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We formalize tree decompositions and tree width in Isabelle/HOL, proving
that trees have treewidth 1. We also show that every edge of a tree decomposition
is a separation of the underlying graph. As an application of this theorem we
prove that complete graphs of size n have treewidth n− 1.

Contents
1 Introduction 2

1.1 Avoid List Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Graphs 3
2.1 Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Trees 9
3.1 Unique Connecting Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Separations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Rooted Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Tree Decompositions 16
4.1 Width of a Tree Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Treewidth of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Separations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Treewidth of Trees 21

6 Treewidth of Complete Graphs 23

7 Example Instantiations 25

Bibliography 27

1



1 Introduction
We follow [1] in terms of the definition of tree decompositions and treewidth. We write a
fairly minimal formalization of graphs and trees and then go straight to tree decompositions.

Let G = (V,E) be a graph and (T , β) be a tree decomposition, where T is a tree and
β : V (T ) → 2V maps bags to sets of vertices. Our main theorem is that if (s, t) ∈ V (T ) is
an edge of the tree decomposition, then β(s) ∩ β(t) is a separator of G, separating⋃

u ∈ V (T ) is in the left subtree of T \ (s, t)

β(u)

and ⋃
u ∈ V (T ) is in the right subtree of T \ (s, t)

β(u).

As an application of this theorem we show that if Kn is the complete graph on n vertices,
then the treewidth of Kn is n− 1.

Independent of this theorem, relying only on the basic definitions of tree decompositions,
we also prove that trees have treewidth 1 if they have at least one edge (and treewidth 0
otherwise, which is trivial and holds for all graphs).

1.1 Avoid List Indices
While this will be obvious for more experienced Isabelle/HOL users, what we learned in
this work is that working with lists becomes significantly easier if we avoid indices. It turns
out that indices often trip up Isabelle’s automatic proof methods. Rewriting a proof with
list indices to a proof without often reduced the length of the proof by 50% or more.

For example, instead of saying “let n ∈ N be maximal such that the first n elements of
the list all satisfy property P”, it is better to say “let ps be a maximal prefix such that all
elements of ps satisfy P”.

1.2 Future Work
We have several ideas for future work. Let us enumerate them in order of ascending difficulty
(subjectively, of course).

1. The easiest would be a formalization of the fact that treewidth is closed under minors
and disjoint union, and that adding a single edge increases the treewidth by at most
one. There are probably many more theorems similar to these.

2. A more interesting project would be a formalization of the cops and robber game for
treewidth, where the number of cops is equivalent to the treewidth plus one. See [2]
for a survey on these games.

3. Another interesting project would be a formal proof that the treewidth of a square
grid is large. It seems reasonable to expect that this could profit from a formalization
of cops and robber games, but it is no prerequisite.
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4. An ambitious long-term project would be a full formalization of the grid theorem by
Robertson and Seymour [4]. They showed that there exists a function f : N → N
such that for every k ∈ N it holds that if a graph has treewidth at least f(k), then it
contains a k × k grid as a minor.

Another more technical point would be to evaluate whether it would be good to use the
“Graph Theory” library [3] from the Archive of Formal Proofs instead of reimplementing
graphs here. At first glance it seems that the graph theory library would provide a lot of
helpful lemmas. On the other hand, it would be a non-trivial dependency with its own
idiosyncrasies, which could complicate the development of tree decomposition proofs. The
author feels that overall it is probably a good idea to base this work on the graph theory
library, but it needs further consideration.

2 Graphs
theory Graph
imports Main begin

′a is the vertex type.
type-synonym ′a Edge = ′a × ′a
type-synonym ′a Walk = ′a list

record ′a Graph =
verts :: ′a set (‹V ı›)
arcs :: ′a Edge set (‹E ı›)

abbreviation is-arc :: ( ′a, ′b) Graph-scheme ⇒ ′a ⇒ ′a ⇒ bool (infixl ‹→ı› 60 ) where
v →G w ≡ (v,w) ∈ EG

We only consider undirected finite simple graphs, that is, graphs without multi-edges and
without loops.
locale Graph =

fixes G :: ( ′a, ′b) Graph-scheme (structure)
assumes finite-vertex-set: finite V

and valid-edge-set: E ⊆ V × V
and undirected: v→w = w→v
and no-loops: ¬v→v

begin
lemma finite-edge-set [simp]: finite E using finite-vertex-set valid-edge-set

by (simp add: finite-subset)
lemma edges-are-in-V : assumes v→w shows v ∈ V w ∈ V

using assms valid-edge-set by blast+

2.1 Walks

A walk is sequence of vertices connected by edges.
inductive walk :: ′a Walk ⇒ bool where
Nil [simp]: walk []
| Singleton [simp]: v ∈ V =⇒ walk [v]
| Cons: v→w =⇒ walk (w # vs) =⇒ walk (v # w # vs)

3



Show a few composition/decomposition lemmas for walks. These will greatly simplify the
proofs that follow.
lemma walk-2 [simp]: v→w =⇒ walk [v,w] by (simp add: edges-are-in-V (2 ) walk.intros(3 ))
lemma walk-comp: [[ walk xs; walk ys; xs = Nil ∨ ys = Nil ∨ last xs→hd ys ]] =⇒ walk (xs @ ys)

by (induct rule: walk.induct, simp-all add: walk.intros(3 ))
(metis list.exhaust-sel walk.intros(2 ) walk.intros(3 ))

lemma walk-tl: walk xs =⇒ walk (tl xs) by (induct rule: walk.induct) simp-all
lemma walk-drop: walk xs =⇒ walk (drop n xs) by (induct n, simp) (metis drop-Suc tl-drop walk-tl)
lemma walk-take: walk xs =⇒ walk (take n xs)

by (induct arbitrary: n rule: walk.induct)
(simp, metis Graph.walk.simps Graph-axioms take-Cons ′ take-eq-Nil,
metis Graph.walk.simps Graph-axioms edges-are-in-V (1 ) take-Cons ′)

lemma walk-rev: walk xs =⇒ walk (rev xs)
by (induct rule: walk.induct, simp, simp)

(metis Singleton edges-are-in-V (1 ) last-ConsL last-appendR list.sel(1 )
not-Cons-self2 rev.simps(2 ) undirected walk-comp)

lemma walk-decomp: assumes walk (xs @ ys) shows walk xs walk ys
using assms append-eq-conv-conj[of xs ys xs @ ys] walk-take walk-drop by metis+

lemma walk-dropWhile: walk xs =⇒ walk (dropWhile f xs) by (simp add: walk-drop dropWhile-eq-drop)
lemma walk-takeWhile: walk xs =⇒ walk (takeWhile f xs) using walk-take takeWhile-eq-take by
metis

lemma walk-in-V : walk xs =⇒ set xs ⊆ V by (induct rule: walk.induct; simp add: edges-are-in-V )

lemma walk-first-edge: walk (v # w # xs) =⇒ v→w using walk.cases by fastforce
lemma walk-first-edge ′: [[ walk (v # xs); xs 6= Nil ]] =⇒ v→hd xs

using walk-first-edge by (metis list.exhaust-sel)
lemma walk-middle-edge: walk (xs @ v # w # ys) =⇒ v→w

by (induct xs @ v # w # ys arbitrary: xs rule: walk.induct, simp, simp)
(metis list.sel(1 ,3 ) self-append-conv2 tl-append2 )

lemma walk-last-edge: [[ walk (xs @ ys); xs 6= Nil; ys 6= Nil ]] =⇒ last xs→hd ys
using walk-middle-edge[of butlast xs last xs hd ys tl ys]
by (metis Cons-eq-appendI append-butlast-last-id append-eq-append-conv2 list.exhaust-sel self-append-conv)

lemma walk-takeWhile-edge:
assumes walk (xs @ [v]) xs 6= Nil hd xs 6= v
shows last (takeWhile (λx. x 6= v) xs)→v (is last ?xs→v)

proof−
obtain xs ′ where xs ′: xs = ?xs @ xs ′ by (metis takeWhile-dropWhile-id)
thus ?thesis proof (cases)

assume xs ′ = Nil thus ?thesis using xs ′ assms(1 ,2 ) walk-last-edge by force
next

assume xs ′ 6= Nil
hence hd xs ′ = v by (metis (full-types) hd-dropWhile same-append-eq takeWhile-dropWhile-id

xs ′)
thus ?thesis by (metis ‹xs ′ 6= []› append-Nil assms(1 ,3 ) walk-decomp(1 ) walk-last-edge xs ′)

qed
qed
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2.2 Connectivity
definition connected :: ′a ⇒ ′a ⇒ bool (infixl ‹→∗› 60 ) where

connected v w ≡ ∃ xs. walk xs ∧ xs 6= Nil ∧ hd xs = v ∧ last xs = w
lemma connectedI [intro]: [[ walk xs; xs 6= Nil; hd xs = v; last xs = w ]] =⇒ v →∗ w

