Partial Correctness of the Top-Down Solver

Yannick Stade, Sarah Tilscher, Helmut Seidl

May 26, 2024

Abstract

The top-down solver (TD) is a local and generic fixpoint algorithm used for abstract interpretation. Being local means it only evaluates equations required for the computation of the value of some initially queried unknown, while being generic means that it is applicable for arbitrary equation systems where right-hand sides are considered as black-box functions. To avoid unnecessary evaluations of right-hand sides, the TD collects stable unknowns that need not be re-evaluated. This optimization requires the additional tracking of dependencies between unknowns and a non-local destabilization mechanism to assure the re-evaluation of previously stable unknowns that were affected by a changed value.

Due to the recursive evaluation strategy and the non-local destabilization mechanism of the TD, its correctness is non-obvious. To provide a formal proof of its partial correctness, we employ the insight that the TD can be considered an optimized version of a considerably simpler recursive fixpoint algorithm. Following this insight, we first prove the partial correctness of the simpler recursive fixpoint algorithm, the plain TD. Then, we transfer the statement of partial correctness to the TD by establishing the equivalence of both algorithms concerning both their termination behavior and their computed result.

*The first two authors contributed equally to this research and are ordered alphabetically.
Contents

1 Introduction 3

2 Preliminaries 4
 2.1 Strategy Trees 4
 2.2 Auxiliary Lemmas for Default Maps 4
 2.3 Functions on the Constraint System 6
 2.4 Subtrees of Strategy Trees 7
 2.5 Dependencies between Unknowns 8
 2.6 Set \texttt{Reach} 9
 2.7 Partial solution 15

3 The plain Top-Down Solver 16
 3.1 Definition of the Solver Algorithm 16
 3.2 Refinement of Auto-Generated Rules 17
 3.3 Domain Lemmas 18
 3.4 Case Rules 18
 3.5 Predicate for Valid Input States 20
 3.6 Partial Correctness Proofs 21
 3.7 Termination of TD_plain for Stable Unknowns 25
 3.8 Program Refinement for Code Generation 27

4 The Top-Down Solver 33
 4.1 Definition of Destabilize and Proof of its Termination 33
 4.2 Definition of the Solver Algorithm 37
 4.3 Refinement of Auto-Generated Rules 38
 4.4 Domain Lemmas 39
 4.5 Case Rules 40
 4.6 Description of the Effect of Destabilize 42
 4.7 Predicate for Valid Input States 47
 4.8 Auxiliary Lemmas for Partial Correctness Proofs 47
 4.9 Preservation of the Invariant 49
 4.10 TD_plain and TD Equivalence 52
 4.11 Partial Correctness of the TD 67
 4.12 Program Refinement for Code Generation 67

5 Example 75
 5.1 Definition of the Domain 76
 5.2 Definition of the Equation System 77
 5.3 Solve the Equation System with TD_plain 77
 5.4 Solve the Equation System with TD 78
1 Introduction

Static analysis of programs based on abstract interpretation requires efficient and reliable fixpoint engines [1]. In this work, we focus on the top-down solver (TD) [3]—a generic fixpoint algorithm that can handle arbitrary equation systems, even those with infinitely many equations. The latter is achieved by a property called local: When the TD is invoked to compute the value of some unknown, it recursively descends only into those unknowns on which the initially queried unknown depends. In order to avoid redundant re-evaluations of equations, the TD maintains a set of stable unknowns whose re-evaluation can be replaced by a simple lookup. Removing unknowns from the set of stable unknowns when they are possibly affected by changes to other unknowns, requires information about dependencies between unknowns. These dependencies need not be provided beforehand but are detected through self-observation on the fly. This makes the TD suitable also for equation systems where dependencies change dynamically during the solver’s computation.

By removing the collecting of stable unknowns and dependency tracking, we obtain a stripped version of the TD, which we call the plain TD. The plain TD is capable of solving the same equation systems as the original TD and also shares the same termination behavior, but also re-evaluates those unknowns that have already been evaluated and whose value could just be looked up. In the first part of this work, we show the partial correctness of the plain TD. We use a mutual induction following its computation trace to establish invariants describing a valid solver state. From this, the partial correctness of the solver’s result can be derived. The proof is described in Section 3.

We then recover the original TD from the plain TD and prove the equivalence between the two, i.e., that they share the same termination behavior and return the same result whenever they terminate. This way, the partial correctness statement from the plain TD is shown to carry over to the original TD. The essential part of this proof is twofold: First, we extend the invariants to describe the additional data structures for collecting stable unknowns and the dependencies between unknowns. Second, we show that the destabilization of an unknown preserves those invariants. The corresponding proofs are outlined in Section 4.

We conclude this work with an example in Section 5 showing the application of the TD to a simple equation system derived from a program for the analysis of must-be initialized variables.
2 Preliminaries

Before we define the TD in Isabelle/HOL and start with its partial correctness proof, we define all required data structures, formalize definitions and prove auxiliary lemmas.

theory Basics
 imports Main "HOL-Library.Finite_Map"
begin

unbundle lattice_syntax

2.1 Strategy Trees

The constraint system is a function mapping each unknown to a right-hand side to compute its value. We require the right-hand sides to be pure functionals [2]. This means that they may query the values of other unknowns and perform additional computations based on those, but they may, e.g., not spy on the solver’s data structures. Such pure functions can be expressed as strategy trees.

datatype ('a, 'b) strategy_tree = Answer 'b |
 Query 'a ''b \Rightarrow ('a , 'b) strategy_tree"

The solver is defined based on a black-box function T describing the constraint system and under the assumption that the special element ⊥ exists among the values.

locale Solver =
 fixes D :: ''d :: bot
 and T :: '''x \Rightarrow (''x , ''d) strategy_tree"
begin

2.2 Auxiliary Lemmas for Default Maps

The solver maintains a solver state to implement optimizations based on self-observation. Among the data structures for the solver state are maps that return a default value for non-existing keys. In the following, we define some helper functions and lemmas for these.

definition fmlookup_default where
 "fmlookup_default m d x = (case fmlookup m x of Some v \Rightarrow v | None \Rightarrow d)"

abbreviation slookup where
 "slookup infl x \equiv set (fmlookup_default infl [] x)"

definition mlup where
 "mlup \sigma x \equiv case \sigma x of Some v \Rightarrow v | None \Rightarrow ⊥"
definition fminsert where
 "fminsert infl x y = fmupd x (y # (fmlookup_default infl [] x)) infl"

lemma set_fmlookup_default_cases:
 assumes "y ∈ slookup infl x"
 obtains (1) xs where "fmlookup infl x = Some xs" and "y ∈ set xs"
 using assms that unfolding fmlookup_default_def
 by (cases "fmlookup infl x"; auto)

lemma notin_fmlookup_default_cases:
 assumes "y /∈ slookup infl x"
 obtains (1) xs where "fmlookup infl x = Some xs" and "y /∈ set xs"
 | (2) "fmlookup infl x = None"
 using assms that unfolding fmlookup_default_def
 by (cases "fmlookup infl x"; auto)

lemma slookup_helper[simp]:
 assumes "fmlookup m x = Some ys"
 and "y ∈ set ys"
 shows "y ∈ slookup m x"
 using assms(1,2) notin_fmlookup_default_cases by force

lemma lookup_implies_mlup:
 assumes "σ x = σ' x'"
 shows "mlup σ x = mlup σ' x'"
 using assms
 unfolding mlup_def fmlookup_default_def
 by auto

lemma fmlookup_fminsert:
 assumes "fmlookup_default infl [] x = xs"
 shows "fmlookup (fminsert infl x y) x = Some (y # xs)"
proof(cases "fmlookup infl x")
 case None
 then show ?thesis using assms unfolding fmlookup_default_def fminsert_def
 by auto
next
 case (Some a)
 then show ?thesis using assms unfolding fmlookup_default_def fminsert_def
 by auto
qed

lemma fmlookup_fminsert':
 obtains xs ys
 where "fmlookup (fminsert infl x y) x = Some xs"
 and "fmlookup_default infl [] x = ys" and "xs = y # ys"
 using that fmlookup_fminsert
 by fastforce
lemma fmlookup_default_drop_set:
"fmlookup_default (fmdrop_set A m) [] x = (if x \notin A then fmlookup_default m [] x else [])"
by (simp add: fmlookup_default_def)

lemma mlup_eq_mupd_set:
assumes "x \notin s"
and "\forall y \in s. mlup \sigma y = mlup \sigma' y"
shows "\forall y \in s. mlup \sigma y = mlup (\sigma'(x \mapsto xd)) y"
using assms
by (simp add: mlup_def)

2.3 Functions on the Constraint System

The function \texttt{rhs_length} computes the length of a specific path in the strategy tree defined by a value assignment for unknowns \(\sigma\).

function (domintros) \texttt{rhs_length} where
"\texttt{rhs_length (Answer \(d\)) __} _ = 0" |
"\texttt{rhs_length (Query \(x\ f\)} \sigma\ = 1 + \texttt{rhs_length (f (mlup \sigma x)) \sigma}"
by pat_completeness auto

termination \texttt{rhs_length}
proof (rule allI, safe)
fix \(t :: ('a, 'b) strategy_tree\) and \(\sigma :: ('a, 'b) map\)
show "\texttt{rhs_length_dom (t, \sigma)}"
by (induction t, auto simp add: rhs_length.domintros)
qed

The function \texttt{traverse_rhs} traverses a strategy tree and determines the answer when choosing the path through the strategy tree based on a given unknown-value mapping \(\sigma\).

function (domintros) \texttt{traverse_rhs} where
"\texttt{traverse_rhs (Answer \(d\)) __} _ = \(d\)" |
"\texttt{traverse_rhs (Query \(x\ f\)} \sigma\ = \texttt{traverse_rhs (f (mlup \sigma x)) \sigma}"
by pat_completeness auto

termination \texttt{traverse_rhs}
by (relation "measure (\(\lambda(t,\sigma). rhs_length t \sigma\))") auto

The function \texttt{eq} evaluates the right-hand side of an unknown \(x\) with an unknown-value mapping \(\sigma\).

definition \texttt{eq} :: "'x \Rightarrow ('x, 'd) map \Rightarrow 'd"
where "\texttt{eq \(x\ \sigma\ = traverse_rhs (T \(x\)) \sigma}\"
declare \texttt{eq_def[simp]}
2.4 Subtrees of Strategy Trees

We define the set of subtrees of a strategy tree for a specific path (defined through σ).

\textbf{inductive set} \texttt{subt_aux ::}
\texttt{"\('x, 'd) map \Rightarrow \('x, 'd) strategy_tree \Rightarrow \('x, 'd) strategy_tree set" for σ t where}
\texttt{base: "$t \in \texttt{subt_aux} \sigma t$"}
\texttt{step: "$t' \in \texttt{subt_aux} \sigma t \Rightarrow t' = \texttt{Query} y g \Rightarrow (g (\texttt{mlup} \sigma y)) \in \texttt{subt_aux} \sigma t$"}

\textbf{definition} \texttt{subt where}
\texttt{"\texttt{subt} \sigma x = \texttt{subt_aux} \sigma (T x)"}

\textbf{lemma} \texttt{subt_of_answer_singleton:}
\texttt{shows "\texttt{subt_aux} \sigma (\texttt{Answer} d) = \{\texttt{Answer} d\}"}
\textbf{proof (intro set_eqI iffI, goal_cases)}
\texttt{case (1 x)}
\texttt{then show \texttt{?case} by (induction rule: subt_aux.induct; simp)}
\texttt{next}
\texttt{case (2 x)}
\texttt{then show \texttt{?case} by (simp add: subt_aux.base)}
\textbf{qed}

\textbf{lemma} \texttt{subt_transitive:}
\texttt{assumes "\texttt{t'} \in \texttt{subt_aux} \sigma t"}
\texttt{shows "\texttt{subt_aux} \sigma t' \subseteq \texttt{subt_aux} \sigma t"}
\textbf{proof}
\texttt{fix τ}
\texttt{assume "$\tau \in \texttt{subt_aux} \sigma t'$"}
\texttt{then show "$\tau \in \texttt{subt_aux} \sigma t$"}
\texttt{using \texttt{assms}
\texttt{by (induction rule: subt_aux.induct; simp add: subt_aux.step)}}
\textbf{qed}

\textbf{lemma} \texttt{subt_unfold:}
\texttt{shows "\texttt{subt_aux} \sigma (\texttt{Query} x f) = \texttt{insert} (\texttt{Query} x f) (\texttt{subt_aux} \sigma (f (\texttt{mlup} \sigma x)))"}
\textbf{proof(intro set_eqI iffI, goal_cases)}
\texttt{case (1 τ)}
\texttt{then show \texttt{?case}
\texttt{using \texttt{subt_aux.simps}
\texttt{by (induction rule: subt_aux.induct; blast)}}}
\texttt{next}
\texttt{case (2 τ)}
\texttt{then show \texttt{?case}
\texttt{proof (elim insertE, goal_cases)}
\texttt{case 1
\texttt{then show \texttt{?case
\texttt{}}}
using subst_aux.base
by simp
next
case 2
then show ?case
using subst_transitive[of "f (mlup σ x)" σ "Query x f"] subst_aux.base
subt_aux.step
by auto
qed
qed

2.5 Dependencies between Unknowns

The set $\text{dep} \; \sigma \; x$ collects all unknowns occuring in the right-hand side of x when traversing it with σ.

function $\text{dep} \; \sigma \; x$
where
"$\text{dep} \; \sigma \; (\text{Answer} \; d) = \{}$"
| "$\text{dep} \; \sigma \; (\text{Query} \; y \; g) = \text{insert} \; y \; (\text{dep} \; \sigma \; (g \; (\text{mlup} \; \sigma \; y)))$"
by pat_completeness auto

termination $\text{dep} \; \sigma \; x$
by (relation "measure $(\lambda (\sigma, t). \text{rhs}_\sigma \; t)$") auto

definition $\text{dep} \; \sigma \; x$
where
"$\text{dep} \; \sigma \; x = \text{dep} \; \sigma \; (T \; x)$"

lemma $\text{dep} \; \sigma \; x$:
assumes "$\forall y \in \text{dep} \; \sigma \; t. \; \text{mlup} \; \sigma \; y = \text{mlup} \; \sigma' \; y$"
shows "$\text{dep} \; \sigma \; t = \text{dep} \; \sigma' \; t$"
using assms
by (induction t rule: strategy_tree.induct) auto

lemmas $\text{dep} \; \sigma \; x$ = $\text{dep} \; \sigma \; x$ of $\text{of} \; \sigma \; "T \; x" \; \sigma'$ for $\text{for} \; \sigma \; \sigma'$, folded $\text{of} \; \text{dep} \; \sigma \; x$

lemma $\text{subt} \; \text{implies} \; \text{dep}$:
assumes "$\text{Query} \; y \; g \in \text{subt} \; \sigma \; t$"
shows "$y \in \text{dep} \; \sigma \; t$"
using assms $\text{subt} \; \text{of} \; \text{subt} \; \text{answer} \; \text{singleton} \; \text{subt} \; \text{unfold}$
by (induction t) auto

lemma $\text{solution} \; \text{sufficient}$:
assumes "$\forall y \in \text{dep} \; \sigma \; x. \; \text{mlup} \; \sigma \; y = \text{mlup} \; \sigma' \; y$"
shows "$\text{eq} \; x \; \sigma = \text{eq} \; x \; \sigma'$"
proof -
obtain xd where xd_def: "$\text{eq} \; x \; \sigma = xd$" by simp
have "$\text{traverse} \; \text{rhs} \; t \; \sigma = xd$"
if "$t \in \text{subt} \; \sigma \; x$"
and "$\text{traverse} \; \text{rhs} \; t \; \sigma = xd$"
for t
using that

proof (induction t rule: strategy_tree.induct)
case (Query y g)
 define t where \[\text{simp}: t = g (mlup } \sigma y) \]
 have "traverse_rhs t } \sigma' = xd"
 using subt_aux.step Query.prems Query.IH
 by (simp add: subt_def)
 then show ?case
 using subt_implies_dep[where \(\tau = \text{T } x \), folded subt_def dep_def]
Query.prems(1) assms(1)
 by simp
qed simp
then show ?thesis
 using assms subt_aux.base xd_def
 unfolding eq_def subt_def
 by simp
qed

corollary eq_mupd_no_dep:
 assumes "x \notin \text{dep } \sigma y"
 shows "eq y } \sigma = eq y (\sigma (x \mapsto xd))"
 using assms solution_sufficient fmupd_lookup
 unfolding fmlookup_default_def mlup_def
 by simp
2.6 Set Reach

Let reach be the set of all unknowns contributing to \(x \) (for a given \(\sigma \)). This corresponds to the set of all unknowns on which \(x \) transitively depends on when evaluating the necessary right-hand sides with \(\sigma \).

inductive_set reach for } \sigma x where
 base: "x \in \text{reach } \sigma x"
 \(\text{\| step: } y \in \text{reach } \sigma x \implies z \in \text{dep } \sigma y \implies z \in \text{reach } \sigma x"

The solver stops descending when it encounters an unknown whose evaluation it has already started (i.e. an unknown in \(c \)). Therefore, reach might collect contributing unknowns which the solver did not descend into. For a predicate, that relates more closely to the solver’s history, we define the set reach_cap. Similarly to reach it collects the unknowns on which an unknown transitively depends, but only until an unknown in \(c \) is reached.

