Transformer Semantics

Georg Struth
March 17, 2025

Abstract

These mathematical components formalise predicate transformer
semantics for programs, yet currently only for partial correctness and
in the absence of faults. A first part for isotone (or monotone), Sup-
preserving and Inf-preserving transformers follows Back and von Wright’s
approach, with additional emphasis on the quantalic structure of al-
gebras of transformers. The second part develops Sup-preserving and
Inf-preserving predicate transformers from the powerset monad, via
its Kleisli category and Eilenberg-Moore algebras, with emphasis on
adjunctions and dualities, as well as isomorphisms between relations,
state transformers and predicate transformers.

Contents

1 Introductory Remarks 2

2 Isotone Transformers Between Complete Lattices 3
2.1 Basic Properties 0. 3
2.2 Pre-Quantale of Isotone Transformers 4
2.3 Propositional Hoare Logic for Transformers without Star. . . 5
2.4 Kleene Star of Isotone Transformers 5
2.5 Propositional Hoare Logic Completed 8
2.6 A Propositional Refinement Calculus 9
Sup- and Inf-Preserving Transformers between Complete
Lattices 10
3.1 Basic Properties 10
3.2 Properties of the Kleene Star 14
3.3 Quantales of Inf- and Top-Preserving Transformers 15
The Powerset Monad, State Transformers and Predicate
Transformers 16
4.1 The Powerset Monad 17
4.2 Kleisli Category of the Powerset Monad 17

4.3 FEilenberg-Moore Algebra 18

4.4 Isomorphism between Kleisli Category and Rel 21
4.5 The opposite Kleisli Category 24
5 State Transformers and Predicate Transformers Based on
the Powerset Monad 26
5.1 Backward Diamonds from Kleisli Arrows 26
5.2 Backward Diamonds from Relations 29
5.3 Forward Boxes on Kleisli Arrows 31
5.4 Forward Box Operators from Relations 36
5.5 The Remaining Modalities 39
6 The Quantaloid of Kleisli Arrows 44
6.1 Kleene Star 45
6.2 Antidomain 47
7 The Quantale of Kleisli Arrows 48

1 Introductory Remarks

Predicate transformers yield standard denotational semantics for imperative
programs; they have been investigated for around fifty years and are widely
used in program verification. These components provide yet another take on
this topic with Isabelle (previous formalisations in the AFP include [9, 5, 6]).

The first part, like Preoteasa’s work [9], follows by and large Back and
von Wright’s seminal monograph [2]. Isotone (or monotone), sup-preserving
and inf-preserving transformers are developed in a categorical setting as
morphisms of orderings and complete lattices. The approach is type-driven;
concepts are usually formalised with the most general suitable types. Due
to this, the algebras of transformers cannot be captured within Isabelle’s
type classes or locales. They describe algebraic properties of typed function
spaces (enriched homsets of categories of complete lattices) in terms of typed
quantales or quantaloids [10]. Special focus is on notions of recursion and
iteration in this typed setting. In particular, propositional Hoare logics
and basic refinement calculi—for partial correctness and without assignment
laws—are derived. For transformers that are endofunctions, instance proofs
for quantales are given. This brings theorems about quantales and from the
Kleene algebra hierarchy into scope.

Based on this, the second part presents an alternative, more detailed
development with sets. It starts from the monad of the powerset functor, its
Kleisli category and its Eilenberg-Moore algebras; a view that has been pro-
moted, for instance, by Jacobs [7]. General monads cannot be handled by
Isabelle’s type system, only particular instances can be formalised—at the
level of exercises in category theory textbooks. With this approach, binary

relations, state transformers modelled as arrows of the Kleisli category of
the powerset monad, and predicate transformer algebras, Sup-lattices which
arise as Eilenberg-Moore algebras of the powerset monad, are related like
in Jacob’s state-effect triangles. In particular, the isomorphisms between
the quantalic structure of relations, that of state transformers and that of
various predicate transformers is spelled out in detail. In addition, the sym-
metries and dualities between four kinds of predicate transformers (forward
and backward modal box and diamond operators in the parlance of dynamic
logic) are formalised. Beyond that, the quantalic structure of state trans-
formers is detailed first in a typed setting, and secondly in a single-typed
one, where state transformers are shown to form quantales and hence Kleene
algebras.

It should be straightforward to integrate these mathematical compo-
nents into verification components along the lines of [1, 6]. Beyond that,
an integration with the predicate transformers obtained from modal Kleene
algebras [5] seems interesting for verification applications. Possible exten-
sions and refinements include the development of verification conditions for
recursion beyond those for while-loops, approaches to total correctness and
fault semantics, more complete (re)encodings of Back and von Wright’s ap-
proach, formalisations of domain theory, links between isotone transformers
and Isabelle components for multirelational semantics [4] and extensions to
probabilistic transformers [8].

2 Isotone Transformers Between Complete Lat-
tices

theory Isotone-Transformers
imports Order-Lattice-Props. Fixpoint-Fusion
Quantales. Quantale-Star

begin

A transformer is a function between lattices; an isotone transformer pre-
serves the order (or is monotone). In this component, statements are de-
veloped in a type-driven way. Statements are developed in more general
contexts or even the most general one.

2.1 Basic Properties

First I show that some basic transformers are isotone...

lemma iso-id: mono id
by (simp add: monol)

lemma iso-botf: mono L
by (simp add: monol)

lemma iso-topf: mono T
by (simp add: monol)

. and that compositions, Infs and Sups preserve isotonicity.

lemma iso-fcomp: mono f = mono g = mono (f o g)
by (simp add: mono-def)

lemma iso-fSup:
fixes F :: (‘a::order = 'b::complete-lattice) set
shows (Vf € F. mono f) = mono (| | F)
by (simp add: mono-def SUP-subset-mono)

lemma iso-fsup: mono f = mono g = mono (f U g)
unfolding mono-def using sup-mono by fastforce

lemma iso-fInf:
fixes F :: (‘a::order = 'b::complete-lattice) set
shows Vf € F. mono f = mono ([|F)
by (simp add: mono-def, safe, rule Inf-greatest, auto simp: INF-lower2)

lemma iso-finf: mono f = mono g = mono (f N g)
unfolding mono-def using inf-mono by fastforce

lemma fun-isol: mono f = g < h = (f o g) < (f o h)
by (simp add: le-fun-def monoD)

lemma fun-isor: mono f = g < h = (go f) < (hof)
by (simp add: le-fun-def monoD)

2.2 Pre-Quantale of Isotone Transformers

It is well known, and has been formalised within Isabelle, that functions
into complete lattices form complete lattices. In the following proof, this
needs to be replayed because isotone functions are considered and closure
conditions need to be respected.

Functions must now be restricted to a single type.
instantiation iso :: (complete-lattice) unital-pre-quantale

begin

lift-definition one-iso :: ’a::complete-lattice iso is id
by (simp add: iso-id)

lift-definition times-iso :: 'a::complete-lattice iso = 'a iso = 'a iso is (o)
by (simp add: iso-fcomp)

instance
by (intro-classes; transfer, simp-all add: comp-assoc fInf-distr-var fInf-subdistl-var)

end

I have previously worked in (pre)quantales with many types or quantaloids.
Formally, these are categories enriched over the category of Sup-lattices
(complete lattices with Sup-preserving functions). An advantage of the
single-typed approach is that the definition of the Kleene star for (pre)quan-
tales is available in this setting.

2.3 Propositional Hoare Logic for Transformers without Star

The rules of an abstract Propositional Hoare logic are derivable.

lemma H-iso-condl: (z::'a::preorder) <y —= y < fz= < fz
using order-trans by auto

lemma H-iso-cond2: mono f = y<z=z < fy= < fz
by (meson mono-def order-subst1)

lemma H-iso-seq: mono f —= v < fy=y<gz= z < [(g 2)
using H-iso-cond2 by force

lemma H-iso-seq-var: mono f —= v < fy=y<gz=x<(fog) z
by (simp add: H-iso-cond?2)

lemma H-iso-fInf:
fixes F :: ('a = 'b::complete-lattice) set
shows Vfe F.z<fy) =z < (]F)y
by (simp add: le-INF-iff)

lemma H-iso-fSup:
fixes F :: ('a = 'b::complete-lattice) set
shows F #{} = (VfeF.z<fy) =z<(UF)y
using SUP-upper2 by fastforce

These rules are suitable for weakest liberal preconditions. Order-dual ones,
in which the order relation is swapped, are consistent with other kinds of
transformers. In the context of dynamic logic, the first set corresponds to
box modalities whereas the second one would correspond to diamonds.

2.4 Kleene Star of Isotone Transformers

The Hoare rule for loops requires some preparation. On the way I verify
some Kleene-algebra-style axioms for iteration.

First I show that functions form monoids.

interpretation fun-mon: monoid-mult id::'a = 'a (o)
by unfold-locales auto

definition fiter-fun :: (‘a = ’'ci:semilattice-inf) = ('b = ‘¢c) = (la = 'b) = 'a =
'c where

fiter-fun f g = (1) f o () g

definition fiter :: (‘a = 'b::complete-lattice) = ('b = 'b) = 'a = 'b where

fiter f g = gfp (fiter-fun. f g)

definition fiter-id :: (‘a::complete-lattice = 'a) = ’'a = 'a where
fiter-id = fiter id

abbreviation fpower = fun-mon.power

definition fstar :: (‘a::complete-lattice = 'a) = 'a = 'a where

fstar f = ([]i. fpower f 1)

The types in the following statements are often more general than those
in the prequantale setting. I develop them generally, instead of inheriting
(most of them) with more restrictive types from the quantale components.

lemma fiter-fun-exp: fiter-fun f g h = f M (g o h)
unfolding fiter-fun-def by simp

The two lemmas that follow set up the relationship between the star for
transformers and those in quantales.

lemma fiter-qiter!: Abs-iso (fiter-fun (Rep-iso f) (Rep-iso g) (Rep-iso h)) = qiter-fun
fgh

unfolding fiter-fun-def giter-fun-def by (metis Rep-iso-inverse comp-def sup-iso.rep-eq
times-iso.rep-eq)

lemma fiter-qiter/: mono f = mono g = mono h = Rep-iso (qiter-fun (Abs-iso
1) (Abs-iso g) (Abs-iso h)) = fiter-fun f g h
by (simp add: Abs-iso-inverse fiter-fun-exp giter-fun-exp sup-iso.rep-eq times-iso.rep-eq)

The type coercions are needed to deal with isotone (monotone) functions,
which had to be redefined to one single type above, in order to cooperate with
the type classes for quantales. Having to deal with these coercions would be
another drawback of using the quantale-based setting for the development.

lemma iso-fiter-fun: mono f = mono (fiter-fun f)
by (simp add: fiter-fun-exp le-fun-def mono-def inf.coboundedI2)

lemma iso-fiter-fun2: mono f = mono g = mono (fiter-fun f g)
by (simp add: fiter-fun-exp le-fun-def mono-def inf.coboundedI2)

lemma fiter-unfoldl:
fixes [:: 'a::complete-lattice = 'a
shows mono f = mono g = f M (g o fiter f g) = fiter f g

by (metis fiter-def fiter-fun-exp gfp-unfold iso-fiter-fun2)

lemma fiter-inductl:
fixes [:: 'a::complete-lattice = 'a
shows mono f = mono g = h < fM (go h) = h < fiter f ¢
by (simp add: fiter-def fiter-fun-def gfp-upperbound)

lemma fiter-fusion:
fixes f :: 'a::complete-lattice = 'a
assumes mono f
and mono g
shows fiter f g = fiter-id g o f
proof—
have h1: mono (fiter-fun id g)
by (simp add: assms(2) iso-fiter-fun2 iso-id)
have h2: mono (fiter-fun f g)
by (simp add: assms(1) assms(2) iso-fiter-fun2)
have h3: Inf o image (Az. z o f) = (Az. z o f) o Inf
by (simp add: fun-eg-iff image-comp)
have (Az. z o f) o (fiter-fun id g) = (fiter-fun f g) o (Az. z o f)
by (simp add: fun-eq-iff fiter-fun-def)
thus ?thesis
using gfp-fusion-inf-pres
by (metis fiter-def fiter-id-def h1 h2 h3)
qed

lemma fpower-supdistl:
fixes [:: 'a::complete-lattice = 'b::complete-lattice
shows mono f = f o fstar g < ([]i. f o fpower g i)
by (simp add: Isotone-Transformers.fun-isol fstar-def mono-INF mono-def)

lemma fpower-distr: fstar f o g = ([|4. fpower fi o g)
by (auto simp: fstar-def image-comp)

lemma fpower-Sup-subcomm: mono f = f o fstar f < fstar f o f
unfolding fpower-distr fun-mon.power-commutes by (rule fpower-supdistl)

lemma fpower-inductl:

fixes [:: 'a::complete-lattice = 'a

shows mono f = mono g = h < ¢gMN (f o h) = h < fpower fio g

apply (induct i, simp-all) by (metis (no-types, opaque-lifting) fun.map-comp
fun-isol order-trans)

lemma fpower-inductr:

fixes [:: 'a::complete-lattice = 'a

shows mono f = mono g = h < gN(ho f) = h < g o fpower fi

by (induct i, simp-all add: le-fun-def, metis comp-eg-elim fun-mon.power-commautes
order-trans)

lemma fiter-fstar: mono f = fiter-id f < fstar f
by (metis (no-types, lifting) fiter-id-def fiter-unfoldl fpower-inductl fstar-def iso-id
le-INF-iff o-id order-refl)

lemma iso-fiter-ext:
fixes [:: 'a::order = 'b::complete-lattice
shows mono f = mono (A\z. y N f x)
by (simp add: le-infI2 mono-def)

lemma fstar-pred-char:
fixes [:: 'a::complete-lattice = 'a
shows mono f = fiter-id fz = gfp (Ay. x 11 fy)
proof —
assume hyp: mono f
have Vg. (id M (fog) z =z f (gx)
by simp
hence Vg. fiter-fun id f g x = (Ay. x 1 fy) (g z)
unfolding fiter-fun-def by simp
thus ?thesis
by (simp add: fiter-id-def fiter-def gfp-fusion-var hyp iso-fiter-fun2 iso-id iso-fiter-ext)
qed

2.5 Propositional Hoare Logic Completed
lemma H-weak-loop: mono f — = < fz = = < fiter-id f x
by (force simp: fstar-pred-char gfp-def intro: Sup-upper)

lemma iso-fiter: mono f = mono (fiter-id f)
unfolding mono-def by (subst fstar-pred-char, simp add: mono-def)+ (auto
intro: gfp-mono inf-mono)

As already mentioned, a dual Hoare logic can be built for the dual lattice.
In this case, weak iteration is defined with respect to Sup.

