
Topological Groups

Niklas Krofta

March 17, 2025

Abstract

Topological groups are blends of groups and topological spaces with
the property that the multiplication and inversion operations are con-
tinuous functions. They frequently occur in mathematics and physics,
e.g. in the form of Lie groups. We formalize the theory of topological
groups on top of HOL-Algebra and HOL-Analysis. Topological groups
are defined via a locale. We also introduce a set-based notion of uni-
form spaces in order to define the uniform structures of topological
groups. The most notable formalized result is the Birkhoff-Kakutani
theorem which characterizes metrizable topological groups. Our for-
malization also defines the important matrix groups GLn(R), SLn(R),
On, SOn and proves them to be topological groups.

The formalized results and proofs have been taken from the text-
books of Arhangelskii and Tkachenko [1], Bump [2] and James [4].
These lecture notes [5] have also been helpful.

Contents
1 Uniform spaces 2

1.1 Definitions and basic results 2
1.2 Metric spaces as uniform spaces 5
1.3 Connection to type class . 7

2 General theory of Topological Groups 9
2.1 Auxiliary definitions and results 9

2.1.1 Miscellaneous . 9
2.1.2 Quotient topology . 11

2.2 Definition and basic results 12
2.3 Subspaces and quotient spaces 14
2.4 Uniform structures . 23
2.5 The Birkhoff-Kakutani theorem 29

2.5.1 Prenorms on groups 29
2.5.2 A prenorm respecting the group topology 32
2.5.3 Proof of Birkhoff-Kakutani 38

1

3 Examples of Topological Groups 45

4 Matrix groups 47
4.1 Topologies on vector types . 48
4.2 The general linear group as a topological group 51

4.2.1 Continuity of matrix operations 51
4.2.2 Continuity of matrix inversion 52
4.2.3 The general linear group is topological 55

4.3 Subgroups of the general linear group 56

1 Uniform spaces
theory Uniform-Structure
imports HOL−Analysis.Abstract-Topology HOL−Analysis.Abstract-Metric-Spaces

begin

Summary This section introduces a set-based notion of uniformities and
connects it to the uniform-space type class.

1.1 Definitions and basic results
definition uniformity-on :: ′a set ⇒ ((′a × ′a) set ⇒ bool) ⇒ bool where
uniformity-on X E ←→
(∃E . E E) ∧
(∀E . E E −→ E ⊆ X × X ∧ Id-on X ⊆ E ∧ E (E−1) ∧ (∃F . E F ∧ F O F ⊆

E) ∧
(∀F . E ⊆ F ∧ F ⊆ X × X −→ E F)) ∧

(∀E F . E E −→ E F −→ E (E ∩ F))

typedef ′a uniformity = {(X :: ′a set, E). uniformity-on X E}
morphisms uniformity-rep uniformity

proof −
have uniformity-on UNIV (λE . E = UNIV × UNIV)

unfolding uniformity-on-def Id-on-def relcomp-def by auto
then show ?thesis by fast

qed

definition uspace :: ′a uniformity ⇒ ′a set where
uspace Φ = (let (X , E) = uniformity-rep Φ in X)

definition entourage-in :: ′a uniformity ⇒ (′a × ′a) set ⇒ bool where
entourage-in Φ = (let (X , E) = uniformity-rep Φ in E)

lemma uniformity-inverse ′[simp]:
assumes uniformity-on X E
shows uspace (uniformity (X , E)) = X ∧ entourage-in (uniformity (X , E)) = E

proof −

2

from assms have uniformity-rep (uniformity (X , E)) = (X , E)
using uniformity-inverse by blast

then show ?thesis by (auto simp: prod.splits uspace-def entourage-in-def)
qed

lemma uniformity-entourages:
shows uniformity-on (uspace Φ) (entourage-in Φ)
by (metis Product-Type.Collect-case-prodD entourage-in-def split-beta uspace-def

uniformity-rep)

lemma entourages-exist: ∃E . entourage-in Φ E
using uniformity-entourages unfolding uniformity-on-def by blast

lemma entourage-in-space[elim]: entourage-in Φ E =⇒ E ⊆ uspace Φ × uspace Φ
using uniformity-entourages unfolding uniformity-on-def by metis

lemma entourage-superset[intro]:
entourage-in Φ E =⇒ E ⊆ F =⇒ F ⊆ uspace Φ × uspace Φ =⇒ entourage-in

Φ F
using uniformity-entourages unfolding uniformity-on-def by blast

lemma entourage-intersection[intro]: entourage-in Φ E =⇒ entourage-in Φ F =⇒
entourage-in Φ (E ∩ F)

using uniformity-entourages unfolding uniformity-on-def by metis

lemma entourage-converse[intro]: entourage-in Φ E =⇒ entourage-in Φ (E−1)
using uniformity-entourages unfolding uniformity-on-def by fast

lemma entourage-diagonal[dest]:
assumes entourage: entourage-in Φ E and in-space: x ∈ uspace Φ
shows (x,x) ∈ E

proof −
have Id-on (uspace Φ) ⊆ E

using uniformity-entourages entourage unfolding uniformity-on-def by fast
then show ?thesis using Id-onI [OF in-space] by blast

qed

lemma smaller-entourage:
assumes entourage: entourage-in Φ E
shows ∃F . entourage-in Φ F ∧ (∀ x y z. (x,y) ∈ F ∧ (y,z) ∈ F −→ (x,z) ∈ E)

proof −
from entourage obtain F where entourage-in Φ F ∧ F O F ⊆ E
using uniformity-entourages entourage unfolding uniformity-on-def by meson

moreover from this have (x,z) ∈ E if (x,y) ∈ F ∧ (y,z) ∈ F for x y z using
that by blast

ultimately show ?thesis by blast
qed

lemma entire-space-entourage: entourage-in Φ (uspace Φ × uspace Φ)

3

by (metis entourages-exist entourage-in-space entourage-superset subset-refl)

definition utopology :: ′a uniformity ⇒ ′a topology where
utopology Φ = topology (λU . U ⊆ uspace Φ ∧ (∀ x∈U . ∃E . entourage-in Φ E ∧
E‘‘{x} ⊆ U))

lemma openin-utopology [iff]:
fixes Φ :: ′a uniformity
defines uopen U ≡ U ⊆ uspace Φ ∧ (∀ x∈U . ∃E . entourage-in Φ E ∧ E‘‘{x} ⊆

U)
shows openin (utopology Φ) = uopen

proof −
have uopen (U ∩ V) if hUV : uopen U ∧ uopen V for U V
proof −

have ∃E . entourage-in Φ E ∧ E‘‘{x} ⊆ U ∩ V if hx: x ∈ U ∩ V for x
proof −

from hUV hx obtain E1 E2 where
entourage-in Φ E1 ∧ entourage-in Φ E2 ∧ E1‘‘{x} ⊆ U ∧ E2‘‘{x} ⊆ V

unfolding uopen-def by blast
then have entourage-in Φ (E1 ∩ E2) ∧ (E1 ∩ E2)‘‘{x} ⊆ U ∩ V by blast
then show ?thesis by fast

qed
then show ?thesis using le-infI1 hUV unfolding uopen-def by auto

qed
moreover have uopen (

⋃
U) if hU : ∀U∈U . uopen U for U

proof −
have ∃E . entourage-in Φ E ∧ E‘‘{x} ⊆

⋃
U if hx: x ∈

⋃
U for x

proof −
from hx obtain U where hU : U ∈ U ∧ x ∈ U by blast
from this hU obtain E where entourage-in Φ E ∧ E‘‘{x} ⊆ U unfolding

uopen-def by fast
moreover from this hU have E‘‘{x} ⊆

⋃
U by fast

ultimately show ?thesis by blast
qed
then show ?thesis using Union-least hU unfolding uopen-def by auto

qed
ultimately have istopology uopen unfolding istopology-def by presburger
from topology-inverse ′[OF this] show ?thesis unfolding utopology-def uopen-def

by blast
qed

lemma topspace-utopology[simp]:
shows topspace (utopology Φ) = uspace Φ

proof −
let ?T = utopology Φ
have topspace ?T ⊆ uspace Φ

using openin-topspace openin-utopology by meson
moreover have openin ?T (uspace Φ)

unfolding openin-utopology by (auto intro: entire-space-entourage)

4

ultimately show ?thesis using topspace-def by fast
qed

definition ucontinuous :: ′a uniformity ⇒ ′b uniformity ⇒ (′a ⇒ ′b) ⇒ bool
where
ucontinuous Φ Ψ f ←→

f ∈ uspace Φ → uspace Ψ ∧
(∀E . entourage-in Ψ E −→ entourage-in Φ {(x, y) ∈ uspace Φ × uspace Φ. (f x,

f y) ∈ E})

lemma ucontinuous-image-subset [dest]: ucontinuous Φ Ψ f =⇒ f‘(uspace Φ) ⊆
uspace Ψ

unfolding ucontinuous-def by blast

lemma entourage-preimage-ucontinuous [dest]:
assumes ucontinuous Φ Ψ f and entourage-in Ψ E
shows entourage-in Φ {(x, y) ∈ uspace Φ × uspace Φ. (f x, f y) ∈ E}
using assms unfolding ucontinuous-def by blast

lemma ucontinuous-imp-continuous:
assumes ucontinuous Φ Ψ f
shows continuous-map (utopology Φ) (utopology Ψ) f

proof (unfold continuous-map-def , intro conjI allI impI)
show f ∈ topspace (utopology Φ) → topspace (utopology Ψ)

using assms unfolding ucontinuous-def by auto
next

fix U assume hU : openin (utopology Ψ) U
let ?V = {x ∈ topspace (utopology Φ). f x ∈ U}
have ∃F . entourage-in Φ F ∧ F‘‘{x} ⊆ ?V if hx: x ∈ uspace Φ ∧ f x ∈ U for x
proof −

from that hU obtain E where hE : entourage-in Ψ E ∧ E‘‘{f x} ⊆ U
unfolding openin-utopology by blast

let ?F = {(x, y) ∈ uspace Φ × uspace Φ. (f x, f y) ∈ E}
have ?F‘‘{x} = {y ∈ uspace Φ. f y ∈ E‘‘{f x}} unfolding Image-def using

hx by auto
then have ?F‘‘{x} ⊆ ?V using hE by auto
moreover have entourage-in Φ ?F
using assms entourage-preimage-ucontinuous hE unfolding topspace-utopology

by blast
ultimately show ?thesis by blast

qed
then show openin (utopology Φ) ?V unfolding openin-utopology by force

qed

1.2 Metric spaces as uniform spaces
context Metric-space
begin

5

abbreviation mentourage :: real ⇒ (′a × ′a) set where
mentourage ε ≡ {(x,y) ∈ M × M . d x y < ε}

definition muniformity :: ′a uniformity where
muniformity = uniformity (M , λE . E ⊆ M × M ∧ (∃ ε > 0 . mentourage ε ⊆ E))

lemma
uspace-muniformity[simp]: uspace muniformity = M and
entourage-muniformity: entourage-in muniformity = (λE . E ⊆ M × M ∧ (∃ ε >

0 . mentourage ε ⊆ E))
proof −

have uniformity-on M (λE . E ⊆ M × M ∧ (∃ ε > 0 . mentourage ε ⊆ E))
unfolding uniformity-on-def Id-on-def converse-def

proof (intro conjI allI impI , goal-cases)
case 1
then show ?case by (rule exI [of - mentourage 1]) force

next
case (5 E)
then obtain ε where hε: ε > 0 ∧ mentourage ε ⊆ E by blast
then have {(y, x). (x, y) ∈ mentourage ε} ⊆ E using commute by auto
then have mentourage ε ⊆ E−1 by blast
then show ?case using hε by auto

next
case (6 E)
then obtain ε where hε: ε > 0 ∧ mentourage ε ⊆ E by blast
let ?F = mentourage (ε/2)
have (x,z) ∈ E if (x,y) ∈ ?F ∧ (y,z) ∈ ?F for x y z
proof −

have d x z < ε using that triangle by fastforce
then show ?thesis using that hε by blast

qed
then have ?F ⊆ M × M ∧ ?F O ?F ⊆ E by blast
then show ?case by (meson hε order-refl zero-less-divide-iff zero-less-numeral)

next
case (8 E F)
then show ?case by fast

next
case (10 E F)
then obtain ε δ where
ε > 0 ∧ mentourage ε ⊆ E and
δ > 0 ∧ mentourage δ ⊆ F by presburger

then have min ε δ > 0 ∧ mentourage (min ε δ) ⊆ E ∩ F by auto
then show ?case by blast

qed (auto)
then show

uspace muniformity = M and
entourage-in muniformity = (λE . E ⊆ M × M ∧ (∃ ε > 0 . mentourage ε ⊆

E))
unfolding muniformity-def using uniformity-inverse ′ by auto

6

qed

lemma uniformity-induces-mtopology [simp]: utopology muniformity = mtopology
proof −

have mentourage-image: mball x ε = (mentourage ε)‘‘{x} for x ε unfolding
mball-def by auto

have openin (utopology muniformity) U ←→ openin mtopology U for U
proof

assume hU : openin (utopology muniformity) U
have ∃ ε > 0 . mball x ε ⊆ U if x ∈ U for x
proof −

from hU that obtain E where hE : entourage-in muniformity E ∧ E‘‘{x} ⊆
U unfolding openin-utopology by blast

then obtain ε where hε: ε > 0 ∧ mentourage ε ⊆ E unfolding en-
tourage-muniformity by presburger

then have (mentourage ε)‘‘{x} ⊆ U using hE by fast
then show ?thesis using mentourage-image hε by auto

qed
then show openin mtopology U unfolding openin-mtopology using hU openin-subset

by fastforce
next

assume hU : openin mtopology U
have ∃E . entourage-in muniformity E ∧ E‘‘{x} ⊆ U if x ∈ U for x
proof −
from hU that obtain ε where ε > 0 ∧ mball x ε ⊆ U unfolding openin-mtopology

by blast
then show ?thesis unfolding mentourage-image entourage-muniformity by

auto
qed
then show openin (utopology muniformity) U unfolding openin-utopology

using hU openin-subset by fastforce
qed
then show ?thesis using topology-eq by blast

qed

1.3 Connection to type class
end

The following connects the uniform-space class to the set based notion
Uniform-Structure.uniformity-on.

Given a type ′a which is an instance of the class uniform-space, it is
possible to introduce an ′a uniformity on the entire universe: UNIV :
definition uniformity-of-space :: (′a :: uniform-space) uniformity where
uniformity-of-space = uniformity (UNIV :: ′a set, (λS . ∀ F x in uniformity-class.uniformity.

x∈S))

The induced uniformity fulfills the required conditions, i.e., the class
based notion implies the set-based notion.

7

lemma uniformity-on-uniformity-of-space-aux:
uniformity-on (UNIV :: (′a :: uniform-space) set) (λS . ∀ F x in uniformity-class.uniformity.

x∈S)
proof −

let ?u = uniformity-class.uniformity :: (′a × ′a) filter

have ∃S . (∀ F x in ?u.x ∈ S) by (intro exI [where x=UNIV × UNIV]) simp
moreover have (∀ F x in ?u.x ∈ E ∩ F) if (∀ F x in ?u.x ∈ E) (∀ F x in ?u.x
∈ F) for E F

using that eventually-conj by auto
moreover have Id-on UNIV ⊆ E if ∀ F x in ?u. x ∈ E for E
proof −

have (x,x) ∈ E for x using uniformity-refl[OF that] by auto
thus ?thesis unfolding Id-on-def by auto

qed
moreover have (∀ F x in ?u. x ∈ E−1) if ∀ F x in ?u. x ∈ E for E

using uniformity-sym[OF that] by (simp add: converse-unfold)
moreover have ∃F . (∀ F x in ?u. x ∈ F) ∧ F O F ⊆ E if ∀ F x in ?u. x ∈ E

for E
proof −

from uniformity-trans[OF that]
obtain D where eventually D ?u (∀ x y z. D (x, y) −→ D (y, z) −→ (x, z) ∈

E) by auto
thus ?thesis by (intro exI [where x=Collect D]) auto

qed
moreover have ∀ F x in ?u. x ∈ F if ∀ F x in ?u. x ∈ E E ⊆ F for E F

using that(2) by (intro eventually-mono[OF that(1)]) auto
ultimately show ?thesis

unfolding uniformity-on-def by auto
qed

lemma uniformity-rep-uniformity-of-space:
uniformity-rep uniformity-of-space = (UNIV , (λS . ∀ F x in uniformity-class.uniformity.

x ∈ S))
unfolding uniformity-of-space-def using uniformity-on-uniformity-of-space-aux
by (intro uniformity-inverse) auto

lemma uspace-uniformity-space [simp, iff]:
uspace uniformity-of-space = UNIV
unfolding uspace-def uniformity-rep-uniformity-of-space by simp

lemma entourage-in-uniformity-space:
entourage-in uniformity-of-space S =(∀ F x in uniformity-class.uniformity. x ∈

S)
unfolding entourage-in-def uniformity-rep-uniformity-of-space by simp

Compatibility of the Metric-space.muniformity with the uniformity based
on the class based hierarchy.
lemma (uniformity-of-space :: (′a :: metric-space) uniformity) = Met-TC .muniformity

8

proof −
have (∀ x y. dist x y < ε −→ (x, y) ∈ E) = ({(x, y). dist x y < ε} ⊆ E)

for ε and E :: (′a × ′a) set
by auto

thus ?thesis
unfolding Met-TC .muniformity-def uniformity-of-space-def eventually-uniformity-metric

by simp
qed

end

2 General theory of Topological Groups
theory Topological-Group

imports
HOL−Algebra.Group
HOL−Algebra.Coset
HOL−Analysis.Abstract-Topology
HOL−Analysis.Product-Topology
HOL−Analysis.T1-Spaces
HOL−Analysis.Abstract-Metric-Spaces
Uniform-Structure

begin

Summary In this section we define topological groups and prove basic
results about them. We also introduce the left and right uniform structures
of topological groups and prove the Birkhoff-Kakutani theorem.

