Tree Decompositions

Christoph Dittmann
christoph.dittmann@tu-berlin.de

March 17, 2025

We formalize tree decompositions and tree width in Isabelle/HOL, proving
that trees have treewidth 1. We also show that every edge of a tree decomposition
is a separation of the underlying graph. As an application of this theorem we
prove that complete graphs of size n have treewidth n — 1.

Contents
1 Introduction 2
1.1 Avoid List Indices . . . . . . . . . . . . e 2
1.2 Future Work . . . . . . . . 2
2 Graphs 3
2.1 Walks . . . . e 3
2.2 Connectivity . . . . . . . 4
2.3 Paths . . . . . e 5
24 Cycles . . . . e 6
3 Trees 6
3.1 Unique Connecting Path . . . . . .. .. .. .. oL 7
3.2 Separations . . . . . . ..o 8
3.3 Rooted Trees . . . . . . . . . . e 9
4 Tree Decompositions 9
4.1 Width of a Tree Decomposition . . . . . .. .. .. ... ... .. .. ... .. 10
4.2 Treewidth of a Graph . . . . . . . . . ... ... . ... .. 10
4.3 Separations . . . . . . ..o 11
5 Treewidth of Trees 12
6 Treewidth of Complete Graphs 13
7 Example Instantiations 13
Bibliography 15



1 Introduction

We follow [1] in terms of the definition of tree decompositions and treewidth. We write a
fairly minimal formalization of graphs and trees and then go straight to tree decompositions.

Let G = (V,E) be a graph and (7, ) be a tree decomposition, where T is a tree and
B:V(T) — 2Y maps bags to sets of vertices. Our main theorem is that if (s,t) € V(7)) is
an edge of the tree decomposition, then §(s) N 5(t) is a separator of G, separating

U B(u)

u € V(T) is in the left subtree of 7\ (s,t)

U B(u).

u € V(T) is in the right subtree of T\ (s,t)

and

As an application of this theorem we show that if K, is the complete graph on n vertices,
then the treewidth of K, is n — 1.

Independent of this theorem, relying only on the basic definitions of tree decompositions,
we also prove that trees have treewidth 1 if they have at least one edge (and treewidth 0
otherwise, which is trivial and holds for all graphs).

1.1 Avoid List Indices

While this will be obvious for more experienced Isabelle/HOL users, what we learned in
this work is that working with lists becomes significantly easier if we avoid indices. It turns
out that indices often trip up Isabelle’s automatic proof methods. Rewriting a proof with
list indices to a proof without often reduced the length of the proof by 50% or more.

For example, instead of saying “let n € N be maximal such that the first n elements of
the list all satisfy property P”, it is better to say “let ps be a maximal prefix such that all
elements of ps satisfy P”.

1.2 Future Work

We have several ideas for future work. Let us enumerate them in order of ascending difficulty
(subjectively, of course).

1. The easiest would be a formalization of the fact that treewidth is closed under minors
and disjoint union, and that adding a single edge increases the treewidth by at most
one. There are probably many more theorems similar to these.

2. A more interesting project would be a formalization of the cops and robber game for
treewidth, where the number of cops is equivalent to the treewidth plus one. See [2]
for a survey on these games.

3. Another interesting project would be a formal proof that the treewidth of a square
grid is large. It seems reasonable to expect that this could profit from a formalization
of cops and robber games, but it is no prerequisite.



4. An ambitious long-term project would be a full formalization of the grid theorem by
Robertson and Seymour [4]. They showed that there exists a function f : N — N
such that for every k € N it holds that if a graph has treewidth at least f(k), then it
contains a k X k grid as a minor.

Another more technical point would be to evaluate whether it would be good to use the
“Graph Theory” library [3] from the Archive of Formal Proofs instead of reimplementing
graphs here. At first glance it seems that the graph theory library would provide a lot of
helpful lemmas. On the other hand, it would be a non-trivial dependency with its own
idiosyncrasies, which could complicate the development of tree decomposition proofs. The
author feels that overall it is probably a good idea to base this work on the graph theory
library, but it needs further consideration.

