The Topology of Lazy Lists

Stefan Friedrich

September 13, 2023

Abstract

This directory contains two theories. The first, Topology, develops the basic notions of general topology. The second, LList_Topology, develops the topology of lazy lists.

Contents

1 A bit of general topology 2
1.1 Preliminaries 2
1.2 Definition 2
1.3 Neighbourhoods 9
1.4 Closed sets 11
1.5 Core, closure, and frontier of a set 13
1.5.1 Core 13
1.5.2 Closure 14
1.5.3 Frontier 15
1.5.4 Adherent points 16
1.6 More about closure and core 18
1.7 Dense sets 19
1.8 Continuous functions 20
1.9 Filters 24
1.10 Convergence 30
1.11 Separation 32
1.11.1 T0 spaces 32
1.11.2 T1 spaces 33
1.11.3 T2 spaces (Hausdorff spaces) 34
1.11.4 T3 axiom and regular spaces 38
1.11.5 T4 axiom and normal spaces 39
2 The topology of llists 39
2.1 The topology of all llists 40
2.2 The topology of infinite llists 43
2.3 The topology of non-empty llists 48

1 A bit of general topology

```
theory Topology
imports "HOL-Library.FuncSet"
begin
```

This theory gives a formal account of basic notions of general topology as they can be found in various textbooks, e.g. in [2] or in [3]. The development includes open and closed sets, neighbourhoods, as well as closure, open core, frontier, and adherent points of a set, dense sets, continuous functions, filters, ultra filters, convergence, and various separation axioms.

We use the theory on "Pi and Function Sets" by Florian Kammueller and Lawrence C Paulson.

1.1 Preliminaries

```
lemma seteqI:
    "\llbracket\x. x\inA\Longrightarrow x\inB; \x. x\inB \Longrightarrow x\inA\rrbracket\Longrightarrow A = B"
    by auto
lemma subset_mono: "A\subseteqBCM\subseteqA }\subseteq\textrm{B}\subseteq\textrm{M}\subseteq\textrm{B}
    by auto
lemma diff_diff:
    "C - (A - B) = (C - A) \cup (C \cap B)"
    by blast
lemma diff_diff_inter: "\llbracketB\subseteqA; B\subseteqX\\Longrightarrow(X - (A - B)) \cap A = B"
    by auto
lemmas diffsimps = double_diff Diff_Un vimage_Diff
    Diff_Int_distrib Diff_Int
lemma vimage_comp:
"f:A->B\LongrightarrowA\cap(f -` B \cap f -` g -` m)=A\cap (g ○ f) -` m "
    by (auto dest: funcset_mem)
lemma funcset_comp:
```



```
    by (auto intro!: funcsetI dest!: funcset_mem)
```


1.2 Definition

A topology is defined by a set of sets (the open sets) that is closed under finite intersections and infinite unions.

```
type_synonym 'a top = "'a set set"
definition
    carr :: "'a top # 'a set" ("carrier\imath") where
    "carr T = \T"
definition
    is_open :: "'a top # 'a set => bool" ("_ open\imath" [50] 50) where
```

```
    "is_open T s }\longleftrightarrows\inT
locale carrier =
    fixes T :: "'a top" (structure)
lemma (in carrier) openI:
    "m \in T \Longrightarrow m open"
    by (simp add: is_open_def)
lemma (in carrier) openE:
    "\llbracketm open; m G T \Longrightarrow R\rrbracket\LongrightarrowR"
by (auto simp: is_open_def)
lemma (in carrier) carrierI [intro]:
    "\llbracket t open; x \in t | \Longrightarrow x f carrier"
    by (auto simp: is_open_def carr_def)
lemma (in carrier) carrierE [elim]:
    "\llbracketx c carrier;
        \t. \llbracket t open; x \in t\rrbracket\Longrightarrow R
    \ R"
    by (auto simp: is_open_def carr_def)
lemma (in carrier) subM:
    "\llbrackett G M; M\subseteqT\rrbracket\Longrightarrow t open"
    by (auto simp: is_open_def)
lemma (in carrier) topeqI [intro!]:
    fixes S (structure)
    shows "\llbracket \m. m open}\mp@subsup{\textrm{T}}{\textrm{T}}{\Longrightarrow}\Longrightarrow\textrm{m}\mp@subsup{\mathrm{ openS}}{S}{}
                                    \m.m open
    " T = S"
by (auto simp: is_open_def)
locale topology = carrier T for T (structure) +
    assumes Int_open [intro!]: "\llbracketx open; y open\rrbracket \Longrightarrow x \cap y open"
    and union_open [intro]: "\forallm G M. m open \Longrightarrow U M open"
lemma topologyI:
    "\llbracket\bigwedgex y. \llbracket is_open T x; is_open T y\rrbracket\Longrightarrow is_open T (x \cap y);
        M. \forallm m. is_open T m \Longrightarrow is_open T (U M)
    】 \Longrightarrow topology T"
    by (auto simp: topology_def)
lemma (in topology) Un_open [intro!]:
    assumes abopen: "A open" "B open"
    shows "A \cup B open"
proof-
    have "\{A, B} open" using abopen
        by fast
    thus ?thesis by simp
```


qed

Common definitions of topological spaces require that the empty set and the carrier set of the space be open. With our definition, however, the carrier is implicitly given as the union of all open sets; therefore it is trivially open. The empty set is open by the laws of HOLs typed set theory.
lemma (in topology) empty_open [iff]: "\{\} open"
proof-
have " $\bigcup\}$ open" by fast
thus ?thesis by simp
qed
lemma (in topology) carrier_open [iff]: "carrier open"
by (auto simp: carr_def intro: openI)
lemma (in topology) open_kriterion:
assumes t_contains_open: " $\wedge x . x \in t \Longrightarrow \exists t \prime$. t^{\prime} open $\wedge x \in t^{\prime} \wedge t^{\prime} \subseteq t "$
shows "t open"
proof-
let $? M=" \bigcup x \in t .\left\{t \prime . t^{\prime}\right.$ open $\left.\wedge x \in t, \wedge t \prime \subseteq t\right\} "$
have " $\forall \mathrm{m} \in$?M. m open" by simp
hence " $\bigcup ? \mathrm{M}$ open" by auto
moreover have "t = \bigcup ? $\mathrm{M"}^{\prime}$
by (auto dest!: t_contains_open)
ultimately show ?thesis
by simp
qed
We can obtain a topology from a set of basic open sets by closing the set under finite intersections and arbitrary unions.

```
inductive_set
    topo :: "'a set set \(\Rightarrow\) 'a top"
    for \(B\) :: "'a set set"
where
    basic [intro]: "x \(\in B \Longrightarrow x \in\) topo \(B "\)
| inter [intro]: " \(\llbracket x \in\) topo \(B ; y \in\) topo \(B \rrbracket \Longrightarrow x \cap y \in\) topo \(\mathrm{B}^{\prime}\)
| union [intro]: " ( \(\bigwedge x . x \in M \Longrightarrow x \in\) topo \(B) \Longrightarrow \bigcup M \in\) topo \(B "\)
locale topobase \(=\) carrier \(T\) for \(B\) and \(T\) (structure) +
    defines "T \(\equiv\) topo B"
lemma (in topobase) topo_open:
    "t open = ( \(\mathrm{t} \in \mathrm{topo}\) B)"
    by (auto simp: T_def is_open_def)
lemma (in topobase)
    basic [intro]: "t \(\in B \Longrightarrow t\) open" and
    inter [intro]: " \(\llbracket x\) open; \(y\) open \(\rrbracket \Longrightarrow(x \cap y)\) open" and
    union [intro]: " ( \(\bigwedge \mathrm{t} . \mathrm{t} \in \mathrm{M} \Longrightarrow \mathrm{t}\) open) \(\Longrightarrow \bigcup \mathrm{M}\) open"
    by (auto simp: topo_open)
lemma (in topobase) topo_induct
```

```
    [case_names basic inter union, induct set: topo, consumes 1]:
    assumes opn: "x open"
    and bas: "\x. x }\inB\LongrightarrowP x"
    and int: "\x y. \llbracketx open; P x; y open; P y\rrbracket\Longrightarrow P (x \cap y)"
    and uni: "\M. ( }\forall\textrm{t}\in\textrm{M}.\textrm{t}\mathrm{ open }\wedgeP\textrm{t})\LongrightarrowP(\bigcupM)
    shows "P x"
proof-
    from opn have "x \in topo B" by (simp add: topo_open)
    thus ?thesis
        by induct (auto intro: bas int intro!:uni simp: topo_open)
qed
lemma topo_topology [iff]:
    "topology (topo B)"
    by (auto intro!: union topologyI simp: is_open_def)
lemma topo_mono:
    assumes asubb: "A \subseteq B"
    shows "topo A \subseteq topo B"
proof
    fix m assume mintopoa: "m \in topo A"
    hence "A \subseteq B \longrightarrow m topo B"
        by (rule topo.induct) auto
    with asubb show "m \in topo B"
        by auto
qed
lemma topo_open_imp:
    fixes A and S (structure) defines "S \equiv topo A"
    fixes B and T (structure) defines "T \equiv topo B"
```



```
proof -
    interpret A_S: topobase A S by fact
    interpret topobase B T by fact
    show "PROP ?P" by (auto dest: topo_mono iff: A_S.topo_open topo_open)
qed
lemma (in topobase) carrier_topo: "carrier = \B"
proof
    show "carrier \subseteq\B"
    proof
        fix x assume "x \in carrier"
        then obtain t where "t open" and "x f t" ..
        thus "x }\in\bigcup\B" by (induct, auto
    qed
qed (auto iff: topo_open)
Topological subspace
locale subtopology = carrier \(\mathrm{S}+\) carrier T for S (structure) and T (structure) +
    assumes subtop[iff]: "s open = (\existst. t openT ^ s = t \cap carrier)"
lemma subtopologyI:
```

```
    fixes S (structure)
    fixes T (structure)
    assumes H1: "\s. s open \Longrightarrow \existst. t openT }^\mathrm{ s = t }\cap\mathrm{ carrier"
    and H2: "\t. t open
    shows "subtopology S T"
by (auto simp: subtopology_def intro: assms)
lemma (in subtopology) subtopologyE [elim]:
    assumes major: "s open"
    and minor: "^t. \llbrackett openT; s = t \cap carrier \rrbracket \Longrightarrow R"
    shows "R"
    using assms by auto
lemma (in subtopology) subtopI [intro]:
    "t openT }\Longrightarrow\textrm{t}\cap\mathrm{ carrier open"
    by auto
lemma (in subtopology) carrier_subset:
    "carrierS }\subseteq\mp@subsup{c}{\mathrm{ carrierT}}{T
    by auto
lemma (in subtopology) subtop_sub:
    assumes "topology T"
    assumes carrSopen: "carrierS openT"
    and s_open: "s openS"
    shows "s openT"
proof -
    interpret topology T by fact
    show ?thesis using assms by auto
qed
lemma (in subtopology) subtop_topology [iff]:
    assumes "topology T"
    shows "topology S"
proof -
    interpret topology T by fact
    show ?thesis proof (rule topologyI)
        fix u v assume uopen: "u open" and vopen: "v open"
        thus "u \cap v open" by (auto simp add: Int_ac)
    next
        fix M assume msub: " }\forall\textrm{m}\in\textrm{M}. m open"
        let ?N = "{x. x open}\mp@subsup{T}{T}{}\wedge x \cap carrier \in M}"
        have "\?N openT" by auto
        hence "\?N \cap carrier open" ..
        moreover have "\?N \cap carrier = \M"
        proof
            show "\M\subseteq\?N \cap carrier"
            proof
                fix x assume "x < \M"
                then obtain s where sinM: "s \in M" and xins: "x \in s"
                    by auto
                    from msub sinM have s_open: "s open" ..
                    then obtain t
```

```
                    where t_open: "t openT" and s_inter: "s = t \cap carrier" by auto
                    with xins have xint: "x\int" and xpoint: "x \in carrier" by auto
                    moreover
                    from t_open s_inter sinM have "t \in ?N" by auto
            ultimately show "x }\in\bigcup\mathrm{ ?N }\cap\mathrm{ carrier"
                    by auto
                qed
        qed auto
        finally show "\M open" .
    qed
qed
lemma subtop_lemma:
    fixes A and S (structure) defines "S \equiv topo A"
    fixes B and T (structure) defines "T \equiv topo B"
    assumes Asub: "A = (\bigcupt\inB. { t \cap \A })"
    shows "subtopology S T"
proof -
    interpret A_S: topobase A S by fact
    interpret topobase B T by fact
    show ?thesis proof (rule subtopologyI)
        fix s assume "s openS"
        thus "\existst. t open
        proof induct
            case (basic s) with Asub
            obtain t where tB: "t \in B" and stA: "s = t \cap \bigcupA" by blast
            thus ?case by (auto simp: A_S.carrier_topo)
            next case (inter s t) thus ?case by auto
            next case (union M)
                    let ?N = "\bigcup{u. u openT ^ ( }\exists\textrm{m}\in\textrm{M}.\textrm{m}=\textrm{u}\cap\cap\mathrm{ carrier)}"
                    have "?N open}\mp@subsup{T}{T}{}\mathrm{ " and "\M = ?N }\cap\mathrm{ carrier" using union by auto
                    thus ?case by auto
        qed
    next
        fix t assume "t openT"
        thus "t \cap carrier open"
        proof induct
            case (basic u) with Asub show ?case
                by (auto simp: A_S.carrier_topo)
            next case (inter u v)
                hence "(u \cap carrier) \cap (v \cap carrier) open" by auto
                thus ?case by (simp add: Int_ac)
            next case (union M)
                let ?N = "\bigcup{s. \existsm\inM. s = m \cap carrier}"
                from union have "?N open" and "?N = \M \cap carrier" by auto
                thus ?case by auto
            qed
    qed
qed
Sample topologies
definition
    trivial_top :: "'a top" where
```

```
    "trivial_top = {{}}"
definition
    discrete_top :: "'a set # 'a set set" where
    "discrete_top X = Pow X"
definition
    indiscrete_top :: "'a set = 'a set set" where
    "indiscrete_top X = {{}, X}"
definition
    order_base :: "('a::order) set => 'a set set" where
    "order_base A = (\bigcupx\inA. {{y. y \in A ^ x \leq y}})"
definition
    order_top :: "('a::order) set => 'a set set" where
    "order_top X = topo(order_base X)"
locale trivial = carrier +
    defines "T \equiv {{}}"
lemma (in trivial) open_iff [iff]:
    "m open = (m = {})"
    by (auto simp: T_def is_open_def)
lemma trivial_topology:
    fixes T (structure) defines "T \equiv{{}}"
    shows "topology T"
proof -
    interpret trivial T by fact
    show ?thesis by (auto intro: topologyI)
qed
lemma empty_carrier_implies_trivial:
    fixes S (structure) assumes "topology S"
    fixes T (structure) defines "T \equiv{{}}"
    shows "carrier = {} \Longrightarrow S = T" (is "PROP ?P")
proof -
    interpret topology S by fact
    interpret trivial T by fact
    show "PROP ?P" by auto
qed
locale discrete = carrier T for X and T (structure) +
    defines "T \equiv discrete_top X"
lemma (in discrete) carrier:
    "carrier = X"
    by (auto intro!:carrierI elim!:carrierE)
            (auto simp: discrete_top_def T_def is_open_def)
lemma (in discrete) open_iff [iff]:
    "t open = (t \in Pow carrier)"
```

```
proof-
    have "t open = (t G Pow X)"
        by (auto simp: T_def discrete_top_def is_open_def)
    thus ?thesis by (simp add: carrier)
qed
lemma discrete_topology: "topology (discrete_top X)"
    by (auto intro!: topologyI simp: is_open_def discrete_top_def)
        blast
locale indiscrete = carrier T for X and T (structure) +
    defines "T \equiv indiscrete_top X"
lemma (in indiscrete) carrier:
    "X = carrier"
    by (auto intro!: carrierI elim!: carrierE)
            (auto simp: T_def indiscrete_top_def is_open_def)
lemma (in indiscrete) open_iff [iff]:
    "t open = (t = {} \vee t = carrier)"
proof-
    have "t open = (t = {} V t = X)"
        by (auto simp: T_def indiscrete_top_def is_open_def)
    thus ?thesis by (simp add: carrier)
qed
lemma indiscrete_topology: "topology (indiscrete_top X)"
    by (rule topologyI) (auto simp: is_open_def indiscrete_top_def)
locale orderbase =
    fixes }X\mathrm{ and B
    defines "B \equiv order_base X"
locale ordertop1 = orderbase X B + topobase B T for X and B and T (structure)
locale ordertop = carrier T for X and T (structure) +
    defines "T \equiv order_top X"
lemma (in ordertop) ordertop_open:
    "t open = (t \in order_top X)"
    by (auto simp: T_def is_open_def)
lemma ordertop_topology [iff]:
    "topology (order_top X)"
    by (auto simp: order_top_def)
```


