
The Topology of Lazy Lists

Stefan Friedrich

March 17, 2025

Abstract

This directory contains two theories. The first, Topology, develops the basic notions
of general topology. The second, LList_Topology, develops the topology of lazy lists.

Contents
1 A bit of general topology 2

1.1 Preliminaries . 2
1.2 Definition . 2
1.3 Neighbourhoods . 9
1.4 Closed sets . 11
1.5 Core, closure, and frontier of a set . 13

1.5.1 Core . 13
1.5.2 Closure . 14
1.5.3 Frontier . 15
1.5.4 Adherent points . 16

1.6 More about closure and core . 18
1.7 Dense sets . 19
1.8 Continuous functions . 20
1.9 Filters . 24
1.10 Convergence . 30
1.11 Separation . 32

1.11.1 T0 spaces . 32
1.11.2 T1 spaces . 33
1.11.3 T2 spaces (Hausdorff spaces) . 34
1.11.4 T3 axiom and regular spaces . 38
1.11.5 T4 axiom and normal spaces . 39

2 The topology of llists 39
2.1 The topology of all llists . 40
2.2 The topology of infinite llists . 43
2.3 The topology of non-empty llists . 48

1

1 A bit of general topology
theory Topology
imports "HOL-Library.FuncSet"
begin

This theory gives a formal account of basic notions of general topology as they can be found
in various textbooks, e.g. in [2] or in [3]. The development includes open and closed sets,
neighbourhoods, as well as closure, open core, frontier, and adherent points of a set, dense
sets, continuous functions, filters, ultra filters, convergence, and various separation axioms.

We use the theory on “Pi and Function Sets” by Florian Kammueller and Lawrence C Paulson.

1.1 Preliminaries
lemma seteqI:

"[[
∧

x. x∈A =⇒ x∈B;
∧

x. x∈B =⇒ x∈A]] =⇒ A = B"
by auto

lemma subset_mono: "A ⊆ B =⇒ M ⊆ A −→ M ⊆ B"
by auto

lemma diff_diff:
"C - (A - B) = (C - A) ∪ (C ∩ B)"
by blast

lemma diff_diff_inter: "[[B ⊆ A; B ⊆ X]] =⇒ (X - (A - B)) ∩ A = B"
by auto

lemmas diffsimps = double_diff Diff_Un vimage_Diff
Diff_Int_distrib Diff_Int

lemma vimage_comp:
"f: A → B =⇒ A ∩ (f -‘ B ∩ f -‘ g -‘ m)= A ∩ (g ◦ f) -‘ m "

by (auto dest: funcset_mem)

lemma funcset_comp:
"[[f : A → B; g : B → C]] =⇒ g ◦ f : A → C"
by (auto intro!: funcsetI dest!: funcset_mem)

1.2 Definition

A topology is defined by a set of sets (the open sets) that is closed under finite intersections
and infinite unions.
type_synonym ’a top = "’a set set"

definition
carr :: "’a top ⇒ ’a set" (‹ carrierı ›) where
"carr T =

⋃
T"

definition
is_open :: "’a top ⇒ ’a set ⇒ bool" (‹ _ openı › [50] 50) where

2

"is_open T s ←→ s ∈ T"

locale carrier =
fixes T :: "’a top" (structure)

lemma (in carrier) openI:
"m ∈ T =⇒ m open"
by (simp add: is_open_def)

lemma (in carrier) openE:
"[[m open; m ∈ T =⇒ R]] =⇒ R"

by (auto simp: is_open_def)

lemma (in carrier) carrierI [intro]:
"[[t open; x ∈ t]] =⇒ x ∈ carrier"
by (auto simp: is_open_def carr_def)

lemma (in carrier) carrierE [elim]:
"[[x ∈ carrier;∧

t. [[t open; x ∈ t]] =⇒ R
]] =⇒ R"
by (auto simp: is_open_def carr_def)

lemma (in carrier) subM:
"[[t ∈ M; M ⊆ T]] =⇒ t open"
by (auto simp: is_open_def)

lemma (in carrier) topeqI [intro!]:
fixes S (structure)
shows "[[

∧
m. m openT =⇒ m openS;∧
m. m openS =⇒ m openT]]

=⇒ T = S"
by (auto simp: is_open_def)

locale topology = carrier T for T (structure) +
assumes Int_open [intro!]: "[[x open; y open]] =⇒ x ∩ y open"
and union_open [intro]: "∀ m ∈ M. m open =⇒

⋃
M open"

lemma topologyI:
"[[

∧
x y. [[is_open T x; is_open T y]] =⇒ is_open T (x ∩ y);∧
M. ∀ m ∈ M. is_open T m =⇒ is_open T (

⋃
M)

]] =⇒ topology T"
by (auto simp: topology_def)

lemma (in topology) Un_open [intro!]:
assumes abopen: "A open" "B open"
shows "A ∪ B open"

proof-
have "

⋃
{A, B} open" using abopen

by fast
thus ?thesis by simp

3

qed

Common definitions of topological spaces require that the empty set and the carrier set of
the space be open. With our definition, however, the carrier is implicitly given as the union
of all open sets; therefore it is trivially open. The empty set is open by the laws of HOLs
typed set theory.
lemma (in topology) empty_open [iff]: "{} open"
proof-

have "
⋃

{} open" by fast
thus ?thesis by simp

qed

lemma (in topology) carrier_open [iff]: "carrier open"
by (auto simp: carr_def intro: openI)

lemma (in topology) open_kriterion:
assumes t_contains_open: "

∧
x. x∈t =⇒ ∃ t’. t’ open ∧ x∈t’ ∧ t’⊆t"

shows "t open"
proof-

let ?M = "
⋃

x∈t. {t’. t’ open ∧ x∈t’ ∧ t’⊆t}"
have "∀ m ∈ ?M. m open" by simp
hence "

⋃
?M open" by auto

moreover have "t =
⋃

?M"
by (auto dest!: t_contains_open)

ultimately show ?thesis
by simp

qed

We can obtain a topology from a set of basic open sets by closing the set under finite inter-
sections and arbitrary unions.
inductive_set

topo :: "’a set set ⇒ ’a top"
for B :: "’a set set"

where
basic [intro]: "x ∈ B =⇒ x ∈ topo B"

| inter [intro]: "[[x ∈ topo B; y ∈ topo B]] =⇒ x ∩ y ∈ topo B"
| union [intro]: "(

∧
x. x ∈ M =⇒ x ∈ topo B) =⇒

⋃
M ∈ topo B"

locale topobase = carrier T for B and T (structure) +
defines "T ≡ topo B"

lemma (in topobase) topo_open:
"t open = (t ∈ topo B)"
by (auto simp: T_def is_open_def)

lemma (in topobase)
basic [intro]: "t ∈ B =⇒ t open" and
inter [intro]: "[[x open; y open]] =⇒ (x ∩ y) open" and
union [intro]: "(

∧
t. t∈M =⇒ t open) =⇒

⋃
M open"

by (auto simp: topo_open)

lemma (in topobase) topo_induct

4

[case_names basic inter union, induct set: topo, consumes 1]:
assumes opn: "x open"
and bas: "

∧
x. x ∈ B =⇒ P x"

and int: "
∧

x y. [[x open; P x; y open; P y]] =⇒ P (x ∩ y)"
and uni: "

∧
M. (∀ t∈M. t open ∧ P t) =⇒ P (

⋃
M)"

shows "P x"
proof-

from opn have "x ∈ topo B" by (simp add: topo_open)
thus ?thesis

by induct (auto intro: bas int intro!:uni simp: topo_open)
qed

lemma topo_topology [iff]:
"topology (topo B)"
by (auto intro!: union topologyI simp: is_open_def)

lemma topo_mono:
assumes asubb: "A ⊆ B"
shows "topo A ⊆ topo B"

proof
fix m assume mintopoa: "m ∈ topo A"
hence "A ⊆ B −→ m ∈ topo B"

by (rule topo.induct) auto
with asubb show "m ∈ topo B"

by auto
qed

lemma topo_open_imp:
fixes A and S (structure) defines "S ≡ topo A"
fixes B and T (structure) defines "T ≡ topo B"
shows "[[A ⊆ B; x openS]] =⇒ x openT" (is "PROP ?P")

proof -
interpret A_S: topobase A S by fact
interpret topobase B T by fact
show "PROP ?P" by (auto dest: topo_mono iff: A_S.topo_open topo_open)

qed

lemma (in topobase) carrier_topo: "carrier =
⋃

B"
proof

show "carrier ⊆
⋃

B"
proof

fix x assume "x ∈ carrier"
then obtain t where "t open" and "x ∈ t" ..
thus "x ∈

⋃
B" by (induct, auto)

qed
qed (auto iff: topo_open)

Topological subspace
locale subtopology = carrier S + carrier T for S (structure) and T (structure) +

assumes subtop[iff]: "s open = (∃ t. t openT ∧ s = t ∩ carrier)"

lemma subtopologyI:

5

fixes S (structure)
fixes T (structure)
assumes H1: "

∧
s. s open =⇒ ∃ t. t openT ∧ s = t ∩ carrier"

and H2: "
∧

t. t openT =⇒ t ∩ carrier open"
shows "subtopology S T"

by (auto simp: subtopology_def intro: assms)

lemma (in subtopology) subtopologyE [elim]:
assumes major: "s open"
and minor: "

∧
t. [[t openT; s = t ∩ carrier]] =⇒ R"

shows "R"
using assms by auto

lemma (in subtopology) subtopI [intro]:
"t openT =⇒ t ∩ carrier open"
by auto

lemma (in subtopology) carrier_subset:
"carrierS ⊆ carrierT"
by auto

lemma (in subtopology) subtop_sub:
assumes "topology T"
assumes carrSopen: "carrierS openT"
and s_open: "s openS"
shows "s openT"

proof -
interpret topology T by fact
show ?thesis using assms by auto

qed

lemma (in subtopology) subtop_topology [iff]:
assumes "topology T"
shows "topology S"

proof -
interpret topology T by fact
show ?thesis proof (rule topologyI)

fix u v assume uopen: "u open" and vopen: "v open"
thus "u ∩ v open" by (auto simp add: Int_ac)

next
fix M assume msub: "∀ m∈M. m open"
let ?N = "{x. x openT ∧ x ∩ carrier ∈ M}"
have "

⋃
?N openT" by auto

hence "
⋃

?N ∩ carrier open" ..
moreover have "

⋃
?N ∩ carrier =

⋃
M"

proof
show "

⋃
M ⊆

⋃
?N ∩ carrier"

proof
fix x assume "x ∈

⋃
M"

then obtain s where sinM: "s ∈ M" and xins: "x ∈ s"
by auto

from msub sinM have s_open: "s open" ..
then obtain t

6

where t_open: "t openT" and s_inter: "s = t ∩ carrier" by auto
with xins have xint: "x∈t" and xpoint: "x ∈ carrier" by auto
moreover
from t_open s_inter sinM have "t ∈ ?N" by auto
ultimately show "x ∈

⋃
?N ∩ carrier"

by auto
qed

qed auto
finally show "

⋃
M open" .

qed
qed

lemma subtop_lemma:
fixes A and S (structure) defines "S ≡ topo A"
fixes B and T (structure) defines "T ≡ topo B"
assumes Asub: "A = (

⋃
t∈B. { t ∩

⋃
A })"

shows "subtopology S T"
proof -

interpret A_S: topobase A S by fact
interpret topobase B T by fact
show ?thesis proof (rule subtopologyI)

fix s assume "s openS"
thus "∃ t. t openT ∧ s = t ∩ carrier"
proof induct

case (basic s) with Asub
obtain t where tB: "t ∈ B" and stA: "s = t ∩

⋃
A" by blast

thus ?case by (auto simp: A_S.carrier_topo)
next case (inter s t) thus ?case by auto
next case (union M)

let ?N = "
⋃

{u. u openT ∧ (∃ m∈M. m = u ∩ carrier)}"
have "?N openT" and "

⋃
M = ?N ∩ carrier" using union by auto

thus ?case by auto
qed

next
fix t assume "t openT"
thus "t ∩ carrier open"
proof induct

case (basic u) with Asub show ?case
by (auto simp: A_S.carrier_topo)

next case (inter u v)
hence "(u ∩ carrier) ∩ (v ∩ carrier) open" by auto
thus ?case by (simp add: Int_ac)

next case (union M)
let ?N = "

