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Abstract

This thesis presents the verification of enumeration algorithms for
trees. The first algorithm is based on the well known Prüfer-correspondence
and allows the enumeration of all possible labeled trees over a fixed
finite set of vertices. The second algorithm enumerates rooted, unla-
beled trees of a specified size up to graph isomorphisms. It allows for
the efficient enumeration without the use of an intermediate encod-
ing of the trees with level sequences, unlike the algorithm by Beyer
and Hedetniemi [1] it is based on. Both algorithms are formalized and
verified in Isabelle/HOL. The formalization of trees and other graph
theoretic results is also presented.
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1 Graphs and Trees
theory Tree-Graph

imports Undirected-Graph-Theory.Undirected-Graphs-Root
begin

1.1 Miscellaneous
definition (in ulgraph) loops :: ′a edge set where

loops = {e∈E . is-loop e}

definition (in ulgraph) sedges :: ′a edge set where
sedges = {e∈E . is-sedge e}

lemma (in ulgraph) union-loops-sedges: loops ∪ sedges = E
unfolding loops-def sedges-def is-loop-def is-sedge-def using alt-edge-size by

blast

lemma (in ulgraph) disjnt-loops-sedges: disjnt loops sedges
unfolding disjnt-def loops-def sedges-def is-loop-def is-sedge-def by auto

lemma (in fin-ulgraph) finite-loops: finite loops
unfolding loops-def using fin-edges by auto

lemma (in fin-ulgraph) finite-sedges: finite sedges
unfolding sedges-def using fin-edges by auto

lemma (in ulgraph) edge-incident-vert: e ∈ E =⇒ ∃ v∈V . vincident v e
using edge-size wellformed by (metis empty-not-edge equals0I vincident-def inci-

dent-edge-in-wf )
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lemma (in ulgraph) Union-incident-edges: (
⋃

v∈V . incident-edges v) = E
unfolding incident-edges-def using edge-incident-vert by auto

lemma (in ulgraph) induced-edges-mono: V 1 ⊆ V 2 =⇒ induced-edges V 1 ⊆ in-
duced-edges V 2

using induced-edges-def by auto

definition (in graph-system) remove-vertex :: ′a ⇒ ′a pregraph where
remove-vertex v = (V − {v}, {e∈E . ¬ vincident v e})

lemma (in ulgraph) ex-neighbor-degree-not-0 :
assumes degree-non-0 : degree v 6= 0

shows ∃ u∈V . vert-adj v u
proof−

have ∃ e∈E . v ∈ e using degree-non-0 elem-exists-non-empty-set
unfolding degree-def incident-sedges-def incident-loops-def vincident-def by

auto
then show ?thesis

by (metis degree-non-0 in-mono is-isolated-vertex-def is-isolated-vertex-degree0
vert-adj-sym wellformed)
qed

lemma (in ulgraph) ex1-neighbor-degree-1 :
assumes degree-1 : degree v = 1
shows ∃ !u. vert-adj v u

proof−
have card (incident-loops v) = 0 using degree-1 unfolding degree-def by auto
then have incident-loops: incident-loops v = {} by (simp add: finite-incident-loops)
then have card-incident-sedges: card (incident-sedges v) = 1 using degree-1

unfolding degree-def by simp
obtain u where vert-adj: vert-adj v u using degree-1 ex-neighbor-degree-not-0

by force
then have u 6= v using incident-loops unfolding incident-loops-def vert-adj-def

by blast
then have u-incident: {v,u} ∈ incident-sedges v using vert-adj unfolding in-

cident-sedges-def vert-adj-def vincident-def by simp
then have incident-sedges: incident-sedges v = {{v,u}} using card-incident-sedges

by (simp add: comp-sgraph.card1-incident-imp-vert comp-sgraph.vincident-def )
have vert-adj v u ′ =⇒ u ′ = u for u ′

proof−
assume v-u ′-adj: vert-adj v u ′

then have u ′ 6= v using incident-loops unfolding incident-loops-def vert-adj-def
by blast

then have {v,u ′} ∈ incident-sedges v using v-u ′-adj unfolding incident-sedges-def
vert-adj-def vincident-def by simp

then show u ′ = u using incident-sedges by force
qed
then show ?thesis using vert-adj by blast
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qed

lemma (in ulgraph) degree-1-edge-partition:
assumes degree-1 : degree v = 1
shows E = {{THE u. vert-adj v u, v}} ∪ {e ∈ E . v /∈ e}

proof−
have card (incident-loops v) = 0 using degree-1 unfolding degree-def by auto
then have incident-loops: incident-loops v = {} by (simp add: finite-incident-loops)
then have card (incident-sedges v) = 1 using degree-1 unfolding degree-def

by simp
then have card-incident-edges: card (incident-edges v) = 1 using incident-loops

incident-edges-union by simp
obtain u where vert-adj: vert-adj v u using ex1-neighbor-degree-1 degree-1 by

blast
then have {v, u} ∈ {e ∈ E . v ∈ e} unfolding vert-adj-def by blast
then have edges-incident-v: {e ∈ E . v ∈ e} = {{v, u}} using card-incident-edges

card-1-singletonE singletonD
unfolding incident-edges-def vincident-def by metis

have u: u = (THE u. vert-adj v u) using vert-adj ex1-neighbor-degree-1 degree-1
by (simp add: the1-equality)

show ?thesis using edges-incident-v u by blast
qed

lemma (in sgraph) vert-adj-not-eq: vert-adj u v =⇒ u 6= v
unfolding vert-adj-def using edge-vertices-not-equal by blast

1.2 Degree
lemma (in ulgraph) empty-E-degree-0 : E = {} =⇒ degree v = 0
using incident-edges-empty degree0-inc-edges-empt-iff unfolding incident-edges-def

by simp

lemma (in fin-ulgraph) handshaking: (
∑

v∈V . degree v) = 2 ∗ card E
using fin-edges fin-ulgraph-axioms

proof (induction E)
case empty
then interpret g: fin-ulgraph V {} .
show ?case using g.empty-E-degree-0 by simp

next
case (insert e E ′)
then interpret g ′: fin-ulgraph V insert e E ′ by blast
interpret g: fin-ulgraph V E ′ using g ′.wellformed g ′.edge-size finV by (unfold-locales,

auto)
show ?case
proof (cases is-loop e)

case True
then obtain u where e: e = {u} using card-1-singletonE is-loop-def by blast
then have inc-sedges:

∧
v. g ′.incident-sedges v = g.incident-sedges v unfolding

g ′.incident-sedges-def g.incident-sedges-def by auto
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have
∧

v. v 6= u =⇒ g ′.incident-loops v = g.incident-loops v unfolding
g ′.incident-loops-def g.incident-loops-def using e by auto

then have degree-not-u:
∧

v. v 6= u =⇒ g ′.degree v = g.degree v using inc-sedges
unfolding g ′.degree-def g.degree-def by auto

have g ′.incident-loops u = g.incident-loops u ∪ {e} unfolding g ′.incident-loops-def
g.incident-loops-def using e by auto

then have degree-u: g ′.degree u = g.degree u + 2 using inc-sedges insert(2 )
g.finite-incident-loops g.incident-loops-def unfolding g ′.degree-def g.degree-def by
auto

have u ∈ V using e g ′.wellformed by blast
then have (

∑
v∈V . g ′.degree v) = g ′.degree u + (

∑
v∈V−{u}. g ′.degree v)

by (simp add: finV sum.remove)
also have . . . = (

∑
v∈V . g.degree v) + 2 using degree-not-u degree-u sum.remove[OF

finV ‹u∈V ›, of g.degree] by auto
also have . . . = 2 ∗ card (insert e E ′) using insert g.fin-ulgraph-axioms by

auto
finally show ?thesis .

next
case False
obtain u w where e: e = {u,w} using g ′.obtain-edge-pair-adj by fastforce
then have card-e: card e = 2 using False g ′.alt-edge-size is-loop-def by auto
then have u 6= w using card-2-iff using e by fastforce
have inc-loops:

∧
v. g ′.incident-loops v = g.incident-loops v

unfolding g ′.incident-loops-alt g.incident-loops-alt using False is-loop-def by
auto

have
∧

v. v 6= u =⇒ v 6= w =⇒ g ′.incident-sedges v = g.incident-sedges v
unfolding g ′.incident-sedges-def g.incident-sedges-def g.vincident-def using

e by auto
then have degree-not-u-w:

∧
v. v 6= u =⇒ v 6= w =⇒ g ′.degree v = g.degree v

unfolding g ′.degree-def g.degree-def using inc-loops by auto
have g ′.incident-sedges u = g.incident-sedges u ∪ {e}

unfolding g ′.incident-sedges-def g.incident-sedges-def g.vincident-def using
e card-e by auto

then have degree-u: g ′.degree u = g.degree u + 1
using inc-loops insert(2 ) g.fin-edges g.finite-inc-sedges g.incident-sedges-def
unfolding g ′.degree-def g.degree-def by auto

have g ′.incident-sedges w = g.incident-sedges w ∪ {e}
unfolding g ′.incident-sedges-def g.incident-sedges-def g.vincident-def using

e card-e by auto
then have degree-w: g ′.degree w = g.degree w + 1

using inc-loops insert(2 ) g.fin-edges g.finite-inc-sedges g.incident-sedges-def
unfolding g ′.degree-def g.degree-def by auto

have inV : u ∈ V w ∈ V−{u} using e g ′.wellformed ‹u 6=w› by auto
then have (

∑
v∈V . g ′.degree v) = g ′.degree u + g ′.degree w + (

∑
v∈V−{u}−{w}.

g ′.degree v)
using sum.remove finV by (metis add.assoc finite-Diff )

also have . . . = g.degree u + g.degree w + (
∑

v∈V−{u}−{w}. g.degree v) +
2

using degree-not-u-w degree-u degree-w by simp
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also have . . . = (
∑

v∈V . g.degree v) + 2 using sum.remove finV inV by
(metis add.assoc finite-Diff )

also have . . . = 2 ∗ card (insert e E ′) using insert g.fin-ulgraph-axioms by
auto

finally show ?thesis .
qed

qed

lemma (in fin-ulgraph) degree-remove-adj-ne-vert:
assumes u 6= v

and vert-adj: vert-adj u v
and remove-vertex: remove-vertex u = (V ′,E ′)

shows ulgraph.degree E ′ v = degree v − 1
proof−

interpret G ′: fin-ulgraph V ′ E ′ using remove-vertex wellformed edge-size finV
unfolding remove-vertex-def vincident-def

by (unfold-locales, auto)
have E ′: E ′ = {e ∈ E . u /∈ e} using remove-vertex unfolding remove-vertex-def

vincident-def by simp
have incident-loops ′: G ′.incident-loops v = incident-loops v unfolding inci-

dent-loops-def
using ‹u 6=v› E ′ G ′.incident-loops-def by auto

have uv-incident: {u,v} ∈ incident-sedges v using vert-adj ‹u 6=v› unfolding
vert-adj-def incident-sedges-def vincident-def by simp
have uv-incident ′: {u, v} /∈ G ′.incident-sedges v unfolding G ′.incident-sedges-def

vincident-def using E ′ by blast
have e ∈ E =⇒ u ∈ e =⇒ v ∈ e =⇒ card e = 2 =⇒ e = {u,v} for e

using ‹u 6=v› obtain-edge-pair-adj by blast
then have {e ∈ E . u ∈ e ∧ v ∈ e ∧ card e = 2} = {{u,v}} using uv-incident

unfolding incident-sedges-def by blast
then have incident-sedges v = G ′.incident-sedges v ∪ {{u,v}} unfolding G ′.incident-sedges-def

incident-sedges-def vincident-def using E ′ by blast
then show ?thesis unfolding G ′.degree-def degree-def using incident-loops ′

uv-incident ′ G ′.finite-inc-sedges G ′.fin-edges by auto
qed

lemma (in ulgraph) degree-remove-non-adj-vert:
assumes u 6= v

and vert-non-adj: ¬ vert-adj u v
and remove-vertex: remove-vertex u = (V ′, E ′)

shows ulgraph.degree E ′ v = degree v
proof−
interpret G ′: ulgraph V ′ E ′ using remove-vertex wellformed edge-size unfolding

remove-vertex-def vincident-def
by (unfold-locales, auto)

have E ′: E ′ = {e ∈ E . u /∈ e} using remove-vertex unfolding remove-vertex-def
vincident-def by simp

have incident-loops ′: G ′.incident-loops v = incident-loops v unfolding inci-
dent-loops-def
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using ‹u 6=v› E ′ G ′.incident-loops-def by auto
have G ′.incident-sedges v = incident-sedges v unfolding G ′.incident-sedges-def

incident-sedges-def vincident-def
using E ′ ‹u 6=v› vincident-def vert-adj-edge-iff2 vert-non-adj by auto

then show ?thesis using incident-loops ′ unfolding G ′.degree-def degree-def by
simp
qed

1.3 Walks
lemma (in ulgraph) walk-edges-induced-edges: is-walk p =⇒ set (walk-edges p) ⊆
induced-edges (set p)

unfolding induced-edges-def is-walk-def by (induction p rule: walk-edges.induct)
auto

lemma (in ulgraph) walk-edges-in-verts: e ∈ set (walk-edges xs) =⇒ e ⊆ set xs
by (induction xs rule: walk-edges.induct) auto

lemma (in ulgraph) is-walk-prefix: is-walk (xs@ys) =⇒ xs 6= [] =⇒ is-walk xs
unfolding is-walk-def using walk-edges-append-ss2 by fastforce

lemma (in ulgraph) split-walk-edge: {x,y} ∈ set (walk-edges p) =⇒
∃ xs ys. p = xs @ x # y # ys ∨ p = xs @ y # x # ys
by (induction p rule: walk-edges.induct) (auto, metis append-Nil doubleton-eq-iff ,

(metis append-Cons)+)

1.4 Paths
lemma (in ulgraph) is-gen-path-wf : is-gen-path p =⇒ set p ⊆ V

unfolding is-gen-path-def using is-walk-wf by auto

lemma (in ulgraph) path-wf : is-path p =⇒ set p ⊆ V
by (simp add: is-path-walk is-walk-wf )

lemma (in fin-ulgraph) length-gen-path-card-V : is-gen-path p =⇒ walk-length p ≤
card V
by (metis card-mono distinct-card distinct-tl finV is-gen-path-def is-walk-def length-tl

list.exhaust-sel order-trans set-subset-Cons walk-length-conv)

lemma (in fin-ulgraph) length-path-card-V : is-path p =⇒ length p ≤ card V
by (metis path-wf card-mono distinct-card finV is-path-def )

lemma (in ulgraph) is-gen-path-prefix: is-gen-path (xs@ys) =⇒ xs 6= [] =⇒ is-gen-path
(xs)

unfolding is-gen-path-def using is-walk-prefix
by (auto, metis Int-iff distinct.simps(2 ) emptyE last-appendL last-appendR last-in-set

list.collapse)

lemma (in ulgraph) connecting-path-append: connecting-path u w (xs@ys) =⇒ xs
6= [] =⇒ connecting-path u (last xs) xs
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unfolding connecting-path-def using is-gen-path-prefix by auto

lemma (in ulgraph) connecting-path-tl: connecting-path u v (u # w # xs) =⇒
connecting-path w v (w # xs)

unfolding connecting-path-def is-gen-path-def using is-walk-drop-hd distinct-tl
by auto

lemma (in fin-ulgraph) obtain-longest-path:
assumes e ∈ E

and sedge: is-sedge e
obtains p where is-path p ∀ s. is-path s −→ length s ≤ length p

proof−
let ?longest-path = ARG-MAX length p. is-path p
obtain u v where e: u 6= v e = {u,v} using sedge card-2-iff unfolding

is-sedge-def by metis
then have inV : u ∈ V v ∈ V using ‹e∈E› wellformed by auto
then have path-ex: is-path [u,v] using e ‹e∈E› unfolding is-path-def is-open-walk-def

is-walk-def by simp
obtain p where p-is-path: is-path p and p-longest-path: ∀ s. is-path s −→ length

s ≤ length p
using path-ex length-path-card-V ex-has-greatest-nat[of is-path [u,v] length gorder ]

by force
then show ?thesis ..

qed

1.5 Cycles
context ulgraph
begin

definition is-cycle2 :: ′a list ⇒ bool where
is-cycle2 xs ←→ is-cycle xs ∧ distinct (walk-edges xs)

lemma loop-is-cycle2 : {v} ∈ E =⇒ is-cycle2 [v, v]
unfolding is-cycle2-def is-cycle-alt is-walk-def using wellformed walk-length-conv

by auto

end

lemma (in sgraph) cycle2-min-length:
assumes cycle: is-cycle2 c
shows walk-length c ≥ 3

proof−
consider c = [] | ∃ v1 . c = [v1 ] | ∃ v1 v2 . c = [v1 , v2 ] | ∃ v1 v2 v3 . c = [v1 , v2 ,

v3 ] | ∃ v1 v2 v3 v4 vs. c = v1#v2#v3#v4#vs
by (metis list.exhaust-sel)

then show ?thesis using cycle walk-length-conv singleton-not-edge unfolding
is-cycle2-def is-cycle-alt is-walk-def by (cases, auto)
qed
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lemma (in fin-ulgraph) length-cycle-card-V : is-cycle c =⇒ walk-length c ≤ Suc
(card V )

using length-gen-path-card-V unfolding is-gen-path-def is-cycle-alt by fastforce

lemma (in ulgraph) is-cycle-connecting-path: is-cycle (u#v#xs) =⇒ connecting-path
v u (v#xs)

unfolding is-cycle-def connecting-path-def is-closed-walk-def is-gen-path-def us-
ing is-walk-drop-hd by auto

lemma (in ulgraph) cycle-edges-notin-tl: is-cycle2 (u#v#xs) =⇒ {u,v} /∈ set
(walk-edges (v#xs))

unfolding is-cycle2-def by simp

1.6 Subgraphs
locale ulsubgraph = subgraph VH EH VG EG +

G: ulgraph VG EG for VH EH VG EG

begin

interpretation H : ulgraph VH EH

using is-subgraph-ulgraph G.ulgraph-axioms by auto

lemma is-walk: H .is-walk xs =⇒ G.is-walk xs
unfolding H .is-walk-def G.is-walk-def using verts-ss edges-ss by blast

lemma is-closed-walk: H .is-closed-walk xs =⇒ G.is-closed-walk xs
unfolding H .is-closed-walk-def G.is-closed-walk-def using is-walk by blast

lemma is-gen-path: H .is-gen-path p =⇒ G.is-gen-path p
unfolding H .is-gen-path-def G.is-gen-path-def using is-walk by blast

lemma connecting-path: H .connecting-path u v p =⇒ G.connecting-path u v p
unfolding H .connecting-path-def G.connecting-path-def using is-gen-path by

blast

lemma is-cycle: H .is-cycle c =⇒ G.is-cycle c
unfolding H .is-cycle-def G.is-cycle-def using is-closed-walk by blast

lemma is-cycle2 : H .is-cycle2 c =⇒ G.is-cycle2 c
unfolding H .is-cycle2-def G.is-cycle2-def using is-cycle by blast

lemma vert-connected: H .vert-connected u v =⇒ G.vert-connected u v
unfolding H .vert-connected-def G.vert-connected-def using connecting-path by

blast

lemma is-connected-set: H .is-connected-set V ′ =⇒ G.is-connected-set V ′

unfolding H .is-connected-set-def G.is-connected-set-def using vert-connected by
blast
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end

lemma (in graph-system) subgraph-remove-vertex: remove-vertex v = (V ′, E ′) =⇒
subgraph V ′ E ′ V E

using wellformed unfolding remove-vertex-def vincident-def by (unfold-locales,
auto)

1.7 Connectivity
lemma (in ulgraph) connecting-path-connected-set:

assumes conn-path: connecting-path u v p
shows is-connected-set (set p)

proof−
have ∀w∈set p. vert-connected u w
proof

fix w assume w ∈ set p
then obtain xs ys where p = xs@[w]@ys using split-list by fastforce
then have connecting-path u w (xs@[w]) using conn-path unfolding connect-

ing-path-def using is-gen-path-prefix by (auto simp: hd-append)
then show vert-connected u w unfolding vert-connected-def by blast

qed
then show ?thesis using vert-connected-rev vert-connected-trans unfolding

is-connected-set-def by blast
qed

lemma (in ulgraph) vert-connected-neighbors:
assumes {v,u} ∈ E
shows vert-connected v u

proof−
have connecting-path v u [v,u] unfolding connecting-path-def is-gen-path-def

is-walk-def using assms wellformed by auto
then show ?thesis unfolding vert-connected-def by auto

qed

lemma (in ulgraph) connected-empty-E :
assumes empty: E = {}

and connected: vert-connected u v
shows u = v

proof (rule ccontr)
assume u 6= v
then obtain p where conn-path: connecting-path u v p using connected un-

folding vert-connected-def by blast
then obtain e where e ∈ set (walk-edges p) using ‹u 6=v› connecting-path-length-bound

unfolding walk-length-def by fastforce
then have e ∈ E using conn-path unfolding connecting-path-def is-gen-path-def

is-walk-def by blast
then show False using empty by blast

qed
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lemma (in fin-ulgraph) degree-0-not-connected:
assumes degree-0 : degree v = 0

and u 6= v
shows ¬ vert-connected v u

proof
assume connected: vert-connected v u
then obtain p where conn-path: connecting-path v u p unfolding vert-connected-def

by blast
then have walk-length p ≥ 1 using ‹u 6=v› connecting-path-length-bound by metis
then have length p ≥ 2 using walk-length-conv by simp
then obtain w p ′ where p = v#w#p ′ using walk-length-conv conn-path un-

folding connecting-path-def
by (metis assms(2 ) is-gen-path-def is-walk-not-empty2 last-ConsL list.collapse)

then have inE : {v,w} ∈ E using conn-path unfolding connecting-path-def
is-gen-path-def is-walk-def by simp

then have {v,w} ∈ incident-edges v unfolding incident-edges-def vincident-def
by simp

then show False using degree0-inc-edges-empt-iff fin-edges degree-0 by blast
qed

lemma (in fin-connected-ulgraph) degree-not-0 :
assumes card V ≥ 2

and inV : v ∈ V
shows degree v 6= 0

proof−
obtain u where u ∈ V and u 6= v using assms

by (metis card-eq-0-iff card-le-Suc0-iff-eq less-eq-Suc-le nat-less-le not-less-eq-eq
numeral-2-eq-2 )

then show ?thesis using degree-0-not-connected inV vertices-connected by blast
qed

lemma (in connected-ulgraph) V-E-empty: E = {} =⇒ ∃ v. V = {v}
using connected-empty-E connected not-empty unfolding is-connected-set-def
by (metis ex-in-conv insert-iff mk-disjoint-insert)

lemma (in connected-ulgraph) vert-connected-remove-edge:
assumes e: {u,v} ∈ E
shows ∀w∈V . ulgraph.vert-connected V (E − {{u,v}}) w u ∨ ulgraph.vert-connected

