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Abstract
We provide a generic work-list algorithm to compute the (reflexi-

ve-)transitive closure of relations where only successors of newly de-
tected states are generated. In contrast to our previous work [2], the
relations do not have to be finite, but each element must only have
finitely many (indirect) successors. Moreover, a subsumption relation
can be used instead of pure equality. An executable variant of the al-
gorithm is available where the generic operations are instantiated with
list operations.

This formalization was performed as part of the IsaFoR/CeTA project1

[3], and it has been used to certify size-change termination proofs where
large transitive closures have to be computed.
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1 A work-list algorithm for reflexive-transitive clo-
sures

theory RTrancl
imports Regular−Sets.Regexp-Method
begin

In previous work [2] we described a generic work-list algorithm to com-
pute reflexive-transitive closures for finite relations: given a finite relation r,
it computed r∗.

In the following, we develop a similar, though different work-list algo-
rithm for reflexive-transitive closures, it computes r∗ ‘‘ init for a given re-
lation r and finite set init. The main differences are that
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• The relation r does not have to be finite, only {b. (a, b) ∈ r∗} has
to be finite for each a. Moreover, it is no longer required that r is
given explicitly as a list of pairs. Instead r must be provided in the
form of a function which computes for each element the set of one-step
successors.

• One can use a subsumption relation to indicate which elements to no
longer have to be explored.

These new features have been essential to certify size-change termination
proofs [1] where the transitive closure of all size-change graphs has to be
computed. Here, the relation is size-change graph composition.

• Given an initial set of size-change graphs with n arguments, there are
roughly N := 3n

2 many potential size-change graphs that have to be
considered as left-hand sides of the composition relation. Since the
composition relation is even larger than N , an explicit representation
of the composition relation would have been too expensive. However,
using the new algorithm the number of generated graphs is usually far
below the theoretical upper bound.

• Subsumption was useful to generate even fewer elements.

1.1 The generic case
Let r be some finite relation.

We present a standard work-list algorithm to compute all elements that
are reachable from some initial set. The algorithm is generic in the sense
that the underlying data structure can freely be chosen, you just have to
provide certain operations like union, selection of an element.

In contrast to [2], the algorithm does not demand that r is finite and
that r is explicitly provided (e.g., as a list of pairs). Instead, it suffices that
for every element, only finitely many elements can be reached via r, and r
can be provided as a function which computes for every element a all one-
step successors w.r.t. r. Hence, r can in particular be any well-founded and
finitely branching relation.

The algorithm can further be parametrized by a subsumption relation
which allows for early pruning.

In the following locales, r is a relation of type ′a ⇒ ′a, the successors
of an element are represented by some collection type ′b which size can be
measured using the size function. The selection function sel is used to meant
to split a non-empty collection into one element and a remaining collection.
The union on ′b is given by un.
locale subsumption =
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fixes r :: ′a ⇒ ′b
and subsumes :: ′a ⇒ ′a ⇒ bool
and set-of :: ′b ⇒ ′a set

assumes
subsumes-refl:

∧
a. subsumes a a

and subsumes-trans:
∧

a b c. subsumes a b =⇒ subsumes b c =⇒ subsumes a c
and subsumes-step:

∧
a b c. subsumes a b =⇒ c ∈ set-of (r b) =⇒ ∃ d ∈ set-of

(r a). subsumes d c
begin
abbreviation R where R ≡ { (a,b). b ∈ set-of (r a) }
end

locale subsumption-impl = subsumption r subsumes set-of
for r :: ′a ⇒ ′b
and subsumes :: ′a ⇒ ′a ⇒ bool
and set-of :: ′b ⇒ ′a set +
fixes

sel :: ′b ⇒ ′a × ′b
and un :: ′b ⇒ ′b ⇒ ′b
and size :: ′b ⇒ nat

assumes set-of-fin:
∧

b. finite (set-of b)
and sel:

∧
b a c. set-of b 6= {} =⇒ sel b = (a,c) =⇒ set-of b = insert a (set-of

c) ∧ size b > size c
and un: set-of (un a b) = set-of a ∪ set-of b

locale relation-subsumption-impl = subsumption-impl r subsumes set-of sel un size
for r subsumes set-of sel un size +
assumes rtrancl-fin:

∧
a. finite {b. (a,b) ∈ { (a,b) . b ∈ set-of (r a)}^∗}

begin

lemma finite-Rs: assumes init: finite init
shows finite (R^∗ ‘‘ init)

proof −
let ?R = λ a. {b . (a,b) ∈ R^∗}
let ?S = { ?R a | a . a ∈ init}
have id: R^∗ ‘‘ init =

