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Abstract

We formalize the Tortoise and Hare cycle-finding algorithm ascribed to Floyd by Knuth (1981, p7, exercise
6), and an improved version due to Brent (1980).
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1 Introduction

Knuth (1981, p7, exercise 6) frames the problem like so: given a finite set X, an initial value zyp € X, and a
function f : X — X, define the infinite sequence z by recursion: z;11 = f(x;). Show that the sequence is
ultimately periodic, i.e., that there exist A and u where

Loy L1y oo Lpyeey TpypA—1

are distinct, but x,+\ = x, when n > pu.
Secondly (and he ascribes this to Robert W. Floyd), show that there is an v > 0 such that z, = x9,.
These facts are supposed to yield the insight required to develop the Tortoise and Hare algorithm, which calculates
A and p for any f and xg using only O(A + ) steps and a bounded number of memory locations. We fill in the
details in §5.
We also show the correctness of Brent (1980)’s algorithm in §6, which satisfies the same resource bounds and is
more efficient in practice.
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These algorithms have been used to analyze random number generators (Knuth 1981, op. cit.) and factor large
numbers (Brent 1980). See Nivasch (2004) for further discussion, and an algorithm that is not constant-space but
is more efficient in some situations. Wang and Zhang (2012) also survey these algorithms and present a new one.

2 Point-free notation

We adopt point-free notation for our assertions over program states.

abbreviation (input)
pred_K 1 'b = 'a = b («(_)») where
() = As. f

abbreviation (input)
pred_not :: ('a = bool) = 'a = bool (<—) where
—a = As. na s

abbreviation (input)
pred__conj :: (‘a = bool) = ('a = bool) = 'a = bool (infixr <A» 35) where
aANb=MXs.asNbs

abbreviation (input)
pred__implies :: ("a = bool) = (‘a = bool) = 'a = bool (infixr (—> 25) where
a—b=Xs.as—bs

abbreviation (input)
pred_eq :: (‘'a = 'b) = (‘a = 'b) = 'a = bool (infix «=» 40) where
a=b=Xs.as=bs

abbreviation (input)
pred_member :: (‘a = 'b) = (‘a = 'b set) = 'a = bool (infix «€> 40) where
a€Eb=MXs.as€bs

abbreviation (input)
pred_neq :: ('a = 'b) = (Ya = 'b) = 'a = bool (infix «#> 40) where
aFxb=Xs.as#£bs

abbreviation (input)
pred_If = (‘a = bool) = (‘a = 'b) = (la="b) = 'a = "b («(if (_)/ then (_)/ else (_))» [0, 0, 10] 10) where
if Pthen celse y = As. if P s then x s else y s

abbreviation (input)
pred_less :: ('a = 'bord) = ('a = 'b) = 'a = bool (infix <<» 40) where
a<b=Xs.as<bs

abbreviation (input)
pred_le :: (Ya = 'biord) = (Ya = 'b) = 'a = bool (infix <<» 40) where
a<b=Xs.as<bs

abbreviation (input)
pred_plus :: ('a = 'b:plus) = (‘a = 'b) = 'a = 'b (infix]l <+> 65) where
a+b=MXs.as+ bs

abbreviation (input)
pred_minus :: ('a = 'buminus) = (‘a = 'b) = ‘a = b (infixl <—> 65) where
a—b=Xs.as—bs

abbreviation (input)
fun_fanout :: (Ya = 'b) = (‘a = 'c) = 'a = b x 'c (infix <> 35) where
f<1g=Xix. (fz, g x)
abbreviation (input)
pred_all :: ('b = 'a = bool) = 'a = bool (binder V> 10) where
Vz. Pr=Xs.Vz. Pzxs

abbreviation (input)



pred_ez :: ('b = 'a = bool) = 'a = bool (binder <3» 10) where
dz. Px=Xs.dz. Pzs

3 “Monoidal” Hoare logic

In the absence of a general-purpose development of Hoare Logic for total correctness in Isabelle/HOL!, we adopt
the following syntactic contrivance that eases making multiple assertions about function results. “Programs”
consist of the state-transformer semantics of statements.

definition wvalid :: (s = bool) = ('s = 's) = ('s = bool) = bool (<{_}/ _/ {_[) where

