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Abstract

This work presents a machine-checked tree automata library for
Standard-ML, OCaml and Haskell. The algorithms are efficient by us-
ing appropriate data structures like RB-trees. The available algorithms
for non-deterministic automata include membership query, reduction,
intersection, union, and emptiness check with computation of a witness
for non-emptiness.

The executable algorithms are derived from less-concrete, non-executable
algorithms using data-refinement techniques. The concrete data struc-
tures are from the Isabelle Collections Framework.

Moreover, this work contains a formalization of the class of tree-
regular languages and its closure properties under set operations.
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1 Introduction

This work presents a tree automata library for Isabelle/HOL. Using the
code-generator of Isabelle/HOL, efficient code for all supported target lan-
guages can be generated. Currently, code for Standard-ML, OCaml and
Haskell is generated.

By using appropriate data structures from the Isabelle Collections Frame-
work[4], the algorithms are rather efficient. For some (non-representative)
test set (cf. Section 6.1), the Haskell-versions of the algorithms where only
about 2-3 times slower than a Java-implementation, and several orders of
magnitude faster than the TAML-library [3], that is implemented in OCaml.

The standard-algorithms for non-deterministic tree-automata are available,
i.e. membership query, reduction®, intersection, union, and emptiness check
with computation of a witness for non-emptiness. The choice of the for-
malized algorithms was motivated by the requirements for a model-checker
for DPNs[1], that the author is currently working on[5]. There, only inter-
section and emptiness check are needed, and a witness for non-emptiness is
needed to derive an error-trace.

The algorithms are first formalized using the appropriate Isabelle data-types
and specification mechanisms, mainly sets and inductive predicates. How-
ever, those algorithms are not efficiently executable. Hence, in a second
step, those algorithms are systematically refined to use more efficient data
structures from the Isabelle Collections Framework [4].

Apart from the executable algorithms, the library also contains a formaliza-
tion of the class of ranked tree-regular languages and its standard closure
properties. Closure under union, intersection, complement and difference is
shown.

For an introduction to tree automata and the algorithms used here, see the
TATA-book [2].
1.1 Submission Structure

In this section, we give a brief overview of the structure of this submission
and a description of each file and directory.

1.1.1 common/

This directory contains a collection of generally useful theories.

Misc.thy Collection of various lemmas augmenting isabelle’s standard li-
brary.

!Currently only backward (utility) reduction is refined to executable code



1.1.2 common/bugfixes/

This directory contains bugfixes of the Isabelle standard libraries and tools.
Currently, just one fix for the OCaml code-generator.

Efficient_ Nat.thy Replaces Library/Efficient_Nat.thy. Fixes issue with
OCaml code generation. Provided by Florian Haftmann.

1.1.3 ./

This is the main directory of the submission, and contains the formalization
of tree automata.

AbsAlgo.thy Algorithms on tree automata.
Ta_ impl.thy Executable implementation of tree automata.
Ta.thy Formalization of tree automata and basic properties.

Tree.thy Formalization of trees.

document/ Contains files for latex document creation

IsaMakefile Isabelle makefile to check the proofs and build logic image and
latex documents

ROOT.ML Setup for theories to be proofchecked and included into latex
documents

TODO Todo list

1.1.4 code/

This directory contains the generated code as well as some test cases for
performance measurement.

The test-cases consists of pairs of medium-sized tree automata (10-100 states,
a few hundred rules). The performance test intersects the automata from
each pair and checks the result for emptiness. If the result is not-empty, a
tree accepted by both automata is constructed.

Currently, the tests are restricted to finding witnesses of non-emptiness for
intersection, as this is the intended application of this library by the author.

doTests.sh Shell-script to compile all test-cases and start the performance
measurement. When finnished, the script outputs an overview of the
time needed by all supported languages.



1.1.5 code/ml/
This directory contains the SML code.

code/ml/generated/ Contains the file Ta.ML, created by Isabelle’s code
generator. This file declares a module Ta that contains all functions
of the tree automata interface.

doTests.sh Shell script to execute SML performance test
Main.ML This file executes the ML performance tests.

pt__examples.ML This file contains the input data for the performance
test.

run.sh Used by doTests.sh

test__setup.ML Required by Main. ML

1.1.6 code/ocaml/
This directory contains the OCaml code.

code/ocaml/generated/ Contains the file Ta.ml, created by Isabelle’s
code generator. This file declares a module Ta that contains all func-
tions of the tree automata interface.

doTests.sh Shell script to compile and execute OCaml performance test.
Main.ml Main file for compiled performance tests.

Main__script.ml Main file for scripted performance tests.

make.sh Compile performance test files.

Pt__examples.ml Contains the input data for the performance test.
run__script.sh Run the performance test in script mode (slow).

Test__setup.ml Required by Main.ml and Main__script.ml.

1.1.7 code/haskell/

This directory contains the Haskell code.

code/haskell /generated/ Contains the files generated by Isabelle’s code
generator. The Ta.hs declares the module Ta that contains the tree
automata interface. There may be more files in this directory, that
declare modules that are imported by Ta.



doTests.sh Compile and execute performance tests.
Main.hs Source-code of performance tests.
make.sh Compile performance tests.

Pt__examples.hs Input data for performance tests.

1.1.8 code/taml/

This directory contains the Timbuk/Taml test cases.

Main.ml Runs the test-cases. To be executed within the Taml-toplevel.

code/taml/tests/ This directory contains Taml input files for the test
cases.

2 Trees

theory Tree
imports Main
begin

This theory defines trees as nodes with a label and a list of subtrees.

datatype 'l tree = NODE 'l 'l tree list
datatype-compat tree

end

3 Tree Automata

theory Ta
imports Main Automatic-Refinement.Misc Tree
begin

This theory defines tree automata, tree regular languages and specifies basic

algorithms.

Nondeterministic and deterministic (bottom-up) tree automata are defined.

For non-deterministic tree automata, basic algorithms for membership, union,
intersection, forward and backward reduction, and emptiness check are spec-

ified. Moreover, a (brute-force) determinization algorithm is specified.

For deterministic tree automata, we specify algorithms for complement and

completion.

Finally, the class of regular languages over a given ranked alphabet is defined

and its standard closure properties are proved.



The specification of the algorithms in this theory is very high-level, and the
specifications are not executable. A bit more specific algorithms are defined
in Section 4, and a refinement to executable definitions is done in Section 5.

3.1 Basic Definitions
3.1.1 Tree Automata

A tree automata consists of a (finite) set of initial states and a (finite) set
of rules.

A rule has the form ¢ — [ g1...¢gn, with the meaning that one can derive
I(g1...qn) from the state gq.

datatype ('q,’l) ta-rule = RULE 'q 'l 'q list (<- — - =)

record ('Q,’L) tree-automaton-rec =
ta-initial :: 'Q set
ta-rules :: ('Q,’L) ta-rule set

— Rule deconstruction

fun lhs where lhs (¢ — 1 gs) = ¢

fun rhsq where rhsq (¢ — 1 gs) = gs

fun rhsl where rhsl (¢ — [ gs) =1
— States in a rule

fun rule-states where rule-states (q — 1 qs) = insert q (set gs)
— States in a set of rules

definition 0-states § == | (rule-states )
— States in a tree automaton

definition ta-rstates TA = ta-initial TA U §-states (ta-rules TA)
— Symbols occurring in rules

definition d-symbols 6 == rhsl‘$

— Nondeterministic, finite tree automaton (NFTA)
locale tree-automaton =

fixes TA :: ('Q,'L) tree-automaton-rec

assumes finite-rules[simp, introl]: finite (ta-rules TA)

assumes finite-initial[simp, intro!]: finite (ta-initial TA)

begin
abbreviation Q: == ta-initial TA
abbreviation § == ta-rules TA
abbreviation @) == ta-rstates TA
end

3.1.2 Acceptance

The predicate accs § t g is true, iff the tree ¢ is accepted in state ¢ w.r.t.
the rules in 6.

A tree is accepted in state ¢, if it can be produced from ¢ using the rules.



inductive accs :: ('Q,’L) ta-rule set = 'L tree = 'Q = bool
where

(¢ = f qs) € 0; length ts = length gs;
4. i<length gs = accs § (ts ! i) (gs ! 9)
] = accs 6 (NODE fts) q

— Characterization of Ta.accs using list-all-zip
inductive accs-laz :: ('Q,’L) ta-rule set = 'L tree = 'Q = bool
where

[
(¢ = fgs) €0
list-all-zip (accs-laz §) ts gs
] = accs-laz § (NODE f ts) q

lemma accs-laz: accs = acces-laz
(proof )

3.1.3 Language

The language of a tree automaton is the set of all trees that are accepted in
an initial state.

definition ta-lang TA == { t . 3 q€ta-initial TA. accs (ta-rules TA) t q }

3.2 Basic Properties

lemma rule-states-simp:
rule-states x = (case © of (¢ — 1 qs) = insert q (set ¢s))
(proof)

lemma rule-states-lhs[simp): lhs r € rule-states r
{proof)

lemma rule-states-rhsq: set (rhsq r) C rule-states r
{proof )

lemma rule-states-finite[simp, intro!]: finite (rule-states r)
{proof)

lemma §-statesl:
assumes A: (¢ — [ ¢s)€d
shows ¢&d-states §
set gs C d-states §

(proof)

lemma §-statesl”: [(q — 1 gs)€0; qi€set qs] = qi€d-states 0
(proof )



lemma §-states-accsl: accs § n q = g€0-states 0
(proof)

lemma §-states-union[simpl: §-states (6Ud’) = d-states § U §-states &'
(proof)

lemma §-states-insert[simp:
d-states (insert r §) = (rule-states r U d-states 0)

{proof)

lemma §-states-mono: [§ C 0] = J-states § C d-states 6’
{proof)

lemma J-states-finite[simp, intro]: finite § = finite (§-states )

(proof)

lemma §-statesE: [g€d-states A;
Wfgs. [ (¢ — fqs)eA ] = P;
Wl fgs. [ (¢l = fqs)EA; g€set qgs | = P
]= P
(proof )

lemma §-symbolsl: (¢ — f qs)€d = fe€d-symbols &
(proof)

lemma d-symbolsE:
assumes A: fed-symbols §
obtains ¢ gs where (¢ — f¢s) € §

{proof)

lemma §-symbols-simps|simp]:
d-symbols {} = {}
d-symbols (insert r 0) = insert (rhsl r) (§-symbols §)
d-symbols (6US) = §-symbols 6 U §-symbols §’
(proof)

lemma §-symbols-finite[simp, introl]:
finite 6 = finite (0-symbols 9)
{proof )

lemma accs-mono: [accs § n q; 6C6'] = aces 6’ n g

(proof)

context tree-automaton
begin
lemma initial-subset: ta-initial TA C ta-rstates TA

(proof)

lemma states-subset: -states (ta-rules TA) C ta-rstates TA

(proof)
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lemma finite-states[simp, introl]: finite (ta-rstates TA)

(proof)

lemma finite-symbols[simp, intro!]: finite (§-symbols (ta-rules TA))

(proof)

lemmas is-subset = rev-subsetD[OF - initial-subset]
rev-subsetD[OF - states-subset]
end

3.3 Other Classes of Tree Automata
3.3.1 Automata over Ranked Alphabets

inductive-set ranked-trees :: ('L — nat) = 'L tree set
for A where
[ Vteset ts. teranked-trees A; A f = Some (length ts) ]
= NODE f ts € ranked-trees A

locale finite-alphabet =

fixes A :: ('L — nat)

assumes A-finite[simp, intro!]: finite (dom A)
begin

abbreviation F' == dom A
end

context finite-alphabet
begin

definition legal-rules Q@ == { (¢ — f¢s) | q f gs.
q€@Q
A gs € lists @
A A f = Some (length gs)}

lemma legal-rulesl:
[
red;
rule-states v C Q;
A (rhsl r) = Some (length (rhsq 1))
] = relegal-rules @

(proof)

lemma legal-rules-finite[simp, introl]:
fixes Q::'Q set
assumes [simp, introl]: finite Q
shows finite (legal-rules Q)

(proof )

end

11



— Finite tree automata with ranked alphabet
locale ranked-tree-automaton =

tree-automaton TA +

finite-alphabet A

for TA :: ('Q,’L) tree-automaton-rec

and A :: 'L — nat +

assumes ranked: (¢ — f qs)€6 = A f = Some (length gs)
begin

lemma rules-legal: r€d = relegal-rules Q

(proof)

lemma accs-is-ranked: accs § t ¢ = t€ranked-trees A

(proof)

theorem lang-is-ranked: ta-lang TA C ranked-trees A

(proof)

end

3.3.2 Deterministic Tree Automata

locale det-tree-automaton = ranked-tree-automaton TA A

for TA :: ('Q,’L) tree-automaton-rec and A +

assumes deterministic: [ (¢ — f ¢s)€0; (¢' — f¢s)€d | = ¢=¢’
begin

theorem accs-unique: [ accs § t q; aces § t ¢' | = q=q’

(proof)

end

3.3.3 Complete Tree Automata

locale complete-tree-automaton = det-tree-automaton TA A
for TA :: ('Q,’L) tree-automaton-rec and A
_|_
assumes complete:
[ gs€lists Q; A f = Some (length ¢s) | = Jq. (¢ — [ ¢s)€d
begin

— In a complete DFTA, all trees can be labeled by some state
theorem label-all: t€ranked-trees A =— 3q€Q. accs § t g

{proof)

end

3.4 Algorithms

In this section, basic algorithms on tree-automata are specified. The speci-
fication is a high-level, non-executable specification, intended to be refined
to more low-level specifications, as done in Sections 4 and 5.
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3.4.1 Empty Automaton

definition ta-empty == (| ta-initial = {}, ta-rules = {})

theorem ta-empty-lang[simp|: ta-lang ta-empty = {}
{proof)

theorem ta-empty-ta[simp, intro!]: tree-automaton ta-empty
(proof)

theorem (in finite-alphabet) ta-empty-rta[simp, intro!:
ranked-tree-automaton ta-empty A

{proof)

theorem (in finite-alphabet) ta-empty-dta[simp, introl]:
det-tree-automaton ta-empty A
(proof)

3.4.2 Remapping of States

fun remap-rule where remap-rule f (¢ — 1 qs) = ((f ¢) — 1 (map f ¢s))
definition
ta-remap [ TA == ( ta-initial = f ¢ ta-initial TA,
ta-rules = remap-rule f ¢ ta-rules TA

)

lemma §-states-remap[simp]: -states (remap-rule f < §) = f* -states &
{proof)

lemma remap-accsl: accs 6 n ¢ = accs (remap-rule f *6) n (f q)

(proof)

lemma remap-langl: t€ta-lang TA = t€ta-lang (ta-remap f TA)
(proof )

lemma remap-accs2: |

accs &' n q’;
0'=(remap-rule f * §);
¢=fq
inj-on f Q;
qe@;
d-states 6 C @

] = aces § n g

(proof)

lemma (in tree-automaton) remap-lang2:
assumes I: inj-on f (ta-rstates TA)
shows t€ta-lang (ta-remap f TA) = t€ta-lang TA
{proof )

13



theorem (in tree-automaton) remap-lang:
inj-on f (ta-rstates TA) = ta-lang (ta-remap f TA) = ta-lang TA
(proof)

lemma (in tree-automaton) remap-ta[intro!, simpl:
tree-automaton (ta-remap f TA)

{proof)

lemma (in ranked-tree-automaton) remap-rta[intro!, simp:
ranked-tree-automaton (ta-remap f TA) A