2 Graphs

theory Graph
imports Main begin

‘a is the vertex type.

type-synonym 'a Edge = 'a x 'a
type-synonym 'a Walk = 'a list

record ‘a Graph =
verts :: 'a set (« V1)
arcs :: 'a Edge set (<E1)

abbreviation is-arc :: (‘a, 'b) Graph-scheme = 'a = 'a = bool (infixl (=1 60) where
v—ogw=(v,w) € Eg

We only consider undirected finite simple graphs, that is, graphs without multi-edges and
without loops.

locale Graph =
fixes G :: (‘a, 'b) Graph-scheme (structure)
assumes finite-vertex-set: finite V
and valid-edge-set: E C V x V
and undirected: v—w = w—v
and no-loops: ~v—v
begin
lemma finite-edge-set [simp]: finite E (proof)
lemma edges-are-in-V: assumes v—w shows v € Vwe V
(proof)

2.1 Walks

A walk is sequence of vertices connected by edges.

inductive walk :: ‘a Walk = bool where

Nil [simp]: walk ||

| Singleton [simp]: v € V = walk [v]

| Cons: v—w = walk (w # vs) = walk (v # w # vs)



Show a few composition/decomposition lemmas for walks. These will greatly simplify the
proofs that follow.

lemma walk-2 [simp|: v—w = walk [v,w] (proof)

lemma walk-comp: [ walk xs; walk ys; xs = Nil V ys = Nil V last xzs—hd ys | = walk (zs Q ys)
(proof)

lemma walk-tl: walk s = walk (¢ xs) (proof)

lemma walk-drop: walk xs = walk (drop n xs) (proof)

lemma walk-take: walk zs = walk (take n xs)

(proof)
lemma walk-rev: walk s = walk (rev xs)

{proof)
lemma walk-decomp: assumes walk (zs @Q ys) shows walk zs walk ys

(proof)
lemma walk-drop While: walk xs = walk (drop While f xs) (proof)
lemma walk-take While: walk xs = walk (takeWhile f xs) (proof)

lemma walk-in-V: walk xs => set xs C V (proof)

lemma walk-first-edge: walk (v # w # xs) = v—w (proof)

lemma walk-first-edge’: [ walk (v # xs); xs # Nil | = v—hd zs
(proof)

lemma walk-middle-edge: walk (zs Q v # w # ys) = v—w
(proof)

lemma walk-last-edge: | walk (xs Q ys); zs # Nil; ys # Nil | = last zs—hd ys
(proof)

lemma walk-take While-edge:
assumes walk (zs Q [v]) xs # Nil hd zs # v
shows last (take While (A\z. x # v) xs)—v (is last Zzs—v)

(proof)

2.2 Connectivity

definition connected :: ‘a = 'a = bool (infixl <—*» 60) where
connected v w = Jxs. walk zs A zs # Nil A hd zs = v A last xs = w
lemma connectedl [intro]: [ walk zs; xs # Nil; hd xs = vy last xs = w | = v =" w
(proof)
lemma connectedE:
assumes v —* w
obtains zs where walk xs xs # Nil hd s = v last s = w

(proof)

lemma connected-in-V: assumes v —* w shows v € Vwe V
(proof)

lemma connected-refl: v € V. = v —* v (proof)

lemma connected-edge: v—w = v =* w (proof)

lemma connected-trans:
assumes u-v: v —* v and v-w: v =% w
shows u —* w

(proof)



2.3 Paths

A path is a walk without repeated vertices. This is simple enough, so most of the above
lemmas transfer directly to paths.

