
Treaps

Max Haslbeck, Manuel Eberl, Tobias Nipkow

March 17, 2025

Abstract

A Treap [2] is a binary tree whose nodes contain pairs consisting
of some payload and an associated priority. It must have the search-
tree property w. r. t. the payloads and the heap property w. r. t. the
priorities. Treaps are an interesting data structure that is related to
binary search trees (BSTs) in the following way: if one forgets all the
priorities of a treap, the resulting BST is exactly the same as if one
had inserted the elements into an empty BST in order of ascending
priority. This means that a treap behaves like a BST where we can
pretend the elements were inserted in a different order from the one in
which they were actually inserted.

In particular, by choosing these priorities at random upon insertion
of an element, we can pretend that we inserted the elements in random
order, so that the shape of the resulting tree is that of a random BST
no matter in what order we insert the elements. This is the main result
of this formalisation. [1]

Contents
1 Auxiliary material 2

2 Treaps 8

3 Randomly-permuted lists 18
3.1 General facts about linear orderings 18

4 Relationship between treaps and BSTs 28

5 Random treaps 32
5.1 Measurability . 32
5.2 Main result . 36

1

1 Auxiliary material
theory Probability-Misc

imports HOL−Probability.Probability
begin

lemma measure-eqI-countable-AE ′:
assumes [simp]: sets M = Pow B sets N = Pow B and subset: Ω ⊆ B
assumes ae: AE x in M . x ∈ Ω AE x in N . x ∈ Ω and [simp]: countable Ω
assumes eq:

∧
x. x ∈ Ω =⇒ emeasure M {x} = emeasure N {x}

shows M = N
proof (rule measure-eqI)

fix A assume A: A ∈ sets M
have emeasure N A = emeasure N {x∈Ω. x ∈ A}

using ae subset A by (intro emeasure-eq-AE) auto
also have . . . = (

∫
+x. emeasure N {x} ∂count-space {x∈Ω. x ∈ A})

using A subset by (intro emeasure-countable-singleton) auto
also have . . . = (

∫
+x. emeasure M {x} ∂count-space {x∈Ω. x ∈ A})

by (intro nn-integral-cong eq[symmetric]) auto
also have . . . = emeasure M {x∈Ω. x ∈ A}

using A subset by (intro emeasure-countable-singleton[symmetric]) auto
also have . . . = emeasure M A

using ae A subset by (intro emeasure-eq-AE) auto
finally show emeasure M A = emeasure N A ..

qed simp

lemma measurable-le[measurable (raw)]:
fixes f :: ′a ⇒ ′b::{second-countable-topology, linorder-topology}
assumes f ∈ borel-measurable M g ∈ borel-measurable M
shows Measurable.pred M (λx. f x ≤ g x)
unfolding pred-def by (intro borel-measurable-le assms)

lemma measurable-eq[measurable (raw)]:
fixes f :: ′a ⇒ ′b::{second-countable-topology, linorder-topology}
assumes f ∈ borel-measurable M g ∈ borel-measurable M
shows Measurable.pred M (λx. f x = g x)
unfolding pred-def by (intro borel-measurable-eq assms)

context
fixes M :: ′a measure
assumes singleton-null-set: x ∈ space M =⇒ {x} ∈ null-sets M

begin

lemma countable-null-set:
assumes countable A A ⊆ space M
shows A ∈ null-sets M

proof −
have (

⋃
x∈A. {x}) ∈ null-sets M using assms

by (intro null-sets-UN ′ assms singleton-null-set) auto

2

also have (
⋃

x∈A. {x}) = A by simp
finally show ?thesis .

qed

lemma finite-null-set:
assumes finite A A ⊆ space M
shows A ∈ null-sets M
using countable-finite[OF assms(1)] countable-null-set[OF - assms(2)] by simp

end

lemma measurable-inj-on-finite:
assumes fin [measurable]: finite I
assumes [measurable]:

∧
i j. Measurable.pred (M i

⊗
M M j) (λ(x,y). x = y)

shows Measurable.pred (PiM I M) (λx. inj-on x I) unfolding inj-on-def
by measurable

lemma almost-everywhere-not-in-countable-set:
assumes countable A
assumes [measurable]: Measurable.pred (M

⊗
M M) (λ(x,y). x = y)

assumes null:
∧

x. x ∈ space M =⇒ {x} ∈ null-sets M
shows AE x in M . x /∈ A

proof −
have A ∩ space M ∈ null-sets M

by (rule countable-null-set) (insert assms(1), auto intro: null)
hence AE x in M . ∀ y∈A. x 6= y by (rule AE-I ′) auto
also have ?this ←→ ?thesis by (intro AE-cong) auto
finally show ?thesis .

qed

lemma almost-everywhere-inj-on-PiM :
assumes fin: finite I and prob-space:

∧
i. i ∈ I =⇒ prob-space (M i)

assumes [measurable]:
∧

i j. Measurable.pred (M i
⊗

M M j) (λ(x,y). x = y)
assumes null:

∧
i x. i ∈ I =⇒ x ∈ space (M i) =⇒ {x} ∈ null-sets (M i)

shows AE f in (ΠM i∈I . M i). inj-on f I
proof −

note [measurable] = measurable-inj-on-finite
define I ′ where I ′ = I
hence I ⊆ I ′ by simp
from fin and this show ?thesis
proof (induction I rule: finite-induct)

case (insert i I)
interpret pair-sigma-finite M i PiM I M

unfolding pair-sigma-finite-def using insert.prems
by (auto intro!: prob-space-imp-sigma-finite prob-space prob-space-PiM simp:

I ′-def)
from insert.hyps have [measurable]: finite (insert i I) by simp
have PiM (insert i I) M = distr (M i

⊗
M PiM I M) (PiM (insert i I) M)

(λ(x, X). X(i := x))

3

using insert.prems
by (intro distr-pair-PiM-eq-PiM [symmetric] prob-space) (auto simp: I ′-def)

also have (AE f in inj-on f (insert i I)) ←→
(AE x in M i

⊗
M PiM I M . inj-on ((snd x)(i := fst x)) (insert i I))

by (subst AE-distr-iff ; measurable) (simp add: case-prod-unfold)?
also have . . . = (AE x in M i. AE y in PiM I M . inj-on (y(i := x)) (insert i

I))
by (rule AE-pair-iff [symmetric]) measurable

also have . . . ←→ (AE x in M i. AE y in PiM I M . inj-on (y(i := x)) I) ∧
(AE x in M i. AE y in PiM I M . x /∈ y(i := x) ‘ (I − {i})) by

simp
also have . . .
proof (rule conjI , goal-cases)

case 1
from insert.prems have AE f in PiM I M . inj-on f I by (intro insert.IH)

auto
hence AE f in PiM I M . inj-on (f (i := x)) I for x

by eventually-elim (insert insert.hyps, auto simp: inj-on-def)
thus ?case by blast

next
note [measurable] = ‹finite I ›
{

fix f
have f ‘ I ∩ space (M i) ∈ null-sets (M i)

by (rule finite-null-set)
(insert insert.hyps insert.prems, auto intro!: null simp: I ′-def)

hence AE x in M i. x /∈ f (i := x) ‘ I
by (rule AE-I ′) (insert insert.hyps, auto split: if-splits)

also have (AE x in M i. x /∈ f (i := x) ‘ I) ←→ (AE x in M i. ∀ y∈I . f y
6= x)

using insert.hyps by (intro AE-cong) (auto split: if-splits)
finally have

}
hence AE f in PiM I M . AE x in M i. ∀ y∈I . f y 6= x by blast
hence AE x in M i. AE f in PiM I M . ∀ y∈I . f y 6= x

by (subst AE-commute) simp-all
also have ?this ←→ (AE x in M i. AE y in PiM I M . x /∈ y(i := x) ‘ (I −

{i}))
using insert.hyps by (intro AE-cong) (auto split: if-splits)

finally show
qed
finally show ?case .

qed auto
qed

lemma null-sets-uniform-measure:
assumes A ∈ sets M emeasure M A 6= ∞
shows null-sets (uniform-measure M A) = (λB. A ∩ B) −‘ null-sets M ∩ sets

4

M
using assms by (auto simp: null-sets-def)

lemma almost-everywhere-avoid-finite:
assumes fin: finite I
shows AE f in (ΠM i∈I . uniform-measure lborel {(0 ::real)..1}). inj-on f I

proof (intro almost-everywhere-inj-on-PiM fin prob-space-uniform-measure)
fix x :: real
show {x} ∈ null-sets (uniform-measure lborel {0 ..1})

by (cases x ∈ {0 ..1}) (auto simp: null-sets-uniform-measure)
qed auto

lemma almost-everywhere-avoid-countable:
assumes countable A
shows AE x in uniform-measure lborel {(0 ::real)..1}. x /∈ A

proof (intro almost-everywhere-not-in-countable-set assms prob-space-uniform-measure)
fix x :: real
show {x} ∈ null-sets (uniform-measure lborel {0 ..1})

by (cases x ∈ {0 ..1}) (auto simp: null-sets-uniform-measure)
qed auto

lemma measure-pmf-of-set:
assumes A 6= {} and finite A
shows measure-pmf (pmf-of-set A) = uniform-measure (count-space UNIV) A

using assms
by (intro measure-eqI)

(auto simp: emeasure-pmf-of-set divide-ennreal [symmetric] card-gt-0-iff
ennreal-of-nat-eq-real-of-nat)

lemma emeasure-distr-restrict:
assumes f ∈ M →M N f ∈ M ′ →M N ′ A ∈ sets N ′ sets M ′ ⊆ sets M sets N ′

⊆ sets N
assumes

∧
X . X ∈ sets M ′ =⇒ emeasure M X = emeasure M ′ X

assumes
∧

X . X ∈ sets M =⇒ X ⊆ space M − space M ′ =⇒ emeasure M X =
0

shows emeasure (distr M N f) A= emeasure (distr M ′ N ′ f) A
proof −

have space-subset: space M ′ ⊆ space M
using ‹sets M ′ ⊆ sets M › by (simp add: sets-le-imp-space-le)

have emeasure (distr M N f) A = emeasure M (f −‘ A ∩ space M)
using assms by (subst emeasure-distr) auto

also have f −‘ A ∩ space M = f −‘ A ∩ space M ′ ∪ f −‘ A ∩ (space M − space
M ′)

using space-subset by blast
also have emeasure M . . . = emeasure M (f −‘ A ∩ space M ′)
proof (intro emeasure-Un-null-set)

show f −‘ A ∩ space M ′ ∈ sets M
using assms by auto

have f −‘ A ∩ (space M − space M ′) ∈ sets M

5

using assms by (metis Int-Diff measurable-sets sets.Diff sets.top subsetCE)
moreover from this have emeasure M (f −‘ A ∩ (space M − space M ′)) = 0

by (intro assms) auto
ultimately show f −‘ A ∩ (space M − space M ′) ∈ null-sets M

unfolding null-sets-def by blast
qed
also have . . . = emeasure M ′ (f −‘ A ∩ space M ′)

using assms by (intro assms) auto
also have . . . = emeasure (distr M ′ N ′ f) A

using assms by (subst emeasure-distr) auto
finally show ?thesis .

qed

lemma distr-uniform-measure-count-space-inj:
assumes inj-on f A ′ A ′ ⊆ A f ‘ A ⊆ B finite A ′

shows distr (uniform-measure (count-space A) A ′) (count-space B) f =
uniform-measure (count-space B) (f ‘ A ′) (is ?lhs = ?rhs)

proof (rule measure-eqI , goal-cases)
case (2 X)
hence X-subset: X ⊆ B by simp
from assms have eq: f ‘ A ′ ∩ X = f ‘ (A ′ ∩ (f −‘ X ∩ A))

by auto
from assms have [measurable]: f ∈ count-space A →M count-space B

by (subst measurable-count-space-eq1) auto
from X-subset have emeasure ?lhs X =

emeasure (uniform-measure (count-space A) A ′) (f −‘ X ∩ A)
by (subst emeasure-distr) auto

also from assms X-subset
have . . . = emeasure (count-space A) (A ′ ∩ (f −‘ X ∩ A)) / emeasure

(count-space A) A ′

by (intro emeasure-uniform-measure) auto
also from assms have . . . = of-nat (card (A ′ ∩ (f −‘ X ∩ A))) / of-nat (card