(proof)

lemma (in det-tree-automaton) remap-dtalintro, simp]:
assumes INJ: inj-on f Q
shows det-tree-automaton (ta-remap f TA) A

(proof)

lemma (in complete-tree-automaton) remap-ctalintro, simp):
assumes INJ: inj-on f Q
shows complete-tree-automaton (ta-remap f TA) A

(proof)

3.4.3 TUnion

definition ta-union TA TA' ==
( ta-initial = ta-initial TA U ta-initial TA',
ta-rules = ta-rules TA U ta-rules TA’

)

— Given two disjoint sets of states, where no rule contains states from both sets,
then any accepted tree is also accepted when only using one of the subsets of
states and rules. This lemma and its corollaries capture the basic idea of the
union-algorithm.

lemma accs-exclusive-auz:

[ accs dn n g; dn=0U¢"; &-states 6 N §-states &' = {}; q€d-states § |
= accs 6 n q

(proof)

corollary accs-exclusivel:
[ accs (8US") n g; 0-states 6 N d-states 6" = {}; q€d-states J ]
= accs 6 n q

(proof)

corollary accs-exclusive2:
[ accs (8US") n g; 0-states 6 N d-states &' = {}; q€d-states 0
= accs 0’ n g

(proof)
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lemma ta-union-correct-auzl:
fixes TA TA'
assumes TA: tree-automaton TA
assumes TA’": tree-automaton TA'
assumes DJ: ta-rstates TA N ta-rstates TA' = {}
shows ta-lang (ta-union TA TA') = ta-lang TA U ta-lang TA'

(proof)

lemma ta-union-correct-auz2:
fixes TA TA'
assumes TA: tree-automaton TA
assumes TA": tree-automaton TA’
shows tree-automaton (ta-union TA TA’)
(proof)
theorem ta-union-correct:
fixes TA TA'
assumes TA: tree-automaton TA
assumes TA’: tree-automaton TA'
assumes DJ: ta-rstates TA N ta-rstates TA' = {}
shows ta-lang (ta-union TA TA') = ta-lang TA U ta-lang TA’
tree-automaton (ta-union TA TA')

{proof)

lemma ta-union-rta:
fixes TA TA'
assumes TA: ranked-tree-automaton TA A
assumes TA’": ranked-tree-automaton TA' A
shows ranked-tree-automaton (ta-union TA TA') A

(proof)

The union-algorithm may wrap the states of the first and second automaton
in order to make them disjoint

datatype ('q1,’q2) ustate-wrapper = USW1 'q1 | USW2 'q2

lemma usw-disjoint[simp]:
USW1 ‘X N USW2 ‘Y = {}
remap-rule USW1 * X N remap-rule USW2 * Y = {}

{proof)

lemma states-usw-disjoint[simpl:
ta-rstates (ta-remap USW1 X) N ta-rstates (ta-remap USW2 Y) = {}
(proof )
lemma usw-inj-on[simp, introl]:
inj-on USW1 X
inj-on USW2 X
{proof)

definition ta-union-wrap TA TA' =
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ta-union (ta-remap USWI1 TA) (ta-remap USW2 TA’)

lemma ta-union-wrap-correct:
fixes TA :: ('Q1,’L) tree-automaton-rec
fixes TA' :: ('Q2,'L) tree-automaton-rec
assumes TA: tree-automaton TA
assumes TA'": tree-automaton TA'
shows ta-lang (ta-union-wrap TA TA') = ta-lang TA U ta-lang TA' (is ¢T1)
tree-automaton (ta-union-wrap TA TA') (is ?T2)

{(proof)

lemma ta-union-wrap-rta:
fixes TA TA'
assumes TA: ranked-tree-automaton TA A
assumes TA’: ranked-tree-automaton TA' A
shows ranked-tree-automaton (ta-union-wrap TA TA') A

(proof)

3.4.4 Reduction

definition reduce-rules § P == 6 N { r. rule-states r C P }

lemma reduce-rulesl: [r€d; rule-states r C P] = re&reduce-rules § P
{proof)

lemma reduce-rulesD:
[ rereduce-rules 6 P | = reé
[ rereduce-rules § P; qe€rule-states r] = q€P

{proof)

lemma reduce-rules-subset: reduce-rules 6 P C ¢
(proof )

lemma reduce-rules-mono: P C P’ => reduce-rules 6 P C reduce-rules § P’
(proof)

lemma §-states-reduce-subset:
shows d-states (reduce-rules 6 Q) C d-states 6 N Q

{proof)

lemmas 0-states-reduce-subset] = rev-subsetD]OF - 0-states-reduce-subset]

definition ta-reduce
= ('Q,'L) tree-automaton-rec = ('Q set) = ('Q,’L) tree-automaton-rec
where ta-reduce TA P ==
( ta-initial = ta-initial TA N P,
ta-rules = reduce-rules (ta-rules TA) P |

— Reducing a tree automaton preserves the tree automata invariants
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theorem ta-reduce-inv: assumes A: tree-automaton TA
shows tree-automaton (ta-reduce TA P)

(proof)

lemma reduce-0-states-rules[simpl:
(ta-rules (ta-reduce TA (d-states (ta-rules TA)))) = ta-rules TA

(proof )
lemma ta-reduce-9-states:

ta-lang (ta-reduce TA (§-states (ta-rules TA))) = ta-lang TA
{proof)

Forward Reduction We characterize the set of forward accessible states
by the reflexive, transitive closure of a forward-successor (f-succ C Q% Q)
relation applied to the initial states.

The forward-successors of a state ¢ are those states ¢’ such that there is a
rule ¢ «+ f(...¢...).

inductive-set f-succ for § where
[(¢g — 1 gs)€d; q'eset qs] = (q,q) € f-succ §

— Alternative characterization of forward successors

lemma f-succ-alt: f-succ 6 = {(q,q"). Il gs. (¢ — 1 gs)€J A ¢'Eset gs}
(proof)

definition f-accessible 6 Q0 == ((f-succ §)*) “ Q0

— Alternative characterization of forward accessible states. The initial states are
forward accessible, and if there is a rule whose lhs-state is forward-accessible,
all rhs-states of that rule are forward-accessible, too.

inductive-set f-accessible-alt :: ('Q,’L) ta-rule set = 'Q set = 'Q set
for § QO
where
fa-refl: g0€Q0 = q0 € f-accessible-alt 6 QO |
fa-step: [ q€f-accessible-alt 6 Q0; (¢ — 1 qs)€J; q'Eset ¢s |
= ¢q' € f-accessible-alt 6 QO

lemma f-accessible-alt: f-accessible § Q0 = f-accessible-alt § QO
(proof )

lemmas f-accessiblel = f-accessible-alt.intros|folded f-accessible-alt]
lemmas f-accessibleE = f-accessible-alt.cases|folded f-accessible-alt]

lemma f-succ-finite[simp, intro|: finite 6 = finite (f-succ §)
{proof)

lemma f-accessible-mono: QC Q' = z€f-accessible 6 Q = xE€f-accessible § Q'
(proof)

lemma f-accessible-prepend:

17



[ (¢ = 1qs) € d; q'eset gs; x€f-accessible § {q'} |
= z&f-accessible § {q}
(proof )

lemma f-accessible-subset: q€f-accessible § Q = q€@Q U §-states §
(proof)

lemma (in tree-automaton) f-accessible-in-states:
q€f-accessible (ta-rules TA) (ta-initial TA) = g€ta-rstates TA

(proof)

lemma f-accessible-refl-inter-simp[simp]: @ N f-accessible r Q@ = Q

{proof )
lemma accs-reduce-f-acc:
accs 0 t ¢ = aces (reduce-rules § (f-accessible 6 {q})) t q

(proof)

abbreviation ta-fwd-reduce TA ==
(ta-reduce TA (f-accessible (ta-rules TA) (ta-initial TA)))

— Forward-reducing a tree automaton does not change its language
theorem ta-reduce-f-acc[simpl: ta-lang (ta-fwd-reduce TA) = ta-lang TA

{proof)

Backward Reduction A state is backward accessible, iff at least one tree
is accepted in it.

Inductively, backward accessible states can be characterized as follows: A
state is backward accessible, if it occurs on the left hand side of a rule, and
all states on this rule’s right hand side are backward accessible.

inductive-set b-accessible :: ('Q,’L) ta-rule set = 'Q set
for §
where
[ (¢ = 1gs)ed; Na. x€set gs => xEb-accessible § | = q€b-accessible §

lemma b-accessiblel:
[(g = 1 gs)€d; set qs C b-accessible 8] = g€b-accessible §

(proof)
lemma accs-is-b-accessible: accs § t ¢ = g€ b-accessible §

{proof)

lemma b-acc-subset-6-statesl: x€b-accessible 6 =—> x€d-states §

(proof)

lemma b-acc-subset-0-states: b-accessible § C d-states O
(proof)

lemma b-acc-finite[simp, introl]: finite 6 = finite (b-accessible §)
{proof)
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lemma b-accessible-is-accs:
[ g€b-accessible (ta-rules TA);
. aces (ta-rules TA) t ¢ = P
l=7Pr
(proof)
lemma accs-reduce-b-acc:
accs 0 t ¢ = accs (reduce-rules § (b-accessible §)) t g

{proof)
abbreviation ta-bwd-reduce TA == (ta-reduce TA (b-accessible (ta-rules TA)))

— Backwards-reducing a tree automaton does not change its language
theorem ta-reduce-b-acc[simp]: ta-lang (ta-bwd-reduce TA) = ta-lang TA
(proof)
theorem empty-if-no-b-accessible:
ta-lang TA = {} +— ta-initial TA N b-accessible (ta-rules TA) = {}

(proof)

3.4.5 Product Automaton

The product automaton of two tree automata accepts the intersection of the
languages of the two automata.

fun r-prod where
r-prod (q1 — 11 gs1) (g2 — 12 ¢s2) = ((q1,92) — 11 (zip gsl ¢s2))

— Product rules
definition §-prod §1 62 ==
r-prod (g1 — lgs1) (g2 — 1 gs2) | q1 q2 1 qs1 ¢s2.
length qs1 = length qs2 N
(g1 — lgs1)edl A
(g2 — 1 gs2)€d2

}

lemma §-prodl: |
length qs1 = length qs2;
(g1 — 1 gs1)edt;
(g2 — 1 ¢s2)ed2 | = ((q1,92) — 1 (zip qs1 gs2)) € d-prod 61 62
(proof)

lemma é-prodE:
[
red-prod 61 62;
g1 g2 1 gs1 qs2. [ length gqs1 = length ¢s2;
(g1 — lgs1)edt;
(g2 — 1 ¢s2)€d2;
r = ((q1,92) — 1 (zip gsl ¢s2))
]=FP
|= P
(proof)
lemma §-prod-sound:
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assumes A: accs (6-prod 61 62) t (q1,q2)
shows accs 01t q1  aces 621 ¢2
(proof)
lemma J-prod-precise:
[ accs 61t q1; aces 62t q2 | = accs (6-prod §1 62) t (q1,92)

(proof)

lemma §-prod-empty[simp):
d-prod {} 6 = {}
d-prod 6 {} = {}
(proof )

lemma §-prod-2sng[simp]:
[ rhsl r1 # rhsl r2 | = é-prod {r1} {r2} = {}
[ length (rhsq r1) # length (rhsq r2) | = d-prod {r1} {r2} = {}
[ rhsl r1 = rhsl r2; length (rhsq r1) = length (rhsq r2) ]
= d-prod {r1} {r2} = {r-prod r1 r2}
(proof)

lemma §-prod-Un[simp]:
d-prod (61U61") 62 = §-prod §1 62 U d-prod §1' 62
d-prod §1 (62Ud2") = §-prod 61 §2 U d-prod 51 62’

{proof)

The next two definitions are solely for technical reasons. They are required
to allow simplification of expressions of the form §-prod (insert r §1) 62 or
d-prod 01 (insert r §2), without making the simplifier loop.

definition §-prod-sngl r 62 ==
case r of (g1 — 1 gsl) =
{ r-prod r (¢2 — 1 ¢s2) |
q2 qs2. length gs1 = length qs2 A (¢2 — 1 gs2)€62
¥

definition §-prod-sng2 §1 r ==
case r of (¢2 — 1 ¢s2) =
{ r-prod (g1 — 1gsl) r|
ql gsl. length gs1 = length qs2 A (g1 — 1 gs1)€d1
¥

lemma J-prod-sng-alt:
d-prod-sngl v 62 = 6-prod {r} 62
d-prod-sng2 61 r = d-prod 61 {r}
(proof)
lemmas §-prod-insert =
0-prod-Un(1)[where 251.0={z}, simplified, folded &-prod-sng-alt]
0-prod-Un(2)[where 252.0={z}, simplified, folded &-prod-sng-alt]

for z

— Product automaton
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definition ta-prod TA1 TA2 ==
( ta-initial = ta-initial TA1 X ta-initial TA2,
ta-rules = 6-prod (ta-rules TA1) (ta-rules TA2)

J

lemma ta-prod-correct-auzl:
ta-lang (ta-prod TA1 TA2) = ta-lang TA1 N ta-lang TA2

{proof)

lemma §-states-cart:
q € d-states (6-prod 01 62) = q € §-states 61 X -states 62

{proof)

lemma §-prod-finite [simp, intro):
finite 61 = finite 62 = finite (6-prod 61 62)
(proof)

lemma ta-prod-correct-auz2:
assumes TA: tree-automaton TA1  tree-automaton TA2
shows tree-automaton (ta-prod TA1 TA2)
{proof)
theorem ta-prod-correct:
assumes TA: tree-automaton TA1  tree-automaton TA2
shows
ta-lang (ta-prod TA1 TA2) = ta-lang TA1 N ta-lang TA2
tree-automaton (ta-prod TA1 TAZ2)

{proof)

lemma ta-prod-rta:
assumes TA: ranked-tree-automaton TA1 A ranked-tree-automaton TA2 A
shows ranked-tree-automaton (ta-prod TA1 TA2) A

(proof)

3.4.6 Determinization

We only formalize the brute-force subset construction without reduction.

