Basic Geometric Properties of Triangles

Manuel Eberl

September 13, 2023

Abstract

In this work, we define angles between vectors and between three points. Building on this, we prove basic geometric properties of triangles, such as the Isosceles Triangle Theorem, the Law of Sines and the Law of Cosines, that the sum of the angles of a triangle is π, and the congruence theorems for triangles.

The definitions and proofs were developed following those by John Harrison in HOL Light. However, due to Isabelle's type class system, all definitions and theorems in the Isabelle formalisation hold for all real inner product spaces.

Contents

1 Definition of angles 1
1.1 Contributions from Lukas Bulwahn 5
2 Basic Properties of Triangles 6
2.1 Thales' theorem 7
2.2 Sine and cosine laws 7
2.3 Sum of angles 8
2.4 Congruence Theorems 9
2.5 Isosceles Triangle Theorem 12
2.6 Contributions by Lukas Bulwahn 12

1 Definition of angles

```
theory Angles
imports
    HOL-Analysis.Multivariate-Analysis
begin
lemma collinear-translate-iff: collinear \(\left(((+) a)^{\prime} A\right) \longleftrightarrow\) collinear \(A\)
    by (auto simp: collinear-def)
```

definition vangle where
vangle $u v=($ if $u=0 \vee v=0$ then pi / 2 else $\arccos (u \cdot v /$ (norm $u *$ norm $v)$))
definition angle where
angle $a b c=$ vangle $(a-b)(c-b)$
lemma angle-altdef: angle a $b c=\arccos ((a-b) \cdot(c-b) /($ dist $a b *$ dist c b))
by (simp add: angle-def vangle-def dist-norm)
lemma vangle-0-left [simp]: vangle $0 v=p i / 2$ and vangle- 0 -right $[$ simp $]$: vangle $u 0=p i / 2$ by (simp-all add: vangle-def)
lemma vangle-refl $[$ simp $]: u \neq 0 \Longrightarrow$ vangle $u u=0$
by (simp add: vangle-def dot-square-norm power2-eq-square)
lemma angle-refl [simp]: angle a a b=pi/2 angle abb=pi/2
by (simp-all add: angle-def)
lemma angle-refl-mid [simp]: $a \neq b \Longrightarrow$ angle a $b a=0$
by (simp add: angle-def)
lemma cos-vangle: cos (vangle $u v)=u \cdot v /($ norm $u *$ norm $v)$ unfolding vangle-def using Cauchy-Schwarz-ineq2 $[$ of $u \quad v$] by (auto simp: field-simps)
lemma cos-angle: $\cos ($ angle $a b c)=(a-b) \cdot(c-b) /($ dist $a b *$ dist $c b)$ by (simp add: angle-def cos-vangle dist-norm)
lemma inner-conv-angle: $(a-b) \cdot(c-b)=$ dist $a b *$ dist $c b * \cos$ (angle a b c)
by (simp add: cos-angle)
lemma vangle-commute: vangle $u v=$ vangle $v u$
by (simp add: vangle-def inner-commute mult.commute)
lemma angle-commute: angle a bc=angle c ba by (simp add: angle-def vangle-commute)
lemma vangle-nonneg: vangle $u v \geq 0$ and vangle-le-pi: vangle $u v \leq p i$ using Cauchy-Schwarz-ineq2[of $u v$]
by (auto simp: vangle-def field-simps intro!: arccos-lbound arccos-ubound)
lemmas vangle-bounds $=$ vangle-nonneg vangle-le-pi
lemma angle-nonneg: angle a $b c \geq 0$ and angle-le-pi: angle a $b c \leq p i$ using vangle-bounds unfolding angle-def by blast+

```
lemmas angle-bounds = angle-nonneg angle-le-pi
lemma sin-vangle-nonneg: sin (vangle uv)\geq0
    using vangle-bounds by (rule sin-ge-zero)
lemma sin-angle-nonneg: sin (angle a b c)\geq0
    using angle-bounds by (rule sin-ge-zero)
lemma vangle-eq-0D:
    assumes vangle uv=0
    shows norm u**}v=norm v**R
proof -
    from assms have u}\cdotv=\mathrm{ norm u* norm v
        using arccos-eq-iff[of (u•v) / (norm u* norm v) 1] Cauchy-Schwarz-ineq2[of
u v]
    by (fastforce simp: vangle-def split: if-split-asm)
    thus ?thesis by (subst (asm) norm-cauchy-schwarz-eq) simp-all
qed
lemma vangle-eq-piD:
    assumes vangle uv=pi
    shows norm u*R}v+norm v**Ru=
proof -
    from assms have ( }-u\mathrm{ ) •v = norm ( }-u)*\mathrm{ norm v
    using arccos-eq-iff[of (u\cdotv)/(norm u* norm v) -1] Cauchy-Schwarz-ineq2[of
u v]
    by (simp add: field-simps vangle-def split: if-split-asm)
    thus?thesis by (subst (asm) norm-cauchy-schwarz-eq) simp-all
qed
lemma dist-triangle-eq:
    fixes a b c :: ' }a\mathrm{ :: real-inner
    shows (dist a c = dist a b + dist b c) \longleftrightarrow dist a b *R
-b) =0
    using norm-triangle-eq[of b-ac-b]
    by (simp add: dist-norm norm-minus-commute algebra-simps)
lemma angle-eq-pi-imp-dist-additive:
    assumes angle a b c=pi
    shows dist a c= dist a b + dist b c
    using vangle-eq-piD[OF assms[unfolded angle-def]]
    by (subst dist-triangle-eq) (simp add: dist-norm norm-minus-commute)
lemma orthogonal-iff-vangle: orthogonal }uv\longleftrightarrow\mathrm{ vangle uv=pi / 2
    using arccos-eq-iff[of u • v / (norm u* norm v) 0] Cauchy-Schwarz-ineq2[of u
v]
```

