
Executable Transitive Closures of Finite Relations∗

Christian Sternagel and René Thiemann

March 17, 2025

Abstract
We provide a generic work-list algorithm to compute the transi-

tive closure of finite relations where only successors of newly detected
states are generated. This algorithm is then instantiated for lists over
arbitrary carriers and red black trees [1] (which are faster but require
a linear order on the carrier), respectively.

Our formalization was performed as part of the IsaFoR/CeTA project1

[2], where reflexive transitive closures of large tree automata have to
be computed.

Contents
1 A Generic Work-List Algorithm 2

1.1 Bounded Reachability . 2
1.2 Reflexive Transitive Closure and Transitive closure 6

2 Closure Computation using Lists 9
2.1 Computing Closures from Sets On-The-Fly 9
2.2 Precomputing Closures for Single States 10

3 Accessing Values via Keys 11
3.1 Subset and Union . 12
3.2 Grouping Values via Keys . 13

4 Closure Computation via Red Black Trees 18
4.1 Computing Closures from Sets On-The-Fly 18
4.2 Precomputing Closures for Single States 19

5 Computing Images of Finite Transitive Closures 21
5.1 A Simproc for Computing the Images of Finite Transitive

Closures . 21
5.2 Example . 23

∗Supported by FWF (Austrian Science Fund) project P22767-N13.
1http://cl-informatik.uibk.ac.at/software/ceta

1

http://cl-informatik.uibk.ac.at/software/ceta

1 A Generic Work-List Algorithm
theory Transitive-Closure-Impl
imports Main
begin

Let R be some finite relation. We start to present a standard work-
list algorithm to compute all elements that are reachable from some initial
set by at most n R-steps. Then, we obtain algorithms for the (reflexive)
transitive closure from a given starting set by exploiting the fact that for
finite relations we have to iterate at most card R times. The presented
algorithms are generic in the sense that the underlying data structure can
freely be chosen, you just have to provide certain operations like union,
membership, etc.

1.1 Bounded Reachability
We provide an algorithm relpow-impl that computes all states that are reach-
able from an initial set of states new by at most n steps. The algorithm also
stores a set of states that have already been visited have, and then show,
do not have to be expanded a second time. The algorithm is parametric
in the underlying data structure, it just requires operations for union and
membership as well as a function to compute the successors of a list.
fun

relpow-impl ::
(′a list ⇒ ′a list) ⇒
(′a list ⇒ ′b ⇒ ′b) ⇒ (′a ⇒ ′b ⇒ bool) ⇒ ′a list ⇒ ′b ⇒ nat ⇒ ′b

where
relpow-impl succ un memb new have 0 = un new have |
relpow-impl succ un memb new have (Suc m) =
(if new = [] then have
else

let
maybe = succ new;
have ′ = un new have;
new ′ = filter (λ n. ¬ memb n have ′) maybe

in relpow-impl succ un memb new ′ have ′ m)

We need to know that the provided operations behave correctly.
locale set-access =

fixes un :: ′a list ⇒ ′b ⇒ ′b
and set-of :: ′b ⇒ ′a set
and memb :: ′a ⇒ ′b ⇒ bool
and empty :: ′b

assumes un: set-of (un as bs) = set as ∪ set-of bs
and memb: memb a bs ←→ (a ∈ set-of bs)
and empty: set-of empty = {}

2

locale set-access-succ = set-access un
for un :: ′a list ⇒ ′b ⇒ ′b +
fixes succ :: ′a list ⇒ ′a list
and rel :: (′a × ′a) set

assumes succ: set (succ as) = {b. ∃ a ∈ set as. (a, b) ∈ rel}
begin

abbreviation relpow-i ≡ relpow-impl succ un memb

What follows is the main technical result of the relpow-impl algorithm:
what it computes for arbitrary values of new and have.
lemma relpow-impl-main:

set-of (relpow-i new have n) =
{b | a b m. a ∈ set new ∧ m ≤ n ∧ (a, b) ∈ (rel ∩ {(a, b). b /∈ set-of have})

^^ m} ∪
set-of have

(is ?l new have n = ?r new have n)
proof (induction n arbitrary: have new)

case (Suc n hhave nnew)
show ?case
proof (cases nnew = [])

case True
then show ?thesis by auto

next
case False
let ?have = set-of hhave
let ?new = set nnew
obtain have new where hav: have = ?have and new: new = ?new by auto
let ?reln = λ m. (rel ∩ {(a, b). b /∈ new ∧ b /∈ have}) ^^ m
let ?rel = λ m. (rel ∩ {(a, b). b /∈ have}) ^^ m
have idl: ?l nnew hhave (Suc n) =
{uu. ∃ a. (∃ aa∈ new. (aa,a) ∈ rel) ∧ a /∈ new ∧ a /∈ have ∧ (∃m ≤ n. (a,

uu) ∈ ?reln m)} ∪
(new ∪ have)
(is - = ?l1 ∪ (?l2 ∪ ?l3))
by (simp add: hav new False Let-def Suc, simp add: memb un succ)

let ?l = ?l1 ∪ (?l2 ∪ ?l3)
have idr : ?r nnew hhave (Suc n) = {b. ∃ a m. a ∈ new ∧ m ≤ Suc n ∧ (a, b)