⋃
{s. ∃ m∈M. s = m ∩ carrier}"

from union have "?N open" and "?N =
⋃

M ∩ carrier" by auto
thus ?case by auto

qed
qed

qed

Sample topologies
definition

trivial_top :: "’a top" where

7

"trivial_top = {{}}"

definition
discrete_top :: "’a set ⇒ ’a set set" where
"discrete_top X = Pow X"

definition
indiscrete_top :: "’a set ⇒ ’a set set" where
"indiscrete_top X = {{}, X}"

definition
order_base :: "(’a::order) set ⇒ ’a set set" where
"order_base A = (

⋃
x∈A. {{y. y ∈ A ∧ x ≤ y}})"

definition
order_top :: "(’a::order) set ⇒ ’a set set" where
"order_top X = topo(order_base X)"

locale trivial = carrier +
defines "T ≡ {{}}"

lemma (in trivial) open_iff [iff]:
"m open = (m = {})"
by (auto simp: T_def is_open_def)

lemma trivial_topology:
fixes T (structure) defines "T ≡ {{}}"
shows "topology T"

proof -
interpret trivial T by fact
show ?thesis by (auto intro: topologyI)

qed

lemma empty_carrier_implies_trivial:
fixes S (structure) assumes "topology S"
fixes T (structure) defines "T ≡ {{}}"
shows "carrier = {} =⇒ S = T" (is "PROP ?P")

proof -
interpret topology S by fact
interpret trivial T by fact
show "PROP ?P" by auto

qed

locale discrete = carrier T for X and T (structure) +
defines "T ≡ discrete_top X"

lemma (in discrete) carrier:
"carrier = X"
by (auto intro!:carrierI elim!:carrierE)

(auto simp: discrete_top_def T_def is_open_def)

lemma (in discrete) open_iff [iff]:
"t open = (t ∈ Pow carrier)"

8

proof-
have "t open = (t ∈ Pow X)"

by (auto simp: T_def discrete_top_def is_open_def)
thus ?thesis by (simp add: carrier)

qed

lemma discrete_topology: "topology (discrete_top X)"
by (auto intro!: topologyI simp: is_open_def discrete_top_def)
blast

locale indiscrete = carrier T for X and T (structure) +
defines "T ≡ indiscrete_top X"

lemma (in indiscrete) carrier:
"X = carrier"
by (auto intro!: carrierI elim!: carrierE)

(auto simp: T_def indiscrete_top_def is_open_def)

lemma (in indiscrete) open_iff [iff]:
"t open = (t = {} ∨ t = carrier)"

proof-
have "t open = (t = {} ∨ t = X)"

by (auto simp: T_def indiscrete_top_def is_open_def)
thus ?thesis by (simp add: carrier)

qed

lemma indiscrete_topology: "topology (indiscrete_top X)"
by (rule topologyI) (auto simp: is_open_def indiscrete_top_def)

locale orderbase =
fixes X and B
defines "B ≡ order_base X"

locale ordertop1 = orderbase X B + topobase B T for X and B and T (structure)

locale ordertop = carrier T for X and T (structure) +
defines "T ≡ order_top X"

lemma (in ordertop) ordertop_open:
"t open = (t ∈ order_top X)"
by (auto simp: T_def is_open_def)

lemma ordertop_topology [iff]:
"topology (order_top X)"
by (auto simp: order_top_def)

1.3 Neighbourhoods
definition

nhd :: "’a top ⇒ ’a ⇒ ’a set set" (‹ nhdsı ›) where
"nhd T x = {U. U ⊆ carr T ∧ (∃ m. is_open T m ∧ x∈m ∧ m ⊆ U)}"

lemma (in carrier) nhdI [intro]:

9

"[[U ⊆ carrier; m open; x ∈ m; m ⊆ U]] =⇒ U ∈ nhds x"
by (auto simp: nhd_def)

lemma (in carrier) nhdE [elim]:
"[[U ∈ nhds x;

∧
m. [[U ⊆ carrier; m open; x ∈ m; m ⊆ U]] =⇒ R]] =⇒ R"

by (auto simp: nhd_def)

lemma (in carrier) elem_in_nhd:
"U ∈ nhds x =⇒ x ∈ U"
by auto

lemma (in carrier) carrier_nhd [intro]: "x ∈ carrier =⇒ carrier ∈ nhds x"
by auto

lemma (in carrier) empty_not_nhd [iff]:
"{} /∈ nhds x "
by auto

lemma (in carrier) nhds_greater:
"[[V ⊆ carrier; U ⊆ V; U ∈ nhds x]] =⇒ V ∈ nhds x"
by (erule nhdE) blast

lemma (in topology) nhds_inter:
assumes nhdU: "U ∈ nhds x"
and nhdV: "V ∈ nhds x"
shows "(U ∩ V) ∈ nhds x"

proof-
from nhdU obtain u where

Usub: "U ⊆ carrier" and
uT: "u open" and
xu: "x ∈ u" and
usub: "u ⊆ U"
by auto

from nhdV obtain v where
Vsub: "V ⊆ carrier" and
vT: "v open" and
xv: "x ∈ v" and
vsub: "v ⊆ V"
by auto

from Usub Vsub have "U ∩ V ⊆ carrier" by auto
moreover from uT vT have "u ∩ v open" ..
moreover from xu xv have "x ∈ u ∩ v" ..
moreover from usub vsub have "u ∩ v ⊆ U ∩ V" by auto
ultimately show ?thesis by auto

qed

lemma (in carrier) sub_nhd:
"U ∈ nhds x =⇒ ∃ V ∈ nhds x. V ⊆ U ∧ (∀ z ∈ V. U ∈ nhds z)"
by (auto elim!: nhdE)

lemma (in ordertop1) l1:
assumes mopen: "m open"
and xpoint: "x ∈ X"

10

and ypoint: "y ∈ X"
and xley: "x ≤ y"
and xinm: "x ∈ m"
shows "y ∈ m"
using mopen xinm

proof induct
case (basic U) thus ?case

by (auto simp: B_def order_base_def ypoint
intro: xley dest: order_trans)

qed auto

lemma (in ordertop1)
assumes xpoint: "x ∈ X" and ypoint: "y ∈ X" and xley: "x ≤ y"
shows "nhds x ⊆ nhds y"

proof
fix u assume "u ∈ nhds x"
then obtain m where "m open"

and "m ⊆ u" and "u ⊆ carrier" and "x ∈ m"
by auto

with xpoint ypoint xley
show "u ∈ nhds y"

by (auto dest: l1)
qed

1.4 Closed sets

A set is closed if its complement is open.
definition

is_closed :: "’a top ⇒ ’a set ⇒ bool" (‹ _ closedı › [50] 50) where
"is_closed T s ←→ is_open T (carr T - s)"

lemma (in carrier) closedI:
"(carrier - s) open =⇒ s closed"
by (auto simp: is_closed_def)

lemma (in carrier) closedE:
"[[s closed; (carrier - s) open =⇒ R]] =⇒ R"
by (auto simp: is_closed_def)

lemma (in topology) empty_closed [iff]:
"{} closed"
by (auto intro!: closedI)

lemma (in topology) carrier_closed [iff]:
"carrier closed"
by (auto intro!: closedI)

lemma (in carrier) compl_open_closed:
assumes mopen: "m open"
shows "(carrier - m) closed"

proof (rule closedI)
from mopen have "m ⊆ carrier"

11

by auto
hence "carrier - (carrier - m) = m"

by (simp add: double_diff)
thus "carrier - (carrier - m) open"

using mopen by simp
qed

lemma (in carrier) compl_open_closed1:
"[[m ⊆ carrier; (carrier - m) closed]] =⇒ m open"
by (auto elim: closedE simp: diffsimps)

lemma (in carrier) compl_closed_iff [iff]:
" m ⊆ carrier =⇒ (carrier - m) closed = (m open)"
by (auto dest: compl_open_closed1 intro: compl_open_closed)

lemma (in topology) Un_closed [intro!]:
"[[x closed; y closed]] =⇒ x ∪ y closed"
by (auto simp:Diff_Un elim!: closedE intro!: closedI)

lemma (in topology) inter_closed:
assumes xsclosed: "

∧
x. x∈S =⇒ x closed"

shows "
⋂

S closed"
proof (rule closedI)

let ?M = "{m. ∃ x∈S. m = carrier - x}"
have "∀ m ∈ ?M. m open"

by (auto dest: xsclosed elim: closedE)
hence "

⋃
?M open" ..

moreover have "
⋃

?M = carrier -
⋂

S" by auto
ultimately show "carrier -

⋂
S open" by auto

qed

corollary (in topology) Int_closed [intro!]:
assumes abclosed: "A closed" "B closed"
shows "A ∩ B closed"

proof-
from assms have "

⋂
{A, B} closed"

by (blast intro!: inter_closed)
thus ?thesis by simp

qed

lemma (in topology) closed_diff_open:
assumes aclosed: "A closed"

and bopen: "B open"
shows "A - B closed"

proof (rule closedI)
from aclosed have "carrier - A open"

by (rule closedE)
moreover from bopen have "carrier ∩ B open" by auto
ultimately have "(carrier - A) ∪ (carrier ∩ B) open" ..
thus "carrier - (A - B) open" by (simp add: diff_diff)

qed

lemma (in topology) open_diff_closed:

12

assumes aclosed: "A closed"
and bopen: "B open"
shows "B - A open"

proof-
from aclosed have "carrier - A open"

by (rule closedE)
hence "(carrier - A) ∩ B open" using bopen ..
moreover from bopen have "B ⊆ carrier"

by auto
hence "(carrier - A) ∩ B = B - A" by auto
ultimately show "B - A open" by simp

qed

1.5 Core, closure, and frontier of a set
definition

cor :: "’a top ⇒ ’a set ⇒ ’a set" (‹ coreı ›) where
"cor T s = (

⋃
{m. is_open T m ∧ m ⊆ s})"

definition
clsr :: "’a top ⇒ ’a set ⇒ ’a set" (‹ closureı ›) where
"clsr T a = (

⋂
{c. is_closed T c ∧ a ⊆ c})"

definition
frt :: "’a top ⇒ ’a set ⇒ ’a set" (‹ frontierı ›) where
"frt T s = clsr T s - cor T s"

1.5.1 Core
lemma (in carrier) coreI:

"[[m open; m ⊆ s; x ∈ m]] =⇒ x ∈ core s"
by (auto simp: cor_def)

lemma (in carrier) coreE:
"[[x ∈ core s;

∧
m. [[m open; m ⊆ s; x ∈ m]] =⇒ R]] =⇒ R"

by (auto simp: cor_def)

lemma (in topology) core_open [iff]:
"core a open"
by (auto simp: cor_def)

lemma (in carrier) core_subset:
"core a ⊆ a"
by (auto simp: cor_def)

lemmas (in carrier) core_subsetD = subsetD [OF core_subset]

lemma (in carrier) core_greatest:
"[[m open; m ⊆ a]] =⇒ m ⊆ core a"
by (auto simp: cor_def)

lemma (in carrier) core_idem [simp]:
"core (core a) = core a"

13

by (auto simp: cor_def)

lemma (in carrier) open_core_eq [simp]:
"a open =⇒ core a = a"
by (auto simp: cor_def)

lemma (in topology) core_eq_open:
"core a = a =⇒ a open"
by (auto elim: subst)

lemma (in topology) core_iff:
"a open = (core a = a)"
by (auto intro: core_eq_open)

lemma (in carrier) core_mono:
"a ⊆ b =⇒ core a ⊆ core b"
by (auto simp: cor_def)

lemma (in topology) core_Int [simp]:
"core (a ∩ b) = core a ∩ core b"
by (auto simp: cor_def)

lemma (in carrier) core_nhds:
"[[U ⊆ carrier; x ∈ core U]] =⇒ U ∈ nhds x"
by (auto elim!: coreE)

lemma (in carrier) nhds_core:
"U ∈ nhds x =⇒ x ∈ core U"
by (auto intro: coreI)

lemma (in carrier) core_nhds_iff:
"U ⊆ carrier =⇒ (x ∈ core U) = (U ∈ nhds x)"
by (auto intro: core_nhds nhds_core)

1.5.2 Closure
lemma (in carrier) closureI [intro]:
"(

∧
c. [[c closed; a ⊆ c]] =⇒ x ∈ c) =⇒ x ∈ closure a"

by (auto simp: clsr_def)

lemma (in carrier) closureE [elim]:
"[[x ∈ closure a; ¬ c closed =⇒ R; ¬ a ⊆ c =⇒ R; x ∈ c =⇒ R]] =⇒ R"
by (auto simp: clsr_def)

lemma (in carrier) closure_least:
"s closed =⇒ closure s ⊆ s"
by auto

lemma (in carrier) subset_closure:
"s ⊆ closure s"
by auto

lemma (in topology) closure_carrier [simp]:

14

"closure carrier = carrier"
by auto

lemma (in topology) closure_subset:
"A ⊆ carrier =⇒ closure A ⊆ carrier"
by auto

lemma (in topology) closure_closed [iff]:
"closure a closed"
by (auto simp: clsr_def intro: inter_closed)

lemma (in carrier) closure_idem [simp]:
"closure (closure s) = closure s"
by (auto simp: clsr_def)

lemma (in carrier) closed_closure_eq [simp]:
"a closed =⇒ closure a = a"
by (auto simp: clsr_def)

lemma (in topology) closure_eq_closed:
"closure a = a =⇒ a closed"
by (erule subst) simp

lemma (in topology) closure_iff:
"a closed = (closure a = a)"
by (auto intro: closure_eq_closed)

lemma (in carrier) closure_mono1:
"mono (closure)"
by (rule, auto simp: clsr_def)

lemma (in carrier) closure_mono:
"a ⊆ b =⇒ closure a ⊆ closure b"
by (auto simp: clsr_def)

lemma (in topology) closure_Un [simp]:
"closure (a ∪ b) = closure a ∪ closure b"
by (rule, blast) (auto simp: clsr_def)

