Executable Transitive Closures*

René Thiemann

September 13, 2023

Abstract

We provide a generic work-list algorithm to compute the (reflexi-ve-)transitive closure of relations where only successors of newly detected states are generated. In contrast to our previous work [2], the relations do not have to be finite, but each element must only have finitely many (indirect) successors. Moreover, a subsumption relation can be used instead of pure equality. An executable variant of the algorithm is available where the generic operations are instantiated with list operations.

This formalization was performed as part of the IsaFoR/CeTA project ${ }^{1}$ [3], and it has been used to certify size-change termination proofs where large transitive closures have to be computed.

Contents

1 A work-list algorithm for reflexive-transitive closures 1
1.1 The generic case . 2
1.2 Instantiation using list operations 9

1 A work-list algorithm for reflexive-transitive closures

```
theory RTrancl
imports Regular-Sets.Regexp-Method
begin
```

In previous work [2] we described a generic work-list algorithm to compute reflexive-transitive closures for finite relations: given a finite relation r, it computed r^{*}.

In the following, we develop a similar, though different work-list algorithm for reflexive-transitive closures, it computes r^{*} " init for a given relation r and finite set init. The main differences are that

[^0]- The relation r does not have to be finite, only $\left\{b .(a, b) \in r^{*}\right\}$ has to be finite for each a. Moreover, it is no longer required that r is given explicitly as a list of pairs. Instead r must be provided in the form of a function which computes for each element the set of one-step successors.
- One can use a subsumption relation to indicate which elements to no longer have to be explored.

These new features have been essential to certify size-change termination proofs [1] where the transitive closure of all size-change graphs has to be computed. Here, the relation is size-change graph composition.

- Given an initial set of size-change graphs with n arguments, there are roughly $N:=3^{n^{2}}$ many potential size-change graphs that have to be considered as left-hand sides of the composition relation. Since the composition relation is even larger than N, an explicit representation of the composition relation would have been too expensive. However, using the new algorithm the number of generated graphs is usually far below the theoretical upper bound.
- Subsumption was useful to generate even fewer elements.

1.1 The generic case

Let r be some finite relation.
We present a standard work-list algorithm to compute all elements that are reachable from some initial set. The algorithm is generic in the sense that the underlying data structure can freely be chosen, you just have to provide certain operations like union, selection of an element.

In contrast to [2], the algorithm does not demand that r is finite and that r is explicitly provided (e.g., as a list of pairs). Instead, it suffices that for every element, only finitely many elements can be reached via r, and r can be provided as a function which computes for every element a all onestep successors w.r.t. r. Hence, r can in particular be any well-founded and finitely branching relation.

The algorithm can further be parametrized by a subsumption relation which allows for early pruning.