The following standard construction lifts elements of (meet semi)lattices to
transformers. I allow a more general type.
definition fqtran :: 'a::inf = 'a = 'a where
fagtran z = Ay. z My
The following standard construction lifts elements of boolean algebras to
transformers.
definition bgtran :: 'a::boolean-algebra = 'a = 'a (¢|-]») where
2] y=—z Uy
The conditional and while rule of Hoare logic are now derivable.
lemma bgtran-iso: mono |z|

by (metis bgtran-def monol order-refl sup.mono)

lemma cond-iso: mono f = mono g = mono (|z| o f M |y]| o g)

by (simp add: bgtran-iso iso-fcomp iso-finf)

lemma loop-iso: mono f = mono (fiter-id (|z] o f) o |y])
by (simp add: bgtran-iso iso-fcomp iso-fiter)

lemma H-iso-cond: mono f = mono g =— pNaez < fy=qNe<gy=—1=x

< (inf (Lp) o f) (la) 2 9)) ¥
by (metis (full-types) bgtran-def comp-apply inf-apply inf-commute le-inf-iff shunt1)

lemma H-iso-loop: mono f = p Mz < fz = z < ((fiter-id (|p] o f)) o |q])
(z 1 q)
proof—
assume a: mono f
and pfNz<fzx
hence z < (|p| o f) =
using H-iso-cond by fastforce
hence z < (fiter-id (|p] o f)) =
by (simp add: H-weak-loop a bqtran-iso iso-fcomp)
also have ... < (fiter-id (|p] o f)) (—q U (z M q))
by (meson a bgtran-iso dual-order.refl iso-fcomp iso-fiter monoD shuntl)

finally show z < ((fiter-id (|p]| o f)) o |q]) (z M q)
by (simp add: bgtran-def)
qed

lemma btran-spec: © < |y (z M y)
by (simp add: btran-def sup-inf-distribl)

lemma btran-neg-spec: © < |—y| (z — y)
by (simp add: btran-spec diff-eq)

2.6 A Propositional Refinement Calculus

Next I derive the laws of an abstract Propositional Refinement Calculus,
Morgan-style. These are given without the co-called frames, which capture
information about local and global variables in variants of this calculus.

definition Rizyz=[]{fz|f - ¢ < fy A mono (f::"a::order = "b::complete-lattice)}

lemma Ri-least: mono f —= v < fy=—= Rizyz < fz
unfolding Ri-def by (metis (mono-tags, lifting) Inf-lower mem-Collect-eq)

lemma Ri-spec: t < Rixzyy
unfolding Ri-def by (rule Inf-greatest, safe)

lemma Ri-spec-var: (Vz. Rizyz < fz) = 2 < fy
using Ri-spec dual-order.trans by blast

lemma Ri-prop: mono f = 2 < fy+— Vz. Rizyz < f2)
using Ri-least Ri-spec-var by blast

lemma iso-Ri: mono (Ri z y)
unfolding mono-def Ri-def by (auto intro!: Inf-mono)

lemma Ri-weaken: r < z' = y'<y=— Rizyz< Riz'y 2
by (meson H-iso-cond2 Ri-least Ri-spec iso-Ri order.trans)

lemma Ri-seq: Rizy 2z < Rizw (Ri wy 2)
by (metis (no-types, opaque-lifting) H-iso-cond2 Ri-prop Ri-spec iso-Ri iso-fcomp
o-apply)

lemma Ri-seq-var: Ri zy z < ((Ri z w) o (Ri wy)) 2
by (simp add: Ri-seq)

lemma Ri-Inf: Ri ([X) yz<[|{Rizyzl|z. z € X}
by (safe intro!: Inf-greatest, simp add: Ri-weaken Inf-lower)

lemma Ri-weak-iter: Ri x vy < fiter-id (Rix z) y
by (simp add: H-weak-loop Ri-least Ri-spec iso-Ri iso-fiter)

lemma Ri-cond: Rizyz < (inf (|p] o (Ri (p T z) y)) ((Lq] o (Ri (¢ 71) y)))) 2
by (meson H-iso-cond Ri-least Ri-spec bgtran-iso iso-Ri iso-fcomp iso-finf)

lemma Riloop: Ri & (¢ 1 2) y < ((fiter-id ([p] o (Ri (21 p) 2))) o La)) (¢ 71 y)
proof—
have (pNz) < Ri (pNz) zzx
by (simp add: Ri-spec)
hence z < ((fiter-id ([p| o (Ri (z N p) z))) o |q]) (¢ z)

by (metis H-iso-loop inf-commute iso-Ri)
thus ?thesis
apply (subst Ri-least, safe, simp-all add: mono-def)
by (metis bgtran-iso inf-mono iso-Ri iso-fcomp iso-fiter mono-def order-refl)
qed

end

3 Sup- and Inf-Preserving Transformers between
Complete Lattices

theory Sup-Inf-Preserving- Transformers
imports Isotone-Transformers

begin

3.1 Basic Properties

Definitions and basic properties of Sup-preserving and Inf-preserving func-
tions can be found in the Lattice components. The main purose of the
lemmas that follow is to bring properties of isotone transformers into scope.

10

lemma Sup-pres-iso:
fixes [:: 'a::complete-lattice = 'b::complete-lattice
shows Sup-pres f = mono f
by (simp add: Sup-supdistl-iso)

lemma Inf-pres-iso:
fixes [:: 'a::complete-lattice = 'b::complete-lattice
shows Inf-pres f = mono f
by (simp add: Inf-subdistl-iso)

lemma sup-pres-iso:
fixes [:: 'a::lattice = 'b:lattice
shows sup-pres f = mono f
by (metis le-iff-sup mono-def)

lemma inf-pres-iso:
fixes [:: 'a:lattice = 'b:lattice
shows inf-pres f = mono f
by (metis inf.absorb-iff2 monol)

lemma Sup-sup-dual:
fixes [:: 'a::complete-lattice = 'b::complete-lattice
shows Sup-dual f = sup-dual f
by (smt comp-eg-elim image-empty image-insert inf-Inf sup-Sup)

lemma Inf-inf-dual:
fixes [:: 'a::complete-lattice = 'b::complete-lattice
shows Inf-dual f = inf-dual f
by (smt comp-eq-elim image-empty image-insert inf-Inf sup-Sup)

lemma Sup-bot-dual:
fixes [:: 'a::complete-lattice = 'b::complete-lattice
showsSup-dual f = bot-dual f
by (metis INF-empty Sup-empty comp-eg-elim)

lemma Inf-top-dual:
fixes [:: 'a::complete-lattice = 'b::complete-lattice
shows Inf-dual f = top-dual f
by (metis Inf-empty SUP-empty comp-eq-elim)

Next I show some basic preservation properties.

lemma Sup-dual2: Sup-dual f = Inf-dual ¢ = Sup-pres (g o f)
by (simp add: fun-eq-iff image-comp)

lemma Inf-dual2: Sup-dual f = Inf-dual g = Inf-pres (f o g)
by (simp add: fun-eq-iff image-comp)

lemma Sup-pres-id: Sup-pres id
by simp

11

lemma Inf-pres-id: Inf-pres id
by simp

lemma Sup-pres-comp: Sup-pres f = Sup-pres g = Sup-pres (f o g)
by (simp add: fun-eq-iff image-comp)

lemma Inf-pres-comp: Inf-pres f = Inf-pres ¢ = Inf-pres(f o g)
by (simp add: fun-eq-iff image-comp)

lemma Sup-pres-Sup:
fixes F :: (‘a::complete-lattice = 'b::complete-lattice) set
shows Vf € F. Sup-pres f = Sup-pres (| | F)
proof—
assume h: Vf € F. f o Sup = Sup o image f
hence Vf € F. f o Sup < Sup o image (|| F)
by (simp add: SUP-subset-mono Sup-upper le-fun-def)
hence (|| F) o Sup < Sup o image (|| F)
by (simp add: SUP-le-iff le-fun-def)
thus ?thesis
by (simp add: Sup-pres-iso h antisym iso-Sup-supdistl iso-fSup)
qged

lemma Inf-pres-Inf:
fixes F' :: (‘a::complete-lattice = 'b::complete-lattice) set
shows Vf € F. Inf-pres f = Inf-pres ([| F)
proof—
assume h: Vf € F. f o Inf = Inf o image f
hence Vf € F. Inf o image ([F) < f o Inf
by (simp add: le-fun-def, safe, meson INF-lower INF-mono)
hence Inf o image ([1F) < ([1F) o Inf
by (simp add: le-INF-iff le-fun-def)
thus ?thesis
by (simp add: Inf-pres-iso h antisym iso-Inf-subdistl iso-fInf)
qed

lemma Sup-pres-sup:
fixes [:: 'a::complete-lattice = 'b::complete-lattice
shows Sup-pres f = Sup-pres ¢ = Sup-pres (f U g)
by (metis Sup-pres-Sup insert-iff singletonD sup-Sup)
lemma Inf-pres-inf:
fixes [:: 'a::complete-lattice = 'b::complete-lattice
shows Inf-pres f = Inf-pres g = Inf-pres (f M g)
by (metis Inf-pres-Inf inf-Inf insert-iff singletonD)

lemma Sup-pres-botf: Sup-pres (Az. L::'a::complete-lattice)
by (simp add: fun-eq-iff)

It is important to note that Az.L is not Inf-preserving and that Az.T is not

12

Sup-preserving.
lemma Inf-pres (Az. L::’a::complete-lattice)

oops

lemma Sup-pres (Az. T::'a::complete-lattice)
00ps

lemma Inf-pres-topf: Inf-pres (Az. T::'a::complete-lattice)

by (simp add: fun-eq-iff)

In complete boolean algebras, complementation yields an explicit variant of

duality, which can be expressed within the language.

lemma uminus-galois:

fixes [:: 'a::complete-boolean-algebra = 'b::complete-boolean-algebra-alt

shows (uminus f = g) = (uminus g = f)
using double-compl by force

lemma uminus-galois-var:
fixes f :: 'a::complete-boolean-algebra-alt-with-dual =
shows (90 f = g) = (9 0 g = /)
by force

lemma uminus-galois-var2:
fixes f :: 'a::complete-boolean-algebra-alt-with-dual =
shows (fod=yg)=(go0=F)
by force

lemma uminus-mono-iff:
fixes f :: 'a::complete-boolean-algebra-alt-with-dual =
shows (0o f=00g) = (f=g)
using uminus-galois-var by force

lemma uminus-epi-iff:
fixes [:: 'a::complete-boolean-algebra-alt-with-dual =
shows (f 0 0 = g 0 9) = (f = g)

using uminus-galois-var2 by force

lemma Inf-pres-Sup-pres:
fixes [:: 'a::complete-boolean-algebra-alt-with-dual =
shows (Inf-pres f) = (Sup-pres (Op f))
by (simp add: Inf-pres-map-dual-var)

lemma Sup-pres-Inf-pres:
fixes [:: 'a::complete-boolean-algebra-alt-with-dual =
shows (Sup-pres) = (Inf-pres (Op f))
by (simp add: Sup-pres-map-dual-var)

13

'b::

"b::

"b::

'b::

'b::

'b::

complete-boolean-algebra-alt-with-dual

complete-boolean-algebra-alt-with-dual

complete-boolean-algebra-alt-with-dual

complete-boolean-algebra-alt-with-dual

complete-boolean-algebra-alt-with-dual

complete-boolean-algebra-alt-with-dual

3.2 Properties of the Kleene Star

I develop the star for Inf-preserving functions only. This is suitable for
weakest liberal preconditions. The case of sup-preserving functions is dual,
and straightforward. The main difference to isotone transformers is that
Kleene’s fixpoint theorem now applies, that is, the star can be represented
by iteration.

