
Timed Automata

Simon Wimmer

March 17, 2025

Abstract

Timed automata are a widely used formalism for modeling real-
time systems, which is employed in a class of successful model checkers
such as UPPAAL [LPY97], HyTech [HHWt97] or Kronos [Yov97]. This
work formalizes the theory for the subclass of diagonal-free timed au-
tomata, which is sufficient to model many interesting problems. We
first define the basic concepts and semantics of diagonal-free timed au-
tomata. Based on this, we prove two types of decidability results for
the language emptiness problem.

The first is the classic result of Alur and Dill [AD90, AD94], which
uses a finite partitioning of the state space into so-called regions.

Our second result focuses on an approach based on Difference Bound
Matrices (DBMs), which is practically used by model checkers. We
prove the correctness of the basic forward analysis operations on DBMs.
One of these operations is the Floyd-Warshall algorithm for the all-
pairs shortest paths problem. To obtain a finite search space, a widen-
ing operation has to be used for this kind of analysis. We use Patricia
Bouyer’s [Bou04] approach to prove that this widening operation is
correct in the sense that DBM-based forward analysis in combination
with the widening operation also decides language emptiness. The in-
teresting property of this proof is that the first decidability result is
reused to obtain the second one.

Contents
1 Miscellaneous 4

1.1 Lists . 4
1.2 Streams . 11
1.3 Mixed Material . 19

2 Graphs 39
2.1 Basic Definitions and Theorems 40
2.2 Graphs with a Start Node . 52
2.3 Subgraphs . 55
2.4 Bundles . 59

1

2.5 Directed Acyclic Graphs . 60
2.6 Finite Graphs . 61
2.7 Graph Invariants . 61
2.8 Simulations and Bisimulations 64
2.9 CTL . 78

3 Basic Definitions and Semantics 85
3.1 Syntactic Definition . 85
3.2 Operational Semantics . 87
3.3 Contracting Runs . 89
3.4 Zone Semantics . 91
3.5 From Clock Constraints to DBMs 94
3.6 Semantics Based on DBMs 103

4 Refinement to β-regions 110
4.1 Definition . 110
4.2 Basic Properties . 113
4.3 Approximation with β-regions 124
4.4 Computing β-Approximation 130
4.5 Auxiliary β-boundedness Theorems 155

5 The Classic Construction for Decidability 178
5.1 Definition of Regions . 178
5.2 Basic Properties . 179
5.3 Set of Regions . 189
5.4 Compability With Clock Constraints 225
5.5 Compability with Resets . 229
5.6 A Semantics Based on Regions 247
5.7 Correct Approximation of Zones with α-regions 253
5.8 Old Variant Using a Global Set of Regions 254
5.9 A Zone Semantics Abstracting with Closureα 259
5.10 New Variant . 270
5.11 A Semantics Based on Localized Regions 271
5.12 A New Zone Semantics Abstracting with Closureα,l 276

6 Correctness of β-approximation from α-regions 281
6.1 Preparing Bouyer’s Theorem 282
6.2 Bouyer’s Main Theorem . 302
6.3 Nice Corollaries of Bouyer’s Theorem 332
6.4 A New Zone Semantics Abstracting with Approxβ 334

2

7 Simulation Graphs 341
7.1 Simulation Graphs . 341
7.2 Poststability . 345
7.3 Prestability . 346
7.4 Double Simulation . 350
7.5 Finite Graphs . 354
7.6 Complete Simulation Graphs 359
7.7 Finite Complete Double Simulations 362
7.8 Encoding of Properties in Runs 369
7.9 Instantiation of Simulation Locales 409

8 Forward Analysis with DBMs and Widening 430
8.1 DBM-based Semantics with Normalization 432
8.2 Additional Useful Properties of the Normalized Semantics . . 447
8.3 Appendix: Standard Clock Numberings for Concrete Models 447

3

1 Miscellaneous

1.1 Lists

theory More-List
imports

Main
Instantiate-Existentials

begin

1.1.1 First and Last Elements of Lists

lemma (in −) hd-butlast-last-id:
hd xs # tl (butlast xs) @ [last xs] = xs if length xs > 1
using that by (cases xs) auto

1.1.2 list-all

lemma (in −) list-all-map:
assumes inv:

∧
x. P x =⇒ ∃ y. f y = x

and all: list-all P as
shows ∃ as ′. map f as ′ = as
using all

apply (induction as)
apply (auto dest!: inv)

subgoal for as ′ a
by (inst-existentials a # as ′) simp

done

1.1.3 list-all2

lemma list-all2-op-map-iff :
list-all2 (λ a b. b = f a) xs ys ←→ map f xs = ys
unfolding list-all2-iff
proof (induction xs arbitrary: ys)

case Nil
then show ?case by auto

next
case (Cons a xs ys)
then show ?case by (cases ys) auto

qed

lemma list-all2-last:
R (last xs) (last ys) if list-all2 R xs ys xs 6= []
using that

4

unfolding list-all2-iff
proof (induction xs arbitrary: ys)

case Nil
then show ?case by simp

next
case (Cons a xs ys)
then show ?case by (cases ys) auto

qed

lemma list-all2-set1 :
∀ x∈set xs. ∃ xa∈set as. P x xa if list-all2 P xs as
using that

proof (induction xs arbitrary: as)
case Nil
then show ?case by auto

next
case (Cons a xs as)
then show ?case by (cases as) auto

qed

lemma list-all2-swap:
list-all2 P xs ys ←→ list-all2 (λ x y. P y x) ys xs
unfolding list-all2-iff by (fastforce simp: in-set-zip)+

lemma list-all2-set2 :
∀ x∈set as. ∃ xa∈set xs. P xa x if list-all2 P xs as
using that by − (rule list-all2-set1 , subst (asm) list-all2-swap)

1.1.4 Distinct lists

lemma distinct-length-le: finite s =⇒ set xs ⊆ s =⇒ distinct xs =⇒ length
xs ≤ card s

by (metis card-mono distinct-card)

1.1.5 filter

lemma filter-eq-appendD:
∃ xs ′ ys ′. filter P xs ′ = xs ∧ filter P ys ′ = ys ∧ as = xs ′ @ ys ′ if filter P

as = xs @ ys
using that

proof (induction xs arbitrary: as)
case Nil
then show ?case

by (inst-existentials [] :: ′a list as) auto

5

next
case (Cons a xs)
from filter-eq-ConsD[OF Cons.prems[simplified]] obtain us vs where

as = us @ a # vs ∀ u∈set us. ¬ P u P a filter P vs = xs @ ys
by auto

moreover from Cons.IH [OF ‹- = xs @ ys›] obtain xs ′ ys where
filter P xs ′ = xs vs = xs ′ @ ys
by auto

ultimately show ?case
by (inst-existentials us @ [a] @ xs ′ ys) auto

qed

lemma list-all2-elem-filter :
assumes list-all2 P xs us x ∈ set xs
shows length (filter (P x) us) ≥ 1
using assms by (induction xs arbitrary: us) (auto simp: list-all2-Cons1)

lemma list-all2-replicate-elem-filter :
assumes list-all2 P (concat (replicate n xs)) ys x ∈ set xs
shows length (filter (P x) ys) ≥ n
using assms
by (induction n arbitrary: ys; fastforce dest: list-all2-elem-filter simp:

list-all2-append1)

1.1.6 Sublists

lemma nths-split:
nths xs (A ∪ B) = nths xs A @ nths xs B if ∀ i ∈ A. ∀ j ∈ B. i < j
using that
proof (induction xs arbitrary: A B)

case Nil
then show ?case by simp

next
case (Cons a xs)
let ?A = {j. Suc j ∈ A} and ?B = {j. Suc j ∈ B}
from Cons.prems have ∗: ∀ i∈?A. ∀ a∈?B. i < a

by auto
have [simp]: {j. Suc j ∈ A ∨ Suc j ∈ B} = ?A ∪ ?B

by auto
show ?case

unfolding nths-Cons
proof (clarsimp, safe, goal-cases)

case 2
with Cons.prems have A = {}

6

by auto
with Cons.IH [OF ∗] show ?case by auto

qed (use Cons.prems Cons.IH [OF ∗] in auto)
qed

lemma nths-nth:
nths xs {i} = [xs ! i] if i < length xs
using that
proof (induction xs arbitrary: i)

case Nil
then show ?case by simp

next
case (Cons a xs)
then show ?case

by (cases i) (auto simp: nths-Cons)
qed

lemma nths-shift:
nths (xs @ ys) S = nths ys {x − length xs | x. x ∈ S} if
∀ i ∈ S . length xs ≤ i
using that

proof (induction xs arbitrary: S)
case Nil
then show ?case by auto

next
case (Cons a xs)
have [simp]: {x − length xs |x. Suc x ∈ S} = {x − Suc (length xs) |x. x
∈ S} if 0 /∈ S

using that apply safe
apply force

subgoal for x x ′

by (cases x ′) auto
done

from Cons.prems show ?case
by (simp, subst nths-Cons, subst Cons.IH ; auto)

qed

lemma nths-eq-ConsD:
assumes nths xs I = x # as
shows
∃ ys zs.

xs = ys @ x # zs ∧ length ys ∈ I ∧ (∀ i ∈ I . i ≥ length ys)
∧ nths zs ({i − length ys − 1 | i. i ∈ I ∧ i > length ys}) = as

using assms

7

proof (induction xs arbitrary: I x as)
case Nil
then show ?case by simp

next
case (Cons a xs)
from Cons.prems show ?case

unfolding nths-Cons
apply (auto split: if-split-asm)
subgoal

by (inst-existentials [] :: ′a list xs; force intro: arg-cong2 [of xs xs - -
nths])

subgoal
apply (drule Cons.IH)
apply safe
subgoal for ys zs

apply (inst-existentials a # ys zs)
apply simp+

apply standard
subgoal for i

by (cases i; auto)
apply (rule arg-cong2 [of zs zs - - nths])
apply simp

apply safe
subgoal for - i

by (cases i; auto)
by force

done
done

qed

lemma nths-out-of-bounds:
nths xs I = [] if ∀ i ∈ I . i ≥ length xs

proof −
have
∀N as.
(∃n. n ∈ N ∧ ¬ length (as:: ′a list) ≤ n)
∨ (∀ asa. nths (as @ asa) N = nths asa {n − length as |n. n ∈ N})

using nths-shift by blast
then have∧

as. nths as {n − length xs |n. n ∈ I} = nths (xs @ as) I
∨ nths (xs @ []) I = []

using that by fastforce
then have nths (xs @ []) I = []

8

by (metis (no-types) nths-nil)
then show ?thesis

by simp
qed

lemma nths-eq-appendD:
assumes nths xs I = as @ bs
shows
∃ ys zs.

xs = ys @ zs ∧ nths ys I = as
∧ nths zs {i − length ys | i. i ∈ I ∧ i ≥ length ys} = bs

using assms
proof (induction as arbitrary: xs I)

case Nil
then show ?case

by (inst-existentials [] :: ′a list nths bs) auto
next

case (Cons a ys xs)
from nths-eq-ConsD[of xs I a ys @ bs] Cons.prems
obtain ys ′ zs ′ where

xs = ys ′ @ a # zs ′

length ys ′ ∈ I
∀ i ∈ I . i ≥ length ys ′

nths zs ′ {i − length ys ′ − 1 |i. i ∈ I ∧ i > length ys ′} = ys @ bs
by auto

moreover from Cons.IH [OF ‹nths zs ′ - = -›] obtain ys ′′ zs ′′ where
zs ′ = ys ′′ @ zs ′′

ys = nths ys ′′ {i − length ys ′ − 1 |i. i ∈ I ∧ length ys ′ < i}
bs = nths zs ′′ {i − length ys ′′ |i. i ∈ {i − length ys ′ − 1 |i. i ∈ I ∧

length ys ′ < i} ∧ length ys ′′ ≤ i}
by auto

ultimately show ?case
apply (inst-existentials ys ′ @ a # ys ′′ zs ′′)

apply (simp; fail)
subgoal

by (simp add: nths-out-of-bounds nths-append nths-Cons)
(rule arg-cong2 [of ys ′′ ys ′′ - - nths]; force)

subgoal
by safe (rule arg-cong2 [of zs ′′ zs ′′ - - nths]; force)

done
qed

lemma filter-nths-length:
length (filter P (nths xs I)) ≤ length (filter P xs)

9

proof (induction xs arbitrary: I)
case Nil
then show ?case

by simp
next

case Cons
then show ?case

proof −
fix a :: ′a and xsa :: ′a list and Ia :: nat set
assume a1 :

∧
I . length (filter P (nths xsa I)) ≤ length (filter P xsa)

have f2 :
∀ b bs N . if 0 ∈ N then nths ((b:: ′a) # bs) N =
[b] @ nths bs {n. Suc n ∈ N} else nths (b # bs) N = [] @ nths bs

{n. Suc n ∈ N}
by (simp add: nths-Cons)

have f3 :
nths (a # xsa) Ia = [] @ nths xsa {n. Suc n ∈ Ia}
−→ length (filter P (nths (a # xsa) Ia)) ≤ length (filter P xsa)

using a1 by (metis append-Nil)
have f4 : length (filter P (nths xsa {n. Suc n ∈ Ia})) + 0 ≤ length (filter

P xsa) + 0
using a1 by simp

have f5 :
Suc (length (filter P (nths xsa {n. Suc n ∈ Ia})) + 0)
= length (a # filter P (nths xsa {n. Suc n ∈ Ia}))
by force

have f6 : Suc (length (filter P xsa) + 0) = length (a # filter P xsa)
by simp

{ assume ¬ length (filter P (nths (a # xsa) Ia)) ≤ length (filter P (a
xsa))

{ assume nths (a # xsa) Ia 6= [a] @ nths xsa {n. Suc n ∈ Ia}
moreover
{ assume

nths (a # xsa) Ia = [] @ nths xsa {n. Suc n ∈ Ia}
∧ length (filter P (a # xsa)) ≤ length (filter P xsa)

then have length (filter P (nths (a # xsa) Ia)) ≤ length (filter P
(a # xsa))

using a1 by (metis (no-types) append-Nil filter .simps(2) impos-
sible-Cons) }

ultimately have length (filter P (nths (a # xsa) Ia)) ≤ length (filter
P (a # xsa))

using f3 f2 by (meson dual-order .trans le-cases) }
then have length (filter P (nths (a # xsa) Ia)) ≤ length (filter P (a

10

xsa))
using f6 f5 f4 a1 by (metis Suc-le-mono append-Cons append-Nil

filter .simps(2)) }
then show length (filter P (nths (a # xsa) Ia)) ≤ length (filter P (a #

xsa))
by meson

qed
qed

end

1.2 Streams

theory Stream-More
imports

Transition-Systems-and-Automata.Sequence-LTL
Instantiate-Existentials
HOL−Library.Rewrite

begin

lemma list-all-stake-least:
list-all (Not ◦ P) (stake (LEAST n. P (xs !! n)) xs) (is ?G) if ∃ n. P (xs

!! n)
proof (rule ccontr)

let ?n = LEAST n. P (xs !! n)
assume ¬ ?G
then have ∃ x ∈ set (stake ?n xs). P x unfolding list-all-iff by auto
then obtain n ′ where n ′ < ?n P (xs !! n ′) using set-stake-snth by metis
with Least-le[of λ n. P (xs !! n) n ′] show False by auto

qed

lemma alw-stream-all2-mono:
assumes stream-all2 P xs ys alw Q xs

∧
xs ys. stream-all2 P xs ys =⇒

Q xs =⇒ R ys
shows alw R ys
using assms stream.rel-sel by (coinduction arbitrary: xs ys) (blast)

lemma alw-ev-HLD-cycle:
assumes stream-all2 (∈) xs (cycle as) a ∈ set as
shows infs (λx. x ∈ a) xs

using assms(1)
proof (coinduct rule: infs-coinduct-shift)

case (infs xs)
have 1 : as 6= [] using assms(2) by auto

11

have 2 :
list-all2 (∈) (stake (length as) xs) (stake (length as) (cycle as))
stream-all2 (∈) (sdrop (length as) xs) (sdrop (length as) (cycle as))
using infs stream-rel-shift stake-sdrop length-stake by metis+

have 3 : stake (length as) (cycle as) = as using 1 by simp
have 4 : sdrop (length as) (cycle as) = cycle as using sdrop-cycle-eq 1 by

this
have 5 : set (stake (length as) xs) ∩ a 6= {}

using assms(2) 2 (1) unfolding list.in-rel 3
by (auto) (metis IntI empty-iff mem-Collect-eq set-zip-leftD split-conv

subsetCE zip-map-fst-snd)
show ?case using 2 5 unfolding 4

by force
qed

lemma alw-ev-mono:
assumes alw (ev ϕ) xs and

∧
xs. ϕ xs =⇒ ψ xs

shows alw (ev ψ) xs
by (rule alw-mp[OF assms(1)]) (auto intro: ev-mono assms(2) simp:

alw-iff-sdrop)

lemma alw-ev-lockstep:
assumes

alw (ev (holds P)) xs stream-all2 Q xs as∧
x a. P x =⇒ Q x a =⇒ R a

shows
alw (ev (holds R)) as

using assms(1 ,2)
apply (coinduction arbitrary: xs as rule: alw.coinduct)
apply auto
subgoal

by (metis alw.cases assms(3) ev-holds-sset stream-all2-sset1)
subgoal

by (meson alw.cases stream.rel-sel)
done

1.2.1 sfilter, wait, nxt

Useful?
lemma nxt-holds-iff-snth: (nxt ^^ i) (holds P) xs ←→ P (xs !! i)

by (induction i arbitrary: xs; simp add: holds.simps)

Useful?
lemma wait-LEAST :

12

wait (holds P) xs = (LEAST n. P (xs !! n)) unfolding wait-def nxt-holds-iff-snth
..

lemma sfilter-SCons-decomp:
assumes sfilter P xs = x ## zs ev (holds P) xs
shows ∃ ys ′ zs ′. xs = ys ′ @− x ## zs ′ ∧ list-all (Not o P) ys ′ ∧ P x ∧

sfilter P zs ′ = zs
proof −

note [simp] = holds.simps
from ev-imp-shift[OF assms(2)] obtain as bs where xs = as @− bs holds

P bs
by auto

then have P (shd bs) by auto
with ‹xs = -› have ∃ n. P (xs !! n) using assms(2) sdrop-wait by

fastforce
from sdrop-while-sdrop-LEAST [OF this] have ∗:

sdrop-while (Not ◦ P) xs = sdrop (LEAST n. P (xs !! n)) xs .
let ?xs = sdrop-while (Not ◦ P) xs let ?n = LEAST n. P (xs !! n)
from assms(1) have x = shd ?xs zs = sfilter P (stl ?xs)

by (subst (asm) sfilter .ctr ; simp)+
have xs = stake ?n xs @− sdrop ?n xs by simp
moreover have P x using assms(1) unfolding sfilter-eq[OF assms(2)]

..
moreover from ‹∃ n. P -› have list-all (Not o P) (stake ?n xs) by (rule

list-all-stake-least)
ultimately show ?thesis

using ‹x = -› ‹zs = -› ∗[symmetric] by (inst-existentials stake ?n xs stl
?xs) auto
qed

lemma sfilter-SCons-decomp ′:
assumes sfilter P xs = x ## zs ev (holds P) xs
shows

list-all (Not o P) (stake (wait (holds P) xs) xs) (is ?G1)
P x
∃ zs ′. xs = stake (wait (holds P) xs) xs @− x ## zs ′ ∧ sfilter P zs ′ =

zs (is ?G2)
proof −

note [simp] = holds.simps
from ev-imp-shift[OF assms(2)] obtain as bs where xs = as @− bs holds

P bs
by auto

then have P (shd bs) by auto
with ‹xs = -› have ∃ n. P (xs !! n) using assms(2) sdrop-wait by

13

fastforce thm sdrop-wait
from sdrop-while-sdrop-LEAST [OF this] have ∗:

sdrop-while (Not ◦ P) xs = sdrop (LEAST n. P (xs !! n)) xs .
let ?xs = sdrop-while (Not ◦ P) xs let ?n = wait (holds P) xs
from assms(1) have x = shd ?xs zs = sfilter P (stl ?xs)

by (subst (asm) sfilter .ctr ; simp)+
have xs = stake ?n xs @− sdrop ?n xs by simp
moreover show P x using assms(1) unfolding sfilter-eq[OF assms(2)]

..
moreover from ‹∃ n. P -› show list-all (Not o P) (stake ?n xs)

by (auto intro: list-all-stake-least simp: wait-LEAST)
ultimately show ?G2

using ‹x = -› ‹zs = -› ∗[symmetric] by (inst-existentials stl ?xs) (auto
simp: wait-LEAST)
qed

lemma sfilter-shift-decomp:
assumes sfilter P xs = ys @− zs alw (ev (holds P)) xs
shows ∃ ys ′ zs ′. xs = ys ′ @− zs ′ ∧ filter P ys ′ = ys ∧ sfilter P zs ′ = zs
using assms(1 ,2)

proof (induction ys arbitrary: xs)
case Nil
then show ?case by (inst-existentials [] :: ′a list xs; simp)

next
case (Cons y ys)
from alw-ev-imp-ev-alw[OF ‹alw (ev -) xs›] have ev (holds P) xs

by (auto elim: ev-mono)
with Cons.prems(1) sfilter-SCons-decomp[of P xs y ys @− zs] obtain ys ′

zs ′ where decomp:
xs = ys ′ @− y ## zs ′ list-all (Not ◦ P) ys ′ P y sfilter P zs ′ = ys @− zs
by clarsimp

then have sfilter P zs ′ = ys @− zs by auto
from ‹alw (ev -) xs› ‹xs = -› have alw (ev (holds P)) zs ′

by (metis ev.intros(2) ev-shift not-alw-iff stream.sel(2))
from Cons.IH [OF ‹sfilter P zs ′ = -› this] obtain zs1 zs2 where

zs ′ = zs1 @− zs2 filter P zs1 = ys sfilter P zs2 = zs
by clarsimp

with decomp show ?case
by (inst-existentials ys ′ @ y # zs1 zs2 ; simp add: list.pred-set)

qed

lemma finite-sset-sfilter-decomp:
assumes finite (sset (sfilter P xs)) alw (ev (holds P)) xs
obtains x ws ys zs where xs = ws @− x ## ys @− x ## zs P x

14

proof atomize-elim
let ?xs = sfilter P xs
have 1 : ¬ sdistinct (sfilter P xs) using sdistinct-infinite-sset assms(1)

by auto
from not-sdistinct-decomp[OF 1] obtain ws ys x zs where guessed1 :

sfilter P xs = ws @− x ## ys @− x ## zs .
from sfilter-shift-decomp[OF this assms(2)] obtain ys ′ zs ′ where guessed2 :

xs = ys ′ @− zs ′

sfilter P zs ′ = x ## ys @− x ## zs
ws = filter P ys ′

by clarsimp
then have ev (holds P) zs ′ using alw-shift assms(2) by blast
from sfilter-SCons-decomp[OF guessed2 (2) this] obtain zs1 zs2 where

guessed3 :
zs ′ = zs1 @− x ## zs2
list-all (Not ◦ P) zs1
P x
sfilter P zs2 = ys @− x ## zs
by clarsimp

have alw (ev (holds P)) zs2
by (metis alw-ev-stl alw-shift assms(2) guessed2 (1) guessed3 (1) stream.sel(2))
from sfilter-shift-decomp[OF guessed3 (4) this] obtain zs3 zs4 where

guessed4 :
zs2 = zs3 @− zs4
sfilter P zs4 = x ## zs
ys = filter P zs3
by clarsimp

have ev (holds P) zs4
using ‹alw (ev (holds P)) zs2 › alw-shift guessed4 (1) by blast

from sfilter-SCons-decomp[OF guessed4 (2) this] obtain zs5 zs6 where
zs4 = zs5 @− x ## zs6
list-all (Not ◦ P) zs5
P x
zs = sfilter P zs6
by clarsimp

with guessed1 guessed2 guessed3 guessed4 show ∃ws x ys zs. xs = ws @−
x ## ys @− x ## zs ∧ P x

by (inst-existentials ys ′ @ zs1 x zs3 @ zs5 zs6 ; simp)
qed

Useful?
lemma sfilter-shd-LEAST :

shd (sfilter P xs) = xs !! (LEAST n. P (xs !! n)) if ev (holds P) xs
proof −

15

note [simp] = holds.simps
from sdrop-wait[OF ‹ev - xs›] have ∃ n. P (xs !! n) by auto
from sdrop-while-sdrop-LEAST [OF this] show ?thesis by simp

qed

lemma alw-nxt-holds-cong:
(nxt ^^ n) (holds (λx. P x ∧ Q x)) xs = (nxt ^^ n) (holds Q) xs if alw

(holds P) xs
using that unfolding nxt-holds-iff-snth alw-iff-sdrop by (simp add: holds.simps)

lemma alw-wait-holds-cong:
wait (holds (λx. P x ∧ Q x)) xs = wait (holds Q) xs if alw (holds P) xs
unfolding wait-def alw-nxt-holds-cong[OF that] ..

lemma alw-sfilter :
sfilter (λ x. P x ∧ Q x) xs = sfilter Q xs if alw (holds P) xs alw (ev (holds

Q)) xs
using that

proof (coinduction arbitrary: xs)
case prems: stream-eq
note [simp] = holds.simps
from prems(3 ,4) have ev-one: ev (holds (λx. P x ∧ Q x)) xs

by (subst ev-cong[of - - - holds Q]) (assumption | auto)+
from prems have a = shd (sfilter (λx. P x ∧ Q x) xs) b = shd (sfilter Q

xs)
by (metis stream.sel(1))+

with prems(3 ,4) have
a = xs !! (LEAST n. P (xs !! n) ∧ Q (xs !! n)) b = xs !! (LEAST n. Q

(xs !! n))
using ev-one by (auto 4 3 dest: sfilter-shd-LEAST)

with alw-wait-holds-cong[unfolded wait-LEAST , OF ‹alw (holds P) xs›]
have a = b by simp

from sfilter-SCons-decomp ′[OF prems(1)[symmetric], OF ev-one] obtain
u2 where guessed-a:

list-all (Not ◦ (λx. P x ∧ Q x)) (stake (wait (holds (λx. P x ∧ Q x))
xs) xs)

xs = stake (wait (holds (λx. P x ∧ Q x)) xs) xs @− a ## u2
u = sfilter (λx. P x ∧ Q x) u2
by clarsimp

have ev (holds Q) xs using prems(4) by blast
from sfilter-SCons-decomp ′[OF prems(2)[symmetric], OF this] obtain v2

where
list-all (Not ◦ Q) (stake (wait (holds Q) xs) xs)
xs = stake (wait (holds Q) xs) xs @− b ## v2

16

v = sfilter Q v2
by clarsimp

with guessed-a ‹a = b› show ?case
apply (intro conjI exI)

apply assumption+
apply (simp add: alw-wait-holds-cong[OF prems(3)], metis shift-left-inj

stream.inject)
by (metis alw.cases alw-shift prems(3 ,4) stream.sel(2))+

qed

lemma alw-ev-holds-mp:
alw (holds P) xs =⇒ ev (holds Q) xs =⇒ ev (holds (λx. P x ∧ Q x)) xs
by (subst ev-cong, assumption) (auto simp: holds.simps)

lemma alw-ev-conjI :
alw (ev (holds (λ x. P x ∧ Q x))) xs if alw (holds P) xs alw (ev (holds

Q)) xs
using that(2 ,1) by − (erule alw-mp, coinduction arbitrary: xs, auto intro:

alw-ev-holds-mp)

1.2.2 Useful?

lemma alw-holds-pred-stream-iff :
alw (holds P) xs ←→ pred-stream P xs
by (simp add: alw-iff-sdrop stream-pred-snth holds.simps)

lemma alw-holds-sset:
alw (holds P) xs = (∀ x ∈ sset xs. P x)
by (simp add: alw-holds-pred-stream-iff stream.pred-set)

lemma pred-stream-sfilter :
assumes alw-ev: alw (ev (holds P)) xs
shows pred-stream P (sfilter P xs)
using alw-ev

proof (coinduction arbitrary: xs)
case (stream-pred xs)
then have ev (holds P) xs by auto
have sfilter P xs = shd (sfilter P xs) ## stl (sfilter P xs)

by (cases sfilter P xs) auto
from sfilter-SCons-decomp[OF this ‹ev (holds P) xs›] obtain ys ′ zs ′

where
xs = ys ′ @− shd (sdrop-while (Not ◦ P) xs) ## zs ′

list-all (Not ◦ P) ys ′

P (shd (sdrop-while (Not ◦ P) xs))

17

sfilter P zs ′ =
sfilter P (stl (sdrop-while (Not ◦ P) xs))

by clarsimp
then show ?case

apply (inst-existentials zs ′)
apply (metis sfilter .simps(1) stream.sel(1) stream-pred(1))
apply (metis scons-eq sfilter .simps(2) stream-pred(1))
apply (metis alw-ev-stl alw-shift stream.sel(2) stream-pred(2))
done

qed

lemma alw-ev-sfilter-mono:
assumes alw-ev: alw (ev (holds P)) xs

and mono:
∧

x. P x =⇒ Q x
shows pred-stream Q (sfilter P xs)
using stream.pred-mono[of P Q] assms pred-stream-sfilter by blast

lemma sset-sfilter :
sset (sfilter P xs) ⊆ sset xs if alw (ev (holds P)) xs

proof −
have alw (holds (λ x. x ∈ sset xs)) xs by (simp add: alw-iff-sdrop holds.simps)
with ‹alw (ev -) -› alw-sfilter [OF this ‹alw (ev -) -›, symmetric]

have pred-stream (λ x. x ∈ sset xs) (sfilter P xs)
by (simp) (rule alw-ev-sfilter-mono; auto intro: alw-ev-conjI)

then have ∀ x ∈ sset (sfilter P xs). x ∈ sset xs unfolding stream.pred-set
by this

then show ?thesis by blast
qed

lemma stream-all2-weaken:
stream-all2 Q xs ys if stream-all2 P xs ys

∧
x y. P x y =⇒ Q x y

using that by (coinduction arbitrary: xs ys) auto

lemma stream-all2-SCons1 :
stream-all2 P (x ## xs) ys = (∃ z zs. ys = z ## zs ∧ P x z ∧ stream-all2

P xs zs)
by (subst (3) stream.collapse[symmetric], simp del: stream.collapse, force)

lemma stream-all2-SCons2 :
stream-all2 P xs (y ## ys) = (∃ z zs. xs = z ## zs ∧ P z y ∧ stream-all2

P zs ys)
by (subst stream.collapse[symmetric], simp del: stream.collapse, force)

lemma stream-all2-combine:

18

stream-all2 R xs zs if
stream-all2 P xs ys stream-all2 Q ys zs

∧
x y z. P x y ∧ Q y z =⇒ R x z

using that(1 ,2)
by (coinduction arbitrary: xs ys zs)

(auto intro: that(3) simp: stream-all2-SCons1 stream-all2-SCons2)

lemma stream-all2-shift1 :
stream-all2 P (xs1 @− xs2) ys =
(∃ ys1 ys2 . ys = ys1 @− ys2 ∧ list-all2 P xs1 ys1 ∧ stream-all2 P xs2

ys2)
apply (induction xs1 arbitrary: ys)
apply (simp; fail)

apply (simp add: stream-all2-SCons1 list-all2-Cons1)
apply safe
subgoal for a xs1 ys z zs ys1 ys2

by (inst-existentials z # ys1 ys2 ; simp)
subgoal for a xs1 ys ys1 ys2 z zs

by (inst-existentials z zs @− ys2 zs ys2 ; simp)
done

lemma stream-all2-shift2 :
stream-all2 P ys (xs1 @− xs2) =
(∃ ys1 ys2 . ys = ys1 @− ys2 ∧ list-all2 P ys1 xs1 ∧ stream-all2 P ys2

xs2)
by (meson list.rel-flip stream.rel-flip stream-all2-shift1)

lemma stream-all2-bisim:
assumes stream-all2 (∈) xs as stream-all2 (∈) ys as sset as ⊆ S
shows stream-all2 (λ x y. ∃ a. x ∈ a ∧ y ∈ a ∧ a ∈ S) xs ys
using assms
apply (coinduction arbitrary: as xs ys)
subgoal for a u b v as xs ys

apply (rule conjI)
apply (inst-existentials shd as, auto simp: stream-all2-SCons1 ; fail)

apply (inst-existentials stl as, auto 4 3 simp: stream-all2-SCons1 ; fail)
done

done

end

1.3 Mixed Material

theory TA-Misc
imports Main HOL.Real

19

begin

1.3.1 Reals

Properties of fractions lemma frac-add-le-preservation:
fixes a d :: real and b :: nat
assumes a < b d < 1 − frac a
shows a + d < b

proof −
from assms have a + d < a + 1 − frac a by auto
also have . . . = (a − frac a) + 1 by auto
also have . . . = floor a + 1 unfolding frac-def by auto
also have . . . ≤ b using ‹a < b›
by (metis floor-less-iff int-less-real-le of-int-1 of-int-add of-int-of-nat-eq)
finally show a + d < b .

qed

lemma lt-lt-1-ccontr :
(a :: int) < b =⇒ b < a + 1 =⇒ False by auto

lemma int-intv-frac-gt0 :
(a :: int) < b =⇒ b < a + 1 =⇒ frac b > 0 by auto

lemma floor-frac-add-preservation:
fixes a d :: real
assumes 0 < d d < 1 − frac a
shows floor a = floor (a + d)

proof −
have frac a ≥ 0 by auto
with assms(2) have d < 1 by linarith
from assms have a + d < a + 1 − frac a by auto
also have . . . = (a − frac a) + 1 by auto
also have . . . = (floor a) + 1 unfolding frac-def by auto
finally have ∗: a + d < floor a + 1 .
have floor (a + d) ≥ floor a using ‹d > 0 › by linarith
moreover from ∗ have floor (a + d) < floor a + 1 by linarith
ultimately show floor a = floor (a + d) by auto

qed

lemma frac-distr :
fixes a d :: real
assumes 0 < d d < 1 − frac a
shows frac (a + d) > 0 frac a + d = frac (a + d)

proof −

20

have frac a ≥ 0 by auto
with assms(2) have d < 1 by linarith
from assms have a + d < a + 1 − frac a by auto
also have . . . = (a − frac a) + 1 by auto
also have . . . = (floor a) + 1 unfolding frac-def by auto
finally have ∗: a + d < floor a + 1 .
have ∗∗: floor a < a + d using assms(1) by linarith
have frac (a + d) 6= 0
proof (rule ccontr , auto, goal-cases)

case 1
then obtain b :: int where b = a + d by (metis Ints-cases)
with ∗ ∗∗ have b < floor a + 1 floor a < b by auto
with lt-lt-1-ccontr show ?case by blast

qed
then show frac (a + d) > 0 by auto
from floor-frac-add-preservation assms have floor a = floor (a + d) by

auto
then show frac a + d = frac (a + d) unfolding frac-def by force

qed

lemma frac-add-leD:
fixes a d :: real
assumes 0 < d d < 1 − frac a d < 1 − frac b frac (a + d) ≤ frac (b +

d)
shows frac a ≤ frac b

proof −
from floor-frac-add-preservation assms have

floor a = floor (a + d) floor b = floor (b + d)
by auto
with assms(4) show frac a ≤ frac b unfolding frac-def by auto

qed

lemma floor-frac-add-preservation ′:
fixes a d :: real
assumes 0 ≤ d d < 1 − frac a
shows floor a = floor (a + d)

using assms floor-frac-add-preservation by (cases d = 0) auto

lemma frac-add-leIFF :
fixes a d :: real
assumes 0 ≤ d d < 1 − frac a d < 1 − frac b
shows frac a ≤ frac b ←→ frac (a + d) ≤ frac (b + d)

proof −
from floor-frac-add-preservation ′ assms have

21

floor a = floor (a + d) floor b = floor (b + d)
by auto
then show ?thesis unfolding frac-def by auto

qed

lemma nat-intv-frac-gt0 :
fixes c :: nat fixes x :: real
assumes c < x x < real (c + 1)
shows frac x > 0

proof (rule ccontr , auto, goal-cases)
case 1
then obtain d :: int where d: x = d by (metis Ints-cases)
with assms have c < d d < int c + 1 by auto
with int-intv-frac-gt0 [OF this] 1 d show False by auto

qed

lemma nat-intv-frac-decomp:
fixes c :: nat and d :: real
assumes c < d d < c + 1
shows d = c + frac d

proof −
from assms have int c = bdc by linarith
thus ?thesis by (simp add: frac-def)

qed

lemma nat-intv-not-int:
fixes c :: nat
assumes real c < d d < c + 1
shows d /∈ �

proof (standard, goal-cases)
case 1
then obtain k :: int where d = k using Ints-cases by auto
then have frac d = 0 by auto
moreover from nat-intv-frac-decomp[OF assms] have ∗: d = c + frac d

by auto
ultimately have d = c by linarith
with assms show ?case by auto

qed

lemma frac-nat-add-id: frac ((n :: nat) + (r :: real)) = frac r — Found by
sledgehammer
proof −

have
∧

r . frac (r ::real) < 1
by (meson frac-lt-1)

22

then show ?thesis
by (simp add: floor-add frac-def)

qed

lemma floor-nat-add-id: 0 ≤ (r :: real) =⇒ r < 1 =⇒ floor (real (n::nat)
+ r) = n by linarith

lemma int-intv-frac-gt-0 ′:
(a :: real) ∈ � =⇒ (b :: real) ∈ � =⇒ a ≤ b =⇒ a 6= b =⇒ a ≤ b − 1

proof (goal-cases)
case 1
then have a < b by auto
from 1 (1 ,2) obtain k l :: int where a = real-of-int k b = real-of-int l

by (metis Ints-cases)
with ‹a < b› show ?case by auto

qed

lemma int-lt-Suc-le:
(a :: real) ∈ � =⇒ (b :: real) ∈ � =⇒ a < b + 1 =⇒ a ≤ b

proof (goal-cases)
case 1
from 1 (1 ,2) obtain k l :: int where a = real-of-int k b = real-of-int l

by (metis Ints-cases)
with ‹a < b + 1 › show ?case by auto

qed

lemma int-lt-neq-Suc-lt:
(a :: real) ∈ � =⇒ (b :: real) ∈ � =⇒ a < b =⇒ a + 1 6= b =⇒ a + 1

< b
proof (goal-cases)

case 1
from 1 (1 ,2) obtain k l :: int where a = real-of-int k b = real-of-int l

by (metis Ints-cases)
with 1 show ?case by auto

qed

lemma int-lt-neq-prev-lt:
(a :: real) ∈ � =⇒ (b :: real) ∈ � =⇒ a − 1 < b =⇒ a 6= b =⇒ a < b

proof (goal-cases)
case 1
from 1 (1 ,2) obtain k l :: int where a = real-of-int k b = real-of-int l

by (metis Ints-cases)
with 1 show ?case by auto

qed

23

lemma ints-le-add-frac1 :
fixes a b x :: real
assumes 0 < x x < 1 a ∈ � b ∈ � a + x ≤ b
shows a ≤ b

using assms by auto

lemma ints-le-add-frac2 :
fixes a b x :: real
assumes 0 ≤ x x < 1 a ∈ � b ∈ � b ≤ a + x
shows b ≤ a

using assms
by (metis add.commute add-le-cancel-left add-mono-thms-linordered-semiring(1)
int-lt-Suc-le leD le-less-linear)

1.3.2 Ordering Fractions

lemma distinct-twice-contradiction:
xs ! i = x =⇒ xs ! j = x =⇒ i < j =⇒ j < length xs =⇒ ¬ distinct xs

proof (rule ccontr , simp, induction xs arbitrary: i j)
case Nil thus ?case by auto

next
case (Cons y xs)
show ?case
proof (cases i = 0)

case True
with Cons have y = x by auto
moreover from True Cons have x ∈ set xs by auto
ultimately show False using Cons(6) by auto

next
case False
with Cons have

xs ! (i − 1) = x xs ! (j − 1) = x i − 1 < j − 1 j − 1 < length xs
distinct xs

by auto
from Cons.IH [OF this] show False .

qed
qed

lemma distinct-nth-unique:
xs ! i = xs ! j =⇒ i < length xs =⇒ j < length xs =⇒ distinct xs =⇒ i

= j
apply (rule ccontr)
apply (cases i < j)

24

apply auto
apply (auto dest: distinct-twice-contradiction)

using distinct-twice-contradiction by fastforce

lemma (in linorder) linorder-order-fun:
fixes S :: ′a set
assumes finite S
obtains f :: ′a ⇒ nat
where (∀ x ∈ S . ∀ y ∈ S . f x ≤ f y ←→ x ≤ y) and range f ⊆ {0 ..card

S − 1}
proof −

obtain l where l-def : l = sorted-list-of-set S by auto
with sorted-list-of-set(1)[OF assms] have l: set l = S sorted l distinct l

by auto
from l(1 ,3) ‹finite S› have len: length l = card S using distinct-card by

force
let ?f = λ x. if x /∈ S then 0 else THE i. i < length l ∧ l ! i = x
{ fix x y assume A: x ∈ S y ∈ S x < y

with l(1) obtain i j where ∗: l ! i = x l ! j = y i < length l j < length
l

by (meson in-set-conv-nth)
have i < j
proof (rule ccontr , goal-cases)

case 1
with sorted-nth-mono[OF l(2)] ‹i < length l› have l ! j ≤ l ! i by

auto
with ∗ A(3) show False by auto

qed
moreover have ?f x = i using ∗ l(3) A(1) by (auto) (rule, auto intro:

distinct-nth-unique)
moreover have ?f y = j using ∗ l(3) A(2) by (auto) (rule, auto intro:

distinct-nth-unique)
ultimately have ?f x < ?f y by auto

} moreover
{ fix x y assume A: x ∈ S y ∈ S ?f x < ?f y

with l(1) obtain i j where ∗: l ! i = x l ! j = y i < length l j < length
l

by (meson in-set-conv-nth)
moreover have ?f x = i using ∗ l(3) A(1) by (auto) (rule, auto intro:

distinct-nth-unique)
moreover have ?f y = j using ∗ l(3) A(2) by (auto) (rule, auto intro:

distinct-nth-unique)
ultimately have ∗∗: l ! ?f x = x l ! ?f y = y i < j using A(3) by auto
have x < y

25

proof (rule ccontr , goal-cases)
case 1
then have y ≤ x by simp
moreover from sorted-nth-mono[OF l(2), of i j] ∗∗(3) ∗ have x ≤ y

by auto
ultimately show False using distinct-nth-unique[OF - ∗(3 ,4) l(3)]

∗(1 ,2) ∗∗(3) by fastforce
qed

}
ultimately have ∀ x ∈ S . ∀ y ∈ S . ?f x ≤ ?f y ←→ x ≤ y by force
moreover have range ?f ⊆ {0 ..card S − 1}
proof (auto, goal-cases)

case (1 x)
with l(1) obtain i where ∗: l ! i = x i < length l by (meson

in-set-conv-nth)
then have ?f x = i using l(3) 1 by (auto) (rule, auto intro: dis-

tinct-nth-unique)
with len show ?case using ∗(2) 1 by auto

qed
ultimately show ?thesis ..

qed

locale enumerateable =
fixes T :: ′a set
fixes less :: ′a ⇒ ′a ⇒ bool (infix ‹≺› 50)
assumes finite: finite T
assumes total: ∀ x ∈ T . ∀ y ∈ T . x 6= y −→ (x ≺ y) ∨ (y ≺ x)
assumes trans: ∀ x ∈ T . ∀ y ∈ T . ∀ z ∈ T . (x :: ′a) ≺ y −→ y ≺ z −→

x ≺ z
assumes asymmetric: ∀ x ∈ T . ∀ y ∈ T . x ≺ y −→ ¬ (y ≺ x)

begin

lemma non-empty-set-has-least ′:
S ⊆ T =⇒ S 6= {} =⇒ ∃ x ∈ S . ∀ y ∈ S . x 6= y −→ ¬ y ≺ x

proof (rule ccontr , induction card S arbitrary: S)
case 0 then show ?case using finite by (auto simp: finite-subset)

next
case (Suc n)
then obtain x where x: x ∈ S by blast
from finite Suc.prems(1) have finite: finite S by (auto simp: finite-subset)
let ?S = S − {x}
show ?case
proof (cases S = {x})

case True

26

with Suc.prems(3) show False by auto
next

case False
then have S : ?S 6= {} using x by blast
show False
proof (cases ∃ x ∈ ?S . ∀ y∈?S . x 6= y −→ ¬ y ≺ x)

case False
have n = card ?S using Suc.hyps finite by (simp add: x)

from Suc.hyps(1)[OF this - S False] Suc.prems(1) show False by auto
next

case True
then obtain x ′ where x ′: ∀ y∈?S . x ′ 6= y −→ ¬ y ≺ x ′ x ′ ∈ ?S x 6=

x ′ by auto
from total Suc.prems(1) x ′(2) have

∧
y. y ∈ S =⇒ x ′ 6= y =⇒ ¬ y

≺ x ′ =⇒ x ′ ≺ y by auto
from total Suc.prems(1) x ′(1 ,2) have ∗: ∀ y ∈ ?S . x ′ 6= y −→ x ′ ≺

y by auto
from Suc.prems(3) x ′(1 ,2) have ∗∗: x ≺ x ′ by auto
have ∀ y ∈ ?S . x ≺ y
proof

fix y assume y: y ∈ S − {x}
show x ≺ y
proof (cases y = x ′)

case True then show ?thesis using ∗∗ by simp
next

case False
with ∗ y have x ′ ≺ y by auto
with trans Suc.prems(1) ∗∗ y x ′(2) x ∗∗ show ?thesis by auto

qed
qed
with x Suc.prems(1 ,3) show False using asymmetric by blast

qed
qed

qed

lemma non-empty-set-has-least ′′:
S ⊆ T =⇒ S 6= {} =⇒ ∃ ! x ∈ S . ∀ y ∈ S . x 6= y −→ ¬ y ≺ x

proof (intro ex-ex1I , goal-cases)
case 1
with non-empty-set-has-least ′[OF this] show ?case by auto

next
case (2 x y)
show ?case
proof (rule ccontr)

27

assume x 6= y
with 2 total have x ≺ y ∨ y ≺ x by blast
with 2 (2−) ‹x 6= y› show False by auto

qed
qed

abbreviation least S ≡ THE t :: ′a. t ∈ S ∧ (∀ y ∈ S . t 6= y −→ ¬ y ≺
t)

lemma non-empty-set-has-least:
S ⊆ T =⇒ S 6= {} =⇒ least S ∈ S ∧ (∀ y ∈ S . least S 6= y −→ ¬ y ≺

least S)
proof goal-cases

case 1
note A = this
show ?thesis
proof (rule theI ′, goal-cases)

case 1
from non-empty-set-has-least ′′[OF A] show ?case .

qed
qed

fun f :: ′a set ⇒ nat ⇒ ′a list
where

f S 0 = [] |
f S (Suc n) = least S # f (S − {least S}) n

inductive sorted :: ′a list ⇒ bool where
Nil [iff]: sorted []
| Cons: ∀ y∈set xs. x ≺ y =⇒ sorted xs =⇒ sorted (x # xs)

lemma f-set:
S ⊆ T =⇒ n = card S =⇒ set (f S n) = S

proof (induction n arbitrary: S)
case 0 then show ?case using finite by (auto simp: finite-subset)

next
case (Suc n)
then have fin: finite S using finite by (auto simp: finite-subset)
with Suc.prems have S 6= {} by auto
from non-empty-set-has-least[OF Suc.prems(1) this] have least: least S
∈ S by blast

let ?S = S − {least S}
from fin least Suc.prems have ?S ⊆ T n = card ?S by auto
from Suc.IH [OF this] have set (f ?S n) = ?S .