∈ ?rel m} ∪ have
(is - = (?r1 ∪ ?r2)) by (simp add: hav new)

let ?r = ?r1 ∪ ?r2
{

fix b
assume b: b ∈ ?l
have b ∈ ?r
proof (cases b ∈ new ∨ b ∈ have)

case True then show ?thesis
proof

3

assume b ∈ have then show ?thesis by auto
next

assume b: b ∈ new
have b ∈ ?r1

by (intro CollectI , rule exI , rule exI [of - 0], intro conjI , rule b, auto)
then show ?thesis by auto

qed
next

case False
with b have b ∈ ?l1 by auto
then obtain a2 a1 m where a2n: a2 /∈ new and a2h: a2 /∈ have and a1 :

a1 ∈ new
and a1a2 : (a1 ,a2) ∈ rel and m: m ≤ n and a2b: (a2 ,b) ∈ ?reln m by

auto
have b ∈ ?r1
by (rule CollectI , rule exI , rule exI [of - Suc m], intro conjI , rule a1 , simp

add: m, rule relpow-Suc-I2 , rule, rule a1a2 , simp add: a2h, insert a2b, induct m
arbitrary: a2 b, auto)

then show ?thesis by auto
qed

}
moreover
{

fix b
assume b: b ∈ ?r
then have b ∈ ?l
proof (cases b ∈ have)

case True then show ?thesis by auto
next

case False
with b have b ∈ ?r1 by auto
then obtain a m where a: a ∈ new and m: m ≤ Suc n and ab: (a, b) ∈

?rel m by auto
have seq: ∃ a ∈ new. (a, b) ∈ ?rel m

using a ab by auto
obtain l where l: l = (LEAST m. (∃ a ∈ new. (a, b) ∈ ?rel m)) by auto
have least: (∃ a ∈ new. (a, b) ∈ ?rel l)

by (unfold l, rule LeastI , rule seq)
have lm: l ≤ m unfolding l

by (rule Least-le, rule seq)
with m have ln: l ≤ Suc n by auto
from least obtain a where a: a ∈ new

and ab: (a, b) ∈ ?rel l by auto
from ab [unfolded relpow-fun-conv]
obtain f where fa: f 0 = a and fb: b = f l

and steps:
∧

i. i < l =⇒ (f i, f (Suc i)) ∈ ?rel 1 by auto
{

fix i
assume i: i < l

4

have main: f (Suc i) /∈ new
proof

assume new: f (Suc i) ∈ new
let ?f = λ j. f (Suc i + j)
have seq: (f (Suc i), b) ∈ ?rel (l − Suc i)

unfolding relpow-fun-conv
proof (rule exI [of - ?f], intro conjI allI impI)

from i show f (Suc i + (l − Suc i)) = b
unfolding fb by auto

next
fix j
assume j < l − Suc i
then have small: Suc i + j < l by auto

show (?f j, ?f (Suc j)) ∈ rel ∩ {(a, b). b /∈ have} using steps [OF
small] by auto

qed simp
from i have small: l − Suc i < l by auto
from seq new have ∃ a ∈ new. (a, b) ∈ ?rel (l − Suc i) by auto
with not-less-Least [OF small [unfolded l]]
show False unfolding l by auto

qed
then have (f i, f (Suc i)) ∈ ?reln 1

using steps [OF i] by auto
} note steps = this
have ab: (a, b) ∈ ?reln l unfolding relpow-fun-conv

by (intro exI conjI , insert fa fb steps, auto)
have b ∈ ?l1 ∪ ?l2
proof (cases l)

case 0
with ab a show ?thesis by auto

next
case (Suc ll)
from relpow-Suc-D2 [OF ab [unfolded Suc]] a ln Suc
show ?thesis by auto

qed
then show ?thesis by auto

qed
}
ultimately show ?thesis

unfolding idl idr by blast
qed

qed (simp add: un)

From the previous lemma we can directly derive that relpow-impl works
correctly if have is initially set to empty
lemma relpow-impl:

set-of (relpow-i new empty n) = {b | a b m. a ∈ set new ∧ m ≤ n ∧ (a, b) ∈ rel
^^ m}
proof −

5

have id: rel ∩ {(a ,b). True} = rel by auto
show ?thesis unfolding relpow-impl-main empty by (simp add: id)

qed

end

1.2 Reflexive Transitive Closure and Transitive closure
Using relpow-impl it is now easy to obtain algorithms for the reflexive tran-
sitive closure and the transitive closure by restricting the number of steps
to the size of the finite relation. Note that relpow-impl will abort the com-
putation as soon as no new states are detected. Hence, there is no penalty
in using this large bound.
definition

rtrancl-impl ::
((′a × ′a) list ⇒ ′a list ⇒ ′a list) ⇒
(′a list ⇒ ′b ⇒ ′b) ⇒ (′a ⇒ ′b ⇒ bool) ⇒ ′b ⇒ (′a × ′a) list ⇒ ′a list ⇒ ′b

where
rtrancl-impl gen-succ un memb emp rel =
(let

succ = gen-succ rel;
n = length rel

in (λ as. relpow-impl succ un memb as emp n))

definition
trancl-impl ::
((′a × ′a) list ⇒ ′a list ⇒ ′a list) ⇒
(′a list ⇒ ′b ⇒ ′b) ⇒ (′a ⇒ ′b ⇒ bool) ⇒ ′b ⇒ (′a × ′a) list ⇒ ′a list ⇒ ′b

where
trancl-impl gen-succ un memb emp rel =
(let

succ = gen-succ rel;
n = length rel

in (λ as. relpow-impl succ un memb (succ as) emp n))

The soundness of both rtrancl-impl and trancl-impl follows from the
soundness of relpow-impl and the fact that for finite relations, we can limit
the number of steps to explore all elements in the reflexive transitive closure.
lemma rtrancl-finite-relpow:
(a, b) ∈ (set rel)∗ ←→ (∃ n ≤ length rel. (a, b) ∈ set rel ^^ n) (is ?l = ?r)

proof
assume ?r
then show ?l

unfolding rtrancl-power by auto
next

assume ?l
from this [unfolded rtrancl-power]

obtain n where ab: (a,b) ∈ set rel ^^ n ..