inductive_set reach_cap_tree for } \sigma c t where
 base: "x \in \text{dep_aux } \sigma t \implies x \in \text{reach_cap_tree } \sigma c t"
 \(\text{\| step: } y \in \text{reach_cap_tree } \sigma c t \implies y \notin } \sigma c \implies z \in \text{dep } \sigma y \implies z \in \text{reach_cap_tree } \sigma c t"

abbreviation "reach_cap } \sigma c x"
 \(\equiv \text{insert } x \text{ (if } x \in c \text{ then } \{ \} \text{ else reach_cap_tree } \sigma \text{ (insert } x c) \ (T } x)\)"
lemma reach_cap_tree_answer_empty[simp]:
 "reach_cap_tree σ c (Answer d) = {}"
proof (intro equals0I, goal_cases)
 case (1 y)
 then show ?case by (induction rule: reach_cap_tree.induct; simp)
qed

lemma dep_subset_reach_cap_tree:
 "dep_aux σ' t ⊆ reach_cap_tree σ' c t"
proof (intro subsetI, goal_cases)
 case (1 x)
 then show ?case using reach_cap_tree.base
 by (induction rule: dep_aux.induct; auto)
qed

lemma reach_cap_tree_subset:
says "reach_cap_tree σ c t ⊆ reach_cap_tree σ (c - {x}) t"
proof
 fix xa
 show "xa ∈ reach_cap_tree σ c t =⇒ xa ∈ reach_cap_tree σ (c - {x}) t"
 proof (induction rule: reach_cap_tree.induct)
 case base
 then show ?case using reach_cap_tree.base
 by simp
 next
 case (step y' z)
 then show ?case
 by simp
 qed
qed

lemma reach_empty_capped:
says "reach σ x = insert x (reach_cap_tree σ {x} (T x))"
proof (intro equalityI subsetI, goal_cases)
 case (1 y)
 then show ?case
 proof (induction rule: reach.induct)
 case (step y z)
 then show ?case using reach_cap_tree.base[of z σ "T x"] reach_cap_tree.step[of y σ "(x)"]
 unfolding dep_def by blast
 qed simp
next
 case (2 y)
 then show ?case
using \textit{reach.base}

proof (cases "y = x")
 case False
 then have "y \in \textit{reach_cap_tree} \sigma \{x\} (T x)"
 using 2
 by simp
 then show \textit{?thesis}
 proof (induction rule: \textit{reach_cap_tree}.induct)
 case (base y)
 then show \textit{?case}
 using \textit{reach.base} \textit{reach.step}[of x]
 unfolding \textit{dep_def}
 by auto
 next
 case (step y z)
 then show \textit{?case}
 using \textit{reach.step}
 by blast
 qed
 qed simp
 qed

lemma \textit{dep_aux_implies_reach_cap_tree}:
 assumes "y \notin c"
 and "y \in \textit{dep_aux} \sigma t"
 shows "\textit{reach_cap_tree} \sigma c (T y) \subseteq \textit{reach_cap_tree} \sigma c t"
 proof
 fix xa
 assume "xa \in \textit{reach_cap_tree} \sigma c (T y)"
 then show "xa \in \textit{reach_cap_tree} \sigma c t"
 proof (induction rule: \textit{reach_cap_tree}.induct)
 case (base x)
 then show \textit{?case}
 using assms \textit{reach_cap_tree}.base \textit{reach_cap_tree}.step[unfolded \textit{dep_def}, of y]
 by simp
 next
 case (step y z)
 then show \textit{?case}
 using \textit{reach_cap_tree}.step
 by simp
 qed
 qed

lemma \textit{reach_cap_tree_simp}:
 shows "\textit{reach_cap_tree} \sigma c t
 = \textit{dep_aux} \sigma t \cup (\bigcup_{\xi \in \textit{dep_aux} \sigma t - c. \textit{reach_cap_tree} \sigma (\textit{insert} \xi c) (T \xi)})"
 proof (intro set_eqI \textit{iffI}, \textit{goal_cases})
case (1 x)
then show ?case
proof (induction rule: reach_cap_tree.induct)
case (base x)
then show ?case using reach_cap_tree.step by auto
next
case (step y z)
then show ?case using reach_cap_tree.step[of y σ] reach_cap_tree.base[of z σ “T y”]
 unfolding dep_def
 by blast
qed
next
case (2 x)
then show ?case
proof (elim UnE, goal_cases)
case 1
then show ?case using reach_cap_tree.base by simp
next
case 2
then obtain y where "x ∈ reach_cap_tree σ (insert y c) (T y)" and
 "y ∈ dep_aux σ t - c" by auto
then show ?case
 using dep_aux_implies_reach_cap_tree[of y c] reach_cap_tree_subset[of σ "insert y c" "T y" y]
 by auto
qed
qed

lemma reach_cap_tree_step:
 assumes "mlup σ y = yd"
 shows "reach_cap_tree σ c (Query y g) = insert y (if y ∈ c then {} else reach_cap_tree σ (insert y c) (T y)) ∪ reach_cap_tree σ c (g yd)"
 using assms reach_cap_tree_simp[of σ c]
 by auto

lemma reach_cap_tree_eq:
 assumes "∀ x∈reach_cap_tree σ c t. mlup σ x = mlup σ’ x"
 shows "reach_cap_tree σ c t = reach_cap_tree σ’ c t"
proof(intro equalityI subsetI, goal_cases)
case (1 x)
 then show ?case
 proof(induction rule: reach_cap_tree.induct)
 case (base x)
 then show ?case
 using assms reach_cap_tree.base[of _ σ t c] dep_aux_eq reach_cap_tree.base[of x σ’ t c]
 by metis
 qed

end
next
 case (step y z)
 then show ?case
 using assms reach_cap_tree.step[of y σ c t] dep_eq reach_cap_tree.step[of y σ' c t z]
 by blast
 qed
next
 case (2 x)
 then show ?case
 proof(induction rule: reach_cap_tree.induct)
 case (base x)
 then show ?case
 using assms reach_cap_tree.base[of _ σ t c] dep_aux_eq reach_cap_tree.base[of x σ' t c]
 by metis
 next
 case (step y z)
 then show ?case
 proof
 (cases "x ∈ c" rule: case_split[case_names called not_called])
 case not_called
 moreover have "insert x (reach_cap_tree σ (insert x c) (T x)) = insert x (if x ∈ c then {} else reach_cap_tree σ (insert x c) (T x))"
 proof(intro equalityI subsetI, goal_cases)
 case (1 y)
 then show ?case
 proof(cases "x = y")
 case False
 then show ?thesis
 by (metis "1" Diff_insert_absorb in_mono insert_mono not_called
 reach_cap_tree_subset)
 qed auto
 qed
 qed
lemma reach_cap_tree_simp2:
 shows "insert x (if x ∈ c then {} else reach_cap_tree σ c (T x)) = insert x (if x ∈ c then {} else reach_cap_tree σ (insert x c) (T x))"
proof(cases "x ∈ c" rule: case_split[case_names called not_called])
 case not_called
 moreover have "insert x (reach_cap_tree σ (insert x c) (T x)) = insert x (reach_cap_tree σ c (T x))"
 proof(intro equalityI subsetI, goal_cases)
 case (1 y)
 then show ?case
 proof(cases "x = y")
 case False
 then show ?thesis
 proof(cases "y ∈ dep σ x" rule: case_split[case_names xdep no_xdep])
 qed

case xdep
 then show ?thesis using 2 reach_cap_tree.base[of y σ "T x" "insert x c", folded dep_def]
 by auto
next
 case no_xdep
 have "y ∈ reach_cap_tree σ c (T x)" using 2 False by auto
 then show ?thesis
 proof (induction rule: reach_cap_tree.induct)
 case (base x)
 then show ?case by (simp add: reach_cap_tree.base)
 next
 case (step y z)
 then show ?case using reach_cap_tree.step reach_cap_tree.base
 dep_def by blast
 qed
 qed
 qed auto
then show ?thesis by auto
qed auto

lemma dep_closed_implies_reach_cap_tree_closed:
 assumes "x ∈ s"
 and "∀ξ ∈ s - (c - {x}). dep σ' ξ ⊆ s"
 shows "reach_cap σ' (c - {x}) x ⊆ s"
proof (intro subsetI, goal_cases)
 case (1 y)
 then show ?case using assms
 proof (cases "x = y")
 case False
 then have "y ∈ reach_cap_tree σ' (c - {x}) (T x)"
 using 1 reach_cap_tree_simp2[of x "c - {x}" σ'] by auto
 then show ?thesis using assms
 proof (induction)
 case (base y)
 then show ?case using base.hyps dep_def by auto
 next
 case (step y z)
 then show ?case by (metis (no_types, lifting) Diff_iff insert_subset mk_disjoint_insert)
 qed
 qed simp
 qed

lemma reach_cap_tree_subset2:
 assumes "mlup σ y = yd"
 shows "reach_cap_tree σ c (g yd) ⊆ reach_cap_tree σ c (Query y g)"
 using reach_cap_tree_step[OF assms] by blast
lemma reach_cap_tree_subset_subt:
assumes "t' ∈ subt_aux σ t"
shows "reach_cap_tree σ c t' ⊆ reach_cap_tree σ c t"
using assms
proof(induction rule: subt_aux.induct)
case (step t' y g)
then show ?case using reach_cap_tree_step by simp
qed simp

lemma reach_cap_tree_singleton:
assumes "reach_cap_tree σ (insert x c) t ⊆ {x}"
obtains (Answer) d where "t = Answer d"
| (Query) f where "t = Query x f"
and "dep_aux σ t = {x}"
using assms that(1)
proof(cases t)
case (Query x' f)
then have "x' ∈ reach_cap_tree σ (insert x c) t"
using reach_cap_tree.base dep_aux.simps(2) by simp
then have [simp]: "x' = x" using assms by auto
then show ?thesis
using assms that(2) reach_cap_tree.base Query dep_subset_reach_cap_tree
subset_antisym
by fastforce
qed simp

2.7 Partial solution

Finally, we define an unknown-to-value mapping σ to be a partial solution
over a set of unknowns vars if for every unknown in vars, the value obtained
from an evaluation of its right-hand side function eq x with σ matches the
value stored in σ.

abbreviation part_solution where
"part_solution σ vars ≡ (∀x ∈ vars. eq x σ = mlup σ x)"

lemma part_solution_coinciding_sigma_called:
assumes "part_solution σ (s - c)"
and "∀x ∈ s. mlup σ x = mlup σ' x"
and "∀x ∈ s - c. dep σ x ⊆ s"
shows "part_solution σ' (s - c)"
using assms
proof(intro ballI, goal_cases)
case (1 x)
then have "∀y ∈ dep σ x. mlup σ y = mlup σ' y" by blast
then show ?case using 1 solution_sufficient[of σ x σ'] by simp
qed
3 The plain Top-Down Solver

TD_plain is a simplified version of the original TD which only keeps track of already called unknowns to avoid infinite descend in case of recursive dependencies. In contrast to the TD, it does, however, not track stable unknowns and the dependencies between unknowns. Instead, it re-iterates every unknown when queried again.

theory TD_plain
 imports Basics
begin
locale TD_plain = Solver D T
 for D :: "'d :: bot"
 and T :: "'x ⇒ ('x, 'd) strategy_tree"
begin

3.1 Definition of the Solver Algorithm

The recursively descending solver algorithm is defined with three mutual recursive functions. Initially, the function iterate is called from the top-level solve function for the requested unknown. iterate keeps evaluating the right-hand side by calling the function eval and updates the value mapping σ until the value stabilizes. The function eval walks through a strategy tree and chooses the path based on the result for queried unknowns. These queries are delegated to the third mutual recursive function query which checks that the unknown is not already being evaluated and iterates it otherwise. The function keyword is used for the definition, since, without further assumptions, the solver may not terminate.

function (domintros)
 query :: "'x ⇒ 'x ⇒ 'x set ⇒ ('x, 'd) map ⇒ 'd × ('x, 'd) map"
 and
 iterate :: "'x ⇒ 'x set ⇒ ('x, 'd) map ⇒ 'd × ('x, 'd) map" and
 eval :: "'x ⇒ ('x, 'd) strategy_tree ⇒ 'x set ⇒ ('x, 'd) map ⇒ 'd × ('x, 'd) map" where
"query x y c σ = (if y ∈ c then (mlup σ y, σ) else iterate y (insert y c) σ)"
"iterate x c σ = (let (d_new, σ) = eval x (T x) c σ in

16
if \(d_{\text{new}} = \text{mlup} \sigma x\) then
\[(d_{\text{new}}, \sigma)\]
else
\[\text{iterate } x c (\sigma(x \mapsto d_{\text{new}})).\]

\[\text{eval } x t c \sigma = \text{(case } t \text{ of}
 \quad \text{Answer } d \Rightarrow (d, \sigma)
 \quad \text{Query } y g \Rightarrow \text{(let } (yd, \sigma) = \text{query } x y c \sigma \text{ in eval } x (g yd) c \sigma)\)\]

by \text{pat_completeness auto}

\text{definition} solve :: "'x ⇒ ('x, 'd) map" where
\[\text{solve } x = \text{(let } (_, \sigma) = \text{iterate } x \{x\} \text{ Map.empty in } \sigma)\]
simplified (no_asm_use), folded query_dom_def iterate_dom_def eval_dom_def

declare query.psimp [simp]
declare iterate.psimp [simp]
declare eval.psimp [simp]

3.3 Domain Lemmas

lemma dom_backwards_pinduct:
 shows "query_dom x y c σ
 ⇒ y /∈ c ⇒ iterate_dom y (insert y c) σ"
and "iterate_dom x c σ
 ⇒ (eval_dom x (T x) c σ ∧
 (eval x (T x) c σ = (xd_new, σ'))
 → mlup σ' x = xd_old → xd_new ≠ xd_old →
 iterate_dom x c (σ'(x → xd_new)))"
and "eval_dom x (Query y g) c σ
 ⇒ (query_dom x y c σ ∧ (query x y c σ = (yd, σ') → eval_dom x (g yd) c σ))"
proof (induction x y c σ and x c σ and x "Query y g" c σ
 arbitrary: and xd_new xd_old σ' and y g yd σ'
 rule: query_iterate_eval_pinduct)
case (Query x c σ)
 then show ?case
 using query_iterate_eval.domintros(2) by fastforce
next
case (Iterate x c σ)
 then show ?case
 using query_iterate_eval.domintros(2,3)[folded eval_dom_def iterate_dom_def
query_dom_def]
 by metis
next
case (Eval c σ)
 then show ?case
 using query_iterate_eval.domintros(1,3) by simp
qed

3.4 Case Rules

lemma iterate_continue_fixpoint_cases[consumes 3]:
 assumes "iterate_dom x c σ"
 and "iterate x c σ = (xd, σ')"
 and "x ∈ c"
 obtains (Fixpoint) "eval_dom x (T x) c σ"
 and "eval x (T x) c σ = (xd, σ')"
 and "mlup σ' x = xd"
| (Continue) σ1 xd_new
where "eval_dom x (T x) c σ"
and "eval x (T x) c σ = (xd_new, σ1)"
and "mlup σ1 x ≠ xd_new"
and "iterate_dom x c (σ1(x ↦→ xd_new))"
and "iterate x c (σ1(x ↦→ xd_new)) = (xd, σ')"

proof -
obtain xd_new σ1
 where "eval x (T x) c σ = (xd_new, σ1)"
 by (cases "eval x (T x) c σ")
then show ?thesis
 using assms that dom_backwards_pinduct(2)
 by (cases "mlup σ1 x = xd_new"; simp)
qed

lemma iterate_fmlookup:
 assumes "iterate_dom x c σ"
 and "iterate x c σ = (xd, σ')"
 and "x ∈ c"
shows "mlup σ' x = xd"
 using assms
proof (induction rule: iterate_pinduct)
case (Iterate x c σ)
 show ?case
 using Iterate.hyps Iterate.prems
 proof (cases rule: iterate_continue_fixpoint_cases)
 case (Continue σ1 xd_new)
 then show ?thesis
 using Iterate.prems(2) Iterate.IH
 by fastforce
 qed simp
 qed

corollary query_fmlookup:
 assumes "query_dom x y c σ"
 and "query x y c σ = (yd, σ')"
shows "mlup σ' y = yd"
 using assms iterate_fmlookup dom_backwards_pinduct(1)[of x y c σ]
 by (auto split: if_splits)

lemma query_iterate_lookup_cases [consumes 2]:
 assumes "query_dom x y c σ"
 and "query x y c σ = (yd, σ')"
obtains (Iterate)
 "iterate_dom y (insert y c) σ"
 and "iterate y (insert y c) σ = (yd, σ')"
 and "mlup σ' y = yd"
 and "y ∉ c"
| (Lookup) "mlup σ y = yd"
 and "σ = σ'"
 and "y ∈ c"
lemma eval_query_answer_cases [consumes 2]:
 assumes "eval_dom x t c σ"
 and "eval x t c σ = (d, σ')"
 obtains (Query) y g yd σ1
where "t = Query y g"
 and "query_dom x y c σ"
 and "query x y c σ = (yd, σ1)"
 and "eval_dom x (g yd) c σ1"
 and "eval x (g yd) c σ1 = (d, σ')"
 and "mlup σ1 y = yd"
| (Answer) "t = Answer d"
 and "σ = σ'"
using assms dom_backwards_pinduct(3) that query_fmlookup
by (cases t; auto split: prod.splits)

3.5 Predicate for Valid Input States

We define a predicate for valid input solver states. \(c \) is the set of called unknowns, i.e., the unknowns currently being evaluated and \(σ \) is an unknown-to-value mapping. Both are data structures maintained by the solver. In contrast, the parameter \(s \) describing a set of unknowns, for which a partial solution has already been computed or which are currently being evaluated, is introduced for the proof. Although it is similar to the set \(\text{stabl} \) maintained by the original TD, it is only an under-approximation of it. A valid solver state is one, where \(σ \) is a partial solution for all truly stable unknowns, i.e., unknowns in \(s - c \), and where these truly stable unknowns only depend on unknowns which are also truly stable or currently being evaluated. A substantial part of the partial correctness proof is to show that this property about the solver’s state is preserved during a solver’s run.

definition invariant where
 "invariant s c σ ≡ (∀ξ∈s - c. dep σ ξ ⊆ s) ∧ part_solution σ (s - c)"

lemma invariant_simp:
 assumes "x ∈ c"
 and "invariant s (c - {x}) σ"
 shows "invariant (insert x s) c σ"
using assms
proof -
 have "c - {x} ⊆ s ≡ c ⊆ insert x s"
 using assms(1)
 by (simp add: subset_insert_iff)
 moreover have "s - (c - {x}) ⊇ insert x s - c"
using assms(1)
by auto
ultimately show ?thesis
using assms(2)
unfolding invariant_def
by fastforce
qed

lemma invariant_continue:
assumes "x ∉ s"
and "invariant s c σ"
and "∀y ∈ s. mlup σ y = mlup σ1 y"
shows "invariant s c (σ1(x ↦ xd))"
proof -
 show ?thesis
using assms mlup_eq_mupd_set[OF assms(1,3)] unfolding invariant_def
proof(intro conjI, goal_cases)
 case 1 then show ?case using dep_eq by blast
next
 case 2 then show ?case using part_solution_coinciding_sigma_called
 by (metis DiffD1 solution_sufficient subsetD)
qed

3.6 Partial Correctness Proofs

lemma x_not_stable:
assumes "eq x σ ≠ mlup σ x"
and "part_solution σ s"
shows "x ∉ s"
using assms by auto

With the following lemma we establish, that whenever the solver is called for
an unknown in s and where the solver state and s fulfill the invariant, the
output value mapping is unchanged compared to the input value mapping.

lemma already_solution:
shows "query_dom x y c σ
 ==> query x y c σ = (yd, σ')
 ==> y ∈ s
 ==> invariant s c σ
 ==> σ = σ'"
and "iterate_dom x c σ
 ==> iterate x c σ = (xd, σ')
 ==> x ∈ c
 ==> x ∈ s
 ==> invariant s (c - {x}) σ
 ==> σ = σ'"
and "eval_dom x t c σ
 ==> eval x t c σ = (xd, σ')"
$$\Rightarrow \text{dep}_\text{aux} \sigma t \subseteq s$$
$$\Rightarrow \text{invariant}\ s\ c\ \sigma$$
$$\Rightarrow \text{traverse}_\text{rhs}\ t\ \sigma' = xd \land \sigma = \sigma'$$

proof (induction arbitrary: \(yd\ s\ \sigma'\) and \(xd\ s\ \sigma'\) and \(xd\ s\ \sigma'\))

next

case (\(\text{Query}\ x\ y\ c\ \sigma\))

show ?case using \(\text{Query.IH}(1)\) \(\text{Query.prems}\ \text{Query.IH}(2)\)

by (cases rule: \(\text{query}_\text{iterate}_\text{lookup}_\text{cases}\); simp)

next

case (\(\text{Iterate}\ x\ c\ \sigma\))

show ?case using \(\text{Iterate.IH}(1)\) \(\text{Iterate.prems}(1,2)\)

proof (cases rule: \(\text{iterate}_\text{continue}_\text{fixpoint}_\text{cases}\)

case \(\text{Fixpoint}\)

then show ?thesis

using \(\text{Iterate.prems}(3,4)\) \(\text{Iterate.IH}(2)\) [of _ _ "\text{insert} x\ s"]

\(\text{invariant}_\text{simp}[\text{OF} \text{Iterate.prems}(2,4)]\)

unfolding \(\text{dep}_\text{def}\ \text{invariant}_\text{def}\) by auto

next

case (\(\text{Continue}\ \sigma_1\ xd'\))

show ?thesis

proof (rule \(\text{ccontr}\))

have IH: "\(eq\ x\ \sigma_1 = xd' \land \sigma = \sigma_1\)"

using \(\text{Iterate.prems}(2-4)\) \(\text{Iterate.IH}(2)\) [OF \(\text{Continue}(2)\), of \(s\)]

\(\text{invariant}_\text{simp}[\text{OF} \text{Iterate.prems}(2,4)]\) unfolding \(\text{dep}_\text{def}\ \text{invariant}_\text{def}\)

by auto

then show False

using \(\text{Iterate.prems}(2-4)\) \(\text{Continue}(3)\) unfolding \(\text{invariant}_\text{def}\) by simp

qed

qed

next

case (\(\text{Eval}\ x\ t\ c\ \sigma\))

show ?case using \(\text{Eval.IH}(1)\) \(\text{Eval.prems}(1)\)

proof (cases rule: \(\text{eval}_\text{query}_\text{answer}_\text{cases}\)

case (\(\text{Query}\ y\ g\ yd\ \sigma_1\))

then show ?thesis using \(\text{Eval.prems}(1-3)\) \(\text{Eval.IH}(1)\) \(\text{Eval.IH}(2)\) [OF \(\text{Query}(1,3)\)]

