Verified Enumeration of Trees

Nils Cremer

September 13, 2023

Abstract

This thesis presents the verification of enumeration algorithms for trees. The first algorithm is based on the well known Prüfer-correspondence and allows the enumeration of all possible labeled trees over a fixed finite set of vertices. The second algorithm enumerates rooted, unlabeled trees of a specified size up to graph isomorphisms. It allows for the efficient enumeration without the use of an intermediate encoding of the trees with level sequences, unlike the algorithm by Beyer and Hedetniemi [1] it is based on. Both algorithms are formalized and verified in Isabelle/HOL. The formalization of trees and other graph theoretic results is also presented.

Contents

1 Graphs and Trees 2
1.1 Miscellaneous 2
1.2 Degree 4
1.3 Walks 7
1.4 Paths 7
1.5 Cycles 8
1.6 Subgraphs 9
1.7 Connectivity 10
1.8 Connected components 15
1.9 Trees 21
1.10 Graph Isomorphism 28
2 Enumeration of Labeled Trees 30
2.1 Algorithm 30
2.2 Correctness 30
2.3 Totality 33
2.4 Distinction 36
3 Rooted Trees 39
3.1 Rooted Graphs 46
3.2 Rooted Graph Isomorphism 47
3.3 Conversion between unlabeled, ordered, rooted trees and tree graphs 48
3.4 Injectivity with respect to isomorphism 65
4 Enumeration of Rooted Trees 71
4.1 Enumeration is monotonically decreasing 73
4.2 Size preservation 73
4.3 Setup for termination proof 74
4.4 Algorithms for enumeration 75
4.5 Regularity 76
4.6 Totality 78
4.7 Distinctness 87

1 Graphs and Trees

theory Tree-Graph
imports Undirected-Graph-Theory.Undirected-Graphs-Root
begin

1.1 Miscellaneous

definition (in ulgraph) loops :: 'a edge set where loops $=\{e \in E$. is-loop e $\}$
definition (in ulgraph) sedges :: 'a edge set where sedges $=\{e \in E$. is-sedge e $\}$
lemma (in ulgraph) union-loops-sedges: loops \cup sedges $=E$ unfolding loops-def sedges-def is-loop-def is-sedge-def using alt-edge-size by blast
lemma (in ulgraph) disjnt-loops-sedges: disjnt loops sedges
unfolding disjnt-def loops-def sedges-def is-loop-def is-sedge-def by auto
lemma (in fin-ulgraph) finite-loops: finite loops unfolding loops-def using fin-edges by auto
lemma (in fin-ulgraph) finite-sedges: finite sedges unfolding sedges-def using fin-edges by auto
lemma (in ulgraph) edge-incident-vert: $e \in E \Longrightarrow \exists v \in V$. vincident $v e$ using edge-size wellformed by (metis empty-not-edge equals0I vincident-def inci-dent-edge-in-wf)
lemma (in ulgraph) Union-incident-edges: $(\bigcup v \in V$. incident-edges $v)=E$ unfolding incident-edges-def using edge-incident-vert by auto
lemma (in ulgraph) induced-edges-mono: $V_{1} \subseteq V_{2} \Longrightarrow$ induced-edges $V_{1} \subseteq$ in-duced-edges V_{2}
using induced-edges-def by auto
definition (in graph-system) remove-vertex :: ' $a \Rightarrow$ 'a pregraph where remove-vertex $v=(V-\{v\},\{e \in E . \neg$ vincident $v e\})$
lemma (in ulgraph) ex-neighbor-degree-not-0:
assumes degree-non-0: degree $v \neq 0$
shows $\exists u \in V$. vert-adj $v u$
proof-
have $\exists e \in E . v \in e$ using degree-non-0 elem-exists-non-empty-set unfolding degree-def incident-sedges-def incident-loops-def vincident-def by

auto

then show ?thesis
by (metis degree-non-0 in-mono is-isolated-vertex-def is-isolated-vertex-degree0 vert-adj-sym wellformed)
qed
lemma (in ulgraph) ex1-neighbor-degree-1:
assumes degree-1: degree $v=1$
shows \exists !u. vert-adj $v u$
proof-
have card (incident-loops v) $=0$ using degree- 1 unfolding degree-def by auto then have incident-loops: incident-loops $v=\{ \}$ by (simp add: finite-incident-loops) then have card-incident-sedges: card (incident-sedges v) $=1$ using degree-1 unfolding degree-def by simp
obtain u where vert-adj: vert-adj $v u$ using degree-1 ex-neighbor-degree-not-0 by force
then have $u \neq v$ using incident-loops unfolding incident-loops-def vert-adj-def by blast
then have u-incident: $\{v, u\} \in$ incident-sedges v using vert-adj unfolding in-cident-sedges-def vert-adj-def vincident-def by simp
then have incident-sedges: incident-sedges $v=\{\{v, u\}\}$ using card-incident-sedges by (simp add: comp-sgraph.card1-incident-imp-vert comp-sgraph.vincident-def)
have vert-adj $v u^{\prime} \Longrightarrow u^{\prime}=u$ for u^{\prime}
proof -
assume v - u^{\prime}-adj: vert-adj $v u^{\prime}$
then have $u^{\prime} \neq v$ using incident-loops unfolding incident-loops-def vert-adj-def
by blast
then have $\left\{v, u^{\prime}\right\} \in$ incident-sedges v using v - u^{\prime}-adj unfolding incident-sedges-def vert-adj-def vincident-def by simp
then show $u^{\prime}=u$ using incident-sedges by force
qed
then show ?thesis using vert-adj by blast

qed

lemma (in ulgraph) degree-1-edge-partition:
assumes degree-1: degree $v=1$
shows $E=\{\{$ THE u. vert-adj $v u, v\}\} \cup\{e \in E . v \notin e\}$
proof-
have card (incident-loops v) $=0$ using degree-1 unfolding degree-def by auto
then have incident-loops: incident-loops $v=\{ \}$ by (simp add: finite-incident-loops)
then have card (incident-sedges v) $=1$ using degree-1 unfolding degree-def by simp
then have card-incident-edges: card (incident-edges v) $=1$ using incident-loops incident-edges-union by simp
obtain u where vert-adj: vert-adj $v u$ using ex1-neighbor-degree-1 degree-1 by blast
then have $\{v, u\} \in\{e \in E . v \in e\}$ unfolding vert-adj-def by blast
then have edges-incident-v: $\{e \in E . v \in e\}=\{\{v, u\}\}$ using card-incident-edges card-1-singletonE singletonD
unfolding incident-edges-def vincident-def by metis
have $u: u=($ THE u. vert-adj $v u$) using vert-adj ex1-neighbor-degree-1 degree-1 by (simp add: the1-equality)
show ?thesis using edges-incident-v u by blast
qed
lemma (in sgraph) vert-adj-not-eq: vert-adj $u v \Longrightarrow u \neq v$
unfolding vert-adj-def using edge-vertices-not-equal by blast

1.2 Degree

lemma (in ulgraph) empty-E-degree- $0: E=\{ \} \Longrightarrow$ degree $v=0$
using incident-edges-empty degree 0 -inc-edges-empt-iff unfolding incident-edges-def
by simp

```
lemma (in fin-ulgraph) handshaking: \(\left(\sum v \in V\right.\). degree \(\left.v\right)=2 *\) card \(E\)
    using fin-edges fin-ulgraph-axioms
proof (induction \(E\) )
    case empty
    then interpret \(g\) : fin-ulgraph \(V\) \{\}.
    show ?case using g.empty-E-degree-0 by simp
next
    case (insert e \(E^{\prime}\) )
    then interpret \(g^{\prime}\) : fin-ulgraph \(V\) insert e \(E^{\prime}\) by blast
    interpret \(g\) : fin-ulgraph \(V E^{\prime}\) using \(g^{\prime}\).wellformed \(g^{\prime}\).edge-size fin \(V\) by (unfold-locales,
auto)
    show ?case
    proof (cases is-loop e)
        case True
        then obtain \(u\) where \(e: e=\{u\}\) using card-1-singletonE is-loop-def by blast
        then have inc-sedges: \(\bigwedge v . g^{\prime}\).incident-sedges \(v=\) g.incident-sedges \(v\) unfolding
\(g^{\prime}\).incident-sedges-def g.incident-sedges-def by auto
```

have $\bigwedge v . v \neq u \Longrightarrow g^{\prime}$.incident-loops $v=$ g.incident-loops v unfolding g^{\prime}.incident-loops-def g.incident-loops-def using e by auto
then have degree-not-u: $\bigwedge v . v \neq u \Longrightarrow g^{\prime}$. degree $v=$ g.degree v using inc-sedges unfolding g^{\prime}.degree-def g.degree-def by auto
have g^{\prime}.incident-loops $u=$ g.incident-loops $u \cup\{e\}$ unfolding g^{\prime}.incident-loops-def g.incident-loops-def using e by auto
then have degree-u: g^{\prime}.degree $u=g$.degree $u+2$ using inc-sedges insert(2) g.finite-incident-loops g.incident-loops-def unfolding g^{\prime}.degree-def g.degree-def by auto
have $u \in V$ using e g^{\prime}.wellformed by blast
then have $\left(\sum v \in V . g^{\prime}\right.$. degree $\left.v\right)=g^{\prime}$. degree $u+\left(\sum v \in V-\{u\} . g^{\prime}\right.$.degree $\left.v\right)$ by (simp add: fin V sum.remove)
also have $\ldots=\left(\sum v \in V\right.$. g.degree $\left.v\right)+2$ using degree-not-u degree-u sum.remove $[O F$ fin $V\langle u \in V\rangle$, of g.degree] by auto
also have $\ldots=2 *$ card (insert e E^{\prime}) using insert g.fin-ulgraph-axioms by auto
finally show ?thesis .

next

case False
obtain $u w$ where $e: e=\{u, w\}$ using g^{\prime}.obtain-edge-pair-adj by fastforce
then have card-e: card $e=2$ using False g^{\prime}.alt-edge-size is-loop-def by auto
then have $u \neq w$ using card-2-iff using e by fastforce
have inc-loops: $\bigwedge v . g^{\prime}$.incident-loops $v=g$.incident-loops v
unfolding g^{\prime}.incident-loops-alt g.incident-loops-alt using False is-loop-def by auto
have $\bigwedge v . v \neq u \Longrightarrow v \neq w \Longrightarrow g^{\prime}$.incident-sedges $v=$ g.incident-sedges v unfolding g^{\prime}.incident-sedges-def g.incident-sedges-def g.vincident-def using e by auto
then have degree-not-u-w: $\bigwedge v . v \neq u \Longrightarrow v \neq w \Longrightarrow g^{\prime}$. degree $v=$ g.degree v unfolding g^{\prime}.degree-def g.degree-def using inc-loops by auto
have g^{\prime}.incident-sedges $u=g$.incident-sedges $u \cup\{e\}$
unfolding g^{\prime}.incident-sedges-def g.incident-sedges-def g.vincident-def using e card-e by auto
then have degree-u: g^{\prime}.degree $u=g$.degree $u+1$
using inc-loops insert(2) g.fin-edges g.finite-inc-sedges g.incident-sedges-def unfolding g^{\prime}.degree-def g.degree-def by auto
have g^{\prime}.incident-sedges $w=$ g.incident-sedges $w \cup\{e\}$
unfolding g^{\prime}.incident-sedges-def g.incident-sedges-def g.vincident-def using e card-e by auto
then have degree-w: g^{\prime}. degree $w=g$.degree $w+1$ using inc-loops insert(2) g.fin-edges g.finite-inc-sedges g.incident-sedges-def unfolding g^{\prime}.degree-def g.degree-def by auto
have in $V: u \in V w \in V-\{u\}$ using e g^{\prime}.wellformed $\langle u \neq w\rangle$ by auto
then have $\left(\sum v \in V . g^{\prime}\right.$.degree $\left.v\right)=g^{\prime}$.degree $u+g^{\prime}$. degree $w+\left(\sum v \in V-\{u\}-\{w\}\right.$.
g^{\prime}.degree v)
using sum.remove fin V by (metis add.assoc finite-Diff)
also have $\ldots=$ g.degree $u+g$.degree $w+\left(\sum v \in V-\{u\}-\{w\}\right.$. g.degree $\left.v\right)+$ 2 using degree-not-u-w degree-u degree-w by simp
also have $\ldots=\left(\sum v \in V\right.$. g.degree $\left.v\right)+2$ using sum.remove fin V in V by (metis add.assoc finite-Diff)
also have $\ldots=2 * \operatorname{card}$ (insert e E^{\prime}) using insert g.fin-ulgraph-axioms by auto
finally show ?thesis .
qed
qed
lemma (in fin-ulgraph) degree-remove-adj-ne-vert:
assumes $u \neq v$
and vert-adj: vert-adj $u v$
and remove-vertex: remove-vertex $u=\left(V^{\prime}, E^{\prime}\right)$
shows ulgraph.degree $E^{\prime} v=$ degree $v-1$

proof -

interpret G^{\prime} : fin-ulgraph $V^{\prime} E^{\prime}$ using remove-vertex wellformed edge-size fin V
unfolding remove-vertex-def vincident-def
by (unfold-locales, auto)
have $E^{\prime}: E^{\prime}=\{e \in E . u \notin e\}$ using remove-vertex unfolding remove-vertex-def vincident-def by simp
have incident-loops': G^{\prime}.incident-loops $v=$ incident-loops v unfolding inci-dent-loops-def
using $\langle u \neq v\rangle E^{\prime} G^{\prime}$.incident-loops-def by auto
have uv-incident: $\{u, v\} \in$ incident-sedges v using vert-adj $\langle u \neq v\rangle$ unfolding vert-adj-def incident-sedges-def vincident-def by simp
have uv-incident': $\{u, v\} \notin G^{\prime}$.incident-sedges v unfolding G^{\prime}.incident-sedges-def vincident-def using E^{\prime} by blast
have $e \in E \Longrightarrow u \in e \Longrightarrow v \in e \Longrightarrow$ card $e=2 \Longrightarrow e=\{u, v\}$ for e
using $\langle u \neq v\rangle$ obtain-edge-pair-adj by blast
then have $\{e \in E . u \in e \wedge v \in e \wedge$ card $e=2\}=\{\{u, v\}\}$ using uv-incident unfolding incident-sedges-def by blast
then have incident-sedges $v=G^{\prime}$.incident-sedges $v \cup\{\{u, v\}\}$ unfolding G^{\prime}.incident-sedges-def incident-sedges-def vincident-def using E^{\prime} by blast
then show ?thesis unfolding G^{\prime}.degree-def degree-def using incident-loops' uv-incident' G^{\prime}.finite-inc-sedges G^{\prime}.fin-edges by auto
qed
lemma (in ulgraph) degree-remove-non-adj-vert:
assumes $u \neq v$
and vert-non-adj: \neg vert-adj $u v$
and remove-vertex: remove-vertex $u=\left(V^{\prime}, E^{\prime}\right)$
shows ulgraph.degree $E^{\prime} v=$ degree v
proof-
interpret G^{\prime} : ulgraph $V^{\prime} E^{\prime}$ using remove-vertex wellformed edge-size unfolding remove-vertex-def vincident-def
by (unfold-locales, auto)
have $E^{\prime}: E^{\prime}=\{e \in E . u \notin e\}$ using remove-vertex unfolding remove-vertex-def vincident-def by simp
have incident-loops ${ }^{\prime}: G^{\prime}$.incident-loops $v=$ incident-loops v unfolding inci-dent-loops-def
using $\langle u \neq v\rangle E^{\prime} G^{\prime}$.incident-loops-def by auto
have G^{\prime}.incident-sedges $v=$ incident-sedges v unfolding G^{\prime}.incident-sedges-def incident-sedges-def vincident-def
using $E^{\prime}\langle u \neq v\rangle$ vincident-def vert-adj-edge-iff2 vert-non-adj by auto
then show ?thesis using incident-loops' unfolding G^{\prime}.degree-def degree-def by simp
qed

1.3 Walks

lemma (in ulgraph) walk-edges-induced-edges: is-walk $p \Longrightarrow$ set (walk-edges p) \subseteq induced-edges (set p)
unfolding induced-edges-def is-walk-def by (induction p rule: walk-edges.induct) auto
lemma (in ulgraph) walk-edges-in-verts: $e \in$ set (walk-edges $x s) \Longrightarrow e \subseteq$ set xs by (induction xs rule: walk-edges.induct) auto
lemma (in ulgraph) is-walk-prefix: is-walk $(x s @ y s) \Longrightarrow x s \neq[] \Longrightarrow$ is-walk xs unfolding is-walk-def using walk-edges-append-ss2 by fastforce
lemma (in ulgraph) split-walk-edge: $\{x, y\} \in$ set (walk-edges p) \Longrightarrow $\exists x s$ ys. $p=x s @ x \# y \# y s \vee p=x s @ y \# x \# y s$
by (induction p rule: walk-edges.induct) (auto, metis append-Nil doubleton-eq-iff, (metis append-Cons)+)

1.4 Paths

lemma (in ulgraph) is-gen-path-wf: is-gen-path $p \Longrightarrow$ set $p \subseteq V$ unfolding is-gen-path-def using is-walk-wf by auto
lemma (in ulgraph) path-wf: is-path $p \Longrightarrow$ set $p \subseteq V$ by (simp add: is-path-walk is-walk-wf)
lemma (in fin-ulgraph) length-gen-path-card-V: is-gen-path $p \Longrightarrow$ walk-length $p \leq$ card V
by (metis card-mono distinct-card distinct-tl finV is-gen-path-def is-walk-def length-tl list.exhaust-sel order-trans set-subset-Cons walk-length-conv)
lemma (in fin-ulgraph) length-path-card- V : is-path $p \Longrightarrow$ length $p \leq$ card V by (metis path-wf card-mono distinct-card fin V is-path-def)
lemma (in ulgraph) is-gen-path-prefix: is-gen-path $(x s @ y s) \Longrightarrow x s \neq[] \Longrightarrow$ is-gen-path (xs)
unfolding is-gen-path-def using is-walk-prefix
by (auto, metis Int-iff distinct.simps(2) emptyE last-appendL last-appendR last-in-set list.collapse)
lemma (in ulgraph) connecting-path-append: connecting-path $u w(x s @ y s) \Longrightarrow x s$ $\neq[] \Longrightarrow$ connecting-path u (last xs) xs
unfolding connecting-path-def using is-gen-path-prefix by auto
lemma (in ulgraph) connecting-path-tl: connecting-path $u v(u \# w \# x s) \Longrightarrow$ connecting-path $w v(w \# x s)$
unfolding connecting-path-def is-gen-path-def using is-walk-drop-hd distinct-tl by auto
lemma (in fin-ulgraph) obtain-longest-path:
assumes $e \in E$
and sedge: is-sedge e
obtains p where is-path $p \forall s$. is-path $s \longrightarrow$ length $s \leq$ length p

proof-

let ?longest-path $=A R G$-MAX length p. is-path p
obtain $u v$ where $e: u \neq v e=\{u, v\}$ using sedge card-D-iff unfolding is-sedge-def by metis
then have in $V: u \in V v \in V$ using $\langle e \in E\rangle$ wellformed by auto
then have path-ex: is-path $[u, v]$ using $e\langle e \in E\rangle$ unfolding is-path-def is-open-walk-def is-walk-def by simp
obtain p where p-is-path: is-path p and p-longest-path: $\forall s$. is-path $s \longrightarrow$ length $s \leq$ length p
using path-ex length-path-card-V ex-has-greatest-nat[of is-path $[u, v]$ length gorder] by force
then show ?thesis ..
qed

1.5 Cycles

context ulgraph
begin
definition is-cycle2 :: 'a list \Rightarrow bool where
is-cycle $2 x s \longleftrightarrow$ is-cycle $x s \wedge$ distinct (walk-edges xs)
lemma loop-is-cycle2: $\{v\} \in E \Longrightarrow$ is-cycle2 $[v, v]$
unfolding is-cycle2-def is-cycle-alt is-walk-def using wellformed walk-length-conv by auto
end
lemma (in sgraph) cycle2-min-length:
assumes cycle: is-cycle2 c
shows walk-length $c \geq 3$
proof-
consider $c=[]|\exists v 1 . c=[v 1]| \exists v 1 v 2 . c=[v 1, v 2] \mid \exists v 1$ v2 v3. $c=[v 1, v 2$,
v3] | $\exists v 1$ v2 v3 v4 vs. $c=v 1 \# v 2 \# v 3 \# v 4 \# v s$
by (metis list.exhaust-sel)
then show ?thesis using cycle walk-length-conv singleton-not-edge unfolding is-cycle2-def is-cycle-alt is-walk-def by (cases, auto)
qed
lemma (in fin-ulgraph) length-cycle-card- V : is-cycle $c \Longrightarrow$ walk-length $c \leq S u c$ (card V)
using length-gen-path-card- V unfolding is-gen-path-def is-cycle-alt by fastforce
lemma (in ulgraph) is-cycle-connecting-path: is-cycle $(u \# v \# x s) \Longrightarrow$ connecting-path v u ($v \# x s$)
unfolding is-cycle-def connecting-path-def is-closed-walk-def is-gen-path-def using is-walk-drop-hd by auto
lemma (in ulgraph) cycle-edges-notin-tl: is-cycle2 $(u \# v \# x s) \Longrightarrow\{u, v\} \notin$ set (walk-edges ($v \# x s)$)
unfolding is-cycle2-def by simp

1.6 Subgraphs

locale ulsubgraph $=$ subgraph $V_{H} E_{H} V_{G} E_{G}+$ G : ulgraph $V_{G} E_{G}$ for $V_{H} E_{H} \quad V_{G} E_{G}$
begin
interpretation H : ulgraph $V_{H} E_{H}$
using is-subgraph-ulgraph G.ulgraph-axioms by auto
lemma is-walk: $H . i s$-walk $x s \Longrightarrow G . i s$-walk xs
unfolding H.is-walk-def G.is-walk-def using verts-ss edges-ss by blast
lemma is-closed-walk: H.is-closed-walk xs \Longrightarrow G.is-closed-walk xs unfolding H.is-closed-walk-def G.is-closed-walk-def using is-walk by blast
lemma is-gen-path: H.is-gen-path $p \Longrightarrow$ G.is-gen-path p unfolding H.is-gen-path-def G.is-gen-path-def using is-walk by blast
lemma connecting-path: H.connecting-path $u v p \Longrightarrow G . c o n n e c t i n g-p a t h ~ u v p$ unfolding H.connecting-path-def G.connecting-path-def using is-gen-path by blast
lemma is-cycle: H.is-cycle $c \Longrightarrow$ G.is-cycle c
unfolding H.is-cycle-def G.is-cycle-def using is-closed-walk by blast
lemma is-cycle2: H.is-cycle2 $c \Longrightarrow$ G.is-cycle2 c
unfolding H.is-cycle2-def G.is-cycle2-def using is-cycle by blast
lemma vert-connected: H.vert-connected $u v \Longrightarrow G$.vert-connected $u v$ unfolding H.vert-connected-def G.vert-connected-def using connecting-path by blast
lemma is-connected-set: H.is-connected-set $V^{\prime} \Longrightarrow$ G.is-connected-set V^{\prime} unfolding H.is-connected-set-def G.is-connected-set-def using vert-connected by blast
end
lemma (in graph-system) subgraph-remove-vertex: remove-vertex $v=\left(V^{\prime}, E^{\prime}\right) \Longrightarrow$ subgraph $V^{\prime} E^{\prime} V E$
using wellformed unfolding remove-vertex-def vincident-def by (unfold-locales, auto)

1.7 Connectivity

```
lemma (in ulgraph) connecting-path-connected-set:
    assumes conn-path: connecting-path uvp
    shows is-connected-set (set p)
proof-
    have }\forallw\in\mathrm{ set p. vert-connected }u
    proof
            fix w assume w\in set p
            then obtain xs ys where p=xs@[w]@ys using split-list by fastforce
            then have connecting-path u w (xs@[w]) using conn-path unfolding connect-
ing-path-def using is-gen-path-prefix by (auto simp: hd-append)
            then show vert-connected u w unfolding vert-connected-def by blast
    qed
                            then show ?thesis using vert-connected-rev vert-connected-trans unfolding
is-connected-set-def by blast
qed
lemma (in ulgraph) vert-connected-neighbors:
    assumes {v,u}\inE
    shows vert-connected vu
proof-
    have connecting-path v u [v,u] unfolding connecting-path-def is-gen-path-def
is-walk-def using assms wellformed by auto
    then show ?thesis unfolding vert-connected-def by auto
qed
lemma (in ulgraph) connected-empty-E:
    assumes empty: E={}
        and connected: vert-connected uv
    shows }u=
proof (rule ccontr)
    assume u\not=v
    then obtain p where conn-path: connecting-path u v p using connected un-
folding vert-connected-def by blast
    then obtain e where e\in set (walk-edges p) using <u\not=v\rangle connecting-path-length-bound
unfolding walk-length-def by fastforce
    then have }e\inE\mathrm{ using conn-path unfolding connecting-path-def is-gen-path-def
is-walk-def by blast
    then show False using empty by blast
qed
```

lemma (in fin-ulgraph) degree-0-not-connected:
assumes degree-0: degree $v=0$
and $u \neq v$
shows \neg vert-connected $v u$
proof
assume connected: vert-connected $v u$
then obtain p where conn-path: connecting-path vupunfolding vert-connected-def by blast
then have walk-length $p \geq 1$ using $\langle u \neq v\rangle$ connecting-path-length-bound by metis then have length $p \geq 2$ using walk-length-conv by simp
then obtain $w p^{\prime}$ where $p=v \# w \# p^{\prime}$ using walk-length-conv conn-path unfolding connecting-path-def
by (metis assms(2) is-gen-path-def is-walk-not-empty2 last-ConsL list.collapse)
then have inE: $\{v, w\} \in E$ using conn-path unfolding connecting-path-def is-gen-path-def is-walk-def by simp then have $\{v, w\} \in$ incident-edges v unfolding incident-edges-def vincident-def by simp
then show False using degree0-inc-edges-empt-iff fin-edges degree-0 by blast
qed
lemma (in fin-connected-ulgraph) degree-not-0:
assumes card $V \geq 2$
and inV: $v \in V$
shows degree $v \neq 0$
proof-
obtain u where $u \in V$ and $u \neq v$ using assms
by (metis card-eq-0-iff card-le-Suc0-iff-eq less-eq-Suc-le nat-less-le not-less-eq-eq numeral-2-eq-2)
then show ?thesis using degree-0-not-connected in V vertices-connected by blast qed
lemma (in connected-ulgraph) V - E-empty: $E=\{ \} \Longrightarrow \exists v . V=\{v\}$
using connected-empty-E connected not-empty unfolding is-connected-set-def by (metis ex-in-conv insert-iff $m k$-disjoint-insert)
lemma (in connected-ulgraph) vert-connected-remove-edge:
assumes $e:\{u, v\} \in E$
shows $\forall w \in V$. ulgraph.vert-connected $V(E-\{\{u, v\}\}) w u \vee$ ulgraph.vert-connected $V(E-\{\{u, v\}\}) w v$