1.3 Neighbourhoods

```
definition
    nhd :: "'a top }=>\mathrm{ 'a }=>\mathrm{ 'a set set" ( "nhds`") where
    "nhd T x = {U. U\subseteq carr T ^ ( }\exists\textrm{m}.\mp@code{is_open T m ^ x\inm ^ m\subseteq U)}"
```

lemma (in carrier) nhdI [intro]:

```
    "\llbracketU\subseteq carrier; m open; x }\in\textrm{m};\textrm{m}\subseteq\textrm{U}\rrbracket\LongrightarrowU| nhds x"
    by (auto simp: nhd_def)
lemma (in carrier) nhdE [elim]:
    "\llbracketU \in nhds x; \m. \llbracketU\subseteq carrier; m open; x \in m; m\subseteqU\rrbracket \ R \ \ R"
    by (auto simp: nhd_def)
lemma (in carrier) elem_in_nhd:
    "U \in nhds x m x \in U"
    by auto
lemma (in carrier) carrier_nhd [intro]: "x \in carrier \Longrightarrow carrier \in nhds x"
    by auto
lemma (in carrier) empty_not_nhd [iff]:
    "{} & nhds x "
    by auto
lemma (in carrier) nhds_greater:
    "\llbracketV \subseteq carrier; U \subseteqV; U \in nhds x\rrbracket\Longrightarrow V \in nhds x"
    by (erule nhdE) blast
lemma (in topology) nhds_inter:
    assumes nhdU: "U \in nhds x"
    and nhdV: "V \in nhds x"
    shows "(U \cap V) \in nhds x"
proof-
    from nhdU obtain u where
        Usub: "U \subseteq carrier" and
        uT: "u open" and
        xu: "x f u" and
        usub: "u \subseteq U"
        by auto
    from nhdV obtain v where
        Vsub: "V \subseteq carrier" and
        vT: "v open" and
        xv: "x \in v" and
        vsub: "v \subseteq V"
        by auto
    from Usub Vsub have "U \cap V \subseteq carrier" by auto
    moreover from uT vT have "u \cap v open" ..
    moreover from xu xv have "x f u \cap v" ..
    moreover from usub vsub have "u \cap v \subseteqU \cap V" by auto
    ultimately show ?thesis by auto
qed
lemma (in carrier) sub_nhd:
    "U \in nhds x \Longrightarrow \existsV f nhds x. V \subseteqU ^ ( }\forall\textrm{z}\in\textrm{V}.\textrm{U}\in\mathrm{ nhds z)"
    by (auto elim!: nhdE)
lemma (in ordertop1) l1:
    assumes mopen: "m open"
    and xpoint: "x \in X"
```

```
    and ypoint: "y \in X"
    and xley: "x \leq y"
    and xinm: "x \in m"
    shows "y \in m"
    using mopen xinm
proof induct
    case (basic U) thus ?case
        by (auto simp: B_def order_base_def ypoint
                intro: xley dest: order_trans)
qed auto
lemma (in ordertop1)
    assumes xpoint: "x \in X" and ypoint: "y \in X" and xley: "x \leq y"
    shows "nhds x \subseteq nhds y"
proof
    fix u assume "u \in nhds x"
    then obtain m where "m open"
        and "m \subseteq u" and "u \subseteq carrier" and "x f m"
        by auto
    with xpoint ypoint xley
    show "u \in nhds y"
        by (auto dest: l1)
qed
```


1.4 Closed sets

A set is closed if its complement is open.

```
definition
    is_closed :: "'a top # 'a set => bool" ("_ closed\imath" [50] 50) where
    "is_closed T s \longleftrightarrow is_open T (carr T - s)"
lemma (in carrier) closedI:
    "(carrier - s) open \Longrightarrow s closed"
    by (auto simp: is_closed_def)
lemma (in carrier) closedE:
    "\llbracket s closed; (carrier - s) open \Longrightarrow R\rrbracket\Longrightarrow R"
    by (auto simp: is_closed_def)
lemma (in topology) empty_closed [iff]:
    "{} closed"
    by (auto intro!: closedI)
lemma (in topology) carrier_closed [iff]:
    "carrier closed"
    by (auto intro!: closedI)
lemma (in carrier) compl_open_closed:
    assumes mopen: "m open"
    shows "(carrier - m) closed"
proof (rule closedI)
    from mopen have "m \subseteq carrier"
```

```
        by auto
    hence "carrier - (carrier - m) = m"
        by (simp add: double_diff)
    thus "carrier - (carrier - m) open"
    using mopen by simp
qed
lemma (in carrier) compl_open_closed1:
    "\llbracketm \subseteq carrier; (carrier - m) closed \rrbracket \Longrightarrow m open"
    by (auto elim: closedE simp: diffsimps)
lemma (in carrier) compl_closed_iff [iff]:
    " m \subseteq carrier \Longrightarrow (carrier - m) closed = (m open)"
    by (auto dest: compl_open_closed1 intro: compl_open_closed)
lemma (in topology) Un_closed [intro!]:
    "\llbracketx closed; y closed \rrbracket \Longrightarrow x \cup y closed"
    by (auto simp:Diff_Un elim!: closedE intro!: closedI)
lemma (in topology) inter_closed:
    assumes xsclosed: "\x. x\inS \Longrightarrow x closed"
    shows "\bigcapS closed"
proof (rule closedI)
    let ?M = "{m. \existsx\inS. m = carrier - x}"
    have "\forall m \in ?M. m open"
        by (auto dest: xsclosed elim: closedE)
    hence "U ?M open" ..
    moreover have "U ?M = carrier - \bigcapS" by auto
    ultimately show "carrier - \bigcapS open" by auto
qed
corollary (in topology) Int_closed [intro!]:
    assumes abclosed: "A closed" "B closed"
    shows "A \cap B closed"
proof-
    from assms have "\bigcap{A, B} closed"
            by (blast intro!: inter_closed)
    thus ?thesis by simp
qed
lemma (in topology) closed_diff_open:
assumes aclosed: "A closed"
    and bopen: "B open"
    shows "A - B closed"
proof (rule closedI)
    from aclosed have "carrier - A open"
            by (rule closedE)
    moreover from bopen have "carrier }\cap\textrm{B}\mathrm{ open" by auto
    ultimately have "(carrier - A) \cup (carrier \cap B) open" ..
    thus "carrier - (A - B) open" by (simp add: diff_diff)
qed
lemma (in topology) open_diff_closed:
```

```
assumes aclosed: "A closed"
    and bopen: "B open"
    shows "B - A open"
proof-
    from aclosed have "carrier - A open"
        by (rule closedE)
    hence "(carrier - A) \(\cap\) B open" using bopen ..
    moreover from bopen have " \(\mathrm{B} \subseteq\) carrier"
        by auto
    hence "(carrier - A) \(\cap \mathrm{B}=\mathrm{B}-\mathrm{A}\) " by auto
    ultimately show "B - A open" by simp
qed
```


1．5 Core，closure，and frontier of a set

```
definition
    cor :: "'a top }=>\mathrm{ 'a set }=>\mathrm{ 'a set" ("core乙") where
    "cor T s = (\bigcup{m. is_open T m ^ m\subseteq s})"
definition
    clsr :: "'a top }=>\mathrm{ 'a set }=>\mathrm{ 'a set" ("closure乙") where
    "clsr T a = (\bigcap{c. is_closed T c ^ a \subseteqc})"
definition
    frt :: "'a top # 'a set }=>\mathrm{ 'a set" ("frontier`") where
    "frt T s = clsr T s - cor T s"
```


1．5．1 Core

lemma（in carrier）coreI：
" $\llbracket \mathrm{m}$ open; $\mathrm{m} \subseteq \mathrm{s} ; \mathrm{x} \in \mathrm{m} \rrbracket \Longrightarrow \mathrm{x} \in$ core $\mathrm{s} "$
by (auto simp: cor_def)
lemma (in carrier) coreE:
$" \llbracket \mathrm{x} \in$ core $\mathrm{s} ; \bigwedge \mathrm{m} . \llbracket \mathrm{m}$ open; $\mathrm{m} \subseteq \mathrm{s} ; \mathrm{x} \in \mathrm{m} \rrbracket \Longrightarrow \mathrm{R} \rrbracket \Longrightarrow \mathrm{R} "$
by (auto simp: cor_def)
lemma (in topology) core_open [iff]:
"core a open"
by (auto simp: cor_def)
lemma (in carrier) core_subset:
"core a \subseteq a"
by (auto simp: cor_def)
lemmas (in carrier) core_subsetD = subsetD [OF core_subset]
lemma (in carrier) core_greatest:
"【 m open; m $\subseteq a \rrbracket \Longrightarrow \mathrm{~m} \subseteq$ core a "
by (auto simp: cor_def)
lemma (in carrier) core_idem [simp]:
"core (core a) = core a"

```
    by (auto simp: cor_def)
lemma (in carrier) open_core_eq [simp]:
    "a open \Longrightarrow core a = a"
    by (auto simp: cor_def)
lemma (in topology) core_eq_open:
    "core a = a \Longrightarrow a open"
    by (auto elim: subst)
lemma (in topology) core_iff:
    "a open = (core a = a)"
    by (auto intro: core_eq_open)
lemma (in carrier) core_mono:
    "a \subseteq b \Longrightarrow core a \subseteq core b"
    by (auto simp: cor_def)
lemma (in topology) core_Int [simp]:
    "core (a \cap b) = core a \cap core b"
    by (auto simp: cor_def)
lemma (in carrier) core_nhds:
    "\llbracketU\subseteq carrier; x }\in\mathrm{ core U \ # U G nhds x"
    by (auto elim!: coreE)
lemma (in carrier) nhds_core:
    "U \in nhds x \Longrightarrow x \in core U"
    by (auto intro: coreI)
lemma (in carrier) core_nhds_iff:
    "U \subseteq carrier \Longrightarrow(x c core U) = (U \in nhds x)"
    by (auto intro: core_nhds nhds_core)
```


1.5.2 Closure

```
lemma (in carrier) closureI [intro]:
"(\c. \llbracketc closed; a \subseteq c\rrbracket \Longrightarrow x \in c) \Longrightarrow x \in closure a"
    by (auto simp: clsr_def)
lemma (in carrier) closureE [elim]:
    "\llbracketx c closure a; \neg c closed \Longrightarrow R; \neg a \subseteqc c m R; x \in c \Longrightarrow R \rrbracket \Longrightarrow R"
    by (auto simp: clsr_def)
lemma (in carrier) closure_least:
    "s closed \Longrightarrow closure s \subseteq s"
    by auto
lemma (in carrier) subset_closure:
    "s \subseteq closure s"
    by auto
lemma (in topology) closure_carrier [simp]:
```

```
    "closure carrier = carrier"
    by auto
lemma (in topology) closure_subset:
    "A \subseteq carrier \Longrightarrow closure A \subseteq carrier"
    by auto
lemma (in topology) closure_closed [iff]:
    "closure a closed"
    by (auto simp: clsr_def intro: inter_closed)
lemma (in carrier) closure_idem [simp]:
    "closure (closure s) = closure s"
    by (auto simp: clsr_def)
lemma (in carrier) closed_closure_eq [simp]:
    "a closed \Longrightarrow closure a = a"
    by (auto simp: clsr_def)
lemma (in topology) closure_eq_closed:
    "closure a = a \Longrightarrow a closed"
    by (erule subst) simp
lemma (in topology) closure_iff:
    "a closed = (closure a = a)"
    by (auto intro: closure_eq_closed)
lemma (in carrier) closure_mono1:
    "mono (closure)"
    by (rule, auto simp: clsr_def)
lemma (in carrier) closure_mono:
    "a \subseteq b C closure a \subseteq closure b"
    by (auto simp: clsr_def)
lemma (in topology) closure_Un [simp]:
    "closure (a \cup b) = closure a \cup closure b"
    by (rule, blast) (auto simp: clsr_def)
```