The basic idea of this construction is to construct an automaton where the
states are sets of original states, and the lhs of a rule consists of all states
that a term with given rhs and function symbol may be labeled by.

context ranked-tree-automaton
begin
— Left-hand side of subset rule for given symbol and rhs
definition §ss-lhs f ss ==
{q| qgs. (¢ — fqs)€d A list-all-zip (€) gs ss }

— Subset construction
inductive-set dss :: ('Q set,’L) ta-rule set where
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[ Af = Some (length ss);
ss € lists {s. s C ta-rstates TA};
s = ss-lhs [ ss

] = (s — fss) € dss

lemma §ssl:
assumes A: A f = Some (length ss)
ss € lists {s. s C ta-rstates TA}
shows
( (0ss-lhs f ss) — fss) € dss
(proof)

lemma §ss-subset][simp, introl]: dss-lhs f ss C Q

(proof)

lemma §ss-finite[simp, introl]: finite dss
(proof)

lemma §ss-det: [ (¢ — fqs) € dss; (¢' — fqs) €dss | = q=¢’
(proof)

lemma dss-accs-sound:
assumes A: accs § t g
obtains s where
sCQ
ges
accs 0ss t s

(proof)

lemma ¢ss-accs-precise:
assumes A: accs dssts  gE€s
shows accs 0 t g

(proof)
definition detTA == (| ta-initial = { s. sCQ A sNQi # {} },
ta-rules = dss )

theorem detTA-is-ta[simp, intro]:
det-tree-automaton detTA A
(proof)

theorem detTA-lang[simp]:
ta-lang (detTA) = ta-lang TA
(proof)

lemmas detTA-correct = detTA-is-ta detTA-lang
end
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3.4.7 Completion

To each deterministic tree automaton, rules and states can be added to make
it complete, without changing its language.
context det-tree-automaton
begin
— States of the complete automaton
definition Qcomplete == insert None (Some‘Q)

lemma Qcomplete-finite[simp, introl]: finite Qcomplete

(proof)
definition dcomplete :: ('Q option, 'L) ta-rule set where
dcomplete == (remap-rule Some ‘0)

U { (None — fqs) | f gs.
A f = Some (length gs)
A gs€lists Qcomplete
A =(F qo gso. (qo — f qso)€d N gs=map Some gso ) }

lemma J-states-complete: q€§-states §complete = q€ Qcomplete

(proof)

definition
completeTA == (| ta-initial = Some‘Qi, ta-rules = dcomplete |)

lemma §complete-finite[simp, intro]: finite jcomplete
(proof)

theorem completeTA-is-ta: complete-tree-automaton completeTA A
(proof )

theorem completeTA-lang: ta-lang complete TA = ta-lang TA
{proof )

lemmas complete TA-correct = complete TA-is-ta complete TA-lang
end

3.4.8 Complement

A deterministic, complete tree automaton can be transformed into an au-
tomaton accepting the complement language by complementing its initial
states.

context complete-tree-automaton
begin

— Complement automaton, i.e. that accepts exactly the trees not accepted by
this automaton
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definition complementTA == (|
ta-initial = Q — Q1,
ta-rules = ¢ |

lemma cta-rules[simpl: ta-rules complementTA = ¢
(proof )

theorem complementTA-correct:
ta-lang complementTA = ranked-trees A — ta-lang TA (is ¢T1)
complete-tree-automaton complementTA A (is ¢T2)

{proof)

end

3.5 Regular Tree Languages
3.5.1 Definitions

definition regular-languages :: ('L — nat) = 'L tree set set
where regular-languages A ==
{ ta-lang TA | (TA::(nat,’L) tree-automaton-rec).
ranked-tree-automaton TA A }

lemma rtlE:
fixes L :: 'L tree set
assumes A: Leregular-languages A
obtains TA::(nat,’L) tree-automaton-rec where
L=ta-lang TA
ranked-tree-automaton TA A
(proof)

context ranked-tree-automaton
begin

lemma (in ranked-tree-automaton) rtll[simp]:
shows ta-lang TA € regular-languages A

(proof )
It is sometimes more handy to obtain a complete, deterministic tree automa-
ton accepting a given regular language.

theorem obtain-complete:
obtains TAC::('Q set option,’L) tree-automaton-rec where
ta-lang TAC = ta-lang TA
complete-tree-automaton TAC A

(proof)

end
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lemma rtlE-complete:
fixes L :: 'L tree set
assumes A: Leregular-languages A
obtains TA:(nat,’L) tree-automaton-rec where
L=ta-lang TA
complete-tree-automaton TA A
(proof)

3.5.2 Closure Properties

In this section, we derive the standard closure properties of regular lan-
guages, i.e. that regular languages are closed under union, intersection,
complement, and difference, as well as that the empty and the universal
language are regular.

Note that we do not formalize homomorphisms or tree transducers here.

theorem (in finite-alphabet) rtl-empty[simp, introl]: {} € regular-languages A

(proof)

theorem rtl-union-closed:
[ L1eregular-languages A; L2Eregular-languages A ]
= L1UL2 € regular-languages A

(proof)

theorem rtl-inter-closed:
[L1€regular-languages A; L2€regular-languages A] =
L1NL2 € regular-languages A

(proof)

theorem rtl-complement-closed:
Leregular-languages A => ranked-trees A — L € regular-languages A

(proof)

theorem (in finite-alphabet) rtl-univ:
ranked-trees A € regular-languages A
(proof)

theorem rtl-diff-closed:
fixes L1 :: 'L tree set
assumes A[simp]: L1 € regular-languages A L2€regular-languages A
shows L1—L2 € reqular-languages A

(proof)

lemmas rtl-closed = finite-alphabet.rtl-empty finite-alphabet.rtl-univ
rtl-complement-closed
rtl-inter-closed rtl-union-closed rtl-diff-closed
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end

4 Abstract Tree Automata Algorithms

theory AbsAlgo

imports
Ta
Collections-Examples. Exploration
Collections. Collections V1

begin

no-notation fun-rel-syn (infixr «(—» 60)

This theory defines tree automata algorithms on an abstract level, that
is using non-executable datatypes and constructs like sets, set-collecting
operations, etc.

These algorithms are then refined to executable algorithms in Section 5.

4.1 Word Problem

First, a recursive version of the accs-predicate is defined.

fun r-match :: 'a set list = 'a list = bool where
r-match [| [| +— True |
r-match (A#AS) (a#as) «— a€A A r-match AS as |
r-match - - «<— False

— AbsAlgo.r-match accepts two lists, if they have the same length and the elements
in the second list are contained in the respective elements of the first list:
lemma r-match-alt:
r-match L | «— length L = length | A (Vi<length l. I'i € L)
(proof)
fun r-matchc where
r-matche g 1 Qs (qr — lr gsr) «— q=qr A I=lr A r-match Qs gsr

— recursive version of accs-predicate
fun faccs :: ('Q,’L) ta-rule set = 'L tree = 'Q set where
faccs & (NODE fts) = (
let Qs = map (faces 0) (ts) in
{q. 3r€d. r-matchc q f Qs r }
)

lemma faccs-correct-aux:

g€faccs § n = accs § n q (is ?T1)

(map (faccs 0) ts = map (At. { q . accs & t q}) ts) (is 7T2)
(proof)
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theorem faccs-correct]: g€faccs § n = accs § n q

(proof)
theorem faccs-correct2: accs § n ¢ = q€faccs § n

(proof)

lemmas faccs-correct = faccs-correct! faccs-correct2

lemma faccs-alt: faces § t = {q. accs 6 t q} {proof)

4.2 Backward Reduction and Emptiness Check
4.2.1 Auxiliary Definitions

inductive-set bacc-step :: ('Q,’L) ta-rule set = 'Q set = 'Q set
for § Q)
where

[ red; set (rhsqr) C Q| = lhs r € bacc-step § Q

— If a set is closed under adding all states that are reachable from the set by one
backward step, then this set contains all backward accessible states.
lemma b-accs-as-closed:
assumes A: bacc-step § Q C Q
shows b-accessible 6 C ()

(proof)

4.2.2 Algorithms

First, the basic workset algorithm is specified. Then, it is refined to contain
a counter for each rule, that counts the number of undiscovered states on the
RHS. For both levels of abstraction, a version that computes the backwards
reduction, and a version that checks for emptiness is specified.

Additionally, a version of the algorithm that computes a witness for non-
emptiness is provided.

Levels of abstraction:

a On this level, the state consists of a set of discovered states and a
workset.

a’ On this level, the state consists of a set of discovered states, a workset
and a map from rules to number of undiscovered rhs states. This map
can be used to make the discovery of rules that have to be considered
more efficient.

«a - Level: type-synonym ('Q,’L) br-state = 'Q set x 'Q set
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— Set of states that are non-empty (accept a tree) after adding the state ¢ to the
set of discovered states
definition br-dsq
= ('Q,'L) ta-rule set = 'Q = ('Q,’L) br-state = 'Q set
where
br-dsq 6 ¢ == NQ,W). { lhs r | r. r€d A set (rhsqr) C (@Q—(W—{q})) }

— Description of a step: One state is removed from the workset, and all new states
that become non-empty due to this state are added to, both, the workset and
the set of discovered states

inductive-set br-step

= ('Q,'L) ta-rule set = (('Q,’L) br-state x ('Q,’L) br-state) set

for § where

[

e W;

Q'= QU br-dsq 6 q (Q,W);

W' =W —{q} U (br-dsq 6 ¢ (Q, W) — Q)
[ = ((QW),(Q",W"))Ebr-step o

— Termination condition for backwards reduction: The workset is empty
definition br-cond :: ('Q,’L) br-state set
where br-cond == {(Q,W). W#£{}}

— Termination condition for emptiness check: The workset is empty or a non-
empty initial state has been discovered
definition bre-cond :: 'Q set = ('Q,’L) br-state set
where bre-cond Qi == {(Q,W). W£{} A (QiNQ={})}

— Set of all states that occur on the lhs of a constant-rule
definition br-iq :: ('Q,’L) ta-rule set = 'Q set
where br-ig § == { lhsr | r. réd A rhsqgr =1 }

— Initial state for the iteration
definition br-initial :: ('Q,’L) ta-rule set = ('Q,’L) br-state
where br-initial § == (br-iq 0, br-ig 9)
— Invariant for the iteration:
e States on the workset have been discovered
e Only accessible states have been discovered

o If a state is non-empty due to a rule whose rhs-states have been discovered
and processed (i.e. are in Q — W), then the lhs state of the rule has also been
discovered.

e The set of discovered states is finite

definition br-invar :: ('Q,’L) ta-rule set = ('Q,’L) br-state set
where br-invar § == {(Q,W).
wWcQ A
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@ C b-accessible § N
bacc-step 6 (@ — W) C Q A
finite Q}

definition br-algo § ==
wa-cond = br-cond,
wa-step = br-step ¢,
wa-initial = {br-initial §},
wa-invar = br-invar 0

)

definition bre-algo Qi § ==
wa-cond = bre-cond Q,
wa-step = br-step 4,
wa-initial = {br-initial §},
wa-invar = br-invar §

)

— Termination: Either a new state is added, or the workset decreases.
definition br-termrel § ==
{(Q,Q). Q C Q' A Q' C b-accessible 0}) <xlexx> finite-psubset

lemma bre-cond-imp-br-cond[intro, simp|: bre-cond Qi C br-cond
(proof )

lemma br-termrel-wf[simp, introl]: finite § = wf (br-termrel §)
(proof)

lemma br-dsq-ss:
assumes A: (Q,W)€br-invar 6 W #{} q¢eW
shows br-dsq 6 q (Q,W) C b-accessible §

(proof)

lemma br-step-in-termrel:
assumes A: YXebr-cond Yebr-invar §  (38,X")€br-step §
shows (X, X)ebr-termrel 6

(proof)

lemma br-invar-initial[simpl: finite 6 = (br-initial )€br-invar 0
{proof)

lemma br-invar-step:
assumes [simp]: finite ¢
assumes A: X€br-cond Xe€br-invar § (3,X)€br-step §
shows X'€br-invar 6

(proof)

lemma br-invar-final:
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V. Yewa-invar (br-algo §) N E¢wa-cond (br-algo §)
— fst ¥ = b-accessible §
{proof)

theorem br-while-algo:
assumes FIN|[simp|: finite 0
shows while-algo (br-algo 0)
{proof)

lemma bre-invar-final:
VY. Yewa-invar (bre-algo Qi 6) N E¢wa-cond (bre-algo Qi 9)
— ((Qinfst T={}) +— (Qi N b-accessible § = {}))
{proof)

theorem bre-while-algo:
assumes FIN[simp]: finite §
shows while-algo (bre-algo Qi 6)
(proof)

a’- Level Here, an optimization is added: For each rule, the algorithm now
maintains a counter that counts the number of undiscovered states on the
rules RHS. Whenever a new state is discovered, this counter is decremented
for all rules where the state occurs on the RHS. The LHS states of rules
where the counter falls to 0 are added to the worklist. The idea is that
decrementing the counter is more efficient than checking whether all states
on the rule’s RHS have been discovered.

A similar algorithm is sketched in [2](Exercise 1.18).
type-synonym ('Q,’L) br'-state = 'Q set x 'Q set x (('Q,’L) ta-rule — nat)

— Abstraction to a-level
definition br'-a :: ('Q,’L) br'-state = ('Q,’L) br-state
where br'-a = (A(Q,W,rem). (Q,W))

definition br’-invar-add :: ('Q,’L) ta-rule set = ('Q,’L) br'-state set
where br'-invar-add 6 == {(Q,W,rcm).
(Vred. rem r = Some (card (set (rhsqgr) — (Q — W)))) A
{lhs r| r. r€d A the (remr) = 0} C Q

}

definition br'-invar :: ('Q,’L) ta-rule set = ('Q,’L) br'-state set
where br'-invar 6 == br'-invar-add § N {X. br'-a ¥ € br-invar §}

inductive-set br’-step
= ('Q,'L) ta-rule set = (('Q,’L) br'-state x ('Q,’L) br'-state) set
for ) where
[ qcW;
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Q'=QU{lhsr|r.red A q € set (rhsqr) A the (rem r) < 1 };
W' = (W—{q})
U lhsr|r.red A qe set (rhsqr) A the (remr) < 1}
- Q)
Wr.red = rem’ r = (if ¢ € set (rhsq r) then
Some (the (rem r) — 1)
else rem 1

)
]] == ((Q7W7Tcm),(Q/,W/7rcm’)) € br'-step &

definition br'-cond :: ('Q,’L) br'-state set
where br'-cond == {(Q, W,rem). W#{}}
definition bre’-cond :: 'Q set = ('Q,’L) br’-state set

where bre’-cond Qi == {(Q,W,rem). W#£{} A (QiNQ={})}

inductive-set br’-initial :: ('Q,’L) ta-rule set = ('Q,’L) br'-state set
for § where
[ Mr. red = rem r = Some (card (set (rhsq 1)) |
= (br-iq 6, br-iq 6, rem)€br’~initial 0

definition br’-algo § ==
wa-cond=>br'-cond,
wa-step = br'-step 6,
wa-initial = br'-initial 0,
wa-invar = br'-invar §

)

definition bre’-algo Qi 6 ==
wa-cond=bre’-cond Qi,
wa-step = br'-step 4,
wa-initial = br'-initial 0,
wa-invar = br'-invar §

)

lemma br’-step-invar:
assumes finite[simpl: finite §
assumes INV: Yebr'-invar-add 6  br'-a X € br-invar ¢
assumes STEP: (,X') € br'-step §
shows Y/cbr’-invar-add ¢

(proof)

lemma br’-invar-initial:
br'-initial 5§ C br'-invar-add ¢
(proof)

lemma br’-rem-auz’:
[ (Q,W,rem)€br’-invar &; ge W |
= {r € 4. q € set (rhsqr) A the (rem r) < Suc 0}
= {re&d. qeset (rhsqr) A set (rhsqgr) C (Q — (W—{q}))}
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(proof)

lemma br’-rem-auz:
assumes A: (Q, W, rem)€br’-invar 6 W
shows {lhs r |r. r € § A q € set (rhsq r) A the (rem r) < Suc 0}
={lhsr | r. r€d A qE€set (rhsqr) A set (rhsqr) C (Q — (W—{q¢}))}
(proof)

lemma br’-invar-QcD:
(Q,W,rem) € br'-invar 6 = {lhs v | r. r€d A set (rhsqr) C (Q—W)} C @
(proof )

lemma br’-rem-aux2:
[ (Q, W, rem)ebr’-invar &; qe W |
= Q U br-dsq d q (Q,W)
= QU {lhsr |r.T €0 N q€ set (rhsqr) A the (rem r) < Suc 0}
(proof)

lemma br’-rem-aux3:
[ (Q,W,rem)ebr’-invar &; ge W |
= br-dsq § ¢ (Q,W) — @
={lhsr|r.r € A q€ set (rhsqr) A the (rem r) < Suc 0} — Q
(proof)

lemma br’-step-abs:

[

Yebr’-invar 0;

(2,27) € br'-step §
| = (br'-a X, br'-a B')ebr-step §
{proof)

lemma br'-initial-abs: br'-a{(br’-initial §) = {br-initial 5}
{proof)

lemma br’-cond-abs: X€br’-cond +— (br'-a X) € br-cond
(proof)

lemma bre’-cond-abs: ¥€bre’-cond Qi «— (br'-a L)ebre-cond Qi
{proof)

lemma br’-invar-abs: br’-a‘br’-invar § C br-invar §
(proof)

theorem br’-pref-br: wa-precise-refine (br’-algo 6) (br-algo §) br'-a
(proof)

interpretation br’-pref: wa-precise-refine br'-algo 6  br-algo 6  br'-«

{proof)
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theorem br’-while-algo:
finite § = while-algo (br’-algo 6)
(proof)

lemma fst-br'-a: fst (br'-a s) = fst s (proof)

lemmas br’-invar-final =
br'-pref .transfer-correctness| OF br-invar-final, unfolded fst-br'-a]

theorem bre’-pref-br: wa-precise-refine (bre’-algo Qi §) (bre-algo Qi §) br'-«
(proof)

interpretation bre’-pref:
wa-precise-refine bre’-algo Qi 6  bre-algo Qi &  br'-a
(proof )

theorem bre’-while-algo:
finite § = while-algo (bre’-algo Qi §)
(proof)

lemmas bre’-invar-final =
bre'-pref .transfer-correctness| OF bre-invar-final, unfolded fst-br’-a/

Implementing a Step In this paragraph, it is shown how to implement a
step of the br’-algorithm by iteration over the rules that have the discovered
state on their RHS.

definition br’-inner-step
= ('Q,'L) ta-rule = ('Q,'L) br'-state = ('Q,’L) br'-state
where
br'-inner-step == Ar (Q, W ,rcm). let e=the (rem r) in (
if ¢<1 then insert (lhs r) @ else @,
if <1 A (lhs ) ¢ Q then insert (lhs r) W else W,
rem ((r — (c—(1::nat)))

)

definition br’-inner-invar
= ('Q,'L) ta-rule set = 'Q = ('Q,’L) br'-state
= ('Q,’L) ta-rule set = ('Q,’L) br'-state = bool

where

br'-inner-invar rules ¢ == X\ Q, W,rem) it (Q',W'rem’).
Q'= QU {lhsr|r rerules—it A the (remr) < 1 } A
W'= (W—{q}) U ({ lhs | r. rérules—it A the (rem r) < 1 } — Q) A
(V7. rem’ r = (if rerules—it then Some (the (rem r) — 1) else rem 1))

lemma br’-inner-invar-imp-final:
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[ g€ W; br'-inner-invar {red. q€set (rhsqr)} q (Q,W—{q},rem) {} £']
— ((Q,W,recm),%") € br'-step §
(proof)

lemma br’-inner-invar-step:
[ g€ W; br'-inner-invar {red. q€set (rhsq r)} q (Q,W—{q},rem) it ¥/
reit; itC{red. geset (rhsq r)}
| = br'-inner-invar {reé. q€set (rhsq r)} q (Q,W—{q},rem)
(it—{r}) (br'-inner-step r L)

(proof)

lemma br’-inner-invar-initial:
[ g€ W | = br'-inner-invar {reé. q€set (rhsqr)} q (Q,W—{q},rem)
{red. geset (rhsq )} (Q,W—{q},rem)
{proof)

lemma br’-inner-step-proof:
fixes as :: '2 = ('Q,’L) br'-state
fixes cstep :: (Q,'L) ta-rule = 'Y = 'Y
fixes Xh 1 'S
fixes cinvar :: ('Q,’L) ta-rule set = "X = bool

assumes iterable-set: set-iteratei o invar iteratei
assumes invar-ingtial: cinvar {red. q€set (rhsq r)} Th
assumes invar-step:
Wit r 3. [ reit; it C {red. geset (rhsq r)}; cinvar it ¥
= cinvar (it—{r}) (cstep r %)
assumes step-desc:
Wit r 3. [ reit; itC{red. q€set (rhsq r)}; cinvar it 3
= «s (cstep r X) = br'-inner-step r (as X)
assumes it-set-desc: invar it-set  « it-set = {red. g€set (rhsq r)}

assumes QIW/[simp|: ge¢ W

assumes X-desc[simp]: as X = (Q,W,rem)
assumes Xh-desc[simp]: as Xh = (Q,W—{q},rem)

shows (as X, as (iteratei it-set (A-. True) cstep Xh))€br’-step §
(proof)

Computing Witnesses The algorithm is now refined further, such that
it stores, for each discovered state, a witness for non-emptiness, i.e. a tree
that is accepted with the discovered state.

definition witness-prop d m ==V qt. m ¢ = Somet — accs 6 t q

— Construct a witness for the LHS of a rule, provided that the map contains
witnesses for all states on the RHS:
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definition construct-witness
2 ('Q — 'L tree) = ('Q,’L) ta-rule = 'L tree
where
construct-witness Q r == NODE (rhsl r) (List.map (Aq. the (Q q)) (rhsq 1))

lemma witness-propD: [witness-prop 6 m; m q = Some t] = accs 6 t ¢
(proof )

lemma construct-witness-correct:
[ witness-prop 6 Q; r€0; set (rhsq r) C dom Q]
= accs 0 (construct-witness Q r) (lhs 1)
(proof)

lemma construct-witness-eq:
[ Qset (rhsgr) = Q| set (rhsqr)] =
construct-witness Q v = construct-witness Q' r
(proof)

The set of discovered states is refined by a map from discovered states to
their witnesses:

type-synonym ('Q,’L) brw-state = ('Q—'L tree) x 'Q set x (('Q,’L) ta-rule —
nat)

definition brw-a :: ('Q,’L) brw-state = ('Q,’L) br'-state
where brw-a = (A(Q, W, rem). (dom Q,W,rem))

definition brw-invar-add :: ('Q,’L) ta-rule set = ('Q,’L) brw-state set
where brw-invar-add 6 == {(Q,W,rcm). witness-prop 6 Q}

definition brw-invar 6 == brw-invar-add 6 N {s. brw-a s € br'-invar §}

inductive-set brw-step
= ('Q,'L) ta-rule set = (('Q,’L) brw-state x ('Q,’L) brw-state) set
for 4 where
[
qeW;
dsqr = { r€d. q € set (rhsqr) A the (rem r) < 1 };
dom Q' = dom Q U lhs‘dsqr;
Ngt. Q' q = Somet = Q q = Somet
V (Iredsqr. g=lhs r N\ t=construct-witness Q r);
W' = (W—{q}) U (lhs‘dsqr — dom Q);
Wr.reéd = rem’ r = (if ¢ € set (rhsq r) then
Some (the (rem r) — 1)
else rem v

)
] = (Q,W,rem),(Q', W' rem’)) € brw-step ¢
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definition brw-cond :: 'Q set = ('Q,’L) brw-state set
where brw-cond Qi == {(Q, W,rem). W#{} A (Qindom Q={})}

inductive-set brw-iq :: ('Q,’L) ta-rule set = ('Q — 'L tree) set
for 6 where

[
Vgt Qq= Somet — (3r€d. rhsqr =[] N qg=lhsr
At = NODE (rhsl ) [));
Vred. rhsqr =[] — Q (lhs r) # None
] = Q € brw-ig §

inductive-set brw-initial :: ('Q,’L) ta-rule set = ('Q,’L) brw-state set
for 6 where
[ Mr. r€ed = rem r = Some (card (set (rhsq r))); Q€brw-iq J |
= (Q, br-iq 6, rem)€brw-initial §

definition brw-algo Qi § == ||
wa-cond=>brw-cond Q1,
wa-step = brw-step 9,
wa-initial = brw-initial d,
wa-invar = brw-invar 6

)

lemma brw-cond-abs: L€brw-cond Qi <— (brw-a X)ebre’-cond Qi
{proof)

lemma brw-initial-abs: Y€brw-initial § => brw-a ¥ € br’-initial §
(proof )

lemma brw-invar-initial: brw-initial § C brw-invar-add 6§
(proof)

lemma brw-step-abs:
[ (Z,2)ebrw-step 6 | = (brw-a E, brw-a ¥')€br’-step 6
{proof)

lemma brw-step-invar:
assumes FIN|[simp|: finite 0
assumes INV: Yebrw-invar-add 6 and BR'INV: brw-a ¥ € br'-invar ¢
assumes STEP: (X,2') € brw-step ¢
shows Y’'cbrw-invar-add &

(proof)

theorem brw-pref-bre’: wa-precise-refine (brw-algo Qi 8) (bre’-algo Qi §) brw-a
(proof )

interpretation brw-pref:
wa-precise-refine brw-algo Qi &  bre’-algo Qi 6  brw-«
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{proof)

theorem brw-while-algo: finite 6 = while-algo (brw-algo Qi 9)
(proof )

lemma fst-brw-a: fst (brw-a s) = dom (fst s)
(proof)

theorem brw-invar-final:
V sc. sc € wa-invar (brw-algo Qi §) A sc ¢ wa-cond (brw-algo Qi 9)
— (Qi N dom (fst sc) = {}) = (Qi N b-accessible § = {})
A (witness-prop § (fst sc))
(proof)

Implementing a Step inductive-set brw-inner-step
= ('Q,'L) ta-rule = (('Q,’L) brw-state x ('Q,’L) brw-state) set
for r where
[ ¢=the (remr); ¥ = (Q,W,rem); L'=(Q", W' ,rem’);

if e<1 A (lhs 1) ¢ dom @ then
Q' = Q(lhs r — construct-witness Q )
else Q' = Q;
if e<1 A (lhs T) ¢ dom Q then
W' = insert (lhs ) W
else W' = W,
rem’ = rem (1 — (c—(1::nat)))
| = (&%) ebrw-inner-step r

definition brw-inner-invar
= ('Q,'L) ta-rule set = 'Q = ('Q,’L) brw-state = ('Q,’L) ta-rule set
= ('Q,’L) brw-state = bool
where
brw-inner-invar rules ¢ == A(Q, W,rem) it (Q', W' ,rem’).
(br'-inner-invar rules q (brw-a (Q, W,rem)) it (brw-a (Q', W' rem”)) A
(Q'l'dom @ = @) A
(let dsqr = { rerules — it. the (rem r) < 1 } in
(Vgt. Q" q= Somet — (Q q = Some t
V (Q g = None A (Iredsqr. g=lhs v N\ t=construct-witness Q r))

)
)

lemma brw-inner-step-abs:
(2,2 ebrw-inner-step r = br'-inner-step r (brw-a ) = brw-a ¥’
{proof)

lemma brw-inner-invar-imp-final:
[ g€ W; brw-inner-invar {red. q€set (rhsqr)} q (Q,W—{q},rem) {} £']
= ((Q,W,rem),%") € brw-step ¢
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{proof)

lemma brw-inner-invar-step:
assumes INVI: (Q, W ,rem)€brw-invar &
assumes A: ¢e W reit  itC{red. gset (rhsqr)}
assumes INVH: brw-inner-invar {red. q€set (rhsqr)} q (Q,W—{q},rem) it Xh
assumes STEP: (Xh,X')€brw-inner-step r
shows brw-inner-invar {reé. geset (rhsq r)} q (Q,W—{q},rem) (it—{r}) &’
{(proof)

lemma brw-inner-invar-initial:
lqe W] = brw-inner-invar {red. q€set (rhsq r)} q (Q, W—{q},rem)
{red. geset (rhsq )} (Q,W—{q},rem)
{proof)

theorem brw-inner-step-proof:
fixes as i1 'E = ('Q,'L) bruw-state
fixes cstep :: (Q,'L) ta-rule = 'Y = 'Y
fixes Xh 1 'S
fixes cinvar :: ('Q,’L) ta-rule set = "X = bool

assumes set-iterate: set-iteratei o invar iterates
assumes invar-start: (as X)ebrw-invar §
assumes nvar-ingtial: cinvar {red. q€set (rhsq r)} Th
assumes invar-step:
Wit r 3. [ reit; it C {red. qeset (rhsq r)}; cinvar it ¥ |
= cinvar (it—{r}) (cstep r )
assumes step-desc:
Wit r 3. [ reit; itC{red. q€set (rhsq r)}; cinvar it 3 |
= (as X, as (cstep r X)) € brw-inner-step r
assumes it-set-desc: invar it-set  « it-set = {red. q€set (rhsq )}

assumes QIW|[simp]: g€ W

assumes X-desc[simp]: as X = (Q,W,rem)
assumes Xh-desc[simp]: as Xh = (Q, W—{q},rem)

shows (as X, as (iteratei it-set (A-. True) cstep Lh))€brw-step §
(proof)

4.3 Product Automaton

The forward-reduced product automaton can be described as a state-space
exploration problem.

In this section, the DFS-algorithm for state-space exploration (cf. The-
ory Collections- Examples. Exploration in the Isabelle Collections Framework)
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is refined to compute the product automaton.

type-synonym ('Q1,'Q2,'L) frp-state =
('Q1x'Q2) set x ('Q1x'Q2) list x (('Q1x'Q2),'L) ta-rule set

definition frp-a :: ('Q1,'Q2,'L) frp-state = ('Q1x'Q2) dfs-state
where frp-a S == let (Q,W,0)=S1in (Q, W)

definition frp-invar-add 61 §2 ==
{(Q,W,0d). 6d = { r. r&d-prod §1 62 Nlhsr € Q — set W} }

definition frp-invar
= ('Q1, 'L) tree-automaton-rec = ('Q2, 'L) tree-automaton-rec
= ('Q1,'Q2,'L) frp-state set
where frp-invar T1 T2 ==
frp-invar-add (ta-rules T1) (ta-rules T2)
N { s. frp-a s € dfs-invar (ta-initial T1 X ta-initial T2)
(f-suce (d-prod (ta-rules T1) (ta-rules T2))) }

inductive-set frp-step
= ('Q1,'L) ta-rule set = ('Q2,'L) ta-rule set
= (('Q1,’Q2,'L) frp-state x ('Q1,'Q2,’L) frp-state) set
for 61 62 where
[ W=(q1,q2)# Witl;
distinct Whn;
set Wn = f-succ (6-prod 61 62) “{(q1,92)} — @;
W'=WnQ Wtl,
Q'=Q U f-succ (§-prod 61 62) “{(q1,92)};
dd'=0d U {red-prod 61 62. lhs r = (q1,92) }
= (Q,W,0d),(Q"\W'dd")efrp-step 61 §2

inductive-set frp-initial :: 'Q1 set = 'Q2 set = ('Q1,’Q2,'L) frp-state set
for Q10 Q20 where
[ distinct W; set W = Q10x Q20 | = (Q10xQ20,W {}) € frp-initial Q10 Q20

definition frp-cond :: ('Q1,’Q2,'L) frp-state set where
frp-cond == {(Q,W,dd). W#[]}

definition frp-algo T1 T2 == (|
wa-cond = frp-cond,
wa-step = frp-step (ta-rules T1) (ta-rules T2),
wa-initial = frp-initial (ta-initial T1) (ta-initial T2),
wa-invar = frp-invar T1 T2

)

— The algorithm refines the DFS-algorithm
theorem frp-pref-dfs:
wa-precise-refine (frp-algo T1 T2)
(dfs-algo (ta-initial T1 X ta-initial T2)
(f-succ (d-prod (ta-rules T1) (ta-rules T2))))
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frp-a
{proof )

interpretation frp-ref: wa-precise-refine (frp-algo T1 T2)
(dfs-algo (ta-initial T1 X ta-initial T2)
(f-succ (5-prod (ta-rules T1) (ta-rules T2))))
Jro-ac {proof)
theorem frp-while-algo:
assumes TA: tree-automaton T1
tree-automaton T2
shows while-algo (frp-algo T1 T2)
(proof)
theorem frp-inv-final:
V' s. s€wa-invar (frp-algo T1 T2) A s¢wa-cond (frp-algo T1 T2)
— (case s of (Q,W,6d) =
( ta-initial = ta-initial T1 X ta-initial T2,
ta-rules = 6d
) = ta-fwd-reduce (ta-prod T1 T2))
(proof)

end

5 Executable Implementation of Tree Automata

theory Ta-impl
imports

Main

Collections. CollectionsV1

Ta AbsAlgo

HOL- Library.Code-Target-Numeral
begin

In this theory, an effcient executable implementation of non-deterministic
tree automata and basic algorithms is defined.