\(\text{Eval.IH}(3)\) [OF \(\text{Query}(1)\) \(\text{Query}(3)\) [symmetric] _ \(\text{Query}(5)\)]

by auto

qed simp

qed

Furthermore, we show that whenever the solver is called with a valid solver state, the valid solver state invariant also holds for its output state and the set of stable unknowns increases by the set \(\text{reach}_\text{cap}\) of the current unknown.

lemma \(\text{partial}_\text{correctness}_\text{ind}:\)

shows "\(\text{query}_\text{dom}\ x\ y\ c\ \sigma\)

$$\Rightarrow \text{query}\ x\ y\ c\ \sigma = (yd, \sigma')$$

$$\Rightarrow \text{invariant}\ s\ c\ \sigma$$
\[\Rightarrow \text{invariant } (s \cup \text{reach}_c \sigma' \ c \ y) \ c \ \sigma'\]
\[\wedge (\forall \xi \in s. \text{mlup} \sigma \xi = \text{mlup} \sigma' \xi)"\]

and "iterate_dom x c \sigma"
\[\Rightarrow \text{iterate } x \ c \ \sigma = (xd, \sigma')\]
\[\Rightarrow x \in c\]
\[\Rightarrow \text{invariant } s \ (c \ - \ \{x\}) \ \sigma\]
\[\Rightarrow \text{invariant } (s \cup (\text{reach}_c \sigma' \ (c \ - \ \{x\}) \ x)) \ (c \ - \ \{x\}) \ \sigma'\]
\[\wedge (\forall \xi \in s. \text{mlup} \sigma \xi = \text{mlup} \sigma' \xi)"\]

and "eval_dom x t c \sigma"
\[\Rightarrow \text{eval } x \ t \ c \ \sigma = (xd, \sigma')\]
\[\Rightarrow \text{invariant } s \ c \ \sigma\]
\[\Rightarrow \text{invariant } (s \cup \text{reach}_c \sigma' \ c \ t) \ c \ \sigma'\]
\[\wedge (\forall \xi \in s. \text{mlup} \sigma \xi = \text{mlup} \sigma' \xi)\]
\[\wedge \text{traverse_rhs } t \ \sigma' = xd"\]

proof (induction arbitrary: yd s \sigma' and xd s \sigma' and xd s \sigma' rule: query_iterate_eval_pinduct)

next case (Query x y c \sigma)

 show ?case
 using Query.IH(1) Query.prems(1)
 proof (cases rule: query_iterate_lookup_cases)
 case Iterate
 note IH = Query.IH(2)[simplified, OF Iterate(4,2) Query.prems(2)]
 then show ?thesis
 using Iterate(4) by simp
 next
 case Lookup
 then show ?thesis
 using Query.prems(2) unfolding invariant_def by auto
 qed

next

next case (Iterate x c \sigma)

 show ?case
 using Iterate.IH(1) Iterate.prems(1,2)
 proof (cases rule: iterate_continue_fixpoint_cases)
 case Fixpoint
 note IH = Iterate.IH(2)[OF Fixpoint(2) invariant_simp[OF Iterate.prems(2,3)],
 folded eq_def]
 then show ?thesis
 using Fixpoint(3) Iterate.prems(2) reach_cap_tree_simp2[of x "c
 - \{x\}"
 dep_subset_reach_cap_tree[of \sigma' "T x", folded dep_def]
 unfolding invariant_def
 by (auto simp add: insert_absorb)
 next
 case (Continue \sigma1 xd')
 note IH = Iterate.IH(2)[OF Continue(2) invariant_simp[OF Iterate.prems(2,3)]]
 have "part_solution \sigma1 (s - (c - \{x\}))"
 using part_solution_coinciding_sigma_called[of s "c - \{x\}" \sigma \sigma1]
 IH Iterate.prems(3)
unfolding invariant_def
by simp
then have x_not_stable: "x \notin s"
 using x_not_stable[of x σ1 s] IH Continue(3)
by auto
then have inv: "invariant s (c - \{x\}) (σ1(x \mapsto xd'))"
 using IH invariant_continue[of x_not_stable Iterate.prems(3)] by blast

note ih = Iterate.IH(3)[OF Continue(2)[symmetric] _ Continue(3)[symmetric]
Continue(5)
 Iterate.prems(2) inv, simplified]
then show ?thesis
 using IH mlup_eq_mupd_set[of σ]
 unfolding mlup_def
 by auto
qed

next
case (Eval x t c σ)
show ?case using Eval.IH(1) Eval.prems(1)
proof(cases rule: eval_query_answer_cases)
case (Query y g yd σ1)
 note IH = Eval.IH(2)[OF Query(1,3) Eval.prems(2)]
 note ih = Eval.IH(3)[OF Query(1) Query(3)[symmetric] _ Query(5) conjunct1[OF IH], simplified]
 show ?thesis
 using Query IH ih reach_cap_tree_step reach_cap_tree_eq[of σ1 "insert y c" "T y" σ']
 by (auto simp add: Un_assoc)
next
case Answer
then show ?thesis
 using Eval.prems(2) by simp
qed
qed

Since the initial solver state fulfills the valid solver state predicate, we can conclude from the above lemma, that the solve function returns a partial solution for the queried unknown x and all unknowns on which it transitively depends.

corollary partial_correctness:
 assumes "solve_dom x"
 and "solve x = σ"
 shows "part_solution σ (reach σ x)"
proof -
obtain xd where "iterate x \{x\} Map.empty = (xd, σ)"
 using assms(2) unfolding solve_def by (auto split: prod.splits)
then show ?thesis
 using assms(1) partial_correctness_ind(2)[of x \{x\} Map.empty xd σ]
3.7 Termination of TD_plain for Stable Unknowns

In the equivalence proof of the TD and the TD_plain, we need to show that when the TD trivially terminates because the queried unknown is already stable and its value is only looked up, the evaluation of this unknown \(x \) with TD_plain also terminates. For this, we exploit that the set of stable unknowns is always finite during a terminating solver’s run and provide the following lemma:

lemma td1_terminates_for_stabl:

assumes "\(x \in s \)"
and "\(\text{invariant } s \ (c - \{x\}) \ \sigma \)"
and "\(\text{mlup } \sigma \ x = xd \)"
and "\(\text{finite } s \)"
and "\(x \in c \)"
shows "\(\text{iterate_dom } x \ c \ \sigma \)" and "\(\text{iterate } x \ c \ \sigma = (xd, \ \sigma) \)"

proof (goal_cases)

have "\(\text{reach_cap } \sigma \ (c - \{x\}) \ x \subseteq s \)"
using assms(1,2) dep_closed_implies_reach_cap_tree_closed unfolding invariant_def by simp

from finite_subset[OF this] have "\(\text{finite } (\text{reach_cap } \sigma \ (c - \{x\}) \ x - (c - \{x\})) \)"
using assms(4) by simp+

then have goal: "\(\text{iterate_dom } x \ c \ \sigma \wedge \text{iterate } x \ c \ \sigma = (xd, \ \sigma) \)" using assms(1-3,5)

**proof (induction "reach_cap \(\sigma \ (c - \{x\}) \ x - (c - \{x\}) \)"
 arbitrary: \(x \ c \ \sigma \) rule: finite_psubset_induct)**

case psubset

have "\(\text{eval_dom } x \ t \ c \ \sigma \wedge \text{traverse_rhs } t \ \sigma, \ \sigma = \text{eval } x \ t \ c \ \sigma \)" if "\(t \in \text{subt } \sigma \ x \)" for \(t \)
using that

proof (induction \(t \))

case (Answer _)
then show ?case
 using query_iterate_eval.domintros(3)[folded query_dom_def iterate_dom_def eval_dom_def]
 by fastforce

next

case (Query \(y \ g \)*

have "\(\text{reach_cap_tree } \sigma \ (\text{insert } x \ (c - \{x\})) (T x) \subseteq s \)"
using dep_closed_implies_reach_cap_tree_closed[OF psubset.prems(1),
of \(c \ \sigma \)]
 psubset.prems(2)[unfolded invariant_def]
by auto
then have \(y \text{-stable: } y \in s \)"
using \texttt{dep_subset_reach_cap_tree subt_implies_dep[OF Query(2)[unfolded subt_def]]}
by blast
show ?case
proof(cases "y \in c" rule: case_split[case_names called not_called])
case called
then have dom: "query_dom x y c \sigma"
 using query_iterate_eval.domintros(1)[folded query_dom_def]
by auto
moreover have query_val: "(mlup \sigma y, \sigma) = query x y c \sigma"
 using called already_solution(1) partial_correctness_ind(1)
by (metis query.psimps query_iterate_eval.domintros(1))
ultimately have "eval_dom x (Query y g) c \sigma"
 using Query.IH[of "g (mlup \sigma y)"]
query_iterate_eval.domintros(3)[folded dom_defs, of "Query y g" x c \sigma] Query.prems
 subt_aux_step subt_def
by fastforce
have "g (mlup \sigma y) \in subt_aux \sigma (T x)"
 using Query.prems subt_aux_step subt_def by blast
then have "eval_dom x (g (mlup \sigma y)) c \sigma"
and "(traverse_rhs (g (mlup \sigma y)) \sigma, \sigma) = eval x (g (mlup \sigma y)) c \sigma"
 using Query.IH unfolding subt_def by auto
then show ?thesis
 using \langle eval_dom x (Query y g) c \sigma\rangle query_val
 by (auto split: strategy_tree.split prod.split)
next
case not_called
then obtain yd where lup_y: "mlup \sigma y = yd" and eqy: "eq y \sigma = yd"
 using y_stable psubset.prems(2) unfolding invariant_def by auto
have ih: "eval_dom x (g (mlup \sigma y)) c \sigma"
and "(traverse_rhs (g (mlup \sigma y)) \sigma, \sigma) = eval x (g (mlup \sigma y)) c \sigma"
 using Query.IH[of "g (mlup \sigma y)"]\ Query.prems subt_aux_step
 subt_def by auto
moreover have "reach_cap \sigma c y \subseteq reach_cap \sigma (c - \{x\}) x"
 using not_called psubset.prems(4) reach_cap_tree_step[of \sigma y yd \in g, OF lup_y]
reach_cap_tree_subset_subt[of "Query y g" \sigma "T x" c, folded subt_def, OF Query.prems]
by (simp add: insert_absorb subset_insertI2)
then have f_def: "reach_cap \sigma c y - c \subseteq reach_cap \sigma (c - \{x\}) x - (c - \{x\})"
 using psubset.prems(4)
by blast
have "invariant s (c - \{y\}) \sigma"
 using psubset.prems(2) not_called psubset.prems(1) invariant_simp
by (metis Diff_empty Diff_insert0 insert_absorb)
then have IH: "iterate_dom y (insert y c) σ ∧ iterate y (insert y c) σ = (yd, σ)"
using f_def y_stable not_called lupy psubset.hyps(2)[of y "c - {y}" yd]
by (metis Diff_idemp Diff_insert_absorb insertCI)
then have "query_dom x y c σ ∧ (mlup σ y, σ) = query x y c σ"
using not_called lupy query_iterate_eval.domintros(1)[folded dom_defs, of y c σ]
by simp
ultimately show ?thesis
using query_iterate_eval.domintros(3)[folded dom_defs, of "Query y g" x c σ] by fastforce
qed

3.8 Program Refinement for Code Generation

For code generation, we define a refined version of the solver function using the partial_function keyword with the option attribute.

```
datatype ('a, 'b) state = Q 'a × 'a × 'a set × ('a, 'b) map
                  | I 'a × 'a set × ('a, 'b) map |
                  | E 'a × (T x) × 'a set × ('a, 'b) strategy_tree
                  × 'a set × ('a, 'b) map

partial_function (option)
solve_rec_c :: "('x, 'd) state ⇒ ('d × ('x, 'd) map) option"
where
  "solve_rec_c s = (case s of Q (x, y, c, σ) ⇒
                     if y ∈ c then
                       Some (mlup σ y, σ)
                     else
                       solve_rec_c (I (y, (insert y c), σ))
                     | I (x, c, σ) ⇒
                       Option.bind (solve_rec_c (E (x, (T x), c, σ))) (λ(d_new, σ)."
```

27
if \(d_{\text{new}} = \text{mlup} \sigma x \) then
 Some \((d_{\text{new}}, \sigma)\)
else
 solve_rec_c \((I (x, c, (\sigma(x \mapsto d_{\text{new}}))))\)
| \(E (x, t, c, \sigma) \) \Rightarrow
 (\text{case } t \text{ of}
 \text{Answer } d \Rightarrow \text{Some } (d, \sigma)
 \text{Query } y g \Rightarrow \text{Option.bind } (\text{solve_rec_c } (Q (x, y, c, \sigma)))
 (\lambda(yd, \sigma). \text{solve_rec_c } (E (x, (g yd), c, \sigma))))"

\begin{align*}
\text{declare } \text{solve_rec_c.simps[simp,code]} \\
\text{definition } \text{solve_rec_c_dom} \text{ where } "\text{solve_rec_c_dom } p = \exists \sigma. \text{solve_rec_c } p = \text{Some } \sigma"
\end{align*}

\begin{align*}
\text{definition } \text{solve_c :: } "x = (('x, 'd) \text{ map}) \text{ option}" \text{ where } \\
"\text{solve_c } x = \text{Option.bind } (\text{solve_rec_c } (I (x, \{x\}, \text{Map.empty}))) \ (\lambda(_, \sigma). \text{Some } \sigma)"
\end{align*}

\begin{align*}
\text{definition } \text{solve_c_dom :: } "x = \text{bool}" \text{ where } "\text{solve_c_dom } x = \exists \sigma. \text{solve_c } x = \text{Some } \sigma"
\end{align*}

We proof the equivalence between the refined solver function for code generation and the initial version used for the partial correctness proof.

\textbf{lemma query_iterate_eval_solve_rec_c_equiv:}
\begin{itemize}
\item shows "\text{query_dom } x y c \sigma \implies \text{solve_rec_c_dom } (Q (x,y,c,\sigma))" \\
and "\text{iterate_dom } x c \sigma \implies \text{solve_rec_c_dom } (I (x,c,\sigma))" \\
and "\text{eval_dom } x t c \sigma \implies \text{solve_rec_c_dom } (E (x,t,c,\sigma))"
\end{itemize}

\textbf{proof (induction } x y c \sigma \text{ and } x c \sigma \text{ and } x t c \sigma \text{ rule: } \text{query_iterate_eval_pinduct)}
\begin{itemize}
\item case \((\text{Query } x y c \sigma)\)
\item show ?case
\item proof (cases "\(y \in c\)"
\begin{itemize}
\item case True
\item then have "\text{solve_rec_c } (Q (x, y, c, \sigma)) = \text{Some } (\text{mlup } \sigma y, \sigma)" by simp
\item moreover have "\text{query x y c } \sigma = (\text{mlup } \sigma y, \sigma)"
\item using query.psimps[folded dom_defs] Query(1) True by force
\item ultimately show ?thesis unfolding solve_rec_c_dom_def by auto
\end{itemize}
\item next
\item case False
\item then have "\text{query x y c } \sigma = \text{iterate y } (\text{insert y c}) \sigma"
\item using Query.IH(1) query.pelims[folded dom_defs] by fastforce
\item then have "\text{query x y c } \sigma = \text{the } (\text{solve_rec_c } (Q (x, y, c, \sigma)))"
\item using Query False False by simp
\item moreover have "\text{solve_rec_c_dom } (Q (x, y, c, \sigma))"
\item using Query(2) False unfolding solve_rec_c_dom_def by simp
\end{itemize}
\end{proof}
ultimately show \textit{thesis} using Query unfolding solve_rec_c_dom_def by auto

qed

next
case (Iterate x c σ)
obtain d1 σ1 where eval: "eval x (T x) c σ = (d1, σ1)"
and "solve_rec_c (E (x, T x, c, σ)) = Some (d1, σ1)" using Iterate(2)
solve_rec_c_dom_def by force

proof (cases "d1 = mlup σ1 x")
case True
have "iterate x c σ = (d1, σ1)"
using eval iterate.psimps[folded dom_defs, OF Iterate(1)] True by
simp then show \textit{thesis}
using solve_rec_c_dom_def dom_defs iterate.psimps Iterate by fastforce

next
case False
then have "solve_rec_c_dom (I (x, c, σ1(x ↦ d1)))"
and "iterate x c (σ1(x ↦ d1)) = the (solve_rec_c (I (x, c, σ1(x ↦ d1))))"
using Iterate(3)[OF eval[symmetric] _ False] by blast+

moreover have "iterate x c σ = iterate x c (σ1(x ↦ d1))"
using eval iterate.psimps[folded dom_defs, OF Iterate(1)] False by
simp

moreover have "solve_rec_c (I (x, c, σ1(x ↦ d1))) = solve_rec_c (I (x, c, σ))"
using False eval Iterate(2) solve_rec_c_dom_def by auto
ultimately show \textit{thesis} unfolding solve_rec_c_dom_def by auto

qed

next
case (Eval x t c σ)
show \textit{case}

proof (cases t)
case (Answer d)
then have "eval x t c σ = (d, σ)"
using eval.psimps query_iterate_eval.domintros(3) dom_defs(3)
by fastforce
then show \textit{thesis} using Eval Answer unfolding solve_rec_c_dom_def by simp

next
case (Query y g)
then obtain d1 σ1 where "solve_rec_c (Q (x, y, c, σ)) = Some (d1, σ1)"
and "query x y c σ = (d1, σ1)"
using Query Eval(2) unfolding solve_rec_c_dom_def by auto
then have "solve_rec_c_dom (E (x, t, c, σ))"
"eval x (g d1) c σ1 = the (solve_rec_c (E (x, t, c, σ)))"
using Eval(3) Query unfolding solve_rec_c_dom_def by auto

29
moreover have "eval x t c σ = eval x (g d1) c σ1"
 using Eval.IH(1) Query eval.psimps eval_dom_def
 query x y c σ = (d1, σ1)
by fastforce
ultimately show ?thesis by simp
qed

lemma solve_rec_c_query_iterate_eval_equiv:
 shows "solve_rec_c s = Some r \implies (case s of
 Q (x,y,c,σ) \Rightarrow query_dom x y c σ ∧ query x y c σ = r
 | I (x,c,σ) \Rightarrow iterate_dom x c σ ∧ iterate x c σ = r
 | E (x,t,c,σ) \Rightarrow eval_dom x t c σ ∧ eval x t c σ = r)"
proof (induction arbitrary: s r rule: solve_rec_c.fixp_induct)
case 1
then show ?case using option_admissible by fast
next
case 2
then show ?case by simp
next
case (3 S)
show ?case
proof (cases s)
case (Q a)
 obtain x y c σ where "a = (x, y, c, σ)" using prod_cases4 by blast
 have "query_dom x y c σ ∧ query x y c σ = r"
 proof (cases "y ∈ c")
 case True
 then have "Some (mlup σ y, σ) = Some r" using 3(2) Q (\(a = (x, y, c, σ)\)) by simp
 then show ?thesis
 by (metis query.psimps query_dom_def
 query_iterate_eval.domintros(1) True option.inject)
 next
 case False
 then have "S (I (y, insert y c, σ)) = Some r"
 using 3(2) Q (\(a = (x, y, c, σ)\)) by auto
 then have "iterate_dom y (insert y c) σ ∧ iterate y (insert y c) σ = r"
 using 3(1) unfolding iterate_dom_def by fastforce
 then show ?thesis using False
 by (simp add: query_iterate_eval.domintros(1))
 qed
then show ?thesis using Q (\(a = (x, y, c, σ)\)) unfolding query_dom_def
 by simp
next
case (I a)
 obtain x c σ where "a = (x, c, σ)" using prod_cases3 by blast
 then have IH1: "Option.bind (S (E (x, T x, c, σ)))