⋃
?S by auto

show ?thesis unfolding id
proof (rule)

fix M
assume M ∈ ?S
then obtain a where M : M = ?R a by auto
show finite M unfolding M by (rule rtrancl-fin)

next
show finite {{b. (a, b) ∈ R^∗} | a. a ∈ init}

using init by auto
qed

qed

a standard work-list algorithm with subsumption
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function mk-rtrancl-main where
mk-rtrancl-main todo fin = (if set-of todo = {} then fin

else (let (a,tod) = sel todo
in (if (∃ b ∈ fin. subsumes b a) then mk-rtrancl-main tod fin

else mk-rtrancl-main (un (r a) tod) (insert a fin))))
by pat-completeness auto

termination mk-rtrancl-main
proof −

let ?r1 = λ (todo, fin). card (R^∗ ‘‘ (set-of todo) − fin)
let ?r2 = λ (todo, fin). size todo
show ?thesis
proof

show wf (measures [?r1 ,?r2 ]) by simp
next

fix todo fin pair tod a
assume nempty: set-of todo 6= {} and pair1 : pair = sel todo and pair2 : (a,tod)

= pair
from pair1 pair2 have pair : sel todo = (a,tod) by simp
from set-of-fin have fin: finite (set-of todo) by auto
note sel = sel[OF nempty pair ]
show ((tod,fin),(todo,fin)) ∈ measures [?r1 ,?r2 ]
proof (rule measures-lesseq[OF - measures-less], unfold split)

from sel
show size tod < size todo by simp

next
from sel have subset: R^∗ ‘‘ set-of tod − fin ⊆ R^∗ ‘‘ set-of todo − fin (is

?l ⊆ ?r) by auto
show card ?l ≤ card ?r

by (rule card-mono[OF - subset], rule finite-Diff , rule finite-Rs[OF fin])
qed

next
fix todo fin a tod pair
assume nempty: set-of todo 6= {} and pair1 : pair = sel todo and pair2 : (a,tod)

= pair and nmem: ¬ (∃ b ∈ fin. subsumes b a)
from pair1 pair2 have pair : sel todo = (a,tod) by auto
from nmem subsumes-refl[of a] have nmem: a /∈ fin by auto
from set-of-fin have fin: finite (set-of todo) by auto
note sel = sel[OF nempty pair ]
show ((un (r a) tod,insert a fin),(todo,fin)) ∈ measures [?r1 ,?r2 ]
proof (rule measures-less, unfold split,

rule psubset-card-mono[OF finite-Diff [OF finite-Rs[OF fin]]])
let ?l = R^∗ ‘‘ set-of (un (r a) tod) − insert a fin
let ?r = R^∗ ‘‘ set-of todo − fin
from sel have at: a ∈ set-of todo by auto
have ar : a ∈ ?r using nmem at by auto
show ?l ⊂ ?r
proof
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show ?l 6= ?r using ar by auto
next

have R^∗ ‘‘ set-of (r a) ⊆ R^∗ ‘‘ set-of todo
proof

fix b
assume b ∈ R^∗ ‘‘ set-of (r a)
then obtain c where cb: (c,b) ∈ R^∗ and ca: c ∈ set-of (r a) by blast
hence ab: (a,b) ∈ R O R^∗ by auto
have (a,b) ∈ R^∗

by (rule subsetD[OF - ab], regexp)
with at show b ∈ R^∗ ‘‘ set-of todo by auto

qed
thus ?l ⊆ ?r using sel unfolding un by auto

qed
qed

qed
qed

declare mk-rtrancl-main.simps[simp del]

lemma mk-rtrancl-main-sound: set-of todo ∪ fin ⊆ R^∗ ‘‘ init =⇒ mk-rtrancl-main
todo fin ⊆ R^∗ ‘‘ init
proof (induct todo fin rule: mk-rtrancl-main.induct)

case (1 todo fin)
note simp = mk-rtrancl-main.simps[of todo fin]
show ?case
proof (cases set-of todo = {})

case True
show ?thesis unfolding simp using True 1 (3 ) by auto

next
case False
hence nempty: (set-of todo = {}) = False by auto
obtain a tod where selt: sel todo = (a,tod) by force
note sel = sel[OF False selt]
note IH1 = 1 (1 )[OF False refl selt[symmetric]]
note IH2 = 1 (2 )[OF False refl selt[symmetric]]
note simp = simp nempty if-False Let-def selt
show ?thesis
proof (cases ∃ b ∈ fin. subsumes b a)

case True
hence mk-rtrancl-main todo fin = mk-rtrancl-main tod fin

unfolding simp by simp
with IH1 [OF True] 1 (3 ) show ?thesis using sel by auto

next
case False
hence id: mk-rtrancl-main todo fin = mk-rtrancl-main (un (r a) tod) (insert

a fin) unfolding simp by simp
show ?thesis unfolding id
proof (rule IH2 [OF False])
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from sel 1 (3 ) have subset: set-of todo ∪ insert a fin ⊆ R^∗ ‘‘ init by auto
{