6

obtain l where l: l = (LEAST n. (a,b) ∈ set rel ^^ n) by auto
have ab: (a, b) ∈ set rel ^^ l unfolding l

by (intro LeastI , rule ab)
from this [unfolded relpow-fun-conv]
obtain f where a: f 0 = a and b: f l = b

and steps:
∧

i. i < l =⇒ (f i, f (Suc i)) ∈ set rel by auto
let ?hits = map (λ i. f (Suc i)) [0 ..< l]
from steps have subset: set ?hits ⊆ snd ‘ set rel by force
have l ≤ length rel
proof (cases distinct ?hits)

case True
have l = length ?hits by simp
also have ... = card (set ?hits) unfolding distinct-card [OF True] ..
also have ... ≤ card (snd ‘ set rel) by (rule card-mono [OF - subset], auto)
also have ... = card (set (map snd rel)) by auto
also have ... ≤ length (map snd rel) by (rule card-length)
finally show ?thesis by simp

next
case False
from this [unfolded distinct-conv-nth]
obtain i j where i: i < l and j: j < l and ij: i 6= j and fij: f (Suc i) = f

(Suc j) by auto
let ?i = min i j
let ?j = max i j
have i: ?i < l and j: ?j < l and fij: f (Suc ?i) = f (Suc ?j)

and ij: ?i < ?j
using i j ij fij unfolding min-def max-def by (cases i ≤ j, auto)

from i j fij ij obtain i j where i: i < l and j: j < l and ij: i < j and fij: f
(Suc i) = f (Suc j) by blast

let ?g = λ n. if n ≤ i then f n else f (n + (j − i))
let ?l = l − (j − i)
have abl: (a,b) ∈ set rel ^^ ?l

unfolding relpow-fun-conv
proof (rule exI [of - ?g], intro conjI impI allI)

show ?g ?l = b unfolding b [symmetric] using j ij by auto
next

fix k
assume k: k < ?l
show (?g k, ?g (Suc k)) ∈ set rel
proof (cases k < i)

case True
with i have k < l by auto
from steps [OF this] show ?thesis using True by simp

next
case False
then have ik: i ≤ k by auto
show ?thesis
proof (cases k = i)

case True

7

then show ?thesis using ij fij steps [OF i] by simp
next

case False
with ik have ik: i < k by auto
then have small: k + (j − i) < l using k by auto
show ?thesis using steps[OF small] ik by auto

qed
qed

qed (simp add: a)
from ij i have ll: ?l < l by auto
have l ≤ ?l unfolding l

by (rule Least-le, rule abl [unfolded l])
with ll have False by simp
then show ?thesis by simp

qed
with ab show ?r by auto

qed

locale set-access-gen = set-access un
for un :: ′a list ⇒ ′b ⇒ ′b +
fixes gen-succ :: (′a × ′a) list ⇒ ′a list ⇒ ′a list
assumes gen-succ: set (gen-succ rel as) = {b. ∃ a ∈ set as. (a, b) ∈ set rel}

begin

abbreviation rtrancl-i ≡ rtrancl-impl gen-succ un memb empty
abbreviation trancl-i ≡ trancl-impl gen-succ un memb empty

lemma rtrancl-impl:
set-of (rtrancl-i rel as) = {b. (∃ a ∈ set as. (a, b) ∈ (set rel)∗)}

proof −
interpret set-access-succ set-of memb empty un gen-succ rel set rel

by (unfold-locales, insert gen-succ, auto)
show ?thesis unfolding rtrancl-impl-def Let-def relpow-impl

by (auto simp: rtrancl-finite-relpow)
qed

lemma trancl-impl:
set-of (trancl-i rel as) = {b. (∃ a ∈ set as. (a, b) ∈ (set rel)+)}

proof −
interpret set-access-succ set-of memb empty un gen-succ rel set rel

by (unfold-locales, insert gen-succ, auto)
show ?thesis

unfolding trancl-impl-def Let-def relpow-impl trancl-unfold-left relcomp-unfold
rtrancl-finite-relpow succ by auto
qed

end

end

8

2 Closure Computation using Lists
theory Transitive-Closure-List-Impl
imports Transitive-Closure-Impl
begin

We provide two algorithms for the computation of the reflexive transi-
tive closure which internally work on lists. The first one (rtrancl-list-impl)
computes the closure on demand for a given set of initial states. The second
one (memo-list-rtrancl) precomputes the closure for each individual state,
stores the result, and then only does a look-up.

For the transitive closure there are the corresponding algorithms trancl-list-impl
and memo-list-trancl.

2.1 Computing Closures from Sets On-The-Fly
The algorithms are based on the generic algorithms rtrancl-impl and trancl-impl
instantiated by list operations. Here, after computing the successors in a
straightforward way, we use remdups to not have duplicates in the results.
Moreover, also in the union operation we filter to those elements that have
not yet been seen. The use of filter in the union operation is preferred over
remdups since by construction the latter set will not contain duplicates.
definition rtrancl-list-impl :: (′a × ′a) list ⇒ ′a list ⇒ ′a list
where

rtrancl-list-impl = rtrancl-impl
(λ r as. remdups (map snd (filter (λ (a, b). a ∈ set as) r)))
(λ xs ys. (filter (λ x. x /∈ set ys) xs) @ ys)
(λ x xs. x ∈ set xs)
[]

definition trancl-list-impl :: (′a × ′a) list ⇒ ′a list ⇒ ′a list
where

trancl-list-impl = trancl-impl
(λ r as. remdups (map snd (filter (λ (a, b). a ∈ set as) r)))
(λ xs ys. (filter (λ x. x /∈ set ys) xs) @ ys)
(λ x xs. x ∈ set xs)
[]

lemma rtrancl-list-impl:
set (rtrancl-list-impl r as) = {b. ∃ a ∈ set as. (a, b) ∈ (set r)∗}
unfolding rtrancl-list-impl-def
by (rule set-access-gen.rtrancl-impl, unfold-locales, force+)

lemma trancl-list-impl:
set (trancl-list-impl r as) = {b. ∃ a ∈ set as. (a, b) ∈ (set r)+}
unfolding trancl-list-impl-def
by (rule set-access-gen.trancl-impl, unfold-locales, force+)