1.5.3 Frontier

```
lemma (in carrier) frontierI:
```

lemma (in carrier) frontierI:
"\llbracketx \in closure s; x \in core s \Longrightarrow False\rrbracket \Longrightarrow x f frontier s"
"\llbracketx \in closure s; x \in core s \Longrightarrow False\rrbracket \Longrightarrow x f frontier s"
by (auto simp: frt_def)
by (auto simp: frt_def)
lemma (in carrier) frontierE:
lemma (in carrier) frontierE:
"\llbracketx f frontier s; \llbracketx \in closure s; x \in core s C False\rrbracket \Longrightarrow R \rrbracket \Longrightarrow R"
"\llbracketx f frontier s; \llbracketx \in closure s; x \in core s C False\rrbracket \Longrightarrow R \rrbracket \Longrightarrow R"
by (auto simp: frt_def)
by (auto simp: frt_def)
lemma (in topology) frontier_closed [iff]:
lemma (in topology) frontier_closed [iff]:
"frontier s closed"
"frontier s closed"
by (unfold frt_def)

```
by (unfold frt_def)
```

```
(intro closure_closed core_open closed_diff_open)
lemma (in carrier) frontier_Un_core:
    "frontier s U core s = closure s"
    by (auto dest: subsetD [OF core_subset] simp: frt_def)
lemma (in carrier) frontier_Int_core:
    "frontier s \cap core s = {}"
    by (auto simp: frt_def)
lemma (in topology) closure_frontier [simp]:
    "closure (frontier a) = frontier a"
    by simp
lemma (in topology) frontier_carrier [simp]:
    "frontier carrier = {}"
    by (auto simp: frt_def)
```

Hence frontier is not monotone. Also core (frontier $_{T}$ A) $=\{ \}$ is not a theorem as illustrated by the following counter example. By the way: could the counter example be prooved using an instantiation?

```
lemma counter_example_core_frontier:
    fixes X defines [simp]: "X \equiv (UNIV::nat set)"
    fixes T (structure) defines "T \equiv indiscrete_top X"
    shows "core (frontier {0}) = X"
proof -
    interpret indiscrete X T by fact
    have "core {0} = {}"
        by (auto simp add: carrier [symmetric] cor_def)
    moreover have "closure {0} = UNIV"
        by (auto simp: clsr_def carrier [symmetric] is_closed_def)
    ultimately have "frontier {0} = UNIV"
        by (auto simp: frt_def)
    thus ?thesis
        by (auto simp add: cor_def carrier [symmetric])
qed
```


1.5.4 Adherent points

definition

adhs : : "'a top \Rightarrow 'a \Rightarrow 'a set \Rightarrow bool" (infix "adh " 50) where "adhs T x $\mathrm{A} \longleftrightarrow(\forall \mathrm{U} \in$ nhd $\mathrm{T} x . \mathrm{U} \cap \mathrm{A} \neq\{ \})$ "
lemma (in carrier) adhCE [elim?]:
$" \llbracket \mathrm{x}$ adh $\mathrm{A} ; \mathrm{U} \notin \mathrm{nhds} \mathrm{x} \Longrightarrow \mathrm{R} ; \mathrm{U} \cap \mathrm{A} \neq\{ \} \Longrightarrow \mathrm{R} \rrbracket \Longrightarrow \mathrm{R} "$ by (unfold adhs_def) auto
lemma (in carrier) adhI [intro]:
" $(\bigwedge U . U \in$ nhds $x \Longrightarrow U \cap A \neq\{ \}) \Longrightarrow x$ adh $A "$
by (unfold adhs_def) simp
lemma (in carrier) closure_imp_adh:
assumes asub: "A \subseteq carrier"
and closure: "x \in closure $A "$
shows "x adh A"
proof
fix U assume unhd: " $U \in$ nhds x "
show "U $\cap A \neq\{ \}$ "
proof
assume UA: "U $\cap \mathrm{A}=\{ \}$ "
from unhd obtain V where "V open" "x $\in V$ " and VU: "V \subseteq U" ..
moreover from UA VU have "V $\cap A=\{ \} "$ by auto
ultimately show "False" using asub closure
by (auto dest!: compl_open_closed simp: clsr_def)
qed
qed
lemma (in carrier) adh_imp_closure:
assumes xpoint: "x carrier"
and adh: "x adh A"
shows "x \in closure A"
proof (rule ccontr)
assume notclosure: "x \notin closure A"
then obtain C
where closed: "C closed"
and asubc: "A $\subseteq \mathrm{C}$ "
and xnotinc: "x $\notin \mathrm{C}$ "
by (auto simp: clsr_def)
from closed have "carrier - C open" by (rule closedE)
moreover from xpoint xnotinc have " $x \in$ carrier - C" by simp
ultimately have "carrier - C \in nhds x" by auto
with adh have "(carrier - C) $\cap \mathrm{A} \neq\{ \}$ "
by (auto elim: adhCE)
with asubc show "False" by auto
qed
lemma (in topology) closed_adh:
assumes Asub: "A \subseteq carrier"
shows "A closed $=(\forall \mathrm{x} \in$ carrier. x adh $\mathrm{A} \longrightarrow \mathrm{x} \in \mathrm{A})$ "
proof
assume "A closed"
hence AA: "closure A = A"
by auto
thus " $(\forall \mathrm{x} \in$ carrier. x adh $\mathrm{A} \longrightarrow \mathrm{x} \in \mathrm{A})$ "
by (fast dest!: adh_imp_closure)
next assume adhA: $\because \forall \mathrm{x} \in$ carrier. x adh $\mathrm{A} \longrightarrow \mathrm{x} \in \mathrm{A} "$
have "closure $A \subseteq A$ "
proof
fix x assume xclosure: "x \in closure $A "$
hence "x \in carrier" using Asub by (auto dest: closure_subset)
with xclosure show "x $\in A$ " using Asub adhA
by (auto dest!: closure_imp_adh)
qed
thus "A closed" by (auto intro: closure_eq_closed)
qed
lemma (in carrier) adh_closure_iff:
"【A \subseteq carrier $; x \in$ carrier $\rrbracket \Longrightarrow(x \operatorname{adh} A)=(x \in$ closure $A) "$
by (auto dest: adh_imp_closure closure_imp_adh)

1.6 More about closure and core

```
lemma (in topology) closure_complement [simp]:
    shows "closure (carrier - A) = carrier - core A"
proof
    have "closure (carrier - A) \subseteq carrier"
        by (auto intro: closure_subset)
    moreover have "closure (carrier - A) \cap core A = {}"
    proof (rule seteqI, clarsimp)
        fix x assume xclosure: "x \in closure (carrier - A)"
        hence xadh: "x adh carrier - A"
            by (auto intro: closure_imp_adh)
        moreover assume xcore: "x \in core A"
        hence "core A G nhds x"
            by auto
        ultimately have "core A \cap (carrier - A) f= {}"
            by (auto elim: adhCE)
        thus "False" by (auto dest: core_subsetD)
    qed auto
    ultimately show "closure (carrier - A) \subseteq carrier - core A"
        by auto
next
    show "carrier - core A \subseteq closure (carrier - A)"
        by (auto simp: cor_def clsr_def is_closed_def)
qed
```

lemma (in carrier) core_complement [simp]:
assumes asub: "A \subseteq carrier"
shows "core (carrier - A) = carrier - closure A"
proof
show "carrier - closure A \subseteq core (carrier - A)"
by (auto simp: cor_def clsr_def is_closed_def)
next
have "core (carrier - A) \subseteq carrier"
by (auto elim!: coreE)
moreover have "core (carrier - A) \cap closure $A=\{ \} "$
proof auto
fix x assume $\mathrm{k} \in$ core (carrier - A)"
hence "(carrier - A) \in nhds x"
by (auto iff: core_nhds_iff)
moreover assume " $\mathrm{x} \in$ closure $\mathrm{A} "$
ultimately have " $\mathrm{A} \cap$ (carrier - A) $\neq\{ \}$ " using asub
by (auto dest!: closure_imp_adh elim!: adhCE)
thus "False" by auto
qed
ultimately show "core (carrier - A) \subseteq carrier - closure A"
by auto
qed

```
lemma (in carrier) core_closure_diff_empty [simp]:
    assumes asub: "A \subseteq carrier"
    shows "core (closure A - A) = {}"
proof auto
    fix x assume "x \in core (closure A - A)"
    then obtain m where
        mopen: "m open" and
        xinm: "x \in m" and
        msub: "m \subseteq closure A" and
        minter: "m \cap A = {}"
        by (auto elim!: coreE)
    from xinm msub have "x adh A" using asub
        by (auto dest: closure_imp_adh)
    moreover from xinm mopen have "m \in nhds x"
        by auto
    ultimately have "m \cap A f {}" by (auto elim: adhCE)
    with minter show "False" by auto
qed
```


1.7 Dense sets

```
definition
    is_densein :: "'a top }=>\mathrm{ ' 'a set }=>\mathrm{ ' 'a set }=>\mathrm{ bool" (infix "densein`" 50) where
    "is_densein T A B \longleftrightarrow B\subseteqclsr T A"
definition
is_dense :: "'a top => 'a set => bool" ("_ dense\imath" [50] 50) where
"is_dense T A = is_densein T A (carr T)"
lemma (in carrier) densinI [intro!]: "B \subseteq closure A \Longrightarrow A densein B"
    by (auto simp: is_densein_def)
lemma (in carrier) denseinE [elim!]: "\llbracket A densein B; B \subseteq closure A \Longrightarrow R \rrbracket \Longrightarrow R"
    by (auto simp: is_densein_def)
lemma (in carrier) denseI [intro!]: "carrier \subseteq closure A \Longrightarrow A dense"
    by (auto simp: is_dense_def)
lemma (in carrier) denseE [elim]: "\llbracket A dense; carrier \subseteq closure A \Longrightarrow R \ \ R"
    by (auto simp: is_dense_def)
lemma (in topology) dense_closure_eq [dest]:
    "\llbracket A dense; A \subseteq carrier \rrbracket \Longrightarrow closure A = carrier"
    by (auto dest: closure_subset)
lemma (in topology) dense_lemma:
    "A \subseteq carrier \Longrightarrow carrier - (closure A - A) dense"
    by auto
```

lemma (in topology) ex_dense_closure_inter:

```
    assumes ssub: "S \subseteq carrier"
    shows "\exists D C. D dense ^ C closed ^ S = D \cap C"
proof-
    let ?D = "carrier - (closure S - S)" and
        ?C = "closure S"
    from ssub have "?D dense" by auto
    moreover have "?C closed" ..
    moreover from ssub
    have "(carrier - (closure S - S)) \cap closure S = S"
        by (simp add: diff_diff_inter subset_closure)
    ultimately show ?thesis
        by auto
qed
lemma (in topology) ex_dense_closure_interE:
    assumes ssub: "S \subseteq carrier"
    and H: "\D C. \llbracket D \subseteq carrier; C \subseteq carrier; D dense; C closed; S = D \cap C \ \Longrightarrow R"
    shows "R"
proof-
    let ?D = "(carrier - (closure S - S))"
    and ?C = "closure S"
    have "?D \subseteq carrier" by auto
    moreover from assms have "?C \subseteq carrier"
        by (auto dest!: closure_subset)
    moreover from assms have "?D dense" by auto
    moreover have "?C closed" ..
    moreover from ssub have "S = ?D \cap ?C"
        by (simp add: diff_diff_inter subset_closure)
    ultimately show ?thesis
        by (rule H)
qed
```