28

with least show ?case by auto
qed

lemma f-distinct:
S ⊆ T =⇒ n = card S =⇒ distinct (f S n)

proof (induction n arbitrary: S)
case 0 then show ?case using finite by (auto simp: finite-subset)

next
case (Suc n)
then have fin: finite S using finite by (auto simp: finite-subset)
with Suc.prems have S 6= {} by auto
from non-empty-set-has-least[OF Suc.prems(1) this] have least: least S
∈ S by blast

let ?S = S − {least S}
from fin least Suc.prems have ?S ⊆ T n = card ?S by auto
from Suc.IH [OF this] f-set[OF this] have distinct (f ?S n) set (f ?S n)

= ?S .
then show ?case by simp

qed

lemma f-sorted:
S ⊆ T =⇒ n = card S =⇒ sorted (f S n)

proof (induction n arbitrary: S)
case 0 then show ?case by auto

next
case (Suc n)
then have fin: finite S using finite by (auto simp: finite-subset)
with Suc.prems have S 6= {} by auto
from non-empty-set-has-least[OF Suc.prems(1) this] have least:

least S ∈ S (∀ y ∈ S . least S 6= y −→ ¬ y ≺ least S)
by blast+
let ?S = S − {least S}
{ fix x assume x: x ∈ ?S

with least have ¬ x ≺ least S by auto
with total x Suc.prems(1) least(1) have least S ≺ x by blast

} note le = this
from fin least Suc.prems have ?S ⊆ T n = card ?S by auto
from f-set[OF this] Suc.IH [OF this] have ∗: set (f ?S n) = ?S sorted (f

?S n) .
with le have ∀ x ∈ set (f ?S n). least S ≺ x by auto
with ∗(2) show ?case by (auto intro: Cons)

qed

lemma sorted-nth-mono:

29

sorted xs =⇒ i < j =⇒ j < length xs =⇒ xs!i ≺ xs!j
proof (induction xs arbitrary: i j)

case Nil thus ?case by auto
next

case (Cons x xs)
show ?case
proof (cases i = 0)

case True
with Cons.prems show ?thesis by (auto elim: sorted.cases)

next
case False
from Cons.prems have sorted xs by (auto elim: sorted.cases)
from Cons.IH [OF this] Cons.prems False show ?thesis by auto

qed
qed

lemma order-fun:
fixes S :: ′a set
assumes S ⊆ T
obtains f :: ′a ⇒ nat where ∀ x ∈ S . ∀ y ∈ S . f x < f y ←→ x ≺ y

and range f ⊆ {0 ..card S − 1}
proof −

obtain l where l-def : l = f S (card S) by auto
with f-set f-distinct f-sorted assms have l: set l = S sorted l distinct l by

auto
then have len: length l = card S using distinct-card by force
let ?f = λ x. if x /∈ S then 0 else THE i. i < length l ∧ l ! i = x
{ fix x y :: ′a assume A: x ∈ S y ∈ S x ≺ y

with l(1) obtain i j where ∗: l ! i = x l ! j = y i < length l j < length
l

by (meson in-set-conv-nth)
have i 6= j
proof (rule ccontr , goal-cases)

case 1
with A ∗ have x ≺ x by auto
with asymmetric A assms show False by auto

qed
have i < j
proof (rule ccontr , goal-cases)

case 1
with ‹i 6= j› sorted-nth-mono[OF l(2)] ‹i < length l› have l ! j ≺ l !

i by auto
with ∗ A(3) A assms asymmetric show False by auto

qed

30

moreover have ?f x = i using ∗ l(3) A(1) by (auto) (rule, auto intro:
distinct-nth-unique)

moreover have ?f y = j using ∗ l(3) A(2) by (auto) (rule, auto intro:
distinct-nth-unique)

ultimately have ?f x < ?f y by auto
} moreover
{ fix x y assume A: x ∈ S y ∈ S ?f x < ?f y

with l(1) obtain i j where ∗: l ! i = x l ! j = y i < length l j < length
l

by (meson in-set-conv-nth)
moreover have ?f x = i using ∗ l(3) A(1) by (auto) (rule, auto intro:

distinct-nth-unique)
moreover have ?f y = j using ∗ l(3) A(2) by (auto) (rule, auto intro:

distinct-nth-unique)
ultimately have ∗∗: l ! ?f x = x l ! ?f y = y i < j using A(3) by auto
from sorted-nth-mono[OF l(2), of i j] ∗∗(3) ∗ have x ≺ y by auto

}
ultimately have ∀ x ∈ S . ∀ y ∈ S . ?f x < ?f y ←→ x ≺ y by force
moreover have range ?f ⊆ {0 ..card S − 1}
proof (auto, goal-cases)

case (1 x)
with l(1) obtain i where ∗: l ! i = x i < length l by (meson

in-set-conv-nth)
then have ?f x = i using l(3) 1 by (auto) (rule, auto intro: dis-

tinct-nth-unique)
with len show ?case using ∗(2) 1 by auto

qed
ultimately show ?thesis ..

qed

end

lemma finite-total-preorder-enumeration:
fixes X :: ′a set
fixes r :: ′a rel
assumes fin: finite X
assumes tot: total-on X r
assumes refl: refl-on X r
assumes trans: trans r
obtains f :: ′a ⇒ nat where ∀ x ∈ X . ∀ y ∈ X . f x ≤ f y ←→ (x, y) ∈

r
proof −

let ?A = λ x. {y ∈ X . (y, x) ∈ r ∧ (x, y) ∈ r}
have ex: ∀ x ∈ X . x ∈ ?A x using refl unfolding refl-on-def by auto

31

let ?R = λ S . SOME y. y ∈ S
let ?T = {?A x | x. x ∈ X}
{ fix A assume A: A ∈ ?T

then obtain x where x: x ∈ X ?A x = A by auto
then have x ∈ A using refl unfolding refl-on-def by auto
then have ?R A ∈ A by (auto intro: someI)
with x(2) have (?R A, x) ∈ r (x, ?R A) ∈ r by auto
with trans have (?R A, ?R A) ∈ r unfolding trans-def by blast

} note refl-lifted = this
{ fix A assume A: A ∈ ?T

then obtain x where x: x ∈ X ?A x = A by auto
then have x ∈ A using refl unfolding refl-on-def by auto
then have ?R A ∈ A by (auto intro: someI)

} note R-in = this
{ fix A y z assume A: A ∈ ?T and y: y ∈ A and z: z ∈ A

from A obtain x where x: x ∈ X ?A x = A by auto
then have x ∈ A using refl unfolding refl-on-def by auto
with x y have (x, y) ∈ r (y, x) ∈ r by auto
moreover from x z have (x,z) ∈ r (z,x) ∈ r by auto
ultimately have (y, z) ∈ r (z, y) ∈ r using trans unfolding trans-def

by blast+
} note A-dest ′ = this
{ fix A y assume A ∈ ?T and y ∈ A

with A-dest ′[OF - - R-in] have (?R A, y) ∈ r (y, ?R A) ∈ r by blast+
} note A-dest = this
{ fix A y z assume A: A ∈ ?T and y: y ∈ A and z: z ∈ X and r : (y,

z) ∈ r (z, y) ∈ r
from A obtain x where x: x ∈ X ?A x = A by auto
then have x ∈ A using refl unfolding refl-on-def by auto
with x y have (x,y) ∈ r (y, x) ∈ r by auto
with r have (x,z) ∈ r (z,x) ∈ r using trans unfolding trans-def by

blast+
with x z have z ∈ A by auto

} note A-intro ′ = this
{ fix A y assume A: A ∈ ?T and y: y ∈ X and r : (?R A, y) ∈ r (y,

?R A) ∈ r
with A-intro ′ R-in have y ∈ A by blast

} note A-intro = this
{ fix A B C

assume r1 : (?R A, ?R B) ∈ r and r2 : (?R B, ?R C) ∈ r
with trans have (?R A, ?R C) ∈ r unfolding trans-def by blast

} note trans-lifted[intro] = this
{ fix A B a b

assume A: A ∈ ?T and B: B ∈ ?T

32

and a: a ∈ A and b: b ∈ B
and r : (a, b) ∈ r (b, a) ∈ r
with R-in have ?R A ∈ A ?R B ∈ B by blast+
have A = B
proof auto

fix x assume x: x ∈ A
with A have x ∈ X by auto

from A-intro ′[OF B b this] A-dest ′[OF A x a] r trans[unfolded trans-def]
show x ∈ B by blast

next
fix x assume x: x ∈ B
with B have x ∈ X by auto

from A-intro ′[OF A a this] A-dest ′[OF B x b] r trans[unfolded trans-def]
show x ∈ A by blast

qed
} note eq-lifted ′′ = this
{ fix A B C

assume A: A ∈ ?T and B: B ∈ ?T and r : (?R A, ?R B) ∈ r (?R B,
?R A) ∈ r

with eq-lifted ′′ R-in have A = B by blast
} note eq-lifted ′ = this
{ fix A B C

assume A: A ∈ ?T and B: B ∈ ?T and eq: ?R A = ?R B
from R-in[OF A] A have ?R A ∈ X by auto
with refl have (?R A, ?R A) ∈ r unfolding refl-on-def by auto
with eq-lifted ′[OF A B] eq have A = B by auto

} note eq-lifted = this
{ fix A B

assume A: A ∈ ?T and B: B ∈ ?T and neq: A 6= B
from neq eq-lifted[OF A B] have ?R A 6= ?R B by metis
moreover from A B R-in have ?R A ∈ X ?R B ∈ X by auto
ultimately have (?R A, ?R B) ∈ r ∨ (?R B, ?R A) ∈ r using tot

unfolding total-on-def by auto
} note total-lifted = this
{ fix x y assume x: x ∈ X and y: y ∈ X

from x y have ?A x ∈ ?T ?A y ∈ ?T by auto
from R-in[OF this(1)] R-in[OF this(2)] have ?R (?A x) ∈ ?A x ?R

(?A y) ∈ ?A y by auto
then have (x, ?R (?A x)) ∈ r (?R (?A y), y) ∈ r (?R (?A x), x) ∈ r

(y, ?R (?A y)) ∈ r by auto
with trans[unfolded trans-def] have (x, y) ∈ r ←→ (?R (?A x), ?R (?A

y)) ∈ r by meson
} note repr = this
interpret interp: enumerateable {?A x | x. x ∈ X} λ A B. A 6= B ∧ (?R

33

A, ?R B) ∈ r
proof (standard, goal-cases)

case 1
from fin show ?case by auto

next
case 2
with total-lifted show ?case by auto

next
case 3
then show ?case unfolding transp-def
proof (standard, standard, standard, standard, standard, goal-cases)

case (1 A B C)
note A = this
with trans-lifted have (?R A,?R C) ∈ r by blast
moreover have A 6= C
proof (rule ccontr , goal-cases)

case 1
with A have (?R A,?R B) ∈ r (?R B,?R A) ∈ r by auto
with eq-lifted ′[OF A(1 ,2)] A show False by auto

qed
ultimately show ?case by auto

qed
next

case 4
{ fix A B assume A: A ∈ ?T and B: B ∈ ?T and neq: A 6= B (?R A,

?R B) ∈ r
with eq-lifted ′[OF A B] neq have ¬ (?R B, ?R A) ∈ r by auto

}
then show ?case by auto

qed
from interp.order-fun[OF subset-refl] obtain f :: ′a set ⇒ nat where

f : ∀ x ∈ ?T . ∀ y ∈ ?T . f x < f y ←→ x 6= y ∧ (?R x, ?R y) ∈ r range
f ⊆ {0 ..card ?T − 1}

by auto
let ?f = λ x. if x ∈ X then f (?A x) else 0
{ fix x y assume x: x ∈ X and y: y ∈ X

have ?f x ≤ ?f y ←→ (x, y) ∈ r
proof (cases x = y)

case True
with refl x show ?thesis unfolding refl-on-def by auto

next
case False
note F = this
from ex x y have ∗: ?A x ∈ ?T ?A y ∈ ?T x ∈ ?A x y ∈ ?A y by

34

auto
show ?thesis
proof (cases (x, y) ∈ r ∧ (y, x) ∈ r)

case True
from eq-lifted ′′[OF ∗] True x y have ?f x = ?f y by auto
with True show ?thesis by auto

next
case False
with A-dest ′[OF ∗(1 ,3), of y] ∗(4) have ∗∗: ?A x 6= ?A y by auto
from total-lifted[OF ∗(1 ,2) this] have (?R (?A x), ?R (?A y)) ∈ r

∨ (?R (?A y), ?R (?A x)) ∈ r .
then have neq: ?f x 6= ?f y
proof (standard, goal-cases)

case 1
with f ∗(1 ,2) ∗∗ have f (?A x) < f (?A y) by auto
with ∗ show ?case by auto

next
case 2
with f ∗(1 ,2) ∗∗ have f (?A y) < f (?A x) by auto
with ∗ show ?case by auto

qed
then have ?thesis = (?f x < ?f y ←→ (x, y) ∈ r) by linarith
moreover from f ∗∗ ∗ have (?f x < ?f y ←→ (?R (?A x), ?R (?A

y)) ∈ r) by auto
moreover from repr ∗ have . . . ←→ (x, y) ∈ r by auto
ultimately show ?thesis by auto

qed
qed

}
then have ∀ x ∈ X . ∀ y ∈ X . ?f x ≤ ?f y ←→ (x, y) ∈ r by blast
then show ?thesis ..

qed

1.3.3 Finiteness

lemma pairwise-finiteI :
assumes finite {b. ∃ a. P a b} (is finite ?B)
assumes finite {a. ∃ b. P a b}
shows finite {(a,b). P a b} (is finite ?C)

proof −
from assms(1) have finite ?B .
let ?f = λ b. {(a,b) | a. P a b}
{ fix b

have ?f b ⊆ {(a,b) | a. ∃ b. P a b} by blast

35

moreover have finite . . . using assms(2) by auto
ultimately have finite (?f b) by (blast intro: finite-subset)

}
with assms(1) have finite (

⋃
(?f ‘ ?B)) by auto

moreover have ?C ⊆
⋃

(?f ‘ ?B) by auto
ultimately show ?thesis by (blast intro: finite-subset)

qed

lemma finite-ex-and1 :
assumes finite {b. ∃ a. P a b} (is finite ?A)
shows finite {b. ∃ a. P a b ∧ Q a b} (is finite ?B)

proof −
have ?B ⊆ ?A by auto
with assms show ?thesis by (blast intro: finite-subset)

qed

lemma finite-ex-and2 :
assumes finite {b. ∃ a. Q a b} (is finite ?A)
shows finite {b. ∃ a. P a b ∧ Q a b} (is finite ?B)

proof −
have ?B ⊆ ?A by auto
with assms show ?thesis by (blast intro: finite-subset)

qed

1.3.4 Numbering the elements of finite sets

lemma upt-last-append: a ≤ b =⇒ [a..<b] @ [b] = [a ..< Suc b] by (induction
b) auto

lemma map-of-zip-dom-to-range:
a ∈ set A =⇒ length B = length A =⇒ the (map-of (zip A B) a) ∈ set B

by (metis map-of-SomeD map-of-zip-is-None option.collapse set-zip-rightD)

lemma zip-range-id:
length A = length B =⇒ snd ‘ set (zip A B) = set B

by (metis map-snd-zip set-map)

lemma map-of-zip-in-range:
distinct A =⇒ length B = length A =⇒ b ∈ set B =⇒ ∃ a ∈ set A. the

(map-of (zip A B) a) = b
proof goal-cases

case 1
from ran-distinct[of zip A B] 1 (1 ,2) have

ran (map-of (zip A B)) = set B

36

by (auto simp: zip-range-id)
with 1 (3) obtain a where map-of (zip A B) a = Some b unfolding

ran-def by auto
with map-of-zip-is-Some[OF 1 (2)[symmetric]] have the (map-of (zip A

B) a) = b a ∈ set A by auto
then show ?case by blast

qed

lemma distinct-zip-inj:
distinct ys =⇒ (a, b) ∈ set (zip xs ys) =⇒ (c, b) ∈ set (zip xs ys) =⇒ a

= c
proof (induction ys arbitrary: xs)

case Nil then show ?case by auto
next

case (Cons y ys)
from this(3) have xs 6= [] by auto
then obtain z zs where xs: xs = z # zs by (cases xs) auto
show ?case
proof (cases (a, b) ∈ set (zip zs ys))

case True
note T = this
then have b: b ∈ set ys by (meson in-set-zipE)
show ?thesis
proof (cases (c, b) ∈ set (zip zs ys))

case True
with T Cons show ?thesis by auto

next
case False
with Cons.prems xs b show ?thesis by auto

qed
next

case False
with Cons.prems xs have b: a = z b = y by auto
show ?thesis
proof (cases (c, b) ∈ set (zip zs ys))

case True
then have b ∈ set ys by (meson in-set-zipE)
with b ‹distinct (y#ys)› show ?thesis by auto

next
case False
with Cons.prems xs b show ?thesis by auto

qed
qed

qed

37

lemma map-of-zip-distinct-inj:
distinct B =⇒ length A = length B =⇒ inj-on (the o map-of (zip A B))

(set A)
unfolding inj-on-def proof (clarify, goal-cases)

case (1 x y)
with map-of-zip-is-Some[OF 1 (2)] obtain a where

map-of (zip A B) x = Some a map-of (zip A B) y = Some a
by auto
then have (x, a) ∈ set (zip A B) (y, a) ∈ set (zip A B) using map-of-SomeD

by metis+
from distinct-zip-inj[OF - this] 1 show ?case by auto

qed

lemma nat-not-ge-1D: ¬ Suc 0 ≤ x =⇒ x = 0 by auto

lemma standard-numbering:
assumes finite A
obtains v :: ′a ⇒ nat and n where bij-betw v A {1 ..n}
and ∀ c ∈ A. v c > 0
and ∀ c. c /∈ A −→ v c > n

proof −
from assms obtain L where L: distinct L set L = A by (meson fi-

nite-distinct-list)
let ?N = length L + 1
let ?P = zip L [1 ..<?N]
let ?v = λ x. let v = map-of ?P x in if v = None then ?N else the v
from length-upt have len: length [1 ..<?N] = length L by auto (cases L,

auto)
then have lsimp: length [Suc 0 ..<Suc (length L)] = length L by simp
note ∗ = map-of-zip-dom-to-range[OF - len]
have bij-betw ?v A {1 ..length L} unfolding bij-betw-def
proof

show ?v ‘ A = {1 ..length L} apply auto
apply (auto simp: L)[]
apply (auto simp only: upt-last-append)[] using ∗ apply force
using ∗ apply (simp only: upt-last-append) apply force

apply (simp only: upt-last-append) using L(2) apply (auto dest:
nat-not-ge-1D)

apply (subgoal-tac x ∈ set [1 ..< length L +1])
apply (force dest!: map-of-zip-in-range[OF L(1) len])
apply auto

done
next

38

from L map-of-zip-distinct-inj[OF distinct-upt, of L 1 length L + 1] len
have inj-on (the o map-of ?P) A by auto
moreover have inj-on (the o map-of ?P) A = inj-on ?v A
using len L(2) by − (rule inj-on-cong, auto)
ultimately show inj-on ?v A by blast

qed
moreover have ∀ c ∈ A. ?v c > 0
proof

fix c
show ?v c > 0
proof (cases c ∈ set L)

case False
then show ?thesis by auto

next
case True
with dom-map-of-zip[OF len[symmetric]] obtain x where

Some x = map-of ?P c x ∈ set [1 ..<length L + 1]
by (metis ∗ domIff option.collapse)
then have ?v c ∈ set [1 ..<length L + 1] using ∗ True len by auto
then show ?thesis by auto

qed
qed
moreover have ∀ c. c /∈ A −→ ?v c > length L using L by auto
ultimately show ?thesis ..

qed

1.3.5 Products

lemma prod-set-fst-id:
x = y if ∀ a ∈ x. fst a = b ∀ a ∈ y. fst a = b snd ‘ x = snd ‘ y
using that by (auto 4 6 simp: fst-def snd-def image-def split: prod.splits)

end

2 Graphs
theory Graphs

imports
More-List Stream-More
HOL−Library.Rewrite

begin

39

2.1 Basic Definitions and Theorems

locale Graph-Defs =
fixes E :: ′a ⇒ ′a ⇒ bool

begin

inductive steps where
Single: steps [x] |
Cons: steps (x # y # xs) if E x y steps (y # xs)

lemmas [intro] = steps.intros

lemma steps-append:
steps (xs @ tl ys) if steps xs steps ys last xs = hd ys
using that by induction (auto 4 4 elim: steps.cases)

lemma steps-append ′:
steps xs if steps as steps bs last as = hd bs as @ tl bs = xs
using steps-append that by blast

coinductive run where
run (x ## y ## xs) if E x y run (y ## xs)

lemmas [intro] = run.intros

lemma steps-appendD1 :
steps xs if steps (xs @ ys) xs 6= []
using that proof (induction xs)
case Nil
then show ?case by auto

next
case (Cons a xs)
then show ?case

by − (cases xs; auto elim: steps.cases)
qed

lemma steps-appendD2 :
steps ys if steps (xs @ ys) ys 6= []
using that by (induction xs) (auto elim: steps.cases)

lemma steps-appendD3 :
steps (xs @ [x]) ∧ E x y if steps (xs @ [x, y])
using that proof (induction xs)
case Nil

40

then show ?case by (auto elim!: steps.cases)
next

case prems: (Cons a xs)
then show ?case by (cases xs) (auto elim: steps.cases)

qed

lemma steps-ConsD:
steps xs if steps (x # xs) xs 6= []
using that by (auto elim: steps.cases)

lemmas stepsD = steps-ConsD steps-appendD1 steps-appendD2

lemma steps-alt-induct[consumes 1 , case-names Single Snoc]:
assumes

steps x (
∧

x. P [x])∧
y x xs. E y x =⇒ steps (xs @ [y]) =⇒ P (xs @ [y]) =⇒ P (xs @ [y,x])

shows P x
using assms(1)
proof (induction rule: rev-induct)

case Nil
then show ?case by (auto elim: steps.cases)

next
case prems: (snoc x xs)
then show ?case by (cases xs rule: rev-cases) (auto intro: assms(2 ,3)

dest!: steps-appendD3)
qed

lemma steps-appendI :
steps (xs @ [x, y]) if steps (xs @ [x]) E x y
using that

proof (induction xs)
case Nil
then show ?case by auto

next
case (Cons a xs)
then show ?case by (cases xs; auto elim: steps.cases)

qed

lemma steps-append-single:
assumes

steps xs E (last xs) x xs 6= []
shows steps (xs @ [x])
using assms(3 ,1 ,2) by (induction xs rule: list-nonempty-induct) (auto 4

4 elim: steps.cases)

41

lemma extend-run:
assumes

steps xs E (last xs) x run (x ## ys) xs 6= []
shows run (xs @− x ## ys)
using assms(4 ,1−3) by (induction xs rule: list-nonempty-induct) (auto

4 3 elim: steps.cases)

lemma run-cycle:
assumes steps xs E (last xs) (hd xs) xs 6= []
shows run (cycle xs)
using assms proof (coinduction arbitrary: xs)
case run
then show ?case

apply (rewrite at ‹cycle xs› stream.collapse[symmetric])
apply (rewrite at ‹stl (cycle xs)› stream.collapse[symmetric])
apply clarsimp
apply (erule steps.cases)
subgoal for x

apply (rule conjI)
apply (simp; fail)

apply (rule disjI1)
apply (inst-existentials xs)

apply (simp, metis cycle-Cons[of x [], simplified])
by auto

subgoal for x y xs ′

apply (rule conjI)
apply (simp; fail)

apply (rule disjI1)
apply (inst-existentials y # xs ′ @ [x])
using steps-append-single[of y # xs ′ x]

apply (auto elim: steps.cases split: if-split-asm simp: cycle-Cons)
done

done
qed

lemma run-stl:
run (stl xs) if run xs
using that by (auto elim: run.cases)

lemma run-sdrop:
run (sdrop n xs) if run xs
using that by (induction n arbitrary: xs) (auto intro: run-stl)

42

lemma run-reachable ′:
assumes run (x ## xs) E∗∗ x0 x
shows pred-stream (λ x. E∗∗ x0 x) xs
using assms by (coinduction arbitrary: x xs) (auto 4 3 elim: run.cases)

lemma run-reachable:
assumes run (x0 ## xs)
shows pred-stream (λ x. E∗∗ x0 x) xs
by (rule run-reachable ′[OF assms]) blast

lemma run-decomp:
assumes run (xs @− ys) xs 6= []
shows steps xs ∧ run ys ∧ E (last xs) (shd ys)

using assms(2 ,1) proof (induction xs rule: list-nonempty-induct)
case (single x)
then show ?case by (auto elim: run.cases)

next
case (cons x xs)
then show ?case by (cases xs; auto 4 4 elim: run.cases)

qed

lemma steps-decomp:
assumes steps (xs @ ys) xs 6= [] ys 6= []
shows steps xs ∧ steps ys ∧ E (last xs) (hd ys)

using assms(2 ,1 ,3) proof (induction xs rule: list-nonempty-induct)
case (single x)
then show ?case by (auto elim: steps.cases)

next
case (cons x xs)
then show ?case by (cases xs; auto 4 4 elim: steps.cases)

qed

lemma steps-rotate:
assumes steps (x # xs @ y # ys @ [x])
shows steps (y # ys @ x # xs @ [y])

proof −
from steps-decomp[of x # xs y # ys @ [x]] assms have

steps (x # xs) steps (y # ys @ [x]) E (last (x # xs)) y
by auto

then have steps ((x # xs) @ [y]) by (blast intro: steps-append-single)
from steps-append[OF ‹steps (y # ys @ [x])› this] show ?thesis by auto

qed

lemma run-shift-coinduct[case-names run-shift, consumes 1]:

43

assumes R w
and

∧
w. R w =⇒ ∃ u v x y. w = u @− x ## y ## v ∧ steps (u @

[x]) ∧ E x y ∧ R (y ## v)
shows run w
using assms(2)[OF ‹R w›] proof (coinduction arbitrary: w)
case (run w)
then obtain u v x y where w = u @− x ## y ## v steps (u @ [x]) E

x y R (y ## v)
by auto

then show ?case
apply −
apply (drule assms(2))
apply (cases u)
apply force

subgoal for z zs
apply (cases zs)
subgoal

apply simp
apply safe
apply (force elim: steps.cases)

subgoal for u ′ v ′ x ′ y ′

by (inst-existentials x # u ′) (cases u ′; auto)
done

subgoal for a as
apply simp
apply safe
apply (force elim: steps.cases)

subgoal for u ′ v ′ x ′ y ′

apply (inst-existentials a # as @ x # u ′)
using steps-append[of a # as @ [x, y] u ′ @ [x ′]]
apply simp
apply (drule steps-appendI [of a # as x, rotated])
by (cases u ′; force elim: steps.cases)+

done
done

done
qed

lemma run-flat-coinduct[case-names run-shift, consumes 1]:
assumes R xss

and∧
xs ys xss.

R (xs ## ys ## xss) =⇒ xs 6= [] ∧ steps xs ∧ E (last xs) (hd ys) ∧ R
(ys ## xss)

44

shows run (flat xss)
proof −
obtain xs ys xss ′ where xss = xs ## ys ## xss ′ by (metis stream.collapse)
with assms(2)[OF assms(1)[unfolded this]] show ?thesis
proof (coinduction arbitrary: xs ys xss ′ xss rule: run-shift-coinduct)

case (run-shift xs ys xss ′ xss)
from run-shift show ?case

apply (cases xss ′)
apply clarify
apply (drule assms(2))
apply (inst-existentials butlast xs tl ys @− flat xss ′ last xs hd ys)

apply (cases ys)
apply (simp; fail)

subgoal premises prems for x1 x2 z zs
proof (cases xs = [])

case True
with prems show ?thesis

by auto
next

case False
then have xs = butlast xs @ [last xs] by auto
then have butlast xs @− last xs ## tail = xs @− tail for tail

by (metis shift.simps(1 ,2) shift-append)
with prems show ?thesis by simp

qed
apply (simp; fail)

apply assumption
subgoal for ws wss

by (inst-existentials ys ws wss) (cases ys, auto)
done

qed
qed

lemma steps-non-empty[simp]:
¬ steps []
by (auto elim: steps.cases)

lemma steps-non-empty ′[simp]:
xs 6= [] if steps xs
using that by auto

lemma steps-replicate:
steps (hd xs # concat (replicate n (tl xs))) if last xs = hd xs steps xs n >

45

0
using that

proof (induction n)
case 0
then show ?case by simp

next
case (Suc n)
show ?case
proof (cases n)

case 0
with Suc.prems show ?thesis by (cases xs; auto)

next
case prems: (Suc nat)
from Suc.prems have [simp]: hd xs # tl xs @ ys = xs @ ys for ys

by (cases xs; auto)
from Suc.prems have ∗∗: tl xs @ ys = tl (xs @ ys) for ys

by (cases xs; auto)
from prems Suc show ?thesis

by (fastforce intro: steps-append ′)
qed

qed

notation E (‹- → -› [100 , 100] 40)

abbreviation reaches (‹- →∗ -› [100 , 100] 40) where reaches x y ≡ E∗∗

x y

abbreviation reaches1 (‹- →+ -› [100 , 100] 40) where reaches1 x y ≡
E++ x y

lemma steps-reaches:
hd xs →∗ last xs if steps xs
using that by (induction xs) auto

lemma steps-reaches ′:
x →∗ y if steps xs hd xs = x last xs = y
using that steps-reaches by auto

lemma reaches-steps:
∃ xs. hd xs = x ∧ last xs = y ∧ steps xs if x →∗ y
using that
apply (induction)
apply force

apply clarsimp

46

subgoal for z xs
by (inst-existentials xs @ [z], (cases xs; simp), auto intro: steps-append-single)

done

lemma reaches-steps-iff :
x →∗ y ←→ (∃ xs. hd xs = x ∧ last xs = y ∧ steps xs)
using steps-reaches reaches-steps by fast

lemma steps-reaches1 :
x →+ y if steps (x # xs @ [y])
by (metis list.sel(1 ,3) rtranclp-into-tranclp2 snoc-eq-iff-butlast steps.cases

steps-reaches that)

lemma stepsI :
steps (x # xs) if x → hd xs steps xs
using that by (cases xs) auto

lemma reaches1-steps:
∃ xs. steps (x # xs @ [y]) if x →+ y

proof −
from that obtain z where x → z z →∗ y

by atomize-elim (simp add: tranclpD)
from reaches-steps[OF this(2)] obtain xs where ∗: hd xs = z last xs =

y steps xs
by auto

then obtain xs ′ where [simp]: xs = xs ′ @ [y]
by atomize-elim (auto 4 3 intro: append-butlast-last-id[symmetric])

with ‹x → z› ∗ show ?thesis
by (auto intro: stepsI)

qed

lemma reaches1-steps-iff :
x →+ y ←→ (∃ xs. steps (x # xs @ [y]))
using steps-reaches1 reaches1-steps by fast

lemma reaches-steps-iff2 :
x →∗ y ←→ (x = y ∨ (∃ vs. steps (x # vs @ [y])))
by (simp add: Nitpick.rtranclp-unfold reaches1-steps-iff)

lemma reaches1-reaches-iff1 :
x →+ y ←→ (∃ z. x → z ∧ z →∗ y)
by (auto dest: tranclpD)

lemma reaches1-reaches-iff2 :

47

x →+ y ←→ (∃ z. x →∗ z ∧ z → y)
apply safe
apply (metis Nitpick.rtranclp-unfold tranclp.cases)

by auto

lemma
x →+ z if x →∗ y y →+ z
using that by auto

lemma
x →+ z if x →+ y y →∗ z
using that by auto

lemma steps-append2 :
steps (xs @ x # ys) if steps (xs @ [x]) steps (x # ys)
using that by (auto dest: steps-append)

lemma reaches1-steps-append:
assumes a →+ b steps xs hd xs = b
shows ∃ ys. steps (a # ys @ xs)
using assms by (fastforce intro: steps-append ′ dest: reaches1-steps)

lemma steps-last-step:
∃ a. a → last xs if steps xs length xs > 1
using that by induction auto

lemma steps-remove-cycleE :
assumes steps (a # xs @ [b])
obtains ys where steps (a # ys @ [b]) distinct ys a /∈ set ys b /∈ set ys

set ys ⊆ set xs
using assms

proof (induction length xs arbitrary: xs rule: less-induct)
case less
note prems = less.prems(2) and intro = less.prems(1) and IH = less.hyps
consider

distinct xs a /∈ set xs b /∈ set xs | a ∈ set xs | b ∈ set xs | ¬ distinct xs
by auto

then consider (goal) ?case
| (a) as bs where xs = as @ a # bs | (b) as bs where xs = as @ b # bs
| (between) x as bs cs where xs = as @ x # bs @ x # cs
using prems by (cases; fastforce dest: not-distinct-decomp simp: split-list

intro: intro)
then show ?case
proof cases

48

case a
with prems show ?thesis

by − (rule IH [where xs = bs], auto 4 3 intro: intro dest: stepsD)
next

case b
with prems have steps (a # as @ b # [] @ (bs @ [b]))

by simp
then have steps (a # as @ [b])
by (metis Cons-eq-appendI Graph-Defs.steps-appendD1 append-eq-appendI

neq-Nil-conv)
with b show ?thesis

by − (rule IH [where xs = as], auto 4 3 dest: stepsD intro: intro)
next

case between
with prems have steps (a # as @ x # cs @ [b])

by simp (metis
stepsI append-Cons list.distinct(1) list.sel(1) list.sel(3) steps-append

steps-decomp)
with between show ?thesis

by − (rule IH [where xs = as @ x # cs], auto 4 3 intro: intro dest:
stepsD)

qed
qed

lemma reaches1-stepsE :
assumes a →+ b
obtains xs where steps (a # xs @ [b]) distinct xs a /∈ set xs b /∈ set xs

proof −
from assms obtain xs where steps (a # xs @ [b])

by (auto dest: reaches1-steps)
then show ?thesis

by − (erule steps-remove-cycleE , rule that)
qed

lemma reaches-stepsE :
assumes a →∗ b
obtains a = b | xs where steps (a # xs @ [b]) distinct xs a /∈ set xs b /∈

set xs
proof −

from assms consider a = b | xs where a →+ b
by (meson rtranclpD)

then show ?thesis
by cases ((erule reaches1-stepsE)?; rule that; assumption)+

qed

49

definition sink where
sink a ≡ @ b. a → b

lemma sink-or-cycle:
assumes finite {b. reaches a b}
obtains b where reaches a b sink b | b where reaches a b reaches1 b b

proof −
let ?S = {b. reaches1 a b}
have ?S ⊆ {b. reaches a b}

by auto
then have finite ?S

using assms by (rule finite-subset)
then show ?thesis

using that
proof (induction ?S arbitrary: a rule: finite-psubset-induct)

case psubset
consider (empty) Collect (reaches1 a) = {} | b where reaches1 a b

by auto
then show ?case
proof cases

case empty
then have sink a

unfolding sink-def by auto
with psubset.prems show ?thesis

by auto
next

case 2
show ?thesis
proof (cases reaches b a)

case True
with ‹reaches1 a b› have reaches1 a a

by auto
with psubset.prems show ?thesis

by auto
next

case False
show ?thesis
proof (cases reaches1 b b)

case True
with ‹reaches1 a b› psubset.prems show ?thesis

by (auto intro: tranclp-into-rtranclp)
next

case False

50

with ‹¬ reaches b a› ‹reaches1 a b› have Collect (reaches1 b) ⊂
Collect (reaches1 a)

by (intro psubsetI) auto
then show ?thesis

using ‹reaches1 a b› psubset.prems
by − (erule psubset.hyps; meson tranclp-into-rtranclp tran-

clp-rtranclp-tranclp)
qed

qed
qed

qed
qed

A directed graph where every node has at least one ingoing edge, contains
a directed cycle.
lemma directed-graph-indegree-ge-1-cycle ′:

assumes finite S S 6= {} ∀ y ∈ S . ∃ x ∈ S . E x y
shows ∃ x ∈ S . ∃ y. E x y ∧ E∗∗ y x
using assms

proof (induction arbitrary: E rule: finite-ne-induct)
case (singleton x)
then show ?case by auto

next
case (insert x S E)
from insert.prems obtain y where y ∈ insert x S E y x

by auto
show ?case
proof (cases y = x)

case True
with ‹E y x› show ?thesis by auto

next
case False
with ‹y ∈ -› have y ∈ S by auto
define E ′ where E ′ a b ≡ E a b ∨ (a = y ∧ E x b) for a b
have E ′-E : ∃ c. E a c ∧ E∗∗ c b if E ′ a b for a b

using that ‹E y x› unfolding E ′-def by auto
have [intro]: E∗∗ a b if E ′ a b for a b

using that ‹E y x› unfolding E ′-def by auto
have [intro]: E∗∗ a b if E ′∗∗ a b for a b

using that by (induction; blast intro: rtranclp-trans)
have ∀ y∈S . ∃ x∈S . E ′ x y
proof (rule ballI)

fix b assume b ∈ S
with insert.prems obtain a where a ∈ insert x S E a b

51

by auto
show ∃ a∈S . E ′ a b
proof (cases a = x)

case True
with ‹E a b› have E ′ y b unfolding E ′-def by simp
with ‹y ∈ S› show ?thesis ..

next
case False
with ‹a ∈ -› ‹E a b› show ?thesis unfolding E ′-def by auto

qed
qed
from insert.IH [OF this] obtain x y where x ∈ S E ′ x y E ′∗∗ y x by

safe
then show ?thesis by (blast intro: rtranclp-trans dest: E ′-E)
qed

qed

lemma directed-graph-indegree-ge-1-cycle:
assumes finite S S 6= {} ∀ y ∈ S . ∃ x ∈ S . E x y
shows ∃ x ∈ S . ∃ y. x →+ x
using directed-graph-indegree-ge-1-cycle ′[OF assms] reaches1-reaches-iff1

by blast

Vertices of a graph

definition vertices = {x. ∃ y. E x y ∨ E y x}

lemma reaches1-verts:
assumes x →+ y
shows x ∈ vertices and y ∈ vertices
using assms reaches1-reaches-iff2 reaches1-reaches-iff1 vertices-def by

blast+

lemmas graphI =
steps.intros
steps-append-single
steps-reaches ′

stepsI

end

2.2 Graphs with a Start Node

locale Graph-Start-Defs = Graph-Defs +

52

fixes s0 :: ′a
begin

definition reachable where
reachable = E∗∗ s0

lemma start-reachable[intro!, simp]:
reachable s0
unfolding reachable-def by auto

lemma reachable-step:
reachable b if reachable a E a b
using that unfolding reachable-def by auto

lemma reachable-reaches:
reachable b if reachable a a →∗ b
using that(2 ,1) by induction (auto intro: reachable-step)

lemma reachable-steps-append:
assumes reachable a steps xs hd xs = a last xs = b
shows reachable b
using assms by (auto intro: graphI reachable-reaches)

lemmas steps-reachable = reachable-steps-append[of s0, simplified]

lemma reachable-steps-elem:
reachable y if reachable x steps xs y ∈ set xs hd xs = x

proof −
from ‹y ∈ set xs› obtain as bs where [simp]: xs = as @ y # bs

by (auto simp: in-set-conv-decomp)
show ?thesis
proof (cases as = [])

case True
with that show ?thesis

by simp
next

case False

from ‹steps xs› have steps (as @ [y])
by (auto intro: stepsD)

with ‹as 6= []› ‹hd xs = x› ‹reachable x› show ?thesis
by (auto 4 3 intro: reachable-reaches graphI)

qed
qed

53

lemma reachable-steps:
∃ xs. steps xs ∧ hd xs = s0 ∧ last xs = x if reachable x
using that unfolding reachable-def

proof induction
case base
then show ?case by (inst-existentials [s0]; force)

next
case (step y z)
from step.IH obtain xs where steps xs s0 = hd xs y = last xs by clarsimp
with step.hyps show ?case

apply (inst-existentials xs @ [z])
apply (force intro: graphI)
by (cases xs; auto)+

qed

lemma reachable-cycle-iff :
reachable x ∧ x →+ x ←→ (∃ ws xs. steps (s0 # ws @ [x] @ xs @ [x]))

proof (safe, goal-cases)
case (2 ws)
then show ?case

by (auto intro: steps-reachable stepsD)
next

case (3 ws xs)
then show ?case

by (auto intro: stepsD steps-reaches1)
next

case prems: 1
from ‹reachable x› prems(2) have s0 →+ x

unfolding reachable-def by auto
with ‹x →+ x› show ?case

by (fastforce intro: steps-append ′ dest: reaches1-steps)
qed

lemma reachable-induct[consumes 1 , case-names start step, induct pred:
reachable]:

assumes reachable x
and P s0
and

∧
a b. reachable a =⇒ P a =⇒ a → b =⇒ P b

shows P x
using assms(1) unfolding reachable-def
by induction (auto intro: assms(2−)[unfolded reachable-def])

lemmas graphI-aggressive =

54

tranclp-into-rtranclp
rtranclp.rtrancl-into-rtrancl
tranclp.trancl-into-trancl
rtranclp-into-tranclp2

lemmas graphI-aggressive1 =
graphI-aggressive
steps-append ′

lemmas graphI-aggressive2 =
graphI-aggressive
stepsD
steps-reaches1
steps-reachable

lemmas graphD =
reaches1-steps

lemmas graphD-aggressive =
tranclpD

lemmas graph-startI =
reachable-reaches
start-reachable

end

2.3 Subgraphs

2.3.1 Edge-induced Subgraphs

locale Subgraph-Defs = G: Graph-Defs +
fixes E ′ :: ′a ⇒ ′a ⇒ bool

begin

sublocale G ′: Graph-Defs E ′ .

end

locale Subgraph-Start-Defs = G: Graph-Start-Defs +
fixes E ′ :: ′a ⇒ ′a ⇒ bool

begin

sublocale G ′: Graph-Start-Defs E ′ s0 .

