Treaps

Max Haslbeck, Manuel Eberl, Tobias Nipkow
March 17, 2025

Abstract

A Treap [2] is a binary tree whose nodes contain pairs consisting
of some payload and an associated priority. It must have the search-
tree property w.r.t. the payloads and the heap property w.r.t. the
priorities. Treaps are an interesting data structure that is related to
binary search trees (BSTs) in the following way: if one forgets all the
priorities of a treap, the resulting BST is exactly the same as if one
had inserted the elements into an empty BST in order of ascending
priority. This means that a treap behaves like a BST where we can
pretend the elements were inserted in a different order from the one in
which they were actually inserted.

In particular, by choosing these priorities at random upon insertion
of an element, we can pretend that we inserted the elements in random
order, so that the shape of the resulting tree is that of a random BST
no matter in what order we insert the elements. This is the main result
of this formalisation. [1]

Contents
1 Auxiliary material
2 Treaps

3 Randomly-permuted lists
3.1 General facts about linear orderings

4 Relationship between treaps and BSTs

5 Random treaps
5.1 Measurability oo
5.2 Mainresult

1 Auxiliary material

theory Probability-Misc
imports HOL— Probability. Probability
begin

lemma measure-eql-countable-AE":
assumes [simp]: sets M = Pow B sets N = Pow B and subset: Q C B
assumes ae: AExin M.z € Q AE zin N. z € Q and [simp]: countable
assumes eq: \z. x € Q = emeasure M {2} = emeasure N {z}
shows M = N

(proof)

lemma measurable-le[measurable (raw)]:
fixes f :: 'a = 'b::{second-countable-topology, linorder-topology}
assumes f € borel-measurable M g € borel-measurable M
shows Measurable.pred M (Az. fz < g x)

{proof)

lemma measurable-eqmeasurable (raw)]:
fixes f :: 'a = 'b::{second-countable-topology, linorder-topology}
assumes [€ borel-measurable M g € borel-measurable M
shows Measurable.pred M (Az. fz = g x)

{proof)

context

fixes M :: 'a measure

assumes singleton-null-set: © € space M = {z} € null-sets M
begin

lemma countable-null-set:
assumes countable A A C space M
shows A € null-sets M

(proof)

lemma finite-null-set:
assumes finite A A C space M
shows A € null-sets M

(proof)

end

lemma measurable-inj-on-finite:
assumes fin [measurable]: finite I
assumes [measurable]: N\i j. Measurable.pred (M i @ v M j) (Mz,y). z = y)
shows Measurable.pred (Pipy I M) (Az. inj-on x I) {proof)

lemma almost-everywhere-not-in-countable-set:
assumes countable A

assumes [measurable]: Measurable.pred (M @ p M) (A(z,y). z = y)
assumes null: A\z. x € space M = {z} € null-sets M
shows AEzin M.z ¢ A

(proof)

lemma almost-everywhere-inj-on-PiM:
assumes fin: finite I and prob-space: N\i. i € I = prob-space (M 1)
assumes [measurable]: \i j. Measurable.pred (M i @ v M j) (A(z,y). x = y)
assumes null: Niz. i € I = z € space (M i) = {z} € null-sets (M 7)
shows AFE fin (U i€l. M 7). inj-on f 1

(proof)

lemma null-sets-uniform-measure:

assumes A € sets M emeasure M A # oo

shows null-sets (uniform-measure M A) = (AB. A N B) —* null-sets M N sets
M

{proof)

lemma almost-everywhere-avoid-finite:

assumes fin: finite I

shows AFE fin (Il i€l. uniform-measure lborel {(0::real)..1}). inj-on f 1
(proof)

lemma almost-everywhere-avoid-countable:
assumes countable A
shows AFE z in uniform-measure lborel {(0::real)..1}. z ¢ A

(proof)

lemma measure-pmf-of-set:
assumes A # {} and finite A
shows measure-pmf (pmf-of-set A) = uniform-measure (count-space UNIV) A