2.1 Auxiliary definitions and results
2.1.1 Miscellaneous
lemma connected-components-homeo:

assumes homeo: homeomorphic-map T1 T2 ϕ and in-space: x ∈ topspace T1

shows ϕ‘(connected-component-of-set T1 x) = connected-component-of-set T2 (ϕ
x)
proof

let ?Z = connected-component-of-set
show ϕ‘(?Z T1 x) ⊆ ?Z T2 (ϕ x)

by (metis connected-component-of-eq connected-component-of-maximal con-
nectedin-connected-component-of homeo homeomorphic-map-connectedness-eq im-
ageI in-space mem-Collect-eq)
next

let ?Z = connected-component-of-set
from homeo obtain ψ where ψ-homeo: homeomorphic-map T2 T1 ψ

and ψ-inv: (∀ y ∈ topspace T1. ψ (ϕ y) = y) ∧ (∀ y ∈ topspace T2. ϕ (ψ y) =
y)

by (smt (verit) homeomorphic-map-maps homeomorphic-maps-map)

9

from homeo in-space have ϕ x ∈ topspace T2

using homeomorphic-imp-surjective-map by blast
then have ψ‘(?Z T2 (ϕ x)) ⊆ ?Z T1 (ψ (ϕ x))
by (metis connected-component-of-eq connected-component-of-maximal connecte-

din-connected-component-of ψ-homeo homeomorphic-map-connectedness-eq imageI
mem-Collect-eq)

then show ?Z T2 (ϕ x) ⊆ ϕ‘(?Z T1 x)
by (smt (verit, del-insts) ψ-inv connected-component-of-subset-topspace im-

age-subset-iff in-space subsetD subsetI)
qed

lemma open-map-prod-top:
assumes open-map T1 T3 f and open-map T2 T4 g
shows open-map (prod-topology T1 T2) (prod-topology T3 T4) (λ(x, y). (f x , g

y))
proof (unfold open-map-def , standard, standard)

let ?p = λ(x, y). (f x, g y)
fix U assume openin (prod-topology T1 T2) U
then obtain U where hU : U ⊆ {V × W | V W . openin T1 V ∧ openin T2

W } ∧
⋃
U = U

unfolding openin-prod-topology union-of-def using arbitrary-def by auto
then have ?p‘U =

⋃
{?p‘VW | VW . VW ∈ U} by blast

then have ?p‘U =
⋃
{?p‘(V × W) | V W . V × W ∈ U ∧ openin T1 V ∧

openin T2 W }
using hU by blast

moreover have ?p‘(V × W) = (f‘V) × (g‘W) for V W by fast
ultimately have ?p‘U =

⋃
{(f‘V) × (g‘W) | V W . V × W ∈ U ∧ openin T1

V ∧ openin T2 W } by presburger
moreover have openin (prod-topology T3 T4) ((f‘V) × (g‘W)) if openin T1 V
∧ openin T2 W for V W

using openin-prod-Times-iff assms that open-map-def by metis
ultimately show openin (prod-topology T3 T4) (?p‘U) by fastforce

qed

lemma injective-quotient-map-homeo:
assumes quotient-map T1 T2 q and inj: inj-on q (topspace T1)
shows homeomorphic-map T1 T2 q using assms

unfolding homeomorphic-eq-everything-map injective-quotient-map[OF inj] by
fast

lemma (in group) subgroupI-alt:
assumes subset: H ⊆ carrier G and nonempty: H 6= {} and

closed:
∧
σ τ. σ ∈ H ∧ τ ∈ H =⇒ σ ⊗ inv τ ∈ H

shows subgroup H G
proof −

from nonempty obtain η where η ∈ H by blast
then have 1 ∈ H using closed[of η η] subset r-inv by fastforce
then have closed-inv: inv σ ∈ H if σ ∈ H for σ

using closed[of 1 σ] r-inv r-one subset that by force

10

then have σ ⊗ τ ∈ H if σ ∈ H ∧ τ ∈ H for σ τ
using closed[of σ inv τ] inv-inv subset subset-iff that by auto

then show ?thesis using assms closed-inv by (auto intro: subgroupI)
qed

lemma subgroup-intersection:
assumes subgroup H G and subgroup H ′ G
shows subgroup (H ∩ H ′) G
using assms unfolding subgroup-def by force

2.1.2 Quotient topology
definition quot-topology :: ′a topology ⇒ (′a ⇒ ′b) ⇒ ′b topology where
quot-topology T q = topology (λU . U ⊆ q‘(topspace T) ∧ openin T {x ∈ topspace
T . q x ∈ U})

lemma quot-topology-open:
fixes T :: ′a topology and q :: ′a ⇒ ′b
defines openin-quot U ≡ U ⊆ q‘(topspace T) ∧ openin T {x ∈ topspace T . q x
∈ U}

shows openin (quot-topology T q) = openin-quot
proof −

have istopology openin-quot
proof −

have openin-quot (U 1 ∩ U 2) if openin-quot U 1 ∧ openin-quot U 2 for U 1 U 2

proof −
have {x ∈ topspace T . q x ∈ U 1 ∩ U 2} = {x ∈ topspace T . q x ∈ U 1} ∩ {x

∈ topspace T . q x ∈ U 2} by blast
then show ?thesis using that unfolding openin-quot-def by auto

qed
moreover have openin-quot (

⋃
U) if ∀U∈U . openin-quot U for U

proof −
have {x ∈ topspace T . q x ∈

⋃
U} =

⋃
{{x ∈ topspace T . q x ∈ U} | U .

U ∈ U} by blast
then show ?thesis using that unfolding openin-quot-def by auto

qed
ultimately show ?thesis using istopology-def
by (smt (verit) Collect-cong Sup-set-def UnionI Union-iff image-eqI mem-Collect-eq

mem-Collect-eq openin-topspace subsetI subset-antisym topspace-def)
qed
from topology-inverse ′[OF this] show ?thesis using quot-topology-def unfolding

openin-quot-def by metis
qed

lemma projection-quotient-map: quotient-map T (quot-topology T q) q
proof (unfold quotient-map-def , intro conjI)

have openin (quot-topology T q) (q ‘ topspace T) using quot-topology-open
by (smt (verit) image-subset-iff mem-Collect-eq openin-subtopology-refl subsetI

subtopology-superset)

11

then show q ‘ topspace T = topspace (quot-topology T q) using quot-topology-open
by (metis (no-types, opaque-lifting) openin-subset openin-topspace subset-antisym)

next
show ∀U ⊆ topspace (quot-topology T q).

openin T {x ∈ topspace T . q x ∈ U} = openin (quot-topology T q) U
using quot-topology-open by (metis (mono-tags, lifting) openin-topspace or-

der-trans)
qed

corollary topspace-quot-topology [simp]: topspace (quot-topology T q) = q‘(topspace
T)

using projection-quotient-map quotient-imp-surjective-map by metis

corollary projection-continuous: continuous-map T (quot-topology T q) q
using projection-quotient-map quotient-imp-continuous-map by fast

2.2 Definition and basic results
locale topological-group = group +

fixes T :: ′g topology
assumes group-is-space [simp]: topspace T = carrier G
assumes inv-continuous: continuous-map T T (λσ. inv σ)
assumes mul-continuous: continuous-map (prod-topology T T) T (λ(σ,τ). σ⊗τ)

begin

lemma in-space-iff-in-group [iff]: σ ∈ topspace T ←→ σ ∈ carrier G
by auto

lemma translations-continuous [intro]:
assumes in-group: σ ∈ carrier G
shows continuous-map T T (λτ. σ⊗τ) and continuous-map T T (λτ. τ⊗σ)

proof −
have continuous-map T (prod-topology T T) (λτ. (σ,τ))

by (auto intro: continuous-map-pairedI simp: in-group)
moreover have (λτ. σ⊗τ) = (λ(σ,τ). σ⊗τ) ◦ (λτ. (σ,τ)) by auto
ultimately show continuous-map T T (λτ. σ⊗τ)

using mul-continuous continuous-map-compose by metis
next

have continuous-map T (prod-topology T T) (λτ. (τ ,σ))
by (auto intro: continuous-map-pairedI simp: in-group)

moreover have (λτ. τ⊗σ) = (λ(σ,τ). σ⊗τ) ◦ (λτ. (τ ,σ)) by auto
ultimately show continuous-map T T (λτ. τ⊗σ)

using mul-continuous continuous-map-compose by metis
qed

lemma translations-homeos:
assumes in-group: σ ∈ carrier G
shows homeomorphic-map T T (λτ. σ⊗τ) and homeomorphic-map T T (λτ.

τ⊗σ)

12

proof −
have ∀ τ∈topspace T . inv σ ⊗ (σ ⊗ τ) = τ by (simp add: group.inv-solve-left ′

in-group)
moreover have ∀ τ∈topspace T . σ ⊗ (inv σ ⊗ τ) = τ

by (metis group-is-space in-group inv-closed l-one m-assoc r-inv)
ultimately have homeomorphic-maps T T (λτ. σ⊗τ) (λτ. (inv σ)⊗τ)

using homeomorphic-maps-def in-group by blast
then show homeomorphic-map T T (λτ. σ⊗τ) using homeomorphic-maps-map

by blast
next

have ∀ τ∈topspace T . τ ⊗ σ ⊗ inv σ = τ
by (simp add: group.inv-solve-right ′ in-group)

moreover have ∀ τ∈topspace T . τ ⊗ inv σ ⊗ σ = τ by (simp add: in-group
m-assoc)

ultimately have homeomorphic-maps T T (λτ. τ⊗σ) (λτ. τ⊗(inv σ))
using homeomorphic-maps-def in-group by blast

then show homeomorphic-map T T (λτ. τ⊗σ) using homeomorphic-maps-map
by blast
qed

abbreviation conjugation :: ′g ⇒ ′g ⇒ ′g where
conjugation σ τ ≡ σ ⊗ τ ⊗ inv σ

corollary conjugation-homeo:
assumes in-group: σ ∈ carrier G
shows homeomorphic-map T T (conjugation σ)

proof −
have conjugation σ = (λτ. τ ⊗ inv σ) ◦ (λτ. σ ⊗ τ) by auto
then show ?thesis using translations-homeos homeomorphic-map-compose

by (metis in-group inv-closed)
qed

corollary open-set-translations:
assumes open-set: openin T U and in-group: σ ∈ carrier G
shows openin T (σ <# U) and openin T (U #> σ)

proof −
let ?ϕ = λτ. σ ⊗ τ
have σ <# U = ?ϕ‘U unfolding l-coset-def by blast
then show openin T (σ <# U) using translations-homeos[OF in-group]

by (metis homeomorphic-map-openness-eq open-set)
next

let ?ψ = λτ. τ ⊗ σ
have U #> σ = ?ψ‘U unfolding r-coset-def by fast
then show openin T (U #> σ) using translations-homeos[OF in-group]

by (metis homeomorphic-map-openness-eq open-set)
qed

corollary closed-set-translations:
assumes closed-set: closedin T U and in-group: σ ∈ carrier G

13

shows closedin T (σ <# U) and closedin T (U #> σ)
proof −

let ?ϕ = λτ. σ⊗τ
have σ <# U = ?ϕ‘U unfolding l-coset-def by fast
then show closedin T (σ <# U) using translations-homeos[OF in-group]

by (metis homeomorphic-map-closedness-eq closed-set)
next

let ?ψ = λτ. τ⊗σ
have U #> σ = ?ψ‘U unfolding r-coset-def by fast
then show closedin T (U #> σ) using translations-homeos[OF in-group]

by (metis homeomorphic-map-closedness-eq closed-set)
qed

lemma inverse-homeo: homeomorphic-map T T (λσ. inv σ)
using homeomorphic-map-involution[OF inv-continuous] by auto

2.3 Subspaces and quotient spaces
abbreviation connected-component-1 :: ′g set where
connected-component-1 ≡ connected-component-of-set T 1

lemma connected-component-1-props:
shows connected-component-1 C G and closedin T connected-component-1

proof −
let ?Z = connected-component-of-set T
have in-space: (?Z 1) ⊆ topspace T

using connected-component-of-subset-topspace by fastforce
have subgroup (?Z 1) G
proof (rule subgroupI)

show (?Z 1) ⊆ carrier G using in-space by auto
next

show (?Z 1) 6= {}
by (metis connected-component-of-eq-empty group-is-space one-closed)

next
fix σ assume hσ: σ ∈ (?Z 1)
let ?ϕ = λη. inv η
have ?ϕ‘(?Z 1) = ?Z 1 using connected-components-homeo

by (metis group-is-space inv-one inverse-homeo one-closed)
then show inv σ ∈ (?Z 1) using hσ by blast

next
fix σ τ assume hσ: σ ∈ (?Z 1) and hτ : τ ∈ (?Z 1)
let ?ϕ = λη. σ ⊗ η
have ?ϕ‘(?Z 1) = ?Z σ using connected-components-homeo

by (metis group-is-space hσ in-space one-closed r-one subset-eq transla-
tions-homeos(1))

moreover have ?Z σ = ?Z 1 using hσ by (simp add: connected-component-of-equiv)
ultimately show σ ⊗ τ ∈ ?Z 1 using hτ by blast

qed
moreover have conjugation σ τ ∈ ?Z 1 if hστ : σ ∈ carrier G ∧ τ ∈ ?Z 1 for

14

σ τ
proof −

let ?ϕ = conjugation σ
have ?ϕ‘(?Z 1) = ?Z (?ϕ 1) using connected-components-homeo

by (metis conjugation-homeo group-is-space one-closed hστ)
then show ?thesis using r-inv r-one hστ by auto

qed
ultimately show connected-component-1 C G using normal-inv-iff by blast

next
show closedin T connected-component-1 by (simp add: closedin-connected-component-of)

qed

lemma group-prod-space [simp]: topspace (prod-topology T T) = (carrier G) ×
(carrier G)

by auto

no-notation eq-closure-of (‹closure ′-of ı›)

lemma subgroup-closure:
assumes H-subgroup: subgroup H G
shows subgroup (T closure-of H) G

proof −
have subset: T closure-of H ⊆ carrier G

by (metis closedin-closure-of closedin-subset group-is-space)
have nonempty: T closure-of H 6= {}

by (simp add: assms closure-of-eq-empty group.subgroupE(1) subgroupE(2))

let ?ϕ = λ(σ,τ). σ ⊗ inv τ
have ϕ-continuous: continuous-map (prod-topology T T) T ?ϕ
proof −
have continuous-map (prod-topology T T) (prod-topology T T) (λ(σ, τ). (σ, inv

τ))
using continuous-map-prod-top inv-continuous by fastforce

moreover have ?ϕ = (λ(σ, τ). σ ⊗ τ) ◦ (λ(σ, τ). (σ, inv τ)) by fastforce
ultimately show ?thesis using mul-continuous continuous-map-compose by

force
qed

have σ ⊗ inv τ ∈ T closure-of H
if hστ : σ ∈ T closure-of H ∧ τ ∈ T closure-of H for σ τ

proof −
have in-space: σ ⊗ inv τ ∈ topspace T using subset hστ by fast
have ∃ η ∈ H . η ∈ U if hU : openin T U ∧ σ ⊗ inv τ ∈ U for U
proof −

let ?V = {x ∈ topspace (prod-topology T T). ?ϕ x ∈ U}
have openin (prod-topology T T) ?V

using ϕ-continuous hU openin-continuous-map-preimage by blast
moreover have (σ,τ) ∈ ?V

using hU group-prod-space hστ subset by force

15

ultimately obtain V 1 V 2 where
hV 1V 2: openin T V 1 ∧ openin T V 2 ∧ σ ∈ V 1 ∧ τ ∈ V 2 ∧ V 1 × V 2 ⊆ ?V
by (smt (verit) openin-prod-topology-alt)

then obtain σ ′ τ ′ where hσ ′τ ′: σ ′ ∈ V 1 ∩ H ∧ τ ′ ∈ V 2 ∩ H using hστ
by (meson all-not-in-conv disjoint-iff openin-Int-closure-of-eq-empty)

then have ?ϕ (σ ′,τ ′) ∈ U using hV 1V 2 by blast
moreover have ?ϕ (σ ′,τ ′) ∈ H using hσ ′τ ′ H-subgroup subgroupE(3 ,4) by

simp
ultimately show ?thesis by blast

qed
then show ?thesis using closure-of-def in-space by force

qed
then show ?thesis using subgroupI-alt subset nonempty by blast

qed

lemma normal-subgroup-closure:
assumes normal-subgroup: N C G
shows (T closure-of N) C G

proof −
have (conjugation σ)‘(T closure-of N) ⊆ T closure-of N if hσ: σ ∈ carrier G

for σ
proof −

have (conjugation σ)‘N ⊆ N using normal-subgroup normal-invE(2) hσ by
auto

then have T closure-of (conjugation σ)‘N ⊆ T closure-of N
using closure-of-mono by meson

moreover have (conjugation σ)‘(T closure-of N) ⊆ T closure-of (conjugation
σ)‘N

using hσ conjugation-homeo
by (meson continuous-map-eq-image-closure-subset homeomorphic-imp-continuous-map)
ultimately show ?thesis by blast

qed
moreover have subgroup (T closure-of N) G using subgroup-closure

by (simp add: normal-invE(1) normal-subgroup)
ultimately show ?thesis using normal-inv-iff by auto

qed

lemma topological-subgroup:
assumes subgroup H G
shows topological-group (G (|carrier := H |)) (subtopology T H)

proof −
interpret subgroup H G by fact
let ?H = (G (|carrier := H |)) and ?T ′ = subtopology T H
have H-subspace: topspace ?T ′ = H using topspace-subtopology-subset by force
have continuous-map ?T ′ T (λσ. inv σ) using continuous-map-from-subtopology

inv-continuous by blast
moreover have (λσ. inv σ) ∈ topspace ?T ′→ H unfolding Pi-def H-subspace

by blast
ultimately have continuous-map ?T ′ ?T ′ (λσ. inv σ) using continuous-map-into-subtopology