55

end

locale Subgraph = Subgraph-Defs +
assumes subgraph[intro]: E ′ a b =⇒ E a b

begin

lemma non-subgraph-cycle-decomp:
∃ c d. G.reaches a c ∧ E c d ∧ ¬ E ′ c d ∧ G.reaches d b if
G.reaches1 a b ¬ G ′.reaches1 a b for a b

using that
proof induction

case (base y)
then show ?case

by auto
next

case (step y z)
show ?case
proof (cases E ′ y z)

case True
with step have ¬ G ′.reaches1 a y

by (auto intro: tranclp.trancl-into-trancl)
with step obtain c d where

G.reaches a c E c d ¬ E ′ c d G.reaches d y
by auto

with ‹E ′ y z› show ?thesis
by (blast intro: rtranclp.rtrancl-into-rtrancl)

next
case False
with step show ?thesis

by (intro exI conjI) auto
qed

qed

lemma reaches:
G.reaches a b if G ′.reaches a b
using that by induction (auto intro: rtranclp.intros(2))

lemma reaches1 :
G.reaches1 a b if G ′.reaches1 a b
using that by induction (auto intro: tranclp.intros(2))

end

56

locale Subgraph-Start = Subgraph-Start-Defs + Subgraph
begin

lemma reachable-subgraph[intro]: G.reachable b if ‹G.reachable a› ‹G ′.reaches
a b› for a b

using that by (auto intro: G.graph-startI mono-rtranclp[rule-format, of
E ′])

lemma reachable:
G.reachable x if G ′.reachable x
using that by (fastforce simp: G.reachable-def G ′.reachable-def)

end

2.3.2 Node-induced Subgraphs

locale Subgraph-Node-Defs = Graph-Defs +
fixes V :: ′a ⇒ bool

begin

definition E ′ where E ′ x y ≡ E x y ∧ V x ∧ V y

sublocale Subgraph E E ′ by standard (auto simp: E ′-def)

lemma subgraph ′:
E ′ x y if E x y V x V y
using that unfolding E ′-def by auto

lemma E ′-V1 :
V x if E ′ x y
using that unfolding E ′-def by auto

lemma E ′-V2 :
V y if E ′ x y
using that unfolding E ′-def by auto

lemma G ′-reaches-V :
V y if G ′.reaches x y V x
using that by (cases) (auto intro: E ′-V2)

lemma G ′-steps-V-all:
list-all V xs if G ′.steps xs V (hd xs)
using that by induction (auto intro: E ′-V2)

57

lemma G ′-steps-V-last:
V (last xs) if G ′.steps xs V (hd xs)
using that by induction (auto dest: E ′-V2)

lemmas subgraphI = E ′-V1 E ′-V2 G ′-reaches-V

lemmas subgraphD = E ′-V1 E ′-V2 G ′-reaches-V

end

locale Subgraph-Node-Defs-Notation = Subgraph-Node-Defs
begin

no-notation E (‹- → -› [100 , 100] 40)
notation E ′ (‹- → -› [100 , 100] 40)
no-notation reaches (‹- →∗ -› [100 , 100] 40)
notation G ′.reaches (‹- →∗ -› [100 , 100] 40)
no-notation reaches1 (‹- →+ -› [100 , 100] 40)
notation G ′.reaches1 (‹- →+ -› [100 , 100] 40)

end

2.3.3 The Reachable Subgraph

context Graph-Start-Defs
begin

interpretation Subgraph-Node-Defs-Notation E reachable .

sublocale reachable-subgraph: Subgraph-Node-Defs E reachable .

lemma reachable-supgraph:
x → y if E x y reachable x
using that unfolding E ′-def by (auto intro: graph-startI)

lemma reachable-reaches-equiv: reaches x y ←→ x →∗ y if reachable x for
x y

apply standard
subgoal premises prems

using prems ‹reachable x›
by induction (auto dest: reachable-supgraph intro: graph-startI graphI-aggressive)

subgoal premises prems
using prems ‹reachable x›

58

by induction (auto dest: subgraph)
done

lemma reachable-reaches1-equiv: reaches1 x y ←→ x →+ y if reachable x
for x y

apply standard
subgoal premises prems

using prems ‹reachable x›
by induction (auto dest: reachable-supgraph intro: graph-startI graphI-aggressive)

subgoal premises prems
using prems ‹reachable x›
by induction (auto dest: subgraph)

done

lemma reachable-steps-equiv:
steps (x # xs) ←→ G ′.steps (x # xs) if reachable x
apply standard
subgoal premises prems

using prems ‹reachable x›
by (induction x # xs arbitrary: x xs) (auto dest: reachable-supgraph

intro: graph-startI)
subgoal premises prems

using prems by induction auto
done

end

2.4 Bundles

bundle graph-automation
begin

lemmas [intro] = Graph-Defs.graphI Graph-Start-Defs.graph-startI
lemmas [dest] = Graph-Start-Defs.graphD

end

bundle reaches-steps-iff =
Graph-Defs.reaches1-steps-iff [iff]
Graph-Defs.reaches-steps-iff [iff]

bundle graph-automation-aggressive
begin

59

unbundle graph-automation

lemmas [intro] = Graph-Start-Defs.graphI-aggressive
lemmas [dest] = Graph-Start-Defs.graphD-aggressive

end

bundle subgraph-automation
begin

unbundle graph-automation

lemmas [intro] = Subgraph-Node-Defs.subgraphI
lemmas [dest] = Subgraph-Node-Defs.subgraphD

end

2.5 Directed Acyclic Graphs

locale DAG = Graph-Defs +
assumes acyclic: ¬ E++ x x

begin

lemma topological-numbering:
fixes S assumes finite S
shows ∃ f :: - ⇒ nat. inj-on f S ∧ (∀ x ∈ S . ∀ y ∈ S . E x y −→ f x < f y)
using assms

proof (induction rule: finite-psubset-induct)
case (psubset A)
show ?case
proof (cases A = {})

case True
then show ?thesis

by simp
next

case False
then obtain x where x: x ∈ A ∀ y ∈ A. ¬E y x
using directed-graph-indegree-ge-1-cycle[OF ‹finite A›] acyclic by auto

let ?A = A − {x}
from ‹x ∈ A› have ?A ⊂ A

by auto
from psubset.IH (1)[OF this] obtain f :: - ⇒ nat where f :

inj-on f ?A ∀ x∈?A. ∀ y∈?A. x → y −→ f x < f y
by blast

60

let ?f = λy. if x 6= y then f y + 1 else 0
from ‹x ∈ A› have A = insert x ?A

by auto
from ‹inj-on f ?A› have inj-on ?f A

by (auto simp: inj-on-def)
moreover from f (2) x(2) have ∀ x∈A. ∀ y∈A. x → y −→ ?f x < ?f y

by auto
ultimately show ?thesis

by blast
qed

qed

end

2.6 Finite Graphs

locale Finite-Graph = Graph-Defs +
assumes finite-graph: finite vertices

locale Finite-DAG = Finite-Graph + DAG
begin

lemma finite-reachable:
finite {y. x →∗ y} (is finite ?S)

proof −
have ?S ⊆ insert x vertices

by (metis insertCI mem-Collect-eq reaches1-verts(2) rtranclpD subsetI)
also from finite-graph have finite
finally show ?thesis .

qed

end

2.7 Graph Invariants

locale Graph-Invariant = Graph-Defs +
fixes P :: ′a ⇒ bool
assumes invariant: P a =⇒ a → b =⇒ P b

begin

lemma invariant-steps:
list-all P as if steps (a # as) P a
using that by (induction a # as arbitrary: as a) (auto intro: invariant)

61

lemma invariant-reaches:
P b if a →∗ b P a
using that by (induction; blast intro: invariant)

lemma invariant-run:
assumes run: run (x ## xs) and P: P x
shows pred-stream P (x ## xs)
using run P by (coinduction arbitrary: x xs) (auto 4 3 elim: invariant

run.cases)

Every graph invariant induces a subgraph.
sublocale Subgraph-Node-Defs where E = E and V = P .

lemma subgraph ′:
assumes x → y P x
shows E ′ x y
using assms by (intro subgraph ′) (auto intro: invariant)

lemma invariant-steps-iff :
G ′.steps (v # vs) ←→ steps (v # vs) if P v
apply (rule iffI)
subgoal

using G ′.steps-alt-induct steps-appendI by blast
subgoal premises prems

using prems ‹P v› by (induction v # vs arbitrary: v vs) (auto intro:
subgraph ′ invariant)

done

lemma invariant-reaches-iff :
G ′.reaches u v ←→ reaches u v if P u
using that by (simp add: reaches-steps-iff2 G ′.reaches-steps-iff2 invari-

ant-steps-iff)

lemma invariant-reaches1-iff :
G ′.reaches1 u v ←→ reaches1 u v if P u
using that by (simp add: reaches1-steps-iff G ′.reaches1-steps-iff invari-

ant-steps-iff)

end

locale Graph-Invariants = Graph-Defs +
fixes P Q :: ′a ⇒ bool
assumes invariant: P a =⇒ a → b =⇒ Q b and Q-P: Q a =⇒ P a

begin

62

sublocale Pre: Graph-Invariant E P
by standard (blast intro: invariant Q-P)

sublocale Post: Graph-Invariant E Q
by standard (blast intro: invariant Q-P)

lemma invariant-steps:
list-all Q as if steps (a # as) P a
using that by (induction a # as arbitrary: as a) (auto intro: invariant

Q-P)

lemma invariant-run:
assumes run: run (x ## xs) and P: P x
shows pred-stream Q xs
using run P by (coinduction arbitrary: x xs) (auto 4 4 elim: invariant

run.cases intro: Q-P)

lemma invariant-reaches1 :
Q b if a →+ b P a
using that by (induction; blast intro: invariant Q-P)

end

locale Graph-Invariant-Start = Graph-Start-Defs + Graph-Invariant +
assumes P-s0: P s0

begin

lemma invariant-steps:
list-all P as if steps (s0 # as)
using that P-s0 by (rule invariant-steps)

lemma invariant-reaches:
P b if s0 →∗ b
using invariant-reaches[OF that P-s0] .

lemmas invariant-run = invariant-run[OF - P-s0]

end

locale Graph-Invariant-Strong = Graph-Defs +
fixes P :: ′a ⇒ bool
assumes invariant: a → b =⇒ P b

begin

63

sublocale inv: Graph-Invariant by standard (rule invariant)

lemma P-invariant-steps:
list-all P as if steps (a # as)
using that by (induction a # as arbitrary: as a) (auto intro: invariant)

lemma steps-last-invariant:
P (last xs) if steps (x # xs) xs 6= []
using steps-last-step[of x # xs] that by (auto intro: invariant)

lemmas invariant-reaches = inv.invariant-reaches

lemma invariant-reaches1 :
P b if a →+ b
using that by (induction; blast intro: invariant)

end

2.8 Simulations and Bisimulations

locale Simulation-Defs =
fixes A :: ′a ⇒ ′a ⇒ bool and B :: ′b ⇒ ′b ⇒ bool

and sim :: ′a ⇒ ′b ⇒ bool (infixr ‹∼› 60)
begin

sublocale A: Graph-Defs A .

sublocale B: Graph-Defs B .

end

locale Simulation = Simulation-Defs +
assumes A-B-step:

∧
a b a ′. A a b =⇒ a ∼ a ′ =⇒ (∃ b ′. B a ′ b ′ ∧ b ∼

b ′)
begin

lemma simulation-reaches:
∃ b ′. B∗∗ b b ′ ∧ a ′ ∼ b ′ if A∗∗ a a ′ a ∼ b
using that by (induction rule: rtranclp-induct) (auto intro: rtranclp.intros(2)

dest: A-B-step)

lemma simulation-reaches1 :
∃ b ′. B++ b b ′ ∧ a ′ ∼ b ′ if A++ a a ′ a ∼ b

64

using that by (induction rule: tranclp-induct) (auto 4 3 intro: tran-
clp.intros(2) dest: A-B-step)

lemma simulation-steps:
∃ bs. B.steps (b # bs) ∧ list-all2 (λ a b. a ∼ b) as bs if A.steps (a # as)

a ∼ b
using that
apply (induction a # as arbitrary: a b as)
apply force

apply (frule A-B-step, auto)
done

lemma simulation-run:
∃ ys. B.run (y ## ys) ∧ stream-all2 (∼) xs ys if A.run (x ## xs) x ∼ y

proof −
let ?ys = sscan (λ a ′ b. SOME b ′. B b b ′ ∧ a ′ ∼ b ′) xs y
have B.run (y ## ?ys)

using that by (coinduction arbitrary: x y xs) (force dest!: someI-ex
A-B-step elim: A.run.cases)

moreover have stream-all2 (∼) xs ?ys
using that by (coinduction arbitrary: x y xs) (force dest!: someI-ex

A-B-step elim: A.run.cases)
ultimately show ?thesis by blast

qed

end

lemma (in Subgraph) Subgraph-Simulation:
Simulation E ′ E (=)
by standard auto

locale Simulation-Invariant = Simulation-Defs +
fixes PA :: ′a ⇒ bool and PB :: ′b ⇒ bool
assumes A-B-step:

∧
a b a ′. A a b =⇒ PA a =⇒ PB a ′ =⇒ a ∼ a ′ =⇒

(∃ b ′. B a ′ b ′ ∧ b ∼ b ′)
assumes A-invariant[intro]:

∧
a b. PA a =⇒ A a b =⇒ PA b

assumes B-invariant[intro]:
∧

a b. PB a =⇒ B a b =⇒ PB b
begin

definition equiv ′ ≡ λ a b. a ∼ b ∧ PA a ∧ PB b

sublocale Simulation A B equiv ′ by standard (auto dest: A-B-step simp:
equiv ′-def)

65

sublocale PA-invariant: Graph-Invariant A PA by standard blast

sublocale PB-invariant: Graph-Invariant B PB by standard blast

lemma simulation-reaches:
∃ b ′. B∗∗ b b ′ ∧ a ′ ∼ b ′ ∧ PA a ′ ∧ PB b ′ if A∗∗ a a ′ a ∼ b PA a PB b
using simulation-reaches[of a a ′ b] that unfolding equiv ′-def by simp

lemma simulation-steps:
∃ bs. B.steps (b # bs) ∧ list-all2 (λ a b. a ∼ b ∧ PA a ∧ PB b) as bs
if A.steps (a # as) a ∼ b PA a PB b
using simulation-steps[of a as b] that unfolding equiv ′-def by simp

lemma simulation-steps ′:
∃ bs. B.steps (b # bs) ∧ list-all2 (λ a b. a ∼ b) as bs ∧ list-all PA as ∧

list-all PB bs
if A.steps (a # as) a ∼ b PA a PB b
using simulation-steps[OF that]
by (force dest: list-all2-set1 list-all2-set2 simp: list-all-iff elim: list-all2-mono)

context
fixes f
assumes eq: a ∼ b =⇒ b = f a

begin

lemma simulation-steps ′-map:
∃ bs.

B.steps (b # bs) ∧ bs = map f as
∧ list-all2 (λ a b. a ∼ b) as bs
∧ list-all PA as ∧ list-all PB bs

if A.steps (a # as) a ∼ b PA a PB b
proof −

from simulation-steps ′[OF that] obtain bs where guessed:
B.steps (b # bs)
list-all2 (∼) as bs
list-all PA as
list-all PB bs
by safe

from this(2) have bs = map f as
by (induction; simp add: eq)

with guessed show ?thesis
by auto

qed

66

end

end

locale Simulation-Invariants = Simulation-Defs +
fixes PA QA :: ′a ⇒ bool and PB QB :: ′b ⇒ bool
assumes A-B-step:

∧
a b a ′. A a b =⇒ PA a =⇒ PB a ′ =⇒ a ∼ a ′ =⇒

(∃ b ′. B a ′ b ′ ∧ b ∼ b ′)
assumes A-invariant[intro]:

∧
a b. PA a =⇒ A a b =⇒ QA b

assumes B-invariant[intro]:
∧

a b. PB a =⇒ B a b =⇒ QB b
assumes PA-QA[intro]:

∧
a. QA a =⇒ PA a and PB-QB[intro]:

∧
a.

QB a =⇒ PB a
begin

sublocale Pre: Simulation-Invariant A B (∼) PA PB
by standard (auto intro: A-B-step)

sublocale Post: Simulation-Invariant A B (∼) QA QB
by standard (auto intro: A-B-step)

sublocale A-invs: Graph-Invariants A PA QA
by standard auto

sublocale B-invs: Graph-Invariants B PB QB
by standard auto

lemma simulation-reaches1 :
∃ b2 . B.reaches1 b1 b2 ∧ a2 ∼ b2 ∧ QB b2 if A.reaches1 a1 a2 a1 ∼ b1

PA a1 PB b1
using that
by − (drule Pre.simulation-reaches1 , auto intro: B-invs.invariant-reaches1

simp: Pre.equiv ′-def)

lemma reaches1-unique:
assumes unique:

∧
b2 . a ∼ b2 =⇒ QB b2 =⇒ b2 = b

and that: A.reaches1 a a a ∼ b PA a PB b
shows B.reaches1 b b
using that by (auto dest: unique simulation-reaches1)

end

locale Bisimulation = Simulation-Defs +
assumes A-B-step:

∧
a b a ′. A a b =⇒ a ∼ a ′ =⇒ (∃ b ′. B a ′ b ′ ∧ b ∼

b ′)

67

assumes B-A-step:
∧

a a ′ b ′. B a ′ b ′ =⇒ a ∼ a ′ =⇒ (∃ b. A a b ∧ b ∼
b ′)
begin

sublocale A-B: Simulation A B (∼) by standard (rule A-B-step)

sublocale B-A: Simulation B A λ x y. y ∼ x by standard (rule B-A-step)

lemma A-B-reaches:
∃ b ′. B∗∗ b b ′ ∧ a ′ ∼ b ′ if A∗∗ a a ′ a ∼ b
using A-B.simulation-reaches[OF that] .

lemma B-A-reaches:
∃ b ′. A∗∗ b b ′ ∧ b ′ ∼ a ′ if B∗∗ a a ′ b ∼ a
using B-A.simulation-reaches[OF that] .

end

locale Bisimulation-Invariant = Simulation-Defs +
fixes PA :: ′a ⇒ bool and PB :: ′b ⇒ bool
assumes A-B-step:

∧
a b a ′. A a b =⇒ a ∼ a ′ =⇒ PA a =⇒ PB a ′ =⇒

(∃ b ′. B a ′ b ′ ∧ b ∼ b ′)
assumes B-A-step:

∧
a a ′ b ′. B a ′ b ′ =⇒ a ∼ a ′ =⇒ PA a =⇒ PB a ′

=⇒ (∃ b. A a b ∧ b ∼ b ′)
assumes A-invariant[intro]:

∧
a b. PA a =⇒ A a b =⇒ PA b

assumes B-invariant[intro]:
∧

a b. PB a =⇒ B a b =⇒ PB b
begin

sublocale PA-invariant: Graph-Invariant A PA by standard blast

sublocale PB-invariant: Graph-Invariant B PB by standard blast

lemmas B-steps-invariant[intro] = PB-invariant.invariant-reaches

definition equiv ′ ≡ λ a b. a ∼ b ∧ PA a ∧ PB b

sublocale bisim: Bisimulation A B equiv ′

by standard (clarsimp simp add: equiv ′-def , frule A-B-step B-A-step, as-
sumption; auto)+

sublocale A-B: Simulation-Invariant A B (∼) PA PB
by (standard; blast intro: A-B-step B-A-step)

sublocale B-A: Simulation-Invariant B A λ x y. y ∼ x PB PA

68

by (standard; blast intro: A-B-step B-A-step)

context
fixes f
assumes eq: a ∼ b ←→ b = f a

and inj: ∀ a b. PB (f a) ∧ PA b ∧ f a = f b −→ a = b
begin

lemma list-all2-inj-map-eq:
as = bs if list-all2 (λa b. a = f b) (map f as) bs list-all PB (map f as)

list-all PA bs
using that inj
by (induction map f as bs arbitrary: as rule: list-all2-induct) (auto simp:

inj-on-def)

lemma steps-map-equiv:
A.steps (a # as) ←→ B.steps (b # map f as) if a ∼ b PA a PB b
using A-B.simulation-steps ′-map[of f a as b] B-A.simulation-steps ′[of b

map f as a] that eq
by (auto dest: list-all2-inj-map-eq)

lemma steps-map:
∃ as. bs = map f as if B.steps (f a # bs) PA a PB (f a)

proof −
have a ∼ f a unfolding eq ..
from B-A.simulation-steps ′[OF that(1) this ‹PB -› ‹PA -›] obtain as

where
A.steps (a # as)
list-all2 (λa b. b ∼ a) bs as
list-all PB bs
list-all PA as
by safe

from this(2) show ?thesis
unfolding eq by (inst-existentials as, induction rule: list-all2-induct,

auto)
qed

lemma reaches-equiv:
A.reaches a a ′←→ B.reaches (f a) (f a ′) if PA a PB (f a)
apply safe
apply (drule A-B.simulation-reaches[of a a ′ f a]; simp add: eq that)

apply (drule B-A.simulation-reaches)
defer
apply (rule that | clarsimp simp: eq | metis inj)+

69

done

end

lemma equiv ′-D:
a ∼ b if A-B.equiv ′ a b
using that unfolding A-B.equiv ′-def by auto

lemma equiv ′-rotate-1 :
B-A.equiv ′ b a if A-B.equiv ′ a b
using that by (auto simp: B-A.equiv ′-def A-B.equiv ′-def)

lemma equiv ′-rotate-2 :
A-B.equiv ′ a b if B-A.equiv ′ b a
using that by (auto simp: B-A.equiv ′-def A-B.equiv ′-def)

lemma stream-all2-equiv ′-D:
stream-all2 (∼) xs ys if stream-all2 A-B.equiv ′ xs ys
using stream-all2-weaken[OF that equiv ′-D] by fast

lemma stream-all2-equiv ′-D2 :
stream-all2 B-A.equiv ′ ys xs =⇒ stream-all2 ((∼)−1−1) ys xs
by (coinduction arbitrary: xs ys) (auto simp: B-A.equiv ′-def)

lemma stream-all2-rotate-1 :
stream-all2 B-A.equiv ′ ys xs =⇒ stream-all2 A-B.equiv ′ xs ys
by (coinduction arbitrary: xs ys) (auto simp: B-A.equiv ′-def A-B.equiv ′-def)

lemma stream-all2-rotate-2 :
stream-all2 A-B.equiv ′ xs ys =⇒ stream-all2 B-A.equiv ′ ys xs
by (coinduction arbitrary: xs ys) (auto simp: B-A.equiv ′-def A-B.equiv ′-def)

end

locale Bisimulation-Invariants = Simulation-Defs +
fixes PA QA :: ′a ⇒ bool and PB QB :: ′b ⇒ bool
assumes A-B-step:

∧
a b a ′. A a b =⇒ a ∼ a ′ =⇒ PA a =⇒ PB a ′ =⇒

(∃ b ′. B a ′ b ′ ∧ b ∼ b ′)
assumes B-A-step:

∧
a a ′ b ′. B a ′ b ′ =⇒ a ∼ a ′ =⇒ PA a =⇒ PB a ′

=⇒ (∃ b. A a b ∧ b ∼ b ′)
assumes A-invariant[intro]:

∧
a b. PA a =⇒ A a b =⇒ QA b

assumes B-invariant[intro]:
∧

a b. PB a =⇒ B a b =⇒ QB b
assumes PA-QA[intro]:

∧
a. QA a =⇒ PA a and PB-QB[intro]:

∧
a.

QB a =⇒ PB a

70

begin

sublocale PA-invariant: Graph-Invariant A PA by standard blast

sublocale PB-invariant: Graph-Invariant B PB by standard blast

sublocale QA-invariant: Graph-Invariant A QA by standard blast

sublocale QB-invariant: Graph-Invariant B QB by standard blast

sublocale Pre-Bisim: Bisimulation-Invariant A B (∼) PA PB
by standard (auto intro: A-B-step B-A-step)

sublocale Post-Bisim: Bisimulation-Invariant A B (∼) QA QB
by standard (auto intro: A-B-step B-A-step)

sublocale A-B: Simulation-Invariants A B (∼) PA QA PB QB
by standard (blast intro: A-B-step)+

sublocale B-A: Simulation-Invariants B A λ x y. y ∼ x PB QB PA QA
by standard (blast intro: B-A-step)+

context
fixes f
assumes eq[simp]: a ∼ b ←→ b = f a

and inj: ∀ a b. QB (f a) ∧ QA b ∧ f a = f b −→ a = b
begin

lemmas list-all2-inj-map-eq = Post-Bisim.list-all2-inj-map-eq[OF eq inj]
lemmas steps-map-equiv ′ = Post-Bisim.steps-map-equiv[OF eq inj]

lemma list-all2-inj-map-eq ′:
as = bs if list-all2 (λa b. a = f b) (map f as) bs list-all QB (map f as)

list-all QA bs
using that by (rule list-all2-inj-map-eq)

lemma steps-map-equiv:
A.steps (a # as) ←→ B.steps (b # map f as) if a ∼ b PA a PB b

proof
assume A.steps (a # as)
then show B.steps (b # map f as)
proof cases

case Single
then show ?thesis by auto

71

next
case prems: (Cons a ′ xs)
from A-B-step[OF ‹A a a ′› ‹a ∼ b› ‹PA a› ‹PB b›] obtain b ′ where

B b b ′ a ′ ∼ b ′

by auto
with steps-map-equiv ′[OF ‹a ′ ∼ b ′›, of xs] prems that show ?thesis

by auto
qed

next
assume B.steps (b # map f as)
then show A.steps (a # as)
proof cases

case Single
then show ?thesis by auto

next
case prems: (Cons b ′ xs)
from B-A-step[OF ‹B b b ′› ‹a ∼ b› ‹PA a› ‹PB b›] obtain a ′ where

A a a ′ a ′ ∼ b ′

by auto
with that prems have QA a ′ QB b ′

by auto
with ‹A a a ′› ‹a ′ ∼ b ′› steps-map-equiv ′[OF ‹a ′ ∼ b ′›, of tl as] prems

that show ?thesis
apply clarsimp
subgoal for z zs

using inj[rule-format, of z a ′] by auto
done

qed
qed

lemma steps-map:
∃ as. bs = map f as if B.steps (f a # bs) PA a PB (f a)
using that proof cases
case Single
then show ?thesis by simp

next
case prems: (Cons b ′ xs)
from B-A-step[OF ‹B - b ′› - ‹PA a› ‹PB (f a)›] obtain a ′ where A a a ′

a ′ ∼ b ′

by auto
with that prems have QA a ′ QB b ′

by auto
with Post-Bisim.steps-map[OF eq inj, of a ′ xs] prems ‹a ′ ∼ b ′› obtain

ys where xs = map f ys

72

by auto
with ‹bs = -› ‹a ′ ∼ b ′› show ?thesis

by (inst-existentials a ′ # ys) auto
qed

[[
∧

a b. a ∼ b = (b = ?f a); ∀ a b. QB (?f a) ∧ QA b ∧ ?f a = ?f b −→ a =
b; QA ?a; QB (?f ?a)]] =⇒ A.reaches ?a ?a ′ = B.reaches (?f ?a) (?f ?a ′)
cannot be lifted directly: injectivity cannot be applied for the reflexive case.
lemma reaches1-equiv:

A.reaches1 a a ′←→ B.reaches1 (f a) (f a ′) if PA a PB (f a)
proof safe

assume A.reaches1 a a ′

then obtain a ′′ where prems: A a a ′′ A.reaches a ′′ a ′

including graph-automation-aggressive by blast
from A-B-step[OF ‹A a -› - that] obtain b where B (f a) b a ′′ ∼ b

by auto
with that prems have QA a ′′ QB b

by auto
with Post-Bisim.reaches-equiv[OF eq inj, of a ′′ a ′] prems ‹B (f a) b› ‹a ′′

∼ b›
show B.reaches1 (f a) (f a ′)

by auto
next

assume B.reaches1 (f a) (f a ′)
then obtain b where prems: B (f a) b B.reaches b (f a ′)

including graph-automation-aggressive by blast
from B-A-step[OF ‹B - b› - ‹PA a› ‹PB (f a)›] obtain a ′′ where A a

a ′′ a ′′ ∼ b
by auto

with that prems have QA a ′′ QB b
by auto

with Post-Bisim.reaches-equiv[OF eq inj, of a ′′ a ′] prems ‹A a a ′′› ‹a ′′ ∼
b›

show A.reaches1 a a ′

by auto
qed

end

end

lemma Bisimulation-Invariant-composition:
assumes

Bisimulation-Invariant A B sim1 PA PB

73

Bisimulation-Invariant B C sim2 PB PC
shows

Bisimulation-Invariant A C (λ a c. ∃ b. PB b ∧ sim1 a b ∧ sim2 b c)
PA PC
proof −

interpret A: Bisimulation-Invariant A B sim1 PA PB
by (rule assms(1))

interpret B: Bisimulation-Invariant B C sim2 PB PC
by (rule assms(2))

show ?thesis
by (standard; (blast dest: A.A-B-step B.A-B-step | blast dest: A.B-A-step

B.B-A-step))
qed

lemma Bisimulation-Invariant-filter :
assumes

Bisimulation-Invariant A B sim PA PB∧
a b. sim a b =⇒ PA a =⇒ PB b =⇒ FA a ←→ FB b∧
a b. A a b ∧ FA b ←→ A ′ a b∧
a b. B a b ∧ FB b ←→ B ′ a b

shows
Bisimulation-Invariant A ′ B ′ sim PA PB

proof −
interpret Bisimulation-Invariant A B sim PA PB

by (rule assms(1))
have unfold:

A ′ = (λ a b. A a b ∧ FA b) B ′ = (λ a b. B a b ∧ FB b)
using assms(3 ,4) by auto

show ?thesis
unfolding unfold
apply standard
using assms(2) apply (blast dest: A-B-step)
using assms(2) apply (blast dest: B-A-step)
by blast+

qed

lemma Bisimulation-Invariants-filter :
assumes

Bisimulation-Invariants A B sim PA QA PB QB∧
a b. QA a =⇒ QB b =⇒ FA a ←→ FB b∧
a b. A a b ∧ FA b ←→ A ′ a b∧
a b. B a b ∧ FB b ←→ B ′ a b

shows
Bisimulation-Invariants A ′ B ′ sim PA QA PB QB

74

proof −
interpret Bisimulation-Invariants A B sim PA QA PB QB

by (rule assms(1))
have unfold:

A ′ = (λ a b. A a b ∧ FA b) B ′ = (λ a b. B a b ∧ FB b)
using assms(3 ,4) by auto

show ?thesis
unfolding unfold
apply standard
using assms(2) apply (blast dest: A-B-step)
using assms(2) apply (blast dest: B-A-step)
by blast+

qed

lemma Bisimulation-Invariants-composition:
assumes

Bisimulation-Invariants A B sim1 PA QA PB QB
Bisimulation-Invariants B C sim2 PB QB PC QC

shows
Bisimulation-Invariants A C (λ a c. ∃ b. PB b ∧ sim1 a b ∧ sim2 b c)

PA QA PC QC
proof −

interpret A: Bisimulation-Invariants A B sim1 PA QA PB QB
by (rule assms(1))

interpret B: Bisimulation-Invariants B C sim2 PB QB PC QC
by (rule assms(2))

show ?thesis
by (standard, blast dest: A.A-B-step B.A-B-step) (blast dest: A.B-A-step

B.B-A-step)+
qed

lemma Bisimulation-Invariant-Invariants-composition:
assumes

Bisimulation-Invariant A B sim1 PA PB
Bisimulation-Invariants B C sim2 PB QB PC QC

shows
Bisimulation-Invariants A C (λ a c. ∃ b. PB b ∧ sim1 a b ∧ sim2 b c)

PA PA PC QC
proof −

interpret Bisimulation-Invariant A B sim1 PA PB
by (rule assms(1))

interpret B: Bisimulation-Invariants B C sim2 PB QB PC QC
by (rule assms(2))

interpret A: Bisimulation-Invariants A B sim1 PA PA PB QB

75

by (standard; blast intro: A-B-step B-A-step)+
show ?thesis
by (standard; (blast dest: A.A-B-step B.A-B-step | blast dest: A.B-A-step

B.B-A-step))
qed

lemma Bisimulation-Invariant-Bisimulation-Invariants:
assumes Bisimulation-Invariant A B sim PA PB
shows Bisimulation-Invariants A B sim PA PA PB PB

proof −
interpret Bisimulation-Invariant A B sim PA PB

by (rule assms)
show ?thesis

by (standard; blast intro: A-B-step B-A-step)
qed

lemma Bisimulation-Invariant-strengthen-post:
assumes

Bisimulation-Invariant A B sim PA PB∧
a b. PA ′ a =⇒ PA b =⇒ A a b =⇒ PA ′ b∧
a. PA ′ a =⇒ PA a

shows Bisimulation-Invariant A B sim PA ′ PB
proof −

interpret Bisimulation-Invariant A B sim PA PB
by (rule assms)

show ?thesis
by (standard; blast intro: A-B-step B-A-step assms)

qed

lemma Bisimulation-Invariant-strengthen-post ′:
assumes

Bisimulation-Invariant A B sim PA PB∧
a b. PB ′ a =⇒ PB b =⇒ B a b =⇒ PB ′ b∧
a. PB ′ a =⇒ PB a

shows Bisimulation-Invariant A B sim PA PB ′

proof −
interpret Bisimulation-Invariant A B sim PA PB

by (rule assms)
show ?thesis

by (standard; blast intro: A-B-step B-A-step assms)
qed

lemma Simulation-Invariant-strengthen-post:
assumes

76

Simulation-Invariant A B sim PA PB∧
a b. PA a =⇒ PA b =⇒ A a b =⇒ PA ′ b∧
a. PA ′ a =⇒ PA a

shows Simulation-Invariant A B sim PA ′ PB
proof −

interpret Simulation-Invariant A B sim PA PB
by (rule assms)

show ?thesis
by (standard; blast intro: A-B-step assms)

qed

lemma Simulation-Invariant-strengthen-post ′:
assumes

Simulation-Invariant A B sim PA PB∧
a b. PB a =⇒ PB b =⇒ B a b =⇒ PB ′ b∧
a. PB ′ a =⇒ PB a

shows Simulation-Invariant A B sim PA PB ′

proof −
interpret Simulation-Invariant A B sim PA PB

by (rule assms)
show ?thesis

by (standard; blast intro: A-B-step assms)
qed

lemma Simulation-Invariants-strengthen-post:
assumes

Simulation-Invariants A B sim PA QA PB QB∧
a b. PA a =⇒ QA b =⇒ A a b =⇒ QA ′ b∧
a. QA ′ a =⇒ QA a

shows Simulation-Invariants A B sim PA QA ′ PB QB
proof −

interpret Simulation-Invariants A B sim PA QA PB QB
by (rule assms)

show ?thesis
by (standard; blast intro: A-B-step assms)

qed

lemma Simulation-Invariants-strengthen-post ′:
assumes

Simulation-Invariants A B sim PA QA PB QB∧
a b. PB a =⇒ QB b =⇒ B a b =⇒ QB ′ b∧
a. QB ′ a =⇒ QB a

shows Simulation-Invariants A B sim PA QA PB QB ′

proof −

77

interpret Simulation-Invariants A B sim PA QA PB QB
by (rule assms)

show ?thesis
by (standard; blast intro: A-B-step assms)

qed

lemma Bisimulation-Invariant-sim-replace:
assumes Bisimulation-Invariant A B sim PA PB

and
∧

a b. PA a =⇒ PB b =⇒ sim a b ←→ sim ′ a b
shows Bisimulation-Invariant A B sim ′ PA PB

proof −
interpret Bisimulation-Invariant A B sim PA PB

by (rule assms(1))
show ?thesis

apply standard
using assms(2) apply (blast dest: A-B-step)
using assms(2) apply (blast dest: B-A-step)
by blast+

qed

end

2.9 CTL

theory CTL
imports Graphs

begin

lemmas [simp] = holds.simps

context Graph-Defs
begin

definition
Alw-ev ϕ x ≡ ∀ xs. run (x ## xs) −→ ev (holds ϕ) (x ## xs)

definition
Alw-alw ϕ x ≡ ∀ xs. run (x ## xs) −→ alw (holds ϕ) (x ## xs)

definition
Ex-ev ϕ x ≡ ∃ xs. run (x ## xs) ∧ ev (holds ϕ) (x ## xs)

definition
Ex-alw ϕ x ≡ ∃ xs. run (x ## xs) ∧ alw (holds ϕ) (x ## xs)

78

definition
leadsto ϕ ψ x ≡ Alw-alw (λ x. ϕ x −→ Alw-ev ψ x) x

definition
deadlocked x ≡ ¬ (∃ y. x → y)

definition
deadlock x ≡ ∃ y. reaches x y ∧ deadlocked y

lemma no-deadlockD:
¬ deadlocked y if ¬ deadlock x reaches x y
using that unfolding deadlock-def by auto

lemma not-deadlockedE :
assumes ¬ deadlocked x
obtains y where x → y
using assms unfolding deadlocked-def by auto

lemma holds-Not:
holds (Not ◦ ϕ) = (λ x. ¬ holds ϕ x)
by auto

lemma Alw-alw-iff :
Alw-alw ϕ x ←→ ¬ Ex-ev (Not o ϕ) x
unfolding Alw-alw-def Ex-ev-def holds-Not not-ev-not[symmetric] by simp

lemma Ex-alw-iff :
Ex-alw ϕ x ←→ ¬ Alw-ev (Not o ϕ) x
unfolding Alw-ev-def Ex-alw-def holds-Not not-ev-not[symmetric] by simp

lemma leadsto-iff :
leadsto ϕ ψ x ←→ ¬ Ex-ev (λ x. ϕ x ∧ ¬ Alw-ev ψ x) x
unfolding leadsto-def Alw-alw-iff by (simp add: comp-def)

lemma run-siterate-from:
assumes ∀ y. x →∗ y −→ (∃ z. y → z)
shows run (siterate (λ x. SOME y. x → y) x) (is run (siterate ?f x))
using assms

proof (coinduction arbitrary: x)
case (run x)
let ?y = SOME y. x → y
from run have x → ?y

by (auto intro: someI)

79

with run show ?case including graph-automation-aggressive by auto
qed

lemma extend-run ′:
run zs if steps xs run ys last xs = shd ys xs @− stl ys = zs

by (metis
Graph-Defs.run.cases Graph-Defs.steps-non-empty ′ extend-run
stream.exhaust-sel stream.inject that)

lemma no-deadlock-run-extend:
∃ ys. run (x ## xs @− ys) if ¬ deadlock x steps (x # xs)

proof −
include graph-automation
let ?x = last (x # xs) let ?f = λ x. SOME y. x → y let ?ys = siterate

?f ?x
have ∃ z. y → z if ?x →∗ y for y
proof −

from ‹steps (x # xs)› have x →∗ ?x
by auto
from ‹x →∗ ?x› ‹?x →∗ y› have x →∗ y

by auto
with ‹¬ deadlock x› show ?thesis

by (auto dest: no-deadlockD elim: not-deadlockedE)
qed
then have run ?ys

by (blast intro: run-siterate-from)
with ‹steps (x # xs)› show ?thesis

by (fastforce intro: extend-run ′)
qed

lemma Ex-ev:
Ex-ev ϕ x ←→ (∃ y. x →∗ y ∧ ϕ y) if ¬ deadlock x
unfolding Ex-ev-def

proof safe
fix xs assume prems: run (x ## xs) ev (holds ϕ) (x ## xs)
show ∃ y. x →∗ y ∧ ϕ y
proof (cases ϕ x)

case True
then show ?thesis

by auto
next

case False

80

with prems obtain y ys zs where
ϕ y xs = ys @− y ## zs y /∈ set ys
unfolding ev-holds-sset by (auto elim!:split-stream-first ′)

with prems have steps (x # ys @ [y])
by (auto intro: run-decomp[THEN conjunct1])

with ‹ϕ y› show ?thesis
including graph-automation by (auto 4 3)

qed
next

fix y assume x →∗ y ϕ y
then obtain xs where
ϕ (last xs) x = hd xs steps xs y = last xs
by (auto dest: reaches-steps)

then show ∃ xs. run (x ## xs) ∧ ev (holds ϕ) (x ## xs)
by (cases xs)
(auto split: if-split-asm simp: ev-holds-sset dest!: no-deadlock-run-extend[OF

that])
qed

lemma Alw-ev:
Alw-ev ϕ x ←→ ¬ (∃ xs. run (x ## xs) ∧ alw (holds (Not o ϕ)) (x ##

xs))
unfolding Alw-ev-def

proof (safe, goal-cases)
case prems: (1 xs)
then have ev (holds ϕ) (x ## xs) by auto
then show ?case

using prems(2 ,3) by induction (auto intro: run-stl)
next

case prems: (2 xs)
then have ¬ alw (holds (Not ◦ ϕ)) (x ## xs)

by auto
moreover have (λ x. ¬ holds (Not ◦ ϕ) x) = holds ϕ

by (rule ext) simp
ultimately show ?case

unfolding not-alw-iff by simp
qed

lemma leadsto-iff ′:
leadsto ϕ ψ x ←→ (@ y. x →∗ y ∧ ϕ y ∧ ¬ Alw-ev ψ y) if ¬ deadlock x
unfolding leadsto-iff Ex-ev[OF ‹¬ deadlock x›] ..

end

81

context Bisimulation-Invariant
begin

context
fixes ϕ :: ′a ⇒ bool and ψ :: ′b ⇒ bool
assumes compatible: A-B.equiv ′ a b =⇒ ϕ a ←→ ψ b

begin

lemma ev-ψ-ϕ:
ev (holds ϕ) xs if stream-all2 B-A.equiv ′ ys xs ev (holds ψ) ys
using that
apply −
apply (drule stream-all2-rotate-1)
apply (drule ev-imp-shift)
apply clarify
unfolding stream-all2-shift2
apply (subst (asm) stream.rel-sel)
apply (auto intro!: ev-shift dest!: compatible[symmetric])
done

lemma ev-ϕ-ψ:
ev (holds ψ) ys if stream-all2 A-B.equiv ′ xs ys ev (holds ϕ) xs
using that
apply −
apply (subst (asm) stream.rel-flip[symmetric])
apply (drule ev-imp-shift)
apply clarify
unfolding stream-all2-shift2
apply (subst (asm) stream.rel-sel)
apply (auto intro!: ev-shift dest!: compatible)
done

lemma Ex-ev-iff :
A.Ex-ev ϕ a ←→ B.Ex-ev ψ b if A-B.equiv ′ a b
unfolding Graph-Defs.Ex-ev-def
apply safe
subgoal for xs

apply (drule A-B.simulation-run[of a xs b])
subgoal

using that .
apply clarify
subgoal for ys

apply (inst-existentials ys)
using that

82

apply (auto intro!: ev-ϕ-ψ dest: stream-all2-rotate-1)
done

done
subgoal for ys

apply (drule B-A.simulation-run[of b ys a])
subgoal

using that by (rule equiv ′-rotate-1)
apply clarify
subgoal for xs

apply (inst-existentials xs)
using that
apply (auto intro!: ev-ψ-ϕ dest: equiv ′-rotate-1)

done
done

done

lemma Alw-ev-iff :
A.Alw-ev ϕ a ←→ B.Alw-ev ψ b if A-B.equiv ′ a b
unfolding Graph-Defs.Alw-ev-def
apply safe
subgoal for ys

apply (drule B-A.simulation-run[of b ys a])
subgoal

using that by (rule equiv ′-rotate-1)
apply safe
subgoal for xs

apply (inst-existentials xs)
apply (elim allE impE , assumption)

using that
apply (auto intro!: ev-ϕ-ψ dest: stream-all2-rotate-1)

done
done

subgoal for xs
apply (drule A-B.simulation-run[of a xs b])
subgoal

using that .
apply safe
subgoal for ys

apply (inst-existentials ys)
apply (elim allE impE , assumption)
using that
apply (auto intro!: ev-ψ-ϕ elim!: equiv ′-rotate-1 stream-all2-rotate-2)
done

done

83

done

end

context
fixes ϕ :: ′a ⇒ bool and ψ :: ′b ⇒ bool
assumes compatible1 : A-B.equiv ′ a b =⇒ ϕ a ←→ ψ b

begin

lemma Alw-alw-iff-strong:
A.Alw-alw ϕ a ←→ B.Alw-alw ψ b if A-B.equiv ′ a b
unfolding Graph-Defs.Alw-alw-iff using that by (auto dest: compatible1

intro!: Ex-ev-iff)

lemma Ex-alw-iff :
A.Ex-alw ϕ a ←→ B.Ex-alw ψ b if A-B.equiv ′ a b
unfolding Graph-Defs.Ex-alw-iff using that by (auto dest: compatible1

intro!: Alw-ev-iff)

end

context
fixes ϕ :: ′a ⇒ bool and ψ :: ′b ⇒ bool

and ϕ ′ :: ′a ⇒ bool and ψ ′ :: ′b ⇒ bool
assumes compatible1 : A-B.equiv ′ a b =⇒ ϕ a ←→ ψ b
assumes compatible2 : A-B.equiv ′ a b =⇒ ϕ ′ a ←→ ψ ′ b

begin

lemma Leadsto-iff :
A.leadsto ϕ ϕ ′ a ←→ B.leadsto ψ ψ ′ b if A-B.equiv ′ a b
unfolding Graph-Defs.leadsto-def
by (auto

dest: Alw-ev-iff [of ϕ ′ ψ ′, rotated] compatible1 compatible2 equiv ′-D
intro!: Alw-alw-iff-strong[OF - that]

)

end

lemma deadlock-iff :
A.deadlock a ←→ B.deadlock b if a ∼ b PA a PB b
using that unfolding A.deadlock-def A.deadlocked-def B.deadlock-def B.deadlocked-def
by (force dest: A-B-step B-A-step B-A.simulation-reaches A-B.simulation-reaches)

end

84

lemmas [simp del] = holds.simps

end
theory Timed-Automata

imports library/Graphs Difference-Bound-Matrices.Zones
begin

3 Basic Definitions and Semantics

3.1 Syntactic Definition

Clock constraints

datatype (′c, ′t) acconstraint =
LT ′c ′t |
LE ′c ′t |
EQ ′c ′t |
GT ′c ′t |
GE ′c ′t

type-synonym (′c, ′t) cconstraint = (′c, ′t) acconstraint list

For an informal description of timed automata we refer to Bengtsson and
Yi [BY03]. We define a timed automaton A

type-synonym
(′c, ′time, ′s) invassn = ′s ⇒ (′c, ′time) cconstraint

type-synonym
(′a, ′c, ′time, ′s) transition = ′s ∗ (′c, ′time) cconstraint ∗ ′a ∗ ′c list ∗ ′s

type-synonym
(′a, ′c, ′time, ′s) ta = (′a, ′c, ′time, ′s) transition set ∗ (′c, ′time, ′s)

invassn

definition trans-of :: (′a, ′c, ′time, ′s) ta ⇒ (′a, ′c, ′time, ′s) transition set
where

trans-of ≡ fst
definition inv-of :: (′a, ′c, ′time, ′s) ta ⇒ (′c, ′time, ′s) invassn where

inv-of ≡ snd

abbreviation transition ::
(′a, ′c, ′time, ′s) ta ⇒ ′s ⇒ (′c, ′time) cconstraint ⇒ ′a ⇒ ′c list ⇒ ′s ⇒

bool

85

(‹- ` - −→-,-,- -› [61 ,61 ,61 ,61 ,61 ,61] 61) where
(A ` l −→g,a,r l ′) ≡ (l,g,a,r ,l ′) ∈ trans-of A

3.1.1 Collecting Information About Clocks

fun constraint-clk :: (′c, ′t) acconstraint ⇒ ′c
where

constraint-clk (LT c -) = c |
constraint-clk (LE c -) = c |
constraint-clk (EQ c -) = c |
constraint-clk (GE c -) = c |
constraint-clk (GT c -) = c

definition collect-clks :: (′c, ′t) cconstraint ⇒ ′c set
where

collect-clks cc ≡ constraint-clk ‘ set cc

fun constraint-pair :: (′c, ′t) acconstraint ⇒ (′c ∗ ′t)
where

constraint-pair (LT x m) = (x, m) |
constraint-pair (LE x m) = (x, m) |
constraint-pair (EQ x m) = (x, m) |
constraint-pair (GE x m) = (x, m) |
constraint-pair (GT x m) = (x, m)

definition collect-clock-pairs :: (′c, ′t) cconstraint ⇒ (′c ∗ ′t) set
where

collect-clock-pairs cc = constraint-pair ‘ set cc

definition collect-clkt :: (′a, ′c, ′t, ′s) transition set ⇒ (′c ∗ ′t) set
where

collect-clkt S =
⋃
{collect-clock-pairs (fst (snd t)) | t . t ∈ S}

definition collect-clki :: (′c, ′t, ′s) invassn ⇒ (′c ∗ ′t) set
where

collect-clki I =
⋃
{collect-clock-pairs (I x) | x. True}

definition clkp-set :: (′a, ′c, ′t, ′s) ta ⇒ (′c ∗ ′t) set
where

clkp-set A = collect-clki (inv-of A) ∪ collect-clkt (trans-of A)

definition collect-clkvt :: (′a, ′c, ′t, ′s) transition set ⇒ ′c set
where

collect-clkvt S =
⋃
{set ((fst o snd o snd o snd) t) | t . t ∈ S}

86

abbreviation clk-set where clk-set A ≡ fst ‘ clkp-set A ∪ collect-clkvt
(trans-of A)

inductive valid-abstraction
where
[[∀ (x,m) ∈ clkp-set A. m ≤ k x ∧ x ∈ X ∧ m ∈ �; collect-clkvt (trans-of

A) ⊆ X ; finite X]]
=⇒ valid-abstraction A X k

3.2 Operational Semantics

inductive clock-val-a (‹- `a -› [62 , 62] 62) where
[[u c < d]] =⇒ u `a LT c d |
[[u c ≤ d]] =⇒ u `a LE c d |
[[u c = d]] =⇒ u `a EQ c d |
[[u c ≥ d]] =⇒ u `a GE c d |
[[u c > d]] =⇒ u `a GT c d

inductive-cases[elim!]: u `a LT c d
inductive-cases[elim!]: u `a LE c d
inductive-cases[elim!]: u `a EQ c d
inductive-cases[elim!]: u `a GE c d
inductive-cases[elim!]: u `a GT c d

declare clock-val-a.intros[intro]

definition clock-val :: (′c, ′t) cval ⇒ (′c, ′t::time) cconstraint ⇒ bool (‹- `
-› [62 , 62] 62)
where

u ` cc = list-all (clock-val-a u) cc

lemma atomic-guard-continuous:
assumes u `a g u ⊕ t `a g 0 ≤ (t ′:: ′t::time) t ′ ≤ t
shows u ⊕ t ′ `a g
using assms
by (induction g;

auto 4 3
simp: cval-add-def order-le-less-subst2 order-subst2 add-increasing2
intro: less-le-trans

)

lemma guard-continuous:

87

assumes u ` g u ⊕ t ` g 0 ≤ t ′ t ′ ≤ t
shows u ⊕ t ′ ` g
using assms by (auto intro: atomic-guard-continuous simp: clock-val-def

list-all-iff)

inductive step-t ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, ′t) cval ⇒ (′t::time) ⇒ ′s ⇒ (′c, ′t) cval ⇒

bool
(‹- ` 〈-, -〉 →- 〈-, -〉› [61 ,61 ,61] 61)
where
[[u ⊕ d ` inv-of A l; d ≥ 0]] =⇒ A ` 〈l, u〉 →d 〈l, u ⊕ d〉

lemmas [intro] = step-t.intros

context
notes step-t.cases[elim!] step-t.intros[intro!]

begin

lemma step-t-determinacy1 :
A ` 〈l, u〉 →d 〈l ′,u ′〉 =⇒ A ` 〈l, u〉 →d 〈l ′′,u ′′〉 =⇒ l ′ = l ′′

by auto

lemma step-t-determinacy2 :
A ` 〈l, u〉 →d 〈l ′,u ′〉 =⇒ A ` 〈l, u〉 →d 〈l ′′,u ′′〉 =⇒ u ′ = u ′′

by auto

lemma step-t-cont1 :
d ≥ 0 =⇒ e ≥ 0 =⇒ A ` 〈l, u〉 →d 〈l ′,u ′〉 =⇒ A ` 〈l ′, u ′〉 →e 〈l ′′,u ′′〉
=⇒ A ` 〈l, u〉 →d+e 〈l ′′,u ′′〉

proof −
assume A: d ≥ 0 e ≥ 0 A ` 〈l, u〉 →d 〈l ′,u ′〉 A ` 〈l ′, u ′〉 →e 〈l ′′,u ′′〉
hence u ′ = (u ⊕ d) u ′′ = (u ′ ⊕ e) by auto
hence u ′′ = (u ⊕ (d + e)) unfolding cval-add-def by auto
with A show ?thesis by auto

qed

end

inductive step-a ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) cval ⇒ ′a ⇒ ′s ⇒ (′c, ′t) cval ⇒

bool
(‹- ` 〈-, -〉 →- 〈-, -〉› [61 ,61 ,61] 61)
where

88

[[A ` l −→g,a,r l ′; u ` g; u ′ ` inv-of A l ′; u ′ = [r → 0]u]] =⇒ (A ` 〈l, u〉
→a 〈l ′, u ′〉)

inductive step ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) cval ⇒ ′s ⇒ (′c, ′t) cval ⇒ bool