by (auto simp: vangle-def orthogonal-def)
lemma cos-minus1-imp-pi:
assumes $\cos x=-1 x \geq 0 x<3 * p i$
shows $\quad x=p i$
proof -
have $\cos (x-p i)=1$ by (simp add: assms)
then obtain $n::$ int where n : of-int $n=(x / p i-1) / 2$
by (subst (asm) cos-one-2pi-int) (auto simp: field-simps)
also from assms have $\ldots \in\{-1<. .<1\}$ by (auto simp: field-simps)
finally have $n=0$ by simp
with n show ?thesis by simp
qed
lemma vangle-eqI:
assumes $u \neq 0 v \neq 0 w \neq 0 x \neq 0$
assumes $(u \cdot v) *$ norm $w *$ norm $x=(w \cdot x) *$ norm $u *$ norm v
shows vangle $u v=$ vangle $w x$
using assms Cauchy-Schwarz-ineq2[of u v] Cauchy-Schwarz-ineq2[of w x]
unfolding vangle-def by (auto simp: arccos-eq-iff field-simps)
lemma angle-eqI:
assumes $a \neq b a \neq c d \neq e d \neq f$
assumes $((b-a) \cdot(c-a)) *$ dist $d e *$ dist $d f=((e-d) \cdot(f-d)) *$ dist $a b *$ dist a c
shows angle b a $c=$ angle ed f
using assms unfolding angle-def
by (intro vangle-eqI) (simp-all add: dist-norm norm-minus-commute)
lemma cos-vangle-eqD: cos (vangle $u v)=\cos ($ vangle $w x) \Longrightarrow$ vangle $u v=$ vangle $w x$
by (rule cos-inj-pi) (simp-all add: vangle-bounds)
lemma cos-angle-eqD: cos (angle abc)=cos(angle def) angle abc= angle $d e f$
unfolding angle-def by (rule cos-vangle-eqD)
lemma sin-vangle-zero-iff: sin (vangle $u v)=0 \longleftrightarrow$ vangle $u v \in\{0, p i\}$