{P} c {Q} =Vs. Ps — Q (cs)

notation (input) id (<SKIP>)
notation fcomp (infixl ;) 60)

named__theorems wp_intro weakest precondition intro rules

lemma seql [wp__intro]:
assumes {Q} d {R[}
assumes {P} ¢ {Q}
shows {P} ¢ ;; d {R]}
(proof)

lemma itel[wp__introl:
assumes {P'} =z {Q}

assumes {P"} y {Q}
shows {if b then P’ else P"} if b then z else y {Q}

(proof)

lemma assignl|[wp__intro]:

shows {Q o f} f {Qff
(proof)

lemma whilel:
assumes {I'} ¢ {I}
assumes A\s. [ s = if b s then I' s else Q s
assumes wf r
assumes A\s. [Is;bs] = (cs,s) €r
shows {I[} while b ¢ {Q[}

(proof )

lemma hoare_pre:

assumes { R} f { Q[

assumes A\s. Ps = R s

shows { P} f {Q}
(proof)

lemma hoare_post__imp:
assumes {P} a {Q}
assumes A\s. @ s = R s
shows {P} a {R|}

(proof)

Note that the assignl rule applies to all state transformers, and therefore the order in which we attempt to use
the wp_intro rules matters.
4 Properties of iterated functions on finite sets

We begin by fixing the f and z0 under consideration in a locale, and establishing Knuth’s properties.

The sequence is modelled as a function seq :: nat = ’a in the obvious way.

LAt the time of writing the distribution contains several for partial correctness, and one for total correctness over a language with
restricted expressions. SIMPL (Schirmer (2008)) is overkill for our present purposes.
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locale fr0 =
fixes [ :: 'a::finite = 'a
fixes z0 :: 'a

begin

definition seq’ :: ‘a = nat = 'a where
seq’ xi=(f ")z

abbreviation seq = seq’ z0{proof){proof)

The parameters lambda and mu must exist by the pigeonhole principle.

lemma seq’ _not_inj on_card UNIV:
shows —inj_on (seq’ z) {0 .. card (UNIV::'a set)}
(proof)

definition properties :: nat = nat = bool where
properties lambda mu =
0 < lambda
A inj_on seq {0 ..< mu + lambda}
A (Yi>mu. Vj. seq (i + j * lambda) = seq 1)

lemma properties _existence:
obtains lambda mu
where properties lambda mu

(proof)

end

To ease further reasoning, we define a new locale that fixes lambda and mu, and assume these properties hold. We
then derive further rules that are easy to apply.

locale properties = fr0 +

fixes lambda mu :: nat

assumes P: properties lambda mu
begin

lemma properties lambda__gt_0:
shows 0 < lambda

(proof)

lemma properties loop:
assumes mu < ¢
shows seq (i + j * lambda) = seq i

(proof )

lemma properties _mod__lambda:
assumes mu < ¢
shows seq i = seq (mu + (i — mu) mod lambda)

(proof)

lemma properties distinct:
assumes j € {0 <..< lambda}
shows seq (i + j) # seq i
(proof)

lemma properties distinct__contrapos:
assumes seq (i + j) = seq @
shows j ¢ {0 <..< lambda}

(proof)

lemma properties loops ge mu:
assumes seq (i + j) = seq @
assumes 0 < j
shows mu < ¢

(proof)



end

5 The Tortoise and the Hare

The key to the Tortoise and Hare algorithm is that any nu such that seq (nu 4+ nu) = seq nu must be divisible
by lambda. Intuitively the first nu steps get us into the loop. If the second nu steps return us to the same value
of the sequence, then we must have gone around the loop one or more times.

lemma (in properties) lambda_ dvd_nu:
assumes seq (i + i) = seq @
shows lambda dvd i

(proof)

The program is split into three loops; we find nu, mu and lambda in that order.

5.1 Finding nu

The state space of the program tracks each of the variables we wish to discover, and the current positions of the
Tortoise and Hare.

record 'a state =
nu :: nat — v
m :nat — @
l::nat — A\
hare :: 'a
tortoise :: 'a

context properties
begin

The Hare proceeds at twice the speed of the Tortoise. The program tracks how many steps the Tortoise has taken
in nu.

definition (in fz0) find_nu :: 'a state = 'a state where
find_nu =
(As. s(| nu := 1, tortoise := f(x0), hare := f(f(20)) ) ;;
while (hare # tortoise)
(As. s(| nu := nu s + 1, tortoise := f(tortoise s), hare := f(f(hare s)) )

If this program terminates, we expect seq o (nu + nu) = seq o nu to hold in the final state.

