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Abstract

Turán’s Graph Theorem [2] states that any undirected, simple
graph with n vertices that does not contain a p-clique, contains at
most

(
1− 1

p−1

)
n2

2 edges. The theorem is an important result in graph
theory and the foundation of the field of extremal graph theory.

The formalisation follows Aigner and Ziegler’s [1] presentation of
Turán’s initial proof [2]. Besides a direct adaptation of the textbook
proof, a simplified, second proof is presented which decreases the size
of the formalised proof significantly.
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theory Turan
imports

Girth-Chromatic.Ugraphs
Random-Graph-Subgraph-Threshold.Ugraph-Lemmas

begin

1 Basic facts on graphs
lemma wellformed-uverts-0 :

assumes uwellformed G and uverts G = {}
shows card (uedges G) = 0 〈proof 〉

lemma finite-verts-edges :
assumes uwellformed G and finite (uverts G)
shows finite (uedges G)

〈proof 〉

lemma ugraph-max-edges :
assumes uwellformed G and card (uverts G) = n and finite (uverts G)
shows card (uedges G) ≤ n ∗ (n−1 )/2
〈proof 〉

lemma subgraph-verts-finite : [[ finite (uverts G); subgraph G ′ G ]] =⇒ finite (uverts
G ′)
〈proof 〉

2 Cliques

In this section a straightforward definition of cliques for simple, undirected
graphs is introduced. Besides fundamental facts about cliques, also more
specialized lemmata are proved in subsequent subsections.
definition uclique :: ugraph ⇒ ugraph ⇒ nat ⇒ bool where

uclique C G p ≡ p = card (uverts C ) ∧ subgraph C G ∧ C = complete (uverts
C )

lemma clique-any-edge :
assumes uclique C G p and x ∈ uverts C and y ∈ uverts C and x 6= y
shows {x,y} ∈ uedges G
〈proof 〉

lemma clique-exists : ∃ C p. uclique C G p ∧ p ≤ card (uverts G)
〈proof 〉

lemma clique-exists1 :
assumes uverts G 6= {} and finite (uverts G)
shows ∃ C p. uclique C G p ∧ 0 < p ∧ p ≤ card (uverts G)

〈proof 〉
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lemma clique-max-size : uclique C G p =⇒ finite (uverts G) =⇒ p ≤ card (uverts
G)
〈proof 〉

lemma clique-exists-gt0 :
assumes finite (uverts G) card (uverts G) > 0
shows ∃ C p. uclique C G p ∧ p ≤ card (uverts G) ∧ (∀C q. uclique C G q −→

q ≤ p)
〈proof 〉

If there exists a (p+1)-clique C in a graph G then we can obtain a p-clique
in G by removing an arbitrary vertex from C
lemma clique-size-jumpfree :

assumes finite (uverts G) and uwellformed G
and uclique C G (p+1 )

shows ∃C ′. uclique C ′ G p
〈proof 〉

The next lemma generalises the lemma clique-size-jumpfree to a proof of the
existence of a clique of any size smaller than the size of the original clique.
lemma clique-size-decr :

assumes finite (uverts G) and uwellformed G
and uclique C G p

shows q ≤ p =⇒ ∃C . uclique C G q 〈proof 〉

With this lemma we can easily derive by contradiction that if there is no
p-clique then there cannot exist a clique of a size greater than p
corollary clique-size-neg-max :

assumes finite (uverts G) and uwellformed G
and ¬(∃C . uclique C G p)

shows ∀C q. uclique C G q −→ q < p
〈proof 〉

corollary clique-complete :
assumes finite V and x ≤ card V
shows ∃C . uclique C (complete V ) x

〈proof 〉

lemma subgraph-clique :
assumes uwellformed G subgraph C G C = complete (uverts C )
shows {e ∈ uedges G. e ⊆ uverts C} = uedges C

〈proof 〉

Next, we prove that in a graph G with a p-clique C and some vertex v
outside of this clique, there exists a (p + 1)-clique in G if v is connected
to all nodes in C. The next lemma is an abstracted version that does not
explicitly mention cliques: If a vertex n has as many edges to a set of nodes
N as there are nodes in N then n is connected to all vertices in N.
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lemma card-edges-nodes-all-edges :
fixes G :: ugraph and N :: nat set and E :: nat set set and n :: nat
assumes uwellformed G

and finite N
and N ⊆ uverts G and E ⊆ uedges G
and n ∈ uverts G and n /∈ N
and ∀ e ∈ E . ∃ x ∈ N . {n,x} = e
and card E = card N

shows ∀ x ∈ N . {n,x} ∈ E
〈proof 〉

2.1 Partitioning edges along a clique

Turán’s proof partitions the edges of a graph into three partitions for a
(p − 1)-clique C : All edges within C, all edges outside of C, and all edges
between a vertex in C and a vertex not in C.
We prove a generalized lemma that partitions the edges along some arbi-
trary set of vertices which does not necessarily need to induce a clique.
Furthermore, in Turán’s graph theorem we only argue about the cardinality
of the partitions so that we restrict this proof to showing that the sum of
the cardinalities of the partitions is equal to number of all edges.
lemma graph-partition-edges-card :

assumes finite (uverts G) and uwellformed G and A ⊆ (uverts G)
shows card (uedges G) = card {e ∈ uedges G. e ⊆ A} + card {e ∈ uedges G. e