lemma H-Inf-pres-fpower:
fixes [:: 'a::complete-lattice = 'a
shows Inf-pres f = =z < fz = x < fpower fi x
apply (induct i, simp-all) using H-iso-cond2 Inf-pres-iso by blast

lemma H-Inf-pres-fstar:
fixes [:: 'a::complete-lattice = 'a
shows Inf-pres f = = < fzx = x < fstar fx
by (simp add: H-Inf-pres-fpower fstar-def le-INF-iff)

lemma fpower-Inf-pres: Inf-pres f = Inf-pres (fpower f 1)
by (induct i, simp-all add: Inf-pres-comp)

lemma fstar-Inf-pres:
fixes [:: 'a::complete-lattice = 'a
shows Inf-pres f = Inf-pres (fstar f)
by (simp add: fstar-def Inf-pres-Inf fpower-Inf-pres)

lemma fstar-unfoldl-var [simp):
fixes [:: 'a::complete-lattice = 'a
shows Inf-pres f = z N f (fstar f z) = fstar f z
proof—
assume hyp: Inf-pres f
have z M f (fstar f) = fpower f 0 x N ([| n. fpower f (Suc n) x)
by (simp add: fstar-def image-comp) (metis (no-types) comp-apply hyp im-
age-image)
also have ... = ([| n. fpower fn x)
by (subst fInf-unfold, auto)
finally show ?thesis
by (simp add: fstar-def image-comp)
qed

lemma fstar-fiter-id: Inf-pres f = fstar f = fiter-id f
proof—
assume hyp: Inf-pres f
{fix z::'a::complete-lattice
have fstar fo = x N f (fstar f)
by (simp add: hyp)
hence a: fstar fz < gfp (A\y. z M fy)
by (metis gfp-upperbound order-refl)
haveVy. y <z N fy — y < fstar fz

14

by (meson H-Inf-pres-fstar H-iso-cond2 Inf-pres-iso fstar-Inf-pres hyp le-infE)
hence fstar fz = gfp (Ay. z 1 fy)
by (metis a antisym gfp-least)}
thus ?thesis
by (simp add: fun-eq-iff Inf-pres-iso fstar-pred-char hyp)
qed

lemma fstar-unfoldl [simp]:
fixes f :: 'a::complete-lattice = 'a
shows Inf-pres f = id 1 (f o fstar) = fstar f
by (simp add: fun-eq-iff)

lemma fpower-Inf-comm:
fixes [:: 'a::complete-lattice = 'a

shows Inf-pres f = f ([']i. fpower fix) = ([]i. fpower fi (f z))
proof—
assume Inf-pres f
hence f ([|4. fpower fiz) = ([]i. fpower f (Suc i) x)
by (simp add: fun-eg-iff image-comp)

also have ... = ([|4. fpower f i (f z))
by (metis comp-eq-dest-lhs fun-mon.power-Suc2)

finally show ?thesis .
qed

lemma fstar-comm:
fixes [:: 'a::complete-lattice = 'a
shows Inf-pres f = f o fstar f = fstar f o f
apply (simp add: fun-eq-iff fstar-def image-comp)
by (metis (mono-tags, lifting) INF-cong comp-eq-dest fun-mon.power-commutes)

lemma fstar-unfoldr [simpl:
fixes [:: 'a::complete-lattice = 'a
shows Inf-pres f = id M (fstar f o f) = fstar f
using fstar-comm fstar-unfoldl by fastforce

3.3 Quantales of Inf- and Top-Preserving Transformers

As for itotone transformers, types must now be restricted to a single one. It
is well known that Inf-preserving transformers need not be top-preserving,
and that Sup-preserving transformers need not be bot-preserving. This has
been shown elsewhere. This does not affect the following proof, but it has
an impact on how elements are represented. I show only the result for Inf-
preserving transformers; that for Sup-preserving ones is dual.

typedef (overloaded) 'a Inf-pres = {f::'a::complete-lattice = 'a. Inf-pres [}
using Inf-pres-topf by blast

setup-lifting type-definition-Inf-pres

15

instantiation Inf-pres :: (complete-lattice) unital-Sup-quantale
begin

lift-definition one-Inf-pres :: 'a::complete-lattice Inf-pres is id
by (simp add: iso-id)

lift-definition times-Inf-pres :: 'a::complete-lattice Inf-pres = 'a Inf-pres = 'a
Inf-pres is (o)
by (simp add: Inf-pres-comp)

lift-definition Sup-Inf-pres :: ‘a::complete-lattice Inf-pres set = 'a Inf-pres is Inf
by (simp add: Inf-pres-Inf)

lift-definition less-eg-Inf-pres :: 'a Inf-pres = 'a Inf-pres = bool is (>).
lift-definition less-Inf-pres :: ‘a Inf-pres = 'a Inf-pres = bool is (>).

instance
by (intro-classes; transfer, simp-all add: o-assoc Inf-lower Inf-greatest fInf-distr-var
fInf-distl-var)

end

Three comments seem worth making. Firstly, the result bakes in duality by
considering Infs in the function space as Sups in the quantale, hence as Infs
in the dual quantale. Secondly, the use of Sup-quantales not only reduces the
number of proof obligations. It also copes with the fact that Sups and top are
not represented faithfully by this construction. They are generally different
from those in the super-quantale of isotone transformers. But of course
they can be defined from Infs as usual. Alternatively, I could have proved
the results for Inf-quantales, which may have been more straightforward.
But Sup-lattices are more conventional. Thirdly, as in the case of isotone
transformers, the proof depends on a restriction to one single type, whereas
previous results have been obtained for poly-typed quantales or quantaloids.

end

4 The Powerset Monad, State Transformers and
Predicate Transformers

theory Powerset-Monad
imports Order-Lattice- Props. Order-Lattice- Props
begin

notation relcomp (infixl <» 75)
and image (<P»)

16

4.1 The Powerset Monad

First I recall functoriality of the powerset functor.
lemma P-funcl: P (fog) =P foPyg
unfolding fun-eq-iff by force

lemma P-func2: P id = id
by simp

Isabelle’ type systems doesn’t allow formalising arbitrary monads, but in-
stances such as the powerset monad can still be developed.

abbreviation eta :: ‘a = ‘a set (¢») where

n= Az {z})
abbreviation mu :: ‘a set set = 'a set (<u») where
u = Union

n and p are natural transformations.

lemma eta-nt: P fon=mnoidf
by fastforce

lemma mu-nt: po (PoP)f=(Pf)ou
by fastforce

They satisfy the following coherence conditions. Explicit typing clarifies
that n and p have different type in these expressions.

lemma pow-assoc: (::'a set set = 'a set) o P (u::'a set set = 'a set) = (p ::'a

set set = 'a set) o (u::'a set set set = 'a set set)
using fun-eq-iff by fastforce

lemma pow-unl: (p:'a set set = 'a set) o (P (n:: 'a = 'a set)) = (id::'a set =
‘a set)
using fun-eq-iff by fastforce

lemma pow-un2: (u::'a set set = 'a set) o (n::'a set = 'a set set) = (id::'a set =
‘a set)
using fun-eq-iff by fastforce

Thus the powerset monad is indeed a monad.

4.2 Kleisli Category of the Powerset Monad

Next I define the Kleisli composition and Kleisli lifting (Kleisli extension) of
Kleisli arrows. The Kleisli lifting turns Kleisli arrows into forward predicate
transformers.

definition kcomp :: (‘a = b set) = (b = 'c set) = (‘a = 'c set) (infixl of>
75) where

17

foxg=poPgof

lemma kcomp-prop: (f ox g) c = (| |y € fz. gy)
by (simp add: kcomp-def)

definition klift :: (‘a = 'b set) = 'a set = 'b set («-1» [101] 100) where
fl=poPf

lemma klift-prop: (f1) X = (| |z € X. fx)
by (simp add: klift-def)

lemma kcomp-klift: f ox g = g' o f
unfolding kcomp-def klift-def by simp

lemma klift-propl: (ff o g)T = ft o gf
unfolding fun-eq-iff klift-def by simp

lemma klift-eta-invl [simp]: fT on = f
unfolding fun-eq-iff klift-def by simp

lemma klift-eta-pres [simp]: nT = (id::'a set = 'a set)
unfolding fun-eq-iff klift-def by simp

lemma klift-id-pres [simp]: id" = p
unfolding klift-def by simp

lemma kcomp-assoc: (f ox g) ox h = f ox (g ok h)
unfolding kcomp-klift klift-propl by force

lemma kcomp-idl [simp]: n ox f = f
unfolding kcomp-klift by simp

lemma kcomp-idr [simpl: f ox n = f

unfolding kcomp-klift by simp
In the following interpretation statement, types are restricted. This is
needed for defining iteration.

interpretation kmon: monoid-mult n (ox)
by unfold-locales (simp-all add: kcomp-assoc)

Next I show that 7 is a (contravariant) functor from Set into the Kleisli cat-
egory of the powerset monad. It simply turns functions into Kleisli arrows.

lemma cta-funct: 1o (f o g) = (110 g) o (n o f)
unfolding fun-eg-iff kcomp-def by simp

4.3 Eilenberg-Moore Algebra

It is well known that the Eilenberg-Moore algebras of the powerset monad
form complete join semilattices (hence Sup-lattices).

18

First 1 verify that every complete lattice with structure map Sup satisfies
the laws of Eilenberg-Moore algebras.

notation Sup (<o)

lemma em-assoc [simp]: 0 o P (o::'a::complete-lattice set = 'a) = o o p
apply (standard, rule antisym)
apply (simp add: SUP-least Sup-subset-mono Sup-upper)
by (metis (no-types, lifting) SUP-upper2 Sup-least Sup-upper UnionE comp-def)

lemma em-id [simpl]: o o n = (id::’a::complete-lattice = 'a)

by (simp add: fun-eq-iff)

Hence every Sup-lattice is an Eilenberg-Moore algebra for the powerset
monad. The morphisms between Eilenberg-Moore algebras of the power-
set monad are Sup-preserving maps. In particular, powersets with structure
map p form an Eilenberg-Moore algebra (in fact the free one):
lemma em-mu-assoc [simpl: po P u=popu

by simp

lemma em-mu-id [simpl: pon = id
by simp

Next I show that every Eilenberg-Moore algebras for the powerset functor
is a Sup-lattice.

class eilenberg-moore-pow =
fixes smap :: 'a set = a
assumes smap-assoc: smap o P smap = smap o [
and smap-id: smap o n = id

begin
definition sleq = (Az y. smap {z,y} = y)
definition sle = (Az y. sleqz y N y # x)

lemma smap-uni: smap {z, smap Y} = smap ({z} U Y)
proof—
have smap {z, smap Y} = smap {smap {z}, smap Y}
by (metis comp-apply id-apply smap-id)
also have ... = (smap o P smap) {{z}, Y}
by simp
finally show ?thesis
using local.smap-assoc by auto
qed

lemma smap-comm: smap {x, smap Y} = smap {smap Y, z}
by (simp add: insert-commute)

19

lemma smap-un2: smap {smap X, y} = smap (X U {y})
using smap-comm smap-unl by auto

lemma sleg-refl: sleq x x
by (metis id-apply insert-absorb2 local.smap-id o-apply sleq-def)

lemma sleg-trans: sleq x y = sleq y z = sleq z =z
by (metis (no-types, lifting) sleg-def smap-unl smap-un2 sup-assoc)

lemma sleg-antisym: sleq zy = sleqyax = z =y
by (simp add: insert-commute sleq-def)

lemma smap-ub: * € A = sleq x (smap A)
using insert-absorb sleq-def smap-unl by fastforce

lemma smap-lub: (A\z. © € A = sleq x z) = sleq (smap A) z
proof—
assume h: \z. 2 € A = sleqz z
have smap {smap A, z} = smap (A U {z})
by (simp add: smap-un2)
also have ... = smap (Uz € A. {z,2}) U {z})
by (rule-tac f=smap in arg-cong, auto)
also have ... = smap {(smap o p) {{z,2} |z. z € A}, 2}
by (simp add: Setcompr-eg-image smap-un2)
also have ... = smap {(smap o P smap) {{z,2z} |z. z € A}, 2}
by (simp add: local.smap-assoc)
also have ... = smap {smap {smap {z,2} |z. z € A}, z}
by (simp add: Setcompr-eq-image image-image)
also have ... = smap {smap {z |z. © € A}, z}
by (metis h sleg-def)
also have ... = smap ({z |z. x € A} U {z})
by (simp add: smap-un2)
also have ... = smap {z}
by (rule-tac f=smap in arg-cong, auto)
finally show ?thesis
using sleq-def sleg-refl by auto
qged

sublocale smap-Sup-lat: Sup-lattice smap sleq sle
by unfold-locales (simp-all add: sleg-refl sleq-antisym sleg-trans smap-ub smap-lud)