proof

fix w assume $w \in V$
interpret $g^{\prime}:$ ulgraph $V E-\{\{u, v\}\}$ using wellformed edge-size by (unfold-locales, auto)
have in $V: u \in V v \in V$ using e wellformed by auto
obtain p where conn-path: connecting-path $w v p$ using connected in $V\langle w \in V\rangle$
unfolding is-connected-set-def vert-connected-def by blast
then show g^{\prime}.vert-connected $w u \vee g^{\prime}$.vert-connected $w v$ proof (cases $\{u, v\} \in$ set (walk-edges p))
case True
assume walk-edge: $\{u, v\} \in \operatorname{set}($ walk-edges $p)$
then show ?thesis
proof (cases $w=v$)
case True
then show ?thesis using in $V g^{\prime}$.vert-connected-id by blast
next
case False
then have distinct: distinct p using conn-path by (simp add: connect-ing-path-def is-gen-path-distinct)
have $u \in$ set p using walk-edge walk-edges-in-verts by blast
obtain $x s$ ys where p-split: $p=x s @ u \# v \# y s \vee p=x s @ v \# u \# y s$
using split-walk-edge [OF walk-edge] by blast
have v-notin-ys: $v \notin$ set ys using distinct p-split by auto
have last $p=v$ using conn-path unfolding connecting-path-def by simp
then have $p: p=(x s @[u]) @[v]$ using v-notin-ys p-split last-in-set last-appendR
by (metis append.assoc append-Cons last.simps list.discI self-append-conv2)
then have conn-path-u: connecting-path $w u(x s @[u])$ using connecting-path-append conn-path by fastforce
have $v \notin$ set $(x s @[u])$ using p distinct by auto
then have $\{u, v\} \notin$ set (walk-edges (xs@[u])) using walk-edges-in-verts by
blast
then have g^{\prime}.connecting-path $w u(x s @[u])$ using conn-path- u
unfolding g^{\prime}.connecting-path-def connecting-path-def g^{\prime}.is-gen-path-def
is-gen-path-def g^{\prime}.is-walk-def is-walk-def by blast
then show ?thesis unfolding g^{\prime}.vert-connected-def by blast
qed
next
case False
then have g^{\prime}.connecting-path $w v p$ using conn-path
unfolding g^{\prime}.connecting-path-def connecting-path-def g^{\prime}.is-gen-path-def is-gen-path-def g^{\prime}.is-walk-def is-walk-def by blast
then show ?thesis unfolding $g^{\prime} \cdot v e r t-c o n n e c t e d-d e f$ by blast qed
qed
lemma (in ulgraph) vert-connected-remove-cycle-edge:
assumes cycle: is-cycle2 ($u \# v \# x s$)
shows ulgraph.vert-connected $V(E-\{\{u, v\}\}) u v$
proof -
interpret g^{\prime} : ulgraph $V E-\{\{u, v\}\}$ using wellformed edge-size by (unfold-locales, auto)
have conn-path: connecting-path $v u(v \# x s)$ using cycle is-cycle-connecting-path
unfolding is-cycle2-def by blast
have $\{u, v\} \notin$ set (walk-edges $(v \# x s))$ using cycle unfolding is-cycle2-def by simp
then have g^{\prime}.connecting-path $v u(v \# x s)$ using conn-path
unfolding g^{\prime}.connecting-path-def connecting-path-def g^{\prime}.is-gen-path-def is-gen-path-def g^{\prime}.is-walk-def is-walk-def by blast
then show ?thesis using g^{\prime}.vert-connected-rev unfolding g^{\prime}.vert-connected-def by blast
qed
lemma (in connected-ulgraph) connected-remove-cycle-edges:
assumes cycle: is-cycle2 ($u \# v \# x s$)
shows connected-ulgraph $V(E-\{\{u, v\}\})$
proof-
interpret $g^{\prime}:$ ulgraph $V E-\{\{u, v\}\}$ using wellformed edge-size by (unfold-locales, auto)
have g^{\prime}.vert-connected $x y$ if $i n V: x \in V y \in V$ for $x y$
proof-
have $e:\{u, v\} \in E$ using cycle unfolding is-cycle2-def is-cycle-alt is-walk-def
by auto
show ?thesis using vert-connected-remove-cycle-edge[OF cycle] vert-connected-remove-edge[OF
e] g^{\prime}.vert-connected-trans $g^{\prime} \cdot$ vert-connected-rev in V by metis
qed
then show ?thesis using not-empty by (unfold-locales, auto simp: g^{\prime}.is-connected-set-def)
qed
lemma (in connected-ulgraph) connected-remove-leaf:
assumes degree: degree $l=1$
and remove-vertex: remove-vertex $l=\left(V^{\prime}, E^{\prime}\right)$
shows ulgraph.is-connected-set $V^{\prime} E^{\prime} V^{\prime}$
proof-
interpret g^{\prime} : ulgraph $V^{\prime} E^{\prime}$ using remove-vertex wellformed edge-size
unfolding remove-vertex-def vincident-def by (unfold-locales, auto)
have $V^{\prime}: V^{\prime}=V-\{l\}$ using remove-vertex unfolding remove-vertex-def by simp
have $E^{\prime}: E^{\prime}=\{e \in E . l \notin e\}$ using remove-vertex unfolding remove-vertex-def vincident-def by simp
have $u \in V^{\prime} \Longrightarrow v \in V^{\prime} \Longrightarrow g^{\prime}$.vert-connected $u v$ for $u v$
proof-
assume in $V^{\prime}: u \in V^{\prime} v \in V^{\prime}$
then have in $V: u \in V v \in V$ using remove-vertex unfolding remove-vertex-def
by auto
then obtain p where conn-path: connecting-path $u v p$ using vertices-connected-path
by blast
show ?thesis
proof (cases $u=v$)
case True
then show ?thesis using g^{\prime}.vert-connected-id in V^{\prime} by simp
next
case False
then have distinct: distinct p using conn-path unfolding connecting-path-def is-gen-path-def by blast
have l-notin- $p: l \notin$ set p
proof
assume $l-i n-p: l \in \operatorname{set} p$
then obtain xs ys where $p: p=x s @ l \# y s$ by (meson split-list)
have $l \neq u l \neq v$ using in V^{\prime} remove-vertex unfolding remove-vertex-def by auto
then have $x s \neq[]$ using p conn-path unfolding connecting-path-def by fastforce
then obtain x where last-xs: last $x s=x$ by simp
then have $x \neq l$ using distinct $p\langle x s \neq[]\rangle$ by auto
have $\{x, l\} \in$ set (walk-edges p) using walk-edges-append-union $\langle x s \neq[]\rangle$

unfolding p

by (simp add: walk-edges-append-union last-xs)
then have $x l$-incident: $\{x, l\} \in$ incident-sedges l using conn-path $\langle x \neq l\rangle$
unfolding connecting-path-def is-gen-path-def is-walk-def incident-sedges-def vincident-def by auto
have $y s \neq[]$ using $\langle l \neq v\rangle p$ conn-path unfolding connecting-path-def by fastforce
then obtain $y y s^{\prime}$ where ys: ys $=y \# y s^{\prime}$ by (meson list.exhaust)
then have $y \neq l$ using distinct p by auto
then have $\{y, l\} \in$ set (walk-edges p) using p ys conn-path walk-edges-append-ss1 by fastforce
then have yl-incident: $\{y, l\} \in$ incident-sedges l using conn-path $\langle y \neq l\rangle$ unfolding connecting-path-def is-gen-path-def is-walk-def incident-sedges-def vincident-def by auto
have card-loops: card (incident-loops l) $=0$ using degree unfolding de-gree-def by auto
have $x \neq y$ using distinct last-xs $\langle x s \neq[]\rangle$ unfolding p ys by fastforce
then have $\{x, l\} \neq\{y, l\}$ by (metis doubleton-eq-iff)
then have card (incident-sedges l) $\neq 1$ using xl-incident yl-incident
by (metis card-1-singletonE singletonD)
then have degree $l \neq 1$ using card-loops unfolding degree-def by simp
then show False using degree ..
qed
then have set (walk-edges p) $\subseteq E^{\prime}$ using walk-edges-in-verts conn-path E^{\prime} unfolding connecting-path-def is-gen-path-def is-walk-def by blast
then have g^{\prime}.connecting-path $u v p$ using conn-path V^{\prime} l-notin-p
unfolding g^{\prime}.connecting-path-def connecting-path-def g^{\prime}.is-gen-path-def is-gen-path-def g^{\prime}.is-walk-def is-walk-def by blast
then show ?thesis unfolding g^{\prime}.vert-connected-def by blast qed
qed
then show ?thesis unfolding g^{\prime}.is-connected-set-def by blast
qed
lemma (in connected-sgraph) connected-two-graph-edges:
assumes $u \neq v$
and $V: V=\{u, v\}$
shows $E=\{\{u, v\}\}$
proof -
obtain p where conn-path: connecting-path $u v p$ using V vertices-connected-path by blast
then obtain p^{\prime} where $p: p=u \# p^{\prime} @[v]$ using $\langle u \neq v\rangle$ unfolding connect-ing-path-def is-gen-path-def
by (metis append-Nil is-walk-not-empty2 list.exhaust-sel list.sel(1) snoc-eq-iff-butlast tl-append2)
have distinct p using conn-path $\langle u \neq v\rangle$ unfolding connecting-path-def is-gen-path-def by auto
then have $p^{\prime}=[]$ using V conn-path is-gen-path-wf append-is-Nil-conv last-in-set self-append-conv2
unfolding connecting-path-def p by fastforce
then have edge-in- $E:\{u, v\} \in E$ using $\langle u \neq v\rangle$ conn-path
unfolding p connecting-path-def is-gen-path-def is-walk-def by simp
have $E \subseteq\{\},\{u\},\{v\},\{u, v\}\}$ using wellformed V by blast
then show ?thesis using two-edges edge-in- E by fastforce
qed

1.8 Connected components

context ulgraph
begin
abbreviation vert-connected-rel $\equiv\{(u, v)$. vert-connected $u v\}$
definition connected-components :: 'a set set where connected-components $=V / /$ vert-connected-rel
definition connected-component-of :: ' $a \Rightarrow$ ' a set where connected-component-of $v=$ vert-connected-rel " $\{v\}$
lemma vert-connected-rel-on- V : vert-connected-rel $\subseteq V \times V$
using vert-connected-wf by auto
lemma vert-connected-rel-refl: refl-on V vert-connected-rel
unfolding refl-on-def using vert-connected-rel-on-V vert-connected-id by simp
lemma vert-connected-rel-sym: sym vert-connected-rel
unfolding sym-def using vert-connected-rev by simp
lemma vert-connected-rel-trans: trans vert-connected-rel
unfolding trans-def using vert-connected-trans by blast
lemma equiv-vert-connected: equiv V vert-connected-rel
unfolding equiv-def using vert-connected-rel-refl vert-connected-rel-sym vert-connected-rel-trans by blast
lemma connected-component-non-empty: $V^{\prime} \in$ connected-components $\Longrightarrow V^{\prime} \neq$ \{\}
unfolding connected-components-def using equiv-vert-connected in-quotient-imp-non-empty
lemma connected-component-connected: $V^{\prime} \in$ connected-components $\Longrightarrow i s$-connected-set V^{\prime} unfolding connected-components-def is-connected-set-def using quotient-eq-iff[OF equiv-vert-connected, of $V^{\prime} V^{\dagger}$ by simp
lemma connected-component-wf: $V^{\prime} \in$ connected-components $\Longrightarrow V^{\prime} \subseteq V$
by (simp add: connected-component-connected is-connected-set-wf)
lemma connected-component-of-self: $v \in V \Longrightarrow v \in$ connected-component-of v unfolding connected-component-of-def using vert-connected-id by blast
lemma conn-comp-of-conn-comps: $v \in V \Longrightarrow$ connected-component-of $v \in$ con-nected-components
unfolding connected-components-def quotient-def connected-component-of-def by blast
lemma Un-connected-components: connected-components $=$ connected-component-of ‘ V
unfolding connected-components-def connected-component-of-def quotient-def by blast
lemma connected-component-subgraph: $V^{\prime} \in$ connected-components \Longrightarrow subgraph V^{\prime} (induced-edges V^{\prime}) $V E$
using induced-is-subgraph connected-component-wf by simp
lemma connected-components-connected2:
assumes conn-comp: $V^{\prime} \in$ connected-components
shows ulgraph.is-connected-set $V^{\prime}\left(\right.$ induced-edges $\left.V^{\prime}\right) V^{\prime}$
proof-
interpret subg: subgraph V^{\prime} induced-edges $V^{\prime} V E$ using connected-component-subgraph
conn-comp by simp
interpret g^{\prime} : ulgraph V^{\prime} induced-edges V^{\prime} using subg.is-subgraph-ulgraph ul-graph-axioms by simp
have $\bigwedge u v . u \in V^{\prime} \Longrightarrow v \in V^{\prime} \Longrightarrow g^{\prime}$.vert-connected $u v$
proof-
fix $u v$ assume $u \in V^{\prime} v \in V^{\prime}$
then obtain p where conn-path: connecting-path uv v using connected-component-connected conn-comp unfolding is-connected-set-def vert-connected-def by blast
then have u-in-p: $u \in$ set p unfolding connecting-path-def is-gen-path-def is-walk-def by force
then have set-p: set $p \subseteq V^{\prime}$ using connecting-path-connected-set[OF conn-path] in-quotient-imp-closed [OF equiv-vert-connected] conn-comp $\left\langle u \in V^{\prime}\right\rangle$
unfolding is-connected-set-def connected-components-def by blast
then have set $\left(g^{\prime} \cdot\right.$ walk-edges $\left.p\right) \subseteq$ induced-edges V^{\prime}
using walk-edges-induced-edges induced-edges-mono conn-path unfolding connecting-path-def is-gen-path-def by blast
then have g^{\prime}.connecting-path $u v p$
using set-p conn-path
unfolding g^{\prime}.connecting-path-def g^{\prime}.connecting-path-def g^{\prime}.is-gen-path-def g^{\prime}.is-walk-def
unfolding connecting-path-def connecting-path-def is-gen-path-def is-walk-def by auto
then show g^{\prime}.vert-connected $u v$ unfolding g^{\prime}.vert-connected-def by blast qed
then show ?thesis unfolding g^{\prime}.is-connected-set-def by blast
qed
lemma vert-connected-connected-component: $C \in$ connected-components $\Longrightarrow u \in$ $C \Longrightarrow$ vert-connected $u v \Longrightarrow v \in C$ unfolding connected-components-def using equiv-vert-connected in-quotient-imp-closed by fastforce
lemma connected-components-connected-ulgraphs:
assumes conn-comp: $V^{\prime} \in$ connected-components
shows connected-ulgraph V^{\prime} (induced-edges V^{\prime})
proof-
interpret subg: subgraph V^{\prime} induced-edges $V^{\prime} V E$ using connected-component-subgraph conn-comp by simp
interpret g^{\prime} : ulgraph V^{\prime} induced-edges V^{\prime} using subg.is-subgraph-ulgraph ul-graph-axioms by simp
show ?thesis using conn-comp connected-component-non-empty connected-components-connected2 by (unfold-locales, auto)
qed
lemma connected-components-partition-on-V: partition-on V connected-components using partition-on-quotient equiv-vert-connected unfolding connected-components-def by blast
lemma Union-connected-components: \bigcup connected-components $=V$
using connected-components-partition-on- V unfolding partition-on-def by blast
lemma disjoint-connected-components: disjoint connected-components
using connected-components-partition-on- V unfolding partition-on-def by blast
lemma Union-induced-edges-connected-components: \bigcup (induced-edges'connected-components)

$=E$

proof-
have $\exists C \in$ connected-components. $e \in$ induced-edges C if $e \in E$ for e
proof -
obtain $u v$ where $e: e=\{u, v\}$ by (meson $\langle e \in E\rangle$ obtain-edge-pair-adj)
then have vert-connected $u v$ using that vert-connected-neighbors by blast
then have $v \in$ connected-component-of u unfolding connected-component-of-def by simp
then have $e \in$ induced-edges (connected-component-of u) using connected-component-of-self wellformed $\langle e \in E\rangle$ unfolding e induced-edges-def by auto
then show ?thesis using conn-comp-of-conn-comps e wellformed $\langle e \in E\rangle$ by
then show ?thesis using connected-component-wf induced-edges-ss by blast
qed
lemma connected-components-empty- E :
assumes empty: $E=\{ \}$
shows connected-components $=\{\{v\} \mid v . v \in V\}$
proof-
have $\forall v \in V$. vert-connected-rel" $\{v\}=\{v\}$ using vert-connected-id connected-empty- E
empty by auto
then show ?thesis unfolding connected-components-def quotient-def by auto qed
lemma connected-iff-connected-components:
assumes non-empty: $V \neq\{ \}$
shows i s-connected-set $V \longleftrightarrow$ connected-components $=\{V\}$
proof
assume is-connected-set V
then have $\forall v \in V$. connected-component-of $v=V$ unfolding connected-component-of-def is-connected-set-def using vert-connected-wf by blast
then show connected-components $=\{V\}$ unfolding quotient-def connected-component-of-def connected-components-def using non-empty by auto next
show connected-components $=\{V\} \Longrightarrow$ is-connected-set V
using connected-component-connected unfolding connected-components-def is-connected-set-def by auto
qed
end
lemma (in connected-ulgraph) connected-components[simp]: connected-components $=\{V\}$
using connected connected-iff-connected-components not-empty by simp
lemma (in fin-ulgraph) finite-connected-components: finite connected-components unfolding connected-components-def using finV vert-connected-rel-on-V finite-quotient by blast
lemma (in fin-ulgraph) finite-connected-component: $C \in$ connected-components \Longrightarrow finite C
using connected-component-wf finV finite-subset by blast
lemma (in connected-ulgraph) connected-components-remove-edges:
assumes edge: $\{u, v\} \in E$
shows ulgraph.connected-components $V(E-\{\{u, v\}\})=$
\{ulgraph.connected-component-of $V(E-\{\{u, v\}\}) u$, ulgraph.connected-component-of
$V(E-\{\{u, v\}\}) v\}$
proof -
interpret $g^{\prime}:$ ulgraph $V E-\{\{u, v\}\}$ using wellformed edge-size by (unfold-locales, auto)
have in $V: u \in V v \in V$ using edge wellformed by auto
have $\forall w \in V . g^{\prime}$.connected-component-of $w=g^{\prime}$.connected-component-of $u \vee$
g^{\prime}.connected-component-of $w=g^{\prime}$.connected-component-of v
using vert-connected-remove-edge[OF edge] g^{\prime}.equiv-vert-connected equiv-class-eq
unfolding g^{\prime}.connected-component-of-def by fast
then show? ?thesis unfolding g^{\prime}.connected-components-def quotient-def g^{\prime}.connected-component-of-def using in V by auto
qed
lemma (in ulgraph) connected-set-connected-component:
assumes conn-set: is-connected-set C
and non-empty: $C \neq\{ \}$
and $\bigwedge u v .\{u, v\} \in E \Longrightarrow u \in C \Longrightarrow v \in C$
shows $C \in$ connected-components
proof-
have walk-subset- C : is-walk $x s \Longrightarrow h d x s \in C \Longrightarrow$ set $x s \subseteq C$ for $x s$
proof (induction xs rule: rev-induct)
case Nil
then show ?case by auto
next
case (snoc x xs)
then show ?case
proof (cases xs rule: rev-exhaust)
case Nil
then show ?thesis using snoc by auto
next
fix ys y assume $x s: x s=y s @[y]$
then have $i s$-walk $x s$ using is-walk-prefix snoc(2) by blast
then have set-xs-C: set $x s \subseteq C$ using snoc xs is-walk-not-empty2 hd-append2
by metis
have $y x-E:\{y, x\} \in E$ using $\operatorname{snoc}(2)$ walk-edges-app unfolding $x s$ is-walk-def
by simp
have $x \in C$ using $\operatorname{assms}(3)[O F \quad y x-E]$ set-xs- C unfolding $x s$ by simp
then show ?thesis using set-xs- C by simp
qed
qed
obtain u where $u \in C$ using non-empty by blast
then have $u \in V$ using conn-set is-connected-set-wf by blast
have $v \in C$ if vert-connected: vert-connected $u v$ for v
proof-
obtain p where connecting-path $u v p$ using vert-connected unfolding vert-connected-def
by blast
then show ?thesis using walk-subset-C[of $p]\langle u \in C\rangle$ is-walk-def last-in-set
unfolding connecting-path-def is-gen-path-def by auto
qed
then have connected-component-of $u=C$ using assms $\langle u \in C\rangle$ unfolding con-
nected-component-of-def is-connected-set-def by auto
then show ?thesis using conn-comp-of-conn-comps $\langle u \in V\rangle$ by blast qed
lemma (in ulgraph) subset-conn-comps-if-Union:
assumes A-subset-conn-comps: $A \subseteq$ connected-components
and $U n-A: \bigcup A=V$
shows $A=$ connected-components
proof (rule ccontr)
assume $A \neq$ connected-components
then obtain C where C-conn-comp: $C \in$ connected-components $C \notin A$ using A-subset-conn-comps by blast
then obtain v where $v \in C$ using connected-component-non-empty by blast
then have $v \notin V$ using A-subset-conn-comps Un- A connected-components-partition-on- V
C-conn-comp
using partition-onD4 by fastforce
then show False using C-conn-comp connected-component-wf $\langle v \in C\rangle$ by auto qed
lemma (in connected-ulgraph) exists-adj-vert-removed:
assumes $v \in V$
and remove-vertex: remove-vertex $v=\left(V^{\prime}, E^{\prime}\right)$
and conn-component: $C \in$ ulgraph.connected-components $V^{\prime} E^{\prime}$
shows $\exists u \in C$. vert-adj $v u$
proof-
have $V^{\prime}: V^{\prime}=V-\{v\}$ and $E^{\prime}: E^{\prime}=\{e \in E . v \notin e\}$ using remove-vertex unfolding remove-vertex-def vincident-def by auto
interpret subg: subgraph $V-\{v\}\{e \in E . v \notin e\} V E$ using subgraph-remove-vertex remove-vertex $V^{\prime} E^{\prime}$ by metis
interpret $g^{\prime}:$ ulgraph $V-\{v\}\{e \in E . v \notin e\}$ using subg.is-subgraph-ulgraph ulgraph-axioms by blast
obtain c where $c \in C$ using g^{\prime}.connected-component-non-empty conn-component $V^{\prime} E^{\prime}$ by blast
then have $c \in V^{\prime}$ using g^{\prime}.connected-component-wf conn-component $V^{\prime} E^{\prime}$ by blast
then have $c \in V$ using subg.verts-ss V^{\prime} by blast
then obtain p where conn-path: connecting-path $v c p$ using $\langle v \in V\rangle$ ver-tices-connected-path by blast
have $v \neq c$ using $\left\langle c \in V^{\prime}\right\rangle$ remove-vertex unfolding remove-vertex-def by blast
then obtain $u p^{\prime}$ where $p: p=v \# u \# p^{\prime}$ using conn-path
by (metis connecting-path-def is-gen-path-def is-walk-def last.simps list.exhaust-sel)
then have conn-path-uc: connecting-path $u c\left(u \# p^{\prime}\right)$ using conn-path connect-ing-path-tl unfolding p by blast
have v-notin- $p^{\prime}: v \notin$ set $\left(u \# p^{\prime}\right)$ using conn-path $\langle v \neq c\rangle$ unfolding p connect-
ing-path-def is-gen-path-def by auto
then have g^{\prime}.connecting-path $u c\left(u \# p^{\prime}\right)$ using conn-path-uc v-notin- p^{\prime} walk-edges-in-verts
unfolding g^{\prime}.connecting-path-def connecting-path-def g^{\prime}.is-gen-path-def is-gen-path-def
g^{\prime}.is-walk-def is-walk-def
by blast
then have g^{\prime}.vert-connected $u c$ unfolding g^{\prime}.vert-connected-def by blast

```
    then have }u\inC\mathrm{ using {c&C` conn-component g'.vert-connected-connected-component
g'.vert-connected-rev unfolding V V' E' by blast
    have vert-adj v u using conn-path unfolding p connecting-path-def is-gen-path-def
is-walk-def vert-adj-def by auto
    then show ?thesis using <u\inC` by blast
qed
```


1.9 Trees

```
locale tree \(=\) fin-connected-ulgraph + assumes no-cycles: \(\neg\) is-cycle2 \(c\)
begin
sublocale fin-connected-sgraph using alt-edge-size no-cycles loop-is-cycle2 card-1-singletonE connected by (unfold-locales, metis, simp)
end
locale spanning-tree \(=\) ulgraph \(V E+T\) : tree \(V T\) for \(V E T+\) assumes subgraph: \(T \subseteq E\)
lemma (in fin-connected-ulgraph) has-spanning-tree: \(\exists T\). spanning-tree \(V E T\)
using fin-connected-ulgraph-axioms
proof (induction card E arbitrary: E)
case 0
then interpret \(g\) : fin-connected-ulgraph \(V\) edges by blast
have edges: edges \(=\{ \}\) using g.fin-edges 0 by simp
then obtain \(v\) where \(V: V=\{v\}\) using \(g\). \(V\)-E-empty by blast
interpret \(g^{\prime}:\) fin-connected-sgraph \(V\) edges using \(g\).connected edges by (unfold-locales, auto)
interpret \(t\) : tree \(V\) edges using g.length-cycle-card- \(V\) g'.cycle2-min-length g.is-cycle2-def \(V\) by (unfold-locales, fastforce)
have spanning-tree \(V\) edges edges by (unfold-locales, auto)
then show? case by blast
next
case (Suc m)
then interpret \(g\) : fin-connected-ulgraph \(V\) edges by blast
show ?case
proof (cases \(\forall c . \neg\) g.is-cycle2 \(c\) )
case True
then have spanning-tree \(V\) edges edges by (unfold-locales, auto)
then show ?thesis by blast
next
case False
then obtain \(c\) where cycle: g.is-cycle2 \(c\) by blast
then have length \(c \geq 2\) unfolding g.is-cycle2-def g.is-cycle-alt walk-length-conv by auto
then obtain \(u v x s\) where \(c: c=u \# v \# x s\) by (metis Suc-le-length-iff \(n u\) -
```

```
meral-2-eq-2)
    then have g': fin-connected-ulgraph V (edges - {{u,v}}) using finV g.connected-remove-cycle-edges
            by (metis connected-ulgraph-def cycle fin-connected-ulgraph-def fin-graph-system.intro
fin-graph-system-axioms.intro fin-ulgraph.intro ulgraph-def)
            have {u,v}\in edges using cycle unfolding c g.is-cycle2-def g.is-cycle-alt
g.is-walk-def by auto
            then obtain T where spanning-tree V (edges - {{u,v}}) T using Suc
card-Diff-singleton g' by fastforce
    then have spanning-tree V edges T unfolding spanning-tree-def spanning-tree-axioms-def
using g.ulgraph-axioms by blast
    then show?thesis by blast
    qed
qed
context tree
begin
definition leaf :: ' }a=>\mathrm{ bool where
    leaf v}\longleftrightarrow\mathrm{ degree }v=
definition leaves :: 'a set where
    leaves}={v.leaf v
definition non-trivial :: bool where
    non-trivial }\longleftrightarrow\mathrm{ card V 2 2
lemma obtain-2-verts:
    assumes non-trivial
    obtains uv where u\inVv\inVu\not=v
    using assms unfolding non-trivial-def
    by (meson diameter-obtains-path-vertices)
lemma leaf-in-V: leaf v\Longrightarrowv\inV
    unfolding leaf-def using degree-none by force
lemma exists-leaf:
    assumes non-trivial
    shows }\existsv\inV\mathrm{ . leaf v
proof-
    obtain p where is-path: is-path p and longest-path: }\foralls.is-path s\longrightarrowlength 
\leqlength p
    using obtain-longest-path
    by (metis One-nat-def assms connected connected-sgraph-axioms connected-sgraph-def
degree-0-not-connected
            is-connected-setD is-edge-or-loop is-isolated-vertex-def is-isolated-vertex-degree0
is-loop-def
            n-not-Suc-n numeral-2-eq-2 obtain-2-verts sgraph.two-edges vert-adj-def)
    then obtain lvxs where p: p=l#v#xs
    by (metis is-open-walk-def is-path-def is-walk-not-empty2 last-ConsL list.exhaust-sel)
```