(proof)

lemma emeasure-distr-restrict:

assumes f € M —y Nfe M —y N' A € sets N' sets M' C sets M sets N’
C sets N

assumes AX. X € sets M' = emeasure M X = emeasure M' X

assumes AX. X € sets M =— X C space M — space M' = emeasure M X =
0

shows emeasure (distr M N f) A= emeasure (distr M' N’ f) A

(proof)

lemma distr-uniform-measure-count-space-ing:
assumes inj-on f A’ A’ C A f ‘A C B finite A’
shows distr (uniform-measure (count-space A) A") (count-space B) f =
uniform-measure (count-space B) (f ¢ A') (is ?lhs = ?rhs)

(proof)

lemma (in pair-prob-space) pair-measure-bind:
assumes [measurable]: f € M1 @Q ap M2 —pr subprob-algebra N
shows (M1 @ n M2) >= f = do {&x «+ MI1;y <« M2; f (z, y)}
(proof)

lemma count-space-singleton-conv-return:
count-space {z} = return (count-space {z})

(proof)

lemma distr-count-space-singleton [simpl:
fz € space M = distr (count-space {z}) M f = return M (f z)
{proof)

lemma uniform-measure-count-space-singleton [simp):
assumes {z} € sets M emeasure M {z} # 0 emeasure M {z} < oo
shows uniform-measure M {z} = return M «

(proof)

lemma PiM-uniform-measure-permute:
fixes a b :: real
assumes g permutes A a < b
shows distr (PiM A (\-. uniform-measure lborel {a..b})) (PiM A (\-. lborel))
(Af-fog) =
PiM A (\-. uniform-measure lborel {a..b})

(proof)

lemma ennreal-fact [simp]: ennreal (fact n) = fact n
(proof)

lemma inverse-ennreal-unique:
assumes a * (b :: ennreal) = 1
shows b = inverse a

{proof)

end

2 Treaps

theory Treap
imports

HOL—Library. Tree
begin

definition treap :: ('k::linorder x 'p::linorder) tree = bool where
treap t = (bst (map-tree fst t) A heap (map-tree snd t))

abbreviation keys t = set-tree (map-tree fst t)
abbreviation prios t = set-tree (map-tree snd t)

function treap-of :: ('k::linorder x 'p::linorder) set = ('k x 'p) tree where
treap-of KP = (if infinite KP V KP = {} then Leaf else
let m = arg-min-on snd KP;
L={pe KP. fstp < fst m};
R={pe KP. fstp > fst m}
in Node (treap-of L) m (treap-of R))
(proo)
termination
(proof)

declare treap-of.simps [simp del]

lemma treap-of-unique:
[treap t; inj-on snd (set-tree t) |
= treap-of (set-tree t) =t

(proof)

lemma treap-unique:
[treap t1; treap t2; set-tree t1 = set-tree t2; inj-on snd (set-tree t1) |
= t1 =12
for t1 t2 :: ('k:linorder x 'p::linorder) tree

(proof)

fun ins :: 'k:linorder = 'p:linorder = ('k x 'p) tree = ('k x 'p) tree where
ins k p Leaf = (Leaf, (k,p), Leaf) |
ins kp (I, (k1,p1), r) =
(if k < k1 then
(case ins k p 1 of
(12, (k2,p2), r2) =
if p1 < p2 then ({12, (k2,p2), r2), (k1,p1),)
else (12, (k2,p2), (r2, (k1,p1), r)))
else
if k > k1 then
(case ins k p r of
(12, (k2,p2), r2) =
if p1 < p2then (I, (k1,p1), (12, (k2,p2), r2))
else ((I, (k1,p1), 12), (k2,p2), r2))
else (I, (k1,p1), 1))

lemma ins-neg-Leaf: ins k p t # ()
(proof)

lemma keys-ins: keys (ins k p t) = Set.insert k (keys t)
(proof)