The algorithms use red-black trees to represent sets of states or rules where
appropriate.

5.1 Prelude

instantiation ta-rule :: (hashable,hashable) hashable
begin
fun hashcode-of-ta-rule
o ('Q1::hashable,’Q2::hashable) ta-rule = hashcode
where
hashcode-of-ta-rule (¢ — f gs) = hashcode q + hashcode f + hashcode qs

definition [simp]: hashcode = hashcode-of-ta-rule
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definition def-hashmap-size::(('a,’d) ta-rule itself = nat) == (A-. 32)

instance

(proof)
end

— Make wrapped states hashable
instantiation ustate-wrapper :: (hashable,hashable) hashable
begin
definition hashcode x == (case x of USW1 a = 2 x hashcode a | USW2 b = 2
* hashcode b + 1)
definition def-hashmap-size = (A- :: ((a,’d) ustate-wrapper) itself. def-hashmap-size
TYPE('a) 4+ def-hashmap-size TYPE('b))

instance (proof)

end

5.1.1 Ad-Hoc instantiations of generic Algorithms

(ML)
interpretation hll-idz: build-index-loc hm-ops ls-ops ls-ops (proof)
interpretation [l-set-zy: g-set-xy-loc Is-ops Is-ops

(proof )

interpretation [h-set-zz: g-set-xx-loc Is-ops hs-ops
(proof)
interpretation ([ll-ifit-cp: inj-image-filter-cp-loc Is-ops ls-ops Is-ops
(proof )
interpretation hhh-cart: cart-loc hs-ops hs-ops hs-ops {proof)
interpretation hh-set-zy: g-set-zy-loc hs-ops hs-ops
(proof)

interpretation [llh-set-xyy: g-set-xyy-loc ls-ops ls-ops hs-ops
(proof)

interpretation hh-map-to-nat: map-to-nat-loc hs-ops hm-ops {proof)
interpretation hh-set-zy: g-set-zy-loc hs-ops hs-ops (proof)
interpretation lh-set-xy: g-set-xzy-loc ls-ops hs-ops (proof)
interpretation hh-set-zx: g-set-za-loc hs-ops hs-ops {proof)
interpretation hs-to-fifo: set-to-list-loc hs-ops fifo-ops (proof)

(ML)
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5.2 Generating Indices of Rules

Rule indices are pieces of extra information that may be attached to a tree
automaton. There are three possible rule indices

f index of rules by function symbol
s index of rules by lhs

sf index of rules

definition build-rule-index
= (('q,"1) ta-rule = 'i::hashable) = ('q,’l) ta-rule Is
= ('i,('q,’l) ta-rule ls) hm
where build-rule-index == hll-idx.idz-build

definition build-rule-indez-f 6 == build-rule-index (A\r. rhsl r) §
definition build-rule-indez-s § == build-rule-index (Ar. lhs ) &
definition build-rule-index-sf § == build-rule-index (Ar. (lhs r, rhsl r)) §

lemma build-rule-index-f-correct|simpl:
assumes [[simp, introl]: ls-invar &
shows hll-idz.is-index rhsl (Is-a 0) (build-rule-index-f §)

(proof)

lemma build-rule-index-s-correct[simpl:
assumes [[simp, introl]: ls-invar §
shows
hll-idz.is-index lhs (ls-a &) (build-rule-index-s ¢)
(proof )

lemma build-rule-indez-sf-correct|simp]:
assumes [[simp, introl]: ls-invar &
shows
hll-idz.is-index (Ar. (lhs r, rhsl r)) (Is-a 0) (build-rule-indez-sf §)
{proof )

5.3 Tree Automaton with Optional Indices

A tree automaton contains a hashset of initial states, a list-set of rules and
several (optional) rule indices.

record (overloaded) (q,’l) hashedTa =

— Initial states

hta-Qi :: 'q hs
— Rules

hta-0 :: (q,"l) ta-rule Is
— Rules by function symbol

hta-idz-f :: ("l,('q,'l) ta-rule ls) hm option
— Rules by lhs state
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hta-idz-s :: ('q,('q,'l) ta-rule ls) hm option
— Rules by lhs state and function symbol
hta-idz-sf :: ("gx'l,('q,’l) ta-rule ls) hm option

— Abstraction of a concrete tree automaton to an abstract one
definition hta-a
where hta-a H = (| ta-initial = hs-a (hta-Qi H), ta-rules = ls-« (hta-0 H) |

— Builds the f-index if not present
definition hta-ensure-idz-f H ==
case hta-idz-f H of
None = H( hta-idz-f := Some (build-rule-indez-f (hta-0 H)) | |
Some - = H

— Builds the s-index if not present
definition hta-ensure-ide-s H ==
case hta-idz-s H of
None = H( hta-idz-s := Some (build-rule-indez-s (hta-6 H)) |) |
Some - = H

— Builds the sf-index if not present
definition hia-ensure-idz-sf H ==
case hta-idz-sf H of
None = H( hta-idz-sf := Some (build-rule-index-sf (hta-6 H)) | |
Some - = H

lemma hta-ensure-ida-f-correct-a[simp]:
hta-« (hta-ensure-ida-f H) = hta-a H
(proof )

lemma hta-ensure-idz-s-correct-c[simp):
hta-a (hta-ensure-ide-s H) = hta-a H
(proof)

lemma hta-ensure-ida-sf-correct-asimp):
hta-a (hta-ensure-idz-sf H) = hta-a H
{proof)

lemma hta-ensure-idz-other[simp):
hta-Qi (hta-ensure-ida-f H) = hta-Qi H
hta-§ (hta-ensure-idz-f H) = hta-0 H

hta-Qi (hta-ensure-ida-s H) = hta-Qi H
hta-0 (hta-ensure-idz-s H) = hta-0 H

hta-Qi (hta-ensure-idz-sf H) = hta-Qi H

hta-0 (hta-ensure-idz-sf H) = hta-0 H
(proof)

43



definition hta-has-idx-f H == hta-idx-f H # None
— Check whether the s-index is present

definition hta-has-idz-s H == hta-idz-s H # None
— Check whether the sf-index is present

definition hta-has-idz-sf H == hta-idz-sf H # None

lemma hta-idx-f-pres
[simp, intro!]: hta-has-idx-f (hta-ensure-idz-f H) and
[simp, intro|: hta-has-idz-s H = hta-has-idz-s (hta-ensure-idz-f H) and
[simp, intro]: hta-has-idz-sf H = hta-has-idx-sf (hta-ensure-idz-f H)
(proof )

lemma hta-idx-s-pres
[simp, intro!]: hta-has-idx-s (hta-ensure-idz-s H) and
[simp, intro|: hta-has-idz-f H = hta-has-ida-f (hta-ensure-ide-s H) and
[simp, intro]: hta-has-idz-sf H => hta-has-idz-sf (hta-ensure-idz-s H)
(proof)

lemma hta-idz-sf-pres
[simp, intro!]: hta-has-idx-sf (hta-ensure-ida-sf H) and
[simp, intro]: hta-has-ide-f H = hta-has-ida-f (hta-ensure-idz-sf H) and
[simp, intro]: hta-has-idz-s H => hta-has-idz-s (hta-ensure-idz-sf H)
(proof)

The lookup functions are only defined if the required index is present. This
enforces generation of the index before applying lookup functions.

definition hta-lookup-f f H == hll-idz.lookup [ (the (hta-idz-f H))
— Lookup rules by lhs-state
definition hta-lookup-s ¢ H == hll-idz.lookup q (the (hta-idz-s H))
— Lookup rules by function symbol and lhs-state
definition hta-lookup-sf q f H == hll-idz.lookup (q,f) (the (hta-idz-sf H))

— This locale defines the invariants of a tree automaton
locale hashedTa =
fixes H :: ('Q::hashable,’L::hashable) hashedTa

— The involved sets satisfy their invariants
assumes invar[simp, introl]:

hs-invar (hta-Qi H)

Is-invar (hta-§ H)

— The indices are correct, if present
assumes index-correct:
hta-idz-f H = Some idx-f
= hll-idz.is-index rhsl (Is-a (hta-0 H)) ida-f
hta-idz-s H = Some idz-s
= hll-idz.is-index lhs (Is-a (hta-6 H)) idz-s
hta-idz-sf H = Some idz-sf
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= hll-idz.is-index (Ar. (lhs r, rhsl r)) (Is-« (hta-0 H)) idz-sf

begin
— Inside this locale, some shorthand notations for the sets of rules and initial
states are used
abbreviation § == hta-6 H
abbreviation Qi == hta-Qi H

— The lookup-xxx operations are correct

lemma hta-lookup-f-correct:
hta-has-idz-f H = Is-a (hta-lookup-f f H) = {r€ls-a 6 . rhsl r = f}
hta-has-idz-f H = ls-invar (hta-lookup-f f H)
(proof)

lemma hta-lookup-s-correct:
hta-has-idz-s H = Is-a (hta-lookup-s ¢ H) = {r€ls-a § . lhs r = ¢}
hta-has-idz-s H = Is-invar (hta-lookup-s q H)
(proof)

lemma hta-lookup-sf-correct:
hta-has-idz-sf H
= Is-a (hta-lookup-sf q f H) = {r€ls-a 6 . lhs r = q A rhsl r = [}
hta-has-idz-sf H = Is-invar (hta-lookup-sf q f H)
(proof)

lemma hta-ensure-ida-f-correct[simp, introl|: hashedTa (hta-ensure-idz-f H)

(proof)

lemma hta-ensure-idx-s-correct[simp, intro!]: hashedTa (hta-ensure-idx-s H)

(proof)

lemma hta-ensure-ida-sf-correct[simp, introl]: hashedTa (hta-ensure-idz-sf H)

(proof)

The abstract tree automaton satisfies the invariants for an abstract tree
automaton

lemma hta-a-is-ta[simp, introl]: tree-automaton (hta-o H)

(proof)

end

— Add some lemmas to simpset — also outside the locale

lemmas [simp, intro] =
hashedTa.hta-ensure-idz-f-correct
hashedTa.hta-ensure-idz-s-correct
hashedTa.hta-ensure-ida-sf-correct

— Build a tree automaton from a set of initial states and a set of rules

definition nit-hta Qi § ==
( hta-Qi= Qi,
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hta-6 = 9,

hta-idz-f = None,
hta-idz-s = None,
hta-idz-sf = None

J

— Building a tree automaton from a valid tree automaton yields again a valid
tree automaton. This operation has the only effect of removing the indices.
lemma (in hashedTa) init-hta-is-hta:
hashedTa (init-hta (hta-Qi H) (hta-0 H))
(proof)

5.4 Algorithm for the Word Problem

lemma r-match-by-laz: r-match L | = list-all-zip (AQ q. ¢q€Q) L1
(proof)

Executable function that computes the set of accepting states for a given
tree

fun faccs’ where

faccs’ H (NODE f ts) = (
let Qs = List.map (faccs’ H) ts in
ll-set-zy.g-image-filter (Ar. case r of (¢ — f' qs) =
if list-all-zip (AQ q. ls-memb q Q) Qs gs then Some (lhs r) else None
)
(hta-lookup-f f H)
)

— Executable algorithm to decide the word-problem. The first version depends
on the f-index to be present, the second version computes the index if not
present.

definition hta-mem’ t H == —lh-set-zx.g-disjoint (faccs’ H t) (hta-Qi H)
definition hta-mem t H == hta-mem’ t (hta-ensure-idz-f H)

context hashedTa
begin

lemma faccs’-invar:
assumes HI[simp, introl|: hta-has-idz-f H
shows Is-invar (faccs’ H t) (is ?T1)
list-all Is-invar (List.map (faccs’ H) ts) (is ?T2)
{proof )

declare faccs’-invar(1)[simp, intro]
lemma faccs’-correct:
assumes HI[simp, introl|: hta-has-idz-f H

shows
Is-a (faces’ H t) = faces (Is-o (hta-6 H)) t (is ¢T1)
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List.map ls-a (List.map (faccs’ H) ts)
= List.map (faccs (Is-o (hta-d H))) t
(proof)
lemma hta-mem’-correct:
hta-has-idz-f H = hta-mem’ t H +— t€ta-lang (hta-a H)

(proof)

s (is 27T2)

theorem hta-mem-correct: hta-mem t H <— t€ta-lang (hta-a H)

(proof)

end

5.5 Product Automaton and Intersection

5.5.1 Brute Force Product Automaton

In this section, an algorithm that computes the product automaton with-
out reduction is implemented. While the runtime is always quadratic, this
algorithm is very simple and the constant factors are smaller than that of
the version with integrated reduction. Moreover, lazy languages like Haskell
seem to profit from this algorithm.

definition §-prod-h
2 (‘q1::hashable,’l::hashable) ta-rule ls
= ('q2::hashable,’l) ta-rule ls = (‘g1 x'q2,'l) ta-rule ls
where §-prod-h §1 §2 ==
UI-iflt-cp.inj-image-filter-cp (A(r1,r2). r-prod r1 r2)
(A(r1,r2). rhsl r1 = rhsl r2
A length (rhsq r1) = length (rhsq r2))

01 62

lemma r-prod-inj:

[ rhsl 1 = rhsl r2; length (rhsq r1) = length (rhsq r2);
rhsl r1’ = rhsl r2’; length (rhsq r1’) = length (rhsq r27);
r-prod r1 r2 = r-prod r1' r2' | = ri=r1’' A r2=r2’

(proof )

lemma J&-prod-h-correct:
assumes INV([simpl: ls-invar 01  Is-invar 62
shows
Is-a (§-prod-h 61 62) = d-prod (Is-a 61) (Is-aw §2)
Is-invar (§-prod-h 61 02)
(proof)

definition hta-prodWR H1 H2 ==
ingt-hta (hhh-cart.cart (hta-Qi H1) (hta-Qi H2)) (6-prod-h (hta-§ H1) (hta-§ H2))

lemma hta-prod WR-correct-aux:

assumes A: hashedTa H1  hashedTa H2
shows
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hta-o (hta-prodWR H1 H2) = ta-prod (hta-o H1) (hta-a H2) (is ?T1)
hashedTa (hta-prod WR H1 H2) (is ?T2)
(proof)

lemma hta-prod WR-correct:
assumes TA: hashedTa H1  hashedTa H2
shows
ta-lang (hta-o (hta-prod WR H1 H2))
= ta-lang (hta-a H1) N ta-lang (hta-o H2)
hashedTa (hta-prodWR H1 H2)
(proof )