In the following locales, r is a relation of type ${ }^{\prime} a \Rightarrow{ }^{\prime} a$, the successors of an element are represented by some collection type ' b which size can be measured using the size function. The selection function sel is used to meant to split a non-empty collection into one element and a remaining collection. The union on 'b is given by $u n$.
locale subsumption $=$

```
fixes \(r::{ }^{\prime} a \Rightarrow{ }^{\prime} b\)
    and subsumes \(::{ }^{\prime} a \Rightarrow{ }^{\prime} a \Rightarrow\) bool
    and set-of \(::{ }^{\prime} b \Rightarrow{ }^{\prime} a\) set
assumes
    subsumes-refl: \(\bigwedge a\). subsumes a a
    and subsumes-trans: \(\bigwedge a b c\). subsumes \(a b \Longrightarrow\) subsumes \(b c \Longrightarrow\) subsumes a \(c\)
    and subsumes-step: \(\bigwedge a b c\). subsumes \(a b \Longrightarrow c \in\) set-of \((r b) \Longrightarrow \exists d \in\) set-of
\((r a)\). subsumes \(d c\)
begin
abbreviation \(R\) where \(R \equiv\{(a, b) . b \in \operatorname{set}\)-of \((r a)\}\)
end
locale subsumption-impl \(=\) subsumption \(r\) subsumes set-of
    for \(r::{ }^{\prime} a \Rightarrow\) ' \(b\)
    and subsumes :: ' \(a \Rightarrow\) ' \(a \Rightarrow\) bool
    and set-of \(:: ' b \Rightarrow{ }^{\prime} a\) set +
    fixes
        sel :: ' \(b \Rightarrow^{\prime} a \times{ }^{\prime} b\)
    and \(u n:: ' b \Rightarrow ' b \Rightarrow ' b\)
    and size \(::{ }^{\prime} b \Rightarrow n a t\)
    assumes set-of-fin: \(\bigwedge b\). finite (set-of b)
    and sel: \(\bigwedge b a c\). set-of \(b \neq\{ \} \Longrightarrow\) sel \(b=(a, c) \Longrightarrow\) set-of \(b=\) insert \(a(\) set-of
c) \(\wedge\) size \(b>\) size \(c\)
    and un: set-of \((\) un \(a b)=\) set-of \(a \cup\) set-of \(b\)
locale relation-subsumption-impl \(=\) subsumption-impl \(r\) subsumes set-of sel un size
    for \(r\) subsumes set-of sel un size +
    assumes rtrancl-fin: \(\bigwedge a\). finite \(\left\{b .(a, b) \in\{(a, b) . b \in \operatorname{set}\right.\)-of \(\left.(r a)\}{ }^{*}\right\}\)
begin
lemma finite-Rs: assumes init: finite init
    shows finite ( \(R^{\wedge}\) * " init)
proof -
    let \(? R=\lambda a .\left\{b .(a, b) \in R^{\wedge} *\right\}\)
    let \(? S=\{? R a \mid a \cdot a \in\) init \(\}\)
    have \(i d: R^{*}\) " init \(=\bigcup\) ?S by auto
    show ?thesis unfolding id
    proof (rule)
        fix \(M\)
        assume \(M \in\) ? \(S\)
        then obtain \(a\) where \(M: M=? R\) a by auto
        show finite \(M\) unfolding \(M\) by (rule rtrancl-fin)
    next
        show finite \(\left\{\left\{b .(a, b) \in R^{`} *\right\} \mid a . a \in\right.\) init \(\}\)
            using init by auto
    qed
qed
a standard work-list algorithm with subsumption
```

```
function \(m k\)-rtrancl-main where
    \(m k\)-rtrancl-main todo fin \(=\) (if set-of todo \(=\{ \}\) then fin
        else \((\) let \((a, t o d)=\) sel todo
            in (if \((\exists b \in f i n\). subsumes \(b\) a) then mk-rtrancl-main tod fin
                        else mk-rtrancl-main (un (r a) tod) (insert a fin))))
by pat-completeness auto
```

```
termination \(m k\)-rtrancl-main
proof -
    let ? \(r 1=\lambda(\) todo, fin \()\). card \(\left(R^{\text {* }}\right.\) " (set-of todo) - fin \()\)
    let ? \(\mathrm{r} 2=\lambda(\) todo, fin). size todo
    show ?thesis
    proof
        show wf (measures [?r1,?r2]) by simp
    next
    fix todo fin pair tod a
    assume nempty: set-of todo \(\neq\{ \}\) and pair1 \(:\) pair \(=\) sel todo and pair2: \((a, t o d)\)
= pair
    from pair1 pair2 have pair: sel todo \(=(a\), tod \()\) by simp
    from set-of-fin have fin: finite (set-of todo) by auto
    note sel \(=\) sel[OF nempty pair]
    show \(((\) tod,fin \(),(\) todo,fin \()) \in\) measures [?r1,?r2]
    proof (rule measures-lesseq[OF - measures-less], unfold split)
            from sel
            show size tod \(<\) size todo by simp
    next
            from sel have subset: \(R^{`}\) * " set-of tod \(-\mathrm{fin} \subseteq R^{\wedge}\) *" set-of todo - fin (is
\(? l \subseteq ? r)\) by auto
            show card ?l \(\leq\) card ?r
                by (rule card-mono[OF - subset], rule finite-Diff, rule finite-Rs[OF fin])