16

by blast
then have sub-inv-continuous: continuous-map ?T ′ ?T ′ (λσ. inv?H σ)

using continuous-map-eq H-subspace m-inv-consistent assms by fastforce
have continuous-map (prod-topology ?T ′ ?T ′) T (λ(σ,τ). σ ⊗ τ)
unfolding subtopology-Times[symmetric] using continuous-map-from-subtopology[OF

mul-continuous] by fast
moreover have (λ(σ,τ). σ ⊗ τ) ∈ topspace (prod-topology ?T ′ ?T ′) → H

unfolding Pi-def topspace-prod-topology H-subspace by fast
ultimately have continuous-map (prod-topology ?T ′ ?T ′) ?T ′ (λ(σ,τ). σ ⊗ τ)

using continuous-map-into-subtopology by blast
then have continuous-map (prod-topology ?T ′ ?T ′) ?T ′ (λ(σ,τ). σ ⊗?H τ) by

fastforce
then show ?thesis unfolding topological-group-def topological-group-axioms-def

using H-subspace sub-inv-continuous by auto
qed

Topology on the set of cosets of some subgroup
abbreviation coset-topology :: ′g set ⇒ ′g set topology where
coset-topology H ≡ quot-topology T (r-coset G H)

lemma coset-topology-topspace[simp]:
shows topspace (coset-topology H) = (r-coset G H)‘(carrier G)
using projection-quotient-map quotient-imp-surjective-map group-is-space by metis

lemma projection-open-map:
assumes subgroup: subgroup H G
shows open-map T (coset-topology H) (r-coset G H)

proof (unfold open-map-def , standard, standard)
fix U assume hU : openin T U
let ?π = r-coset G H
let ?V = {σ ∈ topspace T . ?π σ ∈ ?π‘U}
have subsets: H ⊆ carrier G ∧ U ⊆ carrier G

using subgroup hU openin-subset by (force elim!: subgroupE)
have ?V = {σ ∈ carrier G. ∃ τ ∈ U . H #> σ = H #> τ} using image-def by

blast
then have ?V = {σ ∈ carrier G. ∃ τ ∈ U . σ ∈ H #> τ} using subsets

by (smt (verit) Collect-cong rcos-self repr-independence subgroup subset-eq)
also have ... = (

⋃
η ∈ H . η <# U) unfolding r-coset-def l-coset-def using

subsets by auto
moreover have openin T (η <# U) if η ∈ H for η

using open-set-translations(1)[OF hU] subsets that by blast
ultimately have openin T ?V by fastforce
then show openin (coset-topology H) (?π‘U) using quot-topology-open hU

by (metis (mono-tags, lifting) Collect-cong image-mono openin-subset)
qed

lemma topological-quotient-group:
assumes normal-subgroup: N C G
shows topological-group (G Mod N) (coset-topology N)

17

proof −
interpret normal N G by fact
let ?π = r-coset G N
let ?T ′ = coset-topology N
have quot-space: topspace ?T ′ = ?π‘(carrier G) using coset-topology-topspace

by presburger
then have quot-group-quot-space: topspace ?T ′ = carrier (G Mod N) using

carrier-FactGroup by metis

let ?quot-mul = λ(Nσ, N τ). Nσ ⊗G Mod N N τ
have π-prod-space: topspace (prod-topology ?T ′ ?T ′) = ?π‘(carrier G) × ?π‘(carrier

G)
using quot-space topspace-prod-topology by simp

have quot-mul-continuous: continuous-map (prod-topology ?T ′ ?T ′) ?T ′ ?quot-mul
proof (unfold continuous-map-def , intro conjI ballI allI impI)

show ?quot-mul ∈ topspace (prod-topology ?T ′ ?T ′) → topspace ?T ′

using rcos-sum unfolding quot-space π-prod-space by auto
next

fix U assume hU : openin ?T ′ U
let ?V = {p ∈ topspace (prod-topology ?T ′ ?T ′). ?quot-mul p ∈ U}
let ?W = {(σ,τ) ∈ topspace (prod-topology T T). N #> (σ ⊗ τ) ∈ U}
let ?π2 = λ(σ, τ). (N #> σ, N #> τ)
have (λ(σ,τ). N #> (σ ⊗ τ)) = ?π ◦ (λ(σ,τ). σ ⊗ τ) by fastforce
then have continuous-map (prod-topology T T) ?T ′ (λ(σ,τ). N #> (σ ⊗ τ))
using continuous-map-compose mul-continuous projection-continuous by fast-

force
then have openin (prod-topology T T) ?W

using hU openin-continuous-map-preimage
by (smt (verit) Collect-cong case-prodE case-prodI2 case-prod-conv)

moreover have open-map (prod-topology T T) (prod-topology ?T ′ ?T ′) ?π2

using projection-open-map open-map-prod-top by (metis subgroup-axioms)
ultimately have openin (prod-topology ?T ′ ?T ′) (?π2‘?W) using open-map-def

by blast
moreover have ?V = ?π2‘?W

using rcos-sum unfolding π-prod-space group-prod-space by auto
ultimately show openin (prod-topology ?T ′ ?T ′) ?V by presburger

qed

let ?quot-inv = λNσ. invG Mod N Nσ
have π-inv: ?quot-inv (N #> σ) = ?π (inv σ) if σ ∈ carrier G for σ

using inv-FactGroup rcos-inv carrier-FactGroup that by blast
have continuous-map ?T ′ ?T ′ ?quot-inv
proof (unfold continuous-map-def , intro conjI ballI allI impI)
show ?quot-inv ∈ topspace ?T ′→ topspace ?T ′ using π-inv quot-space by auto

next
fix U assume hU : openin ?T ′ U
let ?V = {Nσ ∈ topspace ?T ′. ?quot-inv Nσ ∈ U}
let ?W = {σ ∈ topspace T . N #> (inv σ) ∈ U}
have (λσ. N #> (inv σ)) = ?π ◦ (λσ. inv σ) by fastforce

18

then have continuous-map T ?T ′ (λσ. N #> (inv σ))
using continuous-map-compose projection-continuous inv-continuous
by (metis (no-types, lifting))

then have openin T ?W using hU openin-continuous-map-preimage by blast
then have openin ?T ′ (?π‘?W)

using projection-open-map by (simp add: open-map-def subgroup-axioms)
moreover have ?V = ?π‘?W using π-inv quot-space by force
ultimately show openin ?T ′ ?V by presburger

qed

then show ?thesis unfolding topological-group-def topological-group-axioms-def
using quot-group-quot-space quot-mul-continuous factorgroup-is-group by blast

qed

See [3] for our approach to proving that quotient groups of topological
groups are topological.
abbreviation neighborhood :: ′g ⇒ ′g set ⇒ bool where
neighborhood σ U ≡ openin T U ∧ σ ∈ U

abbreviation symmetric :: ′g set ⇒ bool where
symmetric S ≡ {inv σ | σ. σ ∈ S} ⊆ S

Note that this implies the other inclusion, so symmetric subsets are equal
to their image under inversion.
lemma neighborhoods-of-1 :

assumes neighborhood 1 U
shows ∃V . neighborhood 1 V ∧ symmetric V ∧ V <#> V ⊆ U

proof −
have a: ∃V⊆U ′. neighborhood 1 V ∧ symmetric V if hU ′: neighborhood 1 U ′

for U ′

proof −
let ?W = {σ ∈ carrier G. inv σ ∈ U ′}
let ?V = ?W ∩ ((λσ. inv σ)‘?W)

have neighborhood 1 ?W using openin-continuous-map-preimage[OF inv-continuous]
hU ′ inv-one by fastforce

moreover from this have neighborhood 1 ((λσ. inv σ)‘?W) using inverse-homeo

homeomorphic-imp-open-map inv-one image-eqI open-map-def by (metis
(mono-tags, lifting))

ultimately have neighborhood: neighborhood 1 ?V by blast
have inv σ ∈ ?V if σ ∈ ?V for σ using that by auto
then have symmetric ?V by fast
moreover have σ ∈ U ′ if σ ∈ ?V for σ using that by blast
ultimately show ?thesis using neighborhood by blast

qed
have b: ∃V . neighborhood 1 V ∧ V <#> V ⊆ U ′ if hU ′: neighborhood 1 U ′

for U ′

proof −
let ?W = {(σ,τ) ∈ carrier G × carrier G. σ⊗τ ∈ U ′}

19

have preimage-mul: ?W = {x ∈ topspace (prod-topology T T). (λ(σ,τ). σ⊗τ)
x ∈ U ′}

using topspace-prod-topology by fastforce
then have openin (prod-topology T T) ?W ∧ (1,1) ∈ ?W

using openin-continuous-map-preimage[OF mul-continuous] hU ′ r-one by
fastforce

then obtain W 1 W 2 where hW 1W 2: neighborhood 1 W 1 ∧ neighborhood 1
W 2 ∧ W 1×W 2⊆?W

using openin-prod-topology-alt[where S=?W] by meson
let ?V = W 1 ∩ W 2

from hW 1W 2 have neighborhood 1 ?V by fast
moreover have σ⊗τ ∈ U ′ if σ∈?V ∧ τ∈?V for σ τ using preimage-mul

hW 1W 2 that by blast
ultimately show ?thesis unfolding set-mult-def by blast

qed
from b[OF assms] obtain W where hW : neighborhood 1 W ∧ W <#> W ⊆

U by presburger
from this a obtain V where V⊆W ∧ neighborhood 1 V ∧ symmetric V by

presburger
moreover from this have V <#> V ⊆ U using hW mono-set-mult by blast
ultimately show ?thesis unfolding set-mult-def by blast

qed

lemma Hausdorff-coset-space:
assumes subgroup: subgroup H G and H-closed: closedin T H
shows Hausdorff-space (coset-topology H)

proof (unfold Hausdorff-space-def , intro allI impI)
interpret subgroup H G by fact
let ?π = r-coset G H
let ?T ′ = coset-topology H
fix Hσ H τ assume cosets: Hσ ∈ topspace ?T ′ ∧ H τ ∈ topspace ?T ′ ∧ Hσ 6=

H τ
then obtain σ τ where hστ : σ ∈ carrier G ∧ τ ∈ carrier G ∧ Hσ = H #> σ
∧ H τ = H #> τ by auto

then have σ /∈ H #> τ using cosets subgroup repr-independence by blast
have 1 /∈ (inv σ) <# (H #> τ)
proof

assume 1 ∈ inv σ <# (H #> τ)
then obtain η where hη: η ∈ H ∧ 1 = (inv σ) ⊗ (η ⊗ τ) unfolding r-coset-def

l-coset-def by auto
then have σ = η ⊗ τ
by (metis (no-types, lifting) Units-eq Units-m-closed group.inv-comm group-l-invI

hστ inv-closed inv-inv inv-unique ′ l-inv-ex mem-carrier)
then show False using ‹σ /∈ H #> τ› hη r-coset-def by fast

qed
let ?U = topspace T − ((inv σ) <# (H #> τ))
have closedin T ((inv σ) <# (H #> τ))

using closed-set-translations closed-set-translations[OF H-closed] hστ by simp
then have neighborhood 1 ?U using ‹1 /∈ (inv σ) <# (H #> τ)› by blast

20

then obtain V where hV : neighborhood 1 V ∧ symmetric V ∧ V <#> V ⊆
?U

using neighborhoods-of-1 by presburger
let ?V 1 = σ <# V and ?V 2 = τ <# V
have disjoint: ?π‘?V 1 ∩ ?π‘?V 2 = {}
proof (rule ccontr)

assume ?π‘?V 1 ∩ ?π‘?V 2 6= {}
then obtain υ1 υ2 where hυ1υ2: υ1 ∈ V ∧ υ2 ∈ V ∧ ?π (σ⊗υ1) = ?π (τ⊗υ2)

unfolding l-coset-def by auto
moreover then have υ1υ2-in-group: υ1 ∈ carrier G ∧ υ2 ∈ carrier G

using hV openin-subset by force
ultimately have in-H : (σ⊗υ1) ⊗ inv (τ⊗υ2) ∈ H

using subgroup repr-independenceD rcos-module-imp hστ m-closed
by (metis group.rcos-self is-group subgroup.m-closed subgroup-self)

let ?η = (σ⊗υ1) ⊗ inv (τ⊗υ2)
have ?η = σ ⊗ (υ1 ⊗ inv υ2) ⊗ inv τ using hστ υ1υ2-in-group m-assoc

by (simp add: inv-mult-group subgroupE(4) subgroup-self)
then have inv σ ⊗ (?η ⊗ τ) = υ1 ⊗ inv υ2

using hστ υ1υ2-in-group m-assoc inv-solve-left ′ by auto
then have υ1 ⊗ inv υ2 ∈ (inv σ) <# (H #> τ)

unfolding l-coset-def r-coset-def using hστ inv-closed in-H by force
moreover have υ1 ⊗ inv υ2 ∈ ?U using hυ1υ2 hV unfolding set-mult-def

by blast
ultimately show False by force

qed
have neighborhood σ ?V 1 ∧ neighborhood τ ?V 2

using open-set-translations[of V] l-coset-def hV hστ r-one by force
then have openin ?T ′ (?π‘?V 1) ∧ openin ?T ′ (?π‘?V 2) ∧ Hσ ∈ ?π‘?V 1 ∧ H τ
∈ ?π‘?V 2

using projection-open-map open-map-def subgroup hστ by fast
then show ∃W 1 W 2. openin ?T ′ W 1 ∧ openin ?T ′ W 2 ∧ Hσ ∈ W 1 ∧ H τ ∈

W 2 ∧ disjnt W 1 W 2

using disjoint disjnt-def by meson
qed

lemma Hausdorff-coset-space-converse:
assumes subgroup: subgroup H G
assumes Hausdorff : Hausdorff-space (coset-topology H)
shows closedin T H

proof −
interpret subgroup H G by fact
let ?T ′ = coset-topology H
have H ∈ topspace ?T ′ using coset-topology-topspace coset-join2 [of 1 H] sub-

group by auto
then have closedin ?T ′ {H}
using t1-space-closedin-singleton Hausdorff-imp-t1-space[OF Hausdorff] by fast

then have preimage-closed: closedin T {σ ∈ carrier G. H #> σ = H}
using projection-continuous closedin-continuous-map-preimage by fastforce

21

have σ ∈ H ←→ H #> σ = H if σ ∈ carrier G for σ
using coset-join1 coset-join2 subgroup that by metis

then have H = {σ ∈ carrier G. H #> σ = H} using subset by auto
then show ?thesis using preimage-closed by presburger

qed

corollary Hausdorff-coset-space-iff :
assumes subgroup: subgroup H G
shows Hausdorff-space (coset-topology H) ←→ closedin T H
using Hausdorff-coset-space Hausdorff-coset-space-converse subgroup by blast

corollary topological-group-hausdorff-iff-one-closed:
shows Hausdorff-space T ←→ closedin T {1}

proof −
let ?π = r-coset G {1}
have inj-on ?π (carrier G) unfolding inj-on-def r-coset-def by simp
then have homeomorphic-map T (coset-topology {1}) ?π

using projection-quotient-map injective-quotient-map-homeo group-is-space by
metis

then have Hausdorff-space T ←→ Hausdorff-space (coset-topology {1})
using homeomorphic-Hausdorff-space homeomorphic-map-imp-homeomorphic-space

by blast
then show ?thesis using Hausdorff-coset-space-iff triv-subgroup by blast

qed

lemma set-mult-one-subset:
assumes A ⊆ carrier G ∧ B ⊆ carrier G and 1 ∈ B
shows A ⊆ A <#> B
unfolding set-mult-def using assms r-one by force

lemma open-set-mult-open:
assumes openin T U ∧ S ⊆ carrier G
shows openin T (S <#> U)

proof −
have S <#> U = (

⋃
σ∈S . σ <# U) unfolding set-mult-def l-coset-def by

blast
moreover have openin T (σ <# U) if σ ∈ S for σ using open-set-translations(1)

assms that by auto
ultimately show ?thesis by auto

qed

lemma open-set-inv-open:
assumes openin T U
shows openin T (set-inv U)

proof −
have set-inv U = (λσ. inv σ)‘U unfolding image-def SET-INV-def by blast
then show ?thesis using inverse-homeo homeomorphic-imp-open-map open-map-def

assms by metis
qed

22

lemma open-set-in-carrier [elim]:
assumes openin T U
shows U ⊆ carrier G
using openin-subset assms by force

2.4 Uniform structures
abbreviation left-entourage :: ′g set ⇒ (′g × ′g) set where
left-entourage U ≡ {(σ,τ) ∈ carrier G × carrier G. inv σ ⊗ τ ∈ U}

abbreviation right-entourage :: ′g set ⇒ (′g × ′g) set where
right-entourage U ≡ {(σ,τ) ∈ carrier G × carrier G. σ ⊗ inv τ ∈ U}

definition left-uniformity :: ′g uniformity where left-uniformity =
uniformity (carrier G, λE . E ⊆ carrier G × carrier G ∧ (∃U . neighborhood 1

U ∧ left-entourage U ⊆ E))

definition right-uniformity :: ′g uniformity where right-uniformity =
uniformity (carrier G, λE . E ⊆ carrier G × carrier G ∧ (∃U . neighborhood 1

U ∧ right-entourage U ⊆ E))

lemma
uspace-left-uniformity[simp]: uspace left-uniformity = carrier G (is ?space-def)

and
entourage-left-uniformity: entourage-in left-uniformity =
(λE . E ⊆ carrier G × carrier G ∧ (∃U . neighborhood 1 U ∧ left-entourage U

⊆ E)) (is ?entourage-def)
proof −
let ?Φ = λE . E ⊆ carrier G × carrier G ∧ (∃U . neighborhood 1 U ∧ left-entourage

U ⊆ E)
have ?Φ (carrier G × carrier G)

using exI [where x=carrier G] openin-topspace by force
moreover have Id-on (carrier G) ⊆ E ∧ ?Φ (E−1) ∧ (∃F . ?Φ F ∧ F O F ⊆