"
\begin{verbatim}
(\lambda(d_new, \sigma).
 if d_new = mlup \sigma x then Some (d_new, \sigma)
 else S (I (x, c, \sigma(x \mapsto d_new)))) = Some r"

using 3(2) I by simp
then obtain d_new \sigma 1 where eval_some: "S (E (x, T x, c, \sigma)) = Some (d_new, \sigma 1)"

using 3(2) I
by (cases "S (E (x, T x, c, \sigma))") auto
then have eval: "eval_dom x (T x) c \sigma ∧ eval x (T x) c \sigma = (d_new, \sigma 1)"

using 3(1) unfolding eval_dom_def by force
proof (cases "d_new = mlup \sigma 1 x")
 case True
 then show \(\text{thesis} \)
 using eval IH1 dom_defs(2) dom_defs(3) iterate.psimps
 query_iterate_eval.domintros(2) eval_some
 by fastforce
next
case False
 then have "S (I (x, c, \sigma 1(x \mapsto \cdots d_new))) = Some r"
 using IH1 eval_some
 by simp
 then have "iterate_dom x c \sigma ∧ iterate x c \sigma = r"
 using 3(1) unfolding iterate_dom_def by fastforce
 then show \(\text{thesis} \)
 using eval False
 by (smt (verit, best) Pair_inject dom_defs(2) dom_defs(3) iterate.psimps query_iterate_eval.domintros(2) case_prod_conv)

qed
then show \(\text{thesis} \)
 using I \(\langle a = (x, c, \sigma) \rangle \) unfolding iterate_dom_def by simp
next
case (E a)

obtain x t c \sigma where "a = (x, t, c, \sigma)" using prod_cases4 by blast
then have "S = E (x, t, c, \sigma)" using E by auto
have "eval_dom x t c \sigma ∧ eval x t c \sigma = r"
proof (cases t)
 case (Answer d)
 then have "eval_dom x t c \sigma" unfolding eval_dom_def
 using query_iterate_eval.domintros(3) by fastforce
 moreover have "eval x t c \sigma = (d, \sigma)"
 by (smt (verit, del_insts) Answer eval_query_answer_cases calculation
 strategy_tree.distinct(1) strategy_tree.simps(1) surj_pair)
 moreover have "(d, \sigma) = r" using 3(2) \(\langle s = E (x, t, c, \sigma) \rangle \) Answer
 by simp
 ultimately show \(\text{thesis} \)
 by simp
next
case (Query y g)

then have A: "Option.bind (S (Q (x, y, c, \sigma))) (\lambda(yd, \sigma). S (E

31
\end{verbatim}
(x, g yd, c, σ))
 = Some r" using \(s = E (x, t, c, σ) \) 3(2) by simp
then obtain yd σ1 where S1: "S (Q (x, y, c, σ)) = Some (yd, σ1)"
and S2: "S (E (x, g yd, c, σ1)) = Some r"
by (cases "S (Q (x, y, c, σ))") auto
then have "query_dom x y c σ ∧ query x y c σ = (yd, σ1)"
and "eval_dom x (g yd) c σ1 ∧ eval x (g yd) c σ1 = r"
using 3(1)[OF S1] 3(1)[OF S2] unfolding dom_defs by force+
then show ?thesis using query_iterate_eval.domintros(3)[folded dom_defs, of t x c σ]
by fastforce
qed

qed

theorem term_equivalence: "solve_dom x ←→ solve_c_dom x"
using query_iterate_eval_solve_rec_c_equiv(2)[of x "{x}" "λx. None"]
solve_rec_c_query_iterate_eval_equiv[of "I (x, {x}, λx. None)"]
unfolding solve_dom_def solve_c_dom_def solve_rec_c_dom_def solve_c_def
by (cases "solve_rec_c (I (x, {x}, λx. None))") force+

theorem value_equivalence:
"solve_dom x =⇒ ∃σ. solve_c x = Some σ ∧ solve x = σ"
proof goal_cases
 case 1
then obtain r where "solve_rec_c (I (x, {x}, λx. None)) = Some r
∧ iterate x {x} (λx. None) = r"
using query_iterate_eval_solve_rec_c_equiv(2)
unfolding solve_rec_c_dom_def solve_c_dom_def
by fastforce
then show ?case unfolding solve_def solve_c_def by (auto split: prod.split)
qed

Then, we can define the code equation for solve based on the refined solver
program solve_c.

lemma solve_code_equation [code]:
"solve x = (case solve_c x of Some r ⇒ r
| None ⇒ Code.abort (String.implode "'Input not in domain')") (λ_. solve x)"
proof (cases "solve_dom x")
case True
then show ?thesis unfolding solve_def solve_c_def
by (metis solve_def solve_c_def option.simps(5) value_equivalence)
next
case False
then have "solve_c x = None" using solve_c_dom_def term_equivalence

by auto
 then show \(?thesis\) by auto
qed
end

To setup the code generation for the solver locale we use a dedicated rewrite definition.

global_interpretation TD_plain_Interp: TD_plain D T for D T
defines TD_plain_Interp_solve = TD_plain_Interp.solve
done
end

4 The Top-Down Solver

In this theory we proof the partial correctness of the original TD by establishing its equivalence with the TD_plain. Compared to the TD_plain, it additionally tracks a set of currently stable unknowns stab1, and a map infl collecting for each unknown \(x\) a list of unknowns influenced by it. This allows for the optimization that skips the re-evaluation of unknowns which are already stable. It does, however, also require a destabilization mechanism triggering re-evaluation of all unknowns possibly affected by an unknown whose value has changed.

theory TD_equiv
 imports Main "HOL-Library.Finite_Map" Basics TD_plain
begin

declare fun_upd_apply[simp del]

locale TD = Solver D T
 for D :: "'d::bot"
 and T :: "'x ⇒ ('x, 'd) strategy_tree"
begin

4.1 Definition of Destabilize and Proof of its Termination

The destabilization function is called by the solver before continuing iteration because the value of an unknown changed. In this case, also the values of unknowns whose last evaluation was based on the outdated value, need to be re-evaluated again. This re-evaluation of influenced unknowns is enforced by following the entries for directly influenced unknowns in the map infl and removing all transitively influenced unknowns from stab1. This way, influenced unknowns are not re-evaluated immediately, but instead will be re-evaluated whenever they are queried again.
function (domintros)
destab_iter :: "'x list ⇒ ('x, 'x list) fmap ⇒ 'x set ⇒ ('x, 'x list) fmap × 'x set" and destab :: "'x ⇒ ('x, 'x list) fmap ⇒ 'x set ⇒ ('x, 'x list) fmap × 'x set" where
"destab_iter [] infl stabl = (infl, stabl)"
| "destab_iter (y # ys) infl stabl = (let (infl, stabl) = destab y infl (stabl - {y}) in
 destab_iter ys infl stabl)"
| "destab x infl stabl = destab_iter (fmlookup_default infl [] x) (fmdrop x infl) stabl"
 by pat_completeness auto
definition destab_iter_dom where
"destab_iter_dom ls infl stabl = destab_iter_destab_dom (Inl (ls, infl, stabl))"
declare destab_iter_dom_def[simp]
definition destab_dom where
"destab_dom y infl stabl = destab_iter_destab_dom (Inr (y, infl, stabl))"
declare destab_dom_def[simp]
lemma destab_domintros:
"destab_iter_dom [] infl stabl" "destab_dom y infl (stabl - {y}) ⇒ destab y infl (stabl - {y}) = (infl', stabl') ⇒ destab_iter_dom ys infl' stabl' ⇒ destab_iter_dom (y # ys) infl stabl"
"destab_iter_dom (fmlookup_default infl [] x) (fmdrop x infl) stabl ⇒ destab_dom x infl stabl"
 using destab_iter_destab.domintros by auto
definition count_non_empty :: "('a, 'b list) fmap ⇒ nat" where
"count_non_empty m = fcard (ffilter ((\# []) ◦ snd) (fset_of_fmap m))"
lemma count_non_empty_dec_fmdrop:
 assumes "fmlookup_default m [] x ≠ []"
 shows "Suc (count_non_empty (fmdrop x m)) = count_non_empty m"
proof -
 obtain ys where ys_def: "ys = fmlookup_default m [] x" and ys_non_empty: "ys ≠ []"
 using assms by simp
 then have in_map: "(x, ys) ∈ fset_of_fmap m"
 unfolding fmlookup_default_def
 by (cases "fmlookup m x"; auto)
 then have eq: "fset_of_fmap (fmdrop x m) = fset_of_fmap m |-\ (|(x, ys)|)"
 by (auto split: if_splits)
 then have "ffilter ((\# []) ◦ snd) (fset_of_fmap (fmdrop x m))"
lemma count_non_empty_eq_fmdrop:
assumes "fmlookup_default m [] x = []"
shows "count_non_empty (fmdrop x m) = count_non_empty m"
proof -
 have "ffilter ((/=) [] o snd) (fset_of_fmap (fmdrop x m))
 = (ffilter ((/=) [] o snd) (fset_of_fmap m))"
 using assms
 unfolding fmlookup_default_def
 by (auto split: if_splits)
 thus ?thesis unfolding count_non_empty_def by simp
qed

termination
proof -
{
 fix ys infl stabl
 have "destab_iter_dom ys infl stabl ∧ (destab_iter ys infl stabl
 = (infl', stabl')
 → count_non_empty infl' ≤ count_non_empty infl)"
 for infl' stabl'
 proof(induction "count_non_empty infl" arbitrary: ys infl stabl infl'
 stabl'
 rule: full_nat_induct)
 case 1
 then show ?case
 proof(induction ys arbitrary: infl stabl)
 case Nil
 then show ?case
 by (simp add: destab_iter_psimps(1) destab_iter_destab_domintros(1))
 next
 case (Cons y ys)
 have IH: "destab_iter_dom xa x xb ∧
 (destab_iter xa x xb = (xc, xd) → count_non_empty xc ≤
 count_non_empty x)"
 if "Suc m ≤ count_non_empty infl" and "m = count_non_empty x"
 for m x xa xb xc xd
 using Cons.prems that by blast
 show ?case
 proof(cases "fmlookup_default infl [] y = []")
 case True

35
obtain infl1 stabl1 where inflstabl1: "destab y infl (stabl - {y}) = (infl1, stabl1)"
 by fastforce
have y_dom: "destab_dom y infl (stabl - {y})"
 using destab_domintros(1,3) True
 by auto
have destab_y: "destab y infl (stabl - {y}) = (fmdrop y infl, stabl - {y})"
 using destab.psimps[folded destab_dom_def, OF y_dom]
 destab_iter.psimps(1)[OF destab_iter_destab.domintros(1)]
True
 by auto
have count_eq: "count_non_empty (fmdrop y infl) = count_non_empty infl"
 using count_non_empty_eq_fmdrop[of infl y] True by auto
then have IH: "destab_iter_dom ys (fmdrop y infl) (stabl - {y})
 ∧ (destab_iter ys (fmdrop y infl) (stabl - {y}) = (infl', stabl')
 → count_non_empty infl' ≤ count_non_empty (fmdrop y infl))"
 using Cons.IH[of "fmdrop y infl" "stabl - {y}"] Cons.prems
 by auto
then show ?thesis
proof (intro conjI, goal_cases)
case 1
 then show dom_ys: ?case using destab_domintros(2)[OF y_dom
destab_y] IH by auto
case 2
 then show ?case
 using IH count_eq destab_iter.psimps(2) destab_y dom_ys
 by auto
qed
next
 case False
 obtain u w where
 prod: "destab_iter (fmlookup_default infl []) y (fmdrop y
infl) (stabl - {y}) = (u, w)"
 by fastforce
 have eq: "Suc (count_non_empty (fmdrop y infl)) = count_non_empty
infl"
 by (simp add: False count_non_empty_dec_fmdrop)
then have dom1: "destab_dom y infl (stabl - {y})"
 using IH destab_domintros(3) by auto
 obtain i s where i_s_def: "(i, s) = destab y infl (stabl -
{y})"
 by (metis surj_pair)
 have "count_non_empty u ≤ count_non_empty (fmdrop y infl)"
using IH eq prod
by simp
then have dom2: "destab_iter_dom ys i s" and dec: "destab_iter
ys u w = (infl', stabl')
→ count_non_empty infl' ≤ count_non_empty infl"
using IH[of "count_non_empty u" u ys w infl' stabl'] prod
eq i_s_def destab.psimp dom1
by auto

show ?thesis
using destab_iter.psimp(2) dec destab_iter_destab.domintros(2)
dom1 dom2 prod
by (simp add: destab.psimp i_s_def)
qed
qed
qed

4.2 Definition of the Solver Algorithm

Apart from passing the additional arguments for the solver state, the iterate
function contains, compared to the TD_plain, an additional check to skip
iteration of already stable unknowns. Furthermore, the helper function
destabilize is called whenever the newly evaluated value of an unknown
changed compared to the value tracked in σ. Lastly, a dependency is recorded
whenever returning from a query call for unknown x within the evaluation
of right-hand side of unknown y.

function (domintros)
query :: "'a ⇒ 'a ⇒ 'a set ⇒ ('a, 'a list) fmap ⇒ 'a set ⇒ ('a,
'd) map"
⇒ 'd × ('a, 'a list) fmap × 'a set × ('a, 'd) map" and
iterate :: "'a ⇒ 'a ⇒ set ⇒ ('a, 'a list) fmap ⇒ 'a set ⇒ ('a, 'd)
map"
⇒ 'd × ('a, 'a list) fmap × 'a set × ('a, 'd) map" and
eval :: "'a ⇒ ('a, 'd) strategy_tree ⇒ 'a set ⇒ ('a, 'd) map" and
fmap ⇒ 'a set
⇒ ('a, 'd) map ⇒ 'd × ('a, 'a list) fmap × 'a set ×
('a, 'd) map" where
"query y x c infl stabl σ = (
let (xd, infl, stabl, σ) =
if x ∈ c then
(mlup σ x, infl, stabl, σ)
else
iterate x (insert x c) infl stabl σ
in (xd, fminsert infl x y, stabl, σ))"
iterate x c infl stabl σ = (
 if x ∉ stabl then
 let (d_new, infl, stabl, σ) = eval x (T x) c infl (insert x stabl)
 σ in
 if mlup σ x = d_new then
 (d_new, infl, stabl, σ)
 else
 let (infl, stabl) = destab x infl stabl in
 iterate x c infl stabl (σ(x ↦ d_new))
 else
 (mlup σ x, infl, stabl, σ))

"iterate x c infl stabl σ = (
 if x ∉ stabl then
 let (d_new, infl, stabl, σ) = eval x (T x) c infl (insert x stabl)
 σ in
 if mlup σ x = d_new then
 (d_new, infl, stabl, σ)
 else
 let (infl, stabl) = destab x infl stabl in
 iterate x c infl stabl (σ(x ↦ d_new))
 else
 (mlup σ x, infl, stabl, σ))"

"eval x t c infl stabl σ = (case t of
 Answer d ⇒ (d, infl, stabl, σ)
 Query y g ⇒ (
 let (yd, infl, stabl, σ) = query x y c infl stabl σ in eval x
 (g yd) c infl stabl σ))"

by pat_completeness auto

| "solve :: 'x ⇒ 'x set × ('x, 'd) map" where
 "solve x = (let (_, _, stabl, σ) = iterate x {x} fmempty {} Map.empty
 in (stabl, σ))"

| "query_dom where
 "query_dom x y c infl stabl σ = query_iterate_eval_dom (Inl (x, y, c,
 infl, stabl, σ))"

declare query_dom_def [simp]

| "iterate_dom where
 "iterate_dom x c infl stabl σ = query_iterate_eval_dom (Inr (Inl (x,
 c, infl, stabl, σ)))"

declare iterate_dom_def [simp]

| "eval_dom where
 "eval_dom x t c infl stabl σ = query_iterate_eval_dom (Inr (Inr (x,
 t, c, infl, stabl, σ)))"

declare eval_dom_def [simp]

| "solve_dom where
 "solve_dom x = iterate_dom x {x} fmempty {} Map.empty"

lemmas dom_defs = query_dom_def iterate_dom_def eval_dom_def

4.3 Refinement of Auto-Generated Rules

The auto-generated pinduct rule contains a redundant assumption. This
lemma removes this redundant assumption such that the rule is easier to
instantiate and gives comprehensible names to the cases.

lemmas query_iterate_eval_pinduct[consumes 1, case_names Query Iterate
Eval]
= query_iterate_eval.pinduct(1)[
 folded query_dom_def iterate_dom_def eval_dom_def,
of \(x \ y \ c \ infl \ stabl \ \sigma \) for \(x \ y \ c \ infl \ stabl \ \sigma \)
]

query_iterate_eval.pinduct(2)[
 folded query_dom_def iterate_dom_def eval_dom_def,
 of \(x \ c \ infl \ stabl \ \sigma \) for \(x \ c \ infl \ stabl \ \sigma \)
]

query_iterate_eval.pinduct(3)[
 folded query_dom_def iterate_dom_def eval_dom_def,
 of \(x \ t \ c \ infl \ stabl \ \sigma \) for \(x \ t \ c \ infl \ stabl \ \sigma \)
]

lemmas iterate_pinduct[consumes 1, case_names Iterate]
= query_iterate_eval_pinduct(2)[where ?P="\(\lambda \) x y c infl stabl \ \sigma \). True" and
and \(?R="\(\lambda \) x t c infl stabl \ \sigma \). True", simplified (no_asm_use),
folded query_dom_def iterate_dom_def eval_dom_def]

declare query.psimps [simp]
declare iterate.psimps [simp]
declare eval.psimps [simp]

4.4 Domain Lemmas

lemma dom_backwards_pinduct:
 shows "query_dom \(x \ y \ c \ infl \ stabl \ \sigma \)
\(\Rightarrow y \notin c \Rightarrow iterate_dom y (insert y c) \ infl \ stabl \ \sigma \)"
and "iterate_dom \(x \ c \ infl \ stabl \ \sigma \)
\(\Rightarrow x \notin stabl \Rightarrow (eval_dom x (T x) \ c \ infl \ (insert x \ stabl) \ \sigma \wedge
(\xd_new, \ infl1, \ stabl1, \ \sigma') = eval x (T x) \ c \ infl \ (insert x \ stabl) \ \sigma \)
\sigma \rightarrow mlup \ \sigma' \ x \neq \ xd_new \rightarrow (\inf12, \ stabl2) = destab x \ infl1 \ stabl1 \rightarrow
iterate_dom x \ c \ infl2 \ stabl2 \ (\sigma'(x \mapsto \ xd_new)))"
and "eval_dom x \ (Query y \ g) \ c \ infl \ stabl \ \sigma \)
\(\Rightarrow (query_dom x \ y \ c \ infl \ stabl \ \sigma \wedge
((yd, \ infl', \ stabl', \ \sigma') = query x \ y \ c \ infl \ stabl \ \sigma \rightarrow
eval_dom x \ (g \ yd) \ c \ infl' \ stabl' \ \sigma'))"
proof (induction \(x \ y \ c \ infl \ stabl \ \sigma \) and \(x \ c \ infl \ stabl \ \sigma \) and \(x \) "Query \(y \ g \) \ c \ infl \ stabl \ \sigma"
 arbitrary: and \(\xd_new \ infl1 \ stabl1 \ infl12 \ stabl2 \ \sigma' \) and \(y \ g \ yd \ infl' \ stabl' \ \sigma' ,
 rule: query_iterate_eval_pinduct)
case (Query y x c infl stabl \ \sigma)
 then show ?case using query_iterate_eval.domintros(2) by fastforce
next
case (Iterate x c infl stabl \ \sigma)
 then show ?case using query_iterate_eval.domintros(2,3) by simp
next
case (Eval x c infl stabl \ \sigma)
 then show ?case using query_iterate_eval.domintros(1,3) by simp