lemma prios-ins: prios (ins k p t) C {p} U prios t

{(proof)

lemma prios-ins” k ¢ keys t = prios (ins k p t) = {p} U prios t

(proof)

lemma set-tree-ins: set-tree (ins k p t) C {(k,p)} U set-tree t
{proof)

lemma set-tree-ins”: k ¢ keys t = {(k,p)} U set-tree t C set-tree (ins k p t)
(proof)

lemma set-tree-ins-eq: k ¢ keys t = set-tree (ins k p t) = {(k,p)} U set-tree t
{proof)

lemma prios-ins-special:
s kpt= Node) r; p'=p; p € prios r U prios
ins k pt = Nodel (k',p’ ! j j0s 1
= p € priost

(proof)

lemma treap-Nodel:
[treap l; treap r;
VEk'€ keysl. k' < k;VEk' € keysr. k <k
Vp' € priosl.p < p;Vp' € priosr. p < p']
= treap (Node | (k,p))
(proof)

lemma treap-rotatel:
assumes treap 12 treap r2 treap r - pl < p2 k < kI and
ins: ins k p | = Node 12 (k2,p2) r2 and treap-ins: treap (ins k p 1)
and treap: treap (I, (k1, p1), r)
shows treap (Node 12 (k2,p2) (Node r2 (k1,pl) r))
(proof)

lemma treap-rotate2:
assumes treap [treap 12 treap r2 — pl < p2 k1 < k and
ins: ins k p r = Node 12 (k2,p2) r2 and treap-ins: treap (ins k p r)
and treap: treap (I, (k1, p1), r)
shows treap (Node (Node | (k1,p1) 12) (k2,p2) r2)
(proof)

lemma treap-ins: treap t = treap (ins k p t)
(proof)

lemma treap-of-set-tree-unique:
[finite A; inj-on fst A; inj-on snd A]
= set-tree (treap-of A) = A

(proof)

lemma treap-of-subset: set-tree (treap-of A) C A

(proof)

lemma treap-treap-of:
treap (treap-of A)
(proof)

lemma treap-Leaf: treap ()
(proof)

lemma foldl-ins-treap: treap t = treap (foldl (At' (z, p). ins x p t') t xzs)
(proof)

lemma foldl-ins-set-tree:
assumes nj-on fst (set ys) inj-on snd (set ys) distinct ys fst < (set ys) N keys t

={

shows set-tree (foldl (A\t' (z, p). ins z p t') t ys) = set ys U set-tree t
{proof)

lemma foldl-ins-treap-of:
assumes distinct ys inj-on fst (set ys) inj-on snd (set ys)
shows (foldl (At’ (z, p). ins z p t') Leaf ys) = treap-of (set ys)
(proof)

end

3 Randomly-permuted lists

theory Random-List-Permutation
imports

Probability-Misc

Comparison-Sort-Lower-Bound. Linorder-Relations
begin

3.1 General facts about linear orderings

We define the set of all linear orderings on a given set and show some
properties about it.

definition linorders-on :: 'a set = (‘a x ‘a) set set where
linorders-on A = {R. linorder-on A R}

lemma linorders-on-empty [simp): linorders-on {} = {{}}
{proof)

lemma linorders-finite-nonempty:
assumes finite A
shows linorders-on A # {}

(proof)

There is an obvious bijection between permutations of a set (i.e. lists with
all elements from that set without repetition) and linear orderings on it.

lemma bij-betw-linorders-on:
assumes finite A
shows bij-betw linorder-of-list (permutations-of-set A) (linorders-on A)

{proof)

lemma sorted-wrt-list-of-set-linorder-of-list [simp]:
assumes distinct xs
shows sorted-wrt-list-of-set (linorder-of-list xs) (set xs) = xs