unfolding connected-def by blast
lemma connectedE :

assumes v →∗ w
obtains xs where walk xs xs 6= Nil hd xs = v last xs = w
using assms that unfolding connected-def by blast

lemma connected-in-V : assumes v →∗ w shows v ∈ V w ∈ V
using assms unfolding connected-def by (meson hd-in-set last-in-set subsetCE walk-in-V )+

lemma connected-refl: v ∈ V =⇒ v →∗ v by (rule connectedI [of [v]]) simp-all
lemma connected-edge: v→w =⇒ v →∗ w by (rule connectedI [of [v,w]]) simp-all
lemma connected-trans:

assumes u-v: u →∗ v and v-w: v →∗ w
shows u →∗ w

proof−
obtain xs where xs: walk xs xs 6= Nil hd xs = u last xs = v using u-v connectedE by blast
obtain ys where ys: walk ys ys 6= Nil hd ys = v last ys = w using v-w connectedE by blast
let ?R = xs @ tl ys
show ?thesis proof

show walk ?R using walk-comp[OF xs(1 )] by (metis xs(4 ) ys(1 ,2 ,3 ) list.sel(1 ,3 ) walk.simps)
show ?R 6= Nil by (simp add: xs(2 ))
show hd ?R = u by (simp add: xs(2 ,3 ))
show last ?R = w using xs(2 ,4 ) ys(2 ,3 ,4 )

by (metis append-butlast-last-id last-append last-tl list.exhaust-sel)
qed

qed

2.3 Paths

A path is a walk without repeated vertices. This is simple enough, so most of the above
lemmas transfer directly to paths.
abbreviation path :: ′a Walk ⇒ bool where path xs ≡ walk xs ∧ distinct xs

lemma path-singleton [simp]: v ∈ V =⇒ path [v] by simp
lemma path-2 [simp]: [[ v→w; v 6= w ]] =⇒ path [v,w] by simp
lemma path-cons: [[ path xs; xs 6= Nil; v→hd xs; v /∈ set xs ]] =⇒ path (v # xs)

by (metis distinct.simps(2 ) list.exhaust-sel walk.Cons)
lemma path-comp: [[ walk xs; walk ys; xs = Nil ∨ ys = Nil ∨ last xs→hd ys; distinct (xs @ ys) ]]
=⇒ path (xs @ ys) using walk-comp by blast

lemma path-tl: path xs =⇒ path (tl xs) by (simp add: distinct-tl walk-tl)
lemma path-drop: path xs =⇒ path (drop n xs) by (simp add: walk-drop)
lemma path-take: path xs =⇒ path (take n xs) by (simp add: walk-take)
lemma path-rev: path xs =⇒ path (rev xs) by (simp add: walk-rev)
lemma path-decomp: assumes path (xs @ ys) shows path xs path ys

using walk-decomp assms distinct-append by blast+
lemma path-dropWhile: path xs =⇒ path (dropWhile f xs) by (simp add: walk-dropWhile)
lemma path-takeWhile: path xs =⇒ path (takeWhile f xs) by (simp add: walk-takeWhile)
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lemma path-in-V : path xs =⇒ set xs ⊆ V by (simp add: walk-in-V )
lemma path-first-edge: path (v # w # xs) =⇒ v→w using walk-first-edge by blast
lemma path-first-edge ′: [[ path (v # xs); xs 6= Nil ]] =⇒ v→hd xs using walk-first-edge ′ by blast
lemma path-middle-edge: path (xs @ v # w # ys) =⇒ v → w using walk-middle-edge by blast
lemma path-takeWhile-edge: [[ path (xs @ [v]); xs 6= Nil; hd xs 6= v ]]
=⇒ last (takeWhile (λx. x 6= v) xs)→v using walk-takeWhile-edge by blast

end

We introduce shorthand notation for a path connecting two vertices.
definition path-from-to :: ( ′a, ′b) Graph-scheme ⇒ ′a ⇒ ′a Walk ⇒ ′a ⇒ bool
(‹-  - ı -› [71 , 71 , 71 ] 70 ) where
path-from-to G v xs w ≡ Graph.path G xs ∧ xs 6= Nil ∧ hd xs = v ∧ last xs = w

context Graph begin
lemma path-from-toI [intro]: [[ path xs; xs 6= Nil; hd xs = v; last xs = w ]] =⇒ v  xs w

and path-from-toE [dest]: v  xs w =⇒ path xs ∧ xs 6= Nil ∧ hd xs = v ∧ last xs = w
unfolding path-from-to-def by blast+

Every walk contains a path connecting the same vertices.
lemma walk-to-path:

assumes walk xs xs 6= Nil hd xs = v last xs = w
shows ∃ ys. v  ys w ∧ set ys ⊆ set xs

proof−

We prove this by removing loops from xs until xs is a path. We want to perform induction
over length xs, but xs in set ys ⊆ set xs should not be part of the induction hypothesis. To
accomplish this, we hide set xs behind a definition for this specific part of the goal.

define target-set where target-set = set xs
hence set xs ⊆ target-set by simp
thus ∃ ys. v  ys w ∧ set ys ⊆ target-set

using assms
proof (induct length xs arbitrary: xs rule: infinite-descent0 )

case (smaller n)
then obtain xs where

xs: n = length xs walk xs xs 6= Nil hd xs = v last xs = w set xs ⊆ target-set and
hyp: ¬(∃ ys. v  ys w ∧ set ys ⊆ target-set) by blast

If xs is not a path, then xs is not distinct and we can decompose it.
then obtain ys zs u

where xs-decomp: u ∈ set ys distinct ys xs = ys @ u # zs
using not-distinct-conv-prefix by (metis path-from-toI )

u appears in xs, so we have a loop in xs starting from an occurrence of u in xs ending in the
vertex u in u # ys. We define zs as xs without this loop.

obtain ys ′ ys-suffix where
ys-decomp: ys = ys ′ @ u # ys-suffix by (meson split-list xs-decomp(1 ))

define zs ′ where zs ′ = ys ′ @ u # zs
have walk zs ′ unfolding zs ′-def using xs(2 ) xs-decomp(3 ) ys-decomp

by (metis walk-decomp list.sel(1 ) list.simps(3 ) walk-comp walk-last-edge)
moreover have length zs ′ < n unfolding zs ′-def by (simp add: xs(1 ) xs-decomp(3 ) ys-decomp)
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moreover have hd zs ′ = v unfolding zs ′-def
by (metis append-is-Nil-conv hd-append list.sel(1 ) xs(4 ) xs-decomp(3 ) ys-decomp)

moreover have last zs ′ = w unfolding zs ′-def using xs(5 ) xs-decomp(3 ) by auto
moreover have set zs ′ ⊆ target-set unfolding zs ′-def using xs(6 ) xs-decomp(3 ) ys-decomp by

auto
ultimately show ?case using zs ′-def hyp by blast

qed simp
qed

corollary connected-by-path:
assumes v →∗ w
obtains xs where v  xs w
using assms connected-def walk-to-path by blast

2.4 Cycles

A cycle in an undirected graph is a closed path with at least 3 different vertices. Closed
paths with 0 or 1 vertex do not exist (graphs are loop-free), and paths with 2 vertices are
not considered loops in undirected graphs.
definition cycle :: ′a Walk ⇒ bool where

cycle xs ≡ path xs ∧ length xs > 2 ∧ last xs → hd xs

lemma cycleI [intro]: [[ path xs; length xs > 2 ; last xs→hd xs ]] =⇒ cycle xs
unfolding cycle-def by blast

lemma cycleE : cycle xs =⇒ path xs ∧ xs 6= Nil ∧ length xs > 2 ∧ last xs→hd xs
unfolding cycle-def by auto