5.5.2 Product Automaton with Forward-Reduction

A more elaborated algorithm combines forward-reduction and the product
construction, i.e. product rules are only created ,,by need”.

type-synonym (’q1,’¢2,'l) pa-state
= ('q1x'q2) hs x ('q1 x'q2) list x ("q1x'q2,'l) ta-rule ls

— Abstraction mapping to algorithm specified in Section 4.
definition pa-o
:: (‘q1::hashable,’q2::hashable,’l::hashable) pa-state
= ('q1,¢2,'l) frp-state
where pa-a S == let (Q,W,6d)=S in (hs-a Q,W ls-a §d)

definition pa-cond
:: (‘q1::hashable,’q2::hashable,’l::hashable) pa-state = bool
where pa-cond S == let (Q,W,0d) = S in W#]]

— Adds all successor states to the set of discovered states and to the worklist
fun pa-upd-rule
i (Mgl x'q2) hs = ('q1 x'q2) list
= (('q1::hashable)x ('q2::hashable)) list
= (('q1 x'q2) hs x ('q1 x'q2) list)
where
pa-upd-rule Q W [| = (Q, W) |
pa-upd-rule @ W (gp#qs) = (
if = hs-memb qp Q then
pa-upd-rule (hs-ins gp Q) (gp#W) gs
else pa-upd-rule Q W gs

)

definition pa-step
it ("ql::hashable,’l::hashable) hashedTa
= (’q2::hashable,’l) hashedTa
= ('q1,¢q2,'l) pa-state = ('q1,’q2,'l) pa-state
where pa-step H1 H2 S == let
(Q7 W75d):S>
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(q1,92)=hd W
n
Is-iteratei (hta-lookup-s q1 H1) (A-. True) (Ar1 res.
Is-iteratei (hta-lookup-sf q2 (rhsl r1) H2) (A-. True) (Ar2 res.
if (length (rhsq r1) = length (rhsq r2)) then

let
rp=r-prod r1 r2;
(Q,W,0d) = res;
(Q, W) = pa-upd-rule Q@ W (rhsq rp)

in
(Q, W' ls-ins-dj rp 6d)

else
res
) Tes
) (Q,tl W,id)

definition pa-initial
:: (‘q1::hashable,’l::hashable) hashedTa
= ('q2::hashable,’l) hashedTa
= ('q1,'¢2,'l) pa-state
where pa-initial H1 H2 ==
let Qip = hhh-cart.cart (hta-Qi H1) (hta-Qi H2) in (
Qip,
hs-to-list Qip,
Is-empty ()

definition pa-invar-add::
('q1::hashable,’q2::hashable,’l::hashable) pa-state set
where pa-invar-add == { (Q,W,0d). hs-invar Q A ls-invar §d }

definition pa-invar HI H2 ==
pa-invar-add N {s. (pa-a s) € frp-invar (hta-o H1) (hta-a H2)}

definition pa-det-algo H1 H2
== ( dwa-cond=pa-cond,
dwa-step = pa-step H1 H2,
dwa-initial = pa-initial H1 H2,
dwa-invar = pa-invar H1 H2 |

lemma pa-upd-rule-correct:
assumes INV[simp, introl]: hs-invar Q
assumes FMT: pa-upd-rule Q@ W gqs = (Q', W)
shows
hs-invar Q' (is 2T1)
hs-a Q' = hs-a Q U set gs (is ?T2)
3 Wh. distinct Wn A set Wn = set gs — hs-a Q A W'=WnQW (is ?T3)
(proof)
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lemma pa-step-correct:
assumes TA: hashedTa H1  hashedTa H2
assumes idx[simp|: hta-has-ide-s Hl ~ hta-has-idz-sf H2
assumes INV: (Q,W,6d)€Epa-invar H1 H2
assumes COND: pa-cond (Q,W,0d)
shows
(pa-step H1 H2 (Q,W,dd))€epa-invar-add (is ?T1)
(pa-a (Q,W,6d), pa-a (pa-step H1 H2 (Q,W,dd)))
€ frp-step (Is-a (hta-6 H1)) (Is-a (hta-6 H2)) (is ?T2)
(proof)
lemma pa-pref-frp:
assumes TA: hashedTa H1  hashedTa H2
assumes idx[simp|: hta-has-ide-s Hl ~ hta-has-idz-sf H2

shows wa-precise-refine (det-wa-wa (pa-det-algo H1 H2))
(frp-algo (hta-o H1) (hta-o H2))
pa-o
(proof)
lemma pa-while-algo:
assumes TA: hashedTa H1  hashedTa H2
assumes idx[simp|: hta-has-ide-s Hl ~ hta-has-idz-sf H2

shows while-algo (det-wa-wa (pa-det-algo H1 H2))

{proof)
lemmas pa-det-while-algo = det-while-algo-intro[OF pa-while-algo]

— Transferred correctness lemma
lemmas pa-inv-final =
wa-precise-refine.transfer-correctness| OF pa-pref-frp frp-inv-final]

— The next two definitions specify the product-automata algorithm. The first
version requires the s-index of the first and the sf-index of the second automa-
ton to be present, while the second version computes the required indices, if
necessary

definition hta-prod’ H1 H2 ==

let (Q,W,0d) = while pa-cond (pa-step H1 H2) (pa-initial H1 H2) in
ingt-hta (hhh-cart.cart (hta-Qi H1) (hta-Qi H2)) 0d

definition hta-prod H1 H2 ==
hta-prod’ (hta-ensure-idz-s H1) (hta-ensure-idz-sf H2)

lemma hta-prod’-correct-auz:
assumes TA: hashedTa HI  hashedTa H2
assumes idz: hta-has-idz-s H1  hta-has-idz-sf H2
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shows hta-a (hta-prod’ H1 H2)
= ta-fwd-reduce (ta-prod (hta-o H1) (hta-a H2)) (is ?T1)
hashedTa (hta-prod’ H1 H2) (is ?72)
(proof)

theorem hta-prod’-correct:
assumes TA: hashedTa H1  hashedTa H2
assumes HI: hta-has-idx-s H1  hta-has-idx-sf H2
shows
ta-lang (hta-o (hta-prod’ H1 H2))
= ta-lang (hta-a H1) N ta-lang (hta-o H2)

hashedTa (hta-prod’ H1 H2)
{proof)

lemma hta-prod-correct-auz:
assumes TA[simp|: hashedTa H1  hashedTa H2
shows
hta-a (hta-prod H1 H2) = ta-fwd-reduce (ta-prod (hta-o H1) (hta-o H2))
hashedTa (hta-prod H1 H2)
(proof )

theorem hta-prod-correct:
assumes TA: hashedTa H1  hashedTa H2
shows
ta-lang (hta-o (hta-prod H1 H2))
= ta-lang (hta-a H1) N ta-lang (hta-o H2)
hashedTa (hta-prod H1 H2)
(proof)

5.6 Remap States

definition hta-remap
o (‘g:zhashable = 'qn::hashable) = (’q,’l::hashable) hashedTa
= (‘gn,’l) hashedTa
where hta-remap f H ==
init-hta (hh-set-zy.g-image f (hta-Qi H))
(ll-set-zy.g-image (remap-rule f) (hta-6 H))

lemma (in hashedTa) hta-remap-correct:
shows hta-a (hta-remap f H) = ta-remap f (hta-a H)
hashedTa (hta-remap f H)

{proof)

5.6.1 Reindex Automaton

In this section, an algorithm for re-indexing the states of the automaton
to an initial segment of the naturals is implemented. The language of the
automaton is not changed by the reindexing operation.
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fun rule-states-l where
rule-states-l (¢ — f qs) = Is-ins q (Is.from-list gs)

lemma rule-states-I-correct[simp):
Is-av (rule-states-l r) = rule-states r
Is-invar (rule-states-1 r)

{proof)

definition hta-6-states H
== (llh-set-zyy.g-Union-image id (ll-set-xy.g-image-filter
(Ar. Some (rule-states-l 1)) (hta-6 H)))

definition hta-states H ==
hs-union (hta-Qi H) (hta-0-states H)

lemma (in hashedTa) hta-d-states-correct:
hs-a (hta-0-states H) = 0-states (ta-rules (hta-o H))
hs-invar (hta-6-states H)

(proof)

lemma (in hashedTa) hta-states-correct:
hs-a (hta-states H) = ta-rstates (hta-a H)
hs-invar (hta-states H)

{proof)

definition reindez-map H ==
Ag. the (hm-lookup q (hh-map-to-nat.map-to-nat (hta-states H)))

definition hta-reindex
it (Q::hashable,’L::hashable) hashedTa = (nat,’L) hashedTa where
hta-reindex H == hta-remap (reindex-map H) H

declare hta-reindez-def [code del]

— This version is more efficient, as the map is only computed once
lemma [code]: hta-reindex H = (
let mp = (hh-map-to-nat.map-to-nat (hta-states H)) in
hta-remap (M\q. the (hm-lookup q mp)) H)

{proof)

lemma (in hashedTa) reindex-map-correct:
inj-on (reindex-map H) (ta-rstates (hta-a H))
(proof)

theorem (in hashedTa) hta-reindez-correct:

ta-lang (hta-a (hta-reindex H)) = ta-lang (hta-o H)
hashedTa (hta-reindex H)
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{proof)

5.7 Union

Computes the union of two automata

definition hta-union
:: (‘q1::hashable,’l::hashable) hashedTa
= ('q2::hashable,’l) hashedTa
= (('q1,'q2) ustate-wrapper,’l) hashedTa
where hta-union HI H2 ==
ingt-hta (hs-union (hh-set-xy.g-image USW1 (hta-Qi H1))
(hh-set-zy.g-image USW2 (hta-Qi H2)))
(Is-union-dj (ll-set-xy.g-image (remap-rule USW1) (hta-6 H1))
(ll-set-zy.g-image (remap-rule USW2) (hta-6 H2)))

lemma hta-union-correct”:
assumes TA: hashedTa HI  hashedTa H2
shows hta-a (hta-union H1 H2)
= ta-union-wrap (hta-a H1) (hta-a H2) (is ?T1)
hashedTa (hta-union H1 H2) (is ?T2)
(proof)

theorem hta-union-correct:
assumes TA: hashedTa H1  hashedTa H2
shows
ta-lang (hta-« (hta-union H1 H2))
= ta-lang (hta-a H1) U ta-lang (hta-o H2) (is ¢T1)
hashedTa (hta-union H1 H2) (is ?T2)
(proof)

5.8 Operators to Construct Tree Automata

This section defines operators that add initial states and rules to a tree
automaton, and thus incrementally construct a tree automaton from the
empty automaton.

definition hta-empty :: unit = ('q::hashable,’l::hashable) hashedTa
where hta-empty v == init-hta (hs-empty ()) (Is-empty ())
lemma hta-empty-correct [simp, intro!]:
shows (hta-a (hta-empty ())) = ta-empty
hashedTa (hta-empty ())
(proof)
definition hta-add-qi
2 'q = ('q::hashable,’l::hashable) hashedTa = ('q,’l) hashedTa
where hta-add-qi qi H == init-hta (hs-ins qi (hta-Qi H)) (hta-0 H)

lemma (in hashedTa) hta-add-qi-correct|simp, intro!]:

shows hta-« (hta-add-qi qi H)
= (| ta-indtial = insert qi (ta-initial (hta-o H)),
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ta-rules = ta-rules (hta-o H)
)
hashedTa (hta-add-qi qi H)
{proof)

lemmas [simp, intro] = hashedTa.hta-add-gi-correct

— Add a rule to the automaton
definition hta-add-rule
= (Yg,l) ta-rule = (’q::hashable,’l::hashable) hashedTa
= ('q,’l) hashedTa
where hta-add-rule r H == init-hta (hta-Qi H) (Is-ins r (hta-0 H))

lemma (in hashedTa) hta-add-rule-correct][simp, introl]:
shows hta-« (hta-add-rule r H)
= ( ta-initial = ta-initial (hta-o H),
ta-rules = insert r (ta-rules (hta-o H))

hashedTa (hta-add-rule v H)
{proof)

lemmas [simp, intro] = hashed Ta.hta-add-rule-correct

— Reduces an automaton to the given set of states
definition hta-reduce H Q) ==
init-hta (hs-inter Q (hta-Qi H))
(ll-set-zy.g-image-filter
(Ar. if hs-memb (Ihs ) Q A list-all (Aq. hs-memb q Q) (rhsq r) then
Some 1 else None)
(hta-6 H))

theorem (in hashedTa) hta-reduce-correct:
assumes INV([simp]: hs-invar Q
shows
hta-a (hta-reduce H Q) = ta-reduce (hta-a H) (hs-a Q) (is ?T1)
hashedTa (hta-reduce H Q) (is ¢T2)
{proof )

5.9 Backwards Reduction and Emptiness Check

The algorithm uses a map from states to the set of rules that contain the
state on their rhs.
definition rgrm-add q r res ==
case hm-lookup q res of
None = hm-update q (Is-ins v (Is-empty ())) res |
Some s = hm-update q (Is-ins r s) res
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— Lookup the set of rules with given state on rhs
definition rgrm-lookup rqrm q¢ == case hm-lookup q rqgrm of

None = ls-empty () |

Some s = s

— Build the index from a set of rules
definition build-rqgrm
o (‘g::hashable,’l::hashable) ta-rule ls
= ('q,(’q,"l) ta-rule ls) hm
where
build-rgrm § ==
Is-iteratei & (A-. True)
(Ar res.
foldl (Ares q. rqrm-add q r res) res (rhsq r)
)
(hm-empty ())

— Whether the index satisfies the map and set invariants
definition rgrm-invar rgrm ==
hm-invar rqrm A (¥ q. ls-invar (rqrm-lookup rqgrm q))
— Whether the index really maps a state to the set of rules with this state on their
rhs
definition rgrm-prop 6 rqgrm ==
Y q. ls-a (rgrm-lookup rgrm q) = {re€d. q€set (rhsq r)}

lemma rgrm-a-lookup-update[simpl:
rqrm-invar rqrm —

Is-a (rgrm-lookup (rgrm-add q r rgrm) q’)

= (if ¢g=q’ then
insert v (Is-a (rgrm-lookup rgrm q"))

else
Is-av (rgrm-lookup rqrm q")
)

(proof)

lemma rqgrm-propD:
rgrm-prop 6 rqgrm = ls-a (rgrm-lookup rgrm q) = {re€d. g€set (rhsq r)}
(proof )

lemma build-rqgrm-correct:
fixes 0
assumes [simp]: ls-invar 0
shows rgrm-invar (build-rgrm ¢§) (is ¢T1) and
rgrm-prop (Is-a &) (build-rgrm §) (is ?T2)
(proof)
type-synonym ('Q,’L) bre-state
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="'Q hs x 'Q list x (('Q,’L) ta-rule, nat) hm

— Abstraction to a’-level:

definition bre-o
2 ('Q::hashable,’L::hashable) bre-state = ('Q,’L) br'-state
where bre-a == A(Q,W,rem). (hs-a Q, set W, hm-a rem)

definition bre-invar-add :: ('Q::hashable,’L::hashable) bre-state set
where
bre-invar-add == {(Q, W,rem).
hs-invar Q A
distinct W A
hm-invar rem

