
Basic Geometric Properties of Triangles

Manuel Eberl

September 13, 2023

Abstract

In this work, we define angles between vectors and between three
points. Building on this, we prove basic geometric properties of trian-
gles, such as the Isosceles Triangle Theorem, the Law of Sines and the
Law of Cosines, that the sum of the angles of a triangle is π, and the
congruence theorems for triangles.

The definitions and proofs were developed following those by John
Harrison in HOL Light. However, due to Isabelle’s type class system,
all definitions and theorems in the Isabelle formalisation hold for all
real inner product spaces.

Contents
1 Definition of angles 1

1.1 Contributions from Lukas Bulwahn 5

2 Basic Properties of Triangles 6
2.1 Thales’ theorem . 7
2.2 Sine and cosine laws . 7
2.3 Sum of angles . 8
2.4 Congruence Theorems . 9
2.5 Isosceles Triangle Theorem 12
2.6 Contributions by Lukas Bulwahn 12

1 Definition of angles
theory Angles
imports

HOL−Analysis.Multivariate-Analysis
begin

lemma collinear-translate-iff : collinear (((+) a) ‘ A) ←→ collinear A
by (auto simp: collinear-def)

1

definition vangle where
vangle u v = (if u = 0 ∨ v = 0 then pi / 2 else arccos (u · v / (norm u ∗ norm

v)))

definition angle where
angle a b c = vangle (a − b) (c − b)

lemma angle-altdef : angle a b c = arccos ((a − b) · (c − b) / (dist a b ∗ dist c
b))

by (simp add: angle-def vangle-def dist-norm)

lemma vangle-0-left [simp]: vangle 0 v = pi / 2
and vangle-0-right [simp]: vangle u 0 = pi / 2
by (simp-all add: vangle-def)

lemma vangle-refl [simp]: u 6= 0 =⇒ vangle u u = 0
by (simp add: vangle-def dot-square-norm power2-eq-square)

lemma angle-refl [simp]: angle a a b = pi / 2 angle a b b = pi / 2
by (simp-all add: angle-def)

lemma angle-refl-mid [simp]: a 6= b =⇒ angle a b a = 0
by (simp add: angle-def)

lemma cos-vangle: cos (vangle u v) = u · v / (norm u ∗ norm v)
unfolding vangle-def using Cauchy-Schwarz-ineq2 [of u v] by (auto simp: field-simps)

lemma cos-angle: cos (angle a b c) = (a − b) · (c − b) / (dist a b ∗ dist c b)
by (simp add: angle-def cos-vangle dist-norm)

lemma inner-conv-angle: (a − b) · (c − b) = dist a b ∗ dist c b ∗ cos (angle a b
c)

by (simp add: cos-angle)

lemma vangle-commute: vangle u v = vangle v u
by (simp add: vangle-def inner-commute mult.commute)

lemma angle-commute: angle a b c = angle c b a
by (simp add: angle-def vangle-commute)

lemma vangle-nonneg: vangle u v ≥ 0 and vangle-le-pi: vangle u v ≤ pi
using Cauchy-Schwarz-ineq2 [of u v]
by (auto simp: vangle-def field-simps intro!: arccos-lbound arccos-ubound)

lemmas vangle-bounds = vangle-nonneg vangle-le-pi

lemma angle-nonneg: angle a b c ≥ 0 and angle-le-pi: angle a b c ≤ pi
using vangle-bounds unfolding angle-def by blast+

2

lemmas angle-bounds = angle-nonneg angle-le-pi

lemma sin-vangle-nonneg: sin (vangle u v) ≥ 0
using vangle-bounds by (rule sin-ge-zero)

lemma sin-angle-nonneg: sin (angle a b c) ≥ 0
using angle-bounds by (rule sin-ge-zero)

lemma vangle-eq-0D:
assumes vangle u v = 0
shows norm u ∗R v = norm v ∗R u

proof −
from assms have u · v = norm u ∗ norm v

using arccos-eq-iff [of (u · v) / (norm u ∗ norm v) 1] Cauchy-Schwarz-ineq2 [of
u v]

by (fastforce simp: vangle-def split: if-split-asm)
thus ?thesis by (subst (asm) norm-cauchy-schwarz-eq) simp-all