proof

assume $\sin ($ vangle $u v)=0$
then obtain $n::$ int where n : of-int $n=$ vangle $u v / p i$
by (subst (asm) sin-zero-iff-int2) auto
also have $\ldots \in\{0 . .1\}$ using vangle-bounds by (auto simp: field-simps)
finally have $n \in\{0,1\}$ by auto
thus vangle $u v \in\{0, p i\}$ using n by (auto simp: field-simps)
qed auto
lemma sin-angle-zero-iff: sin (angle abc)=0 angle a bce\{0, pi\}
unfolding angle-def by (simp only: sin-vangle-zero-iff)
lemma vangle-collinear: vangle $u v \in\{0, p i\} \Longrightarrow$ collinear $\{0, u, v\}$
apply (subst norm-cauchy-schwarz-equal [symmetric])
apply (subst norm-cauchy-schwarz-abs-eq)
apply (auto dest!: vangle-eq-0D vangle-eq-piD simp: eq-neg-iff-add-eq-0)

done

lemma angle-collinear: angle a $b c \in\{0, p i\} \Longrightarrow$ collinear $\{a, b, c\}$
apply (unfold angle-def, drule vangle-collinear)
apply (subst collinear-translate-iff [symmetric, of - -b])
apply (auto simp: insert-commute)
done
lemma not-collinear-vangle: \neg collinear $\{0, u, v\} \Longrightarrow$ vangle $u v \in\{0<. .<p i\}$ using vangle-bounds[of $u v$] vangle-collinear[of $u v$]
by (cases vangle $u v=0 \vee$ vangle $u v=p i$) auto
lemma not-collinear-angle: \neg collinear $\{a, b, c\} \Longrightarrow$ angle a $b c \in\{0<. .<p i\}$
using angle-bounds[of abc] angle-collinear[of abc]
by (cases angle a $b c=0 \vee$ angle $a b c=p i$) auto