abbreviation path :: ‘a Walk = bool where path xs = walk zs A distinct xs

lemma path-singleton [simp]: v € V = path [v] (proof)

lemma path-2 [simp]: [ v—=w; v # w | = path [v,w] {proof)

lemma path-cons: [ path xs; xs # Nil; v—hd zs; v ¢ set xs | = path (v # xs)
(proof)

lemma path-comp: [ walk xs; walk ys; zs = Nil V ys = Nil V last zs—hd ys; distinct (xs Q ys) |
= path (zs Q ys) (proof)

lemma path-tl: path s = path (tl zs) (proof)

lemma path-drop: path xs = path (drop n xs) {proof)

lemma path-take: path s = path (take n xs) (proof)

lemma path-rev: path s = path (rev xs) (proof)

lemma path-decomp: assumes path (zs @ ys) shows path zs path ys
(proof)

lemma path-drop While: path xs = path (drop While f zs) (proof)

lemma path-take While: path xs = path (take While f xs) (proof)

lemma path-in-V: path s = set xs C V (proof)

lemma path-first-edge: path (v # w # xs) = v—w (proof)

lemma path-first-edge”: [ path (v # xs); s # Nil | = v—hd zs (proof)

lemma path-middle-edge: path (xs Q@ v # w # ys) = v — w (proof)

lemma path-take While-edge: [ path (xs Q [v]); xs # Nil; hd zs # v ]
= last (takeWhile (Az. © # v) xs)—v (proof)

end

We introduce shorthand notation for a path connecting two vertices.

definition path-from-to :: (‘a, 'b) Graph-scheme = 'a = 'a Walk = 'a = bool
(¢- ~>~m1 0 [71, 71, 71] 70) where
path-from-to G v xs w = Graph.path G zs N\ xs # Nil A\ hd xs = v A last zs = w
context Graph begin
lemma path-from-tol [intro): [ path xs; s # Nil; hd s = v; last s = w | = v ~>xs~ w
and path-from-toFE [dest]: v ~>xs~ w = path xs N ©s # Nil A hd xs = v A last zs = w

(proof)

Every walk contains a path connecting the same vertices.

lemma walk-to-path:
assumes walk xs xs # Nil hd s = v last zs = w
shows Jys. v ~»ys~ w A set ys C set xs

(proof)

corollary connected-by-path:
assumes v —* w
obtains zs where v ~>zs~ w

(proof)



2.4 Cycles

A cycle in an undirected graph is a closed path with at least 3 different vertices. Closed
paths with 0 or 1 vertex do not exist (graphs are loop-free), and paths with 2 vertices are
not considered loops in undirected graphs.

definition cycle :: ‘a Walk = bool where
cycle s = path xs N length zs > 2 A last xs — hd zs

lemma cyclel [intro]: [ path xs; length xs > 2; last xs—hd xs | = cycle xs

{(proof)

lemma cycleE: cycle xs = path xs N\ zs # Nil N\ length s > 2 A last xs—hd xs

(proof)

We can now show a lemma that explains how to construct cycles from certain paths. If two

paths both starting from v diverge immediately and meet again on their last vertices, then

the graph contains a cycle with v on it.

Note that if two paths do not diverge immediately but only eventually, then mazimal-common-prefix
can be used to remove the common prefix.

lemma meeting-paths-produce-cycle:
assumes xs: path (v # xs) xs # Nil
and ys: path (v # ys) ys # Nil
and meet: last zs = last ys
and diverge: hd zs # hd ys
shows Jzs. cycle zs A hd zs = v

(proof)

A graph with unique paths between every pair of connected vertices has no cycles.

lemma unique-paths-implies-no-cycles:
assumes unique-paths: \v w. v = w = Flzs. v ~xs~> W
shows Awzs. —cycle s

(proof)

A graph without cycles (also called a forest) has a unique path between every pair of
connected vertices.

lemma no-cycles-implies-unique-paths:
assumes no-cycles: \zs. —cycle s and connected: v —* w
shows Jlzs. v ~>xs~ w