1.8 Continuous functions

definition

```
INJ :: "'a set \(\Rightarrow\) 'b set \(\Rightarrow\) ('a \(\Rightarrow\) 'b) set" where "INJ A B = \{f. f : A \(\rightarrow\) B \(\wedge\) inj_on \(f\) A\}"
definition
SUR : : "'a set \(\Rightarrow\) 'b set \(\Rightarrow\) ('a \(\Rightarrow\) 'b) set" where
"SUR \(A B=\{f . f: A \rightarrow B \wedge(\forall y \in B . \exists x \in A . y=f x)\} "\)
definition
BIJ :: "'a set \(\Rightarrow\) 'b set \(\Rightarrow\) ('a \(\Rightarrow\) 'b) set" where
"BIJ A B = INJ A B \(\cap\) SUR A B"
definition
cnt : : "'a top \(\Rightarrow\) 'b top \(\Rightarrow\) ('a \(\Rightarrow\) 'b) set" where
"cnt S T = \{f. f : carr \(\mathrm{S} \rightarrow\) carr \(\mathrm{T} \wedge\)
( \(\forall \mathrm{m}\). is_open T m \(\longrightarrow\) is_open \(\mathrm{S}\left(\operatorname{carr} \mathrm{S} \cap\left(f \mathrm{r}^{\prime} \mathrm{m}\right)\right)\) )\}"
definition
HOM :: " 'a top \(\Rightarrow\) 'b top \(\Rightarrow\) ('a \(\Rightarrow\) 'b) set" where
```

```
    "HOM S T = {f. f \in cnt S T ^ inv f \in cnt T S ^ f \in BIJ (carr S) (carr T)}"
definition
    homeo :: "'a top }=>\mathrm{ 'b top }=>\mathrm{ bool" where
    "homeo S T \longleftrightarrow (\existsh B BIJ (carr S) (carr T). h \in cnt S T ^ inv h f cnt T S)"
definition
    fimg :: "'b top }=>\mathrm{ ('a }=>\mathrm{ 'b) }=>\mathrm{ 'a set set }=>\mathrm{ ' 'b set set" where
    "fimg T f F = {v. v \subseteq carr T ^ (\exists u G F.f`u \subseteq v)}"
lemma domain_subset_vimage:
    "f : A -> B \Longrightarrow A \subseteqf-'B"
    by (auto intro: funcset_mem)
lemma domain_inter_vimage:
    "f : A -> B \Longrightarrow A \cap f-'B = A"
    by (auto intro: funcset_mem)
lemma funcset_vimage_diff:
    "f : A }->\textrm{B}\Longrightarrow\textrm{A}-\textrm{f
    by (auto intro: funcset_mem)
locale func = S?: carrier S + T?: carrier T
    for f and S (structure) and T (structure) and fimage +
    assumes func [iff]: "f : carrier 
    defines "fimage \equiv fimg T f"
    notes func_mem [simp, intro] = funcset_mem [OF func]
    and domain_subset_vimage [iff] = domain_subset_vimage [OF func]
    and domain_inter_vimage [simp] = domain_inter_vimage [OF func]
    and vimage_diff [simp] = funcset_vimage_diff [OF func]
lemma (in func) fimageI [intro!]:
    shows "\llbracketv\subseteq carrier 
    by (auto simp: fimg_def fimage_def)
lemma (in func) fimageE [elim!]:
    "\llbracketv \in fimage F; ^u. \llbracketv \subseteq carrier T ; u\inF; f'u \subseteq v\rrbracket \Longrightarrow R\rrbracket \ R"
    by (auto simp: fimage_def fimg_def)
lemma cntI:
    "\llbracketf : carr S -> carr T;
        (\m. is_open T m \Longrightarrow is_open S (carr S \cap (f -' m)))】
    "f \in cnt S T"
    by (auto simp: cnt_def)
lemma cntE:
    "\llbracketf f cnt S T;
            |f : carr S -> carr T;
            \forallm. is_open T m \longrightarrow is_open S (carr S \cap (f -' m)) \rrbracket\LongrightarrowP
    \ \Longrightarrow P'
    by (auto simp: cnt_def)
```

```
lemma cntCE:
    "\llbracketf f cnt S T;
        \llbracket\neg is_open T m; f : carr S }->\mathrm{ carr T】 \ P;
        \llbracketis_open S (carr S \cap (f -' m)); f : carr S }->\mathrm{ carr T \ CP
    | \Longrightarrow P'
    by (auto simp: cnt_def)
lemma cnt_fun:
    "f \in cnt S T \Longrightarrow f : carr S -> carr T"
    by (auto simp add: cnt_def)
lemma cntD1:
    "\llbracketf\incnt S T; x \in carr S \ \Longrightarrow f x f carr T"
    by (auto simp add: cnt_def intro: funcset_mem)
lemma cntD2:
    "\llbracketf \in cnt S T; is_open T m \rrbracket \Longrightarrow is_open S (carr S \cap (f -` m))"
    by (auto simp: cnt_def)
locale continuous = func +
    assumes continuous [dest, simp]:
    "m open
lemma continuousI:
    fixes S (structure)
    fixes T (structure)
    assumes "f : carrierS }->\mathrm{ carrierT"
                            "\m. m openT }\Longrightarrow\mathrm{ carrier }\cap\mathrm{ (f -' m) open"
    shows "continuous f S T"
using assms by (auto simp: continuous_def func_def continuous_axioms_def)
lemma continuousE:
    fixes S (structure)
    fixes T (structure)
    shows
    "|l continuous f S T;
            | f : carriers }->\mp@subsup{\mathrm{ carrier }}{T}{}
```



```
        | (P'
    by (auto simp: continuous_def func_def continuous_axioms_def)
lemma continuousCE:
    fixes S (structure)
    fixes T (structure)
    shows
    "\llbracket continuous f S T;
            \llbracket m openT; f : carrierS }->\mathrm{ carrierT \ \ P;
            \llbracket carriers \cap (f -' m) openS; f : carrierS }->\mp@subsup{\mathrm{ carrier }}{T}{}\rrbracket\Longrightarrow
        \ C P'
    by (auto simp: continuous_def func_def continuous_axioms_def)
lemma (in continuous) closed_vimage [intro, simp]:
```

```
    assumes csubset: "c \subseteq carrierT"
    and cclosed: "c closed
    shows "f -' c closed"
proof-
    from cclosed have "carrier T - c openT" by (rule closedE)
    hence "carrier \cap f -' (carrier}\mp@subsup{T}{T}{- c) open" by auto
    hence "carrier - f -' c open" by (auto simp: diffsimps)
    thus "f -' c closed" by (rule S.closedI)
qed
lemma continuousI2:
    fixes S (structure)
    fixes T (structure)
    assumes func: "f : carrierS }->\mp@subsup{\mathrm{ carrier }}{T}{
    assumes R: "\c. \llbracketc\subseteq carrier T; c closedT \rrbracket \Longrightarrow f -' c closed"
    shows "continuous f S T"
proof (rule continuous.intro)
    from func show "func f S T" by (auto simp: func_def)
next
    interpret S: carrier S .
    interpret T: carrier T .
    show "continuous_axioms f S T"
    proof (rule continuous_axioms.intro)
            fix m let ?c = "carrier 
            hence csubset: "?c \subseteq carrier}\mp@subsup{T}{T}{}\mathrm{ and cclosed: "?c closed
            by auto
            hence "f -' ?c closed" by (rule R)
            hence "carrier - f -' ?c open"
                by (rule S.closedE)
            thus "carrier \cap f -' m open" by (simp add: funcset_vimage_diff [OF func])
    qed
qed
lemma cnt_compose:
    "\llbracketf\incnt S T; g \in cnt T U \ \Longrightarrow (g o f) \in cnt S U "
    by (auto intro!: cntI funcset_comp elim!: cntE simp add: vimage_comp)
lemma continuous_compose:
    "【 continuous f S T; continuous g T U \rrbracket \Longrightarrow continuous (g ○ f) S U"
    by (auto intro!: continuousI funcset_comp
        elim!: continuousE simp add: vimage_comp)
lemma id_continuous:
    fixes T (structure)
    shows "continuous id T T"
proof(rule continuousI)
    show "id \in carrier }->\mathrm{ carrier"
        by (auto intro: funcsetI)
next
    interpret T: carrier T .
    fix m assume mopen: "m open"
```

```
    hence "m \subseteq carrier" by auto
    hence "carrier \cap m = m" by auto
    thus "carr T \cap id -' m open" using mopen
        by auto
qed
lemma (in discrete) continuous:
    fixes f and S (structure) and fimage
    assumes "func f T S" defines "fimage \equiv fimg S f"
    shows "continuous f T S"
proof -
    interpret func f T S fimage by fact fact
    show ?thesis by (auto intro!: continuousI)
qed
lemma (in indiscrete) continuous:
    fixes S (structure)
    assumes "topology S"
    fixes f and fimage
    assumes "func f S T" defines "fimage \equiv fimg T f"
    shows "continuous f S T"
proof -
    interpret S: topology S by fact
    interpret func f S T fimage by fact fact
    show ?thesis by (auto del: S.Int_open intro!: continuousI)
qed
```


1.9 Filters

definition

fbas :: "'a top \Rightarrow 'a set set \Rightarrow bool" ("fbase ح") where
"fbas $T B \longleftrightarrow\} \notin B \wedge B \neq\{ \} \wedge$
$(\forall \mathrm{a} \in \mathrm{B} . \forall \mathrm{b} \in \mathrm{B} . \exists \mathrm{c} \in \mathrm{B} . \mathrm{c} \subseteq \mathrm{a} \cap \mathrm{b}) "$
definition
filters :: "'a top \Rightarrow 'a set set set" ("Filters ح") where
"filters $T=\{F .\{ \} \notin F \wedge \bigcup F \subseteq \operatorname{carr} T \wedge$
$(\forall \mathrm{A} B . \mathrm{A} \in \mathrm{F} \wedge \mathrm{B} \in \mathrm{F} \longrightarrow \mathrm{A} \cap \mathrm{B} \in \mathrm{F}) \wedge$
$(\forall \mathrm{A} B . \mathrm{A} \in \mathrm{F} \wedge \mathrm{A} \subseteq \mathrm{B} \wedge \mathrm{B} \subseteq \operatorname{carr} \mathrm{T} \longrightarrow \mathrm{B} \in \mathrm{F})\}{ }^{\prime \prime}$
definition
ultr : : "’a top \Rightarrow 'a set set \Rightarrow bool" ("ultra乞") where
"ultr $T \mathrm{~F} \longleftrightarrow(\forall \mathrm{~A} . \mathrm{A} \subseteq \operatorname{carr} \mathrm{T} \longrightarrow \mathrm{A} \in \mathrm{F} \vee(\operatorname{carr} \mathrm{T}-\mathrm{A}) \in \mathrm{F})$ "
lemma filtersI [intro]:
fixes T (structure)
assumes a1: " $\} \notin \mathrm{F}$ "
and a2: " $\bigcup \mathrm{F} \subseteq$ carrier"
and a3: " $\bigwedge \mathrm{AB} . \llbracket \mathrm{A} \in \mathrm{F} ; \mathrm{B} \in \mathrm{F} \rrbracket \Longrightarrow \mathrm{A} \cap \mathrm{B} \in \mathrm{F}$ "
and a4: " $\bigwedge \mathrm{A} B . \llbracket \mathrm{A} \in \mathrm{F} ; \mathrm{A} \subseteq \mathrm{B} ; \mathrm{B} \subseteq$ carrier $\rrbracket \Longrightarrow \mathrm{B} \in \mathrm{F}$ "
shows "F \in Filters"
using a1 a2
by (auto simp add: filters_def intro: a3 a4)

```
lemma filtersE:
    assumes a1: "F \in filters T"
    and R: "\llbracket{} &F;
                UF\subseteq carr T;
                A B. A\inF ^ B\inF \longrightarrowA\capB \inF;
            A B. A\inF ^A\subseteqB ^ B\subseteq carr T \longrightarrow B \in F
            \Longrightarrow R"
    shows "R"
    using a1
    apply (simp add: filters_def)
    apply (rule R)
    apply ((erule conjE)+, assumption)+
    done
lemma filtersD1:
    "F \in filters T \Longrightarrow {} & F"
    by (erule filtersE)
lemma filtersD2:
    "F f filters T \Longrightarrow \F\subseteq carr T"
    by (erule filtersE)
lemma filtersD3:
    "\llbracketF f filters T; A\inF; B\inF \rrbracket\Longrightarrow A \cap B \in F"
    by (blast elim: filtersE)
lemma filtersD4:
    "\llbracketF f filters T; A\subseteq B; B \subseteq carr T; A\inF \rrbracket\Longrightarrow B G F"
    by (blast elim: filtersE)
locale filter = carrier T for F and T (structure) +
    assumes F_filter: "F \in Filters"
    notes not_empty [iff] = filtersD1 [OF F_filter]
    and union_carr [iff] = filtersD2 [OF F_filter]
    and filter_inter [intro!, simp] = filtersD3 [OF F_filter]
    and filter_greater [dest] = filtersD4 [OF F_filter]
lemma (in filter) elem_carrier [elim]:
    assumes A: "A G F"
    assumes R: "\llbracketA \subseteq carrier; A f= {} \rrbracket\Longrightarrow R"
    shows "R"
proof-
    have "\F\subseteq carrier" ..
    thus ?thesis using A by (blast intro: R)
qed
```

```
lemma empty_filter [iff]: "{} \in filters T"
    by auto
lemma (in filter) contains_carrier [intro, simp]:
    assumes F_not_empty: "F\not={}"
    shows "carrier \in F"
proof-
    from F_not_empty obtain A where "A \subseteq carrier" "A G F"
        by auto
    thus ?thesis by auto
qed
lemma nonempty_filter_implies_nonempty_carrier:
    fixes T (structure)
    assumes F_filter: "F \in Filters"
    and F_not_empty: "F f= {}"
    shows "carrier f= {}"
proof-
    from assms have "carrier \in F"
        by (auto dest!: filter.contains_carrier [OF filter.intro])
    thus ?thesis using F_filter
        by(auto dest: filtersD1)
qed
lemma carrier_singleton_filter:
    fixes T (structure)
    shows "carrier }\not={}\Longrightarrow{\mathrm{ carrier} }\in\mathrm{ Filters"
    by auto
lemma (in topology) nhds_filter:
    "nhds x \in Filters"
    by (auto dest: nhds_greater intro!: filtersI nhds_inter)
lemma fimage_filter:
    fixes f and S (structure) and T (structure) and fimage
    assumes "func f S T" defines "fimage \equiv fimg T f"
    fixes F assumes "filter F S"
    shows "fimage F \in FiltersT"
proof -
    interpret func f S T fimage by fact fact
    interpret filter F S by fact
    show ?thesis proof
        fix A B assume "A \in fimage F" "B \in fimage F"
        then obtain a b where
            AY: "A\subseteqcarrierT" and aF: "a\inF" and fa: "f ' a \subseteq A" and
            BY: "B\subseteqcarrierT" and bF: "b\inF" and fb: "f ' b \subseteq B"
            by (auto)
        from AY BY have "A\capB \subseteq carrierT" by auto
        moreover from aF bF have "a \cap b \in F" by auto
        moreover from aF bF fa fb have "f'(a \cap b) \subseteqA\cap B" by auto
        ultimately show "A\capB \in fimage F" by auto
    qed auto
```


qed

```
lemma Int_filters:
    fixes F and T (structure) assumes "filter F T"
    fixes E assumes "filter E T"
    shows "F \cap E G Filters"
proof -
    interpret filter F T by fact
    interpret filter E T by fact
    show ?thesis by auto
qed
lemma ultraCI [intro!]:
    fixes T (structure)
    shows "(\A. \llbracketA\subseteq carrier; carrier - A & F\rrbracket\Longrightarrow \ A F) \Longrightarrow ultra F"
    by (auto simp: ultr_def)
lemma ultraE:
    fixes T (structure)
    shows "\llbracketultra F; A \subseteq carrier;
            A}\inF\LongrightarrowR
            carrier - A G F\LongrightarrowR
    \ ( R"
by (auto simp: ultr_def)
lemma ultraD:
    fixes T (structure)
    shows "\llbracketultra F; A \subseteq carrier; A & F\rrbracket\Longrightarrow (carrier - A) \in F"
    by (erule ultraE) auto
locale ultra_filter = filter +
    assumes ultra: "ultra F"
    notes ultraD = ultraD [OF ultra]
    notes ultraE [elim] = ultraE [OF ultra]
lemma (in ultra_filter) max:
    fixes E assumes "filter E T"
    assumes fsube: "F\subseteq E"
    shows "E\subseteqF"
proof -
    interpret filter E T by fact
    show ?thesis proof
        fix x assume xinE: "x \in E"
        hence "x \subseteq carrier" ..
        hence "x \in F V carrier - x G F" by auto
        thus "x\inF"
        proof clarify
            assume "carrier - x \in F"
            hence "carrier - x E E" using fsube ..
            with xinE have "x \cap (carrier - x) \in E" ..
            hence False by auto
```

```
            thus "x \in F" ..
        qed
    qed
qed
lemma (in filter) max_ultra:
    assumes carrier_not_empty: "carrier f= {}"
    and fmax: " }\forall\textrm{E}\in\mathrm{ Filters. F }\subseteq\textrm{E}\longrightarrow\textrm{F}=\textrm{E}
    shows "ultra F"
proof
    fix A let ?CA = "carrier - A"
    assume A_subset_carrier: "A \subseteq carrier"
        and CA_notin_F: "?CA &F"
    let ?E = "{V. \exists U\inF. V \subseteq carrier ^ A \cap U \subseteq V}"
    have "?E \in Filters"
    proof
        show "{} & ?E"
        proof clarify
            fix U assume U_in_F: "U \in F" and "A \cap U\subseteq{}"
            hence "U\subseteq ?CA" by auto
            with U_in_F have "?CA \in F" by auto
            with CA_notin_F show False ..
        qed
    next show "\?E \subseteq carrier" by auto
    next fix a b assume "a \in ?E" and "b \in ?E"
        then obtain u v where props: "u \in F" "a \subseteq carrier" "A \cap u \subseteqa"
            "v \in F" "b \subseteq carrier" "A \cap v \subseteq b" by auto
        hence "(u \cap v) \in F" "a \cap b \subseteq carrier" "A \cap (u \cap v) \subseteqa \cap b"
            by auto
        thus "a \cap b \in ?E" by auto
    next fix a b assume "a \in ?E" and asub: "a \subseteq b" and bsub: "b \subseteq carrier"
        thus "b \in ?E" by blast
    qed
    moreover have "F\subseteq ?E" by auto
    moreover from carrier_not_empty
    have "{carrier} \in Filters" by auto
    hence "F f= {}" using fmax by blast
    hence "A \in ?E" using A_subset_carrier by auto
    ultimately show "A \in F" using fmax by auto
```