A ′)
by (subst (1 2) emeasure-count-space) auto

also have card (A ′ ∩ (f −‘ X ∩ A)) = card (f ‘ (A ′ ∩ (f −‘ X ∩ A)))
using assms by (intro card-image [symmetric]) (auto simp: inj-on-def)

also have f ‘ (A ′ ∩ (f −‘ X ∩ A)) = f ‘ A ′ ∩ X
using assms by auto

also have of-nat (card A ′) = of-nat (card (f ‘ A ′))
using assms by (subst card-image) auto

also have of-nat (card (f ‘ A ′ ∩ X)) / . . . =
emeasure (count-space B) (f ‘ A ′ ∩ X) / emeasure (count-space B) (f ‘

A ′)
using assms by (subst (1 2) emeasure-count-space) auto

also from assms X-subset have . . . = emeasure ?rhs X
by (intro emeasure-uniform-measure [symmetric]) auto

finally show ?case .
qed simp-all

6

lemma (in pair-prob-space) pair-measure-bind:
assumes [measurable]: f ∈ M1

⊗
M M2 →M subprob-algebra N

shows (M1
⊗

M M2) >>= f = do {x ← M1 ; y ← M2 ; f (x, y)}
proof −

note M1 = M1 .prob-space-axioms and M2 = M2 .prob-space-axioms
have [measurable]: M1 ∈ space (subprob-algebra M1)

by (rule M1 .M-in-subprob)
have [measurable]: M2 ∈ space (subprob-algebra M2)

by (rule M2 .M-in-subprob)
have (M1

⊗
M M2) = M1 >>= (λx. M2 >>= (λy. return (M1

⊗
M M2) (x, y)))

by (subst pair-measure-eq-bind) simp-all
also have . . . >>= f = M1 >>= (λx. (M2 >>= (λy. return (M1

⊗
M M2) (x, y)))

>>= f)
by (rule bind-assoc) measurable

also have . . . = M1 >>= (λx. M2 >>= (λxa. return (M1
⊗

M M2) (x, xa) >>=
f))

by (intro bind-cong refl bind-assoc) measurable
also have . . . = do {x ← M1 ; y ← M2 ; f (x, y)}

by (intro bind-cong refl bind-return)
(measurable, simp-all add: space-pair-measure)

finally show ?thesis .
qed

lemma count-space-singleton-conv-return:
count-space {x} = return (count-space {x}) x

proof (rule measure-eqI)
fix A assume A ∈ sets (count-space {x})
hence A ⊆ {x} by auto
hence A = {} ∨ A = {x} by (cases x ∈ A) auto
thus emeasure (count-space {x}) A = emeasure (return (count-space {x}) x) A

by auto
qed auto

lemma distr-count-space-singleton [simp]:
f x ∈ space M =⇒ distr (count-space {x}) M f = return M (f x)

by (subst count-space-singleton-conv-return, subst distr-return) simp-all

lemma uniform-measure-count-space-singleton [simp]:
assumes {x} ∈ sets M emeasure M {x} 6= 0 emeasure M {x} < ∞
shows uniform-measure M {x} = return M x

proof (rule measure-eqI)
fix A assume A: A ∈ sets (uniform-measure M {x})
show emeasure (uniform-measure M {x}) A = emeasure (return M x) A

by (cases x ∈ A) (insert assms A, auto)
qed simp-all

lemma PiM-uniform-measure-permute:
fixes a b :: real
assumes g permutes A a < b

7

shows distr (PiM A (λ-. uniform-measure lborel {a..b})) (PiM A (λ-. lborel))
(λf . f ◦ g) =

PiM A (λ-. uniform-measure lborel {a..b})
proof −

have distr (PiM A (λ-. uniform-measure lborel {a..b})) (PiM A (λ-. lborel)) (λf .
f ◦ g) =

distr (PiM A (λ-. uniform-measure lborel {a..b}))
(PiM A (λ-. uniform-measure lborel {a..b})) (λf . λx∈A. f (g x)) using

assms
by (intro distr-cong sets-PiM-cong refl)
(auto simp: fun-eq-iff space-PiM PiE-def extensional-def permutes-in-image[of

g A])
also from assms have . . . = PiM A (λi. uniform-measure lborel {a..b})

by (intro distr-PiM-reindex)
(auto simp: permutes-inj-on permutes-in-image[of g A] intro!: prob-space-uniform-measure)

finally show ?thesis .
qed

lemma ennreal-fact [simp]: ennreal (fact n) = fact n
by (induction n) (auto simp: algebra-simps ennreal-mult ′ ennreal-of-nat-eq-real-of-nat)

lemma inverse-ennreal-unique:
assumes a ∗ (b :: ennreal) = 1
shows b = inverse a
using assms
by (metis divide-ennreal-def ennreal-inverse-1 ennreal-top-eq-mult-iff mult.comm-neutral

mult-divide-eq-ennreal mult-eq-0-iff semiring-normalization-rules(7))

end

2 Treaps
theory Treap
imports

HOL−Library.Tree
begin

definition treap :: (′k::linorder ∗ ′p::linorder) tree ⇒ bool where
treap t = (bst (map-tree fst t) ∧ heap (map-tree snd t))

abbreviation keys t ≡ set-tree (map-tree fst t)
abbreviation prios t ≡ set-tree (map-tree snd t)

function treap-of :: (′k::linorder ∗ ′p::linorder) set ⇒ (′k ∗ ′p) tree where
treap-of KP = (if infinite KP ∨ KP = {} then Leaf else

let m = arg-min-on snd KP;
L = {p ∈ KP. fst p < fst m};
R = {p ∈ KP. fst p > fst m}

8

in Node (treap-of L) m (treap-of R))
by pat-completeness auto
termination
proof (relation measure card)

show wf (measure card) by simp
next

fix KP :: (′a × ′b) set and m L
assume KP: ¬ (infinite KP ∨ KP = {})
and m: m = arg-min-on snd KP
and L: L = {p ∈ KP. fst p < fst m}
have m ∈ KP using KP arg-min-if-finite(1) m by blast
thus (L, KP) ∈ measure card using KP L by(auto intro!: psubset-card-mono)

next
fix KP :: (′a × ′b) set and m R
assume KP: ¬ (infinite KP ∨ KP = {})
and m: m = arg-min-on snd KP
and R: R = {p ∈ KP. fst m < fst p}
have m ∈ KP using KP arg-min-if-finite(1) m by blast
thus (R, KP) ∈ measure card using KP R by(auto intro!: psubset-card-mono)

qed

declare treap-of .simps [simp del]

lemma treap-of-unique:
[[treap t; inj-on snd (set-tree t)]]
=⇒ treap-of (set-tree t) = t

proof(induction set-tree t arbitrary: t rule: treap-of .induct)
case (1 t)
show ?case
proof (cases infinite (set-tree t) ∨ set-tree t = {})

case True
thus ?thesis by(simp add: treap-of .simps)

next
case False
let ?m = arg-min-on snd (set-tree t)
let ?L = {p ∈ set-tree t. fst p < fst ?m}
let ?R = {p ∈ set-tree t. fst p > fst ?m}
obtain l a r where t: t = Node l a r

using False by (cases t) auto
have ∀ kp ∈ set-tree t. snd a ≤ snd kp

using 1 .prems(1)
by(auto simp add: t treap-def ball-Un)
(metis image-eqI snd-conv tree.set-map)+

hence a = ?m
by (metis 1 .prems(2) False arg-min-if-finite(1) arg-min-if-finite(2) inj-on-def

le-neq-trans t tree.set-intros(2))
have treap l treap r using 1 .prems(1) by(auto simp: treap-def t)
have l: set-tree l = {p ∈ set-tree t. fst p < fst a}

9

using 1 .prems(1) by(auto simp add: treap-def t ball-Un tree.set-map)
have r : set-tree r = {p ∈ set-tree t. fst p > fst a}

using 1 .prems(1) by(auto simp add: treap-def t ball-Un tree.set-map)
have l = treap-of ?L

using 1 .hyps(1)[OF False ‹a = ?m› l r ‹treap l›]
l ‹a = ?m› 1 .prems(2)

by (fastforce simp add: inj-on-def)
have r = treap-of ?R

using 1 .hyps(2)[OF False ‹a = ?m› l r ‹treap r›]
r ‹a = ?m› 1 .prems(2)

by (fastforce simp add: inj-on-def)
have t = Node (treap-of ?L) ?m (treap-of ?R)

using ‹a = ?m› ‹l = treap-of ?L› ‹r = treap-of ?R› by(subst t) simp
thus ?thesis using False

by (subst treap-of .simps) simp
qed

qed

lemma treap-unique:
[[treap t1 ; treap t2 ; set-tree t1 = set-tree t2 ; inj-on snd (set-tree t1)]]
=⇒ t1 = t2
for t1 t2 :: (′k::linorder ∗ ′p::linorder) tree

by (metis treap-of-unique)

fun ins :: ′k::linorder ⇒ ′p::linorder ⇒ (′k × ′p) tree ⇒ (′k × ′p) tree where
ins k p Leaf = 〈Leaf , (k,p), Leaf 〉 |
ins k p 〈l, (k1 ,p1), r〉 =
(if k < k1 then

(case ins k p l of
〈l2 , (k2 ,p2), r2 〉 ⇒

if p1 ≤ p2 then 〈〈l2 , (k2 ,p2), r2 〉, (k1 ,p1), r〉
else 〈l2 , (k2 ,p2), 〈r2 , (k1 ,p1), r〉〉)

else
if k > k1 then
(case ins k p r of
〈l2 , (k2 ,p2), r2 〉 ⇒

if p1 ≤ p2 then 〈l, (k1 ,p1), 〈l2 , (k2 ,p2), r2 〉〉
else 〈〈l, (k1 ,p1), l2 〉, (k2 ,p2), r2 〉)

else 〈l, (k1 ,p1), r〉)

lemma ins-neq-Leaf : ins k p t 6= 〈〉
by (induction t rule: ins.induct) (auto split: tree.split)

lemma keys-ins: keys (ins k p t) = Set.insert k (keys t)
proof (induction t rule: ins.induct)

case 2
then show ?case

by (simp add: ins-neq-Leaf split: tree.split prod.split) (safe; fastforce)
qed (simp)

10

lemma prios-ins: prios (ins k p t) ⊆ {p} ∪ prios t
apply(induction t rule: ins.induct)
apply simp
apply (simp add: ins-neq-Leaf split: tree.split prod.split)
by (safe; fastforce)

lemma prios-ins ′: k /∈ keys t =⇒ prios (ins k p t) = {p} ∪ prios t
apply(induction t rule: ins.induct)
apply simp
apply (simp add: ins-neq-Leaf split: tree.split prod.split)
by (safe; fastforce)

lemma set-tree-ins: set-tree (ins k p t) ⊆ {(k,p)} ∪ set-tree t
by (induction t rule: ins.induct) (auto simp add: ins-neq-Leaf split: tree.split

prod.split)

lemma set-tree-ins ′: k /∈ keys t =⇒ {(k,p)} ∪ set-tree t ⊆ set-tree (ins k p t)
by (induction t rule: ins.induct) (auto simp add: ins-neq-Leaf split: tree.split

prod.split)

lemma set-tree-ins-eq: k /∈ keys t =⇒ set-tree (ins k p t) = {(k,p)} ∪ set-tree t
using set-tree-ins set-tree-ins ′ by blast

lemma prios-ins-special:
[[ins k p t = Node l (k ′,p ′) r ; p ′ = p; p ∈ prios r ∪ prios l]]
=⇒ p ∈ prios t
by (induction k p t arbitrary: l k ′ p ′ r rule: ins.induct)

(fastforce simp add: ins-neq-Leaf split: tree.splits prod.splits if-splits)+

lemma treap-NodeI :
[[treap l; treap r ;
∀ k ′ ∈ keys l. k ′ < k; ∀ k ′ ∈ keys r . k < k ′;
∀ p ′ ∈ prios l. p ≤ p ′; ∀ p ′ ∈ prios r . p ≤ p ′]]

=⇒ treap (Node l (k,p) r)
by (auto simp: treap-def)

lemma treap-rotate1 :
assumes treap l2 treap r2 treap r ¬ p1 ≤ p2 k < k1 and
ins: ins k p l = Node l2 (k2 ,p2) r2 and treap-ins: treap (ins k p l)
and treap: treap 〈l, (k1 , p1), r〉
shows treap (Node l2 (k2 ,p2) (Node r2 (k1 ,p1) r))

proof(rule treap-NodeI [OF ‹treap l2 › treap-NodeI [OF ‹treap r2 › ‹treap r›]])
from keys-ins[of k p l] have 1 : keys r2 ⊆ {k} ∪ keys l by(auto simp: ins)
from treap have 2 : ∀ k ′∈keys l. k ′ < k1 by (simp add: treap-def)
show ∀ k ′∈keys r2 . k ′ < k1 using 1 2 ‹k < k1 › by blast

next
from treap have 2 : ∀ p ′∈prios l. p1 ≤ p ′ by (simp add: treap-def)
show ∀ p ′∈prios r2 . p1 ≤ p ′