1.5.3 Frontier
lemma (in carrier) frontierI:

"[[x ∈ closure s; x ∈ core s =⇒ False]] =⇒ x ∈ frontier s"
by (auto simp: frt_def)

lemma (in carrier) frontierE:
"[[x ∈ frontier s; [[x ∈ closure s; x ∈ core s =⇒ False]] =⇒ R]] =⇒ R"
by (auto simp: frt_def)

lemma (in topology) frontier_closed [iff]:
"frontier s closed"

by (unfold frt_def)

15

(intro closure_closed core_open closed_diff_open)

lemma (in carrier) frontier_Un_core:
"frontier s ∪ core s = closure s"
by (auto dest: subsetD [OF core_subset] simp: frt_def)

lemma (in carrier) frontier_Int_core:
"frontier s ∩ core s = {}"
by (auto simp: frt_def)

lemma (in topology) closure_frontier [simp]:
"closure (frontier a) = frontier a"
by simp

lemma (in topology) frontier_carrier [simp]:
"frontier carrier = {}"
by (auto simp: frt_def)

Hence frontier is not monotone. Also coreT (frontierT A) = {} is not a theorem as illustrated
by the following counter example. By the way: could the counter example be prooved using
an instantiation?
lemma counter_example_core_frontier:

fixes X defines [simp]: "X ≡ (UNIV::nat set)"
fixes T (structure) defines "T ≡ indiscrete_top X"
shows "core (frontier {0}) = X"

proof -
interpret indiscrete X T by fact
have "core {0} = {}"

by (auto simp add: carrier [symmetric] cor_def)
moreover have "closure {0} = UNIV"

by (auto simp: clsr_def carrier [symmetric] is_closed_def)
ultimately have "frontier {0} = UNIV"

by (auto simp: frt_def)
thus ?thesis

by (auto simp add: cor_def carrier [symmetric])
qed

1.5.4 Adherent points
definition

adhs :: "’a top ⇒ ’a ⇒ ’a set ⇒ bool" (infix ‹ adhı › 50) where
"adhs T x A ←→ (∀ U ∈ nhd T x. U ∩ A 6= {})"

lemma (in carrier) adhCE [elim?]:
"[[x adh A; U /∈ nhds x =⇒ R; U ∩ A 6= {} =⇒ R]] =⇒ R"

by (unfold adhs_def) auto

lemma (in carrier) adhI [intro]:
"(

∧
U. U ∈ nhds x =⇒ U ∩ A 6= {}) =⇒ x adh A"

by (unfold adhs_def) simp

lemma (in carrier) closure_imp_adh:
assumes asub: "A ⊆ carrier"

16

and closure: "x ∈ closure A"
shows "x adh A"

proof
fix U assume unhd: "U ∈ nhds x"
show "U ∩ A 6= {}"
proof

assume UA: "U ∩ A = {}"
from unhd obtain V where "V open" "x ∈ V" and VU: "V ⊆ U" ..
moreover from UA VU have "V ∩ A = {}" by auto
ultimately show "False" using asub closure

by (auto dest!: compl_open_closed simp: clsr_def)
qed

qed

lemma (in carrier) adh_imp_closure:
assumes xpoint: "x ∈ carrier"
and adh: "x adh A"
shows "x ∈ closure A"

proof (rule ccontr)
assume notclosure: "x /∈ closure A"
then obtain C

where closed: "C closed"
and asubc: "A ⊆ C"
and xnotinc: "x /∈ C"
by (auto simp: clsr_def)

from closed have "carrier - C open" by (rule closedE)
moreover from xpoint xnotinc have "x ∈ carrier - C" by simp
ultimately have "carrier - C ∈ nhds x" by auto
with adh have "(carrier - C) ∩ A 6= {}"

by (auto elim: adhCE)
with asubc show "False" by auto

qed

lemma (in topology) closed_adh:
assumes Asub: "A ⊆ carrier"
shows "A closed = (∀ x ∈ carrier. x adh A −→ x ∈ A)"

proof
assume "A closed"
hence AA: "closure A = A"

by auto
thus "(∀ x ∈ carrier. x adh A −→ x ∈ A)"

by (fast dest!: adh_imp_closure)
next assume adhA: "∀ x ∈ carrier. x adh A −→ x ∈ A"

have "closure A ⊆ A"
proof

fix x assume xclosure: "x ∈ closure A"
hence "x ∈ carrier" using Asub by (auto dest: closure_subset)
with xclosure show "x ∈ A" using Asub adhA

by (auto dest!: closure_imp_adh)
qed
thus "A closed" by (auto intro: closure_eq_closed)

qed

17

lemma (in carrier) adh_closure_iff:
"[[A ⊆ carrier; x ∈ carrier]] =⇒ (x adh A) = (x ∈ closure A)"
by (auto dest: adh_imp_closure closure_imp_adh)

1.6 More about closure and core
lemma (in topology) closure_complement [simp]:

shows "closure (carrier - A) = carrier - core A"
proof

have "closure (carrier - A) ⊆ carrier"
by (auto intro: closure_subset)

moreover have "closure (carrier - A) ∩ core A = {}"
proof (rule seteqI, clarsimp)

fix x assume xclosure: "x ∈ closure (carrier - A)"
hence xadh: "x adh carrier - A"

by (auto intro: closure_imp_adh)
moreover assume xcore: "x ∈ core A"
hence "core A ∈ nhds x"

by auto
ultimately have "core A ∩ (carrier - A) 6= {}"

by (auto elim: adhCE)
thus "False" by (auto dest: core_subsetD)

qed auto
ultimately show "closure (carrier - A) ⊆ carrier - core A"

by auto
next

show "carrier - core A ⊆ closure (carrier - A)"
by (auto simp: cor_def clsr_def is_closed_def)

qed

lemma (in carrier) core_complement [simp]:
assumes asub: "A ⊆ carrier"
shows "core (carrier - A) = carrier - closure A"

proof
show "carrier - closure A ⊆ core (carrier - A)"

by (auto simp: cor_def clsr_def is_closed_def)
next

have "core (carrier - A) ⊆ carrier"
by (auto elim!: coreE)

moreover have "core (carrier - A) ∩ closure A = {}"
proof auto

fix x assume "x ∈ core (carrier - A)"
hence "(carrier - A) ∈ nhds x"

by (auto iff: core_nhds_iff)
moreover assume "x ∈ closure A"
ultimately have "A ∩ (carrier - A) 6= {}" using asub

by (auto dest!: closure_imp_adh elim!: adhCE)
thus "False" by auto

qed
ultimately show "core (carrier - A) ⊆ carrier - closure A"

by auto
qed

18

lemma (in carrier) core_closure_diff_empty [simp]:
assumes asub: "A ⊆ carrier"
shows "core (closure A - A) = {}"

proof auto
fix x assume "x ∈ core (closure A - A)"
then obtain m where

mopen: "m open" and
xinm: "x ∈ m" and
msub: "m ⊆ closure A" and
minter: "m ∩ A = {}"
by (auto elim!: coreE)

from xinm msub have "x adh A" using asub
by (auto dest: closure_imp_adh)

moreover from xinm mopen have "m ∈ nhds x"
by auto

ultimately have "m ∩ A 6= {}" by (auto elim: adhCE)
with minter show "False" by auto

qed

1.7 Dense sets
definition

is_densein :: "’a top ⇒ ’a set ⇒ ’a set ⇒ bool" (infix ‹ denseinı › 50) where
"is_densein T A B ←→ B ⊆ clsr T A"

definition
is_dense :: "’a top ⇒ ’a set ⇒ bool" (‹ _ denseı › [50] 50) where
"is_dense T A = is_densein T A (carr T)"

lemma (in carrier) densinI [intro!]: "B ⊆ closure A =⇒ A densein B"
by (auto simp: is_densein_def)

lemma (in carrier) denseinE [elim!]: "[[A densein B; B ⊆ closure A =⇒ R]] =⇒ R"
by (auto simp: is_densein_def)

lemma (in carrier) denseI [intro!]: "carrier ⊆ closure A =⇒ A dense"
by (auto simp: is_dense_def)

lemma (in carrier) denseE [elim]: "[[A dense; carrier ⊆ closure A =⇒ R]] =⇒ R"
by (auto simp: is_dense_def)

lemma (in topology) dense_closure_eq [dest]:
"[[A dense; A ⊆ carrier]] =⇒ closure A = carrier"
by (auto dest: closure_subset)

lemma (in topology) dense_lemma:
"A ⊆ carrier =⇒ carrier - (closure A - A) dense"
by auto

lemma (in topology) ex_dense_closure_inter:

19

assumes ssub: "S ⊆ carrier"
shows "∃ D C. D dense ∧ C closed ∧ S = D ∩ C"

proof-
let ?D = "carrier - (closure S - S)" and

?C = "closure S"
from ssub have "?D dense" by auto
moreover have "?C closed" ..
moreover from ssub
have "(carrier - (closure S - S)) ∩ closure S = S"

by (simp add: diff_diff_inter subset_closure)
ultimately show ?thesis

by auto
qed

lemma (in topology) ex_dense_closure_interE:
assumes ssub: "S ⊆ carrier"
and H: "

∧
D C. [[D ⊆ carrier; C ⊆ carrier; D dense; C closed; S = D ∩ C]] =⇒ R"

shows "R"
proof-

let ?D = "(carrier - (closure S - S))"
and ?C = "closure S"
have "?D ⊆ carrier" by auto
moreover from assms have "?C ⊆ carrier"

by (auto dest!: closure_subset)
moreover from assms have "?D dense" by auto
moreover have "?C closed" ..
moreover from ssub have "S = ?D ∩ ?C"

by (simp add: diff_diff_inter subset_closure)
ultimately show ?thesis

by (rule H)
qed

1.8 Continuous functions
definition

INJ :: "’a set ⇒ ’b set ⇒ (’a ⇒ ’b) set" where
"INJ A B = {f. f : A → B ∧ inj_on f A}"

definition
SUR :: "’a set ⇒ ’b set ⇒ (’a ⇒ ’b) set" where
"SUR A B = {f. f : A → B ∧ (∀ y∈B. ∃ x∈A. y = f x)}"

definition
BIJ :: "’a set ⇒ ’b set ⇒ (’a ⇒ ’b) set" where
"BIJ A B = INJ A B ∩ SUR A B"

definition
cnt :: "’a top ⇒ ’b top ⇒ (’a ⇒ ’b) set" where
"cnt S T = {f. f : carr S → carr T ∧

(∀ m. is_open T m −→ is_open S (carr S ∩ (f -‘ m)))}"

definition
HOM :: " ’a top ⇒ ’b top ⇒ (’a ⇒ ’b) set" where

20

"HOM S T = {f. f ∈ cnt S T ∧ inv f ∈ cnt T S ∧ f ∈ BIJ (carr S) (carr T)}"

definition
homeo :: "’a top ⇒ ’b top ⇒ bool" where
"homeo S T ←→ (∃ h ∈ BIJ (carr S) (carr T). h ∈ cnt S T ∧ inv h ∈ cnt T S)"

definition
fimg :: "’b top ⇒ (’a ⇒ ’b) ⇒ ’a set set ⇒ ’b set set" where
"fimg T f F = {v. v ⊆ carr T ∧ (∃ u ∈ F. f‘u ⊆ v)}"

lemma domain_subset_vimage:
"f : A → B =⇒ A ⊆ f-‘B"
by (auto intro: funcset_mem)

lemma domain_inter_vimage:
"f : A → B =⇒ A ∩ f-‘B = A"
by (auto intro: funcset_mem)

lemma funcset_vimage_diff:
"f : A → B =⇒ A - f-‘(B - C) = A ∩ f-‘C"
by (auto intro: funcset_mem)

locale func = S?: carrier S + T?: carrier T
for f and S (structure) and T (structure) and fimage +
assumes func [iff]: "f : carrierS → carrierT"
defines "fimage ≡ fimg T f"
notes func_mem [simp, intro] = funcset_mem [OF func]
and domain_subset_vimage [iff] = domain_subset_vimage [OF func]
and domain_inter_vimage [simp] = domain_inter_vimage [OF func]
and vimage_diff [simp] = funcset_vimage_diff [OF func]

lemma (in func) fimageI [intro!]:
shows "[[v ⊆ carrierT; u ∈ F; f‘u ⊆ v]] =⇒ v ∈ fimage F"
by (auto simp: fimg_def fimage_def)

lemma (in func) fimageE [elim!]:
"[[v ∈ fimage F;

∧
u. [[v ⊆ carrierT ; u∈F; f‘u ⊆ v]] =⇒ R]] =⇒ R"

by (auto simp: fimage_def fimg_def)

lemma cntI:
"[[f : carr S → carr T;

(
∧

m. is_open T m =⇒ is_open S (carr S ∩ (f -‘ m)))]]
=⇒ f ∈ cnt S T"
by (auto simp: cnt_def)

lemma cntE:
"[[f ∈ cnt S T;