(‹- ` 〈-, -〉 → 〈-,-〉› [61 ,61 ,61] 61)
where

step-a: A ` 〈l, u〉 →a 〈l ′,u ′〉 =⇒ (A ` 〈l, u〉 → 〈l ′,u ′〉) |
step-t: A ` 〈l, u〉 →d 〈l ′,u ′〉 =⇒ (A ` 〈l, u〉 → 〈l ′,u ′〉)

declare step.intros[intro]
declare step.cases[elim]

inductive
steps :: (′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) cval ⇒ ′s ⇒ (′c, ′t) cval
⇒ bool
(‹- ` 〈-, -〉 →∗ 〈-, -〉› [61 ,61 ,61] 61)
where

refl: A ` 〈l, u〉 →∗ 〈l, u〉 |
step: A ` 〈l, u〉 → 〈l ′, u ′〉 =⇒ A ` 〈l ′, u ′〉 →∗ 〈l ′′, u ′′〉 =⇒ A ` 〈l, u〉 →∗
〈l ′′, u ′′〉

declare steps.intros[intro]

3.3 Contracting Runs

inductive step ′ ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) cval ⇒ ′s ⇒ (′c, ′t) cval ⇒ bool

(‹- ` ′′ 〈-, -〉 → 〈-, -〉› [61 ,61 ,61] 61)
where

step ′: A ` 〈l, u〉 →d 〈l ′, u ′〉 =⇒ A ` 〈l ′, u ′〉 →a 〈l ′′, u ′′〉 =⇒ A ` ′ 〈l, u〉
→ 〈l ′′, u ′′〉

lemmas step ′[intro]

lemma step ′-altI :
assumes

A ` l −→g,a,r l ′ u ⊕ d ` g u ⊕ d ` inv-of A l 0 ≤ d
u ′ = [r → 0](u ⊕ d) u ′ ` inv-of A l ′

shows A ` ′ 〈l, u〉 → 〈l ′, u ′〉
using assms by (auto intro: step-a.intros)

inductive
steps ′ :: (′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) cval ⇒ ′s ⇒ (′c, ′t) cval

89

⇒ bool
(‹- ` ′′ 〈-, -〉 →∗ 〈-, -〉› [61 ,61 ,61] 61)
where

refl ′: A ` ′ 〈l, u〉 →∗ 〈l, u〉 |
step ′: A ` ′ 〈l, u〉 → 〈l ′, u ′〉 =⇒ A ` ′ 〈l ′, u ′〉 →∗ 〈l ′′, u ′′〉 =⇒ A ` ′ 〈l, u〉
→∗ 〈l ′′, u ′′〉

lemmas steps ′.intros[intro]

lemma steps ′-altI :
A ` ′ 〈l, u〉 →∗ 〈l ′′, u ′′〉 if A ` ′ 〈l, u〉 →∗ 〈l ′, u ′〉 A ` ′ 〈l ′, u ′〉 → 〈l ′′, u ′′〉
using that by induction auto

lemma step-d-refl[intro]:
A ` 〈l, u〉 →0 〈l, u〉 if u ` inv-of A l

proof −
from that have A ` 〈l, u〉 →0 〈l, u ⊕ 0 〉 by − (rule step-t.intros; force

simp: cval-add-def)
then show ?thesis by (simp add: cval-add-def)

qed

lemma cval-add-simp:
(u ⊕ d) ⊕ d ′ = u ⊕ (d + d ′) for d d ′ :: ′t :: time
unfolding cval-add-def by auto

context
notes [elim!] = step ′.cases step-t.cases
and [intro!] = step-t.intros

begin

lemma step-t-trans:
A ` 〈l, u〉 →d + d ′

〈l, u ′′〉 if A ` 〈l, u〉 →d 〈l, u ′〉 A ` 〈l, u ′〉 →d ′
〈l, u ′′〉

using that by (auto simp add: cval-add-simp)

lemma steps ′-complete:
∃ u ′. A ` ′ 〈l, u〉 →∗ 〈l ′, u ′〉 if A ` 〈l, u〉 →∗ 〈l ′, u ′〉 u ` inv-of A l
using that

proof (induction)
case (refl A l u)
then show ?case by blast

next
case (step A l u l ′ u ′ l ′′ u ′′)
then have u ′ ` inv-of A l ′ by (auto elim: step-a.cases)
from step(1) show ?case

90

proof cases
case (step-a a)
with ‹u ` -› ‹u ′ ` -› step(3) show ?thesis by (auto 4 5)

next
case (step-t d)
then have [simp]: l ′ = l by auto
from step(3) ‹u ′ ` -› obtain u0 where A ` ′ 〈l, u ′〉 →∗ 〈l ′′, u0 〉 by

auto
then show ?thesis
proof cases

case refl ′

then show ?thesis by blast
next

case (step ′ l1 u1)
with step-t show ?thesis by (auto 4 7 intro: step-t-trans)

qed
qed

qed

lemma steps ′-sound:
A ` 〈l, u〉 →∗ 〈l ′, u ′〉 if A ` ′ 〈l, u〉 →∗ 〈l ′, u ′〉
using that by (induction; blast)

lemma steps-steps ′-equiv:
(∃ u ′. A ` 〈l, u〉 →∗ 〈l ′, u ′〉) ←→ (∃ u ′. A ` ′ 〈l, u〉 →∗ 〈l ′, u ′〉) if u `

inv-of A l
using that steps ′-sound steps ′-complete by metis

end

3.4 Zone Semantics

datatype ′a action = Tau (‹τ›) | Action ′a (‹�-›)

inductive step-z ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) zone ⇒ ′a action ⇒ ′s ⇒ (′c, ′t)

zone ⇒ bool
(‹- ` 〈-, -〉 - 〈-, -〉› [61 ,61 ,61 ,61] 61)
where

step-t-z:
A ` 〈l, Z 〉 τ 〈l, Z ↑ ∩ {u. u ` inv-of A l}〉 |
step-a-z:
A ` 〈l, Z 〉 �a 〈l ′, zone-set (Z ∩ {u. u ` g}) r ∩ {u. u ` inv-of A l ′}〉
if A ` l −→g,a,r l ′

91

lemmas step-z.intros[intro]
inductive-cases step-t-z-E [elim]: A ` 〈l, u〉 τ 〈l ′, u ′〉
inductive-cases step-a-z-E [elim]: A ` 〈l, u〉 �a 〈l ′, u ′〉

3.4.1 Zone Semantics for Compressed Runs

definition
step-z ′ :: (′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) zone ⇒ ′s ⇒ (′c, ′t) zone
⇒ bool
(‹- ` 〈-, -〉 〈-, -〉› [61 ,61 ,61] 61)
where

A ` 〈l, Z 〉 〈l ′, Z ′′〉 ≡ (∃ Z ′ a. A ` 〈l, Z 〉 τ 〈l, Z ′〉 ∧ A ` 〈l, Z ′〉 �a
〈l ′, Z ′′〉)

abbreviation
steps-z :: (′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) zone ⇒ ′s ⇒ (′c, ′t) zone
⇒ bool
(‹- ` 〈-, -〉 ∗ 〈-, -〉› [61 ,61 ,61] 61)
where

A ` 〈l, Z 〉 ∗ 〈l ′, Z ′′〉 ≡ (λ (l, Z) (l ′, Z ′′). A ` 〈l, Z 〉 〈l ′, Z ′′〉)∗∗ (l,
Z) (l ′, Z ′′)

context
notes [elim!] = step.cases step ′.cases step-t.cases step-z.cases

begin

lemma step-t-z-sound:
A ` 〈l, Z 〉 τ 〈l ′,Z ′〉 =⇒ ∀ u ′ ∈ Z ′. ∃ u ∈ Z . ∃ d. A ` 〈l, u〉 →d 〈l ′,u ′〉
by (auto 4 5 simp: zone-delay-def zone-set-def)

lemma step-a-z-sound:
A ` 〈l, Z 〉 �a 〈l ′,Z ′〉 =⇒ ∀ u ′ ∈ Z ′. ∃ u ∈ Z . ∃ d. A ` 〈l, u〉 →a 〈l ′,u ′〉
by (auto 4 4 simp: zone-delay-def zone-set-def intro: step-a.intros)

lemma step-z-sound:
A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ ∀ u ′ ∈ Z ′. ∃ u ∈ Z . A ` 〈l, u〉 → 〈l ′,u ′〉
by (auto 4 6 simp: zone-delay-def zone-set-def intro: step-a.intros)

lemma step-a-z-complete:
A ` 〈l, u〉 →a 〈l ′, u ′〉 =⇒ u ∈ Z =⇒ ∃ Z ′. A ` 〈l, Z 〉 �a 〈l ′, Z ′〉 ∧ u ′

∈ Z ′

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

92

lemma step-t-z-complete:
A ` 〈l, u〉 →d 〈l ′, u ′〉 =⇒ u ∈ Z =⇒ ∃ Z ′. A ` 〈l, Z 〉 τ 〈l ′, Z ′〉 ∧ u ′ ∈

Z ′

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

lemma step-z-complete:
A ` 〈l, u〉 → 〈l ′, u ′〉 =⇒ u ∈ Z =⇒ ∃ Z ′ a. A ` 〈l, Z 〉 a 〈l ′, Z ′〉 ∧ u ′

∈ Z ′

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

end

lemma step-z-sound ′:
A ` 〈l, Z 〉 〈l ′,Z ′〉 =⇒ ∀ u ′ ∈ Z ′. ∃ u ∈ Z . A ` ′ 〈l, u〉 → 〈l ′,u ′〉
unfolding step-z ′-def by (fastforce dest!: step-t-z-sound step-a-z-sound)

lemma step-z-complete ′:
A ` ′ 〈l, u〉 → 〈l ′, u ′〉 =⇒ u ∈ Z =⇒ ∃ Z ′. A ` 〈l, Z 〉 〈l ′, Z ′〉 ∧ u ′ ∈

Z ′

unfolding step-z ′-def by (auto dest!: step-a-z-complete step-t-z-complete
elim!: step ′.cases)

lemma steps-z-sound:
A ` 〈l, Z 〉 ∗ 〈l ′, Z ′〉 =⇒ u ′ ∈ Z ′ =⇒ ∃ u ∈ Z . A ` ′ 〈l, u〉 →∗ 〈l ′, u ′〉
by (induction arbitrary: u ′ rule: rtranclp-induct2 ;

fastforce intro: steps ′-altI dest!: step-z-sound ′)

lemma steps-z-complete:
A ` ′ 〈l, u〉 →∗ 〈l ′, u ′〉 =⇒ u ∈ Z =⇒ ∃ Z ′. A ` 〈l, Z 〉 ∗ 〈l ′, Z ′〉 ∧ u ′

∈ Z ′

oops

lemma ta-zone-sim:
Simulation
(λ(l, u) (l ′, u ′). A ` ′ 〈l, u〉 → 〈l ′, u ′〉)
(λ(l, Z) (l ′, Z ′′). A ` 〈l, Z 〉 〈l ′, Z ′′〉)
(λ(l, u) (l ′, Z). u ∈ Z ∧ l = l ′)

by standard (auto dest!: step-z-complete ′)

lemma steps ′-iff :
(λ(l, u) (l ′, u ′). A ` ′ 〈l, u〉 → 〈l ′, u ′〉)∗∗ (l, u) (l ′, u ′) ←→ A ` ′ 〈l, u〉 →∗
〈l ′, u ′〉

apply standard
subgoal

93

by (induction rule: rtranclp-induct2 ; blast intro: steps ′-altI)
subgoal
by (induction rule: steps ′.induct; blast intro: converse-rtranclp-into-rtranclp)

done

lemma steps-z-complete:
A ` ′ 〈l, u〉 →∗ 〈l ′, u ′〉 =⇒ u ∈ Z =⇒ ∃ Z ′. A ` 〈l, Z 〉 ∗ 〈l ′, Z ′〉 ∧ u ′

∈ Z ′

using Simulation.simulation-reaches[OF ta-zone-sim, of A (l, u) (l ′, u ′)]
unfolding steps ′-iff by auto

end

3.5 From Clock Constraints to DBMs

theory TA-DBM-Operations
imports Timed-Automata Difference-Bound-Matrices.DBM-Operations

begin

fun abstra ::
(′c, ′t::{linordered-cancel-ab-monoid-add,uminus}) acconstraint ⇒ ′t DBM
⇒ (′c ⇒ nat) ⇒ ′t DBM
where

abstra (EQ c d) M v =
(λ i j . if i = 0 ∧ j = v c then min (M i j) (Le (−d)) else if i = v c ∧

j = 0 then min (M i j) (Le d) else M i j) |
abstra (LT c d) M v =
(λ i j . if i = v c ∧ j = 0 then min (M i j) (Lt d) else M i j) |

abstra (LE c d) M v =
(λ i j . if i = v c ∧ j = 0 then min (M i j) (Le d) else M i j) |

abstra (GT c d) M v =
(λ i j. if i = 0 ∧ j = v c then min (M i j) (Lt (− d)) else M i j) |

abstra (GE c d) M v =
(λ i j. if i = 0 ∧ j = v c then min (M i j) (Le (− d)) else M i j)

fun abstr ::(′c, ′t::{linordered-cancel-ab-monoid-add,uminus}) cconstraint
⇒ ′t DBM ⇒ (′c ⇒ nat) ⇒ ′t DBM
where

abstr cc M v = fold (λ ac M . abstra ac M v) cc M

lemma collect-clks-Cons[simp]:
collect-clks (ac # cc) = insert (constraint-clk ac) (collect-clks cc)

unfolding collect-clks-def by auto

94

lemma abstr-id1 :
c /∈ collect-clks cc =⇒ clock-numbering ′ v n =⇒ ∀ c ∈ collect-clks cc. v c
≤ n

=⇒ abstr cc M v 0 (v c) = M 0 (v c)
apply (induction cc arbitrary: M c)
apply (simp; fail)
subgoal for a
apply simp
apply (cases a)

by auto
done

lemma abstr-id2 :
c /∈ collect-clks cc =⇒ clock-numbering ′ v n =⇒ ∀ c ∈ collect-clks cc. v c
≤ n

=⇒ abstr cc M v (v c) 0 = M (v c) 0
apply (induction cc arbitrary: M c)
apply (simp; fail)
subgoal for a
apply simp
apply (cases a)

by auto
done

This lemma is trivial because we constrained our theory to difference con-
straints.
lemma abstra-id3 :

assumes clock-numbering v
shows abstra ac M v (v c1) (v c2) = M (v c1) (v c2)

proof −
have

∧
c. v c = 0 =⇒ False

proof −
fix c assume v c = 0
moreover from assms have v c > 0 by auto
ultimately show False by linarith

qed
then show ?thesis by (cases ac) auto

qed

lemma abstr-id3 :
clock-numbering v =⇒ abstr cc M v (v c1) (v c2) = M (v c1) (v c2)

by (induction cc arbitrary: M) (auto simp add: abstra-id3)

95

lemma abstra-id3 ′:
assumes ∀ c. 0 < v c
shows abstra ac M v 0 0 = M 0 0

proof −
have

∧
c. v c = 0 =⇒ False

proof −
fix c assume v c = 0
moreover from assms have v c > 0 by auto
ultimately show False by linarith

qed
then show ?thesis by (cases ac) auto

qed

lemma abstr-id3 ′:
clock-numbering v =⇒ abstr cc M v 0 0 = M 0 0

by (induction cc arbitrary: M) (auto simp add: abstra-id3 ′)

lemma clock-numberingD:
assumes clock-numbering v v c = 0
shows A

proof−
from assms(1) have v c > 0 by auto
with ‹v c = 0 › show ?thesis by linarith

qed

lemma dbm-abstra-soundness:
[[u `a ac; u `v,n M ; clock-numbering ′ v n; v (constraint-clk ac) ≤ n]]
=⇒ DBM-val-bounded v u (abstra ac M v) n

proof (unfold DBM-val-bounded-def , auto, goal-cases)
case prems: 1
from abstra-id3 ′[OF this(4)] have abstra ac M v 0 0 = M 0 0 .
with prems show ?case unfolding dbm-le-def by auto

next
case prems: (2 c)
then have clock-numbering ′ v n by auto
note A = prems(1) this prems(6 ,3)
let ?c = constraint-clk ac
show ?case
proof (cases c = ?c)

case True
then show ?thesis using prems by (cases ac) (auto split: split-min

intro: clock-numberingD)
next

96

case False
then show ?thesis using A(3) prems by (cases ac) auto

qed
next

case prems: (3 c)
then have clock-numbering ′ v n by auto
then have gt0 : v c > 0 by auto
let ?c = constraint-clk ac
show ?case
proof (cases c = ?c)

case True
then show ?thesis using prems gt0 by (cases ac) (auto split: split-min

intro: clock-numberingD)
next

case False
then show ?thesis using ‹clock-numbering ′ v n› prems by (cases ac)

auto
qed

next

Trivial because of missing difference constraints
case prems: (4 c1 c2)
from abstra-id3 [OF this(4)] have abstra ac M v (v c1) (v c2) = M (v

c1) (v c2) by auto
with prems show ?case by auto

qed

lemma dbm-abstr-soundness ′:
[[u ` cc; u `v,n M ; clock-numbering ′ v n; ∀ c ∈ collect-clks cc. v c ≤ n]]
=⇒ DBM-val-bounded v u (abstr cc M v) n

by (induction cc arbitrary: M) (auto simp: clock-val-def dest: dbm-abstra-soundness)

lemmas dbm-abstr-soundness = dbm-abstr-soundness ′[OF - DBM-triv]

lemma dbm-abstra-completeness:
[[DBM-val-bounded v u (abstra ac M v) n; ∀ c. v c > 0 ; v (constraint-clk

ac) ≤ n]]
=⇒ u `a ac

proof (cases ac, goal-cases)
case prems: (1 c d)
then have v c ≤ n by auto
with prems(1 ,4) have dbm-entry-val u (Some c) None ((abstra (LT c d)

M v) (v c) 0)
by (auto simp: DBM-val-bounded-def)

97

moreover from prems(2) have v c > 0 by auto
ultimately show ?case using prems(4) by (auto dest: dbm-entry-dbm-min3)

next
case prems: (2 c d)
from this have v c ≤ n by auto
with prems(1 ,4) have dbm-entry-val u (Some c) None ((abstra (LE c d)

M v) (v c) 0)
by (auto simp: DBM-val-bounded-def)
moreover from prems(2) have v c > 0 by auto
ultimately show ?case using prems(4) by (auto dest: dbm-entry-dbm-min3)

next
case prems: (3 c d)
from this have c: v c > 0 v c ≤ n by auto
with prems(1 ,4) have B:

dbm-entry-val u (Some c) None ((abstra (EQ c d) M v) (v c) 0)
dbm-entry-val u None (Some c) ((abstra (EQ c d) M v) 0 (v c))

by (auto simp: DBM-val-bounded-def)
from c B have u c ≤ d − u c ≤ −d by (auto dest: dbm-entry-dbm-min2

dbm-entry-dbm-min3)
with prems(4) show ?case by auto

next
case prems: (4 c d)
from this have v c ≤ n by auto
with prems(1 ,4) have dbm-entry-val u None (Some c) ((abstra (GT c d)

M v) 0 (v c))
by (auto simp: DBM-val-bounded-def)
moreover from prems(2) have v c > 0 by auto
ultimately show ?case using prems(4) by (auto dest!: dbm-entry-dbm-min2)

next
case prems: (5 c d)
from this have v c ≤ n by auto
with prems(1 ,4) have dbm-entry-val u None (Some c) ((abstra (GE c d)

M v) 0 (v c))
by (auto simp: DBM-val-bounded-def)
moreover from prems(2) have v c > 0 by auto
ultimately show ?case using prems(4) by (auto dest!: dbm-entry-dbm-min2)

qed

lemma abstra-mono:
abstra ac M v i j ≤ M i j

by (cases ac) auto

lemma abstra-subset:
[abstra ac M v]v,n ⊆ [M]v,n

98

using abstra-mono
apply (simp add: less-eq)
apply safe

by (rule DBM-le-subset; force)

lemma abstr-subset:
[abstr cc M v]v,n ⊆ [M]v,n

apply (induction cc arbitrary: M)
apply (simp; fail)

using abstra-subset by fastforce

lemma dbm-abstra-zone-eq:
assumes clock-numbering ′ v n v (constraint-clk ac) ≤ n
shows [abstra ac M v]v,n = {u. u `a ac} ∩ [M]v,n
apply safe
subgoal
unfolding DBM-zone-repr-def using assms by (auto intro: dbm-abstra-completeness)

subgoal
using abstra-subset by blast

subgoal
unfolding DBM-zone-repr-def using assms by (auto intro: dbm-abstra-soundness)

done

lemma [simp]:
u ` []
by (force simp: clock-val-def)

lemma clock-val-Cons:
assumes u `a ac u ` cc
shows u ` (ac # cc)
using assms by (induction cc) (auto simp: clock-val-def)

lemma abstra-commute:
abstra ac1 (abstra ac2 M v) v = abstra ac2 (abstra ac1 M v) v
by (cases ac1 ; cases ac2 ; fastforce simp: min.commute min.left-commute

clock-val-def)

lemma dbm-abstr-completeness-aux:
[[DBM-val-bounded v u (abstr cc (abstra ac M v) v) n; ∀ c. v c > 0 ; v

(constraint-clk ac) ≤ n]]
=⇒ u `a ac

apply (induction cc arbitrary: M)

99

apply (auto intro: dbm-abstra-completeness; fail)
apply simp
apply (subst (asm) abstra-commute)
by auto

lemma dbm-abstr-completeness:
[[DBM-val-bounded v u (abstr cc M v) n; ∀ c. v c > 0 ; ∀ c ∈ collect-clks

cc. v c ≤ n]]
=⇒ u ` cc

apply (induction cc arbitrary: M)
apply (simp; fail)

apply (rule clock-val-Cons)
apply (rule dbm-abstr-completeness-aux)
by auto

lemma dbm-abstr-zone-eq:
assumes clock-numbering ′ v n ∀ c∈collect-clks cc. v c ≤ n
shows [abstr cc (λi j. ∞) v]v,n = {u. u ` cc}

using dbm-abstr-soundness dbm-abstr-completeness assms unfolding DBM-zone-repr-def
by metis

lemma dbm-abstr-zone-eq2 :
assumes clock-numbering ′ v n ∀ c∈collect-clks cc. v c ≤ n
shows [abstr cc M v]v,n = [M]v,n ∩ {u. u ` cc}

apply standard
apply (rule Int-greatest)
apply (rule abstr-subset)

unfolding DBM-zone-repr-def
apply safe
apply (rule dbm-abstr-completeness)

using assms apply auto[3]
apply (rule dbm-abstr-soundness ′)
using assms by auto

abbreviation global-clock-numbering ::
(′a, ′c, ′t, ′s) ta ⇒ (′c ⇒ nat) ⇒ nat ⇒ bool

where
global-clock-numbering A v n ≡

clock-numbering ′ v n ∧ (∀ c ∈ clk-set A. v c ≤ n) ∧ (∀ k≤n. k > 0 −→
(∃ c. v c = k))

lemma dbm-int-all-abstra:
assumes dbm-int-all M snd (constraint-pair ac) ∈ �

100

shows dbm-int-all (abstra ac M v)
using assms by (cases ac) (auto split: split-min)

lemma dbm-int-all-abstr :
assumes dbm-int-all M ∀ (x, m) ∈ collect-clock-pairs g. m ∈ �
shows dbm-int-all (abstr g M v)

using assms
proof (induction g arbitrary: M)

case Nil
then show ?case by auto

next
case (Cons ac cc)
from Cons.IH [OF dbm-int-all-abstra, OF Cons.prems(1)] Cons.prems(2−)

have
dbm-int-all (abstr cc (abstra ac M v) v)

unfolding collect-clock-pairs-def by force
then show ?case by auto

qed

lemma dbm-int-all-abstr ′:
assumes ∀ (x, m) ∈ collect-clock-pairs g. m ∈ �
shows dbm-int-all (abstr g (λi j. ∞) v)

apply (rule dbm-int-all-abstr)
using assms by auto

lemma dbm-int-all-inv-abstr :
assumes ∀ (x,m) ∈ clkp-set A. m ∈ �
shows dbm-int-all (abstr (inv-of A l) (λi j. ∞) v)

proof −
from assms have ∀ (x, m) ∈ collect-clock-pairs (inv-of A l). m ∈ �
unfolding clkp-set-def collect-clki-def inv-of-def using Nats-subset-Ints

by auto
from dbm-int-all-abstr ′[OF this] show ?thesis .

qed

lemma dbm-int-all-guard-abstr :
assumes ∀ (x, m) ∈ clkp-set A. m ∈ � A ` l −→g,a,r l ′
shows dbm-int-all (abstr g (λi j. ∞) v)

proof −
from assms have ∀ (x, m) ∈ collect-clock-pairs g. m ∈ �
unfolding clkp-set-def collect-clkt-def using assms(2) Nats-subset-Ints

by fastforce
from dbm-int-all-abstr ′[OF this] show ?thesis .

qed

101

lemma dbm-int-abstra:
assumes dbm-int M n snd (constraint-pair ac) ∈ �
shows dbm-int (abstra ac M v) n

using assms by (cases ac) (auto split: split-min)

lemma dbm-int-abstr :
assumes dbm-int M n ∀ (x, m) ∈ collect-clock-pairs g. m ∈ �
shows dbm-int (abstr g M v) n

using assms
proof (induction g arbitrary: M)

case Nil
then show ?case by auto

next
case (Cons ac cc)
from Cons.IH [OF dbm-int-abstra, OF Cons.prems(1)] Cons.prems(2−)

have
dbm-int (abstr cc (abstra ac M v) v) n

unfolding collect-clock-pairs-def by force
then show ?case by auto

qed

lemma dbm-int-abstr ′:
assumes ∀ (x, m) ∈ collect-clock-pairs g. m ∈ �
shows dbm-int (abstr g (λi j. ∞) v) n

apply (rule dbm-int-abstr)
using assms by auto

lemma int-zone-dbm:
assumes clock-numbering ′ v n
∀ (-,d) ∈ collect-clock-pairs cc. d ∈ � ∀ c ∈ collect-clks cc. v c ≤ n

obtains M where {u. u ` cc} = [M]v,n
and ∀ i ≤ n. ∀ j ≤ n. M i j 6= ∞ −→ get-const (M i j) ∈ �

proof −
let ?M = abstr cc (λi j. ∞) v
from assms(2) have ∀ i ≤ n. ∀ j ≤ n. ?M i j 6= ∞ −→ get-const (?M i

j) ∈ �
by (rule dbm-int-abstr ′)
with dbm-abstr-zone-eq[OF assms(1) assms(3)] show ?thesis by (auto

intro: that)
qed

lemma dbm-int-inv-abstr :
assumes ∀ (x,m) ∈ clkp-set A. m ∈ �

102

shows dbm-int (abstr (inv-of A l) (λi j. ∞) v) n
proof −

from assms have ∀ (x, m) ∈ collect-clock-pairs (inv-of A l). m ∈ �
unfolding clkp-set-def collect-clki-def inv-of-def using Nats-subset-Ints

by auto
from dbm-int-abstr ′[OF this] show ?thesis .

qed

lemma dbm-int-guard-abstr :
assumes ∀ (x, m) ∈ clkp-set A. m ∈ � A ` l −→g,a,r l ′
shows dbm-int (abstr g (λi j. ∞) v) n

proof −
from assms have ∀ (x, m) ∈ collect-clock-pairs g. m ∈ �
unfolding clkp-set-def collect-clkt-def using assms(2) Nats-subset-Ints

by fastforce
from dbm-int-abstr ′[OF this] show ?thesis .

qed

lemma collect-clks-id: collect-clks cc = fst ‘ collect-clock-pairs cc
proof −

have constraint-clk ac = fst (constraint-pair ac) for ac by (cases ac) auto
then show ?thesis unfolding collect-clks-def collect-clock-pairs-def by

auto
qed

end

3.6 Semantics Based on DBMs

theory DBM-Zone-Semantics
imports TA-DBM-Operations
begin

no-notation infinity (‹∞›)
hide-const (open) D

3.6.1 Single Step

inductive step-z-dbm ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ ′t :: {linordered-cancel-ab-monoid-add,uminus}

DBM
⇒ (′c ⇒ nat) ⇒ nat ⇒ ′a action ⇒ ′s ⇒ ′t DBM ⇒ bool

(‹- ` 〈-, -〉 -,-,- 〈-, -〉› [61 ,61 ,61 ,61] 61)
where

103

step-t-z-dbm:
D-inv = abstr (inv-of A l) (λi j. ∞) v =⇒ A ` 〈l,D〉 v,n,τ 〈l,And (up

D) D-inv〉 |
step-a-z-dbm:

A ` l −→g,a,r l ′
=⇒ A ` 〈l,D〉 v,n,�a 〈l ′,And (reset ′ (And D (abstr g (λi j. ∞) v)) n r

v 0)
(abstr (inv-of A l ′) (λi j. ∞) v)〉

inductive-cases step-z-t-cases: A ` 〈l, D〉 v,n,τ 〈l ′, D ′〉
inductive-cases step-z-a-cases: A ` 〈l, D〉 v,n,�a 〈l ′, D ′〉
lemmas step-z-cases = step-z-a-cases step-z-t-cases

declare step-z-dbm.intros[intro]

lemma step-z-dbm-preserves-int-all:
fixes D D ′ :: (′t :: {time, ring-1} DBM)
assumes A ` 〈l,D〉 v,n,a 〈l ′,D ′〉 global-clock-numbering A v n ∀ (x, m)
∈ clkp-set A. m ∈ �

dbm-int-all D
shows dbm-int-all D ′

using assms
proof (cases, goal-cases)

case (1 D ′′)
hence ∀ c∈clk-set A. v c ≤ n by blast+
from dbm-int-all-inv-abstr [OF 1 (2)] 1 have D ′′-int: dbm-int-all D ′′ by

simp
show ?thesis unfolding 1 (6)
by (intro And-int-all-preservation up-int-all-preservation dbm-int-inv-abstr

D ′′-int 1)
next

case (2 g a r)
hence assms: clock-numbering ′ v n ∀ c∈clk-set A. v c ≤ n

by blast+
from dbm-int-all-inv-abstr [OF 2 (2)] have D ′-int:

dbm-int-all (abstr (inv-of A l ′) (λi j. ∞) v)
by simp
from dbm-int-all-guard-abstr 2 have D ′′-int: dbm-int-all (abstr g (λi j.
∞) v) by simp

have set r ⊆ clk-set A using 2 (6) unfolding trans-of-def collect-clkvt-def
by fastforce

hence ∗:∀ c∈set r . v c ≤ n using assms(2) by fastforce
show ?thesis unfolding 2 (5)
by (intro And-int-all-preservation DBM-reset ′-int-all-preservation dbm-int-all-inv-abstr

2 D ′′-int)

104

(simp-all add: assms(1) ∗)
qed

lemma step-z-dbm-preserves-int:
fixes D D ′ :: (′t :: {time, ring-1} DBM)
assumes A ` 〈l,D〉 v,n,a 〈l ′,D ′〉 global-clock-numbering A v n ∀ (x, m)
∈ clkp-set A. m ∈ �

dbm-int D n
shows dbm-int D ′ n

using assms
proof (cases, goal-cases)

case (1 D ′′)
from dbm-int-inv-abstr [OF 1 (2)] 1 have D ′′-int: dbm-int D ′′ n by simp
show ?thesis unfolding 1 (6)

by (intro And-int-preservation up-int-preservation dbm-int-inv-abstr
D ′′-int 1)
next

case (2 g a r)
hence assms: clock-numbering ′ v n ∀ c∈clk-set A. v c ≤ n

by blast+
from dbm-int-inv-abstr [OF 2 (2)] have D ′-int: dbm-int (abstr (inv-of A

l ′) (λi j. ∞) v) n
by simp

from dbm-int-guard-abstr 2 have D ′′-int: dbm-int (abstr g (λi j. ∞) v)
n by simp

have set r ⊆ clk-set A using 2 (6) unfolding trans-of-def collect-clkvt-def
by fastforce

hence ∗:∀ c∈set r . v c ≤ n using assms(2) by fastforce
show ?thesis unfolding 2 (5)
by (intro And-int-preservation DBM-reset ′-int-preservation dbm-int-inv-abstr

2 D ′′-int)
(simp-all add: assms(1) 2 (2) ∗)

qed

lemma up-correct:
assumes clock-numbering ′ v n
shows [up M]v,n = [M]v,n↑

using assms
apply safe
apply (rule DBM-up-sound ′)
apply assumption+

apply (rule DBM-up-complete ′)
apply auto

done

105

lemma step-z-dbm-sound:
assumes A ` 〈l, D〉 v,n,a 〈l ′, D ′〉 global-clock-numbering A v n
shows A ` 〈l, [D]v,n〉 a 〈l ′, [D ′]v,n〉

using assms
proof (cases, goal-cases)

case (1 D ′′)
hence clock-numbering ′ v n ∀ c∈clk-set A. v c ≤ n by blast+
note assms = assms(1) this
from assms(3) have ∗: ∀ c∈collect-clks (inv-of A l). v c ≤ n
unfolding clkp-set-def collect-clki-def inv-of-def by (fastforce simp: col-

lect-clks-id)
from 1 have D ′′:[D ′′]v,n = {u. u ` inv-of A l} using dbm-abstr-zone-eq[OF

assms(2) ∗] by metis
with And-correct have A11 : [And D D ′′]v,n = ([D]v,n) ∩ ({u. u ` inv-of

A l}) by blast
from D ′′ have
[D ′]v,n = ([up D]v,n) ∩ ({u. u ` inv-of A l})
unfolding 1 (4) And-correct[symmetric] by simp

with up-correct[OF assms(2)] A11 have [D ′]v,n = ([D]v,n)↑ ∩ {u. u `
inv-of A l} by metis

then show ?thesis by (auto simp: 1 (2 ,3))
next

case (2 g a r)
hence clock-numbering ′ v n ∀ c∈clk-set A. v c ≤ n ∀ k≤n. k > 0 −→ (∃ c.

v c = k) by blast+
note assms = assms(1) this
from assms(3) have ∗: ∀ c∈collect-clks (inv-of A l ′). v c ≤ n
unfolding clkp-set-def collect-clki-def inv-of-def by (fastforce simp: col-

lect-clks-id)
have D ′:
[abstr (inv-of A l ′) (λi j. ∞) v]v,n = {u. u ` inv-of A l ′}

using 2 dbm-abstr-zone-eq[OF assms(2) ∗] by simp
from assms(3) 2 (4) have ∗: ∀ c∈collect-clks g. v c ≤ n
unfolding clkp-set-def collect-clkt-def inv-of-def by (fastforce simp: col-

lect-clks-id)
have D ′′:[abstr g (λi j.∞) v]v,n = {u. u ` g} using 2 dbm-abstr-zone-eq[OF

assms(2) ∗] by auto
with And-correct have A11 : [And D (abstr g (λi j. ∞) v)]v,n = ([D]v,n)
∩ ({u. u ` g}) by blast

let ?D = reset ′ (And D (abstr g (λi j. ∞) v)) n r v 0
have set r ⊆ clk-set A using 2 (4) unfolding trans-of-def collect-clkvt-def

by fastforce
hence ∗∗:∀ c∈set r . v c ≤ n using assms(3) by fastforce

106

have D-reset: [?D]v,n = zone-set (([D]v,n) ∩ {u. u ` g}) r
proof safe

fix u assume u: u ∈ [?D]v,n
from DBM-reset ′-sound[OF assms(4 ,2) ∗∗ this] obtain ts where

set-clocks r ts u ∈ [And D (abstr g (λi j. ∞) v)]v,n
by auto
with A11 have ∗: set-clocks r ts u ∈ ([D]v,n) ∩ ({u. u ` g}) by blast
from DBM-reset ′-resets[OF assms(4 ,2) ∗∗] u
have ∀ c ∈ set r . u c = 0 unfolding DBM-zone-repr-def by auto
from reset-set[OF this] have [r→0]set-clocks r ts u = u by simp

with ∗ show u ∈ zone-set (([D]v,n) ∩ {u. u ` g}) r unfolding
zone-set-def by force

next
fix u assume u: u ∈ zone-set (([D]v,n) ∩ {u. u ` g}) r
from DBM-reset ′-complete[OF - assms(2) ∗∗] u A11
show u ∈ [?D]v,n unfolding DBM-zone-repr-def zone-set-def by force

qed
from D ′ And-correct D-reset have A22 :

[And ?D (abstr (inv-of A l ′) (λi j. ∞) v)]v,n = ([?D]v,n) ∩ ({u. u `
inv-of A l ′})

by blast
with D-reset 2 (2−4) show ?thesis by auto

qed

lemma step-z-dbm-DBM :
assumes A ` 〈l, [D]v,n〉 a 〈l ′, Z 〉 global-clock-numbering A v n
obtains D ′ where A ` 〈l, D〉 v,n,a 〈l ′, D ′〉 Z = [D ′]v,n

using assms
proof (cases, goal-cases)

case 1
hence clock-numbering ′ v n ∀ c∈clk-set A. v c ≤ n by metis+
note assms = assms(1) this
from assms(3) have ∗: ∀ c∈collect-clks (inv-of A l). v c ≤ n
unfolding clkp-set-def collect-clki-def inv-of-def by (fastforce simp: col-

lect-clks-id)
obtain D ′′ where D ′′-def : D ′′ = abstr (inv-of A l) (λi j. ∞) v by auto
hence D ′′:[D ′′]v,n = {u. u ` inv-of A l} using dbm-abstr-zone-eq[OF

assms(2) ∗] by metis
obtain D-up where D-up ′: D-up = up D by blast
with up-correct assms(2) have D-up: [D-up]v,n = ([D]v,n)↑ by metis
obtain A2 where A2 : A2 = And D-up D ′′ by fast
with And-correct D ′′ have A22 : [A2]v,n = ([D-up]v,n) ∩ ({u. u ` inv-of

A l}) by blast
have A ` 〈l, D〉 v,n,τ 〈l, A2 〉 unfolding A2 D-up ′ D ′′-def by blast

107

moreover have
[A2]v,n = ([D]v,n)↑ ∩ {u. u ` inv-of A l}

unfolding A22 D-up ..
ultimately show thesis using 1 by (intro that[of A2]) auto

next
case (2 g a r)
hence clock-numbering ′ v n ∀ c∈clk-set A. v c ≤ n ∀ k≤n. k > 0 −→ (∃ c.

v c = k) by metis+
note assms = assms(1) this
from assms(3) have ∗: ∀ c∈collect-clks (inv-of A l ′). v c ≤ n
unfolding clkp-set-def collect-clki-def inv-of-def by (fastforce simp: col-

lect-clks-id)
obtain D ′ where D ′-def : D ′ = abstr (inv-of A l ′) (λi j. ∞) v by blast
hence D ′:[D ′]v,n = {u. u ` inv-of A l ′} using dbm-abstr-zone-eq[OF

assms(2) ∗] by simp
from assms(3) 2 (5) have ∗: ∀ c∈collect-clks g. v c ≤ n
unfolding clkp-set-def collect-clkt-def inv-of-def by (fastforce simp: col-

lect-clks-id)
obtain D ′′ where D ′′-def : D ′′ = abstr g (λi j. ∞) v by blast
hence D ′′:[D ′′]v,n = {u. u ` g} using dbm-abstr-zone-eq[OF assms(2) ∗]

by auto
obtain A1 where A1 : A1 = And D D ′′ by fast
with And-correct D ′′ have A11 : [A1]v,n = ([D]v,n) ∩ ({u. u ` g}) by

blast
let ?D = reset ′ A1 n r v 0
have set r ⊆ clk-set A using 2 (5) unfolding trans-of-def collect-clkvt-def

by fastforce
hence ∗∗:∀ c∈set r . v c ≤ n using assms(3) by fastforce
have D-reset: [?D]v,n = zone-set (([D]v,n) ∩ {u. u ` g}) r
proof safe

fix u assume u: u ∈ [?D]v,n
from DBM-reset ′-sound[OF assms(4 ,2) ∗∗ this] obtain ts where

set-clocks r ts u ∈ [A1]v,n
by auto
with A11 have ∗: set-clocks r ts u ∈ ([D]v,n) ∩ ({u. u ` g}) by blast
from DBM-reset ′-resets[OF assms(4 ,2) ∗∗] u
have ∀ c ∈ set r . u c = 0 unfolding DBM-zone-repr-def by auto
from reset-set[OF this] have [r→0]set-clocks r ts u = u by simp

with ∗ show u ∈ zone-set (([D]v,n) ∩ {u. u ` g}) r unfolding
zone-set-def by force

next
fix u assume u: u ∈ zone-set (([D]v,n) ∩ {u. u ` g}) r
from DBM-reset ′-complete[OF - assms(2) ∗∗] u A11
show u ∈ [?D]v,n unfolding DBM-zone-repr-def zone-set-def by force

108

qed
obtain A2 where A2 : A2 = And ?D D ′ by fast
with And-correct D ′ have A22 : [A2]v,n = ([?D]v,n) ∩ ({u. u ` inv-of A

l ′}) by blast
from 2 (5) A2 D ′-def D ′′-def A1 have A ` 〈l,D〉 v,n,�a 〈l ′,A2 〉 by blast
moreover from A22 D-reset have
[A2]v,n = zone-set (([D]v,n) ∩ {u. u ` g}) r ∩ {u. u ` inv-of A l ′}

by auto
ultimately show ?thesis using 2 by (intro that[of A2]) simp+

qed

lemma step-z-computable:
assumes A ` 〈l, [D]v,n〉 a 〈l ′,Z 〉 global-clock-numbering A v n
obtains D ′ where Z = [D ′]v,n

using step-z-dbm-DBM [OF assms] by blast

lemma step-z-dbm-complete:
assumes global-clock-numbering A v n A ` 〈l, u〉 → 〈l ′,u ′〉
and u ∈ [(D)]v,n
shows ∃ D ′ a. A ` 〈l, D〉 v,n,a 〈l ′,D ′〉 ∧ u ′ ∈ [D ′]v,n

proof −
note A = assms
from step-z-complete[OF A(2 ,3)] obtain Z ′ a where Z ′:

A ` 〈l, [D]v,n〉 a 〈l ′,Z ′〉 u ′ ∈ Z ′ by auto
with step-z-dbm-DBM [OF Z ′(1) A(1)] obtain D ′ where D ′:

A ` 〈l, D〉 v,n,a 〈l ′,D ′〉 Z ′ = [D ′]v,n
by metis
with Z ′(2) show ?thesis by auto

qed

3.6.2 Additional Useful Properties

lemma step-z-equiv:
assumes global-clock-numbering A v n A ` 〈l, [D]v,n〉 a 〈l ′, Z 〉 [D]v,n

= [M]v,n
shows A ` 〈l, [M]v,n〉 a 〈l ′, Z 〉

using step-z-dbm-complete[OF assms(1)] step-z-dbm-sound[OF - assms(1),
THEN step-z-sound]
assms(2 ,3) by force

lemma step-z-dbm-equiv:
assumes global-clock-numbering A v n A ` 〈l, D〉 v,n,a 〈l ′, D ′〉 [D]v,n

= [M]v,n
shows ∃ M ′. A ` 〈l, M 〉 v,n,a 〈l ′, M ′〉 ∧ [D ′]v,n = [M ′]v,n

109

proof −
from step-z-dbm-sound[OF assms(2 ,1)] have A ` 〈l, [D]v,n〉 a 〈l ′,

[D ′]v,n〉 .
with step-z-equiv[OF assms(1) this assms(3)] have A ` 〈l, [M]v,n〉 a
〈l ′, [D ′]v,n〉 by auto

from step-z-dbm-DBM [OF this assms(1)] show ?thesis by auto
qed

lemma step-z-empty:
assumes A ` 〈l, {}〉 a 〈l ′, Z 〉
shows Z = {}

using step-z-sound[OF assms] by auto

lemma step-z-dbm-empty:
assumes global-clock-numbering A v n A ` 〈l, D〉 v,n,a 〈l ′, D ′〉 [D]v,n

= {}
shows [D ′]v,n = {}

using step-z-dbm-sound[OF assms(2 ,1)] assms(3) by − (rule step-z-empty,
auto)

end
theory Regions-Beta

imports
TA-Misc
Difference-Bound-Matrices.DBM-Normalization
Difference-Bound-Matrices.DBM-Operations
Difference-Bound-Matrices.Zones

begin

4 Refinement to β-regions

4.1 Definition

type-synonym ′c ceiling = (′c ⇒ nat)

datatype intv =
Const nat |
Intv nat |
Greater nat

datatype intv ′ =
Const ′ int |
Intv ′ int |
Greater ′ int |

110

Smaller ′ int

type-synonym t = real

inductive valid-intv :: nat ⇒ intv ⇒ bool
where

0 ≤ d =⇒ d ≤ c =⇒ valid-intv c (Const d) |
0 ≤ d =⇒ d < c =⇒ valid-intv c (Intv d) |
valid-intv c (Greater c)

inductive valid-intv ′ :: int ⇒ int ⇒ intv ′⇒ bool
where

valid-intv ′ l - (Smaller ′ (−l)) |
−l ≤ d =⇒ d ≤ u =⇒ valid-intv ′ l u (Const ′ d) |
−l ≤ d =⇒ d < u =⇒ valid-intv ′ l u (Intv ′ d) |
valid-intv ′ - u (Greater ′ u)

inductive intv-elem :: ′c ⇒ (′c,t) cval ⇒ intv ⇒ bool
where

u x = d =⇒ intv-elem x u (Const d) |
d < u x =⇒ u x < d + 1 =⇒ intv-elem x u (Intv d) |
c < u x =⇒ intv-elem x u (Greater c)

inductive intv ′-elem :: ′c ⇒ ′c ⇒ (′c,t) cval ⇒ intv ′⇒ bool
where

u x − u y < c =⇒ intv ′-elem x y u (Smaller ′ c) |
u x − u y = d =⇒ intv ′-elem x y u (Const ′ d) |
d < u x − u y =⇒ u x − u y < d + 1 =⇒ intv ′-elem x y u (Intv ′ d) |
c < u x − u y =⇒ intv ′-elem x y u (Greater ′ c)

abbreviation total-preorder r ≡ refl r ∧ trans r

inductive isConst :: intv ⇒ bool
where

isConst (Const -)

inductive isIntv :: intv ⇒ bool
where

isIntv (Intv -)

inductive isGreater :: intv ⇒ bool
where

isGreater (Greater -)

111

declare isIntv.intros[intro!] isConst.intros[intro!] isGreater .intros[intro!]

declare isIntv.cases[elim!] isConst.cases[elim!] isGreater .cases[elim!]

inductive valid-region :: ′c set ⇒ (′c ⇒ nat) ⇒ (′c ⇒ intv) ⇒ (′c ⇒ ′c
⇒ intv ′) ⇒ ′c rel ⇒ bool
where
[[X0 = {x ∈ X . ∃ d. I x = Intv d}; refl-on X0 r ; trans r ; total-on X0 r ;
∀ x ∈ X . valid-intv (k x) (I x);
∀ x ∈ X . ∀ y ∈ X . isGreater (I x) ∨ isGreater (I y) −→ valid-intv ′ (k

y) (k x) (J x y)]]
=⇒ valid-region X k I J r

inductive-set region for X I J r
where
∀ x ∈ X . u x ≥ 0 =⇒ ∀ x ∈ X . intv-elem x u (I x) =⇒ X0 = {x ∈ X .
∃ d. I x = Intv d} =⇒
∀ x ∈ X0. ∀ y ∈ X0. (x, y) ∈ r ←→ frac (u x) ≤ frac (u y) =⇒
∀ x ∈ X . ∀ y ∈ X . isGreater (I x) ∨ isGreater (I y) −→ intv ′-elem x y

u (J x y)
=⇒ u ∈ region X I J r

Defining the unique element of a partition that contains a valuation
definition part (‹[-]-› [61 ,61] 61) where part v R ≡ THE R. R ∈ R ∧ v
∈ R