Hence every complete lattice is an Eilenberg-Moore algebra of P.

no-notation Sup (<o)

end

20

4.4 Isomorphism between Kleisli Category and Rel

This is again well known—the isomorphism is essentially curry vs uncurry.
Kleisli arrows are nondeterministic functions; they are also known as state
transformers. Binary relations are very well developed in Isabelle; Kleisli
composition of Kleisli arrows isn’t. Ideally one should therefore use the
isomorphism to transport theorems from relations to Kleisli arrows auto-
matically. I spell out the isomorphisms and prove that the full quantalic
structure, that is, complete lattices plus compositions, is preserved by the
isomorphisms.

abbreviation kzero :: ‘a = b set («{>) where
¢ = (Aza. {})
First I define the morphisms. The second one is nothing but the graph of a
function.
definition r2f :: (‘a x 'b) set = 'a = 'b set (xF>) where
F R = Image R on

definition f2r :: (‘a = b set) = (‘a x 'b) set (\R») where
Rf={(zy). y €[z}

The functors form a bijective pair.

lemma r2f2r-invl [simp]: R o F = id
unfolding f2r-def r2f-def by force

lemma f2r2f-inv2 [simp]: F o R = id
unfolding f2r-def r2f-def by force

lemma 72f-f2r-galois: (R f = R) = (F R = f)
by (force simp: f2r-def r2f-def)

lemma r2f-f2r-galois-var: (R o f = R) = (F o R = f)
by (force simp: f2r-def r2f-def)

lemma r2f-f2r-galois-var2: (f o R = R) = (Ro F = f)
by (metis (no-types, opaque-lifting) comp-id f2r2f-inv2 map-fun-def o-assoc r2f2r-inv1)

lemma r2f-inj: inj F
by (meson inj-on-inversel r2f-f2r-galois)

lemma f2r-inj: inj R
unfolding inj-def using r2f-f2r-galois by metis

lemma r2f-mono:Vfg. Fof=Fog—f=g
by (force simp: fun-eq-iff r2f-def)

lemma f2r-mono:Vfg. Rof=Rog— f=yg
by (force simp: fun-eq-iff f2r-def)

21

lemma r2f-mono-iff: (F o f = F o g) = (f = g)
using r2f-mono by blast

lemma f2r-mono-iff : (Rof=Royg)=(f=g)
using f2r-mono by blast

lemma r2f-inj-iff: (R f =R g) = (f = g)
by (simp add: f2r-inj inj-eq)

lemma f2r-inj-iff: (F R=F S)=(R=25)
by (simp add: r2f-inj inj-eq)

lemma r2f-surj: surj F
by (metis r2f-f2r-galois surj-def)

lemma f2r-surj: surj R
using r2f-f2r-galois by auto

lemma r2f-epi: Vfg. foF=goF — f=g
by (metis r2f-f2r-galois-var2)

lemma f2r-epi:Vfg. foR=goR —f=g
by (metis r2f-f2r-galois-var2)

lemma r2f-epi-iff: (f o F=goF) = (f =g)
using r2f-epi by blast

lemma f2r-epi-iff: (f o R =go R) = (f = g)
using f2r-epi by blast

lemma r2f-bij: bij F
by (simp add: bijl r2f-inj r2f-surj)

lemma f2r-bij: bij R
by (simp add: bij-def f2r-inj f2r-surj)

r2f is essentially curry and f2r is uncurry, yet in Isabelle the type of sets
and predicates (boolean-valued functions) are different. Collect transforms
predicates into sets and the following function sets into predicates:

abbreviation s2p X = (Az. z € X)

lemma r2f-curry: r2f R = Collect o (curry o s2p) R
by (force simp: r2f-def fun-eq-iff curry-def)

lemma f2r-uncurry: f2r f = (Collect o case-prod) (s2p o f)
by (force simp: fun-eq-iff f2r-def)

Uncurry is case-prod in Isabelle.

22

f2r and r2f preserve the quantalic structures of relations and Kleisli arrows.
In particular they are functors.

lemma r2f-comp-pres: F (R; S)=F Rog F S
unfolding fun-eq-iff r2f-def kcomp-def by force

lemma r2f-Id-pres [simp]: F Id = 7
unfolding fun-eq-iff r2f-def by simp

lemma r2f-Sup-pres: Sup-pres F
unfolding fun-eqg-iff r2f-def by force

lemma r2f-Sup-pres-var: F (JR) = (r € R. F r)
unfolding r2f-def by force

lemma r2f-sup-pres: sup-pres F
unfolding r2f-def by force

lemma r2f-Inf-pres: Inf-pres F
unfolding fun-eg-iff r2f-def by force

lemma r2f-Inf-pres-var: F ([|R) = ([|r € R. F r)
unfolding r2f-def by force

lemma r2f-inf-pres: inf-pres F
unfolding r2f-def by force

lemma r2f-bot-pres: bot-pres F
by (metis SUP-empty Sup-empty r2f-Sup-pres-var)

lemma r2f-top-pres: top-pres F
by (metis Sup-UNIV r2f-Sup-pres-var r2f-surj)

lemma r2f-leg: (R C S) = (F R< FS)
by (metis le-iff-sup r2f-f2r-galois r2f-sup-pres)

Dual statements for f2r hold. Can one automate this?

lemma f2r-kcomp-pres: R (f ox) =R f; R g
by (simp add: r2f-f2r-galois T2f-comp-pres pointfree-idE)

lemma f2r-eta-pres [simp]: R n = Id
by (simp add: r2f-f2r-galois)

lemma f2r-Sup-pres:Sup-pres R
by (auto simp: r2f-f2r-galois-var comp-assoc[symmetric] r2f-Sup-pres image-comp)

lemma f2r-Sup-pres-var: R (| |F) = (L |f € F. R f)
by (simp add: r2f-f2r-galois r2f-Sup-pres-var image-comp)

lemma f2r-sup-pres: sup-pres R

23

by (simp add: r2f-f2r-galois r2f-sup-pres pointfree-idE)

lemma f2r-Inf-pres: Inf-pres R
by (auto simp: r2f-f2r-galois-var comp-assoc[symmetric] r2f-Inf-pres image-comp)

lemma f2r-Inf-pres-var: R ([1F) = (Nf € F. R f)
by (simp add: r2f-f2r-galois r2f-Inf-pres-var image-comp)

lemma f2r-inf-pres: inf-pres R
by (simp add: r2f-f2r-galois r2f-inf-pres pointfree-idE)

lemma f2r-bot-pres: bot-pres R
by (simp add: r2f-bot-pres r2f-f2r-galois)

lemma f2r-top-pres: top-pres R
by (simp add: r2f-f2r-galois r2f-top-pres)

lemma f2r-leqg: (f < g)=(RfCRyg)

by (metis r2f-f2r-galois T2f-leq)
Relational subidentities are isomorphic to particular Kleisli arrows.
lemma r2f-Id-onl: F (Id-on X) = (Az. if x € X then {x} else {})

by (force simp add: fun-eq-iff r2f-def Id-on-def)

lemma r2f-Id-on2: F (Id-on X) ok [= (Az. if x € X then f z else {})
unfolding fun-eq-iff Id-on-def r2f-def kcomp-def by auto

lemma r2f-Id-on3: f ox F (Id-on X) = (Az. X N fx)
unfolding kcomp-def r2f-def 1d-on-def fun-eq-iff by auto

4.5 The opposite Kleisli Category

Opposition is funtamental for categories; yet hard to realise in Isabelle in
general. Due to the access to relations, the Kleisli category of the powerset
functor is an exception.

notation converse («<—>)

definition kop :: (Ya = 'b set) = 'b = 'a set (<opk>) where
opg = Fo(—)oR

Kop is a contravariant functor.

lemma kop-contrav: opx (f ox g) = opk g ok opx f
unfolding kop-def r2f-def f2r-def converse-def kcomp-def fun-eq-iff comp-def by
fastforce

lemma kop-func2 [simp]: opx n =1
unfolding kop-def r2f-def f2r-def converse-def comp-def fun-eq-iff by fastforce

24

lemma converse-idem [simp]: () o () = id
using comp-def by auto

lemma converse-galois: (=) o f =g) =((~)og=1Ff)
by auto

lemma converse-galois2: (f o (=) =g) = (g o (=) = f)
apply (simp add: fun-eg-iff)

by (metis converse-converse)

lemma converse-mono-iff: (=)o f=(—)og)=(f=g9g)
using converse-galois by force

lemma converse-epi-iff: (f o (=) =go (=)) = (f = 9)
using converse-galois2 by force

lemma kop-idem [simp]: opx © opx = id
unfolding kop-def comp-def fun-eq-iff by (metis converse-converse id-apply r2f-f2r-galois)

lemma kop-galois: (opx f = g) = (opx g = f)
by (metis kop-idem pointfree-idE)

lemma kop-galois-var: (opx o f = ¢g) = (opx © g = f)
by (auto simp: kop-def f2r-def r2f-def converse-def fun-eq-iff)

lemma kop-galois-var2: (f o opx = g) = (g o opx = f)
by (metis (no-types, opaque-lifting) comp-assoc comp-id kop-idem)

lemma kop-inj: inj opg
unfolding inj-def by (simp add: f2r-inj-iff kop-def r2f-inj-iff)

lemma kop-inj-iff: (opx f = opx g) = (f = g)
by (simp add: inj-eq kop-inj)

lemma kop-surj: surj opg
unfolding surj-def by (metis kop-galois)

lemma kop-bij: bij opk
by (simp add: bij-def kop-inj kop-surj)

lemma kop-mono: (opx o f = opg o g) = (f = g)
by (simp add: fun.inj-map inj-eq kop-inj)

lemma kop-mono-iff: (opx o f = opx o g) = (f = g)
using kop-mono by blast

lemma kop-epi: (f o opxg = g o opx) = (f = g)
by (metis kop-galois-var2)

25

lemma kop-epi-iff: (f o opx = g o opx) = (f = g)
using kop-epi by blast

lemma Sup-pres-kop: Sup-pres opg
unfolding kop-def fun-eq-iff comp-def r2f-def f2r-def converse-def by auto

lemma Inf-pres-kop: Inf-pres opg
unfolding kop-def fun-eq-iff comp-def r2f-def f2r-def converse-def by auto

end

5 State Transformers and Predicate Transformers
Based on the Powerset Monad

theory Kleisli- Transformers

imports Powerset-Monad
Sup-Inf-Preserving- Transformers
begin

5.1 Backward Diamonds from Kleisli Arrows

First I verify the embedding of the Kleisli category of the powerset functor
into its Eilenberg-Moore category. This functor maps sets to their mus and
functions to their Kleisli liftings. But this is just functoriality of dagger!.
I model it as a backward diamond operator in the sense of dynamic logic.
It corresponds to a strongest postcondition operator. In the parlance of
program semantics, this is an embedding of state into prediate transformers.

notation klift (<bdx>)

bd stands for backward diamond, the index indicates the setting of Kleisli
arrows or nondeterministic functions. ifbd is its inverse.

abbreviation ifbd :: (‘a set = 'b set) = 'a = 'b set (<bd” r>) where

bd= 7 = (Ap. ¢ 0 1)

lemma fbd-set: bdr f X ={y. Jz. y € fa ANz € X}
by (force simp: klift-prop)

lemma ifbd-set: bd~r ¢ x = {y. y € ¢ {z}}
by simp

The two functors form a bijective pair.

lemma fbd-ifbd-inv2: Sup-pres ¢ = (bdx o bd™r) ¢ = ¢
proof —

assume h: Sup-pres ¢

have (bdr o bd~) o = Sup o P (p o 1)

26

unfolding klift-def by simp

also have ... = Supo P ¢ o P n
by (simp add: comp-assoc P-funcl)
also have ... = p o Sup o P 1
by (simp add: h)
also have ... = p o id
by force
finally show ?thesis
by simp
qed

lemma fbd-ifbd-inv2-inv: (bdx o bd™) ¢ = ¢ => Sup-pres ¢
unfolding fun-eq-iff comp-def by (metis (no-types, lifting) Inf.INF-cong UN-extend-simps(8)
klift-prop)

lemma fbd-ifbd-inv2-iff: ((bdx o bd~7) ¢ = ¢) = (Sup-pres)
using fbd-ifbd-inv2 fbd-ifbd-inv2-inv by force

lemma fbd-inj: inj bdr
by (meson inj-on-inversel klift-eta-inv1)

lemma fbd-inj-iff: (bdx f = bdx g) = (f = g)
by (meson injD fbd-inj)

lemma ifbd-inj: Sup-pres ¢ => Sup-pres v = bd"r o =bd"F Y = @ =¥
proof—
assume hl: Sup-pres ¢
and h2: Sup-pres ¢
and bd~r ¢ = bd™ £ ¢
hence (bdr o bd~) ¢ = (bdr o bd™) ¢
by simp
thus ?thesis
by (metis h1 h2 fod-ifbd-inv2)
qed

lemma ifbd-inj-iff: Sup-pres ¢ = Sup-pres p = (bd~ 7 ¢ = bd~ 7 ¢) = (¢ =
()
using ifbd-inj by force

lemma fbd-ifbd-galois: Sup-pres ¢ = (bd= 7 ¢ = f) = (bdr [= ¢)
using fbd-ifbd-inv2 by force

lemma fbd-surj: Sup-pres ¢ = (f. bdx [= @)
using fbd-ifbd-inv2 by auto

lemma ifbd-surj: surj bd~ x
unfolding surj-def by (metis klift-eta-invl)

In addition they preserve the Sup-quantale structure of the powerset algebra.