V (E − {{u,v}}) w v
proof

fix w assume w∈V
interpret g ′: ulgraph V E − {{u,v}} using wellformed edge-size by (unfold-locales,

auto)
have inV : u ∈ V v ∈ V using e wellformed by auto
obtain p where conn-path: connecting-path w v p using connected inV ‹w∈V ›

unfolding is-connected-set-def vert-connected-def by blast
then show g ′.vert-connected w u ∨ g ′.vert-connected w v
proof (cases {u,v} ∈ set (walk-edges p))
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case True
assume walk-edge: {u,v} ∈ set (walk-edges p)
then show ?thesis
proof (cases w = v)

case True
then show ?thesis using inV g ′.vert-connected-id by blast

next
case False

then have distinct: distinct p using conn-path by (simp add: connect-
ing-path-def is-gen-path-distinct)

have u ∈ set p using walk-edge walk-edges-in-verts by blast
obtain xs ys where p-split: p = xs @ u # v # ys ∨ p = xs @ v # u # ys

using split-walk-edge[OF walk-edge] by blast
have v-notin-ys: v /∈ set ys using distinct p-split by auto
have last p = v using conn-path unfolding connecting-path-def by simp

then have p: p = (xs@[u]) @ [v] using v-notin-ys p-split last-in-set last-appendR
by (metis append.assoc append-Cons last.simps list.discI self-append-conv2 )

then have conn-path-u: connecting-path w u (xs@[u]) using connecting-path-append
conn-path by fastforce

have v /∈ set (xs@[u]) using p distinct by auto
then have {u,v} /∈ set (walk-edges (xs@[u])) using walk-edges-in-verts by

blast
then have g ′.connecting-path w u (xs@[u]) using conn-path-u

unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def
is-gen-path-def g ′.is-walk-def is-walk-def by blast

then show ?thesis unfolding g ′.vert-connected-def by blast
qed

next
case False
then have g ′.connecting-path w v p using conn-path
unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def is-gen-path-def

g ′.is-walk-def is-walk-def by blast
then show ?thesis unfolding g ′.vert-connected-def by blast

qed
qed

lemma (in ulgraph) vert-connected-remove-cycle-edge:
assumes cycle: is-cycle2 (u#v#xs)

shows ulgraph.vert-connected V (E − {{u,v}}) u v
proof−
interpret g ′: ulgraph V E − {{u,v}} using wellformed edge-size by (unfold-locales,

auto)
have conn-path: connecting-path v u (v#xs) using cycle is-cycle-connecting-path

unfolding is-cycle2-def by blast
have {u,v} /∈ set (walk-edges (v#xs)) using cycle unfolding is-cycle2-def by

simp
then have g ′.connecting-path v u (v#xs) using conn-path
unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def is-gen-path-def

g ′.is-walk-def is-walk-def by blast
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then show ?thesis using g ′.vert-connected-rev unfolding g ′.vert-connected-def
by blast
qed

lemma (in connected-ulgraph) connected-remove-cycle-edges:
assumes cycle: is-cycle2 (u#v#xs)
shows connected-ulgraph V (E − {{u,v}})

proof−
interpret g ′: ulgraph V E − {{u,v}} using wellformed edge-size by (unfold-locales,

auto)
have g ′.vert-connected x y if inV : x ∈ V y ∈ V for x y
proof−

have e: {u,v} ∈ E using cycle unfolding is-cycle2-def is-cycle-alt is-walk-def
by auto

show ?thesis using vert-connected-remove-cycle-edge[OF cycle] vert-connected-remove-edge[OF
e] g ′.vert-connected-trans g ′.vert-connected-rev inV by metis

qed
then show ?thesis using not-empty by (unfold-locales, auto simp: g ′.is-connected-set-def )

qed

lemma (in connected-ulgraph) connected-remove-leaf :
assumes degree: degree l = 1

and remove-vertex: remove-vertex l = (V ′, E ′)
shows ulgraph.is-connected-set V ′ E ′ V ′

proof−
interpret g ′: ulgraph V ′ E ′ using remove-vertex wellformed edge-size

unfolding remove-vertex-def vincident-def by (unfold-locales, auto)
have V ′: V ′ = V − {l} using remove-vertex unfolding remove-vertex-def by

simp
have E ′: E ′ = {e∈E . l /∈ e} using remove-vertex unfolding remove-vertex-def

vincident-def by simp
have u ∈ V ′ =⇒ v ∈ V ′ =⇒ g ′.vert-connected u v for u v
proof−

assume inV ′: u ∈ V ′ v ∈ V ′

then have inV : u ∈ V v ∈ V using remove-vertex unfolding remove-vertex-def
by auto

then obtain p where conn-path: connecting-path u v p using vertices-connected-path
by blast

show ?thesis
proof (cases u = v)

case True
then show ?thesis using g ′.vert-connected-id inV ′ by simp

next
case False

then have distinct: distinct p using conn-path unfolding connecting-path-def
is-gen-path-def by blast

have l-notin-p: l /∈ set p
proof

assume l-in-p: l ∈ set p
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then obtain xs ys where p: p = xs @ l # ys by (meson split-list)
have l 6= u l 6= v using inV ′ remove-vertex unfolding remove-vertex-def

by auto
then have xs 6= [] using p conn-path unfolding connecting-path-def by

fastforce
then obtain x where last-xs: last xs = x by simp
then have x 6= l using distinct p ‹xs 6=[]› by auto

have {x,l} ∈ set (walk-edges p) using walk-edges-append-union ‹xs 6=[]›
unfolding p

by (simp add: walk-edges-append-union last-xs)
then have xl-incident: {x,l} ∈ incident-sedges l using conn-path ‹x 6=l›
unfolding connecting-path-def is-gen-path-def is-walk-def incident-sedges-def

vincident-def by auto

have ys 6= [] using ‹l 6=v› p conn-path unfolding connecting-path-def by
fastforce

then obtain y ys ′ where ys: ys = y # ys ′ by (meson list.exhaust)
then have y 6= l using distinct p by auto

then have {y,l} ∈ set (walk-edges p) using p ys conn-path walk-edges-append-ss1
by fastforce

then have yl-incident: {y,l} ∈ incident-sedges l using conn-path ‹y 6=l›
unfolding connecting-path-def is-gen-path-def is-walk-def incident-sedges-def

vincident-def by auto

have card-loops: card (incident-loops l) = 0 using degree unfolding de-
gree-def by auto

have x 6= y using distinct last-xs ‹xs 6=[]› unfolding p ys by fastforce
then have {x,l} 6= {y,l} by (metis doubleton-eq-iff )
then have card (incident-sedges l) 6= 1 using xl-incident yl-incident

by (metis card-1-singletonE singletonD)
then have degree l 6= 1 using card-loops unfolding degree-def by simp
then show False using degree ..

qed
then have set (walk-edges p) ⊆ E ′ using walk-edges-in-verts conn-path E ′

unfolding connecting-path-def is-gen-path-def is-walk-def by blast
then have g ′.connecting-path u v p using conn-path V ′ l-notin-p

unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def
is-gen-path-def g ′.is-walk-def is-walk-def by blast

then show ?thesis unfolding g ′.vert-connected-def by blast
qed

qed
then show ?thesis unfolding g ′.is-connected-set-def by blast

qed

lemma (in connected-sgraph) connected-two-graph-edges:
assumes u 6= v

and V : V = {u,v}
shows E = {{u,v}}

proof−
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obtain p where conn-path: connecting-path u v p using V vertices-connected-path
by blast

then obtain p ′ where p: p = u # p ′ @ [v] using ‹u 6=v› unfolding connect-
ing-path-def is-gen-path-def

by (metis append-Nil is-walk-not-empty2 list.exhaust-sel list.sel(1 ) snoc-eq-iff-butlast
tl-append2 )
have distinct p using conn-path ‹u 6=v› unfolding connecting-path-def is-gen-path-def

by auto
then have p ′ = [] using V conn-path is-gen-path-wf append-is-Nil-conv last-in-set

self-append-conv2
unfolding connecting-path-def p by fastforce

then have edge-in-E : {u,v} ∈ E using ‹u 6=v› conn-path
unfolding p connecting-path-def is-gen-path-def is-walk-def by simp

have E ⊆ {{}, {u}, {v}, {u,v}} using wellformed V by blast
then show ?thesis using two-edges edge-in-E by fastforce

qed

1.8 Connected components
context ulgraph
begin

abbreviation vert-connected-rel ≡ {(u,v). vert-connected u v}

definition connected-components :: ′a set set where
connected-components = V // vert-connected-rel

definition connected-component-of :: ′a ⇒ ′a set where
connected-component-of v = vert-connected-rel ‘‘ {v}

lemma vert-connected-rel-on-V : vert-connected-rel ⊆ V × V
using vert-connected-wf by auto

lemma vert-connected-rel-refl: refl-on V vert-connected-rel
unfolding refl-on-def using vert-connected-rel-on-V vert-connected-id by simp

lemma vert-connected-rel-sym: sym vert-connected-rel
unfolding sym-def using vert-connected-rev by simp

lemma vert-connected-rel-trans: trans vert-connected-rel
unfolding trans-def using vert-connected-trans by blast

lemma equiv-vert-connected: equiv V vert-connected-rel
unfolding equiv-def using vert-connected-rel-refl vert-connected-rel-sym vert-connected-rel-trans

by blast

lemma connected-component-non-empty: V ′ ∈ connected-components =⇒ V ′ 6=
{}
unfolding connected-components-def using equiv-vert-connected in-quotient-imp-non-empty

15



by auto

lemma connected-component-connected: V ′∈ connected-components =⇒ is-connected-set
V ′

unfolding connected-components-def is-connected-set-def using quotient-eq-iff [OF
equiv-vert-connected, of V ′ V ′] by simp

lemma connected-component-wf : V ′ ∈ connected-components =⇒ V ′ ⊆ V
by (simp add: connected-component-connected is-connected-set-wf )

lemma connected-component-of-self : v ∈ V =⇒ v ∈ connected-component-of v
unfolding connected-component-of-def using vert-connected-id by blast

lemma conn-comp-of-conn-comps: v ∈ V =⇒ connected-component-of v ∈ con-
nected-components
unfolding connected-components-def quotient-def connected-component-of-def by

blast

lemma Un-connected-components: connected-components = connected-component-of
‘ V
unfolding connected-components-def connected-component-of-def quotient-def by

blast

lemma connected-component-subgraph: V ′ ∈ connected-components =⇒ subgraph
V ′ (induced-edges V ′) V E

using induced-is-subgraph connected-component-wf by simp

lemma connected-components-connected2 :
assumes conn-comp: V ′ ∈ connected-components
shows ulgraph.is-connected-set V ′ (induced-edges V ′) V ′

proof−
interpret subg: subgraph V ′ induced-edges V ′ V E using connected-component-subgraph

conn-comp by simp
interpret g ′: ulgraph V ′ induced-edges V ′ using subg.is-subgraph-ulgraph ul-

graph-axioms by simp
have

∧
u v. u ∈ V ′ =⇒ v ∈ V ′ =⇒ g ′.vert-connected u v

proof−
fix u v assume u ∈ V ′ v ∈ V ′

then obtain p where conn-path: connecting-path u v p using connected-component-connected
conn-comp unfolding is-connected-set-def vert-connected-def by blast

then have u-in-p: u ∈ set p unfolding connecting-path-def is-gen-path-def
is-walk-def by force

then have set-p: set p ⊆ V ′ using connecting-path-connected-set[OF conn-path]
in-quotient-imp-closed[OF equiv-vert-connected] conn-comp ‹u ∈ V ′›

unfolding is-connected-set-def connected-components-def by blast
then have set (g ′.walk-edges p) ⊆ induced-edges V ′

using walk-edges-induced-edges induced-edges-mono conn-path unfolding
connecting-path-def is-gen-path-def by blast

then have g ′.connecting-path u v p
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using set-p conn-path
unfolding g ′.connecting-path-def g ′.connecting-path-def g ′.is-gen-path-def

g ′.is-walk-def
unfolding connecting-path-def connecting-path-def is-gen-path-def is-walk-def

by auto
then show g ′.vert-connected u v unfolding g ′.vert-connected-def by blast

qed
then show ?thesis unfolding g ′.is-connected-set-def by blast

qed

lemma vert-connected-connected-component: C ∈ connected-components =⇒ u ∈
C =⇒ vert-connected u v =⇒ v ∈ C
unfolding connected-components-def using equiv-vert-connected in-quotient-imp-closed

by fastforce

lemma connected-components-connected-ulgraphs:
assumes conn-comp: V ′ ∈ connected-components
shows connected-ulgraph V ′ (induced-edges V ′)

proof−
interpret subg: subgraph V ′ induced-edges V ′ V E using connected-component-subgraph

conn-comp by simp
interpret g ′: ulgraph V ′ induced-edges V ′ using subg.is-subgraph-ulgraph ul-

graph-axioms by simp
show ?thesis using conn-comp connected-component-non-empty connected-components-connected2

by (unfold-locales, auto)
qed

lemma connected-components-partition-on-V : partition-on V connected-components
using partition-on-quotient equiv-vert-connected unfolding connected-components-def

by blast

lemma Union-connected-components:
⋃

connected-components = V
using connected-components-partition-on-V unfolding partition-on-def by blast

lemma disjoint-connected-components: disjoint connected-components
using connected-components-partition-on-V unfolding partition-on-def by blast

lemma Union-induced-edges-connected-components:
⋃

(induced-edges ‘ connected-components)
= E
proof−

have ∃C∈connected-components. e ∈ induced-edges C if e ∈ E for e
proof−

obtain u v where e: e = {u,v} by (meson ‹e ∈ E› obtain-edge-pair-adj)
then have vert-connected u v using that vert-connected-neighbors by blast

then have v ∈ connected-component-of u unfolding connected-component-of-def
by simp

then have e ∈ induced-edges (connected-component-of u) using connected-component-of-self
wellformed ‹e∈E› unfolding e induced-edges-def by auto

then show ?thesis using conn-comp-of-conn-comps e wellformed ‹e∈E› by

17



auto
qed
then show ?thesis using connected-component-wf induced-edges-ss by blast

qed

lemma connected-components-empty-E :
assumes empty: E = {}
shows connected-components = {{v} | v. v∈V }

proof−
have ∀ v∈V . vert-connected-rel‘‘{v} = {v} using vert-connected-id connected-empty-E

empty by auto
then show ?thesis unfolding connected-components-def quotient-def by auto

qed

lemma connected-iff-connected-components:
assumes non-empty: V 6= {}

shows is-connected-set V ←→ connected-components = {V }
proof

assume is-connected-set V
then have ∀ v∈V . connected-component-of v = V unfolding connected-component-of-def

is-connected-set-def using vert-connected-wf by blast
then show connected-components = {V } unfolding quotient-def connected-component-of-def

connected-components-def using non-empty by auto
next

show connected-components = {V } =⇒ is-connected-set V
using connected-component-connected unfolding connected-components-def

is-connected-set-def by auto
qed

end

lemma (in connected-ulgraph) connected-components[simp]: connected-components
= {V }

using connected connected-iff-connected-components not-empty by simp

lemma (in fin-ulgraph) finite-connected-components: finite connected-components
unfolding connected-components-def using finV vert-connected-rel-on-V finite-quotient

by blast

lemma (in fin-ulgraph) finite-connected-component: C ∈ connected-components
=⇒ finite C

using connected-component-wf finV finite-subset by blast

lemma (in connected-ulgraph) connected-components-remove-edges:
assumes edge: {u,v} ∈ E
shows ulgraph.connected-components V (E − {{u,v}}) =
{ulgraph.connected-component-of V (E − {{u,v}}) u, ulgraph.connected-component-of

V (E − {{u,v}}) v}
proof−
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interpret g ′: ulgraph V E − {{u,v}} using wellformed edge-size by (unfold-locales,
auto)

have inV : u ∈ V v ∈ V using edge wellformed by auto
have ∀w∈V . g ′.connected-component-of w = g ′.connected-component-of u ∨

g ′.connected-component-of w = g ′.connected-component-of v
using vert-connected-remove-edge[OF edge] g ′.equiv-vert-connected equiv-class-eq

unfolding g ′.connected-component-of-def by fast
then show ?thesis unfolding g ′.connected-components-def quotient-def g ′.connected-component-of-def

using inV by auto
qed

lemma (in ulgraph) connected-set-connected-component:
assumes conn-set: is-connected-set C

and non-empty: C 6= {}
and

∧
u v. {u,v} ∈ E =⇒ u ∈ C =⇒ v ∈ C

shows C ∈ connected-components
proof−

have walk-subset-C : is-walk xs =⇒ hd xs ∈ C =⇒ set xs ⊆ C for xs
proof (induction xs rule: rev-induct)

case Nil
then show ?case by auto

next
case (snoc x xs)
then show ?case
proof (cases xs rule: rev-exhaust)

case Nil
then show ?thesis using snoc by auto

next
fix ys y assume xs: xs = ys @ [y]
then have is-walk xs using is-walk-prefix snoc(2 ) by blast
then have set-xs-C : set xs ⊆ C using snoc xs is-walk-not-empty2 hd-append2

by metis
have yx-E : {y,x} ∈ E using snoc(2 ) walk-edges-app unfolding xs is-walk-def

by simp
have x ∈ C using assms(3 )[OF yx-E ] set-xs-C unfolding xs by simp
then show ?thesis using set-xs-C by simp

qed
qed
obtain u where u ∈ C using non-empty by blast
then have u ∈ V using conn-set is-connected-set-wf by blast
have v ∈ C if vert-connected: vert-connected u v for v
proof−
obtain p where connecting-path u v p using vert-connected unfolding vert-connected-def

by blast
then show ?thesis using walk-subset-C [of p] ‹u∈C › is-walk-def last-in-set

unfolding connecting-path-def is-gen-path-def by auto
qed
then have connected-component-of u = C using assms ‹u∈C › unfolding con-

nected-component-of-def is-connected-set-def by auto
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then show ?thesis using conn-comp-of-conn-comps ‹u∈V › by blast
qed

lemma (in ulgraph) subset-conn-comps-if-Union:
assumes A-subset-conn-comps: A ⊆ connected-components

and Un-A:
⋃

A = V
shows A = connected-components

proof (rule ccontr)
assume A 6= connected-components
then obtain C where C-conn-comp: C ∈ connected-components C /∈ A using

A-subset-conn-comps by blast
then obtain v where v ∈ C using connected-component-non-empty by blast
then have v /∈ V using A-subset-conn-comps Un-A connected-components-partition-on-V

C-conn-comp
using partition-onD4 by fastforce

then show False using C-conn-comp connected-component-wf ‹v∈C › by auto
qed

lemma (in connected-ulgraph) exists-adj-vert-removed:
assumes v ∈ V

and remove-vertex: remove-vertex v = (V ′,E ′)
and conn-component: C ∈ ulgraph.connected-components V ′ E ′

shows ∃ u∈C . vert-adj v u
proof−

have V ′: V ′ = V − {v} and E ′: E ′ = {e∈E . v /∈ e} using remove-vertex
unfolding remove-vertex-def vincident-def by auto
interpret subg: subgraph V − {v} {e∈E . v /∈ e} V E using subgraph-remove-vertex

remove-vertex V ′ E ′ by metis
interpret g ′: ulgraph V − {v} {e∈E . v /∈ e} using subg.is-subgraph-ulgraph

ulgraph-axioms by blast
obtain c where c ∈ C using g ′.connected-component-non-empty conn-component

V ′ E ′ by blast
then have c ∈ V ′ using g ′.connected-component-wf conn-component V ′ E ′ by

blast
then have c ∈ V using subg.verts-ss V ′ by blast
then obtain p where conn-path: connecting-path v c p using ‹v∈V › ver-

tices-connected-path by blast
have v 6= c using ‹c∈V ′› remove-vertex unfolding remove-vertex-def by blast
then obtain u p ′ where p: p = v # u # p ′ using conn-path
by (metis connecting-path-def is-gen-path-def is-walk-def last.simps list.exhaust-sel)
then have conn-path-uc: connecting-path u c (u#p ′) using conn-path connect-

ing-path-tl unfolding p by blast
have v-notin-p ′: v /∈ set (u#p ′) using conn-path ‹v 6=c› unfolding p connect-

ing-path-def is-gen-path-def by auto
then have g ′.connecting-path u c (u#p ′) using conn-path-uc v-notin-p ′ walk-edges-in-verts
unfolding g ′.connecting-path-def connecting-path-def g ′.is-gen-path-def is-gen-path-def

g ′.is-walk-def is-walk-def
by blast

then have g ′.vert-connected u c unfolding g ′.vert-connected-def by blast
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then have u ∈ C using ‹c∈C › conn-component g ′.vert-connected-connected-component
g ′.vert-connected-rev unfolding V ′ E ′ by blast
have vert-adj v u using conn-path unfolding p connecting-path-def is-gen-path-def

is-walk-def vert-adj-def by auto
then show ?thesis using ‹u∈C › by blast

qed

1.9 Trees
locale tree = fin-connected-ulgraph +

assumes no-cycles: ¬ is-cycle2 c
begin

sublocale fin-connected-sgraph
using alt-edge-size no-cycles loop-is-cycle2 card-1-singletonE connected
by (unfold-locales, metis, simp)

end

locale spanning-tree = ulgraph V E + T : tree V T for V E T +
assumes subgraph: T ⊆ E

lemma (in fin-connected-ulgraph) has-spanning-tree: ∃T . spanning-tree V E T
using fin-connected-ulgraph-axioms

proof (induction card E arbitrary: E)
case 0
then interpret g: fin-connected-ulgraph V edges by blast
have edges: edges = {} using g.fin-edges 0 by simp
then obtain v where V : V = {v} using g.V-E-empty by blast
interpret g ′: fin-connected-sgraph V edges using g.connected edges by (unfold-locales,

auto)
interpret t: tree V edges using g.length-cycle-card-V g ′.cycle2-min-length g.is-cycle2-def

V by (unfold-locales, fastforce)
have spanning-tree V edges edges by (unfold-locales, auto)
then show ?case by blast

next
case (Suc m)
then interpret g: fin-connected-ulgraph V edges by blast
show ?case
proof (cases ∀ c. ¬g.is-cycle2 c)

case True
then have spanning-tree V edges edges by (unfold-locales, auto)
then show ?thesis by blast

next
case False
then obtain c where cycle: g.is-cycle2 c by blast

then have length c ≥ 2 unfolding g.is-cycle2-def g.is-cycle-alt walk-length-conv
by auto

then obtain u v xs where c: c = u#v#xs by (metis Suc-le-length-iff nu-
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meral-2-eq-2 )
then have g ′: fin-connected-ulgraph V (edges − {{u,v}}) using finV g.connected-remove-cycle-edges
by (metis connected-ulgraph-def cycle fin-connected-ulgraph-def fin-graph-system.intro

fin-graph-system-axioms.intro fin-ulgraph.intro ulgraph-def )
have {u,v} ∈ edges using cycle unfolding c g.is-cycle2-def g.is-cycle-alt

g.is-walk-def by auto
then obtain T where spanning-tree V (edges − {{u,v}}) T using Suc

card-Diff-singleton g ′ by fastforce
then have spanning-tree V edges T unfolding spanning-tree-def spanning-tree-axioms-def

using g.ulgraph-axioms by blast
then show ?thesis by blast

qed
qed

context tree
begin

definition leaf :: ′a ⇒ bool where
leaf v ←→ degree v = 1

definition leaves :: ′a set where
leaves = {v. leaf v}

definition non-trivial :: bool where
non-trivial ←→ card V ≥ 2

lemma obtain-2-verts:
assumes non-trivial
obtains u v where u ∈ V v ∈ V u 6= v
using assms unfolding non-trivial-def
by (meson diameter-obtains-path-vertices)

lemma leaf-in-V : leaf v =⇒ v ∈ V
unfolding leaf-def using degree-none by force

lemma exists-leaf :
assumes non-trivial
shows ∃ v∈V . leaf v

proof−
obtain p where is-path: is-path p and longest-path: ∀ s. is-path s −→ length s
≤ length p

using obtain-longest-path
by (metis One-nat-def assms connected connected-sgraph-axioms connected-sgraph-def

degree-0-not-connected
is-connected-setD is-edge-or-loop is-isolated-vertex-def is-isolated-vertex-degree0

is-loop-def
n-not-Suc-n numeral-2-eq-2 obtain-2-verts sgraph.two-edges vert-adj-def )

then obtain l v xs where p: p = l#v#xs
by (metis is-open-walk-def is-path-def is-walk-not-empty2 last-ConsL list.exhaust-sel)
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then have lv-incident: {l,v} ∈ incident-edges l using is-path
unfolding incident-edges-def vincident-def is-path-def is-open-walk-def is-walk-def

by simp
have

∧
e. e∈E =⇒ e 6= {l,v} =⇒ e /∈ incident-edges l

proof
fix e
assume e-in-E : e ∈ E

and not-lv: e 6= {l,v}
and incident: e ∈ incident-edges l

obtain u where e: e = {l,u} using e-in-E obtain-edge-pair-adj incident
unfolding incident-edges-def vincident-def by auto

then have u 6= l using e-in-E edge-vertices-not-equal by blast
have u 6= v using e not-lv by auto
have u-in-V : u ∈ V using e-in-E e wellformed by blast
then show False
proof (cases u ∈ set p)

case True
then have u ∈ set xs using ‹u 6=l› ‹u 6=v› p by simp
then obtain ys zs where xs = ys@u#zs by (meson split-list)
then have is-cycle2 (u#l#v#ys@[u])

using is-path ‹u 6=l› ‹u 6=v› e-in-E distinct-edgesI walk-edges-append-ss2
walk-edges-in-verts

unfolding is-cycle2-def is-cycle-def p is-path-def is-closed-walk-def is-open-walk-def
is-walk-def e walk-length-conv

by (auto, metis insert-commute, fastforce+)
then show ?thesis using no-cycles by blast

next
case False
then have is-path (u#p) using is-path u-in-V e-in-E

unfolding is-path-def is-open-walk-def is-walk-def e p by (auto, (metis
insert-commute)+)

then show False using longest-path by auto
qed

qed
then have incident-edges l = {{l,v}} using lv-incident unfolding incident-edges-def

by blast
then have leaf : leaf l unfolding leaf-def alt-degree-def by simp
then show ?thesis using leaf-in-V by blast

qed

lemma tree-remove-leaf :
assumes leaf : leaf l

and remove-vertex: remove-vertex l = (V ′,E ′)
shows tree V ′ E ′

proof−
interpret g ′: ulgraph V ′ E ′ using remove-vertex wellformed edge-size unfolding

remove-vertex-def vincident-def
by (unfold-locales, auto)

interpret subg: ulsubgraph V ′ E ′ V E using subgraph-remove-vertex ulgraph-axioms
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remove-vertex
unfolding ulsubgraph-def by blast

have V ′: V ′ = V − {l} using remove-vertex unfolding remove-vertex-def by
blast

have E ′: E ′ = {e∈E . l /∈ e} using remove-vertex unfolding remove-vertex-def
vincident-def by blast

have ∃ v∈V . v 6= l using leaf unfolding leaf-def
by (metis One-nat-def is-independent-alt is-isolated-vertex-def is-isolated-vertex-degree0

n-not-Suc-n radius-obtains singletonI singleton-independent-set)
then have V ′ 6= {} using remove-vertex unfolding remove-vertex-def vinci-

dent-def by blast
then have g ′.is-connected-set V ′ using connected-remove-leaf leaf remove-vertex

unfolding leaf-def by blast
then show ?thesis using ‹V ′6={}› finV subg.is-cycle2 V ′ E ′ no-cycles by (unfold-locales,

auto)
qed

end

lemma tree-induct [case-names singolton insert, induct set: tree]:
assumes tree: tree V E

and trivial:
∧

v. tree {v} {} =⇒ P {v} {}
and insert:

∧
l v V E . tree V E =⇒ P V E =⇒ l /∈ V =⇒ v ∈ V =⇒ {l,v} /∈

E =⇒ tree.leaf (insert {l,v} E) l =⇒ P (insert l V ) (insert {l,v} E)
shows P V E
using tree

proof (induction card V arbitrary: V E)
case 0
then interpret tree V E by simp
have V = {} using finV 0 (1 ) by simp
then show ?case using not-empty by blast

next
case (Suc n)
then interpret t: tree V E by simp
show ?case
proof (cases card V = 1 )

case True
then obtain v where V : V = {v} using card-1-singletonE by blast
then have E = {}
using True subset-antisym t.edge-incident-vert t.vincident-def t.singleton-not-edge

t.wellformed
by fastforce

then show ?thesis using trivial t.tree-axioms V by simp
next

case False
then have card-V : card V ≥ 2 using Suc by simp
then obtain l where leaf : t.leaf l using t.exists-leaf t.non-trivial-def by blast
then obtain e where inc-edges: t.incident-edges l = {e}

unfolding t.leaf-def t.alt-degree-def using card-1-singletonE by blast
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then have e-in-E : e ∈ E unfolding t.incident-edges-def by blast
then obtain u where e: e = {l,u} using t.two-edges card-2-iff inc-edges

unfolding t.incident-edges-def t.vincident-def
by (metis (no-types, lifting) empty-iff insert-commute insert-iff mem-Collect-eq)
then have l 6= u using e-in-E t.edge-vertices-not-equal by blast
have u ∈ V using e e-in-E t.wellformed by blast
let ?V ′ = V − {l}
let ?E ′ = E − {{l,u}}
have remove-vertex: t.remove-vertex l = (?V ′, ?E ′)
using inc-edges e unfolding t.remove-vertex-def t.incident-edges-def by blast

then have t ′: tree ?V ′ ?E ′ using t.tree-remove-leaf leaf by blast
have l ∈ V using leaf t.leaf-in-V by blast
then have P ′: P ?V ′ ?E ′ using Suc t ′ by auto
show ?thesis using insert[OF t ′ P ′] Suc leaf ‹u∈V › ‹l 6=u› ‹l ∈ V › e e-in-E

by (auto, metis insert-Diff )
qed

qed

context tree
begin

lemma card-V-card-E : card V = Suc (card E)
using tree-axioms

proof (induction V E)
case (singolton v)
then show ?case by auto

next
case (insert l v V ′ E ′)
then interpret t ′: tree V ′ E ′ by simp
show ?case using t ′.finV t ′.fin-edges insert by simp

qed

end

lemma card-E-treeI :
assumes fin-conn-sgraph: fin-connected-ulgraph V E

and card-V-E : card V = Suc (card E)
shows tree V E

proof−
interpret G: fin-connected-ulgraph V E using fin-conn-sgraph .
obtain T where T : spanning-tree V E T using G.has-spanning-tree by blast
show ?thesis
proof (cases E = T )

case True
then show ?thesis using T unfolding spanning-tree-def by blast

next
case False
then have card E > card T using T G.fin-edges unfolding spanning-tree-def

spanning-tree-axioms-def
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by (simp add: psubsetI psubset-card-mono)
then show ?thesis using tree.card-V-card-E T card-V-E unfolding span-

ning-tree-def by fastforce
qed

qed

context tree
begin

lemma add-vertex-tree:
assumes v /∈ V

and w ∈ V
shows tree (insert v V ) (insert {v,w} E)

proof −
let ?V ′ = insert v V and ?E ′ = insert {v,w} E

have cardV : card {v,w} = 2 using card-2-iff assms by auto
then interpret t ′: ulgraph ?V ′ ?E ′

using wellformed assms two-edges by (unfold-locales, auto)

interpret subg: ulsubgraph V E ?V ′ ?E ′ by (unfold-locales, auto)

have connected: t ′.is-connected-set ?V ′

unfolding t ′.is-connected-set-def
using subg.vert-connected t ′.vert-connected-neighbors t ′.vert-connected-trans
t ′.vert-connected-id vertices-connected t ′.ulgraph-axioms ulgraph-axioms assms

t ′.vert-connected-rev
by simp metis

then have fin-connected-ulgraph: fin-connected-ulgraph ?V ′ ?E ′ using finV by
(unfold-locales, auto)

from assms have {v,w} /∈ E using wellformed-alt-fst by auto
then have card ?E ′ = Suc (card E) using fin-edges card-insert-if by auto
then have card ?V ′= Suc (card ?E ′) using card-V-card-E assms wellformed-alt-fst

finV card-insert-if by auto

then show ?thesis using card-E-treeI fin-connected-ulgraph by auto
qed

lemma tree-connected-set:
assumes non-empty: V ′ 6= {}

and subg: V ′ ⊆ V
and connected-V ′: ulgraph.is-connected-set V ′ (induced-edges V ′) V ′

shows tree V ′ (induced-edges V ′)
proof−

interpret subg: subgraph V ′ induced-edges V ′ V E using induced-is-subgraph
subg by simp

interpret g ′: ulgraph V ′ induced-edges V ′ using subg.is-subgraph-ulgraph ul-
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graph-axioms by blast
interpret subg: ulsubgraph V ′ induced-edges V ′ V E by unfold-locales
show ?thesis using connected-V ′ subg.is-cycle2 no-cycles finV subg non-empty

rev-finite-subset by (unfold-locales) (auto, blast)
qed

lemma unique-adj-vert-removed:
assumes v ∈ V

and remove-vertex: remove-vertex v = (V ′,E ′)
and conn-component: C ∈ ulgraph.connected-components V ′ E ′

shows ∃ !u∈C . vert-adj v u
proof−
interpret subg: ulsubgraph V ′ E ′ V E using remove-vertex subgraph-remove-vertex

ulgraph-axioms ulsubgraph.intro by metis
interpret g ′: ulgraph V ′ E ′ using subg.is-subgraph-ulgraph ulgraph-axioms by

simp
obtain u where u ∈ C and adj-vu: vert-adj v u using exists-adj-vert-removed

using assms by blast
have w = u if w ∈ C and adj-vw: vert-adj v w for w
proof (rule ccontr)

assume w 6= u
obtain p where g ′-conn-path: g ′.connecting-path w u p using ‹u∈C › ‹w∈C ›

conn-component
g ′.connected-component-connected g ′.is-connected-setD g ′.vert-connected-def

by blast
then have v-notin-p: v /∈ set p using remove-vertex unfolding g ′.connecting-path-def

g ′.is-gen-path-def g ′.is-walk-def remove-vertex-def by blast
have conn-path: connecting-path w u p using g ′-conn-path subg.connecting-path

by simp
then obtain p ′ where p: p = w # p ′ @ [u] unfolding connecting-path-def

using ‹w 6=u›
by (metis hd-Cons-tl last.simps last-rev rev-is-Nil-conv snoc-eq-iff-butlast)

then have walk-edges (v#p@[v]) = {v,w} # walk-edges ((w # p ′) @ [u,v]) by
simp

also have . . . = {v,w} # walk-edges p @ [{u,v}] unfolding p using walk-edges-app
by (metis Cons-eq-appendI )

finally have walk-edges: walk-edges (v#p@[v]) = {v,w} # walk-edges p @
[{v,u}] by (simp add: insert-commute)

then have is-cycle (v#p@[v]) using conn-path adj-vu adj-vw ‹w 6=u› ‹v∈V ›
g ′.walk-length-conv singleton-not-edge v-notin-p

unfolding connecting-path-def is-cycle-def is-gen-path-def is-closed-walk-def
is-walk-def p vert-adj-def by auto

then have is-cycle2 (v#p@[v]) using ‹w 6=u› v-notin-p walk-edges-in-verts
unfolding is-cycle2-def walk-edges

by (auto simp: doubleton-eq-iff is-cycle-alt distinct-edgesI )
then show False using no-cycles by blast

qed
then show ?thesis using ‹u∈C › adj-vu by blast

qed
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lemma non-trivial-card-E : non-trivial =⇒ card E ≥ 1
using card-V-card-E unfolding non-trivial-def by simp

lemma V-Union-E : non-trivial =⇒ V =
⋃

E
using tree-axioms

proof (induction V E)
case (singolton v)
then interpret t: tree {v} {} by simp
show ?case using singolton unfolding t.non-trivial-def by simp

next
case (insert l v V ′ E ′)
then interpret t: tree V ′ E ′ by simp
show ?case
proof (cases card V ′ = 1 )

case True
then have V : V ′ = {v} using insert(3 ) card-1-singletonE by blast
then have E : E ′ = {} using t.fin-edges t.card-V-card-E by fastforce
then show ?thesis unfolding E V by simp

next
case False
then have t.non-trivial using t.card-V-card-E unfolding t.non-trivial-def by

simp
then show ?thesis using insert by blast

qed
qed

end

lemma singleton-tree: tree {v} {}
proof−

interpret g: fin-ulgraph {v} {} by (unfold-locales, auto)
show ?thesis using g.is-walk-def g.walk-length-def by (unfold-locales, auto simp:

g.is-connected-set-singleton g.is-cycle2-def g.is-cycle-alt)
qed

lemma tree2 :
assumes u 6= v

shows tree {u,v} {{u,v}}
proof−

interpret ulgraph {u,v} {{u,v}} using ‹u 6=v› by unfold-locales auto
have fin-connected-ulgraph {u,v} {{u,v}} by unfold-locales
(auto simp: is-connected-set-def vert-connected-id vert-connected-neighbors vert-connected-rev)

then show ?thesis using card-E-treeI ‹u 6=v› by fastforce
qed

1.10 Graph Isomorphism
locale graph-isomorphism =
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G: graph-system VG EG for VG EG +
fixes VH EH f
assumes bij-f : bij-betw f VG VH

and edge-preserving: ((‘) f ) ‘ EG = EH

begin

lemma inj-f : inj-on f VG

using bij-f unfolding bij-betw-def by blast

lemma VH-def : VH = f ‘ VG

using bij-f unfolding bij-betw-def by blast

definition inv-iso ≡ the-inv-into VG f

lemma graph-system-H : graph-system VH EH

using G.wellformed edge-preserving bij-f bij-betw-imp-surj-on by unfold-locales
blast

interpretation H : graph-system VH EH using graph-system-H .

lemma graph-isomorphism-inv: graph-isomorphism VH EH VG EG inv-iso
proof (unfold-locales)

show bij-betw inv-iso VH VG unfolding inv-iso-def using bij-betw-the-inv-into
bij-f by blast
next
have ∀ v∈VG. the-inv-into VG f (f v) = v using bij-f by (simp add: bij-betw-imp-inj-on

the-inv-into-f-f )
then have ∀ e∈EG. (λv. the-inv-into VG f (f v)) ‘ e = e using G.wellformed

by (simp add: subset-iff )
then show ((‘) inv-iso)‘ EH = EG unfolding inv-iso-def by (simp add: edge-preserving[symmetric]

image-comp)
qed

interpretation inv-iso: graph-isomorphism VH EH VG EG inv-iso using graph-isomorphism-inv
.

end

fun graph-isomorph :: ′a pregraph ⇒ ′b pregraph ⇒ bool (infix ‹'› 50 ) where
(VG,EG) ' (VH ,EH) ←→ (∃ f . graph-isomorphism VG EG VH EH f )

lemma (in graph-system) graph-isomorphism-id: graph-isomorphism V E V E id
by unfold-locales auto

lemma (in graph-system) graph-isomorph-refl: (V ,E) ' (V ,E)
using graph-isomorphism-id by auto

lemma graph-isomorph-sym: symp (')
using graph-isomorphism.graph-isomorphism-inv unfolding symp-def by fast-
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force

lemma graph-isomorphism-trans: graph-isomorphism VG EG VH EH f =⇒ graph-isomorphism
VH EH V F EF g =⇒ graph-isomorphism VG EG V F EF (g o f )
unfolding graph-isomorphism-def graph-isomorphism-axioms-def using bij-betw-trans

by (auto, blast)

lemma graph-isomorph-trans: transp (')
using graph-isomorphism-trans unfolding transp-def by fastforce

end

2 Enumeration of Labeled Trees
theory Labeled-Tree-Enumeration

imports Tree-Graph
begin

definition labeled-trees :: ′a set ⇒ ′a pregraph set where
labeled-trees V = {(V ,E)| E . tree V E}

2.1 Algorithm

Prüfer sequence to tree
definition prufer-sequences :: ′a list ⇒ ′a list set where

prufer-sequences verts = {xs. length xs = length verts − 2 ∧ set xs ⊆ set verts}

fun tree-edges-of-prufer-seq :: ′a list ⇒ ′a list ⇒ ′a edge set where
tree-edges-of-prufer-seq [u,v] [] = {{u,v}}
| tree-edges-of-prufer-seq verts (b#seq) =

(case find (λx. x /∈ set (b#seq)) verts of
Some a ⇒ insert {a,b} (tree-edges-of-prufer-seq (remove1 a verts) seq))

definition tree-of-prufer-seq :: ′a list ⇒ ′a list ⇒ ′a pregraph where
tree-of-prufer-seq verts seq = (set verts, tree-edges-of-prufer-seq verts seq)

definition labeled-tree-enum :: ′a list ⇒ ′a pregraph list where
labeled-tree-enum verts = map (tree-of-prufer-seq verts) (List.n-lists (length verts
− 2 ) verts)

2.2 Correctness

Tree to Prüfer sequence
definition remove-vertex-edges :: ′a ⇒ ′a edge set ⇒ ′a edge set where

remove-vertex-edges v E = {e∈E . ¬ graph-system.vincident v e}

lemma find-in-list[termination-simp]: find P verts = Some v =⇒ v ∈ set verts
by (metis find-Some-iff nth-mem)
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lemma [termination-simp]: find P verts = Some v =⇒ length verts − Suc 0 <
length verts

by (meson diff-Suc-less length-pos-if-in-set find-in-list)

fun prufer-seq-of-tree :: ′a list ⇒ ′a edge set ⇒ ′a list where
prufer-seq-of-tree verts E =
(if length verts ≤ 2 then []
else (case find (tree.leaf E) verts of
Some leaf ⇒ (THE v. ulgraph.vert-adj E leaf v) # prufer-seq-of-tree (remove1

leaf verts) (remove-vertex-edges leaf E)))

locale valid-verts =
fixes verts
assumes length-verts: length verts ≥ 2
and distinct-verts: distinct verts

locale tree-of-prufer-seq-ctx = valid-verts +
fixes seq
assumes prufer-seq: seq ∈ prufer-sequences verts

lemma (in valid-verts) card-verts: card (set verts) = length verts
using length-verts distinct-verts distinct-card by blast

lemma length-gt-find-not-in-ys:
assumes length xs > length ys

and distinct xs
shows ∃ x. find (λx. x /∈ set ys) xs = Some x

proof−
have card (set xs) > card (set ys)

by (metis assms card-length distinct-card le-neq-implies-less order-less-trans)
then have ∃ x∈set xs. x /∈ set ys

by (meson finite-set card-subset-not-gt-card subsetI )
then show ?thesis by (metis find-None-iff2 not-Some-eq)

qed

lemma (in tree-of-prufer-seq-ctx) tree-edges-of-prufer-seq-induct ′:
assumes

∧
u v. P [u, v] []

and
∧

verts b seq a.
find (λx. x /∈ set (b # seq)) verts = Some a
=⇒ a ∈ set verts =⇒ a /∈ set (b # seq) =⇒ seq ∈ prufer-sequences

(remove1 a verts)
=⇒ tree-of-prufer-seq-ctx (remove1 a verts) seq =⇒ P (remove1 a verts)

seq =⇒ P verts (b # seq)
shows P verts seq
using tree-of-prufer-seq-ctx-axioms

proof (induction verts seq rule: tree-edges-of-prufer-seq.induct)
case (2 verts b seq)
then interpret tree-of-prufer-seq-ctx verts b # seq by simp
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obtain a where a-find: find (λx. x /∈ set (b # seq)) verts = Some a
using length-gt-find-not-in-ys[of b#seq verts] distinct-verts prufer-seq
unfolding prufer-sequences-def by fastforce

then have a-in-verts: a ∈ set verts by (simp add: find-in-list)
have a-not-in-seq: a /∈ set (b#seq) using a-find by (metis find-Some-iff )
have prufer-seq ′: seq ∈ prufer-sequences (remove1 a verts)
using prufer-seq a-in-verts set-remove1-eq length-verts a-not-in-seq distinct-verts
unfolding prufer-sequences-def by (auto simp: length-remove1 )

have length verts ≥ 3 using prufer-seq unfolding prufer-sequences-def by auto
then have length (remove1 a verts) ≥ 2 by (auto simp: length-remove1 )
then have valid-verts-seq ′: tree-of-prufer-seq-ctx (remove1 a verts) seq

using prufer-seq ′ distinct-verts by unfold-locales auto
then show ?case using a-find assms(2 ) a-in-verts a-not-in-seq prufer-seq ′ 2 (1 )

by blast
qed (auto simp: assms tree-of-prufer-seq-ctx-def tree-of-prufer-seq-ctx-axioms-def
valid-verts-def prufer-sequences-def )

lemma (in tree-of-prufer-seq-ctx) tree-edges-of-prufer-seq-tree:
shows tree (set verts) (tree-edges-of-prufer-seq verts seq)
using tree-of-prufer-seq-ctx-axioms

proof (induction rule: tree-edges-of-prufer-seq-induct ′)
case (1 u v)
then show ?case using tree2 unfolding tree-of-prufer-seq-ctx-def valid-verts-def

by fastforce
next

case (2 verts b seq a)
interpret tree-of-prufer-seq-ctx verts b # seq using 2 (7 ) .
interpret tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a verts)

seq
using 2 (5 ,6 ) by simp

have a-not-in-verts ′: a /∈ set (remove1 a verts) using distinct-verts by simp
have a 6= b using 2 by auto
then have b-in-verts ′: b ∈ set (remove1 a verts) using prufer-seq unfolding

prufer-sequences-def by auto
then show ?case using a-not-in-verts ′ add-vertex-tree[OF a-not-in-verts ′ b-in-verts ′]

2 (1 ,2 ) distinct-verts
by (auto simp: insert-absorb insert-commute)

qed

lemma (in tree-of-prufer-seq-ctx) tree-of-prufer-seq-tree: (V ,E) = tree-of-prufer-seq
verts seq =⇒ tree V E

unfolding tree-of-prufer-seq-def using tree-edges-of-prufer-seq-tree by auto

lemma (in valid-verts) labeled-tree-enum-trees:
assumes VE-in-labeled-tree-enum: (V ,E) ∈ set (labeled-tree-enum verts)
shows tree V E

proof−
obtain seq where seq ∈ set (List.n-lists (length verts − 2 ) verts) and tree-of-seq:

tree-of-prufer-seq verts seq = (V ,E)
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using VE-in-labeled-tree-enum unfolding labeled-tree-enum-def by auto
then interpret tree-of-prufer-seq-ctx verts seq

using List.set-n-lists by (unfold-locales) (auto simp: prufer-sequences-def )
show ?thesis using tree-of-prufer-seq-tree using tree-of-seq by simp

qed

2.3 Totality
locale prufer-seq-of-tree-context =

valid-verts verts + tree set verts E for verts E
begin

lemma prufer-seq-of-tree-induct ′:
assumes

∧
u v. P [u,v] {{u,v}}

and
∧

verts E l. ¬ length verts ≤ 2 =⇒ find (tree.leaf E) verts = Some l =⇒
tree.leaf E l

=⇒ l ∈ set verts =⇒ prufer-seq-of-tree-context (remove1 l verts) (remove-vertex-edges
l E)

=⇒ P (remove1 l verts) (remove-vertex-edges l E) =⇒ P verts E
shows P verts E
using prufer-seq-of-tree-context-axioms

proof (induction verts E rule: prufer-seq-of-tree.induct)
case (1 verts E)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
show ?case
proof (cases length verts ≤ 2 )

case True
then have length-verts: length verts = 2 using ctx.length-verts by simp
then obtain u w where verts: verts = [u,w]

unfolding numeral-2-eq-2 by (metis length-0-conv length-Suc-conv)
then have E = {{u,w}} using ctx.connected-two-graph-edges ctx.distinct-verts

by simp
then show ?thesis using assms(1 ) verts by blast

next
case False
then have ctx.non-trivial using ctx.distinct-verts distinct-card

unfolding ctx.non-trivial-def by fastforce
then obtain l where l: find ctx .leaf verts = Some l using ctx.exists-leaf

by (metis find-None-iff2 not-Some-eq)
then have leaf-l: ctx.leaf l by (metis find-Some-iff )
then have l-in-verts: l ∈ set verts using ctx.leaf-in-V by simp
then have length-verts ′: length (remove1 l verts) ≥ 2 using False unfolding

length-remove1 by simp
have tree (set (remove1 l verts)) (remove-vertex-edges l E) using ctx.tree-remove-leaf [OF

leaf-l]
unfolding ctx.remove-vertex-def remove-vertex-edges-def using ctx.distinct-verts

by simp
then have ctx ′: prufer-seq-of-tree-context (remove1 l verts) (remove-vertex-edges

l E)
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unfolding prufer-seq-of-tree-context-def valid-verts-def
using ctx.distinct-verts length-verts ′ by simp

then have P (remove1 l verts) (remove-vertex-edges l E) using 1 False l by
simp

then show ?thesis using assms(2 )[OF False l leaf-l l-in-verts ctx ′] by simp
qed

qed

lemma prufer-seq-of-tree-wf : set (prufer-seq-of-tree verts E) ⊆ set verts
using prufer-seq-of-tree-context-axioms

proof (induction rule: prufer-seq-of-tree-induct ′)
case (1 u v)
then show ?case by simp

next
case (2 verts E l)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
let ?u = THE u. ctx.vert-adj l u
have l-u-adj: ctx.vert-adj l ?u using ctx.ex1-neighbor-degree-1 2 (3 ) unfolding

ctx.leaf-def by (metis theI )
then have ?u ∈ set verts unfolding ctx.vert-adj-def using ctx.wellformed-alt-snd

by blast
then show ?case using 2 ctx .ex1-neighbor-degree-1 2 (3 )

by (auto, meson in-mono notin-set-remove1 )
qed

lemma length-prufer-seq-of-tree: length (prufer-seq-of-tree verts E) = length verts
− 2
proof (induction rule: prufer-seq-of-tree-induct ′)

case (1 u v)
then show ?case by simp

next
case (2 verts E l)
then show ?case unfolding prufer-seq-of-tree.simps[of verts] by (simp add:

length-remove1 )
qed

lemma prufer-seq-of-tree-prufer-seq: prufer-seq-of-tree verts E ∈ prufer-sequences
verts
using prufer-seq-of-tree-wf length-prufer-seq-of-tree unfolding prufer-sequences-def

by blast

lemma count-list-prufer-seq-degree: v ∈ set verts =⇒ Suc (count-list (prufer-seq-of-tree
verts E) v) = degree v

using prufer-seq-of-tree-context-axioms
proof (induction rule: prufer-seq-of-tree-induct ′)

case (1 u v)
then interpret ctx: prufer-seq-of-tree-context [u, v] {{u, v}} by simp
show ?case using 1 (1 ) unfolding ctx.alt-degree-def ctx.incident-edges-def ctx.vincident-def

by (simp add: Collect-conv-if )
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next
case (2 verts E l)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
interpret ctx ′: prufer-seq-of-tree-context remove1 l verts remove-vertex-edges l E

using 2 (5 ) by simp
let ?u = THE u. ctx.vert-adj l u
have l-u-adj: ctx.vert-adj l ?u using ctx.ex1-neighbor-degree-1 2 (3 ) unfolding

ctx.leaf-def by (metis theI )
show ?case
proof (cases v = ?u)

case True
then have v 6= l using l-u-adj ctx.vert-adj-not-eq by blast

then have count-list (prufer-seq-of-tree verts E) v = ulgraph.degree (remove-vertex-edges
l E) v

using 2 True by simp
then show ?thesis using 2 ctx.degree-remove-adj-ne-vert ‹v 6=l› True l-u-adj
unfolding ctx.remove-vertex-def remove-vertex-edges-def prufer-seq-of-tree.simps[of

verts] by simp
next

case False
then show ?thesis
proof (cases v = l)

case True
then have l /∈ set (remove1 l verts) using ctx.distinct-verts by simp
then have l /∈ set (prufer-seq-of-tree (remove1 l verts) (remove-vertex-edges

l E)) using ctx ′.prufer-seq-of-tree-wf by blast
then show ?thesis using 2 False True unfolding ctx.leaf-def prufer-seq-of-tree.simps[of

verts] by simp
next

case False
then have ¬ ctx.vert-adj l v using ‹v 6=?u› ctx.ex1-neighbor-degree-1 2 (3 )

l-u-adj
unfolding ctx.leaf-def by blast

then show ?thesis using False 2 ‹v 6=?u› ctx.degree-remove-non-adj-vert
unfolding prufer-seq-of-tree.simps[of verts] ctx ′.remove-vertex-def remove-vertex-edges-def

ctx.remove-vertex-def by auto
qed

qed
qed

lemma not-in-prufer-seq-iff-leaf : v ∈ set verts =⇒ v /∈ set (prufer-seq-of-tree verts
E) ←→ leaf v

using count-list-prufer-seq-degree[symmetric] unfolding leaf-def by (simp add:
count-list-0-iff )

lemma tree-edges-of-prufer-seq-of-tree: tree-edges-of-prufer-seq verts (prufer-seq-of-tree
verts E) = E

using prufer-seq-of-tree-context-axioms
proof (induction rule: prufer-seq-of-tree-induct ′)
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case (1 u v)
then show ?case by simp

next
case (2 verts E l)
then interpret ctx: prufer-seq-of-tree-context verts E by simp
have tree-edges-of-prufer-seq verts (prufer-seq-of-tree verts E)
= tree-edges-of-prufer-seq verts ((THE v. ctx.vert-adj l v) # prufer-seq-of-tree