fix b
assume b: b ∈ set-of (r a)
hence ab: (a,b) ∈ R by auto
from sel 1 (3 ) have a ∈ R^∗ ‘‘ init by auto
then obtain c where c: c ∈ init and ca: (c,a) ∈ R^∗ by blast
from ca ab have cb: (c,b) ∈ R^∗ O R by auto
have (c,b) ∈ R^∗

by (rule subsetD[OF - cb], regexp)
with c have b ∈ R^∗ ‘‘ init by auto

}
with subset
show set-of (un (r a) tod) ∪ (insert a fin) ⊆ R^∗ ‘‘ init

unfolding un using sel by auto
qed

qed
qed

qed

lemma mk-rtrancl-main-complete:
[[
∧

a. a ∈ init =⇒ ∃ b. b ∈ set-of todo ∪ fin ∧ subsumes b a]]
=⇒ [[

∧
a b . a ∈ fin =⇒ b ∈ set-of (r a) =⇒ ∃ c. c ∈ set-of todo ∪ fin ∧

subsumes c b]]
=⇒ c ∈ R^∗ ‘‘ init
=⇒ ∃ b. b ∈ mk-rtrancl-main todo fin ∧ subsumes b c

proof (induct todo fin rule: mk-rtrancl-main.induct)
case (1 todo fin)
from 1 (5 ) have c: c ∈ R^∗ ‘‘ init .
note finr = 1 (4 )
note init = 1 (3 )
note simp = mk-rtrancl-main.simps[of todo fin]
show ?case
proof (cases set-of todo = {})

case True
hence id: mk-rtrancl-main todo fin = fin unfolding simp by simp
from c obtain a where a: a ∈ init and ac: (a,c) ∈ R^∗ by blast
show ?thesis unfolding id using ac
proof (induct rule: rtrancl-induct)

case base
from init[OF a] show ?case unfolding True by auto

next
case (step b c)
from step(3 ) obtain d where d: d ∈ fin and db: subsumes d b by auto
from step(2 ) have cb: c ∈ set-of (r b) by auto
from subsumes-step[OF db cb] obtain a where a: a ∈ set-of (r d) and ac:

subsumes a c by auto
from finr [OF d a] obtain e where e: e ∈ fin and ea: subsumes e a unfolding

True by auto
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from subsumes-trans[OF ea ac] e
show ?case by auto

qed
next

case False
hence nempty: (set-of todo = {}) = False by simp
obtain A tod where selt: sel todo = (A,tod) by force
note simp = nempty simp if-False Let-def selt
note sel = sel[OF False selt]
note IH1 = 1 (1 )[OF False refl selt[symmetric] - - - c]
note IH2 = 1 (2 )[OF False refl selt[symmetric] - - - c]
show ?thesis
proof (cases ∃ b ∈ fin. subsumes b A)

case True note oTrue = this
hence id: mk-rtrancl-main todo fin = mk-rtrancl-main tod fin

unfolding simp by simp
from True obtain b where b: b ∈ fin and ba: subsumes b A by auto
show ?thesis unfolding id
proof (rule IH1 [OF True])

fix a
assume a: a ∈ init
from init[OF a] obtain c where c: c ∈ set-of todo ∪ fin and ca: subsumes

c a by blast
show ∃ b. b ∈ set-of tod ∪ fin ∧ subsumes b a
proof (cases c = A)

case False
thus ?thesis using c ca sel by auto

next
case True

show ?thesis using b subsumes-trans[OF ba, of a] ca unfolding True[symmetric]
by auto

qed
next

fix a c
assume a: a ∈ fin and c: c ∈ set-of (r a)

from finr [OF a c] obtain e where e: e ∈ set-of todo ∪ fin and ec: subsumes
e c by auto

show ∃ d. d ∈ set-of tod ∪ fin ∧ subsumes d c
proof (cases A = e)

case False
with e ec show ?thesis using sel by auto

next
case True
from subsumes-trans[OF ba[unfolded True] ec]
show ?thesis using b by auto

qed
qed

next
case False
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hence id: mk-rtrancl-main todo fin = mk-rtrancl-main (un (r A) tod) (insert
A fin) unfolding simp by simp

show ?thesis unfolding id
proof (rule IH2 [OF False])

fix a
assume a: a ∈ init
from init[OF a]
show ∃ b. b ∈ set-of (un (r A) (tod)) ∪ insert A fin ∧ subsumes b a

using sel unfolding un by auto
next

fix a b
assume a: a ∈ insert A fin and b: b ∈ set-of (r a)
show ∃ c. c ∈ set-of (un (r A) tod) ∪ insert A fin ∧ subsumes c b
proof (cases a ∈ fin)