qed

lemma vangle-eq-piD:
assumes vangle u v = pi
shows norm u ∗R v + norm v ∗R u = 0

proof −
from assms have (−u) · v = norm (−u) ∗ norm v
using arccos-eq-iff [of (u · v) / (norm u ∗ norm v) −1] Cauchy-Schwarz-ineq2 [of

u v]
by (simp add: field-simps vangle-def split: if-split-asm)

thus ?thesis by (subst (asm) norm-cauchy-schwarz-eq) simp-all
qed

lemma dist-triangle-eq:
fixes a b c :: ′a :: real-inner
shows (dist a c = dist a b + dist b c) ←→ dist a b ∗R (c − b) + dist b c ∗R (a
− b) = 0

using norm-triangle-eq[of b − a c − b]
by (simp add: dist-norm norm-minus-commute algebra-simps)

lemma angle-eq-pi-imp-dist-additive:
assumes angle a b c = pi
shows dist a c = dist a b + dist b c
using vangle-eq-piD[OF assms[unfolded angle-def]]
by (subst dist-triangle-eq) (simp add: dist-norm norm-minus-commute)

lemma orthogonal-iff-vangle: orthogonal u v ←→ vangle u v = pi / 2
using arccos-eq-iff [of u · v / (norm u ∗ norm v) 0] Cauchy-Schwarz-ineq2 [of u

v]

3

by (auto simp: vangle-def orthogonal-def)

lemma cos-minus1-imp-pi:
assumes cos x = −1 x ≥ 0 x < 3 ∗ pi
shows x = pi

proof −
have cos (x − pi) = 1 by (simp add: assms)
then obtain n :: int where n: of-int n = (x / pi − 1) / 2

by (subst (asm) cos-one-2pi-int) (auto simp: field-simps)
also from assms have . . . ∈ {−1<..<1} by (auto simp: field-simps)
finally have n = 0 by simp
with n show ?thesis by simp

qed

lemma vangle-eqI :
assumes u 6= 0 v 6= 0 w 6= 0 x 6= 0
assumes (u · v) ∗ norm w ∗ norm x = (w · x) ∗ norm u ∗ norm v
shows vangle u v = vangle w x
using assms Cauchy-Schwarz-ineq2 [of u v] Cauchy-Schwarz-ineq2 [of w x]
unfolding vangle-def by (auto simp: arccos-eq-iff field-simps)

lemma angle-eqI :
assumes a 6= b a 6= c d 6= e d 6= f
assumes ((b−a) · (c−a)) ∗ dist d e ∗ dist d f = ((e−d) · (f−d)) ∗ dist a b ∗

dist a c
shows angle b a c = angle e d f
using assms unfolding angle-def
by (intro vangle-eqI) (simp-all add: dist-norm norm-minus-commute)

lemma cos-vangle-eqD: cos (vangle u v) = cos (vangle w x) =⇒ vangle u v =
vangle w x

by (rule cos-inj-pi) (simp-all add: vangle-bounds)

lemma cos-angle-eqD: cos (angle a b c) = cos (angle d e f) =⇒ angle a b c =
angle d e f

unfolding angle-def by (rule cos-vangle-eqD)

lemma sin-vangle-zero-iff : sin (vangle u v) = 0 ←→ vangle u v ∈ {0 , pi}
proof

assume sin (vangle u v) = 0
then obtain n :: int where n: of-int n = vangle u v / pi

by (subst (asm) sin-zero-iff-int2) auto
also have . . . ∈ {0 ..1} using vangle-bounds by (auto simp: field-simps)
finally have n ∈ {0 ,1} by auto
thus vangle u v ∈ {0 ,pi} using n by (auto simp: field-simps)

qed auto

lemma sin-angle-zero-iff : sin (angle a b c) = 0 ←→ angle a b c ∈ {0 , pi}

4

unfolding angle-def by (simp only: sin-vangle-zero-iff)

lemma vangle-collinear : vangle u v ∈ {0 , pi} =⇒ collinear {0 , u, v}
apply (subst norm-cauchy-schwarz-equal [symmetric])
apply (subst norm-cauchy-schwarz-abs-eq)
apply (auto dest!: vangle-eq-0D vangle-eq-piD simp: eq-neg-iff-add-eq-0)
done

