Topological Groups

Niklas Krofta

March 17, 2025

Abstract

Topological groups are blends of groups and topological spaces with
the property that the multiplication and inversion operations are con-
tinuous functions. They frequently occur in mathematics and physics,
e.g. in the form of Lie groups. We formalize the theory of topological
groups on top of HOL-Algebra and HOL-Analysis. Topological groups
are defined via a locale. We also introduce a set-based notion of uni-
form spaces in order to define the uniform structures of topological
groups. The most notable formalized result is the Birkhoff-Kakutani
theorem which characterizes metrizable topological groups. Our for-
malization also defines the important matrix groups GL, (R), SL, (R),
O,, SO,, and proves them to be topological groups.

The formalized results and proofs have been taken from the text-
books of Arhangelskii and Tkachenko [1], Bump [2] and James [4].
These lecture notes [5] have also been helpful.

Contents

1 Uniform spaces 2
1.1 Definitions and basicresults 2
1.2 Metric spaces as uniform spaces)
1.3 Connection to typeclass 7

2 General theory of Topological Groups 9
2.1 Auxiliary definitions and results 9
2.1.1 Miscellaneouso 9
2.1.2 Quotient topology 11

2.2 Definition and basic results00 12
2.3 Subspaces and quotient spaces 14
2.4 Uniform structureso oo 23
2.5 The Birkhoff-Kakutani theorem 29
2.5.1 Prenorms on groupso 29
2.5.2 A prenorm respecting the group topology 32
2.5.3 Proof of Birkhoff-Kakutani 38

3 Examples of Topological Groups 45

4 Matrix groups 47
4.1 Topologies on vector types oL 48
4.2 The general linear group as a topological group 51

4.2.1 Continuity of matrix operations 51
4.2.2 Continuity of matrix inversion 52
4.2.3 The general linear group is topological 55
4.3 Subgroups of the general linear group 56

1 Uniform spaces

theory Uniform-Structure
imports HOL— Analysis. Abstract-Topology HOL— Analysis. Abstract-Metric-Spaces
begin

Summary This section introduces a set-based notion of uniformities and
connects it to the uniform-space type class.

1.1 Definitions and basic results

definition uniformity-on :: 'a set = (('a X 'a) set = bool) = bool where
uniformity-on X € +—
(3E.E E) A
VE.EE-—ECXXXANIdonXCEANE(E)YAQBF.EFAFOFC
E) A
(VE.ECFAFCXxX—&F)A
VEF.EE -—EF — € (ENF))

typedef ‘a uniformity = {(X :: 'a set, £). uniformity-on X £}
morphisms uniformity-rep uniformity
proof —
have uniformity-on UNIV (AE. E = UNIV x UNIV)
unfolding uniformity-on-def Id-on-def relcomp-def by auto
then show ?thesis by fast
qed

definition uspace :: 'a uniformity = ’a set where
uspace ® = (let (X, &) = uniformity-rep ® in X)

definition entourage-in :: 'a uniformity = (‘a x 'a) set = bool where
entourage-in ® = (let (X, £) = uniformity-rep ® in &)

lemma uniformity-inverse’[simp]:

assumes uniformity-on X &

shows uspace (uniformity (X, £)) = X A entourage-in (uniformity (X, £)) = &
proof —

from assms have uniformity-rep (uniformity (X, £)) = (X,)
using uniformity-inverse by blast
then show %thesis by (auto simp: prod.splits uspace-def entourage-in-def)
qed

lemma uniformity-entourages:

shows uniformity-on (uspace ®) (entourage-in ®)

by (metis Product-Type.Collect-case-prodD entourage-in-def split-beta uspace-def
uniformity-rep)

lemma entourages-exist: 3 E. entourage-in ® E
using uniformity-entourages unfolding uniformity-on-def by blast

lemma entourage-in-spacelelim]: entourage-in ® E = E C uspace ® x uspace @
using uniformity-entourages unfolding uniformity-on-def by metis

lemma entourage-superset[intro):

entourage-in ® F = EF C F = F C uspace ® X uspace ® = entourage-in
o F

using uniformity-entourages unfolding uniformity-on-def by blast

lemma entourage-intersectionlintrol: entourage-in ® E = entourage-in ® F —>
entourage-in ® (E N F)
using uniformity-entourages unfolding uniformity-on-def by metis

lemma entourage-converse|introl: entourage-in ® E = entourage-in ® (E~1)
using uniformity-entourages unfolding uniformity-on-def by fast

lemma entourage-diagonal|dest]:
assumes entourage: entourage-in ® E and in-space: © € uspace ®
shows (z,z) € F
proof —
have Id-on (uspace ®) C F
using uniformity-entourages entourage unfolding uniformity-on-def by fast
then show ?thesis using Id-onI[OF in-space] by blast
qed

lemma smaller-entourage:

assumes entourage: entourage-in ® E

shows 3 F. entourage-in ® F AN Vz y z. (z,y) € F A (y,2) € F — (2,2) € E)
proof —

from entourage obtain F where entourage-in ® F AN F OF CE

using uniformity-entourages entourage unfolding uniformity-on-def by meson

moreover from this have (z,z) € E if (z,y) € F A (y,2) € F for z y z using
that by blast

ultimately show ¢thesis by blast
qed

lemma entire-space-entourage: entourage-in ® (uspace x uspace D)

by (metis entourages-ezist entourage-in-space entourage-superset subset-refl)

definition utopology :: 'a uniformity = 'a topology where
utopology ® = topology (AU. U C uspace ® A (VaeU. JE. entourage-in & E A
E{z} € U))

lemma openin-utopology [iff]:
fixes ® :: ‘a uniformity
defines uopen U = U C uspace ® A (VzeU. FE. entourage-in & E N E“{z} C
U)
shows openin (utopology ®) = uopen
proof —
have uopen (U N V) if hUV: uopen U A uopen V for U V
proof —
have 3 E. entourage-in ® E N E{z} CUN Vifhe: 2 € UN V for z
proof —
from hUV hz obtain E; E> where
entourage-in ® E1 A entourage-in ® Eo N E1{z} C U AN Ex{z} C V
unfolding uopen-def by blast
then have entourage-in ® (E1 N E3) A (E1 N E3){z} C U N V by blast
then show ?thesis by fast
qed
then show ?thesis using le-infl1 hUV unfolding uopen-def by auto
qed
moreover have wopen ((JU) if iU: ¥V Ueld. uopen U for U
proof —
have 3 E. entourage-in ® E N E‘{z} C JU if ha: z € JU for z
proof —
from hz obtain U where hU: U € U A x € U by blast
from this h4 obtain E where entourage-in ® E AN E‘{z} C U unfolding
uopen-def by fast
moreover from this hU have E‘{z} C |JU by fast
ultimately show ?thesis by blast
qed
then show ?thesis using Union-least hid unfolding uopen-def by auto
qed
ultimately have istopology uopen unfolding istopology-def by presburger
from topology-inverse’|OF this] show ?thesis unfolding utopology-def uopen-def
by blast
qed

lemma topspace-utopology|simp]:
shows topspace (utopology ®) = uspace P
proof —
let ?T = utopology P
have topspace ?T C uspace ®
using openin-topspace openin-utopology by meson
moreover have openin T (uspace ®)
unfolding openin-utopology by (auto intro: entire-space-entourage)

ultimately show ?thesis using topspace-def by fast
qed

definition wucontinuous :: 'a uniformity = 'b uniformity = (‘a = 'b) = bool
where
ucontinuous ® U f +—

f € uspace ® — uspace ¥ A

(V E. entourage-in ¥ E — entourage-in ® {(x, y) € uspace ® x uspace ®. (f z,

fy) € E})

lemma ucontinuous-image-subset [dest]: ucontinuous ® ¥ f = f{(uspace @) C
uspace W
unfolding ucontinuous-def by blast

lemma entourage-preimage-ucontinuous [dest):
assumes ucontinuous ® ¥ f and entourage-in ¥ E
shows entourage-in ® {(z, y) € uspace ® x uspace ®. (fz, fy) € E}
using assms unfolding ucontinuous-def by blast

lemma ucontinuous-imp-continuous:
assumes ucontinuous ® U f
shows continuous-map (utopology ®) (utopology W) f
proof (unfold continuous-map-def, intro conjl alll impl)
show f € topspace (utopology ®) — topspace (utopology V)
using assms unfolding ucontinuous-def by auto
next
fix U assume hU: openin (utopology ¥) U
let 2V = {z € topspace (utopology ®). fz € U}
have 3 F. entourage-in ® F N F*{z} C 2V if ha: x € uspace ® A fz € U for z
proof —
from that hU obtain E where hE: entourage-in ¥ E N E¥{fa} C U
unfolding openin-utopology by blast
let ?F = {(z, y) € uspace ® x uspace . (fz, fy) € E}
have ?F‘{z} = {y € uspace ®. fy € E“{f z}} unfolding Image-def using
hz by auto
then have ?F‘{z} C ?V using hE by auto
moreover have entourage-in ® 7F
using assms entourage-preimage-ucontinuous hE unfolding topspace-utopology
by blast
ultimately show ¢thesis by blast
qed
then show openin (utopology ®) ?V unfolding openin-utopology by force
qed

1.2 Metric spaces as uniform spaces

context Metric-space
begin

abbreviation mentourage :: real = (‘a x 'a) set where
mentourage € = {(z,y) € M x M. dzy < ¢}

definition muniformity :: 'a uniformity where
muniformity = uniformity (M, A\E. E C M x M A (3e > 0. mentourage € C E))

lemma
uspace-muniformity[simpl: uspace muniformity = M and
entourage-muniformity: entourage-in muniformity = (AE. E C M x M A (Je >
0. mentourage ¢ C F))
proof —
have uniformity-on M (A\E. E C M x M A (3¢ > 0. mentourage ¢ C E))
unfolding uniformity-on-def Id-on-def converse-def
proof (intro conjl alll impl, goal-cases)
case I
then show Zcase by (rule exl]of - mentourage 1)) force
next
case (4 E)
then obtain ¢ where he: € > 0 A mentourage ¢ C E by blast
then have {(y, z). (z, y) € mentourage ¢} C E using commute by auto
then have mentourage ¢ C E~' by blast
then show ?case using he by auto
next
case (6 E)
then obtain ¢ where he: € > 0 A mentourage ¢ C E by blast
let ?F = mentourage (£/2)
have (z,z) € E if (z,y) € ?F A (y,2) € ?Ffor z y 2z
proof —
have d z z < ¢ using that triangle by fastforce
then show ?thesis using that he by blast
qed
then have ?F C M x M A ?F O ?F C E by blast
then show ?Zcase by (meson he order-refi zero-less-divide-iff zero-less-numeral)
next
case (8 E F)
then show ?case by fast
next
case (10 E F)
then obtain ¢ § where
€ > 0 N mentourage ¢ C F and
0 > 0 N mentourage 6 C I by presburger
then have min ¢ § > 0 A mentourage (min € 6) C E N F by auto
then show ?case by blast
qed (auto)
then show
uspace muniformity = M and
entourage-in muniformity = (AE. E C M x M A (e > 0. mentourage ¢ C
B))

unfolding muniformity-def using uniformity-inverse’ by auto

qed

lemma uniformity-induces-mtopology [simp]: utopology muniformity = mtopology
proof —
have mentourage-image: mball x ¢ = (mentourage €)‘{z} for z ¢ unfolding
mball-def by auto
have openin (utopology muniformity) U <— openin mtopology U for U
proof
assume hU: openin (utopology muniformity) U
have 3¢ > 0. mball z ¢ C U if z € U for z
proof —
from hU that obtain E where hE: entourage-in muniformity E N E‘{x} C
U unfolding openin-utopology by blast
then obtain ¢ where he: € > 0 A mentourage ¢ C FE unfolding en-
tourage-muniformity by presburger
then have (mentourage) ‘“{x} C U using hE by fast
then show ?thesis using mentourage-image he by auto
qed
then show openin mtopology U unfolding openin-mtopology using hU openin-subset
by fastforce
next
assume hU: openin mtopology U
have 3 E. entourage-in muniformity E N E‘{x} C U if x € U for x
proof —
from hU that obtain € where € > 0 A mball x ¢ C U unfolding openin-mtopology
by blast
then show ?thesis unfolding mentourage-image entourage-muniformity by
auto
qed
then show openin (utopology muniformity) U unfolding openin-utopology
using hU openin-subset by fastforce
qed
then show ?thesis using topology-eq by blast
qed

1.3 Connection to type class

end

The following connects the uniform-space class to the set based notion
Uniform-Structure. uniformity-on.
Given a type ’‘a which is an instance of the class uniform-space, it is
possible to introduce an ‘a uniformity on the entire universe: UNIV:
definition uniformity-of-space :: ('a :: uniform-space) uniformity where
uniformity-of-space = uniformity (UNIV :: 'a set, (AS.V p z in uniformity-class.uniformity.

z€S))

The induced uniformity fulfills the required conditions, i.e., the class
based notion implies the set-based notion.

lemma uniformity-on-uniformity-of-space-aux:

uniformity-on (UNIV :: ('a :: uniform-space) set) (AS.V g z in uniformity-class.uniformity.
z€S)
proof —

let u = wuniformity-class.uniformity :: (a x 'a) filter

have 35. (Vg zin 2u.z € S) by (intro exI[where z=UNIV x UNIV]) simp
moreover have (Vp zin ?ux € ENF)if Vpzin 2uxz € E) Vp zin %uz
€ F)for EF
using that eventually-conj by auto
moreover have Id-on UNIV C Eif Vg zin %u. x € FE for FE
proof —
have (z,z) € F for z using uniformity-refiOF that] by auto
thus ?thesis unfolding Id-on-def by auto
qed
moreover have (Vr zin ?u. 2 € E7Y) if Vi 2 in ?u. z € E for E
using uniformity-sym|[OF that] by (simp add: converse-unfold)
moreover have 3F. (Vpzin u.2 € FYANFOF CEifVpazinu.z €kl
for £
proof —
from uniformity-trans|OF that]
obtain D where eventually D 2u Vz y 2. D (z, y) — D (y, 2) — (z, 2) €
E) by auto
thus ?thesis by (intro exl[where z=Collect D]) auto
qed
moreover have Vg zin 2u. zc € FifVpzin 2u.x € EE C F for E F
using that(2) by (intro eventually-mono|OF that(1)]) auto
ultimately show ?thesis
unfolding uniformity-on-def by auto
qed

lemma uniformity-rep-uniformity-of-space:

uniformity-rep uniformity-of-space = (UNIV , (AS.V g x in uniformity-class.uniformity.
z € 8§))

unfolding uniformity-of-space-def using uniformity-on-uniformity-of-space-aux

by (intro uniformity-inverse) auto

lemma uspace-uniformity-space [simp, iff:
uspace uniformity-of-space = UNIV
unfolding uspace-def uniformity-rep-uniformity-of-space by simp

lemma entourage-in-uniformity-space:
entourage-in uniformity-of-space S =V g z in uniformity-class.uniformity. x €
S)

unfolding entourage-in-def uniformity-rep-uniformity-of-space by simp

Compatibility of the Metric-space.muniformity with the uniformity based
on the class based hierarchy.

lemma (uniformity-of-space :: ('a :: metric-space) uniformity) = Met-TC.muniformity

proof —
have Vzy. distzy<e — (z,y) € E) = {(z, y). distz y < e} C E)
for ¢ and E :: (a x ‘a) set
by auto
thus ?thesis
unfolding Met-TC .muniformity-def uniformity-of-space-def eventually-uniformity-metric
by simp
qed

end

2 General theory of Topological Groups

theory Topological-Group
imports
HOL— Algebra. Group
HOL—- Algebra.Coset
HOL— Analysis. Abstract-Topology
HOL— Analysis. Product-Topology
HOL— Analysis. T1-Spaces
HOL— Analysis. Abstract-Metric-Spaces
Uniform-Structure
begin

Summary In this section we define topological groups and prove basic
results about them. We also introduce the left and right uniform structures
of topological groups and prove the Birkhoff-Kakutani theorem.