E) ∧
(∀F . E ⊆ F ∧ F ⊆ carrier G × carrier G −→ ?Φ F) if hE : ?Φ E for E

proof −
from hE obtain U where hU : neighborhood 1 U ∧ left-entourage U ⊆ E by

presburger
then have U-subset: U ⊆ carrier G using openin-subset by force
from hU have Id-on (carrier G) ⊆ E by fastforce
moreover have ?Φ (E−1)
proof −

have (τ ,σ) ∈ E if σ ∈ carrier G ∧ τ ∈ carrier G ∧ inv σ ⊗ τ ∈ set-inv U
for σ τ

proof −
have inv τ ⊗ σ = inv (inv σ ⊗ τ) using that inv-mult-group by auto

from this have inv τ ⊗ σ ∈ U using that inv-inv U-subset unfolding
SET-INV-def by auto

23

then show ?thesis using that hU by fast
qed
then have left-entourage (set-inv U) ⊆ E−1 by blast

moreover have neighborhood 1 (set-inv U) using inv-one hU open-set-inv-open
SET-INV-def by fastforce

ultimately show ?thesis using hE by auto
qed
moreover have ∃F . ?Φ F ∧ F O F ⊆ E
proof −

obtain V where hV : neighborhood 1 V ∧ V <#> V ⊆ U
using neighborhoods-of-1 hU by meson

let ?F = left-entourage V
have (σ,%) ∈ E if (σ,τ) ∈ ?F ∧ (τ ,%) ∈ ?F for σ τ %
proof −

have σ ∈ carrier G ∧ τ ∈ carrier G ∧ % ∈ carrier G using that by force
then have inv σ ⊗ % = (inv σ ⊗ τ) ⊗ (inv τ ⊗ %)

using m-assoc inv-closed m-closed r-inv r-one by metis
moreover have (inv σ ⊗ τ) ⊗ (inv τ ⊗ %) ∈ U using that hV unfolding

set-mult-def by fast
ultimately show ?thesis using hU that by force

qed
moreover have ?Φ ?F using hV by blast
ultimately show ?thesis using hV by auto

qed
moreover have ∀F . E ⊆ F ∧ F ⊆ carrier G × carrier G −→ ?Φ F using

hE by auto
ultimately show ?thesis by blast

qed
moreover have ?Φ (E ∩ F) if hEF : ?Φ E ∧ ?Φ F for E F
proof −

from hEF obtain U V where
hU : neighborhood 1 U ∧ left-entourage U ⊆ E and
hV : neighborhood 1 V ∧ left-entourage V ⊆ F by presburger

then have neighborhood 1 (U ∩ V) ∧ left-entourage (U ∩ V) ⊆ E ∩ F by
fast

then show ?thesis using that by auto
qed
ultimately have uniformity-on (carrier G) ?Φ

unfolding uniformity-on-def by auto
from uniformity-inverse ′[OF this] show ?space-def and ?entourage-def unfold-

ing left-uniformity-def by auto
qed

lemma
uspace-right-uniformity[simp]: uspace right-uniformity = carrier G (is ?space-def)

and
entourage-right-uniformity: entourage-in right-uniformity =
(λE . E ⊆ carrier G × carrier G ∧ (∃U . neighborhood 1 U ∧ right-entourage

U ⊆ E)) (is ?entourage-def)

24

proof −
let ?Φ = λE . E ⊆ carrier G × carrier G ∧ (∃U . neighborhood 1 U ∧ right-entourage

U ⊆ E)
have ?Φ (carrier G × carrier G)

using exI [where x=carrier G] openin-topspace by force
moreover have Id-on (carrier G) ⊆ E ∧ ?Φ (E−1) ∧ (∃F . ?Φ F ∧ F O F ⊆

E) ∧
(∀F . E ⊆ F ∧ F ⊆ carrier G × carrier G −→ ?Φ F) if hE : ?Φ E for E

proof −
from hE obtain U where

hU : neighborhood 1 U ∧ right-entourage U ⊆ E
by presburger

then have U-subset: U ⊆ carrier G using openin-subset by force
from hU have Id-on (carrier G) ⊆ E by fastforce
moreover have ?Φ (E−1)
proof −

have (τ ,σ) ∈ E if σ ∈ carrier G ∧ τ ∈ carrier G ∧ σ ⊗ inv τ ∈ set-inv U
for σ τ

proof −
have τ ⊗ inv σ = inv (σ ⊗ inv τ) using that inv-mult-group by auto

from this have τ ⊗ inv σ ∈ U using that inv-inv U-subset unfolding
SET-INV-def by auto

then show ?thesis using that hU by fast
qed
then have right-entourage (set-inv U) ⊆ E−1 by blast

moreover have neighborhood 1 (set-inv U) using inv-one hU open-set-inv-open
SET-INV-def by fastforce

ultimately show ?thesis using hE by auto
qed
moreover have ∃F . ?Φ F ∧ F O F ⊆ E
proof −

obtain V where hV : neighborhood 1 V ∧ V <#> V ⊆ U
using neighborhoods-of-1 hU by meson

let ?F = right-entourage V
have (σ,%) ∈ E if (σ,τ) ∈ ?F ∧ (τ ,%) ∈ ?F for σ τ %
proof −

have σ ∈ carrier G ∧ τ ∈ carrier G ∧ % ∈ carrier G using that by force
then have σ ⊗ inv % = (σ ⊗ inv τ) ⊗ (τ ⊗ inv %)

using m-assoc inv-closed m-closed l-inv r-one by metis
moreover have (σ ⊗ inv τ) ⊗ (τ ⊗ inv %) ∈ U using that hV unfolding

set-mult-def by fast
ultimately show ?thesis using hU that by force

qed
moreover have ?Φ ?F using hV by blast
ultimately show ?thesis using hV by auto

qed
moreover have ∀F . E ⊆ F ∧ F ⊆ carrier G × carrier G −→ ?Φ F using

hE by auto
ultimately show ?thesis by blast

25

qed
moreover have ?Φ (E ∩ F) if hEF : ?Φ E ∧ ?Φ F for E F
proof −

from hEF obtain U V where
hU : neighborhood 1 U ∧ right-entourage U ⊆ E and
hV : neighborhood 1 V ∧ right-entourage V ⊆ F
by presburger

then have neighborhood 1 (U ∩ V) ∧ right-entourage (U ∩ V) ⊆ E ∩ F by
fast

then show ?thesis using that by auto
qed
ultimately have uniformity-on (carrier G) ?Φ

unfolding uniformity-on-def by auto
from uniformity-inverse ′[OF this] show ?space-def and ?entourage-def unfold-

ing right-uniformity-def by auto
qed

lemma left-uniformity-induces-group-topology [simp]:
shows utopology left-uniformity = T

proof −
let ?Φ = left-uniformity
let ?T ′ = utopology ?Φ
have openin T U ←→ openin ?T ′ U for U
proof

assume U-open: openin T U
have ∃E . entourage-in ?Φ E ∧ E‘‘{σ} ⊆ U if hσ: σ ∈ U for σ
proof −

let ?E = left-entourage (inv σ <# U)
have in-group: σ ∈ carrier G using hσ U-open open-set-in-carrier by blast
then have openin T (inv σ <# U)

using inv-closed open-set-translations(1) U-open by presburger
then have neighborhood 1 (inv σ <# U)

using hσ in-group r-inv unfolding l-coset-def SET-INV-def by force
then have entourage-in ?Φ ?E unfolding entourage-left-uniformity by blast
moreover have τ ∈ U if τ ∈ ?E‘‘{σ} for τ
proof −

from that have inv σ ⊗ τ ∈ inv σ <# U by force
then obtain % where h%: % ∈ U ∧ inv σ ⊗ τ = inv σ ⊗ % unfolding

l-coset-def by fast
then have % ∈ carrier G ∧ τ ∈ carrier G using that open-set-in-carrier

U-open by fast
then have τ = % using in-group h% inv-closed by (metis Units-eq Units-l-cancel)

then show ?thesis using h% by simp
qed
ultimately show ?thesis by blast

qed
moreover have U ⊆ uspace ?Φ using openin-subset U-open by force
ultimately show openin ?T ′ U unfolding openin-utopology by force

next

26

assume U-open: openin ?T ′ U
have ∃W . neighborhood σ W ∧ W ⊆ U if hσ: σ ∈ U for σ
proof −
have in-group: σ ∈ carrier G using hσ U-open openin-subset topspace-utopology

by force
from U-open hσ obtain E where hE : entourage-in ?Φ E ∧ E‘‘{σ} ⊆ U

unfolding openin-utopology by blast
then obtain V where hV : neighborhood 1 V ∧ left-entourage V ⊆ E

unfolding entourage-left-uniformity by fastforce
let ?W = {τ ∈ carrier G. inv σ ⊗ τ ∈ V }
from hV have W-subset: ?W ⊆ E‘‘{σ} using in-group by fast
have continuous-map T T (λτ. inv σ ⊗ τ) using translations-continuous

in-group inv-closed by blast
then have openin T ?W using openin-continuous-map-preimage hV by

fastforce
then have neighborhood σ ?W using in-group r-inv hV by simp
then show ?thesis using W-subset hE by fast

qed
then show openin T U using openin-subopen by force

qed
then show ?thesis using topology-eq by blast

qed

lemma right-uniformity-induces-group-topology [simp]:
shows utopology right-uniformity = T

proof −
let ?Φ = right-uniformity
let ?T ′ = utopology ?Φ
have openin T U ←→ openin ?T ′ U for U
proof

assume U-open: openin T U
have ∃E . entourage-in ?Φ E ∧ E‘‘{σ} ⊆ U if hσ: σ ∈ U for σ
proof −

let ?E = right-entourage (σ <# set-inv U)
have in-group: σ ∈ carrier G using hσ U-open open-set-in-carrier by blast
then have openin T (σ <# set-inv U)

using open-set-inv-open open-set-translations(1) U-open by presburger
then have neighborhood 1 (σ <# set-inv U)

using hσ in-group r-inv unfolding l-coset-def SET-INV-def by force
then have entourage-in ?Φ ?E unfolding entourage-right-uniformity by blast
moreover have τ ∈ U if τ ∈ ?E‘‘{σ} for τ
proof −

from that have σ ⊗ inv τ ∈ σ <# set-inv U by force
then obtain % where h%: % ∈ U ∧ σ ⊗ inv τ = σ ⊗ inv %

unfolding l-coset-def SET-INV-def by fast
then have % ∈ carrier G ∧ τ ∈ carrier G using that open-set-in-carrier

U-open by fast
then have τ = % using in-group h% inv-closed by (metis Units-eq Units-l-cancel

inv-inv)

27

then show ?thesis using h% by simp
qed
ultimately show ?thesis by blast

qed
moreover have U ⊆ uspace ?Φ using openin-subset U-open by force
ultimately show openin ?T ′ U unfolding openin-utopology by force

next
assume U-open: openin ?T ′ U
have ∃W . neighborhood σ W ∧ W ⊆ U if hσ: σ ∈ U for σ
proof −
have in-group: σ ∈ carrier G using hσ U-open openin-subset topspace-utopology

by force
from U-open hσ obtain E where hE : entourage-in ?Φ E ∧ E‘‘{σ} ⊆ U

unfolding openin-utopology by blast
then obtain V where hV : neighborhood 1 V ∧ right-entourage V ⊆ E

unfolding entourage-right-uniformity by fastforce
let ?W = {τ ∈ carrier G. σ ⊗ inv τ ∈ V }
from hV have W-subset: ?W ⊆ E‘‘{σ} using in-group by fast
have (λτ. σ ⊗ inv τ) = (λτ. σ ⊗ τ) ◦ (λτ. inv τ) by fastforce

then have continuous-map T T (λτ. σ ⊗ inv τ) using continuous-map-compose
inv-continuous

translations-continuous[OF in-group] by metis
then have openin T ?W using openin-continuous-map-preimage hV by

fastforce
then have neighborhood σ ?W using in-group r-inv hV by simp
then show ?thesis using W-subset hE by fast

qed
then show openin T U using openin-subopen by force

qed
then show ?thesis using topology-eq by blast

qed

lemma translations-ucontinuous:
assumes in-group: σ ∈ carrier G
shows ucontinuous left-uniformity left-uniformity (λτ. σ ⊗ τ) and

ucontinuous right-uniformity right-uniformity (λτ. τ ⊗ σ)
proof −

let ?Φ = left-uniformity
have entourage-in ?Φ {(τ1, τ2) ∈ uspace ?Φ × uspace ?Φ. (σ ⊗ τ1, σ ⊗ τ2) ∈

E}
if hE : entourage-in ?Φ E for E

proof −
let ?F = {(τ1, τ2) ∈ uspace ?Φ × uspace ?Φ. (σ ⊗ τ1, σ ⊗ τ2) ∈ E}
from hE obtain U where hU : neighborhood 1 U ∧ left-entourage U ⊆ E

unfolding entourage-left-uniformity by auto
have (τ1, τ2) ∈ ?F if τ1 ∈ carrier G ∧ τ2 ∈ carrier G ∧ inv τ1 ⊗ τ2 ∈ U for

τ1 τ2
proof −

have inv (σ ⊗ τ1) ⊗ (σ ⊗ τ2) = inv τ1 ⊗ τ2

28

using that in-group m-closed inv-closed inv-mult-group m-assoc r-inv r-one
by (smt (verit, ccfv-threshold))

then have (σ ⊗ τ1, σ ⊗ τ2) ∈ E using that hU in-group m-closed by fastforce
then show ?thesis using that by auto

qed
then have left-entourage U ⊆ ?F by force
then show ?thesis unfolding entourage-left-uniformity using hU by auto

qed
moreover have (λτ. σ ⊗ τ) ∈ uspace ?Φ → uspace ?Φ

unfolding Pi-def using uspace-left-uniformity in-group m-closed by force
ultimately show ucontinuous ?Φ ?Φ (λτ. σ ⊗ τ)

unfolding ucontinuous-def by fast
next

let ?Φ = right-uniformity
have entourage-in ?Φ {(τ1, τ2) ∈ uspace ?Φ × uspace ?Φ. (τ1 ⊗ σ, τ2 ⊗ σ) ∈

E}
if hE : entourage-in ?Φ E for E

proof −
let ?F = {(τ1, τ2) ∈ uspace ?Φ × uspace ?Φ. (τ1 ⊗ σ, τ2 ⊗ σ) ∈ E}
from hE obtain U where hU : neighborhood 1 U ∧ right-entourage U ⊆ E

unfolding entourage-right-uniformity by auto
have (τ1, τ2) ∈ ?F if τ1 ∈ carrier G ∧ τ2 ∈ carrier G ∧ τ1 ⊗ inv τ2 ∈ U for

τ1 τ2
proof −

have (τ1 ⊗ σ) ⊗ inv (τ2 ⊗ σ) = τ1 ⊗ inv τ2
using that in-group m-closed inv-closed inv-mult-group m-assoc r-inv r-one
by (smt (verit, ccfv-threshold))

then have (τ1 ⊗ σ, τ2 ⊗ σ) ∈ E using that hU in-group m-closed by fastforce
then show ?thesis using that by simp

qed
then have right-entourage U ⊆ ?F by force
then show ?thesis unfolding entourage-right-uniformity using hU by auto

qed
moreover have (λτ. τ ⊗ σ) ∈ uspace ?Φ → uspace ?Φ

unfolding Pi-def using entourage-right-uniformity in-group m-closed by force
ultimately show ucontinuous ?Φ ?Φ (λτ. τ ⊗ σ)

unfolding ucontinuous-def by fast
qed

2.5 The Birkhoff-Kakutani theorem
2.5.1 Prenorms on groups
definition group-prenorm :: (′g ⇒ real) ⇒ bool where
group-prenorm N ←→

N 1 = 0 ∧
(∀σ τ. σ ∈ carrier G ∧ τ ∈ carrier G −→ N (σ ⊗ τ) ≤ N σ + N τ) ∧
(∀σ ∈ carrier G. N (inv σ) = N σ)

lemma group-prenorm-clauses[elim]:

29

assumes group-prenorm N
obtains

N 1 = 0 and∧
σ τ. σ ∈ carrier G =⇒ τ ∈ carrier G =⇒ N (σ ⊗ τ) ≤ N σ + N τ and∧
σ. σ ∈ carrier G =⇒ N (inv σ) = N σ

using assms unfolding group-prenorm-def by auto

proposition group-prenorm-nonnegative:
assumes prenorm: group-prenorm N
shows ∀σ ∈ carrier G. N σ ≥ 0

proof
fix σ assume σ ∈ carrier G
from r-inv this have 0 ≤ N σ + N σ using assms inv-closed group-prenorm-clauses

by metis
then show N σ ≥ 0 by fastforce

qed

proposition group-prenorm-reverse-triangle-ineq:
assumes prenorm: group-prenorm N and in-group: σ ∈ carrier G ∧ τ ∈ carrier

G
shows |N σ − N τ | ≤ N (σ ⊗ inv τ)

proof −
have σ = σ ⊗ inv τ ⊗ τ using in-group inv-closed r-one l-inv m-assoc by metis
then have a: N σ ≤ N (σ ⊗ inv τ) + N τ using in-group inv-closed m-closed

prenorm group-prenorm-clauses by metis
have inv τ = inv σ ⊗ (σ ⊗ inv τ) using in-group inv-closed l-one l-inv m-assoc

by metis
then have b: N τ ≤ N σ + N (σ ⊗ inv τ) using in-group inv-closed m-closed

prenorm group-prenorm-clauses by metis
from a b show ?thesis by linarith

qed

definition induced-group-prenorm :: (′g ⇒ real) ⇒ ′g ⇒ real where
induced-group-prenorm f σ = (SUP τ ∈ carrier G. |f (τ ⊗ σ) − f τ |)

lemma induced-group-prenorm-welldefined:
fixes f :: ′g ⇒ real
assumes f-bounded: ∃ c.∀ τ ∈ carrier G. |f τ | ≤ c and in-group: σ ∈ carrier G
shows bdd-above ((λτ. |f (τ ⊗ σ) − f τ |)‘(carrier G))

proof −
from f-bounded obtain c where hc: ∀ τ ∈ carrier G. |f τ | ≤ c by blast
have |f (τ ⊗ σ) − f τ | ≤ 2∗c if τ ∈ carrier G for τ
proof −

have |f (τ ⊗ σ) − f τ | ≤ |f (τ ⊗ σ)| + |f τ | using abs-triangle-ineq by simp
then show ?thesis using in-group that m-closed f-bounded hc by (smt (verit,

best))
qed
then show ?thesis unfolding bdd-above-def image-def by blast

qed

30

lemma bounded-function-induces-group-prenorm:
fixes f :: ′g ⇒ real
assumes f-bounded: ∃ c.∀σ ∈ carrier G. |f σ| ≤ c
shows group-prenorm (induced-group-prenorm f)

proof −
let ?N = λσ. SUP τ ∈ carrier G. |f (τ ⊗ σ) − f τ |
have ?N 1 = (SUP τ ∈ carrier G. 0) using r-one by simp
then have ?N 1 = 0 using carrier-not-empty by simp
moreover have ?N (σ ⊗ τ) ≤ ?N σ + ?N τ if hστ : σ ∈ carrier G ∧ τ ∈ carrier