qed
lemma filter_chain_lemma:
fixes T (structure) and F
assumes "filter F T"
assumes C_chain: "C \in chains $\{V . V \in$ Filters $\wedge F \subseteq V\}$ (is "C \in chains ?FF")
shows " $\bigcup(C \cup\{F\}) \in$ Filters" (is "? $\in \in$ Filters")
proof-

```
    interpret filter F T by fact
    from C_chain have C_subset_FF[dest]: "\ x. x\inC \Longrightarrow x \in ?FF" and
        C_ordered: " }\forall\textrm{A}\in\textrm{C}.\forall\textrm{B}\in\textrm{C}.\textrm{A}\subseteq\textrm{B}\vee\textrm{B}\subseteq\textrm{A}
        by (auto simp: chains_def chain_subset_def)
    show ?thesis
    proof
        show "{} & ?E" by (auto dest: filtersD1)
    next
        show "\?E \subseteq carrier" by (blast dest: filtersD2)
    next
        fix a b assume a_in_E: "a \in ?E" and a_subset_b: "a \subseteq b"
    and b_subset_carrier: "b \subseteq carrier"
        thus "b \in ?E" by (blast dest: filtersD4)
    next
        fix a b assume a_in_E: "a \in ?E" and b_in_E: "b \in ?E"
        then obtain A B where A_in_chain: "A \inC U {F}" and B_in_chain: "B \in C \cup{F}"
            and a_in_A: "a \in A" and b_in_B: "b \in B" and A_filter: "A \in Filters"
            and B_filter: "B \in Filters"
            by auto
        with C_ordered have "A}\subseteqB\veeB\A" by aut
        thus "a\capb \in ?E"
        proof
            assume "A \subseteq B"
            with a_in_A have "a \in B" ..
            with B_filter b_in_B have "a\capb \in B" by (intro filtersD3)
            with B_in_chain show ?thesis ..
        next
            assume "B \subseteq A" - Symmetric case
            with b_in_B A_filter a_in_A A_in_chain
            show ?thesis by (blast intro: filtersD3)
        qed
    qed
qed
lemma expand_filter_ultra:
    fixes T (structure)
    assumes carrier_not_empty: "carrier f= {}"
    and F_filter: "F \in Filters"
    and R: "\U. \llbracketU G Filters; F \subseteq U; ultra U\rrbracket \Longrightarrow R"
    shows "R"
proof-
    let ?FF = "{V. V \in Filters ^ F\subseteq V}"
    have "\forallC C chains ?FF. \existsy \in ?FF. }\forall\textrm{x}\inC.\textrm{x}\subseteq\textrm{y
    proof clarify
        fix C let ?M = "\(C \cup {F})"
        assume C_in_chain: "C \in chains ?FF"
        hence "?M \in ?FF" using F_filter
            by (auto dest: filter_chain_lemma [OF filter.intro])
        moreover have " }\forall\textrm{x}\in\textrm{C}.\textrm{x}\subseteq?M" using C_in_chai
            by (auto simp: chain_def)
        ultimately show "\existsy\in?FF. }\forall\textrm{x}\in\textrm{C}.\textrm{x}\subseteq\textrm{y
            by auto
```

```
    qed then obtain U where
        U_FFilter: "U \in ?FF" and U_max: "\forall V \in ?FF. U \subseteq V \longrightarrow V = U"
        by (blast dest!: Zorn_Lemma2)
    hence U_filter: "U \in Filters" and F_subset_U: "F \subseteq U"
        by auto
    moreover from U_filter carrier_not_empty have "ultra U"
    proof (rule filter.max_ultra [OF filter.intro], clarify)
        fix E x assume "E \in Filters" and U_subset_E: "U \subseteq E" and x_in_E: "x \in E"
        with F_subset_U have "E \in ?FF" by auto
        with U_subset_E x_in_E U_max show "x \in U" by blast
    qed
    ultimately show ?thesis
        by (rule R)
qed
```


1．10 Convergence

definition

converges ：：＂＇a top \Rightarrow＇a set set \Rightarrow＇a \Rightarrow bool＂（＂（＿$\longrightarrow \imath$＿）＂［55，55］55）where ＂converges $\mathrm{T} F \mathrm{x} \longleftrightarrow$ nhd $\mathrm{x} \subseteq \mathrm{F}$＂
notation
converges（＂（＿$\vdash_{-} \longrightarrow$＿）＂$\left.[55,55,55] 55\right)$
definition
cnvgnt ：：＂＇a top \Rightarrow＇a set set \Rightarrow bool＂（＂＿convergent々＂［50］50）where
＂cnvgnt $T \mathrm{~F} \longleftrightarrow(\exists \mathrm{x} \in$ carr T ．converges $\mathrm{T} F \mathrm{x}$ ）＂
definition
limites ：：＂＇a top \Rightarrow＇a set set \Rightarrow＇a set＂（＂lims 乙＂）where
＂limites $T F=\{x . x \in \operatorname{carr} T \wedge T \vdash F \longrightarrow \mathrm{x}\}$＂
definition
limes ：：＂＇a top \Rightarrow＇a set set \Rightarrow＇a＂（＂lim乙＂）where
＂limes $T \mathrm{~F}=(\mathrm{THE} \mathrm{x} . \mathrm{x} \in \operatorname{carr} \mathrm{T} \wedge \mathrm{T} \vdash \mathrm{F} \longrightarrow \mathrm{x})$＂
lemma（in carrier）convergesI［intro］：
＂nhds $\mathrm{x} \subseteq \mathrm{F} \Longrightarrow \mathrm{F} \longrightarrow \mathrm{x}$＂
by（auto simp：converges＿def）
lemma（in carrier）convergesE［elim］：
＂【 F $\longrightarrow \mathrm{x}$ ；nhds $\mathrm{x} \subseteq \mathrm{F} \Longrightarrow \mathrm{R} \rrbracket \Longrightarrow \mathrm{R}$＂
by（auto simp：converges＿def）
lemma（in carrier）convergentI［intro？］：
＂【F $\longrightarrow \mathrm{x} ; \mathrm{x} \in$ carrier 』 $\Longrightarrow \mathrm{F}$ convergent＂
by（auto simp：cnvgnt＿def）
lemma（in carrier）convergentE［elim］：
＂【 F convergent；
$\bigwedge \mathrm{x} . \llbracket \mathrm{F} \longrightarrow \mathrm{x} ; \mathrm{x} \in$ carrier $\rrbracket \Longrightarrow \mathrm{R}$
』 $\Longrightarrow R^{\prime \prime}$

```
    by (auto simp: cnvgnt_def)
lemma (in continuous) fimage_converges:
    assumes xpoint: "x carrier"
    and conv: "F\longrightarrowS x"
    shows "fimage F \longrightarrowT (f x)"
proof (rule, rule)
    fix v assume vnhd: "v \in nhdsT (f x)"
    then obtain m where v_subset_carrier: "v \subseteq carrierT"
        and m_open: "m openT"
        and m_subset_v: "m \subseteq v"
        and fx_in_m: "f x \in m" ..
    let ?m' = "carrier \cap f-'m"
    from fx_in_m xpoint have "x \in ?m'" by auto
    with m_open have "?m' \in nhds x" by auto
    with conv have "?m' \in F" by auto
    moreover from m_subset_v have "f'?m' \subseteq v" by auto
    ultimately show "v \in fimage F" using v_subset_carrier by auto
qed
corollary (in continuous) fimage_convergent [intro!]:
    "F convergent }\mp@subsup{S}{S}{}\Longrightarrow\mathrm{ fimage F convergentT"
    by (blast intro: convergentI fimage_converges)
lemma (in topology) closure_convergent_filter:
assumes xclosure: "x \in closure A"
    and xpoint: "x \in carrier"
    and asub: "A \subseteq carrier"
    and H: "\F.\llbracket F G Filters; F \longrightarrow x; A \in F\rrbracket \Longrightarrow R"
    shows "R"
proof-
    let ?F = "{v. v \subseteq carrier ^ ( }\exists\textrm{u}\in\mathrm{ nhds x. u }\cap\textrm{A}\subseteqv)}
    have "?F \in Filters"
    proof
        from asub xclosure have adhx: "x adh A" by (rule closure_imp_adh)
        thus "{} & ?F" by (auto elim: adhCE)
    next show "U?F \subseteq carrier" by auto
    next fix a b assume aF: "a \in ?F" and bF: "b \in ?F"
        then obtain u v where
                aT: "a \subseteq carrier" and bT: "b \subseteq carrier" and
                ux: "u \in nhds x" and vx: "v \in nhds x" and
                uA: "u \capA\subseteqa" and vA: "v \cap A\subseteq ¢"
                by auto
            moreover from ux vx have "u \cap v \in nhds x"
                by (auto intro: nhds_inter)
            moreover from uA vA have "(u \cap v) \cap A \subseteqa \cap b" by auto
            ultimately show "a \cap b \in ?F" by auto
    next fix a b assume aF: "a \in ?F" and ab: "a \subseteq b" and bT: "b \subseteq carrier"
            then obtain u
                where at: "a \subseteq carrier" and ux: "u \in nhds x" and uA: "u \cap A \subseteq a"
                by auto
            moreover from ux bT have "u U b \in nhds x"
                by (auto intro: nhds_greater)
```

```
        moreover from uA ab have "(u \cup b) \cap A \subseteq b" by auto
        ultimately show "b \in ?F" by auto
    qed
    moreover have "?F \longrightarrow x"
        by auto
    moreover from asub xpoint have "A \in ?F"
        by blast
    ultimately show ?thesis
        by (rule H)
qed
lemma convergent_filter_closure:
    fixes F and T (structure)
    assumes "filter F T"
    assumes converge: "F \longrightarrow x"
    and xpoint: "x \in carrier"
    and AF: "A \in F"
    shows "x \in closure A"
proof-
    interpret filter F T by fact
    have "x adh A"
    proof
        fix u assume unhd: "u \in nhds x"
        with converge have "u \in F" by auto
        with AF have "u \cap A \in F" by auto
        thus "u \cap A \not= {}" by blast
    qed
    with xpoint show ?thesis
        by (rule adh_imp_closure)
qed
```


1.11 Separation

1.11.1 T0 spaces

```
locale T0 = topology +
    assumes T0: " }\forall\textrm{x}\in\mathrm{ carrier. }\forall\textrm{y}\in\mathrm{ carrier. x }\not=\textrm{y}
        ( }\exists\textrm{u}\in\mathrm{ nhds x. y }\not\inu)\vee (\exists v \in nhds y. x & v)"
lemma (in TO) TO_eqI:
assumes points: "x \(\in\) carrier" " \(y \in\) carrier"
and R1: " \(\bigwedge u . u \in\) nhds \(x \Longrightarrow y \in u "\)
and R2: " \(\bigwedge \mathrm{v} . \mathrm{v} \in \mathrm{nh} d \mathrm{~s} \mathrm{y} \Longrightarrow \mathrm{x} \in \mathrm{v}\) "
shows "x = y"
using TO points
by (auto intro: R1 R2)
```

lemma (in TO) TO_neqE [elim]:
assumes x_neq_y: "x $\neq \mathrm{y}$ "
and points: "x \in carrier" "y \in carrier"
and R1: " $\bigwedge u . \llbracket u \in$ nhds $x ; y \notin u \rrbracket \Longrightarrow R "$
and R2: " $\bigwedge \mathrm{v} . \llbracket \mathrm{v} \in \mathrm{nhds} \mathrm{y} ; \mathrm{x} \notin \mathrm{v} \rrbracket \Longrightarrow \mathrm{R}$ "
shows "R"
using T0 points x_neq_y
by (auto intro: R1 R2)

1.11.2 T1 spaces

```
locale T1 = T0 +
    assumes DT01: " }\forall\textrm{x}\in\mathrm{ carrier. }\forall\textrm{y}\in\mathrm{ carrier. x }\not=\textrm{y}
                            (\exists u f nhds x. y }\not=\textrm{u})=(\exists\textrm{v}\in\mathrm{ nhds y. x & v)"
lemma (in T1) T1_neqE [elim]:
    assumes x_neq_y: "x = y"
    and points: "x \in carrier" "y \in carrier"
    and R [intro] : "\u v. \llbracket u \in nhds x; v \in nhds y; y # u; x & v\rrbracket \Longrightarrow R"
    shows "R"
proof-
    from DT01 x_neq_y points
    have nhd_iff: "(\exists v \in nhds y. x }\not=v)=(\exists\textrm{u}\in\mathrm{ nhds x. y & u)"
        by force
    from x_neq_y points show ?thesis
    proof
        fix u assume u_nhd: "u \in nhds x" and y_notin_u: "y \not\in u"
        with nhd_iff obtain v where "v \in nhds y" and "x }\not\in\textrm{v}"\mathrm{ by blast
        with u_nhd y_notin_u show "R" by auto
    next
        fix v assume v_nhd: "v \in nhds y" and x_notin_v: "x & v"
        with nhd_iff obtain u where "u \in nhds x" and "y # u" by blast
        with v_nhd x_notin_v show "R" by auto
    qed
qed
declare (in T1) TO_neqE [rule del]
lemma (in T1) T1_eqI:
    assumes points: "x \in carrier" "y \in carrier"
    and R1: "\u v. \llbracketu f nhds x; v \in nhds y; y & u\rrbracket\Longrightarrow x \in v"
    shows "x = y"
proof (rule ccontr)
    assume "x }\not=y\mathrm{ y" thus False using points
        by (auto intro: R1)
qed
lemma (in T1) singleton_closed [iff]: "{x} closed"
proof (cases "x \in carrier")
    case False hence "carrier - {x} = carrier"
            by auto
        thus ?thesis by (clarsimp intro!: closedI)
next
    case True show ?thesis
    proof (rule closedI, rule open_kriterion)
```

```
    fix y assume "y \in carrier - {x}"
    hence "y \in carrier" "x = y" by auto
    with True obtain v where "v \in nhds y" "x & v"
        by (elim T1_neqE)
    then obtain m where "m open" "y\inm" "m \subseteq carrier - {x}"
        by (auto elim!: nhdE)
    thus "\existsm. m open }\wedge y \in m ^ m\subseteq carrier - {x}"
        by blast
    qed
qed
lemma (in T1) finite_closed:
    assumes finite: "finite A"
    shows "A closed"
    using finite
proof induct
    case empty show ?case ..
next
    case (insert x F)
    hence "{x} \cup F closed" by blast
    thus ?case by simp
qed
```