2.1 Auxiliary definitions and results

2.1.1 Miscellaneous

lemma connected-components-homeo:
assumes homeo: homeomorphic-map T1 T2 @ and in-space: x € topspace T4
shows ¢ (connected-component-of-set T1 ©) = connected-component-of-set T (¢
7)
proof
let ?Z = connected-component-of-set
show p{(¢Z T, z) C ?Z T3 (¢)
by (metis connected-component-of-eq connected-component-of-maximal con-
nectedin-connected-component-of homeo homeomorphic-map-connectedness-eq im-
agel in-space mem-Collect-eq)
next
let ?Z = connected-component-of-set
from homeo obtain v where y-homeo: homeomorphic-map To T1
and ¢-inv: (Vy € topspace T1. ¢ (p y) = y) A (Vy € topspace Ta. ¢ (¢ y) =
y)
by (smt (verit) homeomorphic-map-maps homeomorphic-maps-map)

from homeo in-space have ¢ x € topspace T
using homeomorphic-imp-surjective-map by blast

then have v (772 T3 (p z)) C 2Z T1 (W (¢ x))

by (metis connected-component-of-eq connected-component-of-mazximal connecte-
din-connected-component-of 1)-homeo homeomorphic-map-connectedness-eq imagel
mem-Collect-eq)

then show 77 Ty (p z) C p{(?Z T1 x)

by (smt (verit, del-insts) i-inv connected-component-of-subset-topspace im-

age-subset-iff in-space subsetD subsetl)
qed

lemma open-map-prod-top:
assumes open-map T T3 f and open-map To T4 g
shows open-map (prod-topology T1 T3) (prod-topology T3 T4) (Mz,). (fz, g
y))
proof (unfold open-map-def, standard, standard)
let ?p = A(z, y). (fz, gy)
fix U assume openin (prod-topology T1 T2) U
then obtain U where Wld: U C {V x W | V W. openin T1 V A openin Ts
WiAUU=T
unfolding openin-prod-topology union-of-def using arbitrary-def by auto
then have ?p‘U = {?%p'VW | VW. VW € U} by blast
then have ‘U = {%(V x W) | VIW. V. x W elU A openin Ty V A
openin Ty W}
using hif by blast
moreover have ?p{(V x W) = (fV) x (¢‘W) for V W by fast
ultimately have ?p‘U = | {(f'V) x (¢W) | VW. V x W €U A openin T
V' A openin To W} by presburger
moreover have openin (prod-topology T3 T4) ((fV) x (¢‘W)) if openin T, V
A openin To W for VW
using openin-prod- Times-iff assms that open-map-def by metis
ultimately show openin (prod-topology Ts T4) (?p‘U) by fastforce
qed

lemma injective-quotient-map-homeo:
assumes quotient-map T1 T2 q and inj: inj-on ¢ (topspace T1)
shows homeomorphic-map T1 T2 q using assms
unfolding homeomorphic-eq-everything-map injective-quotient-map|OF inj] by
fast

lemma (in group) subgroupl-alt:
assumes subset: H C carrier G and nonempty: H # {} and
closed: N\er.c e HANTE€ H=0Q inwT € H
shows subgroup H G
proof —
from nonempty obtain 1 where nn € H by blast
then have 1 € H using closed[of n 1] subset r-inv by fastforce
then have closed-inv: inv o € H if 0 € H for o
using closed[of 1 o] r-inv r-one subset that by force

10

then haveco @ r€e Hif o € HAT € Hforo 7
using closed[of o inv 7] inv-inv subset subset-iff that by auto
then show ?thesis using assms closed-inv by (auto intro: subgroupl)
qed

lemma subgroup-intersection:
assumes subgroup H G and subgroup H' G
shows subgroup (H N H') G
using assms unfolding subgroup-def by force

2.1.2 Quotient topology

definition quot-topology :: 'a topology = ('a = 'b) = 'b topology where
quot-topology T q = topology (AU. U C q(topspace T) N openin T {x € topspace
T.qz € U})

lemma quot-topology-open:
fixes T :: 'a topology and ¢ :: 'a = 'b
defines openin-quot U = U C q¥(topspace T) A openin T {z € topspace T. q x
e U}
shows openin (quot-topology T q) = openin-quot
proof —
have istopology openin-quot
proof —
have openin-quot (U1 N Us) if openin-quot Uy A openin-quot Uy for Uy Us
proof —
have {z € topspace T. qz € Uy N Uy} = {x € topspace T. gz € U1} N {z
€ topspace T. q x € Uy} by blast
then show ?thesis using that unfolding openin-quot-def by auto
qed
moreover have openin-quot (|J U) if YV UeU. openin-quot U for U
proof —
have {z € topspace T. gz € U U} = {{z € topspace T. gz € U} | U.
U € U} by blast
then show ?thesis using that unfolding openin-quot-def by auto
qed
ultimately show ?thesis using istopology-def
by (smt (verit) Collect-cong Sup-set-def UnionI Union-iff image-eqI mem-Collect-eq
mem-Collect-eq openin-topspace subsetl subset-antisym topspace-def)
qed
from topology-inverse’|OF this] show ?thesis using quot-topology-def unfolding
openin-quot-def by metis
qed

lemma projection-quotient-map: quotient-map T (quot-topology T q) ¢
proof (unfold quotient-map-def, intro conjI)
have openin (quot-topology T q) (q topspace T') using quot-topology-open
by (smt (verit) image-subset-iff mem-Collect-eq openin-subtopology-refl subsetl
subtopology-superset)

11

then show g ‘ topspace T = topspace (quot-topology T q) using quot-topology-open

by (metis (no-types, opaque-lifting) openin-subset openin-topspace subset-antisym)
next

show V U C topspace (quot-topology T q).

openin T {z € topspace T. g x € U} = openin (quot-topology T q) U
using quot-topology-open by (metis (mono-tags, lifting) openin-topspace or-

der-trans)
qed

corollary topspace-quot-topology [simp]: topspace (quot-topology T q) = q‘(topspace
T)

using projection-quotient-map quotient-imp-surjective-map by metis

corollary projection-continuous: continuous-map T (quot-topology T q) q
using projection-quotient-map quotient-imp-continuous-map by fast

2.2 Definition and basic results

locale topological-group = group +

fixes T :: g topology

assumes group-is-space [simp|: topspace T = carrier G

assumes inv-continuous: continuous-map T T (Ao. inv o)

assumes mul-continuous: continuous-map (prod-topology T T) T (A(o,T). o®T)
begin

lemma in-space-iff-in-group [iff]: o € topspace T +— o € carrier G
by auto

lemma translations-continuous [intro):
assumes in-group: o € carrier G
shows continuous-map T T (A1. o®7) and continuous-map T T (A1. T®0)
proof —
have continuous-map T (prod-topology T T) (At. (o,7))
by (auto intro: continuous-map-pairedl simp: in-group)
moreover have (A7. o®7) = (A(0,7). 0®7) o (A7. (0,7)) by auto
ultimately show continuous-map T T (A7. c®T)
using mul-continuous continuous-map-compose by metis
next
have continuous-map T (prod-topology T T) (At. (7,0))
by (auto intro: continuous-map-pairedl simp: in-group)
moreover have (A\7. 7®0) = (A(0,7). o®7) o (A1. (7,0)) by auto
ultimately show continuous-map T T (A7. T®0)
using mul-continuous continuous-map-compose by metis
qed

lemma translations-homeos:

assumes in-group: o € carrier G

shows homeomorphic-map T T (A7. c®7) and homeomorphic-map T T (A7.
T®O)

12

proof —
have Vretopspace T. inv o ® (0 ® 7) = 7 by (simp add: group.inv-solve-left’
in-group)
moreover have Vretopspace T. 0 @ (invo @ 7) =T
by (metis group-is-space in-group inv-closed l-one m-assoc r-inv)
ultimately have homeomorphic-maps T T (A1. o®7) (A7. (inv 0)®T)
using homeomorphic-maps-def in-group by blast
then show homeomorphic-map T T (A7. c®7) using homeomorphic-maps-map
by blast
next
have Vretopspace T. T ® 0 Q inv o =T
by (simp add: group.inv-solve-right’ in-group)
moreover have V7€topspace T. 7 ® inv 0 @ 0 = 7 by (simp add: in-group
m-assoc)
ultimately have homeomorphic-maps T T (A1. 7®@0) (A1. 7®(inv 7))
using homeomorphic-maps-def in-group by blast
then show homeomorphic-map T T (A7. 7®0) using homeomorphic-maps-map
by blast
qed

abbreviation conjugation :: 'g = 'g = 'g where
conjugation o T =0 @ T Q NV 0

corollary conjugation-homeo:
assumes in-group: o € carrier G
shows homeomorphic-map T T (conjugation o)
proof —
have conjugation 0 = (M. 7 ® inv o) o (A7. ¢ ® T) by auto
then show ?thesis using translations-homeos homeomorphic-map-compose
by (metis in-group inv-closed)
qed

corollary open-set-translations:
assumes open-set: openin T U and in-group: o € carrier G
shows openin T (0 <# U) and openin T (U #> o)
proof —
let 2o = AT.0® T
have o0 <# U = %p‘U unfolding [-coset-def by blast
then show openin T (o <# U) using translations-homeos[OF in-group]
by (metis homeomorphic-map-openness-eq open-set)
next
let 2) = Ar. T ® 0
have U #> o = %) ‘U unfolding r-coset-def by fast
then show openin T (U #> o) using translations-homeos|OF in-group)
by (metis homeomorphic-map-openness-eq open-set)
qed

corollary closed-set-translations:
assumes closed-set: closedin T U and in-group: o € carrier G

13

shows closedin T (o <# U) and closedin T (U #> o)
proof —
let %p = AT. o®T
have o <# U = 2p‘U unfolding I-coset-def by fast
then show closedin T (0 <# U) using translations-homeos[OF in-group)
by (metis homeomorphic-map-closedness-eq closed-set)
next
let 2 = A\1. T®0
have U #> o = %) ‘U unfolding r-coset-def by fast
then show closedin T (U #> o) using translations-homeos[OF in-group)
by (metis homeomorphic-map-closedness-eq closed-set)
qed

lemma inverse-homeo: homeomorphic-map T T (Ao. inv o)
using homeomorphic-map-involution|OF inv-continuous] by auto

2.3 Subspaces and quotient spaces

abbreviation connected-component-1 :: 'g set where
connected-component-1 = connected-component-of-set T 1

lemma connected-component-1-props:
shows connected-component-1 <t G and closedin T connected-component-1
proof —
let ?Z = connected-component-of-set T
have in-space: (?Z 1) C topspace T
using connected-component-of-subset-topspace by fastforce
have subgroup (?Z 1) G
proof (rule subgroupl)
show (77 1) C carrier G using in-space by auto
next
show (77 1) # {}
by (metis connected-component-of-eq-empty group-is-space one-closed)
next
fix o assume ho: o € (97 1)
let 2p = An. inv
have %p{%Z 1) = ?Z 1 using connected-components-homeo
by (metis group-is-space inv-one inverse-homeo one-closed)
then show inv o € (?Z 1) using ho by blast
next
fix o T assume ho: o € (?Z 1) and hr: 7 € (?Z 1)
let %0 = .o ®n
have %p(%Z 1) = ?Z o using connected-components-homeo
by (metis group-is-space ho in-space one-closed r-one subset-eq transla-
tions-homeos(1))
moreover have 7 o = ?Z 1 using ho by (simp add: connected-component-of-equiv)
ultimately show ¢ ® 7 € ?Z 1 using hr by blast
qed
moreover have conjugation o T € ?Z 1 if hot: 0 € carrier G AN T € ?Z 1 for

14

oT
proof —
let %p = conjugation o
have 2p(?Z 1) = ?Z (%p 1) using connected-components-homeo
by (metis conjugation-homeo group-is-space one-closed hor)
then show ?thesis using r-inv r-one hot by auto
qed
ultimately show connected-component-1 <1 G using normal-inv-iff by blast
next
show closedin T connected-component-1 by (simp add: closedin-connected-component-of)
qged

lemma group-prod-space [simp]: topspace (prod-topology T T) = (carrier G) x
(carrier G)
by auto

no-notation eg-closure-of («<closure’-of1)

lemma subgroup-closure:
assumes H-subgroup: subgroup H G
shows subgroup (T closure-of H) G
proof —
have subset: T closure-of H C carrier G
by (metis closedin-closure-of closedin-subset group-is-space)
have nonempty: T closure-of H # {}
by (simp add: assms closure-of-eq-empty group.subgroupE (1) subgroupE(2))

let %0 = Ao,7). 0 @ inv T
have y-continuous: continuous-map (prod-topology T T) T %o
proof —
have continuous-map (prod-topology T T) (prod-topology T T) (A(o, 7). (o, inv

7))
using continuous-map-prod-top inv-continuous by fastforce
moreover have % = (A(o, 7). ¢ ® 7) o (A(o, 7). (0, inv 7)) by fastforce
ultimately show ?thesis using mul-continuous continuous-map-compose by
force
qged

have ¢ ® inv 7 € T closure-of H
if hor: o € T closure-of H N 7 € T closure-of H for o T
proof —
have in-space: ¢ ® inv T € topspace T using subset hot by fast
have 3ne€ H.ne U if hU: openin T U N o @ inv T € U for U
proof —
let 2V = {z € topspace (prod-topology T T). %p z € U}
have openin (prod-topology T T) ?V
using ¢-continuous hU openin-continuous-map-preimage by blast
moreover have (o,7) € ?V
using hU group-prod-space hot subset by force

15

ultimately obtain V; V5, where
hV1Va:openin T Vi AN openin T Vo Ao € ViATE Vo ANV x Vo C2V
by (smt (verit) openin-prod-topology-alt)
then obtain ¢’ 7/ where ho't" 0’ € Vi N H AT’ € Vo N H using hot
by (meson all-not-in-conv disjoint-iff openin-Int-closure-of-eq-empty)
then have % (¢/;7') € U using hV1 V5 by blast
moreover have %p (o/,7') € H using ho't’ H-subgroup subgroupE(3,4) by
stmp
ultimately show ?thesis by blast
qed
then show ?thesis using closure-of-def in-space by force
qed
then show ?thesis using subgroupl-alt subset nonempty by blast
qed

lemma normal-subgroup-closure:
assumes normal-subgroup: N < G
shows (T closure-of N) < G
proof —
have (conjugation o) (T closure-of N) C T closure-of N if ho: o € carrier G
for o
proof —
have (conjugation o)‘N C N using normal-subgroup normal-invE(2) ho by
auto
then have T closure-of (conjugation o)‘N C T closure-of N
using closure-of-mono by meson
moreover have (conjugation o) (T closure-of N) C T closure-of (conjugation
o)‘N
using ho conjugation-homeo
by (meson continuous-map-egq-image-closure-subset homeomorphic-imp-continuous-map)
ultimately show ¢thesis by blast
qed
moreover have subgroup (T closure-of N) G using subgroup-closure
by (simp add: normal-invE(1) normal-subgroup)
ultimately show ?thesis using normal-inv-iff by auto
qed

lemma topological-subgroup:

assumes subgroup H G

shows topological-group (G (carrier := HJ) (subtopology T H)
proof —

interpret subgroup H G by fact

let ?H = (G (carrier := H|) and ?T’ = subtopology T H

have H-subspace: topspace ?T' = H using topspace-subtopology-subset by force

have continuous-map ?T' T (Ao. inv o) using continuous-map-from-subtopology
inv-continuous by blast

moreover have (\o. inv o) € topspace ¢T' — H unfolding Pi-def H-subspace
by blast

ultimately have continuous-map ?T' ?T' (A\o. inv o) using continuous-map-into-subtopology

16

by blast
then have sub-inv-continuous: continuous-map ?T' ?T' (Xo. invey o)
using continuous-map-eq H-subspace m-inv-consistent assms by fastforce
have continuous-map (prod-topology ?T' ¢T") T (A(o,7). 0 ® T)
unfolding subtopology- Times[symmetric] using continuous-map-from-subtopology[OF
mul-continuous] by fast
moreover have (A\(o,7). 0 ® 7) € topspace (prod-topology ¢T' ¢?T') — H
unfolding Pi-def topspace-prod-topology H-subspace by fast
ultimately have continuous-map (prod-topology ¢T' 2T") ?T' (Mo,7). 0 & T)
using continuous-map-into-subtopology by blast
then have continuous-map (prod-topology ?T' ?T') ?T' (A(o,T). 0 @y T) by
fastforce
then show ?Zthesis unfolding topological-group-def topological-group-azioms-def
using H-subspace sub-inv-continuous by auto
qed