We can now show a lemma that explains how to construct cycles from certain paths. If two
paths both starting from v diverge immediately and meet again on their last vertices, then
the graph contains a cycle with v on it.
Note that if two paths do not diverge immediately but only eventually, then maximal-common-prefix
can be used to remove the common prefix.
lemma meeting-paths-produce-cycle:

assumes xs: path (v # xs) xs 6= Nil
and ys: path (v # ys) ys 6= Nil
and meet: last xs = last ys
and diverge: hd xs 6= hd ys

shows ∃ zs. cycle zs ∧ hd zs = v
proof−

have set xs ∩ set ys 6= {} using meet xs(2 ) ys(2 ) last-in-set by fastforce
then obtain xs ′ x xs ′′ where xs ′: xs = xs ′ @ x # xs ′′ set xs ′ ∩ set ys = {} x ∈ set ys

using split-list-first-prop[of xs λx. x ∈ set ys] by (metis disjoint-iff-not-equal)
then obtain ys ′ ys ′′ where ys ′: ys = ys ′ @ x # ys ′′ x /∈ set ys ′

using split-list-first-prop[of ys λy. y = x] by blast

let ?zs = v # xs ′ @ x # (rev ys ′)
have last ?zs→hd ?zs

using undirected walk-first-edge walk-first-edge ′ ys ′(1 ) ys(1 ) by (fastforce simp: last-rev)
moreover have path ?zs proof

have walk (x # rev ys ′) proof(cases)
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assume ys ′ = Nil thus ?thesis using ‹last ?zs→hd ?zs› edges-are-in-V (1 ) by auto
next

assume ys ′ 6= Nil
moreover hence last ys ′→x using walk-last-edge walk-tl ys ′(1 ) ys(1 ) by fastforce
moreover have hd (rev ys ′) = last ys ′ by (simp add: ‹ys ′ 6= []› hd-rev)
moreover have walk (rev ys ′) by (metis list.sel(3 ) walk-decomp(1 ) walk-rev walk-tl ys ′(1 )

ys(1 ))
ultimately show walk (x # rev ys ′) using path-cons undirected ys ′(1 ) ys(1 ) by auto

qed
thus walk (v # xs ′ @ x # rev ys ′) using xs ′(1 ) xs(1 )

by (metis append-Cons list.sel(1 ) list.simps(3 ) walk-comp walk-decomp(1 ) walk-last-edge)
next

show distinct (v # xs ′ @ x # rev ys ′) unfolding distinct-append distinct.simps(2 ) set-append
using xs ′(1 ,2 ) xs(1 ) ys ′(1 ) ys(1 ) by auto

qed
moreover have length ?zs 6= 2 using diverge xs ′(1 ) ys ′(1 ) by auto
ultimately show ?thesis using cycleI [of ?zs] by auto

qed

A graph with unique paths between every pair of connected vertices has no cycles.
lemma unique-paths-implies-no-cycles:

assumes unique-paths:
∧

v w. v →∗ w =⇒ ∃ !xs. v  xs w
shows

∧
xs. ¬cycle xs

proof
fix xs assume cycle xs
let ?v = hd xs
let ?w = last xs
let ?ys = [?v,?w]
define good where good xs ←→ ?v  xs ?w for xs
have path ?ys using ‹cycle xs› cycle-def no-loops undirected by auto
hence good ?ys unfolding good-def by (simp add: path-from-toI )
moreover have good xs unfolding good-def by (simp add: path-from-toI ‹cycle xs› cycleE)
moreover have ?ys 6= xs using ‹cycle xs›

by (metis One-nat-def Suc-1 cycleE length-Cons less-not-refl list.size(3 ))
ultimately have ¬(∃ !xs. good xs) by blast
moreover have connected ?v ?w using ‹cycle xs› cycleE by blast
ultimately show False unfolding good-def using unique-paths by blast

qed

A graph without cycles (also called a forest) has a unique path between every pair of
connected vertices.
lemma no-cycles-implies-unique-paths:

assumes no-cycles:
∧

xs. ¬cycle xs and connected: v →∗ w
shows ∃ !xs. v  xs w

proof (rule ex-ex1I )
show ∃ xs. v  xs w using connected connected-by-path by blast

next
fix xs ys
assume v  xs w v  ys w
hence xs-valid: path xs xs 6= Nil hd xs = v last xs = w

and ys-valid: path ys ys 6= Nil hd ys = v last ys = w by blast+
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show xs = ys proof (rule ccontr)
assume xs 6= ys
hence ∃ ps xs ′ ys ′. xs = ps @ xs ′ ∧ ys = ps @ ys ′ ∧ (xs ′ = Nil ∨ ys ′ = Nil ∨ hd xs ′ 6= hd ys ′)

by (induct xs ys rule: list-induct2 ′, blast, blast, blast)
(metis (no-types, opaque-lifting) append-Cons append-Nil list.sel(1 ))

then obtain ps xs ′ ys ′ where
ps: xs = ps @ xs ′ ys = ps @ ys ′ xs ′ = Nil ∨ ys ′ = Nil ∨ hd xs ′ 6= hd ys ′ by blast

have last xs ∈ set ps if xs ′ = Nil using xs-valid(2 ) ps(1 ) by (simp add: that)
hence xs-not-nil: xs ′ 6= Nil using ‹xs 6= ys› ys-valid(1 ,4 ) ps(1 ,2 ) xs-valid(4 ) by auto

have last ys ∈ set ps if ys ′ = Nil using ys-valid(2 ) ps(2 ) by (simp add: that)
hence ys-not-nil: ys ′ 6= Nil using ‹xs 6= ys› xs-valid(1 ,4 ) ps(1 ,2 ) ys-valid(4 ) by auto

have ∃ zs. cycle zs proof−
let ?v = last ps
have ∗: ps 6= Nil using xs-valid(2 ,3 ) ys-valid(2 ,3 ) ps(1 ,2 ,3 ) by auto
have path (?v # xs ′) using xs-valid(1 ) ps(1 ) ∗ walk-decomp(2 )
by (metis append-Cons append-assoc append-butlast-last-id distinct-append self-append-conv2 )

moreover have path (?v # ys ′) using ys-valid(1 ) ps(2 ) ∗ walk-decomp(2 )
by (metis append-Cons append-assoc append-butlast-last-id distinct-append self-append-conv2 )

moreover have last xs ′ = last ys ′

using xs-valid(4 ) ys-valid(4 ) xs-not-nil ys-not-nil ps(1 ,2 ) by auto
ultimately show ?thesis using ps(3 ) meeting-paths-produce-cycle xs-not-nil ys-not-nil by

blast
qed
thus False using no-cycles by blast

qed
qed

end — locale Graph
end

3 Trees
theory Tree
imports Graph begin

A tree is a connected graph without cycles.
locale Tree = Graph +

assumes connected: [[ v ∈ V ; w ∈ V ]] =⇒ v →∗ w and no-cycles: ¬cycle xs
begin

3.1 Unique Connecting Path

For every pair of vertices in a tree, there exists a unique path connecting these two vertices.
lemma unique-connecting-path: [[ v ∈ V ; w ∈ V ]] =⇒ ∃ !xs. v  xs w

using connected no-cycles no-cycles-implies-unique-paths by blast

Let us define a function mapping pair of vertices to their unique connecting path.

9



end — locale Tree
definition unique-connecting-path :: ( ′a, ′b) Graph-scheme ⇒ ′a ⇒ ′a ⇒ ′a Walk
(infix ‹ ı› 71 ) where unique-connecting-path G v w ≡ THE xs. v  xs G w

We defined this outside the locale in order to be able to use the index in the shorthand
syntax v  some-index w.
context Tree begin

lemma unique-connecting-path-set:
assumes v ∈ V w ∈ V
shows v ∈ set (v  w) w ∈ set (v  w)
using theI ′[OF unique-connecting-path[OF assms], folded unique-connecting-path-def ]

hd-in-set last-in-set by fastforce+

lemma unique-connecting-path-properties:
assumes v ∈ V w ∈ V
shows path (v  w) v  w 6= Nil hd (v  w) = v last (v  w) = w
using theI ′[OF unique-connecting-path[OF assms], folded unique-connecting-path-def ] by blast+

lemma unique-connecting-path-unique:
assumes v  xs w
shows xs = v  w

proof−
have v ∈ V w ∈ V using assms connected-in-V by blast+
with unique-connecting-path-properties[OF this] show ?thesis

using assms unique-connecting-path by blast
qed
corollary unique-connecting-path-connects: [[ v ∈ V ; w ∈ V ]] =⇒ v  (v w)  w

using unique-connecting-path unique-connecting-path-unique by blast

lemma unique-connecting-path-rev:
assumes v ∈ V w ∈ V
shows v  w = rev (w  v)

proof−
have v  (rev (w  v)) w using assms

by (simp add: unique-connecting-path-properties walk-rev hd-rev last-rev path-from-toI )
thus ?thesis using unique-connecting-path-unique by simp

qed

lemma unique-connecting-path-decomp:
assumes v ∈ V w ∈ V v  w = ps @ u # ps ′

shows ps @ [u] = v  u u # ps ′ = u  w
proof−

have hd (ps @ [u]) = v
by (metis append-Nil assms hd-append2 list.sel(1 ) unique-connecting-path-properties(3 ))

moreover have path (ps @ [u]) using unique-connecting-path-properties(1 )[OF assms(1 ,2 )]
unfolding assms(3 )
by (metis distinct.simps(2 ) distinct1-rotate list.sel(1 ) list.simps(3 ) not-distinct-conv-prefix

path-decomp(1 ) rev.simps(2 ) rotate1 .simps(2 ) walk-comp walk-decomp(2 ) walk-last-edge
walk-rev)