ST B /0

definition bre-invar 6 == bre-invar-add N {s. bre-a s € br'-invar §}

definition bre-cond :: ('q::hashable,’l::hashable) bre-state = bool
where bre-cond == A\(Q, W ,rem). W#])

definition bre-inner-step
= (Yq,l) ta-rule = ('q::hashable,’l::hashable) bre-state
= (’q,’l) bre-state
where
bre-inner-step 1 == A(Q, W,rem).
let c=the (hm-lookup r rcm);
rem’ = hm-update v (¢—(1::nat)) rem;
Q' = (if ¢ < 1 then hs-ins (lhs ) Q else Q);
W’ = (if ¢ < 1 A= hs-memb (lhs ) Q then lhs r # W else W) in
(Q, W' rem”)

definition bre-step
= (Yq,('q,"l) ta-rule ls) hm
= (’q::hashable,’l::hashable) bre-state
= ('q,’l) bre-state
where
bre-step rgrm == \(Q, W,rem).
Is-iteratei (rgrm-lookup rqrm (hd W)) (A-. True) brc-inner-step
(Q,tl W, rem)

— Initial concrete state
definition bre-iq :: ('q,’l) ta-rule ls = 'q::hashable hs
where brc-ig 6 == lh-set-zy.g-image-filter (Ar.
if thsq r = [| then Some (lhs 1) else None) §

definition brc-rem-init

it ('g::hashable,’l::hashable) ta-rule ls
= (('q,’l) ta-rule,nat) hm
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where brc-rem-init 6 ==
Is-iteratei § (A-. True)
(A1 res. hm-update r ((length (remdups (rhsq r)))) res)
(hm-empty ()

definition brec-initial
it (‘g::hashable,’l::hashable) ta-rule ls = ('q,'l) bre-state
where bre-initial 6 ==
let ig=brc-iq 6 in
(iq, hs-to-list (iq), bre-rem-ingt &)

definition bre-det-algo rgrm 6 == (|
dwa-cond = brc-cond,
dwa-step = bre-step rqrm,
dwa-initial = bre-initial 9,
dwa-invar = bre-invar (Is-a 0)

)

— Additional facts needed from the abstract level
lemma bre-inv-imp-WssQ: bre-a (Q, W, rem)€br’-invar 6 = set W C hs-a Q
(proof )

lemma bre-ig-correct:
assumes [simp]: ls-invar §
shows hs-invar (bre-iq 9)
hs-a (bre-ig 6) = br-iq (Is-a 6)
(proof )

lemma brc-rem-init-correct:
assumes INV[simp]: Is-invar 6
shows rels-a §
= hm-a (bre-rem-init §) r = Some ((card (set (rhsq r))))
(is - = ?T1 r) and
hm-invar (bre-rem-init §) (is 2T2)
(proof)

lemma bre-inner-step-br’-desc:
[ (Q,W,rem)€bre-invar § | = bre-a (bre-inner-step v (Q, W,rem)) = (
if the (hm-ae rem 1) < 1 then
insert (lhs r) (hs-a Q)
else hs-a @,
if the (hm-av rem r) < 1 A (lhs 1) ¢ hs-a Q then
insert (lhs r) (set W)
else (set W),
((hm-a rem)(r — the (hm-a rem ) — 1))
)
(proof)

lemma bre-step-invar:
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assumes RQRM: rgrm-invar rqgrm

shows [ X€bre-invar-add; bre-a X€br’~invar 0; bre-cond X |
= (brc-step rqrm X)€bre-invar-add

{proof)

lemma bre-step-abs:
assumes RQRM: rqgrm-invar rqrm  rqrm-prop § rqrm
assumes A: X€brc-invar 6  bre-cond X
shows (bre-a X, bre-ac (bre-step rgrm X)) € br'-step &
(proof)

lemma bre-initial-invar: ls-invar 6 = (bre-initial §)€bre-invar-add
{proof)

lemma bre-cond-abs: bre-cond X <+— (bre-a X)€br’-cond
(proof)

lemma brc-initial-abs:
Is-invar § = bre-a (bre-initial ) € br'-initial (Is-a 6)
{proof)

lemma bre-pref-br':
assumes RQRM|[simp]: rgrm-invar rgrm  rgrm-prop (Is-a §) rgrm
assumes INV[simpl: ls-invar §
shows wa-precise-refine (det-wa-wa (bre-det-algo rgrm §))
(br’-algo (Is-« §))
bre-a
(proof)

lemma bre-while-algo:
assumes RQRM [simpl: rgrm-invar rgrm  rgrm-prop (Is-a §) rgrm
assumes INV[simp]: ls-invar §
shows while-algo (det-wa-wa (bre-det-algo rqgrm §))

(proof)

lemmas bre-det-while-algo =
det-while-algo-intro| OF bre-while-algo)

lemma fst-bre-a: fst (bre-a s) = hs-a (fst )
(proof)

lemmas bre-invar-final =
wa-precise-refine.transfer-correctness| OF
bre-pref-br’ br'-invar-final, unfolded fst-bre-c

definition hta-bwd-reduce H ==
let rqrm = build-rqrm (hta-0 H) in
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hta-reduce
H
(fst (while bre-cond (bre-step rgrm) (bre-initial (hta-6 H))))

theorem (in hashedTa) hta-bwd-reduce-correct:
shows hta-a (hta-bwd-reduce H)
= ta-reduce (hta-a H) (b-accessible (Is-o (hta-§ H))) (is ?T1)
hashedTa (hta-bwd-reduce H) (is ?T2)
(proof)

5.9.1 Emptiness Check with Witness Computation

definition brec-construct-witness
o (‘g:zhashable,’l::hashable tree) hm = ('q,’l) ta-rule = 'l tree
where brec-construct-witness Qm r ==
NODE (rhsl r) (List.map (Aq. the (hm-lookup q Qm)) (rhsq 1))

lemma brec-construct-witness-correct:
[Am-invar Qm] =
brec-construct-witness @m r = construct-witness (hm-a Qm) r
(proof )

type-synonym ('Q,’L) brec-state
= (('Q,’L tree) hm
x 'Q fifo
x (('Q,’L) ta-rule, nat) hm
x '@ option)

— Abstractions
definition brec-a
2 ('Q::hashable,’L::hashable) brec-state = ('Q,’L) brw-state
where brec-ae == A\(Q, W,rem,f). (hm-a Q, set (fifo-a W), (hm-« Tem))

definition brec-inner-step
=g hs = ('q,'l) ta-rule
= ('q::hashable,’l::hashable) brec-state
= (’q,’l) brec-state
where brec-inner-step Qi r == \(Q, W ,rem,quit).
let c=the (hm-lookup r rem);
cond = ¢ < 1 A hm-lookup (lhs r) Q = None;
rem’ = hm-update v (¢c—(1::nat)) rem;
Q' = ( if cond then
hm-update (lhs r) (brec-construct-witness Q r) Q
else Q);
W' = (if cond then fifo-enqueue (lhs r) W else W);
quwit’ = (if ¢ < 1 A hs-memb (lhs ) Qi then Some (lhs 1) else quit)
in

99



(Q, W' rem/,quit’)

definition brec-step

= (Yq,('q,"l) ta-rule ls) hm = 'q hs
= ('q::hashable,’l::hashable) brec-state
= ('q,"l) brec-state

where brec-step rqgrm Qi == A(Q, W ,rem,quit).

let (q, W')=fifo-dequeue W in
Is-iteratei (rqgrm-lookup rgrm q) (A-. True)
(brec-inner-step Qi) (Q, W' ,rem,quit)

definition brec-igm
it ('q::hashable,’l::hashable) ta-rule ls = ('q,’l tree) hm
where brec-igm § ==
Is-iteratei & (A-. True) (Ar m. if rhsq r =[] then
hm-update (lhs ) (NODE (rhslr) []) m
else m)

(hm-empty ())

definition brec-initial

2 'q hs = ('q::hashable,’l::hashable) ta-rule ls
= ('q,'l) brec-state

where brec-initial Qi 6 ==

let ig=brc-iq 0 in

( brec-igm 4,

hs-to-fifo.g-set-to-listr iq,
bre-rem-init 9,
hh-set-zz.g-disjoint-witness iq Q1)

definition brec-cond
= (Yg,’l) brec-state = bool
where brec-cond == N Q, W ,rem,quit). — fifo-isEmpty W A qwit = None

definition brec-invar-add
2 'Q set = ('Q::hashable,’L::hashable) brec-state set
where
brec-invar-add Qi == {(Q, W ,rem,quit).
hm-invar @ A
distinct (fifo-a W) A
hm-invar rem A
( case quit of
None = Qi N dom (hm-a Q) = {} |
Some g = ¢€Qi N dom (hm-a Q))}

definition brec-invar Qi 6 == brec-invar-add Qi N {s. brec-a s € brw-invar ¢}

definition brec-invar-inner Qi ==
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brec-invar-add Qi N {(Q,W,-,-). set (fifo-a W) C dom (hm-a Q)}

lemma brec-invar-cons:
Yebrec-invar Qi 6 = Y€ brec-invar-inner Qi
(proof )

lemma brec-brw-invar-cons:
brec-ae ¥ € brw-invar Qi = set (fifo-a (fst (snd X))) C dom (hm-a (fst X))
{proof)

definition brec-det-algo rqrm Qi 6 ==
dwa-cond=brec-cond,
dwa-step=brec-step rqgrm Qi,
dwa-initial=brec-initial Qi 6,
dwa-invar=brec-invar (hs-a Qi) (Is-a 9)

)

lemma brec-igm-correct”:
assumes INV|[simp]: Is-invar 6
shows
dom (hm-a (brec-igm 6)) = {lhs v | r. r€ls-a § A rhsq r = [} (is ?T1)
witness-prop (ls-a §) (hm-« (brec-igm §)) (is ?T2)
hm-invar (brec-igm &) (is ?T3)
(proof)

lemma brec-igm-correct:

assumes INV[simp]: ls-invar ¢

shows hm-a (brec-igm §) € brw-iq (Is-a 0)
(proof)

lemma brec-inner-step-brw-desc:
[ Xebrec-invar-inner (hs-o Qi) ]
= (brec-a X, brec-a (brec-inner-step Qi r X)) € brw-inner-step r
(proof)

lemma brec-step-invar:
assumes RQRM: rqgrm-invar rgqrm  rqrm-prop 6 rqrm
assumes [simp]: hs-invar Qi
shows [ X€brec-invar-add (hs-a Qi); brec-aw & € brw-invar §; brec-cond X |
= (brec-step rgrm Qi X)€brec-invar-add (hs-o Q7)
(proof )

lemma brec-step-abs:
assumes RQRM: rqgrm-invar rqrm  rqrm-prop § rqrm
assumes INV[simp|: hs-invar Qi
assumes A’: Ye€brec-invar (hs-a Qi) 6
assumes COND: brec-cond %
shows (brec-a X, brec-a (brec-step rgrm Qi X)) € brw-step ¢
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(proof)

lemma brec-invar-initial:
[ls-invar &; hs-invar Qi] = (brec-initial Qi §) € brec-invar-add (hs-a Q)
(proof)

lemma brec-cond-abs:
[E€brec-invar Qi 0] = brec-cond ¥ +— (brec-ax X)€brw-cond Qi

{proof)

lemma brec-initial-abs:
[ ls-invar d; hs-invar Qi |
= brec-a (brec-initial Qi ) € brw-initial (Is-o 0)
{proof)

lemma brec-pref-brw:
assumes RQRM [simpl: rgrm-invar rgqrm  rgrm-prop (ls-a 8) rgrm
assumes INV[simp]: ls-invar §  hs-invar Qi
shows wa-precise-refine (det-wa-wa (brec-det-algo rgrm Qi ¢))
(brw-algo (hs-a Qi) (Is-a §))
brec-a
(proof)

lemma brec-while-algo:
assumes RQRM|[simpl: rgrm-invar rgrm  rgrm-prop (Is-a §) rgrm
assumes INV[simp]: ls-invar §  hs-invar Qi
shows while-algo (det-wa-wa (brec-det-algo rgrm Qi §))

(proof)

lemma fst-brec-a: fst (brec-a ¥) = hm-a (fst )
{proof)

lemmas brec-invar-final =
wa-precise-refine.transfer-correctness|
OF brec-pref-brw brw-invar-final,
unfolded fst-brec-a]

lemmas brec-det-algo = det-while-algo-intro] OF brec-while-algo]

definition hta-is-empty-witness H ==
let rqrm = build-rgrm (hta-0 H);
(Q,-,-,quit) = (while brec-cond (brec-step rgrm (hta-Qi H))
(brec-initial (hta-Qi H) (hta-6 H)))
mn
case quit of
None = None |
Some q = (hm-lookup q Q)
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theorem (in hashedTa) hta-is-empty-witness-correct:
shows [rule-format]: hta-is-empty-witness H = Some t
— teta-lang (hta-a H) (is ?T1)
hta-is-empty-witness H = None — ta-lang (hta-a H) = {} (is ?72)
(proof)

5.10 Interface for Natural Number States and Symbols

The library-interface is statically instantiated to use natural numbers as
both, states and symbols.

This interface is easier to use from ML and OCaml, because there is no
overhead with typeclass emulation.

type-synonym htai = (nat,nat) hashedTa

definition htai-mem :: - = htai = bool

where htai-mem == hta-mem
definition htai-prod :: htai = htai = htai

where htai-prod Hl H2 == hta-reindex (hta-prod HI H2)
definition htai-prod WR :: htai = htai = htai

where htai-prodWR H1 H2 == hta-reindex (hta-prod WR H1 H2)
definition htai-union :: htai = htai = htai

where htai-union H1 H2 == hta-reindex (hta-union H1 H2)
definition htai-empty :: unit = htai

where htai-empty == hta-empty
definition htai-add-qi :: - = htai = htai

where htai-add-qi == hta-add-qi
definition htai-add-rule :: - = htai = htai

where htai-add-rule == hta-add-rule
definition htai-bwd-reduce :: htai = htai

where htai-bwd-reduce == hta-bwd-reduce
definition htai-is-empty-witness :: htai = -

where htai-is-empty-witness == hta-is-empty-witness
definition htai-ensure-idz-f :: htai = htai

where htai-ensure-idz-f == hta-ensure-idz-f
definition htai-ensure-idz-s :: htai = htai

where htai-ensure-idz-s == hta-ensure-idz-s
definition htai-ensure-idz-sf :: htai = htai

where hiai-ensure-idz-sf == hta-ensure-idz-sf

definition htaip-prod :: htai = htai = (nat x nat,nat) hashedTa
where htaip-prod == hta-prod

definition htaip-prodWR :: htai = htai = (nat * nat,nat) hashedTa
where htaip-prod WR == hta-prod WR

definition htaip-reindex :: (nat * nat,nat) hashedTa = htai
where htaip-reinder == hta-reindex

locale htai = hashedTa +
constrains H :: htai
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begin
lemmas htai-mem-correct = hta-mem-correct|folded htai-mem-def]

lemma htai-empty-correct[simp):
hta-a (htai-empty ()) = ta-empty
hashedTa (htai-empty ())

(proof)

lemmas htai-add-qi-correct = hta-add-gi-correct|folded htai-add-qi-def]
lemmas htai-add-rule-correct = hta-add-rule-correct|folded htai-add-rule-def]

lemmas htai-bwd-reduce-correct =
hta-bwd-reduce-correct|folded htai-bwd-reduce-def]

lemmas htai-is-empty-witness-correct =
hta-is-empty-witness-correct|folded htai-is-empty-witness-def]

lemmas htai-ensure-idz-f-correct =
hta-ensure-ida-f-correct[folded htai-ensure-idz-f-def]

lemmas htai-ensure-idz-s-correct =
hta-ensure-idz-s-correct|folded htai-ensure-idx-s-def)

lemmas htai-ensure-idz-sf-correct =
hta-ensure-idz-sf-correct[folded htai-ensure-idx-sf-def]

end

lemma htai-prod-correct:
assumes [simp|: hashedTa HI  hashedTa H2
shows
ta-lang (hta-o (htai-prod H1 H2)) = ta-lang (hta-o H1) N ta-lang (hta-o H2)
hashedTa (htai-prod H1 H2)
(proof )

lemma htai-prod WR-correct:
assumes [simp|: hashedTa HI  hashedTa H2
shows
ta-lang (hta-a (htai-prodWR H1 H2))
= ta-lang (hta-a H1) N ta-lang (hta-o H2)
hashedTa (htai-prod WR H1 H2)
{proof )

lemma htai-union-correct:
assumes [simp|: hashedTa HI  hashedTa H2
shows
ta-lang (hta-o (htai-union H1 H2))
= ta-lang (hta-a H1) U ta-lang (hta-o H2)
hashedTa (htai-union H1 H2)
(proof )
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5.11 Interface Documentation

This section contains a documentation of the executable tree-automata in-
terface. The documentation contains a description of each function along
with the relevant correctness lemmas.