⊆ uverts G − A} + card {e ∈ uedges G. e ∩ A 6= {} ∧ e ∩ (uverts G − A) 6= {}}
〈proof 〉

Now, we turn to the problem of calculating the cardinalities of these parti-
tions when they are induced by the biggest clique in the graph.
First, we consider the number of edges in a p-clique.
lemma clique-edges-inside :

assumes G1 : uwellformed G and G2 : finite (uverts G)
and p: p ≤ card (uverts G) and n: n = card(uverts G)
and C : uclique C G p

shows card {e ∈ uedges G. e ⊆ uverts C} = p ∗ (p−1 ) / 2
〈proof 〉

Next, we turn to the number of edges that connect a node inside of the
biggest clique with a node outside of said clique. For that we start by
calculating a bound for the number of edges from one single node outside of
the clique into the clique.
lemma clique-edges-inside-to-node-outside :

assumes uwellformed G and finite (uverts G)
assumes 0 < p and p ≤ card (uverts G)
assumes uclique C G p and (∀C p ′. uclique C G p ′ −→ p ′ ≤ p)
assumes y: y ∈ uverts G − uverts C
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shows card {{x,y}| x. x ∈ uverts C ∧ {x,y} ∈ uedges G} ≤ p − 1
〈proof 〉

Now, that we have this upper bound for the number of edges from a single
vertex into the largest clique we can calculate the upper bound for all such
vertices and edges:
lemma clique-edges-inside-to-outside :

assumes G1 : uwellformed G and G2 : finite (uverts G)
and p0 : 0 < p and pn: p ≤ card (uverts G) and card(uverts G) = n
and C : uclique C G p and C-max: (∀C p ′. uclique C G p ′ −→ p ′ ≤ p)

shows card {e ∈ uedges G. e ∩ uverts C 6= {} ∧ e ∩ (uverts G − uverts C ) 6=
{}} ≤ (p − 1 ) ∗ (n − p)
〈proof 〉

Lastly, we need to argue about the number of edges which are located entirely
outside of the greatest clique. Note that this is in the inductive step case
in the overarching proof of Turán’s graph theorem. That is why we have
access to the inductive hypothesis as an assumption in the following lemma:
lemma clique-edges-outside :

assumes uwellformed G and finite (uverts G)
and p2 : 2 ≤ p and pn: p ≤ card (uverts G) and n: n = card(uverts G)
and C : uclique C G (p−1 ) and C-max: (∀C q. uclique C G q −→ q ≤ p−1 )
and IH :

∧
G y. y < n =⇒ finite (uverts G) =⇒ uwellformed G =⇒ ∀C p ′.

uclique C G p ′ −→ p ′ < p
=⇒ 2 ≤ p =⇒ card (uverts G) = y =⇒ real (card (uedges G)) ≤ (1

− 1 / real (p − 1 )) ∗ real (y2) / 2
shows card {e ∈ uedges G. e ⊆ uverts G − uverts C} ≤ (1 − 1 / (p−1 )) ∗ (n

− p + 1 ) ^ 2 / 2
〈proof 〉

2.2 Extending the size of the biggest clique

In this section, we want to prove that we can add edges to a graph so that
we augment the biggest clique to some greater clique with a specific number
of vertices. For that, we need the following lemma: When too many edges
have been added to a graph so that there exists a (p+1)-clique then we can
remove at least one of the added edges while also retaining a p-clique
lemma clique-union-size-decr :

assumes finite (uverts G) and uwellformed (uverts G, uedges G ∪ E)
and uclique C (uverts G, uedges G ∪ E) (p+1 )
and card E ≥ 1

shows ∃C ′ E ′. card E ′ < card E ∧ uclique C ′ (uverts G, uedges G ∪ E ′) p ∧
uwellformed (uverts G, uedges G ∪ E ′)
〈proof 〉