9

2.2 Precomputing Closures for Single States
Storing all relevant entries is done by mapping all left-hand sides of the
relation to their closure. To avoid redundant entries, remdups is used.
definition memo-list-rtrancl :: (′a × ′a) list ⇒ (′a ⇒ ′a list)
where

memo-list-rtrancl r =
(let

tr = rtrancl-list-impl r ;
rm = map (λa. (a, tr [a])) ((remdups ◦ map fst) r)

in
(λa. case map-of rm a of

None ⇒ [a]
| Some as ⇒ as))

lemma memo-list-rtrancl:
set (memo-list-rtrancl r a) = {b. (a, b) ∈ (set r)∗} (is ?l = ?r)

proof −
let ?rm = map (λ a. (a, rtrancl-list-impl r [a])) ((remdups ◦ map fst) r)
show ?thesis
proof (cases map-of ?rm a)

case None
have one: ?l = {a}

unfolding memo-list-rtrancl-def Let-def None
by auto

from None [unfolded map-of-eq-None-iff]
have a: a /∈ fst ‘ set r by force
{

fix b
assume b ∈ ?r
from this [unfolded rtrancl-power relpow-fun-conv] obtain n f where

ab: f 0 = a ∧ f n = b and steps:
∧

i. i < n =⇒ (f i, f (Suc i)) ∈ set r by
auto

from ab steps [of 0] a have a = b
by (cases n, force+)

}
then have ?r = {a} by auto
then show ?thesis unfolding one by simp

next
case (Some as)
have as: set as = {b. (a, b) ∈ (set r)^∗}

using map-of-SomeD [OF Some]
rtrancl-list-impl [of r [a]] by force

then show ?thesis unfolding memo-list-rtrancl-def Let-def Some by simp
qed

qed

definition memo-list-trancl :: (′a × ′a) list ⇒ (′a ⇒ ′a list)
where

10

memo-list-trancl r =
(let

tr = trancl-list-impl r ;
rm = map (λa. (a, tr [a])) ((remdups ◦ map fst) r)

in
(λa. case map-of rm a of

None ⇒ []
| Some as ⇒ as))

lemma memo-list-trancl:
set (memo-list-trancl r a) = {b. (a, b) ∈ (set r)+} (is ?l = ?r)

proof −
let ?rm = map (λ a. (a, trancl-list-impl r [a])) ((remdups ◦ map fst) r)
show ?thesis
proof (cases map-of ?rm a)

case None
have one: ?l = {}

unfolding memo-list-trancl-def Let-def None
by auto

from None [unfolded map-of-eq-None-iff]
have a: a /∈ fst ‘ set r by force

{
fix b
assume b ∈ ?r
from this [unfolded trancl-unfold-left] a have False by force

}
then have ?r = {} by auto
then show ?thesis unfolding one by simp

next
case (Some as)
have as: set as = {b. (a, b) ∈ (set r)+}

using map-of-SomeD [OF Some]
trancl-list-impl[of r [a]] by force

then show ?thesis unfolding memo-list-trancl-def Let-def Some by simp
qed

qed

end

3 Accessing Values via Keys
theory RBT-Map-Set-Extension
imports

Collections.RBTMapImpl
Collections.RBTSetImpl
Matrix.Utility

begin

We provide two extensions of the red black tree implementation.

11

The first extension provides two convenience methods on sets which are
represented by red black trees: a check on subsets and the big union operator.

The second extension is to provide two operations elem-list-to-rm and
rm-set-lookup which can be used to index a set of values via keys. More
precisely, given a list of values of type ′v and a key function of type ′v
⇒ ′k, elem-list-to-rm will generate a map of type ′k ⇒ ′v set. Then with
rs-set-lookup we can efficiently access all values which match a given key.

3.1 Subset and Union
For the subset operation r ⊆ s we provide two implementations. The first
one (rs-subset) traverses over r and then performs membership tests ∈ s.
Its complexity is O(|r| · log(|s|)). The second one (rs-subset-list) generates
sorted lists for both r and s and then linearly checks the subset condition.
Its complexity is O(|r|+ |s|).