then have lv-incident: $\{l, v\} \in$ incident-edges l using is-path
unfolding incident-edges-def vincident-def is-path-def is-open-walk-def is-walk-def by simp
have $\wedge e . e \in E \Longrightarrow e \neq\{l, v\} \Longrightarrow e \notin$ incident-edges l
proof
fix e
assume $e-i n-E: e \in E$
and not-lv: $e \neq\{l, v\}$
and incident: $e \in$ incident-edges l
obtain u where e : $e=\{l, u\}$ using e-in-E obtain-edge-pair-adj incident unfolding incident-edges-def vincident-def by auto
then have $u \neq l$ using e-in- E edge-vertices-not-equal by blast
have $u \neq v$ using e not-lv by auto
have u-in- $V: u \in V$ using $e-i n-E$ e wellformed by blast
then show False
proof (cases $u \in$ set p)
case True
then have $u \in$ set $x s$ using $\langle u \neq l\rangle\langle u \neq v\rangle p$ by simp
then obtain ys zs where $x s=y s @ u \# z s$ by (meson split-list)
then have is-cycle2 (u\#l\#v\#ys@[u])
using is-path $\langle u \neq l\rangle\langle u \neq v\rangle$ e-in-E distinct-edgesI walk-edges-append-ss2
walk-edges-in-verts
unfolding is-cycle2-def is-cycle-defp is-path-def is-closed-walk-def is-open-walk-def is-walk-def e walk-length-conv
by (auto, metis insert-commute, fastforce+)
then show ?thesis using no-cycles by blast
next
case False
then have is-path ($u \# p$) using is-path u-in- V e-in- E
unfolding is-path-def is-open-walk-def is-walk-def e p by (auto, (metis
insert-commute)+)
then show False using longest-path by auto
qed
qed
then have incident-edges $l=\{\{l, v\}\}$ using $l v$-incident unfolding incident-edges-def by blast
then have leaf: leaf l unfolding leaf-def alt-degree-def by simp
then show ?thesis using leaf-in- V by blast
qed
lemma tree-remove-leaf:
assumes leaf: leaf l
and remove-vertex: remove-vertex $l=\left(V^{\prime}, E^{\prime}\right)$
shows tree $V^{\prime} E^{\prime}$
proof-
interpret g^{\prime} : ulgraph $V^{\prime} E^{\prime}$ using remove-vertex wellformed edge-size unfolding
remove-vertex-def vincident-def
by (unfold-locales, auto)
interpret subg: ulsubgraph $V^{\prime} E^{\prime} V E$ using subgraph-remove-vertex ulgraph-axioms

```
remove-vertex
    unfolding ulsubgraph-def by blast
    have }\mp@subsup{V}{}{\prime}:\mp@subsup{V}{}{\prime}=V-{l}\mathrm{ using remove-vertex unfolding remove-vertex-def by
blast
    have }\mp@subsup{E}{}{\prime}:\mp@subsup{E}{}{\prime}={e\inE.l\not\ine} using remove-vertex unfolding remove-vertex-de
vincident-def by blast
    have }\existsv\inV.v\not=l\mathrm{ using leaf unfolding leaf-def
    by (metis One-nat-def is-independent-alt is-isolated-vertex-def is-isolated-vertex-degree0
                        n-not-Suc-n radius-obtains singletonI singleton-independent-set)
    then have }\mp@subsup{V}{}{\prime}\not={}\mathrm{ using remove-vertex unfolding remove-vertex-def vinci-
dent-def by blast
    then have g'.is-connected-set V' using connected-remove-leaf leaf remove-vertex
unfolding leaf-def by blast
    then show ?thesis using \langleV'\not={}> finV subg.is-cycle2 V V' E' no-cycles by (unfold-locales,
auto)
qed
end
lemma tree-induct [case-names singolton insert, induct set: tree]:
    assumes tree: tree V E
        and trivial: \v. tree {v} {}\LongrightarrowP{v} {}
    and insert: \lvVE. tree VE\LongrightarrowPVE\Longrightarrowl\not\existsV\Longrightarrowv\inV\Longrightarrow{l,v}\not\in
E\Longrightarrow tree.leaf (insert {l,v}E)l\LongrightarrowP(insert lV)(insert {l,v}E)
    shows PVE
    using tree
proof (induction card V arbitrary: V E)
    case 0
    then interpret tree V E by simp
    have}V={} using finV O(1) by sim
    then show ?case using not-empty by blast
next
    case (Suc n)
    then interpret t: tree V E by simp
    show ?case
    proof (cases card V=1)
        case True
        then obtain v where V:V={v} using card-1-singletonE by blast
        then have E={}
        using True subset-antisym t.edge-incident-vert t.vincident-def t.singleton-not-edge
t.wellformed
            by fastforce
        then show ?thesis using trivial t.tree-axioms V by simp
    next
        case False
        then have card-V: card V\geq2 using Suc by simp
        then obtain l where leaf: t.leaf l using t.exists-leaf t.non-trivial-def by blast
        then obtain e where inc-edges:t.incident-edges l={e}
            unfolding t.leaf-def t.alt-degree-def using card-1-singletonE by blast
```

```
    then have e-in-E: e\inE unfolding t.incident-edges-def by blast
    then obtain u where e:e={l,u} using t.two-edges card-2-iff inc-edges
unfolding t.incident-edges-def t.vincident-def
    by (metis (no-types, lifting) empty-iff insert-commute insert-iff mem-Collect-eq)
    then have l\not=u using e-in-E t.edge-vertices-not-equal by blast
    have}u\inV\mathrm{ using e e-in-E t.wellformed by blast
    let ? V'=V - {l}
    let ? E ' = E - {{l,u}}
    have remove-vertex: t.remove-vertex l=(?V',?E')
        using inc-edges e unfolding t.remove-vertex-def t.incident-edges-def by blast
    then have t': tree ? V' ? E' using t.tree-remove-leaf leaf by blast
    have l }\inV\mathrm{ using leaf t.leaf-in-V by blast
    then have P':P?V' ? ' ' using Suc t' by auto
    show ?thesis using insert[OF t' P\ Suc leaf }\langleu\inV\rangle\langlel\not=u\rangle\langlel\inV\rangle\mathrm{ e e-in-E
by (auto, metis insert-Diff)
    qed
qed
context tree
begin
lemma card-V-card-E: card V = Suc (card E)
    using tree-axioms
proof (induction V E)
    case (singolton v)
    then show ?case by auto
next
    case (insert l v V ' E')
    then interpret t': tree V}\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime}\mathrm{ by simp
    show ?case using t'.finV t'.fin-edges insert by simp
qed
end
lemma card-E-treeI:
    assumes fin-conn-sgraph: fin-connected-ulgraph V E
        and card-V-E: card V = Suc (card E)
    shows tree V E
proof-
    interpret G: fin-connected-ulgraph V E using fin-conn-sgraph .
    obtain T where T: spanning-tree V E T using G.has-spanning-tree by blast
    show ?thesis
    proof (cases E =T)
        case True
        then show ?thesis using T unfolding spanning-tree-def by blast
    next
        case False
        then have card E> card T using T G.fin-edges unfolding spanning-tree-def
spanning-tree-axioms-def
```

```
    by (simp add: psubsetI psubset-card-mono)
    then show ?thesis using tree.card-V-card-E T card-V-E unfolding span-
ning-tree-def by fastforce
    qed
qed
context tree
begin
lemma add-vertex-tree:
    assumes v}\not\in
    and w}\in
    shows tree (insert v V)(insert {v,w} E)
proof -
    let ? }\mp@subsup{V}{}{\prime}=\mathrm{ insert v V and ? }\mp@subsup{E}{}{\prime}=\mathrm{ insert {v,w} E
    have cardV: card {v,w} = 2 using card-2-iff assms by auto
    then interpret t': ulgraph ?V V' ?E'
        using wellformed assms two-edges by (unfold-locales, auto)
    interpret subg: ulsubgraph V E?V' ? '' by (unfold-locales, auto)
    have connected: t'.is-connected-set ?V V
        unfolding t'.is-connected-set-def
        using subg.vert-connected t'.vert-connected-neighbors t'.vert-connected-trans
            t'.vert-connected-id vertices-connected t'.ulgraph-axioms ulgraph-axioms assms
t'.vert-connected-rev
    by simp metis
```

then have fin-connected-ulgraph: fin-connected-ulgraph? $V^{\prime} ? E^{\prime}$ using fin V by (unfold-locales, auto)
from assms have $\{v, w\} \notin E$ using wellformed-alt-fst by auto
then have card $? E^{\prime}=S u c$ (card E) using fin-edges card-insert-if by auto
then have card? $V^{\prime}=$ Suc (card $? E^{\prime}$) using card- V-card- E assms wellformed-alt-fst fin V card-insert-if by auto
then show ?thesis using card-E-treeI fin-connected-ulgraph by auto qed
lemma tree-connected-set:
assumes non-empty: $V^{\prime} \neq\{ \}$
and subg: $V^{\prime} \subseteq V$
and connected- V^{\prime} : ulgraph.is-connected-set $V^{\prime}\left(\right.$ induced-edges $\left.V^{\prime}\right) V^{\prime}$
shows tree $V^{\prime}\left(\right.$ induced-edges $\left.V^{\prime}\right)$
proof-
interpret subg: subgraph V^{\prime} induced-edges $V^{\prime} V E$ using induced-is-subgraph subg by simp
interpret g^{\prime} : ulgraph V^{\prime} induced-edges V^{\prime} using subg.is-subgraph-ulgraph ul-
graph-axioms by blast
interpret subg: ulsubgraph V^{\prime} induced-edges $V^{\prime} V E$ by unfold-locales
show ?thesis using connected- V^{\prime} subg.is-cycle2 no-cycles fin V subg non-empty rev-finite-subset by (unfold-locales) (auto, blast)
qed
lemma unique-adj-vert-removed:
assumes $v \in V$
and remove-vertex: remove-vertex $v=\left(V^{\prime}, E^{\prime}\right)$
and conn-component: $C \in$ ulgraph.connected-components $V^{\prime} E^{\prime}$
shows $\exists!u \in C$. vert-adj $v u$
proof-
interpret subg: ulsubgraph $V^{\prime} E^{\prime} V E$ using remove-vertex subgraph-remove-vertex ulgraph-axioms ulsubgraph.intro by metis
interpret g^{\prime} : ulgraph $V^{\prime} E^{\prime}$ using subg.is-subgraph-ulgraph ulgraph-axioms by simp
obtain u where $u \in C$ and adj-vu: vert-adj $v u$ using exists-adj-vert-removed using assms by blast
have $w=u$ if $w \in C$ and $a d j-v w$: vert-adj $v w$ for w
proof (rule ccontr)
assume $w \neq u$
obtain p where g^{\prime}-conn-path: g^{\prime}.connecting-path $w u p$ using $\langle u \in C\rangle\langle w \in C\rangle$ conn-component g^{\prime}.connected-component-connected g^{\prime}.is-connected-setD $g^{\prime} \cdot$ vert-connected-def by blast
then have v-notin- p : $v \notin$ set p using remove-vertex unfolding g^{\prime}.connecting-path-def g^{\prime}.is-gen-path-def g^{\prime}.is-walk-def remove-vertex-def by blast
have conn-path: connecting-path w u p using g^{\prime}-conn-path subg.connecting-path by simp
then obtain p^{\prime} where $p: p=w \# p^{\prime} @[u]$ unfolding connecting-path-def using $\langle w \neq u\rangle$
by (metis hd-Cons-tl last.simps last-rev rev-is-Nil-conv snoc-eq-iff-butlast)
then have walk-edges $(v \# p @[v])=\{v, w\} \#$ walk-edges $\left(\left(w \# p^{\prime}\right) @[u, v]\right)$ by simp
also have $\ldots=\{v, w\} \#$ walk-edges $p @[\{u, v\}]$ unfolding p using walk-edges-app by (metis Cons-eq-appendI)
finally have walk-edges: walk-edges $(v \# p @[v])=\{v, w\} \#$ walk-edges $p @$ [$\{v, u\}]$ by (simp add: insert-commute)
then have is-cycle ($v \# p @[v]$) using conn-path adj-vu adj-vw $\langle w \neq u\rangle\langle v \in V\rangle$ g^{\prime}.walk-length-conv singleton-not-edge v-notin-p
unfolding connecting-path-def is-cycle-def is-gen-path-def is-closed-walk-def is-walk-def p vert-adj-def by auto
then have is-cycle2 ($v \# p @[v]$) using $\langle w \neq u\rangle v$-notin-p walk-edges-in-verts unfolding is-cycle2-def walk-edges
by (auto simp: doubleton-eq-iff is-cycle-alt distinct-edgesI)
then show False using no-cycles by blast
qed
then show ?thesis using $\langle u \in C\rangle a d j-v u$ by blast
qed

```
lemma non-trivial-card-E: non-trivial }\Longrightarrow\mathrm{ card E }\geq
    using card-V-card-E unfolding non-trivial-def by simp
lemma V-Union-E: non-trivial \LongrightarrowV=\bigcupE
    using tree-axioms
proof (induction V E)
    case (singolton v)
    then interpret t: tree {v} {} by simp
    show ?case using singolton unfolding t.non-trivial-def by simp
next
    case (insert lv V' E')
    then interpret t: tree }\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime}\mathrm{ by simp
    show ?case
    proof (cases card V'=1)
        case True
        then have V: V'={v} using insert(3) card-1-singletonE by blast
        then have E: E'}={}\mathrm{ using t.fin-edges t.card-V-card-E by fastforce
        then show ?thesis unfolding E V by simp
    next
        case False
        then have t.non-trivial using t.card-V-card-E unfolding t.non-trivial-def by
simp
    then show ?thesis using insert by blast
    qed
qed
end
lemma singleton-tree: tree {v}{}
proof
    interpret g: fin-ulgraph {v} {} by (unfold-locales, auto)
    show ?thesis using g.is-walk-def g.walk-length-def by (unfold-locales, auto simp:
g.is-connected-set-singleton g.is-cycle2-def g.is-cycle-alt)
qed
lemma tree2:
    assumes u\not=v
        shows tree {u,v} {{u,v}}
proof
    interpret ulgraph {u,v} {{u,v}} using }\langleu\not=v\rangle\mathrm{ by unfold-locales auto
    have fin-connected-ulgraph {u,v} {{u,v}} by unfold-locales
        (auto simp: is-connected-set-def vert-connected-id vert-connected-neighbors vert-connected-rev)
    then show ?thesis using card-E-treeI }\langleu\not=v\rangle\mathrm{ by fastforce
qed
```


1.10 Graph Isomorphism

locale graph-isomorphism $=$

```
    G:graph-system }\mp@subsup{V}{G}{}\mp@subsup{E}{G}{}\mathrm{ for }\mp@subsup{V}{G}{}\mp@subsup{E}{G}{}
    fixes }\mp@subsup{V}{H}{}\mp@subsup{E}{H}{}
    assumes bij-f: bij-betw f V VG}\mp@subsup{V}{H}{
    and edge-preserving:((`)f)' 'E
begin
lemma inj-f: inj-on f V 
    using bij-f unfolding bij-betw-def by blast
lemma }\mp@subsup{V}{H}{-}\mathrm{ -def: }\mp@subsup{V}{H}{}=\mp@subsup{f}{}{\prime}\mp@subsup{V}{G}{
    using bij-f unfolding bij-betw-def by blast
definition inv-iso \equiv the-inv-into V VG
lemma graph-system-H: graph-system V V E E 
    using G.wellformed edge-preserving bij-f bij-betw-imp-surj-on by unfold-locales
blast
```

interpretation H : graph-system $V_{H} E_{H}$ using graph-system- H.
lemma graph-isomorphism-inv: graph-isomorphism $V_{H} E_{H} V_{G} E_{G}$ inv-iso
proof (unfold-locales)
show bij-betw inv-iso $V_{H} V_{G}$ unfolding inv-iso-def using bij-betw-the-inv-into
bij-f by blast
next
have $\forall v \in V_{G}$. the-inv-into $V_{G} f(f v)=v$ using bij-f by (simp add: bij-betw-imp-inj-on
the-inv-into-f-f)
then have $\forall e \in E_{G}$. (λv. the-inv-into $\left.V_{G} f(f v)\right)$ ' $e=e$ using G.wellformed
by (simp add: subset-iff)
then show ((') inv-iso $)^{\text {' }} E_{H}=E_{G}$ unfolding inv-iso-def by (simp add: edge-preserving[symmetric]
image-comp)
qed
interpretation inv-iso: graph-isomorphism $V_{H} E_{H} V_{G} E_{G}$ inv-iso using graph-isomorphism-inv .
end
fun graph-isomorph $::$ 'a pregraph \Rightarrow 'b pregraph \Rightarrow bool (infix $\simeq 50$) where $\left(V_{G}, E_{G}\right) \simeq\left(V_{H}, E_{H}\right) \longleftrightarrow\left(\exists f\right.$. graph-isomorphism $\left.V_{G} E_{G} V_{H} E_{H} f\right)$
lemma (in graph-system) graph-isomorphism-id: graph-isomorphism VE VE id by unfold-locales auto
lemma (in graph-system) graph-isomorph-refl: $(V, E) \simeq(V, E)$
using graph-isomorphism-id by auto
lemma graph-isomorph-sym: symp (\simeq)
using graph-isomorphism.graph-isomorphism-inv unfolding symp-def by fast-

force

lemma graph-isomorphism-trans: graph-isomorphism $V_{G} E_{G} V_{H} E_{H} f \Longrightarrow$ graph-isomorphism $V_{H} E_{H} V_{F} E_{F} g \Longrightarrow$ graph-isomorphism $V_{G} E_{G} V_{F} E_{F}(g o f)$
unfolding graph-isomorphism-def graph-isomorphism-axioms-def using bij-betw-trans
by (auto, blast)
lemma graph-isomorph-trans: transp (\simeq)
using graph-isomorphism-trans unfolding transp-def by fastforce
end

2 Enumeration of Labeled Trees

```
theory Labeled-Tree-Enumeration
    imports Tree-Graph
begin
definition labeled-trees :: 'a set }=>\mathrm{ 'a pregraph set where
    labeled-trees V = {(V,E)| E. tree V E}
```


2.1 Algorithm

Prüfer sequence to tree
definition prufer-sequences :: ' a list \Rightarrow ' a list set where prufer-sequences verts $=\{x$. length $x s=$ length verts $-2 \wedge$ set $x s \subseteq$ set verts $\}$
fun tree-edges-of-prufer-seq :: 'a list \Rightarrow 'a list \Rightarrow ' a edge set where
tree-edges-of-prufer-seq $[u, v][]=\{\{u, v\}\}$
\mid tree-edges-of-prufer-seq verts $(b \# s e q)=$ (case find $(\lambda x . x \notin$ set $(b \# s e q))$ verts of
Some $a \Rightarrow$ insert $\{a, b\}$ (tree-edges-of-prufer-seq (remove1 a verts) seq))
definition tree-of-prufer-seq :: 'a list \Rightarrow 'a list \Rightarrow 'a pregraph where
tree-of-prufer-seq verts seq $=$ (set verts, tree-edges-of-prufer-seq verts seq)
definition labeled-tree-enum :: 'a list \Rightarrow 'a pregraph list where
labeled-tree-enum verts $=$ map (tree-of-prufer-seq verts) (List.n-lists (length verts

- 2) verts)

2.2 Correctness

Tree to Prüfer sequence
definition remove-vertex-edges :: ' $a \Rightarrow$ ' a edge set \Rightarrow ' a edge set where remove-vertex-edges $v E=\{e \in E . \neg$ graph-system.vincident $v e\}$
lemma find-in-list[termination-simp]: find P verts $=$ Some $v \Longrightarrow v \in$ set verts by (metis find-Some-iff nth-mem)

```
lemma [termination-simp]: find \(P\) verts \(=\) Some \(v \Longrightarrow\) length verts - Suc \(0<\)
length verts
    by (meson diff-Suc-less length-pos-if-in-set find-in-list)
fun prufer-seq-of-tree :: 'a list \(\Rightarrow\) ' \(a\) edge set \(\Rightarrow\) 'a list where
    prufer-seq-of-tree verts \(E=\)
        (if length verts \(\leq 2\) then []
        else (case find (tree.leaf \(E\) ) verts of
            Some leaf \(\Rightarrow\) (THE v. ulgraph.vert-adj E leaf v) \# prufer-seq-of-tree (remove1
leaf verts) (remove-vertex-edges leaf \(E)\) ))
locale valid-verts \(=\)
    fixes verts
    assumes length-verts: length verts \(\geq 2\)
    and distinct-verts: distinct verts
locale tree-of-prufer-seq-ctx \(=\) valid-verts +
    fixes seq
    assumes prufer-seq: seq \(\in\) prufer-sequences verts
lemma (in valid-verts) card-verts: card (set verts) \(=\) length verts
    using length-verts distinct-verts distinct-card by blast
lemma length-gt-find-not-in-ys:
    assumes length xs > length ys
        and distinct xs
    shows \(\exists x\). find \((\lambda x . x \notin\) set ys) \(x s=\) Some \(x\)
proof-
    have card \((\) set \(x s)>\) card (set ys)
        by (metis assms card-length distinct-card le-neq-implies-less order-less-trans)
    then have \(\exists x \in\) set \(x s . x \notin\) set \(y s\)
        by (meson finite-set card-subset-not-gt-card subsetI)
    then show ?thesis by (metis find-None-iff2 not-Some-eq)
qed
lemma (in tree-of-prufer-seq-ctx) tree-edges-of-prufer-seq-induct':
    assumes \(\wedge u v . P[u, v][]\)
        and \(\bigwedge\) verts \(b\) seq \(a\).
            find \((\lambda x . x \notin \operatorname{set}(b \#\) seq \())\) verts \(=\) Some \(a\)
                        \(\Longrightarrow a \in\) set verts \(\Longrightarrow a \notin\) set \((b \#\) seq \() \Longrightarrow\) seq \(\in\) prufer-sequences
(remove1 a verts)
            \(\Longrightarrow\) tree-of-prufer-seq-ctx (remove1 a verts) seq \(\Longrightarrow P\) (remove1 a verts)
seq \(\Longrightarrow P\) verts \((b \#\) seq)
    shows \(P\) verts seq
    using tree-of-prufer-seq-ctx-axioms
proof (induction verts seq rule: tree-edges-of-prufer-seq.induct)
    case (2 verts b seq)
    then interpret tree-of-prufer-seq-ctx verts \(b \#\) seq by simp
```

obtain a where a-find: find $(\lambda x . x \notin$ set $(b \#$ seq)) verts $=$ Some a using length-gt-find-not-in-ys[of b\#seq verts] distinct-verts prufer-seq unfolding prufer-sequences-def by fastforce
then have a-in-verts: $a \in$ set verts by (simp add: find-in-list)
have a-not-in-seq: $a \notin$ set ($b \# s e q$) using a-find by (metis find-Some-iff)
have prufer-seq': seq \in prufer-sequences (remove1 a verts)
using prufer-seq a-in-verts set-remove1-eq length-verts a-not-in-seq distinct-verts unfolding prufer-sequences-def by (auto simp: length-remove1)
have length verts ≥ 3 using prufer-seq unfolding prufer-sequences-def by auto
then have length (remove1 a verts) ≥ 2 by (auto simp: length-remove1)
then have valid-verts-seq': tree-of-prufer-seq-ctx (remove1 a verts) seq
using prufer-seq' distinct-verts by unfold-locales auto
then show ?case using a-find assms(2) a-in-verts a-not-in-seq prufer-seq' 2(1)
by blast
qed (auto simp: assms tree-of-prufer-seq-ctx-def tree-of-prufer-seq-ctx-axioms-def valid-verts-def prufer-sequences-def)
lemma (in tree-of-prufer-seq-ctx) tree-edges-of-prufer-seq-tree:
shows tree (set verts) (tree-edges-of-prufer-seq verts seq)
using tree-of-prufer-seq-ctx-axioms
proof (induction rule: tree-edges-of-prufer-seq-induct')
case (1 uv)
then show? case using tree2 unfolding tree-of-prufer-seq-ctx-def valid-verts-def
by fastforce
next
case (2 verts b seq a)
interpret tree-of-prufer-seq-ctx verts b \# seq using 2(7).
interpret tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a verts)
seq
using $2(5,6)$ by simp
have a-not-in-verts': $a \notin$ set (remove1 a verts) using distinct-verts by simp
have $a \neq b$ using 2 by auto
then have b-in-verts' $: b \in$ set (remove1 a verts) using prufer-seq unfolding prufer-sequences-def by auto
then show? ?ase using a-not-in-verts' add-vertex-tree[OF a-not-in-verts' b-in-verts'] $2(1,2)$ distinct-verts
by (auto simp: insert-absorb insert-commute)
qed
lemma (in tree-of-prufer-seq-ctx) tree-of-prufer-seq-tree: $(V, E)=$ tree-of-prufer-seq verts seq \Longrightarrow tree V E
unfolding tree-of-prufer-seq-def using tree-edges-of-prufer-seq-tree by auto
lemma (in valid-verts) labeled-tree-enum-trees:
assumes VE-in-labeled-tree-enum: $(V, E) \in$ set (labeled-tree-enum verts)
shows tree $V E$
proof-
obtain seq where seq \in set (List.n-lists (length verts - 2) verts) and tree-of-seq:
tree-of-prufer-seq verts seq $=(V, E)$
using VE-in-labeled-tree-enum unfolding labeled-tree-enum-def by auto
then interpret tree-of-prufer-seq-ctx verts seq
using List.set-n-lists by (unfold-locales) (auto simp: prufer-sequences-def) show ?thesis using tree-of-prufer-seq-tree using tree-of-seq by simp qed

2.3 Totality

locale prufer-seq-of-tree-context $=$
valid-verts verts + tree set verts E for verts E
begin
lemma prufer-seq-of-tree-induct':
assumes $\bigwedge u$ v. $P[u, v]\{\{u, v\}\}$
and \bigwedge verts $E l$. \neg length verts $\leq 2 \Longrightarrow$ find (tree.leaf E) verts $=$ Some $l \Longrightarrow$
tree.leaf El
$\Longrightarrow l \in$ set verts \Longrightarrow prufer-seq-of-tree-context (remove1 l verts) (remove-vertex-edges $l E)$
$\Longrightarrow P($ remove 1 l verts) (remove-vertex-edges $l E) \Longrightarrow P$ verts E
shows P verts E
using prufer-seq-of-tree-context-axioms
proof (induction verts E rule: prufer-seq-of-tree.induct)
case (1 verts E)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
show ?case
proof (cases length verts \leq 2)
case True
then have length-verts: length verts $=2$ using ctx.length-verts by simp
then obtain $u w$ where verts: verts $=[u, w]$
unfolding numeral-2-eq-2 by (metis length-0-conv length-Suc-conv)
then have $E=\{\{u, w\}\}$ using ctx.connected-two-graph-edges ctx.distinct-verts
by simp
then show ?thesis using assms(1) verts by blast
next
case False
then have ctx.non-trivial using ctx.distinct-verts distinct-card unfolding ctx.non-trivial-def by fastforce
then obtain l where l : find ctx.leaf verts $=$ Some l using ctx.exists-leaf by (metis find-None-iff2 not-Some-eq)
then have leaf-l: ctx.leaf l by (metis find-Some-iff)
then have l-in-verts: $l \in$ set verts using ctx.leaf-in- V by simp
then have length-verts': length (remove1 l verts) ≥ 2 using False unfolding
length-remove 1 by simp
have tree (set (remove1 l verts)) (remove-vertex-edges l E) using ctx.tree-remove-leaf $[O F$ leaf-l]
unfolding ctx.remove-vertex-def remove-vertex-edges-def using ctx.distinct-verts by simp
then have $c t x^{\prime}$: prufer-seq-of-tree-context (remove1 l verts) (remove-vertex-edges $l E)$
unfolding prufer-seq-of-tree-context-def valid-verts-def using ctx.distinct-verts length-verts' by simp
then have P (remove1 l verts) (remove-vertex-edges $l E)$ using 1 False l by simp
then show ?thesis using assms(2)[OF False l leaf-l l-in-verts ctx] by simp qed qed
lemma prufer-seq-of-tree-wf: set (prufer-seq-of-tree verts E) \subseteq set verts using prufer-seq-of-tree-context-axioms
proof (induction rule: prufer-seq-of-tree-induct')
case (1 uv)
then show? case by simp
next
case (2 verts E l)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
let $? u=$ THE u. ctx.vert-adj l u
have l-u-adj: ctx.vert-adj l ? u using ctx.ex1-neighbor-degree-1 2(3) unfolding ctx.leaf-def by (metis theI)
then have ?u \in set verts unfolding ctx.vert-adj-def using ctx.wellformed-alt-snd by blast
then show ?case using 2 ctx.ex1-neighbor-degree-1 2(3)
by (auto, meson in-mono notin-set-remove1)
qed
lemma length-prufer-seq-of-tree: length (prufer-seq-of-tree verts E) $=$ length verts - 2
proof (induction rule: prufer-seq-of-tree-induct')
case (1uv)
then show? case by simp
next
case (2 verts El)
then show ?case unfolding prufer-seq-of-tree.simps[of verts] by (simp add:
length-remove1)
qed
lemma prufer-seq-of-tree-prufer-seq: prufer-seq-of-tree verts $E \in$ prufer-sequences verts using prufer-seq-of-tree-wf length-prufer-seq-of-tree unfolding prufer-sequences-def by blast
lemma count-list-prufer-seq-degree: $v \in$ set verts \Longrightarrow Suc (count-list (prufer-seq-of-tree verts $E) v$) $=$ degree v
using prufer-seq-of-tree-context-axioms
proof (induction rule: prufer-seq-of-tree-induct')
case (1uv)
then interpret ctx: prufer-seq-of-tree-context $[u, v]\{\{u, v\}\}$ by simp
show ?case using 1 (1) unfolding ctx.alt-degree-def ctx.incident-edges-def ctx.vincident-def by (simp add: Collect-conv-if)

```
next
    case (2 verts E l)
    then interpret ctx: prufer-seq-of-tree-context verts E by simp
    interpret ctx': prufer-seq-of-tree-context remove1 l verts remove-vertex-edges l E
using 2(5) by simp
    let ?u = THE u.ctx.vert-adj l u
    have l-u-adj: ctx.vert-adj l ?u using ctx.ex1-neighbor-degree-1 2(3) unfolding
ctx.leaf-def by (metis theI)
    show ?case
    proof (cases v=?u)
        case True
        then have v}\not=l\mathrm{ using l-u-adj ctx.vert-adj-not-eq by blast
    then have count-list (prufer-seq-of-tree verts E) v= ulgraph.degree (remove-vertex-edges
l E) v
            using 2 True by simp
    then show ?thesis using 2 ctx.degree-remove-adj-ne-vert «v\not=l> True l-u-adj
    unfolding ctx.remove-vertex-def remove-vertex-edges-def prufer-seq-of-tree.simps[of
verts] by simp
    next
    case False
    then show ?thesis
    proof (cases v=l)
            case True
            then have l & set (remove1 l verts) using ctx.distinct-verts by simp
            then have l & set (prufer-seq-of-tree (remove1 l verts) (remove-vertex-edges
l E)) using ctx'.prufer-seq-of-tree-wf by blast
    then show ?thesis using 2 False True unfolding ctx.leaf-def prufer-seq-of-tree.simps[of
verts] by simp
    next
            case False
                then have \negctx.vert-adj lv using \langlev\not=?u\rangle ctx.ex1-neighbor-degree-1 2(3)
l-u-adj
            unfolding ctx.leaf-def by blast
            then show ?thesis using False 2 <v\not=?u` ctx.degree-remove-non-adj-vert
            unfolding prufer-seq-of-tree.simps[of verts] ctx'.remove-vertex-def remove-vertex-edges-def
ctx.remove-vertex-def by auto
    qed
    qed
qed
lemma not-in-prufer-seq-iff-leaf: v\in set verts \Longrightarrowv\not\in set (prufer-seq-of-tree verts
E) \longleftrightarrow leafv
    using count-list-prufer-seq-degree[symmetric] unfolding leaf-def by (simp add:
count-list-0-iff)
lemma tree-edges-of-prufer-seq-of-tree: tree-edges-of-prufer-seq verts (prufer-seq-of-tree
verts E) = E
    using prufer-seq-of-tree-context-axioms
proof (induction rule: prufer-seq-of-tree-induct')
```

```
    case (1uv)
    then show ?case by simp
next
    case (2 verts E l)
    then interpret ctx: prufer-seq-of-tree-context verts E by simp
    have tree-edges-of-prufer-seq verts (prufer-seq-of-tree verts E)
        = tree-edges-of-prufer-seq verts ((THE v.ctx.vert-adj l v) # prufer-seq-of-tree
(remove1 l verts) (remove-vertex-edges l E)) using 2 by simp
    have find ( }\lambdax.x\not\in\mathrm{ set (prufer-seq-of-tree verts E)) verts = Some l using
ctx.not-in-prufer-seq-iff-leaf 2(2)
    by (metis (no-types, lifting) find-cong)
    then have tree-edges-of-prufer-seq verts (prufer-seq-of-tree verts E)
        = insert {The (ctx.vert-adj l), l} (tree-edges-of-prufer-seq (remove1 l verts)
(prufer-seq-of-tree (remove1 l verts) (remove-vertex-edges l E)))
    using 2 by auto
    also have ... = E using 2 ctx.degree-1-edge-partition unfolding remove-vertex-edges-def
vincident-def ctx.leaf-def by simp
    finally show ?case .
qed
lemma tree-in-labeled-tree-enum: (set verts, E) \in set (labeled-tree-enum verts)
    using prufer-seq-of-tree-prufer-seq tree-edges-of-prufer-seq-of-tree List.set-n-lists
    unfolding prufer-sequences-def labeled-tree-enum-def tree-of-prufer-seq-def by
fastforce
end
```

lemma (in valid-verts) V-labeled-tree-enum-verts: $(V, E) \in$ set (labeled-tree-enum verts) $\Longrightarrow V=$ set verts unfolding labeled-tree-enum-def by (metis Pair-inject ex-map-conv tree-of-prufer-seq-def)
theorem (in valid-verts) labeled-tree-enum-correct: set (labeled-tree-enum verts) = labeled-trees (set verts)
using labeled-tree-enum-trees V-labeled-tree-enum-verts prufer-seq-of-tree-context.tree-in-labeled-tree-enum valid-verts-axioms
unfolding labeled-trees-def prufer-seq-of-tree-context-def by fast