(remove1 l verts) (remove-vertex-edges l E)) using 2 by simp
have find (λx. x /∈ set (prufer-seq-of-tree verts E)) verts = Some l using

ctx.not-in-prufer-seq-iff-leaf 2 (2 )
by (metis (no-types, lifting) find-cong)

then have tree-edges-of-prufer-seq verts (prufer-seq-of-tree verts E)
= insert {The (ctx.vert-adj l), l} (tree-edges-of-prufer-seq (remove1 l verts)

(prufer-seq-of-tree (remove1 l verts) (remove-vertex-edges l E)))
using 2 by auto

also have . . . = E using 2 ctx.degree-1-edge-partition unfolding remove-vertex-edges-def
vincident-def ctx.leaf-def by simp

finally show ?case .
qed

lemma tree-in-labeled-tree-enum: (set verts, E) ∈ set (labeled-tree-enum verts)
using prufer-seq-of-tree-prufer-seq tree-edges-of-prufer-seq-of-tree List.set-n-lists

unfolding prufer-sequences-def labeled-tree-enum-def tree-of-prufer-seq-def by
fastforce

end

lemma (in valid-verts) V-labeled-tree-enum-verts: (V ,E) ∈ set (labeled-tree-enum
verts) =⇒ V = set verts
unfolding labeled-tree-enum-def by (metis Pair-inject ex-map-conv tree-of-prufer-seq-def )

theorem (in valid-verts) labeled-tree-enum-correct: set (labeled-tree-enum verts) =
labeled-trees (set verts)
using labeled-tree-enum-trees V-labeled-tree-enum-verts prufer-seq-of-tree-context.tree-in-labeled-tree-enum

valid-verts-axioms
unfolding labeled-trees-def prufer-seq-of-tree-context-def by fast

2.4 Distinction
lemma (in tree-of-prufer-seq-ctx) count-prufer-seq-degree:

assumes v-in-verts: v ∈ set verts
shows Suc (count-list seq v) = ulgraph.degree (tree-edges-of-prufer-seq verts seq)

v
using v-in-verts tree-of-prufer-seq-ctx-axioms

proof (induction rule: tree-edges-of-prufer-seq-induct ′)
case (1 u w)
then interpret tree-of-prufer-seq-ctx [u, w] [] by simp
interpret tree {u,w} {{u,w}} using tree-edges-of-prufer-seq-tree by simp
show ?case using 1 (1 ) by (auto simp add: incident-edges-def vincident-def Col-
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lect-conv-if )
next

case (2 verts b seq a)
interpret tree-of-prufer-seq-ctx verts b # seq using 2 (8 ) .
interpret tree set verts tree-edges-of-prufer-seq verts (b#seq)

using tree-edges-of-prufer-seq-tree by simp
interpret ctx ′: tree-of-prufer-seq-ctx remove1 a verts seq using 2 (5 ) .
interpret T ′: tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a verts)

seq
using ctx ′.tree-edges-of-prufer-seq-tree by simp

show ?case
proof (cases v = b)

case True
have ab-not-in-T ′: {a, b} /∈ tree-edges-of-prufer-seq (remove1 a verts) seq

using T ′.wellformed-alt-snd distinct-verts by (auto, metis doubleton-eq-iff )
have incident-edges v = insert {a,b} {e ∈ tree-edges-of-prufer-seq (remove1 a

verts) seq. v ∈ e}
unfolding incident-edges-def vincident-def using 2 (1 ) True by auto

then have degree v = Suc (T ′.degree v)
unfolding T ′.alt-degree-def alt-degree-def T ′.incident-edges-def vincident-def
using ab-not-in-T ′ T ′.fin-edges by (simp del: tree-edges-of-prufer-seq.simps)

then show ?thesis using 2 True by auto
next

case False
then show ?thesis
proof (cases v = a)

case True
also have incident-edges a = {{a,b}} unfolding incident-edges-def vinci-

dent-def
using 2 (1 ) T ′.wellformed distinct-verts by auto

then show ?thesis unfolding alt-degree-def True using 2 (3 ) by auto
next

case False
then have incident-edges v = T ′.incident-edges v
unfolding incident-edges-def T ′.incident-edges-def vincident-def using 2 (1 )

‹v 6= b› by auto
then show ?thesis using False ‹v 6= b› 2 unfolding alt-degree-def by simp

qed
qed

qed

lemma (in tree-of-prufer-seq-ctx) notin-prufer-seq-iff-leaf :
assumes v ∈ set verts
shows v /∈ set seq ←→ tree.leaf (tree-edges-of-prufer-seq verts seq) v

proof−
interpret tree set verts tree-edges-of-prufer-seq verts seq

using tree-edges-of-prufer-seq-tree by auto
show ?thesis using count-prufer-seq-degree assms count-list-0-iff unfolding

leaf-def by fastforce
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qed

lemma (in valid-verts) inj-tree-edges-of-prufer-seq: inj-on (tree-edges-of-prufer-seq
verts) (prufer-sequences verts)
proof

fix seq1 seq2
assume prufer-seq1 : seq1 ∈ prufer-sequences verts
assume prufer-seq2 : seq2 ∈ prufer-sequences verts
assume trees-eq: tree-edges-of-prufer-seq verts seq1 = tree-edges-of-prufer-seq

verts seq2
interpret tree-of-prufer-seq-ctx verts seq1 using prufer-seq1 by unfold-locales

simp
have length-eq: length seq1 = length seq2 using prufer-seq1 prufer-seq2 unfold-

ing prufer-sequences-def by simp
show seq1 = seq2

using prufer-seq1 prufer-seq2 trees-eq length-eq tree-of-prufer-seq-ctx-axioms
proof (induction arbitrary: seq2 rule: tree-edges-of-prufer-seq-induct ′)

case (1 u v)
then show ?case by simp

next
case (2 verts b seq a)
then interpret ctx1 : tree-of-prufer-seq-ctx verts b # seq by simp
interpret ctx2 : tree-of-prufer-seq-ctx verts seq2 using 2 by unfold-locales blast

obtain b ′ seq2 ′ where seq2 : seq2 = b ′ # seq2 ′ using 2 (10 ) by (metis
length-Suc-conv)

then have find (λx. x /∈ set seq2 ) verts = Some a
using ctx2 .notin-prufer-seq-iff-leaf 2 (9 ) 2 (1 ) ctx1 .notin-prufer-seq-iff-leaf [symmetric]

find-cong by force
then have edges-eq: insert {a, b} (tree-edges-of-prufer-seq (remove1 a verts)

seq)
= insert {a, b ′} (tree-edges-of-prufer-seq (remove1 a verts) seq2 ′)

using 2 seq2 by simp
interpret ctx1 ′: tree-of-prufer-seq-ctx remove1 a verts seq using 2 (5 ) .
interpret T1 : tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a

verts) seq
using ctx1 ′.tree-edges-of-prufer-seq-tree by blast

have a /∈ set seq2 ′ using seq2 2 ctx1 .notin-prufer-seq-iff-leaf ctx2 .notin-prufer-seq-iff-leaf
by auto

then interpret ctx2 ′: tree-of-prufer-seq-ctx remove1 a verts seq2 ′

using seq2 2 (8 ) 2 (2 ) ctx1 .distinct-verts
by unfold-locales (auto simp: length-remove1 prufer-sequences-def )

interpret T2 : tree set (remove1 a verts) tree-edges-of-prufer-seq (remove1 a
verts) seq2 ′

using ctx2 ′.tree-edges-of-prufer-seq-tree by blast

have a-notin-verts ′: a /∈ set (remove1 a verts) using ctx1 .distinct-verts by
simp

then have ab ′-notin-edges: {a,b ′} /∈ tree-edges-of-prufer-seq (remove1 a verts)
seq using T1 .wellformed by blast
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then have b = b ′ using edges-eq by (metis doubleton-eq-iff insert-iff )

have {a,b} /∈ tree-edges-of-prufer-seq (remove1 a verts) seq2 ′ using T2 .wellformed
a-notin-verts ′ by blast

then have (tree-edges-of-prufer-seq (remove1 a verts) seq) = tree-edges-of-prufer-seq
(remove1 a verts) seq2 ′

using edges-eq ab ′-notin-edges
by (simp add: ‹b = b ′› insert-eq-iff )

then have seq = seq2 ′ using 2 .IH [of seq2 ′] ctx1 ′.prufer-seq ctx2 ′.prufer-seq
2 (10 ) ctx1 ′.tree-of-prufer-seq-ctx-axioms

unfolding seq2 by simp
then show ?case using ‹b = b ′› seq2 by simp

qed
qed

theorem (in valid-verts) distinct-labeld-tree-enum: distinct (labeled-tree-enum verts)
using inj-tree-edges-of-prufer-seq distinct-n-lists distinct-verts
unfolding labeled-tree-enum-def prufer-sequences-def tree-of-prufer-seq-def
by (auto simp add: distinct-map set-n-lists inj-on-def )

lemma (in valid-verts) cayleys-formula: card (labeled-trees (set verts)) = length
verts ^ (length verts − 2 )
proof−

have card (labeled-trees (set verts)) = length (labeled-tree-enum verts)
using distinct-labeld-tree-enum labeled-tree-enum-correct distinct-card by fast-

force
also have . . . = length verts ^ (length verts − 2 ) unfolding labeled-tree-enum-def

using length-n-lists by auto
finally show ?thesis .

qed

end

3 Rooted Trees
theory Rooted-Tree
imports Tree-Graph HOL−Library.FSet
begin

datatype tree = Node tree list

fun tree-size :: tree ⇒ nat where
tree-size (Node ts) = Suc (

∑
t←ts. tree-size t)

fun height :: tree ⇒ nat where
height (Node []) = 0
| height (Node ts) = Suc (Max (height ‘ set ts))

Convenient case splitting and induction for trees
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lemma tree-cons-exhaust[case-names Nil Cons]:
(t = Node [] =⇒ P) =⇒ (

∧
r ts. t = Node (r # ts) =⇒ P) =⇒ P

by (cases t) (metis list.exhaust)

lemma tree-rev-exhaust[case-names Nil Snoc]:
(t = Node [] =⇒ P) =⇒ (

∧
ts r . t = Node (ts @ [r ]) =⇒ P) =⇒ P

by (cases t) (metis rev-exhaust)

lemma tree-cons-induct[case-names Nil Cons]:
assumes P (Node [])

and
∧

t ts. P t =⇒ P (Node ts) =⇒ P (Node (t#ts))
shows P t

proof (induction size-tree t arbitrary: t rule: less-induct)
case less
then show ?case using assms by (cases t rule: tree-cons-exhaust) auto

qed

fun lexord-tree where
lexord-tree t (Node []) ←→ False
| lexord-tree (Node []) r ←→ True
| lexord-tree (Node (t#ts)) (Node (r#rs))←→ lexord-tree t r ∨ (t = r ∧ lexord-tree
(Node ts) (Node rs))

fun mirror :: tree ⇒ tree where
mirror (Node ts) = Node (map mirror (rev ts))

instantiation tree :: linorder
begin

definition
tree-less-def : (t::tree) < r ←→ lexord-tree (mirror t) (mirror r)

definition
tree-le-def : (t :: tree) ≤ r ←→ t < r ∨ t = r

lemma lexord-tree-empty2 [simp]: lexord-tree (Node []) r ←→ r 6= Node []
by (cases r rule: tree-cons-exhaust) auto

lemma mirror-empty[simp]: mirror t = Node [] ←→ t = Node []
by (cases t) auto

lemma mirror-not-empty[simp]: mirror t 6= Node [] ←→ t 6= Node []
by (cases t) auto

lemma tree-le-empty[simp]: Node [] ≤ t
unfolding tree-le-def tree-less-def using mirror-not-empty by auto

lemma tree-less-empty-iff : Node [] < t ←→ t 6= Node []
unfolding tree-less-def by simp
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lemma not-tree-less-empty[simp]: ¬ t < Node []
unfolding tree-less-def by simp

lemma tree-le-empty2-iff [simp]: t ≤ Node [] ←→ t = Node []
unfolding tree-le-def by simp

lemma lexord-tree-antisym: lexord-tree t r =⇒ ¬ lexord-tree r t
by (induction r t rule: lexord-tree.induct) auto

lemma tree-less-antisym: (t::tree) < r =⇒ ¬ r < t
unfolding tree-less-def using lexord-tree-antisym by blast

lemma lexord-tree-not-eq: lexord-tree t r =⇒ t 6= r
by (induction r t rule: lexord-tree.induct) auto

lemma tree-less-not-eq: (t::tree) < r =⇒ t 6= r
unfolding tree-less-def using lexord-tree-not-eq by blast

lemma lexord-tree-irrefl: ¬ lexord-tree t t
using lexord-tree-not-eq by blast

lemma tree-less-irrefl: ¬ (t::tree) < t
unfolding tree-less-def using lexord-tree-irrefl by blast

lemma lexord-tree-eq-iff : ¬ lexord-tree t r ∧ ¬ lexord-tree r t ←→ t = r
using lexord-tree-empty2 by (induction t r rule: lexord-tree.induct, fastforce+)

lemma mirror-mirror : mirror (mirror t) = t
by (induction t rule: mirror .induct) (simp add: map-idI rev-map)

lemma mirror-inj: mirror t = mirror r =⇒ t = r
using mirror-mirror by metis

lemma tree-less-eq-iff : ¬ (t::tree) < r ∧ ¬ r < t ←→ t = r
unfolding tree-less-def using lexord-tree-eq-iff mirror-inj by blast

lemma lexord-tree-trans: lexord-tree t r =⇒ lexord-tree r s =⇒ lexord-tree t s
proof (induction t s arbitrary: r rule: lexord-tree.induct)

case (1 t)
then show ?case by auto

next
case (2 va vb)
then show ?case by auto

next
case (3 t ts s ss)
then show ?case by (cases r rule: tree-cons-exhaust) auto

qed
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instance
proof

fix t r s :: tree
show t < r ←→ t ≤ r ∧ ¬ r ≤ t unfolding tree-le-def using tree-less-antisym

tree-less-irrefl by auto
show t ≤ t unfolding tree-le-def by simp
show t ≤ r =⇒ r ≤ t =⇒ t = r unfolding tree-le-def using tree-less-antisym

by blast
show t ≤ r ∨ r ≤ t unfolding tree-le-def using tree-less-eq-iff by blast
show t ≤ r =⇒ r ≤ s =⇒ t ≤ s unfolding tree-le-def tree-less-def using

lexord-tree-trans by blast
qed

end

lemma tree-size-children: tree-size (Node ts) = Suc n =⇒ t ∈ set ts =⇒ tree-size
t ≤ n

by (auto simp: le-add1 sum-list-map-remove1 )

lemma tree-size-ge-1 : tree-size t ≥ 1
by (cases t) auto

lemma tree-size-ne-0 : tree-size t 6= 0
by (cases t) auto

lemma tree-size-1-iff : tree-size t = 1 ←→ t = Node []
using tree-size-ne-0 by (cases t rule: tree-cons-exhaust) auto

lemma length-children: tree-size (Node ts) = Suc n =⇒ length ts ≤ n
by (induction ts arbitrary: n, auto, metis add-mono plus-1-eq-Suc tree-size-ge-1 )

lemma height-Node-cons: height (Node (t#ts)) ≥ Suc (height t)
by auto

lemma height-0-iff : height t = 0 =⇒ t = Node []
using height.elims by blast

lemma height-children: height (Node ts) = Suc n =⇒ t ∈ set ts =⇒ height t ≤ n
by (metis List.finite-set Max-ge diff-Suc-1 finite-imageI height.elims imageI nat.simps(3 )

tree.inject)

lemma height-children-le-height: ∀ t ∈ set ts. height t ≤ n =⇒ height (Node ts) ≤
Suc n

by (cases ts) auto

lemma mirror-iff : mirror t = Node ts ←→ t = Node (map mirror (rev ts))
by (metis mirror .simps mirror-mirror)
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lemma mirror-append: mirror (Node (ts@rs)) = Node (map mirror (rev rs) @
map mirror (rev ts))

by (induction ts) auto

lemma lexord-tree-snoc: lexord-tree (Node ts) (Node (ts@[t]))
by (induction ts) auto

lemma tree-less-cons: Node ts < Node (t#ts)
unfolding tree-less-def using lexord-tree-snoc by simp

lemma tree-le-cons: Node ts ≤ Node (t#ts)
unfolding tree-le-def using tree-less-cons by simp

lemma tree-less-cons ′: t ≤ Node rs =⇒ t < Node (r#rs)
using tree-less-cons by (simp add: order-le-less-trans)

lemma tree-less-snoc2-iff [simp]: Node (ts@[t]) < Node (rs@[r ]) ←→ t < r ∨ (t =
r ∧ Node ts < Node rs)

unfolding tree-less-def using mirror-inj by auto

lemma tree-le-snoc2-iff [simp]: Node (ts@[t]) ≤ Node (rs@[r ]) ←→ t < r ∨ (t = r
∧ Node ts ≤ Node rs)

unfolding tree-le-def by auto

lemma lexord-tree-cons2 [simp]: lexord-tree (Node (ts@[t])) (Node (ts@[r ])) ←→
lexord-tree t r

by (induction ts) (auto simp: lexord-tree-irrefl)

lemma tree-less-cons2 [simp]: Node (t#ts) < Node (r#ts) ←→ t < r
unfolding tree-less-def using lexord-tree-cons2 by simp

lemma tree-le-cons2 [simp]: Node (t#ts) ≤ Node (r#ts) ←→ t ≤ r
unfolding tree-le-def using tree-less-cons2 by blast

lemma tree-less-sorted-snoc: sorted (ts@[r ]) =⇒ Node ts < Node (ts@[r ])
unfolding tree-less-def by (induction ts rule: rev-induct, auto,

metis leD lexord-tree-eq-iff sorted2 sorted-wrt-append tree-less-def ,
metis dual-order .strict-iff-not list.set-intros(2 ) nle-le sorted2 sorted-append

tree-less-def )

lemma lexord-tree-comm-prefix[simp]: lexord-tree (Node (ss@ts)) (Node (ss@rs))
←→ lexord-tree (Node ts) (Node rs)

using lexord-tree-antisym by (induction ss) auto

lemma less-tree-comm-suffix[simp]: Node (ts@ss) < Node (rs@ss) ←→ Node ts <
Node rs

unfolding tree-less-def by simp
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lemma tree-le-comm-suffix[simp]: Node (ts@ss) ≤ Node (rs@ss) ←→ Node ts ≤
Node rs

unfolding tree-le-def by simp

lemma tree-less-comm-suffix2 : t < r =⇒ Node (ts@t#ss) < Node (r#ss)
unfolding tree-less-def using lexord-tree-comm-prefix by simp

lemma lexord-tree-append[simp]: lexord-tree (Node ts) (Node (ts@rs)) ←→ rs 6= []
using lexord-tree-irrefl by (induction ts) auto

lemma tree-less-append[simp]: Node ts < Node (rs@ts) ←→ rs 6= []
unfolding tree-less-def by simp

lemma tree-le-append: Node ts ≤ Node (ss@ts)
unfolding tree-le-def by simp

lemma tree-less-singleton-iff [simp]: Node (ts@[t]) < Node [r ] ←→ t < r
unfolding tree-less-def by simp

lemma tree-le-singleton-iff [simp]: Node (ts@[t]) ≤ Node [r ] ←→ t < r ∨ (t = r ∧
ts = [])

unfolding tree-le-def by auto

lemma lexord-tree-nested: lexord-tree t (Node [t])
proof (induction t rule: tree-cons-induct)

case Nil
then show ?case by auto

next
case (Cons t ts)
then show ?case by (cases t rule: tree-cons-exhaust) auto

qed

lemma tree-less-nested: t < Node [t]
unfolding tree-less-def using lexord-tree-nested by auto

lemma tree-le-nested: t ≤ Node [t]
unfolding tree-le-def using tree-less-nested by auto

lemma lexord-tree-iff :
lexord-tree t r ←→ (∃ ts t ′ ss rs r ′. t = Node (ss @ t ′ # ts) ∧ r = Node (ss @ r ′

# rs) ∧ lexord-tree t ′ r ′) ∨ (∃ ts rs. rs 6= [] ∧ t = Node ts ∧ r = Node (ts @ rs))
(is ?l ←→ ?r)
proof

show ?l =⇒ ?r
proof−

assume lexord: lexord-tree t r
obtain ts where ts: t = Node ts by (cases t) auto
obtain rs where rs: r = Node rs by (cases r) auto
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obtain ss ts ′ rs ′ where prefix: ts = ss @ ts ′ ∧ rs = ss @ rs ′ ∧ (ts ′ = [] ∨ rs ′

= [] ∨ hd ts ′ 6= hd rs ′) using longest-common-prefix by blast
then have ts ′ = [] ∨ lexord-tree (hd ts ′) (hd rs ′) using lexord unfolding ts rs

by (auto, metis lexord-tree.simps(1 ) lexord-tree.simps(3 ) list.exhaust-sel)
then show ?thesis using prefix
by (metis append.right-neutral lexord lexord-tree.simps(1 ) lexord-tree-comm-prefix

list.exhaust-sel rs ts)
qed
show ?r =⇒ ?l by auto

qed

lemma tree-less-iff : t < r ←→ (∃ ts t ′ ss rs r ′. t = Node (ts @ t ′ # ss) ∧ r =
Node (rs @ r ′ # ss) ∧ t ′ < r ′) ∨ (∃ ts rs. rs 6= [] ∧ t = Node ts ∧ r = Node (rs
@ ts)) (is ?l ←→ ?r)
proof

show ?l =⇒ ?r
unfolding tree-less-def using lexord-tree-iff [of mirror t mirror r , unfolded

mirror-iff ]
by (simp, metis append-Nil lexord-tree-eq-iff mirror-mirror)

next
show ?r =⇒ ?l

by (auto simp: order-le-neq-trans tree-le-append,
meson dual-order .strict-trans1 tree-le-append tree-less-comm-suffix2 )

qed

lemma tree-empty-cons-lt-le: r < Node (Node [] # ts) =⇒ r ≤ Node ts
proof (induction ts arbitrary: r rule: rev-induct)

case Nil
then show ?case by (cases r rule: tree-rev-exhaust) auto

next
case (snoc x xs)
then show ?case
proof (cases r rule: tree-rev-exhaust)

case Nil
then show ?thesis by auto

next
case (Snoc rs r1 )

then show ?thesis using snoc by (auto, (metis append-Cons tree-less-snoc2-iff )+)
qed

qed

fun regular :: tree ⇒ bool where
regular (Node ts) ←→ sorted ts ∧ (∀ t∈set ts. regular t)

definition n-trees :: nat ⇒ tree set where
n-trees n = {t. tree-size t = n}

definition regular-n-trees :: nat ⇒ tree set where
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regular-n-trees n = {t. tree-size t = n ∧ regular t}

3.1 Rooted Graphs
type-synonym ′a rpregraph = ( ′a set) × ( ′a edge set) × ′a

locale rgraph = graph-system +
fixes r
assumes root-wf : r ∈ V

locale rtree = tree + rgraph
begin

definition subtrees :: ′a rpregraph set where
subtrees =
(let (V ′,E ′) = remove-vertex r
in (λC . (C , graph-system.induced-edges E ′ C , THE r ′. r ′ ∈ C ∧ vert-adj r r ′))