1.11.3 T2 spaces (Hausdorff spaces)

```
locale T2 = T1 +
    assumes T2: " }\forall\textrm{x}\in\mathrm{ carrier. }\forall\textrm{y}\in\mathrm{ carrier. x }\not=\textrm{y
    \longrightarrow(\exists u \in nhds x. \exists v \in nhds y. u \cap v = {})"
lemma T2_axiomsI:
    fixes T (structure)
    shows
    "(\bigwedgex y. \llbracketx < carrier; y \in carrier; x \not= y \\Longrightarrow
                            u u nhds x. \exists v \in nhds y. u \cap v = {})
        T2_axioms T"
    by (auto simp: T2_axioms_def)
declare (in T2) T1_neqE [rule del]
lemma (in T2) neqE [elim]:
    assumes neq: "x f y"
    and points: "x \in carrier" "y \in carrier"
    and R: "\ u v. \llbracketu u nhds x; v \in nhds y; u \cap v = {} \rrbracket \Longrightarrow R"
    shows R
proof-
    from T2 points neq obtain u v where
            "u \in nhds x" "v \in nhds y" "u \cap v = {}" by force
    thus R by (rule R)
qed
lemma (in T2) neqE2 [elim]:
    assumes neq: "x f y"
    and points: "x \in carrier" "y \in carrier"
```

and R: " $\bigwedge u \mathrm{v} . \llbracket u \in \operatorname{nhds} \mathrm{x} ; \mathrm{v} \in \operatorname{nhds} \mathrm{y} ; \mathrm{z} \notin \mathrm{u} \vee \mathrm{z} \notin \mathrm{v} \rrbracket \Longrightarrow \mathrm{R} "$ shows R
proof-
from $T 2$ points neq obtain $u v$ where
"u \in nhds x" "v \in nhds y" "u $\cap \mathrm{v}=\{ \} "$ by force
thus R by (auto intro: R)
qed
lemma T2_axiom_implies_T1_axiom:
fixes T (structure)
assumes T2: " $\forall \mathrm{x} \in$ carrier. $\forall \mathrm{y} \in$ carrier. $\mathrm{x} \neq \mathrm{y}$
\longrightarrow ($\exists \mathrm{u} \in$ nhds $\mathrm{x} . \exists \mathrm{v} \in$ nhds $\mathrm{y} . \mathrm{u} \cap \mathrm{v}=\{ \}$)"
shows "T1_axioms T"
proof (rule T1_axioms.intro, clarify)
interpret carrier T.
fix x y assume neq: " $x \neq y$ " and
points: "x \in carrier" "y \in carrier"
with T2 obtain u v
where unhd: " $u \in$ nhds x " and
vnhd: "v \in nhds y " and Int_empty: "u $\cap \mathrm{v}=\{ \} "$
by force
show " $(\exists \mathrm{u} \in$ nhds $\mathrm{x} . \mathrm{y} \notin \mathrm{u})=(\exists \mathrm{v} \in \mathrm{nh} d \mathrm{~s} \mathrm{y} . \mathrm{x} \notin \mathrm{v})$ "
proof safe
show " $\exists \mathrm{v} \in$ nhds $\mathrm{y} . \mathrm{x} \notin \mathrm{v}$ "
proof
from unhd have " $x \in u$ " by auto
with Int_empty show "x $\notin \mathrm{v}$ " by auto
qed (rule vnhd)
next
show " $\exists \mathrm{u} \in$ nhds $\mathrm{x} . \mathrm{y} \notin \mathrm{u}$ "
proof
from vnhd have "y $\in \mathrm{v}$ " by auto
with Int_empty show "y $\notin u$ " by auto
qed (rule unhd)
qed
qed
lemma T2_axiom_implies_T0_axiom:
fixes T (structure)
assumes T2: " $\forall \mathrm{x} \in$ carrier. $\forall \mathrm{y} \in$ carrier. $\mathrm{x} \neq \mathrm{y}$
$\longrightarrow(\exists \mathrm{u} \in$ nhds $\mathrm{x} . \exists \mathrm{v} \in$ nhds $\mathrm{y} . \mathrm{u} \cap \mathrm{v}=\{ \}$)"
shows "TO_axioms T"
proof (rule TO_axioms.intro, clarify)
interpret carrier T.
fix x y assume neq: "x $\neq \mathrm{y}$ " and
points: "x \in carrier" "y \in carrier"
with T2 obtain u v
where unhd: "u \in nhds x " and
vnhd: "v \in nhds y " and Int_empty: "u $\cap \mathrm{v}=\{ \}$ "
by force
show " $\exists \mathrm{u} \in$ nhds $\mathrm{x} . \mathrm{y} \notin \mathrm{u}$ "
proof
from vnhd have "y $\in \mathrm{v}$ " by auto
with Int_empty show "y $\notin u$ " by auto
qed (rule unhd)
qed

```
lemma T2I:
    fixes T (structure) assumes "topology T"
    assumes I: "\x y. \llbracketx c carrier; y \in carrier; x }=\textrm{y}\rrbracket
                        \exists u f nhds x. \exists v \in nhds y. u \cap v = {}"
    shows "T2 T"
proof -
    interpret topology T by fact
    show ?thesis apply intro_locales
        apply (rule T2_axiom_implies_T0_axiom)
        using I apply simp
        apply (rule T2_axiom_implies_T1_axiom)
        using I apply simp
        apply unfold_locales
        using I apply simp
        done
qed
lemmas T2E = T2.neqE
lemmas T2E2 = T2.neqE2
lemma (in T2) unique_convergence:
fixes F assumes "filter F T"
assumes points: "x \in carrier" "y \in carrier"
    and Fx: "F\longrightarrow x"
    and Fy: "F \longrightarrow y"
    shows "x = y"
proof -
    interpret filter F T by fact
    show ?thesis proof (rule ccontr)
        assume "x f y" then obtain u v
            where unhdx: "u \in nhds x"
            and vnhdy: "v \in nhds y"
            and inter: "u \cap v = {}"
            using points ..
        hence "u f F" and "v \in F" using Fx Fy by auto
        hence "u \cap v \in F" ..
        with inter show "False" by auto
    qed
qed
lemma (in topology) unique_convergence_implies_T2 [rule_format]:
    assumes unique_convergence:
    "\x y F.\llbracketx \in carrier; y \in carrier; F\inFilters;
            F \longrightarrow x; F \longrightarrowy y C x = y'
    shows "T2 T"
proof (rule T2I)
    show "topology T" ..
```

```
next
    fix x y assume points: "x \in carrier" "y \in carrier"
        and neq: "x }=\textrm{y
    show "\existsu\innhds x. \existsv\innhds y. u \cap v = {}"
    proof (rule ccontr, simp)
        assume non_empty_Int: " }\forall\textrm{u}\in\mathrm{ nhds x. }\forall\textrm{v}\in\mathrm{ nhds y. u }\cap\textrm{v}\not={{}
        let ?E = "{w. w\subseteqcarrier ^(\exists u \in nhds x. \exists v \in nhds y. u\capv \subseteq w)}"
        have "?E \in Filters"
        proof rule
            show "{} & ?E" using non_empty_Int by auto
        next show "\?E \subseteq carrier" by auto
        next fix a b assume "a \in ?E" "b \in ?E"
            then obtain ua va ub vb
                where "a }\subseteq\mathrm{ carrier" "ua }\in\mathrm{ nhds x" "va }\in\mathrm{ nhds y" "ua }\cap\mathrm{ va }\subseteq\mathrm{ a"
                    "b \subseteq carrier" "ub \in nhds x" "vb \in nhds y" "ub \cap vb \subseteq b"
                by auto
            hence "a\capb \subseteq carrier" "ua \cap ub \in nhds x" "va \cap vb \in nhds y" "(ua \cap ub) \cap (va
\capvb) \subseteqa \cap b"
            by (auto intro!: nhds_inter simp: Int_ac)
            thus "a \cap b \in ?E" by blast
        next fix a b assume "a \in ?E" and a_sub_b:
            "a \subseteq b" and b_sub_carrier: "b \subseteq carrier"
            then obtain u v
                    where u_int_v: "u \cap v \subseteq a" and nhds: "u \in nhds x" "v \in nhds y"
                    by auto
            from u_int_v a_sub_b have "u \cap v \subseteq b" by auto
            with b_sub_carrier nhds show "b \in ?E" by blast
        qed
        moreover have "?E \longrightarrow x"
        proof (rule, rule)
            fix w assume "w \in nhds x"
            moreover have "carrier \in nhds y" using <y \in carrier> ..
            moreover have "w \cap carrier \subseteq w" by auto
            ultimately show "w \in ?E" by auto
        qed
        moreover have "?E \longrightarrow y"
        proof (rule, rule)
            fix w assume "w \in nhds y"
            moreover have "carrier \in nhds x" using <x f carrier> ..
            moreover have "w \cap carrier \subseteq w" by auto
            ultimately show "w \in ?E" by auto
        qed
        ultimately have "x = y" using points
            by (auto intro: unique_convergence)
        thus False using neq by contradiction
    qed
qed
lemma (in T2) limI [simp]:
```

```
    assumes filter: "F \in Filters"
    and point: "x \in carrier"
    and converges: "F \longrightarrow x"
    shows "lim F = x"
    using filter converges point
    by (auto simp: limes_def dest: unique_convergence [OF filter.intro])
lemma (in T2) convergent_limE:
    assumes convergent: "F convergent"
    and filter: "F \in Filters"
    and R: "\llbracket lim F G carrier; F \longrightarrow lim F\rrbracket\Longrightarrow R"
    shows "R"
    using convergent filter
    by (force intro!: R)
lemma image_lim_subset_lim_fimage:
    fixes f and S (structure) and T (structure) and fimage
    defines "fimage \equiv fimg T f"
    assumes "continuous f S T"
    shows "F G FiltersS \Longrightarrow f'(lims F) \subseteq limsT (fimage F)"
proof -
    interpret continuous f S T fimage by fact fact
    show ?thesis by (auto simp: limites_def intro: fimage_converges)
qed
```


1.11.4 T3 axiom and regular spaces

```
locale T3 = topology +
assumes T3: " \(\forall\) A. \(\forall \mathrm{x} \in\) carrier \(-\mathrm{A} . \mathrm{A} \subseteq\) carrier \(\wedge \mathrm{A}\) closed \(\longrightarrow\)
( \(\exists \mathrm{B} . \exists \mathrm{U} \in \mathrm{nhds} \mathrm{x} . \mathrm{B}\) open \(\wedge \mathrm{A} \subseteq B \wedge B \cap U=\{ \}\) )"
lemma (in T3) T3E:
assumes H: "A \(\subseteq\) carrier" "A closed" "x \(\in\) carrier" "x \(\neq \mathrm{A} "\)
and \(\quad R: ~ " \wedge B U . \llbracket A \subseteq B ; B\) open; \(U \in\) nhds \(x ; B \cap U=\{ \} \rrbracket \Longrightarrow R "\)
shows "R"
using T3 H
by (blast dest: R)
locale regular \(=\mathrm{T} 1+\mathrm{T} 3\)
lemma regular_implies_T2:
fixes \(T\) (structure)
assumes "regular T"
shows "T2 T"
proof (rule T2I)
interpret regular \(T\) by fact
show "topology T" ..
next
interpret regular \(T\) by fact
fix \(x\) y assume "x \(\in\) carrier" "y \(\in\) carrier" "x \(\neq y "\)
hence "\{y\} \(\subseteq\) carrier" "\{y\} closed" "x \(\in\) carrier" "x \(\notin\{y\} "\) by auto
then obtain \(B U\) where \(B: "\{y\} \subseteq B "\) "B open" and \(U: " U \in\) nhds \(x "\) " \(B \cap U=\{ \} "\) by (elim T3E)
```

```
    from B have "B \in nhds y" by auto
    thus "\existsu\innhds x. \existsv\innhds y. u \cap v = {}" using U
        by blast
qed
```


1.11.5 T4 axiom and normal spaces

```
locale T4 = topology +
    assumes T4: " }\forall\textrm{A}B.A closed ^A \ carrier ^ B closed \ B \subseteq carrier ^
    A \cap B = {} \longrightarrow(\exists U V. U open ^A\subseteqU ^ V open ^ B\subseteqV ^ U \cap V = {})"
lemma (in T4) T4E:
    assumes H: "A closed" "A \subseteq carrier" "B closed" "B \subseteq carrier" "A\capB = {}"
    and R: "^ U V.\llbracketU open; A \subseteq U; V open; B \subseteqV; U \cap V = {} \rrbracket \Longrightarrow R"
    shows "R"
proof-
    from H T4 have "(\exists U V. U open }\wedge A\subseteqU^V open ^ B\subseteqV ^ U \cap V = {})"
        by auto
    then obtain U V where "U open" "A \subseteq U" "V open" "B \subseteq V" "U \cap V = {}"
        by auto
    thus ?thesis by (rule R)
qed
locale normal = T1 + T4
lemma normal_implies_regular:
    fixes T (structure)
    assumes "normal T"
    shows "regular T"
proof -
    interpret normal T by fact
    show ?thesis
    proof intro_locales
        show "T3_axioms T"
        proof (rule T3_axioms.intro, clarify)
            fix A x assume x: "x carrier" "x & A" and A: "A closed" "A \subseteq carrier"
            from x have "{x} closed" "{x} \subseteq carrier" "A \cap {x} = {}" by auto
            with A obtain U V
                    where "U open" "A \subseteqU" "V open" "{x} \subseteq V" "U \cap V = {}" by (rule T4E)
                thus "\existsB. \existsU\innhds x. B open }\wedgeA\subseteqB\capB,B\capU={}" by aut
            qed
    qed
qed
```