2.4 Distinction

lemma (in tree-of-prufer-seq-ctx) count-prufer-seq-degree:
assumes v-in-verts: $v \in$ set verts
shows Suc (count-list seq v) = ulgraph.degree (tree-edges-of-prufer-seq verts seq)
v
using v-in-verts tree-of-prufer-seq-ctx-axioms
proof (induction rule: tree-edges-of-prufer-seq-induct')
case ($1 u w$)
then interpret tree-of-prufer-seq-ctx $[u, w][]$ by simp
interpret tree $\{u, w\}\{\{u, w\}\}$ using tree-edges-of-prufer-seq-tree by simp
show ?case using 1(1) by (auto simp add: incident-edges-def vincident-def Col-

```
lect-conv-if)
next
    case (2 verts b seq a)
    interpret tree-of-prufer-seq-ctx verts b # seq using 2(8).
    interpret tree set verts tree-edges-of-prufer-seq verts (b#seq)
    using tree-edges-of-prufer-seq-tree by simp
    interpret ctx': tree-of-prufer-seq-ctx remove1 a verts seq using 2(5).
    interpret T': tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a verts)
seq
    using ctx'.tree-edges-of-prufer-seq-tree by simp
    show ?case
    proof (cases v=b)
        case True
        have ab-not-in-T': {a,b} \not\intree-edges-of-prufer-seq (remove1 a verts) seq
            using T'.wellformed-alt-snd distinct-verts by (auto, metis doubleton-eq-iff)
            have incident-edges v = insert {a,b} {e\in tree-edges-of-prufer-seq (remove1 a
verts) seq. v \ine}
            unfolding incident-edges-def vincident-def using 2(1) True by auto
        then have degree v=Suc (T'.degree v)
            unfolding T'.alt-degree-def alt-degree-def T'.incident-edges-def vincident-def
            using ab-not-in-T' T'.fin-edges by (simp del: tree-edges-of-prufer-seq.simps)
        then show ?thesis using 2 True by auto
    next
        case False
        then show ?thesis
    proof (cases v=a)
            case True
                    also have incident-edges a={{a,b}} unfolding incident-edges-def vinci-
dent-def
            using 2(1) T'.wellformed distinct-verts by auto
            then show ?thesis unfolding alt-degree-def True using 2(3) by auto
        next
            case False
            then have incident-edges v= T'.incident-edges v
            unfolding incident-edges-def T'.incident-edges-def vincident-def using 2(1)
<v\not=b\rangle by auto
            then show ?thesis using False }\langlev\not=b\rangle2\mathrm{ unfolding alt-degree-def by simp
        qed
    qed
qed
lemma (in tree-of-prufer-seq-ctx) notin-prufer-seq-iff-leaf:
    assumes v\in set verts
    shows v\not\in set seq \longleftrightarrow tree.leaf (tree-edges-of-prufer-seq verts seq)v
proof -
    interpret tree set verts tree-edges-of-prufer-seq verts seq
        using tree-edges-of-prufer-seq-tree by auto
    show ?thesis using count-prufer-seq-degree assms count-list-0-iff unfolding
leaf-def by fastforce
```


qed

lemma (in valid-verts) inj-tree-edges-of-prufer-seq: inj-on (tree-edges-of-prufer-seq verts) (prufer-sequences verts)
proof
fix seq1 seq2
assume prufer-seq1: seq1 \in prufer-sequences verts
assume prufer-seq2: seq2 \in prufer-sequences verts
assume trees-eq: tree-edges-of-prufer-seq verts seq1 $=$ tree-edges-of-prufer-seq verts seq2
interpret tree-of-prufer-seq-ctx verts seq1 using prufer-seq1 by unfold-locales simp
have length-eq: length seq1 $=$ length seq2 using prufer-seq1 prufer-seq2 unfold-
ing prufer-sequences-def by simp
show seq1 = seq2
using prufer-seq1 prufer-seq2 trees-eq length-eq tree-of-prufer-seq-ctx-axioms
proof (induction arbitrary: seq2 rule: tree-edges-of-prufer-seq-induct')
case (1 uv)
then show? case by simp
next
case (2 verts b seq a)
then interpret ctx1: tree-of-prufer-seq-ctx verts $b \#$ seq by simp
interpret ctx2: tree-of-prufer-seq-ctx verts seq2 using 2 by unfold-locales blast
obtain b^{\prime} seq2' where seq2: seq2 $=b^{\prime} \#$ seq2' using 2(10) by (metis
length-Suc-conv)
then have find $(\lambda x . x \notin$ set seq2) verts $=$ Some a
using ctx2.notin-prufer-seq-iff-leaf 2(9) 2(1) ctx1 .notin-prufer-seq-iff-leaf[symmetric]
find-cong by force
then have edges-eq: insert $\{a, b\}$ (tree-edges-of-prufer-seq (remove1 a verts) seq)

$$
=\text { insert }\left\{a, b^{\prime}\right\}(\text { tree-edges-of-prufer-seq (remove1 a verts) seq2') }
$$

using 2 seq2 by simp
interpret ctx1': tree-of-prufer-seq-ctx remove1 a verts seq using 2(5).
interpret T1: tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a verts) seq
using ctx1'.tree-edges-of-prufer-seq-tree by blast
have $a \notin$ set seq2' using seq2 2 ctx1 .notin-prufer-seq-iff-leaf ctx2.notin-prufer-seq-iff-leaf by auto
then interpret ctx2': tree-of-prufer-seq-ctx remove1 a verts seq2'
using seq2 2(8) 2(2) ctx1.distinct-verts
by unfold-locales (auto simp: length-remove1 prufer-sequences-def)
interpret T2: tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a verts) seq2'
using ctx2'.tree-edges-of-prufer-seq-tree by blast
have a-notin-verts': $a \notin$ set (remove1 a verts) using ctx1.distinct-verts by simp
then have $a b^{\prime}$-notin-edges: $\left\{a, b^{\prime}\right\} \notin$ tree-edges-of-prufer-seq (remove1 a verts) seq using T1.wellformed by blast
then have $b=b^{\prime}$ using edges-eq by (metis doubleton-eq-iff insert-iff)
have $\{a, b\} \notin$ tree-edges-of-prufer-seq (remove1 a verts) seq2'using T2.wellformed a-notin-verts' by blast
then have (tree-edges-of-prufer-seq (remove1 a verts) seq) $=$ tree-edges-of-prufer-seq (remove1 a verts) seq2'
using edges-eq $a b^{\prime}$-notin-edges
by (simp add: $\left\langle b=b^{\prime}\right\rangle$ insert-eq-iff)
then have seq $=$ seq2' using 2.IH[of seq2 $]$ ctx1 ${ }^{\prime}$. prufer-seq ctx2 ${ }^{\prime}$. prufer-seq 2(10) ctx1'.tree-of-prufer-seq-ctx-axioms
unfolding seq2 by simp
then show ? case using $\left\langle b=b^{\prime}\right\rangle$ seq2 by simp
qed
qed
theorem (in valid-verts) distinct-labeld-tree-enum: distinct (labeled-tree-enum verts)
using inj-tree-edges-of-prufer-seq distinct-n-lists distinct-verts
unfolding labeled-tree-enum-def prufer-sequences-def tree-of-prufer-seq-def by (auto simp add: distinct-map set-n-lists inj-on-def)
lemma (in valid-verts) cayleys-formula: card (labeled-trees (set verts)) $=$ length verts ^ (length verts - 2)
proof -
have card (labeled-trees (set verts)) $=$ length (labeled-tree-enum verts)
using distinct-labeld-tree-enum labeled-tree-enum-correct distinct-card by fastforce
also have $\ldots=$ length verts ${ }^{\wedge}$ (length verts - 2) unfolding labeled-tree-enum-def using length-n-lists by auto
finally show ?thesis.
qed
end

3 Rooted Trees

theory Rooted-Tree
imports Tree-Graph HOL-Library.FSet
begin
datatype tree $=$ Node tree list
fun tree-size :: tree \Rightarrow nat where
tree-size $($ Node $t s)=S u c\left(\sum t \leftarrow t\right.$ s. tree-size $\left.t\right)$
fun height :: tree \Rightarrow nat where
height $($ Node []) $=0$
\mid height $($ Node ts $)=$ Suc (Max (height'set ts))
Convenient case splitting and induction for trees

```
lemma tree-cons-exhaust[case-names Nil Cons]:
    (t = Node [] \LongrightarrowP)\Longrightarrow(\bigwedgerts. }t=\mathrm{ Node (r#ts) \P) >P
    by (cases t) (metis list.exhaust)
lemma tree-rev-exhaust[case-names Nil Snoc]:
    (t=Node [] \LongrightarrowP)\Longrightarrow(\ts r. t = Node (ts @ [r]) \LongrightarrowP)\LongrightarrowP
    by (cases t) (metis rev-exhaust)
lemma tree-cons-induct[case-names Nil Cons]:
    assumes P (Node [])
        and \tts. Pt\LongrightarrowP(Node ts)\LongrightarrowP(Node (t#ts))
    shows Pt
proof (induction size-tree t arbitrary: t rule: less-induct)
    case less
    then show ?case using assms by (cases t rule: tree-cons-exhaust) auto
qed
fun lexord-tree where
    lexord-tree t (Node []) \longleftrightarrow False
| lexord-tree (Node []) r \longleftrightarrow True
| lexord-tree (Node (t#ts)) (Node (r#rs)) \longleftrightarrow lexord-tree tr}\vee (t=r\wedge lexord-tree
(Node ts) (Node rs))
fun mirror :: tree }=>\mathrm{ tree where
    mirror (Node ts) = Node (map mirror (rev ts))
instantiation tree :: linorder
begin
definition
    tree-less-def: (t::tree) <r \longleftrightarrowlexord-tree (mirror t) (mirror r)
definition
    tree-le-def: (t:: tree) \leqr \longleftrightarrow t<r\vee t=r
lemma lexord-tree-empty2[simp]: lexord-tree (Node []) r\longleftrightarrowr\not= Node []
    by (cases r rule: tree-cons-exhaust) auto
lemma mirror-empty[simp]: mirror t = Node [] \longleftrightarrowt=Node []
    by (cases t) auto
lemma mirror-not-empty[simp]: mirror }t\not=\mathrm{ Node [] «t = Node []
    by (cases t) auto
lemma tree-le-empty[simp]: Node [] \leqt
    unfolding tree-le-def tree-less-def using mirror-not-empty by auto
lemma tree-less-empty-iff: Node [] <t\longleftrightarrowt\not= Node []
    unfolding tree-less-def by simp
```

```
lemma not-tree-less-empty[simp]: \negt<Node []
    unfolding tree-less-def by simp
lemma tree-le-empty2-iff[simp]:t\leqNode [] \longleftrightarrowt=Node []
    unfolding tree-le-def by simp
lemma lexord-tree-antisym: lexord-tree tr\Longrightarrow ᄀlexord-tree r t
    by (induction r t rule: lexord-tree.induct) auto
lemma tree-less-antisym:(t::tree) <r\Longrightarrow ᄀr<t
    unfolding tree-less-def using lexord-tree-antisym by blast
lemma lexord-tree-not-eq: lexord-tree tr\Longrightarrowt\not=r
    by (induction r t rule: lexord-tree.induct) auto
lemma tree-less-not-eq: (t::tree) <r\Longrightarrowt\not=r
    unfolding tree-less-def using lexord-tree-not-eq by blast
lemma lexord-tree-irrefl: ᄀ lexord-tree t t
    using lexord-tree-not-eq by blast
lemma tree-less-irrefl: ᄀ (t::tree) < t
    unfolding tree-less-def using lexord-tree-irrefl by blast
lemma lexord-tree-eq-iff: ᄀ lexord-tree t r ^ ᄀ lexord-tree r t \longleftrightarrow t=r
    using lexord-tree-empty2 by (induction t r rule: lexord-tree.induct, fastforce+)
lemma mirror-mirror: mirror (mirror t) =t
    by (induction t rule: mirror.induct) (simp add: map-idI rev-map)
lemma mirror-inj: mirror t= mirror r \Longrightarrowt=r
    using mirror-mirror by metis
lemma tree-less-eq-iff:\neg (t::tree) <r\wedge\negr<t\longleftrightarrow < < =r
    unfolding tree-less-def using lexord-tree-eq-iff mirror-inj by blast
lemma lexord-tree-trans:lexord-tree t r \Longrightarrow lexord-tree r s \Longrightarrow lexord-tree t s
proof (induction t s arbitrary: r rule: lexord-tree.induct)
    case (1 t)
    then show ?case by auto
next
    case (2 va vb)
    then show ?case by auto
next
    case (3t ts s ss)
    then show ?case by (cases r rule: tree-cons-exhaust) auto
qed
```

```
instance
proof
    fix tr s :: tree
    show }t<r\longleftrightarrowt\leqr\wedge\negr\leqt\mathrm{ unfolding tree-le-def using tree-less-antisym
tree-less-irrefl by auto
    show t\leqt unfolding tree-le-def by simp
    show t\leqr\Longrightarrowr\leqt\Longrightarrowt=r unfolding tree-le-def using tree-less-antisym
by blast
    show t\leqr\veer\leqt unfolding tree-le-def using tree-less-eq-iff by blast
    show t\leqr\Longrightarrowr\leqs\Longrightarrowt\leqs unfolding tree-le-def tree-less-def using
lexord-tree-trans by blast
qed
end
lemma tree-size-children: tree-size (Node ts) = Suc n\Longrightarrowt\in set ts \Longrightarrowtree-size
t\leqn
    by (auto simp:le-add1 sum-list-map-remove1)
lemma tree-size-ge-1: tree-size t\geq1
    by (cases t) auto
lemma tree-size-ne-0: tree-size t\not=0
    by (cases t) auto
lemma tree-size-1-iff: tree-size t=1 \longleftrightarrowt=Node []
    using tree-size-ne-0 by (cases t rule: tree-cons-exhaust) auto
lemma length-children: tree-size (Node ts)=Suc n \Longrightarrow length ts \leqn
    by (induction ts arbitrary: n, auto, metis add-mono plus-1-eq-Suc tree-size-ge-1)
lemma height-Node-cons: height (Node (t#ts)) \geq Suc (height t)
    by auto
lemma height-0-iff: height t=0\Longrightarrowt=Node []
    using height.elims by blast
lemma height-children: height (Node ts) = Suc n\Longrightarrowt\in set ts \Longrightarrow height t\leqn
    by (metis List.finite-set Max-ge diff-Suc-1 finite-imageI height.elims imageI nat.simps(3)
tree.inject)
lemma height-children-le-height: }\forallt\in\mathrm{ set ts. height t }\leqn\Longrightarrow\mathrm{ height (Node ts) }
Suc n
    by (cases ts) auto
lemma mirror-iff:mirror t=Node ts \longleftrightarrowt=Node (map mirror (rev ts))
    by (metis mirror.simps mirror-mirror)
```

```
lemma mirror-append: mirror (Node (ts@rs)) = Node (map mirror (rev rs) @
map mirror (rev ts))
    by (induction ts) auto
lemma lexord-tree-snoc: lexord-tree (Node ts) (Node (ts@[t]))
    by (induction ts) auto
lemma tree-less-cons: Node ts < Node (t#ts)
    unfolding tree-less-def using lexord-tree-snoc by simp
lemma tree-le-cons:Node ts \leq Node (t#ts)
    unfolding tree-le-def using tree-less-cons by simp
lemma tree-less-cons': t\leqNode rs \Longrightarrowt< Node (r#rs)
    using tree-less-cons by (simp add: order-le-less-trans)
```



```
r^ Node ts < Node rs)
    unfolding tree-less-def using mirror-inj by auto
lemma tree-le-snoc2-iff[simp]:Node (ts@[t])\leqNode (rs@[r])\longleftrightarrowt<r\vee (t=r
Node ts \leq Node rs)
    unfolding tree-le-def by auto
lemma lexord-tree-cons2[simp]: lexord-tree (Node (ts@[t]))(Node (ts@[r]))\longleftrightarrow
lexord-tree t r
    by (induction ts) (auto simp:lexord-tree-irrefl)
lemma tree-less-cons2[simp]: Node (t#ts) < Node (r#ts)\longleftrightarrowt<r
    unfolding tree-less-def using lexord-tree-cons2 by simp
lemma tree-le-cons2[simp]:Node (t#ts) \leq Node (r#ts)\longleftrightarrowt\leqr
    unfolding tree-le-def using tree-less-cons2 by blast
lemma tree-less-sorted-snoc: sorted (ts@[r])\Longrightarrow Node ts < Node (ts@[r])
    unfolding tree-less-def by (induction ts rule: rev-induct, auto,
        metis leD lexord-tree-eq-iff sorted2 sorted-wrt-append tree-less-def,
        metis dual-order.strict-iff-not list.set-intros(2) nle-le sorted2 sorted-append
tree-less-def)
lemma lexord-tree-comm-prefix[simp]:lexord-tree (Node (ss@ts)) (Node (ss@rs))
\longleftrightarrow lexord-tree (Node ts) (Node rs)
    using lexord-tree-antisym by (induction ss) auto
lemma less-tree-comm-suffix[simp]:Node (ts@ss)<Node (rs@ss) \longleftrightarrow Node ts <
Node rs
    unfolding tree-less-def by simp
```

```
lemma tree-le-comm-suffix[simp]: Node \((t s @ s s) \leq\) Node \((r s @ s s) \longleftrightarrow\) Node \(t s \leq\)
Node rs
    unfolding tree-le-def by simp
lemma tree-less-comm-suffix2: \(t<r \Longrightarrow\) Node \((t s @ t \# s s)<\) Node \((r \# s s)\)
    unfolding tree-less-def using lexord-tree-comm-prefix by simp
lemma lexord-tree-append[simp]: lexord-tree (Node ts) (Node (ts@rs)) \(\longleftrightarrow r s \neq[]\)
    using lexord-tree-irrefl by (induction ts) auto
lemma tree-less-append[simp]: Node \(t s<\) Node \((r s @ t s) \longleftrightarrow r s \neq[]\)
    unfolding tree-less-def by simp
lemma tree-le-append: Node \(t s \leq\) Node (ss@ts)
    unfolding tree-le-def by simp
lemma tree-less-singleton-iff \([\) simp \(]\) : Node \((t s @[t])<\) Node \([r] \longleftrightarrow t<r\)
    unfolding tree-less-def by simp
lemma tree-le-singleton-iff[simp]: Node \((t s @[t]) \leq\) Node \([r] \longleftrightarrow t<r \vee(t=r \wedge\)
\(t s=[])\)
    unfolding tree-le-def by auto
lemma lexord-tree-nested: lexord-tree \(t\) (Node \([t])\)
proof (induction t rule: tree-cons-induct)
    case Nil
    then show ?case by auto
next
    case (Cons \(t\) ts)
    then show ?case by (cases t rule: tree-cons-exhaust) auto
qed
lemma tree-less-nested: \(t<\) Node \([t]\)
    unfolding tree-less-def using lexord-tree-nested by auto
lemma tree-le-nested: \(t \leq\) Node \([t]\)
    unfolding tree-le-def using tree-less-nested by auto
lemma lexord-tree-iff:
    lexord-tree \(t r \longleftrightarrow\left(\exists t s t^{\prime}\right.\) ss rs \(r^{\prime} . t=\) Node \(\left(\right.\) ss @ \(\left.t^{\prime} \# t s\right) \wedge r=\) Node \(\left(\right.\) ss @ \(r^{\prime}\)
\(\# r s) \wedge\) lexord-tree \(\left.t^{\prime} r^{\prime}\right) \vee(\exists\) ts rs. \(r s \neq[] \wedge t=\) Node \(t s \wedge r=\) Node \((t s @ r s))\)
(is ? \(l \longleftrightarrow ? r\) )
proof
    show ? \(\Longrightarrow\) ? r
    proof-
    assume lexord: lexord-tree \(t r\)
    obtain \(t s\) where \(t s\) : \(t=\) Node ts by (cases \(t\) ) auto
    obtain \(r s\) where rs: \(r=\) Node rs by (cases \(r\) ) auto
```

obtain $s s t s^{\prime} r s^{\prime}$ where prefix: $t s=s s @ t s^{\prime} \wedge r s=s s @ r s^{\prime} \wedge\left(t s^{\prime}=[] \vee r s^{\prime}\right.$ $=[] \vee h d t s^{\prime} \neq h d r s^{\prime}$) using longest-common-prefix by blast
then have $t s^{\prime}=[] \vee$ lexord-tree ($h d t s^{\prime}$) ($h d r s^{\prime}$) using lexord unfolding ts $r s$
by (auto, metis lexord-tree.simps(1) lexord-tree.simps(3) list.exhaust-sel)
then show ?thesis using prefix
by (metis append.right-neutral lexord lexord-tree.simps(1) lexord-tree-comm-prefix list.exhaust-sel rs ts)
qed
show ? $\quad \Longrightarrow$?l by auto
qed
lemma tree-less-iff: $t<r \longleftrightarrow\left(\exists\right.$ ts t^{\prime} ss rs $r^{\prime} . t=$ Node $\left(t s @ t^{\prime} \#\right.$ ss $) \wedge r=$ Node $\left.\left(r s @ r^{\prime} \# s s\right) \wedge t^{\prime}<r^{\prime}\right) \vee(\exists t s r s . r s \neq[] \wedge t=$ Node $t s \wedge r=$ Node (rs @ ts)) $($ is ? $l \longleftrightarrow ? r)$

proof

show ?l \Longrightarrow ?r
unfolding tree-less-def using lexord-tree-iff[of mirror t mirror r, unfolded

mirror-iff]

by (simp, metis append-Nil lexord-tree-eq-iff mirror-mirror)
next
show ? $\mathrm{r} \Longrightarrow$?
by (auto simp: order-le-neq-trans tree-le-append,
meson dual-order.strict-trans1 tree-le-append tree-less-comm-suffix2)
qed
lemma tree-empty-cons-lt-le: $r<$ Node (Node [] \#ts) $\Longrightarrow r \leq$ Node ts
proof (induction ts arbitrary: r rule: rev-induct)
case Nil
then show ?case by (cases r rule: tree-rev-exhaust) auto
next
case (snoc $x x s$)
then show ?case
proof (cases r rule: tree-rev-exhaust)
case Nil
then show ?thesis by auto
next
case (Snoc rs r1)
then show ?thesis using snoc by (auto, (metis append-Cons tree-less-snoc2-iff)+)
qed
qed
fun regular :: tree \Rightarrow bool where
regular $($ Node $t s) \longleftrightarrow$ sorted $t s \wedge(\forall t \in$ set ts. regular $t)$
definition n-trees $::$ nat \Rightarrow tree set where
n-trees $n=\{t$. tree-size $t=n\}$
definition regular-n-trees :: nat \Rightarrow tree set where

```
regular-n-trees n}={t.\mathrm{ tree-size t = n ^ regular t }
```


3.1 Rooted Graphs

type-synonym 'a rpregraph $=\left({ }^{\prime} a\right.$ set $) \times\left({ }^{\prime} a\right.$ edge set $) \times{ }^{\prime} a$
locale rgraph $=$ graph-system +
fixes r
assumes root-wf: $r \in V$
locale rtree $=$ tree + rgraph
begin
definition subtrees :: 'a rpregraph set where
subtrees $=$
(let $\left(V^{\prime}, E^{\prime}\right)=$ remove-vertex r
in $\left(\lambda C .\left(C\right.\right.$, graph-system.induced-edges $E^{\prime} C, T H E r^{\prime} . r^{\prime} \in C \wedge$ vert-adj $\left.\left.r r^{\prime}\right)\right)$
' ulgraph.connected-components $V^{\prime} E$)
lemma rtree-subtree:
assumes subtree: $\left(S, E_{S}, r_{S}\right) \in$ subtrees
shows rtree $S E_{S} r_{S}$
proof-
obtain $V^{\prime} E^{\prime}$ where remove-vertex: remove-vertex $r=\left(V^{\prime}, E^{\prime}\right)$ by fastforce
interpret subg: ulsubgraph $V^{\prime} E^{\prime} V E$ unfolding ulsubgraph-def using sub-graph-remove-vertex subtree ulgraph-axioms remove-vertex by blast
interpret g^{\prime} : fin-ulgraph $V^{\prime} E^{\prime}$
by (simp add: fin-graph-system-axioms fin-ulgraph-def subg.is-finite-subgraph subg.is-subgraph-ulgraph ulgraph-axioms)
have conn-component: $S \in g^{\prime}$.connected-components using subtree remove-vertex unfolding subtrees-def by auto
then interpret subg': subgraph $S E_{S} V^{\prime} E^{\prime}$ using g^{\prime}.connected-component-subgraph subtree remove-vertex unfolding subtrees-def by auto
interpret subg': ulsubgraph $S E_{S} V^{\prime} E^{\prime}$ by unfold-locales
interpret S : connected-ulgraph $S E_{S}$ using g^{\prime}.connected-components-connected-ulgraphs conn-component subtree remove-vertex unfolding subtrees-def by auto
interpret S : fin-connected-ulgraph $S E_{S}$ using subg'.verts-ss $g^{\prime} . f i n V$ by un-fold-locales (simp add: finite-subset)
interpret S : tree $S E_{S}$ using subg.is-cycle2 subg'.is-cycle2 no-cycles by (unfold-locales, blast)
show ?thesis using theI' $[$ OF unique-adj-vert-removed[OF root-wf remove-vertex conn-component]]
subtree remove-vertex by unfold-locales (auto simp: subtrees-def)
qed
lemma finite-subtrees: finite subtrees
proof-
obtain $V^{\prime} E^{\prime}$ where remove-vertex: remove-vertex $r=\left(V^{\prime}, E^{\prime}\right)$ by fastforce then interpret subg: subgraph $V^{\prime} E^{\prime} V E$ using subgraph-remove-vertex by auto

```
    interpret g': fin-ulgraph V' E'
    by (simp add: fin-graph-system-axioms fin-ulgraph-def subg.is-finite-subgraph
subg.is-subgraph-ulgraph ulgraph-axioms)
    show ?thesis using g'.finite-connected-components remove-vertex unfolding sub-
trees-def by simp
qed
lemma remove-root-subtrees:
    assumes remove-vertex: remove-vertex r = ( }\mp@subsup{V}{}{\prime},\mp@subsup{E}{}{\prime}
        and conn-component: C \inulgraph.connected-components }\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime
    shows rtree C (graph-system.induced-edges E' C) (THE r'. r' }\inC\wedge vert-adj r
r')
proof
    interpret subg: ulsubgraph V }\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime}VE\mathrm{ unfolding ulsubgraph-def using sub-
graph-remove-vertex remove-vertex ulgraph-axioms by blast
    interpret g': fin-ulgraph V' E'
        by (simp add: fin-graph-system-axioms fin-ulgraph-def subg.is-finite-subgraph
subg.is-subgraph-ulgraph ulgraph-axioms)
    interpret subg': ulsubgraph C graph-system.induced-edges E' C V' E'
        by (simp add: conn-component g'.connected-component-subgraph g'.ulgraph-axioms
ulsubgraph.intro)
    interpret C: fin-connected-ulgraph C graph-system.induced-edges E' C
        by (simp add: fin-connected-ulgraph.intro fin-ulgraph.intro g'.fin-graph-system-axioms
            g'.ulgraph-axioms subg'.is-finite-subgraph subg'.is-subgraph-ulgraph conn-component
                    g'.connected-components-connected-ulgraphs)
    interpret C: tree C graph-system.induced-edges E' C using subg.is-cycle2 subg'.is-cycle2
no-cycles by (unfold-locales, blast)
    show ?thesis using theI'[OF unique-adj-vert-removed[OF root-wf remove-vertex
conn-component]] by unfold-locales simp
qed
end
```