1.1 Contributions from Lukas Bulwahn

lemma vangle-scales:
assumes $0<c$
shows vangle $\left(c *_{R} v_{1}\right) v_{2}=$ vangle $v_{1} v_{2}$
using assms unfolding vangle-def by auto
lemma vangle-inverse:
vangle $\left(-v_{1}\right) v_{2}=p i-$ vangle $v_{1} v_{2}$
proof -
have $\mid v_{1} \cdot v_{2} /\left(\right.$ norm $v_{1} *$ norm $\left.v_{2}\right) \mid \leq 1$
proof cases
assume $v_{1} \neq 0 \wedge v_{2} \neq 0$
from this show ?thesis by (simp add: Cauchy-Schwarz-ineq2)
next
assume $\neg\left(v_{1} \neq 0 \wedge v_{2} \neq 0\right)$
from this show ?thesis by auto
qed
from this show ?thesis
unfolding vangle-def
by (simp add: arccos-minus-abs)
qed
lemma orthogonal-iff-angle:
shows orthogonal $(A-B)(C-B) \longleftrightarrow$ angle $A B C=p i / 2$
unfolding angle-def by (auto simp only: orthogonal-iff-vangle)

```
lemma angle-inverse:
    assumes between (A,C)B
    assumes }A\not=B\quadB\not=
    shows angle A B D=pi- angle C B D
proof -
    from <between (A,C)B> obtain u where u:u\geq0u\leq1
        and X:B=u*\mp@subsup{*}{R}{}A+(1-u)**}
        by (metis add.commute betweenE between-commute)
    from }\langleA\not=B\rangle\langleB\not=C\rangleX have u\not=0u\not=1 by aut
    have 0< ((1-u) / u)
        using <u\not=0\rangle\langleu\not=1\rangle\langleu\geq0\rangle\langleu\leq1\rangle by simp
    from X have A-B=-(1-u)*R}(C-A
        by (simp add:real-vector.scale-right-diff-distrib real-vector.scale-left-diff-distrib)
    moreover from X have C-B=u*R}(C-A
    by (simp add: scaleR-diff-left real-vector.scale-right-diff-distrib)
    ultimately have }A-B=-(((1-u)/u)\mp@subsup{*}{R}{}(C-B)
        using \langleu\not=0\rangle by simp (metis minus-diff-eq real-vector.scale-minus-left)
    from this have vangle (A-B) (D-B) = pi - vangle (C-B) (D-B)
        using }\langle0<(1-u)/u\rangle\mathrm{ by (simp add: vangle-inverse vangle-scales)
    from this show ?thesis
        unfolding angle-def by simp
qed
lemma strictly-between-implies-angle-eq-pi:
    assumes between (A,C)B
    assumes }A\not=BB\not=
    shows angle A B C=pi
proof -
    from <between (A,C) B> obtain u where }u:u\geq0u\leq
        and X:B=u*R}A+(1-u)\mp@subsup{*}{R}{}
        by (metis add.commute betweenE between-commute)
    from }\langleA\not=B\rangle\langleB\not=C\rangleX have u\not=0u\not=1 by aut
    from }\langleA\not=B\rangle\langleB\not=C\rangle\langlebetween (A,C)B\rangle\mathrm{ have }A\not=C\mathrm{ by auto
    from X have }A-B=-(1-u)\mp@subsup{*}{R}{}(C-A
        by (simp add: real-vector.scale-right-diff-distrib real-vector.scale-left-diff-distrib)
    moreover from this have dist A B = norm ((1-u)*R (C-A))
        using <u\geq0\rangle\langleu\leq1> by (simp add: dist-norm)
    moreover from X have C-B=u*R}(C-A
        by (simp add: scaleR-diff-left real-vector.scale-right-diff-distrib)
    moreover from this have dist C B = norm (u**R}(C-A)
    by (simp add: dist-norm)
    ultimately have }(A-B)\cdot(C-B)/(dist A B*dist C B)=u*(u-1)
(|1-u|* |u|)
    using <A \not=C> by (simp add: dot-square-norm power2-eq-square)
    also have ... = - 1
    using <u\not=0\rangle\langleu\not=1\rangle\langleu\geq0\rangle\langleu\leq1\rangle by (simp add: divide-eq-minus-1-iff)
    finally show ?thesis
    unfolding angle-altdef by simp
qed
```


2 Basic Properties of Triangles

theory Triangle

imports
Angles
begin
We prove a number of basic geometric properties of triangles．All theorems hold in any real inner product space．

2．1 Thales＇theorem

```
theorem thales:
    fixes A B C :: 'a :: real-inner
    assumes dist B (midpoint A C) = dist A C / 2
    shows orthogonal (A-B) (C-B)
proof -
    have dist A C^2 = dist B (midpoint A C) ^2* 4
    by (subst assms) (simp add: field-simps power2-eq-square)
    thus ?thesis
        by (auto simp: orthogonal-def dist-norm power2-norm-eq-inner midpoint-def
                        algebra-simps inner-commute)
qed
```


2．2 Sine and cosine laws

The proof of the Law of Cosines follows trivially from the definition of the angle，the definition of the norm in vector spaces with an inner product and the bilinearity of the inner product．

```
lemma cosine-law-vector:
    norm \((u-v)\) へ2 \(=\) norm \(u\) へ \(2+\operatorname{norm} v へ 2-2 * \operatorname{norm} u * \operatorname{norm} v * \cos\)
(vangle \(u v\) )
    by (simp add: power2-norm-eq-inner cos-vangle algebra-simps inner-commute)
lemma cosine-law-triangle:
    dist \(b c^{\wedge} 2=\) dist \(a b\) へ \(2+\) dist \(a c\) へ2 \(-2 *\) dist \(a b *\) dist \(a c * \cos\) (angle
\(b a c\) )
    using cosine-law-vector \([\) of \(b-a c-a]\)
    by (simp add: dist-norm angle-def vangle-commute norm-minus-commute)
```