(proof)

end — locale Graph
end

3 Trees

theory Tree
imports Graph begin

A tree is a connected graph without cycles.

locale Tree = Graph +



assumes connected: [ v € V; w € V]| = v —=* w and no-cycles: —cycle xs
begin

3.1 Unique Connecting Path

For every pair of vertices in a tree, there exists a unique path connecting these two vertices.

lemma unique-connecting-path: [v € V; w € V | = 3lzs. v ~oasv w
(proof)

Let us define a function mapping pair of vertices to their unique connecting path.

end — locale Tree
definition unique-connecting-path :: ('a, 'b) Graph-scheme = ’'a = 'a = 'a Walk
(infix <~1 71) where unique-connecting-path G v w = THE x5. v ~>zs~ g W

We defined this outside the locale in order to be able to use the index in the shorthand
syntax v ~>some-inder W-

context Tree begin

lemma unique-connecting-path-set:
assumes v € Vw e V
shows v € set (v~ w) w € set (v~ w)

(proof)

lemma unique-connecting-path-properties:
assumes v € Vwe V
shows path (v ~ w) v~ w # Nil hd (v ~ w) = v last (v ~ w) = w
(proof)

lemma unique-connecting-path-unique:
assumes v ~ s~ w
shows s = v ~» w
(proof)
corollary unique-connecting-path-connects: [v € V; w € V ]| = v ~(v~w) ~ w

(proof)

lemma unique-connecting-path-rev:
assumes v € Vwe V
shows v ~ w = rev (w ~ v)

(proof)

lemma unique-connecting-path-decomp:
assumes v € Vw e Vo~ w=psQu# ps’
shows ps @ [u] = v~ v u # ps' = u~ w

(proof)

lemma unique-connecting-path-tl:
assumes v € V u € set (w ~> v) u—w
shows tl (w ~ v) = u~ v

(proof)

Every tree with at least two vertices contains an edge.



lemma tree-has-edge:
assumes card V > 1
shows dv w. v—w

(proof)

3.2 Separations

Removing a single edge always splits a tree into two subtrees. Here we define the set of
vertices of the left subtree. The definition may not be obvious at first glance, but we will
soon prove that it behaves as expected. We say that a vertex wu is in the left subtree if and
only if the unique path from u to ¢ visits s.

definition left-tree :: ‘a = 'a = 'a set where
left-tree st={ue V.se set (u~1)}

lemma left-treel [intro]: [u € V; s € set (u~t) ] = u € left-tree s t
(proof )

lemma left-treeE: u € left-tree st = u € V A s € set (u ~ 1)

(proof)

lemma left-tree-in-V: left-tree s t C V {proof)
lemma left-tree-initial: [ s € Vit € V]| = s € left-tree s t

(proof)

lemma left-tree-initial: [ s € Vit € Vi s# t] =t & left-tree s t
(proof)

lemma left-tree-initial-edge: s—t => t ¢ left-tree s t
(proof)

The union of the left and right subtree is V.

lemma left-tree-union-V:
assumes s—1{
shows left-tree s t U left-tree t s =V

(proof)
The left and right subtrees are disjoint.

lemma left-tree-disjoint:
assumes s—{
shows left-tree s t N left-tree t s = {}

(proof)

The path from a vertex in the left subtree to a vertex in the right subtree goes through s.
In other words, an edge s — ¢ is a separator in a tree.

theorem left-tree-separates:
assumes st: s—t and u: u € left-tree s t and u”: u’ € left-tree t s
shows s € set (u ~ u’)

(proof)
By symmetry, the path also visits t.

corollary left-tree-separates’:
assumes s—t u € lefi-tree s t u’ € left-tree t s
shows t € set (u ~ u)



(proof)

end — locale Tree

3.3 Rooted Trees

A rooted tree is a tree with a distinguished vertex called root.

locale RootedTree = Tree +
fixes root :: 'a
assumes root-in-V: root € V
begin

In a rooted tree, we can define the parent relation.