G for σ τ
proof −

have |f (% ⊗ (σ ⊗ τ)) − f %| ≤ ?N σ + ?N τ if % ∈ carrier G for %
proof −

have a: |f (% ⊗ (σ ⊗ τ)) − f %| ≤ |f (% ⊗ (σ ⊗ τ)) − f (% ⊗ σ)| + |f (% ⊗
σ) − f %|

using abs-triangle-ineq by linarith
have |f (% ⊗ σ ⊗ τ) − f (% ⊗ σ)| ≤ ?N τ

using induced-group-prenorm-welldefined[OF f-bounded] that hστ m-closed
cSUP-upper by meson

then have b: |f (% ⊗ (σ ⊗ τ)) − f (% ⊗ σ)| ≤ ?N τ using m-assoc that hστ
by simp

have c: |f (% ⊗ σ) − f %| ≤ ?N σ using induced-group-prenorm-welldefined[OF
f-bounded] hστ that cSUP-upper by meson

from a b c show ?thesis by argo
qed
then show ?thesis using cSUP-least carrier-not-empty by meson

qed
moreover have ?N (inv σ) = ?N σ if hσ: σ ∈ carrier G for σ
proof −

have |f (τ ⊗ inv σ) − f τ | ∈ {|f (% ⊗ σ) − f %| | %. % ∈ carrier G } if τ ∈
carrier G for τ

proof −
have |f (τ ⊗ inv σ) − f τ | = |f (τ ⊗ inv σ) − f (τ ⊗ inv σ ⊗ σ)|

using hσ that m-assoc r-one l-inv by simp
then have |f (τ ⊗ inv σ) − f τ | = |f (τ ⊗ inv σ ⊗ σ) − f (τ ⊗ inv σ)| by

argo
then show ?thesis using hσ that m-closed by blast

qed
moreover
have |f (% ⊗ σ) − f %| ∈ {|f (τ ⊗ inv σ) − f τ | | τ . τ ∈ carrier G } if % ∈

carrier G for %
proof −

have |f (% ⊗ σ) − f %| = |f (% ⊗ σ) − f (% ⊗ σ ⊗ inv σ)|
using hσ that m-assoc r-one r-inv by simp

then have |f (% ⊗ σ) − f %| = |f (% ⊗ σ ⊗ inv σ) − f (% ⊗ σ)| by argo
then show ?thesis using hσ that by blast

qed
ultimately have {|f (τ ⊗ inv σ) − f τ | | τ . τ ∈ carrier G} = {|f (% ⊗ σ) −

31

f %| | %. % ∈ carrier G} by blast
then show ?thesis by (simp add: setcompr-eq-image)

qed
ultimately show ?thesis unfolding induced-group-prenorm-def group-prenorm-def

by fast
qed

lemma neighborhood-1-translation:
assumes neighborhood 1 U and σ ∈ carrier G ∨ σ ∈ topspace T
shows neighborhood σ (σ <# U)

proof −
have openin T (σ <# U) using assms open-set-translations(1) by simp
then show ?thesis unfolding l-coset-def using assms r-one by force

qed

proposition group-prenorm-continuous-if-continuous-at-1 :
assumes prenorm: group-prenorm N and

continuous-at-1 : ∀ ε>0 .∃U . neighborhood 1 U ∧ (∀σ∈U . N σ < ε)
shows continuous-map T euclideanreal N

proof −
have ∃V . neighborhood σ V ∧ (∀ τ∈V . N τ ∈ Met-TC .mball (N σ) ε)

if hσ: σ ∈ topspace T and hε: ε > 0 for σ ε
proof −

from continuous-at-1 obtain U where hU : neighborhood 1 U ∧ (∀ τ∈U . N τ
< ε) using hε by presburger

then have neighborhood σ (σ <# U) using hσ neighborhood-1-translation by
blast

moreover have N (σ ⊗ τ) ∈ Met-TC .mball (N σ) ε if τ ∈ U for τ
proof −

have in-group: σ ∈ carrier G ∧ τ ∈ carrier G using hσ that openin-subset
hU by blast

then have (inv σ) ⊗ (σ ⊗ τ) = τ using l-inv l-one m-assoc inv-closed by
metis

then have |N (inv σ) − N (inv (σ ⊗ τ))| ≤ N τ using group-prenorm-reverse-triangle-ineq

in-group inv-closed m-closed by (metis inv-inv prenorm)
then have |N σ − N (σ ⊗ τ)| < ε

using prenorm in-group m-closed inv-closed hU that by fastforce
then show ?thesis unfolding Met-TC .mball-def dist-real-def by fast

qed
ultimately show ?thesis unfolding l-coset-def by blast

qed
then show ?thesis using Metric-space.continuous-map-to-metric

by (metis Met-TC .Metric-space-axioms mtopology-is-euclidean)
qed

2.5.2 A prenorm respecting the group topology
context

32

fixes U :: nat ⇒ ′g set
assumes U-neighborhood: ∀n. neighborhood 1 (U n)
assumes U-props: ∀n. symmetric (U n) ∧ (U (n + 1)) <#> (U (n + 1)) ⊆

(U n)
begin

private fun V :: nat ⇒ nat ⇒ ′g set where
V m n = (

if m = 0 then {} else
if m = 1 then U n else
if m > 2^n then carrier G else
if even m then V (m div 2) (n − 1) else
V ((m − 1) div 2) (n − 1) <#> U n

)

private lemma U-in-group: U k ⊆ carrier G using U-neighborhood open-set-in-carrier
by fast

private lemma V-in-group:
shows V m n ⊆ carrier G

proof (induction n arbitrary: m)
case (Suc n)
then have V ((m − 1) div 2) n <#> U (Suc n) ⊆ carrier G

unfolding set-mult-def using U-in-group by fast
then show ?case using U-in-group Suc by simp

qed (auto simp: U-in-group)

private lemma V-mult:
shows m ≥ 1 =⇒ V m n <#> U n ⊆ V (m + 1) n

proof (induction n arbitrary: m)
case 0
then have V (m + 1) 0 = carrier G by simp
then show ?case unfolding set-mult-def using V-in-group U-in-group by fast

next
case (Suc n)
then show ?case
proof (cases m + 1 > 2^(Suc n))

case True
then have V (m + 1) (Suc n) = carrier G by force
then show ?thesis unfolding set-mult-def using V-in-group U-in-group by

blast
next

case m-in-bounds: False
then show ?thesis
proof (cases m = 1)

case True
then show ?thesis using U-in-group U-props by force

next
case m-not-1 : False

33

then show ?thesis
proof (cases even m)

case True
then have V m (Suc n) <#> U (Suc n) = V (m + 1) (Suc n) using

m-in-bounds m-not-1 Suc(2) by auto
then show ?thesis by blast

next
case m-odd: False
have U-mult: U (Suc n) <#> U (Suc n) ⊆ U n using U-props by simp

have not-zero: (m − 1) div 2 ≥ 1 using Suc(2) m-not-1 m-odd by presburger
have arith: (m − 1) div 2 + 1 = (m + 1) div 2 using Suc(2) by simp
have V m (Suc n) <#> U (Suc n) = V ((m − 1) div 2) n <#> U (Suc

n) <#> U (Suc n) using m-odd m-in-bounds m-not-1 Suc(2) by simp
also have ... = V ((m − 1) div 2) n <#> (U (Suc n) <#> U (Suc n))

using set-mult-assoc V-in-group U-in-group by simp
also have ... ⊆ V ((m − 1) div 2) n <#> U n using mono-set-mult U-mult

by blast
also have ... ⊆ V ((m − 1) div 2 + 1) n using Suc(1) not-zero by blast
also have ... = V ((m + 1) div 2) n using arith by presburger
also have ... = V (m + 1) (Suc n) using m-odd m-not-1 m-in-bounds

Suc(2) by simp
finally show ?thesis by blast

qed
qed

qed
qed

private lemma V-mono:
assumes smaller : (real m1)/2^n1 ≤ (real m2)/2^n2 and not-zero: m1 ≥ 1 ∧ m2

≥ 1
shows V m1 n1 ⊆ V m2 n2

proof −
have V m n ⊆ V (m + 1) n if m ≥ 1 for m n
proof −
have V m n <#> U n ⊆ V (m + 1) n using V-mult U-props that by presburger

moreover have V m n ⊆ carrier G ∧ U n ⊆ carrier G using U-in-group
V-in-group by auto

ultimately show ?thesis using set-mult-one-subset U-neighborhood by blast
qed
then have subset-suc: V m n ⊆ V (m + 1) n for m n by simp
have V m n ⊆ V (m + k) n for m n k
proof (induction k)

case (Suc k)
then show ?case unfolding Suc-eq-plus1 using subset-suc Suc

by (metis (no-types, opaque-lifting) add.assoc dual-order .trans)
qed (simp)
then have a: V m n ⊆ V m ′ n if m ′ ≥ m for m m ′ n using that le-Suc-ex by

blast
have b: V m n = V (m ∗ 2^k) (n+k) if m ≥ 1 for m n k

34

proof (induction k)
case (Suc k)
have V (m ∗ 2^k ∗ 2) (n + k + 1) = V (m ∗ 2^k) (n + k) using that by

simp
then show ?case unfolding Suc-eq-plus1 using Suc by simp

qed (auto)
show ?thesis
proof (cases n1 ≤ n2)

case True
have (real m1)/2^n1 = (real (m1 ∗ 2^(n2 − n1)))/(2^n1 ∗ 2^(n2 − n1)) by

fastforce
also have ... = (real (m1 ∗ 2^(n2 − n1)))/2^n2 using True by (metis

le-add-diff-inverse power-add)
finally have (real (m1 ∗ 2^(n2 − n1)))/2^n2 ≤ (real m2)/2^n2 using smaller

by fastforce
then have ineq: m1 ∗ 2^(n2 − n1) ≤ m2

by (smt (verit) divide-cancel-right divide-right-mono linorder-le-cases of-nat-eq-iff
of-nat-mono order-antisym-conv power-not-zero zero-le-power)

from b have V m1 n1 = V (m1 ∗ 2^(n2 − n1)) (n1 + (n2 − n1)) using
not-zero by blast

also have ... = V (m1 ∗ 2^(n2 − n1)) n2 using True by force
finally show ?thesis using a[OF ineq] by blast

next
case False
then have n2-leq-n1: n2 ≤ n1 by simp
have (real m2)/2^n2 = (real (m2 ∗ 2^(n1 − n2)))/(2^n2 ∗ 2^(n1 − n2)) by

fastforce
also have ... = (real (m2 ∗ 2^(n1 − n2)))/2^n1 using n2-leq-n1 by (metis

le-add-diff-inverse power-add)
finally have (real (m2 ∗ 2^(n1 − n2)))/2^n1 ≥ (real m1)/2^n1 using smaller

by fastforce
then have ineq: m2 ∗ 2^(n1 − n2) ≥ m1

by (smt (verit) divide-cancel-right divide-right-mono linorder-le-cases of-nat-eq-iff
of-nat-mono order-antisym-conv power-not-zero zero-le-power)

from b have V m2 n2 = V (m2 ∗ 2^(n1 − n2)) (n2 + (n1 − n2)) using
not-zero by blast

also have ... = V (m2 ∗ 2^(n1 − n2)) n1 using n2-leq-n1 by force
finally show ?thesis using a[OF ineq] by blast

qed
qed

private lemma approx-number-by-multiples:
assumes hx: x ≥ 0 and hc: c > 0
shows ∃ k :: nat ≥ 1 . (real (k−1))/c ≤ x ∧ x < (real k)/c

proof −
let ?k = bx ∗ cc + 1
have ?k ≥ 1 using assms by simp
moreover from this have real (nat ?k) = ?k by auto
moreover have (?k−1)/c ≤ x ∧ x < ?k/c

35

using assms by (simp add: mult-imp-div-pos-le pos-less-divide-eq)
ultimately show ?thesis

by (smt (verit) nat-diff-distrib nat-le-eq-zle nat-one-as-int of-nat-nat)
qed

lemma construction-of-prenorm-respecting-topology:
shows ∃N . group-prenorm N ∧
(∀n. {σ ∈ carrier G. N σ < 1/2^n} ⊆ U n) ∧
(∀n. U n ⊆ {σ ∈ carrier G. N σ ≤ 2/2^n})

proof −
define f :: ′g ⇒ real where f σ = Inf {(real m)/2^n | m n. σ ∈ V m n} for σ
define N :: ′g ⇒ real where N = induced-group-prenorm f

have σ ∈ V 2 0 if σ ∈ carrier G for σ using that by auto
then have contains-2 : (real 2)/2^0 ∈ {(real m)/2^n | m n. σ ∈ V m n} if σ ∈

carrier G for σ using that by blast
then have nonempty: {(real m)/2^n | m n. σ ∈ V m n} 6= {} if σ ∈ carrier G

for σ using that by fast
have positive: (real m)/2^n ≥ 0 for m n by simp
then have bdd-below: bdd-below {(real m)/2^n | m n. σ ∈ V m n} for σ by fast
have f-bounds: 0 ≤ f σ ∧ f σ ≤ 2 if hσ: σ ∈ carrier G for σ
proof −

from bdd-below have f σ ≤ (real 2)/2^0 unfolding f-def using cInf-lower
contains-2 [OF hσ] by meson

moreover have 0 ≤ f σ using cInf-greatest contains-2 [OF hσ] unfolding
f-def using positive

by (smt (verit, del-insts) Collect-mem-eq empty-Collect-eq mem-Collect-eq)
ultimately show ?thesis by fastforce

qed
then have N-welldefined: bdd-above ((λτ. |f (τ ⊗ σ) − f τ |) ‘ carrier G) if σ ∈

carrier G for σ
using induced-group-prenorm-welldefined that by (metis (full-types) abs-of-nonneg)

have in-V-if-f-smaller : σ ∈ V m n if hσ: σ ∈ carrier G and smaller : f σ < (real
m)/2^n for σ m n

proof −
from cInf-lessD obtain q where hq: q ∈ {(real m)/2^n | m n. σ ∈ V m n} ∧

q < (real m)/2^n
using smaller nonempty[OF hσ] unfolding f-def by (metis (mono-tags,

lifting))
then obtain m ′ n ′ where hm ′n ′: σ ∈ V m ′ n ′ ∧ q = (real m ′)/2^n ′ by fast
moreover have m ′ ≥ 1
proof (rule ccontr)

assume ¬ m ′ ≥ 1
then have V m ′ n ′ = {} by force
then show False using hm ′n ′ by blast

qed
moreover have m ≥ 1 using f-bounds smaller hσ

by (metis divide-eq-0-iff less-numeral-extra(3) less-one linorder-le-less-linear

36

nle-le of-nat-0 order-less-imp-le)
ultimately have V m ′ n ′⊆ V m n using V-mono hq U-props open-set-in-carrier

by simp
then show ?thesis using hm ′n ′ by fast

qed
have f-1-vanishes: f 1 = 0
proof (rule ccontr)

assume f 1 6= 0
then have f 1 > 0 using f-bounds by fastforce
then obtain n where hn: f 1 > (real 1)/2^n
by (metis divide-less-eq-1 of-nat-1 one-less-numeral-iff power-one-over real-arch-pow-inv

semiring-norm(76) zero-less-numeral)
have 1 ∈ V 1 n using U-neighborhood by simp
then have (real 1)/2^n ∈ {(real m)/2^n |m n. 1 ∈ V m n} by fast
then show False using hn cInf-lower bdd-below[of 1] unfolding f-def by (smt

(verit, ccfv-threshold))
qed
have in-U-if-N-small: σ ∈ U n if in-group: σ ∈ carrier G and N-small: N σ <

1/2^n for σ n
proof −

have f σ = |f (1 ⊗ σ) − f 1| using in-group l-one f-1-vanishes f-bounds by
force

moreover have ... ≤ N σ unfolding N-def induced-group-prenorm-def
using cSUP-upper N-welldefined[OF in-group] by (metis (mono-tags, lifting)

one-closed)
ultimately have σ ∈ V 1 n using in-V-if-f-smaller [OF in-group] N-small by