[[f : carr S → carr T;
∀ m. is_open T m −→ is_open S (carr S ∩ (f -‘ m))]] =⇒ P

]] =⇒ P"
by (auto simp: cnt_def)

21

lemma cntCE:
"[[f ∈ cnt S T;

[[¬ is_open T m; f : carr S → carr T]] =⇒ P;
[[is_open S (carr S ∩ (f -‘ m)); f : carr S → carr T]] =⇒ P

]] =⇒ P"
by (auto simp: cnt_def)

lemma cnt_fun:
"f ∈ cnt S T =⇒ f : carr S → carr T"
by (auto simp add: cnt_def)

lemma cntD1:
"[[f ∈ cnt S T; x ∈ carr S]] =⇒ f x ∈ carr T"
by (auto simp add: cnt_def intro: funcset_mem)

lemma cntD2:
"[[f ∈ cnt S T; is_open T m]] =⇒ is_open S (carr S ∩ (f -‘ m))"
by (auto simp: cnt_def)

locale continuous = func +
assumes continuous [dest, simp]:
"m openT =⇒ carrier ∩ (f -‘ m) open"

lemma continuousI:
fixes S (structure)
fixes T (structure)
assumes "f : carrierS → carrierT"

"
∧

m. m openT =⇒ carrier ∩ (f -‘ m) open"
shows "continuous f S T"

using assms by (auto simp: continuous_def func_def continuous_axioms_def)

lemma continuousE:
fixes S (structure)
fixes T (structure)
shows
"[[continuous f S T;

[[f : carrierS → carrierT;
∀ m. m openT −→ carrierS ∩ (f -‘ m) open]] =⇒ P

]] =⇒ P"
by (auto simp: continuous_def func_def continuous_axioms_def)

lemma continuousCE:
fixes S (structure)
fixes T (structure)
shows
"[[continuous f S T;

[[¬ m openT; f : carrierS → carrierT]] =⇒ P;
[[carrierS ∩ (f -‘ m) openS; f : carrierS → carrierT]] =⇒ P

]] =⇒ P"
by (auto simp: continuous_def func_def continuous_axioms_def)

lemma (in continuous) closed_vimage [intro, simp]:

22

assumes csubset: "c ⊆ carrierT"
and cclosed: "c closedT"
shows "f -‘ c closed"

proof-
from cclosed have "carrierT - c openT" by (rule closedE)
hence "carrier ∩ f -‘ (carrierT - c) open" by auto
hence "carrier - f -‘ c open" by (auto simp: diffsimps)
thus "f -‘ c closed" by (rule S.closedI)

qed

lemma continuousI2:
fixes S (structure)
fixes T (structure)
assumes func: "f : carrierS → carrierT"
assumes R: "

∧
c. [[c ⊆ carrierT; c closedT]] =⇒ f -‘ c closed"

shows "continuous f S T"
proof (rule continuous.intro)

from func show "func f S T" by (auto simp: func_def)
next

interpret S: carrier S .
interpret T: carrier T .
show "continuous_axioms f S T"
proof (rule continuous_axioms.intro)

fix m let ?c = "carrierT - m" assume "m openT"
hence csubset: "?c ⊆ carrierT" and cclosed: "?c closedT"

by auto
hence "f -‘ ?c closed" by (rule R)
hence "carrier - f -‘ ?c open"

by (rule S.closedE)
thus "carrier ∩ f -‘ m open" by (simp add: funcset_vimage_diff [OF func])

qed
qed

lemma cnt_compose:
"[[f ∈ cnt S T; g ∈ cnt T U]] =⇒ (g ◦ f) ∈ cnt S U "
by (auto intro!: cntI funcset_comp elim!: cntE simp add: vimage_comp)

lemma continuous_compose:
"[[continuous f S T; continuous g T U]] =⇒ continuous (g ◦ f) S U"
by (auto intro!: continuousI funcset_comp

elim!: continuousE simp add: vimage_comp)

lemma id_continuous:
fixes T (structure)
shows "continuous id T T"

proof(rule continuousI)
show "id ∈ carrier → carrier"

by (auto intro: funcsetI)
next

interpret T: carrier T .
fix m assume mopen: "m open"

23

hence "m ⊆ carrier" by auto
hence "carrier ∩ m = m" by auto
thus "carr T ∩ id -‘ m open" using mopen

by auto
qed

lemma (in discrete) continuous:
fixes f and S (structure) and fimage
assumes "func f T S" defines "fimage ≡ fimg S f"
shows "continuous f T S"

proof -
interpret func f T S fimage by fact fact
show ?thesis by (auto intro!: continuousI)

qed

lemma (in indiscrete) continuous:
fixes S (structure)
assumes "topology S"
fixes f and fimage
assumes "func f S T" defines "fimage ≡ fimg T f"
shows "continuous f S T"

proof -
interpret S: topology S by fact
interpret func f S T fimage by fact fact
show ?thesis by (auto del: S.Int_open intro!: continuousI)

qed

1.9 Filters
definition

fbas :: "’a top ⇒ ’a set set ⇒ bool" (‹ fbaseı ›) where
"fbas T B ←→ {} /∈ B ∧ B 6= {} ∧

(∀ a∈B. ∀ b∈B. ∃ c∈B. c ⊆ a ∩ b)"

definition
filters :: "’a top ⇒ ’a set set set" (‹ Filtersı ›) where
"filters T = { F. {} /∈ F ∧

⋃
F ⊆ carr T ∧

(∀ A B. A∈F ∧ B∈F −→ A∩B ∈ F) ∧
(∀ A B. A∈F ∧ A⊆B ∧ B ⊆ carr T −→ B ∈ F) }"

definition
ultr :: "’a top ⇒ ’a set set ⇒ bool" (‹ ultraı ›) where
"ultr T F ←→ (∀ A. A ⊆ carr T −→ A ∈ F ∨ (carr T - A) ∈ F)"

lemma filtersI [intro]:
fixes T (structure)
assumes a1: "{} /∈ F"
and a2: "

⋃
F ⊆ carrier"

and a3: "
∧

A B. [[A ∈ F; B ∈ F]] =⇒ A ∩ B ∈ F"
and a4: "

∧
A B. [[A ∈ F; A ⊆ B; B ⊆ carrier]] =⇒ B ∈ F"

shows "F ∈ Filters"
using a1 a2
by (auto simp add: filters_def intro: a3 a4)

24

lemma filtersE:
assumes a1: "F ∈ filters T"
and R: "[[{} /∈ F;⋃

F ⊆ carr T;
∀ A B. A∈F ∧ B∈F −→ A∩B ∈ F;
∀ A B. A∈F ∧ A⊆B ∧ B⊆ carr T −→ B ∈ F

]] =⇒ R"
shows "R"
using a1
apply (simp add: filters_def)
apply (rule R)
apply ((erule conjE)+, assumption)+
done

lemma filtersD1:
"F ∈ filters T =⇒ {} /∈ F"
by (erule filtersE)

lemma filtersD2:
"F ∈ filters T =⇒

⋃
F ⊆ carr T"

by (erule filtersE)

lemma filtersD3:
"[[F ∈ filters T; A∈F; B∈F]] =⇒ A ∩ B ∈ F"
by (blast elim: filtersE)

lemma filtersD4:
"[[F ∈ filters T; A ⊆ B; B ⊆ carr T; A∈F]] =⇒ B ∈ F"
by (blast elim: filtersE)

locale filter = carrier T for F and T (structure) +
assumes F_filter: "F ∈ Filters"
notes not_empty [iff] = filtersD1 [OF F_filter]
and union_carr [iff] = filtersD2 [OF F_filter]
and filter_inter [intro!, simp] = filtersD3 [OF F_filter]
and filter_greater [dest] = filtersD4 [OF F_filter]

lemma (in filter) elem_carrier [elim]:
assumes A: "A ∈ F"
assumes R: "[[A ⊆ carrier; A 6= {}]] =⇒ R"
shows "R"

proof-
have "

⋃
F ⊆ carrier" ..

thus ?thesis using A by (blast intro: R)
qed

25

lemma empty_filter [iff]: "{} ∈ filters T"
by auto

lemma (in filter) contains_carrier [intro, simp]:
assumes F_not_empty: "F 6={}"
shows "carrier ∈ F"

proof-
from F_not_empty obtain A where "A ⊆ carrier" "A ∈ F"

by auto
thus ?thesis by auto

qed

lemma nonempty_filter_implies_nonempty_carrier:
fixes T (structure)
assumes F_filter: "F ∈ Filters"
and F_not_empty: "F 6= {}"
shows "carrier 6= {}"

proof-
from assms have "carrier ∈ F"

by (auto dest!: filter.contains_carrier [OF filter.intro])
thus ?thesis using F_filter

by(auto dest: filtersD1)
qed

lemma carrier_singleton_filter:
fixes T (structure)
shows "carrier 6= {} =⇒ {carrier} ∈ Filters"
by auto

lemma (in topology) nhds_filter:
"nhds x ∈ Filters"
by (auto dest: nhds_greater intro!: filtersI nhds_inter)

lemma fimage_filter:
fixes f and S (structure) and T (structure) and fimage
assumes "func f S T" defines "fimage ≡ fimg T f"
fixes F assumes "filter F S"
shows "fimage F ∈ FiltersT"

proof -
interpret func f S T fimage by fact fact
interpret filter F S by fact
show ?thesis proof

fix A B assume "A ∈ fimage F" "B ∈ fimage F"
then obtain a b where

AY: "A⊆carrierT" and aF: "a∈F" and fa: "f ‘ a ⊆ A" and
BY: "B⊆carrierT" and bF: "b∈F" and fb: "f ‘ b ⊆ B"
by (auto)

from AY BY have "A∩B ⊆ carrierT" by auto
moreover from aF bF have "a ∩ b ∈ F" by auto
moreover from aF bF fa fb have "f‘(a ∩ b) ⊆ A ∩ B" by auto
ultimately show "A∩B ∈ fimage F" by auto

qed auto

26

qed

lemma Int_filters:
fixes F and T (structure) assumes "filter F T"
fixes E assumes "filter E T"
shows "F ∩ E ∈ Filters"

proof -
interpret filter F T by fact
interpret filter E T by fact
show ?thesis by auto

qed

lemma ultraCI [intro!]:
fixes T (structure)
shows "(

∧
A. [[A ⊆ carrier; carrier - A /∈ F]] =⇒ A ∈ F) =⇒ ultra F"

by (auto simp: ultr_def)

lemma ultraE:
fixes T (structure)
shows "[[ultra F; A ⊆ carrier;

A ∈ F =⇒ R;
carrier - A ∈ F =⇒ R

]] =⇒ R"
by (auto simp: ultr_def)

lemma ultraD:
fixes T (structure)
shows "[[ultra F; A ⊆ carrier; A /∈ F]] =⇒ (carrier - A) ∈ F"
by (erule ultraE) auto

locale ultra_filter = filter +
assumes ultra: "ultra F"
notes ultraD = ultraD [OF ultra]
notes ultraE [elim] = ultraE [OF ultra]

lemma (in ultra_filter) max:
fixes E assumes "filter E T"
assumes fsube: "F ⊆ E"
shows "E ⊆ F"

proof -
interpret filter E T by fact
show ?thesis proof

fix x assume xinE: "x ∈ E"
hence "x ⊆ carrier" ..
hence "x ∈ F ∨ carrier - x ∈ F" by auto
thus "x ∈ F"
proof clarify

assume "carrier - x ∈ F"
hence "carrier - x ∈ E" using fsube ..
with xinE have "x ∩ (carrier - x) ∈ E" ..
hence False by auto

27

thus "x ∈ F" ..
qed

qed
qed

lemma (in filter) max_ultra:
assumes carrier_not_empty: "carrier 6= {}"
and fmax: "∀ E ∈ Filters. F ⊆ E −→ F = E"
shows "ultra F"

proof

fix A let ?CA = "carrier - A"
assume A_subset_carrier: "A ⊆ carrier"

and CA_notin_F: "?CA /∈ F"

let ?E = "{V. ∃ U∈F. V ⊆ carrier ∧ A ∩ U ⊆ V}"
have "?E ∈ Filters"
proof

show "{} /∈ ?E"
proof clarify

fix U assume U_in_F: "U ∈ F" and "A ∩ U ⊆ {}"
hence "U ⊆ ?CA" by auto
with U_in_F have "?CA ∈ F" by auto
with CA_notin_F show False ..

qed
next show "

⋃
?E ⊆ carrier" by auto

next fix a b assume "a ∈ ?E" and "b ∈ ?E"
then obtain u v where props: "u ∈ F" "a ⊆ carrier" "A ∩ u ⊆ a"