11

proof
fix p ′ assume p ′ ∈ prios r2
hence p ′ = p ∨ p ′ ∈ prios l using prios-ins[of k p l] ins by auto
thus p1 ≤ p ′

proof
assume [simp]: p ′ = p
have p2 = p ∨ p2 ∈ prios l using prios-ins[of k p l] ins by simp
thus p1 ≤ p ′

proof
assume p2 = p
thus p1 ≤ p ′

using prios-ins-special[OF ins] ‹p ′ ∈ prios r2 › 2 by auto
next

assume p2 ∈ prios l
thus p1 ≤ p ′ using 2 ‹¬ p1 ≤ p2 › by blast

qed
next

assume p ′ ∈ prios l
thus p1 ≤ p ′ using 2 by blast

qed
qed

next
have k2 = k ∨ k2 ∈ keys l using keys-ins[of k p l] ins by (auto)
hence 1 : k2 < k1
proof

assume k2 = k thus k2 < k1 using ‹k < k1 › by simp
next

assume k2 ∈ keys l
thus k2 < k1 using treap by (auto simp: treap-def)

qed
have 2 : ∀ k ′∈keys r2 . k2 < k ′

using treap-ins by(simp add: ins treap-def)
have 3 : ∀ k ′∈keys r . k2 < k ′

using 1 treap by(auto simp: treap-def)
show ∀ k ′∈keys 〈r2 , (k1 , p1), r〉. k2 < k ′ using 1 2 3 by auto

next
show ∀ p ′∈prios 〈r2 , (k1 , p1), r〉. p2 ≤ p ′

using ins treap-ins treap ‹¬ p1 ≤ p2 › by (auto simp: treap-def ball-Un)
qed (use ins treap-ins treap in ‹auto simp: treap-def ball-Un›)

lemma treap-rotate2 :
assumes treap l treap l2 treap r2 ¬ p1 ≤ p2 k1 < k and
ins: ins k p r = Node l2 (k2 ,p2) r2 and treap-ins: treap (ins k p r)
and treap: treap 〈l, (k1 , p1), r〉
shows treap (Node (Node l (k1 ,p1) l2) (k2 ,p2) r2)

proof(rule treap-NodeI [OF treap-NodeI [OF ‹treap l› ‹treap l2 ›] ‹treap r2 ›])
from keys-ins[of k p r] have 1 : keys l2 ⊆ {k} ∪ keys r by(auto simp: ins)
from treap have 2 : ∀ k ′∈keys r . k1 < k ′ by (simp add: treap-def)

12

show ∀ k ′∈keys l2 . k1 < k ′ using 1 2 ‹k1 < k› by blast
next

from treap have 2 : ∀ p ′∈prios r . p1 ≤ p ′ by (simp add: treap-def)
show ∀ p ′∈prios l2 . p1 ≤ p ′

proof
fix p ′ assume p ′ ∈ prios l2
hence p ′ = p ∨ p ′ ∈ prios r using prios-ins[of k p r] ins by auto
thus p1 ≤ p ′

proof
assume [simp]: p ′ = p
have p2 = p ∨ p2 ∈ prios r using prios-ins[of k p r] ins by simp
thus p1 ≤ p ′

proof
assume p2 = p
thus p1 ≤ p ′

using prios-ins-special[OF ins] ‹p ′ ∈ prios l2 › 2 by auto
next

assume p2 ∈ prios r
thus p1 ≤ p ′ using 2 ‹¬ p1 ≤ p2 › by blast

qed
next

assume p ′ ∈ prios r
thus p1 ≤ p ′ using 2 by blast

qed
qed

next
have k2 = k ∨ k2 ∈ keys r using keys-ins[of k p r] ins by (auto)
hence 1 : k1 < k2
proof

assume k2 = k thus k1 < k2 using ‹k1 < k› by simp
next

assume k2 ∈ keys r
thus k1 < k2 using treap by (auto simp: treap-def)

qed
have 2 : ∀ k ′∈keys l. k ′ < k2 using 1 treap by(auto simp: treap-def)
have 3 : ∀ k ′∈keys l2 . k ′ < k2

using treap-ins by(auto simp: ins treap-def)
show ∀ k ′∈keys 〈l, (k1 , p1), l2 〉. k ′ < k2 using 1 2 3 by auto

next
show ∀ p ′∈prios 〈l, (k1 , p1), l2 〉. p2 ≤ p ′

using ins treap-ins treap ‹¬ p1 ≤ p2 › by (auto simp: treap-def ball-Un)
qed (use ins treap-ins treap in ‹auto simp: treap-def ball-Un›)

lemma treap-ins: treap t =⇒ treap (ins k p t)
proof(induction t rule: ins.induct)

case 1 thus ?case by (simp add: treap-def)
next

case (2 k p l k1 p1 r)
have treap l treap r

13

using 2 .prems by(auto simp: treap-def tree.set-map)
show ?case
proof cases

assume k < k1
obtain l2 k2 p2 r2 where ins: ins k p l = Node l2 (k2 ,p2) r2

by (metis ins-neq-Leaf neq-Leaf-iff prod.collapse)
note treap-ins = 2 .IH (1)[OF ‹k < k1 › ‹treap l›]
hence treap l2 treap r2 using ins by (auto simp add: treap-def)
show ?thesis
proof cases

assume p1 ≤ p2
have treap (Node (Node l2 (k2 ,p2) r2) (k1 ,p1) r)

apply(rule treap-NodeI [OF treap-ins[unfolded ins] ‹treap r›])
using ins treap-ins ‹k < k1 › 2 .prems keys-ins[of k p l]
by (auto simp add: treap-def ball-Un order-trans[OF ‹p1 ≤ p2 ›])

thus ?thesis using ‹k < k1 › ins ‹p1 ≤ p2 › by simp
next

assume ¬ p1 ≤ p2
have treap (Node l2 (k2 ,p2) (Node r2 (k1 ,p1) r))

by(rule treap-rotate1 [OF ‹treap l2 › ‹treap r2 › ‹treap r› ‹¬ p1 ≤ p2 ›
‹k < k1 › ins treap-ins 2 .prems])

thus ?thesis using ‹k < k1 › ins ‹¬ p1 ≤ p2 › by simp
qed

next
assume ¬ k < k1
show ?thesis
proof cases
assume k > k1
obtain l2 k2 p2 r2 where ins: ins k p r = Node l2 (k2 ,p2) r2

by (metis ins-neq-Leaf neq-Leaf-iff prod.collapse)
note treap-ins = 2 .IH (2)[OF ‹¬ k < k1 › ‹k > k1 › ‹treap r›]
hence treap l2 treap r2 using ins by (auto simp add: treap-def)
have fst: ∀ k ′ ∈ set-tree (map-tree fst (ins k p r)).

k ′ = k ∨ k ′ ∈ set-tree (map-tree fst r)
by(simp add: keys-ins)

show ?thesis
proof cases

assume p1 ≤ p2
have treap (Node l (k1 ,p1) (ins k p r))

apply(rule treap-NodeI [OF ‹treap l› treap-ins])
using ins treap-ins ‹k > k1 › 2 .prems keys-ins[of k p r]
by (auto simp: treap-def ball-Un order-trans[OF ‹p1 ≤ p2 ›])

thus ?thesis using ‹¬ k < k1 › ‹k > k1 › ins ‹p1 ≤ p2 › by simp
next

assume ¬ p1 ≤ p2
have treap (Node (Node l (k1 ,p1) l2) (k2 ,p2) r2)

by(rule treap-rotate2 [OF ‹treap l› ‹treap l2 › ‹treap r2 › ‹¬ p1 ≤ p2 ›
‹k1 < k› ins treap-ins 2 .prems])

thus ?thesis using ‹¬ k < k1 › ‹k > k1 › ins ‹¬ p1 ≤ p2 › by simp

14

qed
next

assume ¬ k > k1
hence k = k1 using ‹¬ k < k1 › by auto
thus ?thesis using 2 .prems by(simp)

qed
qed

qed

lemma treap-of-set-tree-unique:
[[finite A; inj-on fst A; inj-on snd A]]
=⇒ set-tree (treap-of A) = A

proof(induction A rule: treap-of .induct)
case (1 A)
note IH = 1
show ?case
proof (cases infinite A ∨ A = {})

assume infinite A ∨ A = {}
with IH show ?thesis by (simp add: treap-of .simps)

next
assume not-inf-or-empty: ¬ (infinite A ∨ A = {})
let ?m = arg-min-on snd A
let ?L = {p ∈ A. fst p < fst ?m}
let ?R = {p ∈ A. fst p > fst ?m}
obtain l a r where t: treap-of A = Node l a r

using not-inf-or-empty
by (cases treap-of A) (auto simp: Let-def elim!: treap-of .elims split: if-splits)

have [simp]: inj-on fst {p ∈ A. fst p < fst (arg-min-on snd A)}
inj-on snd {p ∈ A. fst p < fst (arg-min-on snd A)}
inj-on fst {p ∈ A. fst (arg-min-on snd A) < fst p}
inj-on snd {p ∈ A. fst (arg-min-on snd A) < fst p}

using IH by (auto intro: inj-on-subset)
have lr : l = treap-of ?L r = treap-of ?R

using t by (auto simp: Let-def elim: treap-of .elims split: if-splits)
then have l: set-tree l = ?L

using not-inf-or-empty IH by auto
have r = treap-of ?R

using t by (auto simp: Let-def elim: treap-of .elims split: if-splits)
then have r : set-tree r = ?R

using not-inf-or-empty IH (2) by (auto)
have a: a = ?m

using t by (elim treap-of .elims) (simp add: Let-def split: if-splits)
have a 6= fst (arg-min-on snd A) if (a,b) ∈ A (a, b) 6= arg-min-on snd A for

a b
using IH (4 ,5) that not-inf-or-empty arg-min-if-finite(1) inj-on-eq-iff by

fastforce
then have a < fst (arg-min-on snd A)

if (a,b) ∈ A (a, b) 6= arg-min-on snd A fst (arg-min-on snd A) ≥ a for a b
using le-neq-trans that by auto

15

moreover have arg-min-on snd A ∈ A
using not-inf-or-empty arg-min-if-finite by auto

ultimately have A: A = {?m} ∪ ?L ∪ ?R
by auto

show ?thesis using l r a A t by force
qed

qed

lemma treap-of-subset: set-tree (treap-of A) ⊆ A
proof(induction A rule: treap-of .induct)

case (1 A)
note IH = 1
show ?case
proof (cases infinite A ∨ A = {})

assume infinite A ∨ A = {}
with IH show ?thesis by (simp add: treap-of .simps)

next
assume not-inf-or-empty: ¬ (infinite A ∨ A = {})
let ?m = arg-min-on snd A
let ?L = {p ∈ A. fst p < fst ?m}
let ?R = {p ∈ A. fst p > fst ?m}
obtain l a r where t: treap-of A = Node l a r

using not-inf-or-empty by (cases treap-of A)
(auto simp add: Let-def elim!: treap-of .elims split: if-splits)

have l = treap-of ?L r = treap-of ?R
using t by (auto simp: Let-def elim: treap-of .elims split: if-splits)

have set-tree l ⊆ ?L set-tree r ⊆ ?R
proof −

have set-tree (treap-of {p ∈ A. fst p < fst (arg-min-on snd A)})
⊆ {p ∈ A. fst p < fst (arg-min-on snd A)}

by (rule IH) (use not-inf-or-empty in auto)
then show set-tree l ⊆ ?L

using ‹l = treap-of ?L› by auto
next

have set-tree (treap-of {p ∈ A. fst (arg-min-on snd A) < fst p})
⊆ {p ∈ A. fst (arg-min-on snd A) < fst p}

by (rule IH) (use not-inf-or-empty in auto)
then show set-tree r ⊆ ?R

using ‹r = treap-of ?R› by auto
qed
moreover have a = ?m

using t by (auto elim!: treap-of .elims simp add: Let-def split: if-splits)
moreover have {?m} ∪ ?L ∪ ?R ⊆ A

using not-inf-or-empty arg-min-if-finite by auto
ultimately show ?thesis by (auto simp add: t)

qed
qed

lemma treap-treap-of :