lemma angle-collinear : angle a b c ∈ {0 , pi} =⇒ collinear {a, b, c}
apply (unfold angle-def , drule vangle-collinear)
apply (subst collinear-translate-iff [symmetric, of - −b])
apply (auto simp: insert-commute)
done

lemma not-collinear-vangle: ¬collinear {0 ,u,v} =⇒ vangle u v ∈ {0<..<pi}
using vangle-bounds[of u v] vangle-collinear [of u v]
by (cases vangle u v = 0 ∨ vangle u v = pi) auto

lemma not-collinear-angle: ¬collinear {a,b,c} =⇒ angle a b c ∈ {0<..<pi}
using angle-bounds[of a b c] angle-collinear [of a b c]
by (cases angle a b c = 0 ∨ angle a b c = pi) auto

1.1 Contributions from Lukas Bulwahn
lemma vangle-scales:

assumes 0 < c
shows vangle (c ∗R v1) v2 = vangle v1 v2

using assms unfolding vangle-def by auto

lemma vangle-inverse:
vangle (− v1) v2 = pi − vangle v1 v2

proof −
have |v1 · v2 / (norm v1 ∗ norm v2)| ≤ 1
proof cases

assume v1 6= 0 ∧ v2 6= 0
from this show ?thesis by (simp add: Cauchy-Schwarz-ineq2)

next
assume ¬ (v1 6= 0 ∧ v2 6= 0)
from this show ?thesis by auto

qed
from this show ?thesis

unfolding vangle-def
by (simp add: arccos-minus-abs)

qed

lemma orthogonal-iff-angle:
shows orthogonal (A − B) (C − B) ←→ angle A B C = pi / 2

unfolding angle-def by (auto simp only: orthogonal-iff-vangle)

5

lemma angle-inverse:
assumes between (A, C) B
assumes A 6= B B 6= C
shows angle A B D = pi − angle C B D

proof −
from ‹between (A, C) B› obtain u where u: u ≥ 0 u ≤ 1

and X : B = u ∗R A + (1 − u) ∗R C
by (metis add.commute betweenE between-commute)

from ‹A 6= B› ‹B 6= C › X have u 6= 0 u 6= 1 by auto
have 0 < ((1 − u) / u)

using ‹u 6= 0 › ‹u 6= 1 › ‹u ≥ 0 › ‹u ≤ 1 › by simp
from X have A − B = − (1 − u) ∗R (C − A)
by (simp add: real-vector .scale-right-diff-distrib real-vector .scale-left-diff-distrib)

moreover from X have C − B = u ∗R (C − A)
by (simp add: scaleR-diff-left real-vector .scale-right-diff-distrib)

ultimately have A − B = − (((1 − u) / u) ∗R (C − B))
using ‹u 6= 0 › by simp (metis minus-diff-eq real-vector .scale-minus-left)

from this have vangle (A − B) (D − B) = pi − vangle (C − B) (D − B)
using ‹0 < (1 − u) / u› by (simp add: vangle-inverse vangle-scales)

from this show ?thesis
unfolding angle-def by simp

qed

lemma strictly-between-implies-angle-eq-pi:
assumes between (A, C) B
assumes A 6= B B 6= C
shows angle A B C = pi

proof −
from ‹between (A, C) B› obtain u where u: u ≥ 0 u ≤ 1

and X : B = u ∗R A + (1 − u) ∗R C
by (metis add.commute betweenE between-commute)

from ‹A 6= B› ‹B 6= C › X have u 6= 0 u 6= 1 by auto
from ‹A 6= B› ‹B 6= C › ‹between (A, C) B› have A 6= C by auto
from X have A − B = − (1 − u) ∗R (C − A)
by (simp add: real-vector .scale-right-diff-distrib real-vector .scale-left-diff-distrib)

moreover from this have dist A B = norm ((1 − u) ∗R (C − A))
using ‹u ≥ 0 › ‹u ≤ 1 › by (simp add: dist-norm)

moreover from X have C − B = u ∗R (C − A)
by (simp add: scaleR-diff-left real-vector .scale-right-diff-distrib)

