range
	Respecting Functions

	Functions from A to B
	Definition of Bijections
	Properties for Bijections
	Bijections
	Cardinality

	Injections from A to B
	Properties for Bijections
	Bijections
	Cardinality

	Functions from A to B, up to a Permutation of A
	Definition of Bijections
	Properties for Bijections
	Bijections
	Cardinality

	Injections from A to B up to a Permutation of A
	Definition of Bijections
	Properties for Bijections
	Bijections
	Cardinality

	Surjections from A to B up to a Permutation on A
	Properties for Bijections
	Bijections
	Cardinality

	Functions from A to B up to a Permutation on B
	Definition of Bijections
	Properties for Bijections
	Bijections
	Cardinality

	Injections from A to B up to a Permutation on B
	Properties for Bijections
	Bijections
	Cardinality

	Surjections from A to B up to a Permutation on B
	Properties for Bijections
	Bijections
	Cardinality

	Surjections from A to B
	Functions from A to B up to a Permutation on A and B
	Definition of Bijections
	Properties for Bijections
	Bijections
	Cardinality

	Injections from A to B up to a permutation on A and B
	Properties for Bijections
	Bijections
	Cardinality

	Surjections from A to B up to a Permutation on A and B
	Properties for Bijections
	Bijections
	Cardinality

	Cardinality of Bijections
	Bijections from A to B
	Bijections from A to B up to a Permutation on A
	Bijections from A to B up to a Permutation on B
	Bijections from A to B up to a Permutation on A and B

	Direct Proofs for Cardinality of Bijections
	Bijections from A to B up to a Permutation on A
	Equivalence Class
	Cardinality

	Bijections from A to B up to a Permutation on B
	Equivalence Class
	Cardinality

	Bijections from A to B up to a Permutation on A and B
	Equivalence Class
	Cardinality

	The Twelvefold Way