16

treap (treap-of A)
proof(induction A rule: treap-of .induct)

case (1 A)
show ?case
proof (cases infinite A ∨ A = {})

case True
with 1 show ?thesis by (simp add: treap-of .simps treap-def)

next
case False
let ?m = arg-min-on snd A
let ?L = {p ∈ A. fst p < fst ?m}
let ?R = {p ∈ A. fst p > fst ?m}
obtain l a r where t: treap-of A = Node l a r

using False by (cases treap-of A) (auto simp: Let-def elim!: treap-of .elims
split: if-splits)

have l: l = treap-of ?L
using t by (auto simp: Let-def elim: treap-of .elims split: if-splits)

then have treap-l: treap l
using False by (auto intro: 1)

from l have keys-l: keys l ⊆ fst ‘ ?L
by (auto simp add: tree.set-map intro!: image-mono treap-of-subset)

have r : r = treap-of ?R
using t by (auto simp: Let-def elim: treap-of .elims split: if-splits)

then have treap-r : treap r
using False by (auto intro: 1)

from r have keys-r : keys r ⊆ fst ‘ ?R
by (auto simp add: tree.set-map intro!: image-mono treap-of-subset)

have prios: prios l ⊆ snd ‘ A prios r ⊆ snd ‘ A
using l r treap-of-subset image-mono by (auto simp add: tree.set-map)

have a: a = ?m
using t by(auto simp: Let-def elim: treap-of .elims split: if-splits)

have prios-l:
∧

x. x ∈ prios l =⇒ snd a ≤ x
by (drule rev-subsetD[OF - prios(1)]) (use arg-min-least a False in fast)

have prios-r :
∧

x. x ∈ prios r =⇒ snd a ≤ x
by (drule rev-subsetD[OF - prios(2)]) (use arg-min-least a False in fast)

show ?thesis
using prios-r prios-l treap-l treap-r keys-l keys-r a
by (auto simp add: t treap-def dest: rev-subsetD[OF - keys-l] rev-subsetD[OF

- keys-r])
qed

qed

lemma treap-Leaf : treap 〈〉
by (simp add: treap-def)

lemma foldl-ins-treap: treap t =⇒ treap (foldl (λt ′ (x, p). ins x p t ′) t xs)
using treap-ins by (induction xs arbitrary: t) auto

lemma foldl-ins-set-tree:

17

assumes inj-on fst (set ys) inj-on snd (set ys) distinct ys fst ‘ (set ys) ∩ keys t
= {}

shows set-tree (foldl (λt ′ (x, p). ins x p t ′) t ys) = set ys ∪ set-tree t
using assms
by (induction ys arbitrary: t) (auto simp add: case-prod-beta ′ set-tree-ins-eq

keys-ins)

lemma foldl-ins-treap-of :
assumes distinct ys inj-on fst (set ys) inj-on snd (set ys)

shows (foldl (λt ′ (x, p). ins x p t ′) Leaf ys) = treap-of (set ys)
using assms by (intro treap-unique) (auto simp: treap-Leaf foldl-ins-treap foldl-ins-set-tree

treap-treap-of treap-of-set-tree-unique)

end

3 Randomly-permuted lists
theory Random-List-Permutation
imports

Probability-Misc
Comparison-Sort-Lower-Bound.Linorder-Relations

begin

3.1 General facts about linear orderings

We define the set of all linear orderings on a given set and show some
properties about it.
definition linorders-on :: ′a set ⇒ (′a × ′a) set set where

linorders-on A = {R. linorder-on A R}

lemma linorders-on-empty [simp]: linorders-on {} = {{}}
by (auto simp: linorders-on-def linorder-on-def refl-on-def)

lemma linorders-finite-nonempty:
assumes finite A
shows linorders-on A 6= {}

proof −
from finite-distinct-list[OF assms] obtain xs where set xs = A distinct xs by

blast
hence linorder-on A (linorder-of-list xs) by auto
thus ?thesis by (auto simp: linorders-on-def)

qed

There is an obvious bijection between permutations of a set (i. e. lists with
all elements from that set without repetition) and linear orderings on it.
lemma bij-betw-linorders-on:

assumes finite A

18

shows bij-betw linorder-of-list (permutations-of-set A) (linorders-on A)
using bij-betw-linorder-of-list[of A] assms unfolding linorders-on-def by simp

lemma sorted-wrt-list-of-set-linorder-of-list [simp]:
assumes distinct xs
shows sorted-wrt-list-of-set (linorder-of-list xs) (set xs) = xs
by (rule sorted-wrt-list-of-set-eqI [of set xs]) (insert assms, auto)

lemma linorder-of-list-sorted-wrt-list-of-set [simp]:
assumes linorder-on A R finite A
shows linorder-of-list (sorted-wrt-list-of-set R A) = R

proof −
from assms(1) have subset: R ⊆ A × A by (auto simp: linorder-on-def refl-on-def)
from assms and subset show ?thesis
by (auto simp: linorder-of-list-def linorder-sorted-wrt-list-of-set sorted-wrt-linorder-index-le-iff)

qed

lemma bij-betw-linorders-on ′:
assumes finite A
shows bij-betw (λR. sorted-wrt-list-of-set R A) (linorders-on A) (permutations-of-set

A)
by (rule bij-betw-byWitness[where f ′ = linorder-of-list])

(insert assms, auto simp: linorders-on-def permutations-of-set-def
linorder-sorted-wrt-list-of-set)

lemma finite-linorders-on [intro]:
assumes finite A
shows finite (linorders-on A)

proof −
have finite (permutations-of-set A) by simp
also have ?this ←→ finite (linorders-on A)

using assms by (rule bij-betw-finite [OF bij-betw-linorders-on])
finally show ?thesis .

qed

Next, we look at the ordering defined by a list that is permuted with some
permutation function. For this, we first define the composition of a relation
with a function.
definition map-relation :: ′a set ⇒ (′a ⇒ ′b) ⇒ (′b × ′b) set ⇒ (′a × ′a) set
where

map-relation A f R = {(x,y)∈A×A. (f x, f y) ∈ R}

lemma index-distinct-eqI :
assumes distinct xs i < length xs xs ! i = x
shows index xs x = i
using assms by (induction xs arbitrary: i) (auto simp: nth-Cons split: nat.splits)

lemma index-permute-list:
assumes π permutes {..<length xs} distinct xs x ∈ set xs

19

shows index (permute-list π xs) x = inv π (index xs x)
proof −

have ∗: inv π permutes {..<length xs} by (rule permutes-inv) fact
from assms show ?thesis

using assms permutes-in-image[OF ∗]
by (intro index-distinct-eqI) (simp-all add: permute-list-nth permutes-inverses)

qed

lemma linorder-of-list-permute:
assumes π permutes {..<length xs} distinct xs
shows linorder-of-list (permute-list π xs) =

map-relation (set xs) ((!) xs ◦ inv π ◦ index xs) (linorder-of-list xs)
proof −

note ∗ = permutes-inv[OF assms(1)]
have less: inv π i < length xs if i < length xs for i

using permutes-in-image[OF ∗] and that by simp
from assms and ∗ show ?thesis
by (auto simp: linorder-of-list-def map-relation-def index-nth-id index-permute-list

less)
qed

lemma inj-on-conv-Ex1 : inj-on f A ←→ (∀ y∈f‘A. ∃ !x∈A. y = f x)
by (auto simp: inj-on-def)

lemma bij-betw-conv-Ex1 : bij-betw f A B ←→ (∀ y∈B. ∃ !x∈A. f x = y) ∧ B = f
‘ A

unfolding bij-betw-def inj-on-conv-Ex1 by (auto simp: eq-commute)

lemma permutesI :
assumes bij-betw f A A ∀ x. x /∈ A −→ f x = x
shows f permutes A
unfolding permutes-def

proof (intro conjI allI impI)
fix y
from assms have [simp]: f x ∈ A ←→ x ∈ A for x

by (auto simp: bij-betw-def)
show ∃ !x. f x = y
proof (cases y ∈ A)

case True
also from assms have A = f ‘ A by (auto simp: bij-betw-def)
finally obtain x where x ∈ A y = f x by auto
with assms and ‹y ∈ A› show ?thesis

by (intro ex1I [of - x]) (auto simp: bij-betw-def dest: inj-onD)
qed (insert assms, auto)

qed (insert assms, auto)

We now show the important lemma that any two linear orderings on a finite
set can be mapped onto each other by a permutation.

20

lemma linorder-permutation-exists:
assumes finite A linorder-on A R linorder-on A R ′

obtains π where π permutes A R ′ = map-relation A π R
proof −

define xs where xs = sorted-wrt-list-of-set R A
define ys where ys = sorted-wrt-list-of-set R ′ A
have xs-ys: distinct xs distinct ys set xs = A set ys = A

using assms by (simp-all add: linorder-sorted-wrt-list-of-set xs-def ys-def)

from xs-ys have mset ys = mset xs by (simp add: set-eq-iff-mset-eq-distinct
[symmetric])

then obtain π where π: π permutes {..<length xs} permute-list π xs = ys
by (rule mset-eq-permutation)

define π ′ where π ′ = (λx. if x /∈ A then x else xs ! inv π (index xs x))
have π ′: π ′ permutes A
proof (rule permutesI)

have bij-betw ((!) xs ◦ inv π) {..<length xs} A
by (rule bij-betw-trans permutes-imp-bij permutes-inv π bij-betw-nth)+ (simp-all

add: xs-ys)
hence bij-betw ((!) xs ◦ inv π ◦ index xs) A A

by (rule bij-betw-trans [rotated] bij-betw-index)+
(insert bij-betw-index[of xs A length xs], simp-all add: xs-ys atLeast0LessThan)

also have bij-betw ((!) xs ◦ inv π ◦ index xs) A A ←→ bij-betw π ′ A A
by (rule bij-betw-cong) (auto simp: π ′-def)

finally show
qed (simp-all add: π ′-def)

from assms have R ′ = linorder-of-list ys by (simp add: ys-def)
also from π have ys = permute-list π xs by simp
also have linorder-of-list (permute-list π xs) =

map-relation A ((!) xs ◦ inv π ◦ index xs) (linorder-of-list xs)
using π by (subst linorder-of-list-permute) (simp-all add: xs-ys)

also from assms have linorder-of-list xs = R by (simp add: xs-def)
finally have R ′ = map-relation A ((!) xs ◦ inv π ◦ index xs) R .
also have . . . = map-relation A π ′ R by (auto simp: map-relation-def π ′-def)
finally show ?thesis using π ′ and that[of π ′] by simp

qed

We now define the linear ordering defined by some priority function, i. e.
a function that injectively associates priorities to every element such that
elements with lower priority are smaller in the resulting ordering.
definition linorder-from-keys :: ′a set ⇒ (′a ⇒ ′b :: linorder) ⇒ (′a × ′a) set
where

linorder-from-keys A f = {(x,y)∈A×A. f x ≤ f y}

lemma linorder-from-keys-permute:
assumes g permutes A
shows linorder-from-keys A (f ◦ g) = map-relation A g (linorder-from-keys A

f)

21

using permutes-in-image[OF assms] by (auto simp: map-relation-def linorder-from-keys-def)

lemma linorder-on-linorder-from-keys [intro]:
assumes inj-on f A
shows linorder-on A (linorder-from-keys A f)
using assms by (auto simp: linorder-on-def refl-on-def antisym-def linorder-from-keys-def

trans-def total-on-def dest: inj-onD)

lemma linorder-from-keys-empty [simp]: linorder-from-keys {} = (λ-. {})
by (simp add: linorder-from-keys-def fun-eq-iff)

We now show another important fact, namely that when we draw n values
i. i. d. uniformly from a non-trivial real interval, we almost surely get distinct
values.
lemma emeasure-PiM-diagonal:

fixes a b :: real
assumes x ∈ A y ∈ A x 6= y
assumes a < b finite A
defines M ≡ uniform-measure lborel {a..b}
shows emeasure (PiM A (λ-. M)) {h∈A →E UNIV . h x = h y} = 0

proof −
from assms have M : prob-space M unfolding M-def

by (intro prob-space-uniform-measure) auto
then interpret product-prob-space λ-. M A
unfolding product-prob-space-def product-prob-space-axioms-def product-sigma-finite-def
by (auto simp: prob-space-imp-sigma-finite)

from M interpret pair-sigma-finite M M by unfold-locales
have [measurable]: {h∈extensional {x, y}. h x = h y} ∈ sets (PiM {x, y} (λi.