3.2 Rooted Graph Isomorphism

fun app-rgraph-isomorphism :: (' $\left.a \Rightarrow{ }^{\prime} b\right) \Rightarrow{ }^{\prime} a$ rpregraph \Rightarrow 'b rpregraph where app-rgraph-isomorphism $f(V, E, r)=\left(f^{\prime} V,\left(\left({ }^{\prime}\right) f\right)^{\prime} E, f r\right)$
locale rgraph-isomorphism $=$
$G:$ rgraph $V_{G} E_{G} r_{G}+$ graph-isomorphism $V_{G} E_{G} V_{H} E_{H} f$ for $V_{G} E_{G} r_{G}$
$V_{H} E_{H} r_{H} f+$
assumes root-preserving: $f r_{G}=r_{H}$
begin
interpretation H : graph-system $V_{H} E_{H}$ using graph-system- H.
lemma rgraph- H : rgraph $V_{H} E_{H} r_{H}$
using root-preserving bij-f G.root-wf V_{H}-def by unfold-locales blast
interpretation H : rgraph $V_{H} E_{H} r_{H}$ using rgraph-H .
lemma rgraph-isomorphism-inv: rgraph-isomorphism $V_{H} E_{H} r_{H} V_{G} E_{G} r_{G}$ inv-iso
proof-
interpret iso: graph-isomorphism $V_{H} E_{H} V_{G} E_{G}$ inv-iso using graph-isomorphism-inv
show ?thesis using G.root-wf inj-f inv-iso-def root-preserving the-inv-into-f-f
by unfold-locales fastforce
qed
end
fun rgraph-isomorph $::$ 'a rpregraph \Rightarrow 'b rpregraph \Rightarrow bool (infix $\left.\simeq_{r} 50\right)$ where $\left(V_{G}, E_{G}, r_{G}\right) \simeq_{r}\left(V_{H}, E_{H}, r_{H}\right) \longleftrightarrow\left(\exists f\right.$. rgraph-isomorphism $V_{G} E_{G} r_{G} V_{H} E_{H}$ $\left.r_{H} f\right)$
lemma (in rgraph) rgraph-isomorphism-id: rgraph-isomorphism VErVErid using graph-isomorphism-id rgraph-isomorphism.intro rgraph-axioms unfolding rgraph-isomorphism-axioms-def by fastforce
lemma (in rgraph) rgraph-isomorph-ref: $(V, E, r) \simeq_{r}(V, E, r)$
using rgraph-isomorphism-id by auto
lemma rgraph-isomorph-sym: $G \simeq_{r} H \Longrightarrow H \simeq_{r} G$
using rgraph-isomorphism.rgraph-isomorphism-inv by (cases G, cases H) fastforce
lemma rgraph-isomorphism-trans: rgraph-isomorphism $V_{G} E_{G} r_{G} V_{H} E_{H} r_{H} f$ \Longrightarrow rgraph-isomorphism $V_{H} E_{H} r_{H} V_{F} E_{F} r_{F} g \Longrightarrow$ rgraph-isomorphism V_{G} $E_{G} r_{G} V_{F} E_{F} r_{F}(g \circ f)$
using graph-isomorphism-trans unfolding rgraph-isomorphism-def rgraph-isomorphism-axioms-def by fastforce
lemma rgraph-isomorph-trans: transp $\left(\simeq_{r}\right)$
using rgraph-isomorphism-trans unfolding transp-def by fastforce
lemma (in rtree) rgraph-isomorphis-app-iso: inj-on $f V \Longrightarrow$ app-rgraph-isomorphism
$f(V, E, r)=\left(V^{\prime}, E^{\prime}, r^{\prime}\right) \Longrightarrow$ rgraph-isomorphism $V E r V^{\prime} E^{\prime} r^{\prime} f$
by unfold-locales (auto simp: bij-betw-def)
lemma (in rtree) rgraph-isomorph-app-iso: inj-on $f V(V, E, r) \simeq_{r}$ app-rgraph-isomorphism $f(V, E, r)$
using rgraph-isomorphis-app-iso by fastforce

3.3 Conversion between unlabeled, ordered, rooted trees and tree graphs

datatype 'a ltree $=$ LNode 'a 'a ltree list

```
fun ltree-size :: 'a ltree }=>\mathrm{ nat where
    ltree-size (LNode rts)=Suc ( }\sumt\leftarrowt\mathrm{ ts.ltree-size t)
fun root-ltree :: 'a ltree }=>\mathrm{ ' 'a where
    root-ltree (LNode r ts) =r
fun nodes-ltree :: 'a ltree }=>\mathrm{ ' 'a set where
    nodes-ltree (LNode rts)={r}\cup(\bigcupt\inset ts. nodes-ltree t)
fun relabel-ltree :: ('a m 'b) 㐌'a ltree }=>\mp@subsup{'}{}{\prime}b\mathrm{ ltree where
    relabel-ltree f(LNode rts)=LNode (fr) (map (relabel-ltree f)ts)
fun distinct-ltree-nodes :: 'a ltree }=>\mathrm{ bool where
    distinct-ltree-nodes (LNode a ts) \longleftrightarrow (\forall t\inset ts. a # nodes-ltree t) ^ distinct ts
| disjoint-family-on nodes-ltree (set ts)}\wedge(\forallt\inset ts.distinct-ltree-nodes t
fun postorder-label-aux :: nat }=>\mathrm{ tree }=>\mathrm{ nat }\times\mathrm{ nat ltree where
    postorder-label-aux n (Node []) = (n, LNode n [])
| postorder-label-aux n (Node (t#ts)) =
    (let ( }n,\mp@code{\prime}\mp@subsup{t}{}{\prime})=\mathrm{ postorder-label-aux n t in
        case postorder-label-aux (Suc n') (Node ts) of
            ( n'',LNode r ts')}=>(\mp@subsup{n}{}{\prime\prime},LNode r (t'#ts'))
definition postorder-label :: tree }=>\mathrm{ nat ltree where
    postorder-label t = snd (postorder-label-aux 0t)
fun tree-ltree :: 'a ltree }=>\mathrm{ tree where
    tree-ltree (LNode rts) = Node (map tree-ltree ts)
fun regular-ltree :: 'a ltree }=>\mathrm{ bool where
    regular-ltree (LNode r ts)\longleftrightarrow sorted-wrt ( }\lambdat\mathrm{ s. tree-ltree t { tree-ltree s) ts }
( }\forallt\in\mathrm{ set ts. regular-ltree t)
datatype 'a stree = SNode 'a 'a stree fset
lemma stree-size-child-lt[termination-simp]: t ||| ts \Longrightarrow size t < Suc (\sums\infset
ts. Suc (size s))
    using sum-nonneg-leq-bound zero-le finite-fset Suc-le-eq less-SucI by metis
lemma stree-size-child-lt'{termination-simp]: t\infset ts \Longrightarrow size t<Suc (\sums\infset
ts. Suc (size s))
    using stree-size-child-lt by metis
fun stree-size :: 'a stree }=>\mathrm{ nat where
    stree-size (SNode r ts)=Suc (fsum stree-size ts)
definition n-strees :: nat => 'a stree set where
    n-strees n = {t. stree-size t=n}
```

```
fun root-stree :: 'a stree # ' }a\mathrm{ where
    root-stree (SNode a ts)=a
fun nodes-stree :: 'a stree }=>\mathrm{ ' 'a set where
    nodes-stree (SNode a ts)={a}\cup(\bigcupt\infset ts. nodes-stree t)
fun tree-graph-edges :: 'a stree }=>\mp@subsup{|}{}{\prime}a\mathrm{ edge set where
    tree-graph-edges (SNode a ts) = ((\lambdat. {a,root-stree t})'fset ts) \cup (\bigcupt\infset ts.
tree-graph-edges t)
fun distinct-stree-nodes :: 'a stree }=>\mathrm{ bool where
    distinct-stree-nodes (SNode a ts) \longleftrightarrow (\forallt\infset ts. a & nodes-stree t) ^ dis-
joint-family-on nodes-stree (fset ts)}\wedge(\forallt\infset ts. distinct-stree-nodes t)
fun ltree-stree :: 'a stree # 'a ltree where
    ltree-stree (SNode rts) = LNode r (SOME xs.fset-of-list xs = ltree-stree || ts ^
distinct xs ^ sorted-wrt ( }\lambdat\mathrm{ s. tree-ltree t}\leq\mathrm{ tree-ltree s) xs)
fun stree-ltree :: 'a ltree }=>\mathrm{ ' 'a stree where
    stree-ltree (LNode r ts) = SNode r (fset-of-list (map stree-ltree ts))
definition tree-graph-stree :: 'a stree }=>\mathrm{ ''a rpregraph where
    tree-graph-stree t = (nodes-stree t, tree-graph-edges t,root-stree t)
function stree-of-graph :: 'a rpregraph }=>\mp@subsup{}{}{\prime}'a\mathrm{ stree where
    stree-of-graph (V,E,r)=
        (if ᄀ rtree V E r then undefined else
        SNode r (Abs-fset (stree-of-graph'rtree.subtrees V E r)))
    by pat-completeness auto
```


termination

```
proof (relation measure ( }\lambda\mathrm{ p.card (fst p)), auto)
    fix r :: 'a and V ::' 'a set and E ::' 'a edge set and S :: ' a set and E E :: 'a edge
set and r}\mp@subsup{r}{S}{}:: '
    assume rtree: rtree V E r
    assume subtree: (S, E S, rs) \in rtree.subtrees V E r
    interpret rtree V E r using rtree.
    obtain }\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime}\mathrm{ where remove-vertex: remove-vertex r = ( }\mp@subsup{V}{}{\prime},\mp@subsup{E}{}{\prime})\mathrm{ by fastforce
    then interpret subg: subgraph }\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime}VE\mathrm{ using subgraph-remove-vertex by
simp
    interpret g': fin-ulgraph V V' E' using fin-ulgraph.intro subg.is-finite-subgraph
fin-graph-system-axioms subg.is-subgraph-ulgraph ulgraph-axioms by blast
    have S\in g'.connected-components using subtree remove-vertex unfolding sub-
trees-def by auto
    then have card-C-V':card S < card V' using g'.connected-component-wf g'.finV
card-mono by metis
    have card V' < card V using remove-vertex root-wf finV card-Diff1-less unfold-
ing remove-vertex-def by fast
```

```
    then show card S< card V using card- C- V' by simp
qed
definition tree-graph :: tree => nat rpregraph where
    tree-graph t = tree-graph-stree (stree-ltree (postorder-label t))
fun relabel-stree :: (' }a=>\mp@subsup{|}{}{\prime}b)=>\mp@subsup{)}{}{\prime}a\mathrm{ stree }=>\mp@subsup{}{}{\prime}b\mathrm{ stree where
    relabel-stree f(SNode rts)=SNode (fr)((relabel-stree f)||ts)
lemma root-ltree-wf: root-ltree t E nodes-ltree t
    by (cases t) auto
lemma root-relabel-ltree[simp]: root-ltree (relabel-ltree ft)=f(root-ltree t)
    by (cases t) simp
lemma nodes-relabel-ltree[simp]: nodes-ltree (relabel-ltree ft)=f'nodes-ltree t
    by (induction t) auto
lemma finite-nodes-ltree: finite (nodes-ltree t)
    by (induction t) auto
lemma root-stree-wf: root-stree t nodes-stree t
    by (cases t) auto
lemma tree-graph-edges-wf: e\in tree-graph-edges t \Longrightarrow e\subseteq nodes-stree t
    using root-stree-wf by (induction t rule: tree-graph-edges.induct) auto
lemma card-tree-graph-edges-distinct: distinct-stree-nodes t\Longrightarrowe\in tree-graph-edges
l\Longrightarrow card e=2
    using root-stree-wf card-2-iff by (induction t rule: tree-graph-edges.induct) (auto,
fast+)
lemma nodes-stree-non-empty: nodes-stree t 
    by (cases t rule: nodes-stree.cases) auto
lemma finite-nodes-stree: finite (nodes-stree t)
    by (induction t rule: nodes-stree.induct) auto
lemma finite-tree-graph-edges: finite (tree-graph-edges t)
    by (induction t rule: tree-graph-edges.induct) auto
lemma root-relabel-stree[simp]: root-stree (relabel-stree ft)=f(root-stree t)
    by (cases t) auto
lemma nodes-stree-relabel-stree[simp]: nodes-stree (relabel-stree ft)=f`nodes-stree
t
    by (induction t) auto
```

lemma tree-graph-edges-relabel-stree[simp]: tree-graph-edges (relabel-stree $f t$) =

```
((`)f)'tree-graph-edges t
    by (induction t) (simp add: image-image image-Un image-Union)
lemma nodes-stree-ltree[simp]: nodes-stree (stree-ltree t) = nodes-ltree t
    by (induction t) (auto simp: fset-of-list.rep-eq)
lemma distinct-sorted-wrt-list: \existsxs. fset-of-list xs = A ^ distinct xs ^ sorted-wrt
(\lambdat s. (ft :: 'b::linorder ) \leq f s) xs
proof-
    obtain xs where fset-of-list xs = A ^ distinct xs
        by (metis finite-distinct-list finite-fset fset-cong fset-of-list.rep-eq)
    then have fset-of-list (sort-key fxs)=A^distinct (sort-key f xs) ^ sorted-wrt
(\lambdat s.ft\leqfs)(sort-key fxs)
    using sorted-sort-key sorted-wrt-map by (simp add: fset-of-list.abs-eq, blast)
    then show ?thesis by blast
qed
abbreviation ltree-stree-subtrees ts \equivSOME xs. fset-of-list xs=ltree-stree ||ts
|istinct xs ^ sorted-wrt ( }\lambdat\mathrm{ s. tree-ltree t < tree-ltree s) xs
lemma fset-of-list-ltree-stree-subtrees[simp]: fset-of-list (ltree-stree-subtrees ts) =
ltree-stree |\ ts
    using someI-ex[OF distinct-sorted-wrt-list] by fast
lemma set-ltree-stree-subtrees[simp]: set (ltree-stree-subtrees ts)=ltree-stree'fset
ts
    using fset-of-list-ltree-stree-subtrees by (metis (mono-tags, lifting) fset.set-map
fset-of-list.rep-eq)
lemma distinct-ltree-stree-subtrees: distinct (ltree-stree-subtrees ts)
    using someI-ex[OF distinct-sorted-wrt-list] by blast
lemma sorted-wrt-ltree-stree-subtrees: sorted-wrt ( }\lambdat\mathrm{ s. tree-ltree t { tree-ltree s)
(ltree-stree-subtrees ts)
    using someI-ex[OF distinct-sorted-wrt-list] by blast
lemma nodes-ltree-stree[simp]: nodes-ltree (ltree-stree t) = nodes-stree t
    by (induction t) auto
lemma stree-ltree-stree[simp]: stree-ltree (ltree-stree t) =t
    by (induction t) (simp add: fset.map-ident-strong)
lemma nodes-tree-graph-stree: tree-graph-stree t = (V,E,r)\LongrightarrowV = nodes-stree
t
    by (induction t) (simp add: tree-graph-stree-def)
lemma relabel-stree-stree-ltree: relabel-stree f (stree-ltree t)=stree-ltree (relabel-ltree
ft
    by (induction t) (auto simp add: fset-of-list-elem)
```

lemma relabel-stree-relabel-ltree: relabel-ltree ft1 $=t 2 \Longrightarrow$ relabel-stree f (stree-ltree t1) $=$ stree-ltree t^{2}
using relabel-stree-stree-ltree by blast
lemma app-rgraph-iso-tree-graph-stree: app-rgraph-isomorphism f (tree-graph-stree $t)=$ tree-graph-stree $($ relabel-stree $f t)$
unfolding tree-graph-stree-def using image-iff mk-disjoint-insert by (induction t) (auto, fastforce+)
lemma (in rtree) root-stree-of-graph [simp]: root-stree (stree-of-graph $(V, E, r))=r$ using rtree-axioms by (simp split: prod.split)
lemma (in rtree) nodes-stree-stree-of-graph [simp]: nodes-stree (stree-of-graph ($V, E, r)$) $=V$
using rtree-axioms
proof (induction (V, E, r) arbitrary: V E r rule: stree-of-graph.induct) case ($1 V_{T} E_{T} r$)
then interpret t : rtree $V_{T} E_{T} r$ by simp
obtain $V^{\prime} E^{\prime}$ where $V E^{\prime}$: t.remove-vertex $r=\left(V^{\prime}, E^{\prime}\right)$ by (simp add: t.remove-vertex-def)
interpret subg: subgraph $V^{\prime} E^{\prime} V_{T} E_{T}$ using t.subgraph-remove-vertex $V E^{\prime}$ by
metis
interpret g^{\prime} : fin-ulgraph $V^{\prime} E^{\prime}$ using fin-ulgraph.intro subg.is-finite-subgraph
t.fin-graph-system-axioms subg.is-subgraph-ulgraph t.ulgraph-axioms by blast
have finite (stree-of-graph't.subtrees) using t.finite-subtrees by blast
then have nodes-stree (stree-of-graph $\left.\left(V_{T}, E_{T}, r\right)\right)=\{r\} \cup V^{\prime}$
using 1 using $V E^{\prime}$ t.rtree-subtree g^{\prime}.Union-connected-components by (simp add: Abs-fset-inverse t.subtrees-def)
then show ?case using $V E^{\prime}$ t.root-wf unfolding t.remove-vertex-def by auto qed
lemma (in rtree) tree-graph-edges-stree-of-graph[simp]: tree-graph-edges (stree-of-graph
$(V, E, r))=E$
using rtree-axioms
proof (induction (V, E, r) arbitrary: V E r rule: stree-of-graph.induct)
case $\left(1 V_{T} E_{T} r\right)$
then interpret t : rtree $V_{T} E_{T} r$ by simp
obtain $V^{\prime} E^{\prime}$ where $V E^{\prime}$: t.remove-vertex $r=\left(V^{\prime}, E^{\prime}\right.$) by (simp add: t.remove-vertex-def)
interpret subg: subgraph $V^{\prime} E^{\prime} V_{T} E_{T}$ using t.subgraph-remove-vertex $V E^{\prime}$ by metis
interpret g^{\prime} : fin-ulgraph $V^{\prime} E^{\prime}$ using fin-ulgraph.intro subg.is-finite-subgraph t.fin-graph-system-axioms subg.is-subgraph-ulgraph t.ulgraph-axioms by blast
have finite (stree-of-graph ' t.subtrees) using t.finite-subtrees by blast
then have f set-Abs-fset-subtrees[simp]: fset (Abs-fset (stree-of-graph 't.subtrees))
$=$ stree-of-graph't.subtrees by (simp add: Abs-fset-inverse)

```
have root-edges: (\lambdax. {r, root-stree x})'stree-of-graph't.subtrees ={e\inE ET.r
\ine} (is ?l = ?r)
    proof-
    have e\in?l if e\in?r for e
    proof-
            obtain r' where e: e={r, r'} using <e\in?r\rangle
            by (metis (no-types, lifting) CollectD insert-commute insert-iff singleton-iff
t.obtain-edge-pair-adj)
            then have }\mp@subsup{r}{}{\prime}\not=r\mathrm{ using t.singleton-not-edge 〈e|?r〉 by force
            then have r'\in V'using e <e\in?r`VE't.remove-vertex-def t.wellformed-alt-snd
by fastforce
                            then obtain C where C-conn-component: }C\in\mp@subsup{g}{}{\prime}.\mathrm{ .connected-components and
r}\mp@subsup{}{}{\prime}\inC\mathrm{ using g}\mp@subsup{g}{}{\prime}.Union-connected-components by auto
            have t.vert-adj r r' unfolding t.vert-adj-def using \langlee\in?r\rangle e by blast
                            then have (THE r'. r' 
t.root-wf VE' C-conn-component] \langler'\inC\rangle by auto
                            then show ?thesis using e<\mp@subsup{r}{}{\prime}\inC>C-conn-component rtree.root-stree-of-graph
t.rtree-subtree VE' unfolding t.subtrees-def by (auto simp: image-comp)
    qed
    then show ?thesis using t.unique-adj-vert-removed[OF t.root-wf VE'] t.rtree-subtree
VE'
            unfolding t.subtrees-def t.vert-adj-def by (auto, metis (no-types, lifting) theI)
    qed
    have}(\bigcupS\int.subtrees. tree-graph-edges (stree-of-graph S)) = E'\
    using 1 VE' t.rtree-subtree g'.Union-induced-edges-connected-components
    unfolding t.subtrees-def by simp
    then have tree-graph-edges (stree-of-graph ( }\mp@subsup{V}{T}{},\mp@subsup{E}{T}{},r))={e\in\mp@subsup{E}{T}{}.r\ine}\cup\mp@subsup{E}{}{\prime
    using root-edges 1(2) by simp
    then show ?case using VE' unfolding t.remove-vertex-def t.vincident-def by
blast
qed
```

lemma (in rtree) tree-graph-stree-of-graph[simp]: tree-graph-stree (stree-of-graph $(V, E, r))=(V, E, r)$
using nodes-stree-stree-of-graph tree-graph-edges-stree-of-graph root-stree-of-graph unfolding tree-graph-stree-def by blast
lemma postorder-label-aux-mono: fst (postorder-label-aux $n t$) $\geq n$
by (induction $n t$ rule: postorder-label-aux.induct) (auto split: prod.split ltree.split, fastforce)
lemma nodes-postorder-label-aux-ge: postorder-label-aux $n t=\left(n^{\prime}, t^{\prime}\right) \Longrightarrow v \in$ nodes-ltree $t^{\prime} \Longrightarrow v \geq n$
by (induction n t arbitrary: $n^{\prime} t^{\prime}$ rule: postorder-label-aux.induct, auto split: prod.splits ltree.splits, (metis fst-conv le-SucI order.trans postorder-label-aux-mono)+)
lemma nodes-postorder-label-aux-le: postorder-label-aux $n t=\left(n^{\prime}, t^{\prime}\right) \Longrightarrow v \in$

```
nodes-ltree t' }\Longrightarrowv\leq\mp@subsup{n}{}{\prime
    by (induction n t arbitrary: n' t' rule: postorder-label-aux.induct,
        auto split: prod.splits ltree.splits,
        metis Suc-leD fst-conv order-trans postorder-label-aux-mono,
        blast)
lemma distinct-nodes-postorder-label-aux: distinct-ltree-nodes (snd (postorder-label-aux
nt))
proof (induction n t rule: postorder-label-aux.induct)
    case (1 n)
    then show ?case by (simp add: disjoint-family-on-def)
next
    case (2ntts)
    obtain n't' where t': postorder-label-aux n t=( }\mp@subsup{n}{}{\prime},\mp@subsup{t}{}{\prime})\mathrm{ by fastforce
    obtain n'\primer ts'' where ts': postorder-label-aux (Suc n') (Node ts) = ( n'', LNode
r ts') by (metis eq-snd-iff ltree.exhaust)
    then have r\geqSuc n' using nodes-postorder-label-aux-ge by auto
    then have r-notin-t':r}\not\in\mathrm{ nodes-ltree t' using nodes-postorder-label-aux-le[OF t']
by fastforce
    have distinct-subtrees: distinct ( }\mp@subsup{t}{}{\prime}#t\mp@subsup{s}{}{\prime})\mathrm{ using 2 't' ts' nodes-postorder-label-aux-le[OF
t]
    nodes-postorder-label-aux-ge[OF ts'] by (auto, meson not-less-eq-eq root-ltree-wf)
    have disjoint-family-on nodes-ltree (set (t'#ts')) using 2 't' ts' nodes-postorder-label-aux-le[OF
t]
    nodes-postorder-label-aux-ge[OF ts ] by (simp add: disjoint-family-on-def,
meson disjoint-iff not-less-eq-eq)
    then show ?case using 2 t' ts' r-notin-t' distinct-subtrees by simp
qed
lemma distinct-nodes-postorder-label: distinct-ltree-nodes (postorder-label t)
    unfolding postorder-label-def using distinct-nodes-postorder-label-aux by simp
lemma distinct-nodes-stree-ltree: distinct-ltree-nodes t \Longrightarrow distinct-stree-nodes (stree-ltree
t)
    by (induction t) (auto simp: fset-of-list.rep-eq disjoint-family-on-def, fast)
fun distinct-edges :: 'a stree }=>\mathrm{ bool where
    distinct-edges (SNode a ts)\longleftrightarrow <nj-on (\lambdat. {a, root-stree t})(fset ts)
        \wedge (\forallt\infset ts. disjnt ((\lambdat.{a, root-stree t})'fset ts) (tree-graph-edges t))
    \wedge ~ d i s j o i n t - f a m i l y - o n ~ t r e e - g r a p h - e d g e s ~ ( f s e t ~ t s )
    \wedge (\forallt\infset ts.distinct-edges t)
lemma distinct-nodes-inj-on-root-stree: distinct-stree-nodes (SNode r ts) \Longrightarrowinj-on
root-stree (fset ts)
    by (auto simp: disjoint-family-on-def, metis IntI emptyE inj-onI root-stree-wf)
lemma distinct-nodes-disjoint-edges:
    assumes distinct-nodes: distinct-stree-nodes (SNode a ts)
    shows disjoint-family-on tree-graph-edges (fset ts)
```

proof-
have tree-graph-edges $t 1 \cap$ tree-graph-edges $t 2=\{ \}$
if $t 1$-in-ts: $t 1 \in$ fset $t s$ and $t 2$-in-ts: $t 2 \in f$ set $t s$ and $t 1 \neq t 2$ for $t 1 t_{2}$
proof-
have $\forall e \in$ tree-graph-edges t1. $e \notin$ tree-graph-edges t2
proof
fix e assume e-in-edges-t1: $e \in$ tree-graph-edges t1
then have $e \neq\{ \}$ using t1-in-ts card-tree-graph-edges-distinct distinct-nodes
by fastforce
then have $\exists v \in$ nodes-stree t1. $v \in e$ using tree-graph-edges-wf e-in-edges-t1 by blast
then show $e \notin$ tree-graph-edges t2 using 〈t1 \neq t2 〉 distinct-nodes t1-in-ts t2-in-ts tree-graph-edges-wf
by (auto simp: disjoint-family-on-def, blast)
qed
then show ?thesis by blast
qed
then show ?thesis unfolding disjoint-family-on-def by blast
qed
lemma card-nodes-edges: distinct-stree-nodes $t \Longrightarrow$ card (nodes-stree t) $=$ Suc (card (tree-graph-edges t))
proof (induction trule: tree-graph-edges.induct)
case (1 ats)
let $? t=$ SNode $a \mathrm{ts}$
have inj-on (λt. $\{a$, root-stree $t\}$) (fset ts) using distinct-nodes-inj-on-root-stree[OF 1 (2)]
unfolding inj-on-def doubleton-eq-iff by blast
then have card-root-edges: card $((\lambda t$. $\{a$, root-stree $t\})$ 'fset ts $)=$ card $(f$ set ts) using card-image by blast
have finite-Un: finite $(\bigcup t \in f s e t ~ t s$. nodes-stree $t)$ using finite-Union finite-nodes-stree finite-fset by auto
then have card (nodes-stree ? $t)=$ Suc (card $(\bigcup t \in f$ set ts. nodes-stree $t)$) using
1(2) card-insert-disjoint finite-Un by simp
also have $\ldots=$ Suc (\sum t $t \in$ fset ts. card (nodes-stree t)) using 1(2) card-UN-disjoint ${ }^{\prime}$ finite-nodes-stree finite-fset by fastforce
also have $\ldots=$ Suc (\sum t ffset ts. Suc (card (tree-graph-edges t))) using 1 by simp
also have $\ldots=\operatorname{Suc}\left(\operatorname{card}(f\right.$ set $t s)+\left(\sum t \in f\right.$ set ts.card $($ tree-graph-edges $\left.\left.t)\right)\right)$ by (metis add.commute sum-Suc)
also have $\ldots=$ Suc (card $((\lambda t$. $\{a$, root-stree $t\})$ 'fset $t s)+\left(\sum t \in f s e t ~ t s . c a r d\right.$ (tree-graph-edges t)))
using card-root-edges by simp
also have $\ldots=$ Suc (card $((\lambda x .\{a$, root-stree $x\})$ 'fset ts $)+$ card $(\bigcup$ (tree-graph-edges ‘ fset ts)))
using distinct-nodes-disjoint-edges[OF 1(2)] card-UN-disjoint' finite-tree-graph-edges by fastforce
also have $\ldots=$ Suc (card $((\lambda x .\{a$, root-stree $x\})$ 'fset ts $\cup(\cup$ (tree-graph-edges
' f set ts $)$)) $)($ is Suc $($ card ? $r+\operatorname{card} ? U n)=\operatorname{Suc}(\operatorname{card}(? r \cup ? U n)))$
proof-
have $\forall t \in$ fset ts. $\forall e \in$ tree-graph-edges t. $a \notin e$ using 1(2) tree-graph-edges-wf by auto
then have disjnt: disjnt ?r ? Un using disjoint-UN-iff by (auto simp: disjnt-def)
show ?thesis using card-Un-disjnt[OF - disjnt] finite-tree-graph-edges by fastforce
qed
finally show? case by simp
qed
lemma tree-tree-graph-edges: distinct-stree-nodes $t \Longrightarrow$ tree (nodes-stree t) (tree-graph-edges t)
proof (induction t rule: tree-graph-edges.induct)
case (1 ats)
let $? \mathrm{t}=$ SNode $a \mathrm{ts}$
have $\bigwedge e . e \in$ tree-graph-edges ? $t \Longrightarrow 0<$ card $e \wedge$ card $e \leq 2$ using card-tree-graph-edges-distinct
1 by (metis order-refl pos2)
then interpret g : fin-ulgraph nodes-stree ?t tree-graph-edges ?t using tree-graph-edges-wf finite-nodes-stree by (unfold-locales) blast+
have g.vert-connected $a v$ if $t: t \in f$ set $t s$ and $v: v \in$ nodes-stree t for $t v$
proof-
interpret t : tree nodes-stree t tree-graph-edges t using $1 t$ by auto
interpret subg: ulsubgraph nodes-stree t tree-graph-edges t nodes-stree ?t tree-graph-edges
?t using t by unfold-locales auto
have conn-root-v: g.vert-connected (root-stree t) v using subg.vert-connected v root-stree-wf t.vertices-connected by blast
have $\{a$, root-stree $t\} \in$ tree-graph-edges ?t using t by auto
then have g.vert-connected a (root-stree t) using g.vert-connected-neighbors by blast
then show ?thesis using conn-root-v g.vert-connected-trans by blast
qed
then have $\forall v \in$ nodes-stree ?t. g.vert-connected a v using g.vert-connected-id by auto
then have g.is-connected-set (nodes-stree ?t) using g.vert-connected-trans g.vert-connected-rev unfolding g.is-connected-set-def by blast
then interpret g : fin-connected-ulgraph nodes-stree ?t tree-graph-edges ?t by unfold-locales auto
show?case using card-E-treeI card-nodes-edges 1(2) g.fin-connected-ulgraph-axioms by blast
qed
lemma rtree-tree-graph-edges:
assumes distinct-nodes: distinct-stree-nodes t
shows rtree (nodes-stree t) (tree-graph-edges t) (root-stree t)
proof-
interpret tree nodes-stree t tree-graph-edges t using distinct-nodes tree-tree-graph-edges
by blast
show ?thesis using root-stree-wf by unfold-locales blast
qed
lemma rtree-tree-graph-stree: distinct-stree-nodes $t \Longrightarrow$ tree-graph-stree $t=(V, E, r)$ \Longrightarrow rtree $V E r$
using rtree-tree-graph-edges unfolding tree-graph-stree-def by blast
lemma rtree-tree-graph: tree-graph $t=(V, E, r) \Longrightarrow$ rtree $V E r$ unfolding tree-graph-def using distinct-nodes-postorder-label rtree-tree-graph-stree distinct-nodes-stree-ltree by fast