39
4.5 Case Rules

lemma iterate_continue_fixpoint_cases[consumes 3]:
assumes "iterate_dom x c infl stabl σ"
and "(xd, infl', stabl', σ') = iterate x c infl stabl σ"
and "x ∈ c"
obtains (Stable) "infl' = infl"
and "stabl' = stabl"
and "σ' = σ"
and "mlup σ x = xd"
and "x ∈ stabl"

| (Fixpoint) "eval_dom x (T x) c infl (insert x stabl) σ"
and "(xd, infl', stabl', σ') = eval x (T x) c infl (insert x stabl) σ"
and "mlup σ' x = xd"
and "x ∉ stabl"
| (Continue) stabl1 infl1 σ1 xd_new stabl2 infl2
where "eval_dom x (T x) c infl (insert x stabl) σ"
and "(xd_new, infl1, stabl1, σ1) = eval x (T x) c infl (insert x stabl) σ"
and "mlup σ1 x ≠ xd_new"
and "(infl2, stabl2) = destab x infl1 stabl1"
and "iterate_dom x c infl2 stabl2 (σ1(x ↦ xd_new))"
and "(xd, infl', stabl', σ') = iterate x c infl2 stabl2 (σ1(x ↦ xd_new))"
and "x ∉ stabl"

proof(cases "x ∈ stabl" rule: case_split[case_names Stable Unstable])
case Stable
 then show ?thesis using that(1) assms by auto
next
case Unstable
 then have sldom: "eval_dom x (T x) c infl (insert x stabl) σ"
 using assms(1) dom_backwards_pinduct(2)
 by simp
 then obtain xd_new infl1 stabl1 σ1
 where slapp: "eval x (T x) c infl (insert x stabl) σ = (xd_new, infl1, stabl1, σ1)"
 by (cases "eval x (T x) c infl (insert x stabl) σ") auto
 show ?thesis
 proof (cases "mlup σ1 x = xd_new")
 case True
 then show ?thesis
 using Unstable sldom slapp assms that(2)
 by auto
 next
case False
 then obtain infl2 stabl2 where destab: "destab x infl1 stabl1 = (infl2,
by (cases "destab x infl1 stabl1")
then have dom: "iterate_dom x c infl2 stabl2 (\sigma1(x \mapsto xd_new))"
and "iterate x c infl stabl \sigma
= iterate x c infl2 stabl2 (\sigma1(x \mapsto xd_new))"
and app: "iterate x c infl2 stabl2 (\sigma1(x \mapsto xd_new))
= (xd, infl', stabl', \sigma')"
using Unstable False slapp assms(1-3) dom_backwards_pinduct(2)
by auto
then show \?thesis
using sldom slapp Unstable False destab that(3)
by simp
qed

lemma iterate_fmlookup:
assumes "iterate_dom x c infl stabl \sigma"
and "(xd, infl', stabl', \sigma') = iterate x c infl stabl \sigma"
and "x \in c"
shows "mlup \sigma' x = xd"
using assms

proof(induction rule: iterate_pinduct)
case (Iterate x c infl stabl \sigma)
show \?case
using Iterate.hyps Iterate.prems
proof(cases rule: iterate_continue_fixpoint_cases)
case (Continue \sigma1 xd_new)
then show \?thesis
using Iterate.prems(2) Iterate.IH
by force
qed (simp add: Iterate.prems(1))

qed

corollary query_fmlookup:
assumes "query_dom y x c infl stabl \sigma"
and "(xd, infl', stabl', \sigma') = query y x c infl stabl \sigma"
shows "mlup \sigma' x = xd"
using assms iterate_fmlookup dom_backwards_pinduct(1)[of y x c infl stabl \sigma]
by (auto split: prod.splits if_splits)

lemma query_iterate_lookup_cases [consumes 2]:
assumes "query_dom y x c infl stabl \sigma"
and "(xd, infl', stabl', \sigma') = query y x c infl stabl \sigma"
obtains (Iterate) infl1
where "iterate_dom x (insert x c) infl stabl \sigma"
and "(xd, infl1, stabl', \sigma') = iterate x (insert x c) infl stabl \sigma"
and "infl' = fminsert infl1 x y"
and \(mlup \sigma' x = xd \)
and \(x \notin c \)
\(/ \) (Lookup) \(mlup \sigma x = xd \)
and \(\text{"infl' = fminsert infl x y"} \)
and \(\text{"stabl' = stabl"} \)
and \(\sigma' = \sigma \)
and \(x \in c \)
using assms that dom_backwards_pinduct(1) query_fmlookup[OF assms(1,2)]
by (cases "x \in c"; auto split: prod.splits)

lemma eval_query_answer_cases [consumes 2]:
 assumes "eval_dom x t c infl stabl \sigma"
 and "(xd, infl', stabl', \sigma') = eval x t c infl stabl \sigma"
 obtains (Query) y g yd infl1 stabl1 \sigma1
 where "t = Query y g"
 and "query_dom x y c infl stabl \sigma"
 and "(yd, infl1, stabl1, \sigma1) = query x y c infl stabl \sigma"
 and "eval_dom x (g yd) c infl stabl1 \sigma1"
 and "mlup \sigma1 y = yd"
\(/ \) (Answer) "t = Answer xd"
 and "infl' = infl"
 and "stabl' = stabl"
 and "\sigma' = \sigma"
using assms dom_backwards_pinduct(3) that query_fmlookup
by (cases t; auto split: prod.splits)

4.6 Description of the Effect of Destabilize

To describe the effect of a call to the function destabil, we define an inductive set that, based on some infl map, collects all unknowns transitively influenced by some unknown x.

inductive_set influenced_by for infl x where
 base: "fmlookup infl x = Some ys \implies y \in set ys \implies y \in influenced_by infl x"
\(/ \) step: "y \in influenced_by infl x \implies fmlookup infl y = Some zs \implies z \in set zs \implies z \in influenced_by infl x"

inductive_set influenced_by_cutoff for infl x c where
 base: "x \notin c \implies fmlookup infl x = Some ys \implies y \in set ys \implies y \in influenced_by_cutoff infl x c"
\(/ \) step: "y \in influenced_by_cutoff infl x c \implies y \notin c \implies fmlookup infl y = Some zs \implies z \in set zs \implies z \in influenced_by_cutoff infl x c"

lemma influenced_by_aux:
 shows "influenced_by infl x = (\bigcup y \in slookup infl x. insert y (influenced_by (fmdrop x infl) y))"
unfolding fmlookup_default_def
proof (intro equalityI subsetI, goal_cases)
 case (1 u)
 then show ?case
 proof (induction rule: influenced_by.induct)
 case (step y zs z)
 then show ?case
 proof (cases "y ∈ slookup infl x")
 case True
 then show ?thesis
 using step.hyps(2,3) influenced_by.base[of "fmdrop x infl" y]
 by (cases rule: set_fmlookup_default_cases, cases "x = y") auto
 next
 case False
 then show ?thesis
 using step.IH step.hyps(2,3) influenced_by.step[of y "fmdrop x infl"]
 by (cases rule: notin_fmlookup_default_cases, cases "x = y") auto
 qed
qed auto
next
 case (2 z)
 then show ?case
 proof (cases "fmlookup infl x")
 case (Some xs)
 then obtain y where z_mem: "z ∈ insert y (influenced_by (fmdrop x infl) y)"
 and step: "y ∈ set (case fmlookup infl x of None ⇒ [] | Some v
 ⇒ v)"
 using 2 by blast
 then show ?thesis using Some influenced_by.base
 proof (cases "z = y")
 case False
 then have "z ∈ influenced_by (fmdrop x infl) y" using z_mem by auto
 then show ?thesis
 proof (induction rule: influenced_by.induct)
 case (base ys' y')
 then show ?case
 using Some step influenced_by.base[of infl] influenced_by.step[of y]
 by (auto split: if_splits)
 next
 case (step y' zs z)
 then show ?case using influenced_by.step
 by (auto split: if_splits)
 qed
 qed simp
 qed simp
qed
lemma lookup_in_influenced:
 shows "slookup infl x ⊆ influenced_by infl x"
proof (intro subsetI, goal_cases)
 case (1 y)
 then show ?case using influenced_by.base[of infl x]
 by (cases rule: set_fmlookup_default_cases) simp
qed

lemma influenced_unknowns_fmdrop_set:
 shows "influenced_by (fmdrop_set C infl) x = influenced_by_cutoff infl x C"
proof (intro equalityI subsetI, goal_cases)
 case (1 u)
 then show ?case by (induction rule: influenced_by.induct; simp add: influenced_by_cutoff.base influenced_by_cutoff.step split: if_splits)
next
 case (2 u)
 then show ?case by (induction rule: influenced_by_cutoff.induct; simp add: influenced_by.base influenced_by.step)
qed

lemma influenced_by_transitive:
 assumes "y ∈ influenced_by infl x"
 and "z ∈ influenced_by infl y"
 shows "z ∈ influenced_by infl x"
 using assms
proof (induction rule: influenced_by.induct)
 case (base ys y)
 show ?case using base(3,1,2) influenced_by.step[of _ infl x] by simp
next
 case (step u vs v)
 have "z ∈ influenced_by infl u" using step(5,1-4)
proof (induction rule: influenced_by.induct)
 case (base ys y)
 then show ?case using influenced_by.base[of infl x ys y] by simp
 simp
next
 case (step y zs z)
 then show ?case using influenced_by.step[of _ infl] by auto
 simp
 simp
next
 case (step y zs z)
 then show ?case using influenced_by.step[of _ infl] by auto
 simp
 simp

lemma influenced_cutoff_subset:
 "influenced_by_cutoff infl x C ⊆ influenced_by infl x"
proof (intro subsetI, goal_cases)
case (1 y)
then show ?case
 by (induction rule: influenced_by_cutoff.induct)
 (auto simp add: influenced_by.base influenced_by.step)
qed

lemma influenced_cutoff_subset_2:
 shows "influenced_by infl x - (⋃y ∈ C. influenced_by infl y) ⊆ influenced_by_cutoff infl x C"
proof (intro equalityI subsetI, elim DiffE, goal_cases)
 case (1 y)
 then show ?case
 proof (induction rule: influenced_by.induct)
 case (base ys z)
 then show ?case using 1 influenced_by_cutoff.base by fastforce
 next
 case (step y zs z)
 then show ?case
 using influenced_by.base[OF step(2,3)] influenced_by.step[of y infl]
 influenced_by_cutoff.step[of y infl x C zs z]
 by blast
 qed
qed

lemma union_influenced_to_cutoff:
 shows "insert y (influenced_by infl y) ∪ influenced_by infl x =
 insert y (influenced_by infl y) ∪ influenced_by_cutoff infl x (insert y (influenced_by infl y))"
proof -
 have "u ∈ influenced_by infl y"
 if "u ≠ y" and "u /∈ influenced_by_cutoff infl x (insert y (influenced_by infl y))"
 and "u ∈ influenced_by infl x" for u
 using that influenced_cutoff_subset_2[of infl x "insert y (influenced_by infl y)"]
 influenced_by_transitive[of _ infl y] by auto
 moreover have "u ∈ influenced_by infl y"
 if "u ≠ y" and "u /∈ influenced_by infl x"
 and "u ∈ influenced_by_cutoff infl x (insert y (influenced_by infl y))" for u
 using that(3)
 proof (induction rule: influenced_by_cutoff.induct)
 case (base ys y)
 then show ?case using that(2,3) influenced_cutoff_subset[of infl x] by auto
 qed simp
 ultimately show ?thesis by auto
qed
lemma destab_iter_infl_stabl_relation:
 shows
 "(infl', stabl') = destab_iter xs infl stabl
 \implies infl' = fmdrop_set (\bigcup x \in \text{set} xs. insert x (\text{influenced_by} infl x)) infl
 \land stabl' = stabl - (\bigcup x \in \text{set} xs. insert x (\text{influenced_by} infl x))"
and destab_infl_stabl_relation:
 "(infl', stabl') = destab x infl stabl
 \implies infl' = fmdrop_set (insert x (\text{influenced_by} infl x)) infl
 \land stabl' = stabl - \text{influenced_by} infl x"
proof
 (induction xs infl stabl
 arbitrary: infl' stabl'
 and
 infl' stabl' rule: destab_iter_destab.induct)
 case (1 infl stabl)
 then show ?case by simp
next
 case (2 y ys infl stabl)
 then obtain infl'' stabl'' where destab_y: "(infl'', stabl'') = destab y infl (stabl - \{y\})"
 and destab_ys: "(infl', stabl') = destab_iter ys infl'' stabl''" by (cases "destab x infl (stabl - \{y\})"; auto)
 note IH1 = "2.IH"(1)[OF destab_y]
 note IH2 = "2.IH"(2)[OF destab_y _ destab_ys, simplified]
 define A where "A x \equiv insert x (\text{influenced_by} infl x)"
 for x
 define B where "B x \equiv insert x (\text{influenced_by_cutoff} infl x (\text{insert} y (\text{influenced_by} infl y)))"
 for x
 have A_union_B_simp: "A y \cup (\bigcup x \in \text{set} ys. B x) = (\bigcup x \in \text{set} (y#ys). A x)"
 using union_influenced_to_cutoff[of y] A_def B_def
 by fastforce
 show ?case
 proof(intro conjI, goal_cases)
 case 1
 have "infl' = fmdrop_set (\bigcup x \in \text{set} ys. B x) (fmdrop_set (A y) infl)"
 using IH1 IH2 influenced_unknowns_fmdrop_set[of "A y"] A_def B_def
 by auto
 also have "... = fmdrop_set (A y \cup (\bigcup x \in \text{set} ys. B x)) infl"
 by (simp add: Un_commute)
 also have "... = fmdrop_set (\bigcup x \in \text{set} (y # ys). A x) infl"
 using A_union_B_simp by auto
 finally show ?case
 using A_def B_def by auto
next
 case 2
 have "stabl' = stabl - (A y \cup (\bigcup x \in \text{set} ys. B x))"
 using IH1 IH2 A_def B_def influenced_unknowns_fmdrop_set[of "A y"]
 by auto
 46
also have ". . . = stabl - (⋃ x∈set (y#ys). A x)"
 using A_union_B_simp
 by auto
finally show ?case
 using A_def B_def by auto
qed

next
 case (3 y infl stabl)
 then have
 destab_y: "destab_iter (fmlookup_default infl [] y) (fmdrop y infl)
 stabl = (infl', stabl')"
 by simp
 note IH = "3.IH"[OF destab_y[symmetric]]
 then show ?case using influenced_by_aux[of infl] by simp
qed

4.7 Predicate for Valid Input States

For the TD, we extend the predicate of valid solver states of the TD_plain, to also covers the additional data structures stabl and infl:

definition invariant where
"invariant c σ infl stabl ≡
c ⊆ stabl
∧ part_solution σ (stabl - c)
∧ fset (fmdom infl) ⊆ stabl
∧ (∀ y∈stabl - c. ∀ x ∈ dep σ y. y ∈ slookup infl x)"

lemma invariant_simp_c_stabl:
 assumes "x ∈ c"
 and "invariant (c - {x}) σ infl stabl"
 shows "invariant c σ infl (insert x stabl)"
 using assms
proof -
 have "c - {x} ⊆ stabl ≡ c ⊆ insert x stabl"
 using assms(1)
 by (simp add: subset_insert_iff)
 moreover have "stabl - (c - {x}) ⊇ insert x stabl - c"
 using assms(1)
 by auto
 ultimately show ?thesis
 using assms(2)
 unfolding invariant_def
 by (meson subset_iff subset_insertI2)
qed

4.8 Auxiliary Lemmas for Partial Correctness Proofs

lemma stabl_infl_empty:
 assumes "x ∉ stabl"
and "\text{fset (fmdom infl)} \subseteq \text{stabl}"
shows "\text{slookup infl x} = \{\}\) proof (rule ccontr, goal_cases)
case 1
then have "x \in \text{fset (fmdom infl)}"
unfolding \text{fmlookup_default_def} by force
then show ?case using assms by blast
qed

lemma \text{dep_closed_implies_reach_cap_tree_closed}:
assumes "x \in \text{stabl}'"
and "\\(\forall \xi \in \text{stabl}' - (c - \{x\}). \text{dep } \sigma' \xi \subseteq \text{stabl}'\)"
shows "\text{reach_cap } \sigma' (c - \{x\}) x \subseteq \text{stabl}'" proof (intro subsetI, goal_cases)
case (1 y)
then show ?case using assms proof
(cases "x = y")
case False
then have "y \in \text{reach_cap_tree } \sigma' (c - \{x\}) (T x)"
using 1 \text{reach_cap_tree_simp2[of x "c - \{x\}" \sigma']} by auto
then show ?thesis using assms proof(induction)
case (base y)
then show ?case using base.hyps dep_def by auto
next
case (step y z)
then show ?case by (metis (no_types, lifting) Diff_iff insert_subset mk_disjoint_insert)
qed
qed simp

dep_subset_stable:
assumes "\text{fset (fmdom infl)} \subseteq \text{stabl}"
and "\(\forall y \in \text{stabl} - c. \ \forall x \in \text{dep } \sigma y. y \in \text{slookup infl x}\)"
shows "\(\forall \xi \in \text{stabl} - c. \ \text{dep } \sigma \xi \subseteq \text{stabl}\)" using assms \text{stabl_infl_empty[of _ stabl infl]} by (metis DiffD2 Diff_empty_subsetI)

dep_new_lookup_to_infl_not_stabl:
assumes "\(\forall \xi. (\text{slookup infl1 } \xi - \text{slookup infl } \xi) \cap \text{stabl} = \{\}\)"
and "x \notin \text{stabl}"
and "\text{fset (fmdom infl)} \subseteq \text{stabl}"
shows "\text{influenced_by infl1 } x \cap \text{stabl} = \{\}\) proof -
have "u \notin \text{stabl}" if "u \in \text{influenced_by infl1 } x" for u using that
proof (induction rule: \text{influenced_by.induct})
case (base ys y)
have "slookup infl x = {}" using stabl_infl_empty[OF assms(2,3)] by auto
then have "y ∈ slookup infl1 x - slookup infl x"
 using base.hyps(1,2) by auto
then show ?case using base.hyps(1) assms(1,3) by force
next
 case (step y zs z)
 have "slookup infl y = {}"
 by (meson assms(3) stabl_infl_empty step.IH)
 then have "z ∈ slookup infl1 y - slookup infl y"
 by (simp add: step.hyps(2,3))
 then show ?case
 using assms(1) stabl_infl_empty[OF _ assms(3)]
 by fastforce
qed
then show ?thesis by auto
qed

lemma infl_upd_diff:
 assumes "∀ξ. (slookup infl' ξ - slookup infl ξ) ∩ stabl = {}"
 shows "∀ξ. (slookup (fminsert infl' x y) ξ - slookup infl ξ) ∩ (stabl - {y}) = {}"
proof(intro allI, goal_cases)
 case (1 ξ)
 show ?case using assms unfolding fminsert_def fmlookup_default_def
 by (cases "x = ξ") auto
qed

lemma infl_diff_eval_step:
 assumes "stabl ⊆ stabl1"
 and "∀ξ. (slookup infl' ξ - slookup infl1 ξ) ∩ (stabl1 - {x}) = {}"
 and "∀ξ. (slookup infl1 ξ - slookup infl ξ) ∩ (stabl - {x}) = {}"
 shows "∀ξ. (slookup infl1 ξ - slookup infl ξ) ∩ (stabl1 - {x}) = {}"
proof(intro allI, goal_cases)
 case (1 ξ)
 have "((slookup infl' ξ - slookup infl1 ξ)
 ∪ (slookup infl1 ξ - slookup infl ξ)) ∩ (stabl1 - {x}) = {}"
 using assms by auto
 then show ?case by blast
qed

4.9 Preservation of the Invariant

In this section, we prove that the destabilization of some unknown that is
currently being iterated, will preserve the valid solver state invariant.