27

This means that morphisms preserve compositions, units and Sups, but not
Infs, hence also bottom but not top.

lemma fbd-comp-pres: bdr (f ox g) = bdr go bdr f
unfolding kcomp-klift klift-prop1 by simp

lemma fbd-Sup-pres: Sup-pres bdr
by (force simp: fun-eq-iff klift-def)

lemma fbd-sup-pres: sup-pres bd
using Sup-sup-pres fod-Sup-pres by blast

lemma fbd-Disj: Sup-pres (bdx f)
by (simp add: fbd-ifbd-inv2-inv)

lemma fbd-disj: sup-pres (bdx f)
by (simp add: klift-prop)

lemma fbd-bot-pres: bot-pres bdr
unfolding klift-def by fastforce

lemma fbd-zero-pres2 [simp]: bdr f {} = {}
by (simp add: klift-prop)

lemma fbd-iso: X C Y — bdr fX Cbdr fY
by (metis fbd-disj le-iff-sup)

The following counterexamples show that Infs are not preserved.
lemma top-pres bd r

oops

lemma inf-pres bd
oops

Dual preservation statements hold for ifbd ... and even Inf-preservation.

lemma ifbd-comp-pres: Sup-pres ¢ => bd~x (p o p) = bd~x ¥ oxg bd~ x ¢
by (smt fbod-ifbd-galois fun.map-comp kcomp-def klift-def)

lemma ifbd-Sup-pres: Sup-pres bd~ r
by (simp add: fun-eq-iff)

lemma ifbd-sup-pres: sup-pres bd~ r
by force

lemma ifbd-Inf-pres: Inf-pres bd~
by (simp add: fun-eq-iff)

lemma ifbd-inf-pres: inf-pres bd~ r
by force

28

lemma ifbd-bot-pres: bot-pres bd~ r
by auto

lemma ifbd-top-pres: top-pres bd~ x
by auto

Preservation of units by the Kleisli lifting has been proved in klift-prop3.

These results estabilish the isomorphism between state and predicate trans-
formers given by backward diamonds. The isomorphism preserves the Sup-
quantale structure, but not Infs.

5.2 Backward Diamonds from Relations

Using the isomorphism between binary relations and Kleisli arrows (or state
transformers), it is straightforward to define backward diamonds from rela-
tions, by composing isomorphisms. It follows that Sup-quantales of binary
relations (under relational composition, the identity relation and Sups) are
isomorphic to the Sup-quantales of predicate transformers. Once again, Infs
are not preserved.

definition rbd :: (‘a x 'b) set = ‘a set = b set (<bdg>) where
bdr = bdr o F

definition irbd :: (‘a set = b set) = (‘a x 'b) set (<bd”gr>) where
bd~r =R o bd™ r

lemma rbd-Im: bdr = (*9)
unfolding rbd-def klift-def r2f-def fun-eq-iff by force

lemma rbd-set: bdr R X = {y. 3z € X. (z,y) € R}
by (force simp: rbd-Im Image-def)

lemma irbd-set: bd~r ¢ = {(z,y). y € (p o n) z}
by (simp add: irbd-def f2r-def o-def)

lemma irbd-set-var: bd~r ¢ = {(2,9). y € ¢ {z}}
by (simp add: irbd-def f2r-def o-def)

lemma rbd-irbd-invl [simp]: bd~r o bdr = id
by (metis (no-types, lifting) comp-eq-dest-lhs eq-id-iff fod-Disj fod-ifbd-galois irbd-def
r2f-f2r-galois rbd-def)

lemma irbd-rbd-inv2: Sup-pres ¢ —> (bdg o bd~r) ¢ = ¢
by (metis comp-apply fod-ifbd-galois irbd-def r2f-f2r-galois rbd-def)

lemma irbd-rbd-inv2-inv: (bdg o bd™R) ¢ = ¢ = Sup-pres ¢
by (simp add: rbd-def irbd-def, metis fbd-Disj)

29

lemma irbd-rbd-inv2-iff: ((bdgr o bd~Rr) ¢ = @) = (Sup-pres)
using irbd-rbd-inv2 irbd-rbd-inv2-inv by blast

lemma rbd-inj: inj bdgr
by (simp add: fbd-inj inj-compose r2f-inj rbd-def)

lemma rbd-translate: (bdgr R = bdgr S) = (R = 9)
by (simp add: rbd-inj inj-eq)

lemma irbd-inj: Sup-pres ¢ = Sup-pres vy = bd g p = bd R Y = @ =V
by (metis rbd-Im comp-eq-dest-lhs irbd-rbd-inv2)

lemma irbd-inj-iff: Sup-pres p = Sup-pres v = (bd"r @ = bd"r V) = (¢ =
¥)
using irbd-inj by force

lemma rbd-surj: Sup-pres ¢ = (I R. bdr R = @)
using irbd-rbd-inv2 by force

lemma irbd-surj: surj bd~ g
by (metis UNIV-I fun.set-map imageE rbd-irbd-invl surj-def surj-id)

lemma rbd-irbd-galois: Sup-pres ¢ = (p = bdgr R) = (R = bd"r ¢)
by (smt comp-apply fbd-ifbd-galois irbd-def r2f-f2r-galois rbd-def)

lemma rbd-comp-pres: bdg (R ; S) = bdr S o bdg R
by (simp add: rbd-def r2f-comp-pres fbd-comp-pres)

lemma rbd-Id-pres: bdgr Id = id
unfolding rbd-def by simp

lemma rbd-Un-pres: Sup-pres bdr
by (simp add: rbd-def Sup-pres-comp fbd-Sup-pres r2f-Sup-pres)

lemma rbd-un-pres: sup-pres bdr
by (simp add: rbd-def fbd-sup-pres r2f-sup-pres)

lemma inf-pres bdgr
oops

lemma rbd-disj: Sup-pres (bdr R)
by (simp add: rbd-def fbd-Disj)

lemma rbd-disj2: sup-pres (bdr R)
by (simp add: Image-Un rbd-Im)

lemma rbd-bot-pres: bot-pres bdr
by (simp add: fbd-bot-pres r2f-bot-pres rbd-def)

30

lemma rbd-zero-pres2 [simp: bdr R {} = {}
by (simp add: rbd-Im)

lemma rbd-univ: bdg R UNIV = Range R
unfolding rbd-def fun-eq-iff klift-def r2f-def by force

lemma rbd-iso: X C Y — bdr RX Cbdr RY
by (metis le-iff-sup rbd-disj2)

lemma irbd-comp-pres: Sup-pres ¢ => bd g (p o) =bd " r ¥ ; bd R ¢
by (simp add: ifbd-comp-pres f2r-kcomp-pres irbd-def)

lemma irbd-id-pres [simp]: bd~r id = Id
unfolding irbd-def by simp

lemma irbd-Sup-pres: Sup-pres bd~r
by (simp add: irbd-def Sup-pres-comp ifbd-Sup-pres f2r-Sup-pres)

lemma irbd-sup-pres: sup-pres bd~ g
by (simp add: irbd-def ifbd-sup-pres f2r-sup-pres)

lemma irbd-Inf-pres: Inf-pres bd—r
by (auto simp: fun-eq-iff irbd-def f2r-def)

lemma irbd-inf-pres: inf-pres bd~ g
by (auto simp: fun-eq-iff irbd-def f2r-def)

lemma irbd-bot-pres: bot-pres bd—r
by (metis comp-def ifbd-bot-pres f2r-bot-pres irbd-def)

This shows that relations are isomorphic to disjunctive forward predicate
transformers. In many cases Isabelle picks up the composition of morphisms
in proofs.

5.3 Forward Boxes on Kleisli Arrows

Forward box operators correspond to weakest liberal preconditions in pro-
gram semantics. Here, Kleisli arrows are mapped to the opposite of the
Eilenberg-Moore category, that is, Inf-lattices. It follows that the Inf-quantale
structure is preserved. Modelling opposition is based on the fact that Kleisli
arrows can be swapped by going through relations.
definition ffb :: (‘a = 'b set) = 'b set = 'a set (<fbr») where

for = O o bdr o opk

Here, Or is map-dual, which amounts to De Morgan duality. Hence the
forward box operator is obtained from the backward diamond by taking

31

the opposite Kleisli arrow, applying the backward diamond, and then De
Morgan duality.

lemma [fb-prop: for f = 0 o bdr (opk f) o 0
by (simp add: [fb-def map-dual-def)

lemma [fb-prop-var: for f = uminus o bdr (opk f) o uminus
by (simp add: dual-set-def ffb-prop)

lemma ffb-fod-dual: & o for f = bdx (opx f) o O
by (simp add: [fb-prop o-assoc)

I give a set-theoretic definition of iffb, because the algebraic one below de-
pends on Inf-preservation.

definition iffb :: ('b set = 'a set) = 'a = 'b set (<fb”) where
Br o = (o N{X. o € p X})

lemma ffb-set: for f = (A\Y. {z. fz C Y}
by (force simp: fun-eq-iff ffo-prop-var kop-def klift-def f2r-def r2f-def)

Forward boxes and backward diamonds are adjoints.

lemma ffb-fbod-galois: (bdx f) 4 (for f)
unfolding adj-def ffb-set klift-prop by blast

lemma iffb-invl: fb~ o for = id
unfolding fun-eg-iff ffbo-set iffo-def by force

lemma iffo-inv2-auz: Inf-pres o = [|[{X. 2 € p X} C Y =z€cp Y
proof—
assume Inf-pres ¢
and hl: [|[{X. 2€p X} C Y
hence h2: VX. ¢ ([1X) = (Nz € X. ¢)
by (metis comp-eq-dest)
hence p [[{X.2€9p X}) Cp Y
by (metis h1 INF-lower2 cInf-eq-minimum mem-Collect-eq order-refl)
hence ([[{o X [X.z€ 9 X}) Cp Y
by (metis h2 setcompr-eq-image)
thus ?thesis
by (force simp add: subset-iff)
qed

lemma iffb-inv2: Inf-pres ¢ = (for o b~) p = ¢
proof—
assume h: Inf-pres ¢
{fix Y
have (for o fo=r) o Y ={z. [|[{X. 2 € ¢ X} C YV}
by (simp add: ffb-set iffb-def)
hence Az. 2 € (forofor) p VY +—[|{X.2€p X} C Y
by auto

32

hence Az.z € (forofo") p Y +—z€ 0 Y
by (auto simp: h iffb-inv2-aux)
hence (for ofb" 7)YV =¢p Y
by (simp add: fun-eq-iff set-eq-iff)}
thus ?thesis
unfolding fun-eq-iff by simp
qed

lemma iffb-inv2-inv: (for o fo~) ¢ = ¢ = Inf-pres ¢
by (auto simp: fun-eq-iff ffb-set iffb-def)

lemma iffbo-inv2-iff: ((for o fo~) ¢ =) = (Inf-pres @)
using iffb-inv2 iffb-inv2-inv by blast

lemma [ffb-inj: inj for
unfolding inj-def by (metis iffb-invl pointfree-idE)

lemma ffb-inj-iff: (for f = for g) = (f = g)
by (simp add: [fb-inj inj-eq)

lemma ffb-iffb-galois: Inf-pres ¢ = (fo"r ¢ = f) = (for f = ¢)
using ffb-inj-iff iffb-inv2 by force

lemma iffb-inj: Inf-pres ¢ = Inf-pres v = fo"r p =" rp = p =1
by (metis [fo-iffb-galois)

lemma iffo-inj-iff: Inf-pres ¢ = Inf-pres v = (fo" 7 p = o= ¥) = (¢ =)
using iffb-inj by blast

lemma ffb-surj: Inf-pres ¢ = (3f. for f = v)
using iffb-inv2 by auto

lemma iffb-surj: surj fo~ x
using surj-def by (metis comp-apply iffb-invl surj-id)

This is now the explicit "definition" of iffb, for Inf-preserving transformers.

lemma iffb-ifbd-dual: Inf-pres ¢ = fo~x p = (opk o bd~ 7 0 OF) ¢
proof—
assume h: Inf-pres ¢
{fix
have (o7 ¢ = f) = ((Or o bdr o opk) [= ¢)
by (simp add: ffo-def [fb-iffb-galois h)
also have ... = (opg f = (bd~ 7 0 OF))
by (metis (mono-tags, lifting) comp-apply map-dual-dual ffo-def ffo-surj h
klift-eta-invl map-dual-dual)
finally have (fb~x ¢ = f) = (f = (opx 0 bd~ 7 0 OF) @)
using kop-galois by auto}
thus ?thesis
by blast