definition parent :: 'a = 'a where
parent v = hd (tl (v ~ ro0t))

lemma parent-edge: [ v € V; v # root | = v—parent v (proof)
lemma parent-edge-root: v—root = parent v = root (proof)
lemma parent-in-V: [ v € V; v # root | = parent v € V

{proof )
lemma parent-edge-cases: v—w = w = parent v V v = parent w {proof)

lemma sibling-path:
assumes v: v € Vv # root and w: w € V w # root and vw: v # w parent v = parent w
shows v~w = [v,parent v,w| (is - = ?xs)

(proof)
end — locale RootedTree

end

4 Tree Decompositions

theory TreeDecomposition
imports Tree begin

A tree decomposition of a graph.

locale TreeDecomposition = Graph G + T: Tree T
for G :: ('a, 'b) Graph-scheme (structure) and T :: ('c,’d) Graph-scheme +
fixes bag :: ‘c = 'a set
assumes
— Every vertex appears somewhere
bags-union: |J { bagt|t. t e Vp} =V
— Every edge is covered
and bags-edges: vw = It € Vp. v € bagt N w € bag t
— Every vertex appearing in s and u also appears in every bag on the path connecting s and
and bags-continuous: [ s € Vo u € Vo t € set (s ~pu) | = bag s N bag v C bag t
begin

Following the usual literature, we will call elements of V vertices and elements of V 7 bags
(or nodes) from now on.



4.1 Width of a Tree Decomposition

We define the width of this tree decomposition as the size of the largest bag minus 1.

abbreviation bag-cards = { card (bag t) | t. t € Vp }
definition maz-bag-card = Max bag-cards

We need a special case for Vp = {} because in this case maz-bag-card is not well-defined.

definition width = if V.p = {} then 0 else maz-bag-card — 1

lemma bags-in-V:t € V= bagt C V (proof)

lemma bag-finite: t € V.p = finite (bag t) (proof)

lemma bag-bound-V: t € Vp = card (bag t) < card V (proof)

lemma bag-bound-V-empty: [ V = {}; t € Vp ] = card (bag t) = 0 (proof)
lemma empty-tree-empty-V: Vp = {} = V = {} (proof)

lemma bags-exist: v e V = 3t € V. v € bag t (proof)

The width is never larger than the number of vertices, and if there is at least one vertex in
the graph, then it is always smaller. This is trivially true because a bag contains at most
all of V. However, the proof is not fully trivial because we also need to show that width is
well-defined.

lemma bag-cards-finite: finite bag-cards (proof)
lemma bag-cards-nonempty: V # {} = bag-cards # {}
(proof)
lemma maz-bag-card-in-bag-cards: V # {} = maz-bag-card € bag-cards (proof)
lemma maz-bag-card-lower-bound-bag: t € Vp = maz-bag-card > card (bag t)

(proof)

lemma maz-bag-card-lower-bound-1: assumes V # {} shows maz-bag-card > 0 (proof)
lemma maz-bag-card-upper-bound-V: V # {} = maz-bag-card < card V (proof)

lemma width-upper-bound-V: V # {} = width < card V (proof)
lemma width-V-empty: V = {} = width = 0 {proof)
lemma width-bound-V-le: width < card V — 1

(proof)
lemma width-lower-bound-1:

assumes v—w
shows width > 1

(proof)

end — locale TreeDecomposition

4.2 Treewidth of a Graph
context Graph begin

The treewidth of a graph is the minimum treewidth over all its tree decompositions. Here
we assume without loss of generality that the universe of the vertices of the tree is nat.
Because trees are finite, nat always contains enough elements.

abbreviation treewidth-cards :: nat set where trecwidth-cards =
{ TreeDecomposition.width T bag | (T :: nat Graph) bag. TreeDecomposition G T bag }
definition treewidth :: nat where treewidth = Min treewidth-cards

10



Every graph has a trivial tree decomposition consisting of a single bag containing all of V.