As union operator we use the standard fold function. Note that the order
of the union is important so that new sets are added to the big union.
definition rs-subset :: (′a :: linorder) rs ⇒ ′a rs ⇒ ′a option
where

rs-subset as bs = rs.iteratei
as
(λ maybe. case maybe of None ⇒ True | Some - ⇒ False)
(λ a -. if rs.memb a bs then None else Some a)
None

lemma rs-subset [simp]:
rs-subset as bs = None ←→ rs.α as ⊆ rs.α bs

proof −
let ?abort = λ maybe. case maybe of None ⇒ True | Some - ⇒ False
let ?I = λ aas maybe. maybe = None ←→ (∀ a. a ∈ rs.α as − aas −→ a ∈ rs.α

bs)
let ?it = rs-subset as bs
have ?I {} ?it ∨ (∃ it ⊆ rs.α as. it 6= {} ∧ ¬ ?abort ?it ∧ ?I it ?it)

unfolding rs-subset-def
by (rule rs.iteratei-rule-P [where I=?I]) (auto simp: rs.correct)

then show ?thesis by auto
qed

definition rs-subset-list :: (′a :: linorder) rs ⇒ ′a rs ⇒ ′a option
where

rs-subset-list as bs = sorted-list-subset (rs.to-sorted-list as) (rs.to-sorted-list bs)

lemma rs-subset-list [simp]:
rs-subset-list as bs = None ←→ rs.α as ⊆ rs.α bs
unfolding rs-subset-list-def

sorted-list-subset[OF rs.to-sorted-list-correct(3)[OF rs.invar , of as]
rs.to-sorted-list-correct(3)[OF rs.invar , of bs]]

12

by (simp add: rs.to-sorted-list-correct)

definition rs-Union :: (′q :: linorder) rs list ⇒ ′q rs
where

rs-Union = foldl rs.union (rs.empty ())

lemma rs-Union [simp]:
rs.α (rs-Union qs) =

⋃
(rs.α ‘ set qs)

proof −
{

fix start
have rs.α (foldl rs.union start qs) = rs.α start ∪

⋃
(rs.α ‘ set qs)

by (induct qs arbitrary: start, auto simp: rs.correct)
} from this[of rs.empty ()]
show ?thesis unfolding rs-Union-def

by (auto simp: rs.correct)
qed

3.2 Grouping Values via Keys
The functions to produce the index (elem-list-to-rm) and the lookup func-
tion (rm-set-lookup) are straight-forward, however it requires some tedious
reasoning that they perform as they should.
fun elem-list-to-rm :: (′d ⇒ ′k :: linorder) ⇒ ′d list ⇒ (′k, ′d list) rm
where

elem-list-to-rm key [] = rm.empty () |
elem-list-to-rm key (d # ds) =
(let

rm = elem-list-to-rm key ds;
k = key d

in
(case rm.α rm k of

None ⇒ rm.update-dj k [d] rm
| Some data ⇒ rm.update k (d # data) rm))

definition rm-set-lookup rm = (λ a. (case rm.α rm a of None ⇒ [] | Some rules
⇒ rules))

lemma rm-to-list-empty [simp]:
rm.to-list (rm.empty ()) = []

proof −
have map-of (rm.to-list (rm.empty ())) = Map.empty

by (simp add: rm.correct)
moreover have map-of-empty-iff :

∧
l. map-of l = Map.empty ←→ l = []

by (case-tac l) auto
ultimately show ?thesis by metis

qed

locale rm-set =

13

fixes rm :: (′k :: linorder , ′d list) rm
and key :: ′d ⇒ ′k
and data :: ′d set

assumes rm-set-lookup:
∧

k. set (rm-set-lookup rm k) = {d ∈ data. key d = k}
begin

lemma data-lookup:
data =

⋃
{set (rm-set-lookup rm k) | k. True} (is - = ?R)

proof −
{

fix d
assume d: d ∈ data
then have d: d ∈ {d ′ ∈ data. key d ′ = key d} by auto
have d ∈ ?R
by (rule UnionI [OF - d], rule CollectI , rule exI [of - key d], unfold rm-set-lookup[of

key d], simp)
}
moreover
{

fix d
assume d ∈ ?R
from this[unfolded rm-set-lookup]
have d ∈ data by auto

}
ultimately show ?thesis by blast

qed

lemma finite-data:
finite data
unfolding data-lookup

proof
show finite {set (rm-set-lookup rm k) | k. True} (is finite ?L)
proof −

let ?rmset = rm.α rm
let ?M = ?rmset ‘ Map.dom ?rmset
let ?N = ((λ e. set (case e of None ⇒ [] | Some ds ⇒ ds)) ‘ ?M)
let ?K = ?N ∪ {{}}
from rm.finite[of rm] have fin: finite ?K by auto
show ?thesis
proof (rule finite-subset[OF - fin], rule)

fix ds
assume ds ∈ ?L
from this[unfolded rm-set-lookup-def]
obtain fn where ds: ds = set (case rm.α rm fn of None ⇒ []
| Some ds ⇒ ds) by auto

show ds ∈ ?K
proof (cases rm.α rm fn)

case None
then show ?thesis unfolding ds by auto

14

next
case (Some rules)
from Some have fn: fn ∈ Map.dom ?rmset by auto
have ds ∈ ?N

unfolding ds
by (rule, rule refl, rule, rule refl, rule fn)

then show ?thesis by auto
qed

qed
qed

qed (force simp: rm-set-lookup-def)

end

interpretation elem-list-to-rm: rm-set elem-list-to-rm key ds key set ds
proof

fix k
show set (rm-set-lookup (elem-list-to-rm key ds) k) = {d ∈ set ds. key d = k}
proof (induct ds arbitrary: k)

case Nil
then show ?case unfolding rm-set-lookup-def

by (simp add: rm.correct)
next

case (Cons d ds k)
let ?el = elem-list-to-rm key
let ?l = λk ds. set (rm-set-lookup (?el ds) k)
let ?r = λk ds. {d ∈ set ds. key d = k}
from Cons have ind:∧

k. ?l k ds = ?r k ds by auto
show ?l k (d # ds) = ?r k (d # ds)
proof (cases rm.α (?el ds) (key d))

case None
from None ind[of key d] have r : {da ∈ set ds. key da = key d} = {}

unfolding rm-set-lookup-def by auto
from None have el: ?el (d # ds) = rm.update-dj (key d) [d] (?el ds)

by simp
from None have ndom: key d /∈ Map.dom (rm.α (?el ds)) by auto
have r : ?r k (d # ds) = ?r k ds ∩ {da. key da 6= key d} ∪ {da . key da = k