Topology on the set of cosets of some subgroup

abbreviation coset-topology :: 'g set = g set topology where
coset-topology H = quot-topology T (r-coset G H)

lemma coset-topology-topspace|simp]:
shows topspace (coset-topology H) = (r-coset G H) (carrier G)
using projection-quotient-map quotient-imp-surjective-map group-is-space by metis

lemma projection-open-map:
assumes subgroup: subgroup H G
shows open-map T (coset-topology H) (r-coset G H)
proof (unfold open-map-def, standard, standard)
fix U assume hU: openin T U
let %7 = r-coset G H
let ?V = {0 € topspace T. ?m 0 € ?n‘U}
have subsets: H C carrier G N U C carrier G
using subgroup hU openin-subset by (force elim!: subgroupFE)
have ?V = {0 € carrier G. 37 € U. H #> o = H #> 7} using image-def by
blast
then have ?V = {0 € carrier G. 37 € U. 0 € H #> 7} using subsets
by (smt (verit) Collect-cong rcos-self repr-independence subgroup subset-eq)
also have ... = (Un € H. n <# U) unfolding r-coset-def I-coset-def using
subsets by auto
moreover have openin T (n <# U) if n € H for 7
using open-set-translations(1)[OF hU] subsets that by blast
ultimately have openin T ?V by fastforce
then show openin (coset-topology H) (7 ‘U) using quot-topology-open hU
by (metis (mono-tags, lifting) Collect-cong image-mono openin-subset)
qed

lemma topological-quotient-group:

assumes normal-subgroup: N < G
shows topological-group (G Mod N) (coset-topology N)

17

proof —

interpret normal N G by fact

let ¢ = r-coset G N

let ?T' = coset-topology N

have quot-space: topspace ?T' = 2w (carrier G) using coset-topology-topspace
by presburger

then have quot-group-quot-space: topspace ?T' = carrier (G Mod N) using
carrier-FactGroup by metis

let ?quot-mul = AN(No, NT). No @¢ pod N NT
have 7-prod-space: topspace (prod-topology ?T' ¢?T') = 7 (carrier G) X ?m (carrier
G)
using quot-space topspace-prod-topology by simp
have quot-mul-continuous: continuous-map (prod-topology 2T 2T") 2T’ 2quot-mul
proof (unfold continuous-map-def, intro congl balll alll impl)
show ?quot-mul € topspace (prod-topology ¢T' ?T') — topspace ?T'
using rcos-sum unfolding quot-space m-prod-space by auto
next
fix U assume hU: openin ?T' U
let ?V = {p € topspace (prod-topology ?T' ?T"). ?quot-mul p € U}
let ?W = {(o,7) € topspace (prod-topology T T). N #> (o @ 7) € U}
let %19 = A(o, 7). (N #> o, N #> 1)
have (A(o,7). N #> (6 ® 7)) = %7 o (A(0,7). 0 ® T) by fastforce
then have continuous-map (prod-topology T T) ?T' (A(o,7). N #> (0 ® 7))
using continuous-map-compose mul-continuous projection-continuous by fast-
force
then have openin (prod-topology T T) ?W
using hU openin-continuous-map-preimage
by (smt (verit) Collect-cong case-prodE case-prodl2 case-prod-conv)
moreover have open-map (prod-topology T T) (prod-topology ?T' ?T') s
using projection-open-map open-map-prod-top by (metis subgroup-axioms)
ultimately have openin (prod-topology ¢?T' ?T') (%o ‘?W) using open-map-def
by blast
moreover have ?V = %7, ?W
using rcos-sum unfolding mw-prod-space group-prod-space by auto
ultimately show openin (prod-topology ¢T' ¢T') ?V by presburger
qged

let Zquot-inv = ANo. invg proq N No
have m-inv: ?quot-inv (N #> o) = ?r (inv o) if o € carrier G for o
using inv-FactGroup rcos-inv carrier-FactGroup that by blast
have continuous-map ?T' ?T' ?quot-inv
proof (unfold continuous-map-def, intro conjl balll alll impl)

show ?quot-inv € topspace ?T' — topspace ?T' using w-inv quot-space by auto
next

fix U assume hU: openin ?T' U

let ?V = {No € topspace ?T'. ?quot-inv No € U}

let W = {o € topspace T. N #> (inv o) € U}

have (Ao. N #> (inv o)) = %7 o (Ao. inv o) by fastforce

18

then have continuous-map T ?T' (Ao. N #> (inv o))
using continuous-map-compose projection-continuous inv-continuous
by (metis (no-types, lifting))
then have openin T ?W using hU openin-continuous-map-preimage by blast
then have openin ¢T' (¢7?W)
using projection-open-map by (simp add: open-map-def subgroup-axioms)
moreover have ?V = 27 ‘?W using 7-inv quot-space by force
ultimately show openin ?T' ?V by presburger
qed

then show ?thesis unfolding topological-group-def topological-group-axioms-def
using quot-group-quot-space quot-mul-continuous factorgroup-is-group by blast
qed

See [3] for our approach to proving that quotient groups of topological
groups are topological.

abbreviation neighborhood :: 'g = 'g set = bool where
neighborhood o U = openin T U N o € U

abbreviation symmetric :: 'g set = bool where
symmetric S = {invo |o.c € S} C S

Note that this implies the other inclusion, so symmetric subsets are equal
to their image under inversion.

lemma neighborhoods-of-1:
assumes neighborhood 1 U
shows 3 V. neighborhood 1 V' A symmetric VNV <#>V C U
proof —
have a: 3 VCU'. neighborhood 1 V A symmetric V if hU". neighborhood 1 U’
for U’
proof —
let ?W = {o € carrier G. inv o € U'}
let 2V = 2W N ((Ao. inv o) W)
have neighborhood 1 W using openin-continuous-map-preimage| OF inv-continuous]
hU' inv-one by fastforce
moreover from this have neighborhood 1 ((Ao. inv o) ‘?W) using inverse-homeo

homeomorphic-imp-open-map inv-one image-eql open-map-def by (metis
(mono-tags, lifting))
ultimately have neighborhood: neighborhood 1 ?V by blast
have inv o € ?V if ¢ € ?V for o using that by auto
then have symmetric ?V by fast
moreover have o € U’ if o € ?V for o using that by blast
ultimately show ?thesis using neighborhood by blast
qed
have b: 3 V. neighborhood 1 V NV <#> V C U’ if hU": neighborhood 1 U’
for U’
proof —
let ?W = {(o,7) € carrier G x carrier G. o7 € U’}

19

have preimage-mul: ?W = {z € topspace (prod-topology T T). (A(o,7). 0®T)
ze U’}
using topspace-prod-topology by fastforce
then have openin (prod-topology T T) ¢W A (1,1) € ?W
using openin-continuous-map-preimage[OF mul-continuous| hU’ r-one by
fastforce
then obtain W; Wy where hW1 Wy: neighborhood 1 W1 A neighborhood 1
W2 AN W1 X WQQ W
using openin-prod-topology-altjwhere S=?W] by meson
let 2V = W1 N W2
from hW, Wy have neighborhood 1 2V by fast
moreover have o7 € U’ if 0€?V A 7€?V for o 7 using preimage-mul
hW1 Wy that by blast
ultimately show ?thesis unfolding set-mult-def by blast
qed
from b[OF assms] obtain W where hW: neighborhood 1 W AN W <#> W C
U by presburger
from this a obtain V where VCW A neighborhood 1 V A symmetric V by
presburger
moreover from this have V <#> V C U using hW mono-set-mult by blast
ultimately show ?thesis unfolding set-mult-def by blast
qed

lemma Hausdorff-coset-space:
assumes subgroup: subgroup H G and H-closed: closedin T H
shows Hausdorff-space (coset-topology H)
proof (unfold Hausdorff-space-def, intro alll impl)
interpret subgroup H G by fact
let ¢ = r-coset G H
let ?T' = coset-topology H
fix Ho HT assume cosets: Ho € topspace ?T' N HT € topspace ?T' N Ho #
Hr
then obtain ¢ 7 where hot: o € carrier G A 7 € carrier G AN Ho = H #> o
A Hr = H #> 7 by auto
then have o ¢ H #> 7 using cosets subgroup repr-independence by blast
have 1 ¢ (inv o) <# (H #> 7)
proof
assume 1 € inv o <# (H #> 1)
then obtain n where hi: n € H A1 = (inv 0) ® (n ® 7) unfolding r-coset-def
l-coset-def by auto
then have o = ® 7
by (metis (no-types, lifting) Units-eq Units-m-closed group.inv-comm group-l-invl
hot inv-closed inv-inv inv-unique’ l-inv-ex mem-carrier)
then show Fulse using <o ¢ H #> 1) hny r-coset-def by fast
qed
let ?U = topspace T — ((inv o) <# (H #> 1))
have closedin T ((inv o) <# (H #> 7))
using closed-set-translations closed-set-translations|OF H-closed] hot by simp
then have neighborhood 1 ?U using (1 ¢ (inv o) <# (H #> 7)) by blast

20

then obtain V where hV: neighborhood 1 V A symmetric V ANV <#> V C
U

using neighborhoods-of-1 by presburger
let Vi =0 <# Vand ?Vyo =7 <# V
have disjoint: 7V, N ?20?Vy = {}
proof (rule ccontr)

assume 7V N %V, # {}

then obtain v; vy where hvjve: v1 € V Avg € V A 21 (0®v1) = 1 (TQU2)

unfolding [-coset-def by auto
moreover then have vyvs-in-group: vi € carrier G A\ vo € carrier G
using hV openin-subset by force
ultimately have in-H: (c®v;1) ® inv (T®uv3) € H
using subgroup repr-independenceD rcos-module-imp hoT m-closed
by (metis group.rcos-self is-group subgroup.m-closed subgroup-self)
let 7 = (o®v1) ® inv (TQV2)
have) = 0 ® (v ® inv vy) ® inv T using hoT vVV2-in-group Mm-assoc
by (simp add: inv-mult-group subgroupE(4) subgroup-self)
then have inv 0 ® () ® 7) = v1 ® inv vy
using hoT vivg-in-group m-assoc inv-solve-left’ by auto
then have vy ® inv ve € (inv o) <# (H #> 1)
unfolding I-coset-def r-coset-def using hot inv-closed in-H by force
moreover have v| ® inv vy € ?U using hvivs hV unfolding set-mult-def
by blast
ultimately show Fulse by force
qged
have neighborhood o 2V A neighborhood 7 Vo
using open-set-translations[of V] l-coset-def hV hot r-one by force
then have openin ¢T' (?7°?V1) A openin ?T' (?7‘?Vy) AN Ho € 7V A HT
€ m?V,y
using projection-open-map open-map-def subgroup hot by fast
then show 3 W, Wsy. openin ?T' W1 A openin T’ Wo A Ho € W1 A HT €
W2 A dlSjTLt W1 WQ
using disjoint disjnt-def by meson
qed

lemma Hausdorff-coset-space-converse:

assumes subgroup: subgroup H G

assumes Hausdorff: Hausdor(f-space (coset-topology H)

shows closedin T H
proof —

interpret subgroup H G by fact

let ?T' = coset-topology H

have H € topspace ?T’ using coset-topology-topspace coset-join2[of 1 H| sub-
group by auto

then have closedin ?T' {H}

using t1-space-closedin-singleton Hausdor(f-imp-t1-space] OF Hausdorff] by fast

then have preimage-closed: closedin T {0 € carrier G. H #> o = H}

using projection-continuous closedin-continuous-map-preimage by fastforce

21

have o € H «— H #> o0 = H if 0 € carrier G for o
using coset-joinl coset-join2 subgroup that by metis
then have H = {0 € carrier G. H #> o = H} using subset by auto
then show ?thesis using preimage-closed by presburger
qed

corollary Hausdorff-coset-space-iff:
assumes subgroup: subgroup H G
shows Hausdorff-space (coset-topology H) +— closedin T H
using Hausdorff-coset-space Hausdorff-coset-space-converse subgroup by blast

corollary topological-group-hausdorff-iff-one-closed:

shows Hausdorff-space T <— closedin T {1}
proof —

let ?r = r-coset G {1}

have inj-on ?r (carrier G) unfolding inj-on-def r-coset-def by simp

then have homeomorphic-map T (coset-topology {1}) ?x

using projection-quotient-map injective-quotient-map-homeo group-is-space by

metis

then have Hausdorff-space T <— Hausdorff-space (coset-topology {1})

using homeomorphic- Hausdorff-space homeomorphic-map-imp-homeomorphic-space
by blast

then show ?thesis using Hausdorff-coset-space-iff triv-subgroup by blast
qed

lemma set-mult-one-subset:
assumes A C carrier G A B C carrier G and 1 € B
shows A C A <#> B
unfolding set-mult-def using assms r-one by force

lemma open-set-mult-open:

assumes openin T U N S C carrier G

shows openin T (S <#> U)
proof —

have S <#> U = (|Jo€S. 0 <# U) unfolding set-mult-def I-coset-def by
blast

moreover have openin T (o <# U) if o € S for o using open-set-translations(1)
assms that by auto

ultimately show ?thesis by auto
qed

lemma open-set-inv-open:
assumes openin T U
shows openin T (set-inv U)
proof —
have set-inv U = (Ao. inv o) ‘U unfolding image-def SET-INV-def by blast
then show ?thesis using inverse-homeo homeomorphic-imp-open-map open-map-def
assms by metis
qed

22

lemma open-set-in-carrier|elim]:
assumes openin T U
shows U C carrier G
using openin-subset assms by force

2.4 Uniform structures

abbreviation left-entourage :: 'g set = (‘g x 'g) set where
left-entourage U = {(o,7) € carrier G x carrier G. inv o @ 7 € U}

abbreviation right-entourage :: 'g set = (‘g x 'g) set where
right-entourage U = {(o,7) € carrier G X carrier G. 0 @ inv T € U}

definition left-uniformity :: 'g uniformity where left-uniformity =
uniformity (carrier G, AE. E C carrier G X carrier G A\ (3 U. neighborhood 1
U A left-entourage U C E))

definition right-uniformity :: 'g uniformity where right-uniformity =
uniformity (carrier G, N\E. E C carrier G X carrier G A\ (3 U. neighborhood 1
U A right-entourage U C E))

lemma
uspace-left-uniformity[simpl: uspace left-uniformity = carrier G (is ?space-def)
and
entourage-left-uniformity: entourage-in left-uniformity =
(AE. E C carrier G x carrier G A (3 U. neighborhood 1 U A left-entourage U
C E)) (is ?entourage-def)
proof —
let & = \E. E C carrier G x carrier G A (3 U. neighborhood 1 U A left-entourage
U C E)
have ?® (carrier G x carrier G)
using ezl[where z=carrier G] openin-topspace by force
moreover have Id-on (carrier G) C E A 20 (E-) A (3F. 206 FAF OF C
E) A
(VF.ECF AF C carrier G x carrier G — ?® F) if hE: 70 FE for E
proof —
from hE obtain U where hU: neighborhood 1 U A left-entourage U C E by
presburger
then have U-subset: U C carrier G using openin-subset by force
from hU have Id-on (carrier G) C E by fastforce
moreover have ?® (E~!)
proof —
have (r,0) € E if 0 € carrier G A 7 € carrier G A inv o ® T € set-inv U
for o 7
proof —
have inv 7 ® o = inv (inv 0 ® 7) using that inv-mult-group by auto
from this have inv 7 ® o € U using that inv-inv U-subset unfolding
SET-INV-def by auto