"v ∈ F" "b ⊆ carrier" "A ∩ v ⊆ b" by auto
hence "(u ∩ v) ∈ F" "a ∩ b ⊆ carrier" "A ∩ (u ∩ v) ⊆ a ∩ b"

by auto
thus "a ∩ b ∈ ?E" by auto

next fix a b assume "a ∈ ?E" and asub: "a ⊆ b" and bsub: "b ⊆ carrier"
thus "b ∈ ?E" by blast

qed

moreover have "F ⊆ ?E" by auto

moreover from carrier_not_empty
have "{carrier} ∈ Filters" by auto
hence "F 6= {}" using fmax by blast
hence "A ∈ ?E" using A_subset_carrier by auto

ultimately show "A ∈ F" using fmax by auto

qed

lemma filter_chain_lemma:
fixes T (structure) and F
assumes "filter F T"
assumes C_chain: "C ∈ chains {V. V ∈ Filters ∧ F ⊆ V}" (is "C ∈ chains ?FF")
shows "

⋃
(C ∪ {F}) ∈ Filters" (is "?E ∈ Filters")

proof-

28

interpret filter F T by fact
from C_chain have C_subset_FF[dest]: "

∧
x. x∈C =⇒ x ∈ ?FF" and

C_ordered: "∀ A ∈ C. ∀ B ∈ C. A ⊆ B ∨ B ⊆ A"
by (auto simp: chains_def chain_subset_def)

show ?thesis
proof

show "{} /∈ ?E" by (auto dest: filtersD1)
next

show "
⋃

?E ⊆ carrier" by (blast dest: filtersD2)
next

fix a b assume a_in_E: "a ∈ ?E" and a_subset_b: "a ⊆ b"
and b_subset_carrier: "b ⊆ carrier"

thus "b ∈ ?E" by (blast dest: filtersD4)
next

fix a b assume a_in_E: "a ∈ ?E" and b_in_E: "b ∈ ?E"
then obtain A B where A_in_chain: "A ∈ C ∪ {F}" and B_in_chain: "B ∈ C ∪ {F}"

and a_in_A: "a ∈ A" and b_in_B: "b ∈ B" and A_filter: "A ∈ Filters"
and B_filter: "B ∈ Filters"
by auto

with C_ordered have "A ⊆ B ∨ B ⊆ A" by auto
thus "a∩b ∈ ?E"
proof

assume "A ⊆ B"
with a_in_A have "a ∈ B" ..
with B_filter b_in_B have "a∩b ∈ B" by (intro filtersD3)
with B_in_chain show ?thesis ..

next
assume "B ⊆ A" — Symmetric case
with b_in_B A_filter a_in_A A_in_chain
show ?thesis by (blast intro: filtersD3)

qed
qed

qed

lemma expand_filter_ultra:
fixes T (structure)
assumes carrier_not_empty: "carrier 6= {}"
and F_filter: "F ∈ Filters"
and R: "

∧
U. [[U ∈ Filters; F ⊆ U; ultra U]] =⇒ R"

shows "R"
proof-

let ?FF = "{V. V ∈ Filters ∧ F ⊆ V}"
have "∀ C ∈ chains ?FF. ∃ y ∈ ?FF. ∀ x ∈ C. x ⊆ y"
proof clarify

fix C let ?M = "
⋃

(C ∪ {F})"
assume C_in_chain: "C ∈ chains ?FF"
hence "?M ∈ ?FF" using F_filter

by (auto dest: filter_chain_lemma [OF filter.intro])
moreover have "∀ x ∈ C. x ⊆ ?M" using C_in_chain

by (auto simp: chain_def)
ultimately show "∃ y∈?FF. ∀ x∈C. x ⊆ y"

by auto

29

qed then obtain U where
U_FFilter: "U ∈ ?FF" and U_max: "∀ V ∈ ?FF. U ⊆ V −→ V = U"
by (blast dest!: Zorn_Lemma2)

hence U_filter: "U ∈ Filters" and F_subset_U: "F ⊆ U"
by auto

moreover from U_filter carrier_not_empty have "ultra U"
proof (rule filter.max_ultra [OF filter.intro], clarify)

fix E x assume "E ∈ Filters" and U_subset_E: "U ⊆ E" and x_in_E: "x ∈ E"
with F_subset_U have "E ∈ ?FF" by auto
with U_subset_E x_in_E U_max show "x ∈ U" by blast

qed
ultimately show ?thesis

by (rule R)
qed

1.10 Convergence
definition

converges :: "’a top ⇒ ’a set set ⇒ ’a ⇒ bool" (‹ (_ −−−→ı _)› [55, 55] 55) where
"converges T F x ←→ nhd T x ⊆ F"

notation
converges (‹ (_ ` _ −→ _)› [55, 55, 55] 55)

definition
cnvgnt :: "’a top ⇒ ’a set set ⇒ bool" (‹ _ convergentı › [50] 50) where
"cnvgnt T F ←→ (∃ x ∈ carr T. converges T F x)"

definition
limites :: "’a top ⇒ ’a set set ⇒ ’a set" (‹ limsı ›) where
"limites T F = {x. x ∈ carr T ∧ T ` F −→ x}"

definition
limes :: "’a top ⇒ ’a set set ⇒ ’a" (‹ limı ›) where
"limes T F = (THE x. x ∈ carr T ∧ T ` F −→ x)"

lemma (in carrier) convergesI [intro]:
"nhds x ⊆ F =⇒ F −−−→ x"
by (auto simp: converges_def)

lemma (in carrier) convergesE [elim]:
"[[F −−−→ x; nhds x ⊆ F =⇒ R]] =⇒ R"
by (auto simp: converges_def)

lemma (in carrier) convergentI [intro?]:
"[[F −−−→ x; x ∈ carrier]] =⇒ F convergent"
by (auto simp: cnvgnt_def)

lemma (in carrier) convergentE [elim]:
"[[F convergent;∧

x. [[F −−−→ x; x ∈ carrier]] =⇒ R
]] =⇒ R"

30

by (auto simp: cnvgnt_def)

lemma (in continuous) fimage_converges:
assumes xpoint: "x ∈ carrier"
and conv: "F −−−→S x"
shows "fimage F −−−→T (f x)"

proof (rule, rule)
fix v assume vnhd: "v ∈ nhdsT (f x)"
then obtain m where v_subset_carrier: "v ⊆ carrierT"

and m_open: "m openT"
and m_subset_v: "m ⊆ v"
and fx_in_m: "f x ∈ m" ..

let ?m’ = "carrier ∩ f-‘m"
from fx_in_m xpoint have "x ∈ ?m’" by auto
with m_open have "?m’ ∈ nhds x" by auto
with conv have "?m’ ∈ F" by auto
moreover from m_subset_v have "f‘?m’ ⊆ v" by auto
ultimately show "v ∈ fimage F" using v_subset_carrier by auto

qed

corollary (in continuous) fimage_convergent [intro!]:
"F convergentS =⇒ fimage F convergentT"
by (blast intro: convergentI fimage_converges)

lemma (in topology) closure_convergent_filter:
assumes xclosure: "x ∈ closure A"

and xpoint: "x ∈ carrier"
and asub: "A ⊆ carrier"
and H: "

∧
F. [[F ∈ Filters; F −−−→ x; A ∈ F]] =⇒ R"

shows "R"
proof-

let ?F = "{v. v ⊆ carrier ∧ (∃ u ∈ nhds x. u ∩ A ⊆ v)}"
have "?F ∈ Filters"
proof

from asub xclosure have adhx: "x adh A" by (rule closure_imp_adh)
thus "{} /∈ ?F" by (auto elim: adhCE)

next show "
⋃

?F ⊆ carrier" by auto
next fix a b assume aF: "a ∈ ?F" and bF: "b ∈ ?F"

then obtain u v where
aT: "a ⊆ carrier" and bT: "b ⊆ carrier" and
ux: "u ∈ nhds x" and vx: "v ∈ nhds x" and
uA: "u ∩ A ⊆ a" and vA: "v ∩ A ⊆ b"
by auto

moreover from ux vx have "u ∩ v ∈ nhds x"
by (auto intro: nhds_inter)

moreover from uA vA have "(u ∩ v) ∩ A ⊆ a ∩ b" by auto
ultimately show "a ∩ b ∈ ?F" by auto

next fix a b assume aF: "a ∈ ?F" and ab: "a ⊆ b" and bT: "b ⊆ carrier"
then obtain u

where at: "a ⊆ carrier" and ux: "u ∈ nhds x" and uA: "u ∩ A ⊆ a"
by auto

moreover from ux bT have "u ∪ b ∈ nhds x"
by (auto intro: nhds_greater)

31

moreover from uA ab have "(u ∪ b) ∩ A ⊆ b" by auto
ultimately show "b ∈ ?F" by auto

qed
moreover have "?F −−−→ x"

by auto
moreover from asub xpoint have "A ∈ ?F"

by blast
ultimately show ?thesis

by (rule H)
qed

lemma convergent_filter_closure:
fixes F and T (structure)
assumes "filter F T"
assumes converge: "F −−−→ x"
and xpoint: "x ∈ carrier"
and AF: "A ∈ F"
shows "x ∈ closure A"

proof-
interpret filter F T by fact
have "x adh A"
proof

fix u assume unhd: "u ∈ nhds x"
with converge have "u ∈ F" by auto
with AF have "u ∩ A ∈ F" by auto
thus "u ∩ A 6= {}" by blast

qed
with xpoint show ?thesis

by (rule adh_imp_closure)
qed

1.11 Separation
1.11.1 T0 spaces
locale T0 = topology +

assumes T0: "∀ x ∈ carrier. ∀ y ∈ carrier. x 6= y −→
(∃ u ∈ nhds x. y /∈ u) ∨ (∃ v ∈ nhds y. x /∈ v)"

lemma (in T0) T0_eqI:
assumes points: "x ∈ carrier" "y ∈ carrier"
and R1: "

∧
u. u ∈ nhds x =⇒ y ∈ u"

and R2: "
∧

v. v ∈ nhds y =⇒ x ∈ v"
shows "x = y"
using T0 points
by (auto intro: R1 R2)

lemma (in T0) T0_neqE [elim]:
assumes x_neq_y: "x 6= y"
and points: "x ∈ carrier" "y ∈ carrier"

32

and R1: "
∧

u. [[u ∈ nhds x; y /∈ u]] =⇒ R"
and R2: "

∧
v. [[v ∈ nhds y; x /∈ v]] =⇒ R"

shows "R"
using T0 points x_neq_y
by (auto intro: R1 R2)

1.11.2 T1 spaces
locale T1 = T0 +

assumes DT01: "∀ x ∈ carrier. ∀ y ∈ carrier. x 6= y −→
(∃ u ∈ nhds x. y /∈ u) = (∃ v ∈ nhds y. x /∈ v)"

lemma (in T1) T1_neqE [elim]:
assumes x_neq_y: "x 6= y"
and points: "x ∈ carrier" "y ∈ carrier"
and R [intro] : "

∧
u v. [[u ∈ nhds x; v ∈ nhds y; y /∈ u; x /∈ v]] =⇒ R"

shows "R"
proof-

from DT01 x_neq_y points
have nhd_iff: "(∃ v ∈ nhds y. x /∈ v) = (∃ u ∈ nhds x. y /∈ u)"

by force
from x_neq_y points show ?thesis
proof

fix u assume u_nhd: "u ∈ nhds x" and y_notin_u: "y /∈ u"
with nhd_iff obtain v where "v ∈ nhds y" and "x /∈ v" by blast
with u_nhd y_notin_u show "R" by auto

next
fix v assume v_nhd: "v ∈ nhds y" and x_notin_v: "x /∈ v"
with nhd_iff obtain u where "u ∈ nhds x" and "y /∈ u" by blast
with v_nhd x_notin_v show "R" by auto

qed
qed

declare (in T1) T0_neqE [rule del]

lemma (in T1) T1_eqI:
assumes points: "x ∈ carrier" "y ∈ carrier"
and R1: "

∧
u v. [[u ∈ nhds x; v ∈ nhds y; y /∈ u]] =⇒ x ∈ v"

shows "x = y"
proof (rule ccontr)

assume "x 6= y" thus False using points
by (auto intro: R1)

qed

lemma (in T1) singleton_closed [iff]: "{x} closed"
proof (cases "x ∈ carrier")

case False hence "carrier - {x} = carrier"
by auto

thus ?thesis by (clarsimp intro!: closedI)
next

case True show ?thesis
proof (rule closedI, rule open_kriterion)

33

fix y assume "y ∈ carrier - {x}"
hence "y ∈ carrier" "x 6= y" by auto
with True obtain v where "v ∈ nhds y" "x /∈ v"

by (elim T1_neqE)
then obtain m where "m open" "y∈m" "m ⊆ carrier - {x}"

by (auto elim!: nhdE)
thus "∃ m. m open ∧ y ∈ m ∧ m ⊆ carrier - {x}"

by blast
qed

qed

lemma (in T1) finite_closed:
assumes finite: "finite A"
shows "A closed"
using finite

proof induct
case empty show ?case ..