According to our definition，angles are always between 0 and π and therefore， the sign of an angle is always non－negative．We can therefore look at $\sin (\alpha)^{2}$ ， which we can express in terms of $\cos (\alpha)$ using the identity $\sin (\alpha)^{2}+\cos (\alpha)^{2}=$ 1．The remaining proof is then a trivial consequence of the definitions．

```
lemma sine-law-triangle:
    sin}(\mathrm{ angle a b c)*dist b c= sin (angle b a c)* dist a c (is ?A = ?B)
proof (cases a=b)
    assume neq: }a\not=
    show ?thesis
    proof (rule power2-eq-imp-eq)
    from neq have (sin (angle abc)* dist bc)^2 * dist a b ^2 =
                                    dist a b ^2 * dist b c^2 - ((a-b) • (c-b)) ^2
        by (simp add: sin-squared-eq cos-angle dist-commute field-simps)
    also have ... = dist a b ^2 * dist a c^2 - ((b-a) • (c-a))^2
        by (simp only: dist-norm power2-norm-eq-inner)
            (simp add: power2-eq-square algebra-simps inner-commute)
    also from neq have \ldots. = (sin (angle b ac)*dist ac)^2 * dist a b ^2
        by (simp add: sin-squared-eq cos-angle dist-commute field-simps)
        finally show ?A`2 = ? B`2 using neq by (subst (asm) mult-cancel-right)
simp-all
    qed (auto intro!: mult-nonneg-nonneg sin-angle-nonneg)
qed simp-all
The following forms of the Law of Sines/Cosines are more convenient for eliminating sines/cosines from a goal completely.
lemma cosine-law-triangle':
```



``` \(c^{\text {- 2) }}\)
using cosine-law-triangle[of bca] by simp
lemma cosine-law-triangle \({ }^{\prime \prime}\) :
\(\cos (\) angle \(b a c)=(\) dist \(a b へ 2+\operatorname{dist} a c \wedge 2-d i s t b c \wedge 2) /(2 * d i s t a b *\) dist a \(c\) )
using cosine-law-triangle \(\left[\begin{array}{lll}\circ & b & a\end{array}\right]\) by simp
lemma sine-law-triangle':
\(b \neq c \Longrightarrow \sin (\) angle \(a b c)=\sin (\) angle \(b a c) *\) dist \(a c / d i s t b c\)
using sine-law-triangle \(\left[\begin{array}{lll}\circ & a & b\end{array}\right]\) by (simp add: divide-simps)
lemma sine-law-triangle":
\(b \neq c \Longrightarrow \sin (\) angle \(c b a)=\sin (\) angle \(b a c) *\) dist \(a c / d i s t b c\)
using sine-law-triangle[of \(a b c]\) by (simp add: divide-simps angle-commute)
```


2.3 Sum of angles

context
begin
private lemma gather-squares: $a *(a * b)=a^{\wedge} 2 *(b::$ real $)$
by (simp-all add: power2-eq-square)
private lemma eval-power: x ^ numeral $n=x * x$ ^ pred-numeral n by (subst numeral-eq-Suc, subst power-Suc) simp