        qed
    next
        fix todo fin a tod pair
    assume nempty: set-of todo \(\neq\{ \}\) and pair1 \(:\) pair \(=\) sel todo and pair2: \((\) a,tod \()\)
\(=\) pair and nmem: \(\neg(\exists b \in\) fin. subsumes \(b\) a)
    from pair1 pair2 have pair: sel todo \(=(a, t o d)\) by auto
    from nmem subsumes-refl[of a] have nmem: a \(\notin\) fin by auto
    from set-of-fin have fin: finite (set-of todo) by auto
    note sel \(=\) sel[OF nempty pair]
    show \(((u n\) (r a) tod,insert a fin), (todo,fin)) \(\in\) measures \([? r 1, ? r 2]\)
    proof (rule measures-less, unfold split,
                rule psubset-card-mono[OF finite-Diff[OF finite-Rs[OF fin]]])
        let ?l \(=R^{\wedge} *\) " set-of (un (r a) tod) - insert a fin
        let ? \(r=R^{*}\) " set-of todo - fin
        from sel have at: \(a \in\) set-of todo by auto
        have ar: \(a \in\) ? \(r\) using nmem at by auto
        show ?l \(\subset\) ? \(r\)
        proof
```

```
                show ?l f ?r using ar by auto
        next
            have R`* " set-of (r a)\subseteqR`* " set-of todo
            proof
                fix b
                assume b \in R`**" set-of (r a)
                then obtain c where cb:(c,b)\inR`* and ca:c\in set-of (r a) by blast
                hence ab:(a,b)\inRO R`* by auto
                have (a,b) \in R`*
                by (rule subsetD[OF - ab], regexp)
                    with at show b\inR`* " set-of todo by auto
                    qed
            thus ?l \subseteq?r using sel unfolding un by auto
        qed
        qed
    qed
qed
declare mk-rtrancl-main.simps[simp del]
lemma mk-rtrancl-main-sound: set-of todo \(\cup\) fin \(\subseteq R^{`} *\) " init \(\Longrightarrow\) mk-rtrancl-main todo fin \(\subseteq R^{\wedge}\) * " init
proof (induct todo fin rule: mk-rtrancl-main.induct)
    case (1 todo fin)
    note simp = mk-rtrancl-main.simps[of todo fin]
    show ?case
    proof (cases set-of todo = {})
        case True
        show ?thesis unfolding simp using True 1(3) by auto
    next
    case False
    hence nempty:(set-of todo = {}) = False by auto
    obtain a tod where selt: sel todo = (a,tod) by force
    note sel = sel[OF False selt]
    note IH1 = 1(1)[OF False refl selt[symmetric]]
    note IH2 = 1(2)[OF False refl selt[symmetric]]
    note simp = simp nempty if-False Let-def selt
    show ?thesis
    proof (cases \exists b fin. subsumes b a)
            case True
            hence mk-rtrancl-main todo fin =mk-rtrancl-main tod fin
            unfolding simp by simp
            with IH1[OF True] 1(3) show ?thesis using sel by auto
    next
            case False
            hence id: mk-rtrancl-main todo fin =mk-rtrancl-main (un (r a) tod) (insert
a fin) unfolding simp by simp
            show ?thesis unfolding id
            proof (rule IH2[OF False])
```

```
            from sel 1(3) have subset: set-of todo \cup insert a fin \subseteq R`* " init by auto
            {
                fix b
                    assume b: b\in set-of (r a)
                hence }ab:(a,b)\inR\mathrm{ by auto
                    from sel 1(3) have a\inR ** " init by auto
                        then obtain c where c:c\in init and ca: (c,a)\inR`* by blast
                from ca ab have cb: (c,b) \in R`* OR by auto
                have (c,b) \in R`*
                by (rule subsetD[OF - cb], regexp)
            with c have b\in R`* " init by auto
            }
            with subset
            show set-of (un (r a) tod) \cup(insert a fin)\subseteqR`* " init
                unfolding un using sel by auto
            qed
        qed
    qed
qed
lemma mk-rtrancl-main-complete:
    \a.a init \Longrightarrow\exists b.b\in set-of todo \cup fin ^ subsumes b a\rrbracket
    \Longrightarrow\llbracket ^ab .a\infin\Longrightarrowb\in set-of (ra)\Longrightarrow\exists c.c\in set-of todo \cup fin ^
subsumes c b]
    \Longrightarrowc\inR`* " init
    \Longrightarrow\existsb.b\inmk-rtrancl-main todo fin ^ subsumes b c
proof (induct todo fin rule: mk-rtrancl-main.induct)
    case (1 todo fin)
    from 1(5) have c:c\in R`* " init .
    note finr = 1(4)
    note init = 1(3)
    note simp = mk-rtrancl-main.simps[of todo fin]