lemma destab_x_no_dep:
 assumes "stabl2 = stabl1 - influenced_by infl1 x"
 and "∀y∈stabl1 - (c - {x}). ∀z∈dep σ1 y. y ∈ slookup infl1 z"
 shows "∀y ∈ stabl2 - (c - {x}). x ∉ dep σ1 y"
proof (intro ballI, goal_cases)
case (1 y)
show ?case
proof (rule ccontr, goal_cases)
 case 1
 then have "y ∈ slookup infl1 x"
 using assms ⟨y ∈ stabl2 - (c - {x})⟩ by blast
 then have "y ∈ influenced_by infl1 x"
 using lookup_in_influenced by force
moreover have "y /∈ influenced_by infl1 x"
 using assms(1) ⟨y ∈ stabl2 - (c - {x})⟩ by fastforce
ultimately show ?case by auto
qed
qed

lemma destab_preserves_c_subset_stabl:
assumes "c ⊆ stabl"
 and "stabl ⊆ stabl’"
shows "c ⊆ stabl’"
 using assms by auto

lemma destab_preserves_infl_dom_stabl:
assumes "(infl’, stabl’) = destab x infl stabl"
 and "fset (fmdom infl) ⊆ stabl"
shows "fset (fmdom infl’) ⊆ stabl’"
proof -
 have "infl’ = fmdrop_set (insert x (influenced_by infl1 x)) infl"
 and A: "stabl’ = stabl - influenced_by infl1 x"
 using assms(1) destab_infl_stabl_relation by metis+
 then show ?thesis
 using assms(2)
 by (metis Diff_mono fmdom'_alt_def fmdom'_drop_set subset_insertI)
qed

lemma destab_and_upd_preserves_dep_closed_in_infl:
assumes "(infl2, stabl2) = destab x infl1 stabl1"
 and "∀ y∈stabl1 - (c - {x}). ∀z∈dep σ1 y. y ∈ slookup infl1 z"
shows "∀ y∈stabl2 - (c - {x}). ∀z∈dep (σ1(x ↦→ xd’)) y. y ∈ slookup infl2 z"
proof (intro ballI, goal_cases)
 case (1 z y)
 have infl2_def: "infl2 = fmdrop_set (insert x (influenced_by infl1 x)) infl"
 and stabl2_def: "stabl2 = stabl1 - influenced_by infl1 x"
 using assms(1) destab_infl_stabl_relation by metis+
 have "y ∈ dep σ1 z"
 proof (goal_cases)
 case 1
 have "∀ y∈stabl2 - (c - {x}). x /∈ dep σ1 y"
using assms(2) stabl2_def destab_x_no_dep by auto
then have \("x \notin \text{dep } \sigma_1 \, z" \)
using \(\langle z \in \text{stabl2} - (c - \{x\}) \rangle \) by blast
then have \(\"\text{dep } (\sigma_1(x \mapsto xd')) \, z = \text{dep } \sigma_1 \, z\" \)
using \(\text{dep_eq[of } \sigma_1 \, z \, "\sigma_1(x \mapsto xd')"\] mlup_eq_mupd_set[of x "\text{dep } \sigma_1 \, z\" \sigma_1 \, xd']\)
by metis
then show \(?\text{case}\) using \(\langle y \in \text{dep } (\sigma_1(x \mapsto xd')) \rangle \) by auto
qed
then have \(z_{\text{in infll1 y}}: "z \in \text{slookup infll1 y}"\)
using i(1) stabl2_def assms(2) by fastforce
have \(\"z \in \text{influenced_by infll1 y}\"\)
using lookup_in_influenced[of infll1 y] z_in_infl1_y by auto
then have \(\"y \notin \text{influenced_by infll1 x}\"\) and \(\"y \neq x\"\)
using stabl2_def i(1) influenced_by_transitive[of y _ x z] by auto
then show \(?\text{case}\)
using z_in_infl1_y fmlookup_drop_set infll2_def unfolding fmlookup_default_def
by fastforce
qed

lemma destab_upd_preserves_part_sol:
assumes \(\"(\text{infll2, stabl2}) = \text{destab x infll1 stabl1}\"\)
and \"\text{part_solution } \sigma_1 \, (\text{stabl1 - c})\"\)
and \(\\forall y \in \text{stabl1 - (c - \{x\})}. \forall x \in \text{dep } \sigma_1 \, y. y \in \text{slookup infll1 x}\"\)
and \(\"\text{traverse_rhs } (T \, x) \, \sigma_1 = xd'\"\)
shows \(\"\text{part_solution } (\sigma_1(x \mapsto xd')) \, (\text{stabl2 - (c - \{x\})})\"\)
proof (intro ballI, goal_cases)
case (1 y)
have stabl2_def: \(\"\text{stabl2} = \text{stabl1 - influenced_by infll1 x}\"\)
using assms(1) destab_infll_stabl_relation by auto
have x_no_dep: \(\"\forall y \in \text{stabl2 - (c - \{x\})}. \, x \notin \text{dep } \sigma_1 \, y\"\)
using destab_x_no_dep[of stabl2_def assms(3)] by simp
have eq_y_upd: \(\"\text{eq y } (\sigma_1(x \mapsto xd')) = \text{eq y } \sigma_1\"\)
using 1 eq_mupd_no_dep[of x \sigma_1 y] x_no_dep by auto
show ?case
proof (cases \"y = x\")
case True
then show \(?\text{thesis}\) using assms(4) eq_y_upd unfolding mlup_def by (simp add: fun_upd_same)
next
case False
then have \(\"y \in \text{stabl1 - c}\"\)
using 1 stabl2_def by force
then have \(\"\text{eq y } \sigma_1 = \text{mlup } \sigma_1 \, y\"\)
using assms(2) by blast
qed

51
then show ?thesis using False eq_y_upd unfolding mlup_def by (simp add: fun_upd_other)
qed

4.10 TD_plain and TD Equivalence

Finally, we can prove the equivalence of TD and TD_plain. We split this proof into two parts: first we show that whenever the TD_plain terminates the TD terminates as well and returns the same result, and second we show the other direction, i.e., whenever the TD terminates, the TD_plain terminates as well and returns the same result.

declare TD_plain.query_dom_def[of T,simp]
declare TD_plain.eval_dom_def[of T,simp]
declare TD_plain.iterate_dom_def[of T,simp]
declare TD_plain.query.psimps[of T,simp]
declare TD_plain.iterate.psimps[of T,simp]
declare TD_plain.eval.psimps[of T,simp]

To carry out the induction proof, we complement the valid solver state invariant, with a second predicate update_rel, that describes the relation between output and input solver states.

abbreviation "update_rel x infl stabl infl' stabl' ≡ stabl ⊆ stabl' ∧
(∀u ∈ stabl. slookup infl u ⊆ slookup infl' u) ∧
(∀u. (slookup infl' u - slookup infl u) ∩ (stabl - {x}) = {})"

4.10.1 TD_plain → TD

lemma TD_plain_TD_equivalence_ind:
shows "TD_plain.query_dom T x y c σ
implies True
implies invariant c σ infl stabl
implies query_dom x y c infl stabl σ
∧ (∃infl' stabl'. query x y c infl stabl σ = (yd, infl', stabl', σ'))
∧ invariant c σ' infl' stabl'
∧ x ∈ slookup infl' y
∧ update_rel x infl stabl' stabl')"
and "TD_plain.iterate_dom T x c σ
implies True
implies x ∈ c
implies invariant (c - {x}) σ infl stabl
implies iterate_dom x c infl stabl σ
∧ (∃infl' stabl'. iterate x c infl stabl σ = (xd, infl', stabl', σ'))
∧ invariant (c - {x}) σ' infl' stabl'
∧ x ∈ stabl'"
and "TD_plain.eval_dom T x t c σ ⇒ TD_plain.eval T x t c σ = (xd, σ')"
qed (auto simp add: fminsert_def fmlookup_default_def)

next
case Lookup
then show ?thesis using Query.prems(1,2)
proof (intro conjI, goal_cases)
case 1 then show dom: ?case using query_iterate_eval.domintros(1)[of y c] by auto
case 2 then show ?case
proof (intro exI[of _ "fminsert infl y x"] exI[of _ stabl], intro conjI, goal_cases)
case 1 then show ?case using dom by simp
next
case 2 then show ?case
unfolding invariant_def by (auto simp add: fminsert_def fmlookup_default_def)
next
case 6 then show ?case
using infl_upd_diff[of infl stabl y] by auto
qed (auto simp add: fminsert_def fmlookup_default_def)

qed

next
case (Iterate x c σ)
have inv: "invariant c σ infl (insert x stabl)"
 using Iterate.prems(2,3) invariant_simp_c_stabl by auto
have dep_in_stabl: "∀ξ∈stabl - (c - {x}). dep σ ξ ⊆ stabl"
 using Iterate.prems(3) dep_subset_stable[of infl stabl] unfolding invariant_def by auto
show ?case
proof (cases "x ∈ stabl" rule: case_split[case_names Stable Unstable])
case Stable
then show ?thesis
 proof (intro conjI, goal_cases)
case 1 then show dom: ?case using query_iterate_eval.domintros(2)[of x stabl] by simp
 case 2 moreover have "σ = σ’"
 using Iterate.prems(3) TD_plain.already_solution(2)[OF Iterate.IH(1) Iterate.prems(1,2) 2]
 dep_in_stabl unfolding TD_plain.invariant_def invariant_def
 by fastforce
 ultimately show ?case
 proof (intro exI[of _ infl] exI[of _ stabl] conjI, goal_cases)
case 1
 then show ?case using dom TD_plain.iterate_fmlookup[OF Iterate.IH(1) Iterate.prems(1,2)]
 by auto
next
case 2 then show ?case using Iterate.prems(3) by auto
qed auto

54
qed
next
 case Unstable
 show ?thesis using Iterate.IH(1) Iterate.prems(1,2)
 proof (cases rule:
 TD_plain.iterate_continue_fixpoint_cases[of T, consumes 3, case_names
 Fixpoint Continue])
 case Fixpoint
 moreover obtain infl' stabl' where IH: "eval_dom x (T x) c infl
 (insert x stabl) σ ∧
 (xd, infl', stabl', σ') = eval x (T x) c infl (insert x stabl)
 σ ∧
 invariant c σ' infl' stabl' ∧
 eq x σ' = xd ∧
 (∀y∈dep σ' x. x ∈ slookup infl' y) ∧
 update_rel x infl (insert x stabl) infl' stabl'"
 using Iterate.IH(2)[OF Fixpoint(2) inv, folded dep_def] by auto
 ultimately show ?thesis using Unstable
 proof (intro conjI, goal_cases)
 case 1 then show dom: ?case using query_iterate_eval.domintros(2)[of
 x stabl c infl σ]
 by (cases "eval x (T x) c infl (insert x stabl) σ"; auto)
 case 2 then show ?case
 proof (intro exI[of _ infl'] exI[of _ stabl'] conjI, goal_cases)
 case 1 then show ?case using dom by (auto split: prod.splits)
 next
 case 3 then show ?case using Iterate.prems(2) invariant_def
 by fastforce
 qed auto
 qed
next
 case (Continue σ1 xd')
 obtain infl1 stabl1 where IH: "eval_dom x (T x) c infl (insert
 x stabl) σ ∧
 (xd', infl1, stabl1, σ1) = eval x (T x) c infl (insert x stabl)
 σ ∧
 invariant c σ1 infl1 stabl1 ∧
 eq x σ1 = xd' ∧
 (∀y∈dep σ1 x. x ∈ slookup infl1 y) ∧
 update_rel x infl (insert x stabl) infl1 stabl1"
 using Iterate.IH(2)[OF Continue(2) inv, folded dep_def] by auto
 obtain infl2 stabl2 where destab: "(infl2, stabl2) = destab x infl1
 stabl1"
 by (cases "destab x infl1 stabl1"; auto)
 then have infl2_def: "infl2 = fmdrop_set (insert x (influenced_by
 infl1 x)) infl1"
 and stabl2_def: "stabl2 = stabl1 - influenced_by infl1 x"
using destab_infl_stabl_relation[of infl2 stabl2 x infl1 stabl1]
by auto
define σ2 where [simp]: "σ2 = σ1(x ↦→ xd')"
have infl_diff: "∀ξ. (slookup infl1 ξ - slookup infl (ξ) ∩ stabl = {}"
 using Unstable Iterate.prems(3) IH
unfolding invariant_def by auto
have infl_closed: "∀x∈stabl1 - (c - {x}). ∀y∈dep σ1 x. x ∈ slookup
infl1 y"
 using IH unfolding dep_def invariant_def by auto
have stabl_inc: "stabl ⊆ stabl2"
 using IH Iterate.prems(3) new_lookup_to_infl_not_stabl[OF infl_diff
Unstable]
unfolding invariant_def stabl2_def by auto
have inv2: "invariant (c - {x}) σ2 infl2 stabl2"
 using IH unfolding invariant_def
proof(elim conjE, intro conjI, goal_cases)
case 1
 show ?case using destab_preserves_c_subset_stabl stabl_inc Iterate.prems(3)
 unfolding invariant_def by auto
next
case 2 then show ?case using destab_upd_preserves_part_sol[OF
destab_infl_closed] by auto
next
case 3 then show ?case using destab_preserves_infl_dom_stabl[OF
destab] by auto
next
case 4 show ?case
 proof(intro ballI, goal_cases)
 case (1 y z)
 have x_no_dep: "x ∉ dep σ1 y" if "y ∈ stabl2 - (c - {x})" for
y
 using that destab_infl_stabl_relation[OF destab] infl_closed
destab_x_no_dep by blast
 have "dep σ1 y = dep σ2 y" using x_no_dep[OF 1(1)] dep_eq[of
σ1 _ σ2]
 unfolding mlup_def by (simp add: fun_upd_apply)
then show ?case using 1 destab_and_upd_preserves_dep_closed_in_infl[OF
destab infl_closed]
 by auto
qed
qed
obtain infl' stabl' where ih: "iterate_dom x c infl2 stabl2 (σ1(x
⇒ xd')) ∧
 iterate x c infl2 stabl2 (σ1(x ⇒ xd')) = (xd, infl', stabl',
σ') ∧
invariant (c - {x}) σ' infl' stabl' ∧
x ∈ stabl' ∧
update_rel x infl2 stabl2 infl' stabl'"
using Iterate.IH(3)[OF Continue(2)[symmetric] _ Continue(3)[symmetric]
Continue(5)
Iterate.prems(2) inv2[unfolded σ2_def], simplified, folded dom_defs
Continue(2,3,5) Iterate.IH(3) Iterate.prems(2) σ2_def inv2
by fastforce

show ?thesis using IH ih destab Unstable
proof(elim conjE, intro conjI, goal_cases)
case 1 show dom: ?case using query_iterate_eval.domintros(2)[of
x stabl c infl σ]
using 1(1-2,3-5)
by (cases "eval x (T x) c infl (insert x stabl) σ"; cases "destab
x infl1 stabl1"; auto)
case 2 then show ?case
proof (intro exI[of _ infl'] exI[of _ stabl'] conjI, goal_cases)
case 1 show ?case using 1(1,5,6) Continue(3) dom Unstable by
(auto split: prod.splits)
next
case 4
show ?case
using "4"(12) stabl_inc by auto
next
case 5 show ?case
proof(intro ballI subsetI, goal_cases)
case (1 ξ u)
have "ξ /∈ insert x (influenced_by infl1 x)"
using 1(1) stabl2_def stabl_inc Unstable
by blast
then show ?case using stabl_inc infl12_def 1 5(14,16)
fmlookup_default_drop_set[of "insert x (influenced_by
infl1 x)" infl1 ξ]
by fastforce
qed
next
case 6 show ?case
proof(intro allI, goal_cases)
case (1 ξ)
have "slookup infl1 ξ ⊆ slookup infl1 ξ" using infl1_def
unfolding fmlookup_default_def by auto
moreover have "(slookup infl' ξ - slookup infl2 ξ) ∩ (stabl
- {x}) = {}" using stabl_inc ih
by blast
moreover have "(slookup infl1 ξ - slookup infl1 ξ) ∩ (stabl
- {x}) = {}" using 6(7)[unfolded invariant_def] infl_diff stabl_infl_empty[of
ξ stabl1 infl1]
by (cases "ξ ∈ stabl1"; auto)
ultimately show ?case unfolding stabl2_def by auto

57
qed
qed auto
qed
qed
next
 case (Eval x t c σ)
 show ?case using Eval.IH(1) Eval.prems(1)
 proof (cases rule: TD_plain.eval_query_answer_cases [of T, consumes 2, case_names Query Answer])
 case (Query y g yd σ)
 obtain infl1 stabl1 where IH: "query_dom x y c infl stabl σ ∧
 (yd, infl1, stabl1, σ1) = query x y c infl stabl σ ∧
 invariant c σ1 infl1 stabl1 ∧
 x ∈ slookup infl1 y ∧
 update_rel x infl stabl infl1 stabl1"
 using Eval.IH(2)[OF Query(1,3) Eval.prems(2)] by metis
 then obtain infl' stabl' where ih: "eval_dom x (g yd) c infl1 stabl1 σ1 ∧
 (xd, infl', stabl', σ') = eval x (g yd) c infl1 stabl1 σ1 ∧
 invariant c σ' infl' stabl' ∧
 traverse_rhs (g yd) σ' = xd ∧
 (∀ y ∈ dep_aux σ' (g yd). x ∈ slookup infl' y) ∧
 update_rel x infl1 stabl1 infl' stabl'"
 using Eval.prems(3) Eval.IH(3)[OF Query(1) Query(3)[symmetric] Query(5), of infl1 stabl1]
 by fastforce
 have tdi1_inv: "TD_plain.invariant T stabl c σ" using Eval.prems(2) dep_subset_stable unfolding TD_plain.invariant_def
 have tdi1_inv2: "TD_plain.invariant T (stabl ∪ reach_cap σ1 c y) c σ1" using TD_plain.partial_correctness_ind(1)[OF Query(2,3) tdi1_inv]
 by auto
 have mlup: "mlup σ' y = yd" using TD_plain.partial_correctness_ind(3)[OF Query(4,5) tdi1_inv2]
 Query(6) by auto
 show ?thesis using IH ih
 proof (elim conjE, intro conjI, goal_cases)
 case 1
 show dom: ?case
 using 1(1-3) Query(1) query_iterate_eval.domintros(3)[of t x c infl stabl σ]
 by (cases "query x y c infl stabl σ"; fastforce)
 case 2
 then show ?case
 proof (intro exI[of _ infl'] exI[of _ stabl'] conjI, goal_cases)
 case 1 show ?case using 1(3,4) dom Query(1) by (auto split:prod.splits)
next
case 3 then show ?case using Query(1) mlup by auto
next
case 4 show ?case using 4(5,7,10,14) Query(1) mlup stabl_infl_empty[of y stabl1 infl1]
 unfolding invariant_def by auto
next
case 6 then show ?case by blast
next
case 7 show ?case
 using 7(9,12,15) infl_diff_eval_step[of stabl stabl1 infl infl1]
x infl]
 by auto
qed auto
qed
next
case Answer
then show ?thesis using Eval.prems(2)
proof (intro conjI, goal_cases)
case 1 then show dom: ?case using query_iterate_eval.domintros(3)[of t] by auto
case 2 then show ?case
 proof (intro exI[of _ infl] exI[of _ stabl] conjI, goal_cases)
 case 1 then show ?case using dom by auto
 qed auto
 qed
 qed
 qed

corollary TD_plain_TD_equivalence:
assumes "TD_plain.solve_dom T x"
and "TD_plain.solve T x = σ"
shows "∃ stabl. solve_dom x ∧ solve x = (stabl, σ)"
proof -
obtain xd where iter: "TD_plain.iterate T x {x} Map.empty = (xd, σ)"
 using assms(2) unfolding TD_plain.solve_def by (auto split: prod.splits)
have inv: "invariant {(x - {x}) Map.empty fempty {}}" unfolding invariant_def
by fastforce
obtain infl stabl where "iterate_dom x {x} fempty {} (λx. None)"
 and "iterate x {x} fempty {} (λx. None) = (xd, infl, stabl, σ)"
 using TD_plain_TD_equivalence_ind(2)[OF assms(1)[unfolded TD_plain.solve_dom_def]
iter _ inv]
by auto
then show ?thesis unfolding solve_dom_def solve_def by (auto split: prod.splits)
qed
4.10.2 TD → TD_plain