The proof that the sum of the angles in a triangle is π is somewhat more involved. Following the HOL Light proof by John Harrison, we first prove that $\cos (\alpha+\beta+\gamma)=-1$ and $\alpha+\beta+\gamma \in[0 ; 3 \pi)$, which then implies the theorem.
The main work is proving $\cos (\alpha+\beta+\gamma)$. This is done using the addition theorems for the sine and cosine, then using the Laws of Sines to eliminate all sin terms save $\sin (\gamma)^{2}$, which only appears squared in the remaining goal. We then use $\sin (\gamma)^{2}=1-\cos (\gamma)^{2}$ to eliminate this term and apply the law of cosines to eliminate this term as well.
The remaining goal is a non-linear equation containing only the length of the sides of the triangle. It can be shown by simple algebraic rewriting.

```
lemma angle-sum-triangle:
    assumes \(a \neq b \vee b \neq c \vee a \neq c\)
    shows angle \(c a b+\) angle \(a b c+\) angle \(b c a=p i\)
proof (rule cos-minus1-imp-pi)
    show \(\cos (\) angle \(c a b+\) angle \(a b c+\) angle \(b c a)=-1\)
    proof (cases \(a \neq b\) )
        case True
        thus \(\cos (\) angle \(c\) a \(b+\) angle \(a b c+\) angle \(b c a)=-1\)
            apply (simp add: cos-add sin-add cosine-law-triangle" field-simps
                                    sine-law-triangle \({ }^{\prime \prime}\left[\begin{array}{lll}o f & a & b \\ c\end{array}\right]\) sine-law-triangle \({ }^{\prime \prime}\left[\begin{array}{lll}o f & b & a\end{array} c\right]\)
                                    angle-commute dist-commute gather-squares sin-squared-eq)
        apply (simp add: eval-power algebra-simps dist-commute)
        done
    qed (insert assms, auto)
    show angle \(c a b+\) angle \(a b c+\) angle \(b c a<3 * p i\)
    proof (rule ccontr)
        assume \(\neg\) (angle \(c\) a \(b+\) angle \(a b c+\) angle \(b c a<3 * p i)\)
```



```
            have \(A\) : angle \(c\) a \(b=\) pi angle \(a b c=p i\) by simp-all
    thus False using angle-eq-pi-imp-dist-additive[of \(c\) a \(\left.\begin{array}{l}\text { a }\end{array}\right]\)
                    angle-eq-pi-imp-dist-additive \(\left[\begin{array}{lll}\text { of } & \text { a } & b \\ c\end{array}\right]\) by (simp add: dist-commute)
    qed
qed (auto intro!: add-nonneg-nonneg angle-nonneg)
end
```


2.4 Congruence Theorems

If two triangles agree on two angles at a non-degenerate side, the third angle must also be equal.

```
lemma similar-triangle-aa:
    assumes b1 f=c1 b2 f=c2
    assumes angle a1 b1 c1 = angle a2 b2 c2
    assumes angle b1 c1 a1 = angle b2 c2 a2
    shows angle b1 a1 c1 = angle b2 a2 c2
```

```
proof -
    from assms angle-sum-triangle[of a1 b1 c1] angle-sum-triangle[of a2 b2 c2, sym-
metric]
    show ?thesis by (auto simp: algebra-simps angle-commute)
qed
```