proposition tree-decomposition-exists: 3(T :: 'c Graph) bag. TreeDecomposition G T bag {proof)

corollary treewidth-cards-upper-bound-V: n € treewidth-cards =—> n < card V — 1

{proof)

corollary treewidth-cards-finite: finite treewidth-cards

(proof)
corollary treewidth-cards-nonempty: treewidth-cards # {} (proof)

lemma treewidth-cards-treewidth:
3(T :: nat Graph) bag. TreeDecomposition G T bag A treewidth = TreeDecomposition.width T bag

(proof)

corollary treewidth-upper-bound-V: treewidth < card V. — 1 {proof)
corollary treewidth-upper-bound-0: V = {} = treewidth = 0 (proof)
corollary treewidth-upper-bound-1: card V = 1 = treewidth = 0 (proof)
corollary treewidth-lower-bound-1: v—w = treewidth > 1

{(proof)

lemma trecwidth-upper-bound-ex:
[ TreeDecomposition G (T :: nat Graph) bag; TreeDecomposition.width T bag < n | => treewidth
<n

{(proof)

end — locale Graph

4.3 Separations

context TreeDecomposition begin

Every edge s — t in T separates T. In a tree decomposition, this edge also separates G.
Proving this is our goal. First, let us define the set of vertices appearing in the left subtree
when separating the tree at s — t.

definition left-part :: 'c = 'c = 'a set where
left-part s t = |J{ bag u | u. u € T.left-tree s t }
lemma left-part] [intro]: [ v € bag u; u € T.left-tree s t | = v € left-part s ¢

{proof)

lemma left-part-in-V: left-part s t C V (proof)

Let us define the subgraph of T induced by a vertex of G.

definition vertex-subtree :: ‘a = ’'c set where
vertex-subtree v ={ t € V. v € bag t }
lemma vertez-subtreel [intro]: [t € Vi, v € bag t | => t € vertex-subtree v

{proof)

The suggestive name vertex-subtree is correct: Because T is a tree decomposition, ver-
tex-subtree v is a subtree (it is connected).

lemma vertex-subtree-connected:
assumes v: v € V and s: s € vertex-subtree v and t: t € vertex-subtree v

11



and zs: § ~xs~p t
shows set xs C vertex-subtree v

(proof)

corollary vertex-subtree-unique-path-connected:
assumes v € V s € vertez-subtree v t € vertex-subtree v
shows set (s ~»p t) C vertex-subtree v

(proof)

In order to prove that edges in T are separations in G, we need one key lemma. If a vertex
appears on both sides of a separation, then it also appears in the separation.

lemma vertex-in-separator:
assumes st: s - t and v: v € left-part s t v € left-part ¢ s
shows v € bag s v € bag t

(proof)

Now we can show the main theorem: For every edge s — ¢ ¢ in T, the set bag s N bag t is a
separator of G. That is, every path from the left part to the right part goes through bag s
N bag t.

theorem bags-separate:

assumes st: s - t and v: v € left-part s t and w: w € left-part t s and zs: v ~T5~> W
shows set zs N bag s N bag t # {}

(proof)

It follows that vertices cannot be dropped from a bag if they have a neighbor that has not
been visited yet (that is, a neighbor that is strictly in the right part of the separation).

corollary bag-no-drop:
assumes st: s —p ¢t and vw: v—w and v: v € bag s and w: w ¢ bag s w € left-part t s
shows v € bag ¢

(proof)

end — locale TreeDecomposition
end

5 Treewidth of Trees

theory TreewidthTree
imports TreeDecomposition begin

The treewidth of a tree is 1 if the tree has at least one edge, otherwise it is 0.
For simplicity and without loss of generality, we assume that the vertex set of the tree is a
subset of the natural numbers because this is what we use in the definition of Graph.treecwidth.
While it would be nice to lift this restriction, removing it would entail defining isomor-
phisms between graphs in order to map the tree decomposition to a tree decomposition over
the natural numbers. This is outside the scope of this theory and probably not terribly
interesting by itself.
theorem trecwidth-tree:

fixes G :: nat Graph (structure)