next
case (insert x F)
hence "{x} ∪ F closed" by blast
thus ?case by simp

qed

1.11.3 T2 spaces (Hausdorff spaces)
locale T2 = T1 +

assumes T2: "∀ x ∈ carrier. ∀ y ∈ carrier. x 6= y
−→ (∃ u ∈ nhds x. ∃ v ∈ nhds y. u ∩ v = {})"

lemma T2_axiomsI:
fixes T (structure)
shows
"(

∧
x y. [[x ∈ carrier; y ∈ carrier; x 6= y]] =⇒

∃ u ∈ nhds x. ∃ v ∈ nhds y. u ∩ v = {})
=⇒ T2_axioms T"

by (auto simp: T2_axioms_def)

declare (in T2) T1_neqE [rule del]

lemma (in T2) neqE [elim]:
assumes neq: "x 6= y"
and points: "x ∈ carrier" "y ∈ carrier"
and R: "

∧
u v. [[u ∈ nhds x; v ∈ nhds y; u ∩ v = {}]] =⇒ R"

shows R
proof-

from T2 points neq obtain u v where
"u ∈ nhds x" "v ∈ nhds y" "u ∩ v = {}" by force

thus R by (rule R)
qed

lemma (in T2) neqE2 [elim]:
assumes neq: "x 6= y"
and points: "x ∈ carrier" "y ∈ carrier"

34

and R: "
∧

u v. [[u ∈ nhds x; v ∈ nhds y; z /∈ u ∨ z /∈ v]] =⇒ R"
shows R

proof-
from T2 points neq obtain u v where

"u ∈ nhds x" "v ∈ nhds y" "u ∩ v = {}" by force
thus R by (auto intro: R)

qed

lemma T2_axiom_implies_T1_axiom:
fixes T (structure)
assumes T2: "∀ x ∈ carrier. ∀ y ∈ carrier. x 6= y
−→ (∃ u ∈ nhds x. ∃ v ∈ nhds y. u ∩ v = {})"
shows "T1_axioms T"

proof (rule T1_axioms.intro, clarify)
interpret carrier T .
fix x y assume neq: "x 6= y" and

points: "x ∈ carrier" "y ∈ carrier"
with T2 obtain u v

where unhd: "u ∈ nhds x" and
vnhd: "v ∈ nhds y" and Int_empty: "u ∩ v = {}"
by force

show "(∃ u∈nhds x. y /∈ u) = (∃ v∈nhds y. x /∈ v)"
proof safe

show "∃ v∈nhds y. x /∈ v"
proof

from unhd have "x ∈ u" by auto
with Int_empty show "x /∈ v" by auto

qed (rule vnhd)
next

show "∃ u∈nhds x. y /∈ u"
proof

from vnhd have "y ∈ v" by auto
with Int_empty show "y /∈ u" by auto

qed (rule unhd)
qed

qed

lemma T2_axiom_implies_T0_axiom:
fixes T (structure)
assumes T2: "∀ x ∈ carrier. ∀ y ∈ carrier. x 6= y
−→ (∃ u ∈ nhds x. ∃ v ∈ nhds y. u ∩ v = {})"
shows "T0_axioms T"

proof (rule T0_axioms.intro, clarify)
interpret carrier T .
fix x y assume neq: "x 6= y" and

points: "x ∈ carrier" "y ∈ carrier"
with T2 obtain u v

where unhd: "u ∈ nhds x" and
vnhd: "v ∈ nhds y" and Int_empty: "u ∩ v = {}"
by force

show "∃ u∈nhds x. y /∈ u"
proof

from vnhd have "y ∈ v" by auto

35

with Int_empty show "y /∈ u" by auto
qed (rule unhd)

qed

lemma T2I:
fixes T (structure) assumes "topology T"
assumes I: "

∧
x y. [[x ∈ carrier; y ∈ carrier; x 6= y]] =⇒

∃ u ∈ nhds x. ∃ v ∈ nhds y. u ∩ v = {}"
shows "T2 T"

proof -
interpret topology T by fact
show ?thesis apply intro_locales

apply (rule T2_axiom_implies_T0_axiom)
using I apply simp
apply (rule T2_axiom_implies_T1_axiom)
using I apply simp
apply unfold_locales
using I apply simp
done

qed

lemmas T2E = T2.neqE
lemmas T2E2 = T2.neqE2

lemma (in T2) unique_convergence:
fixes F assumes "filter F T"
assumes points: "x ∈ carrier" "y ∈ carrier"

and Fx: "F −−−→ x"
and Fy: "F −−−→ y"
shows "x = y"

proof -
interpret filter F T by fact
show ?thesis proof (rule ccontr)

assume "x 6= y" then obtain u v
where unhdx: "u ∈ nhds x"
and vnhdy: "v ∈ nhds y"
and inter: "u ∩ v = {}"
using points ..

hence "u ∈ F" and "v ∈ F" using Fx Fy by auto
hence "u ∩ v ∈ F" ..
with inter show "False" by auto

qed
qed

lemma (in topology) unique_convergence_implies_T2 [rule_format]:
assumes unique_convergence:
"
∧

x y F.[[x ∈ carrier; y ∈ carrier; F∈Filters;
F −−−→ x; F −−−→ y]] =⇒ x = y"

shows "T2 T"

proof (rule T2I)
show "topology T" ..

36

next
fix x y assume points: "x ∈ carrier" "y ∈ carrier"

and neq: "x 6= y"
show "∃ u∈nhds x. ∃ v∈nhds y. u ∩ v = {}"
proof (rule ccontr, simp)

assume non_empty_Int: "∀ u∈nhds x. ∀ v∈nhds y. u ∩ v 6= {}"
let ?E = "{w. w⊆carrier ∧ (∃ u ∈ nhds x. ∃ v ∈ nhds y. u∩v ⊆ w)}"

have "?E ∈ Filters"
proof rule

show "{} /∈ ?E" using non_empty_Int by auto
next show "

⋃
?E ⊆ carrier" by auto

next fix a b assume "a ∈ ?E" "b ∈ ?E"
then obtain ua va ub vb

where "a ⊆ carrier" "ua ∈ nhds x" "va ∈ nhds y" "ua ∩ va ⊆ a"
"b ⊆ carrier" "ub ∈ nhds x" "vb ∈ nhds y" "ub ∩ vb ⊆ b"

by auto
hence "a∩b ⊆ carrier" "ua ∩ ub ∈ nhds x" "va ∩ vb ∈ nhds y" "(ua ∩ ub) ∩ (va

∩ vb) ⊆ a ∩ b"
by (auto intro!: nhds_inter simp: Int_ac)

thus "a ∩ b ∈ ?E" by blast
next fix a b assume "a ∈ ?E" and a_sub_b:

"a ⊆ b" and b_sub_carrier: "b ⊆ carrier"
then obtain u v

where u_int_v: "u ∩ v ⊆ a" and nhds: "u ∈ nhds x" "v ∈ nhds y"
by auto

from u_int_v a_sub_b have "u ∩ v ⊆ b" by auto
with b_sub_carrier nhds show "b ∈ ?E" by blast

qed

moreover have "?E −−−→ x"
proof (rule, rule)

fix w assume "w ∈ nhds x"
moreover have "carrier ∈ nhds y" using ‹ y ∈ carrier› ..
moreover have "w ∩ carrier ⊆ w" by auto
ultimately show "w ∈ ?E" by auto

qed

moreover have "?E −−−→ y"
proof (rule, rule)

fix w assume "w ∈ nhds y"
moreover have "carrier ∈ nhds x" using ‹ x ∈ carrier› ..
moreover have "w ∩ carrier ⊆ w" by auto
ultimately show "w ∈ ?E" by auto

qed

ultimately have "x = y" using points
by (auto intro: unique_convergence)

thus False using neq by contradiction
qed

qed

lemma (in T2) limI [simp]:

37

assumes filter: "F ∈ Filters"
and point: "x ∈ carrier"
and converges: "F −−−→ x"
shows "lim F = x"
using filter converges point
by (auto simp: limes_def dest: unique_convergence [OF filter.intro])

lemma (in T2) convergent_limE:
assumes convergent: "F convergent"
and filter: "F ∈ Filters"
and R: "[[lim F ∈ carrier; F −−−→ lim F]] =⇒ R"
shows "R"
using convergent filter
by (force intro!: R)

lemma image_lim_subset_lim_fimage:
fixes f and S (structure) and T (structure) and fimage
defines "fimage ≡ fimg T f"
assumes "continuous f S T"
shows "F ∈ FiltersS =⇒ f‘(lims F) ⊆ limsT (fimage F)"

proof -
interpret continuous f S T fimage by fact fact
show ?thesis by (auto simp: limites_def intro: fimage_converges)

qed

1.11.4 T3 axiom and regular spaces
locale T3 = topology +

assumes T3: "∀ A. ∀ x ∈ carrier - A. A ⊆ carrier ∧ A closed −→
(∃ B. ∃ U ∈ nhds x. B open ∧ A ⊆ B ∧ B ∩ U = {})"

lemma (in T3) T3E:
assumes H: "A ⊆ carrier" "A closed" "x ∈ carrier" "x/∈ A"
and R: "

∧
B U. [[A ⊆ B; B open; U ∈ nhds x; B ∩ U = {}]] =⇒ R"

shows "R"
using T3 H
by (blast dest: R)

locale regular = T1 + T3

lemma regular_implies_T2:
fixes T (structure)
assumes "regular T"
shows "T2 T"

proof (rule T2I)
interpret regular T by fact
show "topology T" ..

next
interpret regular T by fact
fix x y assume "x ∈ carrier" "y ∈ carrier" "x 6= y"
hence "{y} ⊆ carrier" "{y} closed" "x ∈ carrier" "x /∈ {y}" by auto
then obtain B U where B: "{y} ⊆ B" "B open" and U: "U ∈ nhds x" "B ∩ U = {}"

by (elim T3E)

38

from B have "B ∈ nhds y" by auto
thus "∃ u∈nhds x. ∃ v∈nhds y. u ∩ v = {}" using U

by blast
qed

1.11.5 T4 axiom and normal spaces
locale T4 = topology +

assumes T4: "∀ A B. A closed ∧ A ⊆ carrier ∧ B closed ∧ B ⊆ carrier ∧
A ∩ B = {} −→ (∃ U V. U open ∧ A ⊆ U ∧ V open ∧ B ⊆ V ∧ U ∩ V = {})"

lemma (in T4) T4E:
assumes H: "A closed" "A ⊆ carrier" "B closed" "B ⊆ carrier" "A∩B = {}"
and R: "

∧
U V. [[U open; A ⊆ U; V open; B ⊆ V; U ∩ V = {}]] =⇒ R"

shows "R"
proof-

from H T4 have "(∃ U V. U open ∧ A ⊆ U ∧ V open ∧ B ⊆ V ∧ U ∩ V = {})"
by auto

then obtain U V where "U open" "A ⊆ U" "V open" "B ⊆ V" "U ∩ V = {}"
by auto

thus ?thesis by (rule R)
qed

locale normal = T1 + T4

lemma normal_implies_regular:
fixes T (structure)
assumes "normal T"
shows "regular T"

proof -
interpret normal T by fact
show ?thesis
proof intro_locales

show "T3_axioms T"
proof (rule T3_axioms.intro, clarify)

fix A x assume x: "x ∈ carrier" "x /∈ A" and A: "A closed" "A ⊆ carrier"
from x have "{x} closed" "{x} ⊆ carrier" "A ∩ {x} = {}" by auto
with A obtain U V

where "U open" "A ⊆ U" "V open" "{x} ⊆ V" "U ∩ V = {}" by (rule T4E)
thus "∃ B. ∃ U∈nhds x. B open ∧ A ⊆ B ∧ B ∩ U = {}" by auto

qed
qed

qed

end

2 The topology of llists
theory LList_Topology

39

imports Topology "Lazy-Lists-II.LList2"
begin

2.1 The topology of all llists

This theory introduces the topologies of all llists, of infinite llists, and of the non-empty llists.
For all three cases it is proved that safety properties are closed sets and that liveness properties
are dense sets. Finally, we prove in each of the the three different topologies the respective
theorem of Alpern and Schneider [1], which states that every property can be represented as
an intersection of a safety property and a liveness property.
definition

ttop :: "’a set ⇒ ’a llist top" where
"ttop A = topo (

⋃
s∈A?. {suff A s})"

lemma ttop_topology [iff]: "topology (ttop A)"
by (auto simp: ttop_def)

locale suffixes =
fixes A and B
defines [simp]: "B ≡ (

⋃
s∈A?. {suff A s})"

locale trace_top = suffixes + topobase

lemma (in trace_top) open_iff [iff]:
"m open = (m ∈ topo (

⋃
s∈A?. {suff A s}))"

by (simp add: T_def is_open_def)

lemma (in trace_top) suff_open [intro!]:
"r ∈ A? =⇒ suff A r open"
by auto

lemma (in trace_top) ttop_carrier: "A∞ = carrier"
by (auto simp: carrier_topo suff_def)

lemma (in trace_top) suff_nhd_base:
assumes unhd: "u ∈ nhds t"
and H: "