∧ da = d} (is - = ?r1 ∪ ?r2) using r by auto
from ndom have l: ?l k (d # ds) =

set (case ((rm.α (elem-list-to-rm key ds))(key d 7→ [d])) k of None ⇒ []
| Some rules ⇒ rules) (is - = ?l) unfolding el rm-set-lookup-def
by (simp add: rm.correct)

{
fix da
assume da ∈ ?r1 ∪ ?r2
then have da ∈ ?l
proof

assume da ∈ ?r2

15

then have da: da = d and k: key d = k by auto
show ?thesis unfolding da k by auto

next
assume da ∈ ?r1
from this[unfolded ind[symmetric] rm-set-lookup-def]
obtain das where rm: rm.α (?el ds) k = Some das and da: da ∈ set das

and k: key da 6= key d by (cases rm.α (?el ds) k, auto)
from ind[of k, unfolded rm-set-lookup-def] rm da k have k: key d 6= k by

auto
have rm: ((rm.α (elem-list-to-rm key ds))(key d 7→ [d])) k = Some das

unfolding rm[symmetric] using k by auto
show ?thesis unfolding rm using da by auto

qed
}
moreover
{

fix da
assume l: da ∈ ?l
let ?rm = ((rm.α (elem-list-to-rm key ds))(key d 7→ [d])) k
from l obtain das where rm: ?rm = Some das and da: da ∈ set das

by (cases ?rm, auto)
have da ∈ ?r1 ∪ ?r2
proof (cases k = key d)

case True
with rm da have da: da = d by auto
then show ?thesis using True by auto

next
case False
with rm have rm.α (?el ds) k = Some das by auto
from ind[of k, unfolded rm-set-lookup-def this] da False
show ?thesis by auto

qed
}
ultimately have ?l = ?r1 ∪ ?r2 by blast
then show ?thesis unfolding l r .

next
case (Some das)
from Some ind[of key d] have das: {da ∈ set ds. key da = key d} = set das

unfolding rm-set-lookup-def by auto
from Some have el: ?el (d # ds) = rm.update (key d) (d # das) (?el ds)

by simp
from Some have dom: key d ∈ Map.dom (rm.α (?el ds)) by auto
from dom have l: ?l k (d # ds) =

set (case ((rm.α (elem-list-to-rm key ds))(key d 7→ (d # das))) k of None
⇒ []

| Some rules ⇒ rules) (is - = ?l) unfolding el rm-set-lookup-def
by (simp add: rm.correct)

have r : ?r k (d # ds) = ?r k ds ∪ {da. key da = k ∧ da = d} (is - = ?r1 ∪
?r2) by auto

16

{
fix da
assume da ∈ ?r1 ∪ ?r2
then have da ∈ ?l
proof

assume da ∈ ?r2
then have da: da = d and k: key d = k by auto
show ?thesis unfolding da k by auto

next
assume da ∈ ?r1
from this[unfolded ind[symmetric] rm-set-lookup-def]
obtain das ′ where rm: rm.α (?el ds) k = Some das ′ and da: da ∈ set

das ′ by (cases rm.α (?el ds) k, auto)
from ind[of k, unfolded rm-set-lookup-def rm] have das ′: set das ′ = {d ∈

set ds. key d = k} by auto
show ?thesis
proof (cases k = key d)

case True
show ?thesis using das ′ das da unfolding True by simp

next
case False
then show ?thesis using das ′ da rm by auto

qed
qed

}
moreover
{

fix da
assume l: da ∈ ?l
let ?rm = ((rm.α (elem-list-to-rm key ds))(key d 7→ d # das)) k
from l obtain das ′ where rm: ?rm = Some das ′ and da: da ∈ set das ′

by (cases ?rm, auto)
have da ∈ ?r1 ∪ ?r2
proof (cases k = key d)

case True
with rm da das have da: da ∈ set (d # das) by auto
then have da = d ∨ da ∈ set das by auto
then have k: key da = k
proof

assume da = d
then show ?thesis using True by simp

next
assume da ∈ set das
with das True show ?thesis by auto

qed
from da k show ?thesis using das by auto

next
case False
with rm have rm.α (?el ds) k = Some das ′ by auto

17

from ind[of k, unfolded rm-set-lookup-def this] da False
show ?thesis by auto

qed
}
ultimately have ?l = ?r1 ∪ ?r2 by blast
then show ?thesis unfolding l r .

qed
qed

qed

end

4 Closure Computation via Red Black Trees
theory Transitive-Closure-RBT-Impl
imports

Transitive-Closure-Impl
RBT-Map-Set-Extension

begin

We provide two algorithms to compute the reflexive transitive closure
which internally work on red black trees. Therefore, the carrier has to be
linear ordered. The first one (rtrancl-rbt-impl) computes the closure on
demand for a given set of initial states. The second one (memo-rbt-rtrancl)
precomputes the closure for each individual state, stores the results, and
then only does a look-up.