end

2 The topology of llists

theory LList_Topology

```
imports Topology "Lazy-Lists-II.LList2"
begin
```


2.1 The topology of all llists

This theory introduces the topologies of all llists, of infinite llists, and of the non-empty llists. For all three cases it is proved that safety properties are closed sets and that liveness properties are dense sets. Finally, we prove in each of the the three different topologies the respective theorem of Alpern and Schneider [1], which states that every property can be represented as an intersection of a safety property and a liveness property.

```
definition
    ttop :: "'a set => 'a llist top" where
    "ttop A = topo (U s\inA*. {suff A s})"
lemma ttop_topology [iff]: "topology (ttop A)"
    by (auto simp: ttop_def)
locale suffixes =
    fixes A and B
    defines [simp]: "B \equiv(U s\inA*. {suff A s})"
locale trace_top = suffixes + topobase
lemma (in trace_top) open_iff [iff]:
    "m open = (m \in topo (U s\inA*. {suff A s}))"
    by (simp add: T_def is_open_def)
lemma (in trace_top) suff_open [intro!]:
    "r A A* \Longrightarrow suff A r open"
    by auto
lemma (in trace_top) ttop_carrier: "AD = carrier"
    by (auto simp: carrier_topo suff_def)
lemma (in trace_top) suff_nhd_base:
    assumes unhd: "u \in nhds t"
    and H: "\r. \llbracketr f finpref A t; suff A r \subsetequ\rrbracket \ R"
    shows "R"
proof-
    from unhd obtain m where
        uA: "u \subseteq A *" and
        mopen: "m open" and
        tm: "t \in m" and
        mu: "m \subseteq u"
        by (auto simp: ttop_carrier [THEN sym])
    from mopen tm have
        "\existsr\infinpref A t. suff A r \subseteqm"
    proof (induct "m")
        case (basic a)
        then obtain s where sA: "s \in A*" and as: "a = suff A s" and ta: "t \in a"
```

```
            by auto
            from sA as ta have "s \in finpref A t" by (auto dest: suff_finpref)
            thus ?case using as by auto
    next case (inter a b)
            then obtain r r' where
            rt: "r f finpref A t" and ra: "suff A r \subseteq a" and
            r't: "r' \in finpref A t" and r'b: "suff A r' \subseteq b"
            by auto
        from rt r't have "r \leq r' V r' \leq r"
            by (auto simp: finpref_def dest: pref_locally_linear)
        thus ?case
        proof
            assume "r \leq r'"
            hence "suff A r' \subseteq suff A r" by (rule suff_mono2)
            thus ?case using r't ra r'b by auto
            next assume "r' \leq r"
                hence "suff A r \subseteq suff A r'" by (rule suff_mono2)
                thus ?case using rt r'b ra by auto
            qed
    next case (union M)
    then obtain v where
            "t \in v" and vM: "v \in M"
            by blast
            then obtain r where "r\infinpref A t" "suff A r \subseteq v" using union
            by auto
            thus ?case using vM by auto
    qed
    with mu show ?thesis by (auto intro: H)
qed
lemma (in trace_top) nhds_LNil [simp]: "nhds LNil = {A⿻⿳一冂人丨⿻一㇉
proof
    show "nhds LNil \subseteq{A'}"
    proof clarify
        fix x assume xnhd: "x \in nhds LNil"
        then obtain r
            where rfinpref: "r \in finpref A LNil" and suffsub: "suff A r \subseteq x"
            by (rule suff_nhd_base)
        from rfinpref have "r = LNil" by auto
        hence "suff A r = A " by auto
        with suffsub have "A}\mp@subsup{A}{}{\infty}\subseteqx" by aut
        moreover from xnhd have "x\subseteq A A" by(auto simp: ttop_carrier elim!: nhdE)
        ultimately show "x = A " by auto
    qed
next
    show "{A }\mp@subsup{A}{}{\infty}}\subseteq\mathrm{ nhds LNil" by (auto simp: ttop_carrier)
qed
lemma (in trace_top) adh_lemma:
assumes xpoint: "x \in A ""
    and PA: "P\subseteq © A""
shows "(x adh P})=(\forallr\infinpref A x. \exists s f A A. r @@ s \in P)"
proof-
```

```
    from PA have "\r. r G A* \Longrightarrow(\exists s\in A . r @@ s f P)=
        (\exists s \in P. r < s)"
    by (auto simp: llist_le_def iff: lapp_allT_iff)
    hence "(\forall r f finpref A x. \exists s \in AD. r @@ s \in P)=
            (}\forall\textrm{r}\in\mathrm{ finpref A x. }\exists\textrm{s}\in\textrm{P}.\textrm{r}\leq s)
    by (auto simp: finpref_def)
    also have "... = ( }\forall\textrm{r}\in\mathrm{ finpref A x. suff A r }\cap\textrm{P}\not={{})
    proof-
        have "\r. (\existss\inP.r s s)=({ra. ra }\in\mp@subsup{A}{}{\infty}\wedger\leqra}\capP\not={})" using P
            by blast
    thus ?thesis by (simp add: suff_def)
    qed
    also have "... = ( }\forall\textrm{u}\in\mathrm{ nhds x. u }\cap\textrm{P}\not={{})
    proof safe
    fix r assume uP: "\forallu\innhds x. u \cap P \not={}" and
        rfinpref: "r \in finpref A x" and rP: "suff A r \cap P = {}"
    from rfinpref have "suff A r open" by (auto dest!: finpref_fin)
    hence "suff A r G nhds x" using xpoint rfinpref
        by auto
    with uP rP show "False" by auto
    next
    fix u assume
        inter: "\forallr\infinpref A x. suff A r \cap P f={}" and
        unhd: "u \in nhds x" and
        uinter: "u \cap P = {}"
    from unhd obtain r where
            "r \in finpref A x" and "suff A r \subseteq u"
            by (rule suff_nhd_base)
    with inter uinter show "False" by auto
    qed
    finally show ?thesis by (simp add: adhs_def)
qed
lemma (in trace_top) topology [iff]:
    "topology T"
by (simp add: T_def)
lemma (in trace_top) safety_closed_iff:
    "P \subseteq A 
by (auto simp: safety_def topology.closed_adh adh_lemma ttop_carrier)
lemma (in trace_top) liveness_dense_iff:
    assumes P: "P \subseteq A *"
    shows "liveness A P = (P dense)"
proof-
    have "liveness A P = ( }\forall\textrm{r}\in\mp@subsup{\textrm{A}}{}{*}.\exists\textrm{s}\in\mp@subsup{\textrm{A}}{}{\infty}.\textrm{r}@@ s\inP)
        by (simp add: liveness_def)
    also have "... = ( }\forall\textrm{x}\in\mp@subsup{A}{}{\infty}.\forall\textrm{r}\in\mathrm{ finpref A x. }\exists\textrm{s}\in\mp@subsup{A}{}{\infty}.r@@\mp@code{s}\inP)
            by (auto simp: finpref_def dest: finsubsetall)
    also have "... = ( }\forall\textrm{x}\in\mp@subsup{A}{}{\infty}.\textrm{x}\mathrm{ adh P)" using P
        by (simp add: adh_lemma)
    also have "... = (A}\mp@subsup{}{}{\infty}\subseteq\mathrm{ closure P)" using P
        by (auto simp: adh_closure_iff ttop_carrier)
```

```
    also have "... = (P dense)"
    by (simp add: liveness_def is_dense_def is_densein_def ttop_carrier)
    finally show ?thesis .
qed
lemma (in trace_top) LNil_safety: "safety A {LNil}"
proof (unfold safety_def, clarify)
    fix t
    assume adh: "t \in A | " }\forall\textrm{r}\inf=finpref A t. \existss\in\mp@subsup{A}{}{\infty}. r @@ s \in {LNil}"
    thus "t = LNil" by (cases t)(auto simp: finpref_def)
qed
lemma (in trace_top) LNil_closed: "{LNil} closed"
by (auto intro: iffD1 [OF safety_closed_iff] LNil_safety)
theorem (in trace_top) alpern_schneider:
assumes Psub: "P\subseteq A "
    shows "\exists S L. safety A S ^ liveness A L ^ P = S \cap L"
proof-
    from Psub have "P \subseteq carrier" by (simp add: ttop_carrier)
    then obtain L S where
        Lsub: "L \subseteq carrier" and
        Ssub: "S \subseteq carrier" and
        Sclosed: "S closed" and
        Ldense: "L dense" and
        Pinter: "P = S \cap L"
        by (blast elim: topology.ex_dense_closure_interE [OF topology])
    from Ssub Sclosed have "safety A S"
        by (simp add: safety_closed_iff ttop_carrier)
    moreover from Lsub Ldense have "liveness A L"
        by (simp add: liveness_dense_iff ttop_carrier)
    ultimately show ?thesis using Pinter
        by auto
qed
```


2.2 The topology of infinite llists

```
definition
        itop :: "'a set }=>\mathrm{ ' 'a llist top" where
        "itop A = topo (U s\inA*. {infsuff A s})"
locale infsuffixes =
    fixes A and B
    defines [simp]: "B \equiv(U s\inA*. {infsuff A s})"
locale itrace_top = infsuffixes + topobase
lemma (in itrace_top) open_iff [iff]:
    "m open = (m \in topo (U s\inA*. {infsuff A s}))"
    by (simp add: T_def is_open_def)
```

```
lemma (in itrace_top) topology [iff]: "topology T"
    by (auto simp: T_def)
lemma (in itrace_top) infsuff_open [intro!]:
    "r \in A* \Longrightarrow infsuff A r open"
    by auto
lemma (in itrace_top) itop_carrier: "carrier = A ""
    by (auto simp: carrier_topo infsuff_def)
lemma itop_sub_ttop_base:
    fixes A :: "'a set"
        and B :: "'a llist set set"
        and C :: "'a llist set set"
    defines [simp]: "B \equiv\s\inA*. {suff A s}" and [simp]: "C \equiv\s\inA*. {infsuff A s}"
    shows "C = (\bigcup t\inB. {t \cap \C})"
    by (auto simp: infsuff_def suff_def)
lemma itop_sub_ttop [folded ttop_def itop_def]:
    fixes A and C and S (structure)
    defines "C \equiv\s\inA*. {infsuff A s}" and "S \equiv topo C"
    fixes B and T (structure)
    defines "B \equiv\s\inA*. {suff A s}" and "T \equiv topo B"
    shows "subtopology S T"
proof -
    interpret itrace_top A C S by fact+
    interpret trace_top A B T by fact+
    show ?thesis
        by (auto intro: itop_sub_ttop_base [THEN subtop_lemma] simp: S_def T_def)
qed
lemma (in itrace_top) infsuff_nhd_base:
    assumes unhd: "u \in nhds t"
    and H: "\r. \llbracket r f finpref A t; infsuff A r \subsetequ\rrbracket\Longrightarrow R"
    shows "R"
proof-
    from unhd obtain m where
        uA: "u \subseteq A " " and
        mopen: "m open" and
        tm: "t \in m" and
        mu: "m \subseteq u"
        by (auto simp: itop_carrier)
    from mopen tm have
        "\existsr\in finpref A t. infsuff A r \subseteqm"
    proof (induct "m")
        case (basic a)
        then obtain s where sA: "s \in A*" and as: "a = infsuff A s" and ta: "t \in a"
            by auto
        from sA as ta have "s \in finpref A t" by (auto dest: infsuff_finpref)
        thus ?case using as by auto
    next case (inter a b)
        then obtain r r' where
            rt: "r \in finpref A t" and ra: "infsuff A r \subseteq a" and
```

```
        r't: "r' \in finpref A t" and r'b: "infsuff A r'\subseteq b"
        by auto
    from rt r't have "r \leq r' V r' \leq r"
        by (auto simp: finpref_def dest: pref_locally_linear)
    thus ?case
    proof
        assume "r \leq r'"
        hence "infsuff A r' \subseteq infsuff A r" by (rule infsuff_mono2)
        thus ?case using r't ra r'b by auto
    next assume "r' \leq r"
        hence "infsuff A r \subseteq infsuff A r'" by (rule infsuff_mono2)
        thus ?case using rt r'b ra by auto
    qed
    next case (union M)
    then obtain v where
        "t \in v" and vM: "v \in M"
            by blast
        then obtain r where "r\infinpref A t" "infsuff A r \subseteq v" using union
            by auto
    thus ?case using vM by auto
    qed
    with mu show ?thesis by (auto intro: H)
qed
lemma (in itrace_top) hausdorff [iff]: "T2 T"
proof(rule T2I, clarify)
    fix x y assume xpoint: "x \in carrier"
        and ypoint: "y \in carrier"
        and neq: "x f y"
    from xpoint ypoint have xA: "x \in A\omega" and yA: "y \in A""
        by (auto simp: itop_carrier)
    then obtain s where
        sA: "s \in A*" and sx: "s \leq x" and sy: "\neg s \leq y" using neq
        by (rule inf_neqE) auto
    from neq have "y }\not=x\mathrm{ " ..
    with yA xA obtain t where
        tA: "t \in A*" and ty: "t \leq y" and tx: "\neg t \leq x"
        by (rule inf_neqE) auto
    let ?u = "infsuff A s" and ?v = "infsuff A t"
    have inter: "?u \cap ?v = {}"
    proof (rule ccontr, auto)
        fix z assume "z \in ?u" and "z \in ?v"
        hence "s \leq z" and "t \leq z" by (unfold infsuff_def) auto
        hence "s \leq t V t \leq s" by (rule pref_locally_linear)
        thus False using sx sy tx ty by (auto dest: llist_le_trans)
    qed
    moreover {
    from sA tA have "?u open" and "?v open"
            by auto
    moreover from xA yA sx ty have "x f ?u" and "y \in ?v"
            by (auto simp: infsuff_def)
    ultimately have "infsuff A s \in nhds x" and
            "infsuff A t \in nhds y"
```

by auto \}
ultimately show $" \exists \mathrm{u} \in$ nhds $\mathrm{x} . \exists \mathrm{v} \in$ nhds $\mathrm{y} . \mathrm{u} \cap \mathrm{v}=\{ \}$ " by auto
qed
corollary (in itrace_top) unique_convergence:
" $\llbracket \mathrm{x} \in$ carrier;
y \in carrier;
$\mathrm{F} \in$ Filters ;
$\mathrm{F} \longrightarrow \mathrm{x}$;
$\mathrm{F} \longrightarrow \mathrm{y} \rrbracket \Longrightarrow \mathrm{x}=\mathrm{y}{ }^{\prime \prime}$
apply (rule T2.unique_convergence)
prefer 2
apply (rule filter.intro)
apply auto
done
lemma (in itrace_top) adh_lemma:
assumes xpoint: " $x \in A^{\omega} "$
and PA: "P $\subseteq A^{\omega}$ "