moreover have last (ps @ [u]) = u ps @ [u] 6= Nil by simp-all
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ultimately show ps @ [u] = v  u using unique-connecting-path-unique by blast
next

have last (u # ps ′) = w
using assms unique-connecting-path-properties(4 ) by fastforce

moreover have path (u # ps ′) using unique-connecting-path-properties(1 )[OF assms(1 ,2 )]
unfolding assms(3 ) using path-decomp(2 ) by blast

moreover have hd (u # ps ′) = u u # ps ′ 6= Nil by simp-all
ultimately show u # ps ′ = u  w using unique-connecting-path-unique by blast

qed

lemma unique-connecting-path-tl:
assumes v ∈ V u ∈ set (w  v) u→w
shows tl (w  v) = u  v

proof (rule ccontr)
assume contra: ¬?thesis
from assms(2 ) obtain ps ps ′ where

ps: w  v = ps @ u # ps ′ by (meson split-list)
have cycle (ps @ [u]) proof

show path (ps @ [u]) using unique-connecting-path-decomp assms(1 ,3 ) ps
by (metis edges-are-in-V unique-connecting-path-properties(1 ))

show length (ps @ [u]) > 2 proof (rule ccontr)
assume ¬?thesis
moreover have u 6= w using assms(3 ) no-loops by blast
ultimately have length (ps @ [u]) = 2

by (metis edges-are-in-V (2 ) assms(1 ,3 ) hd-append length-0-conv length-append-singleton
less-2-cases linorder-neqE-nat list.sel(1 ) nat.simps(1 ) ps snoc-eq-iff-butlast
unique-connecting-path-properties(3 ))

hence tl (w  v) = u # ps ′

by (metis One-nat-def Suc-1 append-Nil diff-Suc-1 length-0-conv length-Cons
length-append-singleton list.collapse nat.simps(3 ) ps tl-append2 )

moreover have u # ps ′ = u  v
using unique-connecting-path-decomp assms(1 ,3 ) edges-are-in-V (2 ) ps by blast

ultimately show False using contra by simp
qed
show last (ps @ [u]) → hd (ps @ [u]) using assms(3 )

by (metis edges-are-in-V (2 ) unique-connecting-path-properties(3 )
assms(1 ) hd-append list.sel(1 ) ps snoc-eq-iff-butlast)

qed
thus False using no-cycles by auto

qed

Every tree with at least two vertices contains an edge.
lemma tree-has-edge:

assumes card V > 1
shows ∃ v w. v→w

proof−
obtain v where v: v ∈ V using assms

by (metis List.finite-set One-nat-def card.empty card-mono empty-set less-le-trans linear
not-less subsetI zero-less-Suc)

then obtain w where w ∈ V v 6= w using assms
by (metis (no-types, lifting) One-nat-def card.empty card.insert distinct.simps(2 ) empty-set

finite.intros(1 ) finite-distinct-list finite-vertex-set hd-in-set last.simps last-in-set
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less-or-eq-imp-le list.exhaust-sel list.simps(15 ) not-less path-singleton)
hence v → hd (tl (v w)) using v

by (metis unique-connecting-path-properties last.simps list.exhaust-sel walk-first-edge ′)
thus ?thesis by blast

qed

3.2 Separations

Removing a single edge always splits a tree into two subtrees. Here we define the set of
vertices of the left subtree. The definition may not be obvious at first glance, but we will
soon prove that it behaves as expected. We say that a vertex u is in the left subtree if and
only if the unique path from u to t visits s.
definition left-tree :: ′a ⇒ ′a ⇒ ′a set where

left-tree s t ≡ { u ∈ V . s ∈ set (u  t) }
lemma left-treeI [intro]: [[ u ∈ V ; s ∈ set (u  t) ]] =⇒ u ∈ left-tree s t

unfolding left-tree-def by blast
lemma left-treeE : u ∈ left-tree s t =⇒ u ∈ V ∧ s ∈ set (u  t)

unfolding left-tree-def by blast

lemma left-tree-in-V : left-tree s t ⊆ V unfolding left-tree-def by blast
lemma left-tree-initial: [[ s ∈ V ; t ∈ V ]] =⇒ s ∈ left-tree s t

unfolding left-tree-def by (simp add: unique-connecting-path-set(1 ))
lemma left-tree-initial ′: [[ s ∈ V ; t ∈ V ; s 6= t ]] =⇒ t /∈ left-tree s t

by (metis distinct.simps(2 ) last.simps left-treeE list.discI list.sel(1 ) path-from-toI
path-singleton set-ConsD unique-connecting-path-unique)

lemma left-tree-initial-edge: s→t =⇒ t /∈ left-tree s t
using edges-are-in-V (1 ) left-tree-initial ′ no-loops undirected by blast

The union of the left and right subtree is V.
lemma left-tree-union-V :

assumes s→t
shows left-tree s t ∪ left-tree t s = V

proof
show left-tree s t ∪ left-tree t s ⊆ V using left-tree-in-V by auto
{

have s: s ∈ V and t: t ∈ V using assms using edges-are-in-V by blast+

Assume to the contrary that u ∈ V is in neither part.
fix u assume u: u ∈ V u /∈ left-tree s t u /∈ left-tree t s

Then we can construct two different paths from s to u, which, in a tree, is a contradiction.
First, we get paths from s to u and from t to u.

let ?xs = s  u
let ?ys = t  u
have t /∈ set ?xs using u(1 ,3 ) unfolding left-tree-def

by (metis (no-types, lifting) unique-connecting-path-rev mem-Collect-eq s set-rev)
have s /∈ set ?ys using u(1 ,2 ) unfolding left-tree-def

by (metis (no-types, lifting) unique-connecting-path-rev mem-Collect-eq set-rev t)

Now we can define two different paths from s to u.
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define xs ′ where [simp]: xs ′ = ?xs
define ys ′ where [simp]: ys ′ = s # ?ys

have path ys ′ using path-cons ‹s /∈ set ?ys› assms
by (simp add: unique-connecting-path-properties(1−3 ) t u(1 ))

moreover have path xs ′ xs ′ 6= [] ys ′ 6= [] hd xs ′ = s last xs ′ = u
by (simp-all add: unique-connecting-path-properties s u(1 ))

moreover have hd ys ′ = s last ys ′ = u
by simp (simp add: unique-connecting-path-properties(2 ,4 ) t u(1 ))

moreover have xs ′ 6= ys ′ using unique-connecting-path-set(1 ) ‹t /∈ set ?xs› t u(1 ) by auto

The existence of two different paths is a contradiction.
ultimately have False using unique-connecting-path-unique by blast

}
thus V ⊆ left-tree s t ∪ left-tree t s by blast

qed

The left and right subtrees are disjoint.
lemma left-tree-disjoint:

assumes s→t
shows left-tree s t ∩ left-tree t s = {}

proof (rule ccontr)
assume ¬?thesis
then obtain u where u: u ∈ V s ∈ set (u  t) t ∈ set (u  s) using left-treeE by blast

have s: s ∈ V and t: t ∈ V using assms edges-are-in-V by blast+

obtain ps ps ′ where ps: u  t = ps @ s # ps ′ by (meson split-list u(2 ))
hence ps ′ 6= Nil

using assms last-snoc no-loops unique-connecting-path-properties(4 )[OF u(1 ) t] by auto
hence ∗: length (ps @ [s]) < length (u  t) by (simp add: ps)

have ps ′: ps @ [s] = u  s using ps unique-connecting-path-decomp t u(1 ) by blast

then obtain qs qs ′ where qs: ps @ [s] = qs @ t # qs ′ using split-list[OF u(3 )] by auto
hence qs ′ 6= Nil using assms last-snoc no-loops by auto
hence ∗∗: length (qs @ [t]) < length (ps @ [s]) by (simp add: qs)

have qs @ [t] = u  t using qs ps ′ unique-connecting-path-decomp s u(1 ) by metis
thus False using less-trans[OF ∗∗ ∗] by simp

qed

The path from a vertex in the left subtree to a vertex in the right subtree goes through s.
In other words, an edge s → t is a separator in a tree.
theorem left-tree-separates:

assumes st: s→t and u: u ∈ left-tree s t and u ′: u ′ ∈ left-tree t s
shows s ∈ set (u  u ′)

proof (rule ccontr)
assume ¬?thesis
with assms have set (u  u ′) ⊆ left-tree s t
proof(induct u  u ′ arbitrary: u u ′)
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case Nil thus ?case using unique-connecting-path-properties(2 ) by auto
next

case (Cons x xs u u ′)
have x = u using Cons.hyps(2 ) Cons.prems(2 ,3 )

by (metis left-treeE list.sel(1 ) unique-connecting-path-properties(3 ))
hence u→hd xs using Cons.hyps(2 ) Cons.prems(2 ,3 ) st