For the transitive closure there are the corresponding algorithms trancl-rbt-impl
and memo-rbt-trancl

4.1 Computing Closures from Sets On-The-Fly
The algorithms are based on the generic algorithms rtrancl-impl and trancl-impl
using red black trees. To compute the successors efficiently, all succes-
sors of a state are collected and stored in a red black tree map by using
elem-list-to-rm. Then, to lift the successor relation for single states to lists
of states, all results are united using rs-Union. The rest is standard.
interpretation set-access λ as bs. rs.union bs (rs.from-list as) rs.α rs.memb rs.empty
()

by (unfold-locales, auto simp: rs.correct)

abbreviation rm-succ :: (′a :: linorder × ′a) list ⇒ ′a list ⇒ ′a list
where

rm-succ ≡ (λ r . let rm = elem-list-to-rm fst r in
(λ as. rs.to-list (rs-Union (map (λ a. rs.from-list (map snd (rm-set-lookup rm

a))) as))))

definition rtrancl-rbt-impl :: (′a :: linorder × ′a) list ⇒ ′a list ⇒ ′a rs

18

where
rtrancl-rbt-impl = rtrancl-impl rm-succ
(λ as bs. rs.union bs (rs.from-list as)) rs.memb (rs.empty ())

definition trancl-rbt-impl :: (′a :: linorder × ′a) list ⇒ ′a list ⇒ ′a rs
where

trancl-rbt-impl = trancl-impl rm-succ
(λ as bs. rs.union bs (rs.from-list as)) rs.memb (rs.empty ())

lemma rtrancl-rbt-impl:
rs.α (rtrancl-rbt-impl r as) = {b. ∃ a ∈ set as. (a,b) ∈ (set r)∗}
unfolding rtrancl-rbt-impl-def
by (rule set-access-gen.rtrancl-impl, unfold-locales, unfold Let-def , simp add:

rs.correct elem-list-to-rm.rm-set-lookup, force)

lemma trancl-rbt-impl:
rs.α (trancl-rbt-impl r as) = {b. ∃ a ∈ set as. (a,b) ∈ (set r)+}
unfolding trancl-rbt-impl-def
by (rule set-access-gen.trancl-impl, unfold-locales, unfold Let-def , simp add: rs.correct

elem-list-to-rm.rm-set-lookup, force)

4.2 Precomputing Closures for Single States
Storing all relevant entries is done by mapping all left-hand sides of the
relation to their closure. Since we assume a linear order on the carrier, for
the lookup we can use maps that are implemented as red black trees.
definition memo-rbt-rtrancl :: (′a :: linorder × ′a) list ⇒ (′a ⇒ ′a rs)
where

memo-rbt-rtrancl r =
(let

tr = rtrancl-rbt-impl r ;
rm = rm.to-map (map (λ a. (a, tr [a])) ((rs.to-list ◦ rs.from-list ◦ map fst)

r))
in
(λa. case rm.lookup a rm of

None ⇒ rs.from-list [a]
| Some as ⇒ as))

lemma memo-rbt-rtrancl:
rs.α (memo-rbt-rtrancl r a) = {b. (a, b) ∈ (set r)∗} (is ?l = ?r)

proof −
let ?rm = rm.to-map
(map (λa. (a, rtrancl-rbt-impl r [a])) ((rs.to-list ◦ rs.from-list ◦ map fst) r))

show ?thesis
proof (cases rm.lookup a ?rm)

case None
have one: ?l = {a}

unfolding memo-rbt-rtrancl-def Let-def None
by (simp add: rs.correct)

19

from None [unfolded rm.lookup-correct [OF rm.invar], simplified rm.correct
map-of-eq-None-iff]

have a: a /∈ fst ‘ set r by (simp add: rs.correct, force)
{

fix b
assume b ∈ ?r
from this [unfolded rtrancl-power relpow-fun-conv] obtain n f where

ab: f 0 = a ∧ f n = b and steps:
∧

i. i < n =⇒ (f i, f (Suc i)) ∈ set r by
auto

from ab steps [of 0] a have b = a
by (cases n, force+)

}
then have ?r = {a} by auto
then show ?thesis unfolding one by simp

next
case (Some as)
have as: rs.α as = {b. (a,b) ∈ (set r)∗}

using map-of-SomeD [OF Some [unfolded rm.lookup-correct [OF rm.invar],
simplified rm.correct]]

rtrancl-rbt-impl [of r [a]] by force
then show ?thesis unfolding memo-rbt-rtrancl-def Let-def Some by simp

qed
qed

definition memo-rbt-trancl :: (′a :: linorder × ′a) list ⇒ (′a ⇒ ′a rs)
where

memo-rbt-trancl r =
(let

tr = trancl-rbt-impl r ;
rm = rm.to-map (map (λ a. (a, tr [a])) ((rs.to-list ◦ rs.from-list ◦ map fst)

r))
in (λ a.
(case rm.lookup a rm of

None ⇒ rs.empty ()
| Some as ⇒ as)))

lemma memo-rbt-trancl:
rs.α (memo-rbt-trancl r a) = {b. (a, b) ∈ (set r)+} (is ?l = ?r)

proof −
let ?rm = rm.to-map
(map (λ a. (a, trancl-rbt-impl r [a])) ((rs.to-list ◦ rs.from-list ◦ map fst) r))

show ?thesis
proof (cases rm.lookup a ?rm)

case None
have one: ?l = {}

unfolding memo-rbt-trancl-def Let-def None
by (simp add: rs.correct)

from None [unfolded rm.lookup-correct [OF rm.invar], simplified rm.correct
map-of-eq-None-iff]

20

have a: a /∈ fst ‘ set r by (simp add: rs.correct, force)
{

fix b
assume b ∈ ?r
from this [unfolded trancl-unfold-left] a have False by force