{proof)

lemma linorder-of-list-sorted-wrt-list-of-set [simp):
assumes linorder-on A R finite A
shows linorder-of-list (sorted-wrt-list-of-set R A) = R
(proof)

lemma bij-betw-linorders-on':

assumes finite A

shows bij-betw (AR. sorted-wrt-list-of-set R A) (linorders-on A) (permutations-of-set
A)

{proof)

lemma finite-linorders-on [intro):
assumes finite A
shows finite (linorders-on A)

(proof)

Next, we look at the ordering defined by a list that is permuted with some
permutation function. For this, we first define the composition of a relation
with a function.

definition map-relation :: 'a set = (‘a = 'b) = (b x 'b) set = (‘a x 'a) set
where
map-relation A f R = {(z,y)€AXA. (fz, fy) € R}

lemma indez-distinct-eql:
assumes distinct xs i < length xs xs | i = x
shows inder zsxz =i

{proof)

lemma index-permute-list:
assumes 7 permutes {..<length xs} distinct xs x € set xs
shows index (permute-list m xs) x = inv 7 (index zs x)

(proof)

lemma linorder-of-list-permute:
assumes 7 permutes {..<length xs} distinct xs
shows linorder-of-list (permute-list m xs) =
map-relation (set zs) ((!) zs o inv 7 o index xs) (linorder-of-list xs)

(proof)

lemma inj-on-conv-Exl: inj-on f A +— (Vyef‘A. FlzcA. y = fx)
(proof)

lemma bij-betw-conv-Exl: bij-betw f A B «+— (VyeB. Alz€A. fr =y) ANB=f
‘A
(proof)

lemma permutes!:
assumes bij-betw f A AVe. 2 ¢ A — fo ==z
shows f permutes A

{proof)

We now show the important lemma that any two linear orderings on a finite
set can be mapped onto each other by a permutation.

lemma linorder-permutation-exists:
assumes finite A linorder-on A R linorder-on A R’
obtains m where 7 permutes A R’ = map-relation A © R

(proof)

We now define the linear ordering defined by some priority function, i.e.
a function that injectively associates priorities to every element such that
elements with lower priority are smaller in the resulting ordering.

definition linorder-from-keys :: 'a set = (‘a = 'b = linorder) = ('a x 'a) set

where
linorder-from-keys A f = {(z,y)€AxA. fz < fy}

lemma linorder-from-keys-permute:

assumes ¢ permutes A

shows linorder-from-keys A (f o g) = map-relation A g (linorder-from-keys A
)

(proof)

lemma linorder-on-linorder-from-keys [intro):
assumes inj-on f A
shows linorder-on A (linorder-from-keys A f)
(proof)

lemma linorder-from-keys-empty [simp]: linorder-from-keys {} = (A-. {})
{proof)

We now show another important fact, namely that when we draw n values
i.1.d. uniformly from a non-trivial real interval, we almost surely get distinct
values.

lemma emeasure-PiM-diagonal:
fixes a b :: real
assumes t € A ye€e Ax#y
assumes a < b finite A

defines M = uniform-measure lborel {a..b}
shows emeasure (PiM A (A-. M)) {h€A —g UNIV. hz=hy} =0

(proof)

lemma measurable-linorder-from-keys-restrict:

assumes fin: finite A

shows linorder-from-keys A € Pipy A (A-. borel :: real measure) —p; count-space
(Pow (A x A))

(iS - M —M -)

(proof)

lemma measurable-count-space-extend:
assumes f € measurable M (count-space A) A C B
shows f € measurable M (count-space B)

(proof)

lemma measurable-linorder-from-keys-restrict’”:

assumes fin: finite A A C B

shows linorder-from-keys A € Pipy A (A-. borel :: real measure) —p; count-space
(Pow (B x B))

(proof)

context
fixes a b :: real and A :: ‘a set and M and B
assumes fin: finite A and ab: a < band B: A C B
defines M = distr (PiM A (\-. uniform-measure lborel {a..b}))
(count-space (Pow (B x B))) (linorder-from-keys A)
begin

lemma measurable-linorder-from-keys [measurable]:
linorder-from-keys A € Pipy A (A\-. borel :: real measure) —p count-space (Pow
(B x B))