23

then show ?thesis using that hU by fast
qed
then have left-entourage (set-inv U) C E~! by blast
moreover have neighborhood 1 (set-inv U) using inv-one hU open-set-inv-open
SET-INV-def by fastforce
ultimately show ?thesis using hE by auto
qed
moreover have 3F. 20 FAFOF CFE
proof —
obtain V where hV: neighborhood 1 VNV <#> V C U
using neighborhoods-of-1 hU by meson
let ?F = left-entourage V
have (0,0) € E if (0,7) € ?F A (1,0) € ?F for o 7 ¢
proof —
have o € carrier G A 7 € carrier G A\ o € carrier G using that by force
then have inv o ® o = (v o @ 7) ® (inv 7 ®)
using m-assoc inv-closed m-closed r-inv r-one by metis
moreover have (inv o ® 7) ® (inv 7 ® p) € U using that hV unfolding
set-mult-def by fast
ultimately show ?thesis using hU that by force
qed
moreover have ?® ?F using hV by blast
ultimately show %thesis using AV by auto
qed
moreover have VF. E C F N F C carrier G X carrier G — ?® F using
hE by auto
ultimately show ?thesis by blast
qed
moreover have ?® (E N F) if hEF: 20 E A 90 F for E F
proof —
from hEF obtain U V where
hU: neighborhood 1 U A left-entourage U C E and
hV: neighborhood 1 'V A left-entourage V- C F by presburger
then have neighborhood 1 (U N V) A left-entourage (U N V) C E N F by
fast
then show %thesis using that by auto
qged
ultimately have uniformity-on (carrier G) ¢®
unfolding uniformity-on-def by auto
from uniformity-inverse’|OF this] show ?space-def and ?entourage-def unfold-
ing left-uniformity-def by auto
qed

lemma
uspace-right-uniformity[simp|: uspace right-uniformity = carrier G (is ?space-def)
and
entourage-right-uniformity: entourage-in right-uniformity =
(AE. E C carrier G x carrier G A (3 U. neighborhood 1 U A right-entourage
U C E)) (is Zentourage-def)

24

proof —
let & = \E. FE C carrier G x carrier G A (3 U. neighborhood 1 U A right-entourage
UCE)
have ?® (carrier G x carrier G)
using exzl[where z=carrier G| openin-topspace by force
moreover have Id-on (carrier G) C E A 20 (E"Y) A (3F. 206 FAFOF C
E) A
(VF. ECF AF C carrier G X carrier G — ?® F) if hE: 90 FE for E
proof —
from hE obtain U where
hU: neighborhood 1 U A right-entourage U C E
by presburger
then have U-subset: U C carrier G using openin-subset by force
from AU have Id-on (carrier G) C E by fastforce
moreover have ?® (E~1)
proof —
have (1,0) € E if o € carrier G A 7 € carrier G A\ 0 @ inv T € set-inv U
for o 7
proof —
have 7 ® inv 0 = inv (0 ® inv 7) using that inv-mult-group by auto
from this have 7 ® inv o € U using that inv-inv U-subset unfolding
SET-INV-def by auto
then show ?thesis using that hU by fast
qed
then have right-entourage (set-inv U) C E~! by blast
moreover have neighborhood 1 (set-inv U) using inv-one hU open-set-inv-open
SET-INV-def by fastforce
ultimately show ?thesis using hE by auto
qed
moreover have 3F. 20 FAFOF CEFE
proof —
obtain V where LV: neighborhood 1 VNV <#> V C U
using neighborhoods-of-1 hU by meson
let ?F = right-entourage V
have (0,0) € E if (0,7) € ?F A (1,0) € ?F for o 7 ¢
proof —
have o € carrier G A 7 € carrier G A\ o € carrier G using that by force
then have 0 ® inv o = (0 ® inv 7) ® (7 ® inv 9)
using m-assoc inv-closed m-closed l-inv r-one by metis
moreover have (¢ ® v 7) ® (T ® inv ¢) € U using that hV unfolding
set-mult-def by fast
ultimately show ?thesis using hU that by force
qed
moreover have ?® ?F using hV by blast
ultimately show %thesis using AV by auto
qed
moreover have VF. E C F N F C carrier G X carrier G — ?® F using
hE by auto
ultimately show ?thesis by blast

25

qed
moreover have ?® (E N F) if hEF: 20 E A 90 F for E F
proof —
from hEF obtain U V where
hU: neighborhood 1 U A right-entourage U C E and
hV: neighborhood 1 V A right-entourage V. C F
by presburger
then have neighborhood 1 (U N V) A right-entourage (U N V) C E N F by
fast
then show %thesis using that by auto
qed
ultimately have uniformity-on (carrier G) ?®
unfolding uniformity-on-def by auto
from uniformity-inverse’|OF this] show ?space-def and ?entourage-def unfold-
ing right-uniformity-def by auto
qed

lemma left-uniformity-induces-group-topology [simp]:
shows utopology left-uniformity = T
proof —
let 2® = left-uniformity
let ?T' = utopology 7®
have openin T U <+— openin ?T' U for U
proof
assume U-open: openin T U
have 3 E. entourage-in ?® E N E“{c} C U if ho: 0 € U for o
proof —
let ?F = left-entourage (inv o <# U)
have in-group: o € carrier G using ho U-open open-set-in-carrier by blast
then have openin T (inv o <# U)
using inv-closed open-set-translations(1) U-open by presburger
then have neighborhood 1 (inv o <# U)
using ho in-group r-inv unfolding [-coset-def SET-INV-def by force
then have entourage-in ?® ?E unfolding entourage-left-uniformity by blast
moreover have 7 € U if 7 € ?E‘{o} for 7
proof —
from that have inv o ® T € inv 0 <# U by force
then obtain ¢ where ho: p € U A inv 0 ® T = inv 0 ® p unfolding
l-coset-def by fast
then have ¢ € carrier G A 7 € carrier G using that open-set-in-carrier
U-open by fast
then have 7 = g using in-group ho inv-closed by (metis Units-eq Units-I-cancel)
then show ?thesis using hp by simp
qed
ultimately show ?thesis by blast
qed
moreover have U C uspace ?® using openin-subset U-open by force
ultimately show openin ?T' U unfolding openin-utopology by force
next

26

assume U-open: openin ?T' U
have 3 W. neighborhood c W AN W C U if ho: 0 € U for o
proof —
have in-group: o € carrier G using ho U-open openin-subset topspace-utopology
by force
from U-open ho obtain E where hE: entourage-in ?® E N E“{oc} C U
unfolding openin-utopology by blast
then obtain V where hV: neighborhood 1 V A left-entourage VC E
unfolding entourage-left-uniformity by fastforce
let ?W = {7 € carrier G. invo @ 7€ V}
from hV have W-subset: W C E‘{o} using in-group by fast
have continuous-map T T (A7. inv 0 ® T) using translations-continuous
in-group inv-closed by blast
then have openin T ?W using openin-continuous-map-preimage hV by
fastforce
then have neighborhood o ?W using in-group r-inv hV by simp
then show ?thesis using W-subset hE by fast
qed
then show openin T U using openin-subopen by force
qed
then show ?thesis using topology-eq by blast
qed

lemma right-uniformity-induces-group-topology [simp]:
shows utopology right-uniformity = T
proof —
let & = right-uniformity
let 2T/ = utopology ?®
have openin T U <— openin ?T' U for U
proof
assume U-open: openin T U
have 3 E. entourage-in ?® E N E“{c} C U if ho: 0 € U for o
proof —
let ?E = right-entourage (o <# set-inv U)
have in-group: o € carrier G using ho U-open open-set-in-carrier by blast
then have openin T (o0 <# set-inv U)
using open-set-inv-open open-set-translations(1) U-open by presburger
then have neighborhood 1 (o <# set-inv U)
using ho in-group r-inv unfolding I-coset-def SET-INV-def by force
then have entourage-in ?® ?E unfolding entourage-right-uniformity by blast
moreover have 7 € U if 7 € ?E‘{o} for 7
proof —
from that have o0 ® inv 7 € 0 <# set-inv U by force
then obtain g where hp: p€c U N0 @ inv T =0 ® inv 9
unfolding [-coset-def SET-INV-def by fast
then have ¢ € carrier G A 7 € carrier G using that open-set-in-carrier
U-open by fast
then have T = p using in-group ho inv-closed by (metis Units-eq Units-I-cancel
inv-inv)

27

then show ?thesis using ho by simp
qed
ultimately show ?thesis by blast
qed
moreover have U C uspace ?® using openin-subset U-open by force
ultimately show openin ?T' U unfolding openin-utopology by force
next
assume U-open: openin ¢T' U
have 3 W. neighborhood c W A W C U if ho: 0 € U for o
proof —
have in-group: o € carrier G using ho U-open openin-subset topspace-utopology
by force
from U-open ho obtain E where hE: entourage-in 9@ E N E‘{c} C U
unfolding openin-utopology by blast
then obtain V where hV: neighborhood 1 V' A right-entourage V C E
unfolding entourage-right-uniformity by fastforce
let W = {7 € carrier G. 0 @ inv T € V}
from hV have W-subset: YW C E‘{o} using in-group by fast
have (A\7. 0 ® inv 7) = (A7. 0 ® 7) o (AT. inv 7) by fastforce
then have continuous-map T T (A1. o ® inv T) using continuous-map-compose
tnu-continuous
translations-continuous|OF in-group] by metis
then have openin T ?W using openin-continuous-map-preimage hV by
fastforce
then have neighborhood o ?W using in-group r-inv hV by simp
then show ?%thesis using W-subset hE by fast
qed
then show openin T U using openin-subopen by force
qed
then show “thesis using topology-eq by blast
qed

lemma translations-ucontinuous:
assumes in-group: o € carrier G
shows ucontinuous left-uniformity left-uniformity (A7. ¢ ® 7) and
ucontinuous right-uniformity right-uniformity (Ar. 7 ® o)
proof —
let 2 = left-uniformity
have entourage-in ?® {(11, 72) € uspace ?® X uspace ?®. (¢ ® 171, 0 ® T3) €
F)
if hE: entourage-in ?® E for E
proof —
let ?F = {(71, T2) € uspace ?® x uspace ?®. (0 @ 71, 0 ® T2) € E}
from hE obtain U where hU: neighborhood 1 U A left-entourage U C E
unfolding entourage-left-uniformity by auto
have (71, 72) € ?F if 71 € carrier G A\ 79 € carrier G A inv 71 ® 79 € U for
T1 T2
proof —
have inv (0 ® 71) ® (0 ® T3) = inv 71 @ T2

28

using that in-group m-closed inv-closed inv-mult-group m-assoc r-inv r-one
by (smt (verit, ccfv-threshold))
then have (0 ® 71, 0 ® 72) € E using that hU in-group m-closed by fastforce
then show ?thesis using that by auto
qed
then have left-entourage U C ?F by force
then show ?thesis unfolding entourage-left-uniformity using hU by auto
qed
moreover have (A\7. ¢ ® T) € uspace ?® — uspace O
unfolding Pi-def using uspace-left-uniformity in-group m-closed by force
ultimately show ucontinuous ® ?® (A1. 0 @ T)
unfolding ucontinuous-def by fast
next
let ?® = right-uniformity
have entourage-in ?® {(71, 72) € uspace ?® X uspace ?®. (11 ® 0, T2 ® 0) €
£}
if hE: entourage-in ?® F for E
proof —
let ?F = {(71, 72) € uspace ?® X uspace ?®. (11 ® 0, T2 @ o) € F}
from hE obtain U where hU: neighborhood 1 U A right-entourage U C E
unfolding entourage-right-uniformity by auto
have (71, 73) € ?F if 71 € carrier G A 79 € carrier G A 71 ® inv 79 € U for
T1 T2
proof —
have (71 ® 0) ® inv (T2 ® 0) = 71 ® NV T
using that in-group m-closed inv-closed inv-mult-group m-assoc T-inv T-one
by (smt (verit, ccfu-threshold))
then have (71 ® 0, 72 ® o) € E using that hU in-group m-closed by fastforce
then show ?thesis using that by simp
qed
then have right-entourage U C ?F by force
then show ?thesis unfolding entourage-right-uniformity using hU by auto
qed
moreover have (A\7. 7 ® o) € uspace ?® — uspace ?®
unfolding Pi-def using entourage-right-uniformity in-group m-closed by force
ultimately show ucontinuous @ ?® (Ar. T ® o)
unfolding ucontinuous-def by fast
qed

2.5 The Birkhoff-Kakutani theorem

2.5.1 Prenorms on groups

definition group-prenorm :: ('g = real) = bool where

group-prenorm N <—
N1=0A
(Vo 1.0 € carrier G A7 € carrier G — N (c @ 1) < No+ N 1) A
(Vo € carrier G. N (inv o) = N o)

lemma group-prenorm-clauses|elim):

29

assumes group-prenorm N

obtains
N 1= 0 and
No 7.0 € carrier G = 7 € carrier G = N (c ® 7) < N o + N 7 and
No. o € carrier G = N (inv o) = N o

using assms unfolding group-prenorm-def by auto

proposition group-prenorm-nonnegative:
assumes prenorm: group-prenorm N
shows Vo € carrier G. N 0 > 0
proof
fix o assume o € carrier G
from r-inv this have 0 < N o 4+ N o using assms inv-closed group-prenorm-clauses
by metis
then show N ¢ > 0 by fastforce
qed

proposition group-prenorm-reverse-triangle-ineq:

assumes prenorm: group-prenorm N and in-group: o € carrier G A T € carrier
G

shows [N o0 — N 7| < N (0 ® inv 1)
proof —

have 0 = ¢ ® inv 7 ® 7 using in-group inv-closed r-one l-inv m-assoc by metis

then have a: N 0 < N (0 ® inv 7) + N 7 using in-group inv-closed m-closed
prenorm group-prenorm-clauses by metis

have inv 7 = inv 0 ® (0 ® inv 7) using in-group inv-closed l-one l-inv m-assoc
by metis

then have b: N 7 < N o + N (0 ® inv 1) using in-group inv-closed m-closed
prenorm group-prenorm-clauses by metis

from a b show ?thesis by linarith
qed

definition induced-group-prenorm :: ('g = real) = 'g = real where
induced-group-prenorm f o = (SUP T € carrier G. |f (1 ® o) — f 7])

lemma induced-group-prenorm-welldefined:
fixes [:: 'g = real
assumes f-bounded: 3¢ N1 € carrier G. |f 7| < ¢ and in-group: o € carrier G
shows bdd-above (A7. |f (T ® o) — f 7|)(carrier G))
proof —
from f-bounded obtain ¢ where he: V1 € carrier G. |f 7| < ¢ by blast
have |f (1 ® o) — f 7| < 2%c if T € carrier G for T
proof —
have |f (1 ® o) — f 7| < |f (t ® 0)| + |f 7| using abs-triangle-ineq by simp
then show ?thesis using in-group that m-closed f-bounded hc by (smt (verit,
best))
qed
then show ?thesis unfolding bdd-above-def image-def by blast
qed