    show ?case
    proof (cases set-of todo ={})
    case True
    hence id: mk-rtrancl-main todo fin = fin unfolding simp by simp
    from c obtain a where a: a \in init and ac: (a,c)\inR`* by blast
    show ?thesis unfolding id using ac
    proof (induct rule: rtrancl-induct)
            case base
            from init[OF a] show ?case unfolding True by auto
    next
        case (step b c)
            from step(3) obtain d}\mathrm{ where d:d f fin and db: subsumes d b by auto
            from step(2) have cb: c \in set-of (r b) by auto
            from subsumes-step[OF db cb] obtain a where a: a\in set-of (rd) and ac:
subsumes a c by auto
            from finr[OF d a] obtain e where e: e\infin and ea: subsumes e a unfolding
True by auto
```

```
        from subsumes-trans[OF ea ac]e
        show ?case by auto
    qed
next
    case False
    hence nempty:(set-of todo ={})= False by simp
    obtain A tod where selt: sel todo = (A,tod) by force
    note simp = nempty simp if-False Let-def selt
    note sel = sel[OF False selt]
    note IH1 = 1(1)[OF False refl selt[symmetric] - - c]
    note IH2 = 1(2)[OF False refl selt[symmetric] - - c]
    show ?thesis
    proof (cases \existsb\infin. subsumes b A)
        case True note oTrue = this
        hence id:mk-rtrancl-main todo fin =mk-rtrancl-main tod fin
            unfolding simp by simp
    from True obtain b where b: b\infin and ba: subsumes b A by auto
    show ?thesis unfolding id
    proof (rule IH1[OF True])
        fix a
        assume a: a\in init
        from init[OF a] obtain c where c:c\in set-of todo \cupfin and ca: subsumes
c a by blast
            show \exists b. b\in set-of tod \cupfin ^ subsumes b a
            proof (cases c=A)
                case False
                thus ?thesis using c ca sel by auto
            next
                case True
        show ?thesis using b subsumes-trans[OF ba, of a] ca unfolding True[symmetric]
by auto
            qed
    next
            fix ac
            assume a:a\infin and c:c\inset-of (r a)
            from finr[[OF ac] obtain e where e: e\in set-of todo \cupfin and ec: subsumes
ec by auto
            show \existsd.d set-of tod \cup fin ^ subsumes d c
            proof (cases A=e)
            case False
            with e ec show ?thesis using sel by auto
        next
            case True
            from subsumes-trans[OF ba[unfolded True] ec]
            show ?thesis using b by auto
        qed
        qed
    next
        case False
```

```
    hence id:mk-rtrancl-main todo fin = mk-rtrancl-main (un (r A) tod) (insert
A fin) unfolding simp by simp
    show ?thesis unfolding id
    proof (rule IH2[OF False])
            fix }
            assume a: a\in init
            from init[OF a]
            show \exists b. b \in set-of (un (r A) (tod)) \cup insert A fin ^ subsumes b a
                using sel unfolding un by auto
            next
                fix ab
                assume a: a\ininsert A fin and b:b\in set-of (r a)
            show \exists c.c set-of (un (r A) tod) \cup insert A fin }\wedge\mathrm{ subsumes c b
            proof (cases a f fin)
                case True
                from finr[OF True b] show ?thesis using sel unfolding un by auto
            next
                case False
                with a have a:A=a by simp
                show ?thesis unfolding a un using b subsumes-refl[of b] by blast
            qed
            qed
    qed
    qed
qed
definition mk-rtrancl where mk-rtrancl init \equivmk-rtrancl-main init {}
lemma mk-rtrancl-sound: mk-rtrancl init \subseteq R`* " set-of init
    unfolding mk-rtrancl-def
    by (rule mk-rtrancl-main-sound, auto)
lemma mk-rtrancl-complete: assumes a: a \in R`* " set-of init
    shows \existsb.b\inmk-rtrancl init ^ subsumes b a
    unfolding mk-rtrancl-def
proof (rule mk-rtrancl-main-complete[OF - a])
    fix a
    assume a: a \in set-of init
    thus \exists b.b\in set-of init \cup{} ^ subsumes b a using subsumes-refl[of a] by blast
qed auto
lemma mk-rtrancl-no-subsumption: assumes subsumes = (=)
    shows mk-rtrancl init = R`* " set-of init
    using mk-rtrancl-sound[of init] mk-rtrancl-complete[of - init] assms
    by auto
end
```