{proof)

The ordering defined by randomly-chosen priorities is almost surely linear:

theorem almost-everywhere-linorder: AE R in M. linorder-on A R
(proof)

Furthermore, this is equivalent to choosing one of the |A|! linear orderings
uniformly at random.

theorem random-linorder-by-prios:
M = uniform-measure (count-space (Pow (B x B))) (linorders-on A)

(proof)

end
end

10

4 Relationship between treaps and BSTs

theory Treap-Sort-and-BSTs
imports

Treap

Random-List- Permutation

Random-BSTs. Random-BSTs
begin

Here, we will show that if we “forget” the priorities of a treap, we essentially
get a BST into which the elements have been inserted by ascending priority.

First, we show some facts about sorting that we will need.

The following two lemmas are only important for measurability later.

lemma insort-key-conv-rec-list:
insort-key fr s =
rec-list [x] (A\y ys zs. if fo < fy then x # y # ys else y # 25) s
(proof)

lemma insort-key-conv-rec-list”:
insort-key = (Af .
rec-list [x] (Ay ys zs. if fo < fy then © # y # ys else y # zs))
(proof)

lemma bst-of-list-trees:
assumes set ys C A
shows bst-of-list ys € trees A

{proof)

lemma insort-wrt-insort-key:
a € A=
set s C A =
insert-wrt (linorder-from-keys A f) a xs = insort-key f a s

{proof)

lemma insort-wrt-sort-key:
assumes set s C A
shows insort-wrt (linorder-from-keys A f) zs = sort-key f xs

{proof)

The following is an important recurrence for sort-key that states that for
distinct priorities, sorting a list w. r. t. those priorities can be seen as selection
sort, i.e. we can first choose the (unique) element with minimum priority as
the first element and then sort the rest of the list and append it.
lemma sort-key-arg-min-on:

assumes zs # [| inj-on p (set zs)

shows sort-key p (zs::'a::linorder list) =
(let z = arg-min-on p (set zs) in z # sort-key p (removel z zs))

(proof)

11

lemma arg-min-on-image-finite:
fixes f :: 'b = ’c :: linorder
assumes inj-on f (g * B) finite B B # {}
shows arg-min-on f (g * B) = g (arg-min-on (f o g) B)
(proof)

lemma fst-snd-arg-min-on: fixes p::’a = 'b::linorder
assumes finite B inj-on p B B # {}
shows fst (arg-min-on snd ((Az. (z, p z)) ‘ B)) = arg-min-on p B
(proof)

The following is now the main result:

theorem treap-of-bst-of-list’:
assumes ys = map (Az. (z, p x)) zs inj-on p (set xs) zs’' = sort-key p s
shows map-tree fst (treap-of (set ys)) = bst-of-list xs’
(proof)

corollary treap-of-bst-of-list: inj-on p (set zs) =
map-tree fst (treap-of (set (map (Az. (z, p x)) 2s))) = bst-of-list (sort-key p zs)
{proof)

corollary treap-of-bst-of-list’": inj-on p (set zs) =
map-tree fst (treap-of (A\z. (z, p x)) ‘ set zs)) = bst-of-list (sort-key p zs)
(proof)

corollary fold-ins-bst-of-list: distinct zs = inj-on p (set zs) =

map-tree fst (foldl (At (z,p). ins z p t) () (map (Az. (x, p x)) 2s)) = bst-of-list
(sort-key p 2s)

(proof)

end

5 Random treaps

theory Random-Treap
imports
Probability-Misc
Treap-Sort-and-BSTs
begin

5.1 Measurability

The following lemmas are only relevant for measurability.

lemma tree-sigma-cong:
assumes sets M = sets M’
shows tree-sigma M = tree-sigma M’