lborel))
proof −

have {h∈extensional {x,y}. h x = h y} = {h ∈ space (PiM {x, y} (λi. lborel)).
h x = h y}

by (auto simp: extensional-def space-PiM)
also have ... ∈ sets (PiM {x, y} (λi. lborel))

by measurable
finally show ?thesis .

qed
have [simp]: sets (PiM A (λ-. M)) = sets (PiM A (λ-. lborel)) for A :: ′a set

by (intro sets-PiM-cong refl) (simp-all add: M-def)
have sets-M-M : sets (M

⊗
M M) = sets (borel

⊗
M borel)

by (intro sets-pair-measure-cong) (auto simp: M-def)
have [measurable]: (λ(b, a). if b = a then 1 else 0) ∈ borel-measurable (M

⊗
M

M)
unfolding measurable-split-conv
by (subst measurable-cong-sets[OF sets-M-M refl])

(auto intro!: measurable-If measurable-const measurable-equality-set)

have {h∈A →E UNIV . h x = h y} =
(λh. restrict h {x, y}) −‘ {h∈extensional {x, y}. h x = h y} ∩ space (PiM

22

A (λ-. M :: real measure))
by (auto simp: space-PiM PiE-def extensional-def M-def)

also have emeasure (PiM A (λ-. M)) . . . =
emeasure (distr (PiM A (λ-. M)) (PiM {x,y} (λ-. lborel :: real measure))

(λh. restrict h {x,y})) {h∈extensional {x, y}. h x = h y}
proof (rule emeasure-distr [symmetric])

have (λh. restrict h {x, y}) ∈ PiM A (λ-. lborel) →M PiM {x, y} (λ-. lborel)
using assms by (intro measurable-restrict-subset) auto

also have . . . = PiM A (λ-. M) →M PiM {x, y} (λ-. lborel)
by (intro sets-PiM-cong measurable-cong-sets refl) (simp-all add: M-def)

finally show (λh. restrict h {x, y}) ∈
next

show {h∈extensional {x, y}. h x = h y} ∈ sets (PiM {x, y} (λ-. lborel)) by
simp

qed
also have distr (PiM A (λ-. M)) (PiM {x,y} (λ-. lborel :: real measure)) (λh.

restrict h {x,y}) =
distr (PiM A (λ-. M)) (PiM {x,y} (λ-. M)) (λh. restrict h {x,y})

by (intro distr-cong refl sets-PiM-cong) (simp-all add: M-def)
also from assms have . . . = PiM {x, y} (λi. M) by (intro distr-restrict [symmetric])

auto
also have emeasure . . . {h∈extensional {x, y}. h x = h y} =

nn-integral . . . (λh. indicator {h∈extensional {x, y}. h x = h y} h)
by (intro nn-integral-indicator [symmetric]) simp-all

also have . . . = nn-integral (PiM {x, y} (λi. M)) (λh. if h x = h y then 1 else
0)

by (intro nn-integral-cong) (auto simp add: indicator-def space-PiM PiE-def)
also from ‹x 6= y› have . . . = (

∫
+ z. (if fst z = snd z then 1 else 0) ∂(M

⊗
M

M))
by (intro product-nn-integral-pair) auto

also have . . . = (
∫

+ x. (
∫

+y. (if x = y then 1 else 0) ∂M) ∂M)
by (subst M .nn-integral-fst [symmetric]) simp-all

also have . . . = (
∫

+ x. (
∫

+y. indicator {x} y ∂M) ∂M)
by (simp add: indicator-def of-bool-def eq-commute)

also have . . . = (
∫

+ x. emeasure M {x} ∂M) by (subst nn-integral-indicator)
(simp-all add: M-def)

also have . . . = (
∫

+ x. 0 ∂M) unfolding M-def
by (intro nn-integral-cong-AE refl AE-uniform-measureI) auto

also have . . . = 0 by simp
finally show ?thesis .

qed

lemma measurable-linorder-from-keys-restrict:
assumes fin: finite A
shows linorder-from-keys A ∈ PiM A (λ-. borel :: real measure) →M count-space

(Pow (A × A))
(is - : ?M →M -)
apply (subst measurable-count-space-eq2)

23

apply (auto simp add: fin linorder-from-keys-def)
proof −

note fin[simp]
fix R assume R ⊆ A × A
then have linorder-from-keys A −‘ {R} ∩ space ?M =
{f ∈ space ?M . ∀ x∈A. ∀ y∈A. (x, y) ∈ R ←→ f x ≤ f y}
by (auto simp add: linorder-from-keys-def set-eq-iff)

also have . . . ∈ sets ?M
by measurable

finally show linorder-from-keys A −‘ {R} ∩ space ?M ∈ sets ?M .
qed

lemma measurable-count-space-extend:
assumes f ∈ measurable M (count-space A) A ⊆ B
shows f ∈ measurable M (count-space B)

proof −
note assms(1)
also have count-space A = restrict-space (count-space B) A

using assms(2) by (subst restrict-count-space) (simp-all add: Int-absorb2)
finally show ?thesis by (simp add: measurable-restrict-space2-iff)

qed

lemma measurable-linorder-from-keys-restrict ′:
assumes fin: finite A A ⊆ B
shows linorder-from-keys A ∈ PiM A (λ-. borel :: real measure) →M count-space

(Pow (B × B))
apply (rule measurable-count-space-extend)
apply (rule measurable-linorder-from-keys-restrict[OF assms(1)])

using assms by auto

context
fixes a b :: real and A :: ′a set and M and B
assumes fin: finite A and ab: a < b and B: A ⊆ B
defines M ≡ distr (PiM A (λ-. uniform-measure lborel {a..b}))

(count-space (Pow (B × B))) (linorder-from-keys A)
begin

lemma measurable-linorder-from-keys [measurable]:
linorder-from-keys A ∈ PiM A (λ-. borel :: real measure) →M count-space (Pow

(B × B))
by (rule measurable-linorder-from-keys-restrict ′) (auto simp: fin B)

The ordering defined by randomly-chosen priorities is almost surely linear:
theorem almost-everywhere-linorder : AE R in M . linorder-on A R
proof −

define N where N = PiM A (λ-. uniform-measure lborel {a..b})
have [simp]: sets (PiM A (λ-. uniform-measure lborel {a..b})) = sets (PiM A

(λ-. lborel))

24

by (intro sets-PiM-cong) simp-all
let ?M-A = (PiM A (λ-. lborel :: real measure))
have meas: {h ∈ A →E UNIV . h i = h j} ∈ sets ?M-A

if [simp]: i ∈ A j ∈ A for i j
proof −

have {h ∈ A →E UNIV . h i = h j} = {h ∈ space ?M-A. h i = h j}
by (auto simp: space-PiM)

also have ... ∈ sets ?M-A
by measurable

finally show ?thesis .
qed
define X :: (′a ⇒ real) set where X = (

⋃
x∈A.

⋃
y∈A−{x}. {h∈A →E UNIV .

h x = h y})
have AE f in N . inj-on f A
proof (rule AE-I)

show {f ∈ space N . ¬ inj-on f A} ⊆ X
by (auto simp: inj-on-def X-def space-PiM N-def)

next
show X ∈ sets N unfolding X-def N-def

using meas by (auto intro!: countable-finite fin sets.countable-UN ′)
next
have emeasure N X ≤ (

∑
i∈A. emeasure N (

⋃
y∈A − {i}. {h ∈ A →E UNIV .

h i = h y}))
unfolding X-def N-def using fin meas
by (intro emeasure-subadditive-finite)
(auto simp: disjoint-family-on-def intro!: sets.countable-UN ′ countable-finite)

also have . . . ≤ (
∑

i∈A.
∑

j∈A−{i}. emeasure N {h ∈ A →E UNIV . h i =
h j})

unfolding N-def using fin meas
by (intro emeasure-subadditive-finite sum-mono)
(auto simp: disjoint-family-on-def intro!: sets.countable-UN ′ countable-finite)

also have . . . = (
∑

i∈A.
∑

j∈A−{i}. 0) unfolding N-def using fin ab
by (intro sum.cong refl emeasure-PiM-diagonal) auto

also have . . . = 0 by simp
finally show emeasure N X = 0 by simp

qed
hence AE f in N . linorder-on A (linorder-from-keys A f)

by eventually-elim auto
thus ?thesis unfolding M-def N-def

by (subst AE-distr-iff) auto
qed

Furthermore, this is equivalent to choosing one of the |A|! linear orderings
uniformly at random.
theorem random-linorder-by-prios:

M = uniform-measure (count-space (Pow (B × B))) (linorders-on A)
proof −

from linorders-finite-nonempty[OF fin] obtain R where R: linorder-on A R
by (auto simp: linorders-on-def)

25

have ∗: emeasure M {R} ≤ emeasure M {R ′} if linorder-on A R linorder-on A
R ′ for R R ′

proof −
define N where N = PiM A (λ-. uniform-measure lborel {a..b})
from linorder-permutation-exists[OF fin that]
obtain π where π: π permutes A R ′ = map-relation A π R

by blast
have (λf . f ◦ π) ∈ PiM A (λ-. lborel :: real measure) →M PiM A (λ-. lborel ::

real measure)
by (auto intro!: measurable-PiM-single ′ measurable-PiM-component-rev

simp: comp-def permutes-in-image[OF π(1)] space-PiM PiE-def exten-
sional-def)

also have . . . = N →M PiM A (λ-. lborel)
unfolding N-def by (intro measurable-cong-sets refl sets-PiM-cong) simp-all

finally have [measurable]: (λf . f ◦ π) ∈

have [simp]: measurable N X = measurable (PiM A (λ-. lborel)) X for X :: (′a
× ′a) set measure

unfolding N-def by (intro measurable-cong-sets refl sets-PiM-cong) simp-all
have [simp]: measurable M X = measurable (count-space (Pow (B × B))) X

for X :: (′a × ′a) set measure
unfolding M-def by simp

have M-eq: M = distr N (count-space (Pow (B × B))) (linorder-from-keys A)
by (simp only: M-def N-def)

also have N = distr N (PiM A (λ-. lborel)) (λf . f ◦ π)
unfolding N-def by (rule PiM-uniform-measure-permute [symmetric]) fact+

also have distr . . . (count-space (Pow (B × B))) (linorder-from-keys A) =
distr N (count-space (Pow (B × B))) (linorder-from-keys A ◦ (λf . f

◦ π))
by (intro distr-distr) simp-all

also have . . . = distr N (count-space (Pow (B × B))) (map-relation A π ◦
linorder-from-keys A)

by (intro distr-cong refl) (auto simp: linorder-from-keys-permute[OF π(1)])
also have . . . = distr M (count-space (Pow (B × B))) (map-relation A π)

unfolding M-eq using B
by (intro distr-distr [symmetric]) (auto simp: map-relation-def)

finally have M-eq ′: distr M (count-space (Pow (B × B))) (map-relation A π)
= M ..

from that have subset ′: R ⊆ B × B R ′ ⊆ B × B
using B by (auto simp: linorder-on-def refl-on-def)

hence emeasure M {R} ≤ emeasure M (map-relation A π −‘ {R ′} ∩ space M)
using subset ′ by (intro emeasure-mono) (auto simp: M-def π)

also have . . . = emeasure (distr M (count-space (Pow (B × B))) (map-relation
A π)) {R ′}

by (rule emeasure-distr [symmetric]) (insert subset ′ B, auto simp: map-relation-def)
also note M-eq ′

26

finally show ?thesis .
qed
have same-prob: emeasure M {R ′} = emeasure M {R} if linorder-on A R ′ for

R ′

using ∗[of R R ′] and ∗[of R ′ R] and R and that by simp

from ab have prob-space M
unfolding M-def

by (intro prob-space.prob-space-distr prob-space-PiM prob-space-uniform-measure)
simp-all

hence 1 = emeasure M (Pow (B × B))
using prob-space.emeasure-space-1 [OF ‹prob-space M ›] by (simp add: M-def)

also have (Pow (B × B)) = linorders-on A ∪ ((Pow (B × B))−linorders-on A)
using B by (auto simp: linorders-on-def linorder-on-def refl-on-def)

also have emeasure M . . . = emeasure M (linorders-on A) + emeasure M (Pow
(B × B)−linorders-on A)

using B by (subst plus-emeasure) (auto simp: M-def linorders-on-def linorder-on-def
refl-on-def)
also have emeasure M (Pow (B × B)−linorders-on A) = 0 using almost-everywhere-linorder

by (subst (asm) AE-iff-measurable) (auto simp: linorders-on-def M-def)
also from fin have emeasure M (linorders-on A) = (

∑
R ′∈linorders-on A. emea-

sure M {R ′})
using B by (intro emeasure-eq-sum-singleton)