ML/OCaml users should note, that there is an interface that has the fixed
type Int for both states and function symbols. This interface is simpler to
use from ML/OCaml than the generic one, as it requires no overhead to
emulate Isabelle/HOL type-classes.

The functions of this interface start with the prefix htai instead of hta, but
have the same semantics otherwise (cf Section 5.10).

5.11.1 Building a Tree Automaton
Function: hta-empty
Returns a tree automaton with no states and no rules.

Relevant Lemmas

hta-empty-correct: hta-« (hta-empty ()) = ta-empty
hashedTa (hta-empty ())

ta-empty-lang: ta-lang ta-empty = {}

Function: hta-add-qi
Adds an initial state to the given automaton.

Relevant Lemmas

hashed Ta.hta-add-qi-correct hashedTa H = hta-a (hta-add-qi qi H) = (ta-initial
= insert qi (ta-initial (hta-a H)), ta-rules = ta-rules (hta-oa H)))

hashedTa H = hashedTa (hta-add-qi qi H)

Function: hta-add-rule
Adds a rule to the given automaton.

Relevant Lemmas

hashedTa.hta-add-rule-correct: hashedTa H = hta-a (hta-add-rule r H) =
(ta-initial = ta-initial (hta-a H), ta-rules = insert v (ta-rules (hta-«

H)))
hashedTa H = hashedTa (hta-add-rule r H)
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5.11.2 Basic Operations

The tree automata of this library may have some optional indices, that
accelerate computation. The tree-automata operations will compute the
indices if necessary, but due to the pure nature of the Isabelle-language, the
computed index cannot be stored for the next usage. Hence, before using a
bulk of tree-automaton operations on the same tree-automata, the relevant
indexes should be pre-computed.

Function: hta-ensure-idz-f

hta-ensure-idz-s

hta-ensure-idz-sf

Computes an index for a tree automaton, if it is not yet present.

Function: hta-mem, hta-mem’
Check whether a tree is accepted by the tree automaton.

Relevant Lemmas

hashedTa.hta-mem-correct: hashedTa H = hta-mem t H = (t € ta-lang
(hta-a H))

hashedTa.hta-mem'-correct: [hashedTa H; hta-has-idz-f H| = hta-mem' t
H = (t € ta-lang (hta-a H))

Function: hta-prod, hta-prod’

Compute the product automaton. The computed automaton is in forward-
reduced form. The language of the product automaton is the intersection of
the languages of the two argument automata.

Relevant Lemmas

hta-prod-correct-aux: [hashedTa H1; hashedTa H2] = hta-c (hta-prod H1
H?2) = ta-fwd-reduce (ta-prod (hta-a H1) (hta-o H2))

[hashedTa H1; hashedTa H2] = hashedTa (hta-prod H1 H2)
hta-prod-correct: [hashedTa H1; hashedTa H2] = ta-lang (hta-« (hta-prod

H1 H2)) = ta-lang (hta-a H1) N ta-lang (hta-o H2)

[hashedTa H1; hashedTa H2] —> hashedTa (hta-prod H1 H2)
hta-prod’-correct-aux: [hashedTa H1; hashedTa H2; hta-has-idz-s HI1; hta-has-idz-sf

H2] = hta-« (hta-prod’ H1 H2) = ta-fwd-reduce (ta-prod (hta-o H1)
(hta-a H2))

[hashedTa H1; hashedTa H2; hta-has-idz-s H1; hta-has-idz-sf H2] =
hashedTa (hta-prod’ H1 H2)

66



hta-prod’-correct: [hashedTa H1; hashedTa H2; hta-has-idx-s H1; hta-has-idz-sf
H2] = ta-lang (hta-o (hta-prod’ H1 H2)) = ta-lang (hta-a H1) N
ta-lang (hta-a H2)

[hashedTa H1; hashedTa H2; hta-has-idz-s H1; hta-has-idz-sf H2] =
hashedTa (hta-prod’ H1 H2)

Function: hta-prod WR

Compute the product automaton by brute-force algorithm. The resulting
automaton is not reduced. The language of the product automaton is the
intersection of the languages of the two argument automata.

Relevant Lemmas

hta-prod WR-correct-auz: [hashedTa H1; hashedTa H2] = hta-a (hta-prod WR
H1 H2) = ta-prod (hta-a H1) (hta-o H2)

[hashedTa H1; hashedTa H2] —> hashedTa (hta-prod WR H1 H2)

hta-prod WR-correct: [hashedTa H1; hashedTa H2] = ta-lang (hta-a (hta-prod WR
H1 H2)) = ta-lang (hta-a H1) N ta-lang (hta-o H2)
[hashedTa H1; hashedTa H2] = hashedTa (hta-prod WR H1 H2)

Function: hta-union
Compute the union of two tree automata.

Relevant Lemmas

hta-union-correct”: [hashedTa H1; hashedTa H2] —> hta-a (hta-union H1
H?2) = ta-union-wrap (hta-o H1) (hta-oo H2)

[hashedTa H1; hashedTa H2] = hashedTa (hta-union H1 H2)
hta-union-correct: [hashedTa H1; hashedTa H2] = ta-lang (hta-c (hta-union

H1 H2)) = ta-lang (hta-a H1) U ta-lang (hta-o H2)

[hashedTa H1; hashedTa H2] = hashedTa (hta-union H1 H2)

Function: hta-reduce
Reduce the automaton to the given set of states. All initial states outside
this set will be removed. Moreover, all rules that contain states outside this
set are removed, too.
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Relevant Lemmas

hashed Ta.hta-reduce-correct: [hashedTa H; hs.invar Q] = hta-a (hta-reduce
H Q) = ta-reduce (hta-a H) (hs.a Q)

[hashedTa H; hs.invar Q] = hashedTa (hta-reduce H Q)

Function: hta-bwd-reduce

Compute the backwards-reduced version of a tree automata. States from
that no tree can be produced are removed. Backwards reduction does not
change the language of the automaton.

Relevant Lemmas

hashed Ta.hta-bwd-reduce-correct: hashedTa H = hta-« (hta-bwd-reduce H)
= ta-reduce (hta-o H) (b-accessible (Is.ac (hta-d H)))

hashedTa H = hashedTa (hta-bwd-reduce H)

ta-reduce-b-acc: ta-lang (ta-bwd-reduce TA) = ta-lang TA

Function: hta-is-empty-witness

Check whether the language of the automaton is empty. If the language is
not empty, a tree of the language is returned.

The following property is not (yet) formally proven, but should hold: If a
tree is returned, the language contains no tree with a smaller depth than
the returned one.

Relevant Lemmas

hashed Ta.hta-is-empty-witness-correct: [hashedTa H; hta-is-empty-witness
H = Some t] = t € ta-lang (hta-o H)
[hashedTa H; hta-is-empty-witness H = None] = ta-lang (hta-o H)

={}

5.12 Code Generation

export-code
hta-mem hta-mem' hta-prod hta-prod’ hta-prod WR hta-union
hta-empty hta-add-qi hta-add-rule
hta-reduce hta-bwd-reduce hta-is-empty-witness
hta-ensure-idz-f hta-ensure-idx-s hta-ensure-idz-sf

htai-mem htai-prod htai-prod WR htai-union
htai-empty htai-add-qi htai-add-rule
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htai-bwd-reduce htai-is-empty-witness
htai-ensure-idz-f htai-ensure-idx-s htai-ensure-idx-sf

in SML
module-name Ta

export-code
hta-mem hta-mem’ hta-prod hta-prod’ hta-prod WR hta-union
hta-empty hta-add-qi hta-add-rule
hta-reduce hta-bwd-reduce hta-is-empty-witness
hta-ensure-idz-f hta-ensure-idx-s hta-ensure-idz-sf

htai-mem htai-prod htai-prod WR htai-union
htai-empty htai-add-qi htai-add-rule

htai-bwd-reduce htai-is-empty-witness
htai-ensure-idz-f htai-ensure-idx-s htai-ensure-idx-sf

in Haskell
module-name Ta
(string-classes)

export-code
hta-mem hta-mem’ hta-prod hta-prod’ hta-prod WR hta-union
hta-empty hta-add-qi hta-add-rule
hta-reduce hta-bwd-reduce hta-is-empty-witness
hta-ensure-idz-f hta-ensure-idx-s hta-ensure-idz-sf

htai-mem htai-prod htai-prod WR htai-union
htai-empty htai-add-qi htai-add-rule

htai-bwd-reduce htai-is-empty-witness
htai-ensure-idz-f htai-ensure-idx-s htai-ensure-idx-sf

in OCaml
module-name Ta

(ML)

end
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6 Conclusion

This development formalized basic tree automata algorithms and the class
of tree-regular languages. FEfficient code was generated for all the lan-
guages supported by the Isabelle2009 code generator, namely Standard-ML,
OCaml, and Haskell.

6.1 Efficiency of Generated Code

The efficiency of the generated code, especially for Haskell, is quite good.
On the author’s dual-core machine with 2.6GHz and 4GiB memory, the
generated code handles automata with several thousands rules and states
in a few seconds. The Haskell-code is between 2 and 3 times slower than a
Java-implementation of (approximately) the same algorithms.

A comparison to the Taml-library of the Timbuk-project [3] is not fair,
because it runs in interpreted OCaml-Mode by default, and this is not
comparable in speed to, e.g., compiled Haskell. However, the generated
OCaml-code of our library can also be run in interpreted mode, to get a fair
comparison with Taml:

The speed was compared for computing whether the intersection of two
tree-automata is empty or not. The choice of this test was motivated by the
author’s requirements.

While our library also computes a witness for non-emptiness, the Taml-
library has no such function. For some examples of non-empty languages,
our library was about 14 times faster than Taml. This is mainly because
our emptiness-test stops if the first initial state is found to be accessible,
while the Timbuk-implementation always performs a complete reduction.
However, even when compared for automata that have an empty language,
i.e. where Timbuk and our library have to do the same work, our library
was about 2 times faster.

There are some performance test cases with large, randomly created, au-
tomata in the directory code, that can be run by the script doTests.sh.
These test cases read pairs of automata, intersect them and check the re-
sult for emptiness. If the intersection is not empty, a tree accepted by both
automata is computed.

There are significant differences in efficiency between the used languages.
Most notably, the Haskell code runs one order of magnitude faster than
the SML and OCaml code. Also, using the more elaborated top-down in-
tersection algorithm instead of the brute-forec algorithm brings the least
performance gain in Haskell. The author suspects that the Haskell compiler
does some optimization, perhaps by lazy-evaluation, that is missed by the
ML systems.
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6.2 Future Work

There are many starting points for improvement, some of which are men-
tioned below.

Implemented Algorithms In this development, only basic algorithms for
non-deterministic tree-automata have been formalized. There are many
more interesting algorithms and notions that may be formalized, amongst
others tree transducers and minimization of (deterministic) tree au-
tomata.

Actually, the goal when starting this development was to implement,
at least, intersection and emptiness check with witness computation.
These algorithms are needed for a DPN[1] model checking algorithm[5]
that the author is currently working on.

Refinement The algorithms are first formalized on an abstract level, and
then manually refined to become executable. In theory, the abstract
algorithms are already executable, as they involve only recursive func-
tions and finite sets. We have experimented with simplifier setups to
execute the algorithms in the simplifier, however the performance was
quite bad and there where some problems with termination due to
the innermost rewriting-strategy used by the simplifier, that required
careful crafting of the simplifier setup.

The refinement is done in a somewhat systematic way, using the tools
provided by the Isabelle Collections Framework (e.g. a data refinement
framework for the while-combinator). However, most of the refinement
work is done by hand, and the author believes that it should be possible
to do the refinement with more tool support.

Another direction of future work would be to use the tree-automata frame-
work developped here for applications. The author is currently working on a
model-checker for DPNs that uses tree-automata based techniques [5], and
plans to use this tree automata framework to generate a verified implemen-
tation of this model-checker. However, there are other interesting applica-
tions of tree automata, that could be formalized in Isabelle and, using this
framework, be refined to efficient executable algorithms.

6.3 Trusted Code Base

In this section we shortly characterize on what our formal proof depends,
i.e. how to interpret the information contained in this formal proof and the
fact that it is accepted by the Isabelle/HOL system.

First of all, you have to trust the theorem prover and its axiomatization of
HOL, the ML-platform, the operating system software and the hardware it
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runs on. All these components are, in theory, able to cause false theorems to
be proven. However, the probability of a false theorem to get proven due to
a hardware error or an error in the operating system software is reasonably
low. There are errors in hardware and operating systems, but they will
usually cause the system to crash or exhibit other unexpected behaviour,
instead of causing Isabelle to quitely accept a false theorem and behave
normal otherwise. The theorem prover itself is a bit more critical in this
aspect. However, Isabelle/HOL is implemented in LCF-style, i.e. all the
proofs are eventually checked by a small kernel of trusted code, containing
rather simple operations. HOL is the logic that is most frequently used with
Isabelle, and it is unlikely that it’s axiomatization in Isabelle is inconsistent
and no one found and reported this inconsistency already.

The next crucial point is the code generator of Isabelle. We derive exe-
cutable code from our specifications. The code generator contains another
(thin) layer of untrusted code. This layer has some known deficiencies? (as
of Isabelle2009) in the sense that invalid code is generated. This code is
then rejected by the target language’s compiler or interpreter, but does not
silently compute the wrong thing.

Moreover, assuming correctness of the code generator, the generated code is

only guaranteed to be partially correct?, i.e. there are no formal termination
guarantees.

Acknowledgements We thank Markus Miiller-Olm for some interesting
discussions. Moreover, we thank the people on the Isabelle mailing list for
quickly giving useful answers to any Isabelle-related questions.

2For example, the Haskell code generator may generate variables starting with upper-
case letters, while the Haskell-specification requires variables to start with lowercase let-
ters. Moreover, the ML code generator does not know the ML value restriction, and may
generate code that violates this restriction.

3 A simple example is the always-diverging function fg, :: bool = while (Az. True) id True
that is definable in HOL. The lemma Vz. x = if f4y, then x else = is provable in Isabelle and
rewriting based on it could, theoretically, be inserted before the code generation process,
resulting in code that always diverges
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