First we need to show that the set of regions is a partition of the set of all
clock assignments. This property is only claimed by P. Bouyer.
inductive-cases[elim!]: intv-elem x u (Const d)
inductive-cases[elim!]: intv-elem x u (Intv d)
inductive-cases[elim!]: intv-elem x u (Greater d)
inductive-cases[elim!]: valid-intv c (Greater d)
inductive-cases[elim!]: valid-intv c (Const d)
inductive-cases[elim!]: valid-intv c (Intv d)
inductive-cases[elim!]: intv ′-elem x y u (Const ′ d)
inductive-cases[elim!]: intv ′-elem x y u (Intv ′ d)
inductive-cases[elim!]: intv ′-elem x y u (Greater ′ d)
inductive-cases[elim!]: intv ′-elem x y u (Smaller ′ d)
inductive-cases[elim!]: valid-intv ′ l u (Greater ′ d)
inductive-cases[elim!]: valid-intv ′ l u (Smaller ′ d)
inductive-cases[elim!]: valid-intv ′ l u (Const ′ d)
inductive-cases[elim!]: valid-intv ′ l u (Intv ′ d)

declare valid-intv.intros[intro]

112

declare valid-intv ′.intros[intro]
declare intv-elem.intros[intro]
declare intv ′-elem.intros[intro]

declare region.cases[elim]
declare valid-region.cases[elim]

4.2 Basic Properties

First we show that all valid intervals are distinct
lemma valid-intv-distinct:

valid-intv c I =⇒ valid-intv c I ′ =⇒ intv-elem x u I =⇒ intv-elem x u I ′

=⇒ I = I ′

by (cases I) (cases I ′, auto)+

lemma valid-intv ′-distinct:
−c ≤ d =⇒ valid-intv ′ c d I =⇒ valid-intv ′ c d I ′ =⇒ intv ′-elem x y u I

=⇒ intv ′-elem x y u I ′

=⇒ I = I ′

by (cases I) (cases I ′, auto)+

From this we show that all valid regions are distinct
lemma valid-regions-distinct:

valid-region X k I J r =⇒ valid-region X k I ′ J ′ r ′ =⇒ v ∈ region X I J
r =⇒ v ∈ region X I ′ J ′ r ′

=⇒ region X I J r = region X I ′ J ′ r ′

proof goal-cases
case 1
note A = 1
{ fix x assume x: x ∈ X

with A(1) have valid-intv (k x) (I x) by auto
moreover from A(2) x have valid-intv (k x) (I ′ x) by auto
moreover from A(3) x have intv-elem x v (I x) by auto
moreover from A(4) x have intv-elem x v (I ′ x) by auto
ultimately have I x = I ′ x using valid-intv-distinct by fastforce

} note ∗ = this
{ fix x y assume x: x ∈ X and y: y ∈ X and B: isGreater (I x) ∨

isGreater (I y)
with ∗ have C : isGreater (I ′ x) ∨ isGreater (I ′ y) by auto
from A(1) x y B have valid-intv ′ (k y) (k x) (J x y) by fastforce
moreover from A(2) x y C have valid-intv ′ (k y) (k x) (J ′ x y) by

fastforce
moreover from A(3) x y B have intv ′-elem x y v (J x y) by force
moreover from A(4) x y C have intv ′-elem x y v (J ′ x y) by force

113

moreover from x y valid-intv ′-distinct have − int (k y) ≤ int (k x)
by simp

ultimately have J x y = J ′ x y by (blast intro: valid-intv ′-distinct)
} note ∗∗ = this
from A show ?thesis
proof (auto, goal-cases)

case (1 u)
note A = this
{ fix x assume x: x ∈ X

from A(5) x have intv-elem x u (I x) by auto
with ∗ x have intv-elem x u (I ′ x) by auto

}
then have ∀ x ∈ X . intv-elem x u (I ′ x) by auto
note B = this
{ fix x y assume x: x ∈ X and y: y ∈ X and B: isGreater (I ′ x) ∨

isGreater (I ′ y)
with ∗ have isGreater (I x) ∨ isGreater (I y) by auto
with x y A(5) have intv ′-elem x y u (J x y) by force
with ∗∗[OF x y ‹isGreater (I x) ∨ -›] have intv ′-elem x y u (J ′ x y)

by simp
} note C = this
let ?X0 = {x ∈ X . ∃ d. I ′ x = Intv d}
{ fix x y assume x: x ∈ ?X0 and y: y ∈ ?X0

have (x, y) ∈ r ′←→ frac (u x) ≤ frac (u y)
proof

assume frac (u x) ≤ frac (u y)
with A(5) x y ∗ have (x,y) ∈ r by auto
with A(3) x y ∗ have frac (v x) ≤ frac (v y) by auto
with A(4) x y show (x,y) ∈ r ′ by auto

next
assume (x,y) ∈ r ′

with A(4) x y have frac (v x) ≤ frac (v y) by auto
with A(3) x y ∗ have (x,y) ∈ r by auto
with A(5) x y ∗ show frac (u x) ≤ frac (u y) by auto

qed
}
then have ∗: ∀ x ∈ ?X0. ∀ y ∈ ?X0. (x, y) ∈ r ′←→ frac (u x) ≤ frac

(u y) by auto
from A(5) have ∀ x∈X . 0 ≤ u x by auto
from region.intros[OF this B - ∗] C show ?case by auto

next
case (2 u)
note A = this
{ fix x assume x: x ∈ X

114

from A(5) x have intv-elem x u (I ′ x) by auto
with ∗ x have intv-elem x u (I x) by auto

}
then have ∀ x ∈ X . intv-elem x u (I x) by auto
note B = this
{ fix x y assume x: x ∈ X and y: y ∈ X and B: isGreater (I x) ∨

isGreater (I y)
with ∗ have isGreater (I ′ x) ∨ isGreater (I ′ y) by auto
with x y A(5) have intv ′-elem x y u (J ′ x y) by force
with ∗∗[OF x y ‹isGreater (I x) ∨ -›] have intv ′-elem x y u (J x y)

by simp
} note C = this
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
{ fix x y assume x: x ∈ ?X0 and y: y ∈ ?X0

have (x, y) ∈ r ←→ frac (u x) ≤ frac (u y)
proof

assume frac (u x) ≤ frac (u y)
with A(5) x y ∗ have (x,y) ∈ r ′ by auto
with A(4) x y ∗ have frac (v x) ≤ frac (v y) by auto
with A(3) x y show (x,y) ∈ r by auto

next
assume (x,y) ∈ r
with A(3) x y have frac (v x) ≤ frac (v y) by auto
with A(4) x y ∗ have (x,y) ∈ r ′ by auto
with A(5) x y ∗ show frac (u x) ≤ frac (u y) by auto

qed
}
then have ∗:∀ x ∈ ?X0. ∀ y ∈ ?X0. (x, y) ∈ r ←→ frac (u x) ≤ frac

(u y) by auto
from A(5) have ∀ x∈X . 0 ≤ u x by auto
from region.intros[OF this B - ∗] C show ?case by auto

qed
qed

locale Beta-Regions =
fixes X :: ′c set and k :: ′c ⇒ nat
assumes finite: finite X
assumes non-empty: X 6= {}

begin

definition
R ≡ {region X I J r | I J r . valid-region X k I J r}

definition V :: (′c, t) cval set where

115

V ≡ {v . ∀ x ∈ X . v x ≥ 0}

lemma R-regions-distinct:
[[R ∈ R; v ∈ R; R ′ ∈ R; R 6= R ′]] =⇒ v /∈ R ′

unfolding R-def using valid-regions-distinct by blast

Secondly, we also need to show that every valuations belongs to a region
which is part of the partition.
definition intv-of :: nat ⇒ t ⇒ intv where

intv-of c v ≡
if (v > c) then Greater c
else if (∃ x :: nat. x = v) then (Const (nat (floor v)))
else (Intv (nat (floor v)))

definition intv ′-of :: int ⇒ int ⇒ t ⇒ intv ′ where
intv ′-of l u v ≡

if (v > u) then Greater ′ u
else if (v < l) then Smaller ′ l
else if (∃ x :: int. x = v) then (Const ′ (floor v))
else (Intv ′ (floor v))

lemma region-cover :
∀ x ∈ X . v x ≥ 0 =⇒ ∃ R. R ∈ R ∧ v ∈ R

proof (standard, standard)
assume assm: ∀ x ∈ X . 0 ≤ v x
let ?I = λ x. intv-of (k x) (v x)
let ?J = λ x y. intv ′-of (−k y) (k x) (v x − v y)
let ?X0 = {x ∈ X . ∃ d. ?I x = Intv d}
let ?r = {(x,y). x ∈ ?X0 ∧ y ∈ ?X0 ∧ frac (v x) ≤ frac (v y)}
{ fix x y d assume A: x ∈ X y ∈ X

then have intv ′-elem x y v (intv ′-of (− int (k y)) (int (k x)) (v x − v
y)) unfolding intv ′-of-def

proof (auto, goal-cases)
case (1 a)
then have bv x − v yc = v x − v y by (metis of-int-floor-cancel)
then show ?case by auto

next
case 2

then have bv x − v yc < v x − v y by (meson eq-iff floor-eq-iff
not-less)

with 2 show ?case by auto
qed

} note intro = this
show v ∈ region X ?I ?J ?r

116

proof (standard, auto simp: assm intro: intro, goal-cases)
case (1 x)
thus ?case unfolding intv-of-def
proof (auto, goal-cases)

case (1 a)
note A = this
from A(2) have bv xc = v x by (metis floor-of-int of-int-of-nat-eq)
with assm A(1) have v x = real (nat bv xc) by auto
then show ?case by auto

next
case 2
note A = this
from A(1 ,2) have real (nat bv xc) < v x
proof −

have f1 : 0 ≤ v x
using assm 1 by blast

have v x 6= real-of-int (int (nat bv xc))
by (metis (no-types) 2 (2) of-int-of-nat-eq)

then show ?thesis
using f1 by linarith

qed
moreover from assm have v x < real (nat (bv xc) + 1) by linarith
ultimately show ?case by auto

qed
qed
{ fix x y assume x ∈ X y ∈ X

then have valid-intv ′ (int (k y)) (int (k x)) (intv ′-of (− int (k y)) (int
(k x)) (v x − v y))

unfolding intv ′-of-def
apply auto

apply (metis floor-of-int le-floor-iff linorder-not-less of-int-minus
of-int-of-nat-eq valid-intv ′.simps)

by (metis floor-less-iff less-eq-real-def not-less of-int-minus of-int-of-nat-eq
valid-intv ′.intros(3))

}
moreover
{ fix x assume x: x ∈ X

then have valid-intv (k x) (intv-of (k x) (v x))
proof (auto simp: intv-of-def , goal-cases)

case (1 a)
then show ?case
by (intro valid-intv.intros(1)) (auto, linarith)

next
case 2

117

then show ?case
apply (intro valid-intv.intros(2))
using assm floor-less-iff nat-less-iff by fastforce+

qed
}
ultimately have valid-region X k ?I ?J ?r
by (intro valid-region.intros, auto simp: refl-on-def trans-def total-on-def)
then show region X ?I ?J ?r ∈ R unfolding R-def by auto

qed

lemma region-cover-V : v ∈ V =⇒ ∃ R. R ∈ R ∧ v ∈ R using region-cover
unfolding V-def by simp

Note that we cannot show that every region is non-empty anymore. The
problem are regions fixing differences between an ’infeasible’ constant.

We can show that there is always exactly one region a valid valuation belongs
to. Note that we do not need non-emptiness for that.

lemma regions-partition:
∀ x ∈ X . 0 ≤ v x =⇒ ∃ ! R ∈ R. v ∈ R

proof goal-cases
case 1
note A = this
with region-cover [OF] obtain R where R: R ∈ R ∧ v ∈ R by fastforce
moreover
{ fix R ′ assume R ′ ∈ R ∧ v ∈ R ′

with R valid-regions-distinct[OF - - - -] have R ′ = R unfolding R-def
by blast

}
ultimately show ?thesis by auto

qed

lemma region-unique:
v ∈ R =⇒ R ∈ R =⇒ [v]R = R

proof goal-cases
case 1
note A = this
from A obtain I J r where ∗:

valid-region X k I J r R = region X I J r v ∈ region X I J r
by (auto simp: R-def)
from this(3) have ∀ x∈X . 0 ≤ v x by auto
from theI ′[OF regions-partition[OF this]] obtain I ′ J ′ r ′ where

v: valid-region X k I ′ J ′ r ′ [v]R = region X I ′ J ′ r ′ v ∈ region X I ′ J ′ r ′

unfolding part-def R-def by auto

118

from valid-regions-distinct[OF ∗(1) v(1) ∗(3) v(3)] v(2) ∗(2) show ?case
by auto
qed

lemma regions-partition ′:
∀ x∈X . 0 ≤ v x =⇒ ∀ x∈X . 0 ≤ v ′ x =⇒ v ′ ∈ [v]R =⇒ [v ′]R = [v]R

proof goal-cases
case 1
note A = this
from theI ′[OF regions-partition[OF A(1)]] A(3) obtain I J r where

v: valid-region X k I J r [v]R = region X I J r v ′ ∈ region X I J r
unfolding part-def R-def by blast
from theI ′[OF regions-partition[OF A(2)]] obtain I ′ J ′ r ′ where

v ′: valid-region X k I ′ J ′ r ′ [v ′]R = region X I ′ J ′ r ′ v ′ ∈ region X I ′ J ′

r ′

unfolding part-def R-def by auto
from valid-regions-distinct[OF v ′(1) v(1) v ′(3) v(3)] v(2) v ′(2) show

?case by simp
qed

lemma regions-closed:
R ∈ R =⇒ v ∈ R =⇒ t ≥ 0 =⇒ [v ⊕ t]R ∈ R

proof goal-cases
case 1
note A = this
then obtain I J r where v ∈ region X I J r unfolding R-def by auto
from this(1) have ∀ x ∈ X . v x ≥ 0 by auto
with A(3) have ∀ x ∈ X . (v ⊕ t) x ≥ 0 unfolding cval-add-def by

simp
from regions-partition[OF this] obtain R ′ where R ′ ∈ R (v ⊕ t) ∈ R ′

by auto
with region-unique[OF this(2 ,1)] show ?case by auto

qed

lemma regions-closed ′:
R ∈ R =⇒ v ∈ R =⇒ t ≥ 0 =⇒ (v ⊕ t) ∈ [v ⊕ t]R

proof goal-cases
case 1
note A = this
then obtain I J r where v ∈ region X I J r unfolding R-def by auto
from this(1) have ∀ x ∈ X . v x ≥ 0 by auto
with A(3) have ∀ x ∈ X . (v ⊕ t) x ≥ 0 unfolding cval-add-def by

simp
from regions-partition[OF this] obtain R ′ where R ′ ∈ R (v ⊕ t) ∈ R ′

119

by auto
with region-unique[OF this(2 ,1)] show ?case by auto

qed

lemma valid-regions-I-cong:
valid-region X k I J r =⇒ ∀ x ∈ X . I x = I ′ x
=⇒ ∀ x ∈ X . ∀ y ∈ X . (isGreater (I x) ∨ isGreater (I y)) −→ J x y =

J ′ x y
=⇒ region X I J r = region X I ′ J ′ r ∧ valid-region X k I ′ J ′ r

proof (auto, goal-cases)
case (1 v)
note A = this
then have [simp]:∧

x. x ∈ X =⇒ I ′ x = I x∧
x y. x ∈ X =⇒ y ∈ X =⇒ isGreater (I x) ∨ isGreater (I y) =⇒ J x

y = J ′ x y
by metis+
show ?case
proof (standard, goal-cases)

case 1 from A(4) show ?case by auto
next

case 2 from A(4) show ?case by auto
next

case 3 show {x ∈ X . ∃ d. I x = Intv d} = {x ∈ X . ∃ d. I ′ x = Intv d}
by auto

next
case 4
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
from A(4) show ∀ x ∈ ?X0. ∀ y ∈ ?X0. ((x, y) ∈ r) = (frac (v x) ≤

frac (v y)) by auto
next

case 5 from A(4) show ?case by force
qed

next
case (2 v)
note A = this
then have [simp]:∧

x. x ∈ X =⇒ I ′ x = I x∧
x y. x ∈ X =⇒ y ∈ X =⇒ isGreater (I x) ∨ isGreater (I y) =⇒ J x

y = J ′ x y
by metis+
show ?case
proof (standard, goal-cases)

case 1 from A(4) show ?case by auto

120

next
case 2 from A(4) show ?case by auto

next
case 3
show {x ∈ X . ∃ d. I ′ x = Intv d} = {x ∈ X . ∃ d. I x = Intv d} by auto

next
case 4
let ?X0 = {x ∈ X . ∃ d. I ′ x = Intv d}
from A(4) show ∀ x ∈ ?X0. ∀ y ∈ ?X0. ((x, y) ∈ r) = (frac (v x) ≤

frac (v y)) by auto
next

case 5 from A(4) show ?case by force
qed

next
case 3
note A = this
then have [simp]:∧

x. x ∈ X =⇒ I ′ x = I x∧
x y. x ∈ X =⇒ y ∈ X =⇒ isGreater (I x) ∨ isGreater (I y) =⇒ J x

y = J ′ x y
by metis+
show ?case

apply rule
apply (subgoal-tac {x ∈ X . ∃ d. I x = Intv d} = {x ∈ X . ∃ d. I ′ x

= Intv d})
apply assumption

using A by force+
qed

fun intv-const :: intv ⇒ nat
where

intv-const (Const d) = d |
intv-const (Intv d) = d |
intv-const (Greater d) = d

fun intv ′-const :: intv ′⇒ int
where

intv ′-const (Smaller ′ d) = d |
intv ′-const (Const ′ d) = d |
intv ′-const (Intv ′ d) = d |
intv ′-const (Greater ′ d) = d

lemma finite-R-aux:
fixes P A B assumes finite {x. A x} finite {x. B x}

121

shows finite {(I , J) | I J . P I J r ∧ A I ∧ B J}
using assms by (fastforce intro: pairwise-finiteI finite-ex-and1 finite-ex-and2)

lemma finite-R:
notes [[simproc add: finite-Collect]]
shows finite R

proof −
{ fix I J r assume A: valid-region X k I J r

let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
from A have refl-on ?X0 r by auto
then have r ⊆ X × X by (auto simp: refl-on-def)
then have r ∈ Pow (X × X) by auto

}
then have {r . ∃ I J . valid-region X k I J r} ⊆ Pow (X × X) by auto
from finite-subset[OF this] finite have fin: finite {r . ∃ I J . valid-region X

k I J r} by auto
let ?u = Max {k x | x. x ∈ X}
let ?l = − Max {k x | x. x ∈ X}
let ?I = {intv. intv-const intv ≤ ?u}
let ?J = {intv. ?l ≤ intv ′-const intv ∧ intv ′-const intv ≤ ?u}
let ?S = {r . ∃ I J . valid-region X k I J r}
let ?fin-mapI = λ I . ∀ x. (x ∈ X −→ I x ∈ ?I) ∧ (x /∈ X −→ I x = Const

0)
let ?fin-mapJ = λ J . ∀ x. ∀ y. (x ∈ X ∧ y ∈ X −→ J x y ∈ ?J)

∧ (x /∈ X −→ J x y = Const ′ 0) ∧ (y /∈ X −→ J x
y = Const ′ 0)

let ?R = {region X I J r | I J r . valid-region X k I J r ∧ ?fin-mapI I ∧
?fin-mapJ J}

let ?f = λr . {region X I J r | I J . valid-region X k I J r ∧ ?fin-mapI I
∧ ?fin-mapJ J}
let ?g = λr . {(I , J) | I J . valid-region X k I J r ∧ ?fin-mapI I ∧ ?fin-mapJ

J}
have ?I = (Const ‘ {d. d ≤ ?u}) ∪ (Intv ‘ {d. d ≤ ?u}) ∪ (Greater ‘ {d.

d ≤ ?u})
by auto (case-tac x, auto)
then have finite ?I by auto
from finite-set-of-finite-funs[OF ‹finite X› this] have finI : finite {I .

?fin-mapI I} .
have ?J = (Smaller ′ ‘ {d. ?l ≤ d ∧ d ≤ ?u}) ∪ (Const ′ ‘ {d. ?l ≤ d ∧

d ≤ ?u})
∪ (Intv ′ ‘ {d. ?l ≤ d ∧ d ≤ ?u}) ∪ (Greater ′ ‘ {d. ?l ≤ d ∧ d ≤

?u})
by auto (case-tac x, auto)
then have finite ?J by auto

122

from finite-set-of-finite-funs2 [OF ‹finite X› ‹finite X› this] have finJ :
finite {J . ?fin-mapJ J} .

from finite-R-aux[OF finI finJ , of valid-region X k] have ∀ r ∈ ?S . finite
(?g r) by simp

moreover have ∀ r ∈ ?S . ?f r = (λ (I , J). region X I J r) ‘ ?g r by
auto

ultimately have ∀ r ∈ ?S . finite (?f r) by auto
moreover have ?R =

⋃
(?f ‘?S) by auto

ultimately have finite ?R using fin by auto
moreover have R ⊆ ?R
proof

fix R assume R: R ∈ R
then obtain I J r where I : R = region X I J r valid-region X k I J r

unfolding R-def by auto
let ?I = λ x. if x ∈ X then I x else Const 0
let ?J = λ x y. if x ∈ X ∧ y ∈ X ∧ (isGreater (I x) ∨ isGreater (I y))

then J x y else Const ′ 0
let ?R = region X ?I ?J r
from valid-regions-I-cong[OF I (2)] I have ∗: R = ?R valid-region X k

?I ?J r by auto
have ∀ x. x /∈ X −→ ?I x = Const 0 by auto
moreover have ∀ x. x ∈ X −→ intv-const (I x) ≤ ?u
proof auto

fix x assume x: x ∈ X
with I (2) have valid-intv (k x) (I x) by auto
moreover from ‹finite X› x have k x ≤ ?u by (auto intro: Max-ge)
ultimately show intv-const (I x) ≤ Max {k x |x. x ∈ X} by (cases

I x) auto
qed
ultimately have ∗∗: ?fin-mapI ?I by auto
have ∀ x y. x /∈ X −→ ?J x y = Const ′ 0 by auto
moreover have ∀ x y. y /∈ X −→ ?J x y = Const ′ 0 by auto
moreover have ∀ x. ∀ y. x ∈ X ∧ y ∈ X −→ ?l ≤ intv ′-const (?J x y)

∧ intv ′-const (?J x y) ≤ ?u
proof clarify

fix x y assume x: x ∈ X assume y: y ∈ X
show ?l ≤ intv ′-const (?J x y) ∧ intv ′-const (?J x y) ≤ ?u
proof (cases isGreater (I x) ∨ isGreater (I y))

case True
with x y I (2) have valid-intv ′ (k y) (k x) (J x y) by fastforce
moreover from ‹finite X› x have k x ≤ ?u by (auto intro: Max-ge)
moreover from ‹finite X› y have ?l ≤ −k y by (auto intro: Max-ge)
ultimately show ?thesis by (cases J x y) auto

next

123

case False then show ?thesis by auto
qed

qed
ultimately have ?fin-mapJ ?J by auto
with ∗ ∗∗ show R ∈ ?R by blast

qed
ultimately show finite R by (blast intro: finite-subset)

qed

end

4.3 Approximation with β-regions

locale Beta-Regions ′ = Beta-Regions +
fixes v n not-in-X
assumes clock-numbering: ∀ c. v c > 0 ∧ (∀ x. ∀ y. v x ≤ n ∧ v y ≤ n ∧

v x = v y −→ x = y)
∀ k :: nat ≤n. k > 0 −→ (∃ c ∈ X . v c = k) ∀ c ∈

X . v c ≤ n
assumes not-in-X : not-in-X /∈ X

begin

definition v ′ ≡ λ i. if 0 < i ∧ i ≤ n then (THE c. c ∈ X ∧ v c = i) else
not-in-X

lemma v-v ′:
∀ c ∈ X . v ′ (v c) = c

using clock-numbering unfolding v ′-def by auto

abbreviation
vabstr (S :: (′a, t) zone) M ≡ S = [M]v,n ∧ (∀ i≤n. ∀ j≤n. M i j 6= ∞
−→ get-const (M i j) ∈ �)

definition normalized:
normalized M ≡
(∀ i j. 0 < i ∧ i ≤ n ∧ 0 < j ∧ j ≤ n ∧ M i j 6= ∞ −→

Lt (− (real((k o v ′) j))) ≤ M i j ∧ M i j ≤ Le ((k o v ′) i))
∧ (∀ i ≤ n. i > 0 −→ (M i 0 ≤ Le ((k o v ′) i) ∨ M i 0 = ∞) ∧ Lt (−

((k o v ′) i)) ≤ M 0 i)

definition apx-def :
Approxβ Z ≡

⋂
{S . ∃ U M . S =

⋃
U ∧ U ⊆ R ∧ Z ⊆ S ∧ vabstr S M

∧ normalized M}

124

definition
normalized ′ M ≡
(∀ i j. 0 < i ∧ i ≤ n ∧ 0 < j ∧ j ≤ n ∧ M i j 6= ∞ ∧ i 6= j −→

Lt (− (real((k o v ′) j))) ≤ M i j ∧ M i j ≤ Le ((k o v ′) i))
∧ (∀ i ≤ n. i > 0 −→ (M i 0 ≤ Le ((k o v ′) i) ∨ M i 0 = ∞) ∧ Lt (−

((k o v ′) i)) ≤ M 0 i)

lemma normalized ′-normalized:
assumes ∀ i ≤ n. M i i = 0 normalized ′ M
shows normalized M
using assms unfolding normalized ′-def normalized
apply auto
apply (smt Lt-le-LeI neutral of-nat-0-le-iff Le-le-LeI)+

done

lemma normalized-normalized ′:
normalized ′ M if normalized M
using that unfolding normalized ′-def normalized by simp

lemma apx-min:
S =

⋃
U =⇒ U ⊆ R =⇒ S = [M]v,n =⇒ ∀ i≤n. ∀ j≤n. M i j 6= ∞

−→ get-const (M i j) ∈ �
=⇒ normalized M =⇒ Z ⊆ S =⇒ Approxβ Z ⊆ S

unfolding apx-def by blast

lemma R-union:
⋃
R = V using region-cover unfolding V-def R-def by

auto

definition V-dbm where
V-dbm ≡ λi j. if i = 0 then Le 0 else ∞

lemma v-not-eq-0 :
v c 6= 0
using clock-numbering(1) by (metis not-less-zero)

lemma V-dbm-eq-V : [V-dbm]v,n = V
unfolding V-dbm-def V-def DBM-zone-repr-def DBM-val-bounded-def

proof ((clarsimp; safe), goal-cases)
case (1 u c)
with clock-numbering have dbm-entry-val u None (Some c) (Le 0) by

auto
then show ?case by auto

next
case (4 u c)

125

with clock-numbering have c ∈ X by blast
with 4 (1) show ?case by auto

qed (auto simp: v-not-eq-0)

lemma V-dbm-int:
∀ i≤n. ∀ j≤n. V-dbm i j 6= ∞ −→ get-const (V-dbm i j) ∈ �
unfolding V-dbm-def by auto

lemma normalized-V-dbm:
normalized V-dbm
unfolding V-dbm-def normalized less-eq dbm-le-def by auto

lemma all-dbm: ∃ M . vabstr (
⋃
R) M ∧ normalized M

using V-dbm-eq-V V-dbm-int normalized-V-dbm using R-union by auto

lemma R-int:
R ∈ R =⇒ R ′ ∈ R =⇒ R 6= R ′ =⇒ R ∩ R ′ = {} using R-regions-distinct

by blast

lemma aux1 :
u ∈ R =⇒ R ∈ R =⇒ U ⊆ R =⇒ u ∈

⋃
U =⇒ R ⊆

⋃
U using R-int

by blast

lemma aux2 : x ∈
⋂

U =⇒ U 6= {} =⇒ ∃ S ∈ U . x ∈ S by blast

lemma aux2 ′: x ∈
⋂

U =⇒ U 6= {} =⇒ ∀ S ∈ U . x ∈ S by blast

lemma apx-subset: Z ⊆ Approxβ Z unfolding apx-def by auto

lemma aux3 :
∀ X ∈ U . ∀ Y ∈ U . X ∩ Y ∈ U =⇒ S ⊆ U =⇒ S 6= {} =⇒ finite S

=⇒
⋂

S ∈ U
proof goal-cases

case 1
with finite-list obtain l where set l = S by blast
then show ?thesis using 1
proof (induction l arbitrary: S)

case Nil thus ?case by auto
next

case (Cons x xs)
show ?case
proof (cases set xs = {})

case False
with Cons have

⋂
(set xs) ∈ U by auto

126

with Cons.prems(1−3) show ?thesis by force
next

case True
with Cons.prems show ?thesis by auto

qed
qed

qed

lemma empty-zone-dbm:
∃ M :: t DBM . vabstr {} M ∧ normalized M ∧ (∀ k ≤ n. M k k ≤ Le 0)

proof −
from non-empty obtain c where c: c ∈ X by auto
with clock-numbering have c ′: v c > 0 v c ≤ n by auto
let ?M = λi j. if i = v c ∧ j = 0 ∨ i = j then Le (0 ::t) else if i = 0 ∧ j

= v c then Lt 0 else ∞
have [?M]v,n = {} unfolding DBM-zone-repr-def DBM-val-bounded-def

using c ′ by auto
moreover have ∀ i≤n. ∀ j≤n. ?M i j 6= ∞ −→ get-const (?M i j) ∈ �

by auto
moreover have normalized ?M unfolding normalized less-eq dbm-le-def

by auto
ultimately show ?thesis by auto

qed

lemma DBM-set-diag:
assumes [M]v,n 6= {}
shows [M]v,n = [(λi j. if i = j then Le 0 else M i j)]v,n

using non-empty-dbm-diag-set[OF clock-numbering(1) assms] unfolding
neutral by auto

lemma apx-min ′:
S =

⋃
U =⇒ U ⊆ R =⇒ S = [M]v,n =⇒ ∀ i≤n. ∀ j≤n. M i j 6= ∞

−→ get-const (M i j) ∈ �
=⇒ normalized ′ M =⇒ Z ⊆ S =⇒ Approxβ Z ⊆ S

proof (cases S = {}, goal-cases)
case 1
then show ?thesis

using empty-zone-dbm apx-min by metis
next

case 2
let ?M = (λi j. if i = j then Le 0 else M i j)
from DBM-set-diag 2 have [M]v,n = [?M]v,n

by blast
moreover from ‹normalized ′ -› have normalized ?M

127

by (intro normalized ′-normalized; simp add: normalized ′-def neutral)
ultimately show ?thesis

using 2 by (intro apx-min[where M = ?M]) auto
qed

lemma valid-dbms-int:
∀X∈{S . ∃M . vabstr S M}. ∀Y∈{S . ∃M . vabstr S M}. X ∩ Y ∈ {S .
∃M . vabstr S M}
proof (auto, goal-cases)

case (1 M1 M2)
obtain M ′ where M ′: M ′ = And M1 M2 by fast
from DBM-and-sound1 [OF] DBM-and-sound2 [OF] DBM-and-complete[OF

]
have [M1]v,n ∩ [M2]v,n = [M ′]v,n unfolding DBM-zone-repr-def M ′ by

auto
moreover from 1 have ∀ i≤n. ∀ j≤n. M ′ i j 6= ∞ −→ get-const (M ′ i

j) ∈ �
unfolding M ′ by (auto split: split-min)
ultimately show ?case by auto

qed

lemma split-min ′:
P (min i j) = ((min i j = i −→ P i) ∧ (min i j = j −→ P j))
unfolding min-def by auto

lemma normalized-and-preservation:
normalized M1 =⇒ normalized M2 =⇒ normalized (And M1 M2)
unfolding normalized by safe (subst And.simps, split split-min ′, fast-

force)+

lemma valid-dbms-int ′:
∀X∈{S . ∃M . vabstr S M ∧ normalized M}. ∀Y∈{S . ∃M . vabstr S M ∧

normalized M}.
X ∩ Y ∈ {S . ∃M . vabstr S M ∧ normalized M}

proof (auto, goal-cases)
case (1 M1 M2)
obtain M ′ where M ′: M ′ = And M1 M2 by fast
from DBM-and-sound1 DBM-and-sound2 DBM-and-complete
have [M1]v,n ∩ [M2]v,n = [M ′]v,n unfolding M ′ DBM-zone-repr-def by

auto
moreover from M ′ 1 have ∀ i≤n. ∀ j≤n. M ′ i j 6= ∞ −→ get-const

(M ′ i j) ∈ �
by (auto split: split-min)
moreover from normalized-and-preservation[OF 1 (2 ,4)] have normal-

128

ized M ′ unfolding M ′ .
ultimately show ?case by auto

qed

lemma apx-in:
Z ⊆ V =⇒ Approxβ Z ∈ {S . ∃ U M . S =

⋃
U ∧ U ⊆ R ∧ Z ⊆ S ∧

vabstr S M ∧ normalized M}
proof −

assume Z ⊆ V
let ?A = {S . ∃ U M . S =

⋃
U ∧ U ⊆ R ∧ Z ⊆ S ∧ vabstr S M ∧

normalized M}
let ?U = {R ∈ R. ∀ S ∈ ?A. R ⊆ S}
have ?A ⊆ {S . ∃ U . S =

⋃
U ∧ U ⊆ R} by auto

moreover from finite-R have finite . . . by auto
ultimately have finite ?A by (auto intro: finite-subset)
from all-dbm obtain M where M :

vabstr (
⋃
R) M normalized M

by auto
with ‹- ⊆ V › R-union[symmetric] have V ∈ ?A

by safe (intro conjI exI ; auto)
then have ?A 6= {} by blast
have ?A ⊆ {S . ∃ M . vabstr S M ∧ normalized M} by auto
with aux3 [OF valid-dbms-int ′ this ‹?A 6= -› ‹finite ?A›] have⋂

?A ∈ {S . ∃ M . vabstr S M ∧ normalized M}
by blast

then obtain M where ∗: vabstr (Approxβ Z) M normalized M unfolding
apx-def by auto

have
⋃

?U =
⋂

?A
proof (safe, goal-cases)

case 1
show ?case
proof (cases Z = {})

case False
then obtain v where v ∈ Z by auto
with region-cover ‹Z ⊆ V › obtain R where R ∈ R v ∈ R unfolding

V-def by blast
with aux1 [OF this(2 ,1)] ‹v ∈ Z › have R ∈ ?U by blast
with 1 show ?thesis by blast

next
case True
with empty-zone-dbm have {} ∈ ?A by auto
with 1 (1 ,3) show ?thesis by blast

qed
next

129

case (2 v)
from aux2 [OF 2 ‹?A 6= -›] obtain S where v ∈ S S ∈ ?A by blast
then obtain R where v ∈ R R ∈ R by auto
{ fix S assume S ∈ ?A

with aux2 ′[OF 2 ‹?A 6= -›] have v ∈ S by auto
with ‹S ∈ ?A› obtain U M R ′ where ∗:

v ∈ R ′ R ′ ∈ R S =
⋃

U U ⊆ R vabstr S M Z ⊆ S
by blast
from aux1 [OF this(1 ,2 ,4)] ∗(3) ‹v ∈ S› have R ′ ⊆ S by blast
moreover from R-regions-distinct[OF ∗(2 ,1) ‹R ∈ R›] ‹v ∈ R› have

R ′ = R by fast
ultimately have R ⊆ S by fast

}
with ‹R ∈ R› have R ∈ ?U by auto
with ‹v ∈ R› show ?case by auto

qed
then have Approxβ Z =

⋃
?U ?U ⊆ R Z ⊆ Approxβ Z unfolding

apx-def by auto
with ∗ show ?thesis by blast

qed

lemma apx-empty:
Approxβ {} = {}

unfolding apx-def using empty-zone-dbm by blast

end

4.4 Computing β-Approximation

4.4.1 Computation

context Beta-Regions ′

begin

lemma dbm-regions:
vabstr S M =⇒ normalized ′ M =⇒ [M]v,n 6= {} =⇒ [M]v,n ⊆ V =⇒ ∃

U ⊆ R. S =
⋃

U
proof goal-cases

case A: 1
let ?U =
{R ∈ R. ∃ I J r . R = region X I J r ∧ valid-region X k I J r ∧
(∀ c ∈ X .
(∀ d. I c = Const d −→ M (v c) 0 ≥ Le d ∧ M 0 (v c) ≥ Le (−d))

∧

130

(∀ d. I c = Intv d −→ M (v c) 0 ≥ Lt (d + 1) ∧ M 0 (v c) ≥ Lt
(−d)) ∧

(I c = Greater (k c) −→ M (v c) 0 = ∞)
) ∧
(∀ x ∈ X . ∀ y ∈ X .
(∀ c d. I x = Intv c ∧ I y = Intv d −→ M (v x) (v y) ≥

(if (x, y) ∈ r then if (y, x) ∈ r then Le (c − d) else Lt (c − d)
else Lt (c − d + 1))) ∧

(∀ c d. I x = Intv c ∧ I y = Intv d −→ M (v y) (v x) ≥
(if (y, x) ∈ r then if (x, y) ∈ r then Le (d − c) else Lt (d − c)

else Lt (d − c + 1))) ∧
(∀ c d. I x = Const c ∧ I y = Const d −→ M (v x) (v y) ≥ Le (c

− d)) ∧
(∀ c d. I x = Const c ∧ I y = Const d −→ M (v y) (v x) ≥ Le (d

− c)) ∧
(∀ c d. I x = Intv c ∧ I y = Const d −→ M (v x) (v y) ≥ Lt (c −

d + 1)) ∧
(∀ c d. I x = Intv c ∧ I y = Const d −→ M (v y) (v x) ≥ Lt (d −

c)) ∧
(∀ c d. I x = Const c ∧ I y = Intv d −→ M (v x) (v y) ≥ Lt (c −

d)) ∧
(∀ c d. I x = Const c ∧ I y = Intv d −→ M (v y) (v x) ≥ Lt (d −

c + 1)) ∧
((isGreater (I x) ∨ isGreater (I y)) ∧ J x y = Greater ′ (k x) −→ M

(v x) (v y) = ∞) ∧
(∀ c. (isGreater (I x) ∨ isGreater (I y)) ∧ J x y = Const ′ c
−→ M (v x) (v y) ≥ Le c ∧ M (v y) (v x) ≥ Le (− c)) ∧

(∀ c. (isGreater (I x) ∨ isGreater (I y)) ∧ J x y = Intv ′ c
−→ M (v x) (v y) ≥ Lt (c + 1) ∧ M (v y) (v x) ≥ Lt (− c))

)
}

have
⋃

?U = [M]v,n unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (standard, goal-cases)

case 1
show ?case
proof (auto, goal-cases)

case 1
from A(3) show Le 0 � M 0 0 unfolding DBM-zone-repr-def

DBM-val-bounded-def by auto
next

case (2 u I J r c)
note B = this
from B(6) clock-numbering have c ∈ X by blast
with B(1) v-v ′ have ∗: intv-elem c u (I c) v ′ (v c) = c by auto

131

from clock-numbering(1) have v c > 0 by auto
show ?case
proof (cases I c)

case (Const d)
with B(4) ‹c ∈ X› have M 0 (v c) ≥ Le (− real d) by auto
with ∗ Const show ?thesis by − (rule dbm-entry-val-mono2 [folded

less-eq], auto)
next

case (Intv d)
with B(4) ‹c ∈ X› have M 0 (v c) ≥ Lt (− real d) by auto
with ∗ Intv show ?thesis by − (rule dbm-entry-val-mono2 [folded

less-eq], auto)
next

case (Greater d)
with B(3) ‹c ∈ X› have I c = Greater (k c) by fastforce
with ∗ have − u c < − k c by auto
moreover from A(2) ∗(2) ‹v c ≤ n› ‹v c > 0 › have

Lt (− k c) ≤ M 0 (v c)
unfolding normalized ′-def by force

ultimately show ?thesis by − (rule dbm-entry-val-mono2 [folded
less-eq], auto)

qed
next

case (3 u I J r c)
note B = this
from B(6) clock-numbering have c ∈ X by blast
with B(1) v-v ′ have ∗: intv-elem c u (I c) v ′ (v c) = c by auto
from clock-numbering(1) have v c > 0 by auto
show ?case
proof (cases I c)

case (Const d)
with B(4) ‹c ∈ X› have M (v c) 0 ≥ Le d by auto
with ∗ Const show ?thesis by − (rule dbm-entry-val-mono3 [folded

less-eq], auto)
next

case (Intv d)
with B(4) ‹c ∈ X› have M (v c) 0 ≥ Lt (real d + 1) by auto
with ∗ Intv show ?thesis by − (rule dbm-entry-val-mono3 [folded

less-eq], auto)
next

case (Greater d)
with B(3) ‹c ∈ X› have I c = Greater (k c) by fastforce
with B(4) ‹c ∈ X› show ?thesis by auto

qed

132

next
case B: (4 u I J r c1 c2)
from B(6 ,7) clock-numbering have c1 ∈ X c2 ∈ X by blast+
with B(1) v-v ′ have ∗:

intv-elem c1 u (I c1) intv-elem c2 u (I c2) v ′ (v c1) = c1 v ′ (v c2)
= c2

by auto
from clock-numbering(1) have v c1 > 0 v c2 > 0 by auto
{ assume C : isGreater (I c1) ∨ isGreater (I c2)
with B(1) ‹c1 ∈ X› ‹c2 ∈ X› have ∗∗: intv ′-elem c1 c2 u (J c1 c2)

by force
have ?case
proof (cases J c1 c2)

case (Smaller ′ c)
with C B(3) ‹c1 ∈ X› ‹c2 ∈ X› have c ≤ − k c2 by fastforce
moreover from C ‹c1 ∈ X› ‹c2 ∈ X› ∗∗ Smaller ′ have u c1 −

u c2 < c by auto
moreover from A(2) ∗(3 ,4) B(6 ,7) ‹v c1 > 0 › ‹v c2 > 0 › have

M (v c1) (v c2) ≥ Lt (− k c2) ∨ M (v c1) (v c2) = ∞ ∨ v c1
= v c2

unfolding normalized ′-def by fastforce
ultimately show ?thesis

by − (safe, rule dbm-entry-val-mono1 [folded less-eq], auto,
smt ∗(3 ,4) int-le-real-less of-int-1 of-nat-0-le-iff)

next
case (Const ′ c)
with C B(5) ‹c1 ∈ X› ‹c2 ∈ X› have M (v c1) (v c2) ≥ Le c by

auto
with Const ′ ∗∗ ‹c1 ∈ X› ‹c2 ∈ X› show ?thesis
by (auto intro: dbm-entry-val-mono1 [folded less-eq])

next
case (Intv ′ c)

with C B(5) ‹c1 ∈ X› ‹c2 ∈ X› have M (v c1) (v c2) ≥ Lt
(real-of-int c + 1) by auto

with Intv ′ ∗∗ ‹c1 ∈ X› ‹c2 ∈ X› show ?thesis
by (auto intro: dbm-entry-val-mono1 [folded less-eq])

next
case (Greater ′ c)
with C B(3) ‹c1 ∈ X› ‹c2 ∈ X› have c = k c1 by fastforce
with Greater ′ C B(5) ‹c1 ∈ X› ‹c2 ∈ X› show ?thesis by auto

qed
} note GreaterI = this
show ?case
proof (cases I c1)

133

case (Const c)
show ?thesis
proof (cases I c2 , goal-cases)

case (1 d)
with Const ‹c1 ∈ X› ‹c2 ∈ X› ∗(1 ,2) have u c1 = c u c2 = d

by auto
moreover from ‹c1 ∈ X› ‹c2 ∈ X› 1 Const B(5) have

Le (real c − real d) ≤ M (v c1) (v c2)
by meson

ultimately show ?thesis by (auto intro: dbm-entry-val-mono1 [folded
less-eq])

next
case (Intv d)
with Const ‹c1 ∈ X› ‹c2 ∈ X› ∗(1 ,2) have u c1 = c d < u c2

by auto
then have u c1 − u c2 < c − real d by auto
moreover from Const ‹c1 ∈ X› ‹c2 ∈ X› Intv B(5) have

Lt (real c − d) ≤ M (v c1) (v c2)
by meson

ultimately show ?thesis by (auto intro: dbm-entry-val-mono1 [folded
less-eq])

next
case Greater then show ?thesis by (auto intro: GreaterI)

qed
next

case (Intv c)
show ?thesis
proof (cases I c2 , goal-cases)

case (Const d)
with Intv ‹c1 ∈ X› ‹c2 ∈ X› ∗(1 ,2) have u c1 < c + 1 d = u c2

by auto
then have u c1 − u c2 < c − real d + 1 by auto
moreover from ‹c1 ∈ X› ‹c2 ∈ X› Intv Const B(5) have

Lt (real c − real d + 1) ≤ M (v c1) (v c2)
by meson

ultimately show ?thesis by (auto intro: dbm-entry-val-mono1 [folded
less-eq])

next
case (2 d)
show ?case
proof (cases (c1 ,c2) ∈ r)

case True
note T = this
show ?thesis

134

proof (cases (c2 ,c1) ∈ r)
case True
with T B(5) 2 Intv ‹c1 ∈ X› ‹c2 ∈ X› have

Le (real c − real d) ≤ M (v c1) (v c2)
by auto

moreover from nat-intv-frac-decomp[of c u c1] nat-intv-frac-decomp[of
d u c2]

B(1 ,2) ‹c1 ∈ X› ‹c2 ∈ X› T True Intv 2 ∗(1 ,2)
have u c1 − u c2 = real c − d by auto

ultimately show ?thesis by (auto intro: dbm-entry-val-mono1 [folded
less-eq])

next
case False
with T B(5) 2 Intv ‹c1 ∈ X› ‹c2 ∈ X› have

Lt (real c − real d) ≤ M (v c1) (v c2)
by auto

moreover from nat-intv-frac-decomp[of c u c1] nat-intv-frac-decomp[of
d u c2]

B(1 ,2) ‹c1 ∈ X› ‹c2 ∈ X› T False Intv 2 ∗(1 ,2)
have u c1 − u c2 < real c − d by auto

ultimately show ?thesis by (auto intro: dbm-entry-val-mono1 [folded
less-eq])

qed
next

case False
with B(5) 2 Intv ‹c1 ∈ X› ‹c2 ∈ X› have

Lt (real c − real d + 1) ≤ M (v c1) (v c2)
by meson
moreover from 2 Intv ‹c1 ∈ X› ‹c2 ∈ X› ∗ have u c1 − u c2

< c − real d + 1 by auto
ultimately show ?thesis by (auto intro: dbm-entry-val-mono1 [folded

less-eq])
qed

next
case Greater then show ?thesis by (auto intro: GreaterI)

qed
next

case Greater then show ?thesis by (auto intro: GreaterI)
qed

qed
next

case 2 show ?case
proof (safe, goal-cases)

case (1 u)

135

with A(4) have u ∈ V unfolding DBM-zone-repr-def DBM-val-bounded-def
by auto

with region-cover obtain R where R ∈ R u ∈ R unfolding V-def
by auto

then obtain I J r where R: R = region X I J r valid-region X k I J
r unfolding R-def by auto

have (∀ c∈X . (∀ d. I c = Const d −→ Le (real d) ≤ M (v c) 0 ∧ Le
(− real d) ≤ M 0 (v c)) ∧