33

qed

lemma fbd-ffbo-dual: O o fbr o opx = bdx
proof—
have Or o fbr o opx = Op o OF o bdx o (opx © 0pK)
by (simp add: comp-def [fb-def)
thus ¢thesis
by simp
qed

lemma ffbd-ffb-dual-var: @ o bdr f = fbor (opx f) o O
by (metis [fo-prop fun-duall kop-galois)

lemma ifbd-iffb-dual: Sup-pres ¢ = bd~r ¢ = (opx o fob~x 0 Op) p
proof—
assume h: Sup-pres
hence Inf-pres (O ¢)
using Sup-pres-Inf-pres by blast
hence (opx o fb~r 0 dp) ¢ = (opk © (opx © bd~x 0 Op) o Op) ¢
by (simp add: iffb-ifbd-dual)
thus ?thesis
by (metis comp-def kop-galois map-dual-dual)
qed

lemma ffb-kcomp-pres: for (f ox g) = for f o for g
proof—
have fbor (f ox g) = Or (bdr (opx (f oK 9)))
by (simp add: ffb-def)

also have ... = 0p (bdr (0opx g ok opk f))
by (simp add: kop-contrav)
also have ... = dp (bdr (opk f) o bdx (opx g))

by (simp add: fbd-comp-pres)
also have ... = 9p (bdx (opk f)) o Or (bdx (opk 9))
by (simp add: map-dual-funcl)
finally show ?thesis
by (simp add: ffb-def)
qed

lemma ffb-eta-pres: for n = id
unfolding ffb-def by simp

lemma [ffb-Sup-dual: Sup-dual for
unfolding ffbo-prop-var comp-def fun-eq-iff klift-prop kop-def f2r-def r2f-def con-
verse-def by fastforce

lemma ffb-Sup-dual-var: for (JF) = (1f € F. for f)
unfolding ffbo-prop-var comp-def fun-eq-iff klift-prop kop-def f2r-def r2f-def con-
verse-def by fastforce

34

lemma [ffb-sup-dual: sup-dual fbr
using ffb-Sup-dual Sup-sup-dual by force

lemma ffb-zero-dual: for ¢ = (AX. UNIV)
unfolding ffbo-prop-var kop-def klift-prop fun-eq-iff f2r-def r2f-def by simp

lemma inf-dual ffb
oops

Once again, only the Sup-quantale structure is preserved.

lemma iffb-comp-pres:
assumes Inf-pres ¢
assumes Inf-pres
shows fb~ 5 (p 0 ¢) = fb"F ¢ ok fo" 5 ¢
by (metis assms Inf-pres-comp [fb-iffb-galois ffb-kcomp-pres)

lemma iffb-id-pres: fo~ r id = n
unfolding iffb-def by force

lemma iffb-Inf-dual:
assumes V¢ € ¢. Inf-pres ¢
shows (fo"r o Inf) & = (Supo P fo~x) @
proof—
have Inf-pres ([®)
using Inf-pres-Inf assms by blast
hence (fi o fi7) ([19) = [1(P (for o o~ 7) @)
by (metis (mono-tags, lifting) INF-cong INF-identity-eq assms iffb-inv2)
hence (fbor o b~) ([1®) = for (U(P fo"F ®))
by (simp add: Setcompr-eq-image [fb-Sup-dual-var image-comp)
thus ?thesis
by (simp add: ffo-inj-iff)
qed

lemma iffb-Sup-dual: Sup-dual fo~
by (auto simp: iffb-def fun-eq-iff)

lemma iffb-inf-dual:
assumes Inf-pres ¢
and Inf-pres ¢
shows 07 (¢ M) = fo"Fr o U o779
proof —
have f1: ¢ M = for (o~ 7) N for (fo~F)
using assms iffb-inv2 by fastforce
have ¢ M ¢ o Inter = Inter o P (¢ M 1))
using assms Inf-pres-inf by blast
thus ?thesis
by (simp add: f1 ffo-iffb-galois ffb-sup-dual)
qed

35

lemma iffb-sup-dual: fo-x (p U Y) = o~ r N oz ¢
unfolding iffb-def by fastforce

lemma iffb-top-pres [simpl: fo"x T =
unfolding iffb-def by simp

This establishes the duality between state transformers and weakest liberal
preconditions.

5.4 Forward Box Operators from Relations

Once again one can compose isomorphisms, linking weakest liberal precon-
ditions with relational semantics. The isomorphism obtained should by now
be obvious.

definition /b :: (‘a x 'b) set = 'b set = 'a set (<fbr>) where
for = for o F

definition irfb :: ('b set = 'a set) = ('a x 'b) set (<fb”r») where
forr =TRo fo"F

lemma 7fb-rbd-dual: fbr R = Op (bdr (R71))
by (simp add: rfb-def rbd-def kop-def ffo-def, metis r2f-f2r-galois)

lemma rbd-rfb-dual: bdr R = 0r (for (R71))
by (simp add: rfb-def rbd-def kop-def [fbo-def, metis converse-converse map-dual-dual
r2f-f2r-galois)

lemma irfb-irbd-dual: Inf-pres ¢ = fo"r o = ((~) 0o bd"r © JF) ¢
by (simp add: irfo-def irbd-def iffb-ifbd-dual kop-def r2f-f2r-galois)

lemma irbd-irfb-dual: Sup-pres p = bd~r ¢ = ((~) o fo~r 0 OF) ¥
by (simp add: irfbo-def irbd-def ifbd-iffb-dual kop-def r2f-f2r-galois)

lemma rfb-set: for RY = {z. Vy. (z,y) e R — y € Y}
unfolding rfb-def ffo-prop-var comp-def klift-def f2r-def r2f-def kop-def by force

lemma rfb-rbd-galois: (bdg R) 4 (fbor R)
by (simp add: ffb-fbd-galois rbd-def rfb-def)

lemma irfbo-set: for g ¢ ={(z, y). VY. 2 €90 VY — ye€ Y}
by (simp add: irfo-def iffb-def f2r-def)

lemma irfb-invl [simpl: fo~r o for = id
by (simp add: fun-eq-iff rfo-def irfo-def iffo-inv1 pointfree-idE)

lemma irfb-inv2: Inf-pres ¢ = (fbr o b~ R) p = ¢
by (simp add: rfb-def irfb-def, metis ffb-iffb-galois r2f-f2r-galois)

36

lemma rfb-inj: inj for
by (simp add: rfb-def ffo-inj inj-compose r2f-inj)

lemma rfb-inj-iff: (for R = for S) = (R=19)
by (simp add: rfb-inj inj-eq)

lemma irfb-inj: Inf-pres ¢ = Inf-pres) = for p=for v = p =1
unfolding irfbo-def using iffb-inj r2f-inj-iff by fastforce

lemma irfo-inf-iff: Inf-pres ¢ = Inf-pres p = (fo"r ¢ = for V) = (¢ = ¥)
using irfb-inj by auto

lemma rfb-surj: Inf-pres ¢ = (IR. for R =)
using irfb-inv2 by fastforce

lemma irfb-surj: surj fb~r
by (simp add: irfo-def comp-surj f2r-surj iffo-surj cong del: image-cong-simp)

lemma 7fb-irfbo-galois: Inf-pres ¢ = (fb"r ¢ = R) = (fbr R = ¢)
by (simp add: irfo-def rfb-def, metis ffb-iffb-galois r2f-f2r-galois)

lemma rfb-comp-pres: for (R; S) = fog Ro fbg S
by (simp add: [fb-kcomp-pres r2f-comp-pres rfb-def)

lemma rfb-Id-pres [simp]: for Id = id
unfolding rfb-def ffb-prop by force

lemma rfbo-Sup-dual: Sup-dual for
proof—
have fbr o u = fbr o F o Sup
by (simp add: rfb-def)
also have ... = fbr o Sup o P F
by (metis fun.map-comp r2f-Sup-pres)
also have ... = Inf o P for o P F
by (simp add: f[fb-Sup-dual)
also have ... = Inf o P (fbr o F)
by (simp add: P-funcl comp-assoc)
finally show ?thesis
by (simp add: rfb-def)
qed

lemma rfb-Sup-dual-var: for (| |p) =[] (P for) ¢
by (meson comp-eq-dest rfb-Sup-dual)

lemma rfb-sup-dual: sup-dual for
by (simp add: rfbo-def ffo-sup-dual r2f-sup-pres)

lemma inf-dual for
oops

37

lemma 7fb-Inf-pres: Inf-pres (for R)
unfolding rfb-def ffo-prop-var comp-def fun-eq-iff klift-def kop-def f2r-def r2f-def
converse-def by auto

lemma rfb-inf-pres: inf-pres (for R)
unfolding rfb-def ffo-prop-var comp-def fun-eq-iff klift-def kop-def f2r-def r2f-def
converse-def by auto

lemma rfb-zero-pres [simpl: for {} X = UNIV
unfolding rfb-def ffbo-prop-var comp-def fun-eq-iff klift-def kop-def f2r-def r2f-def

converse-def by auto

lemma rfb-zero-pres2 [simpl: for R {} = — Domain R
unfolding rfb-def ffo-prop-var comp-def fun-eq-iff klift-def kop-def f2r-def r2f-def
converse-def by auto

lemma rfbo-univ [simp): for R UNIV = UNIV
unfolding rfb-def ffo-prop-var comp-def fun-eq-iff klift-def kop-def f2r-def r2f-def
converse-def by auto

lemma rfb-iso: X C Y = for RXC for RY
unfolding rfb-def ffo-prop-var comp-def fun-eq-iff klift-def kop-def f2r-def r2f-def
converse-def by auto

lemma irfb-comp-pres:
assumes Inf-pres ¢
assumes Inf-pres 1
shows fo™r (po) =forr @ TR Y
by (metis assms rfb-Inf-pres rfb-comp-pres rfb-irfb-galois)

lemma irfb-id-pres [simpl: fo~r id = Id
by (simp add: rfb-irfb-galois)

lemma irfb-Sup-dual: Sup-dual b~
by (auto simp: fun-eq-iff irfbo-def iffo-def f2r-def)

lemma irfb-Inf-dual:
assumes V¢ € ®. Inf-pres ¢
shows (fb~r o Inf) ® = (Supo P fo™r) ®
proof—
have Inf-pres ([®)
using Inf-pres-Inf assms by blast
hence (for o fo =) ([1®) =[](P (for o fb~r) D)
by (smt INF-identity-eq Sup.SUP-cong assms irfb-inv2)
also have ... = [](P for (P o~ @))
by (simp add: image-comp)
also have ... = fog (L|(P fo~r ®))
by (simp add: rfb-Sup-dual-var)

38

finally have (for o fo"=) ([1®) = for (U(P o~ = @)).
thus ¢thesis
by (simp add: rfb-inj-iff)
qed

lemma irfb-sup-dual: sup-dual fb~ g
by (force simp: fun-eq-iff irfb-def iffo-def f2r-def)

lemma irfb-inf-dual:
assumes Inf-pres ¢
and Inf-pres ¢
shows fo"r (p M Y) =forr U o R ¥
by (metis assms rfb-Inf-pres rfb-irfb-galois rfb-sup-dual)

lemma irfb-top-pres [simp]: bd~ g T = UNIV
unfolding irbd-def f2r-def by auto

Finally, the adjunctions between the predicate transformers considered so
far are revisited.
lemma ffb-fbd-galois-var: (bdx fX C V)= (X C for fY)

by (meson adj-def ffb-fbd-galois)

lemma rfb-rbd-galois-var: (bdg RX CY)=(XC for R Y)
by (meson adj-def rfb-rbd-galois)

lemma ffo-fod: for fY = J{X. bdr fX C Y}
using ffb-fbd-galois-var by fastforce

lemma rfb-rbd: for R Y = |J{X. bdg R X C Y}
using rfb-rbd-galois-var by fastforce

lemma fbd-ffo: bdr f X = {Y. X C for f Y}
using ffb-fbd-galois-var by fastforce

lemma rbd-rfb: bdg R X = {Y. X C for R Y}
using rfb-rbd-galois-var by fastforce

5.5 The Remaining Modalities

Finally I set up the remaining dual transformers: forward diamonds and
backward boxes. Most properties are not repeated, only some symmetries
and dualities are spelled out.