The simplest approach to showing termination is to define a suitable nu in terms of lambda and mu, which also
gives us an upper bound on the number of calls to f.

definition nu_witness :: nat where
nu_witness = mu + lambda — mu mod lambda

This constant has the following useful properties:

lemma nu_ witness__properties:
mu < nu_ witness
nu_witness < lambda + mu
lambda dvd nu__witness
mu = 0 = nu_witness = lambda

(proof)

These demonstrate that nu_witness has the key property:

lemma nu_witness:
shows seq (nu_witness + nu__witness) = seq nu_ witness

(proof)

Termination amounts to showing that the Tortoise gets closer to nu_witness on each iteration of the loop.
definition find_nu_measure :: (nat x nat) set where

find_nu_measure = measure (Av. nu_witness — v)

lemma find_nu_measure_wellfounded:
wf find_nu_measure



(proof)

lemma find _nu_measure decreases:
assumes seq (v + v) # seq v
assumes v < nu_ witness
shows (Suc v, v) € find _nu_ measure

(proof)
The remainder of the Hoare proof is straightforward.

lemma find_ nu:
{{True)} find_nu {nu € ({0<..lambda + mu}) A seq o (nu 4+ nu) = seq o nu A hare = seq o nuf

(proof)

5.1.1 Side observations

We can also show termination ala Filliatre (2007).

definition find_nu_measures :: (nat x nat) set where
find_nu_measures =
measures [A\v. mu — v, \v. LEAST i. seq (v + v + i) = seq v]

lemma find _nu_measures_wellfounded:
wf find_nu_measures

(proof)

lemma find_nu_measures _existence:
assumes vV: mu < v
shows 3. seq (v + v + 1) = seq v

(proof)

lemma find _nu_measures decreases:
assumes v: seq (Vv + v) # seq v
shows (Suc v, v) € find_nu_measures

(proof)

lemma find nu_Fillidtre:
{{True)} find_nu {{0) < nu A seq o (nu + nu) = seq o nu A hare = seq o nuf
(proof)

This approach does not provide an upper bound on nu however.
Harper (2011) observes (in his §13.5.2) that if mu is zero then nu = lambda.

lemma Harper:
assumes mu = 0
shows {(True)} find_nu {nu = (lambda)}

(proof)

5.2 Finding mu

We recover mu from nu by exploiting the fact that lambda divides nu: the Tortoise, reset to z0 and the Hare,
both now moving at the same speed, will meet at mu.

lemma mu_ nu:
assumes si: seq (i + i) = seq i
assumes j: mu < j
shows seq (j + ©) = seq j
(proof)

definition (in fz0) find_mu :: 'a state = 'a state where
find_mu =
(As. s(| m = 0, tortoise := z0 ) ;;
while (hare # tortoise)
(As. s( tortoise := f (tortoise s), hare := f (hare s), m :=m s+ 1))

lemma find_mu:
{nu € ({0<..lambda + mu}) A seq o (nu + nu) = seq o nu A hare = seq o nul
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find_mu
{nu € ({0<..lambda + mu}) A tortoise = (seq mu) A m = (mu)}
(proof)

5.3 Finding lambda

With the Tortoise parked at mu, we find lambda by walking the Hare around the loop.

definition (in fz0) find_lambda :: 'a state = 'a state where
find_lambda =
(As. s( 1 := 1, hare := f (tortoise s) ) ;;
while (hare # tortoise)
(As. s( hare :== f (hare s), l:=1s+ 1))

lemma find_lambda:
{nu € ({0<..lambda + mu}) A tortoise = (seq mu) A m = (mu)f}
find__lambda
{nu € ({0<..lambda + mu}) A I = (lambda) A m = (mu)]

(proof)

5.4 Top level

The complete program is simply the steps composed in order.

definition (in fz0) tortoise_hare :: 'a state = 'a state where
tortoise__hare = find_nu ;; find_mu ;; find_lambda

theorem tortoise hare:
{{Truey} tortoise__hare {nu € ({0<..lambda + mu}) A I = (lambda) A m = (mu)}

(proof)

end

corollary tortoise_hare__correct:
assumes s’ s’ = fr0.tortoise_hare f x arbitrary
shows fz0.properties f x (1 s’) (m s’)

(proof)

Isabelle can generate code from these definitions.

schematic__goal tortoise__hare__code[code]:
fx0.tortoise_hare f x = %code

(proof)

export__code fz0.tortoise__hare in SML

6 Brent’s algorithm

Brent (1980) improved on the Tortoise and Hare algorithm and used it to factor large primes. In practice it makes
significantly fewer calls to the function f before detecting a loop.