30

lemma bounded-function-induces-group-prenorm:
fixes [:: g = real
assumes f-bounded: 3¢No € carrier G. |f o] < ¢
shows group-prenorm (induced-group-prenorm f)
proof —
let N = Ao. SUP 7 € carrier G. |f (1 ® o) — f 7|
have ?N 1 = (SUP 7 € carrier G. 0) using r-one by simp
then have ?N 1 = 0 using carrier-not-empty by simp
moreover have ?N (0 ® 7) < N o 4+ ?N 7 if hor: 0 € carrier G A T € carrier
G for o T
proof —
have |[f (0 ® (6 ® 7)) — f o] < ?N o + ?N 7 if p € carrier G for g
proof —
have a: [f (0 ® (c @ 7)) —fol<|f(e®@(c®@T) —f(e®@a)+I|f(e®
o) — f o
using abs-triangle-ineq by linarith
have [f (e ® o ® 7) = f (e ® o) < PN 7
using induced-group-prenorm-welldefined|OF f-bounded| that hot m-closed
cSUP-upper by meson
then have b: |f (o ® (6 ® 7)) — f (¢ ® 0)| < ?N 7 using m-assoc that hot
by simp
have ¢: |f (o ® 0) — f 0| < ¢N o using induced-group-prenorm-welldefined| OF
f-bounded] hot that cSUP-upper by meson
from a b ¢ show ?thesis by argo
qged
then show ?thesis using c¢SUP-least carrier-not-empty by meson
qed
moreover have ?N (inv o) = ¢N o if ho: 0 € carrier G for o
proof —
have |f (T ®@ inv o) — f7l€{lf (e®0c) — fol| o o€ carrier G } if T €
carrier G for T
proof —
have |f (1 @ invo) — f7|=|f (T ®invo) — f (T ® inv o ® o)
using ho that m-assoc r-one l-inv by simp
then have |[f (T ® invo) — f 7| =|f (T ® inv o ® 0) — f (7 ® inv o)| by
argo
then show ?thesis using ho that m-closed by blast
qed
moreover
have |f (o ®@0) — fole{lf t ®@invo) —f7|| 7.7 € carrier G } if ¢ €
carrier G for o
proof —
have |[f (e ® o) = fol =1|f (e ®0) = f (e ® 0 ® inv)|
using ho that m-assoc r-one r-inv by simp
then have |[f (0 ® o) — fo|l=|f (e ® 0 ® inv o) — f (0 ® o)| by argo
then show ?thesis using ho that by blast
qed
ultimately have {|f (r ® inv o) — f 7| | 7. 7 € carrier G} = {|f (¢ ® 0) —

31

f ol o o € carrier G} by blast
then show %thesis by (simp add: setcompr-eg-image)
qed
ultimately show ?thesis unfolding induced-group-prenorm-def group-prenorm-def
by fast
qed

lemma neighborhood-1-translation:
assumes neighborhood 1 U and o € carrier G V o € topspace T
shows neighborhood o (o <# U)
proof —
have openin T (0 <# U) using assms open-set-translations(1) by simp
then show ?thesis unfolding I-coset-def using assms r-one by force
qed

proposition group-prenorm-continuous-if-continuous-at-1:
assumes prenorm: group-prenorm N and
continuous-at-1: Ve>0.3 U. neighborhood 1 U A (VoeU. N o < ¢)
shows continuous-map T euclideanreal N
proof —
have 3 V. neighborhood o VN (V7€V. N 7 € Met-TC.mball (N o))
if ho: o € topspace T and he: ¢ > 0 for o ¢
proof —
from continuous-at-1 obtain U where hU: neighborhood 1 U A (V7€U. N T
< ¢) using he by presburger
then have neighborhood o (o <# U) using ho neighborhood-1-translation by
blast
moreover have N (0 ® 7) € Met-TC.mball (N o) ¢ if 7 € U for 7
proof —
have in-group: o € carrier G AN 7 € carrier G using ho that openin-subset
hU by blast
then have (inv o) ® (0 ® 7) = 7 using l-inv l-one m-assoc inv-closed by
metis
then have |N (inv o) — N (inv (0 ® 7))| < N 7 using group-prenorm-reverse-triangle-ineq

in-group inv-closed m-closed by (metis inv-inv prenorm)
then have [No — N (c @ 7)| < ¢
using prenorm in-group m-closed inv-closed hU that by fastforce
then show ?thesis unfolding Met-TC.mball-def dist-real-def by fast
qed
ultimately show ?thesis unfolding I-coset-def by blast
qed
then show ?thesis using Metric-space.continuous-map-to-metric
by (metis Met-TC'.Metric-space-azioms mtopology-is-euclidean)
qed

2.5.2 A prenorm respecting the group topology

context

32

fixes U :: nat = g set

assumes U-neighborhood: ¥ n. neighborhood 1 (U n)

assumes U-props: ¥ n. symmetric (Un) A (U (n + 1)) <#> (U (n + 1)) C
(Un)
begin

private fun V :: nat = nat = ’g set where
Vmn=(
if m = 0 then {} else
if m = 1 then U n else
if m > 27n then carrier G else
if even m then V (m div 2) (n — 1) else
Vi m-—1)dv2)(n—1)<#>Un
)

private lemma U-in-group: Uk C carrier G using U-neighborhood open-set-in-carrier
by fast

private lemma V-in-group:
shows V m n C carrier G
proof (induction n arbitrary: m)
case (Suc n)
then have V ((m — 1) div 2) n <#> U (Suc n) C carrier G
unfolding set-mult-def using U-in-group by fast
then show ?case using U-in-group Suc by simp
qged (auto simp: U-in-group)

private lemma V-mult:
showsm>1 = Vmn<#>UnCV(im+1)n
proof (induction n arbitrary: m)
case ()
then have V (m + 1) 0 = carrier G by simp
then show ?case unfolding set-mult-def using V-in-group U-in-group by fast
next
case (Suc n)
then show ?case
proof (cases m + 1 > 27(Suc n))
case True
then have V (m + 1) (Suc n) = carrier G by force
then show ?thesis unfolding set-mult-def using V-in-group U-in-group by
blast
next
case m-in-bounds: False
then show ?thesis
proof (cases m = 1)
case True
then show ?thesis using U-in-group U-props by force
next
case m-not-1: False

33

then show ?thesis
proof (cases even m)
case True
then have V m (Suc n) <#> U (Sucn) = V (m + 1) (Suc n) using
m-in-bounds m-not-1 Suc(2) by auto
then show ?thesis by blast
next
case m-odd: Fulse
have U-mult: U (Suc n) <#> U (Suc n) C U n using U-props by simp
have not-zero: (m — 1) div 2 > 1 using Suc(2) m-not-1 m-odd by presburger
have arith: (m — 1) div 2 + 1 = (m + 1) div 2 using Suc(2) by simp
have V m (Suc n) <#> U (Sucn) =V ((m — 1) div 2) n <#> U (Suc
n) <#> U (Suc n) using m-odd m-in-bounds m-not-1 Suc(2) by simp
also have ... = V ((m — 1) div 2) n <#> (U (Suc n) <#> U (Suc n))
using set-mult-assoc V-in-group U-in-group by simp
also have ... C V ((m — 1) div 2) n <#> U n using mono-set-mult U-mult
by blast
also have ... C V ((m 1) div 2 + 1) n using Suc(1) not-zero by blast
also have ... =V ((m +) div 2) n using arith by presburger
also have w. = V (m + 1) (Suc n) using m-odd m-not-1 m-in-bounds
Suc(2) by simp
finally show ?thesis by blast
qed
qed
qed
qged

private lemma V-mono:
assumes smaller: (real my)/2 ny < (real m2)/2 ny and not-zero: my > 1 A mgy
> 1
shows Vmy niy C Vmg no
proof —
have Vmn CV (m+ 1) nifm > 1 for mn
proof —
have Vmn <#> Un C V (m+ 1) n using V-mult U-props that by presburger
moreover have V m n C carrier G AN U n C carrier G using U-in-group
V-in-group by auto
ultimately show #%thesis using set-mult-one-subset U-neighborhood by blast
qed
then have subset-suc: Vmn C V (m + 1) n for m n by simp
have Vmn C V (m+ k) nfor mnk
proof (induction k)
case (Suc k)
then show ?case unfolding Suc-eg-plusl using subset-suc Suc
by (metis (no-types, opaque-lifting) add.assoc dual-order.trans)
qed (simp)
then have a: Vmn C Vm/ nif m’ > m for m m’ n using that le-Suc-ex by
blast
have b: Vmn =V (m x 27k) (n+k) if m > 1 for m n k

34

proof (induction k)
case (Suc k)
have V.(m*x 27k 2) (n+ k+ 1) =V (m* 27k) (n + k) using that by
stmp
then show ?case unfolding Suc-eq-plusi using Suc by simp
qed (auto)
show ?thesis
proof (cases n1 < ng)
case True
have (real m1)/2"n1 = (real (m1 * 27 (n2 — n1)))/(27n1 * 27 (n2 — ny)) by
fastforce
also have ... = (real (m; * 27 (ny — n1)))/2 ne using True by (metis
le-add-diff-inverse power-add)
finally have (real (my x 2 (na — n1)))/2 ny < (real my)/2 ny using smaller
by fastforce
then have ineq: my * 2 (ns — n1) < mo
by (smt (verit) divide-cancel-right divide-right-mono linorder-le-cases of-nat-eq-iff
of-nat-mono order-antisym-conv power-not-zero zero-le-power)

from b have V.m; ny = V (m1 x 27 (n2 — n1)) (n1 + (n2 — n1)) using
not-zero by blast
also have ... = V (my * 27(ny — n1)) ne using True by force
finally show ?thesis using a[OF ineq] by blast
next
case Fulse

then have ny-leg-nqi: no < ny by simp

have (real ma)/2 ny = (real (m2 * 27 (n1 — n2)))/(27n2 x 27 (n1 — n2)) by
fastforce

also have ... = (real (m2 * 2 (n1 — n2)))/2 n1 using ng-leg-ny by (metis
le-add-diff-inverse power-add)

finally have (real (ma x 27 (n1 — n2)))/2 ny > (real my)/2 ny using smaller
by fastforce

then have ineq: mo * 27 (n1 — na) > my

by (smt (verit) divide-cancel-right divide-right-mono linorder-le-cases of-nat-eq-iff
of-nat-mono order-antisym-conv power-not-zero zero-le-power)

from b have V mg no = V (ma x 2 (n1 — n2)) (ne + (n1 — ng)) using
not-zero by blast
also have ... = V (mg * 27(n1 — ns)) ny1 using ny-leg-ny by force
finally show ?thesis using a[OF ineq] by blast
qed
qed

private lemma approz-number-by-multiples:

assumes hz: ¢ > 0 and hc: ¢ > 0

shows 3k :: nat > 1. (real (k—1))/c <z ANz < (real k)/c
proof —

let %k = |z % ¢] + 1

have %k > 1 using assms by simp

moreover from this have real (nat 2k) = 2k by auto

moreover have (?k—1)/c <z ANz < %/c

35

using assms by (simp add: mult-imp-div-pos-le pos-less-divide-eq)
ultimately show ?thesis
by (smt (verit) nat-diff-distrib nat-le-eq-zle nat-one-as-int of-nat-nat)
qed

lemma construction-of-prenorm-respecting-topology:
shows 3 N. group-prenorm N A
(Vn. {o € carrier G. N o < 1/2"n} C Un) A
(Vn. Un C {o € carrier G. N 0 < 2/2™n})
proof —
define f :: 'g = real where f o = Inf {(real m)/2™n | mn.oc € Vmn} for o
define N :: ‘g = real where N = induced-group-prenorm f

have 0 € V 2 0 if o € carrier G for o using that by auto
then have contains-2: (real 2)/270 € {(real m)/2n | mmn.oc € Vmn}if o €
carrier G for o using that by blast
then have nonempty: {(real m)/2"n | mn. o € Vmn} # {} if o € carrier G
for o using that by fast
have positive: (real m)/2™n > 0 for m n by simp
then have bdd-below: bdd-below {(real m)/2™n | m n. o € V- m n} for o by fast
have f-bounds: 0 < f o AN f o < 2 if ho: o € carrier G for o
proof —
from bdd-below have f o < (real 2)/270 unfolding f-def using clnf-lower
contains-2[OF ho] by meson
moreover have 0 < f o using cInf-greatest contains-2[OF ho] unfolding
f-def using positive
by (smt (verit, del-insts) Collect-mem-eq empty-Collect-eq mem-Collect-eq)
ultimately show ?thesis by fastforce
qed
then have N-welldefined: bdd-above (A1. |f (T @ o) — f 7|) ¢ carrier G) if o €
carrier G for o
using induced-group-prenorm-welldefined that by (metis (full-types) abs-of-nonneg)

have in-V-if-f-smaller: 0 € V-m n if ho: o € carrier G and smaller: f o < (real
m)/2 n for o m n
proof —
from cInf-lessD obtain ¢ where hq: ¢ € {(real m)/2"n | mn. o € Vmn} A
q < (realm)/2™n
using smaller nonempty|OF ho] unfolding f-def by (metis (mono-tags,
lifting))
then obtain m’ n’ where hm'n": 0 € Vm’'n' A ¢ = (real m’)/27n' by fast
moreover have m’ > 1
proof (rule ccontr)
assume - m’ > 1
then have V m' n’ = {} by force
then show Fualse using hm'n’ by blast
qed
moreover have m > 1 using f-bounds smaller ho
by (metis divide-eg-0-iff less-numeral-extra(3) less-one linorder-le-less-linear

36

nle-le of-nat-0 order-less-imp-le)
ultimately have Vm’'n’ C Vm n using V-mono hq U-props open-set-in-carrier
by simp
then show ?thesis using hm’n’ by fast
qed
have f-1-vanishes: f 1 = 0
proof (rule ccontr)
assume f 1 # 0
then have f 1 > 0 using f-bounds by fastforce
then obtain n where hn: f 1 > (real 1)/2™n
by (metis divide-less-eq-1 of-nat-1 one-less-numeral-iff power-one-over real-arch-pow-inv
semiring-norm(76) zero-less-numeral)
have 1 € V I n using U-neighborhood by simp
then have (real 1)/27n € {(real m)/2"n |m n. 1 € V- m n} by fast
then show False using hn cInf-lower bdd-below[of 1] unfolding f-def by (smt
(verit, ccfu-threshold))
qed
have in-U-if-N-small: o € U n if in-group: o € carrier G and N-small: N 0 <
1/2"n for o n
proof —
have f 0 = |f (1 ® o) — f 1| using in-group l-one f-1-vanishes f-bounds by
force
moreover have ... < N ¢ unfolding N-def induced-group-prenorm-def
using c¢SUP-upper N-welldefined| OF in-group] by (metis (mono-tags, lifting)
one-closed)
ultimately have o € V I n using in-V-if-f-smaller|OF in-group] N-small by
(smt (verit) of-nat-1)
then show ?thesis by fastforce
qed
have N-bounds: N 0 < 2/2"n if ho: 0 € Un for o n
proof —
have diff-bounded: f (T @ o) — f17<2/2nANf(T®@iwo)—f1<2/2™n
if hr: 7 € carrier G for T
proof —
obtain k where hk: k> 1 A (real (k—1))/2n < fT ANfT < (real k)/2™n
using approz-number-by-multiples[of f 7 27n] f-bounds|OF hr] by auto
then have 7 € V k n using in-V-if-f~smaller[OF ht| by blast
moreover have 0 € V1 n Ainvo € V 1 n using ho U-props by auto
moreover have Vikn <#>VIinC V(k+1)n
using V-mult U-props open-set-in-carrier hk by auto
ultimately have r @ c e V (k+ 1) n A7 Q imwo e V(k+ 1)n
unfolding set-mult-def by fast
then have a: (real (k + 1))/2n € {(realm)/2n|mn.T®0c € Vmn}
A (real (k+ 1))/27n € {(realm)/2n | mn. T ® inv o € Vm n} by fast
then have f (7 ® o) < (real (k + 1))/2™n
unfolding f-def using cInf-lower[of (real (k + 1))/27n] bdd-below by
presburger
moreover from ¢ have f (1 ® inv o) < (real (k

< 1))/2™n
unfolding f-def using cInf-lower[of (real (k

1))/27n] bdd-below by

++

37

presburger
ultimately show ?thesis using hk
by (smt (verit, ccfv-SIG) diff-divide-distrib of-nat-1 of-nat-add of-nat-diff)
qed
have |f (o ® o) — f o] < 2/27n if ho: ¢ € carrier G for o
proof —
have in-group: o € carrier G using ho U-in-group by fast
then have f (¢ ® 0 @ inv o) — f (0 ® o) < 2/27n using diff-bounded[of o
® o] ho m-closed by fast
moreover have p ® ¢ ® inv ¢ = p using m-assoc r-inv r-one iN-group
inv-closed ho by presburger
ultimately have f o — f (o ® o) < 2/27n by force
moreover have f (o ® o) — f 0 < 2/27n using diff-bounded|OF ho] by fast
ultimately show ?thesis by force
qed
then show ?thesis unfolding N-def induced-group-prenorm-def using ¢SUP-least
carrier-not-empty by meson
qed
then have Un C {0 € carrier G. N 0 < 2/2™n} for n using U-in-group by
blast
moreover have group-prenorm N unfolding N-def
using bounded-function-induces-group-prenorm f-bounds by (metis abs-of-nonneg)
ultimately show ¢thesis using in- U-if-N-small by blast
qed
end