∧
r. [[r ∈ finpref A t; suff A r ⊆ u]] =⇒ R"

shows "R"
proof-

from unhd obtain m where
uA: "u ⊆ A∞" and
mopen: "m open" and
tm: "t ∈ m" and
mu: "m ⊆ u"
by (auto simp: ttop_carrier [THEN sym])

from mopen tm have
"∃ r ∈ finpref A t. suff A r ⊆ m"

proof (induct "m")
case (basic a)
then obtain s where sA: "s ∈ A?" and as: "a = suff A s" and ta: "t ∈ a"

40

by auto
from sA as ta have "s ∈ finpref A t" by (auto dest: suff_finpref)
thus ?case using as by auto

next case (inter a b)
then obtain r r’ where

rt: "r ∈ finpref A t" and ra: "suff A r ⊆ a" and
r’t: "r’ ∈ finpref A t" and r’b: "suff A r’ ⊆ b"
by auto

from rt r’t have "r ≤ r’ ∨ r’ ≤ r"
by (auto simp: finpref_def dest: pref_locally_linear)

thus ?case
proof

assume "r ≤ r’"
hence "suff A r’ ⊆ suff A r" by (rule suff_mono2)
thus ?case using r’t ra r’b by auto

next assume "r’ ≤ r"
hence "suff A r ⊆ suff A r’" by (rule suff_mono2)
thus ?case using rt r’b ra by auto

qed
next case (union M)

then obtain v where
"t ∈ v" and vM: "v ∈ M"
by blast

then obtain r where "r∈finpref A t" "suff A r ⊆ v" using union
by auto

thus ?case using vM by auto
qed
with mu show ?thesis by (auto intro: H)

qed

lemma (in trace_top) nhds_LNil [simp]: "nhds LNil = {A∞}"
proof

show "nhds LNil ⊆ {A∞}"
proof clarify

fix x assume xnhd: "x ∈ nhds LNil"
then obtain r

where rfinpref: "r ∈ finpref A LNil" and suffsub: "suff A r ⊆ x"
by (rule suff_nhd_base)

from rfinpref have "r = LNil" by auto
hence "suff A r = A∞" by auto
with suffsub have "A∞ ⊆ x" by auto
moreover from xnhd have "x ⊆ A∞" by(auto simp: ttop_carrier elim!: nhdE)
ultimately show "x = A∞" by auto

qed
next

show "{A∞} ⊆ nhds LNil" by (auto simp: ttop_carrier)
qed

lemma (in trace_top) adh_lemma:
assumes xpoint: "x ∈ A∞"

and PA: "P ⊆ A∞"
shows "(x adh P) = (∀ r ∈ finpref A x. ∃ s ∈ A∞. r @@ s ∈ P)"
proof-

41

from PA have "
∧

r. r ∈ A? =⇒ (∃ s ∈ A∞. r @@ s ∈ P) =
(∃ s ∈ P. r ≤ s)"

by (auto simp: llist_le_def iff: lapp_allT_iff)
hence "(∀ r ∈ finpref A x. ∃ s ∈ A∞. r @@ s ∈ P) =

(∀ r ∈ finpref A x. ∃ s ∈ P. r ≤ s)"
by (auto simp: finpref_def)

also have ". . . = (∀ r ∈ finpref A x. suff A r ∩ P 6= {})"
proof-

have "
∧

r. (∃ s∈P. r ≤ s) = ({ra. ra ∈ A∞ ∧ r ≤ ra} ∩ P 6= {})" using PA
by blast

thus ?thesis by (simp add: suff_def)
qed
also have ". . . = (∀ u ∈ nhds x. u ∩ P 6= {})"
proof safe

fix r assume uP: "∀ u∈nhds x. u ∩ P 6= {}" and
rfinpref: "r ∈ finpref A x" and rP: "suff A r ∩ P = {}"

from rfinpref have "suff A r open" by (auto dest!: finpref_fin)
hence "suff A r ∈ nhds x" using xpoint rfinpref

by auto
with uP rP show "False" by auto

next
fix u assume

inter: "∀ r∈finpref A x. suff A r ∩ P 6= {}" and
unhd: "u ∈ nhds x" and
uinter: "u ∩ P = {}"

from unhd obtain r where
"r ∈ finpref A x" and "suff A r ⊆ u"
by (rule suff_nhd_base)

with inter uinter show "False" by auto
qed
finally show ?thesis by (simp add: adhs_def)

qed

lemma (in trace_top) topology [iff]:
"topology T"

by (simp add: T_def)

lemma (in trace_top) safety_closed_iff:
"P ⊆ A∞ =⇒ safety A P = (P closed)"

by (auto simp: safety_def topology.closed_adh adh_lemma ttop_carrier)

lemma (in trace_top) liveness_dense_iff:
assumes P: "P ⊆ A∞"
shows "liveness A P = (P dense)"

proof-
have "liveness A P = (∀ r∈A?. ∃ s ∈ A∞. r @@ s ∈ P)"

by (simp add: liveness_def)
also have ". . . = (∀ x∈A∞. ∀ r ∈ finpref A x. ∃ s ∈ A∞. r @@ s ∈ P)"

by (auto simp: finpref_def dest: finsubsetall)
also have ". . . = (∀ x∈A∞. x adh P)" using P

by (simp add: adh_lemma)
also have ". . . = (A∞ ⊆ closure P)" using P

by (auto simp: adh_closure_iff ttop_carrier)

42

also have ". . . = (P dense)"
by (simp add: liveness_def is_dense_def is_densein_def ttop_carrier)

finally show ?thesis .
qed

lemma (in trace_top) LNil_safety: "safety A {LNil}"
proof (unfold safety_def, clarify)

fix t
assume adh: "t ∈ A∞" "∀ r∈finpref A t. ∃ s∈A∞. r @@ s ∈ {LNil}"
thus "t = LNil" by (cases t)(auto simp: finpref_def)

qed

lemma (in trace_top) LNil_closed: "{LNil} closed"
by (auto intro: iffD1 [OF safety_closed_iff] LNil_safety)

theorem (in trace_top) alpern_schneider:
assumes Psub: "P ⊆ A∞"

shows "∃ S L. safety A S ∧ liveness A L ∧ P = S ∩ L"
proof-

from Psub have "P ⊆ carrier" by (simp add: ttop_carrier)
then obtain L S where

Lsub: "L ⊆ carrier" and
Ssub: "S ⊆ carrier" and
Sclosed: "S closed" and
Ldense: "L dense" and
Pinter: "P = S ∩ L"
by (blast elim: topology.ex_dense_closure_interE [OF topology])

from Ssub Sclosed have "safety A S"
by (simp add: safety_closed_iff ttop_carrier)

moreover from Lsub Ldense have "liveness A L"
by (simp add: liveness_dense_iff ttop_carrier)

ultimately show ?thesis using Pinter
by auto

qed

2.2 The topology of infinite llists
definition

itop :: "’a set ⇒ ’a llist top" where
"itop A = topo (

⋃
s∈A?. {infsuff A s})"

locale infsuffixes =
fixes A and B
defines [simp]: "B ≡ (

⋃
s∈A?. {infsuff A s})"

locale itrace_top = infsuffixes + topobase

lemma (in itrace_top) open_iff [iff]:
"m open = (m ∈ topo (

⋃
s∈A?. {infsuff A s}))"

by (simp add: T_def is_open_def)

43

lemma (in itrace_top) topology [iff]: "topology T"
by (auto simp: T_def)

lemma (in itrace_top) infsuff_open [intro!]:
"r ∈ A? =⇒ infsuff A r open"
by auto

lemma (in itrace_top) itop_carrier: "carrier = Aω"
by (auto simp: carrier_topo infsuff_def)

lemma itop_sub_ttop_base:
fixes A :: "’a set"

and B :: "’a llist set set"
and C :: "’a llist set set"

defines [simp]: "B ≡
⋃

s∈A?. {suff A s}" and [simp]: "C ≡
⋃

s∈A?. {infsuff A s}"
shows "C = (

⋃
t∈B. {t ∩

⋃
C})"

by (auto simp: infsuff_def suff_def)

lemma itop_sub_ttop [folded ttop_def itop_def]:
fixes A and C and S (structure)
defines "C ≡

⋃
s∈A?. {infsuff A s}" and "S ≡ topo C"

fixes B and T (structure)
defines "B ≡

⋃
s∈A?. {suff A s}" and "T ≡ topo B"

shows "subtopology S T"
proof -

interpret itrace_top A C S by fact+
interpret trace_top A B T by fact+
show ?thesis

by (auto intro: itop_sub_ttop_base [THEN subtop_lemma] simp: S_def T_def)
qed

lemma (in itrace_top) infsuff_nhd_base:
assumes unhd: "u ∈ nhds t"
and H: "

∧
r. [[r ∈ finpref A t; infsuff A r ⊆ u]] =⇒ R"

shows "R"
proof-

from unhd obtain m where
uA: "u ⊆ Aω" and
mopen: "m open" and
tm: "t ∈ m" and
mu: "m ⊆ u"
by (auto simp: itop_carrier)

from mopen tm have
"∃ r ∈ finpref A t. infsuff A r ⊆ m"

proof (induct "m")
case (basic a)
then obtain s where sA: "s ∈ A?" and as: "a = infsuff A s" and ta: "t ∈ a"

by auto
from sA as ta have "s ∈ finpref A t" by (auto dest: infsuff_finpref)
thus ?case using as by auto

next case (inter a b)
then obtain r r’ where

rt: "r ∈ finpref A t" and ra: "infsuff A r ⊆ a" and

44

r’t: "r’ ∈ finpref A t" and r’b: "infsuff A r’ ⊆ b"
by auto

from rt r’t have "r ≤ r’ ∨ r’ ≤ r"
by (auto simp: finpref_def dest: pref_locally_linear)

thus ?case
proof

assume "r ≤ r’"
hence "infsuff A r’ ⊆ infsuff A r" by (rule infsuff_mono2)
thus ?case using r’t ra r’b by auto

next assume "r’ ≤ r"
hence "infsuff A r ⊆ infsuff A r’" by (rule infsuff_mono2)
thus ?case using rt r’b ra by auto

qed
next case (union M)

then obtain v where
"t ∈ v" and vM: "v ∈ M"
by blast

then obtain r where "r∈finpref A t" "infsuff A r ⊆ v" using union
by auto

thus ?case using vM by auto
qed
with mu show ?thesis by (auto intro: H)

qed

lemma (in itrace_top) hausdorff [iff]: "T2 T"
proof(rule T2I, clarify)

fix x y assume xpoint: "x ∈ carrier"
and ypoint: "y ∈ carrier"
and neq: "x 6= y"

from xpoint ypoint have xA: "x ∈ Aω" and yA: "y ∈ Aω"
by (auto simp: itop_carrier)

then obtain s where
sA: "s ∈ A?" and sx: "s ≤ x" and sy: "¬ s ≤ y" using neq
by (rule inf_neqE) auto

from neq have "y 6= x" ..
with yA xA obtain t where

tA: "t ∈ A?" and ty: "t ≤ y" and tx: "¬ t ≤ x"
by (rule inf_neqE) auto

let ?u = "infsuff A s" and ?v = "infsuff A t"
have inter: "?u ∩ ?v = {}"
proof (rule ccontr, auto)

fix z assume "z ∈ ?u" and "z ∈ ?v"
hence "s ≤ z" and "t ≤ z" by (unfold infsuff_def) auto
hence "s ≤ t ∨ t ≤ s" by (rule pref_locally_linear)
thus False using sx sy tx ty by (auto dest: llist_le_trans)

qed
moreover {

from sA tA have "?u open" and "?v open"
by auto

moreover from xA yA sx ty have "x ∈ ?u" and "y ∈ ?v"
by (auto simp: infsuff_def)

ultimately have "infsuff A s ∈ nhds x" and
"infsuff A t ∈ nhds y"

45

by auto }
ultimately show "∃ u ∈ nhds x. ∃ v ∈ nhds y. u ∩ v = {}"

by auto
qed

corollary (in itrace_top) unique_convergence:
"[[x ∈ carrier;

y ∈ carrier;
F ∈ Filters ;
F −−−→ x;
F −−−→ y]] =⇒ x = y"

apply (rule T2.unique_convergence)
prefer 2
apply (rule filter.intro)
apply auto
done

lemma (in itrace_top) adh_lemma:
assumes xpoint: "x ∈ Aω"

and PA: "P ⊆ Aω"
shows "x adh P = (∀ r ∈ finpref A x. ∃ s ∈ Aω. r @@ s ∈ P)"
proof-

from PA have "
∧

r. r ∈ A? =⇒ (∃ s ∈ Aω. r @@ s ∈ P) =
(∃ s ∈ P. r ≤ s)"

by (auto simp: llist_le_def iff: lapp_infT)
hence "(∀ r ∈ finpref A x. ∃ s ∈ Aω. r @@ s ∈ P) =