We use this preceding lemma to prove the next result. In this lemma we
assume that we have added too many edges. The goal is then to remove
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some of the new edges appropriately so that it is indeed guaranteed that
there is no bigger clique.
Two proofs of this lemma will be described in the following. Both funda-
mentally come down to the same core idea: In essence, both proofs apply the
well-ordering principle. In the first proof we do so immediately by obtaining
the minimum of a set:
lemma clique-union-make-greatest :

fixes p n :: nat
assumes finite (uverts G) and uwellformed G

and uwellformed (uverts G, uedges G ∪ E) and card(uverts G) ≥ p
and uclique C (uverts G, uedges G ∪ E) p
and ∀C ′ q ′. uclique C ′ G q ′ −→ q ′ < p and 1 ≤ card E

shows ∃C ′ E ′. uwellformed (uverts G, uedges G ∪ E ′)
∧ (uclique C ′ (uverts G, uedges G ∪ E ′) p)
∧ (∀C ′′ q ′. uclique C ′′ (uverts G, uedges G ∪ E ′) q ′ −→ q ′ ≤ p)

〈proof 〉

In this second, alternative proof the well-ordering principle is used through
complete induction.
lemma clique-union-make-greatest-alt :

fixes p n :: nat
assumes finite (uverts G) and uwellformed G

and uwellformed (uverts G, uedges G ∪ E) and card(uverts G) ≥ p
and uclique C (uverts G, uedges G ∪ E) p
and ∀C ′ q ′. uclique C ′ G q ′ −→ q ′ < p and 1 ≤ card E

shows ∃C ′ E ′. uwellformed (uverts G, uedges G ∪ E ′)
∧ (uclique C ′ (uverts G, uedges G ∪ E ′) p)
∧ (∀C ′′ q ′. uclique C ′′ (uverts G, uedges G ∪ E ′) q ′ −→ q ′ ≤ p)

〈proof 〉

Finally, with this lemma we can turn to this section’s main challenge of
increasing the greatest clique size of a graph by adding edges.
lemma clique-add-edges-max :

fixes p :: nat
assumes finite (uverts G)

and uwellformed G and card(uverts G) > p
and ∃C . uclique C G p and (∀C q ′. uclique C G q ′ −→ q ′ ≤ p)
and q ≤ card(uverts G) and p ≤ q

shows ∃E . uwellformed (uverts G, uedges G ∪ E) ∧ (∃C . uclique C (uverts G,
uedges G ∪ E) q)

∧ (∀C q ′. uclique C (uverts G, uedges G ∪ E) q ′ −→ q ′ ≤ q)
〈proof 〉

3 Properties of the upper edge bound

In this section we prove results about the upper edge bound in Turán’s
theorem. The first lemma proves that upper bounds of the sizes of the
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partitions sum up exactly to the overall upper bound.
lemma turan-sum-eq :

fixes n p :: nat
assumes p ≥ 2 and p ≤ n
shows (p−1 ) ∗ (p−2 ) / 2 + (1 − 1 / (p−1 )) ∗ (n − p + 1 ) ^ 2 / 2 + (p −

2 ) ∗ (n − p + 1 ) = (1 − 1 / (p−1 )) ∗ n^2 / 2
〈proof 〉

The next fact proves that the upper bound of edges is monotonically in-
creasing with the size of the biggest clique.
lemma turan-mono :

fixes n p q :: nat
assumes 0 < q and q < p and p ≤ n
shows (1 − 1 / q) ∗ n^2 / 2 ≤ (1 − 1 / (p−1 )) ∗ n^2 / 2
〈proof 〉

4 Turán’s Graph Theorem

In this section we turn to the direct adaptation of Turán’s original proof as
presented by Aigner and Ziegler [1]
theorem turan :

fixes p n :: nat
assumes finite (uverts G)

and uwellformed G and ∀C p ′. uclique C G p ′ −→ p ′ < p and p ≥ 2 and
card(uverts G) = n

shows card (uedges G) ≤ (1 − 1 / (p−1 )) ∗ n^2 / 2 〈proof 〉

5 A simplified proof of Turán’s Graph Theorem

In this section we discuss a simplified proof of Turán’s Graph Theorem
which uses an idea put forward by the author: Instead of increasing the size
of the biggest clique it is also possible to use the fact that the expression in
Turán’s graph theorem is monotonically increasing in the size of the biggest
clique (Lemma turan-mono). Hence, it suffices to prove the upper bound
for the actual biggest clique size in the graph. Afterwards, the monotonicity
provides the desired inequality.
The simplifications in the proof are annotated accordingly.
theorem turan ′ :

fixes p n :: nat
assumes finite (uverts G)

and uwellformed G and ∀C p ′. uclique C G p ′ −→ p ′ < p and p ≥ 2 and
card(uverts G) = n

shows card (uedges G) ≤ (1 − 1 / (p−1 )) ∗ n^2 / 2 〈proof 〉

end

8


	Basic facts on graphs
	Cliques
	Partitioning edges along a clique
	Extending the size of the biggest clique

	Properties of the upper edge bound
	Turán's Graph Theorem
	A simplified proof of Turán's Graph Theorem