}
then have ?r = {} by auto
then show ?thesis unfolding one by simp

next
case (Some as)
have as: rs.α as = {b. (a,b) ∈ (set r)+}

using map-of-SomeD [OF Some [unfolded rm.lookup-correct [OF rm.invar],
simplified rm.correct]]

trancl-rbt-impl [of r [a]] by force
then show ?thesis unfolding memo-rbt-trancl-def Let-def Some by simp

qed
qed

end

5 Computing Images of Finite Transitive Closures
theory Finite-Transitive-Closure-Simprocs
imports Transitive-Closure-List-Impl
begin

lemma rtrancl-Image-eq:
assumes r = set r ′ and x = set x ′

shows r∗ ‘‘ x = set (rtrancl-list-impl r ′ x ′)
using assms by (auto simp: rtrancl-list-impl)

lemma trancl-Image-eq:
assumes r = set r ′ and x = set x ′

shows r+ ‘‘ x = set (trancl-list-impl r ′ x ′)
using assms by (auto simp: trancl-list-impl)

5.1 A Simproc for Computing the Images of Finite Transi-
tive Closures

ML ‹
signature FINITE-TRANCL-IMAGE =
sig

val trancl-simproc : Proof .context −> cterm −> thm option
val rtrancl-simproc : Proof .context −> cterm −> thm option

end

structure Finite-Trancl-Image : FINITE-TRANCL-IMAGE =
struct

21

fun eval-tac ctxt =
let val conv = Code-Runtime.dynamic-holds-conv ctxt
in CONVERSION (Conv.params-conv ∼1 (K (Conv.concl-conv ∼1 conv)) ctxt)

THEN ′ resolve-tac ctxt [TrueI] end

fun mk-rtrancl T = Const (@{const-name rtrancl-list-impl}, T);

fun mk-trancl T = Const (@{const-name trancl-list-impl}, T);

fun dest-rtrancl-Image
(Const (@{const-name Image}, T) $ (Const (@{const-name rtrancl}, -) $ r)

$ x) = (T , r , x)
| dest-rtrancl-Image - = raise Match

fun dest-trancl-Image
(Const (@{const-name Image}, T) $ (Const (@{const-name trancl}, -) $ r) $

x) = (T , r , x)
| dest-trancl-Image - = raise Match

fun gen-simproc dest mk-const eq-thm ctxt ct =
let

val t = Thm.term-of ct;
val (T , r , x) = t |> dest;

in
(∗make sure that the relation as well as the given domain are finite sets∗)
(case (try HOLogic.dest-set r , try HOLogic.dest-set x) of
(SOME xs, SOME ys) =>

let
(∗types∗)
val setT = T |> dest-funT |> snd |> dest-funT |> fst;
val eltT = setT |> HOLogic.dest-setT ;
val prodT = HOLogic.mk-prodT (eltT , eltT);
val prod-listT = HOLogic.listT prodT ;
val listT = HOLogic.listT eltT ;

(∗terms∗)
val set = Const (@{const-name List.set}, listT −−> setT);
val const = mk-const (prod-listT −−> listT −−> listT);
val r ′ = HOLogic.mk-list prodT xs;
val x ′ = HOLogic.mk-list eltT ys;
val t ′ = set $ (const $ r ′ $ x ′)
val u = Value-Command.value ctxt t ′;
val eval = (t ′, u) |> HOLogic.mk-eq |> HOLogic.mk-Trueprop;

val maybe-rule =
try (Goal.prove ctxt [] [] eval) (fn {context, ...} => eval-tac context 1);

in
(case maybe-rule of

SOME rule =>

22

let
val conv = (t, t ′) |> HOLogic.mk-eq |> HOLogic.mk-Trueprop;
val eq-thm ′ = Goal.prove ctxt [] [] conv (fn {context = ctxt ′, ...} =>

resolve-tac ctxt ′ [eq-thm] 1 THEN REPEAT (simp-tac ctxt ′ 1));
in
SOME (@{thm HOL.trans} OF [eq-thm ′, rule] RS @{thm eq-reflection})
end
| NONE => NONE)

end
| - => NONE)

end

val rtrancl-simproc = gen-simproc dest-rtrancl-Image mk-rtrancl @{thm rtrancl-Image-eq}
val trancl-simproc = gen-simproc dest-trancl-Image mk-trancl @{thm trancl-Image-eq}

end
›

simproc-setup rtrancl-Image (r∗ ‘‘ x) = ‹K Finite-Trancl-Image.rtrancl-simproc›
simproc-setup trancl-Image (r+ ‘‘ x) = ‹K Finite-Trancl-Image.trancl-simproc›

5.2 Example
The images of (reflexive) transitive closures are computed by evaluation.
lemma
{(1 ::nat, 2), (2 , 3), (3 , 4), (4 , 5)}∗ ‘‘ {1} = {1 , 2 , 3 , 4 , 5}
{(1 ::nat, 2), (2 , 3), (3 , 4), (4 , 5)}+ ‘‘ {1} = {2 , 3 , 4 , 5}
apply simp-all
apply auto

done

Evaluation does not allow for free variables and thus fails in their pres-
ence.
lemma
{(x, y)}∗ ‘‘ {x} = {x, y}
oops

end

References
[1] P. Lammich and A. Lochbihler. The Isabelle collections framework. In

Proc. ITP’10, volume 6172 of LNCS, pages 339–354, 2010.

[2] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Proc. TPHOLs’09, volume 5674 of LNCS, pages 452–468, 2009.

23

	A Generic Work-List Algorithm
	Bounded Reachability
	Reflexive Transitive Closure and Transitive closure

	Closure Computation using Lists
	Computing Closures from Sets On-The-Fly
	Precomputing Closures for Single States

	Accessing Values via Keys
	Subset and Union
	Grouping Values via Keys

	Closure Computation via Red Black Trees
	Computing Closures from Sets On-The-Fly
	Precomputing Closures for Single States

	Computing Images of Finite Transitive Closures
	A Simproc for Computing the Images of Finite Transitive Closures
	Example