12



assumes Tree G
shows Graph.trecwidth G < 1

(proof)

If the tree is non-trivial, that is, if it contains more than one vertex, then its treewidth is
exactly 1.
corollary treewidth-tree-ezxact:

fixes G :: nat Graph (structure)

assumes Tree G card Vo > 1
shows Graph.treewidth G = 1

(proof)

end

6 Treewidth of Complete Graphs

theory TreewidthComplete Graph
imports TreeDecomposition begin

As an application of the separator theorem bags-separate, or more precisely its corollary
bag-no-drop, we show that a complete graph of size n (a clique) has treewidth n — 1.

theorem (in Graph) treewidth-complete-graph:
assumes Avw. [ve Viwe V;v#w] = v—w
shows treewidth = card V — 1

(proof)

end

7 Example Instantiations

This section provides a few example instantiations for the locales to show that they are not
empty.

theory FExamplelnstantiations
imports TreewidthCompleteGraph begin

datatype Vertices = u0 | v0 | w0

The empty graph is a tree.

definition T1 = ( verts = {}, arcs = {} )
interpretation Graph-T1: Graph T1 (proof)
interpretation Tree-T1: Tree T1

(proof)

The complete graph with 2 vertices.

definition T2 = (| verts = {u0, v0}, arcs = {(u0,v0),(v0,u0)} )
lemma Graph-T2: Graph T2 (proof)
lemma Tree-T2: Tree T2

(proof)

13



As expected, the treewidth of the complete graph with 2 vertices is 1.

Note that we use Graph.treewidth-complete-graph here and not treewidth-tree. This is be-
cause treewidth-tree requires the vertex set of the graph to be a set of natural numbers,
which is not the case here.

lemma T2-complete: [ v € Vg, w € Vg v# w] = v =79 w (proof)
lemma trecwidth-T2: Graph.treewidth T2 = 1

{proof)

The complete graph with 3 vertices.

definition T3 = (| verts = {u0, v0, w0}, arcs = {(u0,v0),(v0,u0),(v0,w0),(w0,v0),(w0,u0),(u0,wl)}

)
lemma Graph-T3: Graph T3 (proof)

[u0, v0, w0] is a cycle in T3, so T3 is not a tree.
lemma Not-Tree-T3: = Tree T3 (proof)

lemma T3-complete: [ v € Vg w e Vg v# w] = v—pg w (proof)
lemma treewidth-T3: Graph.treewidth T3 = 2

{proof)

We omit a concrete example for the TreeDecomposition locale because tree-decomposition-exists
already shows that it is non-empty.

end

14



References

Reinhard Diestel. Graph Theory, 3rd Edition, volume 173 of Graduate texts in mathe-
matics. Springer, 2006.

Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed
graph searching. Theor. Comput. Sci., 399(3):236-245, 2008.

Lars Noschinski. Graph theory. Archive of Formal Proofs, April 2013. http://isa-afp.
org/entries/Graph_ Theory.shtml, Formal proof development.

Neil Robertson and Paul D. Seymour. Graph minors. v. excluding a planar graph. J.
Comb. Theory, Ser. B, 41(1):92-114, 1986.

15


http://isa-afp.org/entries/Graph_Theory.shtml
http://isa-afp.org/entries/Graph_Theory.shtml

	Introduction
	Avoid List Indices
	Future Work

	Graphs
	Walks
	Connectivity
	Paths
	Cycles

	Trees
	Unique Connecting Path
	Separations
	Rooted Trees

	Tree Decompositions
	Width of a Tree Decomposition
	Treewidth of a Graph
	Separations

	Treewidth of Trees
	Treewidth of Complete Graphs
	Example Instantiations
	Bibliography