{proof)

12

lemma distr-restrict:
assumes sets N = sets L sets K C sets M
AX. X € sets K = emeasure M X = emeasure K X
AX. X € sets M = X C space M — space K — emeasure M X = 0
fEM%MNfGK—)ML
shows distr M N f = distr K L f
(proof)

lemma sets-tree-sigma-count-space:
assumes countable B
shows sets (tree-sigma (count-space B)) = Pow (trees B)

(proof)

lemma height-primrec: height = rec-tree 0 (M- - - a b. Suc (max a b))

(proof)

lemma ipl-primrec: ipl = rec-tree 0 (Al - r a b. size | + size r + a + b)

(proof)

lemma size-primrec: size = rec-tree 0 (A---ab. I + a+ b)
(proof)

lemma ipl-map-tree[simp)|: ipl (map-tree ft) = ipl t

(proof)

lemma set-pmf-random-bst: finite A = set-pmf (random-bst A) C trees A
(proof)

lemma trees-mono: A C B = trees A C trees B

(proof)

lemma ins-primrec:
ins k (p:ureal) t = rec-tree
(Node Leaf (k,p) Leaf)
(M zrl'r' case z of (k1, pl) =
if k < k1 then
(case U’ of
Leaf = Leaf
| Node 12 (k2,p2) r2 =
if 0 < p2 — pl then Node (Node 12 (k2,p2) r2) (k1,p1) r
else Node 12 (k2,p2) (Node r2 (k1,p1) 1))
else if k > k1 then
(case r' of
Leaf = Leaf
| Node 12 (k2,p2) r2 =
if 0 < p2 — pl then Node | (k1,p1) (Node 12 (k2,p2) r2)
else Node (Node | (k1,p1) 12) (k2,p2) r2)

13

else Node | (k1,p1) r
)t
(proof)

lemma measurable-less-count-space [measurable (raw)):
assumes countable A
assumes [measurable]: a € B —) count-space A
assumes [measurable]: b € B — 1 count-space A
shows Measurable.pred B (Az. a x < b z)

{(proof)

lemma measurable-ins [measurable (raw)]:
assumes [measurable]: countable A

|:
assumes [measurable]: k € B —)y count-space A
assumes [measurable]: © € B — s (lborel :: real measure)
assumes [measurable]: t € B —) tree-sigma (count-space A Q) ar lborel)
shows (Ay. ins (ky) (z y) (t y)) € B —pm tree-sigma (count-space A @ nr
lborel)
(proof)

lemma map-tree-primrec: map-tree f t = rec-tree () (M ar i’ rv'. (I, fa, r")) t
{proof)

definition U where U = (Aa b::real. uniform-measure lborel {a..b})
declare U-def[simp]

fun insR:: ‘a:linorder = ('a x real) tree = 'a set = ('a x real) tree measure
where
insRxt A = distr (U 0 1) (tree-sigma (count-space A Q) ar horel)) (Ap. ins

pt)

fun rinss :: ‘a:linorder list = ('a x real) tree = 'a set = ('a X real) tree measure
where

rinss [| t A = return (tree-sigma (count-space A Q) pr lborel)) t |

rinss (z#xs) t A = insR xt A >= (\t. rinss xs t A)

lemma sets-rinss”:

assumes countable B set ys C B

shows t € trees (B x UNIV) = sets (rinss ys t B) = sets (tree-sigma (count-space
B @ ar lborel))

(proof)

lemma measurable-foldl [measurable]:
assumes f € A —); B set xs C space C
assumes Ac. ¢ € set 1s = (A(a,b). gabc) € (AQm B) -u B
shows (Az. foldl (g z) (fz) zs) € A = B
(proof)

14

lemma ins-trees: t € trees A = (z,y) € A = insx y t € trees A
{proof)

5.2 Main result

In our setting, we have some countable set of values that may appear in the
input and a concrete list consisting only of those elements with no repeated
elements.