moreover from this have dist C B = norm (u ∗R (C − A))
by (simp add: dist-norm)

ultimately have (A − B) · (C − B) / (dist A B ∗ dist C B) = u ∗ (u − 1) /
(|1 − u| ∗ |u|)

using ‹A 6= C › by (simp add: dot-square-norm power2-eq-square)
also have . . . = − 1

using ‹u 6= 0 › ‹u 6= 1 › ‹u ≥ 0 › ‹u ≤ 1 › by (simp add: divide-eq-minus-1-iff)
finally show ?thesis

unfolding angle-altdef by simp
qed

6

end

2 Basic Properties of Triangles
theory Triangle
imports

Angles
begin

We prove a number of basic geometric properties of triangles. All theorems
hold in any real inner product space.

2.1 Thales’ theorem
theorem thales:

fixes A B C :: ′a :: real-inner
assumes dist B (midpoint A C) = dist A C / 2
shows orthogonal (A − B) (C − B)

proof −
have dist A C ^ 2 = dist B (midpoint A C) ^ 2 ∗ 4

by (subst assms) (simp add: field-simps power2-eq-square)
thus ?thesis

by (auto simp: orthogonal-def dist-norm power2-norm-eq-inner midpoint-def
algebra-simps inner-commute)

qed

2.2 Sine and cosine laws

The proof of the Law of Cosines follows trivially from the definition of the
angle, the definition of the norm in vector spaces with an inner product and
the bilinearity of the inner product.
lemma cosine-law-vector :

norm (u − v) ^ 2 = norm u ^ 2 + norm v ^ 2 − 2 ∗ norm u ∗ norm v ∗ cos
(vangle u v)

by (simp add: power2-norm-eq-inner cos-vangle algebra-simps inner-commute)

lemma cosine-law-triangle:
dist b c ^ 2 = dist a b ^ 2 + dist a c ^ 2 − 2 ∗ dist a b ∗ dist a c ∗ cos (angle

b a c)
using cosine-law-vector [of b − a c − a]
by (simp add: dist-norm angle-def vangle-commute norm-minus-commute)

According to our definition, angles are always between 0 and π and therefore,
the sign of an angle is always non-negative. We can therefore look at sin(α)2,
which we can express in terms of cos(α) using the identity sin(α)2+cos(α)2 =
1. The remaining proof is then a trivial consequence of the definitions.

7

lemma sine-law-triangle:
sin (angle a b c) ∗ dist b c = sin (angle b a c) ∗ dist a c (is ?A = ?B)

proof (cases a = b)
assume neq: a 6= b
show ?thesis
proof (rule power2-eq-imp-eq)

from neq have (sin (angle a b c) ∗ dist b c) ^ 2 ∗ dist a b ^ 2 =
dist a b ^ 2 ∗ dist b c ^ 2 − ((a − b) · (c − b)) ^ 2

by (simp add: sin-squared-eq cos-angle dist-commute field-simps)
also have . . . = dist a b ^ 2 ∗ dist a c ^ 2 − ((b − a) · (c − a)) ^ 2

by (simp only: dist-norm power2-norm-eq-inner)
(simp add: power2-eq-square algebra-simps inner-commute)

also from neq have . . . = (sin (angle b a c) ∗ dist a c) ^ 2 ∗ dist a b ^ 2
by (simp add: sin-squared-eq cos-angle dist-commute field-simps)
finally show ?A^2 = ?B^2 using neq by (subst (asm) mult-cancel-right)

simp-all
qed (auto intro!: mult-nonneg-nonneg sin-angle-nonneg)

qed simp-all

The following forms of the Law of Sines/Cosines are more convenient for
eliminating sines/cosines from a goal completely.
lemma cosine-law-triangle ′:

2 ∗ dist a b ∗ dist a c ∗ cos (angle b a c) = (dist a b ^ 2 + dist a c ^ 2 − dist b
c ^ 2)

using cosine-law-triangle[of b c a] by simp

lemma cosine-law-triangle ′′:
cos (angle b a c) = (dist a b ^ 2 + dist a c ^ 2 − dist b c ^ 2) / (2 ∗ dist a b ∗

dist a c)
using cosine-law-triangle[of b c a] by simp

lemma sine-law-triangle ′:
b 6= c =⇒ sin (angle a b c) = sin (angle b a c) ∗ dist a c / dist b c
using sine-law-triangle[of a b c] by (simp add: divide-simps)

lemma sine-law-triangle ′′:
b 6= c =⇒ sin (angle c b a) = sin (angle b a c) ∗ dist a c / dist b c
using sine-law-triangle[of a b c] by (simp add: divide-simps angle-commute)

2.3 Sum of angles
context
begin

private lemma gather-squares: a ∗ (a ∗ b) = a^2 ∗ (b :: real)
by (simp-all add: power2-eq-square)

private lemma eval-power : x ^ numeral n = x ∗ x ^ pred-numeral n
by (subst numeral-eq-Suc, subst power-Suc) simp

8

The proof that the sum of the angles in a triangle is π is somewhat more
involved. Following the HOL Light proof by John Harrison, we first prove
that cos(α + β + γ) = −1 and α + β + γ ∈ [0; 3π), which then implies the
theorem.
The main work is proving cos(α + β + γ). This is done using the addition
theorems for the sine and cosine, then using the Laws of Sines to eliminate
all sin terms save sin(γ)2, which only appears squared in the remaining goal.
We then use sin(γ)2 = 1− cos(γ)2 to eliminate this term and apply the law
of cosines to eliminate this term as well.
The remaining goal is a non-linear equation containing only the length of
the sides of the triangle. It can be shown by simple algebraic rewriting.
lemma angle-sum-triangle:

assumes a 6= b ∨ b 6= c ∨ a 6= c
shows angle c a b + angle a b c + angle b c a = pi

proof (rule cos-minus1-imp-pi)
show cos (angle c a b + angle a b c + angle b c a) = − 1
proof (cases a 6= b)

case True
thus cos (angle c a b + angle a b c + angle b c a) = −1

apply (simp add: cos-add sin-add cosine-law-triangle ′′ field-simps
sine-law-triangle ′′[of a b c] sine-law-triangle ′′[of b a c]
angle-commute dist-commute gather-squares sin-squared-eq)

apply (simp add: eval-power algebra-simps dist-commute)
done

qed (insert assms, auto)

show angle c a b + angle a b c + angle b c a < 3 ∗ pi
proof (rule ccontr)

assume ¬(angle c a b + angle a b c + angle b c a < 3 ∗ pi)
with angle-le-pi[of c a b] angle-le-pi[of a b c] angle-le-pi[of b c a]

have A: angle c a b = pi angle a b c = pi by simp-all
thus False using angle-eq-pi-imp-dist-additive[of c a b]

angle-eq-pi-imp-dist-additive[of a b c] by (simp add: dist-commute)
qed

qed (auto intro!: add-nonneg-nonneg angle-nonneg)

end

2.4 Congruence Theorems

If two triangles agree on two angles at a non-degenerate side, the third angle
must also be equal.
lemma similar-triangle-aa:

assumes b1 6= c1 b2 6= c2
assumes angle a1 b1 c1 = angle a2 b2 c2
assumes angle b1 c1 a1 = angle b2 c2 a2
shows angle b1 a1 c1 = angle b2 a2 c2

9

proof −
from assms angle-sum-triangle[of a1 b1 c1] angle-sum-triangle[of a2 b2 c2 , sym-

metric]
show ?thesis by (auto simp: algebra-simps angle-commute)

qed

A triangle is defined by its three angles and the lengths of three sides up to
congruence. Two triangles are congruent if they have their angles are the
same and their sides have the same length.
locale congruent-triangle =

fixes a1 b1 c1 :: ′a :: real-inner and a2 b2 c2 :: ′b :: real-inner
assumes sides ′: dist a1 b1 = dist a2 b2 dist a1 c1 = dist a2 c2 dist b1 c1 =

dist b2 c2
and angles ′: angle b1 a1 c1 = angle b2 a2 c2 angle a1 b1 c1 = angle a2 b2 c2

angle a1 c1 b1 = angle a2 c2 b2
begin

lemma sides:
dist a1 b1 = dist a2 b2 dist a1 c1 = dist a2 c2 dist b1 c1 = dist b2 c2
dist b1 a1 = dist a2 b2 dist c1 a1 = dist a2 c2 dist c1 b1 = dist b2 c2
dist a1 b1 = dist b2 a2 dist a1 c1 = dist c2 a2 dist b1 c1 = dist c2 b2
dist b1 a1 = dist b2 a2 dist c1 a1 = dist c2 a2 dist c1 b1 = dist c2 b2
using sides ′ by (simp-all add: dist-commute)

lemma angles:
angle b1 a1 c1 = angle b2 a2 c2 angle a1 b1 c1 = angle a2 b2 c2 angle a1 c1 b1