lemmas TD_plain_dom_defs =
TD_plain.query_dom_def[of T]
TD_plain.iterate_dom_def[of T]
TD_plain.eval_dom_def[of T]

lemma TD_TD_plain_equivalence_ind:
shows "query_dom x y c infl stabl σ
⇒ (yd, infl', stabl', σ') = query x y c infl stabl σ
⇒ invariant c σ infl stabl
⇒ finite stabl'
⇒ invariant c σ' infl' stabl'
∧ TD_plain.query_dom T x y c σ
∧ (yd, σ') = TD_plain.query T x y c σ
∧ finite stabl'
∧ x ∈ slookup infl' y
∧ update_rel x infl stabl infl' stabl'"

and "iterate_dom x c infl stabl σ
⇒ (xd, infl', stabl', σ') = iterate x c infl stabl σ
⇒ x ∈ c
⇒ invariant (c - {x}) σ infl stabl
⇒ finite stabl'
⇒ invariant (c - {x}) σ' infl' stabl'
∧ TD_plain.iterate_dom T x c σ
∧ (xd, σ') = TD_plain.iterate T x c σ
∧ finite stabl'
∧ x ∈ stabl'
∧ update_rel x infl stabl infl' stabl'"

and "eval_dom x t c infl stabl σ
⇒ (xd, infl', stabl', σ') = eval x t c infl stabl σ
⇒ invariant c σ infl stabl
⇒ x ∈ stabl
⇒ finite stabl'
⇒ invariant c σ' infl' stabl'
∧ TDPlain.eval_dom T x t c σ
∧ (xd, σ') = TDPlain.eval T x t c σ
∧ finite stabl'
∧ traverse_rhs t σ' = xd
∧ (∀y∈dep_aux σ' t. x ∈ slookup infl' y)
∧ update_rel x infl stabl infl' stabl'"

proof(induction x y c infl stabl σ and y c infl stabl σ and x t c infl stabl σ
arbitrary: yd infl' stabl' σ' and xd infl' stabl' σ' and xd infl'
stabl' σ')

rule: query_iterate_eval_pinduct)
case (Query y x c infl stabl σ)
show ?case using Query.IH(1) Query.prems(1)
proof(cases rule: query_iterate_lookup_cases)
case (Iterate infl1)
moreover
note IH = Query.IH(2)[simplified, folded TD_plain_dom_defs, OF Iterate(5,2)
 Query.prems(2,3)]
ultimately show ?thesis
proof(intro conjI, goal_cases)
case 1 then show ?case unfolding invariant_def
 by (auto simp add: fminsert_def fmlookup_default_def)
next
case 2 then show dom: ?case using TD_plain.query_iterate_eval.domintros(1)[of x c]
 by auto
case 3 then show ?case using dom by auto
case 4 then show ?thesis using Query.prems(2)
proof(intro conjI, goal_cases)
case 1 then show ?case unfolding invariant_def
 by (auto simp add: fminsert_def fmlookup_default_def)
next
case 2 then show dom: ?case using TD_plain.query_iterate_eval.domintros(1)[of x c]
 by (auto simp add: fminsert_def fmlookup_default_def)
next
case Lookup then show ?thesis using Query.prems(2,3)
proof(intro conjI, goal_cases)
case 1 then show ?case unfolding invariant_def
 by (auto simp add: fminsert_def fmlookup_default_def)
next
case 2 then show dom: ?case using TD_plain.query_iterate_eval.domintros(1)[of x c]
 by (auto simp add: fminsert_def fmlookup_default_def)
next
case (Iterate x c infl stabl σ)
then have inv: "invariant c σ infl (insert x stabl)" using invariant_simp_c_stabl
by metis
have xstabl: "x ∈ insert x stabl" by simp
have stablfinite: "finite (insert x stabl)" using Iterate.prems(4) by auto
show ?case using Iterate.IH(1) Iterate.prems(1-2)
proof(cases rule: iterate_continue_fixpoint_cases)
case Stable
have "TD_plain.invariant T stabl (c - {x}) σ"
 using Iterate.prems(3) dep_subset_stable[of infl stabl]
 unfolding invariant_def TD_plain.invariant_def[of T]
by auto
then have "TD_plain.iterate_dom T x c σ" and "TD_plain.iterate T x c σ = (xd, σ)"
using Stable(5,4) Iterate.prems(2,4) TD_plain.td1_terminates_for_stabl[of x stabl T] by auto
then show ?thesis using Stable(2,3,5) Iterate.prems(1,3,4) Iterate.IH(1)
by auto
next
case Fixpoint
note IH = Iterate.IH(2)[OF Fixpoint(4,2) inv xstabl stablfinite, folded eq_def dep_def]
then show ?thesis
proof(intro conjI, goal_cases)
case 1 then show ?case unfolding invariant_def
proof(intro conjI, goal_cases)
case 1 then have "part_solution σ' (stabl' - (c - {x}))"
using Fixpoint(3) unfolding eq_def invariant_def by auto
next
case 2 then show ?case using Fixpoint(3) by auto
next
case 3 then show ?case using Iterate.prems(2) by (simp add: insert_absorb)
qed auto
next
case 2 then show dom: ?case
using Fixpoint(3) TD_plain.query_iterate_eval.domintros(2)[of T, folded TD_plain_dom_defs]
by (metis prod.inject)
case 3 then show ?case using dom Fixpoint(3) by (auto split: prod.splits)
next
case 6 then show ?case
using Fixpoint(4) by blast
next case 8
have "x \notin fset (fmdom infl)"
using Iterate.prems(3) Fixpoint(4)
unfolding invariant_def
by auto
then have "slookup infl x = {}"
unfolding fmlookup_default_def
by (simp add: fmdom_notD)
then show ?case
using Fixpoint(4) IH lookup_in_influenced
by auto
qed auto
next
case (Continue stabl1 infl1 σ1 xd' stabl2 infl2)
have infl2_def: "infl2 = fmdrop_set (insert x (influenced_by infl1 x)) infl1"
and stabl2_def: "stabl2 = stabl1 - influenced_by infl1 x"
using destab_infl_stabl_relation[of infl2 stabl2 x infl1 stabl1]
Continue(4) by auto

note IH = Iterate.IH(2)[OF Continue(7,2) inv xstabl stablfinite]

have "(slookup infl1 ξ - slookup infl ξ) ∩ stabl = {}" for ξ
using Iterate.prems(3) Continue(7) IH
unfolding invariant_def
by auto
then have stabl_inc: "stabl ⊆ stabl2"
using Iterate.prems(3) Continue(4,7) new_lookup_to_infl_not_stabl[of
infl1 infl stabl x]
destab_infl_stabl_relation[of infl2 stabl2] IH
unfolding invariant_def
by auto

have infl_closed: "(∀ x ∈ stabl1 - (c - {x}). ∀ y ∈ dep σ1 x. x ∈ slookup
infl1 y)"
using IH[unfolded invariant_def, folded dep_def] by auto

have x_no_dep: "x ∉ dep σ1 y" if "y ∈ stabl2 - (c - {x})" for y
using that Continue(4) destab_infl_stabl_relation destab_x_no_dep[of
_ infl_closed]
by fastforce

have "invariant (c - {x}) (σ1(x ↦→ xd')) infl2 stabl2"
using IH Iterate.prems(2,3) Continue(4,7)
unfolding invariant_def
proof(elim conjE, intro conjI, goal_cases)
case 1
define σ2 where [simp]: "σ2 = σ1(x ↦→ xd')"

show ?case using 1(4) stabl1_inc by auto
case 2
show ?case
using 2(2,8,15) destab_upd_preserves_part_sol infl_closed
by auto
case 3
show ?case using 3(2,12) destab_preserves_infl_dom_stabl by auto
case 4
show ?case
proof(intro ballI, goal_cases)
case (1 y z)
have "dep σ1 y = dep σ2 y" using x_no_dep[of 1(1)] dep_eq[of
σ1 _ σ2] σ2_def fun_upd_apply
unfolding mlup_def by metis
then show ?case using 1 4(2) destab_and_upd_preserves_dep_closed_in_infl
infl_closed by auto
qed

then have "invariant (c - {x}) (σ1(x ↦→ xd')) infl2 stabl2" by simp+

note inv = this

63
have B: "finite stabl2"
 by (metis Continue(4) Diff_subset IH destab_infl_stabl_relation
 infinite_super)

note ih = Iterate.IH(3)[OF Continue(7,2) _ _ _ Continue(3,4) _ Continue(6)
Iterate.prems(2) inv
 B, of "(infl1, stabl1, σ1)" "(stabl1, σ1)", simplified, folded
TD_plain_dom_defs]
then show ?thesis
proof (intro conjI, goal_cases)
 case 2 show dom: ?case
 using IH TD_plain.query_iterate_eval.domintros(2)[of T x c σ,
folded TD_plain_dom_defs] ih
 by (metis Pair_inject)
 case 3 then show ?case using dom Continue(3) IH ih
 by (auto split: prod.split)
 next case 6 then show ?case
 using stabl_inc by auto
 next case 7
then show ?case unfolding invariant_def
proof (elim conjE, intro ballI subsetI, goal_cases)
 case (1 ξ u)
 have "ξ /∈ insert x (influenced_by infl1 x)"
 using 1(13) Continue(7) stabl2_def stabl_inc
 by blast
 then show ?case
 using stabl_inc infl2_def 1(10,13,14) IH
 fmlookup_default_drop_set[of "insert x (influenced_by infl1
 x)" infl1 ξ]
 by fastforce
 qed
next case 8
then show ?case unfolding invariant_def
proof (intro allI, goal_cases)
 case (1 ξ)
 have "slookup infl2 ξ ⊆ slookup infl1 ξ"
 using infl2_def unfolding fmlookup_default_def by auto
 moreover have "(slookup infl' ξ - slookup infl2 ξ) ∩ stabl = {}")
 proof (cases "x ∈ stabl2")
 case True
 then show ?thesis using Continue(5,6) by auto
next
 case False
 then show ?thesis
 using 1(1) inv[unfolded invariant_def] stabl_inc
 by fastforce
 qed
moreover have "(slookup infl1 ξ - slookup infl ξ) ∩ stabl = {}")
 using Continue(7) Iterate.prems(3) IH stabl_infl_empty[of x

64
stabl inf1]

unfolding invariant_def by auto
ultimately show \$\text{case}\ using\ \text{infl2_def\ stabl2_def}\ by\ blast
qed
qed auto

next
case (Eval x t c inf1 stabl \$\sigma\$)

show ?case using Eval.IH(1) Eval.prems(1)

proof (cases rule: eval_query_answer_cases)
case (Query y g yd infl1 stabl1 \$\sigma_1\$)

note IH = Eval.IH(2)[OF Query(1,3) Eval.prems(2,4)]

then have "invariant c \$\sigma_1\$ infl1 stabl1
∧ TD_plain.invariant T
stabl1 c \$\sigma_1\$

using Eval.prems(3)

unfolding invariant_def

proof (elim conjE, intro conjI, goal_cases)
case 1 show ?case using 1(2).

next
case 2 show ?case using 2(4).

next
case 3 show ?case using 3(6).

next
case 4 show ?case using 4(7).

next
case 5 show ?case using Eval.prems(3) IH

reach_cap_tree_simp2 dep_eq unfolding TD_plain.invariant_def

by (meson "5"(13) dep_subset_stable)

qed

then have "invariant c \$\sigma_1\$ infl1 stabl1"

and "TD_plain.invariant T stabl1 c \$\sigma_1\$

by simp+

note inv = this

have B: "finite stabl1" using IH by simp

have C: "x \in stabl1" using IH Eval.prems(3) by blast

note ih = Eval.IH(3)[OF Query(1,3) Query(5) inv(1) C B,

of "(infl1, stabl1, \$\sigma_1\$)" "(stabl1, \$\sigma_1\$)", simplified, folded TD_plain_dom_defs]

have "y \in stabl1"

using IH stabl_inf1_empty[of y stabl1 infl1]

unfolding invariant_def

by fastforce

then have "mlup \$\sigma_1\$ y = mlup \$\sigma'\$ y"

using TD_plain.partial_correctness_ind(3)[of T x "g yd" c \$\sigma_1\$ xd
\$\sigma'\$ stabl1] inv ih by auto

then have mlup: "mlup \$\sigma'\$ y = yd"

using Query(6) by auto
show \(?\text{thesis} \) using \(\text{ih} \)

proof (intro conjI, goal_cases)
case 2
then show dom: \(?\text{case} \)
using \(\text{IH Query(1)} \) \(\text{TD_plain.query_iterate_eval.domintros}(3) \)[of \(t \, T \), folded \(\text{TD_plain_dom_defs} \)]
by (cases "\(\text{TD_plain.query} \, T \, x \, y \, c \, \sigma \)") fastforce
case 3
then show \(?\text{case} \)
using dom \(\text{IH Query(1)} \) \(\text{TD_plain.query_iterate_eval.domintros}(3) \)[of \(t \, T \), folded \(\text{TD_plain_dom_defs} \)]
by (auto split: prod.splits)
next
case 5
then show \(?\text{case} \) using Query \(\text{IH mlup} \) unfolding invariant_def by auto
next
case 6
then show \(?\text{case} \) using 6 Query \(\text{IH mlup} \ < y \in \text{stabl1} > \) unfolding invariant_def by auto
next
case 7
then show \(?\text{case} \) using \(\text{IH} \) by auto
next
case 8
then show \(?\text{case} \) using \(\text{IH} \) by blast
next
case 9
then show \(?\text{case} \)
using inf\(l_diff_eval_step \)[of \(\text{stabl} \, \text{stabl1} \, \text{infl'} \, \text{infl1} \, x \)] \(\text{IH \ ih} \)
Eval.prem(2,3) by auto
qed auto
next
case \(\text{Answer} \)
then show \(?\text{thesis} \) using \(\text{Answer TD_plain.query_iterate_eval.domintros}(3) \)
Eval.prem(2-3,4)
by fastforce
qed
qed

corollary \(\text{TD_TD_plain_equivalence} \):
assumes "solve_dom \(x \)"
and "solve \(x \) = (stabl, \sigma)"
shows "\(\text{TD_plain.solve_dom} \, T \, x \, \land \, \text{TD_plain.solve} \, T \, x \, = \, \sigma \)"
proof -
obtain \(\text{xd} \, \text{infl} \) where iter: "\((\text{xd}, \, \text{infl}, \, \text{stabl}, \, \sigma) = \text{iterate} \, x \, \{x\} \, \text{fmempty} \)\
\} \, \text{Map.empty}" using assms(2) unfolding solve_def by (auto split: prod.splits)
have inv: "invariant \(\{\{x\} - \{x\}\} \, \text{Map.empty} \, \text{fmempty} \} \)" unfolding invariant_def

66
by fastforce
have "TD_plain.iterate_dom T x {x} (λx. None) ∧ (xd, σ) = TD_plain.iterate T x {x} (λx. None)"
 using TD_TD_plain_equivalence_ind(2)[OF assms(1)[unfolded solve_dom_def]
 iter_inv, simplified]
 by auto
then show ?thesis unfolding TD_plain.solve_dom_def TD_plain.solve_def
by (auto split: prod.splits)
qed

4.11 Partial Correctness of the TD

From the equivalence of the TD and TD_plain and the partial correctness proof of the TD_plain we can now conclude partial correctness also for the TD.

corollary partial_correctness:
 assumes "solve_dom x"
 and "solve x = (stabl, σ)"
 shows "part_solution σ stabl" and "reach σ x ⊆ stabl"
proof(goal_cases)
 note dom = assms(1)[unfolded solve_dom_def]
 obtain infl xd where app: "(xd, infl, stabl, σ) = iterate x {x} fmempty
 {} Map.empty"
 using assms unfolding solve_def by (cases "iterate x {x} fmempty
 {} Map.empty") auto
 case 1 show ?case using TD_TD_plain_equivalence_ind(2)[OF dom app,
 unfolded invariant_def] by auto
 case 2 show ?case
 using TD_TD_plain_equivalence_ind(2)[OF dom app, unfolded invariant_def]
 reach_empty_capped dep_closed_implies_reach_cap_tree_closed
 dep_subset_stable[of infl stabl "{}"] by auto
qed

4.12 Program Refinement for Code Generation

To derive executable code for the TD, we do a program refinement and define an equivalent solve function based on partial_function with options that can be used for the code generation.

datatype ('a,'b) state = Q "'a × 'a × 'a set × ('a, 'a list) fmap × 'a set × ('a, 'b) map"
 | I "'a × 'a set × ('a, 'a list) fmap × 'a set × ('a, 'b) map"
 | E "'a × ('a,'b) strategy_tree × 'a set × ('a, 'a list) fmap × 'a set × ('a, 'b) map"

partial_function (option) solve_rec_c ::
 "('x, 'd) state ⇒ ('d × ('x, 'x list) fmap × 'x set × ('x, 'd) map)
 option"
 where
"solve_rec_c s = (case s of Q (y,x,c,infl,stabl,σ) ⇒ Option.bind
 (if x ∈ c then
 Some (mlup σ x, infl, stabl, σ)
 else
 solve_rec_c (I (x, (insert x c), infl, stabl, σ))
 (λ (xd, infl, stabl, σ). Some (xd, fminsert infl x y, stabl, σ))
 | I (x,c,infl,stabl,σ) ⇒
 if x ∉ stabl then Option.bind (solve_rec_c (E (x, (T x), c, infl, insert x stabl, σ))) (λ(d_new, infl, stabl, σ).
 if mlup σ x = d_new then
 Some (d_new, infl, stabl, σ)
 else
 (let (infl, stabl) = destab x infl stabl in
 solve_rec_c (I (x, c, infl, stabl, σ(x = d_new)))))
 else
 Some (mlup σ x, infl, stabl, σ)
 | E (x,t,c,infl,stabl,σ) ⇒ (case t of
 Answer d ⇒ Some (d, infl, stabl, σ)
 | Query y g ⇒ (Option.bind (solve_rec_c (Q (x, y, c, infl, stabl, σ))))) (λ(yd, infl, stabl, σ).
 solve_rec_c (E (x, g yd, c, infl, stabl, σ))))"

definition solve_rec_c_dom where "solve_rec_c_dom p ≡ ∃σ. solve_rec_c p = Some σ"
declare destab.simps[code]
declare destab_iter.simps[code]
declare solve_rec_c.simps[simp,code]
definition solve_c :: 'x ⇒ ('x set × ('x, 'd) map) option" where
 "solve_c x = Option.bind (solve_rec_c (I (x, {x}, fmempty, {}, Map.empty)))
 (λ(_, _, stabl, σ). Some (stabl, σ))"
definition solve_c_dom :: 'x ⇒ bool where "solve_c_dom x ≡ ∃σ. solve_c x = Some σ"

We prove the equivalence of the refined solver function for code generation
and the initial version used for the partial correctness proof.