by (metis IntI left-tree-disjoint distinct.simps(2 ) last.simps left-treeE list.set(1 )
unique-connecting-path-properties(1 ,4 ) walk-first-edge ′)

hence u ∈ V hd xs ∈ V using edges-are-in-V by blast+
have ∗: xs = hd xs  u ′

by (metis Cons.hyps(2 ) Cons.prems(2 ,3 ) IntI left-tree-disjoint distinct.simps(2 ) last.simps
left-treeE list.sel(1 ,3 ) list.set(1 ) path-from-toI st
unique-connecting-path-properties(1 ,3 ,4 ) unique-connecting-path-unique walk-tl)

moreover hence s /∈ set (hd xs  u ′) using Cons.hyps(2 ) Cons.prems(4 )
by (metis list.set-intros(2 ))

moreover have hd xs ∈ left-tree s t proof (rule ccontr)
assume ¬?thesis
hence hd xs ∈ left-tree t s using ‹hd xs ∈ V › st left-tree-union-V by fastforce
hence t ∈ set (hd xs  s) using left-treeE by blast
let ?ys ′ = hd xs  s
let ?ys = u # ?ys ′

have u /∈ set ?ys ′ proof
assume u ∈ set ?ys ′

hence tl ?ys ′ = u  s
using unique-connecting-path-tl ‹u→hd xs› edges-are-in-V (1 ) st by auto

moreover have t 6= hd xs proof
let ?ys = [u, hd xs]
have t 6= u using Cons.prems(2 ) left-tree-initial-edge st by blast
assume t = hd xs
hence ?ys = u  t

using unique-connecting-path-unique[of u ?ys hd xs] ‹u→hd xs› ‹t 6= u›
by (simp add: path-from-toI )

hence s /∈ set (u  t)
by (metis Cons.hyps(2 ) Cons.prems(4 ) ‹t = hd xs› ‹x = u› distinct.simps(2 )

distinct-singleton list.set-intros(1 ) no-loops set-ConsD st)
thus False using Cons.prems(2 ) left-treeE by blast

qed
ultimately have t ∈ set (u  s) using ‹t ∈ set ?ys ′› ‹hd xs ∈ V › st
by (metis edges-are-in-V (1 ) unique-connecting-path-properties(2 ,3 ) list.collapse set-ConsD)

thus False using Cons.prems(2 ) st ‹u ∈ V ›
by (meson left-tree-disjoint disjoint-iff-not-equal left-treeI )

qed
hence path ?ys using path-cons ‹u→hd xs›

by (metis unique-connecting-path-properties(1−3 ) edges-are-in-V st)
moreover have ?ys 6= Nil hd ?ys = u by simp-all
moreover have last ?ys = s using st unique-connecting-path-properties(2 ,4 ) ‹hd xs ∈ V ›

by (simp add: edges-are-in-V (1 ))
ultimately have ?ys = u  s using unique-connecting-path-unique by blast
hence t ∈ set (u  s) by (metis ‹t ∈ set ?ys ′› list.set-intros(2 ))
thus False using Cons.prems(2 ) ‹u ∈ V › st

by (meson left-tree-disjoint disjoint-iff-not-equal left-treeI )
qed
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ultimately have set (hd xs  u ′) ⊆ left-tree s t
using Cons.hyps(1 ) st Cons.prems(3 ) by blast

hence set xs ⊆ left-tree s t using ∗ by simp
thus ?case using Cons.hyps(2 ) Cons.prems(2 ,3 )

by (metis insert-subset left-treeE list.sel(1 ) list.set(2 ) unique-connecting-path-properties(3 ))
qed
hence u ′ ∈ left-tree s t using left-treeE u u ′ unique-connecting-path-set(2 ) by auto
thus False by (meson left-tree-disjoint disjoint-iff-not-equal st u ′)

qed

By symmetry, the path also visits t.
corollary left-tree-separates ′:

assumes s→t u ∈ left-tree s t u ′ ∈ left-tree t s
shows t ∈ set (u  u ′)
using assms left-tree-separates by (metis left-treeE set-rev undirected unique-connecting-path-rev)

end — locale Tree

3.3 Rooted Trees

A rooted tree is a tree with a distinguished vertex called root.
locale RootedTree = Tree +

fixes root :: ′a
assumes root-in-V : root ∈ V

begin

In a rooted tree, we can define the parent relation.
definition parent :: ′a ⇒ ′a where

parent v ≡ hd (tl (v  root))

lemma parent-edge: [[ v ∈ V ; v 6= root ]] =⇒ v→parent v unfolding parent-def
by (metis last.simps list.exhaust-sel root-in-V unique-connecting-path-properties walk-first-edge ′)

lemma parent-edge-root: v→root =⇒ parent v = root unfolding parent-def
by (metis edges-are-in-V (1 ) path-from-toE undirected unique-connecting-path

unique-connecting-path-set(2 ) unique-connecting-path-tl unique-connecting-path-unique)
lemma parent-in-V : [[ v ∈ V ; v 6= root ]] =⇒ parent v ∈ V

using parent-edge edges-are-in-V (2 ) by blast
lemma parent-edge-cases: v→w =⇒ w = parent v ∨ v = parent w unfolding parent-def

by (metis Un-iff edges-are-in-V (1 ) left-tree-initial left-tree-separates ′ left-tree-union-V
root-in-V undirected unique-connecting-path-properties(3 ) unique-connecting-path-tl)

lemma sibling-path:
assumes v: v ∈ V v 6= root and w: w ∈ V w 6= root and vw: v 6= w parent v = parent w
shows v w = [v,parent v,w] (is - = ?xs)

proof−
have path ?xs using v w vw

by (metis distinct-length-2-or-more distinct-singleton no-loops parent-edge undirected
walk.Cons walk-2 )

thus ?thesis using unique-connecting-path-unique by fastforce
qed

end — locale RootedTree
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end

4 Tree Decompositions
theory TreeDecomposition
imports Tree begin

A tree decomposition of a graph.
locale TreeDecomposition = Graph G + T : Tree T

for G :: ( ′a, ′b) Graph-scheme (structure) and T :: ( ′c, ′d) Graph-scheme +
fixes bag :: ′c ⇒ ′a set
assumes

— Every vertex appears somewhere
bags-union:

⋃
{ bag t | t. t ∈ V T } = V

— Every edge is covered
and bags-edges: v→w =⇒ ∃ t ∈ V T. v ∈ bag t ∧ w ∈ bag t
— Every vertex appearing in s and u also appears in every bag on the path connecting s and u
and bags-continuous: [[ s ∈ V T; u ∈ V T; t ∈ set (s  T u) ]] =⇒ bag s ∩ bag u ⊆ bag t

begin

Following the usual literature, we will call elements of V vertices and elements of V T bags
(or nodes) from now on.

4.1 Width of a Tree Decomposition

We define the width of this tree decomposition as the size of the largest bag minus 1.
abbreviation bag-cards ≡ { card (bag t) | t. t ∈ V T }
definition max-bag-card ≡ Max bag-cards

We need a special case for V T = {} because in this case max-bag-card is not well-defined.
definition width ≡ if V T = {} then 0 else max-bag-card − 1

lemma bags-in-V : t ∈ V T =⇒ bag t ⊆ V using bags-union Sup-upper mem-Collect-eq by blast
lemma bag-finite: t ∈ V T =⇒ finite (bag t) using bags-in-V finite-subset finite-vertex-set by blast
lemma bag-bound-V : t ∈ V T =⇒ card (bag t) ≤ card V by (simp add: bags-in-V card-mono
finite-vertex-set)
lemma bag-bound-V-empty: [[ V = {}; t ∈ V T ]] =⇒ card (bag t) = 0 using bag-bound-V by auto
lemma empty-tree-empty-V : V T = {} =⇒ V = {} using bags-union by simp
lemma bags-exist: v ∈ V =⇒ ∃ t ∈ V T. v ∈ bag t using bags-union using UnionE mem-Collect-eq
by auto