‘ ulgraph.connected-components V ′ E ′)

lemma rtree-subtree:
assumes subtree: (S ,ES ,rS) ∈ subtrees
shows rtree S ES rS

proof−
obtain V ′ E ′ where remove-vertex: remove-vertex r = (V ′, E ′) by fastforce
interpret subg: ulsubgraph V ′ E ′ V E unfolding ulsubgraph-def using sub-

graph-remove-vertex subtree ulgraph-axioms remove-vertex by blast
interpret g ′: fin-ulgraph V ′ E ′

by (simp add: fin-graph-system-axioms fin-ulgraph-def subg.is-finite-subgraph
subg.is-subgraph-ulgraph ulgraph-axioms)

have conn-component: S ∈ g ′.connected-components using subtree remove-vertex
unfolding subtrees-def by auto
then interpret subg ′: subgraph S ES V ′ E ′ using g ′.connected-component-subgraph

subtree remove-vertex unfolding subtrees-def by auto
interpret subg ′: ulsubgraph S ES V ′ E ′ by unfold-locales
interpret S : connected-ulgraph S ES using g ′.connected-components-connected-ulgraphs

conn-component subtree remove-vertex unfolding subtrees-def by auto
interpret S : fin-connected-ulgraph S ES using subg ′.verts-ss g ′.finV by un-

fold-locales (simp add: finite-subset)
interpret S : tree S ES using subg.is-cycle2 subg ′.is-cycle2 no-cycles by (unfold-locales,

blast)
show ?thesis using theI ′[OF unique-adj-vert-removed[OF root-wf remove-vertex

conn-component]]
subtree remove-vertex by unfold-locales (auto simp: subtrees-def )

qed

lemma finite-subtrees: finite subtrees
proof−

obtain V ′ E ′ where remove-vertex: remove-vertex r = (V ′, E ′) by fastforce
then interpret subg: subgraph V ′ E ′ V E using subgraph-remove-vertex by auto
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interpret g ′: fin-ulgraph V ′ E ′

by (simp add: fin-graph-system-axioms fin-ulgraph-def subg.is-finite-subgraph
subg.is-subgraph-ulgraph ulgraph-axioms)
show ?thesis using g ′.finite-connected-components remove-vertex unfolding sub-

trees-def by simp
qed

lemma remove-root-subtrees:
assumes remove-vertex: remove-vertex r = (V ′,E ′)

and conn-component: C ∈ ulgraph.connected-components V ′ E ′

shows rtree C (graph-system.induced-edges E ′ C ) (THE r ′. r ′ ∈ C ∧ vert-adj r
r ′)
proof−

interpret subg: ulsubgraph V ′ E ′ V E unfolding ulsubgraph-def using sub-
graph-remove-vertex remove-vertex ulgraph-axioms by blast

interpret g ′: fin-ulgraph V ′ E ′

by (simp add: fin-graph-system-axioms fin-ulgraph-def subg.is-finite-subgraph
subg.is-subgraph-ulgraph ulgraph-axioms)

interpret subg ′: ulsubgraph C graph-system.induced-edges E ′ C V ′ E ′

by (simp add: conn-component g ′.connected-component-subgraph g ′.ulgraph-axioms
ulsubgraph.intro)

interpret C : fin-connected-ulgraph C graph-system.induced-edges E ′ C
by (simp add: fin-connected-ulgraph.intro fin-ulgraph.intro g ′.fin-graph-system-axioms

g ′.ulgraph-axioms subg ′.is-finite-subgraph subg ′.is-subgraph-ulgraph conn-component
g ′.connected-components-connected-ulgraphs)

interpret C : tree C graph-system.induced-edges E ′ C using subg.is-cycle2 subg ′.is-cycle2
no-cycles by (unfold-locales, blast)

show ?thesis using theI ′[OF unique-adj-vert-removed[OF root-wf remove-vertex
conn-component]] by unfold-locales simp
qed

end

3.2 Rooted Graph Isomorphism
fun app-rgraph-isomorphism :: ( ′a ⇒ ′b) ⇒ ′a rpregraph ⇒ ′b rpregraph where

app-rgraph-isomorphism f (V ,E ,r) = (f ‘ V , ((‘) f ) ‘ E , f r)

locale rgraph-isomorphism =
G: rgraph VG EG rG + graph-isomorphism VG EG VH EH f for VG EG rG

VH EH rH f +
assumes root-preserving: f rG = rH

begin

interpretation H : graph-system VH EH using graph-system-H .

lemma rgraph-H : rgraph VH EH rH

using root-preserving bij-f G.root-wf VH-def by unfold-locales blast

47



interpretation H : rgraph VH EH rH using rgraph-H .

lemma rgraph-isomorphism-inv: rgraph-isomorphism VH EH rH VG EG rG inv-iso

proof−
interpret iso: graph-isomorphism VH EH VG EG inv-iso using graph-isomorphism-inv

.
show ?thesis using G.root-wf inj-f inv-iso-def root-preserving the-inv-into-f-f

by unfold-locales fastforce
qed

end

fun rgraph-isomorph :: ′a rpregraph ⇒ ′b rpregraph ⇒ bool (infix ‹'r› 50 ) where
(VG,EG,rG) 'r (VH ,EH ,rH) ←→ (∃ f . rgraph-isomorphism VG EG rG VH EH

rH f )

lemma (in rgraph) rgraph-isomorphism-id: rgraph-isomorphism V E r V E r id
using graph-isomorphism-id rgraph-isomorphism.intro rgraph-axioms
unfolding rgraph-isomorphism-axioms-def by fastforce

lemma (in rgraph) rgraph-isomorph-refl: (V ,E ,r) 'r (V ,E ,r)
using rgraph-isomorphism-id by auto

lemma rgraph-isomorph-sym: G 'r H =⇒ H 'r G
using rgraph-isomorphism.rgraph-isomorphism-inv by (cases G, cases H ) fast-

force

lemma rgraph-isomorphism-trans: rgraph-isomorphism VG EG rG VH EH rH f
=⇒ rgraph-isomorphism VH EH rH V F EF rF g =⇒ rgraph-isomorphism VG

EG rG V F EF rF (g o f )
using graph-isomorphism-trans unfolding rgraph-isomorphism-def rgraph-isomorphism-axioms-def

by fastforce

lemma rgraph-isomorph-trans: transp ('r)
using rgraph-isomorphism-trans unfolding transp-def by fastforce

lemma (in rtree) rgraph-isomorphis-app-iso: inj-on f V =⇒ app-rgraph-isomorphism
f (V ,E ,r) = (V ′,E ′,r ′) =⇒ rgraph-isomorphism V E r V ′ E ′ r ′ f

by unfold-locales (auto simp: bij-betw-def )

lemma (in rtree) rgraph-isomorph-app-iso: inj-on f V =⇒ (V , E , r) 'r app-rgraph-isomorphism
f (V , E , r)

using rgraph-isomorphis-app-iso by fastforce

3.3 Conversion between unlabeled, ordered, rooted trees and
tree graphs

datatype ′a ltree = LNode ′a ′a ltree list
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fun ltree-size :: ′a ltree ⇒ nat where
ltree-size (LNode r ts) = Suc (

∑
t←ts. ltree-size t)

fun root-ltree :: ′a ltree ⇒ ′a where
root-ltree (LNode r ts) = r

fun nodes-ltree :: ′a ltree ⇒ ′a set where
nodes-ltree (LNode r ts) = {r} ∪ (

⋃
t∈set ts. nodes-ltree t)

fun relabel-ltree :: ( ′a ⇒ ′b) ⇒ ′a ltree ⇒ ′b ltree where
relabel-ltree f (LNode r ts) = LNode (f r) (map (relabel-ltree f ) ts)

fun distinct-ltree-nodes :: ′a ltree ⇒ bool where
distinct-ltree-nodes (LNode a ts) ←→ (∀ t∈set ts. a /∈ nodes-ltree t) ∧ distinct ts
∧ disjoint-family-on nodes-ltree (set ts) ∧ (∀ t∈set ts. distinct-ltree-nodes t)

fun postorder-label-aux :: nat ⇒ tree ⇒ nat × nat ltree where
postorder-label-aux n (Node []) = (n, LNode n [])
| postorder-label-aux n (Node (t#ts)) =
(let (n ′, t ′) = postorder-label-aux n t in

case postorder-label-aux (Suc n ′) (Node ts) of
(n ′′, LNode r ts ′) ⇒ (n ′′, LNode r (t ′#ts ′)))

definition postorder-label :: tree ⇒ nat ltree where
postorder-label t = snd (postorder-label-aux 0 t)

fun tree-ltree :: ′a ltree ⇒ tree where
tree-ltree (LNode r ts) = Node (map tree-ltree ts)

fun regular-ltree :: ′a ltree ⇒ bool where
regular-ltree (LNode r ts) ←→ sorted-wrt (λt s. tree-ltree t ≤ tree-ltree s) ts ∧

(∀ t∈set ts. regular-ltree t)

datatype ′a stree = SNode ′a ′a stree fset

lemma stree-size-child-lt[termination-simp]: t |∈| ts =⇒ size t < Suc (
∑

s∈fset
ts. Suc (size s))

using sum-nonneg-leq-bound zero-le finite-fset Suc-le-eq less-SucI by metis

lemma stree-size-child-lt ′[termination-simp]: t ∈ fset ts =⇒ size t < Suc (
∑

s∈fset
ts. Suc (size s))

using stree-size-child-lt by metis

fun stree-size :: ′a stree ⇒ nat where
stree-size (SNode r ts) = Suc (fsum stree-size ts)

definition n-strees :: nat ⇒ ′a stree set where
n-strees n = {t. stree-size t = n}

49



fun root-stree :: ′a stree ⇒ ′a where
root-stree (SNode a ts) = a

fun nodes-stree :: ′a stree ⇒ ′a set where
nodes-stree (SNode a ts) = {a} ∪ (

⋃
t∈fset ts. nodes-stree t)

fun tree-graph-edges :: ′a stree ⇒ ′a edge set where
tree-graph-edges (SNode a ts) = ((λt. {a, root-stree t}) ‘ fset ts) ∪ (

⋃
t∈fset ts.

tree-graph-edges t)

fun distinct-stree-nodes :: ′a stree ⇒ bool where
distinct-stree-nodes (SNode a ts) ←→ (∀ t∈fset ts. a /∈ nodes-stree t) ∧ dis-

joint-family-on nodes-stree (fset ts) ∧ (∀ t∈fset ts. distinct-stree-nodes t)

fun ltree-stree :: ′a stree ⇒ ′a ltree where
ltree-stree (SNode r ts) = LNode r (SOME xs. fset-of-list xs = ltree-stree |‘| ts ∧

distinct xs ∧ sorted-wrt (λt s. tree-ltree t ≤ tree-ltree s) xs)

fun stree-ltree :: ′a ltree ⇒ ′a stree where
stree-ltree (LNode r ts) = SNode r (fset-of-list (map stree-ltree ts))

definition tree-graph-stree :: ′a stree ⇒ ′a rpregraph where
tree-graph-stree t = (nodes-stree t, tree-graph-edges t, root-stree t)

function stree-of-graph :: ′a rpregraph ⇒ ′a stree where
stree-of-graph (V ,E ,r) =
(if ¬ rtree V E r then undefined else
SNode r (Abs-fset (stree-of-graph ‘ rtree.subtrees V E r)))

by pat-completeness auto

termination
proof (relation measure (λp. card (fst p)), auto)

fix r :: ′a and V :: ′a set and E :: ′a edge set and S :: ′a set and ES :: ′a edge
set and rS :: ′a

assume rtree: rtree V E r
assume subtree: (S , ES , rS) ∈ rtree.subtrees V E r
interpret rtree V E r using rtree .
obtain V ′ E ′ where remove-vertex: remove-vertex r = (V ′, E ′) by fastforce
then interpret subg: subgraph V ′ E ′ V E using subgraph-remove-vertex by

simp
interpret g ′: fin-ulgraph V ′ E ′ using fin-ulgraph.intro subg.is-finite-subgraph

fin-graph-system-axioms subg.is-subgraph-ulgraph ulgraph-axioms by blast
have S ∈ g ′.connected-components using subtree remove-vertex unfolding sub-

trees-def by auto
then have card-C-V ′:card S ≤ card V ′ using g ′.connected-component-wf g ′.finV

card-mono by metis
have card V ′ < card V using remove-vertex root-wf finV card-Diff1-less unfold-

ing remove-vertex-def by fast
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then show card S < card V using card-C-V ′ by simp
qed

definition tree-graph :: tree ⇒ nat rpregraph where
tree-graph t = tree-graph-stree (stree-ltree (postorder-label t))

fun relabel-stree :: ( ′a ⇒ ′b) ⇒ ′a stree ⇒ ′b stree where
relabel-stree f (SNode r ts) = SNode (f r) ((relabel-stree f ) |‘| ts)

lemma root-ltree-wf : root-ltree t ∈ nodes-ltree t
by (cases t) auto

lemma root-relabel-ltree[simp]: root-ltree (relabel-ltree f t) = f (root-ltree t)
by (cases t) simp

lemma nodes-relabel-ltree[simp]: nodes-ltree (relabel-ltree f t) = f ‘ nodes-ltree t
by (induction t) auto

lemma finite-nodes-ltree: finite (nodes-ltree t)
by (induction t) auto

lemma root-stree-wf : root-stree t ∈ nodes-stree t
by (cases t) auto

lemma tree-graph-edges-wf : e ∈ tree-graph-edges t =⇒ e ⊆ nodes-stree t
using root-stree-wf by (induction t rule: tree-graph-edges.induct) auto

lemma card-tree-graph-edges-distinct: distinct-stree-nodes t =⇒ e ∈ tree-graph-edges
t =⇒ card e = 2

using root-stree-wf card-2-iff by (induction t rule: tree-graph-edges.induct) (auto,
fast+)

lemma nodes-stree-non-empty: nodes-stree t 6= {}
by (cases t rule: nodes-stree.cases) auto

lemma finite-nodes-stree: finite (nodes-stree t)
by (induction t rule: nodes-stree.induct) auto

lemma finite-tree-graph-edges: finite (tree-graph-edges t)
by (induction t rule: tree-graph-edges.induct) auto

lemma root-relabel-stree[simp]: root-stree (relabel-stree f t) = f (root-stree t)
by (cases t) auto

lemma nodes-stree-relabel-stree[simp]: nodes-stree (relabel-stree f t) = f ‘ nodes-stree
t

by (induction t) auto

lemma tree-graph-edges-relabel-stree[simp]: tree-graph-edges (relabel-stree f t) =
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((‘) f ) ‘ tree-graph-edges t
by (induction t) (simp add: image-image image-Un image-Union)

lemma nodes-stree-ltree[simp]: nodes-stree (stree-ltree t) = nodes-ltree t
by (induction t) (auto simp: fset-of-list.rep-eq)

lemma distinct-sorted-wrt-list: ∃ xs. fset-of-list xs = A ∧ distinct xs ∧ sorted-wrt
(λt s. (f t :: ′b::linorder) ≤ f s) xs
proof−

obtain xs where fset-of-list xs = A ∧ distinct xs
by (metis finite-distinct-list finite-fset fset-cong fset-of-list.rep-eq)

then have fset-of-list (sort-key f xs) = A ∧ distinct (sort-key f xs) ∧ sorted-wrt
(λt s. f t ≤ f s) (sort-key f xs)

using sorted-sort-key sorted-wrt-map by (simp add: fset-of-list.abs-eq, blast)
then show ?thesis by blast

qed

abbreviation ltree-stree-subtrees ts ≡ SOME xs. fset-of-list xs = ltree-stree |‘| ts
∧ distinct xs ∧ sorted-wrt (λt s. tree-ltree t ≤ tree-ltree s) xs

lemma fset-of-list-ltree-stree-subtrees[simp]: fset-of-list (ltree-stree-subtrees ts) =
ltree-stree |‘| ts

using someI-ex[OF distinct-sorted-wrt-list] by fast

lemma set-ltree-stree-subtrees[simp]: set (ltree-stree-subtrees ts) = ltree-stree ‘ fset
ts

using fset-of-list-ltree-stree-subtrees by (metis (mono-tags, lifting) fset.set-map
fset-of-list.rep-eq)

lemma distinct-ltree-stree-subtrees: distinct (ltree-stree-subtrees ts)
using someI-ex[OF distinct-sorted-wrt-list] by blast

lemma sorted-wrt-ltree-stree-subtrees: sorted-wrt (λt s. tree-ltree t ≤ tree-ltree s)
(ltree-stree-subtrees ts)

using someI-ex[OF distinct-sorted-wrt-list] by blast

lemma nodes-ltree-stree[simp]: nodes-ltree (ltree-stree t) = nodes-stree t
by (induction t) auto

lemma stree-ltree-stree[simp]: stree-ltree (ltree-stree t) = t
by (induction t) (simp add: fset.map-ident-strong)

lemma nodes-tree-graph-stree: tree-graph-stree t = (V , E , r) =⇒ V = nodes-stree
t

by (induction t) (simp add: tree-graph-stree-def )

lemma relabel-stree-stree-ltree: relabel-stree f (stree-ltree t) = stree-ltree (relabel-ltree
f t)

by (induction t) (auto simp add: fset-of-list-elem)
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lemma relabel-stree-relabel-ltree: relabel-ltree f t1 = t2 =⇒ relabel-stree f (stree-ltree
t1 ) = stree-ltree t2

using relabel-stree-stree-ltree by blast

lemma app-rgraph-iso-tree-graph-stree: app-rgraph-isomorphism f (tree-graph-stree
t) = tree-graph-stree (relabel-stree f t)

unfolding tree-graph-stree-def using image-iff mk-disjoint-insert
by (induction t) (auto, fastforce+)

lemma (in rtree) root-stree-of-graph[simp]: root-stree (stree-of-graph (V ,E ,r)) = r
using rtree-axioms by (simp split: prod.split)

lemma (in rtree) nodes-stree-stree-of-graph[simp]: nodes-stree (stree-of-graph (V ,E ,r))
= V

using rtree-axioms
proof (induction (V ,E ,r) arbitrary: V E r rule: stree-of-graph.induct)

case (1 V T ET r)
then interpret t: rtree V T ET r by simp
obtain V ′ E ′ where VE ′: t.remove-vertex r = (V ′, E ′) by (simp add: t.remove-vertex-def )
interpret subg: subgraph V ′ E ′ V T ET using t.subgraph-remove-vertex VE ′ by

metis
interpret g ′: fin-ulgraph V ′ E ′ using fin-ulgraph.intro subg.is-finite-subgraph

t.fin-graph-system-axioms subg.is-subgraph-ulgraph t.ulgraph-axioms by blast

have finite (stree-of-graph ‘ t.subtrees) using t.finite-subtrees by blast
then have nodes-stree (stree-of-graph (V T , ET , r)) = {r} ∪ V ′

using 1 using VE ′ t.rtree-subtree g ′.Union-connected-components by (simp
add: Abs-fset-inverse t.subtrees-def )

then show ?case using VE ′ t.root-wf unfolding t.remove-vertex-def by auto
qed

lemma (in rtree) tree-graph-edges-stree-of-graph[simp]: tree-graph-edges (stree-of-graph
(V ,E ,r)) = E

using rtree-axioms
proof (induction (V ,E ,r) arbitrary: V E r rule: stree-of-graph.induct)

case (1 V T ET r)
then interpret t: rtree V T ET r by simp
obtain V ′ E ′ where VE ′: t.remove-vertex r = (V ′, E ′) by (simp add: t.remove-vertex-def )
interpret subg: subgraph V ′ E ′ V T ET using t.subgraph-remove-vertex VE ′ by

metis
interpret g ′: fin-ulgraph V ′ E ′ using fin-ulgraph.intro subg.is-finite-subgraph

t.fin-graph-system-axioms subg.is-subgraph-ulgraph t.ulgraph-axioms by blast

have finite (stree-of-graph ‘ t.subtrees) using t.finite-subtrees by blast
then have fset-Abs-fset-subtrees[simp]: fset (Abs-fset (stree-of-graph ‘ t.subtrees))

= stree-of-graph ‘ t.subtrees by (simp add: Abs-fset-inverse)
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have root-edges: (λx. {r , root-stree x}) ‘ stree-of-graph ‘ t.subtrees = {e∈ET . r
∈ e} (is ?l = ?r)

proof−
have e ∈ ?l if e ∈ ?r for e
proof−

obtain r ′ where e: e = {r , r ′} using ‹e∈?r›
by (metis (no-types, lifting) CollectD insert-commute insert-iff singleton-iff

t.obtain-edge-pair-adj)
then have r ′ 6= r using t.singleton-not-edge ‹e∈?r› by force

then have r ′∈ V ′ using e ‹e∈?r› VE ′ t.remove-vertex-def t.wellformed-alt-snd
by fastforce

then obtain C where C-conn-component: C ∈ g ′.connected-components and
r ′ ∈ C using g ′.Union-connected-components by auto

have t.vert-adj r r ′ unfolding t.vert-adj-def using ‹e∈?r› e by blast
then have (THE r ′. r ′∈ C ∧ t.vert-adj r r ′) = r ′ using t.unique-adj-vert-removed[OF

t.root-wf VE ′ C-conn-component] ‹r ′∈C › by auto
then show ?thesis using e ‹r ′∈C › C-conn-component rtree.root-stree-of-graph

t.rtree-subtree VE ′ unfolding t.subtrees-def by (auto simp: image-comp)
qed

then show ?thesis using t.unique-adj-vert-removed[OF t.root-wf VE ′] t.rtree-subtree
VE ′

unfolding t.subtrees-def t.vert-adj-def by (auto, metis (no-types, lifting) theI )
qed
have (

⋃
S∈t.subtrees. tree-graph-edges (stree-of-graph S)) = E ′

using 1 VE ′ t.rtree-subtree g ′.Union-induced-edges-connected-components
unfolding t.subtrees-def by simp

then have tree-graph-edges (stree-of-graph (V T ,ET ,r)) = {e∈ET . r ∈ e} ∪ E ′

using root-edges 1 (2 ) by simp
then show ?case using VE ′ unfolding t.remove-vertex-def t.vincident-def by

blast
qed

lemma (in rtree) tree-graph-stree-of-graph[simp]: tree-graph-stree (stree-of-graph
(V ,E ,r)) = (V ,E ,r)
using nodes-stree-stree-of-graph tree-graph-edges-stree-of-graph root-stree-of-graph

unfolding tree-graph-stree-def by blast

lemma postorder-label-aux-mono: fst (postorder-label-aux n t) ≥ n
by (induction n t rule: postorder-label-aux.induct) (auto split: prod.split ltree.split,

fastforce)

lemma nodes-postorder-label-aux-ge: postorder-label-aux n t = (n ′, t ′) =⇒ v ∈
nodes-ltree t ′ =⇒ v ≥ n

by (induction n t arbitrary: n ′ t ′ rule: postorder-label-aux.induct,
auto split: prod.splits ltree.splits,
(metis fst-conv le-SucI order .trans postorder-label-aux-mono)+)

lemma nodes-postorder-label-aux-le: postorder-label-aux n t = (n ′, t ′) =⇒ v ∈
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nodes-ltree t ′ =⇒ v ≤ n ′

by (induction n t arbitrary: n ′ t ′ rule: postorder-label-aux.induct,
auto split: prod.splits ltree.splits,
metis Suc-leD fst-conv order-trans postorder-label-aux-mono,
blast)

lemma distinct-nodes-postorder-label-aux: distinct-ltree-nodes (snd (postorder-label-aux
n t))
proof (induction n t rule: postorder-label-aux.induct)

case (1 n)
then show ?case by (simp add: disjoint-family-on-def )

next
case (2 n t ts)
obtain n ′ t ′ where t ′: postorder-label-aux n t = (n ′, t ′) by fastforce
obtain n ′′ r ts ′ where ts ′: postorder-label-aux (Suc n ′) (Node ts) = (n ′′, LNode

r ts ′) by (metis eq-snd-iff ltree.exhaust)
then have r ≥ Suc n ′ using nodes-postorder-label-aux-ge by auto
then have r-notin-t ′: r /∈ nodes-ltree t ′ using nodes-postorder-label-aux-le[OF t ′]

by fastforce
have distinct-subtrees: distinct (t ′#ts ′) using 2 t ′ ts ′ nodes-postorder-label-aux-le[OF

t ′]
nodes-postorder-label-aux-ge[OF ts ′] by (auto, meson not-less-eq-eq root-ltree-wf )

have disjoint-family-on nodes-ltree (set (t ′#ts ′)) using 2 t ′ ts ′ nodes-postorder-label-aux-le[OF
t ′]

nodes-postorder-label-aux-ge[OF ts ′] by (simp add: disjoint-family-on-def ,
meson disjoint-iff not-less-eq-eq)

then show ?case using 2 t ′ ts ′ r-notin-t ′ distinct-subtrees by simp
qed

lemma distinct-nodes-postorder-label: distinct-ltree-nodes (postorder-label t)
unfolding postorder-label-def using distinct-nodes-postorder-label-aux by simp

lemma distinct-nodes-stree-ltree: distinct-ltree-nodes t =⇒ distinct-stree-nodes (stree-ltree
t)

by (induction t) (auto simp: fset-of-list.rep-eq disjoint-family-on-def , fast)

fun distinct-edges :: ′a stree ⇒ bool where
distinct-edges (SNode a ts) ←→ inj-on (λt. {a, root-stree t}) (fset ts)
∧ (∀ t∈fset ts. disjnt ((λt. {a, root-stree t}) ‘ fset ts) (tree-graph-edges t))
∧ disjoint-family-on tree-graph-edges (fset ts)
∧ (∀ t∈fset ts. distinct-edges t)

lemma distinct-nodes-inj-on-root-stree: distinct-stree-nodes (SNode r ts) =⇒ inj-on
root-stree (fset ts)

by (auto simp: disjoint-family-on-def , metis IntI emptyE inj-onI root-stree-wf )

lemma distinct-nodes-disjoint-edges:
assumes distinct-nodes: distinct-stree-nodes (SNode a ts)
shows disjoint-family-on tree-graph-edges (fset ts)
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proof−
have tree-graph-edges t1 ∩ tree-graph-edges t2 = {}

if t1-in-ts: t1 ∈ fset ts and t2-in-ts: t2 ∈ fset ts and t1 6= t2 for t1 t2
proof−

have ∀ e∈tree-graph-edges t1 . e /∈ tree-graph-edges t2
proof

fix e assume e-in-edges-t1 : e ∈ tree-graph-edges t1
then have e 6= {} using t1-in-ts card-tree-graph-edges-distinct distinct-nodes

by fastforce
then have ∃ v∈nodes-stree t1 . v ∈ e using tree-graph-edges-wf e-in-edges-t1

by blast
then show e /∈ tree-graph-edges t2 using ‹t1 6=t2 › distinct-nodes t1-in-ts

t2-in-ts tree-graph-edges-wf
by (auto simp: disjoint-family-on-def , blast)

qed
then show ?thesis by blast

qed
then show ?thesis unfolding disjoint-family-on-def by blast

qed

lemma card-nodes-edges: distinct-stree-nodes t =⇒ card (nodes-stree t) = Suc
(card (tree-graph-edges t))
proof (induction t rule: tree-graph-edges.induct)

case (1 a ts)
let ?t = SNode a ts
have inj-on (λt. {a, root-stree t}) (fset ts) using distinct-nodes-inj-on-root-stree[OF