A triangle is defined by its three angles and the lengths of three sides up to congruence. Two triangles are congruent if they have their angles are the same and their sides have the same length.
locale congruent-triangle $=$
fixes a1 b1 c1 :: 'a :: real-inner and a2 b2 c2 :: 'b :: real-inner
assumes sides': dist a1 b1 = dist a2 b2 dist a1 c1 = dist a2 c2 dist b1 c1 = dist b2 c2
and angles': angle b1 a1 c1 = angle b2 a2 c2 angle a1 b1 c1 = angle a2 b2 c2 angle a1 c1 b1 = angle a2 c2 b2
begin
lemma sides:
dist a1 b1 = dist a2 b2 dist a1 c1 = dist a2 c2 dist b1 c1 = dist b2 c2
dist b1 a1 = dist a2 b2 dist c1 a1 = dist a2 c2 dist c1 b1 = dist b2 c2
dist a1 b1 = dist b2 a2 dist a1 c1 = dist c2 a2 dist b1 c1 = dist c2 b2
dist b1 a1 = dist b2 a2 dist c1 a1 = dist c2 a2 dist c1 b1 = dist c2 b2
using sides' by (simp-all add: dist-commute)
lemma angles:
angle b1 a1 c1 = angle b2 a2 c2 angle a1 b1 c1 = angle a2 b2 c2 angle a1 c1 b1
= angle a2 c2 b2
angle c1 a1 b1 = angle b2 a2 c2 angle c1 b1 a1 = angle a2 b2 c2 angle b1 c1 a1
$=$ angle a2 c2 b2
angle b1 a1 c1 = angle c2 a2 b2 angle a1 b1 c1 = angle c2 b2 a2 angle a1 c1 b1
$=$ angle b2 c2 a2
angle c1 a1 b1 = angle c2 a2 b2 angle c1 b1 a1 = angle c2 b2 a2 angle b1 c1 a1
= angle b2 c2 a2
using angles' by (simp-all add: angle-commute)
end
lemmas congruent-triangle $D=$ congruent-triangle.sides congruent-triangle.angles
Given two triangles that agree on a subset of its side lengths and angles that are sufficient to define a triangle uniquely up to congruence, one can conclude that they must also agree on all remaining quantities, i.e. that they are congruent.
The following four congruence theorems state what constitutes such a uniquelydefining subset of quantities. Each theorem states in its name which quantities are required and in which order (clockwise or counter-clockwise): an "s" stands for a side, an "a" stands for an angle.
The lemma "congruent-triangleI-sas, for example, requires that two adjacent
sides and the angle inbetween are the same in both triangles.

```
lemma congruent-triangleI-sss:
    fixes a1 b1 c1 :: 'a :: real-inner and a2 b2 c2 :: 'b :: real-inner
    assumes dist a1 b1 = dist a2 b2
    assumes dist b1 c1 = dist b2 c2
    assumes dist a1 c1 = dist a2 c2
    shows congruent-triangle a1 b1 c1 a2 b2 c2
proof -
    have A: angle a1 b1 c1 = angle a2 b2 c2
        if dist a1 b1 = dist a2 b2 dist b1 c1 = dist b2 c2 dist a1 c1 = dist a2 c2
        for a1 b1 c1 :: ' \(a\) and a2 b2 c2 :: 'b
    proof -
        from that cosine-law-triangle \({ }^{\prime \prime}\left[\begin{array}{lll}\text { af } & 1 & \text { b1 c1] cosine-law-triangle }\end{array}\right.\) [of a2 b2 c2]
            show ?thesis by (intro cos-angle-eqD) (simp add: dist-commute)
    qed
    from assms show ?thesis by unfold-locales (auto intro!: A simp: dist-commute)
qed
lemmas congruent-triangle-sss \(=\) congruent-triangle \(D[O F\) congruent-triangleI-sss \(]\)
lemma congruent-triangleI-sas:
    assumes dist a1 b1 = dist a2 b2
    assumes dist b1 c1 = dist b2 c2
    assumes angle a1 b1 c1 = angle a2 b2 c2
    shows congruent-triangle a1 b1 c1 a2 b2 c2
proof (rule congruent-triangleI-sss)
    show dist a1 c1 = dist a2 c2
    proof (rule power2-eq-imp-eq)
        from cosine-law-triangle[of a1 c1 b1] cosine-law-triangle[of a2 c2 b2] assms
            show (dist a1 c1 \()^{2}=(\text { dist a2 c2 })^{2}\) by (simp add: dist-commute)
    qed simp-all
qed fact +
lemmas congruent-triangle-sas \(=\) congruent-triangle \(D[O F\) congruent-triangleI-sas \(]\)
lemma congruent-triangleI-aas:
    assumes angle a1 b1 c1 = angle a2 b2 c2
    assumes angle b1 c1 a1 = angle b2 c2 a2
    assumes dist a1 b1 = dist a2 b2
    assumes \(\neg\) collinear \(\{a 1, b 1, c 1\}\)
    shows congruent-triangle a1 b1 c1 a2 b2 c2
proof (rule congruent-triangleI-sas)
    from 〈ᄀcollinear \(\{a 1, b 1, c 1\}\rangle\) have neq: a1 \(\neq b 1\) by auto
    with \(\operatorname{assms}(3)\) have \(n e q{ }^{\prime}: a 2 \neq b 2\) by auto
    have A: angle c1 a1 b1 = angle c2 a2 b2 using neq neq \({ }^{\prime}\) assms
        using angle-sum-triangle[of a1 b1 c1] angle-sum-triangle[of a2 b2 c2]
        by \(\operatorname{simp}\)
    from assms have \(B\) : angle b1 a1 c1 \(\in\{0<. .<p i\}\)
        by (intro not-collinear-angle) (simp-all add: insert-commute)
```

```
    from sine-law-triangle[of c1 a1 b1] sine-law-triangle[of c2 a2 b2] assms A B
        show dist b1 c1 = dist b2 c2
        by (auto simp: angle-commute dist-commute sin-angle-zero-iff)
qed fact+
lemmas congruent-triangle-aas = congruent-triangleD[OF congruent-triangleI-aas]
lemma congruent-triangleI-asa:
    assumes angle a1 b1 c1 = angle a2 b2 c2
    assumes dist a1 b1 = dist a2 b2
    assumes angle b1 a1 c1 = angle b2 a2 c2
    assumes \negcollinear {a1, b1, c1}
    shows congruent-triangle a1 b1 c1 a2 b2 c2
proof (rule congruent-triangleI-aas)
    from assms have neq: a1 }=\mathrm{ b1 a2 }\not=b2\mathrm{ by auto
    show angle b1 c1 a1 = angle b2 c2 a2
        by (rule similar-triangle-aa) (insert assms neq, simp-all add: angle-commute)
qed fact+
lemmas congruent-triangle-asa = congruent-triangleD[OF congruent-triangleI-asa]
```