proof-
from PA have " $\wedge \mathrm{r} . \mathrm{r} \in \mathrm{A}^{\star} \Longrightarrow\left(\exists \mathrm{s} \in \mathrm{A}^{\omega}\right.$. $\left.\mathrm{r} @ \mathrm{~s} \in \mathrm{P}\right)=$
$(\exists \mathrm{s} \in \mathrm{P} . \mathrm{r} \leq \mathrm{s}) "$
by (auto simp: llist_le_def iff: lapp_infT)
hence $"\left(\forall r \in\right.$ finpref $A x . \exists s \in A^{\omega}$. $\left.r @ @ s \in P\right)=$ ($\forall \mathrm{r} \in$ finpref $\mathrm{A} x . \exists \mathrm{s} \in \mathrm{P} . \mathrm{r} \leq \mathrm{s}$)"
by (auto simp: finpref_def)
also have $" \ldots=(\forall r \in$ finpref $A x$. infsuff $A r \cap P \neq\{ \}) "$
proof-
have " $\wedge \mathrm{r} .(\exists \mathrm{s} \in \mathrm{P} . \mathrm{r} \leq \mathrm{s})=\left(\left\{\mathrm{ra} . \mathrm{ra} \in \mathrm{A}^{\omega} \wedge \mathrm{r} \leq \mathrm{ra}\right\} \cap \mathrm{P} \neq\{ \}\right)$ " using PA by blast
thus ?thesis by (simp add: infsuff_def)
qed
also have "... = ($\forall \mathrm{u} \in$ nhds $\mathrm{x} . \mathrm{u} \cap \mathrm{P} \neq\{ \})$ "
proof safe
fix r assume $u P: ~ " \forall u \in$ nhds $x . u \cap P \neq\{ \} "$ and
rfinpref: "r \in finpref A x" and rP: "infsuff A r \cap P = \{\}"
from rfinpref have "infsuff A r open" by (auto dest!: finpref_fin)
hence "infsuff A $r \in$ nhds x " using xpoint rfinpref
by auto
with uP rP show "False" by auto
next
fix u assume
inter: $\quad \forall \forall r \in$ finpref $A x$. infsuff $A r \cap P \neq\{ \} "$ and
unhd: $\quad \mathrm{u} \in$ nhds $\mathrm{x} "$ and
uinter: " $u \cap P=\{ \} "$
from unh obtain r where
" $r \in$ finpref $A x "$ and "infsuff A $r \subseteq u "$
by (rule infsuff_nhd_base)
with inter uinter show "False" by auto
qed
finally show ?thesis by (simp add: adhs_def)
qed
lemma (in itrace_top) infsafety_closed_iff:
$" P \subseteq A^{\omega} \Longrightarrow$ infsafety $A P=(P$ closed)"
by (auto simp: infsafety_def topology.closed_adh adh_lemma itop_carrier)
lemma (in itrace_top) empty:
" $\mathrm{A}=\{ \} \Longrightarrow \mathrm{T}=\{\{ \}\}$ "
proof (auto simp: T_def)
fix m x assume " $m \in$ topo $\{\}\}$ " and $x m: ~ " x \in m "$
thus False
by (induct m) auto
qed
lemma itop_empty: "itop $\}=\{\{ \}\} "$
proof (auto simp: itop_def)
fix $m \times$ assume $" m \in$ topo $\{\}\}$ " and $x m: ~ " x \in m "$
thus False
by (induct m) auto
qed
lemma infliveness_empty:
"infliveness \{\} $P \Longrightarrow$ False"
by (auto simp: infliveness_def)
lemma (in trivial) dense:
"P dense"
by auto
lemma (in itrace_top) infliveness_dense_iff:
assumes notempty: "A $\neq\{ \} "$
and $P: ~ " P \subseteq A^{\omega}$ "
shows "infliveness A P = (P dense)"
proof-
have "infliveness $A P=\left(\forall r \in A^{*} . \exists s \in A^{\omega} . r\right.$ @@ $\left.s \in P\right) "$
by (simp add: infliveness_def)
also have $" . . .=\left(\forall x \in A^{\omega} . \forall r \in\right.$ finpref $A x . \exists s \in A^{\omega}$. r @ $\left.s \in P\right) "$
proof-
from notempty obtain a where "a $\in \mathrm{A}$ "
by auto
hence lc: "lconst $a \in A^{\omega "}$
by (rule lconstT)
hence " \wedge P. $\left(\forall x \in A^{\omega} . \forall r \in\right.$ finpref $\left.A x . P r\right)=\left(\forall r \in A^{\star} . P r\right) "$
proof (auto dest: finpref_fin)
fix P r assume lc: "lconst $a \in A^{\omega}$ "
and Pr: " $\forall \mathrm{x} \in \mathrm{A}^{\omega}$. $\forall \mathrm{r} \in$ finpref $\mathrm{A} x . \mathrm{P} \mathrm{r} "$
and $r A: ~ " r \in A^{\star} "$
from rA lc have rlc: "r @@ lconst a $\in A^{\omega}$ " by (rule lapp_fin_infT)
moreover from rA rlc have " $r \in$ finpref A (r @@ lconst a)"
by (auto simp: finpref_def llist_le_def)
ultimately show "P r" using Pr by auto
qed

```
        thus ?thesis by simp
    qed
    also have "... = ( }\forall\textrm{x}\in\mp@subsup{A}{}{\omega}.\textrm{x}\mathrm{ adh P)" using P
    by (simp add: adh_lemma)
    also have "... = (A}\mp@subsup{}{}{\omega}\subseteqclosure P)" using P
    by (auto simp: adh_closure_iff itop_carrier)
    also have "... = (P dense)"
    by (simp add: infliveness_def is_dense_def is_densein_def itop_carrier)
    finally show ?thesis .
qed
theorem (in itrace_top) alpern_schneider:
assumes notempty: "A f= {}"
    and Psub: "P\subseteq © A\omega"
    shows "\exists S L. infsafety A S ^ infliveness A L ^ P = S \cap L"
proof-
    from Psub have "P \subseteq carrier"
        by (simp add: itop_carrier [THEN sym])
    then obtain L S where
        Lsub: "L \subseteq carrier" and
        Ssub: "S \subseteq carrier" and
        Sclosed: "S closed" and
        Ldense: "L dense" and
        Pinter: "P = S \cap L"
        by (rule topology.ex_dense_closure_interE [OF topology]) auto
    from Ssub Sclosed have "infsafety A S"
        by (simp add: infsafety_closed_iff itop_carrier)
    moreover from notempty Lsub Ldense have "infliveness A L"
        by (simp add: infliveness_dense_iff itop_carrier)
    ultimately show ?thesis using Pinter
        by auto
qed
```


2.3 The topology of non-empty llists

definition

```
    ptop :: "'a set #> 'a llist top" where
```

 ptop :: "'a set #> 'a llist top" where
 "ptop A \equiv topo(U s\inA*. {suff A s})"
 locale possuffixes =
fixes A and B
defines [simp]: "B \equiv(\ s\inA*. {suff A s})"
locale ptrace_top = possuffixes + topobase
lemma (in ptrace_top) open_iff [iff]:
"m open = (m \in topo (U s\inA*. {suff A s}))"
by (simp add: T_def is_open_def)
lemma (in ptrace_top) topology [iff]: "topology T"
by (simp add: T_def)

```
```

lemma (in ptrace_top) ptop_carrier: "carrier = A*"
by (auto simp add: carrier_topo suff_def)
(auto elim: alllsts.cases)
lemma pptop_subtop_ttop:
fixes S (structure)
fixes A and B and T (structure)
defines "B \equiv\s\inA*. {suff A s}" and "T \equiv topo B"
defines "S \equivU t \in T. {t - {LNil}}"
shows "subtopology S T"
by (rule subtopology.intro, auto simp add: is_open_def S_def carr_def)
lemma pptop_top:
fixes S (structure)
fixes A and B and T (structure)
defines "B \equiv\{s\inA*. {suff A s}" and "T \equiv topo B"
defines "S \equivU t \in T. {t - {LNil}}"
shows "topology (U t \in T. {t - {LNil}})"
proof -
interpret trace_top A B T by fact+
show ?thesis
by (auto intro!: subtopology.subtop_topology [OF pptop_subtop_ttop]
trace_top.topology simp: T_def)
qed
lemma (in ptrace_top) suff_open [intro!]:
"r A A* \Longrightarrow suff A r open"
by auto
lemma (in ptrace_top) suff_ptop_nhd_base:
assumes unhd: "u \in nhds t"
and H: "\r. \llbracketr m pfinpref A t; suff A r \subsetequ\rrbracket\Longrightarrow R"
shows "R"
proof-
from unhd obtain m where
uA: "u\subseteqA"" and
mopen: "m open" and
tm: "t \in m" and
mu: "m \subseteq u"
by (auto simp: ptop_carrier)
from mopen tm have
"\existsr\in pfinpref A t. suff A r \subseteqm"
proof (induct "m")
case (basic a)
then obtain s where sA: "s \in A*" and as: "a = suff A s" and ta: "t \in a"
by auto
from sA as ta have "s \in pfinpref A t"
by (auto simp: pfinpref_def dest: suff_finpref)
thus ?case using as by auto
next case (inter a b)
then obtain r r' where

```
```

 rt: "r \in pfinpref A t" and ra: "suff A r \subseteq a" and
 r't: "r' \in pfinpref A t" and r'b: "suff A r' \subseteq b"
 by auto
 from rt r't have "r \leq r' V r' \leq r"
 by (auto simp: pfinpref_def finpref_def dest: pref_locally_linear)
 thus ?case
 proof
 assume "r \leq r'"
 hence "suff A r' \subseteq suff A r" by (rule suff_mono2)
 thus ?case using r't ra r'b by auto
 next assume "r' \leq r"
 hence "suff A r \subseteq suff A r'" by (rule suff_mono2)
 thus ?case using rt r'b ra by auto
 qed
 next case (union M)
 then obtain v where
 "t \in v" and vM: "v \in M"
 by blast
 then obtain r where "r\inpfinpref A t" "suff A r \subseteq v" using union
 by auto
 thus ?case using vM by auto
 qed
 with mu show ?thesis by (auto intro: H)
 qed
lemma pfinpref_LNil [simp]: "pfinpref A LNil = {}"
by (auto simp: pfinpref_def)
lemma (in ptrace_top) adh_lemma:
assumes xpoint: "x\inA"
and P_subset_A: "P \subseteqA^"
shows "x adh P = (}\forall\textrm{r}\in\mathrm{ pfinpref A x. }\exists\textrm{s}\in\mp@subsup{A}{}{\infty}.\textrm{r}@@ s\inP)
proof
assume adh_x: "x adh P"
show "\forallr\inpfinpref A x. \existss\inA\infty. r @@ s \in P"
proof
fix r let ?u = "suff A r"
assume r_pfinpref_x: "r \in pfinpref A x"
hence r_pos: "r \in A*" by (auto dest: finpref_fin)
hence "?u open" by auto
hence "?u \in nhds x" using xpoint r_pfinpref_x
by auto
with adh_x have "?u \cap P \not={}" by (auto elim!:adhCE)
then obtain t where tu: "t \in ?u" and tP: "t \in P"
by auto
from tu obtain s where "t = r @@ s" using r_pos
by (auto elim!: suff_appE)
with tP show "\existss\inA\infty. r @@ s \in P" using P_subset_A r_pos
by (auto iff: lapp_allT_iff)
qed
next
assume H: "\forallr\inpfinpref A x. \existss\inA . r @@ s \in P"
show "x adh P"

```
```

 proof
 fix U assume unhd: "U \in nhds x"
 then obtain r where r_pfinpref_x: "r f pfinpref A x" and
 suff_subset_U: "suff A r \subseteqU" by (elim suff_ptop_nhd_base)
 from r_pfinpref_x have rpos: "r \in A*" by (auto intro: finpref_fin)
 show "U \cap P \not= {}" using rpos
 proof (cases r)
 case (LCons a l)
 hence r_pfinpref_x: "r f pfinpref A x" using r_pfinpref_x
 by auto
 with H obtain s where sA: "s \in A |" and asP: "r@@s \in P"
 by auto
 moreover have "r @@ s \in suff A r" using sA rpos
 by (auto simp: suff_def iff: lapp_allT_iff)
 ultimately show ?thesis using suff_subset_U by auto
 qed
 qed
 qed
lemma (in ptrace_top) possafety_closed_iff:
"P\subseteqA^ \Longrightarrow possafety A P = (P closed)"
by (auto simp: possafety_def topology.closed_adh ptop_carrier adh_lemma)
lemma (in ptrace_top) posliveness_dense_iff:
assumes P: "P\subseteqA""
shows "posliveness A P = (P dense)"
proof-
have "posliveness A P = (}\forall\textrm{r}\in\mp@subsup{A}{}{*}.\exists\textrm{s}\in\mp@subsup{A}{}{\infty}.\textrm{r}@@s\inP)
by (simp add: posliveness_def)
also have "... = (}\forall\textrm{x}\in\mp@subsup{A}{}{\wedge}.\forall\textrm{r}\in\mathrm{ pfinpref A x. ヨ s f A A. r @@ s f P)"
by (auto simp: pfinpref_def finpref_def dest: finsubsetall)
also have "... = (}\forall\textrm{x}\in\mp@subsup{A}{}{\star}.\textrm{x}\mathrm{ adh P)" using P
by (auto simp: adh_lemma simp del: poslsts_iff)
also have "... = (A" \subseteq closure P)" using P
by (auto simp: adh_closure_iff ptop_carrier simp del: poslsts_iff)
also have "... = (P dense)"
by (simp add: posliveness_def is_dense_def is_densein_def ptop_carrier)
finally show ?thesis .
qed
theorem (in ptrace_top) alpern_schneider:
assumes Psub: "P\subseteqA^"
shows "\exists S L. possafety A S ^ posliveness A L ^ P = S \cap L"
proof-
from Psub have "P \subseteq carrier" by (simp add: ptop_carrier)
then obtain L S where
Lsub: "L \subseteq carrier" and
Ssub: "S \subseteq carrier" and
Sclosed: "S closed" and
Ldense: "L dense" and
Pinter: "P = S \cap L"
by (blast elim: topology.ex_dense_closure_interE [OF topology])

```
```

 from Ssub Sclosed have "possafety A S"
 by (simp add: possafety_closed_iff ptop_carrier)
 moreover from Lsub Ldense have "posliveness A L"
 by (simp add: posliveness_dense_iff ptop_carrier)
 ultimately show ?thesis using Pinter
 by auto
 qed
end

```

\section*{References}
[1] B. Alpern and F. B. Schneider. Defining Liveness. Information Processing Letters, 21(4):181-185, Oct. 1985.
[2] G. McCarty. Topology : an introduction with application to topological groups. International series in pure and applied mathematics. Graw-Hill, New York, 1967.
[3] B. von Querenburg. Mengentheoretische Topologie. Springer, Heidelberg, 3. edition, 2001.```