First, forward diamond operators are introduced, from state transformers
and relations; together with their inverses.

definition ffd :: (‘a = 'b set) = 'b set = 'a set («fdF>) where
fd]: = bd]: O OPK

39

definition iffd :: (b set = 'a set) = 'a = 'b set (<fd~ r») where
fd~F = opk o bd”

definition rfd :: (‘a x 'b) set = 'b set = 'a set («fdr>) where
flr = fdr o F

definition irfd :: ('b set = 'a set) = (‘a x 'b) set («fd~r>) where
J&"r =R o fd"

Second, I introduce forward boxes and their inverses.

definition fbob :: (Ya = b set) = 'a set = 'b set (<bbr>) where
bbr = fbr o opx

definition ifbb :: (‘a set = 'b set) = ‘a = 'b set (<bb” x>) where
bb~F = opi o fb F

definition rbb :: (a x 'b) set = 'a set = 'b set (<bbg>) where
bbr = bbr o F

definition irbb :: ('a set = b set) = (‘a x 'b) set (<bb”r») where
bb_R = R o bb_]:

Forward and backward operators of the same type (box or diamond) are
related by opposition.

lemma rfd-rbd: fdg = bdr o (~)
by (simp add: rfd-def rbd-def ffd-def kop-def comp-assoc)

lemma irfd-irbd: fd-r = (=) o bd™ g
by (simp add: irfd-def iffd-def kop-def irbd-def comp-assoc[symmetric])

lemma fbd-ffd: bdr = fdr o opg
by (simp add: [fd-def kop-def converse-def f2r-def r2f-def klift-def fun-eq-iff)

lemma rbb-rfb: bbr = for o (=)
by (simp add: rfb-def rbb-def, metis fob-def kop-def r2f-f2r-galois-var2 rewriteR-comp-comp2)

lemma irbb-irfb: bb~x = (=) o b~ x
proof—
have bb™r = R o opx o fb~ r
by (simp add: irbb-def ifbb-def o-assoc)
also have ... = Ro Fo(—)oRo fbo" x
by (simp add: kop-def o-assoc)
also have ... = (—) o fb™r
by (simp add: comp-assoc irfb-def)
finally show ?thesis.
qed

Complementation is a natural isomorphism between forwards and backward
operators of different type.

40

lemma ffd-ffb-demorgan: 0 o fdr f = for f o 0
by (simp add: comp-assoc [fb-prop [fd-def)

lemma iffd-iffb-demorgan: Sup-pres ¢ = fd~r ¢ = (fb~ 7 0 OF) ¢
by (smt Sup-pres-Inf-pres comp-apply iffbo-ifbd-dual iffd-def map-dual-dual)

lemma [ffb-ffd-demorgan: O o for f = fdr f o 0
by (simp add: [fbo-prop ffd-def rewriteL-comp-comp)

lemma iffv-iffd-demorgan: Inf-pres p = fo~r ¢ = (fd~x 0 Ip) ¢
by (simp add: iffb-ifbd-dual iffd-def)

lemma rfd-rfb-demorgan: 0 o fdr R = fog R o 0
by (simp add: rfb-def rfd-def ffd-ffb-demorgan)

lemma irfd-irfb-demorgan: Sup-pres p = fd"r ¢ = (fb"r 0 OF) @
by (simp add: irfo-def irfd-def iffd-iffb-demorgan)

lemma rfbo-rfd-demorgan: 0 o for R = fdr R o 0
by (simp add: ffb-ffd-demorgan rfo-def rfd-def)

lemma irfb-irfd-demorgan: Inf-pres ¢ = fo"r ¢ = (fd"r 0 OF) ¢
by (simp add: irfo-irbd-dual irfd-irbd)

lemma fbd-fbb-demorgan: 0 o bdx f = bbr f o O
by (simp add: fob-def fod-ffd ffd-ffb-demorgan)

lemma ifbd-ifbb-demorgan: Sup-pres ¢ = bd~x ¢ = (bb~™x 0 Op) ¢
by (simp add: ifbd-iffb-dual ifbb-def)

lemma fbb-fbd-demorgan: 0 o bbr R = bdr R o 0
by (simp add: fbb-def fbd-ffd ffb-ffd-demorgan)

lemma ifbb-ifbd-demorgan: Inf-pres ¢ = bb~x ¢ = (bd~x 0 OF) ¢
proof—
assume h: Inf-pres ¢
have bb~r ¢ = (opk o fb" 5)
by (simp add: ifbb-def)

also have ... = (opx o opx o bd™) (OF @)
by (metis comp-apply h iffbo-ifbd-dual)
also have ... = (bd"x 0 JF) ¢
by auto
finally show %thesis.
qed

lemma rbd-rbb-demorgan: 9 o bdg R = bbr R o 0
by (simp add: rbb-def rbd-def fbd-fob-demorgan)

lemma irbd-irbb-demorgan: Sup-pres ¢ = bd"r ¢ = (bb™r 0 OF) ¢

41

by (simp add: irbb-irfb irbd-irfb-dual)

lemma rbb-rbd-demorgan: 9 o bbr R = bdgr R o 0
by (simp add: rbb-def rbd-def fbb-fbd-demorgan)

lemma irbb-irbd-demorgan: Inf-pres p = bb"r ¢ = (bd"r 0 OF) ¢
by (simp add: irbb-def irbd-def ifbb-ifbd-demorgan)

Further symmetries arise by combination.

lemma [fd-fbb-dual: 0 o fdr f = bbr (opk f) 0 O
by (simp add: fbd-fob-demorgan ffd-def)

lemma iffd-ifbb-dual: Sup-pres ¢ = fd~x ¢ = (opg 0 bb~ 7 0 Ip) p
by (simp add: ifbd-ifbb-demorgan iffd-def)

lemma fbb-ffd-dual: 0 o bbr f = fdr (opk f) 0 0
by (simp add: fbd-ffd fbb-fbd-demorgan)

lemma ifbb-iffd-dual: Inf-pres ¢ => bb~ 7 ¢ = (opk © fd~x o OF) ¢
by (simp add: ifbb-def iffb-iffd-demorgan)

lemma 7fd-rbb-dual: 0 o fdr R = bbr (R™') 0 0
by (metis fun-duall map-dual-def rbd-rbb-demorgan rfbo-rbd-dual rfd-rfb-demorgan)

lemma ifd-ibb-dual: Sup-pres p = fd~r ¢ = ((=) 0o bb~r 0 OF) @
by (simp add: irbb-irfb irbd-irfb-dual irfd-irbd)

lemma rbb-rfd-dual: 0 o bbg R = fdr (R™') 0 0
by (simp add: rbb-rfb rfbo-rfd-demorgan)

lemma irbb-irfd-dual: Inf-pres ¢ = bb"r ¢ = ((~) o fd"r 0 OF) ¢
by (simp add: irbb-irfb irfb-irbd-dual irfd-irbd)

lemma ffd-iffd-galois: Sup-pres ¢ = (¢ = fdr f) = (f = fd~ 7)
unfolding ffd-def iffd-def by (metis comp-apply fod-surj klift-eta-inv1 kop-galois)

lemma rfd-irfd-galois: Sup-pres ¢ = (¢ = fdgr R) = (R = fd~r @)
unfolding irfd-def rfd-def by (metis comp-apply ffd-iffd-galois r2f-f2r-galois)

lemma fbb-ifbb-galois: Inf-pres ¢ = (o = bbr f) = (f = bb~ 7)
unfolding fbb-def iffb-def by (metis (no-types, lifting) comp-apply ffo-iffb-galois
ifbb-ifbd-demorgan iffb-ifbd-dual kop-galois)

lemma rbb-irbb-galois: Inf-pres ¢ = (¢ = bbgr R) = (R =bb"xr ¢)
apply (simp add: rbb-def irbb-def) using fbb-ifbb-galois r2f-f2r-galois by blast

Next I spell out the missing adjunctions.

lemma ffd-ffb-adj: fdr f 4 bbr f
by (simp add: fbb-def [fb-fbod-galois ffd-def)

42

lemma [fd-fbb-galois: (fdr fX CY)=(X Cbbr fY)
by (simp add: fbb-def ffb-fod-galois-var ffd-def)

lemma rfd-rfo-adj: fdg f - bbr f
by (simp add: [fd-ffb-adj rbb-def rfd-def)

lemma rfd-rbb-galois: (fi(r R X C Y)=(X Cbbgr RY)
by (simp add: ffd-fbb-galois rbb-def rfd-def)

Finally, forward and backward operators of the same type are linked by
conjugation.

lemma ffd-fbd-conjugation: (fdr fXNY ={}) = (X nNnbdr fY ={})
proof—
have (fir fXNY ={}) = (fdr fX C -Y)
by (simp add: disjoint-eq-subset-Compl)
also have ... = (X C bbr f (-Y))
by (simp add: ffd-fbb-galois)
also have ... = (X N — bbr f (-Y) ={})
by (simp add: disjoint-eq-subset-Compl)
also have ... = (X N0 (bbr f (O Y)) ={})
by (simp add: dual-set-def)
finally show ?thesis
by (metis (no-types, opaque-lifting) comp-apply fbb-fbd-demorgan invol-dual-var)
qed

lemma rfd-rbd-conjugation: ((fdg RX)NY ={}) =(XNn(bdg RY)={})
by (simp add: rbd-def rfd-def ffd-fbd-conjugation)

lemma ffb-fbb-conjugation: ((for fX)U Y = UNIV) = (X U (bbr fY) = UNIV)

proof—

have ((for fX) U Y = UNIV) = (=Y C for £ X)
by blast

also have ... = (bdr f (0 Y) C X)
by (simp add: [fb-fbd-galois-var dual-set-def)

also have ... = (9 (bbr f Y) C X)
by (metis comp-def fbb-fbd-demorgan)

also have ... = (X U (bbr f Y) = UNIV)

by (metis compl-le-swap2 dual-set-def sup-shunt)
finally show ?thesis.
qed

lemma 7fb-rbb-conjugation: ((fbx R X) U Y = UNIV) = (X U (bbg RY) =
UNIV)
by (simp add: rfbo-def rbb-def [fbo-fbb-conjugation)

end

43

6 The Quantaloid of Kleisli Arrows

theory Kleisli-Quantaloid

imports Kleisli- Transformers
begin

This component formalises the quantalic structure of Kleisli arrows or state
transformers, that is, the homset of the Kleisli category. Of course, by the
previous isomorphisms, this is reflected at least partially in the Eilenberg-
Moore algebras, via the comparison functor. The main result is that Kleisli
arrows form a quantaloid, hence essentially a typed quantale. Some em-
phasis is on the star. This component thus complements that in which
the quantaloid structure of Sup- and Inf-preserving transformers has been
formalised.

The first set of lemmas shows that Kleisli arrows form a typed dioid, that
is, a typed idempotent semiring.
lemma ksup-assoc: ((f::'a = b set) Ug) U h=fU(gUh)

unfolding sup.assoc by simp

lemma ksup-comm: (f::’"a => b set) U g=gU f
by (simp add: sup.commute)

lemma ksup-idem [simp]: (f::'a = 'b set) U f = f
by simp

lemma kcomp-distl: f o (9 U h) = (f ox g) U (f ok h)
unfolding kcomp-klift fun-eq-iff comp-def sup-fun-def by (simp add: UN-Un-distrib
Kklift-prop)

lemma kcomp-distr: (f U g) ox h = (f ox h) U (g ok h)
by (simp add: kcomp-klift fun-eq-iff klift-def)

lemma ksup-zerol [simp]: (U f = f
by force

lemma ksup-annil [simp]: (o f = ¢
by (force simp: kcomp-klift klift-def)

lemma ksup-annir [simp]: f ox (= ¢

by (force simp: kcomp-klift klift-def)
Associativity of Kleisli composition has already been proved.
The next laws establish typed quantales — or quantaloids.

lemma kSup-distl: f o (| |G) = (| |g € G. f ok g)
proof—

have f ox (|| G) = ((klift o Sup) G) o f

44

by (simp add: kcomp-klift)

also have ... = (| g € G. (klift g)) o f
by (simp add: fbd-Sup-pres fun-eq-iff)

also have ... = (| |g € G. (klift g) o f)
by auto

finally show ?thesis
by (simp add: kcomp-klift)

qed

lemma kSup-distr: (| |F) ox g= (LIf € F. f ok g)
unfolding kcomp-klift fun-eq-iff comp-def by (simp add: klift-prop)

lemma kcomp-isol: f < g = hog f < hogyg
by (force simp: kcomp-klift le-fun-def klift-def)

lemma kcomp-isor: f < g = fox h< gogx h
by (force simp: kcomp-klift le-fun-def klift-def)

6.1 Kleene Star

The Kleene star can be defined in any quantale or quantaloid by iteration.
For Kleisli arrows, laws for the star can be obtained via the isomorphism to
binary relations, where the star is the reflexive-transitive closure operation.

abbreviation kpower = kmon.power

lemma r2f-pow: F (R ~ i) = kpower (F R) i
by (induct i, simp, metis power.power.power-Suc r2f-comp-pres relpow.simps(2)
relpow-commute)

lemma f2r-kpower: R (kpower fi) = (R f) " i
by (induct i, simp, metis f2r2f-inv2 pointfree-idE r2f2r-invl r2f-pow)

definition kstar f = (| | 4. kpower f i)

lemma r2f-rtrancl-hom: F (rtrancl R) = kstar (F R)
proof—
have F (rtrancl R) = F (Ji. R " 1)
by (simp add: full-SetCompr-eq rtrancl-is- UN-relpow)
also have ... = (| |i. kpower (F R) i)
by (auto simp: r2f-Sup-pres-var r2f-pow)
finally show ?thesis
by (simp add: kstar-def)
qed

lemma r2f-rtrancl-hom-var: F o rtrancl = kstar o F
by standard (simp add: r2f-rtrancl-hom)

lemma f2r-kstar-hom: R (kstar f) = rtrancl (R f)
by (metis r2f-f2r-galois r2f-rtrancl-hom)