2.5 Isosceles Triangle Theorem

We now prove the Isosceles Triangle Theorem: in a triangle where two sides have the same length, the two angles that are adjacent to only one of the two sides must be equal.

```
lemma isosceles-triangle:
    assumes dist a c= dist b c
    shows angle b a c= angle a b c
    by (rule congruent-triangle-sss) (insert assms, simp-all add: dist-commute)
```

For the non-degenerate case (i.e. the three points are not collinear), We also prove the converse.
lemma isosceles-triangle-converse:
assumes angle abc=angle bac collinear $\{a, b, c\}$
shows dist $a c=\operatorname{dist} b c$
by (rule congruent-triangle-asa[OF assms(1) - - assms(2)])
(simp-all add: dist-commute angle-commute assms)

2.6 Contributions by Lukas Bulwahn

```
lemma Pythagoras:
    fixes A B C :: 'a :: real-inner
    assumes orthogonal (A-C) (B-C)
    shows (dist B C)^2 + (dist CA)^2 = (dist A B)^2
proof -
    from assms have cos (angle A C B)=0
        by (metis orthogonal-iff-angle cos-pi-half)
```

```
    from this show ?thesis
    by (simp add: cosine-law-triangle[of A B C] dist-commute)
qed
lemma isosceles-triangle-orthogonal-on-midpoint:
    fixes A B C :: 'a :: euclidean-space
    assumes dist CA= dist C B
    shows orthogonal (C- midpoint A B)}(A-\mathrm{ midpoint }AB
proof (cases A=B)
    assume A\not=B
    let ?M = midpoint }A
    from }\langleA\not=B\rangle\mathrm{ have angle }A\mathrm{ ?M C = pi - angle B ?M C
    by (intro angle-inverse between-midpoint)
            (auto simp: between-midpoint eq-commute[of - midpoint A B for A B])
    moreover have angle A ?M C = angle C ?M B
    proof -
    have congruence: congruent-triangle C A ?M C B ?M
    proof (rule congruent-triangleI-sss)
            show dist C A = dist C B using assms .
            show dist A ?M = dist B ?M by (simp add: dist-midpoint)
            show dist C (midpoint A B ) = dist C (midpoint A B)..
            qed
            from this show ?thesis by (simp add: congruent-triangle.angles(6))
    qed
    ultimately have angle A ?M C = pi / 2 by (simp add: angle-commute)
    from this show ?thesis
    by (simp add: orthogonal-iff-angle orthogonal-commute)
next
    assume }A=
    from this show ?thesis
    by (simp add: orthogonal-clauses(1))
qed
end
```