(auto simp: M-def linorders-on-def linorder-on-def refl-on-def)
also have . . . = (

∑
R ′∈linorders-on A. emeasure M {R})

by (rule sum.cong) (simp-all add: linorders-on-def same-prob)
also from fin have . . . = fact (card A) ∗ emeasure M {R}

by (simp add: linorders-on-def card-finite-linorders)
finally have [simp]: emeasure M {R} = inverse (fact (card A))

by (simp add: inverse-ennreal-unique)

show ?thesis
proof (rule measure-eqI-countable-AE ′)

show sets M = Pow (Pow (B × B))
by (simp add: M-def)

next
from ‹finite A› show countable (linorders-on A)

by (blast intro: countable-finite)
next

show AE R in uniform-measure (count-space (Pow (B × B)))
(linorders-on A). R ∈ linorders-on A

by (rule AE-uniform-measureI)
(insert B, auto simp: linorders-on-def linorder-on-def refl-on-def)

next
fix R ′ assume R ′: R ′ ∈ linorders-on A
have subset: linorders-on A ⊆ Pow (B × B)

using B by (auto simp: linorders-on-def linorder-on-def refl-on-def)
have emeasure (uniform-measure (count-space (Pow (B × B)))

27

(linorders-on A)) {R ′} = emeasure (count-space (Pow (B × B)))
(linorders-on A ∩ {R ′}) /

emeasure (count-space (Pow (B × B))) (linorders-on
A)

using R ′ B by (subst emeasure-uniform-measure) (auto simp: linorders-on-def
linorder-on-def refl-on-def)

also have . . . = 1 / emeasure (count-space (Pow (B × B))) (linorders-on A)
using R ′ B by (subst emeasure-count-space) (auto simp: linorders-on-def

linorder-on-def refl-on-def)
also have . . . = 1 / fact (card A)

using fin finite-linorders-on[of A]
by (subst emeasure-count-space [OF subset])
(auto simp: divide-ennreal [symmetric] linorders-on-def card-finite-linorders)

also have . . . = emeasure M {R}
by (simp add: field-simps divide-ennreal-def)

also have . . . = emeasure M {R ′}
using R ′ by (intro same-prob [symmetric]) (auto simp: linorders-on-def)

finally show emeasure M {R ′} = emeasure (uniform-measure (count-space
(Pow (B × B)))

(linorders-on A)) {R ′} ..
next

show linorders-on A ⊆ Pow (B × B)
using B by (auto simp: linorders-on-def linorder-on-def refl-on-def)

qed (auto simp: M-def linorders-on-def almost-everywhere-linorder)
qed

end
end

4 Relationship between treaps and BSTs
theory Treap-Sort-and-BSTs
imports

Treap
Random-List-Permutation
Random-BSTs.Random-BSTs

begin

Here, we will show that if we “forget” the priorities of a treap, we essentially
get a BST into which the elements have been inserted by ascending priority.
First, we show some facts about sorting that we will need.

The following two lemmas are only important for measurability later.
lemma insort-key-conv-rec-list:

insort-key f x xs =
rec-list [x] (λy ys zs. if f x ≤ f y then x # y # ys else y # zs) xs

by (induction xs) simp-all

28

lemma insort-key-conv-rec-list ′:
insort-key = (λf x.

rec-list [x] (λy ys zs. if f x ≤ f y then x # y # ys else y # zs))
by (intro ext) (simp add: insort-key-conv-rec-list)

lemma bst-of-list-trees:
assumes set ys ⊆ A
shows bst-of-list ys ∈ trees A
using assms by (induction ys rule: bst-of-list.induct) auto

lemma insort-wrt-insort-key:
a ∈ A =⇒
set xs ⊆ A =⇒
insert-wrt (linorder-from-keys A f) a xs = insort-key f a xs

unfolding linorder-from-keys-def by (induction xs) (auto)

lemma insort-wrt-sort-key:
assumes set xs ⊆ A
shows insort-wrt (linorder-from-keys A f) xs = sort-key f xs
using assms by (induction xs) (auto simp add: insort-wrt-def insort-wrt-insort-key)

The following is an important recurrence for sort-key that states that for
distinct priorities, sorting a list w. r. t. those priorities can be seen as selection
sort, i. e. we can first choose the (unique) element with minimum priority as
the first element and then sort the rest of the list and append it.
lemma sort-key-arg-min-on:

assumes zs 6= [] inj-on p (set zs)
shows sort-key p (zs:: ′a::linorder list) =

(let z = arg-min-on p (set zs) in z # sort-key p (remove1 z zs))
proof −

have mset zs = mset (let z = arg-min-on p (set zs) in z # sort-key p (remove1
z zs))

proof −
define m where m = arg-min-on p (set zs)
have m ∈ (set zs)

unfolding m-def by (rule arg-min-if-finite) (use assms in auto)
then show ?thesis

by (auto simp add: Let-def m-def)
qed
moreover have linorder-class.sorted

(map p (let z = arg-min-on p (set zs) in z # sort-key p (remove1 z
zs)))

proof −
have set (map p (sort-key p (remove1 (arg-min-on p (set zs)) zs))) ⊆ p ‘ set zs

using set-remove1-subset by (fastforce)
moreover have

∧
y. y ∈ p ‘ set zs =⇒ p (arg-min-on p (set zs)) ≤ y

using arg-min-least assms by force
ultimately have linorder-class.sorted

(p (arg-min-on p (set zs)) # map p (sort-key p (remove1 (arg-min-on p (set

29

zs)) zs)))
by (auto)

then show ?thesis
by (simp add: Let-def)

qed
ultimately show ?thesis

using sort-key-inj-key-eq assms by blast
qed

lemma arg-min-on-image-finite:
fixes f :: ′b ⇒ ′c :: linorder
assumes inj-on f (g ‘ B) finite B B 6= {}
shows arg-min-on f (g ‘ B) = g (arg-min-on (f ◦ g) B)
by (smt (verit, best) antisym-conv3 arg-min-if-finite(1 ,2) assms(1 ,2 ,3) finite-imageI

image-iff image-is-empty o-apply
the-inv-into-f-f)

lemma fst-snd-arg-min-on: fixes p:: ′a ⇒ ′b::linorder
assumes finite B inj-on p B B 6= {}
shows fst (arg-min-on snd ((λx. (x, p x)) ‘ B)) = arg-min-on p B
by (subst arg-min-on-image-finite [OF inj-on-imageI])

(auto simp: o-def assms)

The following is now the main result:
theorem treap-of-bst-of-list ′:

assumes ys = map (λx. (x, p x)) xs inj-on p (set xs) xs ′ = sort-key p xs
shows map-tree fst (treap-of (set ys)) = bst-of-list xs ′

using assms
proof(induction xs ′ arbitrary: xs ys rule: bst-of-list.induct)

case 1
from ‹[] = sort-key p xs›[symmetric] ‹ys = map (λx. (x, p x)) xs›
have ys = []

by (cases xs) (auto)
then show ?case by (simp add: treap-of .simps)

next
case (2 z zs)
note IH = 2 (1 ,2)
note assms = 2 (3 ,4 ,5)
define m where m = arg-min-on snd (set ys)
define ls where ls = map (λx. (x, p x)) [y←zs . y < z]
define rs where rs = map (λx. (x, p x)) [y←zs . y > z]
define L where L = {p ∈ (set ys). fst p < fst m}
define R where R = {p ∈ (set ys). fst p > fst m}
have h1 : set (z#zs) = set xs

using assms by simp
then have h2 : inj-on p {x ∈ set zs. x < z} inj-on p (set (filter ((<) z) zs))

inj-on p (set zs)
using ‹inj-on p (set xs)› by (auto intro!: inj-on-subset[of - set xs])

have z # zs = (let z = arg-min-on p (set xs) in z # sort-key p (remove1 z xs))

30

proof −
have xs 6= []

using assms by force
then show ?thesis

by (auto simp add: assms intro!: sort-key-arg-min-on)
qed
then have h3 : z = arg-min-on p (set xs) zs = sort-key p (remove1 z xs)

unfolding Let-def by auto
have h4 : sort-key p zs = zs
proof −

have linorder-class.sorted (map p (z#zs))
using assms by simp

then have linorder-class.sorted (map p zs)
by auto

then show ?thesis
using h1 h2 sort-key-inj-key-eq by blast

qed
note helpers = h1 h2 h3 h4
have fst m = z
proof −

have fst m = arg-min-on p (set xs)
unfolding m-def using assms by (auto intro!: fst-snd-arg-min-on)

also have . . . = z
using helpers by auto

finally show ?thesis .
qed
moreover have map-tree fst (treap-of L) = bst-of-list [y←zs . y < z]
proof −

have L = set ls
unfolding L-def ls-def ‹fst m = z› using helpers assms by force

moreover have map-tree fst (treap-of (set ls)) = bst-of-list [y←zs . y < z]
unfolding ls-def using helpers
by (intro IH (1)[of - [y←zs . y < z]]) (auto simp add: filter-sort[symmetric])

ultimately show ?thesis
by blast

qed
moreover have map-tree fst (treap-of R) = bst-of-list [y←zs . z < y]
proof −

have 0 : R = set rs
unfolding R-def rs-def ‹fst m = z› using helpers assms by force

moreover have map-tree fst (treap-of (set rs)) = bst-of-list [y←zs . z < y]
unfolding rs-def using helpers
by (intro IH (2)[of - [y←zs . z < y]]) (auto simp add: filter-sort[symmetric])

ultimately show ?thesis
by blast

qed
moreover have treap-of (set ys) = 〈treap-of L, m, treap-of R〉

unfolding L-def m-def R-def using assms by (auto simp add: treap-of .simps
Let-def)

31

ultimately show ?case by auto
qed

corollary treap-of-bst-of-list: inj-on p (set zs) =⇒
map-tree fst (treap-of (set (map (λx. (x, p x)) zs))) = bst-of-list (sort-key p zs)

using treap-of-bst-of-list ′ by blast

corollary treap-of-bst-of-list ′′: inj-on p (set zs) =⇒
map-tree fst (treap-of ((λx. (x, p x)) ‘ set zs)) = bst-of-list (sort-key p zs)

using treap-of-bst-of-list by auto

corollary fold-ins-bst-of-list: distinct zs =⇒ inj-on p (set zs) =⇒
map-tree fst (foldl (λt (x,p). ins x p t) 〈〉 (map (λx. (x, p x)) zs)) = bst-of-list

(sort-key p zs)
by (auto simp add: foldl-ins-treap-of distinct-map inj-on-def inj-on-convol-ident

treap-of-bst-of-list ′′)

end

5 Random treaps
theory Random-Treap
imports

Probability-Misc
Treap-Sort-and-BSTs

begin

5.1 Measurability

The following lemmas are only relevant for measurability.
lemma tree-sigma-cong:

assumes sets M = sets M ′

shows tree-sigma M = tree-sigma M ′

using sets-eq-imp-space-eq[OF assms] using assms by (simp add: tree-sigma-def)

lemma distr-restrict:
assumes sets N = sets L sets K ⊆ sets M∧

X . X ∈ sets K =⇒ emeasure M X = emeasure K X∧
X . X ∈ sets M =⇒ X ⊆ space M − space K =⇒ emeasure M X = 0

f ∈ M →M N f ∈ K →M L
shows distr M N f = distr K L f

proof (rule measure-eqI)
fix X assume X ∈ sets (distr M N f)
thus emeasure (distr M N f) X = emeasure (distr K L f) X

using assms(1) by (intro emeasure-distr-restrict assms) simp-all
qed (use assms in auto)

32

lemma sets-tree-sigma-count-space:
assumes countable B
shows sets (tree-sigma (count-space B)) = Pow (trees B)

proof (intro equalityI subsetI)
fix X assume X : X ∈ Pow (trees B)
have {t} ∈ sets (tree-sigma (count-space B)) if t ∈ trees B for t

using that
proof (induction t)

case (2 l r x)
hence {〈la, v, ra〉 |la v ra. (v, la, ra) ∈ {x} × {l} × {r}}

∈ sets (tree-sigma (count-space B))
by (intro Node-in-tree-sigma pair-measureI) auto

thus ?case by simp
qed simp-all
with X have (

⋃
t∈X . {t}) ∈ sets (tree-sigma (count-space B))

by (intro sets.countable-UN ′ countable-subset[OF - countable-trees[OF assms]])
auto

also have (
⋃

t∈X . {t}) = X by blast
finally show X ∈ sets (tree-sigma (count-space B)) .