We begin by defining the base-2 logarithm.

fun lg :: nat = nat where
[simp del): lg x = (if © < 1 then 0 else 1 + lg (x div 2))

lemma lg safe:
lg 0 =0
lg (Suc 0) =0
lg (Suc (Suc 0)) = 1
0<cz=lgz+z)=1+1gx
(proof )

lemma lg inv:
0<z=1lg(2 z)=x

(proof)



lemma lg inv2:
2 7 lgx=o if <2 i = for z

(proof)

lemmas lg simps = lg_safe lg_inv lg_inv2

6.1 Finding lambda

Imagine now that the Tortoise carries an unbounded number of carrots, which he passes to the Hare when they
meet, and the Hare has a teleporter. The Hare eats a carrot each time she waits for the function f to execute,
and initially has just one. If she runs out of carrots before meeting the Tortoise again, she teleports him to her
position, and he gives her twice as many carrots as the last time they met (tracked by the variable carrots). By
counting how many carrots she has eaten from when she last teleported the Tortoise (recorded in [) until she
finally has surplus carrots when she meets him again, the Hare directly discovers lambda.

record ‘a state =

m :nat — [
l::nat — A\

carrots :: nat

hare :: 'a

tortoise :: 'a

context properties
begin

definition (in fz0) find_lambda :: 'a state = 'a state where
find_lambda =
(As. s( carrots := 1,1 := 1, tortoise := x0, hare := fz0 ) 3;
while (hare # tortoise)
( (if carrots = lthen (As. s( tortoise := hare s, carrots := 2 * carrots s, | :== 0 )
else SKIP ) ;;
(As. s( hare ;== f (hare s), l:=1s+ 1))

The termination argument goes intuitively as follows. The Hare eats as many carrots as it takes to teleport the
Tortoise into the loop. Afterwards she continues the teleportation dance until the Tortoise has given her enough
carrots to make it all the way around the loop and back to him.

We can calculate the Tortoise’s position as a function of carrots.

definition carrots total :: nat = nat where
carrots_total ¢ = > i<lgc. 2 "

lemma carrots total simps:
carrots_total (Suc 0) = 0
carrots__total (Suc (Suc 0)) = 1
2 7 i = ¢ = carrots_total (¢ + ¢) = ¢ + carrots_total ¢

(proof)

definition find lambda_measures :: ( (nat x nat) x (nat x nat) ) set where
find_lambda__measures =
measures [A(I, ¢). mu — carrots_total c,
A, ¢). LEAST i. lambda < ¢ x 274,
A, ¢). ¢ =1

lemma find_lambda_measures wellfounded:
wf find__lambda__measures

(proof)

lemma find lambda_measures decreasesl:
assumes ¢ = 2 " §
assumes mu < carrots_total c — ¢ < lambda
assumes seq (carrots_total ¢) # seq (carrots_total ¢ + ¢)
shows ( (¢/, 2 % ¢), (¢, ¢) ) € find_lambda_measures

(proof)

lemma find_lambda_measures decreases?2:



assumes Is < ¢
shows ( (Suc Is, ¢), (Is, ¢) ) € find_lambda__measures

(proof)

lemma find_lambda:
{{True)} find_lambda {l = (lambda)}

(proof)

6.2 Finding mu

With lambda in hand, we can find mu using the same approach as for the Tortoise and Hare (§5.2), after we first
move the Hare to lambda.
definition (in fz0) find_mu :: 'a state = 'a state where
find_mu =
(As. s(| m = 0, tortoise := z0, hare := seq (1's) ) ;;
while (hare # tortoise)
(As. s( tortoise := f (tortoise s), hare ;== f (hare s), m :=m s+ 1))

lemma find_mu:
{l = (lambda)|} find_mu {l = (lambda) A m = {(mu)}
(proof )

6.3 Top level

definition (in fz0) brent :: 'a state = 'a state where
brent = find_lambda ;; find_mu

theorem brent:
{{True)} brent {l = (lambda) N m = (mu)}
(proof )

end

corollary brent_correct:
assumes s’ s’ = fr0.brent f x arbitrary
shows fz0.properties f x (1 s’) (m s’)
(proof)

schematic__goal brent_code[code]:
fx0.brent f x = %code

(proof)

export__code fz0.brent in SML

7 Concluding remarks

Leino (2012) uses an SMT solver to verify a Tortoise-and-Hare cycle-finder. He finds the parameters lambda and
mu initially by using a “ghost” depth-first search, while we use more economical non-constructive methods.

I thank Christian Griset for patiently discussing the finer details of the proofs, and Makarius for many helpful
suggestions.
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