(smt (verit) of-nat-1)
then show ?thesis by fastforce

qed
have N-bounds: N σ ≤ 2/2^n if hσ: σ ∈ U n for σ n
proof −

have diff-bounded: f (τ ⊗ σ) − f τ ≤ 2/2^n ∧ f (τ ⊗ inv σ) − f τ ≤ 2/2^n
if hτ : τ ∈ carrier G for τ

proof −
obtain k where hk: k ≥ 1 ∧ (real (k−1))/2^n ≤ f τ ∧ f τ < (real k)/2^n

using approx-number-by-multiples[of f τ 2^n] f-bounds[OF hτ] by auto
then have τ ∈ V k n using in-V-if-f-smaller [OF hτ] by blast
moreover have σ ∈ V 1 n ∧ inv σ ∈ V 1 n using hσ U-props by auto
moreover have V k n <#> V 1 n ⊆ V (k + 1) n

using V-mult U-props open-set-in-carrier hk by auto
ultimately have τ ⊗ σ ∈ V (k + 1) n ∧ τ ⊗ inv σ ∈ V (k + 1) n

unfolding set-mult-def by fast
then have a: (real (k + 1))/2^n ∈ {(real m)/2^n | m n. τ ⊗ σ ∈ V m n}
∧ (real (k + 1))/2^n ∈ {(real m)/2^n | m n. τ ⊗ inv σ ∈ V m n} by fast

then have f (τ ⊗ σ) ≤ (real (k + 1))/2^n
unfolding f-def using cInf-lower [of (real (k + 1))/2^n] bdd-below by

presburger
moreover from a have f (τ ⊗ inv σ) ≤ (real (k + 1))/2^n

unfolding f-def using cInf-lower [of (real (k + 1))/2^n] bdd-below by

37

presburger
ultimately show ?thesis using hk

by (smt (verit, ccfv-SIG) diff-divide-distrib of-nat-1 of-nat-add of-nat-diff)
qed
have |f (% ⊗ σ) − f %| ≤ 2/2^n if h%: % ∈ carrier G for %
proof −

have in-group: σ ∈ carrier G using hσ U-in-group by fast
then have f (% ⊗ σ ⊗ inv σ) − f (% ⊗ σ) ≤ 2/2^n using diff-bounded[of %

⊗ σ] h% m-closed by fast
moreover have % ⊗ σ ⊗ inv σ = % using m-assoc r-inv r-one in-group

inv-closed h% by presburger
ultimately have f % − f (% ⊗ σ) ≤ 2/2^n by force
moreover have f (% ⊗ σ) − f % ≤ 2/2^n using diff-bounded[OF h%] by fast
ultimately show ?thesis by force

qed
then show ?thesis unfolding N-def induced-group-prenorm-def using cSUP-least

carrier-not-empty by meson
qed
then have U n ⊆ {σ ∈ carrier G. N σ ≤ 2/2^n} for n using U-in-group by

blast
moreover have group-prenorm N unfolding N-def
using bounded-function-induces-group-prenorm f-bounds by (metis abs-of-nonneg)

ultimately show ?thesis using in-U-if-N-small by blast
qed
end

2.5.3 Proof of Birkhoff-Kakutani
lemma first-countable-neighborhoods-of-1-sequence:

assumes first-countable T
shows ∃U :: nat ⇒ ′g set.
(∀n. neighborhood 1 (U n) ∧ symmetric (U n) ∧ U (n + 1) <#> U (n + 1)

⊆ U n) ∧
(∀W . neighborhood 1 W −→ (∃n. U n ⊆ W))

proof −
from assms obtain B where hB:

countable B ∧ (∀W∈B. openin T W) ∧ (∀U . neighborhood 1 U −→ (∃W∈B.
1 ∈ W ∧ W ⊆ U))

unfolding first-countable-def by fastforce
define B :: ′g set set where B = insert (carrier G) {W ∈ B. 1 ∈ W }
define B :: nat ⇒ ′g set where B = from-nat-into B
have B 6= {} ∧ (∀W∈B. neighborhood 1 W) unfolding B-def using hB

by (metis group-is-space insert-iff insert-not-empty mem-Collect-eq one-closed
openin-topspace)

then have B-neighborhood: ∀n. neighborhood 1 (B n) unfolding B-def by (simp
add: from-nat-into)

define P where P n V ←→ V ⊆ B n ∧ neighborhood 1 V ∧ symmetric V for
n V

define Q where Q (n :: nat) V W ←→ W <#> W ⊆ V for n V W

38

have ∃V . P 0 V
proof −

obtain W where neighborhood 1 W ∧ symmetric W ∧ W <#> W ⊆ B 0
using neighborhoods-of-1 B-neighborhood by fastforce

moreover from this have W ⊆ B 0 using set-mult-one-subset open-set-in-carrier
by blast

ultimately show ?thesis unfolding P-def by auto
qed
moreover have ∃W . P (Suc n) W ∧ Q n V W if P n V for n V
proof −

have neighborhood 1 (V ∩ B (Suc n)) using B-neighborhood that unfolding
P-def by auto

then obtain W where neighborhood 1 W ∧ symmetric W ∧ W <#> W ⊆
V ∩ B (Suc n)

using neighborhoods-of-1 by fastforce
moreover from this have W ⊆ B (Suc n)

using set-mult-one-subset[of W W] open-set-in-carrier [of W] by fast
ultimately show ?thesis unfolding P-def Q-def by auto

qed
ultimately obtain U where hU : ∀n. P n (U n) ∧ Q n (U n) (U (Suc n))

using dependent-nat-choice by metis
moreover have ∃n. U n ⊆ W if neighborhood 1 W for W
proof −

from that obtain W ′ where hW ′: W ′ ∈ B ∧ 1 ∈ W ′ ∧ W ′ ⊆ W using hB
by blast

then have W ′ ∈ B ∧ countable B unfolding B-def using hB by simp
then obtain n where B n = W ′ unfolding B-def using from-nat-into-to-nat-on

by fast
then show ?thesis using hW ′ hU unfolding P-def by blast

qed
ultimately show ?thesis unfolding P-def Q-def by auto

qed

definition left-invariant-metric ∆ ←→ Metric-space (carrier G) ∆ ∧
(∀σ τ %. σ ∈ carrier G ∧ τ ∈ carrier G ∧ % ∈ carrier G −→ ∆ (% ⊗ σ) (% ⊗ τ)

= ∆ σ τ)

definition right-invariant-metric ∆ ←→ Metric-space (carrier G) ∆ ∧
(∀σ τ %. σ ∈ carrier G ∧ τ ∈ carrier G ∧ % ∈ carrier G −→ ∆ (σ ⊗ %) (τ ⊗ %)

= ∆ σ τ)

lemma left-invariant-metricE :
assumes left-invariant-metric ∆ σ ∈ carrier G τ ∈ carrier G % ∈ carrier G
shows ∆ (% ⊗ σ) (% ⊗ τ) = ∆ σ τ
using assms unfolding left-invariant-metric-def by blast

lemma right-invariant-metricE :
assumes right-invariant-metric ∆ σ ∈ carrier G τ ∈ carrier G % ∈ carrier G
shows ∆ (σ ⊗ %) (τ ⊗ %) = ∆ σ τ

39

using assms unfolding right-invariant-metric-def by blast

theorem Birkhoff-Kakutani-left:
assumes Hausdorff : Hausdorff-space T and first-countable: first-countable T
shows ∃∆. left-invariant-metric ∆ ∧ Metric-space.mtopology (carrier G) ∆ = T

proof −
from first-countable obtain U :: nat ⇒ ′g set where

U-props: ∀n. neighborhood 1 (U n) ∧ symmetric (U n) ∧ U (n + 1) <#> U
(n + 1) ⊆ U n and

neighborhood-base: ∀W . neighborhood 1 W −→ (∃n. U n ⊆ W)
using first-countable-neighborhoods-of-1-sequence by auto

from U-props obtain N where
prenorm: group-prenorm N and
norm-ball-in-U : ∀n. {σ ∈ carrier G. N σ < 1/2^n} ⊆ U n and
U-in-norm-ball: ∀n. U n ⊆ {σ ∈ carrier G. N σ ≤ 2/2^n}
using construction-of-prenorm-respecting-topology by meson

have continuous: continuous-map T euclideanreal N using prenorm
proof (rule group-prenorm-continuous-if-continuous-at-1 , intro allI impI)

fix ε :: real assume ε > 0
then obtain n where hn: 1/2^n < ε
by (metis divide-less-eq-1-pos one-less-numeral-iff power-one-over real-arch-pow-inv

semiring-norm(76) zero-less-numeral)
then have N σ < ε if σ ∈ U (n + 1) for σ using that U-in-norm-ball by

fastforce
then show ∃U . neighborhood 1 U ∧ (∀σ∈U . N σ < ε) using U-props by

meson
qed
let ?B = λε. {σ ∈ carrier G. N σ < ε}
let ?∆ = λσ τ. N (inv σ ⊗ τ)
let ?δ = λσ τ. if σ ∈ carrier G ∧ τ ∈ carrier G then ?∆ σ τ else 42
have ?∆ σ τ ≥ 0 if σ ∈ carrier G ∧ τ ∈ carrier G for σ τ

using group-prenorm-nonnegative prenorm that by blast
moreover have ?∆ σ τ = ?∆ τ σ if σ ∈ carrier G ∧ τ ∈ carrier G for σ τ
proof −

have inv τ ⊗ σ = inv (inv σ ⊗ τ) using inv-mult-group inv-inv that by auto
then show ?thesis using prenorm that by fastforce

qed
moreover have ?∆ σ τ = 0 ←→ σ = τ if σ ∈ carrier G ∧ τ ∈ carrier G for

σ τ
proof

assume ?∆ σ τ = 0
then have inv σ ⊗ τ ∈ U n for n using norm-ball-in-U that by fastforce

then have inv σ ⊗ τ ∈W if neighborhood 1 W for W using neighborhood-base
that by auto

then have inv σ ⊗ τ = 1 using Hausdorff-space-sing-Inter-opens[of T 1]
Hausdorff by blast

then show σ = τ using inv-comm inv-equality that by fastforce
next

assume σ = τ

40

then show ?∆ σ τ = 0 using that prenorm by force
qed
moreover have ?∆ σ % ≤ ?∆ σ τ + ?∆ τ % if σ ∈ carrier G ∧ τ ∈ carrier G
∧ % ∈ carrier G for σ τ %

proof −
have inv σ ⊗ % = (inv σ ⊗ τ) ⊗ (inv τ ⊗ %) using m-assoc[symmetric] that

by (simp add: inv-solve-right)
then show ?thesis using prenorm that by auto

qed
ultimately have metric: Metric-space (carrier G) ?δ unfolding Metric-space-def

by auto
then interpret Metric-space carrier G ?δ by blast
have ?∆ (% ⊗ σ) (% ⊗ τ) = ?∆ σ τ if σ ∈ carrier G ∧ τ ∈ carrier G ∧ % ∈

carrier G for σ τ %
proof −

have inv σ ⊗ τ = inv (% ⊗ σ) ⊗ (% ⊗ τ) using that m-assoc[symmetric] by
(simp add: inv-solve-left inv-solve-right)

then show ?thesis by simp
qed
then have left-invariant: left-invariant-metric ?δ

unfolding left-invariant-metric-def using metric by auto
have mball-coset-of-norm-ball: mball σ ε = σ <# ?B ε if hσ: σ ∈ carrier G for

σ ε
proof −

have mball σ ε = {τ ∈ carrier G. N (inv σ ⊗ τ) < ε} unfolding mball-def
using hσ by auto

also have ... = σ <# (?B ε)
proof −

have τ ∈ σ <# (?B ε) if τ ∈ carrier G ∧ N (inv σ ⊗ τ) < ε for τ
proof −
have σ ⊗ (inv σ ⊗ τ) = τ using hσ that by (metis inv-closed inv-solve-left

m-closed)
moreover have inv σ ⊗ τ ∈ ?B ε using hσ that by fastforce
ultimately show ?thesis unfolding l-coset-def by force

qed
moreover have τ ∈ carrier G ∧ N (inv σ ⊗ τ) < ε if τ ∈ σ <# (?B ε) for

τ
proof −

from that obtain % where % ∈ ?B ε ∧ τ = σ ⊗ % unfolding l-coset-def
by blast

moreover from this have inv σ ⊗ τ = % using hσ by (simp add:
inv-solve-left ′)

ultimately show ?thesis using hσ by simp
qed
ultimately show ?thesis by blast

qed
finally show ?thesis by presburger

qed
define ball where ball S ←→ (∃σ ε. σ ∈ carrier G ∧ S = mball σ ε) for S

41

have openin mtopology V if ball V for V using that unfolding ball-def by fast
moreover have ∃W . ball W ∧ σ ∈ W ∧ W ⊆ V if openin mtopology V ∧ σ ∈

V for σ V
unfolding ball-def using openin-mtopology that by (smt (verit, best) cen-

tre-in-mball-iff subset-iff)
ultimately have openin-metric: openin mtopology = arbitrary union-of ball

by (simp add: openin-topology-base-unique)
have openin T V if ball V for V
proof −

from that obtain σ ε where σ ∈ carrier G ∧ V = σ <# ?B ε
unfolding ball-def using mball-coset-of-norm-ball by blast

moreover have openin T (?B ε) using continuous
by (simp add: continuous-map-upper-lower-semicontinuous-lt)

ultimately show ?thesis using open-set-translations(1) by presburger
qed
moreover have ∃W . ball W ∧ σ ∈ W ∧ W ⊆ V if neighborhood σ V for σ V
proof −

from that have in-group: σ ∈ carrier G using open-set-in-carrier by fast
then have neighborhood 1 (inv σ <# V)

using l-coset-def open-set-translations(1) that l-inv by fastforce
then obtain n where U n ⊆ inv σ <# V using neighborhood-base by pres-

burger
then have ?B (1/2^n) ⊆ inv σ <# V using norm-ball-in-U by blast
then have σ <# ?B (1/2^n) ⊆ σ <# (inv σ <# V) unfolding l-coset-def

by fast
also have ... = V using in-group that open-set-in-carrier by (simp add:

lcos-m-assoc lcos-mult-one)
finally have mball σ (1/2^n) ⊆ V using mball-coset-of-norm-ball in-group by

blast
then show ?thesis unfolding ball-def
by (smt (verit) centre-in-mball-iff divide-pos-pos in-group one-add-one zero-less-power

zero-less-two)
qed
ultimately have openin T = arbitrary union-of ball by (simp add: openin-topology-base-unique)
then show ?thesis using left-invariant openin-metric topology-eq by fastforce

qed

theorem Birkhoff-Kakutani-right:
assumes Hausdorff : Hausdorff-space T and first-countable: first-countable T
shows ∃∆. right-invariant-metric ∆ ∧ Metric-space.mtopology (carrier G) ∆ =

T
proof −

from first-countable obtain U :: nat ⇒ ′g set where
U-props: ∀n. neighborhood 1 (U n) ∧ symmetric (U n) ∧ U (n + 1) <#> U

(n + 1) ⊆ U n and
neighborhood-base: ∀W . neighborhood 1 W −→ (∃n. U n ⊆ W)
using first-countable-neighborhoods-of-1-sequence by auto

from U-props obtain N where
prenorm: group-prenorm N and

42

norm-ball-in-U : ∀n. {σ ∈ carrier G. N σ < 1/2^n} ⊆ U n and
U-in-norm-ball: ∀n. U n ⊆ {σ ∈ carrier G. N σ ≤ 2/2^n}
using construction-of-prenorm-respecting-topology by meson

have continuous: continuous-map T euclideanreal N using prenorm
proof (rule group-prenorm-continuous-if-continuous-at-1 , intro allI impI)

fix ε :: real assume ε > 0
then obtain n where hn: 1/2^n < ε
by (metis divide-less-eq-1-pos one-less-numeral-iff power-one-over real-arch-pow-inv

semiring-norm(76) zero-less-numeral)
then have N σ < ε if σ ∈ U (n + 1) for σ using that U-in-norm-ball by

fastforce
then show ∃U . neighborhood 1 U ∧ (∀σ∈U . N σ < ε) using U-props by

meson
qed
let ?B = λε. {σ ∈ carrier G. N σ < ε}
let ?∆ = λσ τ. N (σ ⊗ inv τ)
let ?δ = λσ τ. if σ ∈ carrier G ∧ τ ∈ carrier G then ?∆ σ τ else 42
have ?∆ σ τ ≥ 0 if σ ∈ carrier G ∧ τ ∈ carrier G for σ τ

using group-prenorm-nonnegative prenorm that by blast
moreover have ?∆ σ τ = ?∆ τ σ if σ ∈ carrier G ∧ τ ∈ carrier G for σ τ
proof −

have τ ⊗ inv σ = inv (σ ⊗ inv τ) using inv-mult-group inv-inv that by auto
then show ?thesis using prenorm that by auto

qed
moreover have ?∆ σ τ = 0 ←→ σ = τ if σ ∈ carrier G ∧ τ ∈ carrier G for

σ τ
proof

assume ?∆ σ τ = 0
then have σ ⊗ inv τ ∈ U n for n using norm-ball-in-U that by fastforce

then have σ ⊗ inv τ ∈W if neighborhood 1 W for W using neighborhood-base
that by auto

then have σ ⊗ inv τ = 1 using Hausdorff-space-sing-Inter-opens[of T 1]
Hausdorff by blast

then show σ = τ using inv-equality that by fastforce
next

assume σ = τ
then show ?∆ σ τ = 0 using that prenorm by force

qed
moreover have ?∆ σ % ≤ ?∆ σ τ + ?∆ τ % if σ ∈ carrier G ∧ τ ∈ carrier G
∧ % ∈ carrier G for σ τ %

proof −
have σ ⊗ inv % = (σ ⊗ inv τ) ⊗ (τ ⊗ inv %) using m-assoc that by (simp

add: inv-solve-left)
then show ?thesis using prenorm that by auto

qed
ultimately have metric: Metric-space (carrier G) ?δ unfolding Metric-space-def

by auto
then interpret Metric-space carrier G ?δ by blast
have ?∆ (σ ⊗ %) (τ ⊗ %) = ?∆ σ τ if σ ∈ carrier G ∧ τ ∈ carrier G ∧ % ∈

43

carrier G for σ τ %
proof −

have σ ⊗ inv τ = (σ ⊗ %) ⊗ inv (τ ⊗ %) using that m-assoc by (simp add:
inv-solve-left inv-solve-right)

then show ?thesis by simp
qed
then have right-invariant: right-invariant-metric ?δ

unfolding right-invariant-metric-def using metric by auto
have mball-coset-of-norm-ball: mball σ ε = ?B ε #> σ if hσ: σ ∈ carrier G for