next
fix X assume X ∈ sets (tree-sigma (count-space B))
from sets.sets-into-space[OF this] show X ∈ Pow (trees B)

by (simp add: space-tree-sigma)
qed

lemma height-primrec: height = rec-tree 0 (λ- - - a b. Suc (max a b))
proof

fix t :: ′a tree
show height t = rec-tree 0 (λ- - - a b. Suc (max a b)) t

by (induction t) simp-all
qed

lemma ipl-primrec: ipl = rec-tree 0 (λl - r a b. size l + size r + a + b)
proof

fix t :: ′a tree
show ipl t = rec-tree 0 (λl - r a b. size l + size r + a + b) t

by (induction t) auto
qed

lemma size-primrec: size = rec-tree 0 (λ- - - a b. 1 + a + b)
proof

fix t :: ′a tree
show size t = rec-tree 0 (λ- - - a b. 1 + a + b) t

by (induction t) auto
qed

lemma ipl-map-tree[simp]: ipl (map-tree f t) = ipl t
by (induction t) auto

33

lemma set-pmf-random-bst: finite A =⇒ set-pmf (random-bst A) ⊆ trees A
by (subst random-bst-altdef)

(auto intro!: bst-of-list-trees simp add: bst-of-list-trees permutations-of-setD)

lemma trees-mono: A ⊆ B =⇒ trees A ⊆ trees B
proof

fix t
assume A ⊆ B t ∈ trees A
then show t ∈ trees B

by (induction t) auto
qed

lemma ins-primrec:
ins k (p::real) t = rec-tree
(Node Leaf (k,p) Leaf)
(λl z r l ′ r ′. case z of (k1 , p1) ⇒

if k < k1 then
(case l ′ of

Leaf ⇒ Leaf
| Node l2 (k2 ,p2) r2 ⇒

if 0 ≤ p2 − p1 then Node (Node l2 (k2 ,p2) r2) (k1 ,p1) r
else Node l2 (k2 ,p2) (Node r2 (k1 ,p1) r))

else if k > k1 then
(case r ′ of

Leaf ⇒ Leaf
| Node l2 (k2 ,p2) r2 ⇒

if 0 ≤ p2 − p1 then Node l (k1 ,p1) (Node l2 (k2 ,p2) r2)
else Node (Node l (k1 ,p1) l2) (k2 ,p2) r2)

else Node l (k1 ,p1) r
) t

proof (induction k p t rule: ins.induct)
case (2 k p l k1 p1 r)
thus ?case

by (cases k < k1) (auto simp add: case-prod-beta ins-neq-Leaf split: tree.splits
if-splits)
qed auto

lemma measurable-less-count-space [measurable (raw)]:
assumes countable A
assumes [measurable]: a ∈ B →M count-space A
assumes [measurable]: b ∈ B →M count-space A
shows Measurable.pred B (λx. a x < b x)

proof −
have Measurable.pred (count-space (A × A)) (λx. fst x < snd x) by simp
also have count-space (A × A) = count-space A

⊗
M count-space A

using assms(1) by (simp add: pair-measure-countable)
finally have Measurable.pred B ((λx. fst x < snd x) ◦ (λx. (a x, b x)))

by measurable
thus ?thesis by (simp add: o-def)

34

qed

lemma measurable-ins [measurable (raw)]:
assumes [measurable]: countable A
assumes [measurable]: k ∈ B →M count-space A
assumes [measurable]: x ∈ B →M (lborel :: real measure)
assumes [measurable]: t ∈ B →M tree-sigma (count-space A

⊗
M lborel)

shows (λy. ins (k y) (x y) (t y)) ∈ B →M tree-sigma (count-space A
⊗

M

lborel)
unfolding ins-primrec by measurable

lemma map-tree-primrec: map-tree f t = rec-tree 〈〉 (λl a r l ′ r ′. 〈l ′, f a, r ′〉) t
by (induction t) auto

definition U where U = (λa b::real. uniform-measure lborel {a..b})

declare U-def [simp]

fun insR:: ′a::linorder ⇒ (′a × real) tree ⇒ ′a set ⇒ (′a × real) tree measure
where

insR x t A = distr (U 0 1) (tree-sigma (count-space A
⊗

M lborel)) (λp. ins x
p t)

fun rinss :: ′a::linorder list ⇒ (′a × real) tree ⇒ ′a set ⇒ (′a × real) tree measure
where

rinss [] t A = return (tree-sigma (count-space A
⊗

M lborel)) t |
rinss (x#xs) t A = insR x t A >>= (λt. rinss xs t A)

lemma sets-rinss ′:
assumes countable B set ys ⊆ B
shows t ∈ trees (B × UNIV) =⇒ sets (rinss ys t B) = sets (tree-sigma (count-space

B
⊗

M lborel))
using assms proof(induction ys arbitrary: t)
case (Cons y ys)
then show ?case
by (subst rinss.simps, subst sets-bind) (auto simp add: space-tree-sigma space-pair-measure)

qed auto

lemma measurable-foldl [measurable]:
assumes f ∈ A →M B set xs ⊆ space C
assumes

∧
c. c ∈ set xs =⇒ (λ(a,b). g a b c) ∈ (A

⊗
M B) →M B

shows (λx. foldl (g x) (f x) xs) ∈ A →M B
using assms

proof (induction xs arbitrary: f)
case Nil
thus ?case by simp

next
case (Cons x xs)
note [measurable] = Cons.prems(1)

35

from Cons.prems have [measurable]: x ∈ space C by simp
have (λa. (a, f a)) ∈ A →M A

⊗
M B

by measurable
hence (λ(a,b). g a b x) ◦ (λa. (a, f a)) ∈ A →M B

by (rule measurable-comp) (rule Cons.prems, auto)
hence (λa. g a (f a) x) ∈ A →M B by (simp add: o-def)
hence (λxa. foldl (g xa) (g xa (f xa) x) xs) ∈ A →M B

by (rule Cons.IH) (use Cons.prems in auto)
thus ?case by simp

qed

lemma ins-trees: t ∈ trees A =⇒ (x,y) ∈ A =⇒ ins x y t ∈ trees A
by (induction x y t rule: ins.induct)

(auto split: tree.splits simp: ins-neq-Leaf)

5.2 Main result

In our setting, we have some countable set of values that may appear in the
input and a concrete list consisting only of those elements with no repeated
elements.
We further define an abbreviation for the uniform distribution of permuta-
tions of that lists.
context

fixes xs:: ′a::linorder list and A:: ′a set and random-perm :: ′a list ⇒ ′a list
measure

assumes con-assms: countable A set xs ⊆ A distinct xs
defines random-perm ≡ (λxs. uniform-measure (count-space (permutations-of-set

(set xs)))
(permutations-of-set (set xs)))

begin

Again, we first need some facts about measurability.
lemma sets-rinss [simp]:

assumes t ∈ trees (A × UNIV)
shows sets (rinss xs t A) = tree-sigma (count-space A

⊗
M borel)

proof −
have tree-sigma (count-space A

⊗
M (lborel::real measure)) = tree-sigma (count-space

A
⊗

M borel)
by (intro tree-sigma-cong sets-pair-measure-cong) auto

then show ?thesis
using assms con-assms by (subst sets-rinss ′) auto

qed

lemma bst-of-list-measurable [measurable]:
bst-of-list ∈ measurable (count-space (lists A)) (tree-sigma (count-space A))
by (subst measurable-count-space-eq1)
(auto simp: space-tree-sigma intro!: bst-of-list-trees)

36

lemma insort-wrt-measurable [measurable]:
(λx. insort-wrt x xs) ∈ count-space (Pow (A × A)) →M count-space (lists A)
using con-assms by auto

lemma bst-of-list-sort-meaurable [measurable]:
(λx. bst-of-list (sort-key x xs)) ∈

PiM (set xs) (λi. borel::real measure) →M tree-sigma (count-space A)
proof −

note measurable-linorder-from-keys-restrict ′[measurable]
have (0 ::real) < 1

by auto
then have [measurable]: (λx. bst-of-list (insort-wrt (linorder-from-keys (set xs)

x) xs))
∈ PiM (set xs) (λi. borel :: real measure) →M tree-sigma

(count-space A)
using con-assms by measurable

show ?thesis
by (subst insort-wrt-sort-key[symmetric]) (measurable, auto)

qed

In a first step, we convert the bulk insertion operation to first choosing the
priorities i. i. d. ahead of time and then inserting all the elements determin-
istically with their associated priority.
lemma random-treap-fold:

assumes t ∈ space (tree-sigma (count-space A
⊗

M lborel))
shows rinss xs t A = distr (ΠM x∈set xs. U 0 1)

(tree-sigma (count-space A
⊗

M lborel))
(λp. foldl (λt x. ins x (p x) t) t xs)

proof −
let ?U = uniform-measure lborel {0 ::real..1}
have set xs ⊆ space (count-space A) c ∈ set xs =⇒ c ∈ space (count-space A)

for c
using con-assms by auto

then have ∗[intro]: (λp. foldl (λt x. ins x (p x) t) t xs) ∈
PiM (set xs) (λx. ?U) →M tree-sigma (count-space A

⊗
M lborel)

if t ∈ space (tree-sigma (count-space A
⊗

M lborel)) for t
using that con-assms by measurable

have insR ′:
insR x t A = ?U >>= (λu. return (tree-sigma (count-space A

⊗
M lborel)) (ins

x u t))
if x ∈ A t ∈ space (tree-sigma (count-space A

⊗
M lborel)) for t x

using con-assms assms that by (auto simp add: bind-return-distr ′ U-def)
have rinss xs t A = (ΠM x∈set xs. ?U) >>=

(λp. return (tree-sigma (count-space A
⊗

M lborel)) (foldl (λt x. ins x (p x)
t) t xs))

using con-assms(2 ,3) assms proof (induction xs arbitrary: t)
case Nil
then show ?case
by (intro measure-eqI) (auto simp add: space-PiM-empty emeasure-distr bind-return-distr ′)

37

next
case (Cons x xs)
note insR.simps[simp del]
let ?treap-sigma = tree-sigma (count-space A

⊗
M lborel)

have [measurable]: set xs ⊆ space (count-space A) x ∈ A
c ∈ A =⇒ c ∈ space (count-space A) for c

using Cons by auto
have [intro!]: ins k p t ∈ space ?treap-sigma if t ∈ space ?treap-sigma k ∈ A

for k t and p::real
using that
by (auto intro!: ins-trees simp add: space-tree-sigma space-pair-measure)

have [measurable]: PiM (set xs) (λx. ?U) ∈ space (prob-algebra (PiM (set xs)
(λi. ?U)))

unfolding space-prob-algebra by (auto intro!: prob-space-uniform-measure prob-space-PiM)
have [measurable]: PiM (set xs) (λx. ?U) ∈ space (subprob-algebra (PiM (set xs)

(λi. ?U)))
unfolding space-subprob-algebra

by (auto intro!: prob-space-imp-subprob-space prob-space-uniform-measure prob-space-PiM)
have [measurable]: (λx. x) ∈ (?treap-sigma

⊗
M PiM (set xs) (λi. ?U))

⊗
M

?treap-sigma →M

(?treap-sigma
⊗

M PiM (set xs) (λi. borel))
⊗

M ?treap-sigma
by (auto intro!: measurable-ident-sets sets-pair-measure-cong sets-PiM-cong simp

add: U-def)
have [simp]: (λw. PiM (set xs) (λx. ?U) >>=

(λp. return ?treap-sigma (foldl (λt x. ins x (p x) t) w xs)))
∈ ?treap-sigma →M subprob-algebra ?treap-sigma

proof −
have [measurable]: c ∈ set xs =⇒ c ∈ A for c

using Cons by auto
show ?thesis

using con-assms by measurable
qed
have [measurable]: ?U ∈ space (prob-algebra (?U))

by (simp add: prob-space-uniform-measure space-prob-algebra)
have [measurable, intro]: (λt. rinss xs t A) ∈ ?treap-sigma →M subprob-algebra

?treap-sigma
if set xs ⊆ A for xs
using that proof (induction xs)
case (Cons x xs)
then have [measurable]: x ∈ A set xs ⊆ A

by auto
have [measurable]: (λy. x) ∈ tree-sigma (count-space A

⊗
M lborel)

⊗
M ?U

→M count-space A
using Cons by measurable

have [measurable]: (λx. x) ∈ ?treap-sigma
⊗

M ?U →M ?treap-sigma
⊗

M

borel
unfolding U-def by auto

have [measurable]: (λt. distr (?U) (tree-sigma (count-space A
⊗

M lborel)) (λp.
ins x p t))