2.5.3 Proof of Birkhoff-Kakutani

lemma first-countable-neighborhoods-of-1-sequence:
assumes first-countable T
shows 3 U :: nat = 'g set.
(¥ n. neighborhood 1 (U n) A symmetric (Un) A U (n+ 1) <#> U (n + 1)
C Un)A
(VY W. neighborhood 1 W — (In. Un C W))
proof —
from assms obtain B where hB:
countable B N (Y WeB. openin T W) A (Y U. neighborhood 1 U — (3 WeB.
1e WA WCU))
unfolding first-countable-def by fastforce
define B :: ‘g set set where B = insert (carrier G) {W € B.1 € W}
define B :: nat = 'g set where B = from-nat-into B
have B # {} A (Y WeB. neighborhood 1 W) unfolding B-def using hB3
by (metis group-is-space insert-iff insert-not-empty mem-Collect-eq one-closed
openin-topspace)
then have B-neighborhood: ¥V n. neighborhood 1 (B n) unfolding B-def by (simp
add: from-nat-into)
define P where Pn V «— V C B n A neighborhood 1 V' A symmetric V for
nV
define @ where Q (n:: nat) VW «— W <#> W C Vorn VW

38

have 3V. POV
proof —
obtain W where neighborhood 1 W A symmetric W AN W <#> W C B 0
using neighborhoods-of-1 B-neighborhood by fastforce
moreover from this have W C B 0 using set-mult-one-subset open-set-in-carrier
by blast
ultimately show ¢thesis unfolding P-def by auto
qed
moreover have 3W. P (Sucn) WA QnV WifPnVifornV
proof —
have neighborhood 1 (V N B (Suc n)) using B-neighborhood that unfolding
P-def by auto
then obtain W where neighborhood 1 W A symmetric W AN W <#> W C
V' N B (Suc n)
using neighborhoods-of-1 by fastforce
moreover from this have W C B (Suc n)
using set-mult-one-subset[of W W] open-set-in-carrier[of W] by fast
ultimately show ¢thesis unfolding P-def Q-def by auto
qed
ultimately obtain U where hU:Vn. Pn (Un) A @ n (Un) (U (Suc n))
using dependent-nat-choice by metis
moreover have I3n. Un C W if neighborhood 1 W for W
proof —
from that obtain W' where hW" W/ e BA1e W'A W’/ C W using hB
by blast
then have W’ € B A countable B unfolding B-def using hBB by simp
then obtain n where B n = W' unfolding B-def using from-nat-into-to-nat-on
by fast
then show ?thesis using hW' hU unfolding P-def by blast
qed
ultimately show ?thesis unfolding P-def Q-def by auto
qed

definition left-invariant-metric A «— Metric-space (carrier G) A A
(Vo 7 p. 0 € carrier G AT € carrier G A\ ¢ € carrier G — A (0 ® 0) (0 ® T)
=AorT)

definition right-invariant-metric A «— Metric-space (carrier G) A A
(Vo 7 9. 0 € carrier G AT € carrier G A\ ¢ € carrier G — A (0 ® o) (T ® 0)
=AorT)

lemma left-invariant-metricE:
assumes left-invariant-metric A o € carrier G 7 € carrier G ¢ € carrier G
shows A (o ®0) (0®@T)=AocT
using assms unfolding left-invariant-metric-def by blast

lemma right-invariant-metrick:

assumes right-invariant-metric A o € carrier G 7 € carrier G ¢ € carrier G
shows A (c ® o) (T® o) =AoT

39

using assms unfolding right-invariant-metric-def by blast

theorem Birkhoff-Kakutani-left:
assumes Hausdorff: Hausdorff-space T and first-countable: first-countable T
shows JA. left-invariant-metric A A Metric-space.mtopology (carrier G) A = T
proof —
from first-countable obtain U :: nat = g set where
U-props: ¥ n. neighborhood 1 (U n) A symmetric (Un) A U (n + 1) <#> U
(n+ 1) C Un and
neighborhood-base: ¥ W. neighborhood 1 W — (3n. Un C W)
using first-countable-neighborhoods-of-1-sequence by auto
from U-props obtain N where
prenorm: group-prenorm N and
norm-ball-in-U: ¥ n. {o € carrier G. N o < 1/2"™n} C Un and
U-in-norm-ball: Vn. Un C {0 € carrier G. N 0 < 2/27n}
using construction-of-prenorm-respecting-topology by meson
have continuous: continuous-map T euclideanreal N using prenorm
proof (rule group-prenorm-continuous-if-continuous-at-1, intro alll impl)
fix € :: real assume ¢ > 0
then obtain n where hn: 1/2™n < ¢
by (metis divide-less-eq-1-pos one-less-numeral-iff power-one-over real-arch-pow-inv
semiring-norm(76) zero-less-numeral)
then have N 0 < ¢ if 0 € U (n + 1) for o using that U-in-norm-ball by
fastforce
then show 3 U. neighborhood 1 U AN (VoeU. N o < ¢) using U-props by
meson
qed
let B = Xe. {0 € carrier G. N 0 < €}
let A =MXo7. N (invo ®7)
let 90 = Ao 7. if 0 € carrier G N T € carrier G then ?A o T else 42
have ?A o 7 > 0 if 0 € carrier G A 7 € carrier G for o T
using group-prenorm-nonnegative prenorm that by blast
moreover have ?A o 7 = ?A 7 o if o € carrier G A T € carrier G for o T
proof —
have inv 7 ® 0 = inv (inv 0 ® 7) using inv-mull-group inv-inv that by auto
then show %thesis using prenorm that by fastforce
qged
moreover have /A o 7= 0 <— o =7 if 0 € carrier G A 7 € carrier G for
oT
proof
assume A o1 =0
then have inv 0 ® 7 € U n for n using norm-ball-in-U that by fastforce
then have inv o ® 7 € W if neighborhood 1 W for W using neighborhood-base
that by auto
then have inv 0 ® 7 = 1 using Hausdorff-space-sing-Inter-opens[of T 1]
Hausdorff by blast
then show o = 7 using inv-comm inv-equality that by fastforce
next
assume 0 = T

40

then show ?A o 7 = 0 using that prenorm by force
qed
moreover have ?A o o < A o1+ ?A 71 pif 0 € carrier G AN T € carrier G
A o0 € carrier G for o T ¢
proof —
have inv o ® 9 = (inv 0 @ 7) @ (inv T @ o) using m-assoc[symmetric] that
by (simp add: inv-solve-right)
then show ?thesis using prenorm that by auto
qed
ultimately have metric: Metric-space (carrier G) 25 unfolding Metric-space-def
by auto
then interpret Metric-space carrier G 26 by blast
have ?A (o ® 0) (0 ® 7) = ?A o 7 if 0 € carrier G N 7 € carrier G A\ ¢ €
carrier G for o 7 o
proof —
have inv o ® 7 = v (0 ® 0) ® (0 ® T) using that m-assoc[symmetric] by
(simp add: inv-solve-left inv-solve-right)
then show ?thesis by simp
qed
then have left-invariant: left-invariant-metric 20
unfolding left-invariant-metric-def using metric by auto
have mball-coset-of-norm-ball: mball 0 ¢ = o <# ?B ¢ if ho: o € carrier G for
o€
proof —
have mball 0 ¢ = {7 € carrier G. N (inv 0 ® 7) < ¢} unfolding mball-def
using ho by auto

also have ... = 0 <# (?B ¢)

proof —
have 7 € 0 <# (?B¢) if 7 € carrier G AN (invo ® 7) < ¢ for 7
proof —

have 0 ® (inv 0 ® 7) = 7 using ho that by (metis inv-closed inv-solve-left
m-closed)
moreover have inv 0 ® 7 € ?B ¢ using ho that by fastforce
ultimately show ?thesis unfolding I-coset-def by force
qed
moreover have 7 € carrier G AN (invo @ 7) < e if 7 € 0 <# (7B ¢) for

proof —
from that obtain p where p € ?B ¢ A 7 = 0 ® p unfolding [-coset-def
by blast
moreover from this have inv ¢ ® 7 = p using ho by (simp add:
inv-solve-left’)
ultimately show ?thesis using ho by simp

qed
ultimately show ?thesis by blast
qed
finally show ?thesis by presburger
qged

define ball where ball S «— (3o . 0 € carrier G A S = mball o €) for S

41

have openin mtopology V if ball V for V using that unfolding ball-def by fast
moreover have A W. ball W Ao € W AW C V if openin mtopology V N o €
Vforo V
unfolding ball-def using openin-mtopology that by (smt (verit, best) cen-
tre-in-mball-iff subset-iff)
ultimately have openin-metric: openin mtopology = arbitrary union-of ball
by (simp add: openin-topology-base-unique)
have openin T V if ball V for V
proof —
from that obtain ¢ € where o € carrier G AV =0 <# ?Be¢
unfolding ball-def using mball-coset-of-norm-ball by blast
moreover have openin T (7B ¢) using continuous
by (simp add: continuous-map-upper-lower-semicontinuous-It)
ultimately show ?thesis using open-set-translations(1) by presburger
qed
moreover have AW. ball W Ao € W AN W C V if neighborhood o V for o V
proof —
from that have in-group: o € carrier G using open-set-in-carrier by fast
then have neighborhood 1 (inv o <# V)
using [l-coset-def open-set-translations(1) that l-inv by fastforce
then obtain n where U n C inv o <# V using neighborhood-base by pres-
burger
then have ?B (1/2™n) C inv o <# V using norm-ball-in-U by blast
then have o <# ?B (1/2™n) C 0 <# (inv 0 <# V) unfolding [-coset-def
by fast
also have ... = V using in-group that open-set-in-carrier by (simp add:
lcos-m-assoc lecos-mult-one)
finally have mball o (1/27n) C V using mball-coset-of-norm-ball in-group by
blast
then show f?thesis unfolding ball-def
by (smt (verit) centre-in-mball-iff divide-pos-pos in-group one-add-one zero-less-power
zero-less-two)
qed
ultimately have openin T = arbitrary union-of ball by (simp add: openin-topology-base-unique)
then show ?thesis using left-invariant openin-metric topology-eq by fastforce
qed

theorem Birkhoff-Kakutani-right:
assumes Hausdorff: Hausdorff-space T and first-countable: first-countable T
shows 3 A. right-invariant-metric A N Metric-space.mtopology (carrier G) A =
T
proof —
from first-countable obtain U :: nat = 'g set where
U-props: ¥ n. neighborhood 1 (U n) A symmetric (Un) A U (n + 1) <#> U
(n+ 1) C Un and
neighborhood-base: ¥ W. neighborhood 1 W — (3n. Un C W)
using first-countable-neighborhoods-of-1-sequence by auto
from U-props obtain N where
prenorm: group-prenorm N and

42

norm-ball-in-U: Vn. {o € carrier G. N 0 < 1/2"n} C Un and
U-in-norm-ball: Vn. Un C {o € carrier G. N 0 < 2/2"n}
using construction-of-prenorm-respecting-topology by meson
have continuous: continuous-map T euclideanreal N using prenorm
proof (rule group-prenorm-continuous-if-continuous-at-1, intro alll impl)
fix € :: real assume € > 0
then obtain n where hn: 1/27n < ¢
by (metis divide-less-eq-1-pos one-less-numeral-iff power-one-over real-arch-pow-inv
semiring-norm(76) zero-less-numeral)
then have N 0 < ¢ if 0 € U (n + 1) for o using that U-in-norm-ball by
fastforce
then show 3 U. neighborhood 1 U A (VoeU. N o < ¢) using U-props by
meson
qed
let ?B = Xe. {0 € carrier G. N 0 < ¢}
let /A =MXo7. N (0 ®invT)
let 96 = Ao 7. if 0 € carrier G N T € carrier G then ?A o T else 42
have ?A o 7 > 0 if 0 € carrier G A 7 € carrier G for o T
using group-prenorm-nonnegative prenorm that by blast
moreover have ?A o 7 = ?A 7 o if 0 € carrier G A T € carrier G for o T
proof —
have 7 ® inv 0 = inv (o0 ® inv 7) using inv-mult-group inv-inv that by auto
then show ?thesis using prenorm that by auto
qed
moreover have ?A o 7 =0 +— o =7 if 0 € carrier G A 7 € carrier G for
oT
proof
assume A o7 =0
then have o ® inv 7 € U n for n using norm-ball-in-U that by fastforce
then have 0 ® inv T € W if neighborhood 1 W for W using neighborhood-base
that by auto
then have 0 ® inv 7 = 1 using Hausdorff-space-sing-Inter-opensjof T 1]
Hausdorff by blast
then show o = 7 using inv-equality that by fastforce
next
assume 0 = T
then show ?A o 7 = 0 using that prenorm by force
qed
moreover have ?A 0 9 < ?A o1+ ?A 7 9if 0 € carrier G AN T € carrier G
A o € carrier G for o T o
proof —
have 0 ® inv o = (0 ® inv 7) ® (T ® inv o) using m-assoc that by (simp
add: inv-solve-left)
then show ?thesis using prenorm that by auto
qed
ultimately have metric: Metric-space (carrier G) 26 unfolding Metric-space-def
by auto
then interpret Metric-space carrier G 26 by blast
have ?A (0 ® 0) (T ® 0) = ?A o 7if 0 € carrier G A 7 € carrier G A\ ¢ €

43

carrier G for o 7 ¢
proof —
have 0 ® inv 7 = (0 ® p) ® inv (T ®) using that m-assoc by (simp add:
inv-solve-left inv-solve-right)
then show ?thesis by simp
qed
then have right-invariant: right-invariant-metric 26
unfolding right-invariant-metric-def using metric by auto
have mball-coset-of-norm-ball: mball 0 € = ¢B € #> o if ho: o € carrier G for
o€
proof —
have mball 0 ¢ = {7 € carrier G. N (0 ® inv 7) < ¢} unfolding mball-def
using ho by auto

also have ... = (?Be) #> o
proof —
have 7 € (?Be) #> o if 7 € carrier G AN (0 ® inv 7) < ¢ for 7
proof —
have inv (0 ® inv 7) ® 0 = 7 using ho that by (simp add: inv-mult-group
m-assoc)

moreover have inv (o ® inv 7) € ?B ¢ using ho that prenorm by fastforce
ultimately show ?thesis unfolding r-coset-def by force

qed

moreover have 7 € carrier G A N (0 @ inv 7) < ¢ if 7 € (?B ¢) #> o for

-
proof —
from that obtain o where p € ?B ¢ A 7 = p ® o unfolding r-coset-def
by blast

moreover from this have ¢ ® inv 7 = inv p using ho

by (metis (no-types, lifting) inv-closed inv-mult-group inv-solve-left m-closed
mem-Collect-eq)

ultimately show ?thesis using ho prenorm by fastforce

qed
ultimately show ?thesis by blast
qed
finally show ?thesis by presburger
qed

define ball where ball S +— (3o . 0 € carrier G A S = mball o €) for S
have openin mtopology V if ball V for V using that unfolding ball-def by fast
moreover have I3 W. ball W Ao € W AW C V if openin mtopology V N o €
Vforo V
unfolding ball-def using openin-mtopology that by (smt (verit, best) cen-
tre-in-mball-iff subset-iff)
ultimately have openin-metric: openin mtopology = arbitrary union-of ball
by (simp add: openin-topology-base-unique)
have openin T V if ball V for V
proof —
from that obtain o ¢ where o € carrier G ANV = ?Be #> o
unfolding ball-def using mball-coset-of-norm-ball by blast
moreover have openin T (7B ¢) using continuous