The width is never larger than the number of vertices, and if there is at least one vertex in
the graph, then it is always smaller. This is trivially true because a bag contains at most
all of V. However, the proof is not fully trivial because we also need to show that width is
well-defined.
lemma bag-cards-finite: finite bag-cards using T .finite-vertex-set by simp
lemma bag-cards-nonempty: V 6= {} =⇒ bag-cards 6= {}

using bag-cards-finite empty-tree-empty-V empty-Collect-eq ex-in-conv by blast
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lemma max-bag-card-in-bag-cards: V 6= {} =⇒ max-bag-card ∈ bag-cards unfolding max-bag-card-def
using Max-in bag-cards-finite bag-cards-nonempty by auto

lemma max-bag-card-lower-bound-bag: t ∈ V T =⇒ max-bag-card ≥ card (bag t)
by (metis (mono-tags, lifting) Max-ge bag-cards-finite max-bag-card-def mem-Collect-eq)

lemma max-bag-card-lower-bound-1 : assumes V 6= {} shows max-bag-card > 0 proof−
have ∃ v ∈ V . ∃ t ∈ V T. v ∈ bag t using ‹V 6= {}› bags-union by blast
thus max-bag-card > 0 unfolding max-bag-card-def using bag-finite

card-gt-0-iff emptyE Max-gr-iff [OF bag-cards-finite bag-cards-nonempty[OF assms]] by auto
qed
lemma max-bag-card-upper-bound-V : V 6= {} =⇒ max-bag-card ≤ card V unfolding max-bag-card-def

using Max-le-iff [OF bag-cards-finite bag-cards-nonempty] bag-bound-V by blast

lemma width-upper-bound-V : V 6= {} =⇒ width < card V unfolding width-def
using max-bag-card-upper-bound-V max-bag-card-lower-bound-1

diff-less empty-tree-empty-V le-neq-implies-less less-imp-diff-less zero-less-one by presburger
lemma width-V-empty: V = {} =⇒ width = 0 unfolding width-def max-bag-card-def

using bag-bound-V-empty T .finite-vertex-set by (cases V T = {}) auto
lemma width-bound-V-le: width ≤ card V − 1

using width-upper-bound-V width-V-empty by (cases V = {}) auto
lemma width-lower-bound-1 :

assumes v→w
shows width ≥ 1

proof−
obtain t where t: t ∈ V T v ∈ bag t w ∈ bag t using bags-edges assms by blast
have card (bag t) 6= 0 using t(1 ,2 ) bag-finite card-0-eq empty-iff by blast
moreover have card (bag t) 6= 1 using t(2 ,3 ) assms no-loops

by (metis One-nat-def card-Suc-eq empty-iff insertE)
ultimately have card (bag t) ≥ 2 by simp
hence max-bag-card > 1 using t(1 ) max-bag-card-lower-bound-bag by fastforce
thus ?thesis unfolding width-def using t(1 ) by fastforce

qed

end — locale TreeDecomposition

4.2 Treewidth of a Graph
context Graph begin

The treewidth of a graph is the minimum treewidth over all its tree decompositions. Here
we assume without loss of generality that the universe of the vertices of the tree is nat.
Because trees are finite, nat always contains enough elements.
abbreviation treewidth-cards :: nat set where treewidth-cards ≡
{ TreeDecomposition.width T bag | (T :: nat Graph) bag. TreeDecomposition G T bag }

definition treewidth :: nat where treewidth ≡ Min treewidth-cards

Every graph has a trivial tree decomposition consisting of a single bag containing all of V.
proposition tree-decomposition-exists: ∃ (T :: ′c Graph) bag. TreeDecomposition G T bag proof−

obtain x where x ∈ (UNIV :: ′c set) by blast
define T where [simp]: T = (| verts = {x}, arcs = {} |)
define bag where [simp]: bag = (λ- :: ′c. V )
have Graph T by unfold-locales simp-all
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then interpret T : Graph T .
have

∧
xs. ¬T .cycle xs using T .cycleE by auto

moreover have
∧

v w. v ∈ V T =⇒ w ∈ V T =⇒ T .connected v w using T .connected-refl by
auto

ultimately have Tree T by unfold-locales
then interpret T : Tree T .
have TreeDecomposition G T bag by unfold-locales (simp-all add: edges-are-in-V )
thus ?thesis by blast

qed

corollary treewidth-cards-upper-bound-V : n ∈ treewidth-cards =⇒ n ≤ card V − 1
using TreeDecomposition.width-bound-V-le by blast

corollary treewidth-cards-finite: finite treewidth-cards
using treewidth-cards-upper-bound-V finite-nat-set-iff-bounded-le by auto

corollary treewidth-cards-nonempty: treewidth-cards 6= {} by (simp add: tree-decomposition-exists)

lemma treewidth-cards-treewidth:
∃ (T :: nat Graph) bag. TreeDecomposition G T bag ∧ treewidth = TreeDecomposition.width T bag
using Min-in treewidth-cards-finite treewidth-cards-nonempty treewidth-def by fastforce

corollary treewidth-upper-bound-V : treewidth ≤ card V − 1 unfolding treewidth-def
using treewidth-cards-nonempty Min-in treewidth-cards-finite treewidth-cards-upper-bound-V by

auto
corollary treewidth-upper-bound-0 : V = {} =⇒ treewidth = 0 using treewidth-upper-bound-V by
simp
corollary treewidth-upper-bound-1 : card V = 1 =⇒ treewidth = 0 using treewidth-upper-bound-V
by simp
corollary treewidth-lower-bound-1 : v→w =⇒ treewidth ≥ 1

using TreeDecomposition.width-lower-bound-1 treewidth-cards-treewidth by fastforce

lemma treewidth-upper-bound-ex:
[[ TreeDecomposition G (T :: nat Graph) bag; TreeDecomposition.width T bag ≤ n ]] =⇒ treewidth
≤ n

unfolding treewidth-def
by (metis (mono-tags, lifting) Min-le dual-order .trans mem-Collect-eq treewidth-cards-finite)

end — locale Graph

4.3 Separations
context TreeDecomposition begin

Every edge s →T t in T separates T. In a tree decomposition, this edge also separates G.
Proving this is our goal. First, let us define the set of vertices appearing in the left subtree
when separating the tree at s →T t.
definition left-part :: ′c ⇒ ′c ⇒ ′a set where

left-part s t ≡
⋃
{ bag u | u. u ∈ T .left-tree s t }

lemma left-partI [intro]: [[ v ∈ bag u; u ∈ T .left-tree s t ]] =⇒ v ∈ left-part s t
unfolding left-part-def by blast

lemma left-part-in-V : left-part s t ⊆ V unfolding left-part-def
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using T .left-tree-in-V bags-in-V by blast

Let us define the subgraph of T induced by a vertex of G.
definition vertex-subtree :: ′a ⇒ ′c set where

vertex-subtree v ≡ { t ∈ V T. v ∈ bag t }
lemma vertex-subtreeI [intro]: [[ t ∈ V T; v ∈ bag t ]] =⇒ t ∈ vertex-subtree v

unfolding vertex-subtree-def by blast

The suggestive name vertex-subtree is correct: Because T is a tree decomposition, ver-
tex-subtree v is a subtree (it is connected).
lemma vertex-subtree-connected:

assumes v: v ∈ V and s: s ∈ vertex-subtree v and t: t ∈ vertex-subtree v
and xs: s  xs T t

shows set xs ⊆ vertex-subtree v
using assms proof (induct xs arbitrary: s)

case (Cons x xs)
show ?case proof (cases)

assume xs = [] thus ?thesis using Cons.prems(3 ,4 ) by auto
next

assume xs 6= []
moreover hence last xs = t using Cons.prems(4 ) last.simps by auto
moreover have T .path xs using Cons.prems(4 ) T .walk-tl by fastforce
moreover have hd xs ∈ vertex-subtree v proof

have hd xs ∈ set (s  T t) using T .unique-connecting-path-unique
using Cons.prems(4 ) ‹xs 6= []› by auto

hence bag s ∩ bag t ⊆ bag (hd xs)
using bags-continuous Cons.prems(4 ) T .connected-in-V by blast

thus v ∈ bag (hd xs) using Cons.prems(2 ,3 ) unfolding vertex-subtree-def by blast
show hd xs ∈ V T using T .connected-in-V (1 ) ‹xs 6= []› ‹T .path xs› by blast

qed
ultimately have set xs ⊆ vertex-subtree v using Cons.hyps Cons.prems(1 ,3 ) by blast
thus ?thesis using Cons.prems(2 ,4 ) by auto

qed
qed simp

corollary vertex-subtree-unique-path-connected:
assumes v ∈ V s ∈ vertex-subtree v t ∈ vertex-subtree v
shows set (s  T t) ⊆ vertex-subtree v
using assms vertex-subtree-connected T .unique-connecting-path-properties
by (metis (no-types, lifting) T .unique-connecting-path T .unique-connecting-path-unique

mem-Collect-eq vertex-subtree-def )