1 (2 )]
unfolding inj-on-def doubleton-eq-iff by blast

then have card-root-edges: card ((λt. {a, root-stree t}) ‘ fset ts) = card (fset ts)
using card-image by blast

have finite-Un: finite (
⋃

t∈fset ts. nodes-stree t) using finite-Union finite-nodes-stree
finite-fset by auto

then have card (nodes-stree ?t) = Suc (card (
⋃

t∈fset ts. nodes-stree t)) using
1 (2 ) card-insert-disjoint finite-Un by simp
also have . . . = Suc (

∑
t∈fset ts. card (nodes-stree t)) using 1 (2 ) card-UN-disjoint ′

finite-nodes-stree finite-fset by fastforce
also have . . . = Suc (

∑
t∈fset ts. Suc (card (tree-graph-edges t))) using 1 by

simp
also have . . . = Suc (card (fset ts) + (

∑
t∈fset ts. card (tree-graph-edges t)))

by (metis add.commute sum-Suc)
also have . . . = Suc (card ((λt. {a, root-stree t}) ‘ fset ts) + (

∑
t∈fset ts. card

(tree-graph-edges t)))
using card-root-edges by simp

also have . . . = Suc (card ((λx. {a, root-stree x}) ‘ fset ts) + card (
⋃

(tree-graph-edges
‘ fset ts)))

using distinct-nodes-disjoint-edges[OF 1 (2 )] card-UN-disjoint ′ finite-tree-graph-edges
by fastforce

also have . . . = Suc (card ((λx. {a, root-stree x}) ‘ fset ts ∪ (
⋃

(tree-graph-edges
‘ fset ts)))) (is Suc (card ?r + card ?Un) = Suc (card (?r ∪ ?Un)))
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proof−
have ∀ t ∈ fset ts. ∀ e ∈ tree-graph-edges t. a /∈ e using 1 (2 ) tree-graph-edges-wf

by auto
then have disjnt: disjnt ?r ?Un using disjoint-UN-iff by (auto simp: disjnt-def )

show ?thesis using card-Un-disjnt[OF - - disjnt] finite-tree-graph-edges by
fastforce

qed
finally show ?case by simp

qed

lemma tree-tree-graph-edges: distinct-stree-nodes t =⇒ tree (nodes-stree t) (tree-graph-edges
t)
proof (induction t rule: tree-graph-edges.induct)

case (1 a ts)
let ?t = SNode a ts
have

∧
e. e ∈ tree-graph-edges ?t =⇒ 0 < card e ∧ card e ≤ 2 using card-tree-graph-edges-distinct

1 by (metis order-refl pos2 )
then interpret g: fin-ulgraph nodes-stree ?t tree-graph-edges ?t using tree-graph-edges-wf

finite-nodes-stree by (unfold-locales) blast+
have g.vert-connected a v if t: t ∈ fset ts and v: v ∈ nodes-stree t for t v
proof−

interpret t: tree nodes-stree t tree-graph-edges t using 1 t by auto
interpret subg: ulsubgraph nodes-stree t tree-graph-edges t nodes-stree ?t tree-graph-edges

?t using t by unfold-locales auto
have conn-root-v: g.vert-connected (root-stree t) v using subg.vert-connected v

root-stree-wf t.vertices-connected by blast
have {a, root-stree t} ∈ tree-graph-edges ?t using t by auto
then have g.vert-connected a (root-stree t) using g.vert-connected-neighbors

by blast
then show ?thesis using conn-root-v g.vert-connected-trans by blast

qed
then have ∀ v∈nodes-stree ?t. g.vert-connected a v using g.vert-connected-id by

auto
then have g.is-connected-set (nodes-stree ?t) using g.vert-connected-trans g.vert-connected-rev

unfolding g.is-connected-set-def by blast
then interpret g: fin-connected-ulgraph nodes-stree ?t tree-graph-edges ?t by

unfold-locales auto
show ?case using card-E-treeI card-nodes-edges 1 (2 ) g.fin-connected-ulgraph-axioms

by blast
qed

lemma rtree-tree-graph-edges:
assumes distinct-nodes: distinct-stree-nodes t
shows rtree (nodes-stree t) (tree-graph-edges t) (root-stree t)

proof−
interpret tree nodes-stree t tree-graph-edges t using distinct-nodes tree-tree-graph-edges

by blast
show ?thesis using root-stree-wf by unfold-locales blast

qed
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lemma rtree-tree-graph-stree: distinct-stree-nodes t =⇒ tree-graph-stree t = (V ,E ,r)
=⇒ rtree V E r

using rtree-tree-graph-edges unfolding tree-graph-stree-def by blast

lemma rtree-tree-graph: tree-graph t = (V ,E ,r) =⇒ rtree V E r
unfolding tree-graph-def using distinct-nodes-postorder-label rtree-tree-graph-stree

distinct-nodes-stree-ltree by fast

Cardinality of the resulting rooted tree is correct
lemma ltree-size-postorder-label-aux: ltree-size (snd (postorder-label-aux n t)) =
tree-size t
by (induction n t rule: postorder-label-aux.induct) (auto split: prod.split ltree.split)

lemma ltree-size-postorder-label: ltree-size (postorder-label t) = tree-size t
unfolding postorder-label-def using ltree-size-postorder-label-aux by blast

lemma distinct-nodes-ltree-size-card-nodes: distinct-ltree-nodes t =⇒ ltree-size t =
card (nodes-ltree t)
proof (induction t)

case (LNode r ts)
have finite (

⋃
(nodes-ltree ‘ set ts)) using finite-nodes-ltree by blast

then show ?case using LNode disjoint-family-on-disjoint-image
by (auto simp: sum-list-distinct-conv-sum-set card-UN-disjoint ′)

qed

lemma distinct-nodes-stree-size-card-nodes: distinct-stree-nodes t =⇒ stree-size t
= card (nodes-stree t)
proof (induction t)

case (SNode r ts)
have finite (

⋃
(nodes-stree ‘ fset ts)) using finite-nodes-stree by auto

then show ?case using SNode disjoint-family-on-disjoint-image
by (auto simp: fsum.F .rep-eq card-UN-disjoint ′)

qed

lemma stree-size-stree-ltree: distinct-ltree-nodes t =⇒ stree-size (stree-ltree t) =
ltree-size t

by (simp add: distinct-nodes-ltree-size-card-nodes distinct-nodes-stree-ltree dis-
tinct-nodes-stree-size-card-nodes)

lemma card-tree-graph-stree: distinct-stree-nodes t =⇒ tree-graph-stree t = (V ,E ,r)
=⇒ card V = stree-size t

by (simp add: distinct-nodes-stree-size-card-nodes) (metis nodes-tree-graph-stree)

lemma card-tree-graph: tree-graph t = (V ,E ,r) =⇒ card V = tree-size t
unfolding tree-graph-def using ltree-size-postorder-label stree-size-stree-ltree card-tree-graph-stree
by (metis distinct-nodes-postorder-label distinct-nodes-stree-ltree)
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lemma [termination-simp]: (t, s) ∈ set (zip ts ss) =⇒ size t < Suc (size-list size
ts)

by (metis less-not-refl not-less-eq set-zip-leftD size-list-estimation)

fun obtain-ltree-isomorphism :: ′a ltree ⇒ ′b ltree ⇒ ( ′a ⇀ ′b) where
obtain-ltree-isomorphism (LNode r1 ts) (LNode r2 ss) = fold (++) (map2 ob-

tain-ltree-isomorphism ts ss) [r1 7→r2 ]

fun postorder-relabel-aux :: nat ⇒ ′a ltree ⇒ nat × (nat ⇀ ′a) where
postorder-relabel-aux n (LNode r []) = (n, [n 7→ r ])
| postorder-relabel-aux n (LNode r (t#ts)) =
(let (n ′, f t) = postorder-relabel-aux n t;

(n ′′, f ts) = postorder-relabel-aux (Suc n ′) (LNode r ts) in
(n ′′, f t ++ f ts))

definition postorder-relabel :: ′a ltree ⇒ (nat ⇀ ′a) where
postorder-relabel t = snd (postorder-relabel-aux 0 t)

lemma fst-postorder-label-aux-tree-ltree: fst (postorder-label-aux n (tree-ltree t)) =
fst (postorder-relabel-aux n t)
by (induction n t rule: postorder-relabel-aux.induct) (auto split: prod.split ltree.split)

lemma dom-postorder-relabel-aux: dom (snd (postorder-relabel-aux n t)) = nodes-ltree
(snd (postorder-label-aux n (tree-ltree t)))
proof (induction n t rule: postorder-relabel-aux.induct)
case (1 n r)

then show ?case by (auto split: if-splits)
next

case (2 n r t ts)
obtain n ′ f-t where f-t: postorder-relabel-aux n t = (n ′, f-t) by fastforce
then obtain t ′ where t ′: postorder-label-aux n (tree-ltree t) = (n ′, t ′)

using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel)
obtain n ′′ f-ts where f-ts: postorder-relabel-aux (Suc n ′) (LNode r ts) = (n ′′,

f-ts) by fastforce
then obtain ts ′ r ′ where ts ′: postorder-label-aux (Suc n ′) (tree-ltree (LNode r

ts)) = (n ′′, LNode r ′ ts ′)
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel ltree.exhaust)

show ?case using 2 f-t f-ts t ′ ts ′ by auto
qed

lemma ran-postorder-relabel-aux: ran (snd (postorder-relabel-aux n t)) = nodes-ltree
t
proof (induction n t rule: postorder-relabel-aux.induct)

case (1 n r)
then show ?case by (simp add: ran-def )

next
case (2 n r t ts)
obtain n ′ f-t where f-t: postorder-relabel-aux n t = (n ′, f-t) by fastforce
obtain n ′′ f-ts where f-ts: postorder-relabel-aux (Suc n ′) (LNode r ts) = (n ′′,
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f-ts) by fastforce
have dom f-t ∩ dom f-ts = {} using dom-postorder-relabel-aux f-t f-ts
by (metis disjoint-iff fst-eqD fst-postorder-label-aux-tree-ltree nodes-postorder-label-aux-ge

nodes-postorder-label-aux-le not-less-eq-eq prod.exhaust-sel snd-conv)
then show ?case using 2 f-t f-ts by (simp add: ran-map-add)

qed

lemma relabel-ltree-eq: ∀ v∈nodes-ltree t. f v = g v =⇒ relabel-ltree f t = rela-
bel-ltree g t

by (induction t) auto

lemma relabel-postorder-relabel-aux: relabel-ltree (the o snd (postorder-relabel-aux
n t)) (snd (postorder-label-aux n (tree-ltree t))) = t
proof (induction n t rule: postorder-relabel-aux.induct)

case (1 n r)
then show ?case by auto

next
case (2 n r t ts)
obtain n ′ f-t where f-t: postorder-relabel-aux n t = (n ′, f-t) by fastforce
then obtain t ′ where t ′: postorder-label-aux n (tree-ltree t) = (n ′, t ′)

using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel)
obtain n ′′ f-ts where f-ts: postorder-relabel-aux (Suc n ′) (LNode r ts) = (n ′′,

f-ts) by fastforce
then obtain ts ′ r ′ where ts ′: postorder-label-aux (Suc n ′) (tree-ltree (LNode r

ts)) = (n ′′, LNode r ′ ts ′)
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel ltree.exhaust)
have ts ′-in-f-ts: ∀ v∈nodes-ltree (LNode r ′ ts ′). v ∈ dom f-ts using f-ts ts ′

dom-postorder-relabel-aux
by (metis snd-conv)

have ∀ v∈nodes-ltree t ′. v /∈ dom f-ts using f-ts t ′ ts ′ f-t dom-postorder-relabel-aux
by (metis nodes-postorder-label-aux-ge nodes-postorder-label-aux-le not-less-eq-eq

snd-conv)
then show ?case using 2 f-t f-ts t ′ ts ′ ts ′-in-f-ts
by (auto intro!: relabel-ltree-eq simp: map-add-dom-app-simps(3 ) map-add-dom-app-simps(1 ),

smt (verit, ccfv-threshold) map-add-dom-app-simps(1 ) map-eq-conv rela-
bel-ltree-eq)
qed

lemma relabel-postorder-relabel: relabel-ltree (the o postorder-relabel t) (postorder-label
(tree-ltree t)) = t
unfolding postorder-relabel-def postorder-label-def using relabel-postorder-relabel-aux

by auto

lemma relabel-postorder-aux-inj: distinct-ltree-nodes t =⇒ inj-on (the o snd (postorder-relabel-aux
n t)) (nodes-ltree (snd (postorder-label-aux n (tree-ltree t))))
proof (induction n t rule: postorder-relabel-aux.induct)

case (1 n r)
then show ?case by auto

next
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case (2 n r t ts)
have disjoint-family-on-ts: disjoint-family-on nodes-ltree (set ts) using 2 (3 ) by

(simp add: disjoint-family-on-def )
obtain n ′ f-t where f-t: postorder-relabel-aux n t = (n ′, f-t) by fastforce
then obtain t ′ where t ′: postorder-label-aux n (tree-ltree t) = (n ′, t ′)

using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel)
obtain n ′′ f-ts where f-ts: postorder-relabel-aux (Suc n ′) (LNode r ts) = (n ′′,

f-ts) by fastforce
then obtain ts ′ r ′ where ts ′: postorder-label-aux (Suc n ′) (tree-ltree (LNode r

ts)) = (n ′′, LNode r ′ ts ′)
using fst-postorder-label-aux-tree-ltree by (metis fst-eqD prod.exhaust-sel ltree.exhaust)

have t ′-in-dom-f-t: nodes-ltree t ′ ⊆ dom f-t using f-t t ′ dom-postorder-relabel-aux
by (metis order-refl snd-conv)

have ∀ v∈nodes-ltree t ′. v /∈ dom f-ts using f-ts ts ′ t ′ dom-postorder-relabel-aux
by (metis nodes-postorder-label-aux-ge nodes-postorder-label-aux-le not-less-eq-eq

snd-conv)
then have f-t ′: ∀ v∈nodes-ltree t ′. the ((f-t ++ f-ts) v) = the (f-t v)

by (simp add: map-add-dom-app-simps(3 ))
have inj-on (λv. the (f-t v)) (nodes-ltree t ′) using 2 ts ′ f-ts f-t t ′ disjoint-family-on-ts

by auto
then have inj-on-t ′: inj-on (λv. the ((f-t ++ f-ts) v)) (nodes-ltree t ′)

by (metis (mono-tags, lifting) inj-on-cong f-t ′)
have ts ′-in-dom-f-ts: ∀ v∈nodes-ltree (LNode r ′ ts ′). v ∈ dom f-ts using f-ts ts ′

dom-postorder-relabel-aux
by (metis snd-conv)

then have f-ts ′: ∀ v∈nodes-ltree (LNode r ′ ts ′). the ((f-t ++ f-ts) v) = the (f-ts
v)

by (simp add: map-add-dom-app-simps(1 ))
have inj-on (λv. the (f-ts v)) (nodes-ltree (LNode r ′ ts ′)) using 2 ts ′ f-ts f-t

disjoint-family-on-ts by simp
then have inj-on-ts ′: inj-on (λv. the ((f-t ++ f-ts) v)) (nodes-ltree (LNode r ′

ts ′)) using f-ts ′ inj-on-cong by fast

have (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree t ′ ∩ (λv. the ((f-t ++ f-ts) v)) ‘
nodes-ltree (LNode r ′ ts ′) = {}

proof−
have (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree t ′ = (λv. the (f-t v)) ‘ nodes-ltree

t ′ using f-t ′ by simp
also have . . . ⊆ ran f-t using t ′-in-dom-f-t ran-def by fastforce
also have . . . = nodes-ltree t by (metis f-t ran-postorder-relabel-aux snd-conv)
finally have f-nodes-t ′: (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree t ′ ⊆ nodes-ltree

t .

have (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree (LNode r ′ ts ′) = (λv. the (f-ts v))
‘ nodes-ltree (LNode r ′ ts ′)

using f-ts ′ by (simp del: nodes-ltree.simps)
also have . . . ⊆ ran f-ts using ts ′-in-dom-f-ts ran-def by fastforce
also have . . . = nodes-ltree (LNode r ts) by (metis f-ts ran-postorder-relabel-aux
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snd-conv)
finally have f-nodes-ts ′: (λv. the ((f-t ++ f-ts) v)) ‘ nodes-ltree (LNode r ′ ts ′)

⊆ nodes-ltree (LNode r ts) .

have nodes-ltree t ∩ nodes-ltree (LNode r ts) = {} using 2 (3 ) by (auto simp
add: disjoint-family-on-def )

then show ?thesis using f-nodes-t ′ f-nodes-ts ′ by blast
qed
then have inj-on (λv. the ((f-t ++ f-ts) v)) (nodes-ltree t ′ ∪ nodes-ltree (LNode

r ′ ts ′)) using inj-on-t ′ inj-on-ts ′ inj-on-Un by fast
then show ?case using f-t t ′ f-ts ts ′ by simp

qed

lemma relabel-postorder-inj: distinct-ltree-nodes t =⇒ inj-on (the o postorder-relabel
t) (nodes-ltree (postorder-label (tree-ltree t)))
unfolding postorder-relabel-def postorder-label-def using relabel-postorder-aux-inj

by blast

lemma (in rtree) distinct-nodes-stree-of-graph: distinct-stree-nodes (stree-of-graph
(V ,E ,r))

using rtree-axioms
proof (induction (V ,E ,r) arbitrary: V E r rule: stree-of-graph.induct)

case (1 V T ET r)
then interpret t: rtree V T ET r by simp
obtain V ′ E ′ where VE ′: t.remove-vertex r = (V ′, E ′) by (simp add: t.remove-vertex-def )
interpret subg: subgraph V ′ E ′ V T ET using t.subgraph-remove-vertex VE ′ by

metis
interpret g ′: fin-ulgraph V ′ E ′ using fin-ulgraph.intro subg.is-finite-subgraph

t.fin-graph-system-axioms subg.is-subgraph-ulgraph t.ulgraph-axioms by blast

have finite (stree-of-graph ‘ t.subtrees) using t.finite-subtrees by blast
then have fset-Abs-fset-subtrees[simp]: fset (Abs-fset (stree-of-graph ‘ t.subtrees))

= stree-of-graph ‘ t.subtrees by (simp add: Abs-fset-inverse)

have r-notin-subtrees: ∀ s∈t.subtrees. r /∈ nodes-stree (stree-of-graph s)
proof

fix s assume subtree: s ∈ t.subtrees
then obtain S ES rS where s: s = (S ,ES ,rS) using prod.exhaust by metis
then interpret s: rtree S ES rS using t.rtree-subtree subtree by blast

have S ∈ g ′.connected-components using subtree VE ′ unfolding s t.subtrees-def
by auto

then have nodes-stree (stree-of-graph (S ,ES ,rS)) ⊆ V ′ using s.nodes-stree-stree-of-graph
g ′.connected-component-wf by auto

then show r /∈ nodes-stree (stree-of-graph s) using VE ′ unfolding s t.remove-vertex-def
by blast

qed

have nodes-stree (stree-of-graph s1 ) ∩ nodes-stree (stree-of-graph s2 ) = {}
if s1-subtree: s1 ∈ t.subtrees and s2-subtree: s2 ∈ t.subtrees and ne: stree-of-graph
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s1 6= stree-of-graph s2 for s1 s2
proof−

obtain V1 E1 r1 where s1 : s1 = (V1 ,E1 ,r1 ) using prod.exhaust by metis
then interpret s1 : rtree V1 E1 r1 using t.rtree-subtree s1-subtree by blast
have V1-conn-comp: V1 ∈ g ′.connected-components using s1-subtree VE ′ un-

folding t.subtrees-def s1 by auto
then have s1-conn-comp: nodes-stree (stree-of-graph s1 ) ∈ g ′.connected-components

unfolding s1 using s1 .nodes-stree-stree-of-graph by auto
obtain V2 E2 r2 where s2 : s2 = (V2 ,E2 ,r2 ) using prod.exhaust by metis
then interpret s2 : rtree V2 E2 r2 using t.rtree-subtree s2-subtree by blast
have V2-conn-comp: V2 ∈ g ′.connected-components using s2-subtree VE ′ un-

folding t.subtrees-def s2 by auto
have V1 6= V2 using s1 s2 s1-subtree s2-subtree VE ′ ne unfolding t.subtrees-def

by auto
then have V1 ∩ V2 = {} using V1-conn-comp V2-conn-comp g ′.disjoint-connected-components

unfolding disjoint-def by blast
then show ?thesis using s1 s2 s1 .nodes-stree-stree-of-graph s2 .nodes-stree-stree-of-graph

by simp
qed
then have disjoint-family-on nodes-stree (stree-of-graph ‘ t.subtrees)

unfolding disjoint-family-on-def by blast
then show ?case using 1 t.rtree-subtree r-notin-subtrees by auto

qed

lemma disintct-nodes-ltree-stree: distinct-stree-nodes t =⇒ distinct-ltree-nodes (ltree-stree
t)
using distinct-ltree-stree-subtrees by (induction t) (auto simp: disjoint-family-on-def ,

metis disjoint-iff )

lemma (in rtree) tree-graph-tree-of-graph: tree-graph (tree-ltree (ltree-stree (stree-of-graph
(V ,E ,r)))) 'r (V ,E ,r)
proof−

define t where t = (V ,E ,r)
define s where s = stree-of-graph t
define l where l = ltree-stree s
define l ′ where l ′ = postorder-label (tree-ltree l)
define s ′ where s ′ = stree-ltree l ′
define t ′ where t ′ = tree-graph-stree s ′

obtain V ′ E ′ r ′ where t ′: t ′ = (V ′,E ′,r ′) using prod.exhaust by metis
interpret t ′: rtree V ′ E ′ r ′ using t ′ rtree-tree-graph unfolding tree-graph-def

t ′-def s ′-def l ′-def by simp
have distinct-ltree-nodes l using distinct-nodes-stree-of-graph disintct-nodes-ltree-stree

unfolding l-def s-def t-def by blast
then obtain f where inj-on-l ′: inj-on f (nodes-ltree l ′) and relabel-l ′: relabel-ltree

f l ′ = l
unfolding l ′-def using relabel-postorder-relabel relabel-postorder-inj by blast

then have relabel-stree f s ′ = s unfolding l-def s ′-def
using relabel-stree-relabel-ltree by fastforce

then have app-rgraph-iso: app-rgraph-isomorphism f t ′= t unfolding s-def t ′-def
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t-def
using t ′ tree-graph-stree-of-graph by (simp add: app-rgraph-iso-tree-graph-stree)

have inj-on f (nodes-stree s ′) unfolding s ′-def using inj-on-l ′ by simp
then have inj-on-V ′: inj-on f V ′ using t ′ nodes-tree-graph-stree unfolding t ′-def

by fast
have (V ′,E ′,r ′) 'r (V ,E ,r) using app-rgraph-iso t ′.rgraph-isomorph-app-iso

inj-on-V ′ unfolding t ′ t-def by auto
then show ?thesis using t ′ unfolding tree-graph-def t-def s-def l-def l ′-def s ′-def

t ′-def by auto
qed

lemma (in rtree) stree-size-stree-of-graph[simp]: stree-size (stree-of-graph (V ,E ,r))
= card V
using distinct-nodes-stree-of-graph by (simp add: distinct-nodes-stree-size-card-nodes

del: stree-of-graph.simps)

lemma inj-ltree-stree: inj ltree-stree
proof

fix t1 :: ′a stree
and t2 :: ′a stree

assume ltree-stree t1 = ltree-stree t2
then show t1 = t2
proof (induction t1 arbitrary: t2 )

case (SNode r1 ts1 )
obtain r2 ts2 where t2 : t2 = SNode r2 ts2 using stree.exhaust by blast

then show ?case using SNode by (simp, metis SNode.prems stree.inject
stree-ltree-stree)

qed
qed

lemma ltree-size-ltree-stree[simp]: ltree-size (ltree-stree t) = stree-size t
using inj-ltree-stree by (induction t) (auto simp: sum-list-distinct-conv-sum-set[OF

distinct-ltree-stree-subtrees] fsum.F .rep-eq,
smt (verit, best) inj-on-def stree-ltree-stree sum.reindex-cong)

lemma tree-size-tree-ltree[simp]: tree-size (tree-ltree t) = ltree-size t
by (induction t) (auto, metis comp-eq-dest-lhs map-cong)

lemma regular-ltree-stree: regular-ltree (ltree-stree t)
using sorted-wrt-ltree-stree-subtrees by (induction t) auto

lemma regular-tree-ltree: regular-ltree t =⇒ regular (tree-ltree t)
by (induction t) (auto simp: sorted-map)

lemma (in rtree) tree-of-graph-regular-n-tree: tree-ltree (ltree-stree (stree-of-graph
(V ,E ,r))) ∈ regular-n-trees (card V ) (is ?t ∈ ?A)
proof−

have size-t: tree-size ?t = card V by (simp del: stree-of-graph.simps)
have regular ?t using regular-ltree-stree regular-tree-ltree by blast
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then show ?thesis using size-t unfolding regular-n-trees-def by blast
qed

lemma (in rtree) ex-regular-n-tree: ∃ t∈regular-n-trees (card V ). tree-graph t 'r