(∀ d. I c = Intv d −→ Lt (real d + 1) ≤ M (v c) 0 ∧ Lt (−
real d) ≤ M 0 (v c)) ∧

(I c = Greater (k c) −→ M (v c) 0 = ∞))
proof safe

fix c assume c ∈ X
with R ‹u ∈ R› have ∗: intv-elem c u (I c) by auto
fix d assume ∗∗: I c = Const d
with ∗ have u c = d by fastforce
moreover from ∗∗ clock-numbering(3) ‹c ∈ X› 1 have

dbm-entry-val u (Some c) None (M (v c) 0)
by auto
ultimately show Le (real d) ≤ M (v c) 0
unfolding less-eq dbm-le-def by (cases M (v c) 0) auto

next
fix c assume c ∈ X
with R ‹u ∈ R› have ∗: intv-elem c u (I c) by auto
fix d assume ∗∗: I c = Const d
with ∗ have u c = d by fastforce
moreover from ∗∗ clock-numbering(3) ‹c ∈ X› 1 have

dbm-entry-val u None (Some c) (M 0 (v c))
by auto
ultimately show Le (− real d) ≤ M 0 (v c)
unfolding less-eq dbm-le-def by (cases M 0 (v c)) auto

next
fix c assume c ∈ X
with R ‹u ∈ R› have ∗: intv-elem c u (I c) by auto
fix d assume ∗∗: I c = Intv d
with ∗ have d < u c u c < d + 1 by fastforce+
moreover from ∗∗ clock-numbering(3) ‹c ∈ X› 1 have

dbm-entry-val u (Some c) None (M (v c) 0)
by auto
moreover have

M (v c) 0 6= ∞ =⇒ get-const (M (v c) 0) ∈ �
using ‹c ∈ X› clock-numbering A(1) by auto
ultimately show Lt (real d + 1) ≤ M (v c) 0 unfolding less-eq

dbm-le-def

136

apply (cases M (v c) 0)
apply auto

apply (rename-tac x1)
apply (subgoal-tac x1 > d)
apply (rule dbm-lt.intros(5))
apply (metis nat-intv-frac-gt0 frac-eq-0-iff less-irrefl linorder-not-le

of-nat-1 of-nat-add)
apply simp

apply (rename-tac x2)
apply (subgoal-tac x2 > d + 1)
apply (rule dbm-lt.intros(6))
apply (metis of-nat-1 of-nat-add)

apply simp
by (metis nat-intv-not-int One-nat-def add.commute add.right-neutral

add-Suc-right le-less-trans
less-eq-real-def linorder-neqE-linordered-idom semir-

ing-1-class.of-nat-simps(2))
next

fix c assume c ∈ X
with R ‹u ∈ R› have ∗: intv-elem c u (I c) by auto
fix d assume ∗∗: I c = Intv d
with ∗ have d < u c u c < d + 1 by fastforce+
moreover from ∗∗ clock-numbering(3) ‹c ∈ X› 1 have

dbm-entry-val u None (Some c) (M 0 (v c))
by auto

moreover have M 0 (v c) 6= ∞ =⇒ get-const (M 0 (v c)) ∈ �
using ‹c ∈ X› clock-numbering A(1) by auto

ultimately show Lt (− real d) ≤ M 0 (v c) unfolding less-eq
dbm-le-def

proof (cases M 0 (v c), −, auto, goal-cases)
case prems: (1 x1)
then have u c = d + frac (u c) by (metis nat-intv-frac-decomp

‹u c < d + 1 ›)
with prems(5) have − x1 ≤ d + frac (u c) by auto
with prems(1) frac-ge-0 frac-lt-1 have − x1 ≤ d
by − (rule ints-le-add-frac2 [of frac (u c) d −x1]; fastforce)
with prems have − d ≤ x1 by auto
then show ?case by auto

next
case prems: (2 x1)
then have u c = d + frac (u c) by (metis nat-intv-frac-decomp

‹u c < d + 1 ›)
with prems(5) have − x1 ≤ d + frac (u c) by auto
with prems(1) frac-ge-0 frac-lt-1 have − x1 ≤ d

137

by − (rule ints-le-add-frac2 [of frac (u c) d −x1]; fastforce)
with prems(6) have − d < x1 by auto
then show ?case by auto

qed
next

fix c assume c ∈ X
with R ‹u ∈ R› have ∗: intv-elem c u (I c) by auto
fix d assume ∗∗: I c = Greater (k c)
have M (v c) 0 ≤ Le ((k o v ′) (v c)) ∨ M (v c) 0 = ∞
using A(2) ‹c ∈ X› clock-numbering unfolding normalized ′-def by

auto
with v-v ′ ‹c ∈ X› have M (v c) 0 ≤ Le (k c) ∨ M (v c) 0 = ∞ by

auto
moreover from ∗ ∗∗ have k c < u c by fastforce
moreover from ∗∗ clock-numbering(3) ‹c ∈ X› 1 have

dbm-entry-val u (Some c) None (M (v c) 0)
by auto
moreover have

M (v c) 0 6= ∞ =⇒ get-const (M (v c) 0) ∈ �
using ‹c ∈ X› clock-numbering A(1) by auto
ultimately show M (v c) 0 = ∞ unfolding less-eq dbm-le-def

apply −
apply (rule ccontr)
using ∗∗ apply (cases M (v c) 0)

by auto
qed
moreover
{ fix x y assume X : x ∈ X y ∈ X

with R ‹u ∈ R› have ∗: intv-elem x u (I x) intv-elem y u (I y) by
auto

from X R ‹u ∈ R› have ∗∗:
isGreater (I x) ∨ isGreater (I y) −→ intv ′-elem x y u (J x y)

by force
have int: M (v x) (v y) 6= ∞ =⇒ get-const (M (v x) (v y)) ∈ �

using X clock-numbering A(1)
by auto
have int2 : M (v y) (v x) 6= ∞ =⇒ get-const (M (v y) (v x)) ∈ �

using X clock-numbering A(1)
by auto
from 1 clock-numbering(3) X 1 have ∗∗∗:

dbm-entry-val u (Some x) (Some y) (M (v x) (v y))
dbm-entry-val u (Some y) (Some x) (M (v y) (v x))

by auto
have

138

(∀ c d. I x = Intv c ∧ I y = Intv d −→ M (v x) (v y) ≥
(if (x, y) ∈ r then if (y, x) ∈ r then Le (c − d) else Lt (c − d)

else Lt (c − d + 1))) ∧
(∀ c d. I x = Intv c ∧ I y = Intv d −→ M (v y) (v x) ≥
(if (y, x) ∈ r then if (x, y) ∈ r then Le (d − c) else Lt (d − c)

else Lt (d − c + 1))) ∧
(∀ c d. I x = Const c ∧ I y = Const d −→ M (v x) (v y) ≥ Le (c

− d)) ∧
(∀ c d. I x = Const c ∧ I y = Const d −→ M (v y) (v x) ≥ Le (d

− c)) ∧
(∀ c d. I x = Intv c ∧ I y = Const d −→ M (v x) (v y) ≥ Lt (c −

d + 1)) ∧
(∀ c d. I x = Intv c ∧ I y = Const d −→ M (v y) (v x) ≥ Lt (d −

c)) ∧
(∀ c d. I x = Const c ∧ I y = Intv d −→ M (v x) (v y) ≥ Lt (c −

d)) ∧
(∀ c d. I x = Const c ∧ I y = Intv d −→ M (v y) (v x) ≥ Lt (d −

c + 1)) ∧
((isGreater (I x) ∨ isGreater (I y)) ∧ J x y = Greater ′ (k x) −→

M (v x) (v y) = ∞) ∧
(∀ c. (isGreater (I x) ∨ isGreater (I y)) ∧ J x y = Const ′ c
−→ M (v x) (v y) ≥ Le c ∧ M (v y) (v x) ≥ Le (− c)) ∧

(∀ c. (isGreater (I x) ∨ isGreater (I y)) ∧ J x y = Intv ′ c
−→ M (v x) (v y) ≥ Lt (c + 1) ∧ M (v y) (v x) ≥ Lt (− c))

proof (auto, goal-cases)
case ∗∗: (1 c d)
with R ‹u ∈ R› X have frac (u x) = frac (u y) by auto
with ∗ ∗∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d

u y] have
u x − u y = real c − d

by auto
with ∗∗∗ show ?case unfolding less-eq dbm-le-def by (cases M

(v x) (v y)) auto
next

case ∗∗: (2 c d)
with R ‹u ∈ R› X have frac (u x) > frac (u y) by auto
with ∗ ∗∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d

u y] have
real c − d < u x − u y u x − u y < real c − d + 1

by auto
with ∗∗∗ int show ?case unfolding less-eq dbm-le-def

by (cases M (v x) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next

139

case ∗∗: (3 c d)
from ∗∗ R ‹u ∈ R› X have frac (u x) < frac (u y) by auto
with ∗ ∗∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d

u y] have
real c − d − 1 < u x − u y u x − u y < real c − d

by auto
with ∗∗∗ int show ?case unfolding less-eq dbm-le-def

by (cases M (v x) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next
case (4 c d) with R(1) ‹u ∈ R› X show ?case by auto

next
case ∗∗: (5 c d)
with R ‹u ∈ R› X have frac (u x) = frac (u y) by auto
with ∗ ∗∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d

u y] have
u x − u y = real c − d by auto

with ∗∗∗ show ?case unfolding less-eq dbm-le-def by (cases M
(v y) (v x)) auto

next
case ∗∗: (6 c d)
from ∗∗ R ‹u ∈ R› X have frac (u x) < frac (u y) by auto
with ∗ ∗∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d

u y] have
real d − c < u y − u x u y − u x < real d − c + 1

by auto
with ∗∗∗ int2 show ?case unfolding less-eq dbm-le-def

by (cases M (v y) (v x), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next
case ∗∗: (7 c d)
from ∗∗ R ‹u ∈ R› X have frac (u x) > frac (u y) by auto
with ∗ ∗∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d

u y] have
real d − c − 1 < u y − u x u y − u x < real d − c

by auto
with ∗∗∗ int2 show ?case unfolding less-eq dbm-le-def

by (cases M (v y) (v x), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next
case (8 c d) with R(1) ‹u ∈ R› X show ?case by auto

next
case (9 c d)
with ∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d u

140

y] have
u x − u y = real c − d by auto

with ∗∗∗ show ?case unfolding less-eq dbm-le-def by (cases M
(v x) (v y)) auto

next
case (10 c d)
with ∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d u

y] have
u x − u y = real c − d

by auto
with ∗∗∗ show ?case unfolding less-eq dbm-le-def by (cases M

(v y) (v x)) auto
next

case (11 c d)
with ∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d u

y] have
real c − d < u x − u y

by auto
with ∗∗∗ int show ?case unfolding less-eq dbm-le-def

by (cases M (v x) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next
case (12 c d)
with ∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d u

y] have
real d − c − 1 < u y − u x

by auto
with ∗∗∗ int2 show ?case unfolding less-eq dbm-le-def

by (cases M (v y) (v x), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next
case (13 c d)
with ∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d u

y] have
real c − d − 1 < u x − u y

by auto
with ∗∗∗ int show ?case unfolding less-eq dbm-le-def

by (cases M (v x) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next
case (14 c d)
with ∗ nat-intv-frac-decomp[of c u x] nat-intv-frac-decomp[of d u

y] have
real d − c < u y − u x

141

by auto
with ∗∗∗ int2 show ?case unfolding less-eq dbm-le-def

by (cases M (v y) (v x), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next
case (15 d)
have M (v x) (v y) ≤ Le ((k o v ′) (v x)) ∨ M (v x) (v y) = ∞ ∨ v

x = v y
using A(2) X clock-numbering unfolding normalized ′-def by

metis
with v-v ′ X have M (v x) (v y) ≤ Le (k x) ∨ M (v x) (v y) = ∞

∨ v x = v y by auto
moreover from 15 ∗ ∗∗ have u x − u y > k x by auto
ultimately show ?case

unfolding less-eq dbm-le-def using ∗∗∗
by (cases M (v x) (v y), auto) (smt X(1) X(2) of-nat-0-le-iff

v-v ′)+
next

case (16 d)
have M (v x) (v y) ≤ Le ((k o v ′) (v x)) ∨ M (v x) (v y) = ∞ ∨ v

x = v y
using A(2) X clock-numbering unfolding normalized ′-def by metis
with v-v ′ X have M (v x) (v y) ≤ Le (k x) ∨ M (v x) (v y) = ∞

∨ v x = v y by auto
moreover from 16 ∗ ∗∗ have u x − u y > k x by auto
ultimately show ?case

unfolding less-eq dbm-le-def using ∗∗∗
by (cases M (v x) (v y), auto) (smt X(1) X(2) of-nat-0-le-iff

v-v ′)+
next
case 17 with ∗∗ ∗∗∗ show ?case unfolding less-eq dbm-le-def by

(cases M (v x) (v y), auto)
next
case 18 with ∗∗ ∗∗∗ show ?case unfolding less-eq dbm-le-def by

(cases M (v y) (v x), auto)
next
case 19 with ∗∗ ∗∗∗ show ?case unfolding less-eq dbm-le-def by

(cases M (v x) (v y), auto)
next
case 20 with ∗∗ ∗∗∗ show ?case unfolding less-eq dbm-le-def by

(cases M (v y) (v x), auto)
next

case (21 c d)
with ∗∗ have c < u x − u y by auto

142

with ∗∗∗ int show ?case unfolding less-eq dbm-le-def
by (cases M (v x) (v y), auto) (fastforce intro: int-lt-Suc-le

int-lt-neq-prev-lt)+
next

case (22 c d)
with ∗∗ have u x − u y < c + 1 by auto
then have u y − u x > − c − 1 by auto
with ∗∗∗ int2 show ?case unfolding less-eq dbm-le-def

by (cases M (v y) (v x), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next
case (23 c d)
with ∗∗ have c < u x − u y by auto
with ∗∗∗ int show ?case unfolding less-eq dbm-le-def

by (cases M (v x) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

next
case (24 c d)
with ∗∗ have u x − u y < c + 1 by auto
then have u y − u x > − c − 1 by auto
with ∗∗∗ int2 show ?case unfolding less-eq dbm-le-def

by (cases M (v y) (v x), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+

qed
}
ultimately show ?case using R ‹u ∈ R› ‹R ∈ R›

apply −
apply standard
apply standard
apply rule
apply assumption

apply (rule exI [where x = I], rule exI [where x = J], rule exI [where
x = r])

by auto
qed

qed
with A have S =

⋃
?U by auto

moreover have ?U ⊆ R by blast
ultimately show ?case by blast

qed

lemma dbm-regions ′:
vabstr S M =⇒ normalized ′ M =⇒ S ⊆ V =⇒ ∃ U ⊆ R. S =

⋃
U

using dbm-regions by (cases S = {}) auto

143

lemma dbm-regions ′′:
dbm-int M n =⇒ normalized ′ M =⇒ [M]v,n ⊆ V =⇒ ∃ U ⊆ R. [M]v,n

=
⋃

U
using dbm-regions ′ by auto

lemma DBM-le-subset ′:
assumes ∀ i ≤ n. ∀ j ≤ n. i 6= j −→ M i j ≤ M ′ i j
and ∀ i≤n. M ′ i i ≥ Le 0
and u ∈ [M]v,n
shows u ∈ [M ′]v,n

proof −
let ?M = λ i j. if i = j then Le 0 else M i j
have ∀ i j. i ≤ n −→ j ≤ n −→ ?M i j ≤ M ′ i j using assms(1 ,2) by

auto
moreover from DBM-set-diag assms(3) have u ∈ [?M]v,n by auto
ultimately show ?thesis using DBM-le-subset[folded less-eq, of n ?M M ′

u v] by auto
qed

lemma neg-diag-empty-spec:
assumes i ≤ n M i i < 0
shows [M]v,n = {}

using assms neg-diag-empty[where v= v and M = M , OF - assms] clock-numbering(2)
by auto

lemma canonical-empty-zone-spec:
assumes canonical M n
shows [M]v,n = {} ←→ (∃ i≤n. M i i < 0)

using canonical-empty-zone[of n v M , OF - - assms] clock-numbering by
auto

lemma norm-set-diag:
assumes canonical M n [M]v,n 6= {}
obtains M ′ where [M]v,n = [M ′]v,n [norm M (k o v ′) n]v,n = [norm M ′

(k o v ′) n]v,n
∀ i ≤ n. M ′ i i = 0 canonical M ′ n

proof −
from assms(2) neg-diag-empty-spec have ∗: ∀ i≤n. M i i ≥ Le 0 un-

folding neutral by force
let ?M = λi j. if i = j then Le 0 else M i j
let ?NM = norm M (k o v ′) n
let ?M2 = λi j. if i = j then Le 0 else ?NM i j
from assms have [?NM]v,n 6= {}

144

by (metis Collect-empty-eq norm-mono DBM-zone-repr-def clock-numbering(1)
mem-Collect-eq)

from DBM-set-diag[OF this] DBM-set-diag[OF assms(2)] have
[M]v,n = [?M]v,n [?NM]v,n = [?M2]v,n

by auto
moreover have norm ?M (k o v ′) n = ?M2 unfolding norm-def norm-diag-def

by fastforce
moreover have ∀ i ≤ n. ?M i i = 0 unfolding neutral by auto
moreover have canonical ?M n using assms(1) ∗
unfolding neutral[symmetric] less-eq[symmetric] add[symmetric] by fast-

force
ultimately show ?thesis by (auto intro: that)

qed

lemma norm-normalizes ′:
notes any-le-inf [intro]
shows normalized ′ (norm M (k o v ′) n)

unfolding normalized ′-def
proof (safe, goal-cases)

case (1 i j)
show ?case
proof (cases M i j < Lt (− real (k (v ′ j))))
case True with 1 show ?thesis unfolding norm-def less by (auto simp:

Let-def neutral)
next

case False
with 1 show ?thesis unfolding norm-def by (auto simp: Let-def)

qed
next

case (2 i j)
have ∗∗: − real ((k o v ′) j) ≤ (k o v ′) i by simp
then have ∗: Lt (− k (v ′ j)) < Le (k (v ′ i)) by (auto intro: Lt-lt-LeI)
show ?case
proof (cases M i j ≤ Le (real (k (v ′ i))))

case False with 2 show ?thesis
unfolding norm-def less-eq dbm-le-def by (auto simp: Let-def neutral

split: if-split-asm)
next

case True with 2 show ?thesis unfolding norm-def by (auto simp:
Let-def split: if-split-asm)

qed
next

case (3 i)
show ?case

145

proof (cases M i 0 ≤ Le (real (k (v ′ i))))
case False then have Le (real (k (v ′ i))) ≺ M i 0 unfolding less-eq

dbm-le-def by auto
with 3 show ?thesis unfolding norm-def by auto

next
case True
with 3 show ?thesis unfolding norm-def less-eq dbm-le-def by (auto

simp: Let-def)
qed

next
case (4 i)
show ?case
proof (cases M 0 i < Lt (− real (k (v ′ i))))

case True with 4 show ?thesis unfolding norm-def less by auto
next

case False with 4 show ?thesis unfolding norm-def by (auto simp:
Let-def)

qed
qed

lemma norm-normalizes:
assumes ∀ i ≤ n. M i i = 0
shows normalized (norm M (k o v ′) n)
apply (rule normalized ′-normalized)
subgoal
using assms unfolding norm-def norm-diag-def by (auto simp: DBM .neutral)

by (rule norm-normalizes ′)

lemma norm-int-preservation:
fixes M :: real DBM
assumes dbm-int M n i ≤ n j ≤ n norm M (k o v ′) n i j 6= ∞
shows get-const (norm M (k o v ′) n i j) ∈ �
using assms unfolding norm-def by (auto simp: Let-def norm-diag-def)

lemma norm-V-preservation ′:
notes any-le-inf [intro]
assumes [M]v,n ⊆ V canonical M n [M]v,n 6= {}
shows [norm M (k o v ′) n]v,n ⊆ V

proof −
let ?M = norm M (k o v ′) n
from non-empty-cycle-free[OF assms(3)] clock-numbering(2) have ∗: cy-

cle-free M n by auto
{ fix c assume c ∈ X

with clock-numbering have c: c ∈ X v c > 0 v c ≤ n by auto

146

with assms(2) have
M 0 (v c) + M (v c) 0 ≥ M 0 0

unfolding add less-eq by blast
moreover from cycle-free-diag[OF ∗] have M 0 0 ≥ Le 0 unfolding

neutral by auto
ultimately have ge-0 : M 0 (v c) + M (v c) 0 ≥ Le 0 by auto
have M 0 (v c) ≤ Le 0
proof (cases M 0 (v c))

case (Le d)
with ge-0 have M (v c) 0 ≥ Le (−d)

unfolding add by (cases M (v c) 0) auto
with Le canonical-saturated-2 [where v = v, OF - - ‹cycle-free M n›

assms(2) c(3)]
clock-numbering(1)

obtain u where u ∈ [M]v,n u c = −d by auto
with assms(1) c(1) Le show ?thesis unfolding V-def by fastforce

next
case (Lt d)
show ?thesis
proof (cases d ≤ 0)

case True
then have Lt d < Le 0 by (auto intro: Lt-lt-LeI)
with Lt show ?thesis by auto

next
case False
then have d > 0 by auto
note Lt ′ = Lt
show ?thesis
proof (cases M (v c) 0)

case (Le d ′)
with Lt ge-0 have ∗: d > −d ′ unfolding add by auto
show ?thesis
proof (cases d ′ < 0)

case True
from
∗ clock-numbering(1)

canonical-saturated-1 [where v = v, OF - - ‹cycle-free - -›
assms(2) c(3)] Lt Le

obtain u where u ∈ [M]v,n u c = d ′

by auto
with ‹d ′ < 0 › assms(1) ‹c ∈ X› show ?thesis unfolding V-def

by fastforce
next

case False

147

then have d ′ ≥ 0 by auto
with ‹d > 0 › have Le (d / 2) ≤ Lt d Le (− (d /2)) ≤ Le d ′ by

auto
with

canonical-saturated-2 [where v = v, OF - - ‹cycle-free - -›
assms(2) c(3)]

Lt Le clock-numbering(1)
obtain u where u ∈ [M]v,n u c = − (d / 2)

by auto (metis Le-le-LtD ‹Le (d / 2) ≤ Lt d›)
with ‹d > 0 › assms(1) ‹c ∈ X› show ?thesis unfolding V-def

by fastforce
qed

next
case (Lt d ′)
with Lt ′ ge-0 have ∗: d > −d ′ unfolding add by auto
then have ∗∗: −d < d ′ by auto
show ?thesis
proof (cases d ′ ≤ 0)

case True
from assms(1 ,3) c obtain u where u:

u ∈ V dbm-entry-val u (Some c) None (M (v c) 0)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with u(1) True Lt ‹c ∈ X› show ?thesis unfolding V-def by

auto
next

case False
with ‹d > 0 › have Le (d / 2) ≤ Lt d Le (− (d /2)) ≤ Lt d ′ by

auto
with

canonical-saturated-2 [where v = v, OF - - ‹cycle-free - -›
assms(2) c(3)]

Lt Lt ′ clock-numbering(1)
obtain u where u ∈ [M]v,n u c = − (d / 2)

by auto (metis Le-le-LtD ‹Le (d / 2) ≤ Lt d›)
with ‹d > 0 › assms(1) ‹c ∈ X› show ?thesis unfolding V-def

by fastforce
qed

next
case INF
show ?thesis
proof (cases d > 0)

case True
from ‹d > 0 › have Le (d / 2) ≤ Lt d by auto
with

148

INF canonical-saturated-2 [where v = v, OF - - ‹cycle-free - -›
assms(2) c(3)]

Lt clock-numbering(1)
obtain u where u ∈ [M]v,n u c = − (d / 2)

by auto (metis Le-le-LtD ‹Le (d / 2) ≤ Lt d› any-le-inf)
with ‹d > 0 › assms(1) ‹c ∈ X› show ?thesis unfolding V-def

by fastforce
next

case False
with Lt show ?thesis by auto

qed
qed

qed
next

case INF
obtain u r where u ∈ [M]v,n u c = − r r > 0
proof (cases M (v c) 0)

case (Le d)
let ?d = if d ≤ 0 then −d + 1 else d
from Le INF canonical-saturated-2 [where v = v, OF - - ‹cycle-free

- -› assms(2) c(3), of ?d]
clock-numbering(1)
obtain u where u ∈ [M]v,n u c = − ?d by (cases d < 0) (auto

simp: any-le-inf , smt)
from that[OF this] show thesis by auto

next
case (Lt d)
let ?d = if d ≤ 0 then −d + 1 else d
from Lt INF canonical-saturated-2 [where v = v, OF - - ‹cycle-free

- -› assms(2) c(3), of ?d]
clock-numbering(1)
obtain u where u ∈ [M]v,n u c = − ?d by (cases d < 0) (auto

simp: any-le-inf , smt)
from that[OF this] show thesis by auto

next
case INF
with

‹M 0 (v c) = ∞› canonical-saturated-2 [where v = v, OF - -
‹cycle-free - -› assms(2) c(3)]

clock-numbering(1)
obtain u where u ∈ [M]v,n u c = − 1 by auto
from that[OF this] show thesis by auto

qed
with assms(1) ‹c ∈ X› show ?thesis unfolding V-def by fastforce

149

qed
moreover then have ¬ Le 0 ≺ M 0 (v c) unfolding less[symmetric]

by auto
ultimately have ∗: ?M 0 (v c) ≤ Le 0

using assms(3) c unfolding norm-def by (auto simp: Let-def)
fix u assume u: u ∈ [?M]v,n
with c have dbm-entry-val u None (Some c) (?M 0 (v c))
unfolding DBM-val-bounded-def DBM-zone-repr-def by auto
with ∗ have u c ≥ 0 by (cases ?M 0 (v c)) auto

} note ge-0 = this
then show ?thesis unfolding V-def by auto

qed

lemma norm-V-preservation:
assumes [M]v,n ⊆ V canonical M n
shows [norm M (k o v ′) n]v,n ⊆ V (is [?M]v,n ⊆ V)

proof (cases [M]v,n = {})
case True
obtain i where i: i ≤ n M i i < 0 by (metis True assms(2) canoni-

cal-empty-zone-spec)
have ¬ Le (real (k (v ′ i))) < Le 0 unfolding less by (cases k (v ′ i) =

0 , auto)
with i have ?M i i < 0 unfolding norm-def by (auto simp: neutral less

Let-def norm-diag-def)
with neg-diag-empty-spec[OF ‹i ≤ n›] have [?M]v,n = {} .
then show ?thesis by auto

next
case False
with assms show ?thesis

apply −
apply (rule norm-set-diag[OF assms(2) False])
apply (rule norm-V-preservation ′)
apply auto
done

qed

lemma norm-min:
assumes normalized ′ M1 [M]v,n ⊆ [M1]v,n

canonical M n [M]v,n 6= {} [M]v,n ⊆ V
shows [norm M (k o v ′) n]v,n ⊆ [M1]v,n (is [?M2]v,n ⊆ [M1]v,n)

proof −
have le:

∧
i j. i ≤ n =⇒ j ≤ n =⇒ i 6= j=⇒ M i j ≤ M1 i j

using assms(2 ,3 ,4) clock-numbering(2)
by (auto intro!: DBM-canonical-subset-le[OF - - - - - - clock-numbering(1)])

150

from assms have [M1]v,n 6= {} by auto
with neg-diag-empty-spec have ∗: ∀ i≤n. M1 i i ≥ Le 0 unfolding

neutral by force
from assms norm-V-preservation have V : [?M2]v,n ⊆ V by auto
have u ∈ [M1]v,n if u ∈ [?M2]v,n for u
proof −

from that V have V : u ∈ V by fast
show ?thesis unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (safe, goal-cases)

case 1 with ∗ show ?case unfolding less-eq by fast
next

case (2 c)
then have c: v c > 0 v c ≤ n c ∈ X v ′ (v c) = c using clock-numbering

v-v ′ by metis+
with V have v-bound: dbm-entry-val u None (Some c) (Le 0) un-

folding V-def by auto
from that c have bound:

dbm-entry-val u None (Some c) (?M2 0 (v c))
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto

show ?case
proof (cases M 0 (v c) < Lt (− k c))

case False
show ?thesis
proof (cases Le 0 < M 0 (v c))

case True
with le c(1 ,2) have Le 0 ≤ M1 0 (v c) by fastforce

with dbm-entry-val-mono2 [OF v-bound, folded less-eq] show ?thesis
by fast

next
case F : False
with assms(3) False c have ?M2 0 (v c) = M 0 (v c) unfolding

less norm-def by auto
with le c bound show ?thesis by (auto intro: dbm-entry-val-mono2 [folded

less-eq])
qed

next
case True
have Lt (real-of-int (− k c)) ≺ Le 0 by auto
with True c assms(3) have ?M2 0 (v c) = Lt (− k c) unfolding

less norm-def by auto
moreover from assms(1) c have Lt (− k c) ≤ M1 0 (v c) unfolding

normalized ′-def by auto
ultimately show ?thesis using le c bound by (auto intro: dbm-entry-val-mono2 [folded

less-eq])

151

qed
next

case (3 c)
then have c: v c > 0 v c ≤ n c ∈ X v ′ (v c) = c using clock-numbering

v-v ′ by metis+
from that c have bound:

dbm-entry-val u (Some c) None (?M2 (v c) 0)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto

show ?case
proof (cases M (v c) 0 ≤ Le (k c))

case False
with le c have ¬ M1 (v c) 0 ≤ Le (k c) by fastforce

with assms(1) c show ?thesis unfolding normalized ′-def by fastforce
next

case True
show ?thesis
proof (cases M (v c) 0 < Lt 0)

case T : True
have ¬ Le (real (k c)) ≺ Lt 0 by auto
with T True c have ?M2 (v c) 0 = Lt 0 unfolding norm-def less

by (auto simp: Let-def)
with bound V c show ?thesis unfolding V-def by auto

next
case False
with True assms(3) c have ?M2 (v c) 0 = M (v c) 0 unfolding

less less-eq norm-def
by (auto simp: Let-def)
with dbm-entry-val-mono3 [OF bound, folded less-eq] le c show

?thesis by auto
qed

qed
next

case (4 c1 c2)
then have c:

v c1 > 0 v c1 ≤ n c1 ∈ X v ′ (v c1) = c1 v c2 > 0 v c2 ≤ n
c2 ∈ X v ′ (v c2) = c2
using clock-numbering v-v ′ by metis+

from that c have bound:
dbm-entry-val u (Some c1) (Some c2) (?M2 (v c1) (v c2))
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto

show ?case
proof (cases c1 = c2)

case True
then have dbm-entry-val u (Some c1) (Some c2) (Le 0) by auto

152

with c True ∗ dbm-entry-val-mono1 [OF this, folded less-eq] show
?thesis by auto

next
case False
with clock-numbering(1) ‹v c1 ≤ n› ‹v c2 ≤ n› have neq: v c1 6= v

c2 by auto
show ?thesis
proof (cases Le (k c1) < M (v c1) (v c2))

case False
show ?thesis
proof (cases M (v c1) (v c2) < Lt (− real (k c2)))

case F : False
with c False assms(3) neq have

?M2 (v c1) (v c2) = M (v c1) (v c2)
unfolding norm-def norm-diag-def less by simp
with dbm-entry-val-mono1 [OF bound, folded less-eq] le c neq

show ?thesis by auto
next

case True
with c False assms(3) neq have ?M2 (v c1) (v c2) = Lt (− k

c2)
unfolding less norm-def by simp

moreover from assms(1) c have M1 (v c1) (v c2) = ∞ ∨ M1
(v c1) (v c2) ≥ Lt (− k c2)

using neq unfolding normalized ′-def by fastforce
ultimately show ?thesis using dbm-entry-val-mono1 [OF bound,

folded less-eq] by auto
qed

next
case True
with le c neq have M1 (v c1) (v c2) > Le (k c1) by fastforce
moreover from True c assms(3) neq have ?M2 (v c1) (v c2) =

∞
unfolding norm-def less by simp

moreover from assms(1) c have M1 (v c1) (v c2) = ∞ ∨ M1 (v
c1) (v c2) ≤ Le (k c1)

using neq unfolding normalized ′-def by fastforce
ultimately show ?thesis by auto

qed
qed

qed
qed
then show ?thesis by blast

qed

153

lemma apx-norm-eq:
assumes canonical M n [M]v,n ⊆ V dbm-int M n
shows Approxβ ([M]v,n) = [norm M (k o v ′) n]v,n

proof −
let ?M = norm M (k o v ′) n
from assms norm-V-preservation norm-int-preservation norm-normalizes ′

have ∗:
vabstr ([?M]v,n) ?M normalized ′ ?M [?M]v,n ⊆ V
by auto

from dbm-regions ′[OF this] obtain U where U : U ⊆ R [?M]v,n =
⋃

U
by auto

from assms(3) have ∗∗: [M]v,n ⊆ [?M]v,n by (simp add: norm-mono
clock-numbering(1) subsetI)

show ?thesis
proof (cases [M]v,n = {})

case True
from canonical-empty-zone-spec[OF ‹canonical M n›] True obtain i

where i:
i ≤ n M i i < 0
by auto

then have ?M i i < 0
unfolding norm-def norm-diag-def by (auto simp: DBM .neutral

DBM .less)
from neg-diag-empty[of n v i ?M , OF - ‹i ≤ n› this] clock-numbering

have
[?M]v,n = {}

by (auto intro: Lt-lt-LeI)
with apx-empty True show ?thesis by auto

next
case False
from apx-in[OF assms(2)] obtain U ′ M1 where U ′:

Approxβ ([M]v,n) =
⋃

U ′ U ′ ⊆ R [M]v,n ⊆ Approxβ ([M]v,n)
vabstr (Approxβ ([M]v,n)) M1 normalized M1

by auto
from norm-min[OF - - assms(1) False assms(2)] U ′(3 ,4 ,5) ∗(1) apx-min ′[OF

U (2 ,1) - - ∗(2) ∗∗]
show ?thesis

by (auto dest!: normalized-normalized ′)
qed

qed

end

154

4.5 Auxiliary β-boundedness Theorems

context Beta-Regions ′

begin

lemma β-boundedness-diag-lt:
fixes m :: int
assumes − k y ≤ m m ≤ k x x ∈ X y ∈ X
shows ∃ U ⊆ R.

⋃
U = {u ∈ V . u x − u y < m}

proof −
note A = assms
note B = A(1 ,2)
let ?U = {R ∈ R. ∃ I J r c d (e :: int). R = region X I J r ∧ valid-region

X k I J r ∧
(I x = Const c ∧ I y = Const d ∧ real c − d < m ∨
I x = Const c ∧ I y = Intv d ∧ real c − d ≤ m ∨
I x = Intv c ∧ I y = Const d ∧ real c + 1 − d ≤ m ∨
I x = Intv c ∧ I y = Intv d ∧ real c − d ≤ m ∧ (x,y) ∈ r ∧ (y, x) /∈

r ∨
I x = Intv c ∧ I y = Intv d ∧ real c − d < m ∧ (y, x) ∈ r ∨
(I x = Greater (k x) ∨ I y = Greater (k y)) ∧ J x y = Smaller ′ (− k

y) ∨
(I x = Greater (k x) ∨ I y = Greater (k y)) ∧ J x y = Intv ′ e ∧ e <

m ∨
(I x = Greater (k x) ∨ I y = Greater (k y)) ∧ J x y = Const ′ e ∧ e <

m
)}

{ fix u I J r assume u ∈ region X I J r I x = Greater (k x) ∨ I y =
Greater (k y)

with A(3 ,4) have intv ′-elem x y u (J x y) by force
} note ∗ = this
{ fix u I J r assume u ∈ region X I J r

with A(3 ,4) have intv-elem x u (I x) intv-elem y u (I y) by force+
} note ∗∗ = this
have

⋃
?U = {u ∈ V . u x − u y < m}

proof (safe, goal-cases)
case (2 u) with ∗∗[OF this(1)] show ?case by auto

next
case (4 u) with ∗∗[OF this(1)] show ?case by auto

next
case (6 u) with ∗∗[OF this(1)] show ?case by auto

next
case (8 u X I J r c d)
from this A(3 ,4) have intv-elem x u (I x) intv-elem y u (I y) frac (u

155

x) < frac (u y) by force+
with nat-intv-frac-decomp 8 (4 ,5) have

u x = c + frac (u x) u y = d + frac (u y) frac (u x) < frac (u y)
by force+
with 8 (6) show ?case by linarith

next
case (10 u X I J r c d)
with ∗∗[OF this(1)] 10 (4 ,5) have u x < c + 1 d < u y by auto
then have u x − u y < real (c + 1) − real d by linarith
moreover from 10 (6) have real c + 1 − d ≤ m
proof −

have int c − int d < m
using 10 (6) by linarith

then show ?thesis
by simp

qed
ultimately show ?case by linarith

next
case 12 with ∗[OF this(1)] B show ?case by auto

next
case 14 with ∗[OF this(1)] B show ?case by auto

next
case (23 u)
from region-cover-V [OF this(1)] obtain R where R: R ∈ R u ∈ R by

auto
then obtain I J r where R ′: R = region X I J r valid-region X k I J r

unfolding R-def by auto
with R ′ R(2) A have C :

intv-elem x u (I x) intv-elem y u (I y) valid-intv (k x) (I x) valid-intv
(k y) (I y)

by auto
{ assume A: I x = Greater (k x) ∨ I y = Greater (k y)

obtain intv and d :: int where intv:
valid-intv ′ (k y) (k x) intv intv ′-elem x y u intv
intv = Smaller ′ (− k y) ∨ intv = Intv ′ d ∧ d < m ∨ intv = Const ′

d ∧ d < m
proof (cases u x − u y < − int (k y))

case True
have valid-intv ′ (k y) (k x) (Smaller ′ (− k y)) ..
moreover with True have intv ′-elem x y u (Smaller ′ (− k y)) by

auto
ultimately show thesis by (auto intro: that)

next
case False

156

show thesis
proof (cases ∃ (c :: int). u x − u y = c)

case True
then obtain c :: int where c: u x − u y = c by auto
have valid-intv ′ (k y) (k x) (Const ′ c) using False B(2) 23 (2) c

by fastforce
moreover with c have intv ′-elem x y u (Const ′ c) by auto
moreover have c < m using c 23 (2) by auto
ultimately show thesis by (auto intro: that)

next
case False
then obtain c :: real where c: u x − u y = c c /∈ � by (metis

Ints-cases)
have valid-intv ′ (k y) (k x) (Intv ′ (floor c))
proof

show − int (k y) ≤ bcc using ‹¬ - < -› c by linarith
show bcc < int (k x) using B(2) 23 (2) c by linarith

qed
moreover have intv ′-elem x y u (Intv ′ (floor c))
proof
from c(1 ,2) show bcc < u x − u y by (meson False eq-iff not-le

of-int-floor-le)
from c(1 ,2) show u x − u y < bcc + 1 by simp

qed
moreover have bcc < m using c 23 (2) by linarith
ultimately show thesis using that by auto

qed
qed
let ?J = λ a b. if x = a ∧ y = b then intv else J a b
let ?R = region X I ?J r
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
have u ∈ ?R
proof (standard, goal-cases)

case 1 from R R ′ show ?case by auto
next

case 2 from R R ′ show ?case by auto
next

case 3 show ?X0 = ?X0 by auto
next

case 4 from R R ′ show ∀ x∈?X0. ∀ y∈?X0. (x, y) ∈ r ←→ frac (u
x) ≤ frac (u y) by auto

next
case 5
show ?case

157

proof (clarify, goal-cases)
case (1 a b)
show ?case
proof (cases x = a ∧ y = b)

case True with intv show ?thesis by auto
next

case False
with R(2) R ′(1) 1 show ?thesis by force

qed
qed

qed
have valid-region X k I ?J r
proof

show ?X0 = ?X0 ..
show refl-on ?X0 r using R ′ by auto
show trans r using R ′ by auto
show total-on ?X0 r using R ′ by auto
show ∀ x∈X . valid-intv (k x) (I x) using R ′ by auto
show ∀ xa∈X . ∀ ya∈X . isGreater (I xa) ∨ isGreater (I ya)
−→ valid-intv ′ (int (k ya)) (int (k xa)) (if x = xa ∧ y = ya then

intv else J xa ya)
proof (clarify, goal-cases)

case (1 a b)
show ?case
proof (cases x = a ∧ y = b)

case True
with B intv show ?thesis by auto

next
case False
with R ′(2) 1 show ?thesis by force

qed
qed

qed
moreover then have ?R ∈ R unfolding R-def by auto
ultimately have ?R ∈ ?U using intv

apply clarify
apply (rule exI [where x = I], rule exI [where x = ?J], rule

exI [where x = r])
using A by fastforce

with ‹u ∈ region - - - -› have ?case by (intro Complete-Lattices.UnionI)
blast+

} note ∗ = this
show ?case
proof (cases I x)

158

case (Const c)
show ?thesis
proof (cases I y, goal-cases)

case (1 d)
with C (1 ,2) Const A(2 ,3) 23 (2) have real c − real d < m by auto
with Const 1 R R ′ show ?thesis by blast

next
case (Intv d)
with C (1 ,2) Const A(2 ,3) 23 (2) have real c − (d + 1) < m by

auto
then have c < 1 + (d + m) by linarith
then have real c − d ≤ m by simp
with Const Intv R R ′ show ?thesis by blast

next
case (Greater d) with ∗ C (4) show ?thesis by auto

qed
next

case (Intv c)
show ?thesis
proof (cases I y, goal-cases)

case (Const d)
with C (1 ,2) Intv A(2 ,3) 23 (2) have real c − d < m by auto
then have real c < m + d by linarith
then have c < m + d by linarith
then have real c + 1 − d ≤ m by simp
with Const Intv R R ′ show ?thesis by blast

next
case (2 d)
show ?thesis
proof (cases (y, x) ∈ r)

case True
with C (1 ,2) R R ′ Intv 2 A(3 ,4) have
c < u x u x < c + 1 d < u y u y < d + 1 frac (u x) ≥ frac (u y)

by force+
with 23 (2) nat-intv-frac-decomp have c + frac (u x) − (d + frac

(u y)) < m by auto
with ‹frac - ≥ -› have real c − real d < m by linarith
with Intv 2 True R R ′ show ?thesis by blast

next
case False
with R R ′ A(3 ,4) Intv 2 have (x,y) ∈ r by fastforce
with C (1 ,2) R R ′ Intv 2 have c < u x u y < d + 1 by force+
with 23 (2) have c < 1 + d + m by auto
then have real c − d ≤ m by simp

159

with Intv 2 False ‹- ∈ r› R R ′ show ?thesis by blast
qed

next
case (Greater d) with ∗ C (4) show ?thesis by auto

qed
next

case (Greater d) with ∗ C (3) show ?thesis by auto
qed

qed (auto intro: A simp: V-def , (fastforce dest!: ∗)+)
moreover have ?U ⊆ R by fastforce
ultimately show ?thesis by blast

qed

lemma β-boundedness-diag-eq:
fixes m :: int
assumes − k y ≤ m m ≤ k x x ∈ X y ∈ X
shows ∃ U ⊆ R.

⋃
U = {u ∈ V . u x − u y = m}

proof −
note A = assms
note B = A(1 ,2)
let ?U = {R ∈ R. ∃ I J r c d (e :: int). R = region X I J r ∧ valid-region

X k I J r ∧
(I x = Const c ∧ I y = Const d ∧ real c − d = m ∨
I x = Intv c ∧ I y = Intv d ∧ real c − d = m ∧ (x, y) ∈ r ∧ (y, x)

∈ r ∨
(I x = Greater (k x) ∨ I y = Greater (k y)) ∧ J x y = Const ′ e ∧ e =

m
)}

{ fix u I J r assume u ∈ region X I J r I x = Greater (k x) ∨ I y =
Greater (k y)

with A(3 ,4) have intv ′-elem x y u (J x y) by force
} note ∗ = this
{ fix u I J r assume u ∈ region X I J r

with A(3 ,4) have intv-elem x u (I x) intv-elem y u (I y) by force+
} note ∗∗ = this
have

⋃
?U = {u ∈ V . u x − u y = m}

proof (safe, goal-cases)
case (2 u) with ∗∗[OF this(1)] show ?case by auto

next
case (4 u X I J r c d)
from this A(3 ,4) have intv-elem x u (I x) intv-elem y u (I y) frac (u

x) = frac (u y) by force+
with nat-intv-frac-decomp 4 (4 ,5) have

u x = c + frac (u x) u y = d + frac (u y) frac (u x) = frac (u y)

160

by force+
with 4 (6) show ?case by linarith

next
case (9 u)
from region-cover-V [OF this(1)] obtain R where R: R ∈ R u ∈ R by

auto
then obtain I J r where R ′: R = region X I J r valid-region X k I J r

unfolding R-def by auto
with R ′ R(2) A have C :

intv-elem x u (I x) intv-elem y u (I y) valid-intv (k x) (I x) valid-intv
(k y) (I y)

by auto
{ assume A: I x = Greater (k x) ∨ I y = Greater (k y)

obtain intv where intv:
valid-intv ′ (k y) (k x) intv intv ′-elem x y u intv intv = Const ′ m

proof (cases u x − u y < − int (k y))
case True
with 9 B show ?thesis by auto

next
case False
show thesis
proof (cases ∃ (c :: int). u x − u y = c)

case True
then obtain c :: int where c: u x − u y = c by auto
have valid-intv ′ (k y) (k x) (Const ′ c) using False B(2) 9 (2) c by

fastforce
moreover with c have intv ′-elem x y u (Const ′ c) by auto
moreover have c = m using c 9 (2) by auto
ultimately show thesis by (auto intro: that)

next
case False
then have u x − u y /∈ � by (metis Ints-cases)
with 9 show ?thesis by auto

qed
qed
let ?J = λ a b. if x = a ∧ y = b then intv else J a b
let ?R = region X I ?J r
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
have u ∈ ?R
proof (standard, goal-cases)

case 1 from R R ′ show ?case by auto
next

case 2 from R R ′ show ?case by auto
next

161

case 3 show ?X0 = ?X0 by auto
next

case 4 from R R ′ show ∀ x∈?X0. ∀ y∈?X0. (x, y) ∈ r ←→ frac (u
x) ≤ frac (u y) by auto

next
case 5
show ?case
proof (clarify, goal-cases)

case (1 a b)
show ?case
proof (cases x = a ∧ y = b)

case True with intv show ?thesis by auto
next

case False with R(2) R ′(1) 1 show ?thesis by force
qed

qed
qed
have valid-region X k I ?J r
proof (standard, goal-cases)

show ?X0 = ?X0 ..
show refl-on ?X0 r using R ′ by auto
show trans r using R ′ by auto
show total-on ?X0 r using R ′ by auto
show ∀ x∈X . valid-intv (k x) (I x) using R ′ by auto

next
case 6
then show ?case
proof (clarify, goal-cases)

case (1 a b)
show ?case
proof (cases x = a ∧ y = b)

case True with B intv show ?thesis by auto
next

case False with R ′(2) 1 show ?thesis by force
qed

qed
qed
moreover then have ?R ∈ R unfolding R-def by auto
ultimately have ?R ∈ ?U using intv

apply clarify
apply (rule exI [where x = I], rule exI [where x = ?J], rule

exI [where x = r])
using A by fastforce

with ‹u ∈ region - - - -› have ?case by (intro Complete-Lattices.UnionI)

162

blast+
} note ∗ = this
show ?case
proof (cases I x)

case (Const c)
show ?thesis
proof (cases I y, goal-cases)

case (1 d)
with C (1 ,2) Const A(2 ,3) 9 (2) have real c − d = m by auto
with Const 1 R R ′ show ?thesis by blast

next
case (Intv d)
from Intv Const C (1 ,2) have range: d < u y u y < d + 1 and eq:

u x = c by auto
from eq have u x ∈ � by auto
with nat-intv-not-int[OF range] have u x − u y /∈ � using Ints-diff

by fastforce
with 9 show ?thesis by auto

next
case Greater with C ∗ show ?thesis by auto

qed
next

case (Intv c)
show ?thesis
proof (cases I y, goal-cases)

case (Const d)
from Intv Const C (1 ,2) have range: c < u x u x < c + 1 and eq:

u y = d by auto
from eq have u y ∈ � by auto
with nat-intv-not-int[OF range] have u x − u y /∈ � using Ints-add

by fastforce
with 9 show ?thesis by auto

next
case (2 d)
with Intv C have range: c < u x u x < c + 1 d < u y u y < d + 1

by auto
show ?thesis
proof (cases (x, y) ∈ r)

case True
note T = this
show ?thesis
proof (cases (y, x) ∈ r)

case True
with Intv 2 T R ′ ‹u ∈ R› A(3 ,4) have frac (u x) = frac (u y)

163

by force
with nat-intv-frac-decomp[OF range(1 ,2)] nat-intv-frac-decomp[OF

range(3 ,4)] have
u x − u y = real c − real d

by algebra
with 9 have real c − d = m by auto
with T True Intv 2 R R ′ show ?thesis by force

next
case False
with Intv 2 T R ′ ‹u ∈ R› A(3 ,4) have frac (u x) < frac (u y)

by force
then have

frac (u x − u y) 6= 0
by (metis add.left-neutral diff-add-cancel frac-add frac-unique-iff

less-irrefl)
then have u x − u y /∈ � by (metis frac-eq-0-iff)
with 9 show ?thesis by auto

qed
next

case False
note F = this
show ?thesis
proof (cases x = y)

case True
with R ′(2) Intv ‹x ∈ X› have (x, y) ∈ r (y, x) ∈ r by (auto

simp: refl-on-def)
with Intv True R ′ R 9 (2) show ?thesis by force

next
case False

with F R ′(2) Intv 2 ‹x ∈ X› ‹y ∈ X› have (y, x) ∈ r by (fastforce
simp: total-on-def)

with F Intv 2 R ′ ‹u ∈ R› A(3 ,4) have frac (u x) > frac (u y)
by force

then have
frac (u x − u y) 6= 0

by (metis add.left-neutral diff-add-cancel frac-add frac-unique-iff
less-irrefl)

then have u x − u y /∈ � by (metis frac-eq-0-iff)
with 9 show ?thesis by auto

qed
qed

next
case Greater with ∗ C show ?thesis by force

qed

164

next
case Greater with ∗ C show ?thesis by force

qed
qed (auto intro: A simp: V-def dest: ∗)
moreover have ?U ⊆ R by fastforce
ultimately show ?thesis by blast

qed

lemma β-boundedness-lt:
fixes m :: int
assumes m ≤ k x x ∈ X
shows ∃ U ⊆ R.