38

∈ ?treap-sigma →M subprob-algebra ?treap-sigma
using con-assms by (intro measurable-prob-algebraD) measurable

from Cons show ?case
unfolding rinss.simps insR.simps U-def by measurable

qed auto
have [intro]: (λu. return ?treap-sigma (ins x u t)) ∈ ?U →M subprob-algebra

?treap-sigma
using con-assms Cons by measurable

have [simp]: space (?U
⊗

M PiM (set xs) (λx. ?U)) 6= {}
by (simp add: prob-space.not-empty prob-space-PiM prob-space-pair prob-space-uniform-measure)

from Cons have rinss (x # xs) t A = (?U >>=
(λu. return ?treap-sigma (ins x u t))) >>=
(λt. rinss xs t A)

by (simp add: insR ′)
also have . . . = ?U >>= (λu. return ?treap-sigma (ins x u t) >>= (λt. rinss xs t

A))
using con-assms Cons by (subst bind-assoc) auto

also have . . . = ?U >>= (λu. rinss xs (ins x u t) A)
using con-assms Cons by (subst bind-return) auto

also have . . . = ?U >>=
(λu. PiM (set xs) (λx. ?U) >>=
(λp. return ?treap-sigma (foldl (λt x. ins x (p x) t) (ins x u t) xs)))

using Cons by (subst Cons) (auto simp add: treap-ins keys-ins)
also have . . . = ?U

⊗
M PiM (set xs) (λx. ?U) >>=

(λ(u,p). return ?treap-sigma (foldl (λt x. ins x (p x) t) (ins x u t)
xs))

proof −
have [measurable]: pair-prob-space (?U) (PiM (set xs) (λx. ?U))
by (simp add: U-def pair-prob-space-def pair-sigma-finite.intro prob-space-PiM

prob-space-imp-sigma-finite prob-space-uniform-measure)
note this[unfolded U-def , measurable]
have [measurable]: c ∈ set xs =⇒ c ∈ A for c

using Cons by auto
show ?thesis
using con-assms Cons by (subst pair-prob-space.pair-measure-bind) measurable

qed
also have . . . = distr (?U

⊗
M PiM (set xs) (λx. ?U)) (tree-sigma (count-space

A
⊗

M lborel))
(λ(u, f). foldl (λt x. ins x (f x) t) (ins x u t) xs)

proof −
have [simp]: c ∈ set xs =⇒ c ∈ A for c

using Cons by auto
have (λxa. foldl (λt x. ins x (snd xa x) t) (ins x (fst xa) t) xs) =

(λ(u, f). foldl (λt x. ins x (f x) t) (ins x u t) xs)
by (auto simp add: case-prod-beta ′)

then show ?thesis
using con-assms Cons by (subst case-prod-beta ′, subst bind-return-distr ′)

measurable

39

qed
also have
. . . = distr (?U

⊗
M PiM (set xs) (λi. ?U)) ?treap-sigma

(λf . foldl (λt y. ins y (if y = x then fst f else snd f y) t) (ins x (fst f) t) xs)
proof −

have foldl (λt y. ins y (snd f y) t) (ins x (fst f) t) xs =
foldl (λt y. ins y (if y = x then fst f else snd f y) t) (ins x (fst f) t) xs for f

using Cons by (intro foldl-cong) auto
then show ?thesis

by (auto simp add: case-prod-beta ′)
qed
also have . . . = distr (?U

⊗
M PiM (set xs) (λi. ?U)) (PiM (insert x (set xs))

(λi. ?U))
(λ(r , f). f (x := r)) >>=
(λp. return ?treap-sigma (foldl (λt x. ins x (p x) t) (ins x (p

x) t) xs))
using con-assms Cons
by (subst bind-distr-return) (measurable, auto simp add: case-prod-beta ′)

also have . . . = PiM (insert x (set xs)) (λx. ?U) >>=
(λp. return ?treap-sigma (foldl (λt x . ins x (p x) t) (ins x (p x) t)

xs))
by (subst distr-pair-PiM-eq-PiM) (auto simp add: prob-space-uniform-measure)

finally show ?case
by (simp)

qed
then show ?thesis
using assms by (subst bind-return-distr ′[symmetric]) (auto simp add: bind-return-distr ′)

qed

corollary random-treap-fold-Leaf :
shows rinss xs Leaf A =

distr (ΠM x∈set xs. U 0 1)
(tree-sigma (count-space A

⊗
M lborel))

(λp. foldl (λt x. ins x (p x) t) Leaf xs)
by (auto simp add: random-treap-fold)

Next, we show that additionally forgetting the priorities in the end will yield
the same distribution as inserting the elements into a BST by ascending
priority.
lemma rinss-bst-of-list:

distr (rinss xs Leaf A) (tree-sigma (count-space A)) (map-tree fst) =
distr (PiM (set xs) (λx. U 0 1)) (tree-sigma (count-space A))

(λp. bst-of-list (sort-key p xs)) (is ?lhs = ?rhs)
proof −

have [measurable]: set xs ⊆ space (count-space A)
c ∈ set xs =⇒ c ∈ space (count-space A) for c
using con-assms by auto

have [simp]: map-tree fst ◦ (λp. foldl (λt x. ins x (p x) t) 〈〉 xs)
∈ PiM (set xs) (λx. uniform-measure lborel {0 ::real..1}) →M

40

tree-sigma (count-space A)
unfolding U-def map-tree-primrec using con-assms by measurable

have AE f in PiM (set xs) (λi. U 0 1). inj-on f (set xs)
unfolding U-def by (rule almost-everywhere-avoid-finite) auto

then have AE f in PiM (set xs) (λx. U 0 1).
map-tree fst (foldl (λt (k,p). ins k p t) 〈〉 (map (λx. (x, f x)) xs)) =
bst-of-list (sort-key f xs)

by (eventually-elim) (use con-assms in ‹auto simp add: fold-ins-bst-of-list›)
then have [simp]: AE f in PiM (set xs) (λx. U 0 1).

map-tree fst (foldl (λt k. ins k (f k) t) 〈〉 xs) = bst-of-list (sort-key f xs)
by (simp add: foldl-map)

have ?lhs = distr (PiM (set xs) (λx. U 0 1)) (tree-sigma (count-space A))
(map-tree fst ◦ (λp. foldl (λt x. ins x (p x) t) 〈〉 xs))

unfolding random-treap-fold-Leaf U-def map-tree-primrec using con-assms
by (subst distr-distr) measurable

also have . . . = ?rhs
by (intro distr-cong-AE) (auto simp add: U-def)

finally show ?thesis .
qed

This in turn is the same as choosing a random permutation of the input list
and inserting the elements into a BST in that order.
lemma lborel-permutations-of-set-bst-of-list:

shows distr (PiM (set xs) (λx. U 0 1)) (tree-sigma (count-space A))
(λp. bst-of-list (sort-key p xs)) =

distr (random-perm xs) (tree-sigma (count-space A)) bst-of-list (is ?lhs =
?rhs)
proof −

have [measurable]: (0 ::real) < 1
by auto

have insort-wrt R xs = insort-wrt R (remdups xs) for R
using con-assms distinct-remdups-id by metis

then have ∗: insort-wrt R xs = sorted-wrt-list-of-set R (set xs)
if linorder-on (set xs) R for R
using that by (subst sorted-wrt-list-set) auto

have [measurable]: (λx. x) ∈ count-space (permutations-of-set (set xs)) →M

count-space (lists A)
using con-assms permutations-of-setD by fastforce

have [measurable]: (λR. insort-wrt R xs) ∈
count-space (Pow (A × A)) →M count-space (permutations-of-set

(set xs))
using con-assms by (simp add: permutations-of-setI)

have ?lhs
= distr (PiM (set xs) (λx. U 0 1)) (tree-sigma (count-space A))

(λp. bst-of-list (insort-wrt (linorder-from-keys (set xs) p) xs))
unfolding Let-def by (simp add: insort-wrt-sort-key)

also have . . . =
distr (distr (PiM (set xs) (λx. uniform-measure lborel {0 ::real..1}))
(count-space (Pow (A × A))) (linorder-from-keys (set xs)))

41

(tree-sigma (count-space A)) (λR. bst-of-list (insort-wrt R xs))
unfolding U-def using con-assms by (subst distr-distr) (measurable, metis

comp-apply)
also have . . . =
distr (uniform-measure (count-space (Pow (A × A))) (linorders-on (set xs)))

(tree-sigma (count-space A)) (λR. bst-of-list (insort-wrt R xs))
using con-assms by (subst random-linorder-by-prios) auto

also have . . . = distr (distr (uniform-measure (count-space (Pow (A × A)))
(linorders-on (set xs)))

(count-space (permutations-of-set (set xs))) (λR. insort-wrt
R xs))

(tree-sigma (count-space A)) bst-of-list
by (subst distr-distr) (measurable, metis comp-apply)

also have . . . = distr (uniform-measure (count-space (permutations-of-set (set
xs)))

((λR. insort-wrt R xs) ‘ linorders-on (set xs)))
(tree-sigma (count-space A)) bst-of-list

proof −
have bij-betw (λR. insort-wrt R xs) (linorders-on (set xs)) (permutations-of-set

(set xs))
by (subst bij-betw-cong, fastforce simp add: ∗ linorders-on-def bij-betw-cong)

(use bij-betw-linorders-on ′ in blast)
then have inj-on (λR. insort-wrt R xs) (linorders-on (set xs))

by (rule bij-betw-imp-inj-on)
then have distr (uniform-measure (count-space (Pow (A × A))) (linorders-on

(set xs)))
(count-space (permutations-of-set (set xs))) (λR. insort-wrt R xs)

= uniform-measure (count-space (permutations-of-set (set xs)))
((λR. insort-wrt R xs) ‘ linorders-on (set xs))

using con-assms by (intro distr-uniform-measure-count-space-inj)
(auto simp add: linorders-on-def linorder-on-def refl-on-def)

then show ?thesis by auto
qed
also have . . . = distr (random-perm xs) (tree-sigma (count-space A)) bst-of-list
proof −

have ((λR. insort-wrt R xs) ‘ linorders-on (set xs)) = permutations-of-set (set
xs)

by (intro bij-betw-imp-surj-on, subst bij-betw-cong, rule ∗)
(fastforce simp add: linorders-on-def , use bij-betw-linorders-on ′ in blast)

then show ?thesis by (simp add: random-perm-def)
qed
finally show ?thesis .

qed

lemma distr-bst-of-list-tree-sigma-count-space:
distr (random-perm xs) (tree-sigma (count-space A)) bst-of-list =

distr (random-perm xs) (count-space (trees A)) bst-of-list
using con-assms by (intro distr-cong) (auto intro!: sets-tree-sigma-count-space)

This is the same as a random BST.

42

lemma distr-bst-of-list-random-bst:
distr (random-perm xs) (count-space (trees A)) bst-of-list =

restrict-space (random-bst (set xs)) (trees A) (is ?lhs = ?rhs)
proof −

have ?rhs = restrict-space (distr (uniform-measure (count-space UNIV)
(permutations-of-set (set xs))) (count-space UNIV) bst-of-list) (trees

A)
by (auto simp: random-bst-altdef measure-pmf-of-set map-pmf-rep-eq)

also have distr (uniform-measure (count-space UNIV) (permutations-of-set (set
xs)))

(count-space UNIV) bst-of-list =
distr (random-perm xs) (count-space UNIV) bst-of-list

by (intro distr-restrict) (auto simp: random-perm-def)
also have restrict-space . . . (trees A) =

distr (random-perm xs) (count-space (trees A)) bst-of-list
using con-assms
by (subst restrict-distr)

(auto simp: random-perm-def bst-of-list-trees restrict-count-space permuta-
tions-of-setD)

finally show ?thesis ..
qed

We put everything together and obtain our main result:
theorem rinss-random-bst:

distr (rinss xs 〈〉 A) (tree-sigma (count-space A)) (map-tree fst) =
restrict-space (measure-pmf (random-bst (set xs))) (trees A)

by (simp only: rinss-bst-of-list lborel-permutations-of-set-bst-of-list
distr-bst-of-list-tree-sigma-count-space distr-bst-of-list-random-bst)

end
end

References

[1] M. Eberl, M. Haslbeck, and T. Nipkow. Verified analysis of random
trees, 2018 (forthcoming).

[2] R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica,
16(4):464–497, Oct 1996.

43

	Auxiliary material
	Treaps
	Randomly-permuted lists
	General facts about linear orderings

	Relationship between treaps and BSTs
	Random treaps
	Measurability
	Main result

