Fxecutable Transitive Closures®

René Thiemann

March 17, 2025

Abstract

We provide a generic work-list algorithm to compute the (reflexi-
ve-)transitive closure of relations where only successors of newly de-
tected states are generated. In contrast to our previous work [2], the
relations do not have to be finite, but each element must only have
finitely many (indirect) successors. Moreover, a subsumption relation
can be used instead of pure equality. An executable variant of the al-
gorithm is available where the generic operations are instantiated with
list operations.

This formalization was performed as part of the IsaFoR /CeTA project!
[3], and it has been used to certify size-change termination proofs where
large transitive closures have to be computed.

Contents

1 A work-list algorithm for reflexive-transitive closures 1
1.1 The genericcase 2
1.2 Instantiation using list operations 4

1 A work-list algorithm for reflexive-transitive clo-
sures

theory RTrancl
imports Regular—Sets. Regexp-Method
begin

In previous work [2] we described a generic work-list algorithm to com-
pute reflexive-transitive closures for finite relations: given a finite relation r,
it computed r*.

In the following, we develop a similar, though different work-list algo-
rithm for reflexive-transitive closures, it computes r* ¢ init for a given re-
lation r and finite set init. The main differences are that

*Supported by FWF (Austrian Science Fund) project P22767-N13.
"http://cl-informatik.uibk.ac.at/software/ceta

http://cl-informatik.uibk.ac.at/software/ceta

o The relation r does not have to be finite, only {b. (a, b) € r*} has
to be finite for each a. Moreover, it is no longer required that r is
given explicitly as a list of pairs. Instead r must be provided in the
form of a function which computes for each element the set of one-step
SUCCESSsOors.

¢ One can use a subsumption relation to indicate which elements to no
longer have to be explored.

These new features have been essential to certify size-change termination
proofs [1] where the transitive closure of all size-change graphs has to be
computed. Here, the relation is size-change graph composition.

e Given an initial set of size-change graphs with n arguments, there are
roughly N := 3n* many potential size-change graphs that have to be
considered as left-hand sides of the composition relation. Since the
composition relation is even larger than N, an explicit representation
of the composition relation would have been too expensive. However,
using the new algorithm the number of generated graphs is usually far
below the theoretical upper bound.

e Subsumption was useful to generate even fewer elements.

1.1 The generic case

Let r be some finite relation.

We present a standard work-list algorithm to compute all elements that
are reachable from some initial set. The algorithm is generic in the sense
that the underlying data structure can freely be chosen, you just have to
provide certain operations like union, selection of an element.

In contrast to [2], the algorithm does not demand that r is finite and
that r is explicitly provided (e.g., as a list of pairs). Instead, it suffices that
for every element, only finitely many elements can be reached via r, and r
can be provided as a function which computes for every element a all one-
step successors w.r.t. r. Hence, r can in particular be any well-founded and
finitely branching relation.

The algorithm can further be parametrized by a subsumption relation
which allows for early pruning.

In the following locales, r is a relation of type ‘a = ’a, the successors
of an element are represented by some collection type 'b which size can be
measured using the size function. The selection function sel is used to meant
to split a non-empty collection into one element and a remaining collection.
The union on 'b is given by un.

locale subsumption =

fixes r:: 'a = b
and subsumes :: 'a = 'a = bool
and set-of :: 'b = 'a set
assumes
subsumes-refl:)\ a. subsumes a a
and subsumes-trans: /\ a b c. subsumes a b = subsumes b ¢ => subsumes a ¢
and subsumes-step:)\ a b c. subsumes a b => ¢ € set-of (rb) = 3 d € set-of
(r a). subsumes d ¢
begin
abbreviation R where R = { (a,b). b € set-of (r a) }
end

locale subsumption-impl = subsumption r subsumes set-of

for r:: 'a="b

and subsumes :: 'a = 'a = bool

and set-of :: 'b = 'a set +

fixes

sel :: 'b = "a x 'b

and un : ‘b= b= "b

and size :: 'b = nat

assumes set-of-fin: \ b. finite (set-of b)

and sel: A\ b a c. set-of b £ {} = sel b = (a,c) = set-of b = insert a (set-of
c) A size b > size ¢