⋃
U = {u ∈ V . u x < m}

proof −
note A = assms
let ?U = {R ∈ R. ∃ I J r c. R = region X I J r ∧ valid-region X k I J r
∧

(I x = Const c ∧ c < m ∨ I x = Intv c ∧ c < m)}
{ fix u I J r assume u ∈ region X I J r

with A have intv-elem x u (I x) by force+
} note ∗∗ = this
have

⋃
?U = {u ∈ V . u x < m}

proof (safe, goal-cases)
case (2 u) with ∗∗[OF this(1)] show ?case by auto

next
case (4 u) with ∗∗[OF this(1)] show ?case by auto

next
case (5 u)
from region-cover-V [OF this(1)] obtain R where R: R ∈ R u ∈ R by

auto
then obtain I J r where R ′: R = region X I J r valid-region X k I J r

unfolding R-def by auto
with R ′ R(2) A have C :

intv-elem x u (I x) valid-intv (k x) (I x)
by auto
show ?case
proof (cases I x)

case (Const c)
with 5 C (1) have c < m by auto
with R R ′ Const show ?thesis by blast

next
case (Intv c)
with 5 C (1) have c < m by auto
with R R ′ Intv show ?thesis by blast

next

165

case (Greater c) with 5 C A Greater show ?thesis by auto
qed

qed (auto intro: A simp: V-def)
moreover have ?U ⊆ R by fastforce
ultimately show ?thesis by blast

qed

lemma β-boundedness-gt:
fixes m :: int
assumes m ≤ k x x ∈ X
shows ∃ U ⊆ R.

⋃
U = {u ∈ V . u x > m}

proof −
note A = assms
let ?U = {R ∈ R. ∃ I J r c. R = region X I J r ∧ valid-region X k I J r
∧

(I x = Const c ∧ c > m ∨ I x = Intv c ∧ c ≥ m ∨ I x = Greater (k
x))}

{ fix u I J r assume u ∈ region X I J r
with A have intv-elem x u (I x) by force+

} note ∗∗ = this
have

⋃
?U = {u ∈ V . u x > m}

proof (safe, goal-cases)
case (2 u) with ∗∗[OF this(1)] show ?case by auto

next
case (4 u) with ∗∗[OF this(1)] show ?case by auto

next
case (6 u) with A ∗∗[OF this(1)] show ?case by auto

next
case (7 u)
from region-cover-V [OF this(1)] obtain R where R: R ∈ R u ∈ R by

auto
then obtain I J r where R ′: R = region X I J r valid-region X k I J r

unfolding R-def by auto
with R ′ R(2) A have C :

intv-elem x u (I x) valid-intv (k x) (I x)
by auto
show ?case
proof (cases I x)

case (Const c)
with 7 C (1) have c > m by auto
with R R ′ Const show ?thesis by blast

next
case (Intv c)
with 7 C (1) have c ≥ m by auto

166

with R R ′ Intv show ?thesis by blast
next

case (Greater c)
with C have k x = c by auto
with R R ′ Greater show ?thesis by blast

qed
qed (auto intro: A simp: V-def)
moreover have ?U ⊆ R by fastforce
ultimately show ?thesis by blast

qed

lemma β-boundedness-eq:
fixes m :: int
assumes m ≤ k x x ∈ X
shows ∃ U ⊆ R.

⋃
U = {u ∈ V . u x = m}

proof −
note A = assms
let ?U = {R ∈ R. ∃ I J r c. R = region X I J r ∧ valid-region X k I J r
∧ I x = Const c ∧ c = m}

have
⋃

?U = {u ∈ V . u x = m}
proof (safe, goal-cases)

case (2 u) with A show ?case by force
next

case (3 u)
from region-cover-V [OF this(1)] obtain R where R: R ∈ R u ∈ R by

auto
then obtain I J r where R ′: R = region X I J r valid-region X k I J r

unfolding R-def by auto
with R ′ R(2) A have C : intv-elem x u (I x) valid-intv (k x) (I x) by

auto
show ?case
proof (cases I x)

case (Const c)
with 3 C (1) have c = m by auto
with R R ′ Const show ?thesis by blast

next
case (Intv c)
with C have c < u x u x < c + 1 by auto
from nat-intv-not-int[OF this] 3 show ?thesis by auto

next
case (Greater c)
with C 3 A show ?thesis by auto

qed
qed (force intro: A simp: V-def)

167

moreover have ?U ⊆ R by fastforce
ultimately show ?thesis by blast

qed

lemma β-boundedness-diag-le:
fixes m :: int
assumes − k y ≤ m m ≤ k x x ∈ X y ∈ X
shows ∃ U ⊆ R.

⋃
U = {u ∈ V . u x − u y ≤ m}

proof −
from β-boundedness-diag-eq[OF assms] β-boundedness-diag-lt[OF assms]

obtain U1 U2 where A:
U1 ⊆ R

⋃
U1 = {u ∈ V . u x − u y < m} U2 ⊆ R

⋃
U2 = {u ∈ V .

u x − u y = m}
by blast
then have {u ∈ V . u x − u y ≤ m} =

⋃
(U1 ∪ U2) U1 ∪ U2 ⊆ R by

auto
then show ?thesis by blast

qed

lemma β-boundedness-le:
fixes m :: int
assumes m ≤ k x x ∈ X
shows ∃ U ⊆ R.

⋃
U = {u ∈ V . u x ≤ m}

proof −
from β-boundedness-lt[OF assms] β-boundedness-eq[OF assms] obtain

U1 U2 where A:
U1 ⊆ R

⋃
U1 = {u ∈ V . u x < m} U2 ⊆ R

⋃
U2 = {u ∈ V . u x

= m}
by blast
then have {u ∈ V . u x ≤ m} =

⋃
(U1 ∪ U2) U1 ∪ U2 ⊆ R by auto

then show ?thesis by blast
qed

lemma β-boundedness-ge:
fixes m :: int
assumes m ≤ k x x ∈ X
shows ∃ U ⊆ R.

⋃
U = {u ∈ V . u x ≥ m}

proof −
from β-boundedness-gt[OF assms] β-boundedness-eq[OF assms] obtain

U1 U2 where A:
U1 ⊆ R

⋃
U1 = {u ∈ V . u x > m} U2 ⊆ R

⋃
U2 = {u ∈ V . u x

= m}
by blast
then have {u ∈ V . u x ≥ m} =

⋃
(U1 ∪ U2) U1 ∪ U2 ⊆ R by auto

168

then show ?thesis by blast
qed

lemma β-boundedness-diag-lt ′:
fixes m :: int
shows
− k y ≤ (m :: int) =⇒ m ≤ k x =⇒ x ∈ X =⇒ y ∈ X =⇒ Z ⊆ {u ∈ V .

u x − u y < m}
=⇒ Approxβ Z ⊆ {u ∈ V . u x − u y < m}

proof (goal-cases)
case 1
note A = this
from β-boundedness-diag-lt[OF A(1−4)] obtain U where U :

U ⊆ R {u ∈ V . u x − u y < m} =
⋃

U
by auto
from 1 clock-numbering have ∗: v x > 0 v y > 0 v x ≤ n v y ≤ n by

auto
have ∗∗:

∧
c. v c = 0 =⇒ False

proof −
fix c assume v c = 0
moreover from clock-numbering(1) have v c > 0 by auto
ultimately show False by auto

qed
let ?M = λ i j. if (i = v x ∧ j = v y) then Lt (real-of-int m) else if i =

j ∨ i = 0 then Le 0 else ∞
have {u ∈ V . u x − u y < m} = [?M]v,n unfolding DBM-zone-repr-def

DBM-val-bounded-def
using ∗ ∗∗ proof (auto, goal-cases)

case (1 u c)
with clock-numbering have c ∈ X by metis
with 1 show ?case unfolding V-def by auto

next
case (2 u c1 c2)
with clock-numbering(1) have x = c1 y = c2 by auto
with 2 (5) show ?case by auto

next
case (3 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

next
case (4 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

next

169

case (5 u c1 c2)
with clock-numbering(1) have x = c1 y = c2 by auto
with 5 (6) show ?case by auto

next
case (6 u)
show ?case unfolding V-def
proof safe

fix c assume c ∈ X
with clock-numbering have v c > 0 v c ≤ n by auto
with 6 (6) show u c ≥ 0 by auto

qed
next

case (7 u)
then have dbm-entry-val u (Some x) (Some y) (Lt (real-of-int m)) by

metis
then show ?case by auto

qed
then have vabstr {u ∈ V . u x − u y < m} ?M by auto
moreover have normalized ?M unfolding normalized less-eq dbm-le-def

using A v-v ′ by auto
ultimately show ?thesis using apx-min[OF U (2 ,1)] A(5) by blast

qed

lemma β-boundedness-diag-le ′:
fixes m :: int
shows
− k y ≤ (m :: int) =⇒ m ≤ k x =⇒ x ∈ X =⇒ y ∈ X =⇒ Z ⊆ {u ∈ V .

u x − u y ≤ m}
=⇒ Approxβ Z ⊆ {u ∈ V . u x − u y ≤ m}

proof (goal-cases)
case 1
note A = this
from β-boundedness-diag-le[OF A(1−4)] obtain U where U :

U ⊆ R {u ∈ V . u x − u y ≤ m} =
⋃

U
by auto
from 1 clock-numbering have ∗: v x > 0 v y > 0 v x ≤ n v y ≤ n by

auto
have ∗∗:

∧
c. v c = 0 =⇒ False

proof −
fix c assume v c = 0
moreover from clock-numbering(1) have v c > 0 by auto
ultimately show False by auto

qed
let ?M = λ i j. if (i = v x ∧ j = v y) then Le (real-of-int m) else if i =

170

j ∨ i = 0 then Le 0 else ∞
have {u ∈ V . u x − u y ≤ m} = [?M]v,n unfolding DBM-zone-repr-def

DBM-val-bounded-def
using ∗ ∗∗
proof (auto, goal-cases)

case (1 u c)
with clock-numbering have c ∈ X by metis
with 1 show ?case unfolding V-def by auto

next
case (2 u c1 c2)
with clock-numbering(1) have x = c1 y = c2 by auto
with 2 (5) show ?case by auto

next
case (3 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

next
case (4 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

next
case (5 u c1 c2)
with clock-numbering(1) have x = c1 y = c2 by auto
with 5 (6) show ?case by auto

next
case (6 u)
show ?case unfolding V-def
proof safe

fix c assume c ∈ X
with clock-numbering have v c > 0 v c ≤ n by auto
with 6 (6) show u c ≥ 0 by auto

qed
next

case (7 u)
then have dbm-entry-val u (Some x) (Some y) (Le (real-of-int m)) by

metis
then show ?case by auto

qed
then have vabstr {u ∈ V . u x − u y ≤ m} ?M by auto
moreover have normalized ?M unfolding normalized less-eq dbm-le-def

using A v-v ′ by auto
ultimately show ?thesis using apx-min[OF U (2 ,1)] A(5) by blast

qed

171

lemma β-boundedness-lt ′:
fixes m :: int
shows
m ≤ k x =⇒ x ∈ X =⇒ Z ⊆ {u ∈ V . u x < m} =⇒ Approxβ Z ⊆ {u ∈

V . u x < m}
proof (goal-cases)

case 1
note A = this
from β-boundedness-lt[OF A(1 ,2)] obtain U where U : U ⊆ R {u ∈ V .

u x < m} =
⋃

U by auto
from 1 clock-numbering have ∗: v x > 0 v x ≤ n by auto
have ∗∗:

∧
c. v c = 0 =⇒ False

proof −
fix c assume v c = 0
moreover from clock-numbering(1) have v c > 0 by auto
ultimately show False by auto

qed
let ?M = λ i j. if (i = v x ∧ j = 0) then Lt (real-of-int m) else if i = j
∨ i = 0 then Le 0 else ∞
have {u ∈ V . u x < m} = [?M]v,n unfolding DBM-zone-repr-def DBM-val-bounded-def
using ∗ ∗∗
proof (auto, goal-cases)

case (1 u c)
with clock-numbering have c ∈ X by metis
with 1 show ?case unfolding V-def by auto

next
case (2 u c1)
with clock-numbering(1) have x = c1 by auto
with 2 (4) show ?case by auto

next
case (3 u c)
with clock-numbering have c ∈ X by metis
with 3 show ?case unfolding V-def by auto

next
case (4 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

next
case (5 u)
show ?case unfolding V-def
proof safe

fix c assume c ∈ X
with clock-numbering have v c > 0 v c ≤ n by auto
with 5 (4) show u c ≥ 0 by auto

172

qed
qed
then have vabstr {u ∈ V . u x < m} ?M by auto
moreover have normalized ?M unfolding normalized less-eq dbm-le-def

using A v-v ′ by auto
ultimately show ?thesis using apx-min[OF U (2 ,1)] A(3) by blast

qed

lemma β-boundedness-gt ′:
fixes m :: int
shows
m ≤ k x =⇒ x ∈ X =⇒ Z ⊆ {u ∈ V . u x > m} =⇒ Approxβ Z ⊆ {u ∈

V . u x > m}
proof goal-cases

case 1
from β-boundedness-gt[OF this(1 ,2)] obtain U where U : U ⊆ R {u ∈

V . u x > m} =
⋃

U by auto
from 1 clock-numbering have ∗: v x > 0 v x ≤ n by auto
have ∗∗:

∧
c. v c = 0 =⇒ False

proof −
fix c assume v c = 0
moreover from clock-numbering(1) have v c > 0 by auto
ultimately show False by auto

qed
obtain M where vabstr {u ∈ V . u x > m} M normalized M
proof (cases m ≥ 0)

case True
let ?M = λ i j. if (i = 0 ∧ j = v x) then Lt (−real-of-int m) else if i

= j ∨ i = 0 then Le 0 else ∞
have {u ∈ V . u x > m} = [?M]v,n unfolding DBM-zone-repr-def

DBM-val-bounded-def
using ∗ ∗∗
proof (auto, goal-cases)

case (1 u c)
with clock-numbering(1) have x = c by auto
with 1 (5) show ?case by auto

next
case (2 u c)
with clock-numbering have c ∈ X by metis
with 2 show ?case unfolding V-def by auto

next
case (3 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

173

next
case (4 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

next
case (5 u)
show ?case unfolding V-def
proof safe

fix c assume c ∈ X
with clock-numbering have c: v c > 0 v c ≤ n by auto
show u c ≥ 0
proof (cases v c = v x)

case False
with 5 (4) c show ?thesis by auto

next
case True
with 5 (4) c have − u c < − m by auto
with ‹m ≥ 0 › show ?thesis by auto

qed
qed

qed
moreover have normalized ?M unfolding normalized using 1 v-v ′ by

auto
ultimately show ?thesis by (intro that[of ?M]) auto

next
case False
then have {u ∈ V . u x > m} = V unfolding V-def using ‹x ∈ X›

by auto
with R-union all-dbm that show ?thesis by auto

qed
with apx-min[OF U (2 ,1)] 1 (3) show ?thesis by blast

qed

lemma obtains-dbm-le:
fixes m :: int
assumes x ∈ X m ≤ k x
obtains M where vabstr {u ∈ V . u x ≤ m} M normalized M

proof −
from assms clock-numbering have ∗: v x > 0 v x ≤ n by auto
have ∗∗:

∧
c. v c = 0 =⇒ False

proof −
fix c assume v c = 0
moreover from clock-numbering(1) have v c > 0 by auto
ultimately show False by auto

174

qed
let ?M = λ i j. if (i = v x ∧ j = 0) then Le (real-of-int m) else if i = j
∨ i = 0 then Le 0 else ∞
have {u ∈ V . u x ≤ m} = [?M]v,n unfolding DBM-zone-repr-def DBM-val-bounded-def
using ∗ ∗∗
proof (auto, goal-cases)

case (1 u c)
with clock-numbering have c ∈ X by metis
with 1 show ?case unfolding V-def by auto

next
case (2 u c1)
with clock-numbering(1) have x = c1 by auto
with 2 (4) show ?case by auto

next
case (3 u c)
with clock-numbering have c ∈ X by metis
with 3 show ?case unfolding V-def by auto

next
case (4 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

next
case (5 u)
show ?case unfolding V-def
proof safe

fix c assume c ∈ X
with clock-numbering have v c > 0 v c ≤ n by auto
with 5 (4) show u c ≥ 0 by auto

qed
qed
then have vabstr {u ∈ V . u x ≤ m} ?M by auto
moreover have normalized ?M unfolding normalized using assms v-v ′

by auto
ultimately show ?thesis ..

qed

lemma β-boundedness-le ′:
fixes m :: int
shows
m ≤ k x =⇒ x ∈ X =⇒ Z ⊆ {u ∈ V . u x ≤ m} =⇒ Approxβ Z ⊆ {u ∈

V . u x ≤ m}
proof (goal-cases)

case 1

175

from β-boundedness-le[OF this(1 ,2)] obtain U where U : U ⊆ R {u ∈
V . u x ≤ m} =

⋃
U by auto

from obtains-dbm-le 1 obtain M where vabstr {u ∈ V . u x ≤ m} M
normalized M by auto

with apx-min[OF U (2 ,1)] 1 (3) show ?thesis by blast
qed

lemma obtains-dbm-ge:
fixes m :: int
assumes x ∈ X m ≤ k x
obtains M where vabstr {u ∈ V . u x ≥ m} M normalized M

proof −
from assms clock-numbering have ∗: v x > 0 v x ≤ n by auto
have ∗∗:

∧
c. v c = 0 =⇒ False

proof −
fix c assume v c = 0
moreover from clock-numbering(1) have v c > 0 by auto
ultimately show False by auto

qed
obtain M where vabstr {u ∈ V . u x ≥ m} M normalized M
proof (cases m ≥ 0)

case True
let ?M = λ i j. if (i = 0 ∧ j = v x) then Le (−real-of-int m) else if i

= j ∨ i = 0 then Le 0 else ∞
have {u ∈ V . u x ≥ m} = [?M]v,n unfolding DBM-zone-repr-def

DBM-val-bounded-def
using ∗ ∗∗
proof (auto, goal-cases)

case (1 u c)
with clock-numbering(1) have x = c by auto
with 1 (5) show ?case by auto

next
case (2 u c)
with clock-numbering have c ∈ X by metis
with 2 show ?case unfolding V-def by auto

next
case (3 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

next
case (4 u c1 c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto

next

176

case (5 u)
show ?case unfolding V-def
proof safe

fix c assume c ∈ X
with clock-numbering have c: v c > 0 v c ≤ n by auto
show u c ≥ 0
proof (cases v c = v x)

case False
with 5 (4) c show ?thesis by auto

next
case True
with 5 (4) c have − u c ≤ − m by auto
with ‹m ≥ 0 › show ?thesis by auto

qed
qed

qed
moreover have normalized ?M unfolding normalized using assms

v-v ′ by auto
ultimately show ?thesis by (intro that[of ?M]) auto

next
case False
then have {u ∈ V . u x ≥ m} = V unfolding V-def using ‹x ∈ X›

by auto
with R-union all-dbm that show ?thesis by auto

qed
then show ?thesis ..

qed

lemma β-boundedness-ge ′:
fixes m :: int
shows m ≤ k x =⇒ x ∈ X =⇒ Z ⊆ {u ∈ V . u x ≥ m} =⇒ Approxβ Z
⊆ {u ∈ V . u x ≥ m}
proof (goal-cases)

case 1
from β-boundedness-ge[OF this(1 ,2)] obtain U where U : U ⊆ R {u ∈

V . u x ≥ m} =
⋃

U by auto
from obtains-dbm-ge 1 obtain M where vabstr {u ∈ V . u x ≥ m} M

normalized M by auto
with apx-min[OF U (2 ,1)] 1 (3) show ?thesis by blast

qed

end

end

177

5 The Classic Construction for Decidability
theory Regions
imports Timed-Automata TA-Misc
begin

The following is a formalization of regions in the correct version of Patricia
Bouyer et al.

5.1 Definition of Regions

type-synonym ′c ceiling = (′c ⇒ nat)

datatype intv =
Const nat |
Intv nat |
Greater nat

type-synonym t = real

inductive valid-intv :: nat ⇒ intv ⇒ bool
where

0 ≤ d =⇒ d ≤ c =⇒ valid-intv c (Const d) |
0 ≤ d =⇒ d < c =⇒ valid-intv c (Intv d) |
valid-intv c (Greater c)

inductive intv-elem :: ′c ⇒ (′c,t) cval ⇒ intv ⇒ bool
where

u x = d =⇒ intv-elem x u (Const d) |
d < u x =⇒ u x < d + 1 =⇒ intv-elem x u (Intv d) |
c < u x =⇒ intv-elem x u (Greater c)

abbreviation total-preorder r ≡ refl r ∧ trans r

inductive valid-region :: ′c set ⇒ (′c ⇒ nat) ⇒ (′c ⇒ intv) ⇒ ′c rel ⇒
bool
where
[[X0 = {x ∈ X . ∃ d. I x = Intv d}; refl-on X0 r ; trans r ; total-on X0 r ;
∀ x ∈ X . valid-intv (k x) (I x)]]
=⇒ valid-region X k I r

inductive-set region for X I r
where

178

∀ x ∈ X . u x ≥ 0 =⇒ ∀ x ∈ X . intv-elem x u (I x) =⇒ X0 = {x ∈ X .
∃ d. I x = Intv d} =⇒
∀ x ∈ X0. ∀ y ∈ X0. (x, y) ∈ r ←→ frac (u x) ≤ frac (u y)
=⇒ u ∈ region X I r

Defining the unique element of a partition that contains a valuation

definition part (‹[-]-› [61 ,61] 61) where part v R ≡ THE R. R ∈ R ∧ v
∈ R

inductive-set Succ for R R where
u ∈ R =⇒ R ∈ R =⇒ R ′ ∈ R =⇒ t ≥ 0 =⇒ R ′ = [u ⊕ t]R =⇒ R ′ ∈

Succ R R

First we need to show that the set of regions is a partition of the set of all
clock assignments. This property is only claimed by P. Bouyer.

inductive-cases[elim!]: intv-elem x u (Const d)
inductive-cases[elim!]: intv-elem x u (Intv d)
inductive-cases[elim!]: intv-elem x u (Greater d)
inductive-cases[elim!]: valid-intv c (Greater d)
inductive-cases[elim!]: valid-intv c (Const d)
inductive-cases[elim!]: valid-intv c (Intv d)

declare valid-intv.intros[intro]
declare intv-elem.intros[intro]
declare Succ.intros[intro]

declare Succ.cases[elim]

declare region.cases[elim]
declare valid-region.cases[elim]

5.2 Basic Properties

First we show that all valid intervals are distinct.

lemma valid-intv-distinct:
valid-intv c I =⇒ valid-intv c I ′ =⇒ intv-elem x u I =⇒ intv-elem x u I ′

=⇒ I = I ′

by (cases I ; cases I ′; auto)

From this we show that all valid regions are distinct.

lemma valid-regions-distinct:
valid-region X k I r =⇒ valid-region X k I ′ r ′ =⇒ v ∈ region X I r =⇒ v
∈ region X I ′ r ′

179

=⇒ region X I r = region X I ′ r ′

proof goal-cases
case A: 1
{ fix x assume x: x ∈ X

with A(1) have valid-intv (k x) (I x) by auto
moreover from A(2) x have valid-intv (k x) (I ′ x) by auto
moreover from A(3) x have intv-elem x v (I x) by auto
moreover from A(4) x have intv-elem x v (I ′ x) by auto
ultimately have I x = I ′ x using valid-intv-distinct by fastforce

} note ∗ = this
from A show ?thesis
proof (safe, goal-cases)

case A: (1 u)
have intv-elem x u (I ′ x) if x ∈ X for x using A(5) ∗ that by auto
then have B: ∀ x ∈ X . intv-elem x u (I ′ x) by auto
let ?X0 = {x ∈ X . ∃ d. I ′ x = Intv d}
{ fix x y assume x: x ∈ ?X0 and y: y ∈ ?X0

have (x, y) ∈ r ′←→ frac (u x) ≤ frac (u y)
proof

assume frac (u x) ≤ frac (u y)
with A(5) x y ∗ have (x,y) ∈ r by auto
with A(3) x y ∗ have frac (v x) ≤ frac (v y) by auto
with A(4) x y show (x,y) ∈ r ′ by auto

next
assume (x,y) ∈ r ′

with A(4) x y have frac (v x) ≤ frac (v y) by auto
with A(3) x y ∗ have (x,y) ∈ r by auto
with A(5) x y ∗ show frac (u x) ≤ frac (u y) by auto

qed
}
then have ∗: ∀ x ∈ ?X0. ∀ y ∈ ?X0. (x, y) ∈ r ′←→ frac (u x) ≤ frac

(u y) by auto
from A(5) have ∀ x∈X . 0 ≤ u x by auto
from region.intros[OF this B - ∗] show ?case by auto

next
case A: (2 u)
have intv-elem x u (I x) if x ∈ X for x using ∗ A(5) that by auto
then have B: ∀ x ∈ X . intv-elem x u (I x) by auto
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
{ fix x y assume x: x ∈ ?X0 and y: y ∈ ?X0

have (x, y) ∈ r ←→ frac (u x) ≤ frac (u y)
proof

assume frac (u x) ≤ frac (u y)
with A(5) x y ∗ have (x,y) ∈ r ′ by auto

180

with A(4) x y ∗ have frac (v x) ≤ frac (v y) by auto
with A(3) x y show (x,y) ∈ r by auto

next
assume (x,y) ∈ r
with A(3) x y have frac (v x) ≤ frac (v y) by auto
with A(4) x y ∗ have (x,y) ∈ r ′ by auto
with A(5) x y ∗ show frac (u x) ≤ frac (u y) by auto

qed
}
then have ∗:∀ x ∈ ?X0. ∀ y ∈ ?X0. (x, y) ∈ r ←→ frac (u x) ≤ frac

(u y) by auto
from A(5) have ∀ x∈X . 0 ≤ u x by auto
from region.intros[OF this B - ∗] show ?case by auto

qed
qed

lemma R-regions-distinct:
[[R = {region X I r | I r . valid-region X k I r}; R ∈ R; v ∈ R; R ′ ∈ R;

R 6= R ′]] =⇒ v /∈ R ′

using valid-regions-distinct by blast

Secondly, we also need to show that every valuations belongs to a region
which is part of the partition.
definition intv-of :: nat ⇒ t ⇒ intv where

intv-of k c ≡
if (c > k) then Greater k
else if (∃ x :: nat. x = c) then (Const (nat (floor c)))
else (Intv (nat (floor c)))

lemma region-cover :
∀ x ∈ X . u x ≥ 0 =⇒ ∃ R. R ∈ {region X I r | I r . valid-region X k I r}
∧ u ∈ R
proof (standard, standard)

assume assm: ∀ x ∈ X . 0 ≤ u x
let ?I = λ x. intv-of (k x) (u x)
let ?X0 = {x ∈ X . ∃ d. ?I x = Intv d}
let ?r = {(x,y). x ∈ ?X0 ∧ y ∈ ?X0 ∧ frac (u x) ≤ frac (u y)}
show u ∈ region X ?I ?r
proof (standard, auto simp: assm, goal-cases)

case (1 x)
thus ?case unfolding intv-of-def
proof (auto, goal-cases)

case A: (1 a)
from A(2) have bu xc = u x by (metis of-int-floor-cancel of-int-of-nat-eq)

181

with assm A(1) have u x = real (nat bu xc) by auto
then show ?case by auto

next
case A: 2
from A(1 ,2) have real (nat bu xc) < u x

by (metis assm floor-less-iff int-nat-eq less-eq-real-def less-irrefl not-less
of-int-of-nat-eq of-nat-0)

moreover from assm have u x < real (nat (bu xc) + 1) by linarith
ultimately show ?case by auto

qed
qed
have valid-intv (k x) (intv-of (k x) (u x)) if x ∈ X for x using that
proof (auto simp: intv-of-def , goal-cases)

case 1 then show ?case by (intro valid-intv.intros(1)) (auto, linarith)
next

case 2
then show ?case using assm floor-less-iff nat-less-iff
by (intro valid-intv.intros(2)) fastforce+

qed
then have valid-region X k ?I ?r
by (intro valid-region.intros) (auto simp: refl-on-def trans-def total-on-def)
then show region X ?I ?r ∈ {region X I r | I r . valid-region X k I r} by

auto
qed

lemma intv-not-empty:
obtains d where intv-elem x (v(x := d)) (I x)

proof (cases I x, goal-cases)
case (1 d)
then have intv-elem x (v(x := d)) (I x) by auto
with 1 show ?case by auto

next
case (2 d)
then have intv-elem x (v(x := d + 0 .5)) (I x) by auto
with 2 show ?case by auto

next
case (3 d)
then have intv-elem x (v(x := d + 0 .5)) (I x) by auto
with 3 show ?case by auto

qed

fun get-intv-val :: intv ⇒ real ⇒ real
where

get-intv-val (Const d) - = d |

182

get-intv-val (Intv d) f = d + f |
get-intv-val (Greater d) - = d + 1

lemma region-not-empty-aux:
assumes 0 < f f < 1 0 < g g < 1
shows frac (get-intv-val (Intv d) f) ≤ frac (get-intv-val (Intv d ′) g) ←→

f ≤ g
using assms by (simp, metis frac-eq frac-nat-add-id less-eq-real-def)

lemma region-not-empty:
assumes finite X valid-region X k I r
shows ∃ u. u ∈ region X I r

proof −
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
obtain f :: ′a ⇒ nat where f :
∀ x∈?X0. ∀ y∈?X0. f x ≤ f y ←→ (x, y) ∈ r
apply (rule finite-total-preorder-enumeration)

apply (subgoal-tac finite ?X0)
apply assumption

using assms by auto
let ?M = if ?X0 6= {} then Max {f x | x. x ∈ ?X0} else 1
let ?f = λ x. (f x + 1) / (?M + 2)
let ?v = λ x. get-intv-val (I x) (if x ∈ ?X0 then ?f x else 1)
have frac-intv: ∀ x∈?X0. 0 < ?f x ∧ ?f x < 1
proof (standard, goal-cases)

case (1 x)
then have ∗: ?X0 6= {} by auto
have f x ≤ Max {f x | x. x ∈ ?X0} apply (rule Max-ge) using ‹finite

X› 1 by auto
with 1 show ?case by auto

qed
with region-not-empty-aux have ∗:
∀ x∈?X0. ∀ y∈?X0. frac (?v x) ≤ frac (?v y) ←→ ?f x ≤ ?f y

by force
have ∀ x∈?X0. ∀ y∈?X0. ?f x ≤ ?f y ←→ f x ≤ f y by (simp add: di-

vide-le-cancel)+
with f have ∀ x∈?X0. ∀ y∈?X0. ?f x ≤ ?f y ←→ (x, y) ∈ r by auto
with ∗ have frac-order : ∀ x∈?X0. ∀ y∈?X0. frac (?v x) ≤ frac (?v y) ←→

(x, y) ∈ r by auto
have ?v ∈ region X I r
proof standard

show ∀ x∈X . intv-elem x ?v (I x)
proof (standard, case-tac I x, goal-cases)

case (2 x d)

183

then have ∗: x ∈ ?X0 by auto
with frac-intv have 0 < ?f x ?f x < 1 by auto
moreover from 2 have ?v x = d + ?f x by auto
ultimately have ?v x < d + 1 ∧ d < ?v x by linarith

then show intv-elem x ?v (I x) by (subst 2 (2)) (intro intv-elem.intros(2),
auto)

qed auto
next

show ∀ x∈X . 0 ≤ get-intv-val (I x) (if x ∈ ?X0 then ?f x else 1)
by (standard, case-tac I x) auto

next
show {x ∈ X . ∃ d. I x = Intv d} = {x ∈ X . ∃ d. I x = Intv d} ..

next
from frac-order show ∀ x∈?X0. ∀ y∈?X0. ((x, y) ∈ r) = (frac (?v x) ≤

frac (?v y)) by blast
qed
then show ?thesis by auto

qed

Now we can show that there is always exactly one region a valid valuation
belongs to.
lemma regions-partition:
R = {region X I r | I r . valid-region X k I r} =⇒ ∀ x ∈ X . 0 ≤ u x =⇒
∃ ! R ∈ R. u ∈ R
proof (goal-cases)

case 1
note A = this
with region-cover [OF A(2)] obtain R where R: R ∈ R ∧ u ∈ R by

fastforce
moreover have R ′ = R if R ′ ∈ R ∧ u ∈ R ′ for R ′

using that R valid-regions-distinct unfolding A(1) by blast
ultimately show ?thesis by auto

qed

lemma region-unique:
R = {region X I r | I r . valid-region X k I r} =⇒ u ∈ R =⇒ R ∈ R =⇒

[u]R = R
proof (goal-cases)

case 1
note A = this
from A obtain I r where ∗: valid-region X k I r R = region X I r u ∈

region X I r by auto
from this(3) have ∀ x∈X . 0 ≤ u x by auto
from theI ′[OF regions-partition[OF A(1) this]] A(1) obtain I ′ r ′ where

184

v: valid-region X k I ′ r ′ [u]R = region X I ′ r ′ u ∈ region X I ′ r ′

unfolding part-def by auto
from valid-regions-distinct[OF ∗(1) v(1) ∗(3) v(3)] v(2) ∗(2) show ?case

by auto
qed

lemma regions-partition ′:
R = {region X I r | I r . valid-region X k I r} =⇒ ∀ x∈X . 0 ≤ v x =⇒
∀ x∈X . 0 ≤ v ′ x =⇒ v ′ ∈ [v]R
=⇒ [v ′]R = [v]R

proof (goal-cases)
case 1
note A = this
from theI ′[OF regions-partition[OF A(1 ,2)]] A(1 ,4) obtain I r where

v: valid-region X k I r [v]R = region X I r v ′ ∈ region X I r
unfolding part-def by auto
from theI ′[OF regions-partition[OF A(1 ,3)]] A(1) obtain I ′ r ′ where

v ′: valid-region X k I ′ r ′ [v ′]R = region X I ′ r ′ v ′ ∈ region X I ′ r ′

unfolding part-def by auto
from valid-regions-distinct[OF v ′(1) v(1) v ′(3) v(3)] v(2) v ′(2) show

?case by simp
qed

lemma regions-closed:
R = {region X I r | I r . valid-region X k I r} =⇒ R ∈ R =⇒ v ∈ R =⇒

t ≥ 0 =⇒ [v ⊕ t]R ∈ R
proof goal-cases

case A: 1
then obtain I r where v ∈ region X I r by auto
from this(1) have ∀ x ∈ X . v x ≥ 0 by auto
with A(4) have ∀ x ∈ X . (v ⊕ t) x ≥ 0 unfolding cval-add-def by

simp
from regions-partition[OF A(1) this] obtain R ′ where R ′ ∈ R (v ⊕ t)
∈ R ′ by auto

with region-unique[OF A(1) this(2 ,1)] show ?case by auto
qed

lemma regions-closed ′:
R = {region X I r | I r . valid-region X k I r} =⇒ R ∈ R =⇒ v ∈ R =⇒

t ≥ 0 =⇒ (v ⊕ t) ∈ [v ⊕ t]R
proof goal-cases

case A: 1
then obtain I r where v ∈ region X I r by auto
from this(1) have ∀ x ∈ X . v x ≥ 0 by auto

185

with A(4) have ∀ x ∈ X . (v ⊕ t) x ≥ 0 unfolding cval-add-def by
simp

from regions-partition[OF A(1) this] obtain R ′ where R ′ ∈ R (v ⊕ t)
∈ R ′ by auto

with region-unique[OF A(1) this(2 ,1)] show ?case by auto
qed

lemma valid-regions-I-cong:
valid-region X k I r =⇒ ∀ x ∈ X . I x = I ′ x =⇒ region X I r = region

X I ′ r ∧ valid-region X k I ′ r
proof (safe, goal-cases)

case (1 v)
note A = this
then have [simp]:

∧
x. x ∈ X =⇒ I ′ x = I x by metis

show ?case
proof (standard, goal-cases)

case 1
from A(3) show ?case by auto

next
case 2
from A(3) show ?case by auto

next
case 3
show {x ∈ X . ∃ d. I x = Intv d} = {x ∈ X . ∃ d. I ′ x = Intv d} by auto

next
case 4
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
from A(3) show ∀ x ∈ ?X0. ∀ y ∈ ?X0. ((x, y) ∈ r) = (frac (v x) ≤

frac (v y)) by auto
qed

next
case (2 v)
note A = this
then have [simp]:

∧
x. x ∈ X =⇒ I ′ x = I x by metis

show ?case
proof (standard, goal-cases)

case 1
from A(3) show ?case by auto

next
case 2
from A(3) show ?case by auto

next
case 3
show {x ∈ X . ∃ d. I ′ x = Intv d} = {x ∈ X . ∃ d. I x = Intv d} by auto

186

next
case 4
let ?X0 = {x ∈ X . ∃ d. I ′ x = Intv d}
from A(3) show ∀ x ∈ ?X0. ∀ y ∈ ?X0. ((x, y) ∈ r) = (frac (v x) ≤

frac (v y)) by auto
qed

next
case 3
note A = this
then have [simp]:

∧
x. x ∈ X =⇒ I ′ x = I x by metis

show ?case
apply rule

apply (subgoal-tac {x ∈ X . ∃ d. I x = Intv d} = {x ∈ X . ∃ d. I ′ x =
Intv d})

apply assumption
using A by auto

qed

fun intv-const :: intv ⇒ nat
where

intv-const (Const d) = d |
intv-const (Intv d) = d |
intv-const (Greater d) = d

lemma finite-R:
notes [[simproc add: finite-Collect]] finite-subset[intro]
fixes X k
defines R ≡ {region X I r | I r . valid-region X k I r}
assumes finite X
shows finite R

proof −
{ fix I r assume A: valid-region X k I r

let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
from A have refl-on ?X0 r by auto
then have r ⊆ X × X by (auto simp: refl-on-def)
then have r ∈ Pow (X × X) by auto

}
then have {r . ∃ I . valid-region X k I r} ⊆ Pow (X × X) by auto
with ‹finite X› have fin: finite {r . ∃ I . valid-region X k I r} by auto
let ?m = Max {k x | x. x ∈ X}
let ?I = {intv. intv-const intv ≤ ?m}
let ?fin-map = λ I . ∀ x. (x ∈ X −→ I x ∈ ?I) ∧ (x /∈ X −→ I x = Const

0)
let ?R = {region X I r | I r . valid-region X k I r ∧ ?fin-map I}

187

have ?I = (Const ‘ {d. d ≤ ?m}) ∪ (Intv ‘ {d. d ≤ ?m}) ∪ (Greater ‘
{d. d ≤ ?m})

by auto (case-tac x, auto)
then have finite ?I by auto
from finite-set-of-finite-funs[OF ‹finite X› this] have finite {I . ?fin-map

I} .
with fin have finite {(I , r). valid-region X k I r ∧ ?fin-map I}
by (fastforce intro: pairwise-finiteI finite-ex-and1 frac-add-le-preservation

del: finite-subset)
then have finite ?R by fastforce
moreover have R ⊆ ?R
proof

fix R assume R: R ∈ R
then obtain I r where I : R = region X I r valid-region X k I r

unfolding R-def by auto
let ?I = λ x. if x ∈ X then I x else Const 0
let ?R = region X ?I r
from valid-regions-I-cong[OF I (2)] I have R = ?R valid-region X k ?I

r by auto
moreover have ∀ x. x /∈ X −→ ?I x = Const 0 by auto
moreover have ∀ x. x ∈ X −→ intv-const (I x) ≤ ?m
proof auto

fix x assume x: x ∈ X
with I (2) have valid-intv (k x) (I x) by auto
moreover from ‹finite X› x have k x ≤ ?m by (auto intro: Max-ge)
ultimately show intv-const (I x) ≤ Max {k x |x. x ∈ X} by (cases

I x) auto
qed
ultimately show R ∈ ?R by force

qed
ultimately show finite R by blast

qed

lemma SuccI2 :
R = {region X I r | I r . valid-region X k I r} =⇒ v ∈ R =⇒ R ∈ R =⇒

t ≥ 0 =⇒ R ′ = [v ⊕ t]R
=⇒ R ′ ∈ Succ R R

proof goal-cases
case A: 1
from Succ.intros[OF A(2) A(3) regions-closed[OF A(1 ,3 ,2 ,4)] A(4)]

A(5) show ?case by auto
qed

188

5.3 Set of Regions

The first property Bouyer shows is that these regions form a ’set of regions’.

For the unbounded region in the upper right corner, the set of successors
only contains itself.

lemma Succ-refl:
R = {region X I r |I r . valid-region X k I r} =⇒ finite X =⇒ R ∈ R =⇒

R ∈ Succ R R
proof goal-cases

case A: 1
then obtain I r where R: valid-region X k I r R = region X I r by auto
with A region-not-empty obtain v where v: v ∈ region X I r by metis
with R have ∗: (v ⊕ 0) ∈ R unfolding cval-add-def by auto
from regions-closed ′[OF A(1 ,3−)] v R have (v ⊕ 0) ∈ [v ⊕ 0]R by auto
from region-unique[OF A(1) ∗ A(3)] A(3) v[unfolded R(2)[symmetric]]

show ?case by auto
qed

lemma Succ-refl ′:
R = {region X I r |I r . valid-region X k I r} =⇒ finite X =⇒ ∀ x ∈ X .
∃ c. I x = Greater c
=⇒ region X I r ∈ R =⇒ Succ R (region X I r) = {region X I r}

proof goal-cases
case A: 1
have ∗: (v ⊕ t) ∈ region X I r if v: v ∈ region X I r and t: t ≥ 0 for v

and t :: t
proof ((rule region.intros), auto, goal-cases)

case 1
with v t show ?case unfolding cval-add-def by auto

next
case (2 x)
with A obtain c where c: I x = Greater c by auto
with v 2 have v x > c by fastforce
with t have v x + t > c by auto
then have (v ⊕ t) x > c by (simp add: cval-add-def)
from intv-elem.intros(3)[of c v ⊕ t, OF this] c show ?case by auto

next
case (3 x)
from this(1) A obtain c where I x = Greater c by auto
with 3 (2) show ?case by auto

next
case (4 x)
from this(1) A obtain c where I x = Greater c by auto

189

with 4 (2) show ?case by auto
qed
show ?case
proof (standard, standard)

fix R assume R: R ∈ Succ R (region X I r)
then obtain v t where v:

v ∈ region X I r R = [v ⊕ t]R R ∈ R t ≥ 0
by (cases rule: Succ.cases) auto
from v(1) have ∗∗: ∀ x ∈ X . 0 ≤ v x by auto
with v(4) have ∀ x ∈ X . 0 ≤ (v ⊕ t) x unfolding cval-add-def by

auto
from ∗[OF v(1 ,4)] regions-partition ′[OF A(1) ∗∗ this] region-unique[OF

A(1) v(1) A(4)] v(2)
show R ∈ {region X I r} by auto

next
from A(4) obtain I ′ r ′ where R ′: region X I r = region X I ′ r ′

valid-region X k I ′ r ′

unfolding A(1) by auto
with region-not-empty[OF A(2) this(2)] obtain v where v: v ∈ region

X I r by auto
from region-unique[OF A(1) this A(4)] have ∗: [v ⊕ 0]R = region X I

r
unfolding cval-add-def by auto

with v A(4) have [v ⊕ 0]R ∈ Succ R (region X I r) by (intro Succ.intros;
auto)

with ∗ show {region X I r} ⊆ Succ R (region X I r) by auto
qed

qed

Defining the closest successor of a region. Only exists if at least one interval
is upper-bounded.
definition

succ R R =
(SOME R ′. R ′ ∈ Succ R R ∧ (∀ u ∈ R. ∀ t ≥ 0 . (u ⊕ t) /∈ R −→ (∃ t ′
≤ t. (u ⊕ t ′) ∈ R ′ ∧ 0 ≤ t ′)))

inductive isConst :: intv ⇒ bool
where

isConst (Const -)

inductive isIntv :: intv ⇒ bool
where

isIntv (Intv -)

190

inductive isGreater :: intv ⇒ bool
where

isGreater (Greater -)

declare isIntv.intros[intro!] isConst.intros[intro!] isGreater .intros[intro!]

declare isIntv.cases[elim!] isConst.cases[elim!] isGreater .cases[elim!]