Cardinality of the resulting rooted tree is correct
lemma ltree-size-postorder-label-aux: ltree-size (snd (postorder-label-aux n t)) = tree-size t
by (induction n t rule: postorder-label-aux.induct) (auto split: prod.split ltree.split)
lemma ltree-size-postorder-label: ltree-size (postorder-label t) $=$ tree-size t unfolding postorder-label-def using ltree-size-postorder-label-aux by blast
lemma distinct-nodes-ltree-size-card-nodes: distinct-ltree-nodes $t \Longrightarrow l$ tree-size $t=$ card (nodes-ltree t)
proof (induction t)
case (LNode rts)
have finite (\cup (nodes-ltree'set ts)) using finite-nodes-ltree by blast
then show ?case using LNode disjoint-family-on-disjoint-image
by (auto simp: sum-list-distinct-conv-sum-set card-UN-disjoint')
qed
lemma distinct-nodes-stree-size-card-nodes: distinct-stree-nodes $t \Longrightarrow$ stree-size t
$=$ card $($ nodes-stree $t)$
proof (induction t)
case (SNode $r t s$)
have finite (\cup (nodes-stree'fset ts)) using finite-nodes-stree by auto
then show ?case using SNode disjoint-family-on-disjoint-image by (auto simp: fsum.F.rep-eq card-UN-disjoint')
qed
lemma stree-size-stree-ltree: distinct-ltree-nodes $t \Longrightarrow$ stree-size $($ stree-ltree $t)=$ ltree-size t
by (simp add: distinct-nodes-ltree-size-card-nodes distinct-nodes-stree-ltree dis-tinct-nodes-stree-size-card-nodes)
lemma card-tree-graph-stree: distinct-stree-nodes $t \Longrightarrow$ tree-graph-stree $t=(V, E, r)$
\Longrightarrow card $V=$ stree-size t
by (simp add: distinct-nodes-stree-size-card-nodes) (metis nodes-tree-graph-stree)
lemma card-tree-graph: tree-graph $t=(V, E, r) \Longrightarrow$ card $V=$ tree-size t
unfolding tree-graph-def using ltree-size-postorder-label stree-size-stree-ltree card-tree-graph-stree by (metis distinct-nodes-postorder-label distinct-nodes-stree-ltree)
lemma [termination-simp]: $(t, s) \in$ set (zip ts ss) \Longrightarrow size $t<$ Suc (size-list size ts)
by (metis less-not-refl not-less-eq set-zip-leftD size-list-estimation)
fun obtain-ltree-isomorphism :: 'a ltree $\Rightarrow{ }^{\prime} b$ ltree $\Rightarrow\left({ }^{\prime} a \rightharpoonup\right.$ 'b) where
obtain-ltree-isomorphism (LNode r1 ts) (LNode r2 ss) fold $(++)$ (map2 ob-tain-ltree-isomorphism ts ss) $[r 1 \mapsto r 2]$
fun postorder-relabel-aux :: nat $\Rightarrow{ }^{\prime}$ a ltree \Rightarrow nat $\times($ nat - 'a) where postorder-relabel-aux $n($ LNode $r[])=(n,[n \mapsto r])$
| postorder-relabel-aux $n($ LNode $r(t \# t s))=$
(let $\left(n^{\prime}, f_{t}\right)=$ postorder-relabel-aux $n t$;
$\left(n^{\prime \prime}, f_{t s}\right)=$ postorder-relabel-aux (Suc $\left.n^{\prime}\right)($ LNode r ts) in $\left.\left(n^{\prime \prime}, f_{t}++f_{t s}\right)\right)$
definition postorder-relabel $::$ 'a ltree $\Rightarrow\left(n a t-{ }^{\prime} a\right)$ where postorder-relabel $t=$ snd (postorder-relabel-aux $0 t$)
lemma fst-postorder-label-aux-tree-ltree: fst (postorder-label-aux $n($ tree-ltree $t))=$ fst (postorder-relabel-aux $n t$)
by (induction $n t$ rule: postorder-relabel-aux.induct) (auto split: prod.split ltree.split)
lemma dom-postorder-relabel-aux: dom (snd (postorder-relabel-aux $n t))=$ nodes-ltree (snd (postorder-label-aux n (tree-ltree t)))
proof (induction $n t$ rule: postorder-relabel-aux.induct)
case (1nr)
then show ?case by (auto split: if-splits)
next
case (2nrtts)
obtain $n^{\prime} f$ - t where f - t : postorder-relabel-aux $n t=\left(n^{\prime}, f-t\right)$ by fastforce
then obtain t^{\prime} where t^{\prime} : postorder-label-aux $n($ tree-ltree $t)=\left(n^{\prime}, t^{\prime}\right)$ using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel)
obtain $n^{\prime \prime} f$-ts where f-ts: postorder-relabel-aux (Suc $\left.n^{\prime}\right)($ LNode r ts $)=\left(n^{\prime \prime}\right.$,
f-ts) by fastforce
then obtain $t s^{\prime} r^{\prime}$ where $t s^{\prime}$: postorder-label-aux (Suc n^{\prime}) (tree-ltree (LNode r $t s))=\left(n^{\prime \prime}, L\right.$ Node $\left.r^{\prime} t s^{\prime}\right)$
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel ltree.exhaust)
show ? case using $2 f$-t f-ts $t^{\prime} t s^{\prime}$ by auto
qed
lemma ran-postorder-relabel-aux: ran $($ snd $($ postorder-relabel-aux $n t))=$ nodes-ltree t
proof (induction n t rule: postorder-relabel-aux.induct)
case (1 n r)
then show? case by (simp add: ran-def)
next
case (2nrts)
obtain $n^{\prime} f$ - t where f - t : postorder-relabel-aux $n t=\left(n^{\prime}, f-t\right)$ by fastforce
obtain $n^{\prime \prime} f$-ts where f-ts: postorder-relabel-aux (Suc $\left.n^{\prime}\right)$ (LNode r ts) $=\left(n^{\prime \prime}\right.$,

f-ts) by fastforce

have dom f - $t \cap$ dom f-ts $=\{ \}$ using dom-postorder-relabel-aux f-t f-ts
by (metis disjoint-iff fst-eqD fst-postorder-label-aux-tree-ltree nodes-postorder-label-aux-ge nodes-postorder-label-aux-le not-less-eq-eq prod.exhaust-sel snd-conv)
then show ? case using $2 f$ - $t f$-ts by (simp add: ran-map-add)

qed

lemma relabel-ltree-eq: $\forall v \in$ nodes-ltree $t . f v=g v \Longrightarrow$ relabel-ltree $f t=$ rela-bel-ltree $g t$
by (induction t) auto
lemma relabel-postorder-relabel-aux: relabel-ltree (the o snd (postorder-relabel-aux $n t))($ snd $($ postorder-label-aux $n($ tree-ltree $t)))=t$
proof (induction $n t$ rule: postorder-relabel-aux.induct)
case (1 nr)
then show? case by auto
next
case (2nrtts)
obtain $n^{\prime} f$ - t where f - t : postorder-relabel-aux $n t=\left(n^{\prime}, f-t\right)$ by fastforce
then obtain t^{\prime} where t^{\prime} : postorder-label-aux n (tree-ltree $\left.t\right)=\left(n^{\prime}, t^{\prime}\right)$
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel)
obtain $n^{\prime \prime} f$-ts where f-ts: postorder-relabel-aux (Suc $\left.n^{\prime}\right)($ LNode r ts) $)=\left(n^{\prime \prime}\right.$,
f-ts) by fastforce
then obtain $t s^{\prime} r^{\prime}$ where $t s^{\prime}$: postorder-label-aux (Suc n^{\prime}) (tree-ltree (LNode r $t s))=\left(n^{\prime \prime}\right.$, LNode $\left.r^{\prime} t s^{\prime}\right)$
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel ltree.exhaust)
have $t s^{\prime}$-in-f-ts: $\forall v \in$ nodes-ltree (LNode $r^{\prime} t s^{\prime}$). v $\in \operatorname{dom} f$-ts using f-ts ts ${ }^{\prime}$
dom-postorder-relabel-aux
by (metis snd-conv)
have $\forall v \in$ nodes-ltree $t^{\prime} . v \notin$ dom f-ts using f-ts t^{\prime} ts ${ }^{\prime} f$-t dom-postorder-relabel-aux
by (metis nodes-postorder-label-aux-ge nodes-postorder-label-aux-le not-less-eq-eq snd-conv)
then show ?case using $2 f$ - t-ts $t^{\prime} t s^{\prime} t s^{\prime}$-in- f - $t s$
by (auto intro!: relabel-ltree-eq simp: map-add-dom-app-simps(3) map-add-dom-app-simps(1), smt (verit, ccfv-threshold) map-add-dom-app-simps(1) map-eq-conv rela-
bel-ltree-eq)
qed
lemma relabel-postorder-relabel: relabel-ltree (the o postorder-relabel t) (postorder-label
$($ tree-ltree $t))=t$
unfolding postorder-relabel-def postorder-label-def using relabel-postorder-relabel-aux
by auto
lemma relabel-postorder-aux-inj: distinct-ltree-nodes $t \Longrightarrow$ inj-on (the o snd (postorder-relabel-aux
$n t)$) (nodes-ltree (snd (postorder-label-aux $n($ tree-ltree $t))$))
proof (induction $n t$ rule: postorder-relabel-aux.induct)
case (1 nr)
then show ?case by auto
next
case (2nrtts)
have disjoint-family-on-ts: disjoint-family-on nodes-ltree (set ts) using 2(3) by (simp add: disjoint-family-on-def)
obtain $n^{\prime} f$ - t where f-t: postorder-relabel-aux $n t=\left(n^{\prime}, f-t\right)$ by fastforce
then obtain t^{\prime} where t^{\prime} : postorder-label-aux n (tree-ltree $\left.t\right)=\left(n^{\prime}, t^{\prime}\right)$
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel)
obtain $n^{\prime \prime} f$-ts where f-ts: postorder-relabel-aux (Suc $\left.n^{\prime}\right)($ LNode r ts $)=\left(n^{\prime \prime}\right.$, f-ts) by fastforce
then obtain $t s^{\prime} r^{\prime}$ where $t s^{\prime}$: postorder-label-aux (Suc n^{\prime}) (tree-ltree (LNode r $t s))=\left(n^{\prime \prime}\right.$, LNode $\left.r^{\prime} t s^{\prime}\right)$
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel ltree.exhaust)
have t^{\prime}-in-dom-f-t: nodes-ltree $t^{\prime} \subseteq$ dom f - t using f - $t t^{\prime}$ dom-postorder-relabel-aux by (metis order-refl snd-conv)
have $\forall v \in$ nodes-ltree $t^{\prime} . v \notin$ dom f-ts using f-ts $t s^{\prime} t^{\prime}$ dom-postorder-relabel-aux
by (metis nodes-postorder-label-aux-ge nodes-postorder-label-aux-le not-less-eq-eq snd-conv)
then have $f-t^{\prime}: \forall v \in$ nodes-ltree t^{\prime}. the $((f-t++f-t s) v)=$ the $(f-t v)$
by (simp add: map-add-dom-app-simps(3))
have inj-on (λv. the $(f$-t $v)$) (nodes-ltree t^{\prime}) using $2 t s^{\prime} f$-ts f - $t t^{\prime}$ disjoint-family-on-ts by auto
then have inj-on- t^{\prime} : inj-on (λv. the $\left((f-t++f\right.$-ts) $v)$) (nodes-ltree $\left.t^{\prime}\right)$
by (metis (mono-tags, lifting) inj-on-cong f - t ')
have $t s^{\prime}$-in-dom-f-ts: $\forall v \in$ nodes-ltree (LNode $r^{\prime} t s^{\prime}$). $v \in \operatorname{dom} f$-ts using f-ts $t s^{\prime}$ dom-postorder-relabel-aux
by (metis snd-conv)
then have f-ts': $\forall v \in$ nodes-ltree (LNode r^{\prime} ts s^{\prime}. the $((f-t++f$-ts) $v)=$ the $(f$-ts $v)$
by (simp add: map-add-dom-app-simps(1))
have inj-on $\left(\lambda v\right.$. the $(f$-ts $v)$) (nodes-ltree (LNode $\left.r^{\prime} t s^{\prime}\right)$) using 2 ts $s^{\prime} f$-ts f-t disjoint-family-on-ts by simp
then have inj-on-ts': inj-on (λv. the $\left((f-t++f\right.$-ts) $v)$) (nodes-ltree (LNode r^{\prime} $\left.t s^{\prime}\right)$) using f-ts ${ }^{\prime}$ inj-on-cong by fast
have $(\lambda v$. the $((f-t++f-t s) v))$ 'nodes-ltree $t^{\prime} \cap(\lambda v$. the $((f-t++f-t s) v))$ ' nodes-ltree (LNode $\left.r^{\prime} t s^{\prime}\right)=\{ \}$
proof-
have $(\lambda v$. the $((f-t++f$-ts $) v))$ ' nodes-ltree $t^{\prime}=(\lambda v$. the $(f-t v))$ ' nodes-ltree t^{\prime} using f - t^{\prime} by simp
also have $\ldots \subseteq$ ran $f-t$ using t^{\prime}-in-dom-f-t ran-def by fastforce
also have $\ldots=$ nodes-ltree t by (metis f-t ran-postorder-relabel-aux snd-conv)
finally have f-nodes- t ': $\left(\lambda v\right.$. the $\left(\left(f-t++f\right.\right.$-ts) v))'nodes-ltree $t^{\prime} \subseteq$ nodes-ltree t.

```
    have \((\lambda v\). the \(((f-t++f\)-ts \() v))\) ' nodes-ltree \(\left(L N o d e ~ r^{\prime} t s^{\prime}\right)=(\lambda v\). the \((f\)-ts \(v))\)
- nodes-ltree (LNode r'ts')
            using \(f^{\prime}\)-ts' by (simp del: nodes-ltree.simps)
    also have \(\ldots \subseteq\) ran f-ts using \(t s^{\prime}\)-in-dom-f-ts ran-def by fastforce
    also have \(\ldots=\) nodes-ltree (LNode \(r\) ts) by (metis \(f\)-ts ran-postorder-relabel-aux
```

```
snd-conv)
```

 finally have \(f\)-nodes-ts': \(\left(\lambda v\right.\). the \(((f-t++f\)-ts) \(v))\) ' nodes-ltree (LNode \(\left.r^{\prime} t s^{\prime}\right)\)
 \subseteq nodes-ltree (LNode r ts) .
have nodes-ltree $t \cap$ nodes-ltree (LNode r ts) $=\{ \}$ using 2(3) by (auto simp add: disjoint-family-on-def)
then show ?thesis using f-nodes-t' f-nodes-ts' by blast
qed
then have inj-on $\left(\lambda v\right.$. the $\left((f-t++f\right.$-ts) $v)$) (nodes-ltree $t^{\prime} \cup$ nodes-ltree (LNode $\left.r^{\prime} t s^{\prime}\right)$) using inj-on-t' inj-on-ts' inj-on-Un by fast then show ?case using f - $t t^{\prime} f$-ts $t s^{\prime}$ by simp qed
lemma relabel-postorder-inj: distinct-ltree-nodes $t \Longrightarrow i n j$-on (the o postorder-relabel $t)($ nodes-ltree (postorder-label (tree-ltree t)))
unfolding postorder-relabel-def postorder-label-def using relabel-postorder-aux-inj by blast
lemma (in rtree) distinct-nodes-stree-of-graph: distinct-stree-nodes (stree-of-graph ($V, E, r)$)
using rtree-axioms
proof (induction (V, E, r) arbitrary: V E r rule: stree-of-graph.induct)
case ($1 V_{T} E_{T} r$)
then interpret t : rtree $V_{T} E_{T} r$ by simp
obtain $V^{\prime} E^{\prime}$ where $V E^{\prime}$: t.remove-vertex $r=\left(V^{\prime}, E^{\prime}\right.$) by (simp add: t.remove-vertex-def)
interpret subg: subgraph $V^{\prime} E^{\prime} V_{T} E_{T}$ using t.subgraph-remove-vertex $V E^{\prime}$ by metis
interpret g^{\prime} : fin-ulgraph $V^{\prime} E^{\prime}$ using fin-ulgraph.intro subg.is-finite-subgraph t.fin-graph-system-axioms subg.is-subgraph-ulgraph t.ulgraph-axioms by blast
have finite (stree-of-graph't.subtrees) using t.finite-subtrees by blast
then have fset-Abs-fset-subtrees[simp]: fset (Abs-fset (stree-of-graph 't.subtrees))
$=$ stree-of-graph't.subtrees by (simp add: Abs-fset-inverse)
have r-notin-subtrees: $\forall s \in t$.subtrees. $r \notin$ nodes-stree (stree-of-graph s)
proof
fix s assume subtree: $s \in$ t.subtrees
then obtain $S E_{S} r_{S}$ where $s: s=\left(S, E_{S}, r_{S}\right)$ using prod.exhaust by metis
then interpret s : rtree $S E_{S} r_{S}$ using t.rtree-subtree subtree by blast
have $S \in g^{\prime}$.connected-components using subtree $V E^{\prime}$ unfolding st.subtrees-def by auto
then have nodes-stree (stree-of-graph $\left.\left(S, E_{S}, r_{S}\right)\right) \subseteq V^{\prime}$ using s.nodes-stree-stree-of-graph g^{\prime}.connected-component-wf by auto
then show $r \notin$ nodes-stree (stree-of-graph s) using $V E^{\prime}$ unfolding st.remove-vertex-def by blast
qed
have nodes-stree (stree-of-graph s1) \cap nodes-stree (stree-of-graph s2) $=\{ \}$
if s1-subtree: s1 \in t.subtrees and s2-subtree: s2 $\in t$.subtrees and ne: stree-of-graph

```
s1 # stree-of-graph s2 for s1 s2
```

proof-
obtain V1E1 r1 where s1: s1 $=(V 1, E 1, r 1)$ using prod.exhaust by metis then interpret s1: rtree V1 E1 r1 using t.rtree-subtree s1-subtree by blast have V1-conn-comp: V1 $\in g^{\prime}$.connected-components using s1-subtree $V E^{\prime}$ unfolding t.subtrees-def s1 by auto
then have s1-conn-comp: nodes-stree (stree-of-graph s1) $\in g^{\prime}$.connected-components unfolding s1 using s1.nodes-stree-stree-of-graph by auto
obtain V2 E2 r2 where s2: s2 $=($ V2, E2, r2 $)$ using prod.exhaust by metis
then interpret s2: rtree V2 E2 r2 using t.rtree-subtree s2-subtree by blast
have V2-conn-comp: V2 $\in g^{\prime}$.connected-components using s2-subtree $V E^{\prime}$ un-
folding t.subtrees-def $s 2$ by auto
have $V 1 \neq V 2$ using s1 s2 s1-subtree s2-subtree $V E^{\prime}$ ne unfolding t.subtrees-def by auto
then have V1 $\cap V 2=\{ \}$ using V1-conn-comp V2-conn-comp g^{\prime}.disjoint-connected-components unfolding disjoint-def by blast
then show ?thesis using s1 s2 s1.nodes-stree-stree-of-graph s2.nodes-stree-stree-of-graph by simp
qed
then have disjoint-family-on nodes-stree (stree-of-graph't.subtrees) unfolding disjoint-family-on-def by blast
then show ?case using 1 t.rtree-subtree r-notin-subtrees by auto

qed

lemma disintct-nodes-ltree-stree: distinct-stree-nodes $t \Longrightarrow$ distinct-ltree-nodes (ltree-stree t)
using distinct-ltree-stree-subtrees by (induction t) (auto simp: disjoint-family-on-def, metis disjoint-iff)
lemma (in rtree) tree-graph-tree-of-graph: tree-graph (tree-ltree (ltree-stree (stree-of-graph
$(V, E, r)))) \simeq_{r}(V, E, r)$
proof -
define t where $t=(V, E, r)$
define s where $s=$ stree-of-graph t
define l where $l=l$ tree-stree s
define l^{\prime} where $l^{\prime}=$ postorder-label (tree-ltree l)
define s^{\prime} where $s^{\prime}=$ stree-ltree l^{\prime}
define t^{\prime} where $t^{\prime}=$ tree-graph-stree s^{\prime}
obtain $V^{\prime} E^{\prime} r^{\prime}$ where $t^{\prime}: t^{\prime}=\left(V^{\prime}, E^{\prime}, r^{\prime}\right)$ using prod.exhaust by metis
interpret t^{\prime} : rtree $V^{\prime} E^{\prime} r^{\prime}$ using t^{\prime} rtree-tree-graph unfolding tree-graph-def
t^{\prime}-def s^{\prime}-def l^{\prime}-def by simp
have distinct-ltree-nodes l using distinct-nodes-stree-of-graph disintct-nodes-ltree-stree unfolding l-def s-def t-def by blast
then obtain f where inj-on-l': inj-on f (nodes-ltree l^{\prime}) and relabel-l': relabel-ltree $f l^{\prime}=l$
unfolding l^{\prime}-def using relabel-postorder-relabel relabel-postorder-inj by blast
then have relabel-stree $f s^{\prime}=s$ unfolding l-def s^{\prime}-def using relabel-stree-relabel-ltree by fastforce
then have app-rgraph-iso: app-rgraph-isomorphism $f t^{\prime}=t$ unfolding s-def t^{\prime}-def

```
t-def
    using t' tree-graph-stree-of-graph by (simp add: app-rgraph-iso-tree-graph-stree)
    have inj-on f (nodes-stree s') unfolding s'-def using inj-on-l' by simp
    then have inj-on- }\mp@subsup{V}{}{\prime}\mathrm{ : inj-on f }\mp@subsup{V}{}{\prime}\mathrm{ using t' nodes-tree-graph-stree unfolding t'-def
by fast
    have ( }\mp@subsup{V}{}{\prime},\mp@subsup{E}{}{\prime},\mp@subsup{r}{}{\prime})\mp@subsup{\simeq}{r}{}(V,E,r) using app-rgraph-iso t'.rgraph-isomorph-app-iso
inj-on- }\mp@subsup{V}{}{\prime}\mathrm{ unfolding t' t-def by auto
    then show ?thesis using t' unfolding tree-graph-def t-def s-def l-def l'-def s'-def
t'-def by auto
qed
lemma (in rtree) stree-size-stree-of-graph[simp]: stree-size (stree-of-graph (V,E,r))
= card V
    using distinct-nodes-stree-of-graph by (simp add: distinct-nodes-stree-size-card-nodes
del: stree-of-graph.simps)
lemma inj-ltree-stree: inj ltree-stree
proof
    fix t1 :: 'a stree
        and t2 :: 'a stree
    assume ltree-stree t1 = ltree-stree t2
    then show t1 = t2
    proof (induction t1 arbitrary: t2)
        case (SNode r1 ts1)
        obtain r2 ts2 where t2: t2 = SNode r2 ts2 using stree.exhaust by blast
            then show ?case using SNode by (simp, metis SNode.prems stree.inject
stree-ltree-stree)
    qed
qed
lemma ltree-size-ltree-stree[simp]: ltree-size (ltree-stree t) = stree-size t
    using inj-ltree-stree by (induction t) (auto simp: sum-list-distinct-conv-sum-set[OF
distinct-ltree-stree-subtrees] fsum.F.rep-eq,
    smt (verit, best) inj-on-def stree-ltree-stree sum.reindex-cong)
lemma tree-size-tree-ltree[simp]: tree-size (tree-ltree t)=ltree-size t
    by (induction t) (auto, metis comp-eq-dest-lhs map-cong)
lemma regular-ltree-stree: regular-ltree (ltree-stree t)
    using sorted-wrt-ltree-stree-subtrees by (induction t) auto
lemma regular-tree-ltree: regular-ltree t \Longrightarrow regular (tree-ltree t)
    by (induction t) (auto simp: sorted-map)
lemma (in rtree) tree-of-graph-regular-n-tree: tree-ltree (ltree-stree (stree-of-graph
(V,E,r))) \in regular-n-trees (card V) (is ?t }\in\mathrm{ ? A)
proof-
    have size-t: tree-size ?t = card V by (simp del: stree-of-graph.simps)
    have regular ?t using regular-ltree-stree regular-tree-ltree by blast
```

then show ?thesis using size-t unfolding regular-n-trees-def by blast qed
lemma (in rtree) ex-regular-n-tree: $\exists t \in$ regular-n-trees (card V). tree-graph $t \simeq_{r}$ (V, E, r)
using tree-graph-tree-of-graph tree-of-graph-regular-n-tree by blast