= angle a2 c2 b2
angle c1 a1 b1 = angle b2 a2 c2 angle c1 b1 a1 = angle a2 b2 c2 angle b1 c1 a1

= angle a2 c2 b2
angle b1 a1 c1 = angle c2 a2 b2 angle a1 b1 c1 = angle c2 b2 a2 angle a1 c1 b1

= angle b2 c2 a2
angle c1 a1 b1 = angle c2 a2 b2 angle c1 b1 a1 = angle c2 b2 a2 angle b1 c1 a1

= angle b2 c2 a2
using angles ′ by (simp-all add: angle-commute)

end

lemmas congruent-triangleD = congruent-triangle.sides congruent-triangle.angles

Given two triangles that agree on a subset of its side lengths and angles
that are sufficient to define a triangle uniquely up to congruence, one can
conclude that they must also agree on all remaining quantities, i.e. that
they are congruent.
The following four congruence theorems state what constitutes such a uniquely-
defining subset of quantities. Each theorem states in its name which quan-
tities are required and in which order (clockwise or counter-clockwise): an
“s” stands for a side, an “a” stands for an angle.
The lemma “congruent-triangleI-sas, for example, requires that two adjacent

10

sides and the angle inbetween are the same in both triangles.
lemma congruent-triangleI-sss:

fixes a1 b1 c1 :: ′a :: real-inner and a2 b2 c2 :: ′b :: real-inner
assumes dist a1 b1 = dist a2 b2
assumes dist b1 c1 = dist b2 c2
assumes dist a1 c1 = dist a2 c2
shows congruent-triangle a1 b1 c1 a2 b2 c2

proof −
have A: angle a1 b1 c1 = angle a2 b2 c2

if dist a1 b1 = dist a2 b2 dist b1 c1 = dist b2 c2 dist a1 c1 = dist a2 c2
for a1 b1 c1 :: ′a and a2 b2 c2 :: ′b

proof −
from that cosine-law-triangle ′′[of a1 b1 c1] cosine-law-triangle ′′[of a2 b2 c2]

show ?thesis by (intro cos-angle-eqD) (simp add: dist-commute)
qed
from assms show ?thesis by unfold-locales (auto intro!: A simp: dist-commute)

qed

lemmas congruent-triangle-sss = congruent-triangleD[OF congruent-triangleI-sss]

lemma congruent-triangleI-sas:
assumes dist a1 b1 = dist a2 b2
assumes dist b1 c1 = dist b2 c2
assumes angle a1 b1 c1 = angle a2 b2 c2
shows congruent-triangle a1 b1 c1 a2 b2 c2

proof (rule congruent-triangleI-sss)
show dist a1 c1 = dist a2 c2
proof (rule power2-eq-imp-eq)

from cosine-law-triangle[of a1 c1 b1] cosine-law-triangle[of a2 c2 b2] assms
show (dist a1 c1)2 = (dist a2 c2)2 by (simp add: dist-commute)

qed simp-all
qed fact+

lemmas congruent-triangle-sas = congruent-triangleD[OF congruent-triangleI-sas]

lemma congruent-triangleI-aas:
assumes angle a1 b1 c1 = angle a2 b2 c2
assumes angle b1 c1 a1 = angle b2 c2 a2
assumes dist a1 b1 = dist a2 b2
assumes ¬collinear {a1 ,b1 ,c1}
shows congruent-triangle a1 b1 c1 a2 b2 c2

proof (rule congruent-triangleI-sas)
from ‹¬collinear {a1 ,b1 ,c1}› have neq: a1 6= b1 by auto
with assms(3) have neq ′: a2 6= b2 by auto
have A: angle c1 a1 b1 = angle c2 a2 b2 using neq neq ′ assms

using angle-sum-triangle[of a1 b1 c1] angle-sum-triangle[of a2 b2 c2]
by simp

from assms have B: angle b1 a1 c1 ∈ {0<..<pi}
by (intro not-collinear-angle) (simp-all add: insert-commute)