44

by (simp add: continuous-map-upper-lower-semicontinuous-It)
ultimately show ?thesis using open-set-translations(2) by presburger
qed
moreover have A W. ball W Ao € W AN W C V if neighborhood o V for o V
proof —
from that have in-group: o € carrier G using open-set-in-carrier by fast
then have neighborhood 1 (V #> inv o)
using r-coset-def open-set-translations(2) that r-inv by fastforce
then obtain n where Un C V #> inv o using neighborhood-base by pres-
burger
then have ?B (1/2"n) C V #> inv o using norm-ball-in-U by blast
then have 7B (1/2™n) #> o C (V #> inv o) #> o unfolding r-coset-def
by fast
also have ... = V using in-group that open-set-in-carrier by (simp add:
coset-mult-assoc)
finally have mball o (1/27n) C V using mball-coset-of-norm-ball in-group by
blast
then show ?thesis unfolding ball-def
by (smt (verit) centre-in-mball-iff divide-pos-pos in-group one-add-one zero-less-power
zero-less-two)
qged
ultimately have openin T = arbitrary union-of ball by (simp add: openin-topology-base-unique)
then show ?thesis using right-invariant openin-metric topology-eq by fastforce
qed

corollary Birkhoff-Kakutani-iff:
shows metrizable-space T «— Hausdorff-space T N first-countable T
using Birkhoff-Kakutani-left Metric-space.metrizable-space-mtopology metrizable-imp-Hausdorff-space

metrizable-imp-first-countable unfolding left-invariant-metric-def by metis
end

end

3 Examples of Topological Groups

theory Topological-Group-Examples
imports Topological-Group
begin

Summary This section gives examples of topological groups.

lemma (in group) discrete-topological-group:
shows topological-group G (discrete-topology (carrier G))
proof —
let ?T = discrete-topology (carrier G)
have topspace ?T = carrier G using topspace-discrete-topology by force
moreover have continuous-map (prod-topology ?T ?T) ¢T (A(o,7). 0 @ T)

45

unfolding prod-topology-discrete-topology[symmetric] by auto
ultimately show ?thesis unfolding topological-group-def topological-group-axioms-def
by fastforce
qed

lemma topological-group-real-power-space:
defines R :: (real™'n) monoid = (carrier = UNIV, mult = (+), one = 0|
defines T :: (real™'n) topology = euclidean
shows topological-group SR T
proof —
have z € Units R for x
proof —
have z @y —2 = 1y —= @ ¢ = Ly using R-def by auto
then show %thesis unfolding Units-def R-def by fastforce
qed
then have group: group R by (unfold-locales) (auto simp: R-def)
then interpret group R by auto
have group-is-space: topspace T = carrier R
unfolding R-def T-def by force
have mul-continuous: continuous-map (prod-topology T T) T (A(z,y). Qg Y)
using continuous-map-add[OF continuous-map-fst continuous-map-snd)
unfolding T-def R-def by (simp add: case-prod-beta’)
have (—z) @y ¢ = 1g for z unfolding R-def by auto
then have invgyy * = —z for z using inv-equality R-def by simp
moreover have continuous-map T T uminus unfolding T-def by force
ultimately have continuous-map T T (Az. invsg x) by simp
then show ?thesis using group-is-space mul-continuous group
unfolding topological-group-def topological-group-axioms-def by blast
qed

definition unit-group :: ('a :: field) monoid where
unit-group = (carrier = UNIV — {0}, mult = (%), one = 1)

lemma
group-unit-group: group unit-group and
inv-ungt-group: T € carrier unil-group = iNVypjt-group T = INVETSe T
proof —
have x € Units unit-group if x # 0 for z
proof —
have z Sunit-group 1)z = Lynit-group 1/z Qunit-group T = Lunit-group
using that unfolding unit-group-def by auto
then show ?thesis unfolding Units-def unit-group-def using that by fastforce
qed
then show group unit-group by (unfold-locales) (auto simp: unit-group-def)
then interpret group unit-group by blast
show invypitgroup © = inverse x if x € carrier unit-group
using that inv-equality|of inverse x] unfolding unit-group-def by simp
qed

46

lemma topological-group-real-unit-group:
defines T :: real topology = subtopology euclidean (UNIV — {0})
shows topological-group unit-group T
proof —
let %R = unit-group :: real monoid
have group-is-space: topspace T = carrier #R unfolding unit-group-def T-def
by force
have continuous-map (prod-topology euclidean euclidean) euclidean (A(z,y). z
Do Y)
using continuous-map-real-mult[OF continuous-map-fst continuous-map-snd]
unfolding T-def unit-group-def by (simp add: case-prod-beta’)
then have continuous-map (prod-topology T T') euclideanreal (A(z,y). T Qor Y)
unfolding T-def subtopology- Times[symmetric] using continuous-map-from-subtopology
by blast
moreover have (\(z,y). £ @@z y) € topspace (prod-topology T T) — UNIV —
{0}
unfolding T-def unit-group-def by fastforce
ultimately have mul-continuous: continuous-map (prod-topology T T) T (A(z,y).
T @oR Y)
unfolding T-def using continuous-map-into-subtopology by blast
have continuous-map T euclideanreal inverse
using continuous-map-real-inverse[of T id] unfolding T-def by auto
moreover have inverse € topspace T — topspace T unfolding T-def by fast-
force
ultimately have continuous-map T T inverse
unfolding T-def using continuous-map-into-subtopology by auto
then have continuous-map T T (Az. invey)
using group-is-space continuous-map-eq inv-unit-group by metis
then show ?thesis using group-is-space mul-continuous group-unit-group
unfolding topological-group-def topological-group-azxioms-def by blast
qed

end

4 Matrix groups

theory Matriz-Group
imports
Topological-Group
Topological-Group-Examples
HOL— Analysis. Determinants
begin

Summary In this section we define the general linear group and some of

its subgroups. We also introduce topologies on vector types and use them
to prove the aforementioned groups to be topological groups.

47

4.1 Topologies on vector types

definition vec-topology :: 'a topology = ('a™'n) topology where
vec-topology T = quot-topology (product-topology (\i. T) UNIV') vec-lambda

lemma producttop-vectop-homeo:

shows homeomorphic-map (product-topology (Mi. T) UNIV) (vec-topology T)
vec-lambda
proof —

have inj-on vec-lambda (topspace (product-topology (Ai. T) UNIV)) unfolding
inj-on-def by force

then show ?thesis unfolding vec-topology-def

using injective-quotient-map-homeo| OF projection-quotient-map| by blast

qed

lemma homeo-inverse-homeo:
assumes homeo: homeomorphic-map X Y f and fg-id: Vy € topspace Y. f (g v)
= y and
g-image: Yy € topspace Y. g y € topspace X
shows homeomorphic-map Y X g
proof —
from homeo obtain h where
h-homeo: homeomorphic-map Y X h and hf-id: (Vz € topspace X. h (f z) = z)
by (smt (verit) homeomorphic-map-maps homeomorphic-maps-map)
have gy = h y if y € topspace Y for y
proof —
have g y = h (f (g y)) using hf-id that g-image by fastforce
then show ¢thesis using fg-id that by simp
qed
then show ?thesis using homeomorphic-map-eq[OF h-homeo| by presburger
qed

lemma vectop-producttop-homeo:
shows homeomorphic-map (vec-topology T) (product-topology (\i. T) UNIV)
vec-nth
proof —
let ?T' = product-topology (Ai. T) UNIV
have vec-lambda (vec-nth v) = v for v :: ‘a”™’'n by simp
moreover have vec-nth v € topspace ¢T'if v € topspace (vec-topology T) for v
2 'a7n
proof —
have 3f € topspace ?T'. v = vec-lambda f using that
unfolding vec-topology-def topspace-quot-topology image-def by fast
then show ?thesis by fastforce
qed
ultimately show ?thesis using homeo-inverse-homeo| OF producttop-vectop-homeo)
by blast
qed

lemma vec-topology-euclidean [simp):

48

defines T :: (‘a :: topological-space) topology = euclidean
defines T,.. :: (Ya™'n) topology = euclidean
shows vec-topology T = Tyec
proof —
have openin (vec-topology T) U if openin Tye. U for U
proof —
have hU: open U using open-openin that unfolding T',..-def by blast
have 3 U’. openin (vec-topology T) U' Nz € U'ANU'C Uifz € U for z
proof —
from that hU obtain V :: 'n = ‘a set where
hV: (Vi. open (Vi) A x$i € Vi) AN Vy. (Vi.y$i e Vi)— yeU)
unfolding open-vec-def by force
let /W =1lg icUNIV. Vi
from AV have openin T (V i) for ¢ using open-openin unfolding T-def by
blast
then have openin (product-topology (Ai. T) UNIV) ?W by (simp add:
openin-PiFE)
then have is-open: openin (vec-topology T) (vec-lambda‘? W)
using producttop-vectop-homeo homeomorphic-map-openness openin-subset
by metis
have vec-nth © € ?W using hV by fast
then have contains-z: © € (vec-lambda‘?W) unfolding image-def by force
have y € U if vec-nth y € ?W for y
proof —
from that have y$i € V i for i by fast
then show ?thesis using hV by blast
qed
then have (vec-lambda‘?W) C U by force
then show ?thesis using contains-z is-open by meson
qed
then show ?thesis by (meson openin-subopen)
qed
moreover have openin Ty.. U if openin (vec-topology T) U for U
proof —
from that have hU: openin (product-topology (Ai. T) UNIV) (vec-nth‘U)
using vectop-producttop-homeo homeomorphic-map-openness openin-subset by
metis
have 3V. (Vi. open (Vi) ANz Siec Vi)AVy. Vi.y$ie Vi)— ye U)
ifx e U for z
proof —
from that have vec-nth z € (vec-nth‘U) unfolding image-def by blast
then obtain V :: 'n = 'a set
where hV: (Vi. openin T (V i) A vee-nth x € (Ilg i€ UNIV. Vi) A (llg
i€ UNIV. Vi) C (vec-nth‘U)
using hU product-topology-open-contains-basis by (metis (no-types, lifting))
then have open (Vi) A 87 € V i for i unfolding T-def using open-openin
by fast
moreover have y € U if Vi. y$i € Vi for y
proof —

49

have vec-nth y € (Ilg i€ UNIV. V i) using that by blast
then show %thesis using hV by (metis image-iff in-mono vec-nth-inject)
qed
ultimately show ?thesis by blast
qed
then have open U unfolding open-vec-def by blast
then show ?thesis unfolding T',..-def using open-openin by blast
qed
ultimately show ?thesis using topology-eq by meson
qed

lemma vec-projection-continuous:
shows continuous-map (vec-topology T) T (Av. v$7)
using homeomorphic-imp-continuous-map|OF vectop-producttop-homeo| by fast

lemma vec-components-continuous-imp-continuous:

fixes f :: 'z = 'a”'n

assumes Vi. continuous-map X T (Az. (fz) $ 1)

shows continuous-map X (vec-topology T) f
proof —

have continuous-map X (product-topology (Ni. T) UNIV) (vec-nth o f) using
assms by auto

moreover have f = vec-lambda o (vec-nth o f) by fastforce

ultimately show ?thesis using continuous-map-compose

homeomorphic-imp-continuous-map|OF producttop-vectop-homeo] by fastforce

qged

definition matriz-topology :: 'a topology = (‘a”'n"'m) topology where
matriz-topology T = vec-topology (vec-topology T)

lemma matriz-topology-euclidean|simp]:
shows matriz-topology euclidean = euclidean
unfolding matriz-topology-def by simp

lemma matriz-projection-continuous:
shows continuous-map (matriz-topology T) T (AA. Ai))
proof —
have (AA. A$i8$j) = (\z. 28j) o (A\A. A$7) by fastforce
then show ?thesis unfolding matriz-topology-def
using vec-projection-continuous continuous-map-compose by metis
qed

lemma matriz-components-continuous-imp-continuous:

fixes f :: 'z = 'a”'n"'m

assumes A\ j. continuous-map X T (Az. (fz) $i $ j)

shows continuous-map X (matriz-topology T) f

unfolding matriz-topology-def using vec-components-continuous-imp-continuous
assms by metis

50

4.2 The general linear group as a topological group

definition GL :: ((a :: field) 'n"'n) monoid where
GL = (carrier = {A. invertible A}, monoid.mult = (xx), one = mat 1|

definition GL-topology :: (real™'n"'n) topology where
GL-topology = subtopology euclidean (carrier GL)

lemma topspace-GL: topspace GL-topology = {A. invertible A}
unfolding GL-topology-def topspace-subtopology GL-def by simp

4.2.1 Continuity of matrix operations

lemma det-continuous:
defines T :: (real™'n"'n) topology = euclidean
shows continuous-map T euclideanreal det
proof —
let ?T' = matriz-topology euclideanreal
let 2S5 = {m. m permutes (UNIV :: 'n set)}
have S-finite: finite 2S by simp
have finite (UNIV :: 'n set) by simp
then have continuous-map ?T' euclideanreal (AA. [] ¢ € (UNIV :: 'n set). (A
$i8 7))
for 7 :: 'n = 'n using continuous-map-prod|OF - matriz-projection-continuous]
by fast
then have continuous-map ?T’ euclideanreal (AA. of-int (sign) * (][7 €
(UNIV :: 'n set). (A$ (8 7 1))
for 7 :: 'n = 'n using continuous-map-real-mult-left by fast
from continuous-map-sum|[OF S-finite this] have continuous-map ?T' euclidean-
real
(AA. > we?S. of-int (sign 7) * (][@ € (UNIV :: 'n set). A$ i $ 7 7)) by fast
then show ?thesis unfolding T-def matriz-topology-euclidean det-def by force
qed

lemma matriz-mul-continuous:
defines T1 :: (real™'n""'m) topology = euclidean
defines T2 :: (real™'r"'n) topology = euclidean
defines T3 :: (real™'r"'m) topology = euclidean
shows continuous-map (prod-topology T1 T2) T3 (A(A,B). A *x B)
proof —
let ?T = prod-topology T1 T2
have continuous-map ?T euclideanreal (AAB. (fst AB %% snd AB) $ i $ j) for i
w'mandj:r
proof —
have eq: (AAB. (fst AB xx snd AB) $ i $ j) = (MAB. (3_ (k::'n)e UNIV. fst
ABSi kx*snd ABS$EkS37)
unfolding matriz-matriz-mult-def by auto
have
compl: (AAB. fst AB$ i $ k) = (AA. Aik) o fst and
comp2: (AAB. snd AB$ k $ j) = (AB. Bkj) o snd

o1

for k :: 'n by auto
from compl! have continuous-map ?T euclideanreal (ANAB. fst AB $ i $ k) for
k:'n
unfolding T'1-def matriz-topology-euclidean|symmetric)
using continuous-map-compose[OF continuous-map-fst matriz-projection-continuous]
by metis
moreover from comp2 have continuous-map ?T euclideanreal (AAB. snd AB
kj) for k= 'n
unfolding T2-def matriz-topology-euclidean|symmetric)
using continuous-map-compose[OF continuous-map-snd matriz-projection-continuous]
by metis
ultimately have summand-continuous:
continuous-map ?T euclideanreal (NAB. fst ABi k x snd AB$ k$ j) for
k:'n
using continuous-map-real-mult by blast
have finite: finite (UNIV :: 'n set) by simp
have continuous-map ?T euclideanreal (AAB. (3 (k::'n)e UNIV. fst AB$ i $
kxsnd AB$ kS j))
using continuous-map-sum|[OF finite summand-continuous] by fast
then show ?thesis unfolding eq by blast
qged
from matriz-components-continuous-imp-continuous| OF this] show ?thesis
unfolding T3-def matriz-topology-euclidean|symmetric] by (simp add: case-prod-beta’)
qed

lemma transpose-continuous:
shows continuous-map (euclidean :: (('a :: topological-space) ~'n""m) topology)
euclidean transpose
proof —
have continuous-map euclidean euclidean (AA. (transpose A) $ i $ j) for @ :: 'n
and j :: 'm
unfolding transpose-def matriz-topology-euclidean[symmetric]
using matriz-projection-continuous|of euclidean j i) by fastforce
from matriz-components-continuous-imp-continuous|OF this| show ?thesis
unfolding matriz-topology-euclidean by blast
qed

4.2.2 Continuity of matrix inversion

lemma matriz-mul-columns:
fixes A :: (Ya :: semiring-1)"'n"'m and B :: 'a”'k"'n
shows column j (A *x B) = A *v (column j B)
unfolding column-def matriz-matriz-mult-def matriz-vector-mult-def by force

lemma matriz-columns-unique:
assumes Vj. column j A = column j B
shows A = B
using assms unfolding column-def by (simp add: vec-eg-iff)