(V ,E ,r)
using tree-graph-tree-of-graph tree-of-graph-regular-n-tree by blast

3.4 Injectivity with respect to isomorphism
lemma app-rgraph-isomorphism-relabel-stree: app-rgraph-isomorphism f (tree-graph-stree
t) = tree-graph-stree (relabel-stree f t)

unfolding tree-graph-stree-def by simp

Lemmas relating the connected components of the tree graph with the root
removed to the subtrees of an stree.
context

fixes t r ts V ′ E ′

assumes t: t = SNode r ts
assumes distinct-nodes: distinct-stree-nodes t
and remove-vertex: graph-system.remove-vertex (nodes-stree t) (tree-graph-edges

t) r = (V ′,E ′)
begin

interpretation t: rtree nodes-stree t tree-graph-edges t r using rtree-tree-graph-edges[OF
distinct-nodes] unfolding t by simp

interpretation subg: ulsubgraph V ′ E ′ nodes-stree t tree-graph-edges t using re-
move-vertex t.subgraph-remove-vertex t.ulgraph-axioms ulsubgraph-def t by blast

interpretation g ′: ulgraph V ′ E ′ using subg.is-subgraph-ulgraph t.ulgraph-axioms
by blast

lemma neighborhood-root: t.neighborhood r = root-stree ‘ fset ts
unfolding t.neighborhood-def t.vert-adj-def using distinct-nodes tree-graph-edges-wf

root-stree-wf t
by (auto, blast, fastforce, blast, blast)

lemma V ′: V ′ = nodes-stree t − {r}
using remove-vertex distinct-nodes unfolding t.remove-vertex-def by blast

lemma E ′: E ′ =
⋃

(tree-graph-edges ‘ fset ts)
using tree-graph-edges-wf distinct-nodes remove-vertex t unfolding t.remove-vertex-def

t.vincident-def by auto

lemma subtrees-not-connected:
assumes s-in-ts: s ∈ fset ts

and e: {u, v} ∈ E ′

and u-in-s: u ∈ nodes-stree s
shows v ∈ nodes-stree s
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proof−
have {u,v} ∈ tree-graph-edges s using e u-in-s tree-graph-edges-wf s-in-ts dis-

tinct-nodes t unfolding E ′

by (auto simp: disjoint-family-on-def ,
smt (verit, del-insts) insert-absorb insert-disjoint(2 ) insert-subset tree-graph-edges-wf )

then show ?thesis using tree-graph-edges-wf u-in-s by blast
qed

lemma subtree-connected-components:
assumes s-in-ts: s ∈ fset ts
shows nodes-stree s ∈ g ′.connected-components

proof−
interpret s: rtree nodes-stree s tree-graph-edges s root-stree s using rtree-tree-graph-edges

distinct-nodes s-in-ts t by auto
interpret subg ′: ulsubgraph nodes-stree s tree-graph-edges s V ′ E ′ using dis-

tinct-nodes s-in-ts t by unfold-locales (auto simp: V ′ E ′)
have conn-set: g ′.is-connected-set (nodes-stree s) using s.connected subg ′.is-connected-set

by blast
then show ?thesis using subtrees-not-connected s-in-ts g ′.connected-set-connected-component

nodes-stree-non-empty by fast
qed

lemma connected-components-subtrees: g ′.connected-components = nodes-stree ‘
fset ts
proof−

have nodes-ts-ss-conn-comps: nodes-stree ‘ fset ts ⊆ g ′.connected-components
using subtree-connected-components by blast

have Un-nodes-ts:
⋃
(nodes-stree ‘ fset ts) = V ′ unfolding V ′ using dis-

tinct-nodes t by auto
show ?thesis using g ′.subset-conn-comps-if-Union[OF nodes-ts-ss-conn-comps

Un-nodes-ts] by simp
qed

lemma induced-edges-subtree:
assumes s-in-ts: s ∈ fset ts
shows graph-system.induced-edges E ′ (nodes-stree s) = tree-graph-edges s

proof−
have graph-system.induced-edges E ′ (nodes-stree s) = {e ∈

⋃
(tree-graph-edges

‘ fset ts). e ⊆ nodes-stree s} using subg.H .induced-edges-def E ′ by auto
also have . . . = tree-graph-edges s

using s-in-ts distinct-nodes tree-graph-edges-wf t
by (auto simp: disjoint-family-on-def ,

metis card.empty card-tree-graph-edges-distinct inf .bounded-iff nat.simps(3 )
numeral-2-eq-2 subset-empty)

finally show ?thesis .
qed

lemma root-subtree:
assumes s-in-ts: s ∈ fset ts
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shows (THE r ′. r ′ ∈ (nodes-stree s) ∧ t.vert-adj r r ′) = root-stree s
proof
show root-stree s ∈ nodes-stree s ∧ t.vert-adj r (root-stree s) unfolding t.vert-adj-def

using t root-stree-wf s-in-ts by auto
next

fix r ′

assume r ′: r ′ ∈ nodes-stree s ∧ t.vert-adj r r ′

then have edge-in-root-edges: {r , r ′} ∈ (λt. {r , root-stree t}) ‘ fset ts
unfolding t.vert-adj-def using distinct-nodes tree-graph-edges-wf t by fastforce

have ∀ s ′∈fset ts. s ′ 6= s −→ r ′ /∈ nodes-stree s ′

using distinct-nodes s-in-ts r ′ unfolding t by (auto simp: disjoint-family-on-def )
then show r ′= root-stree s using edge-in-root-edges root-stree-wf by (smt (verit)

doubleton-eq-iff image-iff )
qed

lemma subtrees-tree-subtrees: t.subtrees = tree-graph-stree ‘ fset ts
unfolding t.subtrees-def tree-graph-stree-def using remove-vertex
by (simp add: connected-components-subtrees image-comp induced-edges-subtree

root-subtree)

end

lemma stree-of-graph-tree-graph-stree[simp]: distinct-stree-nodes t =⇒ stree-of-graph
(tree-graph-stree t) = t
proof (induction t)

case (SNode r ts)
define t where t: t = SNode r ts
then have root-t[simp]: root-stree t = r by simp
have distinct-t: distinct-stree-nodes t using SNode(2 ) t by blast
interpret t: rtree nodes-stree t tree-graph-edges t r using SNode(2 ) rtree-tree-graph-edges

t by (metis root-stree.simps)
obtain V ′ E ′ where remove-vertex: t.remove-vertex r = (V ′,E ′) by fastforce

have stree-of-graph (tree-graph-stree t) = SNode r ts unfolding tree-graph-stree-def
using SNode t.rtree-axioms t.rtree-subtree
by (simp add: subtrees-tree-subtrees[OF t distinct-t remove-vertex] image-comp

fset-inverse)
then show ?case unfolding t .

qed

lemma distinct-nodes-relabel: distinct-stree-nodes t =⇒ inj-on f (nodes-stree t)
=⇒ distinct-stree-nodes (relabel-stree f t)

by (induction t) (auto simp: image-UN disjoint-family-on-def inj-on-def , metis
IntI empty-iff )

lemma relabel-stree-app-rgraph-isomorphism:
assumes distinct-stree-nodes t

and inj-on f (nodes-stree t)
shows relabel-stree f t = stree-of-graph (app-rgraph-isomorphism f (tree-graph-stree
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t))
using assms by (auto simp: app-rgraph-isomorphism-relabel-stree distinct-nodes-relabel)

lemma (in rgraph-isomorphism) app-rgraph-isomorphism-G: app-rgraph-isomorphism
f (VG,EG,rG) = (VH ,EH ,rH)

using bij-f edge-preserving root-preserving unfolding bij-betw-def by simp

lemma tree-graphs-iso-strees-iso:
assumes tree-graph-stree t1 'r tree-graph-stree t2

and distinct-t1 : distinct-stree-nodes t1
and distinct-t2 : distinct-stree-nodes t2

shows ∃ f . inj-on f (nodes-stree t1 ) ∧ relabel-stree f t1 = t2
proof−
obtain f where rgraph-isomorphism (nodes-stree t1 ) (tree-graph-edges t1 ) (root-stree

t1 ) (nodes-stree t2 ) (tree-graph-edges t2 ) (root-stree t2 ) f
using assms unfolding tree-graph-stree-def by auto

then interpret rgraph-isomorphism nodes-stree t1 tree-graph-edges t1 root-stree
t1 nodes-stree t2 tree-graph-edges t2 root-stree t2 f .

have inj: inj-on f (nodes-stree t1 ) using bij-f bij-betw-imp-inj-on by blast
have relabel-stree f t1 = t2
unfolding relabel-stree-app-rgraph-isomorphism[OF distinct-t1 inj] tree-graph-stree-def

app-rgraph-isomorphism-G
using stree-of-graph-tree-graph-stree[OF distinct-t2 , unfolded tree-graph-stree-def ]

by blast
then show ?thesis using inj by blast

qed

Skip the ltree representation as it introduces complications with the proofs
fun tree-stree :: ′a stree ⇒ tree where

tree-stree (SNode r ts) = Node (sorted-list-of-multiset (image-mset tree-stree
(mset-set (fset ts))))

fun postorder-label-stree-aux :: nat ⇒ tree ⇒ nat × nat stree where
postorder-label-stree-aux n (Node []) = (n, SNode n {||})
| postorder-label-stree-aux n (Node (t#ts)) =
(let (n ′, t ′) = postorder-label-stree-aux n t in

case postorder-label-stree-aux (Suc n ′) (Node ts) of
(n ′′, SNode r ts ′) ⇒ (n ′′, SNode r (finsert t ′ ts ′)))

definition postorder-label-stree :: tree ⇒ nat stree where
postorder-label-stree t = snd (postorder-label-stree-aux 0 t)

lemma fst-postorder-label-stree-aux-eq: fst (postorder-label-stree-aux n t) = fst (postorder-label-aux
n t)

by (induction n t rule: postorder-label-stree-aux.induct) (auto split: prod.split
stree.split ltree.split)

lemma postorder-label-stree-aux-eq: snd (postorder-label-stree-aux n t) = stree-ltree
(snd (postorder-label-aux n t))
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by (induction n t rule: postorder-label-aux.induct) (simp, simp split: prod.split
stree.split ltree.split,

metis fset-of-list-map fst-conv fst-postorder-label-stree-aux-eq sndI stree.inject
stree-ltree.simps)

lemma postorder-label-stree-eq: postorder-label-stree t = stree-ltree (postorder-label
t)
using postorder-label-stree-aux-eq unfolding postorder-label-stree-def postorder-label-def

by blast

lemma postorder-label-stree-aux-mono: fst (postorder-label-stree-aux n t) ≥ n
by (induction n t rule: postorder-label-stree-aux.induct) (auto split: prod.split

stree.split, fastforce)

lemma nodes-postorder-label-stree-aux-ge: postorder-label-stree-aux n t = (n ′, t ′)
=⇒ v ∈ nodes-stree t ′ =⇒ v ≥ n

by (induction n t arbitrary: n ′ t ′ rule: postorder-label-stree-aux.induct,
auto split: prod.splits stree.splits,
(metis fst-conv le-SucI order .trans postorder-label-stree-aux-mono)+)

lemma nodes-postorder-label-stree-aux-le: postorder-label-stree-aux n t = (n ′, t ′)
=⇒ v ∈ nodes-stree t ′ =⇒ v ≤ n ′

by (induction n t arbitrary: n ′ t ′ rule: postorder-label-stree-aux.induct,
auto split: prod.splits stree.splits,
metis Suc-leD fst-conv order-trans postorder-label-stree-aux-mono,
blast)

lemma distinct-nodes-postorder-label-stree-aux: distinct-stree-nodes (snd (postorder-label-stree-aux
n t))
proof (induction n t rule: postorder-label-stree-aux.induct)

case (1 n)
then show ?case by (simp add: disjoint-family-on-def )

next
case (2 n t ts)
obtain n ′ t ′ where t ′: postorder-label-stree-aux n t = (n ′, t ′) by fastforce
obtain n ′′ r ts ′ where ts ′: postorder-label-stree-aux (Suc n ′) (Node ts) = (n ′′,

SNode r ts ′)
by (metis eq-snd-iff stree.exhaust)

then have r ≥ Suc n ′ using nodes-postorder-label-stree-aux-ge by auto
then have r-notin-t ′: r /∈ nodes-stree t ′ using nodes-postorder-label-stree-aux-le[OF

t ′] by fastforce
have disjoint-family-on nodes-stree (insert t ′ (fset ts ′))
using 2 t ′ ts ′ nodes-postorder-label-stree-aux-le[OF t ′] nodes-postorder-label-stree-aux-ge[OF

ts ′]
by (auto simp add: disjoint-family-on-def , fastforce+)

then show ?case using 2 t ′ ts ′ r-notin-t ′ by simp
qed

lemma distinct-nodes-postorder-label-stree: distinct-stree-nodes (postorder-label-stree
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t)
unfolding postorder-label-stree-def using distinct-nodes-postorder-label-stree-aux

by simp

lemma tree-stree-postorder-label-stree-aux: regular t =⇒ tree-stree (snd (postorder-label-stree-aux
n t)) = t
proof (induction t rule: postorder-label-stree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n t ts)
obtain n ′ t ′ where nt ′: postorder-label-stree-aux n t = (n ′, t ′) by fastforce
obtain n ′′ r ts ′ where nt ′′: postorder-label-stree-aux (Suc n ′) (Node ts) = (n ′′,

SNode r ts ′)
using stree.exhaust prod.exhaust by metis

have t ′ /∈ fset ts ′ using nodes-postorder-label-stree-aux-le[OF nt ′] nodes-postorder-label-stree-aux-ge[OF
nt ′′]

by (auto, meson not-less-eq-eq root-stree-wf )
then show ?case using 2 nt ′ nt ′′ by (auto simp: insort-is-Cons)

qed

lemma tree-ltree-postorder-label-stree[simp]: regular t =⇒ tree-stree (postorder-label-stree
t) = t

using tree-stree-postorder-label-stree-aux unfolding postorder-label-stree-def by
blast

lemma inj-relabel-subtrees:
assumes distinct-nodes: distinct-stree-nodes (SNode r ts)

and inj-on-nodes: inj-on f (nodes-stree (SNode r ts))
shows inj-on (relabel-stree f ) (fset ts)

proof
fix t1 t2
assume t1-subtree: t1 ∈ fset ts

and t2-subtree: t2 ∈ fset ts
and relabel-eq: relabel-stree f t1 = relabel-stree f t2

then have nodes-stree (relabel-stree f t1 ) = nodes-stree (relabel-stree f t2 ) by
simp

then have f ‘ nodes-stree t1 = f ‘ nodes-stree t2 by simp
then have nodes-stree t1 = nodes-stree t2 using inj-on-nodes t1-subtree t2-subtree

inj-on-image[of f nodes-stree ‘ fset ts]
by (simp, meson image-eqI inj-onD)

then show t1 = t2 using distinct-nodes nodes-stree-non-empty t1-subtree t2-subtree
by (auto simp add: disjoint-family-on-def , force)

qed

lemma inj-on-subtree: inj-on f (nodes-stree (SNode r ts)) =⇒ t ∈ fset ts =⇒ inj-on
f (nodes-stree t)

unfolding inj-on-def by simp

70



lemma tree-stree-relabel-stree: distinct-stree-nodes t =⇒ inj-on f (nodes-stree t)
=⇒ tree-stree (relabel-stree f t) = tree-stree t
proof (induction t)

case (SNode r ts)
then have IH : ∀ t∈# mset-set (fset ts). tree-stree (relabel-stree f t) = tree-stree

t
using inj-on-subtree[OF SNode(3 )] elem-mset-set finite-fset by auto

show ?case using inj-relabel-subtrees[OF SNode(2 ) SNode(3 )]
by (auto simp add: mset-set-image-inj, metis IH image-mset-cong)

qed

lemma tree-ltree-relabel-ltree-postorder-label-stree: regular t =⇒ inj-on f (nodes-stree
(postorder-label-stree t)) =⇒ tree-stree (relabel-stree f (postorder-label-stree t)) = t

using tree-stree-relabel-stree distinct-nodes-postorder-label-stree by fastforce

lemma postorder-label-stree-inj: regular t1 =⇒ regular t2 =⇒ inj-on f (nodes-stree
(postorder-label-stree t1 )) =⇒ relabel-stree f (postorder-label-stree t1 ) = postorder-label-stree
t2 =⇒ t1 = t2

using tree-ltree-relabel-ltree-postorder-label-stree by fastforce

lemma tree-graph-inj-iso: regular t1 =⇒ regular t2 =⇒ tree-graph t1 'r tree-graph
t2 =⇒ t1 = t2
using postorder-label-stree-inj tree-graphs-iso-strees-iso distinct-nodes-postorder-label

distinct-nodes-stree-ltree postorder-label-stree-eq unfolding tree-graph-def by
metis

lemma tree-graph-inj:
assumes regular-t1 : regular t1

and regular-t2 : regular t2
and tree-graph-eq: tree-graph t1 = tree-graph t2

shows t1 = t2
proof−

obtain V E r where g: tree-graph t1 = (V ,E ,r) using prod.exhaust by metis
then interpret rtree V E r using rtree-tree-graph by auto
have tree-graph t1 'r tree-graph t2 using tree-graph-eq g rgraph-isomorph-refl

by simp
then show ?thesis using tree-graph-inj-iso regular-t1 regular-t2 by simp

qed

end

4 Enumeration of Rooted Trees
theory Rooted-Tree-Enumeration

imports Rooted-Tree
begin

Algorithm inspired by works of Beyer and Hedetniemi [1], performing the
same operations but directly on a recursive tree data structure instead of
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level sequences.
definition n-rtree-graphs :: nat ⇒ nat rpregraph set where

n-rtree-graphs n = {(V ,E ,r). rtree V E r ∧ card V = n}

Recursive definition on the tree structure without using level sequences
fun trim-tree :: nat ⇒ tree ⇒ nat × tree where

trim-tree 0 t = (0 , t)
| trim-tree (Suc 0 ) t = (0 , Node [])
| trim-tree (Suc n) (Node []) = (n, Node [])
| trim-tree n (Node (t#ts)) =
(case trim-tree n (Node ts) of
(0 , t ′) ⇒ (0 , t ′) |
(n1 , Node ts ′) ⇒

let (n2 , t ′) = trim-tree n1 t
in (n2 , Node (t ′#ts ′)))

lemma fst-trim-tree-lt[termination-simp]: n 6= 0 =⇒ fst (trim-tree n t) < n
by (induction n t rule: trim-tree.induct, auto split: prod.split nat.split tree.split,

fastforce)

fun fill-tree :: nat ⇒ tree ⇒ tree list where
fill-tree 0 - = []
| fill-tree n t =

(let (n ′, t ′) = trim-tree n t
in fill-tree n ′ t ′ @ [t ′])

fun next-tree-aux :: nat ⇒ tree ⇒ tree option where
next-tree-aux n (Node []) = None
| next-tree-aux n (Node (Node [] # ts)) = next-tree-aux (Suc n) (Node ts)
| next-tree-aux n (Node (Node (Node [] # rs) # ts)) = Some (Node (fill-tree (Suc
n) (Node rs) @ (Node rs) # ts))
| next-tree-aux n (Node (t # ts)) = Some (Node (the (next-tree-aux n t) # ts))

fun next-tree :: tree ⇒ tree option where
next-tree t = next-tree-aux 0 t

lemma next-tree-aux-None-iff : next-tree-aux n t = None ←→ height t < 2
proof (induction n t rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n ts)
then show ?case by (cases ts) auto

next
case (3 n rs ts)
then show ?case by (auto simp: Max-gr-iff )

next
case (4 n vc vd vb ts)
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then show ?case
by (metis One-nat-def Suc-n-not-le-n dual-order .trans height-Node-cons le-add1

less-2-cases
next-tree-aux.simps(4 ) option.simps(3 ) plus-1-eq-Suc)

qed

lemma next-tree-Some-iff : (∃ t ′. next-tree t = Some t ′) ←→ height t ≥ 2
using next-tree-aux-None-iff by (metis linorder-not-less next-tree.simps not-Some-eq)

4.1 Enumeration is monotonically decreasing
lemma trim-id: trim-tree n t = (Suc n ′, t ′) =⇒ t = t ′

by (induction n t arbitrary: n ′ t ′ rule: trim-tree.induct) (auto split: prod.splits
nat.splits tree.splits)

lemma trim-tree-le: (n ′, t ′) = trim-tree n t =⇒ t ′ ≤ t
using trim-id by (induction n t arbitrary: n ′ t ′ rule: trim-tree.induct)
(auto split: prod.splits tree.splits nat.splits simp: order-less-imp-le tree-less-cons ′,

fastforce)

lemma fill-tree-le: r ∈ set (fill-tree n t) =⇒ r ≤ t
using trim-tree-le by (induction n t rule: fill-tree.induct) (auto, fastforce)

lemma next-tree-aux-lt: height t ≥ 2 =⇒ the (next-tree-aux n t) < t
proof (induction n t rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n ts)
then show ?case using tree-less-cons ′ by (cases ts) auto

next
case (3 n rs ts)
then show ?case using tree-less-comm-suffix2 tree-less-cons by simp

next
case (4 n vc vd vb ts)
have height (Node (Node (vc # vd) # vb)) ≥ 2 unfolding numeral-2-eq-2
by (metis dual-order .antisym height-Node-cons less-eq-nat.simps(1 ) not-less-eq-eq)

then show ?case using 4 tree-less-cons2 by simp
qed

lemma next-tree-lt: height t ≥ 2 =⇒ the (next-tree t) < t
using next-tree-aux-lt by simp

lemma next-tree-lt ′: next-tree t = Some t ′ =⇒ t ′ < t
using next-tree-lt next-tree-Some-iff by fastforce

4.2 Size preservation
lemma size-trim-tree: n 6= 0 =⇒ trim-tree n t = (n ′, t ′) =⇒ n ′ + tree-size t ′ = n
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by (induction n t arbitrary: n ′ t ′ rule: trim-tree.induct) (auto split: prod.splits
nat.splits tree.splits)

lemma size-fill-tree: sum-list (map tree-size (fill-tree n t)) = n
using size-trim-tree by (induction n t rule: fill-tree.induct) (auto split: prod.split)

lemma size-next-tree-aux: height t ≥ 2 =⇒ tree-size (the (next-tree-aux n t)) =
tree-size t + n
proof (induction n t rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n ts)
then show ?case by (cases ts) auto

next
case (3 n rs ts)
then show ?case using size-fill-tree by (auto simp del: fill-tree.simps)

next
case (4 n vc vd vb ts)
have height-t: height (Node (Node (vc # vd) # vb)) ≥ 2 unfolding numeral-2-eq-2
by (metis dual-order .antisym height-Node-cons less-eq-nat.simps(1 ) not-less-eq-eq)

then show ?case using 4 by auto
qed

lemma size-next-tree: height t ≥ 2 =⇒ tree-size (the (next-tree t)) = tree-size t
using size-next-tree-aux by simp

lemma size-next-tree ′: next-tree t = Some t ′ =⇒ tree-size t ′ = tree-size t
using size-next-tree next-tree-Some-iff by fastforce

4.3 Setup for termination proof
definition lt-n-trees n ≡ {t. tree-size t ≤ n}

lemma n-trees-eq: n-trees n = Node ‘ {ts. tree-size (Node ts) = n}
proof−

have n-trees n = {Node ts | ts. tree-size (Node ts) = n} unfolding n-trees-def
by (metis tree-size.cases)

then show ?thesis by blast
qed

lemma lt-n-trees-eq: lt-n-trees (Suc n) = Node ‘ {ts. tree-size (Node ts) ≤ Suc n}
proof−

have lt-n-trees (Suc n) = {Node ts | ts. tree-size (Node ts) ≤ Suc n} unfolding
lt-n-trees-def by (metis tree-size.cases)

then show ?thesis by blast
qed

lemma finite-lt-n-trees: finite (lt-n-trees n)
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proof (induction n)
case 0
then show ?case unfolding lt-n-trees-def using not-finite-existsD not-less-eq-eq

tree-size-ge-1 by auto
next

case (Suc n)
have ∀ ts∈{ts. tree-size (Node ts) ≤ Suc n}. set ts ⊆ lt-n-trees n unfolding

lt-n-trees-def using tree-size-children by fastforce

have {ts. tree-size (Node ts) ≤ Suc n} = {ts. tree-size (Node ts) ≤ Suc n ∧ set
ts ⊆ lt-n-trees n ∧ length ts ≤ n} unfolding lt-n-trees-def using tree-size-children
length-children by fastforce

then have finite {ts. tree-size (Node ts) ≤ Suc n} using finite-lists-length-le[OF
Suc.IH ] by auto

then show ?case unfolding lt-n-trees-eq by blast
qed

lemma n-trees-subset-lt-n-trees: n-trees n ⊆ lt-n-trees n
unfolding n-trees-def lt-n-trees-def by blast

lemma finite-n-trees: finite (n-trees n)
using n-trees-subset-lt-n-trees finite-lt-n-trees rev-finite-subset by metis