11

from sine-law-triangle[of c1 a1 b1] sine-law-triangle[of c2 a2 b2] assms A B
show dist b1 c1 = dist b2 c2
by (auto simp: angle-commute dist-commute sin-angle-zero-iff)

qed fact+

lemmas congruent-triangle-aas = congruent-triangleD[OF congruent-triangleI-aas]

lemma congruent-triangleI-asa:
assumes angle a1 b1 c1 = angle a2 b2 c2
assumes dist a1 b1 = dist a2 b2
assumes angle b1 a1 c1 = angle b2 a2 c2
assumes ¬collinear {a1 , b1 , c1}
shows congruent-triangle a1 b1 c1 a2 b2 c2

proof (rule congruent-triangleI-aas)
from assms have neq: a1 6= b1 a2 6= b2 by auto
show angle b1 c1 a1 = angle b2 c2 a2

by (rule similar-triangle-aa) (insert assms neq, simp-all add: angle-commute)
qed fact+

lemmas congruent-triangle-asa = congruent-triangleD[OF congruent-triangleI-asa]

2.5 Isosceles Triangle Theorem

We now prove the Isosceles Triangle Theorem: in a triangle where two sides
have the same length, the two angles that are adjacent to only one of the
two sides must be equal.
lemma isosceles-triangle:

assumes dist a c = dist b c
shows angle b a c = angle a b c
by (rule congruent-triangle-sss) (insert assms, simp-all add: dist-commute)

For the non-degenerate case (i.e. the three points are not collinear), We also
prove the converse.
lemma isosceles-triangle-converse:

assumes angle a b c = angle b a c ¬collinear {a,b,c}
shows dist a c = dist b c
by (rule congruent-triangle-asa[OF assms(1) - - assms(2)])

(simp-all add: dist-commute angle-commute assms)

2.6 Contributions by Lukas Bulwahn
lemma Pythagoras:

fixes A B C :: ′a :: real-inner
assumes orthogonal (A − C) (B − C)
shows (dist B C) ^ 2 + (dist C A) ^ 2 = (dist A B) ^ 2

proof −
from assms have cos (angle A C B) = 0

by (metis orthogonal-iff-angle cos-pi-half)

12

from this show ?thesis
by (simp add: cosine-law-triangle[of A B C] dist-commute)

qed

lemma isosceles-triangle-orthogonal-on-midpoint:
fixes A B C :: ′a :: euclidean-space
assumes dist C A = dist C B
shows orthogonal (C − midpoint A B) (A − midpoint A B)

proof (cases A = B)
assume A 6= B
let ?M = midpoint A B
from ‹A 6= B› have angle A ?M C = pi − angle B ?M C

by (intro angle-inverse between-midpoint)
(auto simp: between-midpoint eq-commute[of - midpoint A B for A B])

moreover have angle A ?M C = angle C ?M B
proof −

have congruence: congruent-triangle C A ?M C B ?M
proof (rule congruent-triangleI-sss)

show dist C A = dist C B using assms .
show dist A ?M = dist B ?M by (simp add: dist-midpoint)
show dist C (midpoint A B) = dist C (midpoint A B) ..

qed
from this show ?thesis by (simp add: congruent-triangle.angles(6))

qed
ultimately have angle A ?M C = pi / 2 by (simp add: angle-commute)
from this show ?thesis

by (simp add: orthogonal-iff-angle orthogonal-commute)
next

assume A = B
from this show ?thesis

by (simp add: orthogonal-clauses(1))
qed

end

13

	Definition of angles
	Contributions from Lukas Bulwahn

	Basic Properties of Triangles
	Thales' theorem
	Sine and cosine laws
	Sum of angles
	Congruence Theorems
	Isosceles Triangle Theorem
	Contributions by Lukas Bulwahn