3.4 Injectivity with respect to isomorphism

lemma app-rgraph-isomorphism-relabel-stree: app-rgraph-isomorphism f (tree-graph-stree $t)=$ tree-graph-stree (relabel-stree $f t$)
unfolding tree-graph-stree-def by simp
Lemmas relating the connected components of the tree graph with the root removed to the subtrees of an stree.

```
context
    fixes tr ts V}\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime
    assumes t:t=SNode rts
    assumes distinct-nodes: distinct-stree-nodes t
    and remove-vertex: graph-system.remove-vertex (nodes-stree t) (tree-graph-edges
t) r=( V',E}
begin
interpretation t: rtree nodes-stree t tree-graph-edges tr using rtree-tree-graph-edges[OF
distinct-nodes] unfolding t by simp
interpretation subg:ulsubgraph }\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime}\mathrm{ nodes-stree t tree-graph-edges t using re-
move-vertex t.subgraph-remove-vertex t.ulgraph-axioms ulsubgraph-def t by blast
interpretation g': ulgraph }\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime}\mathrm{ using subg.is-subgraph-ulgraph t.ulgraph-axioms
by blast
lemma neighborhood-root: t.neighborhood r = root-stree'fset ts
    unfolding t.neighborhood-def t.vert-adj-def using distinct-nodes tree-graph-edges-wf
root-stree-wf t
    by (auto, blast, fastforce, blast, blast)
lemma }\mp@subsup{V}{}{\prime}:\mp@subsup{V}{}{\prime}=\mathrm{ nodes-stree }t-{r
    using remove-vertex distinct-nodes unfolding t.remove-vertex-def by blast
lemma E': E' = \bigcup (tree-graph-edges 'fset ts)
    using tree-graph-edges-wf distinct-nodes remove-vertex t unfolding t.remove-vertex-def
t.vincident-def by auto
lemma subtrees-not-connected:
    assumes s-in-ts:s}\infset t
        and e:{u,v}\inE'
        and u-in-s:}u\in\mathrm{ nodes-stree }
    shows}v\in\mathrm{ nodes-stree s
```

proof -
have $\{u, v\} \in$ tree-graph-edges s using e u-in-s tree-graph-edges-wf s-in-ts dis-tinct-nodes t unfolding E^{\prime}
by (auto simp: disjoint-family-on-def,
smt (verit, del-insts) insert-absorb insert-disjoint(2) insert-subset tree-graph-edges-wf)
then show ?thesis using tree-graph-edges-wf u-in-s by blast
qed
lemma subtree-connected-components:
assumes s-in-ts: $s \in f$ set ts
shows nodes-stree $s \in g^{\prime}$.connected-components
proof-
interpret s : rtree nodes-stree stree-graph-edges s root-stree s using rtree-tree-graph-edges
distinct-nodes s-in-ts t by auto
interpret subg': ulsubgraph nodes-stree s tree-graph-edges s $V^{\prime} E^{\prime}$ using dis-
tinct-nodes s-in-ts t by unfold-locales (auto simp: $V^{\prime} E^{\prime}$)
have conn-set: g^{\prime}.is-connected-set (nodes-stree s) using s.connected subg'.is-connected-set by blast
then show?thesis using subtrees-not-connected s-in-ts g'.connected-set-connected-component nodes-stree-non-empty by fast
qed
lemma connected-components-subtrees: g '.connected-components $=$ nodes-stree '
fset ts
proof-
have nodes-ts-ss-conn-comps: nodes-stree ' fset $t s \subseteq g^{\prime}$.connected-components using subtree-connected-components by blast
have Un-nodes-ts: \bigcup (nodes-stree ' fset ts) $=V^{\prime}$ unfolding V^{\prime} using dis-tinct-nodes t by auto
show ?thesis using g^{\prime}.subset-conn-comps-if-Union[OF nodes-ts-ss-conn-comps Un-nodes-ts] by simp
qed
lemma induced-edges-subtree:
assumes s-in-ts: $s \in f s e t$ ts
shows graph-system.induced-edges $E^{\prime}($ nodes-stree $s)=$ tree-graph-edges s
proof-
have graph-system.induced-edges E^{\prime} (nodes-stree $\left.s\right)=\{e \in \bigcup$ (tree-graph-edges
' fset ts). $e \subseteq$ nodes-stree s\} using subg.H.induced-edges-def E^{\prime} by auto
also have $\ldots=$ tree-graph-edges s
using s-in-ts distinct-nodes tree-graph-edges-wf t
by (auto simp: disjoint-family-on-def,
metis card.empty card-tree-graph-edges-distinct inf.bounded-iff nat.simps(3)
numeral-2-eq-2 subset-empty)
finally show ?thesis.
qed
lemma root-subtree:
assumes s-in-ts: $s \in f s e t ~ t s$

```
    shows (THE r'. r' ( | nodes-stree s) ^t.vert-adj r r')}=\mathrm{ root-stree }
proof
    show root-stree s\in nodes-stree s}\wedget.vert-adj r (root-stree s) unfolding t.vert-adj-def
using t root-stree-wf s-in-ts by auto
next
    fix r}\mp@subsup{r}{}{\prime
    assume r': r}\mp@subsup{r}{}{\prime}\in\mathrm{ nodes-stree s ^t.vert-adj r r'
    then have edge-in-root-edges: {r, r'}}\in(\lambdat. {r, root-stree t})'fset t
    unfolding t.vert-adj-def using distinct-nodes tree-graph-edges-wf t by fastforce
    have }\forall\mp@subsup{s}{}{\prime}\inf\mathrm{ set ts. }\mp@subsup{s}{}{\prime}\not=s\longrightarrow\mp@subsup{r}{}{\prime}\not\in\mathrm{ nodes-stree s'
    using distinct-nodes s-in-ts r' unfolding t by (auto simp: disjoint-family-on-def)
then show r'}\mp@subsup{r}{}{\prime}=\mathrm{ root-stree s using edge-in-root-edges root-stree-wf by (smt (verit)
doubleton-eq-iff image-iff)
qed
lemma subtrees-tree-subtrees: t.subtrees = tree-graph-stree 'fset ts
    unfolding t.subtrees-def tree-graph-stree-def using remove-vertex
    by (simp add: connected-components-subtrees image-comp induced-edges-subtree
root-subtree)
end
lemma stree-of-graph-tree-graph-stree[simp]: distinct-stree-nodes t\Longrightarrow stree-of-graph
(tree-graph-stree t) = t
proof (induction t)
    case (SNode r ts)
    define t where t:t=SNode r ts
    then have root-t[simp]: root-stree t=r by simp
    have distinct-t: distinct-stree-nodes t using SNode(2) t by blast
    interpret t: rtree nodes-stree t tree-graph-edges tr using SNode(2) rtree-tree-graph-edges
t by (metis root-stree.simps)
    obtain }\mp@subsup{V}{}{\prime}\mp@subsup{E}{}{\prime}\mathrm{ where remove-vertex: t.remove-vertex r = ( }\mp@subsup{V}{}{\prime},\mp@subsup{E}{}{\prime})\mathrm{ by fastforce
    have stree-of-graph (tree-graph-stree t) = SNode r ts unfolding tree-graph-stree-def
    using SNode t.rtree-axioms t.rtree-subtree
    by (simp add: subtrees-tree-subtrees[OF t distinct-t remove-vertex] image-comp
fset-inverse)
    then show ?case unfolding t.
qed
lemma distinct-nodes-relabel: distinct-stree-nodes t \Longrightarrow inj-on f (nodes-stree t)
\Longrightarrow ~ d i s t i n c t - s t r e e - n o d e s ~ ( r e l a b e l - s t r e e ~ f t )
    by (induction t) (auto simp: image-UN disjoint-family-on-def inj-on-def, metis
IntI empty-iff)
lemma relabel-stree-app-rgraph-isomorphism:
    assumes distinct-stree-nodes t
    and inj-on f (nodes-stree t)
shows relabel-stree ft = stree-of-graph (app-rgraph-isomorphism f (tree-graph-stree
```

t))
using assms by (auto simp: app-rgraph-isomorphism-relabel-stree distinct-nodes-relabel)
lemma (in rgraph-isomorphism) app-rgraph-isomorphism-G: app-rgraph-isomorphism $f\left(V_{G}, E_{G}, r_{G}\right)=\left(V_{H}, E_{H}, r_{H}\right)$
using bij-f edge-preserving root-preserving unfolding bij-betw-def by simp
lemma tree-graphs-iso-strees-iso:
assumes tree-graph-stree $t 1 \simeq_{r}$ tree-graph-stree t2
and distinct-t1: distinct-stree-nodes t1
and distinct-t2: distinct-stree-nodes t2
shows $\exists f$. inj-on $f($ nodes-stree $t 1) \wedge$ relabel-stree $f t 1=t 2$
proof-
obtain f where rgraph-isomorphism (nodes-stree t1) (tree-graph-edges t1) (root-stree
t1) (nodes-stree t2) (tree-graph-edges t2) (root-stree t2) f
using assms unfolding tree-graph-stree-def by auto
then interpret rgraph-isomorphism nodes-stree t1 tree-graph-edges t1 root-stree
t1 nodes-stree t2 tree-graph-edges t2 root-stree t2 f.
have inj: inj-on f (nodes-stree t1) using bij-f bij-betw-imp-inj-on by blast
have relabel-stree f t1 $=$ t2
unfolding relabel-stree-app-rgraph-isomorphism[OF distinct-t1 inj] tree-graph-stree-def app-rgraph-isomorphism-G
using stree-of-graph-tree-graph-stree[OF distinct-t2, unfolded tree-graph-stree-def] by blast
then show ?thesis using inj by blast
qed
Skip the ltree representation as it introduces complications with the proofs
fun tree-stree :: 'a stree \Rightarrow tree where
tree-stree (SNode r ts) = Node (sorted-list-of-multiset (image-mset tree-stree (mset-set (fset ts))))
fun postorder-label-stree-aux :: nat \Rightarrow tree \Rightarrow nat \times nat stree where
postorder-label-stree-aux $n($ Node []$)=(n$, SNode $n\{\mid \|\})$
| postorder-label-stree-aux $n($ Node $(t \# t s))=$
(let $\left(n^{\prime}, t^{\prime}\right)=$ postorder-label-stree-aux $n t$ in case postorder-label-stree-aux (Suc n^{\prime}) (Node ts) of $\left(n^{\prime \prime}\right.$, SNode $\left.r t s^{\prime}\right) \Rightarrow\left(n^{\prime \prime}\right.$, SNode $r\left(\right.$ finsert $\left.\left.\left.t^{\prime} t s^{\prime}\right)\right)\right)$
definition postorder-label-stree $::$ tree \Rightarrow nat stree where postorder-label-stree $t=$ snd (postorder-label-stree-aux $0 t$)
lemma fst-postorder-label-stree-aux-eq: fst (postorder-label-stree-aux $n t)=f s t($ postorder-label-aux $n t$)
by (induction n t rule: postorder-label-stree-aux.induct) (auto split: prod.split stree.split ltree.split)
lemma postorder-label-stree-aux-eq: snd (postorder-label-stree-aux $n t$) $=$ stree-ltree (snd (postorder-label-aux $n t)$)
by (induction n t rule: postorder-label-aux.induct) (simp, simp split: prod.split stree.split ltree.split,
metis fset-of-list-map fst-conv fst-postorder-label-stree-aux-eq sndI stree.inject stree-ltree.simps)
lemma postorder-label-stree-eq: postorder-label-stree $t=$ stree-ltree (postorder-label t)
using postorder-label-stree-aux-eq unfolding postorder-label-stree-def postorder-label-def by blast
lemma postorder-label-stree-aux-mono: fst (postorder-label-stree-aux $n t$) $\geq n$
by (induction $n t$ rule: postorder-label-stree-aux.induct) (auto split: prod.split stree.split, fastforce)
lemma nodes-postorder-label-stree-aux-ge: postorder-label-stree-aux $n t=\left(n^{\prime}, t^{\prime}\right)$
$\Longrightarrow v \in$ nodes-stree $t^{\prime} \Longrightarrow v \geq n$
by (induction n t arbitrary: $n^{\prime} t^{\prime}$ rule: postorder-label-stree-aux.induct, auto split: prod.splits stree.splits,
(metis fst-conv le-SucI order.trans postorder-label-stree-aux-mono)+)
lemma nodes-postorder-label-stree-aux-le: postorder-label-stree-aux $n t=\left(n^{\prime}, t^{\prime}\right)$
$\Longrightarrow v \in$ nodes-stree $t^{\prime} \Longrightarrow v \leq n^{\prime}$
by (induction n t arbitrary: $n^{\prime} t^{\prime}$ rule: postorder-label-stree-aux.induct, auto split: prod.splits stree.splits, metis Suc-leD fst-conv order-trans postorder-label-stree-aux-mono, blast)
lemma distinct-nodes-postorder-label-stree-aux: distinct-stree-nodes (snd (postorder-label-stree-aux $n t)$)
proof (induction n t rule: postorder-label-stree-aux.induct) case (1n)
then show ?case by (simp add: disjoint-family-on-def)
next

```
    case (2ntts)
```

 obtain \(n^{\prime} t^{\prime}\) where \(t^{\prime}\) : postorder-label-stree-aux \(n t=\left(n^{\prime}, t^{\prime}\right)\) by fastforce
 obtain \(n^{\prime \prime} r t s^{\prime}\) where \(t s^{\prime}\) : postorder-label-stree-aux (Suc \(\left.n^{\prime}\right)\left(\right.\) Node ts) \(=\left(n^{\prime \prime}\right.\),
 SNode r ts ${ }^{\prime}$)
by (metis eq-snd-iff stree.exhaust)
then have $r \geq$ Suc n^{\prime} using nodes-postorder-label-stree-aux-ge by auto
then have r-notin- $t^{\prime}: r \notin$ nodes-stree t^{\prime} using nodes-postorder-label-stree-aux-le $[O F$
t] by fastforce
have disjoint-family-on nodes-stree (insert $t^{\prime}\left(f\right.$ set $\left.t s^{\prime}\right)$)
using $2 t^{\prime}$ ts' nodes-postorder-label-stree-aux-le[OF t'] nodes-postorder-label-stree-aux-ge[OF
$t s$]
by (auto simp add: disjoint-family-on-def, fastforce+)
then show? ?ase using $2 t^{\prime}$ ts $s^{\prime} r$-notin- t^{\prime} by simp
qed
lemma distinct-nodes-postorder-label-stree: distinct-stree-nodes (postorder-label-stree

t)

unfolding postorder-label-stree-def using distinct-nodes-postorder-label-stree-aux by simp
lemma tree-stree-postorder-label-stree-aux: regular $t \Longrightarrow$ tree-stree (snd (postorder-label-stree-aux $n t)$) $=t$
proof (induction t rule: postorder-label-stree-aux.induct)
case (1 n)
then show ?case by auto
next
case (2nt ts)
obtain $n^{\prime} t^{\prime}$ where $n t^{\prime}$: postorder-label-stree-aux $n t=\left(n^{\prime}, t^{\prime}\right)$ by fastforce
obtain $n^{\prime \prime} r t s^{\prime}$ where $n t^{\prime \prime}$: postorder-label-stree-aux (Suc $\left.n^{\prime}\right)($ Node $t s)=\left(n^{\prime \prime}\right.$,
SNode r ts')
using stree.exhaust prod.exhaust by metis
have $t^{\prime} \notin f$ set ts' using nodes-postorder-label-stree-aux-le[OF nt $]$ nodes-postorder-label-stree-aux-ge[OF $\left.n t^{\prime \prime}\right]$
by (auto, meson not-less-eq-eq root-stree-wf)
then show ?case using $2 n t^{\prime} n t^{\prime \prime}$ by (auto simp: insort-is-Cons)
qed
lemma tree-ltree-postorder-label-stree[simp]: regular $t \Longrightarrow$ tree-stree (postorder-label-stree
$t)=t$
using tree-stree-postorder-label-stree-aux unfolding postorder-label-stree-def by
blast
lemma inj-relabel-subtrees:
assumes distinct-nodes: distinct-stree-nodes (SNode r ts)
and inj-on-nodes: inj-on f (nodes-stree (SNode rts))
shows inj-on (relabel-stree f) (fset ts)
proof
fix $t 1$ t2
assume t1-subtree: $t 1 \in f$ set ts
and t2-subtree: $t 2 \in$ fset ts
and relabel-eq: relabel-stree $f t 1=$ relabel-stree f t2
then have nodes-stree (relabel-stree f t1) $=$ nodes-stree (relabel-stree f t2) by simp
then have f ' nodes-stree $t 1=f$ ' nodes-stree t2 by simp
then have nodes-stree t1 $=$ nodes-stree t2 using inj-on-nodes t1-subtree t2-subtree
inj-on-image of f nodes-stree ' fset ts]
by (simp, meson image-eqI inj-onD)
then show $t 1=$ t2 using distinct-nodes nodes-stree-non-empty t1-subtree t2-subtree
by (auto simp add: disjoint-family-on-def, force)
qed
lemma inj-on-subtree: inj-on f (nodes-stree (SNode r ts)) $\Longrightarrow t \in f$ set $t s \Longrightarrow$ inj-on
f (nodes-stree t)
unfolding inj-on-def by simp

```
lemma tree-stree-relabel-stree: distinct-stree-nodes \(t \Longrightarrow i n j\)-on \(f\) (nodes-stree \(t\) )
\(\Longrightarrow\) tree-stree (relabel-stree ft) \(=\) tree-stree \(t\)
proof (induction \(t\) )
    case (SNode rts)
    then have \(I H: \forall t \in \#\) mset-set (fset ts). tree-stree (relabel-stree \(f t\) ) \(=\) tree-stree
\(t\)
    using inj-on-subtree[OF SNode(3)] elem-mset-set finite-fset by auto
    show ?case using inj-relabel-subtrees[OF SNode(2) SNode(3)]
    by (auto simp add: mset-set-image-inj, metis IH image-mset-cong)
qed
lemma tree-ltree-relabel-ltree-postorder-label-stree: regular \(t \Longrightarrow \operatorname{inj-onf}\) (nodes-stree
(postorder-label-stree \(t)) \Longrightarrow\) tree-stree (relabel-stree \(f(\) postorder-label-stree \(t))=t\)
    using tree-stree-relabel-stree distinct-nodes-postorder-label-stree by fastforce
lemma postorder-label-stree-inj: regular \(t 1 \Longrightarrow\) regular \(t 2 \Longrightarrow\) inj-on \(f\) (nodes-stree
(postorder-label-stree t1)) \(\Longrightarrow\) relabel-stree \(f(\) postorder-label-stree t1) \(=\) postorder-label-stree
t2 \(\Longrightarrow t 1=t 2\)
    using tree-ltree-relabel-ltree-postorder-label-stree by fastforce
lemma tree-graph-inj-iso: regular \(t 1 \Longrightarrow\) regular \(t 2 \Longrightarrow\) tree-graph \(t 1 \simeq_{r}\) tree-graph
t2 \(\Longrightarrow t 1=t 2\)
    using postorder-label-stree-inj tree-graphs-iso-strees-iso distinct-nodes-postorder-label
        distinct-nodes-stree-ltree postorder-label-stree-eq unfolding tree-graph-def by
metis
lemma tree-graph-inj:
    assumes regular-t1: regular t1
    and regular-t2: regular t2
    and tree-graph-eq: tree-graph \(t 1=\) tree-graph t2
    shows \(t 1=\) t2
proof-
    obtain \(V E r\) where \(g\) : tree-graph \(t 1=(V, E, r)\) using prod.exhaust by metis
    then interpret rtree \(V E r\) using rtree-tree-graph by auto
    have tree-graph \(t 1 \simeq_{r}\) tree-graph \(t 2\) using tree-graph-eq \(g\) rgraph-isomorph-refl
by \(\operatorname{simp}\)
    then show ?thesis using tree-graph-inj-iso regular-t1 regular-t2 by simp
qed
end
```


4 Enumeration of Rooted Trees

```
theory Rooted-Tree-Enumeration
    imports Rooted-Tree
begin
```

Algorithm inspired by works of Beyer and Hedetniemi [1], performing the same operations but directly on a recursive tree data structure instead of
level sequences.
definition n-rtree-graphs :: nat \Rightarrow nat rpregraph set where n-rtree-graphs $n=\{(V, E, r)$. rtree $V E r \wedge$ card $V=n\}$

Recursive definition on the tree structure without using level sequences

```
fun trim-tree :: nat \(\Rightarrow\) tree \(\Rightarrow\) nat \(\times\) tree where
    trim-tree \(0 t=(0, t)\)
|trim-tree (Suc 0) \(t=\) (0, Node [])
\(\mid \operatorname{trim-tree}(\) Suc \(n)(\) Node []) \()=(n\), Node [] \()\)
|trim-tree \(n(\) Node \((t \# t s))=\)
    (case trim-tree \(n\) (Node ts) of
        \(\left(0, t^{\prime}\right) \Rightarrow\left(0, t^{\prime}\right) \mid\)
        ( \(n 1\), Node ts \({ }^{\prime}\) ) \(\Rightarrow\)
            let \(\left(n 2, t^{\prime}\right)=\) trim-tree \(n 1 t\)
            in (n2, Node \(\left.\left(t^{\prime} \# t s^{\prime}\right)\right)\) )
```

lemma fst-trim-tree-lt[termination-simp $]: n \neq 0 \Longrightarrow f s t($ trim-tree $n t)<n$
by (induction n t rule: trim-tree.induct, auto split: prod.split nat.split tree.split,
fastforce)
fun fill-tree :: nat \Rightarrow tree \Rightarrow tree list where
fill-tree 0 - = []
| fill-tree $n t=$
(let $\left(n^{\prime}, t^{\prime}\right)=$ trim-tree $n t$
in fill-tree $\left.n^{\prime} t^{\prime} @[t]\right)$
fun next-tree-aux :: nat \Rightarrow tree \Rightarrow tree option where
next-tree-aux n (Node []) $=$ None
| next-tree-aux $n($ Node (Node [] \# ts)) $=$ next-tree-aux (Suc n) (Node ts)
| next-tree-aux n (Node (Node (Node [] \# rs) \#ts)) = Some (Node (fill-tree (Suc
n) (Node rs) @ (Node rs) \#ts))
\mid next-tree-aux $n(\operatorname{Node}(t \# t s))=$ Some $($ Node $($ the $($ next-tree-aux $n t) \# t s))$
fun next-tree $::$ tree \Rightarrow tree option where
next-tree $t=$ next-tree-aux $0 t$
lemma next-tree-aux-None-iff: next-tree-aux $n t=$ None \longleftrightarrow height $t<2$
proof (induction n t rule: next-tree-aux.induct)
case (1 n)
then show ?case by auto
next
case (2 $n t s$)
then show ?case by (cases ts) auto
next
case (3 n rs ts)
then show ?case by (auto simp: Max-gr-iff)
next
case (4nvcvdvbts)

```
    then show ?case
    by (metis One-nat-def Suc-n-not-le-n dual-order.trans height-Node-cons le-add1
less-2-cases
    next-tree-aux.simps(4)option.simps(3) plus-1-eq-Suc)
qed
lemma next-tree-Some-iff:( }\exists\mp@subsup{t}{}{\prime}.\mathrm{ . next-tree }t=\mathrm{ Some t') }\longleftrightarrow height t\geq2
    using next-tree-aux-None-iff by (metis linorder-not-less next-tree.simps not-Some-eq)
```


4.1 Enumeration is monotonically decreasing

lemma trim-id: trim-tree $n t=\left(\right.$ Suc $\left.n^{\prime}, t^{\prime}\right) \Longrightarrow t=t^{\prime}$

by (induction $n t$ arbitrary: $n^{\prime} t^{\prime}$ rule: trim-tree.induct) (auto split: prod.splits nat.splits tree.splits)
lemma trim-tree-le: $\left(n^{\prime}, t^{\prime}\right)=$ trim-tree $n t \Longrightarrow t^{\prime} \leq t$
using trim-id by (induction $n t$ arbitrary: $n^{\prime} t^{\prime}$ rule: trim-tree.induct)
(auto split: prod.splits tree.splits nat.splits simp: order-less-imp-le tree-less-cons', fastforce)
lemma fill-tree-le: $r \in$ set (fill-tree $n t) \Longrightarrow r \leq t$
using trim-tree-le by (induction n t rule: fill-tree.induct) (auto, fastforce)
lemma next-tree-aux-lt: height $t \geq 2 \Longrightarrow$ the (next-tree-aux $n t)<t$
proof (induction n t rule: next-tree-aux.induct)
case (1 n)
then show ?case by auto
next
case (2 $n \mathrm{ts}$)
then show ?case using tree-less-cons' by (cases ts) auto
next
case (3 n rs ts)
then show ?case using tree-less-comm-suffix2 tree-less-cons by simp next
case (4 n vc vd vb ts)
have height (Node (Node (vc \# vd) \# vb)) 22 unfolding numeral-2-eq-2
by (metis dual-order.antisym height-Node-cons less-eq-nat.simps(1) not-less-eq-eq)
then show? case using 4 tree-less-cons2 by simp
qed
lemma next-tree-lt: height $t \geq 2 \Longrightarrow$ the (next-tree $t)<t$ using next-tree-aux-lt by simp
lemma next-tree-lt': next-tree $t=S o m e t^{\prime} \Longrightarrow t^{\prime}<t$ using next-tree-lt next-tree-Some-iff by fastforce

4.2 Size preservation

lemma size-trim-tree: $n \neq 0 \Longrightarrow$ trim-tree $n t=\left(n^{\prime}, t^{\prime}\right) \Longrightarrow n^{\prime}+$ tree-size $t^{\prime}=n$

```
    by (induction n t arbitrary: n' t' rule: trim-tree.induct) (auto split: prod.splits
nat.splits tree.splits)
lemma size-fill-tree: sum-list (map tree-size (fill-tree n t)) = n
    using size-trim-tree by (induction n t rule: fill-tree.induct) (auto split: prod.split)
lemma size-next-tree-aux: height t\geq2 \Longrightarrow tree-size (the (next-tree-aux n t))}
tree-size t+n
proof (induction n t rule: next-tree-aux.induct)
    case (1 n)
    then show ?case by auto
next
    case (2 nts)
    then show ?case by (cases ts) auto
next
    case (3 n rs ts)
    then show ?case using size-fill-tree by (auto simp del: fill-tree.simps)
next
    case (4 nvc vd vb ts)
    have height-t: height (Node (Node (vc #vd) #vb)) \geq2 unfolding numeral-2-eq-2
    by (metis dual-order.antisym height-Node-cons less-eq-nat.simps(1) not-less-eq-eq)
    then show ?case using 4 by auto
qed
lemma size-next-tree: height t\geq2 \Longrightarrow tree-size (the (next-tree t))}=\mathrm{ tree-size t
    using size-next-tree-aux by simp
lemma size-next-tree': next-tree t=Some t' \Longrightarrow tree-size t' = tree-size t
    using size-next-tree next-tree-Some-iff by fastforce
```


4.3 Setup for termination proof

```
definition \(l t\) - \(n\)-trees \(n \equiv\{t\). tree-size \(t \leq n\}\)
lemma \(n\)-trees-eq: \(n\)-trees \(n=\) Node' \(\{\) ts. tree-size \((\) Node \(t s)=n\}\)
proof -
have \(n\)-trees \(n=\{\) Node \(t s \mid\) ts. tree-size (Node ts) \(=n\}\) unfolding \(n\)-trees-def by (metis tree-size.cases)
then show? thesis by blast
qed
lemma lt-n-trees-eq: lt-n-trees \((\) Suc \(n)=\) Node ' \(\{\) ts. tree-size \((\) Node \(t s) \leq\) Suc \(n\}\) proof -
have \(l t\)-n-trees \((\) Suc \(n)=\{\) Node ts \(\mid\) ts. tree-size (Node ts) \(\leq\) Suc \(n\}\) unfolding lt-n-trees-def by (metis tree-size.cases)
then show ?thesis by blast
qed
lemma finite-lt-n-trees: finite (lt-n-trees \(n\) )
```

```
proof (induction n)
    case 0
    then show ?case unfolding lt-n-trees-def using not-finite-existsD not-less-eq-eq
tree-size-ge-1 by auto
next
    case (Suc n)
    have }\forallts\in{ts. tree-size (Node ts) \leq Suc n}. set ts \subseteqlt-n-trees n unfolding
lt-n-trees-def using tree-size-children by fastforce
    have {ts. tree-size (Node ts)\leq Suc n} = {ts. tree-size (Node ts)\leq Suc n ^ set
ts\subseteqlt-n-trees n ^ length ts \leqn} unfolding lt-n-trees-def using tree-size-children
length-children by fastforce
    then have finite {ts.tree-size (Node ts)\leqSuc n} using finite-lists-length-le[OF
Suc.IH] by auto
    then show ?case unfolding lt-n-trees-eq by blast
qed
lemma n-trees-subset-lt-n-trees: n-trees n }\subseteqlt\mathrm{ -n-trees n
    unfolding n-trees-def lt-n-trees-def by blast
lemma finite-n-trees: finite ( }n\mathrm{ -trees n)
    using n-trees-subset-lt-n-trees finite-lt-n-trees rev-finite-subset by metis
```