1.2 Instantiation using list operations

It follows an implementation based on lists. Here, the working list algorithm is implemented outside the locale so that it can be used for code generation. In general, it is not terminating, therefore we use partial_function instead of function.
partial-function(tailrec) $m k$-rtrancl-list-main where
[code]: mk-rtrancl-list-main subsumes r todo fin $=$ (case todo of []\Rightarrow fin
| Cons a tod \Rightarrow
(if $(\exists b \in$ set fin. subsumes b a) then mk-rtrancl-list-main subsumes r tod fin

$$
\text { else mk-rtrancl-list-main subsumes } r(r a @ t o d)(a \# f i n)))
$$

definition $m k$-rtrancl-list where
$m k$-rtrancl-list subsumes r init $\equiv m k$-rtrancl-list-main subsumes r init []
locale subsumption-list $=$ subsumption r subsumes set
for $r:: ' a \Rightarrow$ ' a list and subsumes $:: ' a \Rightarrow ' a \Rightarrow$ bool
locale relation-subsumption-list $=$ subsumption-list r subsumes for r subsumes + assumes rtrancl-fin: $\wedge a$. finite $\left\{b .(a, b) \in\{(a, b) . b \in \operatorname{set}(r a)\}^{\wedge} *\right\}$
abbreviation(input) sel-list where sel-list $x \equiv$ case x of Cons $h t \Rightarrow(h, t)$
sublocale subsumption-list \subseteq subsumption-impl r subsumes set sel-list append length
proof (unfold-locales, rule finite-set)
fix $b a c$
assume set $b \neq\{ \}$ and sel-list $b=(a, c)$
thus set $b=$ insert $a($ set $c) \wedge$ length $c<$ length b
by (cases b, auto)
qed auto
sublocale relation-subsumption-list \subseteq relation-subsumption-impl r subsumes set sel-list append length
by (unfold-locales, rule rtrancl-fin)
context relation-subsumption-list
begin
The main equivalence proof between the generic work list algorithm and the one operating on lists
lemma $m k$-rtrancl-list-main: f in $=$ set finl \Longrightarrow set ($m k$-rtrancl-list-main subsumes r todo finl $)=m k$-rtrancl-main todo fin
proof (induct todo fin arbitrary: finl rule: mk-rtrancl-main.induct)
case (1 todo fin finl)
note $\operatorname{simp}=m k$-rtrancl-list-main.simps[of - - todo finl] mk-rtrancl-main.simps[of todo fin]
show ? case (is ?l $=? r$)

```
proof (cases todo)
    case Nil
    show ?thesis unfolding simp unfolding Nil 1(3) by simp
next
    case (Cons a tod)
    show ?thesis
    proof (cases \existsb\in fin. subsumes b a)
        case True
        from True have l:?l = set (mk-rtrancl-list-main subsumes r tod finl)
            unfolding simp unfolding Cons 1(3) by simp
        from True have r:?r = mk-rtrancl-main tod fin
                unfolding simp unfolding Cons by auto
    show ?thesis unfolding lr
                by (rule 1(1)[OF - refl - True], insert 1(3) Cons,auto)
    next
        case False
        from False have l: ?l = set (mk-rtrancl-list-main subsumes r (r a @ tod) (a
# finl))
            unfolding simp unfolding Cons 1(3) by simp
        from False have r:?r=mk-rtrancl-main (r a @ tod) (insert a fin)
                unfolding simp unfolding Cons by auto
            show ?thesis unfolding l r
                by (rule 1(2)[OF - refl-False], insert 1(3) Cons,auto)
    qed
qed
qed
lemma mk-rtrancl-list: set (mk-rtrancl-list subsumes r init) = mk-rtrancl init
    unfolding mk-rtrancl-list-def mk-rtrancl-def
    by (rule mk-rtrancl-list-main, simp)
end
```

end

References

[1] C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for program termination. In Proc. POPL '01, pages 81-92. ACM Press, 2001.
[2] C. Sternagel and R. Thiemann. Executable Transitive Closures of Finite Relations. In Archive of Formal Proofs. http://isa-afp.org/entries/ Transitive-Closure.shtml, Mar. 2011. Formalization.
[3] R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In Proc. TPHOLs'09, volume 5674 of $L N C S$, pages 452-468, 2009.

[^0]: *Supported by FWF (Austrian Science Fund) project P22767-N13.
 ${ }^{1}$ http://cl-informatik.uibk.ac.at/software/ceta