(∀ r ∈ finpref A x. ∃ s ∈ P. r ≤ s)"
by (auto simp: finpref_def)

also have ". . . = (∀ r ∈ finpref A x. infsuff A r ∩ P 6= {})"
proof-

have "
∧

r. (∃ s∈P. r ≤ s) = ({ra. ra ∈ Aω ∧ r ≤ ra} ∩ P 6= {})" using PA
by blast

thus ?thesis by (simp add: infsuff_def)
qed
also have ". . . = (∀ u ∈ nhds x. u ∩ P 6= {})"
proof safe

fix r assume uP: "∀ u ∈ nhds x. u ∩ P 6= {}" and
rfinpref: "r ∈ finpref A x" and rP: "infsuff A r ∩ P = {}"

from rfinpref have "infsuff A r open" by (auto dest!: finpref_fin)
hence "infsuff A r ∈ nhds x" using xpoint rfinpref

by auto
with uP rP show "False" by auto

next
fix u assume

inter: "∀ r∈finpref A x. infsuff A r ∩ P 6= {}" and
unhd: "u ∈ nhds x" and
uinter: "u ∩ P = {}"

from unhd obtain r where
"r ∈ finpref A x" and "infsuff A r ⊆ u"
by (rule infsuff_nhd_base)

with inter uinter show "False" by auto
qed

46

finally show ?thesis by (simp add: adhs_def)
qed

lemma (in itrace_top) infsafety_closed_iff:
"P ⊆ Aω =⇒ infsafety A P = (P closed)"
by (auto simp: infsafety_def topology.closed_adh adh_lemma itop_carrier)

lemma (in itrace_top) empty:
"A = {} =⇒ T = {{}}"

proof (auto simp: T_def)
fix m x assume "m ∈ topo {{}}" and xm: "x ∈ m"
thus False

by (induct m) auto
qed

lemma itop_empty: "itop {} = {{}}"
proof (auto simp: itop_def)

fix m x assume "m ∈ topo {{}}" and xm: "x ∈ m"
thus False

by (induct m) auto
qed

lemma infliveness_empty:
"infliveness {} P =⇒ False"
by (auto simp: infliveness_def)

lemma (in trivial) dense:
"P dense"
by auto

lemma (in itrace_top) infliveness_dense_iff:
assumes notempty: "A 6= {}"
and P: "P ⊆ Aω"
shows "infliveness A P = (P dense)"

proof-
have "infliveness A P = (∀ r∈A?. ∃ s ∈ Aω. r @@ s ∈ P)"

by (simp add: infliveness_def)
also have ". . . = (∀ x∈Aω. ∀ r ∈ finpref A x. ∃ s ∈ Aω. r @@ s ∈ P)"
proof-

from notempty obtain a where "a ∈ A"
by auto

hence lc: "lconst a ∈ Aω"
by (rule lconstT)

hence "
∧

P. (∀ x∈Aω. ∀ r∈finpref A x. P r) = (∀ r∈A?. P r)"
proof (auto dest: finpref_fin)

fix P r assume lc: "lconst a ∈ Aω"
and Pr: "∀ x∈Aω. ∀ r∈finpref A x. P r"
and rA: "r ∈ A?"

from rA lc have rlc: "r @@ lconst a ∈ Aω" by (rule lapp_fin_infT)
moreover from rA rlc have "r ∈ finpref A (r @@ lconst a)"

by (auto simp: finpref_def llist_le_def)
ultimately show "P r" using Pr by auto

qed

47

thus ?thesis by simp
qed
also have ". . . = (∀ x∈Aω. x adh P)" using P

by (simp add: adh_lemma)
also have ". . . = (Aω ⊆ closure P)" using P

by (auto simp: adh_closure_iff itop_carrier)
also have ". . . = (P dense)"

by (simp add: infliveness_def is_dense_def is_densein_def itop_carrier)
finally show ?thesis .

qed

theorem (in itrace_top) alpern_schneider:
assumes notempty: "A 6= {}"

and Psub: "P ⊆ Aω"
shows "∃ S L. infsafety A S ∧ infliveness A L ∧ P = S ∩ L"

proof-
from Psub have "P ⊆ carrier"

by (simp add: itop_carrier [THEN sym])
then obtain L S where

Lsub: "L ⊆ carrier" and
Ssub: "S ⊆ carrier" and
Sclosed: "S closed" and
Ldense: "L dense" and
Pinter: "P = S ∩ L"
by (rule topology.ex_dense_closure_interE [OF topology]) auto

from Ssub Sclosed have "infsafety A S"
by (simp add: infsafety_closed_iff itop_carrier)

moreover from notempty Lsub Ldense have "infliveness A L"
by (simp add: infliveness_dense_iff itop_carrier)

ultimately show ?thesis using Pinter
by auto

qed

2.3 The topology of non-empty llists
definition

ptop :: "’a set ⇒ ’a llist top" where
"ptop A ≡ topo (

⋃
s∈A♣. {suff A s})"

locale possuffixes =
fixes A and B
defines [simp]: "B ≡ (

⋃
s∈A♣. {suff A s})"

locale ptrace_top = possuffixes + topobase

lemma (in ptrace_top) open_iff [iff]:
"m open = (m ∈ topo (

⋃
s∈A♣. {suff A s}))"

by (simp add: T_def is_open_def)

lemma (in ptrace_top) topology [iff]: "topology T"
by (simp add: T_def)

48

lemma (in ptrace_top) ptop_carrier: "carrier = A♠"
by (auto simp add: carrier_topo suff_def)

(auto elim: alllsts.cases)

lemma pptop_subtop_ttop:
fixes S (structure)
fixes A and B and T (structure)
defines "B ≡

⋃
s∈A?. {suff A s}" and "T ≡ topo B"

defines "S ≡
⋃

t ∈ T. {t - {LNil}}"
shows "subtopology S T"

by (rule subtopology.intro, auto simp add: is_open_def S_def carr_def)

lemma pptop_top:
fixes S (structure)
fixes A and B and T (structure)
defines "B ≡

⋃
s∈A?. {suff A s}" and "T ≡ topo B"

defines "S ≡
⋃

t ∈ T. {t - {LNil}}"
shows "topology (

⋃
t ∈ T. {t - {LNil}})"

proof -
interpret trace_top A B T by fact+
show ?thesis

by (auto intro!: subtopology.subtop_topology [OF pptop_subtop_ttop]
trace_top.topology simp: T_def)

qed

lemma (in ptrace_top) suff_open [intro!]:
"r ∈ A♣ =⇒ suff A r open"
by auto

lemma (in ptrace_top) suff_ptop_nhd_base:
assumes unhd: "u ∈ nhds t"
and H: "

∧
r. [[r ∈ pfinpref A t; suff A r ⊆ u]] =⇒ R"

shows "R"
proof-

from unhd obtain m where
uA: "u ⊆ A♠" and
mopen: "m open" and
tm: "t ∈ m" and
mu: "m ⊆ u"
by (auto simp: ptop_carrier)

from mopen tm have
"∃ r ∈ pfinpref A t. suff A r ⊆ m"

proof (induct "m")
case (basic a)
then obtain s where sA: "s ∈ A♣" and as: "a = suff A s" and ta: "t ∈ a"

by auto
from sA as ta have "s ∈ pfinpref A t"

by (auto simp: pfinpref_def dest: suff_finpref)
thus ?case using as by auto

next case (inter a b)
then obtain r r’ where

49

rt: "r ∈ pfinpref A t" and ra: "suff A r ⊆ a" and
r’t: "r’ ∈ pfinpref A t" and r’b: "suff A r’ ⊆ b"
by auto

from rt r’t have "r ≤ r’ ∨ r’ ≤ r"
by (auto simp: pfinpref_def finpref_def dest: pref_locally_linear)

thus ?case
proof

assume "r ≤ r’"
hence "suff A r’ ⊆ suff A r" by (rule suff_mono2)
thus ?case using r’t ra r’b by auto

next assume "r’ ≤ r"
hence "suff A r ⊆ suff A r’" by (rule suff_mono2)
thus ?case using rt r’b ra by auto

qed
next case (union M)

then obtain v where
"t ∈ v" and vM: "v ∈ M"
by blast

then obtain r where "r∈pfinpref A t" "suff A r ⊆ v" using union
by auto

thus ?case using vM by auto
qed
with mu show ?thesis by (auto intro: H)

qed

lemma pfinpref_LNil [simp]: "pfinpref A LNil = {}"
by (auto simp: pfinpref_def)

lemma (in ptrace_top) adh_lemma:
assumes xpoint: "x ∈ A♠"
and P_subset_A: "P ⊆ A♠"
shows "x adh P = (∀ r ∈ pfinpref A x. ∃ s ∈ A∞. r @@ s ∈ P)"

proof
assume adh_x: "x adh P"
show "∀ r∈pfinpref A x. ∃ s∈A∞. r @@ s ∈ P"
proof

fix r let ?u = "suff A r"
assume r_pfinpref_x: "r ∈ pfinpref A x"
hence r_pos: "r ∈ A♣" by (auto dest: finpref_fin)
hence "?u open" by auto
hence "?u ∈ nhds x" using xpoint r_pfinpref_x

by auto
with adh_x have "?u ∩ P 6= {}" by (auto elim!:adhCE)
then obtain t where tu: "t ∈ ?u" and tP: "t ∈ P"

by auto
from tu obtain s where "t = r @@ s" using r_pos

by (auto elim!: suff_appE)
with tP show "∃ s∈A∞. r @@ s ∈ P" using P_subset_A r_pos

by (auto iff: lapp_allT_iff)
qed

next
assume H: "∀ r∈pfinpref A x. ∃ s∈A∞. r @@ s ∈ P"
show "x adh P"

50

proof
fix U assume unhd: "U ∈ nhds x"
then obtain r where r_pfinpref_x: "r ∈ pfinpref A x" and

suff_subset_U: "suff A r ⊆ U" by (elim suff_ptop_nhd_base)
from r_pfinpref_x have rpos: "r ∈ A♣" by (auto intro: finpref_fin)
show "U ∩ P 6= {}" using rpos
proof (cases r)

case (LCons a l)
hence r_pfinpref_x: "r ∈ pfinpref A x" using r_pfinpref_x

by auto
with H obtain s where sA: "s ∈ A∞" and asP: "r@@s ∈ P"

by auto
moreover have "r @@ s ∈ suff A r" using sA rpos

by (auto simp: suff_def iff: lapp_allT_iff)
ultimately show ?thesis using suff_subset_U by auto

qed
qed

qed

lemma (in ptrace_top) possafety_closed_iff:
"P ⊆ A♠ =⇒ possafety A P = (P closed)"
by (auto simp: possafety_def topology.closed_adh ptop_carrier adh_lemma)

lemma (in ptrace_top) posliveness_dense_iff:
assumes P: "P ⊆ A♠"
shows "posliveness A P = (P dense)"

proof-
have "posliveness A P = (∀ r∈A♣. ∃ s ∈ A∞. r @@ s ∈ P)"

by (simp add: posliveness_def)
also have ". . . = (∀ x∈A♠. ∀ r ∈ pfinpref A x. ∃ s ∈ A∞. r @@ s ∈ P)"

by (auto simp: pfinpref_def finpref_def dest: finsubsetall)
also have ". . . = (∀ x∈A♠. x adh P)" using P

by (auto simp: adh_lemma simp del: poslsts_iff)
also have ". . . = (A♠ ⊆ closure P)" using P

by (auto simp: adh_closure_iff ptop_carrier simp del: poslsts_iff)
also have ". . . = (P dense)"

by (simp add: posliveness_def is_dense_def is_densein_def ptop_carrier)
finally show ?thesis .

qed

theorem (in ptrace_top) alpern_schneider:
assumes Psub: "P ⊆ A♠"

shows "∃ S L. possafety A S ∧ posliveness A L ∧ P = S ∩ L"
proof-

from Psub have "P ⊆ carrier" by (simp add: ptop_carrier)
then obtain L S where

Lsub: "L ⊆ carrier" and
Ssub: "S ⊆ carrier" and
Sclosed: "S closed" and
Ldense: "L dense" and
Pinter: "P = S ∩ L"
by (blast elim: topology.ex_dense_closure_interE [OF topology])

51

from Ssub Sclosed have "possafety A S"
by (simp add: possafety_closed_iff ptop_carrier)

moreover from Lsub Ldense have "posliveness A L"
by (simp add: posliveness_dense_iff ptop_carrier)

ultimately show ?thesis using Pinter
by auto

qed

end

References

[1] B. Alpern and F. B. Schneider. Defining Liveness. Information Processing Letters,
21(4):181–185, Oct. 1985.

[2] G. McCarty. Topology : an introduction with application to topological groups. Interna-
tional series in pure and applied mathematics. Graw-Hill, New York, 1967.

[3] B. von Querenburg. Mengentheoretische Topologie. Springer, Heidelberg, 3. edition, 2001.

52

	A bit of general topology
	Preliminaries
	Definition
	Neighbourhoods
	Closed sets
	Core, closure, and frontier of a set
	Core
	Closure
	Frontier
	Adherent points

	More about closure and core
	Dense sets
	Continuous functions
	Filters
	Convergence
	Separation
	T0 spaces
	T1 spaces
	T2 spaces (Hausdorff spaces)
	T3 axiom and regular spaces
	T4 axiom and normal spaces

	The topology of llists
	The topology of all llists
	The topology of infinite llists
	The topology of non-empty llists