σ ε
proof −

have mball σ ε = {τ ∈ carrier G. N (σ ⊗ inv τ) < ε} unfolding mball-def
using hσ by auto

also have ... = (?B ε) #> σ
proof −

have τ ∈ (?B ε) #> σ if τ ∈ carrier G ∧ N (σ ⊗ inv τ) < ε for τ
proof −
have inv (σ ⊗ inv τ) ⊗ σ = τ using hσ that by (simp add: inv-mult-group

m-assoc)
moreover have inv (σ ⊗ inv τ) ∈ ?B ε using hσ that prenorm by fastforce
ultimately show ?thesis unfolding r-coset-def by force

qed
moreover have τ ∈ carrier G ∧ N (σ ⊗ inv τ) < ε if τ ∈ (?B ε) #> σ for

τ
proof −

from that obtain % where % ∈ ?B ε ∧ τ = % ⊗ σ unfolding r-coset-def
by blast

moreover from this have σ ⊗ inv τ = inv % using hσ
by (metis (no-types, lifting) inv-closed inv-mult-group inv-solve-left m-closed

mem-Collect-eq)
ultimately show ?thesis using hσ prenorm by fastforce

qed
ultimately show ?thesis by blast

qed
finally show ?thesis by presburger

qed
define ball where ball S ←→ (∃σ ε. σ ∈ carrier G ∧ S = mball σ ε) for S
have openin mtopology V if ball V for V using that unfolding ball-def by fast
moreover have ∃W . ball W ∧ σ ∈ W ∧ W ⊆ V if openin mtopology V ∧ σ ∈

V for σ V
unfolding ball-def using openin-mtopology that by (smt (verit, best) cen-

tre-in-mball-iff subset-iff)
ultimately have openin-metric: openin mtopology = arbitrary union-of ball

by (simp add: openin-topology-base-unique)
have openin T V if ball V for V
proof −

from that obtain σ ε where σ ∈ carrier G ∧ V = ?B ε #> σ
unfolding ball-def using mball-coset-of-norm-ball by blast

moreover have openin T (?B ε) using continuous

44

by (simp add: continuous-map-upper-lower-semicontinuous-lt)
ultimately show ?thesis using open-set-translations(2) by presburger

qed
moreover have ∃W . ball W ∧ σ ∈ W ∧ W ⊆ V if neighborhood σ V for σ V
proof −

from that have in-group: σ ∈ carrier G using open-set-in-carrier by fast
then have neighborhood 1 (V #> inv σ)

using r-coset-def open-set-translations(2) that r-inv by fastforce
then obtain n where U n ⊆ V #> inv σ using neighborhood-base by pres-

burger
then have ?B (1/2^n) ⊆ V #> inv σ using norm-ball-in-U by blast
then have ?B (1/2^n) #> σ ⊆ (V #> inv σ) #> σ unfolding r-coset-def

by fast
also have ... = V using in-group that open-set-in-carrier by (simp add:

coset-mult-assoc)
finally have mball σ (1/2^n) ⊆ V using mball-coset-of-norm-ball in-group by

blast
then show ?thesis unfolding ball-def
by (smt (verit) centre-in-mball-iff divide-pos-pos in-group one-add-one zero-less-power

zero-less-two)
qed
ultimately have openin T = arbitrary union-of ball by (simp add: openin-topology-base-unique)
then show ?thesis using right-invariant openin-metric topology-eq by fastforce

qed

corollary Birkhoff-Kakutani-iff :
shows metrizable-space T ←→ Hausdorff-space T ∧ first-countable T
using Birkhoff-Kakutani-left Metric-space.metrizable-space-mtopology metrizable-imp-Hausdorff-space

metrizable-imp-first-countable unfolding left-invariant-metric-def by metis

end

end

3 Examples of Topological Groups
theory Topological-Group-Examples

imports Topological-Group
begin

Summary This section gives examples of topological groups.
lemma (in group) discrete-topological-group:

shows topological-group G (discrete-topology (carrier G))
proof −

let ?T = discrete-topology (carrier G)
have topspace ?T = carrier G using topspace-discrete-topology by force
moreover have continuous-map (prod-topology ?T ?T) ?T (λ(σ,τ). σ ⊗ τ)

45

unfolding prod-topology-discrete-topology[symmetric] by auto
ultimately show ?thesis unfolding topological-group-def topological-group-axioms-def

by fastforce
qed

lemma topological-group-real-power-space:
defines R :: (real^ ′n) monoid ≡ (|carrier = UNIV , mult = (+), one = 0 |)
defines T :: (real^ ′n) topology ≡ euclidean
shows topological-group R T

proof −
have x ∈ Units R for x
proof −

have x ⊗R −x = 1R −x ⊗R x = 1R using R-def by auto
then show ?thesis unfolding Units-def R-def by fastforce

qed
then have group: group R by (unfold-locales) (auto simp: R-def)
then interpret group R by auto
have group-is-space: topspace T = carrier R

unfolding R-def T-def by force
have mul-continuous: continuous-map (prod-topology T T) T (λ(x,y). x ⊗R y)

using continuous-map-add[OF continuous-map-fst continuous-map-snd]
unfolding T-def R-def by (simp add: case-prod-beta ′)

have (−x) ⊗R x = 1R for x unfolding R-def by auto
then have invR x = −x for x using inv-equality R-def by simp
moreover have continuous-map T T uminus unfolding T-def by force
ultimately have continuous-map T T (λx. invR x) by simp
then show ?thesis using group-is-space mul-continuous group

unfolding topological-group-def topological-group-axioms-def by blast
qed

definition unit-group :: (′a :: field) monoid where
unit-group = (|carrier = UNIV − {0}, mult = (∗), one = 1 |)

lemma
group-unit-group: group unit-group and
inv-unit-group: x ∈ carrier unit-group =⇒ invunit-group x = inverse x

proof −
have x ∈ Units unit-group if x 6= 0 for x
proof −

have x ⊗unit-group 1/x = 1unit-group 1/x ⊗unit-group x = 1unit-group
using that unfolding unit-group-def by auto

then show ?thesis unfolding Units-def unit-group-def using that by fastforce
qed
then show group unit-group by (unfold-locales) (auto simp: unit-group-def)
then interpret group unit-group by blast
show invunit-group x = inverse x if x ∈ carrier unit-group

using that inv-equality[of inverse x] unfolding unit-group-def by simp
qed

46

lemma topological-group-real-unit-group:
defines T :: real topology ≡ subtopology euclidean (UNIV − {0})
shows topological-group unit-group T

proof −
let ?R = unit-group :: real monoid
have group-is-space: topspace T = carrier ?R unfolding unit-group-def T-def

by force
have continuous-map (prod-topology euclidean euclidean) euclidean (λ(x,y). x
⊗?R y)

using continuous-map-real-mult[OF continuous-map-fst continuous-map-snd]
unfolding T-def unit-group-def by (simp add: case-prod-beta ′)

then have continuous-map (prod-topology T T) euclideanreal (λ(x,y). x ⊗?R y)
unfolding T-def subtopology-Times[symmetric] using continuous-map-from-subtopology

by blast
moreover have (λ(x,y). x ⊗?R y) ∈ topspace (prod-topology T T) → UNIV −
{0}

unfolding T-def unit-group-def by fastforce
ultimately have mul-continuous: continuous-map (prod-topology T T) T (λ(x,y).

x ⊗?R y)
unfolding T-def using continuous-map-into-subtopology by blast

have continuous-map T euclideanreal inverse
using continuous-map-real-inverse[of T id] unfolding T-def by auto

moreover have inverse ∈ topspace T → topspace T unfolding T-def by fast-
force

ultimately have continuous-map T T inverse
unfolding T-def using continuous-map-into-subtopology by auto

then have continuous-map T T (λx. inv?R x)
using group-is-space continuous-map-eq inv-unit-group by metis

then show ?thesis using group-is-space mul-continuous group-unit-group
unfolding topological-group-def topological-group-axioms-def by blast

qed

end

4 Matrix groups
theory Matrix-Group

imports
Topological-Group
Topological-Group-Examples
HOL−Analysis.Determinants

begin

Summary In this section we define the general linear group and some of
its subgroups. We also introduce topologies on vector types and use them
to prove the aforementioned groups to be topological groups.

47

4.1 Topologies on vector types
definition vec-topology :: ′a topology ⇒ (′a^ ′n) topology where
vec-topology T = quot-topology (product-topology (λi. T) UNIV) vec-lambda

lemma producttop-vectop-homeo:
shows homeomorphic-map (product-topology (λi. T) UNIV) (vec-topology T)

vec-lambda
proof −

have inj-on vec-lambda (topspace (product-topology (λi. T) UNIV)) unfolding
inj-on-def by force

then show ?thesis unfolding vec-topology-def
using injective-quotient-map-homeo[OF projection-quotient-map] by blast

qed

lemma homeo-inverse-homeo:
assumes homeo: homeomorphic-map X Y f and fg-id: ∀ y ∈ topspace Y . f (g y)

= y and
g-image: ∀ y ∈ topspace Y . g y ∈ topspace X

shows homeomorphic-map Y X g
proof −

from homeo obtain h where
h-homeo: homeomorphic-map Y X h and hf-id: (∀ x ∈ topspace X . h (f x) = x)
by (smt (verit) homeomorphic-map-maps homeomorphic-maps-map)

have g y = h y if y ∈ topspace Y for y
proof −

have g y = h (f (g y)) using hf-id that g-image by fastforce
then show ?thesis using fg-id that by simp

qed
then show ?thesis using homeomorphic-map-eq[OF h-homeo] by presburger

qed

lemma vectop-producttop-homeo:
shows homeomorphic-map (vec-topology T) (product-topology (λi. T) UNIV)

vec-nth
proof −

let ?T ′ = product-topology (λi. T) UNIV
have vec-lambda (vec-nth v) = v for v :: ′a^ ′n by simp
moreover have vec-nth v ∈ topspace ?T ′ if v ∈ topspace (vec-topology T) for v

:: ′a^ ′n
proof −

have ∃ f ∈ topspace ?T ′. v = vec-lambda f using that
unfolding vec-topology-def topspace-quot-topology image-def by fast

then show ?thesis by fastforce
qed
ultimately show ?thesis using homeo-inverse-homeo[OF producttop-vectop-homeo]

by blast
qed

lemma vec-topology-euclidean [simp]:

48

defines T :: (′a :: topological-space) topology ≡ euclidean
defines Tvec :: (′a^ ′n) topology ≡ euclidean
shows vec-topology T = Tvec

proof −
have openin (vec-topology T) U if openin Tvec U for U
proof −

have hU : open U using open-openin that unfolding Tvec-def by blast
have ∃U ′. openin (vec-topology T) U ′ ∧ x ∈ U ′ ∧ U ′ ⊆ U if x ∈ U for x
proof −

from that hU obtain V :: ′n ⇒ ′a set where
hV : (∀ i. open (V i) ∧ x$i ∈ V i) ∧ (∀ y. (∀ i. y$i ∈ V i) −→ y ∈ U)

unfolding open-vec-def by force
let ?W = ΠE i∈UNIV . V i
from hV have openin T (V i) for i using open-openin unfolding T-def by

blast
then have openin (product-topology (λi. T) UNIV) ?W by (simp add:

openin-PiE)
then have is-open: openin (vec-topology T) (vec-lambda‘?W)

using producttop-vectop-homeo homeomorphic-map-openness openin-subset
by metis

have vec-nth x ∈ ?W using hV by fast
then have contains-x: x ∈ (vec-lambda‘?W) unfolding image-def by force
have y ∈ U if vec-nth y ∈ ?W for y
proof −

from that have y$i ∈ V i for i by fast
then show ?thesis using hV by blast

qed
then have (vec-lambda‘?W) ⊆ U by force

then show ?thesis using contains-x is-open by meson
qed
then show ?thesis by (meson openin-subopen)

qed
moreover have openin Tvec U if openin (vec-topology T) U for U
proof −

from that have hU : openin (product-topology (λi. T) UNIV) (vec-nth‘U)
using vectop-producttop-homeo homeomorphic-map-openness openin-subset by

metis
have ∃V . (∀ i. open (V i) ∧ x $ i ∈ V i) ∧ (∀ y. (∀ i. y $ i ∈ V i) −→ y ∈ U)

if x ∈ U for x
proof −

from that have vec-nth x ∈ (vec-nth‘U) unfolding image-def by blast
then obtain V :: ′n ⇒ ′a set

where hV : (∀ i. openin T (V i)) ∧ vec-nth x ∈ (ΠE i∈UNIV . V i) ∧ (ΠE

i∈UNIV . V i) ⊆ (vec-nth‘U)
using hU product-topology-open-contains-basis by (metis (no-types, lifting))

then have open (V i) ∧ x$i ∈ V i for i unfolding T-def using open-openin
by fast

moreover have y ∈ U if ∀ i. y$i ∈ V i for y
proof −

49

have vec-nth y ∈ (ΠE i∈UNIV . V i) using that by blast
then show ?thesis using hV by (metis image-iff in-mono vec-nth-inject)

qed
ultimately show ?thesis by blast

qed
then have open U unfolding open-vec-def by blast
then show ?thesis unfolding Tvec-def using open-openin by blast

qed
ultimately show ?thesis using topology-eq by meson

qed

lemma vec-projection-continuous:
shows continuous-map (vec-topology T) T (λv. v$i)
using homeomorphic-imp-continuous-map[OF vectop-producttop-homeo] by fast

lemma vec-components-continuous-imp-continuous:
fixes f :: ′x ⇒ ′a^ ′n
assumes ∀ i. continuous-map X T (λx. (f x) $ i)
shows continuous-map X (vec-topology T) f

proof −
have continuous-map X (product-topology (λi. T) UNIV) (vec-nth ◦ f) using

assms by auto
moreover have f = vec-lambda ◦ (vec-nth ◦ f) by fastforce
ultimately show ?thesis using continuous-map-compose

homeomorphic-imp-continuous-map[OF producttop-vectop-homeo] by fastforce
qed

definition matrix-topology :: ′a topology ⇒ (′a^ ′n^ ′m) topology where
matrix-topology T = vec-topology (vec-topology T)

lemma matrix-topology-euclidean[simp]:
shows matrix-topology euclidean = euclidean
unfolding matrix-topology-def by simp

lemma matrix-projection-continuous:
shows continuous-map (matrix-topology T) T (λA. Aij)

proof −
have (λA. Aij) = (λx. x$j) ◦ (λA. A$i) by fastforce
then show ?thesis unfolding matrix-topology-def

using vec-projection-continuous continuous-map-compose by metis
qed

lemma matrix-components-continuous-imp-continuous:
fixes f :: ′x ⇒ ′a^ ′n^ ′m
assumes

∧
i j. continuous-map X T (λx. (f x) $ i $ j)

shows continuous-map X (matrix-topology T) f
unfolding matrix-topology-def using vec-components-continuous-imp-continuous

assms by metis

50

4.2 The general linear group as a topological group
definition GL :: ((′a :: field)^ ′n^ ′n) monoid where
GL = (|carrier = {A. invertible A}, monoid.mult = (∗∗), one = mat 1 |)

definition GL-topology :: (real^ ′n^ ′n) topology where
GL-topology = subtopology euclidean (carrier GL)

lemma topspace-GL: topspace GL-topology = {A. invertible A}
unfolding GL-topology-def topspace-subtopology GL-def by simp

4.2.1 Continuity of matrix operations
lemma det-continuous:

defines T :: (real^ ′n^ ′n) topology ≡ euclidean
shows continuous-map T euclideanreal det

proof −
let ?T ′ = matrix-topology euclideanreal
let ?S = {π. π permutes (UNIV :: ′n set)}
have S-finite: finite ?S by simp
have finite (UNIV :: ′n set) by simp
then have continuous-map ?T ′ euclideanreal (λA.