case True
from finr [OF True b] show ?thesis using sel unfolding un by auto

next
case False
with a have a: A = a by simp
show ?thesis unfolding a un using b subsumes-refl[of b] by blast

qed
qed

qed
qed

qed

definition mk-rtrancl where mk-rtrancl init ≡ mk-rtrancl-main init {}

lemma mk-rtrancl-sound: mk-rtrancl init ⊆ R^∗ ‘‘ set-of init
unfolding mk-rtrancl-def
by (rule mk-rtrancl-main-sound, auto)

lemma mk-rtrancl-complete: assumes a: a ∈ R^∗ ‘‘ set-of init
shows ∃ b. b ∈ mk-rtrancl init ∧ subsumes b a
unfolding mk-rtrancl-def

proof (rule mk-rtrancl-main-complete[OF - - a])
fix a
assume a: a ∈ set-of init
thus ∃ b. b ∈ set-of init ∪ {} ∧ subsumes b a using subsumes-refl[of a] by blast

qed auto

lemma mk-rtrancl-no-subsumption: assumes subsumes = (=)
shows mk-rtrancl init = R^∗ ‘‘ set-of init
using mk-rtrancl-sound[of init] mk-rtrancl-complete[of - init] assms
by auto

end
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1.2 Instantiation using list operations
It follows an implementation based on lists. Here, the working list algorithm
is implemented outside the locale so that it can be used for code generation.
In general, it is not terminating, therefore we use partial_function instead
of function.
partial-function(tailrec) mk-rtrancl-list-main where
[code]: mk-rtrancl-list-main subsumes r todo fin = (case todo of [] ⇒ fin

| Cons a tod ⇒
(if (∃ b ∈ set fin. subsumes b a) then mk-rtrancl-list-main subsumes r

tod fin
else mk-rtrancl-list-main subsumes r (r a @ tod) (a # fin)))

definition mk-rtrancl-list where
mk-rtrancl-list subsumes r init ≡ mk-rtrancl-list-main subsumes r init []

locale subsumption-list = subsumption r subsumes set
for r :: ′a ⇒ ′a list and subsumes :: ′a ⇒ ′a ⇒ bool

locale relation-subsumption-list = subsumption-list r subsumes for r subsumes +
assumes rtrancl-fin:

∧
a. finite {b. (a,b) ∈ { (a,b) . b ∈ set (r a)}^∗}

abbreviation(input) sel-list where sel-list x ≡ case x of Cons h t ⇒ (h,t)

sublocale subsumption-list ⊆ subsumption-impl r subsumes set sel-list append length

proof(unfold-locales, rule finite-set)
fix b a c
assume set b 6= {} and sel-list b = (a,c)
thus set b = insert a (set c) ∧ length c < length b

by (cases b, auto)
qed auto

sublocale relation-subsumption-list ⊆ relation-subsumption-impl r subsumes set
sel-list append length

by (unfold-locales, rule rtrancl-fin)

context relation-subsumption-list
begin

The main equivalence proof between the generic work list algorithm and
the one operating on lists
lemma mk-rtrancl-list-main: fin = set finl =⇒ set (mk-rtrancl-list-main subsumes
r todo finl) = mk-rtrancl-main todo fin
proof (induct todo fin arbitrary: finl rule: mk-rtrancl-main.induct)

case (1 todo fin finl)
note simp = mk-rtrancl-list-main.simps[of - - todo finl] mk-rtrancl-main.simps[of

todo fin]
show ?case (is ?l = ?r)
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proof (cases todo)
case Nil
show ?thesis unfolding simp unfolding Nil 1 (3 ) by simp

next
case (Cons a tod)
show ?thesis
proof (cases ∃ b ∈ fin. subsumes b a)

case True
from True have l: ?l = set (mk-rtrancl-list-main subsumes r tod finl)

unfolding simp unfolding Cons 1 (3 ) by simp
from True have r : ?r = mk-rtrancl-main tod fin

unfolding simp unfolding Cons by auto
show ?thesis unfolding l r

by (rule 1 (1 )[OF - refl - True], insert 1 (3 ) Cons, auto)
next

case False
from False have l: ?l = set (mk-rtrancl-list-main subsumes r (r a @ tod) (a

# finl))
unfolding simp unfolding Cons 1 (3 ) by simp

from False have r : ?r = mk-rtrancl-main (r a @ tod) (insert a fin)
unfolding simp unfolding Cons by auto

show ?thesis unfolding l r
by (rule 1 (2 )[OF - refl - False], insert 1 (3 ) Cons, auto)

qed
qed

qed

lemma mk-rtrancl-list: set (mk-rtrancl-list subsumes r init) = mk-rtrancl init
unfolding mk-rtrancl-list-def mk-rtrancl-def
by (rule mk-rtrancl-list-main, simp)

end

end
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