4.4 Algorithms for enumeration
fun greatest-tree :: nat ⇒ tree where

greatest-tree (Suc 0 ) = Node []
| greatest-tree (Suc n) = Node [greatest-tree n]

function n-tree-enum-aux :: tree ⇒ tree list where
n-tree-enum-aux t =
(case next-tree t of None ⇒ [t] | Some t ′⇒ t # n-tree-enum-aux t ′)

by pat-completeness auto

fun n-tree-enum :: nat ⇒ tree list where
n-tree-enum 0 = []
| n-tree-enum n = n-tree-enum-aux (greatest-tree n)

termination n-tree-enum-aux
proof (relation measure (λt. card {r . r < t ∧ tree-size r = tree-size t}), auto)

fix t t ′ assume t-t ′: next-tree-aux 0 t = Some t ′

then have height-t: height t ≥ 2 using next-tree-Some-iff by auto
then have t ′ < t using t-t ′ next-tree-lt by fastforce
have size-t ′-t: tree-size t ′ = tree-size t using size-next-tree height-t t-t ′ by fast-

force
let ?meas-t ′ = {r . r < t ′ ∧ tree-size r = tree-size t ′}
let ?meas-t = {r . r < t ∧ tree-size r = tree-size t}
have fin: finite ?meas-t using finite-n-trees unfolding n-trees-def by auto
have ?meas-t ′ ⊆ ?meas-t using ‹t ′ < t› size-t ′-t by auto
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then show card {r . r < t ′ ∧ tree-size r = tree-size t ′} < card {r . r < t ∧
tree-size r = tree-size t}

using fin ‹t ′ < t› psubset-card-mono size-t ′-t by auto
qed

definition n-rtree-graph-enum :: nat ⇒ nat rpregraph list where
n-rtree-graph-enum n = map tree-graph (n-tree-enum n)

4.5 Regularity
lemma regular-trim-tree: regular t =⇒ regular (snd (trim-tree n t))

by (induction n t rule: trim-tree.induct, auto split: prod.split nat.split tree.split,
metis dual-order .trans tree.inject trim-id trim-tree-le)

lemma regular-trim-tree ′: regular t =⇒ (n ′, t ′) = trim-tree n t =⇒ regular t ′

using regular-trim-tree by (metis snd-eqD)

lemma sorted-fill-tree: sorted (fill-tree n t)
using fill-tree-le by (induction n t rule: fill-tree.induct) (auto simp: sorted-append

split: prod.split)

lemma regular-fill-tree: regular t =⇒ r ∈ set (fill-tree n t) =⇒ regular r
using regular-trim-tree ′ by (induction n t rule: fill-tree.induct) auto

lemma regular-next-tree-aux: regular t =⇒ height t ≥ 2 =⇒ regular (the (next-tree-aux
n t))
proof (induction n t rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto

next
case (2 n ts)
then show ?case by (cases ts) auto

next
case (3 n rs ts)
then have regular-rs: regular (Node rs) by simp
have ∀ t ∈ set ts. Node (rs) < t using 3 (1 ) tree-less-cons[of rs Node []] by auto
then show ?case using 3 sorted-fill-tree regular-fill-tree[OF regular-rs] fill-tree-le

by (auto simp del: fill-tree.simps simp: sorted-append, meson dual-order .trans
tree-le-cons)
next

case (4 n vc vd vb ts)
have height-t: height (Node (Node (vc # vd) # vb)) ≥ 2 unfolding numeral-2-eq-2
by (metis dual-order .antisym height-Node-cons less-eq-nat.simps(1 ) not-less-eq-eq)
then show ?case using 4 by (auto, meson height-t dual-order .strict-trans1

next-tree-aux-lt nless-le)
qed

lemma regular-next-tree: regular t =⇒ height t ≥ 2 =⇒ regular (the (next-tree t))
using regular-next-tree-aux by simp
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lemma regular-next-tree ′: regular t =⇒ next-tree t = Some t ′ =⇒ regular t ′

using regular-next-tree next-tree-Some-iff by fastforce

lemma regular-n-tree-enum-aux: regular t =⇒ r ∈ set (n-tree-enum-aux t) =⇒
regular r
proof (induction t rule: n-tree-enum-aux.induct)

case (1 t)
then show ?case
proof (cases next-tree-aux 0 t)

case None
then show ?thesis using 1 by auto

next
case (Some a)
then show ?thesis using 1 regular-next-tree ′ by auto

qed
qed

lemma regular-n-tree-greatest-tree: n 6= 0 =⇒ greatest-tree n ∈ regular-n-trees n
proof (induction n)

case 0
then show ?case by auto

next
case (Suc n)
then show ?case unfolding regular-n-trees-def n-trees-def by (cases n) auto

qed

lemma regular-n-tree-enum: t ∈ set (n-tree-enum n) =⇒ regular t
using regular-n-tree-enum-aux regular-n-tree-greatest-tree unfolding regular-n-trees-def

by (cases n) auto

lemma size-n-tree-enum-aux: n 6= 0 =⇒ r ∈ set (n-tree-enum-aux t) =⇒ tree-size
r = tree-size t
proof (induction t rule: n-tree-enum-aux.induct)

case (1 t)
then show ?case
proof (cases next-tree-aux 0 t)

case None
then show ?thesis using 1 by auto

next
case (Some a)
then show ?thesis using 1 size-next-tree ′ by auto

qed
qed

lemma size-greatest-tree[simp]: n 6= 0 =⇒ tree-size (greatest-tree n) = n
by (induction n rule: greatest-tree.induct) auto
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lemma size-n-tree-enum: t ∈ set (n-tree-enum n) =⇒ tree-size t = n
using size-n-tree-enum-aux size-greatest-tree by (cases n, auto, fastforce)

4.6 Totality
lemma set (n-tree-enum n) ⊆ regular-n-trees n
using regular-n-tree-enum size-n-tree-enum unfolding regular-n-trees-def n-trees-def

by blast

lemma greatest-tree-lt-Suc: n 6= 0 =⇒ greatest-tree n < greatest-tree (Suc n)
by (induction n rule: greatest-tree.induct) (auto simp: tree-less-nested)

lemma greatest-tree-ge: tree-size t ≤ n =⇒ t ≤ greatest-tree n
proof (induction n arbitrary: t rule: greatest-tree.induct)

case 1
then show ?case by (cases t rule: tree-cons-exhaust) (auto simp: tree-size-ne-0 )

next
case (2 v)
then show ?case
proof (cases t rule: tree-rev-exhaust)

case Nil
then show ?thesis by simp

next
case (Snoc ts r)
then have r-le-greatest-Suc-v: r ≤ greatest-tree (Suc v) using 2 by auto
then show ?thesis
proof (cases r = greatest-tree (Suc v))

case True
then have ts = [] using 2 (2 ) Snoc by (simp add: tree-size-ne-0 )
then show ?thesis using Snoc r-le-greatest-Suc-v by auto

next
case False
then show ?thesis using r-le-greatest-Suc-v Snoc by auto

qed
qed

next
case 3
then show ?case by (simp add: tree-size-ne-0 )

qed

fun least-tree :: nat ⇒ tree where
least-tree (Suc n) = Node (replicate n (Node []))

lemma regular-n-tree-least-tree: n 6= 0 =⇒ least-tree n ∈ regular-n-trees n
proof (induction n)

case 0
then show ?case by auto

next
case (Suc n)
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then show ?case unfolding regular-n-trees-def n-trees-def by (cases n) auto
qed

lemma height-lt-2-least-tree: t ∈ regular-n-trees n =⇒ height t < 2 =⇒ t =
least-tree n
proof (induction n arbitrary: t)

case 0
have regular-n-trees 0 = {} unfolding regular-n-trees-def n-trees-def using

tree-size.elims by auto
then show ?case using 0 by blast

next
case (Suc n)
then show ?case
proof (cases n = 0 )

case True
then show ?thesis using Suc tree-size.elims unfolding regular-n-trees-def

n-trees-def
by (auto, metis leD length-children length-greater-0-conv)

next
case False

then have t-non-empty: t 6= Node [] using Suc(2 ) unfolding regular-n-trees-def
n-trees-def by auto

then have height-t: height t = 1 using Suc(3 )
by (metis One-nat-def gr0-conv-Suc height.elims less-2-cases less-numeral-extra(3 ))
obtain s ts where s-ts: t = Node (s # ts) using t-non-empty by (meson

height.elims)
then have height s = 0 by (metis Suc-le-eq height-Node-cons less-one height-t)
then have s: s = Node [] using height-0-iff by simp
then have regular-ts: Node ts ∈ regular-n-trees n using Suc(2 ) unfolding s-ts

regular-n-trees-def n-trees-def by auto
have height (Node ts) < 2 using height-t height-children height-children-le-height

unfolding s-ts One-nat-def by fastforce
then have Node ts = least-tree n using Suc(1 ) regular-ts by blast
then show ?thesis using False gr0-conv-Suc s s-ts by auto

qed
qed

lemma least-tree-le: n 6= 0 =⇒ tree-size t ≥ n =⇒ least-tree n ≤ t
proof (induction n arbitrary: t rule: less-induct)

case (less n)
then obtain n ′ where n: n = Suc n ′ using least-tree.cases by blast
then obtain ts where t: t = Node ts by (cases t) auto
then show ?case
proof (cases n ′)

case 0
then show ?thesis using n by simp

next
case (Suc n ′′)
then show ?thesis
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proof (cases ts rule: rev-exhaust)
case Nil
then show ?thesis using less t n by auto

next
case (snoc rs r)
then show ?thesis
proof (cases r = Node [])

case True
then have tree-size (Node rs) ≥ n ′′ using less(3 ) unfolding n t Suc snoc

by auto
then show ?thesis using less True unfolding n t Suc snoc

by (auto simp: simp: replicate-append-same[symmetric], force)
next

case False
then show ?thesis using less False unfolding n t Suc snoc

by (auto simp: replicate-append-same[symmetric] tree-less-empty-iff )
qed

qed
qed

qed

lemma trim-id ′: n ≥ tree-size t =⇒ trim-tree n t = (n ′, t ′) =⇒ t ′ = t
proof (induction n t arbitrary: n ′ t ′ rule: trim-tree.induct)

case (1 t)
then show ?case by auto

next
case (2 t)
then have t = Node [] using le-Suc-eq tree-size-1-iff tree-size-ne-0 by simp
then show ?case using 2 by auto

next
case (3 v)
then show ?case by auto

next
case (4 va t ts)
then show ?case using size-trim-tree[OF - 4 (4 )] size-trim-tree

by (auto split: prod.splits nat.splits simp: tree-size-ne-0 , fastforce)
qed

lemma tree-ge-lt-suffix: Node ts ≤ r =⇒ r < Node (t#ts) =⇒ ∃ ss. r = Node (ss
@ ts)
proof (induction ts arbitrary: r rule: rev-induct)

case Nil
then show ?case by (cases r rule: tree-rev-exhaust) auto

next
case (snoc x xs)
then show ?case using tree-le-empty2-iff

by (cases r rule: tree-rev-exhaust)
(simp-all, metis Cons-eq-appendI tree.inject tree-less-antisym tree-less-snoc2-iff )

qed
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lemma trim-tree-0-iff : fst (trim-tree n t) = 0 ←→ n ≤ tree-size t
using size-trim-tree trim-id tree-size-ge-1
by (induction n t rule: trim-tree.induct, auto split: prod.split nat.split tree.split,

fastforce+)

lemma trim-tree-greatest-le: tree-size r ≤ n =⇒ r ≤ t =⇒ r ≤ snd (trim-tree n
t)
proof (induction n t arbitrary: r rule: trim-tree.induct)

case (1 t)
then show ?case by auto

next
case (2 t)
then show ?case using tree-size-ne-0 tree-size-1-iff by (simp add: le-Suc-eq)

next
case (3 v)
then show ?case by auto

next
case (4 va t ts)
obtain n1 t1 where nt1 : trim-tree (Suc (Suc va)) (Node ts) = (n1 , t1 ) by

fastforce
then show ?case
proof (cases n1 )

case 0
then show ?thesis
proof (cases r ≤ Node ts)

case True
then show ?thesis using 4 0 nt1 by simp

next
case False

then obtain ss s where r : r = Node (ss @ s # ts) using 4 (4 ) tree-ge-lt-suffix
by (metis append.assoc append-Cons append-Nil nle-le rev-exhaust tree-le-def )

then have tree-size (Node ts) ≥ Suc (Suc va) using nt1 trim-tree-0-iff
unfolding 0 by fastforce

then have tree-size r > Suc (Suc va) using tree-size-ne-0 unfolding r
by (auto simp: add-strict-increasing trans-less-add2 )

then show ?thesis using 4 (3 ) by auto
qed

next
case (Suc nat)
then have t1 : t1 = Node ts using trim-id nt1 by blast
then obtain n2 t2 where nt2 : trim-tree n1 t = (n2 , t2 ) by fastforce
then show ?thesis
proof (cases r ≤ Node ts)

case True
then show ?thesis using 4 Suc nt1 t1
by (auto split: prod.split simp: tree-le-cons, meson dual-order .trans tree-le-cons)

next
case False
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then obtain ss s where r : r = Node (ss @ s # ts) using 4 (4 ) tree-ge-lt-suffix
by (metis append.assoc append-Cons append-Nil nle-le rev-exhaust tree-le-def )
have size-s: tree-size s ≤ Suc nat using 4 (3 ) Suc size-trim-tree[OF - nt1 ] t1

unfolding r by auto
have s ≤ t using 4 (4 ) unfolding r by (meson order .trans tree-le-append

tree-le-cons2 )
have s ≤ t2 using 4 .IH (2 )[OF nt1 [symmetric] Suc t1 size-s ‹s≤t›] nt2

unfolding Suc by auto
then show ?thesis
proof (cases s = t2 )

case True
then have ss = []
proof (cases t2 = t)

case True
then show ?thesis using 4 (4 ) nle-le tree-le-append unfolding r ‹s=t2 ›

True by auto
next

case False
then have n2 = 0 using nt2 trim-id by (cases n2 ) auto
then show ?thesis using size-trim-tree[OF - nt1 ] size-trim-tree[OF - nt2 ]

Suc 4 (3 ) tree-size-ne-0 unfolding r t1 ‹s=t2 › by auto
qed
then show ?thesis using nt1 Suc t1 nt2 unfolding r True by auto

next
case False
then show ?thesis using ‹s≤t2 › nt1 nt2 t1 Suc unfolding r

by (auto simp: order-less-imp-le tree-less-comm-suffix2 )
qed

qed
qed

qed

lemma fill-tree-next-smallest: tree-size (Node rs) ≤ Suc n =⇒ ∀ r∈set rs. r ≤ t
=⇒ Node rs ≤ Node (fill-tree n t)
proof (induction n t arbitrary: rs rule: fill-tree.induct)

case (1 uu)
have rs = [] using tree-size-1-iff 1 (1 ) tree.inject by fastforce
then show ?case by auto

next
case (2 v t)
obtain n ′ t ′ where nt ′: trim-tree (Suc v) t = (n ′, t ′) by fastforce
then show ?case
proof (cases rs rule: rev-exhaust)

case Nil
then show ?thesis by auto

next
case (snoc rs ′ r ′)
then show ?thesis
proof (cases n ′)
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case 0
then show ?thesis
proof (cases r ′ = t ′)

case True
then have rs ′ = [] using 0 2 (2 ) size-trim-tree[OF - nt ′] unfolding snoc

by (auto simp: tree-size-ne-0 )
then show ?thesis using nt ′ 0 unfolding snoc True by simp

next
case False
then show ?thesis using 2 trim-tree-greatest-le nt ′ 0 tree-less-comm-suffix2

unfolding snoc
by (auto, metis nless-le not-less-eq-eq snd-eqD trans-le-add2 )

qed
next

case (Suc nat)
then show ?thesis using 2 nt ′ trim-id[OF nt ′[unfolded Suc]] size-trim-tree[OF

- nt ′] unfolding snoc by auto
qed

qed
qed

fun fill-twos :: nat ⇒ tree ⇒ tree where
fill-twos n (Node ts) = Node (replicate n (Node []) @ ts)

lemma size-fill-twos: tree-size (fill-twos n t) = n + tree-size t
by (cases t) (auto simp: sum-list-replicate)

lemma regular-fill-twos: regular t =⇒ regular (fill-twos n t)
by (cases t) (auto simp: sorted-append)

lemma fill-twos-lt: n 6= 0 =⇒ t < fill-twos n t
using tree-less-append by (cases t) auto

lemma fill-twos-less: r < Node (t#ts) =⇒ t 6= Node [] =⇒ fill-twos n r < Node
(t#ts)
proof (induction n)

case 0
then show ?case by (cases r) auto

next
case (Suc n)
then show ?case by (cases r rule: tree.exhaust, simp,

meson leD linorder-less-linear list.inject tree.inject tree-empty-cons-lt-le)
qed

lemma next-tree-aux-successor : tree-size r = tree-size t + n =⇒ regular r =⇒ r
< t =⇒ height t ≥ 2 =⇒ r ≤ the (next-tree-aux n t)
proof (induction n t arbitrary: r rule: next-tree-aux.induct)

case (1 n)
then show ?case by auto
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next
case (2 n ts)
have size-r : tree-size r ≤ tree-size (Node ts) + Suc n using 2 (2 ) by auto
have height-ts: height (Node ts) ≥ 2 using 2 (5 ) by (cases ts) auto
then show ?case using 2 size-r tree-empty-cons-lt-le by fastforce

next
case (3 n rs ts)
then show ?case
proof (cases r < Node ts)

case True
then show ?thesis by (auto, meson dual-order .trans order .strict-implies-order

tree-le-append tree-le-cons)
next

case False
then obtain ss where r : r = Node (ss @ ts) using 3 (3 ) tree-ge-lt-suffix by

fastforce
show ?thesis
proof (cases ss rule: rev-exhaust)

case Nil
then show ?thesis unfolding r by (simp, meson order-trans tree-le-append

tree-le-cons)
next

case (snoc ss ′ s ′)
have s ′-le-rs: s ′ ≤ Node rs using 3 (3 ) tree-empty-cons-lt-le unfolding r snoc

by (metis (mono-tags, lifting) append.assoc append-Cons append-self-conv2
dual-order .order-iff-strict linorder-not-less order-less-le-trans tree-le-append

tree-less-cons2 )
show ?thesis
proof (cases s ′ = Node rs)

case True
then show ?thesis using 3 (1 ,2 ) fill-tree-next-smallest unfolding r snoc

by (auto simp del: fill-tree.simps simp: sorted-append)
next

case False
then show ?thesis using s ′-le-rs unfolding r snoc by (auto, meson

tree-le-def tree-less-iff )
qed

qed
qed

next
case (4 n vc vd vb ts)
define t where t = Node (Node (vc # vd) # vb)
have height-t: height t ≥ 2 unfolding numeral-2-eq-2 t-def
by (metis dual-order .antisym height-Node-cons less-eq-nat.simps(1 ) not-less-eq-eq)

then show ?case
proof (cases r < Node ts)

case True
then show ?thesis by (auto, meson dual-order .trans order .strict-implies-order

tree-le-append tree-le-cons)
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next
case False
then obtain ss where r : r = Node (ss @ ts) using 4 (4 ) tree-ge-lt-suffix by

fastforce
then show ?thesis
proof (cases ss rule: rev-exhaust)

case Nil
then show ?thesis using tree-le-cons unfolding r by auto

next
case (snoc ss ′ s ′)
have s ′ < t using 4 (4 )[folded t-def ] unfolding r snoc

by (auto, metis antisym-conv3 append.left-neutral dual-order .strict-trans
less-tree-comm-suffix not-tree-less-empty tree-less-cons2 )

show ?thesis
proof (cases tree-size s ′ = tree-size t + n)

case True
then have ss ′ = [] using 4 (2 )[folded t-def ] tree-size-ne-0 unfolding r snoc

by auto
then show ?thesis using 4 .IH True 4 (3 ) ‹s ′<t› height-t tree-le-cons2

unfolding r snoc t-def by auto
next

case False
obtain us where s ′: s ′ = Node us using tree.exhaust by blast
— s” is greater than s’ but has the same size as t so the IH can be used on it.
define s ′′ where s ′′ = fill-twos (tree-size t + n − tree-size s ′) s ′

have size-s ′: tree-size s ′≤ tree-size t + n using 4 (2 )[folded t-def ] unfolding
r snoc by simp

then have size-s ′′: tree-size s ′′ = tree-size t + n unfolding s ′′-def using
size-fill-twos by auto

have regular-s ′′: regular s ′′ using regular-fill-twos 4 (3 ) unfolding s ′′-def r
snoc by auto

have s ′′ < t using fill-twos-less ‹s ′<t› unfolding t-def s ′′-def by auto
have s ′ < s ′′ using fill-twos-lt False size-fill-twos size-s ′′ unfolding s ′′-def

by auto
then show ?thesis using 4 .IH [folded t-def , OF size-s ′′ regular-s ′′ ‹s ′′<t›

height-t]
unfolding r snoc t-def by (simp add: order-less-imp-le tree-less-comm-suffix2 )

qed
qed

qed
qed

lemma next-tree-successor : tree-size r = tree-size t =⇒ regular r =⇒ r < t =⇒
next-tree t = Some t ′ =⇒ r ≤ t ′

using next-tree-aux-successor next-tree-Some-iff by force

lemma set-n-tree-enum-aux: t ∈ regular-n-trees n =⇒ set (n-tree-enum-aux t) =
{r∈regular-n-trees n. r ≤ t}
proof (induction t rule: n-tree-enum-aux.induct)
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case (1 t)
then show ?case
proof (cases next-tree t)

case None
have n 6= 0 using 1 (2 ) tree-size-ne-0 unfolding regular-n-trees-def n-trees-def

by auto
have t = least-tree n using height-lt-2-least-tree next-tree-aux-None-iff 1 None

by simp
then show ?thesis using next-tree-Some-iff 1 None least-tree-le ‹n 6=0 ›

unfolding regular-n-trees-def n-trees-def by (auto simp: antisym)
next

case (Some t ′)
then have set (n-tree-enum-aux t) = insert t {r ∈ regular-n-trees n. r ≤ t ′}
using 1 regular-next-tree ′ size-next-tree ′ unfolding regular-n-trees-def n-trees-def

by auto
also have . . . = {r∈regular-n-trees n. r ≤ t} using next-tree-successor 1 (2 )

Some unfolding regular-n-trees-def n-trees-def
by (auto, meson Some less-le-not-le next-tree-lt ′ order .trans)

finally show ?thesis .
qed

qed

theorem set-n-tree-enum: set (n-tree-enum n) = regular-n-trees n
proof (cases n)

case 0
then show ?thesis unfolding regular-n-trees-def n-trees-def using tree-size-ne-0

by simp
next

case (Suc nat)
then show ?thesis using set-n-tree-enum-aux regular-n-tree-greatest-tree great-

est-tree-ge
unfolding regular-n-trees-def n-trees-def by auto

qed

theorem n-rtree-graph-enum-n-rtree-graphs: G ∈ set (n-rtree-graph-enum n) =⇒
G ∈ n-rtree-graphs n

using set-n-tree-enum rtree-tree-graph card-tree-graph
unfolding n-rtree-graph-enum-def n-rtree-graphs-def regular-n-trees-def n-trees-def
by (auto, metis)

theorem n-rtree-graph-enum-surj:
assumes n-rtree-graph: G ∈ n-rtree-graphs n
shows ∃G ′ ∈ set (n-rtree-graph-enum n). G ′ 'r G

proof−
obtain V E r where G = (V ,E ,r) using prod.exhaust by metis
then show ?thesis using n-rtree-graph set-n-tree-enum rtree.ex-regular-n-tree
unfolding n-rtree-graphs-def n-rtree-graph-enum-def by (auto simp: rtree.ex-regular-n-tree)

qed
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4.7 Distinctness
lemma n-tree-enum-aux-le: r ∈ set (n-tree-enum-aux t) =⇒ r ≤ t
proof (induction t rule: n-tree-enum-aux.induct)

case (1 t)
then show ?case
proof (cases next-tree t)

case None
then show ?thesis using 1 by auto

next
case (Some a)
then show ?thesis using next-tree-lt ′ 1 by fastforce

qed
qed

lemma sorted-n-tree-enum-aux: sorted-wrt (>) (n-tree-enum-aux t)
proof (induction t rule: n-tree-enum-aux.induct)

case (1 t)
then show ?case
proof (cases next-tree t)

case None
then show ?thesis by simp

next
case (Some a)
then show ?thesis using 1 Some next-tree-lt ′ n-tree-enum-aux-le by fastforce

qed
qed

lemma distinct-n-tree-enum-aux: distinct (n-tree-enum-aux t)
using sorted-n-tree-enum-aux strict-sorted-iff distinct-rev sorted-wrt-rev by blast

theorem distinct-n-tree-enum: distinct (n-tree-enum n)
using distinct-n-tree-enum-aux by (cases n) auto

theorem distinct-n-rtree-graph-enum: distinct (n-rtree-graph-enum n)
using tree-graph-inj distinct-n-tree-enum set-n-tree-enum unfolding n-rtree-graph-enum-def

regular-n-trees-def
by (simp add: distinct-map inj-on-def )

theorem inj-iso-n-rtree-graph-enum:
assumes G-in-n-rtree-graph-enum: G ∈ set (n-rtree-graph-enum n)

and H-in-n-rtree-graph-enum: H ∈ set (n-rtree-graph-enum n)
and G 'r H

shows G = H
proof−
obtain tG where t-G: regular tG tree-graph tG = G using G-in-n-rtree-graph-enum

regular-n-tree-enum
unfolding n-rtree-graph-enum-def by auto

obtain tH where t-H : regular tH tree-graph tH = H using H-in-n-rtree-graph-enum
regular-n-tree-enum
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unfolding n-rtree-graph-enum-def by auto
then show ?thesis using t-G tree-graph-inj-iso ‹G 'r H › by auto

qed

theorem ex1-iso-n-rtree-graph-enum: G ∈ n-rtree-graphs n =⇒ ∃ !G ′∈ set (n-rtree-graph-enum
n). G ′ 'r G
using inj-iso-n-rtree-graph-enum rgraph-isomorph-trans rgraph-isomorph-sym n-rtree-graph-enum-surj

unfolding transp-def by blast

end
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