52

lemma matriz-inv-is-inv:
assumes invertible A
shows A xx (matriz-inv A) = mat 1 and (matriz-inv A) xx A = mat 1
proof —
show A xx matriz-inv A = mat 1
using assms unfolding invertible-def matriz-inv-def by (simp add: verit-sko-ex’)
show (matriz-inv A) xx A = mat 1
using assms unfolding invertible-def matriz-inv-def by (simp add: verit-sko-ex”)
qed

lemma invertible-imp-right-inverse-is-inverse:

assumes invertible: invertible A and A xx B = mat 1

shows matriz-inv A = B

using matriz-inv-is-inv[OF invertible] assms by (metis matriz-mul-assoc ma-
triz-mul-lid)

lemma matriz-inv-invertible:
assumes invertible A
shows invertible (matriz-inv A)
using assms matriz-inv-is-inv invertible-def by fast

lemma det-inv:

fixes A :: (a :: field) 'n"'n

assumes det A # 0

shows det (matriz-inv A) = 1 / det A
proof —

have A xx (matriz-inv A) = mat 1 using assms invertible-det-nz matriz-inv-is-inv(1)
by fast

then have det A x det (matriz-inv A) = 1 using det-mul[of A matriz-inv A] by
auto

then show ?thesis using assms by (metis nonzero-mult-div-cancel-left)
qed

See proposition "cramer" from HOL-Analysis.Determinants

definition cramer-inv :: (‘a :: field) 'n"'n = ‘a”’'n"'n where
cramer-inv A = (x i j. det(x k. if | = i then (azis j 1) $ k else Akl) / det A)

lemma cramer-inv-is-inverse:
assumes invertible: invertible (A :: (‘a :: field)'n"'n)
shows matriz-inv A = cramer-inv A
proof —
have A xx (cramer-inv A) = mat 1
proof —
have column j (cramer-inv A) = (x . det(x k1. if | = i then (azis j 1) $ k else
A8kSI) / det A) for j
unfolding cramer-inv-def column-def by simp
moreover have det A # 0 using invertible unfolding invertible-det-nz by
force
ultimately have A xv (column j (cramer-inv A)) = azis j 1 for j using cramer

93

by auto
then have column j (A *x (cramer-inv A)) = axis j 1 for j unfolding ma-
triz-mul-columns by auto
moreover have column j (mat 1) = axis j 1 for j :: 'n unfolding column-def
mat-def axis-def by simp
ultimately show %thesis using matriz-columns-unique by metis
qed
then show ?thesis using invertible invertible-imp-right-inverse-is-inverse un-
folding GL-def by fastforce
qed

lemma matriz-inv-continuous:
shows continuous-map (GL-topology :: (real”'n"'n) topology) GL-topology ma-
triz-inv
proof —
define B :: real™'n"'n = 'n = 'n = 'n = 'n = real where
B=MAijkl ifl=1ithen (axisj 1) $ k else AkS])
define C :: real'n"'n = 'n = 'n = real”'n"'n where
CAij=(xkl.BAijkl)for Aij
have det-GL-continuous: continuous-map GL-topology euclideanreal det
unfolding GL-topology-def using continuous-map-from-subtopology| OF det-continuous]
by fast
have continuous-map euclidean euclideanreal (AA. B A ij k1) for ijkl
proof (cases | = 1)
case True
then have (M. BAijkl) = (M\A. (axis j 1) $ k) unfolding B-def by force
moreover have continuous-map euclidean euclideanreal (AA. (azis j 1) $ k)
by simp
ultimately show ?thesis by (smt (verit) continuous-map-eq)
next
case False
then have (M. B A ijkl) = (M. Ak]) unfolding B-def by simp
then show ?thesis unfolding matriz-topology-euclidean|[symmetric]
using matriz-projection-continuous|of euclideanreal k] by force
qed
then have continuous-map euclidean euclideanreal (ANA. (C A ij) $ &k $ 1)
for i j k | unfolding C-def by simp
from matriz-components-continuous-imp-continuous| OF this|
have continuous-map euclidean euclidean (AA. C A i j) for i j
unfolding matriz-topology-euclidean[symmetric] by blast
from continuous-map-compose[OF this det-continuous)
have continuous-map euclidean euclideanreal (AA. det (C A i j)) for i j by force
then have continuous-map GL-topology euclideanreal (AA. det (C A i j)) for i j
unfolding GL-topology-def using continuous-map-from-subtopology by fast
from continuous-map-real-divide[OF this det-GL-continuous]
have continuous-map GL-topology euclideanreal (AA. det (C A i j) / det A) for
ij
unfolding topspace-GL invertible-det-nz by simp
then have continuous-map GL-topology euclideanreal (AA. (x i j. det (C A i j)

54

/ det A) $ i $ j) for i j by simp
from matriz-components-continuous-imp-continuous| OF this|
have continuous-map (GL-topology :: (real'n"'n) topology) euclidean cramer-inv

unfolding cramer-inv-def C-def B-def matriz-topology-euclidean[symmetric] by
blast
from continuous-map-eq| OF this] have continuous-map (GL-topology :: (real 'n"'n)
topology) euclidean matriz-inv
unfolding topspace-GL using cramer-inv-is-inverse by (metis mem-Collect-eq)
moreover have matriz-inv A € topspace GL-topology if A € topspace GL-topology
for A :: real™'n"'n
using that unfolding topspace-GL
by (metis invertible-imp-right-inverse-is-inverse invertible-left-inverse invert-
ible-right-inverse mem-Collect-eq)
ultimately show ?thesis unfolding GL-topology-def Pi-def image-def using
continuous-map-into-subtopology by auto
qed

4.2.3 The general linear group is topological

lemma
GL-group: group GL and
GL-carrier [simp]: carrier GL = {A. invertible A} and
GL-inv [simp]: A € carrier GL = invgy, A = matriz-inv A
proof —
show carrier GL = {A. invertible A} unfolding GL-def by simp
show group GL
proof (unfold-locales, goal-cases)
case 3
then show ?case unfolding GL-def by (simp add: invertible-def)
case 0
then show ?case using GL-def unfolding Units-def invertible-def
by (smt (verit, ccfu-threshold) Collect-mono invertible-def mem-Collect-eq
monoid.select-convs(1) monoid.select-convs(2) partial-object.select-convs(1))
qed (unfold GL-def, auto simp: matriz-mul-assoc invertible-mult)
interpret group GL by fact
show A € carrier GL = invgy, A = matriz-inv A
using matriz-inv-is-inv matriz-inv-invertible inv-equality unfolding GL-def by
fastforce
qed

lemma

GL-topological-group: topological-group GL GL-topology and

GL-open: openin (euclidean :: (real'n"'n) topology) (carrier GL)
proof —

have group-is-space: topspace GL-topology = carrier GL unfolding topspace-GL
GL-def by simp

have continuous-map (prod-topology GL-topology GL-topology) euclidean (A(A,B).
A xx B)

95

unfolding GL-topology-def subtopology- Times[symmetric] using matriz-mul-continuous
continuous-map-from-subtopology by fast

from continuous-map-into-subtopology|OF this]

have continuous-map (prod-topology GL-topology GL-topology) GL-topology (A(A,B).
A ®gr B)

unfolding GL-topology-def Pi-def topspace-prod-topology topspace-subtopology

GL-def using invertible-mult by auto

moreover from continuous-map-eq| OF matriz-inv-continuous]

have continuous-map GL-topology GL-topology (AA. inv gy, A) unfolding group-is-space
using GL-inv by metis

ultimately show topological-group GL GL-topology using GL-group group-is-space

unfolding topological-group-def topological-group-axioms-def by blast

have openin euclideanreal ((topspace euclideanreal) — {0}) by auto

from openin-continuous-map-preimage| OF det-continuous this]

have openin euclidean {(A :: real 'n"'n) € topspace euclidean. det A € ((topspace
euclideanreal) — {0})} by blast

moreover have carrier GL = {A :: real 'n"'n. det A # 0}

using group-is-space[symmetric] invertible-det-nz unfolding topspace-GL by

blast

ultimately show openin (euclidean :: (real”'n"'n) topology) (carrier GL) by
fastforce
qged

4.3 Subgroups of the general linear group

definition SL :: (("a :: field)'n"'n) monoid where
SL = GL (carrier := {A. det A = 1})

lemma det-homomorphism: group-hom GL unit-group det
proof —
have det € carrier GL — carrier unit-group
unfolding GL-carrier unit-group-def using invertible-det-nz by fastforce
moreover have det (A ® gy, B) = det A Qupit_group det B for A B
unfolding GL-def unit-group-def using det-mul by auto
ultimately have det € hom GL unit-group unfolding hom-def by blast
then show ?thesis using GL-group group-unit-group
unfolding group-hom-def group-hom-azxioms-def by blast
qed

lemma
SL-kernel-det: carrier (SL :: (('a :: field) “'n""n) monoid) = kernel GL unit-group
det and
SL-subgroup: subgroup (carrier SL) (GL :: ('a”™'n"'n) monoid) and
SL-carrier [simp|: carrier SL = {A. det A = 1}
proof —
interpret group-hom GL :: ("a”'n"'n) monoid unit-group det using det-homomorphism
by blast
show carrier SL = {A. det A = 1} unfolding SL-def by simp
then show carrier (SL :: (‘a™'n"'n) monoid) = kernel GL unit-group det

o6

unfolding kernel-def GL-carrier unit-group-def using invertible-det-nz by force
then show subgroup (carrier SL) (GL :: ('a™'n"'n) monoid) using subgroup-kernel
by presburger

qed

lemma

SL-topological-group: topological-group SL (subtopology GL-topology (carrier SL))
and

SL-closed: closedin GL-topology (carrier SL)
proof —

interpret topological-group GL GL-topology using GL-topological-group by blast

show topological-group SL (subtopology GL-topology (carrier SL))

unfolding SL-def using topological-subgroup| OF SL-subgroup| by force

have closedin euclideanreal {1} by simp

then have closedin GL-topology {A € topspace GL-topology. det A = 1} un-
folding GL-topology-def

using continuous-map-from-subtopology[OF det-continuous] closedin-continuous-map-preimage

by (smt (verit, ccfo-SIG) Collect-cong singleton-iff)
moreover have {A € topspace GL-topology. det A = 1} = {A. det A = 1}
using topspace-GL using invertible-det-nz by fastforce
ultimately show closedin GL-topology (carrier SL) unfolding SL-carrier by
(smt (verit))
qed

definition GO :: (real”'n"'n) monoid where
GO = GL (carrier :== {A. orthogonal-matriz A})

lemma
GO-subgroup: subgroup {A :: real'n"'n. orthogonal-matriz A} GL and
GO-carrier [simp]: carrier GO = {A. orthogonal-matriz A}
proof —
show carrier GO = {A. orthogonal-matriz A} unfolding GO-def by force
show subgroup {A :: real’'n"'n. orthogonal-matriz A} GL
proof (unfold-locales, goal-cases)
case I
then show ?case unfolding GL-carrier orthogonal-matriz-def invertible-def
by blast
next
case (2 A B)
then show ?case unfolding GL-def using orthogonal-matriz-mul[of A B] by
force
next
case 3
then show ?case unfolding GL-def using orthogonal-matriz-id by simp
next
case (4 A)
then have A € carrier GL unfolding GL-carrier orthogonal-matriz-def invert-
ible-def by blast

o7

moreover from 4 have orthogonal-matriz (matriz-inv A)
by (metis invertible-imp-right-inverse-is-inverse invertible-right-inverse mem-Collect-eq
orthogonal-matriz-def orthogonal-matriz-transpose)
ultimately show ?case using GL-inv by fastforce
qed
qed

lemma
GO-topological-group: topological-group GO (subtopology GL-topology (carrier GO))
and
GO-closed: closedin (GL-topology :: (real”'n"'n) topology) (carrier GO)
proof —
interpret topological-group GL GL-topology using GL-topological-group by blast
show topological-group GO (subtopology GL-topology (carrier GO))
unfolding GO-def using topological-subgroup[OF GO-subgroup] by simp
have one-closed: closedin euclidean {(mat 1) :: real”'n"'n} by fastforce
have continuous-map euclidean (prod-topology euclidean euclidean) (AA :: real”'n"'n.
(transpose A, A))
using continuous-map-pairedl [OF transpose-continuous continuous-map-id| by
force
from continuous-map-compose[OF this matriz-mul-continuous)
have continuous-map euclidean euclidean (AA :: real 'n""n. (transpose A) xx A)
by force
from closedin-continuous-map-preimage| OF this one-closed]
have closedin euclidean {A :: real'n"'n. (transpose A) xx A = mat 1} by force
moreover have carrier GO = {A :: real 'n"'n. (transpose A) *x A = mat 1}
using orthogonal-matriz unfolding GO-carrier by blast
ultimately have closedin (euclidean :: (real”'n"'n) topology) (carrier GO) by
(smt (verit, del-insts))
moreover have carrier GO C carrier GL
unfolding GO-carrier GL-carrier orthogonal-matriz-def invertible-def by blast
ultimately show closedin (GL-topology :: (realn""n) topology) (carrier GO)
unfolding GL-topology-def using closedin-subset-topspace by blast
qed

definition SO :: (real”'n"'n) monoid where
SO = GL (carrier :== {A. orthogonal-matriz A A det A = 1})

lemma

SO-carrier [simp]: carrier SO = {A. orthogonal-matrizc A N\ det A = 1} and

SO-subgroup: subgroup {A :: real'n"'n. orthogonal-matrix A N det A = 1} GL
proof —

show carrier SO = {A. orthogonal-matric A A det A = 1} unfolding SO-def
by auto

have eq: {4 :: real'n""n. orthogonal-matric A N det A = 1} = {A. orthogo-
nal-matriz A} N {A. det A = 1} by fastforce

show subgroup {A :: real”'n"'n. orthogonal-matrix A N det A = 1} GL

unfolding eq using subgroup-intersection|OF GO-subgroup SL-subgroup] by

simp

o8

qed

lemma

SO-topological-group: topological-group SO (subtopology GL-topology (carrier SO))
and

SO-closed: closedin GL-topology (carrier SO)
proof—

interpret topological-group GL GL-topology using GL-topological-group by blast

show topological-group SO (subtopology GL-topology (carrier SO))

unfolding SO-def using topological-subgroup|OF SO-subgroup] by simp

have carrier SO = carrier SL N carrier GO unfolding SO-carrier SL-carrier
GO-carrier by blast

then show closedin GL-topology (carrier SO) using closedin-Int[OF SL-closed
GO-closed] by metis
qed

end

References

[1] A. Arhangelskii and M. Tkachenko. Topological Groups and Related
Structures. Atlantis Studies in Mathematics 1. Atlantis Press, 2008.

[2] D. Bump. Lie Groups. Graduate Texts in Mathematics 225. Springer, 2
edition, 2013.

[3] R. (https://math.stackexchange.com/users/464495/randall). Why is the
quotient group a topological group? Mathematics Stack Exchange. Ac-
cessed on 2024-07-23.

[4] 1. James. Topological and uniform spaces. Undergraduate texts in math-
ematics. Springer, 1 edition, 1987.

[5] J. Prem. Topologische gruppen und haarsches mass. Universitdt Re-
gensburg, 4 2013. Accessed on 2024-07-22.

99

	Uniform spaces
	Definitions and basic results
	Metric spaces as uniform spaces
	Connection to type class

	General theory of Topological Groups
	Auxiliary definitions and results
	Miscellaneous
	Quotient topology

	Definition and basic results
	Subspaces and quotient spaces
	Uniform structures
	The Birkhoff-Kakutani theorem
	Prenorms on groups
	A prenorm respecting the group topology
	Proof of Birkhoff-Kakutani

	Examples of Topological Groups
	Matrix groups
	Topologies on vector types
	The general linear group as a topological group
	Continuity of matrix operations
	Continuity of matrix inversion
	The general linear group is topological

	Subgroups of the general linear group