45

lemma f2r-kstar-hom-var: R o kstar = rtrancl o R
by standard (simp add: f2r-kstar-hom)

lemma kstar-unfoldl-eq: n U f o kstar f = kstar f
proof —
have R (kstar f) = (R n) U(R f)* ; R f
using f2r-kstar-hom rtrancl-unfold
by (metis f2r-eta-pres)
thus %thesis
by (metis f2r-kcomp-pres f2r-kstar-hom f2r-sup-pres r2f-inj-iff r-comp-rtrancl-eq)
qed

lemma kstar-unfoldl: n U f ox kstar f < kstar f
by (simp add: kstar-unfoldl-eq)

lemma kstar-unfoldr-eq: n U (kstar f) ox f = kstar f
by (metis (no-types) f2r2f-inv2 f2r-kcomp-pres f2r-kstar-hom kstar-unfoldi-eq
pointfree-idE r-comp-rirancl-eq)

lemma kstar-unfoldr: n U (kstar f) ox f < kstar f
by (simp add: kstar-unfoldr-eq)

Relational induction laws seem to be missing in Isabelle Main. So I derive
functional laws directly.

lemma kpower-inductl: f o g < g = kpower fi o g < g
by (induct i, simp-all add: kcomp-assoc kcomp-isol order-subst2)

lemma kpower-inductl-var: h U f o g < g = kpower fioxg h < g
proof —
assume hi: hU foxg g<gyg
then have h2: fox g < g
using le-sup-iff by blast
have h < g
using hl by simp
then show ?thesis
using h2 kcomp-isol kpower-inductl order-trans by blast
qged

lemma kstar-inductl: h U f oy g < g = kstar f ox h < g
apply (simp add: kstar-def kSup-distr, rule Sup-least)
using kpower-inductl-var by fastforce

lemma kpower-inductr: g ox f < g = g ok kpower fi < g
apply (induct i, simp-all)

by (metis (mono-tags, lifting) dual-order.trans kcomp-assoc kcomp-isor)

lemma kpower-inductr-var: h U g o f < g = h og kpower fi < g
by (metis (no-types) dual-order.trans kcomp-isor kpower-inductr le-sup-iff)

46

lemma kstar-inductr: h U g o f < g = h og kstar f < g
apply (simp add: kstar-def kSup-distl, rule Sup-least)
using kpower-inductr-var by fastforce

lemma kpower-prop: f < n = kpower fi < n
by (metis kcomp-idl kpower-inductr)

lemma kstar-prop: f < n = kstar f <n
by (simp add: SUP-le-iff kpower-prop kstar-def)

6.2 Antidomain

Next I define an antidomain operation and prove the axioms of antidomain
semirings [5, 3].
definition kad f = (\z. if (fz = {}) then {z} else {})
definition ad-rel R = {(z,z) |z. -(3y. (z,y) € R)}
lemma f2r-ad-fun-hom: R (kad f) = ad-rel (R f)
apply (simp add: kad-def ad-rel-def f2r-def, safe)
by simp-all (meson empty-iff singletonD)

lemma f2r-ad-fun-hom-var:R o kad = ad-rel o R
by standard (simp add: f2r-ad-fun-hom)

lemma r2f-ad-rel-hom: F (ad-rel R) = kad (F R)
by (force simp add: kad-def ad-rel-def r2f-def fun-eq-iff)

lemma r2f-ad-rel-hom-var:F o ad-rel = kad o F
by standard (simp add: r2f-ad-rel-hom)

lemma ad-fun-asi [simp]: (kad f) ox f = ¢
by (simp add: kad-def kcomp-def fun-eq-iff)

lemma ad-fun-as2 [simp]: kad (f ok g) U kad (f ok kad (kad g)) = kad (f ok
kad (kad g))
by (force simp: kad-def kcomp-def fun-eq-iff)

lemma ad-fun-as8 [simp]: kad (kad f) U kad f = n
by (simp add: kad-def fun-eg-iff)

definition set2fun X = (Az. if (z € X) then {z} else {})
definition p2fun = set2fun o Collect
lemma ffb-ad-fun: for f X = {z. (kad (f ok kad (set2fun X))) x # {}}

unfolding ffb-prop-var klift-def kop-def fun-eq-iff comp-def f2r-def r2f-def con-
verse-def kad-def kcomp-def set2fun-def

47

by auto

lemma ffb-ad-fun2: set2fun (for fX) = kad (f ok kad (set2fun X))
by standard (subst ffb-ad-fun, subst set2fun-def, simp add: kad-def)

The final statements check that the relational forward diamond is consistent
with the Kleene-algebraic definition.

lemma fb-ad-rel: for R X = Domain (ad-rel (R ; ad-rel (Id-on X)))

unfolding rfb-def ffb-prop-var klift-def comp-def r2f-def kop-def f2r-def con-
verse-def Domain-def Id-on-def ad-rel-def

by auto

lemma fb-ad-rel2: Id-on (for R X) = ad-rel (R ; ad-rel (Id-on X))

unfolding rfb-def ffb-prop-var klift-def comp-def r2f-def kop-def f2r-def con-
verse-def Domain-def Id-on-def ad-rel-def

by auto

end

7 The Quantale of Kleisli Arrows

theory Kleisli-Quantale
imports Kleisli-Quantaloid
Quantales. Quantale-Star

begin

This component revisits the results of the quantaloid one in the single-typed
setting, that is, in the context of quantales. An instance proof, showing that
Kleisli arrows (or state transformers) form quantales, is its main result.
Facts proved for quantales are thus made available for state transformers.

typedef ‘a nd-fun = {f::'a = 'a set. f € UNIV}
by simp

setup-lifting type-definition-nd-fun

Definitions are lifted to gain access to the Kleisli categories.

lift-definition r2fnd :: 'a rel = ’a nd-fun is Abs-nd-fun o F.
lift-definition f2rnd :: ‘a nd-fun = 'a rel is R o Rep-nd-fun.
declare Rep-nd-fun-inverse [simp]

lemma r2f2r-inv: r2fnd o f2rnd = id
by transfer (simp add: fun-eq-iff pointfree-idFE)

lemma f2r2f-inv: f2rnd o r2fnd = id
by transfer (simp add: fun-eq-iff r2f-def f2r-def Abs-nd-fun-inverse)

48

instantiation nd-fun :: (type) monoid-mult
begin

lift-definition one-nd-fun :: ‘a nd-fun is Abs-nd-fun n.

lift-definition times-nd-fun :: 'a::type nd-fun = 'a::type nd-fun = 'a::type nd-fun
is Af g. Abs-nd-fun (Rep-nd-fun f ox Rep-nd-fun g).

instance
by intro-classes (transfer, simp add: Abs-nd-fun-inverse kcomp-assoc)+

end

instantiation nd-fun :: (type) order-lean
begin

lift-definition less-eg-nd-fun :: 'a nd-fun = 'a nd-fun = bool is \f g. Rep-nd-fun
f < Rep-nd-fun g.

lift-definition less-nd-fun :: ‘a nd-fun = 'a nd-fun = bool is \f g. Rep-nd-fun f
< Rep-nd-fun g N f # g.

instance
apply intro-classes
apply (transfer, simp)
apply transfer using order.trans apply blast
by (simp add: Rep-nd-fun-inject less-eq-nd-fun.abs-eq)

end

instantiation nd-fun :: (type) Sup-lattice
begin

lift-definition Sup-nd-fun :: ‘a nd-fun set = 'a nd-fun is Abs-nd-fun o Sup o P
Rep-nd-fun.

instance
by (intro-classes; transfer, simp-all add: Abs-nd-fun-inverse Sup-upper sup-absorb2

Sup-le-iff)
end

lemma Abs-comp-hom: Abs-nd-fun (f ox g) = Abs-nd-fun f - Abs-nd-fun g
by transfer (simp add: Abs-nd-fun-inverse)

lemma Rep-comp-hom: Rep-nd-fun (f - g) = Rep-nd-fun f ox Rep-nd-fun g
by (simp add: Abs-nd-fun-inverse times-nd-fun.abs-eq)

49

instance nd-fun :: (type) unital-Sup-quantale
by (intro-classes; transfer, simp-all) (smt Abs-comp-hom Rep-comp-hom Rep-nd-fun-inverse
SUP-cong image-image kSup-distr kSup-distl)+

Unfortunately, this is not it yet. To benefit from Isabelle’s theorems for or-
derings, lattices, Kleene algebras and quantales, Isabelle’s complete lattices
need to be in scope. Somewhat annoyingly, this requires more work...

instantiation nd-fun :: (type) complete-lattice
begin

lift-definition Inf-nd-fun :: 'a nd-fun set = ’a nd-fun is Abs-nd-fun o Inf o P
Rep-nd-fun.

lift-definition bot-nd-fun :: 'a::type nd-fun is Abs-nd-fun (Sup {}).

lift-definition sup-nd-fun :: 'a::type nd-fun = 'a::type nd-fun = 'a::type nd-fun
is Af g. Abs-nd-fun (Rep-nd-fun f U Rep-nd-fun g).

lift-definition top-nd-fun :: 'a::type nd-fun is Abs-nd-fun (Inf {}).

lift-definition inf-nd-fun :: 'a::type nd-fun = 'a::type nd-fun = 'a::type nd-fun is
Af g. Abs-nd-fun (Rep-nd-fun f M Rep-nd-fun g).

instance
apply intro-classes
apply transfer using Rep-nd-fun-inject dual-order.antisym apply
blast
apply (transfer, simp)
apply (transfer, simp)
apply (simp add: Abs-nd-fun-inverse)
by (transfer; simp-all add: Abs-nd-fun-inverse Sup-le-iff SUP-upper2 le-INF-iff
Inf-lower)+

end

instance nd-fun :: (type) unital-quantale
apply intro-classes
using supq.Sup-distr apply fastforce
by (simp add: supq.Sup-distl)

Now, theorems for the Kleene star, which come from quantales, are finally
in scope.

lemma fun-star-unfoldl-eq: (1::'a nd-fun) U f - gstar f = gstar f
by (simp add: gstar-comm)

lemma fun-star-unfoldl: (1::'a nd-fun) U f - gstar f < qstar f
using gstar-unfoldl by blast

lemma fun-star-unfoldr-eq: (1::'a nd-fun) U (gstar f) - f = qstar f

50

by simp

lemma fun-star-unfoldr: (1::'a nd-fun) U gstar f - f < gstar f
by (simp add: fun-star-unfoldr-eq)

lemma fun-star-inductl: (h::’a nd-fun) U f - g < g = gqstar f - h < g
using gstar-inductl by blast

lemma fun-star-inductr: (h::'a nd-fun) U g - f < g=h - qstarf < g
by (simp add: gstar-inductr)

end

References

1]

[5]

[6]

[9]

[10]

A. Armstrong, V. B. F. Gomes, and G. Struth. Building program
construction and verification tools from algebraic principles. Formal
Aspects of Computing, 28(2):265-293, 2016.

R. Back and J. von Wright. Refinement Calculus - A Systematic Intro-
duction. Springer, 1998.

J. Desharnais and G. Struth. Internal axioms for domain semirings.
Science of Computer Programming, 76(3):181-203, 2011.

H. Furusawa and G. Struth. Binary multirelations. Archive of Formal
Proofs, 2015.

V. B. F. Gomes, W. Guttmann, P. Héfner, G. Struth, and T. Weber.
Kleene algebras with domain. Archive of Formal Proofs, 2016.

V. B. F. Gomes and G. Struth. Program construction and verification
components based on kleene algebra. Archive of Formal Proofs, 2016.

B. Jacobs. A recipe for state-and-effect triangles. Logical Methods in
Computer Science, 13(2), 2017.

A. Mclver and C. Morgan. Abstraction, Refinement and Proof for Prob-
abilistic Systems. Springer, 2005.

V. Preoteasa. Algebra of monotonic boolean transformers. Archive of
Formal Proofs, 2011.

K. I. Rosenthal. Quantales and their Applications. Longman Scientific
& Technical, 1990.

o1

	Introductory Remarks
	Isotone Transformers Between Complete Lattices
	Basic Properties
	Pre-Quantale of Isotone Transformers
	Propositional Hoare Logic for Transformers without Star
	Kleene Star of Isotone Transformers
	Propositional Hoare Logic Completed
	A Propositional Refinement Calculus

	Sup- and Inf-Preserving Transformers between Complete Lattices
	Basic Properties
	Properties of the Kleene Star
	Quantales of Inf- and Top-Preserving Transformers

	The Powerset Monad, State Transformers and Predicate Transformers
	The Powerset Monad
	Kleisli Category of the Powerset Monad
	Eilenberg-Moore Algebra
	Isomorphism between Kleisli Category and Rel
	The opposite Kleisli Category

	State Transformers and Predicate Transformers Based on the Powerset Monad
	Backward Diamonds from Kleisli Arrows
	Backward Diamonds from Relations
	Forward Boxes on Kleisli Arrows
	Forward Box Operators from Relations
	The Remaining Modalities

	The Quantaloid of Kleisli Arrows
	Kleene Star
	Antidomain

	The Quantale of Kleisli Arrows