In order to prove that edges in T are separations in G, we need one key lemma. If a vertex
appears on both sides of a separation, then it also appears in the separation.
lemma vertex-in-separator :

assumes st: s →T t and v: v ∈ left-part s t v ∈ left-part t s
shows v ∈ bag s v ∈ bag t

proof−
obtain u u ′ where u: v ∈ bag u u ∈ T .left-tree s t v ∈ bag u ′ u ′ ∈ T .left-tree t s

using v unfolding left-part-def by blast
have s ∈ set (u  T u ′) using T .left-tree-separates st u by blast
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thus v ∈ bag s using bags-continuous u by (meson IntI T .left-treeE subsetCE)
have t ∈ set (u  T u ′) using T .left-tree-separates ′ st u by blast
thus v ∈ bag t using bags-continuous u by (meson IntI T .left-treeE subsetCE)

qed

Now we can show the main theorem: For every edge s →T t in T, the set bag s ∩ bag t is a
separator of G. That is, every path from the left part to the right part goes through bag s
∩ bag t.
theorem bags-separate:

assumes st: s →T t and v: v ∈ left-part s t and w: w ∈ left-part t s and xs: v  xs w
shows set xs ∩ bag s ∩ bag t 6= {}

proof (rule ccontr)
assume ¬?thesis
{

fix u assume u ∈ set xs
with xs v ‹¬?thesis› have vertex-subtree u ⊆ T .left-tree s t
proof (induct xs arbitrary: v)

case (Cons x xs v)
hence contra: v /∈ bag s ∨ v /∈ bag t by (metis path-from-toE IntI empty-iff hd-in-set)
{

assume x = u ¬vertex-subtree u ⊆ T .left-tree s t
then obtain z where z: z ∈ vertex-subtree u z /∈ T .left-tree s t by blast
hence z ∈ vertex-subtree v using Cons.prems(1 ,3 ) ‹x = u›

by (metis list.sel(1 ) path-from-to-def )
hence v ∈ left-part t s unfolding vertex-subtree-def

using T .left-tree-union-V z st by auto
hence False using vertex-in-separator contra st Cons.prems(2 ) by blast

}
moreover {

assume x 6= u
hence u ∈ set xs using Cons.prems(4 ) by auto
moreover hence xs 6= Nil using empty-iff list.set(1 ) by auto
moreover hence last xs = w using Cons.prems(1 ) by auto
moreover have path xs using Cons.prems(1 ) walk-tl by force
moreover have hd xs ∈ left-part s t proof−

have v→hd xs using Cons.prems(1 ,3 ) ‹xs 6= Nil› walk-first-edge ′ by auto
then obtain u ′ where u ′: u ′ ∈ V T v ∈ bag u ′ hd xs ∈ bag u ′

using bags-edges by blast
hence u ′ ∈ T .left-tree s t

using contra vertex-in-separator st T .left-tree-union-V Cons.prems(2 ) by blast
thus ?thesis using u ′(3 ) unfolding left-part-def by blast

qed
moreover have ¬set xs ∩ bag s ∩ bag t 6= {} using Cons.prems(3 )

IntI disjoint-iff-not-equal inf-le1 inf-le2 set-subset-Cons subsetCE by auto
ultimately have vertex-subtree u ⊆ T .left-tree s t using Cons.hyps by blast

}
ultimately show ?case by blast

qed simp
}
hence vertex-subtree w ⊆ T .left-tree s t using xs last-in-set by blast
moreover have vertex-subtree w ∩ T .left-tree t s 6= {} using w
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unfolding left-part-def T .left-tree-def by blast
ultimately show False using T .left-tree-disjoint st by blast

qed

It follows that vertices cannot be dropped from a bag if they have a neighbor that has not
been visited yet (that is, a neighbor that is strictly in the right part of the separation).
corollary bag-no-drop:

assumes st: s →T t and vw: v→w and v: v ∈ bag s and w: w /∈ bag s w ∈ left-part t s
shows v ∈ bag t

proof−
have v  [v,w] w using v vw w(1 ) by auto
hence set [v,w] ∩ bag s ∩ bag t 6= {} using st v w(2 )

by (meson T .edges-are-in-V T .left-tree-initial bags-separate left-partI )
thus ?thesis using w(1 ) by auto

qed

end — locale TreeDecomposition
end

5 Treewidth of Trees
theory TreewidthTree
imports TreeDecomposition begin

The treewidth of a tree is 1 if the tree has at least one edge, otherwise it is 0.
For simplicity and without loss of generality, we assume that the vertex set of the tree is a
subset of the natural numbers because this is what we use in the definition of Graph.treewidth.
While it would be nice to lift this restriction, removing it would entail defining isomor-
phisms between graphs in order to map the tree decomposition to a tree decomposition over
the natural numbers. This is outside the scope of this theory and probably not terribly
interesting by itself.
theorem treewidth-tree:

fixes G :: nat Graph (structure)
assumes Tree G
shows Graph.treewidth G ≤ 1

proof−
interpret Tree G using assms .
{

assume V 6= {}
then obtain root where root: root ∈ V by blast
then interpret RootedTree G root by unfold-locales
define bag where bag v = (if v = root then {v} else {v, parent v}) for v
have v-in-bag:

∧
v. v ∈ bag v unfolding bag-def by simp

have bag-in-V :
∧

v. v ∈ V =⇒ bag v ⊆ V unfolding bag-def
using parent-in-V empty-subsetI insert-subset by auto

have TreeDecomposition G G bag proof
show

⋃
{bag t | t. t ∈ V } = V using bag-in-V v-in-bag by blast

next
fix v w assume v→w

21



moreover have
∧

v ′ w ′. [[ v ′→w ′; v ′ 6= root ]] =⇒ w ′ ∈ bag v ′ ∨ v ′ ∈ bag w ′ unfolding bag-def
by (metis insertI2 parent-edge-cases parent-edge-root singletonI )

ultimately have v ∈ bag w ∨ w ∈ bag v using no-loops undirected by blast
thus ∃ t∈V . v ∈ bag t ∧ w ∈ bag t using ‹v→w› edges-are-in-V v-in-bag by blast

next
fix s u t assume s: s ∈ V and u: u ∈ V and t: t ∈ set (s u)
have t ∈ V using t by (meson s subsetCE u unique-connecting-path-properties(1 ) walk-in-V )
hence s = u =⇒ t = s using left-tree-initial ′ s t by blast
moreover have s→u =⇒ t = s ∨ t = u using s t u ‹t ∈ V ›

by (metis insertE left-treeI left-tree-initial ′ list.exhaust-sel list.simps(15 )
undirected unique-connecting-path-properties(2 ,3 ) unique-connecting-path-set(2 )
unique-connecting-path-tl)

moreover {
assume ∗: s 6= u ¬s→u
have s = root =⇒ bag s ∩ bag u = {} unfolding bag-def

using ∗(1 ,2 ) parent-edge u undirected by fastforce
moreover have u = root =⇒ bag s ∩ bag u = {} unfolding bag-def

using ∗(1 ,2 ) parent-edge s by fastforce
moreover have [[ s 6= root; u 6= root; parent s 6= parent u ]] =⇒ bag s ∩ bag u = {}

unfolding bag-def using ∗(2 ) parent-edge s u undirected by fastforce
moreover {

assume ∗∗: s 6= root u 6= root parent s = parent u t 6= s t 6= u
have bag s ∩ bag u = { parent s } unfolding bag-def using ∗(1 ) ∗∗(1−3 )

Int-insert-left inf .orderE insertE insert-absorb subset-insertI by auto
moreover have t = parent s

using sibling-path[OF s ∗∗(1 ) u ∗∗(2 ) ∗(1 ) ∗∗(3 )] t ∗∗(4 ,5 ) by auto
ultimately have bag s ∩ bag u ⊆ bag t by (simp add: v-in-bag)

}
ultimately have bag s ∩ bag u ⊆ bag t by blast

}
ultimately show bag s ∩ bag u ⊆ bag t by blast

qed
then interpret TreeDecomposition G G bag .
{

fix v
have card { v, parent v } ≤ 2

by (metis card.insert card.empty finite.emptyI finite-insert insert-absorb insert-not-empty
lessI less-or-eq-imp-le numerals(2 ))

hence card (bag v) ≤ 2 unfolding bag-def by simp
}
hence max-bag-card ≤ 2 using ‹V 6= {}› max-bag-card-in-bag-cards by auto
hence width ≤ 1 unfolding width-def by (simp add: ‹V 6= {}›)
hence ∃ bag. TreeDecomposition G G bag ∧ TreeDecomposition.width G bag ≤ 1

using TreeDecomposition-axioms by blast
}
thus ?thesis by (metis TreeDecomposition.width-V-empty le-0-eq linear

treewidth-cards-treewidth treewidth-upper-bound-ex)
qed

If the tree is non-trivial, that is, if it contains more than one vertex, then its treewidth is
exactly 1.
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corollary treewidth-tree-exact:
fixes G :: nat Graph (structure)
assumes Tree G card V G > 1
shows Graph.treewidth G = 1
using assms Graph.treewidth-lower-bound-1 Tree.tree-has-edge Tree-def treewidth-tree
by fastforce

end

6 Treewidth of Complete Graphs
theory TreewidthCompleteGraph
imports TreeDecomposition begin

As an application of the separator theorem bags-separate, or more precisely its corollary
bag-no-drop, we show that a complete graph of size n (a clique) has treewidth n − 1.
theorem (in Graph) treewidth-complete-graph:

assumes
∧

v w. [[ v ∈ V ; w ∈ V ; v 6= w ]] =⇒ v→w
shows treewidth = card V − 1

proof−
{

assume V 6= {}
obtain T bag where

T : TreeDecomposition G (T :: nat Graph) bag treewidth = TreeDecomposition.width T bag
using treewidth-cards-treewidth by blast

interpret TreeDecomposition G T bag using T (1 ) .