4.4 Algorithms for enumeration

```
fun greatest-tree :: nat \(\Rightarrow\) tree where
    greatest-tree (Suc 0) \(=\) Node []
| greatest-tree (Suc n) = Node [greatest-tree n]
function \(n\)-tree-enum-aux :: tree \(\Rightarrow\) tree list where
    \(n\)-tree-enum-aux \(t=\)
        (case next-tree \(t\) of None \(\Rightarrow[t] \mid\) Some \(t^{\prime} \Rightarrow t \# n\)-tree-enum-aux \(t^{\prime}\) )
    by pat-completeness auto
fun \(n\)-tree-enum :: nat \(\Rightarrow\) tree list where
    n-tree-enum \(0=[]\)
| \(n\)-tree-enum \(n=n\)-tree-enum-aux (greatest-tree \(n\) )
termination \(n\)-tree-enum-aux
proof (relation measure ( \(\lambda t\). card \(\{r . r<t \wedge\) tree-size \(r=\) tree-size \(t\}\) ), auto)
    fix \(t t^{\prime}\) assume \(t\) - \(t^{\prime}\) : next-tree-aux \(0 t=\) Some \(t^{\prime}\)
    then have height-t: height \(t \geq 2\) using next-tree-Some-iff by auto
    then have \(t^{\prime}<t\) using \(t\) - \(t^{\prime}\) next-tree-lt by fastforce
    have size- \(t^{\prime}\) - \(t\) : tree-size \(t^{\prime}=\) tree-size \(t\) using size-next-tree height- \(t\) t- \(t^{\prime}\) by fast-
force
    let ?meas- \(t^{\prime}=\left\{r . r<t^{\prime} \wedge\right.\) tree-size \(r=\) tree-size \(\left.t^{\prime}\right\}\)
    let ?meas- \(t=\{r . r<t \wedge\) tree-size \(r=\) tree-size \(t\}\)
    have fin: finite ?meas-t using finite-n-trees unfolding \(n\)-trees-def by auto
    have ?meas- \(t^{\prime} \subseteq\) ? meas- \(t\) using \(\left\langle t^{\prime}<t\right\rangle\) size- \(t^{\prime}-t\) by auto
```

```
    then show card \(\left\{r . r<t^{\prime} \wedge\right.\) tree-size \(r=\) tree-size \(\left.t^{\prime}\right\}<\operatorname{card}\{r . r<t \wedge\)
tree-size \(r=\) tree-size \(t\}\)
    using fin \(\left\langle t^{\prime}<t\right\rangle\) psubset-card-mono size- \(t^{\prime}-t\) by auto
qed
```

definition n-rtree-graph-enum $::$ nat \Rightarrow nat rpregraph list where
n-rtree-graph-enum $n=$ map tree-graph $(n$-tree-enum $n)$

4.5 Regularity

lemma regular-trim-tree: regular $t \Longrightarrow$ regular $($ snd $($ trim-tree $n t)$)
by (induction n t rule: trim-tree.induct, auto split: prod.split nat.split tree.split, metis dual-order.trans tree.inject trim-id trim-tree-le)
lemma regular-trim-tree': regular $t \Longrightarrow\left(n^{\prime}, t^{\prime}\right)=$ trim-tree $n t \Longrightarrow$ regular t^{\prime} using regular-trim-tree by (metis snd-eqD)
lemma sorted-fill-tree: sorted (fill-tree $n t$)
using fill-tree-le by (induction n t rule: fill-tree.induct) (auto simp: sorted-append split: prod.split)
lemma regular-fill-tree: regular $t \Longrightarrow r \in$ set (fill-tree $n t$) \Longrightarrow regular r using regular-trim-tree' by (induction n t rule: fill-tree.induct) auto
lemma regular-next-tree-aux: regular $t \Longrightarrow$ height $t \geq 2 \Longrightarrow$ regular (the (next-tree-aux $n t)$)
proof (induction n t rule: next-tree-aux.induct)
case (1 n)
then show ?case by auto
next
case (2 $n t s$)
then show? case by (cases ts) auto
next
case (3 n rsts)
then have regular-rs: regular (Node rs) by simp
have $\forall t \in$ set t. Node $(r s)<t$ using 3(1) tree-less-cons[of rs Node []] by auto then show ?case using 3 sorted-fill-tree regular-fill-tree[OF regular-rs] fill-tree-le by (auto simp del: fill-tree.simps simp: sorted-append, meson dual-order.trans tree-le-cons)
next
case (4 n vc vd vb ts)
have height-t: height (Node (Node (vc \#vd) \# vb)) 22 unfolding numeral-2-eq-2
by (metis dual-order.antisym height-Node-cons less-eq-nat.simps(1) not-less-eq-eq)
then show ?case using 4 by (auto, meson height-t dual-order.strict-trans1
next-tree-aux-lt nless-le)
qed
lemma regular-next-tree: regular $t \Longrightarrow$ height $t \geq 2 \Longrightarrow$ regular $($ the $($ next-tree $t))$
using regular-next-tree-aux by simp

```
lemma regular-next-tree': regular t \Longrightarrow next-tree t=Some t' \Longrightarrow regular t'
    using regular-next-tree next-tree-Some-iff by fastforce
lemma regular-n-tree-enum-aux: regular t \Longrightarrowr set (n-tree-enum-aux t)\Longrightarrow
regular r
proof (induction t rule: n-tree-enum-aux.induct)
    case (1 t)
    then show ?case
    proof (cases next-tree-aux 0 t)
        case None
        then show ?thesis using 1 by auto
    next
        case (Some a)
        then show ?thesis using 1 regular-next-tree' by auto
    qed
qed
lemma regular-n-tree-greatest-tree: }n\not=0\Longrightarrow\mathrm{ greatest-tree }n\in\mathrm{ regular-n-trees }
proof (induction n)
    case 0
    then show ?case by auto
next
    case (Suc n)
    then show ?case unfolding regular-n-trees-def n-trees-def by (cases n) auto
qed
lemma regular-n-tree-enum: t\in set (n-tree-enum n) \Longrightarrow regular }
    using regular-n-tree-enum-aux regular-n-tree-greatest-tree unfolding regular-n-trees-def
by (cases n) auto
lemma size-n-tree-enum-aux: n\not=0\Longrightarrowr\inset (n-tree-enum-aux t)\Longrightarrowtree-size
r= tree-size t
proof (induction t rule: n-tree-enum-aux.induct)
    case (1 t)
    then show ?case
    proof (cases next-tree-aux 0 t)
        case None
        then show ?thesis using 1 by auto
    next
        case (Some a)
        then show ?thesis using 1 size-next-tree' by auto
    qed
qed
lemma size-greatest-tree[simp]: n}=0\Longrightarrow\mathrm{ tree-size (greatest-tree n) =n
    by (induction n rule: greatest-tree.induct) auto
```

lemma size-n-tree-enum: $t \in$ set $(n$-tree-enum $n) \Longrightarrow$ tree-size $t=n$ using size-n-tree-enum-aux size-greatest-tree by (cases n, auto, fastforce)

4.6 Totality

lemma set $(n$-tree-enum $n) \subseteq$ regular- n-trees n using regular-n-tree-enum size- n-tree-enum unfolding regular- n-trees-def n-trees-def by blast
lemma greatest-tree-lt-Suc: $n \neq 0 \Longrightarrow$ greatest-tree $n<$ greatest-tree (Suc n) by (induction n rule: greatest-tree.induct) (auto simp: tree-less-nested)
lemma greatest-tree-ge: tree-size $t \leq n \Longrightarrow t \leq$ greatest-tree n
proof (induction n arbitrary: t rule: greatest-tree.induct)
case 1
then show ?case by (cases trule: tree-cons-exhaust) (auto simp: tree-size-ne-0)
next
case (2 v)
then show ?case
proof (cases trule: tree-rev-exhaust)
case Nil
then show ?thesis by simp
next
case (Snoc ts r)
then have r-le-greatest-Suc-v: $r \leq$ greatest-tree (Suc v) using 2 by auto
then show ?thesis
proof (cases $r=$ greatest-tree (Suc v))
case True
then have $t s=[]$ using 2(2) Snoc by (simp add: tree-size-ne-0)
then show ?thesis using Snoc r-le-greatest-Suc-v by auto
next
case False
then show ?thesis using r-le-greatest-Suc-v Snoc by auto
qed
qed
next
case 3
then show? case by (simp add: tree-size-ne-0)
qed
fun least-tree :: nat \Rightarrow tree where
least-tree $($ Suc $n)=$ Node $($ replicate $n($ Node []))
lemma regular- n-tree-least-tree: $n \neq 0 \Longrightarrow$ least-tree $n \in$ regular- n-trees n proof (induction n)
case 0
then show ?case by auto
next
case (Suc n)

```
    then show ?case unfolding regular-n-trees-def n-trees-def by (cases n) auto
qed
lemma height-lt-2-least-tree: t \in regular-n-trees n \Longrightarrow height t< 2 \Longrightarrowt=
least-tree n
proof (induction n arbitrary: t)
    case 0
    have regular-n-trees 0 = {} unfolding regular-n-trees-def n-trees-def using
tree-size.elims by auto
    then show ?case using 0 by blast
next
    case (Suc n)
    then show ?case
    proof (cases n=0)
    case True
            then show ?thesis using Suc tree-size.elims unfolding regular-n-trees-def
n-trees-def
                by (auto, metis leD length-children length-greater-0-conv)
    next
            case False
    then have t-non-empty:t\not= Node [] using Suc(2) unfolding regular-n-trees-def
n-trees-def by auto
    then have height-t: height t=1 using Suc(3)
    by (metis One-nat-def gr0-conv-Suc height.elims less-2-cases less-numeral-extra(3))
            obtain s ts where s-ts: t=Node (s#ts) using t-non-empty by (meson
height.elims)
    then have height s=0 by (metis Suc-le-eq height-Node-cons less-one height-t)
    then have }s:s=\mathrm{ Node [] using height-0-iff by simp
    then have regular-ts:Node ts \in regular-n-trees n using Suc(2) unfolding s-ts
regular-n-trees-def n-trees-def by auto
    have height (Node ts)<2 using height-t height-children height-children-le-height
unfolding s-ts One-nat-def by fastforce
    then have Node ts = least-tree n using Suc(1) regular-ts by blast
    then show ?thesis using False gr0-conv-Suc s s-ts by auto
    qed
qed
lemma least-tree-le: n}=0\Longrightarrow\mathrm{ tree-size t }\geqn\Longrightarrow\mathrm{ least-tree }n\leq
proof (induction n arbitrary: t rule: less-induct)
    case (less n)
    then obtain n' where n: n=Suc n' using least-tree.cases by blast
    then obtain ts where t: t=Node ts by (cases t) auto
    then show ?case
    proof (cases n')
    case 0
    then show ?thesis using n by simp
    next
    case (Suc n')
    then show ?thesis
```

```
        proof (cases ts rule: rev-exhaust)
            case Nil
            then show ?thesis using less t n by auto
        next
            case (snoc rs r)
            then show ?thesis
    proof (cases r= Node [])
            case True
            then have tree-size (Node rs) \geq n' using less(3) unfolding n t Suc snoc
by auto
            then show ?thesis using less True unfolding n t Suc snoc
                    by (auto simp: simp: replicate-append-same[symmetric], force)
        next
            case False
            then show ?thesis using less False unfolding n t Suc snoc
                by (auto simp: replicate-append-same[symmetric] tree-less-empty-iff)
            qed
        qed
    qed
qed
lemma trim-id': n \geq tree-size t\Longrightarrow trim-tree n t=( n', t')\Longrightarrow t'=t
proof (induction n t arbitrary: n' t' rule: trim-tree.induct)
    case (1 t)
    then show ?case by auto
next
    case (2 t)
    then have t=Node [] using le-Suc-eq tree-size-1-iff tree-size-ne-0 by simp
    then show ?case using 2 by auto
next
    case (3v)
    then show ?case by auto
next
    case (4 va t ts)
    then show ?case using size-trim-tree[OF - 4(4)] size-trim-tree
        by (auto split: prod.splits nat.splits simp: tree-size-ne-0, fastforce)
qed
lemma tree-ge-lt-suffix: Node ts \leqr\Longrightarrowr<Node (t#ts)\Longrightarrow\existsss.r=Node (ss
@ ts)
proof (induction ts arbitrary: r rule: rev-induct)
    case Nil
    then show ?case by (cases r rule: tree-rev-exhaust) auto
next
    case (snoc x xs)
    then show ?case using tree-le-empty2-iff
        by (cases r rule: tree-rev-exhaust)
        (simp-all, metis Cons-eq-appendI tree.inject tree-less-antisym tree-less-snoc2-iff)
qed
```

```
lemma trim-tree-0-iff: fst (trim-tree n t)=0\longleftrightarrown\leq tree-size t
    using size-trim-tree trim-id tree-size-ge-1
    by (induction n t rule: trim-tree.induct, auto split: prod.split nat.split tree.split,
fastforce+)
lemma trim-tree-greatest-le: tree-size r\leqn\Longrightarrowr\leqt\Longrightarrowr\leqsnd (trim-tree n
t)
proof (induction n t arbitrary: r rule: trim-tree.induct)
    case (1 t)
    then show ?case by auto
next
    case (2 t)
    then show ?case using tree-size-ne-0 tree-size-1-iff by (simp add: le-Suc-eq)
next
    case (3v)
    then show ?case by auto
next
    case (4 va t ts)
    obtain n1 t1 where nt1: trim-tree (Suc (Suc va)) (Node ts)=(n1, t1) by
fastforce
    then show ?case
    proof (cases n1)
        case 0
        then show ?thesis
        proof (cases r \leq Node ts)
            case True
            then show ?thesis using 40 nt1 by simp
    next
            case False
        then obtain ss s where r:r=Node (ss@ s#ts)using 4(4) tree-ge-lt-suffix
            by (metis append.assoc append-Cons append-Nil nle-le rev-exhaust tree-le-def)
            then have tree-size (Node ts) \geqSuc (Suc va) using nt1 trim-tree-0-iff
unfolding 0 by fastforce
            then have tree-size r > Suc (Suc va) using tree-size-ne-0 unfolding r
                    by (auto simp: add-strict-increasing trans-less-add2)
            then show ?thesis using 4(3) by auto
    qed
    next
        case (Suc nat)
        then have t1:t1 = Node ts using trim-id nt1 by blast
        then obtain n2 t2 where nt2: trim-tree n1 t=(n2, t2) by fastforce
        then show ?thesis
    proof (cases r \leq Node ts)
            case True
            then show ?thesis using 4 Suc nt1 t1
            by (auto split: prod.split simp: tree-le-cons, meson dual-order.trans tree-le-cons)
        next
            case False
```

then obtain $s s s$ where $r: r=$ Node（ $s s$＠$s \# t s$ ）using 4（4）tree－ge－lt－suffix by（metis append．assoc append－Cons append－Nil nle－le rev－exhaust tree－le－def）
have size－s：tree－size $s \leq$ Suc nat using 4（3）Suc size－trim－tree $[O F-n t 1]$ t1 unfolding r by auto
have $s \leq t$ using 4（4）unfolding r by（meson order．trans tree－le－append tree－le－cons2）
have $s \leq t 2$ using 4．IH（2）［OF nt1［symmetric］Suc t1 size－s $\langle s \leq t\rangle] n t 2$ unfolding Suc by auto
then show ？thesis
proof（cases $s=t 2$ ）
case True
then have $s s=[]$
proof（cases t2 $=t$ ）
case True
then show ？thesis using 4（4）nle－le tree－le－append unfolding $r\langle s=t 2\rangle$ True by auto
next
case False
then have $n 2=0$ using nt2 trim－id by（cases n2）auto
then show ？thesis using size－trim－tree［OF－nt1］size－trim－tree［OF－nt2］
Suc 4（3）tree－size－ne－0 unfolding r t1 〈s＝t2〉 by auto
qed
then show ？thesis using nt1 Suc t1 nt2 unfolding r True by auto
next
case False
then show ？thesis using 〈s $\leq t 2\rangle$ nt1 nt2 $t 1$ Suc unfolding r
by（auto simp：order－less－imp－le tree－less－comm－suffix2）
qed
qed
qed
qed
lemma fill－tree－next－smallest：tree－size（Node rs）\leq Suc $n \Longrightarrow \forall r \in$ set rs．$r \leq t$
\Longrightarrow Node rs \leq Node（fill－tree $n t$ ）
proof（induction n t arbitrary：rs rule：fill－tree．induct）
case（1 uu）
have rs $=$［］using tree－size－1－iff 1（1）tree．inject by fastforce
then show？case by auto
next
case（2vt）
obtain $n^{\prime} t^{\prime}$ where $n t^{\prime}$ ：trim－tree（Suc v）$t=\left(n^{\prime}, t^{\prime}\right)$ by fastforce
then show ？case
proof（cases rs rule：rev－exhaust）
case Nil
then show？thesis by auto
next
case（snoc rs ${ }^{\prime} r^{\prime}$ ）
then show ？thesis
proof（cases n^{\prime} ）
case 0
then show?thesis
proof (cases $r^{\prime}=t^{\prime}$)
case True
then have rs $^{\prime}=[]$ using 0 2(2) size-trim-tree $[O F-n t]$ unfolding snoc
by (auto simp: tree-size-ne-0)
then show ?thesis using $n t^{\prime} 0$ unfolding snoc True by simp
next
case False
then show ?thesis using 2 trim-tree-greatest-le nt' 0 tree-less-comm-suffix2
unfolding snoc
by (auto, metis nless-le not-less-eq-eq snd-eqD trans-le-add2) qed
next
case (Suc nat)
then show ?thesis using $2 n t^{\prime}$ trim-id[OF nt' $[$ unfolded Suc]] size-trim-tree[OF - $n t^{\prime}$] unfolding snoc by auto
qed
qed
qed
fun fill-twos :: nat \Rightarrow tree \Rightarrow tree where
fill-twos $n($ Node ts) $=$ Node (replicate $n($ Node []) @ ts)
lemma size-fill-twos: tree-size (fill-twos $n t$) $=n+$ tree-size t
by (cases t) (auto simp: sum-list-replicate)
lemma regular-fill-twos: regular $t \Longrightarrow$ regular (fill-twos $n t$)
by (cases t) (auto simp: sorted-append)
lemma fill-twos-lt: $n \neq 0 \Longrightarrow t<$ fill-twos $n t$
using tree-less-append by (cases t) auto

```
lemma fill-twos-less: \(r<\) Node \((t \# t s) \Longrightarrow t \neq\) Node [] \(\Longrightarrow\) fill-twos \(n r<\) Node
( \(t \# t s\) )
proof (induction \(n\) )
    case 0
    then show ?case by (cases r) auto
next
    case (Suc n)
    then show ?case by (cases r rule: tree.exhaust, simp,
        meson leD linorder-less-linear list.inject tree.inject tree-empty-cons-lt-le)
qed
lemma next-tree-aux-successor: tree-size \(r=\) tree-size \(t+n \Longrightarrow\) regular \(r \Longrightarrow r\)
\(<t \Longrightarrow\) height \(t \geq 2 \Longrightarrow r \leq\) the (next-tree-aux \(n t\) )
proof (induction \(n t\) arbitrary: r rule: next-tree-aux.induct)
    case (1 n)
    then show ?case by auto
```

```
next
    case (2 n ts)
    have size-r: tree-size r\leq tree-size (Node ts) + Suc n using 2(2) by auto
    have height-ts: height (Node ts) \geq2 using 2(5) by (cases ts) auto
    then show ?case using 2 size-r tree-empty-cons-lt-le by fastforce
next
    case (3 n rs ts)
    then show ?case
    proof (cases r < Node ts)
        case True
        then show ?thesis by (auto, meson dual-order.trans order.strict-implies-order
tree-le-append tree-le-cons)
    next
        case False
        then obtain ss where r:r=Node (ss @ ts) using 3(3) tree-ge-lt-suffix by
fastforce
    show ?thesis
    proof (cases ss rule: rev-exhaust)
            case Nil
            then show ?thesis unfolding r by (simp, meson order-trans tree-le-append
tree-le-cons)
    next
                case (snoc ss' s')
            have s'-le-rs: s'\leqNode rs using 3(3) tree-empty-cons-lt-le unfolding r snoc
                by (metis (mono-tags, lifting) append.assoc append-Cons append-self-conv2
                    dual-order.order-iff-strict linorder-not-less order-less-le-trans tree-le-append
tree-less-cons2)
            show ?thesis
            proof (cases s' = Node rs)
                    case True
                    then show ?thesis using 3(1,2) fill-tree-next-smallest unfolding r snoc
                    by (auto simp del: fill-tree.simps simp: sorted-append)
            next
                case False
                    then show ?thesis using s'-le-rs unfolding r snoc by (auto, meson
tree-le-def tree-less-iff)
                    qed
            qed
    qed
next
    case (4 nvc vd vb ts)
    define t where t=Node (Node (vc# vd) #vb)
    have height-t: height t \geq2 unfolding numeral-2-eq-2 t-def
        by (metis dual-order.antisym height-Node-cons less-eq-nat.simps(1) not-less-eq-eq)
    then show ?case
    proof (cases r < Node ts)
        case True
        then show ?thesis by (auto, meson dual-order.trans order.strict-implies-order
tree-le-append tree-le-cons)
```


next

case False
then obtain ss where $r: r=$ Node (ss @ ts) using 4(4)tree-ge-lt-suffix by fastforce
then show ?thesis
proof (cases ss rule: rev-exhaust)
case Nil
then show ?thesis using tree-le-cons unfolding r by auto
next
case (snoc ss' s^{\prime})
have $s^{\prime}<t$ using 4 (4)[folded t-def] unfolding r snoc
by (auto, metis antisym-conv3 append.left-neutral dual-order.strict-trans less-tree-comm-suffix not-tree-less-empty tree-less-cons2)
show ?thesis
proof (cases tree-size $s^{\prime}=$ tree-size $t+n$)
case True
then have $s s^{\prime}=[]$ using 4 (2) [folded t-def $]$ tree-size-ne-0 unfolding r snoc by auto
then show ?thesis using 4.IH True $4(3)\left\langle s^{\prime}\langle t\rangle\right.$ height-t tree-le-cons2 unfolding r snoc t-def by auto
next
case False
obtain $u s$ where $s^{\prime}: s^{\prime}=$ Node us using tree.exhaust by blast

- s " is greater than s' but has the same size as t so the IH can be used on it. define $s^{\prime \prime}$ where $s^{\prime \prime}=$ fill-twos $\left(\right.$ tree-size $t+n-$ tree-size $\left.s^{\prime}\right) s^{\prime}$
have size-s': tree-size $s^{\prime} \leq$ tree-size $t+n$ using 4(2)[folded t-def] unfolding r snoc by simp
then have size-s $s^{\prime \prime}$: tree-size $s^{\prime \prime}=$ tree-size $t+n$ unfolding $s^{\prime \prime}$-def using size-fill-twos by auto
have regular-s $s^{\prime \prime}:$ regular $s^{\prime \prime} \mathbf{u s i n g}$ regular-fill-twos $4(3)$ unfolding $s^{\prime \prime}$-def r snoc by auto
have $s^{\prime \prime}<t$ using fill-twos-less $\left\langle s^{\prime}<t\right\rangle$ unfolding t-def $s^{\prime \prime}$-def by auto have $s^{\prime}<s^{\prime \prime}$ using fill-twos-lt False size-fill-twos size-s" unfolding $s^{\prime \prime}$-def by auto
then show ?thesis using $4 . I H\left[\right.$ folded t-def, OF size-s ${ }^{\prime \prime}$ regular-s ${ }^{\prime \prime}\left\langle s^{\prime \prime}<t\right\rangle$ height-t] unfolding r snoc t-def by (simp add: order-less-imp-le tree-less-comm-suffix2) qed
qed
qed
qed
lemma next-tree-successor: tree-size $r=$ tree-size $t \Longrightarrow$ regular $r \Longrightarrow r<t \Longrightarrow$ next-tree $t=$ Some $t^{\prime} \Longrightarrow r \leq t^{\prime}$
using next-tree-aux-successor next-tree-Some-iff by force
lemma set- n-tree-enum-aux: $t \in$ regular- n-trees $n \Longrightarrow$ set $(n$-tree-enum-aux $t)=$ $\{r \in$ regular- n-trees $n . r \leq t\}$
proof (induction t rule: n-tree-enum-aux.induct)

```
    case (1 t)
    then show ?case
    proof (cases next-tree t)
    case None
    have n\not=0 using 1(2) tree-size-ne-0 unfolding regular-n-trees-def n-trees-def
by auto
    have t= least-tree n using height-lt-2-least-tree next-tree-aux-None-iff 1 None
by simp
    then show ?thesis using next-tree-Some-iff 1 None least-tree-le 〈n\not=0〉
            unfolding regular-n-trees-def n-trees-def by (auto simp: antisym)
    next
    case (Some t')
    then have set (n-tree-enum-aux t)= insert t {r fregular-n-trees n.r\leqt'}
    using 1 regular-next-tree' size-next-tree' unfolding regular-n-trees-def n-trees-def
by auto
    also have ... = {r\inregular-n-trees n. r\leqt} using next-tree-successor 1(2)
Some unfolding regular-n-trees-def n-trees-def
            by (auto, meson Some less-le-not-le next-tree-lt' order.trans)
    finally show ?thesis .
    qed
qed
```

theorem set-n-tree-enum: set (n-tree-enum n) $=$ regular- n-trees n
proof (cases n)
case 0
then show ?thesis unfolding regular-n-trees-def n-trees-def using tree-size-ne-0
by simp
next
case (Suc nat)
then show ?thesis using set-n-tree-enum-aux regular-n-tree-greatest-tree great-
est-tree-ge
unfolding regular- n-trees-def n-trees-def by auto
qed
theorem n-rtree-graph-enum- n-rtree-graphs: $G \in$ set (n-rtree-graph-enum n) \Longrightarrow
$G \in n$-rtree-graphs n
using set-n-tree-enum rtree-tree-graph card-tree-graph
unfolding n-rtree-graph-enum-def n-rtree-graphs-def regular- n-trees-def n-trees-def
by (auto, metis)
theorem n-rtree-graph-enum-surj:
assumes n-rtree-graph: $G \in n$-rtree-graphs n
shows $\exists G^{\prime} \in$ set $(n$-rtree-graph-enum $n) . G^{\prime} \simeq_{r} G$
proof-
obtain $V E r$ where $G=(V, E, r)$ using prod.exhaust by metis
then show ?thesis using n-rtree-graph set-n-tree-enum rtree.ex-regular-n-tree
unfolding n-rtree-graphs-def n-rtree-graph-enum-def by (auto simp: rtree.ex-regular- n-tree)
qed

4.7 Distinctness

```
lemma n-tree-enum-aux-le: r set (n-tree-enum-aux t)\Longrightarrowr\leqt
proof (induction t rule: n-tree-enum-aux.induct)
    case (1 t)
    then show ?case
    proof (cases next-tree t)
        case None
        then show ?thesis using 1 by auto
    next
        case (Some a)
        then show ?thesis using next-tree-lt' 1 by fastforce
    qed
qed
lemma sorted-n-tree-enum-aux: sorted-wrt (>) (n-tree-enum-aux t)
proof (induction t rule: n-tree-enum-aux.induct)
    case (1 t)
    then show ?case
    proof (cases next-tree t)
        case None
        then show ?thesis by simp
    next
        case (Some a)
        then show ?thesis using 1 Some next-tree-lt' n-tree-enum-aux-le by fastforce
    qed
qed
lemma distinct-n-tree-enum-aux: distinct (n-tree-enum-aux t)
    using sorted-n-tree-enum-aux strict-sorted-iff distinct-rev sorted-wrt-rev by blast
theorem distinct-n-tree-enum: distinct ( }n\mathrm{ -tree-enum n)
    using distinct-n-tree-enum-aux by (cases n) auto
theorem distinct-n-rtree-graph-enum: distinct (n-rtree-graph-enum n)
    using tree-graph-inj distinct-n-tree-enum set-n-tree-enum unfolding n-rtree-graph-enum-def
regular-n-trees-def
    by (simp add: distinct-map inj-on-def)
theorem inj-iso-n-rtree-graph-enum:
    assumes G-in-n-rtree-graph-enum: G set (n-rtree-graph-enum n)
        and H-in-n-rtree-graph-enum: }H\in\mathrm{ set ( }n\mathrm{ -rtree-graph-enum n)
        and G}\mp@subsup{\simeq}{r}{}
    shows G=H
proof-
    obtain }\mp@subsup{t}{G}{}\mathrm{ where t-G: regular t}\mp@subsup{t}{G}{}\mathrm{ tree-graph t}\mp@subsup{t}{G}{}=G\mathrm{ using G-in-n-rtree-graph-enum
regular-n-tree-enum
    unfolding n-rtree-graph-enum-def by auto
    obtain t th where t-H: regular t tree-graph t t 
regular-n-tree-enum
```

unfolding n-rtree-graph-enum-def by auto
then show? ?thesis using t - G tree-graph-inj-iso $\left\langle G \simeq_{r} H\right\rangle$ by auto qed
theorem ex1-iso-n-rtree-graph-enum: $G \in n$-rtree-graphs $n \Longrightarrow \exists!G^{\prime} \in$ set (n-rtree-graph-enum n). $G^{\prime} \simeq_{r} G$
using inj-iso-n-rtree-graph-enum rgraph-isomorph-trans rgraph-isomorph-sym n-rtree-graph-enum-surj unfolding transp-def by blast
end

References

[1] T. Beyer and S. M. Hedetniemi. Constant time generation of rooted trees. SIAM Journal on Computing, 9(4):706-712, 1980.