and un: set-of (un a b) = set-of a U set-of b

locale relation-subsumption-impl = subsumption-impl r subsumes set-of sel un size
for r subsumes set-of sel un size +
assumes rtrancl-fin: \ a. finite {b. (a,b) € { (a,b) . b € set-of (r a)} *}
begin

lemma finite-Rs: assumes init: finite init
shows finite (R “‘ init)
(proof)
a standard work-list algorithm with subsumption

function mk-rtrancl-main where
mk-rtrancl-main todo fin = (if set-of todo = {} then fin
else (let (a,tod) = sel todo
in (if (3 b € fin. subsumes b a) then mk-rtrancl-main tod fin
else mk-rtrancl-main (un (r a) tod) (insert a fin))))

{proof)

termination mk-rtrancl-main

(proof)

declare mk-rtrancl-main.simps[simp del]

“init = mk-rtrancl-main

lemma mk-rtrancl-main-sound: set-of todo U fin C R
todo fin C R™x ““ init

(proof)

lemma mk-rtrancl-main-complete:

[\ a. a € init = 3 b. b € set-of todo U fin A subsumes b a]

= [ANab.acfin = b¢c set-of (ra) = 3 c. ¢ € set-of todo U fin A
subsumes c b]

= ¢ € R™x “init

= 3 b. b € mk-rtrancl-main todo fin N\ subsumes b c

(proof)

definition mk-rtrancl where mk-rtrancl init = mk-rtrancl-main init {}

lemma mk-rtrancl-sound: mk-rtrancl init C R ““ set-of init
(proof)
lemma mk-rtrancl-complete: assumes a: a € R™* ““ set-of init

shows 3 b. b € mk-rtrancl init N\ subsumes b a

(proof)

lemma mk-rtrancl-no-subsumption: assumes subsumes = (=)
shows mk-rtrancl init = R ““ set-of init
{proof)

end

1.2 Instantiation using list operations

It follows an implementation based on lists. Here, the working list algorithm
is implemented outside the locale so that it can be used for code generation.
In general, it is not terminating, therefore we use partial_function instead
of function.

partial-function(tailrec) mk-rtrancl-list-main where
[code]: mk-rtrancl-list-main subsumes r todo fin = (case todo of [| = fin
| Cons a tod =
(if (3 b € set fin. subsumes b a) then mk-rtrancl-list-main subsumes r
tod fin
else mk-rtrancl-list-main subsumes v (r a Q tod) (a # fin)))

definition mk-rtrancl-list where
mk-rtrancl-list subsumes r init = mk-rtrancl-list-main subsumes r init ||

locale subsumption-list = subsumption r subsumes set
for r :: 'a = 'a list and subsumes :: 'a = ‘a = bool

locale relation-subsumption-list = subsumption-list r subsumes for r subsumes +
assumes rtrancl-fin: A a. finite {b. (a,b) € { (a,b) . b € set (r a)} *}

abbreviation(input) sel-list where sel-list x = case x of Cons h t = (h,t)

sublocale subsumption-list C subsumption-impl r subsumes set sel-list append length

(proof)

sublocale relation-subsumption-list C relation-subsumption-impl r subsumes set
sel-list append length

{proof)

context relation-subsumption-list
begin

The main equivalence proof between the generic work list algorithm and
the one operating on lists

lemma mk-rtrancl-list-main: fin = set finl = set (mk-rtrancl-list-main subsumes
r todo finl) = mk-rtrancl-main todo fin

(proof)

lemma mk-rtrancl-list: set (mk-rtrancl-list subsumes r init) = mk-rtrancl init
{proof)

end

end

References

[1] C.S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle
for program termination. In Proc. POPL 01, pages 81-92. ACM Press,
2001.

[2] C. Sternagel and R. Thiemann. Executable Transitive Closures of Fi-
nite Relations. In Archive of Formal Proofs. http://isa-afp.org/entries/
Transitive-Closure.shtml, Mar. 2011. Formalization.

[3] R. Thiemann and C. Sternagel. Certification of termination proofs using
CeTA. In Proc. TPHOLs’09, volume 5674 of LNCS, pages 452468, 2009.

http://isa-afp.org/entries/Transitive-Closure.shtml
http://isa-afp.org/entries/Transitive-Closure.shtml

	A work-list algorithm for reflexive-transitive closures
	The generic case
	Instantiation using list operations