assume ¬?thesis
hence width 6= card V − 1 by (simp add: T (2 ))

Let s be a bag of maximal size.
moreover obtain s where s: s ∈ V T card (bag s) = max-bag-card

using max-bag-card-in-bag-cards ‹V 6= {}› by fastforce

The treewidth cannot be larger than card V − 1, so due to our assumption width 6= card
V − 1 it must be smaller, hence card (bag s) < card V.

ultimately have card (bag s) < card V unfolding width-def
using ‹V 6= {}› empty-tree-empty-V le-eq-less-or-eq max-bag-card-upper-bound-V by presburger

then obtain v where v: v ∈ V v /∈ bag s by (meson bag-finite card-mono not-less s(1 ) subsetI )

There exists a bag containing v. We consider the path from s to t and find that somewhere
along this path there exists a bag containing insert v (bag s), which is a contradiction
because such a bag would be too big.

obtain t where t: t ∈ V T v ∈ bag t using bags-exist v(1 ) by blast
with s have ∃ t ∈ V T. insert v (bag s) ⊆ bag t proof (induct s  T t arbitrary: s)

case Nil thus ?case using T .unique-connecting-path-properties(2 ) by fastforce
next

case (Cons x xs s)
show ?case proof (cases)

assume v ∈ bag s thus ?thesis using t Cons.prems(1 ) by blast
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next
assume v /∈ bag s
hence s 6= t using t(2 ) by blast
hence xs 6= Nil using Cons.hyps(2 ) Cons.prems(1 ,3 )

by (metis T .unique-connecting-path-properties(3 ,4 ) last-ConsL list.sel(1 ))
moreover have x = s using Cons.hyps(2 ) Cons.prems(1 ) t(1 )

by (metis T .unique-connecting-path-properties(3 ) list.sel(1 ))
ultimately obtain s ′ xs ′ where s ′: s # s ′ # xs ′ = s  T t

using Cons.hyps(2 ) list.exhaust by metis
moreover have st-path: T .path (s  T t)

by (simp add: Cons.prems(1 ) T .unique-connecting-path-properties(1 ) t(1 ))
ultimately have s ′ ∈ V T by (metis T .edges-are-in-V (2 ) T .path-first-edge)

Bags can never drop vertices because every vertex has a neighbor in G which has not yet
been visited.

have s-in-s ′: bag s ⊆ bag s ′ proof
fix w assume w ∈ bag s
moreover have s →T s ′ using s ′ st-path by (metis T .walk-first-edge)
moreover have v ∈ left-part s ′ s using Cons.prems(1 ,4 ) s ′ t(1 )

by (metis T .left-treeI T .unique-connecting-path-rev insert-subset left-partI
list.simps(15 ) set-rev subsetI )

ultimately show w ∈ bag s ′

using bag-no-drop Cons.prems(1 ,4 ) ‹v /∈ bag s› assms bags-in-V v(1 ) by blast
qed

Bags can never gain vertices because we started with a bag of maximal size.
moreover have card (bag s ′) ≤ card (bag s) proof−

have card (bag s ′) ≤ max-bag-card unfolding max-bag-card-def
using Max-ge ‹s ′ ∈ V T› bag-cards-finite by blast

thus ?thesis using Cons.prems(2 ) by auto
qed
ultimately have bag s ′ = bag s using ‹s ′ ∈ V T› bag-finite card-seteq by blast
thus ?thesis

using Cons.hyps Cons.prems(1 ,2 ) ‹s ′ ∈ V T› t s ′ st-path ‹xs 6= []›
by (metis T .path-from-toI T .path-tl T .unique-connecting-path-properties(4 )

T .unique-connecting-path-unique last.simps list.sel(1 ,3 ))
qed

qed
hence ∃ t ∈ V T. card (bag s) < card (bag t) using v(2 )

by (metis bag-finite card-seteq insert-subset not-le)
hence False using s Max.coboundedI bag-cards-finite not-le unfolding max-bag-card-def by

auto
}
thus ?thesis using treewidth-upper-bound-V card.empty diff-diff-cancel zero-diff by fastforce

qed

end
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7 Example Instantiations

This section provides a few example instantiations for the locales to show that they are not
empty.
theory ExampleInstantiations
imports TreewidthCompleteGraph begin

datatype Vertices = u0 | v0 | w0

The empty graph is a tree.
definition T1 ≡ (| verts = {}, arcs = {} |)
interpretation Graph-T1 : Graph T1 unfolding T1-def by standard simp-all
interpretation Tree-T1 : Tree T1

by (rule Tree.intro, simp add: Graph-T1 .Graph-axioms, standard, unfold T1-def , simp)
(metis T1-def Graph-T1 .cycle-def equals0D simps(2 ))

The complete graph with 2 vertices.
definition T2 ≡ (| verts = {u0 , v0}, arcs = {(u0 ,v0 ),(v0 ,u0 )} |)
lemma Graph-T2 : Graph T2 unfolding T2-def by standard auto
lemma Tree-T2 : Tree T2
proof−

interpret Graph T2 using Graph-T2 .
show ?thesis proof

fix v w assume v ∈ V T2 w ∈ V T2 thus connected v w
by (metis T2-def connected-def connected-edge empty-iff insert-iff last.simps list.discI

list.sel(1 ) path-singleton simps(1 ,2 ))
next

fix xs :: Vertices list
{

fix x y
assume cycle xs and xy: (x = v0 ∧ y = u0 ) ∨ (x = u0 ∧ y = v0 ) and hd xs = x
hence last xs = y

by (metis T2-def cycleE distinct.simps(2 ) distinct-singleton insert-iff list.set(1 )
prod.inject simps(2 ))

moreover have
∧

v. v ∈ set xs =⇒ v = x ∨ v = y using ‹cycle xs› xy
by (metis cycle-def walk-in-V T2-def empty-iff insertE insert-absorb insert-subset

select-convs(1 ))
ultimately have xs = [x,y] using ‹cycle xs› xy

by (metis cycleE distinct-length-2-or-more last.simps list.exhaust-sel list.set-sel(1 )
list.set-sel(2 ) no-loops)

hence False using ‹cycle xs› unfolding cycle-def by simp
}
thus ¬cycle xs by (metis T2-def cycleE empty-iff insertE prod.inject simps(2 ))

qed
qed

As expected, the treewidth of the complete graph with 2 vertices is 1.
Note that we use Graph.treewidth-complete-graph here and not treewidth-tree. This is be-
cause treewidth-tree requires the vertex set of the graph to be a set of natural numbers,
which is not the case here.
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lemma T2-complete: [[ v ∈ V T2; w ∈ V T2; v 6= w ]] =⇒ v →T2 w unfolding T2-def by auto
lemma treewidth-T2 : Graph.treewidth T2 = 1

using Graph.treewidth-complete-graph[OF Graph-T2 ] T2-complete unfolding T2-def by simp

The complete graph with 3 vertices.
definition T3 ≡ (| verts = {u0 , v0 , w0}, arcs = {(u0 ,v0 ),(v0 ,u0 ),(v0 ,w0 ),(w0 ,v0 ),(w0 ,u0 ),(u0 ,w0 )}
|)
lemma Graph-T3 : Graph T3 unfolding T3-def by standard auto

[u0 , v0 , w0 ] is a cycle in T3, so T3 is not a tree.
lemma Not-Tree-T3 : ¬Tree T3 proof

assume Tree T3 then interpret Tree T3 .
let ?xs = [u0 , v0 , w0 ]
have path ?xs by (metis T3-def Vertices.distinct(1 ,3 ,5 )

distinct-length-2-or-more distinct-singleton insert-iff simps(2 ) walk.Cons walk-2 )
moreover have (hd ?xs, last ?xs) ∈ arcs T3 by (simp add: T3-def )
ultimately show False using meeting-paths-produce-cycle no-cycles walk-2

by (metis distinct-length-2-or-more last-ConsL last-ConsR list.sel(1 ))
qed

lemma T3-complete: [[ v ∈ V T3; w ∈ V T3; v 6= w ]] =⇒ v →T3 w unfolding T3-def by auto
lemma treewidth-T3 : Graph.treewidth T3 = 2

using Graph.treewidth-complete-graph[OF Graph-T3 ] T3-complete unfolding T3-def by simp

We omit a concrete example for the TreeDecomposition locale because tree-decomposition-exists
already shows that it is non-empty.
end
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