We further define an abbreviation for the uniform distribution of permuta-
tions of that lists.

context

fixes zs::’a::linorder list and A::'a set and random-perm :: 'a list = 'a list
measure

assumes con-assms: countable A set s C A distinct xs

defines random-perm = (Azs. uniform-measure (count-space (permutations-of-set
(set zs)))

(permutations-of-set (set xs)))

begin

Again, we first need some facts about measurability.

lemma sets-rinss [simp]:
assumes t € trees (A x UNIV)
shows sets (rinss xs t A) = tree-sigma (count-space A Q) pr borel)

(proof)

lemma bst-of-list-measurable [measurable]:
bst-of-list € measurable (count-space (lists A)) (tree-sigma (count-space A))

{proof)

lemma insort-wrt-measurable [measurable]:
(Az. insort-wrt T xs) € count-space (Pow (A x A)) = count-space (lists A)

{proof)

lemma bst-of-list-sort-meaurable [measurable]:
(Ax. bst-of-list (sort-key x xs)) €
Piy (set xs) (Ai. borel::real measure) —py tree-sigma (count-space A)

(proof)

In a first step, we convert the bulk insertion operation to first choosing the
priorities i.i.d. ahead of time and then inserting all the elements determin-
istically with their associated priority.

lemma random-treap-fold:
assumes t € space (tree-sigma (count-space A @ nr lborel))
shows rinss xs t A = distr (I z€set xs. U 0 1)
(tree-sigma (count-space A Q) pr lborel))
(Ap. foldl (At z. ins z (p x) t) ¢ xs)
(proof)

15

corollary random-treap-fold-Leaf:
shows rinss zs Leaf A =
distr (Tpr z€set xs. U 0 1)
(tree-sigma (count-space A @ nr lborel))
(Ap. foldl (At z. ins z (p z) t) Leaf xs)
(proof)

Next, we show that additionally forgetting the priorities in the end will yield
the same distribution as inserting the elements into a BST by ascending
priority.
lemma rinss-bst-of-list:

distr (rinss xs Leaf A) (tree-sigma (count-space A)) (map-tree fst) =

distr (Pipr (set xs) (Ax. U 0 1)) (tree-sigma (count-space A))

(Ap. bst-of-list (sort-key p xs)) (is flhs = ?rhs)

(proof)

This in turn is the same as choosing a random permutation of the input list
and inserting the elements into a BST in that order.

lemma lborel-permutations-of-set-bst-of-list:
shows distr (Pip (set zs) (Ax. U 0 1)) (tree-sigma (count-space A))
(Ap. bst-of-list (sort-key p xs)) =
distr (random-perm zs) (tree-sigma (count-space A)) bst-of-list (is ?lhs =
2rhs)
(proof)

lemma distr-bst-of-list-tree-sigma-count-space:
distr (random-perm xs) (tree-sigma (count-space A)) bst-of-list =
distr (random-perm xs) (count-space (trees A)) bst-of-list
(proof)

This is the same as a random BST.

lemma distr-bst-of-list-random-bst:
distr (random-perm xs) (count-space (trees A)) bst-of-list =
restrict-space (random-bst (set xs)) (trees A) (is ?lhs = ?rhs)

(proof)

We put everything together and obtain our main result:

theorem rinss-random-bst:
distr (rinss xs () A) (tree-sigma (count-space A)) (map-tree fst) =
restrict-space (measure-pmf (random-bst (set xs))) (trees A)
(proof)

end
end

16

References

[1] M. Eberl, M. Haslbeck, and T. Nipkow. Verified analysis of random
trees, 2018 (forthcoming).

[2] R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica,
16(4):464-497, Oct 1996.

17

	Auxiliary material
	Treaps
	Randomly-permuted lists
	General facts about linear orderings

	Relationship between treaps and BSTs
	Random treaps
	Measurability
	Main result