lemma query_iterate_eval_solve_rec_c_equiv:
 shows "query_dom x y c infl stabl σ ⇒ solve_rec_c_dom (Q (x,y,c,infl,stabl,σ))
 ∧ query x y c infl stabl σ = the (solve_rec_c (Q (x,y,c,infl,stabl,σ))))"
and "iterate_dom x c infl stabl σ ⇒ solve_rec_c_dom (I (x,c,infl,stabl,σ))
 ∧ iterate x c infl stabl σ = the (solve_rec_c (I (x,c,infl,stabl,σ))))"
and "eval_dom x t c infl stabl σ ⇒ solve_rec_c_dom (E (x,t,c,infl,stabl,σ))
 ∧ eval x t c infl stabl σ = the (solve_rec_c (E (x,t,c,infl,stabl,σ))))"
proof (induction x y c infl stabl σ and x c infl stabl σ and x t c infl stabl σ)
case (Query x y c infl stabl σ)

proof (cases "y ∈ c")

 case True
 then have "solve_rec_c (Q (x, y, c, infl, stabl, σ)) = Some (mlup σ y, fminsert infl y x, stabl, σ)"
 by simp

 moreover have "query x y c infl stabl σ = (mlup σ y, fminsert infl y x, stabl, σ)"
 using query.psimps[folded dom_defs] Query(1) True by force

 ultimately show ?thesis unfolding solve_rec_c_dom_def by auto
 next

 case False

 obtain d1 infl1 stabl1 σ1 where
 I: "iterate y (insert y c) infl stabl σ = (d1, infl1, stabl1, σ1)"
 using prod_cases4 by blast

 then have J: "query x y c infl stabl σ = (d1, fminsert infl1 y x, stabl1, σ1)"
 using False Query.IH(1) query.pelims[folded dom_defs] by fastforce

 then have "solve_rec_c (I (y, insert y c, infl, stabl, σ)) = Some (d1, infl1, stabl1, σ1)"
 using Query(2) False I
 by (simp add: solve_rec_c_dom_def)

 then have "solve_rec_c (Q (x, y, c, infl, stabl, σ)) = Some (d1, fminsert infl1 y x, stabl1, σ1)"
 using False by simp

 moreover have "solve_rec_c_dom (Q (x, y, c, infl, stabl, σ))"
 using Query(2) False unfolding solve_rec_c_dom_def by fastforce

 ultimately show ?thesis using Query J unfolding solve_rec_c_dom_def by auto

 qed

next

case (Iterate x c infl stabl σ)

show ?case

proof (cases "x ∈ stabl")

 case True

 have "iterate_dom x c infl stabl σ ∧ iterate x c infl stabl σ = (mlup σ x, infl, stabl, σ)"
 using True iterate.psimps query_iterate_eval.domintros(2)

 unfolding iterate_dom_def
 by fastforce

 then show ?thesis using True unfolding solve_rec_c_dom_def by auto
 next

 case False

 obtain d1 infl1 stabl1 σ1 where
 eval: "eval x (T x) c infl (insert x stabl) σ = (d1, infl1, stabl1, σ1)"

 "solve_rec_c (E (x, T x, c, infl, insert x stabl, σ)) = Some (d1,
infl1, stabl1, σ1)
 using Iterate(2) solve_rec_c_dom_def False by force
show ?thesis
proof (cases "mlup σ1 x = d1")
 case True
 have "iterate x c infl stabl σ = (d1, infl1, stabl1, σ1)"
 using eval iterate.simps[folded dom_defs, OF Iterate(1)] True
 False by simp
moreover have "solve_rec_c (I (x, c, infl, stabl, σ)) = Some (d1, infl1, stabl1, σ1)"
 using eval False True by simp
ultimately show ?thesis unfolding solve_rec_c_dom_def by simp
next
case False
obtain infl2 stabl2 where destab: "(infl2, stabl2) = destab x infl1 stabl1"
 by (cases "destab x infl1 stabl1") auto
have "solve_rec_c_dom (I (x, c, infl2, stabl2, σ1(x ↦→ d1)))"
 and "iterate x c infl2 stabl2 (σ1(x ↦→ d1)) = the (solve_rec_c (I (x, c, infl2, stabl2, σ1(x ↦→ d1))))"
 using Iterate(3)[OF ‹x /∈ stabl› eval(1)[symmetric] _ _ _ False destab] by blast+
moreover have "iterate x c infl stabl σ = iterate x c infl2 stabl2 (σ1(x ↦→ d1))"
 using iterate.simps[folded dom_defs, OF Iterate(1)] False ‹x /∈ stabl› destab
 by (smt (verit) case_prod_conv)
moreover have "solve_rec_c (I (x, c, infl, stabl, σ)) = solve_rec_c (I (x, c, infl2, stabl2, σ1(x ↦→ d1)))"
 using ‹x /∈ stabl› False eval(2) destab[symmetric] by simp
ultimately show ?thesis unfolding solve_rec_c_dom_def by auto
qed
qed
next
case (Eval x t c infl stabl σ)
show ?case
proof (cases t)
 case (Answer d)
 then have "eval x t c infl stabl σ = (d, infl, stabl, σ)"
 using eval.simps query_iterate_eval.domintros(3) dom_defs(3) by fastforce
 then show ?thesis using Eval Answer unfolding solve_rec_c_dom_def by simp
next
case (Query y g)
 then obtain d1 infl1 stabl1 σ1 where
 query: "solve_rec_c_c (Q (x, y, c, infl, stabl, σ)) = Some (d1, infl1, stabl1, σ1)"
 "query x y c infl stabl σ = (d1, infl1, stabl1, σ1)"
using Query Eval(2) unfolding solve_rec_c_dom_def by auto
then have "solve_rec_c_dom (E (x, g d1, c, infl1, stabl1, σ1))"
 eval x (g d1) c infl1 stabl1 σ1 = the (solve_rec_c (E (x, g d1, c, infl1, stabl1, σ1)))" using Eval(3)[OF Query] by auto
moreover have "eval x t c infl stabl σ = eval x (g d1) c infl1 stabl1 σ1"
 using Eval.IH(1) Query eval.psimps eval_dom_def query
 by fastforce
moreover have "solve_rec_c (E (x, t, c, infl, stabl, σ))
 = solve_rec_c (E (x, g d1, c, infl1, stabl1, σ1))"
 using Query query solve_rec_c.simps[of "E (x,t,c,infl,stabl,σ)"]
 by (simp del: solve_rec_c.simps)
ultimately show ?thesis using solve_rec_c_dom_def by force
qed

lemma solve_rec_c_query_iterate_eval_equiv:
shows "solve_rec_c s = Some r ⇒ (case s of
 Q (x,y,c,infl,stabl,σ) ⇒ query_dom x y c infl stabl σ ∧ query x y c infl stabl σ = r
 | I (x,c,infl,stabl,σ) ⇒ iterate_dom x c infl stabl σ ∧ iterate x c infl stabl σ = r
 | E (x,t,c,infl,stabl,σ) ⇒ eval_dom x t c infl stabl σ ∧ eval x t c infl stabl σ = r)"
proof (induction arbitrary: s r rule: solve_rec_c.fixp_induct)
 case 1
 then show ?case using option_admissible by fast
next
case 2
 then show ?case by simp
next
case (3 S)
 show ?case
 proof (cases s)
 case (Q a)
 obtain x y c infl stabl σ where "a = (x, y, c, infl, stabl, σ)" using prod_cases6 by blast
 have "query_dom x y c infl stabl σ ∧ query x y c infl stabl σ = r" proof (cases "y ∈ c")
 case True
 then have "Some (mlup σ y, fminsert infl y x, stabl, σ) = Some r"
 using 3(2) Q ⟨a = (x, y, c, infl, stabl, σ)⟩ by simp
 then show ?thesis using query.psimps[folded query_dom_def, of x y c infl stabl σ]
 query_iterate_eval.domintros(1)[folded query_dom_def, of y c infl] True by simp
next
next

71
case False
then have "Option.bind (S (I (y, insert y c, infl, stabl, σ)))
(\(d, \text{infl}, \text{stabl}, \sigma\)).
 Some (d, fminsert infl y x, stabl, σ)) = Some r"
using 3(2) Q \(< a = (x, y, c, \text{infl}, \text{stabl}, \sigma)\> by simp
then obtain d1 infl1 stabl1 σ1
 where "S (I (y, insert y c, infl, stabl, σ)) = Some (d1, infl1, stabl1, σ1)"
 and "(d1, fminsert infl1 y x, stabl1, σ1) = r"
by (cases "S (I (y, insert y c, infl, stabl, σ)))") auto
then have "iterate_dom y (insert y c) infl stabl σ ∧
iterate y (insert y c) infl stabl σ = (d1, infl1, stabl1, σ1)"
using 3(1) unfolding iterate_dom_def by fastforce
then show ?thesis using False \(<d1, fminsert infl1 y x, stabl1, σ1) = r\>
by (simp add: query_iterate_eval.domintros(1) False)
qed
then show ?thesis using Q \(<a = (x, y, c, \text{infl}, \text{stabl}, \sigma)\> by simp
next
case (I a)
 obtain x c infl stabl σ where "a = (x, c, infl, stabl, σ)"
 using prod_cases5 by blast
 show ?thesis
 proof(cases "x \(\in\) stabl")
 case True
 then have "(mlup σ x, infl, stabl, σ) = r" using I \(<a = (x, c, \text{infl}, \text{stabl}, \sigma)\> 3(2) by simp
 moreover have "iterate_dom x c infl stabl σ ∧
iterate x c infl stabl σ = (mlup σ x, infl, stabl, σ)"
 using True query_iterate_eval.domintros(2) iterate.psimps dom_defs
 by fastforce
 ultimately show ?thesis using I \(<a = (x, c, \text{infl}, \text{stabl}, \sigma)\> by simp
next
case False
 then have IH1: "Option.bind (S (E (x, T x, c, \text{infl}, insert x stabl, σ)))
(\(d, \text{infl}, \text{stabl}, \sigma\)).
 if mlup σ x = d then Some (d, infl, stabl, σ)
else let (infl, stabl) = destab x infl stabl in
S (I (x, c, infl, stabl, σ(x \mapsto d))) = Some r"
using 3(2) I \(<a = (x, c, \text{infl}, \text{stabl}, \sigma)\> by simp
then obtain d_new infl1 stabl1 σ1
 where eval_some: "S (E (x, T x, c, \text{infl}, insert x stabl, σ))
= Some (d_new, infl1, stabl1, σ1)"
 using 3(2) I
by (cases "S (E (x, T x, c, \text{infl}, insert x stabl, σ)))") auto
then have eval: "eval_dom x (T x) c \text{infl} (insert x stabl) σ"
∧ eval x (T x) c infl (insert x stabl) σ = (d_new, infl1, stabl1, σ1)"

using 3(1) unfolding TD_plain.eval_dom_def by force
have "iterate_dom x c infl stabl σ ∧ iterate x c infl stabl σ = r"
proof (cases "mlup σ1 x = d_new")
case True
then have "(d_new, infl1, stabl1, σ1) = r" using IH1 eval_some
by simp
moreover have "iterate_dom x c infl stabl σ"
using query_iterate_eval.domintros(2)[folded dom_defs] False
True eval by fastforce
ultimately show ?thesis
using iterate.psimps[folded dom_defs] False True eval by fastforce
next
case False
obtain infl2 stabl2 where destab: "(infl2, stabl2) = destab x infl1 stabl1"
by (cases "destab x infl1 stabl1") auto
then have "S (I (x, c, infl2, stabl2, σ1(x ↦→ d_new))) = Some r"
using IH1 False eval_some by (smt (verit, best) bind.bind_lunit)
case_prod_conv
then have iter_cont: "iterate_dom x c infl2 stabl2 (σ1(x ↦→ d_new))
∧ iterate x c infl2 stabl2 (σ1(x ↦→ d_new)) = r"
using 3(1) unfolding iterate_dom_def by fastforce
then have "iterate_dom x c infl stabl σ"
using query_iterate_eval.domintros(2)[folded dom_defs destab.simps, of x stabl c infl σ] eval
destab eval
False iter_cont
by (cases "destab x infl1 stabl1") auto
qed
then show ?thesis
using I ⟨a = (x, c, infl, stabl, σ)⟩ by simp
qed
next
case (E a)
obtain x t c infl stabl σ where "a = (x, t, c, infl, stabl, σ)"
using prod_cases6 by blast
then have "s = E (x, t, c, infl, stabl, σ)" using E by auto
have "eval_dom x t c infl stabl σ ∧ eval x t c infl stabl σ = r"
proof (cases t)
case (Answer d)
then have "eval_dom x t c infl stabl σ"
unfolding eval_dom_def
using query_iterate_eval.domintros(3)
by fastforce
moreover have "eval x t c infl stabl σ = (d, infl, stabl, σ)"
using Answer.eval.psimps[folded dom_defs, OF calculation] by auto
moreover have "(d, infl, stabl, σ) = r"
using 3(2) ⟨s = E (x, t, c, infl, stabl, σ)⟩ Answer by simp
ultimately show ?thesis by simp
next
case (Query y g)
then have A: "Option.bind (S (Q (x, y, c, infl, stabl, σ))) (λ(yd, infl, stabl, σ). S (E (x, g yd, c, infl, stabl, σ))) = Some r" using ⟨s = E (x, t, c, infl, stabl, σ)⟩ 3(2)
by simp
then obtain yd infl1 stabl1 σ1
where S1: "S (Q (x, y, c, infl, stabl, σ)) = Some (yd, infl1, stabl1, σ1)"
and S2: "S (E (x, g yd, c, infl1, stabl1, σ1)) = Some r"
by (cases "S (Q (x, y, c, infl, stabl, σ))") auto
then have "query_dom x y c infl stabl σ ∧ query x y c infl stabl σ = (yd, infl1, stabl1, σ1)"
and "eval_dom x (g yd) c infl1 stabl1 σ1 ∧ eval x (g yd) c infl1 stabl1 σ1 = r"
using 3(1)[OF S1] 3(1)[OF S2] unfolding TD_plain.dom_defs by force+
then show ?thesis
using query_iterate_eval.domintros(3)[folded dom_defs] eval.psimps[folded dom_defs] Query
by fastforce
qed
qed

theorem term_equivalence: "solve_dom x ←→ solve_c_dom x"
using solve_rec_c_query_iterate_eval_equiv[of "I (x, {x}, fmempty, {}, λx. None)"
query_iterate_eval.solve_rec_c_equiv[of x "{}" fmempty "{}" "λx. None"]
unfolding solve_dom_def solve_c_dom_def solve_rec_c_dom_def solve_c_def
by (cases "solve_rec_c (I (x, {x}, fmempty, {}, λx. None))") fastforce+

theorem value_equivalence: "solve_dom x = ⇒ ∃σ. solve_c x = Some σ ∧ solve x = σ"
proof goal_cases
case 1
then obtain r where "solve_rec_c (I (x, {x}, fmempty, {}, λx. None)) = Some r ∧ iterate x {x} fmempty {} (λx. None) = r"

74
With the equivalence of the refined version and the initial version proven, we can specify a the code equation.

```plaintext
lemma solve_code_equation [code]:
  "solve x = (case solve_c x of Some r ⇒ r
   | None ⇒ Code.abort (String.implode "'Input not in domain'") (λ_. solve x))"
proof (cases "solve_dom x")
  case True
  then show ?thesis
   using solve_c_def solve_def value_equivalence by fastforce
next
  case False
  then have "solve_c x = None" using solve_c_dom_def term_equivalence
  by (meson option.exhaust)
  then show ?thesis by auto
qed
```

Finally, we use a dedicated rewrite rule for the code generation of the solver locale.

```plaintext
global_interpretation TD_Interp: TD D T for D T
defines
  TD_Interp_solve = TD_Interp.solve
done
```

5 Example

theory Example
 imports TD_plain TD_equiv
begin

As an example, let us consider a program analysis, namely the analysis of must-be initialized program variables for the following program:

```plaintext
a = 17
while true:
  b = a * a
  if b < 10: break
```

75
a = a - 1

The program corresponds to the following control-flow graph.

From the control-flow graph of the program, we generate the equation system to be solved by the TD. The left-hand side of an equation consists of an unknown which represents a program point. The right-hand side for some unknown describes how the set of must-be initialized variables at the corresponding program point can be computed from the sets of must-be initialized variables at the predecessors.

5.1 Definition of the Domain

datatype \(pv = a \mid b \)

A fitting domain to describe possible values for the must-be initialized analysis, is an inverse power set lattice of the set of all program variables. The least informative value which is always a true over-approximation for the must-be initialized analysis is the empty set (called top), whereas the initial value to start fixpoint iteration from is the set \(\{a, b\} \) (called bot). The join operation, which is used to combine the values of several incoming edges to obtain a sound over-approximation over all paths, corresponds to the intersection of sets.

typedef \(D \) = "Pow \(\{a, b\}\)"
by auto

setup_lifting D.type_definition_D

lift_definition top :: "D" is "{}" by simp
lift_definition bot :: D is "\{a, b\}" by simp
lift_definition join :: "D \Rightarrow D \Rightarrow D" is Set.inter by blast

Additionally, we define some helper functions to create values of type D.

lift_definition insert :: "pv \Rightarrow D \Rightarrow D"
is "\(\lambda e. d. \) if \(e \in \{a, b\} \) then Set.insert e d else d" by auto

definition set_to_D :: "pv set \Rightarrow D" where
"set_to_D = (\lambda s. fold (\lambda e acc. if \(e \in s \) then insert e acc else acc) [a, b] top)"

We show that the considered domain fulfills the sort constraints bot and equal as expected by the solver.
5.2 Definition of the Equation System

The following equation system can be generated for the must-be initialized analysis and the program from above.

\[
\begin{align*}
T : & \quad w = \emptyset \\
& \quad z = (y \cup \{a\}) \cap (w \cup \{a\}) \\
& \quad y = z \cup \{b\} \\
& \quad x = y \cap z
\end{align*}
\]

Below we define this equation system and express the right-hand sides with strategy trees.

\[
\text{datatype Unknown} = X | Y | Z | W
\]

\[
\text{fun ConstrSys :: Unknown \Rightarrow (Unknown, D) strategy_tree" where}
\]

\[
\begin{align*}
\text{"ConstrSys X = Query Y (\lambda d1. if d1 = top then Answer top} \\
& \quad \text{else Query Z (\lambda d2. Answer (join d1 d2)))"} \\
\text{"ConstrSys Y = Query Z (\lambda d. if d \in \{top, set_to_D \{b\}\}} \\
& \quad \text{then Answer (set_to_D \{b\}) else Answer bot)"} \\
\text{"ConstrSys Z = Query Y (\lambda d1. if d1 \in \{top, set_to_D \{a\}\}} \\
& \quad \text{then Answer (set_to_D \{a\})} \\
& \quad \text{else Query W (\lambda d2. if d2 \in \{top, set_to_D \{a\}\}} \\
& \quad \text{then Answer (set_to_D \{a\}) else Answer bot)"} \\
\text{"ConstrSys W = Answer top"
}\]

5.3 Solve the Equation System with TD_plain

We solve the equation system for each unknown, first with the TD_plain and in the following also with the TD. Note, that we use a finite map that defaults to bot for keys that are not contained in the map. This can happen in two cases: (1) when the value computed for that unknown is equal to bot,
or (2) if the unknown was not queried during the solving and therefore no value was stored in the finite map for it.

definition solution_plain_X where
 "solution_plain_X = TD_plain_Interp_solve ConstrSys X"
value "(solution_plain_X X, solution_plain_X Y, solution_plain_X Z, solution_plain_X W)"

definition solution_plain_Y where
 "solution_plain_Y = TD_plain_Interp_solve ConstrSys Y"
value "(solution_plain_Y X, solution_plain_Y Y, solution_plain_Y Z, solution_plain_Y W)"

definition solution_plain_Z where
 "solution_plain_Z = TD_plain_Interp_solve ConstrSys Z"
value "(solution_plain_Z X, solution_plain_Z Y, solution_plain_Z Z, solution_plain_Z W)"

definition solution_plain_W where
 "solution_plain_W = TD_plain_Interp_solve ConstrSys W"
value "(solution_plain_W X, solution_plain_W Y, solution_plain_W Z, solution_plain_W W)"

5.4 Solve the Equation System with TD

definition solutionX where "solutionX = TD_Interp_solve ConstrSys X"
value "((snd solutionX) X, (snd solutionX) Y, (snd solutionX) Z, (snd solutionX) W)"

definition solutionY where "solutionY = TD_Interp_solve ConstrSys Y"

definition solutionZ where "solutionZ = TD_Interp_solve ConstrSys Z"

definition solutionW where "solutionW = TD_Interp_solve ConstrSys W"

end

References