∏
i ∈ (UNIV :: ′n set). (A

$ i $ π i))
for π :: ′n ⇒ ′n using continuous-map-prod[OF - matrix-projection-continuous]

by fast
then have continuous-map ?T ′ euclideanreal (λA. of-int (sign π) ∗ (

∏
i ∈

(UNIV :: ′n set). (A $ i $ π i)))
for π :: ′n ⇒ ′n using continuous-map-real-mult-left by fast

from continuous-map-sum[OF S-finite this] have continuous-map ?T ′ euclidean-
real

(λA.
∑

π∈?S . of-int (sign π) ∗ (
∏

i ∈ (UNIV :: ′n set). A $ i $ π i)) by fast
then show ?thesis unfolding T-def matrix-topology-euclidean det-def by force

qed

lemma matrix-mul-continuous:
defines T1 :: (real^ ′n^ ′m) topology ≡ euclidean
defines T2 :: (real^ ′r^ ′n) topology ≡ euclidean
defines T3 :: (real^ ′r^ ′m) topology ≡ euclidean
shows continuous-map (prod-topology T1 T2) T3 (λ(A,B). A ∗∗ B)

proof −
let ?T = prod-topology T1 T2
have continuous-map ?T euclideanreal (λAB. (fst AB ∗∗ snd AB) $ i $ j) for i

:: ′m and j :: ′r
proof −

have eq: (λAB. (fst AB ∗∗ snd AB) $ i $ j) = (λAB. (
∑

(k:: ′n)∈UNIV . fst
AB $ i $ k ∗ snd AB $ k $ j))

unfolding matrix-matrix-mult-def by auto
have

comp1 : (λAB. fst AB $ i $ k) = (λA. Aik) ◦ fst and
comp2 : (λAB. snd AB $ k $ j) = (λB. Bkj) ◦ snd

51

for k :: ′n by auto
from comp1 have continuous-map ?T euclideanreal (λAB. fst AB $ i $ k) for

k :: ′n
unfolding T1-def matrix-topology-euclidean[symmetric]

using continuous-map-compose[OF continuous-map-fst matrix-projection-continuous]
by metis

moreover from comp2 have continuous-map ?T euclideanreal (λAB. snd AB
$ k $ j) for k :: ′n

unfolding T2-def matrix-topology-euclidean[symmetric]
using continuous-map-compose[OF continuous-map-snd matrix-projection-continuous]

by metis
ultimately have summand-continuous:

continuous-map ?T euclideanreal (λAB. fst AB $ i $ k ∗ snd AB $ k $ j) for
k :: ′n

using continuous-map-real-mult by blast
have finite: finite (UNIV :: ′n set) by simp
have continuous-map ?T euclideanreal (λAB. (

∑
(k:: ′n)∈UNIV . fst AB $ i $

k ∗ snd AB $ k $ j))
using continuous-map-sum[OF finite summand-continuous] by fast

then show ?thesis unfolding eq by blast
qed
from matrix-components-continuous-imp-continuous[OF this] show ?thesis
unfolding T3-def matrix-topology-euclidean[symmetric] by (simp add: case-prod-beta ′)

qed

lemma transpose-continuous:
shows continuous-map (euclidean :: ((′a :: topological-space)^ ′n^ ′m) topology)

euclidean transpose
proof −

have continuous-map euclidean euclidean (λA. (transpose A) $ i $ j) for i :: ′n
and j :: ′m

unfolding transpose-def matrix-topology-euclidean[symmetric]
using matrix-projection-continuous[of euclidean j i] by fastforce

from matrix-components-continuous-imp-continuous[OF this] show ?thesis
unfolding matrix-topology-euclidean by blast

qed

4.2.2 Continuity of matrix inversion
lemma matrix-mul-columns:

fixes A :: (′a :: semiring-1)^ ′n^ ′m and B :: ′a^ ′k^ ′n
shows column j (A ∗∗ B) = A ∗v (column j B)
unfolding column-def matrix-matrix-mult-def matrix-vector-mult-def by force

lemma matrix-columns-unique:
assumes ∀ j. column j A = column j B
shows A = B
using assms unfolding column-def by (simp add: vec-eq-iff)

52

lemma matrix-inv-is-inv:
assumes invertible A
shows A ∗∗ (matrix-inv A) = mat 1 and (matrix-inv A) ∗∗ A = mat 1

proof −
show A ∗∗ matrix-inv A = mat 1
using assms unfolding invertible-def matrix-inv-def by (simp add: verit-sko-ex ′)

show (matrix-inv A) ∗∗ A = mat 1
using assms unfolding invertible-def matrix-inv-def by (simp add: verit-sko-ex ′)

qed

lemma invertible-imp-right-inverse-is-inverse:
assumes invertible: invertible A and A ∗∗ B = mat 1
shows matrix-inv A = B
using matrix-inv-is-inv[OF invertible] assms by (metis matrix-mul-assoc ma-

trix-mul-lid)

lemma matrix-inv-invertible:
assumes invertible A
shows invertible (matrix-inv A)
using assms matrix-inv-is-inv invertible-def by fast

lemma det-inv:
fixes A :: (′a :: field)^ ′n^ ′n
assumes det A 6= 0
shows det (matrix-inv A) = 1 / det A

proof −
have A ∗∗ (matrix-inv A) = mat 1 using assms invertible-det-nz matrix-inv-is-inv(1)

by fast
then have det A ∗ det (matrix-inv A) = 1 using det-mul[of A matrix-inv A] by

auto
then show ?thesis using assms by (metis nonzero-mult-div-cancel-left)

qed

See proposition "cramer" from HOL-Analysis.Determinants
definition cramer-inv :: (′a :: field)^ ′n^ ′n ⇒ ′a^ ′n^ ′n where
cramer-inv A = (χ i j. det(χ k l. if l = i then (axis j 1) $ k else Akl) / det A)

lemma cramer-inv-is-inverse:
assumes invertible: invertible (A :: (′a :: field)^ ′n^ ′n)
shows matrix-inv A = cramer-inv A

proof −
have A ∗∗ (cramer-inv A) = mat 1
proof −

have column j (cramer-inv A) = (χ i. det(χ k l. if l = i then (axis j 1) $ k else
Akl) / det A) for j

unfolding cramer-inv-def column-def by simp
moreover have det A 6= 0 using invertible unfolding invertible-det-nz by

force
ultimately have A ∗v (column j (cramer-inv A)) = axis j 1 for j using cramer

53

by auto
then have column j (A ∗∗ (cramer-inv A)) = axis j 1 for j unfolding ma-

trix-mul-columns by auto
moreover have column j (mat 1) = axis j 1 for j :: ′n unfolding column-def

mat-def axis-def by simp
ultimately show ?thesis using matrix-columns-unique by metis

qed
then show ?thesis using invertible invertible-imp-right-inverse-is-inverse un-

folding GL-def by fastforce
qed

lemma matrix-inv-continuous:
shows continuous-map (GL-topology :: (real^ ′n^ ′n) topology) GL-topology ma-

trix-inv
proof −

define B :: real^ ′n^ ′n ⇒ ′n ⇒ ′n ⇒ ′n ⇒ ′n ⇒ real where
B = (λA i j k l. if l = i then (axis j 1) $ k else Akl)

define C :: real^ ′n^ ′n ⇒ ′n ⇒ ′n ⇒ real^ ′n^ ′n where
C A i j = (χ k l. B A i j k l) for A i j

have det-GL-continuous: continuous-map GL-topology euclideanreal det
unfolding GL-topology-def using continuous-map-from-subtopology[OF det-continuous]

by fast
have continuous-map euclidean euclideanreal (λA. B A i j k l) for i j k l
proof (cases l = i)

case True
then have (λA. B A i j k l) = (λA. (axis j 1) $ k) unfolding B-def by force
moreover have continuous-map euclidean euclideanreal (λA. (axis j 1) $ k)

by simp
ultimately show ?thesis by (smt (verit) continuous-map-eq)

next
case False
then have (λA. B A i j k l) = (λA. Akl) unfolding B-def by simp
then show ?thesis unfolding matrix-topology-euclidean[symmetric]

using matrix-projection-continuous[of euclideanreal k l] by force
qed
then have continuous-map euclidean euclideanreal (λA. (C A i j) $ k $ l)

for i j k l unfolding C-def by simp
from matrix-components-continuous-imp-continuous[OF this]
have continuous-map euclidean euclidean (λA. C A i j) for i j

unfolding matrix-topology-euclidean[symmetric] by blast
from continuous-map-compose[OF this det-continuous]
have continuous-map euclidean euclideanreal (λA. det (C A i j)) for i j by force
then have continuous-map GL-topology euclideanreal (λA. det (C A i j)) for i j

unfolding GL-topology-def using continuous-map-from-subtopology by fast
from continuous-map-real-divide[OF this det-GL-continuous]
have continuous-map GL-topology euclideanreal (λA. det (C A i j) / det A) for

i j
unfolding topspace-GL invertible-det-nz by simp

then have continuous-map GL-topology euclideanreal (λA. (χ i j. det (C A i j)

54

/ det A) $ i $ j) for i j by simp
from matrix-components-continuous-imp-continuous[OF this]
have continuous-map (GL-topology :: (real^ ′n^ ′n) topology) euclidean cramer-inv

unfolding cramer-inv-def C-def B-def matrix-topology-euclidean[symmetric] by
blast
from continuous-map-eq[OF this] have continuous-map (GL-topology :: (real^ ′n^ ′n)

topology) euclidean matrix-inv
unfolding topspace-GL using cramer-inv-is-inverse by (metis mem-Collect-eq)

moreover have matrix-inv A ∈ topspace GL-topology if A ∈ topspace GL-topology
for A :: real^ ′n^ ′n

using that unfolding topspace-GL
by (metis invertible-imp-right-inverse-is-inverse invertible-left-inverse invert-

ible-right-inverse mem-Collect-eq)
ultimately show ?thesis unfolding GL-topology-def Pi-def image-def using

continuous-map-into-subtopology by auto
qed

4.2.3 The general linear group is topological
lemma

GL-group: group GL and
GL-carrier [simp]: carrier GL = {A. invertible A} and
GL-inv [simp]: A ∈ carrier GL =⇒ invGL A = matrix-inv A

proof −
show carrier GL = {A. invertible A} unfolding GL-def by simp
show group GL
proof (unfold-locales, goal-cases)

case 3
then show ?case unfolding GL-def by (simp add: invertible-def)
case 6
then show ?case using GL-def unfolding Units-def invertible-def

by (smt (verit, ccfv-threshold) Collect-mono invertible-def mem-Collect-eq
monoid.select-convs(1) monoid.select-convs(2) partial-object.select-convs(1))

qed (unfold GL-def , auto simp: matrix-mul-assoc invertible-mult)
interpret group GL by fact
show A ∈ carrier GL =⇒ invGL A = matrix-inv A
using matrix-inv-is-inv matrix-inv-invertible inv-equality unfolding GL-def by

fastforce
qed

lemma
GL-topological-group: topological-group GL GL-topology and
GL-open: openin (euclidean :: (real^ ′n^ ′n) topology) (carrier GL)

proof −
have group-is-space: topspace GL-topology = carrier GL unfolding topspace-GL

GL-def by simp
have continuous-map (prod-topology GL-topology GL-topology) euclidean (λ(A,B).

A ∗∗ B)

55

unfolding GL-topology-def subtopology-Times[symmetric] using matrix-mul-continuous
continuous-map-from-subtopology by fast

from continuous-map-into-subtopology[OF this]
have continuous-map (prod-topology GL-topology GL-topology) GL-topology (λ(A,B).

A ⊗GL B)
unfolding GL-topology-def Pi-def topspace-prod-topology topspace-subtopology

GL-def using invertible-mult by auto
moreover from continuous-map-eq[OF matrix-inv-continuous]
have continuous-map GL-topology GL-topology (λA. invGL A) unfolding group-is-space

using GL-inv by metis
ultimately show topological-group GL GL-topology using GL-group group-is-space

unfolding topological-group-def topological-group-axioms-def by blast
have openin euclideanreal ((topspace euclideanreal) − {0}) by auto
from openin-continuous-map-preimage[OF det-continuous this]
have openin euclidean {(A :: real^ ′n^ ′n) ∈ topspace euclidean. det A ∈ ((topspace

euclideanreal) − {0})} by blast
moreover have carrier GL = {A :: real^ ′n^ ′n. det A 6= 0}

using group-is-space[symmetric] invertible-det-nz unfolding topspace-GL by
blast

ultimately show openin (euclidean :: (real^ ′n^ ′n) topology) (carrier GL) by
fastforce
qed

4.3 Subgroups of the general linear group
definition SL :: ((′a :: field)^ ′n^ ′n) monoid where
SL = GL (|carrier := {A. det A = 1}|)

lemma det-homomorphism: group-hom GL unit-group det
proof −

have det ∈ carrier GL → carrier unit-group
unfolding GL-carrier unit-group-def using invertible-det-nz by fastforce

moreover have det (A ⊗GL B) = det A ⊗unit-group det B for A B
unfolding GL-def unit-group-def using det-mul by auto

ultimately have det ∈ hom GL unit-group unfolding hom-def by blast
then show ?thesis using GL-group group-unit-group

unfolding group-hom-def group-hom-axioms-def by blast
qed

lemma
SL-kernel-det: carrier (SL :: ((′a :: field)^ ′n^ ′n) monoid) = kernel GL unit-group

det and
SL-subgroup: subgroup (carrier SL) (GL :: (′a^ ′n^ ′n) monoid) and
SL-carrier [simp]: carrier SL = {A. det A = 1}

proof −
interpret group-hom GL :: (′a^ ′n^ ′n) monoid unit-group det using det-homomorphism

by blast
show carrier SL = {A. det A = 1} unfolding SL-def by simp
then show carrier (SL :: (′a^ ′n^ ′n) monoid) = kernel GL unit-group det

56

unfolding kernel-def GL-carrier unit-group-def using invertible-det-nz by force
then show subgroup (carrier SL) (GL :: (′a^ ′n^ ′n) monoid) using subgroup-kernel

by presburger
qed

lemma
SL-topological-group: topological-group SL (subtopology GL-topology (carrier SL))

and
SL-closed: closedin GL-topology (carrier SL)

proof −
interpret topological-group GL GL-topology using GL-topological-group by blast
show topological-group SL (subtopology GL-topology (carrier SL))

unfolding SL-def using topological-subgroup[OF SL-subgroup] by force
have closedin euclideanreal {1} by simp
then have closedin GL-topology {A ∈ topspace GL-topology. det A = 1} un-

folding GL-topology-def
using continuous-map-from-subtopology[OF det-continuous] closedin-continuous-map-preimage

by (smt (verit, ccfv-SIG) Collect-cong singleton-iff)
moreover have {A ∈ topspace GL-topology. det A = 1} = {A. det A = 1}

using topspace-GL using invertible-det-nz by fastforce
ultimately show closedin GL-topology (carrier SL) unfolding SL-carrier by

(smt (verit))
qed

definition GO :: (real^ ′n^ ′n) monoid where
GO = GL (|carrier := {A. orthogonal-matrix A}|)

lemma
GO-subgroup: subgroup {A :: real^ ′n^ ′n. orthogonal-matrix A} GL and
GO-carrier [simp]: carrier GO = {A. orthogonal-matrix A}

proof −
show carrier GO = {A. orthogonal-matrix A} unfolding GO-def by force
show subgroup {A :: real^ ′n^ ′n. orthogonal-matrix A} GL
proof (unfold-locales, goal-cases)

case 1
then show ?case unfolding GL-carrier orthogonal-matrix-def invertible-def

by blast
next

case (2 A B)
then show ?case unfolding GL-def using orthogonal-matrix-mul[of A B] by

force
next

case 3
then show ?case unfolding GL-def using orthogonal-matrix-id by simp

next
case (4 A)
then have A ∈ carrier GL unfolding GL-carrier orthogonal-matrix-def invert-

ible-def by blast

57

moreover from 4 have orthogonal-matrix (matrix-inv A)
by (metis invertible-imp-right-inverse-is-inverse invertible-right-inverse mem-Collect-eq

orthogonal-matrix-def orthogonal-matrix-transpose)
ultimately show ?case using GL-inv by fastforce

qed
qed

lemma
GO-topological-group: topological-group GO (subtopology GL-topology (carrier GO))

and
GO-closed: closedin (GL-topology :: (real^ ′n^ ′n) topology) (carrier GO)

proof −
interpret topological-group GL GL-topology using GL-topological-group by blast
show topological-group GO (subtopology GL-topology (carrier GO))

unfolding GO-def using topological-subgroup[OF GO-subgroup] by simp
have one-closed: closedin euclidean {(mat 1) :: real^ ′n^ ′n} by fastforce
have continuous-map euclidean (prod-topology euclidean euclidean) (λA :: real^ ′n^ ′n.

(transpose A, A))
using continuous-map-pairedI [OF transpose-continuous continuous-map-id] by

force
from continuous-map-compose[OF this matrix-mul-continuous]
have continuous-map euclidean euclidean (λA :: real^ ′n^ ′n. (transpose A) ∗∗ A)

by force
from closedin-continuous-map-preimage[OF this one-closed]
have closedin euclidean {A :: real^ ′n^ ′n. (transpose A) ∗∗ A = mat 1} by force
moreover have carrier GO = {A :: real^ ′n^ ′n. (transpose A) ∗∗ A = mat 1}

using orthogonal-matrix unfolding GO-carrier by blast
ultimately have closedin (euclidean :: (real^ ′n^ ′n) topology) (carrier GO) by

(smt (verit, del-insts))
moreover have carrier GO ⊆ carrier GL

unfolding GO-carrier GL-carrier orthogonal-matrix-def invertible-def by blast
ultimately show closedin (GL-topology :: (real^ ′n^ ′n) topology) (carrier GO)

unfolding GL-topology-def using closedin-subset-topspace by blast
qed

definition SO :: (real^ ′n^ ′n) monoid where
SO = GL (|carrier := {A. orthogonal-matrix A ∧ det A = 1}|)

lemma
SO-carrier [simp]: carrier SO = {A. orthogonal-matrix A ∧ det A = 1} and
SO-subgroup: subgroup {A :: real^ ′n^ ′n. orthogonal-matrix A ∧ det A = 1} GL

proof −
show carrier SO = {A. orthogonal-matrix A ∧ det A = 1} unfolding SO-def

by auto
have eq: {A :: real^ ′n^ ′n. orthogonal-matrix A ∧ det A = 1} = {A. orthogo-

nal-matrix A} ∩ {A. det A = 1} by fastforce
show subgroup {A :: real^ ′n^ ′n. orthogonal-matrix A ∧ det A = 1} GL

unfolding eq using subgroup-intersection[OF GO-subgroup SL-subgroup] by
simp

58

qed

lemma
SO-topological-group: topological-group SO (subtopology GL-topology (carrier SO))

and
SO-closed: closedin GL-topology (carrier SO)

proof−
interpret topological-group GL GL-topology using GL-topological-group by blast
show topological-group SO (subtopology GL-topology (carrier SO))

unfolding SO-def using topological-subgroup[OF SO-subgroup] by simp
have carrier SO = carrier SL ∩ carrier GO unfolding SO-carrier SL-carrier

GO-carrier by blast
then show closedin GL-topology (carrier SO) using closedin-Int[OF SL-closed

GO-closed] by metis
qed

end

References
[1] A. Arhangelskii and M. Tkachenko. Topological Groups and Related

Structures. Atlantis Studies in Mathematics 1. Atlantis Press, 2008.

[2] D. Bump. Lie Groups. Graduate Texts in Mathematics 225. Springer, 2
edition, 2013.

[3] R. (https://math.stackexchange.com/users/464495/randall). Why is the
quotient group a topological group? Mathematics Stack Exchange. Ac-
cessed on 2024-07-23.

[4] I. James. Topological and uniform spaces. Undergraduate texts in math-
ematics. Springer, 1 edition, 1987.

[5] J. Prem. Topologische gruppen und haarsches mass. Universität Re-
gensburg, 4 2013. Accessed on 2024-07-22.

59

	Uniform spaces
	Definitions and basic results
	Metric spaces as uniform spaces
	Connection to type class

	General theory of Topological Groups
	Auxiliary definitions and results
	Miscellaneous
	Quotient topology

	Definition and basic results
	Subspaces and quotient spaces
	Uniform structures
	The Birkhoff-Kakutani theorem
	Prenorms on groups
	A prenorm respecting the group topology
	Proof of Birkhoff-Kakutani

	Examples of Topological Groups
	Matrix groups
	Topologies on vector types
	The general linear group as a topological group
	Continuity of matrix operations
	Continuity of matrix inversion
	The general linear group is topological

	Subgroups of the general linear group