What Bouyer states at the end. However, we have to be a bit more precise
than in her statement.
lemma closest-prestable-1 :

fixes I X k r
defines R ≡ {region X I r |I r . valid-region X k I r}
defines R ≡ region X I r
defines Z ≡ {x ∈ X . ∃ c. I x = Const c}
assumes Z 6= {}
defines I ′≡ λ x. if x /∈ Z then I x else if intv-const (I x) = k x then

Greater (k x) else Intv (intv-const (I x))
defines r ′ ≡ r ∪ {(x,y) . x ∈ Z ∧ y ∈ X ∧ intv-const (I x) < k x ∧ isIntv

(I ′ y)}
assumes finite X
assumes valid-region X k I r
shows ∀ v ∈ R. ∀ t>0 . ∃ t ′≤t. (v ⊕ t ′) ∈ region X I ′ r ′ ∧ t ′ ≥ 0
and ∀ v ∈ region X I ′ r ′. ∀ t≥0 . (v ⊕ t) /∈ R
and ∀ x ∈ X . ¬ isConst (I ′ x)
and ∀ v ∈ R. ∀ t < 1 . ∀ t ′ ≥ 0 . (v ⊕ t ′) ∈ region X I ′ r ′

−→ {x. x ∈ X ∧ (∃ c. I x = Intv c ∧ v x + t ≥ c + 1)}
= {x. x ∈ X ∧ (∃ c. I ′ x = Intv c ∧ (v ⊕ t ′) x + (t − t ′) ≥

c + 1)}
proof (safe, goal-cases)

fix v assume v: v ∈ R fix t :: t assume t: 0 < t
have elem: intv-elem x v (I x) if x: x ∈ X for x using v x unfolding

R-def by auto
have ∗: (v ⊕ t) ∈ region X I ′ r ′ if A: ∀ x ∈ X . ¬ isIntv (I x) and t: t >

0 t < 1 for t
proof (standard, goal-cases)

case 1
from v have ∀ x ∈ X . v x ≥ 0 unfolding R-def by auto
with t show ?case unfolding cval-add-def by auto

next
case 2
show ?case
proof (standard, case-tac I x, goal-cases)

case (1 x c)

191

with elem[OF ‹x ∈ X›] have v x = c by auto
show ?case

proof (cases intv-const (I x) = k x, auto simp: 1 I ′-def Z-def , goal-cases)
case 1
with ‹v x = c› have v x = k x by auto
with t show ?case by (auto simp: cval-add-def)

next
case 2
from assms(8) 1 have c ≤ k x by (cases rule: valid-region.cases)

auto
with 2 have c < k x by linarith
from t ‹v x = c› show ?case by (auto simp: cval-add-def)

qed
next

case (2 x c)
with A show ?case by auto

next
case (3 x c)
then have I ′ x = Greater c unfolding I ′-def Z-def by auto
with t 3 elem[OF ‹x ∈ X›] show ?case by (auto simp: cval-add-def)

qed
next

case 3 show {x ∈ X . ∃ d. I ′ x = Intv d} = {x ∈ X . ∃ d. I ′ x = Intv
d} ..

next
case 4
let ?X0

′ = {x ∈ X . ∃ d. I ′ x = Intv d}
show ∀ x∈?X0

′. ∀ y∈?X0
′. ((x, y) ∈ r ′) = (frac ((v ⊕ t) x) ≤ frac ((v

⊕ t) y))
proof (safe, goal-cases)

case (1 x y d d ′)
note B = this
have x ∈ Z apply (rule ccontr) using A B by (auto simp: I ′-def)
with elem[OF B(1)] have frac (v x) = 0 unfolding Z-def by auto
with frac-distr [of t v x] t have ∗: frac (v x + t) = t by auto
have y ∈ Z apply (rule ccontr) using A B by (auto simp: I ′-def)
with elem[OF B(3)] have frac (v y) = 0 unfolding Z-def by auto
with frac-distr [of t v y] t have frac (v y + t) = t by auto
with ∗ show ?case unfolding cval-add-def by auto

next
case B: (2 x)
have x ∈ Z apply (rule ccontr) using A B by (auto simp: I ′-def)
with B have intv-const (I x) 6= k x unfolding I ′-def by auto
with B(1) assms(8) have intv-const (I x) < k x by (fastforce elim!:

192

valid-intv.cases)
with B ‹x ∈ Z › show ?case unfolding r ′-def by auto

qed
qed
let ?S = {1 − frac (v x) | x. x ∈ X ∧ isIntv (I x)}
let ?t = Min ?S
{ assume A: ∃ x ∈ X . isIntv (I x)

from ‹finite X› have finite ?S by auto
from A have ?S 6= {} by auto
from Min-in[OF ‹finite ?S› this] obtain x where

x: x ∈ X isIntv (I x) ?t = 1 − frac (v x)
by force
have frac (v x) < 1 by (simp add: frac-lt-1)
then have ?t > 0 by (simp add: x(3))
then have ?t / 2 > 0 by auto
from x(2) obtain c where I x = Intv c by (auto)
with elem[OF x(1)] have v-x: c < v x v x < c + 1 by auto
from nat-intv-frac-gt0 [OF this] have frac (v x) > 0 .
with x(3) have ?t < 1 by auto
{ fix t :: t assume t: 0 < t t ≤ ?t / 2

{ fix y assume y ∈ X isIntv (I y)
then have 1 − frac (v y) ∈ ?S by auto
from Min-le[OF ‹finite ?S› this] ‹?t > 0 › t have t < 1 − frac (v

y) by linarith
} note frac-bound = this
have (v ⊕ t) ∈ region X I ′ r ′

proof (standard, goal-cases)
case 1
from v have ∀ x ∈ X . v x ≥ 0 unfolding R-def by auto
with ‹?t > 0 › t show ?case unfolding cval-add-def by auto

next
case 2
show ?case
proof (standard, case-tac I x, goal-cases)

case A: (1 x c)
with elem[OF ‹x ∈ X›] have v x = c by auto
show ?case

proof (cases intv-const (I x) = k x, auto simp: A I ′-def Z-def ,
goal-cases)

case 1
with ‹v x = c› have v x = k x by auto
with ‹?t > 0 › t show ?case by (auto simp: cval-add-def)

next
case 2

193

from assms(8) A have c ≤ k x by (cases rule: valid-region.cases)
auto

with 2 have c < k x by linarith
from ‹v x = c› ‹?t < 1 › t show ?case
by (auto simp: cval-add-def)

qed
next

case (2 x c)
with elem[OF ‹x ∈ X›] have v: c < v x v x < c + 1 by auto
with ‹?t > 0 › have c < v x + (?t / 2) by auto
from 2 have I ′ x = I x unfolding I ′-def Z-def by auto
from frac-bound[OF 2 (1)] 2 (2) have t < 1 − frac (v x) by auto
from frac-add-le-preservation[OF v(2) this] t v(1) 2 show ?case
unfolding cval-add-def ‹I ′ x = I x› by auto

next
case (3 x c)
then have I ′ x = Greater c unfolding I ′-def Z-def by auto
with 3 elem[OF ‹x ∈ X›] t show ?case
by (auto simp: cval-add-def)

qed
next
case 3 show {x ∈ X . ∃ d. I ′ x = Intv d} = {x ∈ X . ∃ d. I ′ x = Intv

d} ..
next

case 4
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
let ?X0

′ = {x ∈ X . ∃ d. I ′ x = Intv d}
show ∀ x∈?X0

′. ∀ y∈?X0
′. ((x, y) ∈ r ′) = (frac ((v ⊕ t) x) ≤ frac

((v ⊕ t) y))
proof (safe, goal-cases)

case (1 x y d d ′)
note B = this
show ?case
proof (cases x ∈ Z)

case False
note F = this
show ?thesis
proof (cases y ∈ Z)

case False
with F B have ∗: x ∈ ?X0 y ∈ ?X0 unfolding I ′-def by auto
from B(5) show ?thesis unfolding r ′-def
proof (safe, goal-cases)

case 1
with v ∗ have le: frac (v x) <= frac (v y) unfolding R-def

194

by auto
from frac-bound ∗ have t < 1 − frac (v x) t < 1 − frac (v

y) by fastforce+
with frac-distr t have
frac (v x) + t = frac (v x + t) frac (v y) + t = frac (v y + t)
by simp+
with le show ?case unfolding cval-add-def by fastforce

next
case 2
from this(1) elem have ∗∗: frac (v x) = 0 unfolding Z-def

by force
from 2 (4) obtain c where I ′ y = Intv c by (auto)

then have y ∈ Z ∨ I y = Intv c unfolding I ′-def by presburger
then show ?case
proof

assume y ∈ Z
with elem[OF 2 (2)] have ∗∗∗: frac (v y) = 0 unfolding

Z-def by force
show ?thesis by (simp add: ∗∗ ∗∗∗ frac-add cval-add-def)

next
assume A: I y = Intv c
have le: frac (v x) <= frac (v y) by (simp add: ∗∗)
from frac-bound ∗ have t < 1 − frac (v x) t < 1 − frac (v

y) by fastforce+
with 2 t have

frac (v x) + t = frac (v x + t) frac (v y) + t = frac (v y
+ t)

using F by blast+
with le show ?case unfolding cval-add-def by fastforce

qed
qed

next
case True
then obtain d ′ where d ′: I y = Const d ′ unfolding Z-def by

auto
from B(5) show ?thesis unfolding r ′-def
proof (safe, goal-cases)

case 1
from d ′ have y /∈ ?X0 by auto
moreover from assms(8) have refl-on ?X0 r by auto

ultimately show ?case unfolding refl-on-def using 1 by
auto

next
case 2

195

with F show ?case by simp
qed

qed
next

case True
with elem have ∗∗: frac (v x) = 0 unfolding Z-def by force

from B(4) have y ∈ Z ∨ I y = Intv d ′ unfolding I ′-def by
presburger

then show ?thesis
proof

assume y ∈ Z
with elem[OF B(3)] have ∗∗∗: frac (v y) = 0 unfolding Z-def

by force
show ?thesis by (simp add: ∗∗ ∗∗∗ frac-add cval-add-def)

next
assume A: I y = Intv d ′

with B(3) have y ∈ ?X0 by auto
with frac-bound have t < 1 − frac (v y) by fastforce+
moreover from ∗∗ ‹?t < 1 › have ?t / 2 < 1 − frac (v x) by

linarith
ultimately have
frac (v x) + t = frac (v x + t) frac (v y) + t = frac (v y + t)

using frac-distr t by simp+
moreover have frac (v x) <= frac (v y) by (simp add: ∗∗)
ultimately show ?thesis unfolding cval-add-def by fastforce

qed
qed

next
case B: (2 x y d d ′)
show ?case
proof (cases x ∈ Z , goal-cases)

case True
with B(1 ,2) have intv-const (I x) 6= k x unfolding I ′-def by

auto
with B(1) assms(8) have intv-const (I x) < k x by (fastforce

elim!: valid-intv.cases)
with B True show ?thesis unfolding r ′-def by auto

next
case (False)
with B(1 ,2) have x-intv: isIntv (I x) unfolding Z-def I ′-def by

auto
show ?thesis
proof (cases y ∈ Z)

case False

196

with B(3 ,4) have y-intv: isIntv (I y) unfolding Z-def I ′-def
by auto

with frac-bound x-intv B(1 ,3) have t < 1 − frac (v x) t < 1
− frac (v y) by auto

from frac-add-leD[OF - this] B(5) t have
frac (v x) ≤ frac (v y)

by (auto simp: cval-add-def)
with v assms(2) B(1 ,3) x-intv y-intv have (x, y) ∈ r by (auto

)
then show ?thesis by (simp add: r ′-def)

next
case True

from frac-bound x-intv B(1) have b: t < 1 − frac (v x) by auto
from x-intv obtain c where I x = Intv c by auto
with elem[OF ‹x ∈ X›] have v: c < v x v x < c + 1 by auto

from True elem[OF ‹y ∈ X›] have ∗: frac (v y) = 0 unfolding
Z-def by auto

with t ‹?t < 1 › floor-frac-add-preservation ′[of t v y] have
floor (v y + t) = floor (v y)

by auto
then have frac (v y + t) = t

by (metis ∗ add-diff-cancel-left ′ diff-add-cancel diff-self frac-def)
moreover from nat-intv-frac-gt0 [OF v] have 0 < frac (v x) .
moreover from frac-distr [OF - b] t have frac (v x + t) = frac

(v x) + t by auto
ultimately show ?thesis using B(5) unfolding cval-add-def

by auto
qed

qed
qed

qed
}
with ‹?t/2 > 0 › have 0 < ?t/2 ∧ (∀ t. 0 < t ∧ t ≤ ?t/2 −→ (v ⊕

t) ∈ region X I ′ r ′) by auto
} note ∗∗ = this
show ∃ t ′≤t. (v ⊕ t ′) ∈ region X I ′ r ′ ∧ 0 ≤ t ′
proof (cases ∃ x ∈ X . isIntv (I x))

case True
note T = this
show ?thesis
proof (cases t ≤ ?t/2)

case True with T t ∗∗ show ?thesis by auto
next

case False

197

then have ?t/2 ≤ t by auto
moreover from T ∗∗ have (v ⊕ ?t/2) ∈ region X I ′ r ′ ?t/2 > 0 by

auto
ultimately show ?thesis by (fastforce del: region.cases)

qed
next

case False
note F = this
show ?thesis
proof (cases t < 1)

case True with F t ∗ show ?thesis by auto
next

case False
then have 0 .5 ≤ t by auto
moreover from F ∗ have (v ⊕ 0 .5) ∈ region X I ′ r ′ by auto
ultimately show ?thesis by (fastforce del: region.cases)

qed
qed

next
fix v t assume A: v ∈ region X I ′ r ′ 0 ≤ t (v ⊕ t) ∈ R
from assms(3 ,4) obtain x c where x: I x = Const c x ∈ Z x ∈ X by

auto
with A(1) have intv-elem x v (I ′ x) by auto
with x have v x > c unfolding I ′-def

apply (auto elim: intv-elem.cases)
apply (cases c = k x)

by auto
moreover from A(3) x(1 ,3) have v x + t = c
by (fastforce elim!: intv-elem.cases simp: cval-add-def R-def)
ultimately show False using A(2) by auto

next
fix x c assume x ∈ X I ′ x = Const c
then show False

apply (auto simp: I ′-def Z-def)
apply (cases ∀ c. I x 6= Const c)
apply auto

apply (rename-tac c ′)
apply (case-tac c ′ = k x)

by auto
next

case (4 v t t ′ x c)
note A = this
then have I ′ x = Intv c unfolding I ′-def Z-def by auto
moreover from A have real (c + 1) ≤ (v ⊕ t ′) x + (t − t ′) unfolding

198

cval-add-def by auto
ultimately show ?case by blast

next
case A: (5 v t t ′ x c)
show ?case
proof (cases x ∈ Z)

case False
with A have I x = Intv c unfolding I ′-def by auto
with A show ?thesis unfolding cval-add-def by auto

next
case True
with A(6) have I x = Const c

apply (auto simp: I ′-def)
apply (cases intv-const (I x) = k x)

by (auto simp: Z-def)
with A(1 ,5) R-def have v x = c by fastforce
with A(2 ,7) show ?thesis by (auto simp: cval-add-def)

qed
qed

lemma closest-valid-1 :
fixes I X k r
defines R ≡ {region X I r |I r . valid-region X k I r}
defines R ≡ region X I r
defines Z ≡ {x ∈ X . ∃ c. I x = Const c}
assumes Z 6= {}
defines I ′≡ λ x. if x /∈ Z then I x else if intv-const (I x) = k x then

Greater (k x) else Intv (intv-const (I x))
defines r ′ ≡ r ∪ {(x,y) . x ∈ Z ∧ y ∈ X ∧ intv-const (I x) < k x ∧ isIntv

(I ′ y)}
assumes finite X
assumes valid-region X k I r
shows valid-region X k I ′ r ′

proof
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
let ?X0

′ = {x ∈ X . ∃ d. I ′ x = Intv d}
let ?S = {(x, y). x ∈ Z ∧ y ∈ X ∧ intv-const (I x) < k x ∧ isIntv (I ′ y)}
show ?X0

′ = ?X0
′ ..

from assms(8) have refl: refl-on ?X0 r and total: total-on ?X0 r and
trans: trans r

and valid:
∧

x. x ∈ X =⇒ valid-intv (k x) (I x)
by auto
then have r ⊆ ?X0 × ?X0 unfolding refl-on-def by auto
then have r ⊆ ?X0

′ × ?X0
′ unfolding I ′-def Z-def by auto

199

moreover have ?S ⊆ ?X0
′ × ?X0

′

apply (auto)
apply (auto simp: Z-def)[]
apply (auto simp: I ′-def)[]

done
ultimately have r ′⊆ ?X0

′ × ?X0
′ unfolding r ′-def by auto

then show refl-on ?X0
′ r ′ unfolding refl-on-def

proof auto
fix x d assume A: x ∈ X I ′ x = Intv d
show (x, x) ∈ r ′

proof (cases x ∈ Z)
case True
with A have intv-const (I x) 6= k x unfolding I ′-def by auto
with assms(8) A(1) have intv-const (I x) < k x by (fastforce elim!:

valid-intv.cases)
with True A show (x,x) ∈ r ′ by (auto simp: r ′-def)

next
case False
with A refl show (x,x) ∈ r ′ by (auto simp: I ′-def refl-on-def r ′-def)

qed
qed
show total-on ?X0

′ r ′ unfolding total-on-def
proof (standard, standard, standard)

fix x y assume x ∈ ?X0
′ y ∈ ?X0

′ x 6= y
then obtain d d ′ where A: x∈Xy∈XI ′ x = (Intv d) I ′ y = (Intv d ′) x

6= y by auto
let ?thesis = (x, y) ∈ r ′ ∨ (y, x) ∈ r ′

show ?thesis
proof (cases x ∈ Z)

case True
with A have intv-const (I x) 6= k x unfolding I ′-def by auto
with assms(8) A(1) have intv-const (I x) < k x by (fastforce elim!:

valid-intv.cases)
with True A show ?thesis by (auto simp: r ′-def)

next
case F : False
show ?thesis
proof (cases y ∈ Z)

case True
with A have intv-const (I y) 6= k y unfolding I ′-def by auto
with assms(8) A(2) have intv-const (I y) < k y by (fastforce elim!:

valid-intv.cases)
with True A show ?thesis by (auto simp: r ′-def)

next

200

case False
with A F have I x = Intv d I y = Intv d ′ by (auto simp: I ′-def)
with A(1 ,2 ,5) total show ?thesis unfolding total-on-def r ′-def by

auto
qed

qed
qed
show trans r ′ unfolding trans-def
proof safe

fix x y z assume A: (x, y) ∈ r ′ (y, z) ∈ r ′

show (x, z) ∈ r ′

proof (cases (x,y) ∈ r)
case True
then have y /∈ Z using refl unfolding Z-def refl-on-def by auto
then have (y, z) ∈ r using A unfolding r ′-def by auto
with trans True show ?thesis unfolding trans-def r ′-def by blast

next
case False
with A(1) have F : x ∈ Z intv-const (I x) < k x unfolding r ′-def by

auto
moreover from A(2) refl have z ∈ X isIntv (I ′ z)
by (auto simp: r ′-def refl-on-def) (auto simp: I ′-def Z-def)
ultimately show ?thesis unfolding r ′-def by auto

qed
qed
show ∀ x∈X . valid-intv (k x) (I ′ x)
proof (auto simp: I ′-def intro: valid, goal-cases)

case (1 x)
with assms(8) have intv-const (I x) < k x by (fastforce elim!: valid-intv.cases)
then show ?case by auto

qed
qed

lemma closest-prestable-2 :
fixes I X k r
defines R ≡ {region X I r |I r . valid-region X k I r}
defines R ≡ region X I r
assumes ∀ x ∈ X . ¬ isConst (I x)
defines X0 ≡ {x ∈ X . isIntv (I x)}
defines M ≡ {x ∈ X0. ∀ y ∈ X0. (x, y) ∈ r −→ (y, x) ∈ r}
defines I ′≡ λ x. if x /∈ M then I x else Const (intv-const (I x) + 1)
defines r ′ ≡ {(x,y) ∈ r . x /∈ M ∧ y /∈ M}
assumes finite X
assumes valid-region X k I r

201

assumes M 6= {}
shows ∀ v ∈ R. ∀ t≥0 . (v ⊕ t) /∈ R −→ (∃ t ′≤t. (v ⊕ t ′) ∈ region X

I ′ r ′ ∧ t ′ ≥ 0)
and ∀ v ∈ region X I ′ r ′. ∀ t≥0 . (v ⊕ t) /∈ R
and ∀ v ∈ R. ∀ t ′. {x. x ∈ X ∧ (∃ c. I ′ x = Intv c ∧ (v ⊕ t ′) x + (t
− t ′) ≥ real (c + 1))}

= {x. x ∈ X ∧ (∃ c. I x = Intv c ∧ v x + t ≥ real (c +
1))} − M

and ∃ x ∈ X . isConst (I ′ x)
proof (safe, goal-cases)

fix v assume v: v ∈ R fix t :: t assume t: t ≥ 0 (v ⊕ t) /∈ R
note M = assms(10)
then obtain x c where x: x ∈ M I x = Intv c x ∈ X x ∈ X0 unfolding

M-def X0-def by force
let ?t = 1 − frac (v x)
let ?v = v ⊕ ?t
have elem: intv-elem x v (I x) if x ∈ X for x using that v unfolding

R-def by auto
from assms(9) have ∗: trans r total-on {x ∈ X . ∃ d. I x = Intv d} r by

auto
then have trans[intro]:

∧
x y z. (x, y) ∈ r =⇒ (y, z) ∈ r =⇒ (x, z) ∈ r

unfolding trans-def
by blast
have {x ∈ X . ∃ d. I x = Intv d} = X0 unfolding X0-def by auto
with ∗(2) have total: total-on X0 r by auto
{ fix y assume y: y /∈ M y ∈ X0

have ¬ (x, y) ∈ r using x y unfolding M-def by auto
moreover with total x y have (y, x) ∈ r unfolding total-on-def by

auto
ultimately have ¬ (x, y) ∈ r ∧ (y, x) ∈ r ..

} note M-max = this
{ fix y assume T1 : y ∈ M x 6= y

then have T2 : y ∈ X0 unfolding M-def by auto
with total x T1 have (x, y) ∈ r ∨ (y, x) ∈ r by (auto simp: total-on-def)
with T1 (1) x(1) have (x, y) ∈ r (y, x) ∈ r unfolding M-def by auto

} note M-eq = this
{ fix y assume y: y /∈ M y ∈ X0

with M-max have ¬ (x, y) ∈ r (y, x) ∈ r by auto
with v[unfolded R-def] X0-def x(4) y(2) have frac (v y) < frac (v x)

by auto
then have ?t < 1 − frac (v y) by auto

} note t-bound ′ = this
{ fix y assume y: y ∈ X0

have ?t ≤ 1 − frac (v y)

202

proof (cases x = y)
case True thus ?thesis by simp

next
case False
have (y, x) ∈ r
proof (cases y ∈ M)

case False with M-max y show ?thesis by auto
next

case True with False M-eq y show ?thesis by auto
qed
with v[unfolded R-def] X0-def x(4) y have frac (v y) ≤ frac (v x) by

auto
then show ?t ≤ 1 − frac (v y) by auto

qed
} note t-bound ′′′ = this
have frac (v x) < 1 by (simp add: frac-lt-1)
then have ?t > 0 by (simp add: x(3))
{ fix c y fix t :: t assume y: y /∈ M I y = Intv c y ∈ X and t: t ≥ 0 t
≤ ?t

then have y ∈ X0 unfolding X0-def by auto
with t-bound ′ y have ?t < 1 − frac (v y) by auto
with t have t < 1 − frac (v y) by auto
moreover from elem[OF ‹y ∈ X›] y have c < v y v y < c + 1 by

auto
ultimately have (v y + t) < c + 1 using frac-add-le-preservation by

blast
with ‹c < v y› t have intv-elem y (v ⊕ t) (I y) by (auto simp:

cval-add-def y)
} note t-bound = this
from elem[OF x(3)] x(2) have v-x: c < v x v x < c + 1 by auto
then have floor (v x) = c by linarith
then have shift: v x + ?t = c + 1 unfolding frac-def by auto
have v x + t ≥ c + 1
proof (rule ccontr , goal-cases)

case 1
then have AA: v x + t < c + 1 by simp
with shift have lt: t < ?t by auto
let ?v = v ⊕ t
have ?v ∈ region X I r
proof (standard, goal-cases)

case 1
from v have ∀ x ∈ X . v x ≥ 0 unfolding R-def by auto
with t show ?case unfolding cval-add-def by auto

next

203

case 2
show ?case
proof (safe, goal-cases)

case (1 y)
note A = this
with elem have e: intv-elem y v (I y) by auto
show ?case
proof (cases y ∈ M)

case False
then have [simp]: I ′ y = I y by (auto simp: I ′-def)
show ?thesis
proof (cases I y, goal-cases)

case 1 with assms(3) A show ?case by auto
next

case (2 c)
from t-bound[OF False this A t(1)] lt show ?case by (auto simp:

cval-add-def 2)
next

case (3 c)
with e have v y > c by auto
with 3 t(1) show ?case by (auto simp: cval-add-def)

qed
next

case True
then have y ∈ X0 by (auto simp: M-def)
note T = this True
show ?thesis
proof (cases x = y)

case False
with M-eq T have (x, y) ∈ r (y, x) ∈ r by presburger+
with v[unfolded R-def] X0-def x(4) T (1) have ∗: frac (v y) =

frac (v x) by auto
from T (1) obtain c where c: I y = Intv c by (auto simp:

X0-def)
with elem T (1) have c < v y v y < c + 1 by (fastforce simp:

X0-def)+
then have floor (v y) = c by linarith
with ∗ lt have (v y + t) < c + 1 unfolding frac-def by auto
with ‹c < v y› t show ?thesis by (auto simp: c cval-add-def)

next
case True with ‹c < v x› t AA x show ?thesis by (auto simp:

cval-add-def)
qed

qed

204

qed
next

show X0 = {x ∈ X . ∃ d. I x = Intv d} by (auto simp add: X0-def)
next

have t > 0
proof (rule ccontr , goal-cases)

case 1 with t v show False unfolding cval-add-def by auto
qed
show ∀ y∈X0. ∀ z∈X0. ((y, z) ∈ r) = (frac ((v ⊕ t)y) ≤ frac ((v ⊕ t)

z))
proof (auto simp: X0-def , goal-cases)

case (1 y z d d ′)
note A = this
from A have [simp]: y ∈ X0 z ∈ X0 unfolding X0-def I ′-def by

auto
from A v[unfolded R-def] have le: frac (v y) ≤ frac (v z) by (auto

simp: r ′-def)
from t-bound ′′′ have ?t ≤ 1 − frac (v y) ?t ≤ 1 − frac (v z) by

auto
with lt have t < 1 − frac (v y) t < 1 − frac (v z) by auto
with frac-distr [OF ‹t > 0 ›] have

frac (v y) + t = frac (v y + t) frac (v z) + t = frac (v z + t)
by auto
with le show ?case by (auto simp: cval-add-def)

next
case (2 y z d d ′)
note A = this
from A have [simp]: y ∈ X0 z ∈ X0 unfolding X0-def by auto
from t-bound ′′′ have ?t ≤ 1 − frac (v y) ?t ≤ 1 − frac (v z) by

auto
with lt have t < 1 − frac (v y) t < 1 − frac (v z) by auto
from frac-add-leD[OF ‹t > 0 › this] A(5) have

frac (v y) ≤ frac (v z)
by (auto simp: cval-add-def)
with v[unfolded R-def] A show ?case by auto

qed
qed
with t R-def show False by simp

qed
with shift have t ≥ ?t by simp
let ?R = region X I ′ r ′

let ?X0 = {x ∈ X . ∃ d. I ′ x = Intv d}
have (v ⊕ ?t) ∈ ?R
proof (standard, goal-cases)

205

case 1
from v have ∀ x ∈ X . v x ≥ 0 unfolding R-def by auto
with ‹?t > 0 › t show ?case unfolding cval-add-def by auto

next
case 2
show ?case
proof (safe, goal-cases)

case (1 y)
note A = this
with elem have e: intv-elem y v (I y) by auto
show ?case
proof (cases y ∈ M)

case False
then have [simp]: I ′ y = I y by (auto simp: I ′-def)
show ?thesis
proof (cases I y, goal-cases)

case 1 with assms(3) A show ?case by auto
next

case (2 c)
from t-bound[OF False this A] ‹?t > 0 › show ?case by (auto simp:

cval-add-def 2)
next

case (3 c)
with e have v y > c by auto
with 3 ‹?t > 0 › show ?case by (auto simp: cval-add-def)

qed
next

case True
then have y ∈ X0 by (auto simp: M-def)
note T = this True
show ?thesis
proof (cases x = y)

case False
with M-eq T (2) have (x, y) ∈ r (y, x) ∈ r by auto
with v[unfolded R-def] X0-def x(4) T (1) have ∗: frac (v y) = frac

(v x) by auto
from T (1) obtain c where c: I y = Intv c by (auto simp: X0-def)

with elem T (1) have c < v y v y < c + 1 by (fastforce simp:
X0-def)+

then have floor (v y) = c by linarith
with ∗ have (v y + ?t) = c + 1 unfolding frac-def by auto
with T (2) show ?thesis by (auto simp: c cval-add-def I ′-def)

next
case True with shift x show ?thesis by (auto simp: cval-add-def

206

I ′-def)
qed

qed
qed

next
show ?X0 = ?X0 ..

next
show ∀ y∈?X0. ∀ z∈?X0. ((y, z) ∈ r ′) = (frac ((v ⊕ 1 − frac (v x))y)

≤ frac ((v ⊕ 1 − frac (v x)) z))
proof (safe, goal-cases)

case (1 y z d d ′)
note A = this
then have y /∈ M z /∈ M unfolding I ′-def by auto
with A have [simp]: I ′ y = I y I ′ z = I z y ∈ X0 z ∈ X0 unfolding

X0-def I ′-def by auto
from A v[unfolded R-def] have le: frac (v y) ≤ frac (v z) by (auto

simp: r ′-def)
from t-bound ′ ‹y /∈ M › ‹z /∈ M › have ?t < 1 − frac (v y) ?t < 1 −

frac (v z) by auto
with frac-distr [OF ‹?t > 0 ›] have

frac (v y) + ?t = frac (v y + ?t) frac (v z) + ?t = frac (v z + ?t)
by auto
with le show ?case by (auto simp: cval-add-def)

next
case (2 y z d d ′)
note A = this
then have M : y /∈ M z /∈ M unfolding I ′-def by auto
with A have [simp]: I ′ y = I y I ′ z = I z y ∈ X0 z ∈ X0 unfolding

X0-def I ′-def by auto
from t-bound ′ ‹y /∈ M › ‹z /∈ M › have ?t < 1 − frac (v y) ?t < 1 −

frac (v z) by auto
from frac-add-leD[OF ‹?t > 0 › this] A(5) have

frac (v y) ≤ frac (v z)
by (auto simp: cval-add-def)
with v[unfolded R-def] A M show ?case by (auto simp: r ′-def)

qed
qed
with ‹?t > 0 › ‹?t ≤ t› show ∃ t ′≤t. (v ⊕ t ′) ∈ region X I ′ r ′ ∧ 0 ≤ t ′

by auto
next

fix v t assume A: v ∈ region X I ′ r ′ 0 ≤ t (v ⊕ t) ∈ R
from assms(10) obtain x c where x:

x ∈ X0 I x = Intv c x ∈ X x ∈ M
unfolding M-def X0-def by force

207

with A(1) have intv-elem x v (I ′ x) by auto
with x have v x = c + 1 unfolding I ′-def by auto
moreover from A(3) x(2 ,3) have v x + t < c + 1 by (fastforce simp:

cval-add-def R-def)
ultimately show False using A(2) by auto

next
case A: (3 v t ′ x c)
from A(3) have I x = Intv c by (auto simp: I ′-def) (cases x ∈ M , auto)
with A(4) show ?case by (auto simp: cval-add-def)

next
case 4
then show ?case unfolding I ′-def by auto

next
case A: (5 v t ′ x c)
then have I ′ x = Intv c unfolding I ′-def by auto
moreover from A have real (c + 1) ≤ (v ⊕ t ′) x + (t − t ′) by (auto

simp: cval-add-def)
ultimately show ?case by blast

next
from assms(5 ,10) obtain x where x: x ∈ M by blast
then have isConst (I ′ x) by (auto simp: I ′-def)
with x show ∃ x∈X . isConst (I ′ x) unfolding M-def X0-def by force

qed

lemma closest-valid-2 :
fixes I X k r
defines R ≡ {region X I r |I r . valid-region X k I r}
defines R ≡ region X I r
assumes ∀ x ∈ X . ¬ isConst (I x)
defines X0 ≡ {x ∈ X . isIntv (I x)}
defines M ≡ {x ∈ X0. ∀ y ∈ X0. (x, y) ∈ r −→ (y, x) ∈ r}
defines I ′≡ λ x. if x /∈ M then I x else Const (intv-const (I x) + 1)
defines r ′ ≡ {(x,y) ∈ r . x /∈ M ∧ y /∈ M}
assumes finite X
assumes valid-region X k I r
assumes M 6= {}
shows valid-region X k I ′ r ′

proof
let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
let ?X0

′ = {x ∈ X . ∃ d. I ′ x = Intv d}
show ?X0

′ = ?X0
′ ..

from assms(9) have refl: refl-on ?X0 r and total: total-on ?X0 r and
trans: trans r

and valid:
∧

x. x ∈ X =⇒ valid-intv (k x) (I x)

208

by auto
have subs: r ′ ⊆ r unfolding r ′-def by auto
from refl have r ⊆ ?X0 × ?X0 unfolding refl-on-def by auto
then have r ′⊆ ?X0

′ × ?X0
′ unfolding r ′-def I ′-def by auto

then show refl-on ?X0
′ r ′ unfolding refl-on-def

proof auto
fix x d assume A: x ∈ X I ′ x = Intv d
then have x /∈ M by (force simp: I ′-def)
with A have I x = Intv d by (force simp: I ′-def)
with A refl have (x,x) ∈ r by (auto simp: refl-on-def)
then show (x, x) ∈ r ′ by (auto simp: r ′-def ‹x /∈ M ›)

qed
show total-on ?X0

′ r ′ unfolding total-on-def
proof (safe, goal-cases)

case (1 x y d d ′)
note A = this
then have ∗: x /∈ M y /∈ M by (force simp: I ′-def)+
with A have I x = Intv d I y = Intv d ′ by (force simp: I ′-def)+
with A total have (x, y) ∈ r ∨ (y, x) ∈ r by (auto simp: total-on-def)
with A(6) ∗ show ?case unfolding r ′-def by auto

qed
show trans r ′ unfolding trans-def
proof safe

fix x y z assume A: (x, y) ∈ r ′ (y, z) ∈ r ′

from trans have [intro]:∧
x y z. (x,y) ∈ r =⇒ (y, z) ∈ r =⇒ (x, z) ∈ r

unfolding trans-def by blast
from A show (x, z) ∈ r ′ by (auto simp: r ′-def)

qed
show ∀ x∈X . valid-intv (k x) (I ′ x)
using valid unfolding I ′-def
proof (auto simp: I ′-def intro: valid, goal-cases)

case (1 x)
with assms(9) have intv-const (I x) < k x by (fastforce simp: M-def

X0-def)
then show ?case by auto

qed
qed

5.3.1 Putting the Proof for the ’Set of Regions’ Property To-
gether

Misc lemma total-finite-trans-max:
X 6= {} =⇒ finite X =⇒ total-on X r =⇒ trans r =⇒ ∃ x ∈ X . ∀ y ∈

209

X . x 6= y −→ (y, x) ∈ r
proof (induction card X arbitrary: X)

case 0
then show ?case by auto

next
case (Suc n)
then obtain x where x: x ∈ X by blast
show ?case
proof (cases n = 0)

case True
with Suc.hyps(2) ‹finite X› x have X = {x} by (metis card-Suc-eq

empty-iff insertE)
then show ?thesis by auto

next
case False
show ?thesis
proof (cases ∀ y∈X . x 6= y −→ (y, x) ∈ r)

case True with x show ?thesis by auto
next

case False
then obtain y where y: y ∈ X x 6= y ¬ (y, x) ∈ r by auto
with x Suc.prems(3) have (x, y) ∈ r unfolding total-on-def by blast
let ?X = X − {x}
have tot: total-on ?X r using ‹total-on X r› unfolding total-on-def

by auto
from x Suc.hyps(2) ‹finite X› have card: n = card ?X by auto
with ‹finite X› ‹n 6= 0 › have ?X 6= {} by auto
from Suc.hyps(1)[OF card this - tot ‹trans r›] ‹finite X› obtain x ′

where
IH : x ′ ∈ ?X ∀ y ∈ ?X . x ′ 6= y −→ (y, x ′) ∈ r

by auto
have (x ′, x) /∈ r
proof (rule ccontr , auto)

assume A: (x ′, x) ∈ r
with y(3) have x ′ 6= y by auto
with y IH have (y, x ′) ∈ r by auto
with ‹trans r› A have (y, x) ∈ r unfolding trans-def by blast
with y show False by auto

qed
with ‹x ∈ X› ‹x ′ ∈ ?X› ‹total-on X r› have (x, x ′) ∈ r unfolding

total-on-def by auto
with IH show ?thesis by auto

qed
qed

210

qed

lemma card-mono-strict-subset:
finite A =⇒ finite B =⇒ finite C =⇒ A ∩ B 6= {} =⇒ C = A − B =⇒

card C < card A
by (metis Diff-disjoint Diff-subset inf-commute less-le psubset-card-mono)

Proof First we show that a shift by a non-negative integer constant means
that any two valuations from the same region are being shifted to the same
region.

lemma int-shift-equiv:
fixes X k fixes t :: int
defines R ≡ {region X I r |I r . valid-region X k I r}
assumes v ∈ R v ′ ∈ R R ∈ R t ≥ 0
shows (v ′ ⊕ t) ∈ [v ⊕ t]R using assms

proof −
from assms obtain I r where A: R = region X I r valid-region X k I r

by auto
from regions-closed[OF - assms(4 ,2), of X k t] assms(1 ,5) obtain I ′ r ′

where RR:
[v ⊕ t]R = region X I ′ r ′ valid-region X k I ′ r ′

by auto
from regions-closed ′[OF - assms(4 ,2), of X k t] assms(1 ,5) have RR ′: (v
⊕ t) ∈ [v ⊕ t]R by auto

show ?thesis
proof (simp add: RR(1), rule, goal-cases)

case 1
from ‹v ′ ∈ R› A(1) have ∀ x∈X . 0 ≤ v ′ x by auto
with ‹t ≥ 0 › show ?case unfolding cval-add-def by auto

next
case 2
show ?case
proof safe

fix x assume x: x ∈ X
with ‹v ′ ∈ R› ‹v ∈ R› A(1) have I : intv-elem x v (I x) intv-elem x v ′

(I x) by auto
from x RR RR ′ have I ′: intv-elem x (v ⊕ t) (I ′ x) by auto
show intv-elem x (v ′ ⊕ t) (I ′ x)
proof (cases I ′ x)

case (Const c)
from Const I ′ have v x + t = c unfolding cval-add-def by auto
with x A(1) ‹v ∈ R› ‹t ≥ 0 › have ∗: v x = c − nat t t ≤ c by

fastforce+

211

have I x = Const (c − nat t)
proof (cases I x)

case (Greater c ′)
with RR(2) Const ‹x ∈ X› have c ≤ k x by fastforce
with ∗ ‹t ≥ 0 › have ∗: v x ≤ k x by auto
from Greater A(2) ‹x ∈ X› have c ′ = k x by fastforce
moreover from I (1) Greater have v x > c ′ by auto
ultimately show ?thesis

using ‹c ≤ k x› ∗ by auto
qed (use I in ‹auto simp: ∗›)
with I ‹t ≥ 0 › ∗(2) have v ′ x + t = c by auto
with Const show ?thesis unfolding cval-add-def by auto

next
case (Intv c)
with I ′ have c < v x + t v x + t < c + 1 unfolding cval-add-def

by auto
with x A(1) ‹v ∈ R› ‹t ≥ 0 ›
have ∗: c − nat t < v x v x < c − nat t + 1 t ≤ c

by fastforce+
have I x = Intv (c − nat t)
proof (cases I x)

case (Greater c ′)
with RR(2) Intv ‹x ∈ X› have c ≤ k x by fastforce
with ∗ have ∗: v x ≤ k x using Intv RR(2) x by fastforce
from Greater A(2) ‹x ∈ X› have c ′ = k x by fastforce
moreover from I (1) Greater have v x > c ′ by auto
ultimately show ?thesis

using ‹c ≤ k x› ∗ by auto
qed (use I ∗ in ‹auto simp del: of-nat-diff ›)
with I ‹t ≤ c› have c < v ′ x + nat t v ′ x + t < c + 1 by auto
with Intv ‹t ≥ 0 › show ?thesis unfolding cval-add-def by auto

next
case (Greater c)
with I ′ have ∗: c < v x + t unfolding cval-add-def by auto
show ?thesis
proof (cases I x)

case (Const c ′)
with x A(1) I (2) ‹v ∈ R› ‹v ′ ∈ R› have v x = v ′ x by fastforce
with Greater ∗ show ?thesis unfolding cval-add-def by auto

next
case (Intv c ′)
with x A(1) I (2) ‹v ∈ R› ‹v ′ ∈ R› have ∗∗: c ′ < v x v x < c ′ +

1 c ′ < v ′ x
by fastforce+

212

then have c ′ + t < v x + t v x + t < c ′ + t + 1 by auto
with ∗ have c ≤ c ′ + t by auto
with ∗∗(3) have v ′ x + t > c by auto
with Greater ∗ show ?thesis unfolding cval-add-def by auto

next
fix c ′ assume c ′: I x = Greater c ′

with x A(1) I (2) ‹v ∈ R› ‹v ′ ∈ R› have ∗∗: c ′ < v x c ′ < v ′ x by
fastforce+

from Greater RR(2) c ′ A(2) ‹x ∈ X› have c ′ = k x c = k x by
fastforce+

with ‹t ≥ 0 › ∗∗(2) Greater show intv-elem x (v ′ ⊕ real-of-int t)
(I ′ x)

unfolding cval-add-def by auto
qed

qed
qed

next
show {x ∈ X . ∃ d. I ′ x = Intv d} = {x ∈ X . ∃ d. I ′ x = Intv d} ..

next
let ?X0 = {x ∈ X . ∃ d. I ′ x = Intv d}
{ fix x y :: real

have frac (x + t) ≤ frac (y + t) ←→ frac x ≤ frac y by (simp add:
frac-def)

} note frac-equiv = this
{ fix x y

have frac ((v ⊕ t) x) ≤ frac ((v ⊕ t) y) ←→ frac (v x) ≤ frac (v y)
unfolding cval-add-def using frac-equiv by auto

} note frac-equiv ′ = this
{ fix x y
have frac ((v ′ ⊕ t) x) ≤ frac ((v ′ ⊕ t) y) ←→ frac (v ′ x) ≤ frac (v ′ y)
unfolding cval-add-def using frac-equiv by auto

} note frac-equiv ′′ = this
{ fix x y assume x: x ∈ X and y: y ∈ X and B: ¬ isGreater(I x) ¬

isGreater(I y)
have frac (v x) ≤ frac (v y) ←→ frac (v ′ x) ≤ frac (v ′ y)
proof (cases I x)

case (Const c)
with x ‹v ∈ R› ‹v ′ ∈ R› A(1) have v x = c v ′ x = c by fastforce+

then have frac (v x) ≤ frac (v y) frac (v ′ x) ≤ frac (v ′ y) unfolding
frac-def by simp+

then show ?thesis by auto
next

case (Intv c)
with x ‹v ∈ R› A(1) have v: c < v x v x < c + 1 by fastforce+

213

from Intv x ‹v ′ ∈ R› A(1) have v ′:c < v ′ x v ′ x < c + 1 by
fastforce+

show ?thesis
proof (cases I y, goal-cases)

case (Const c ′)
with y ‹v ∈ R› ‹v ′ ∈ R› A(1) have v y = c ′ v ′ y = c ′ by fastforce+
then have frac (v y) = 0 frac (v ′ y) = 0 by auto
with nat-intv-frac-gt0 [OF v] nat-intv-frac-gt0 [OF v ′]

have ¬ frac (v x) ≤ frac (v y) ¬ frac (v ′ x) ≤ frac (v ′ y) by
linarith+

then show ?thesis by auto
next

case 2 : (Intv c ′)
with x y Intv ‹v ∈ R› ‹v ′ ∈ R› A(1) have
(x, y) ∈ r ←→ frac (v x) ≤ frac (v y)
(x, y) ∈ r ←→ frac (v ′ x) ≤ frac (v ′ y)

by auto
then show ?thesis by auto

next
case Greater
with B show ?thesis by auto

qed
next

case Greater with B show ?thesis by auto
qed

} note frac-cong = this
have not-greater : ¬ isGreater (I x) if x: x ∈ X ¬ isGreater (I ′ x) for x
proof (rule ccontr , auto, goal-cases)

case (1 c)
with x ‹v ∈ R› A(1 ,2) have c < v x by fastforce+
moreover from x A(2) 1 have c = k x by fastforce+
ultimately have ∗: k x < v x + t using ‹t ≥ 0 › by simp
from RR(1 ,2) RR ′ x have I ′: intv-elem x (v ⊕ t) (I ′ x) valid-intv (k

x) (I ′ x) by auto
from x show False
proof (cases I ′ x, auto)

case (Const c ′)
with I ′ ∗ show False by (auto simp: cval-add-def)

next
case (Intv c ′)
with I ′ ∗ show False by (auto simp: cval-add-def)

qed
qed
show ∀ x ∈ ?X0. ∀ y ∈ ?X0. ((x, y) ∈ r ′) = (frac ((v ′ ⊕ t) x) ≤ frac

214

((v ′ ⊕ t) y))
proof (standard, standard)

fix x y assume x: x ∈ ?X0 and y: y ∈ ?X0

then have B: ¬ isGreater (I ′ x) ¬ isGreater (I ′ y) by auto
with x y not-greater have ¬ isGreater (I x) ¬ isGreater (I y) by auto
with x y frac-cong have frac (v x) ≤ frac (v y) ←→ frac (v ′ x) ≤ frac

(v ′ y) by auto
moreover from x y RR(1) RR ′ have (x, y) ∈ r ′ ←→ frac ((v ⊕ t)

x) ≤ frac ((v ⊕ t) y)
by fastforce
ultimately show (x, y) ∈ r ′←→ frac ((v ′ ⊕ t) x) ≤ frac ((v ′ ⊕ t) y)
using frac-equiv ′ frac-equiv ′′ by blast

qed
qed

qed

Now, we can use the ’immediate’ induction proposed by P. Bouyer for shifts
smaller than one. The induction principle is not at all obvious: the induction
is over the set of clocks for which the valuation is shifted beyond the current
interval boundaries. Using the two successor operations, we can see that
either the set of these clocks remains the same (Z =) or strictly decreases
(Z =).
lemma set-of-regions-lt-1 :

fixes X k I r t v
defines R ≡ {region X I r |I r . valid-region X k I r}
defines C ≡ {x. x ∈ X ∧ (∃ c. I x = Intv c ∧ v x + t ≥ c + 1)}
assumes valid-region X k I r v ∈ region X I r v ′ ∈ region X I r finite X

0 ≤ t t < 1
shows ∃ t ′≥0 . (v ′ ⊕ t ′) ∈ [v ⊕ t]R using assms

proof (induction card C arbitrary: C I r v v ′ t rule: less-induct)
case less
let ?R = region X I r
let ?C = {x ∈ X . ∃ c. I x = Intv c ∧ real (c + 1) ≤ v x + t}
from less have R: ?R ∈ R by auto
{ fix v I k r fix t :: t

assume no-consts: ∀ x∈X . ¬isConst (I x)
assume v: v ∈ region X I r
assume t: t ≥ 0
let ?C = {x ∈ X . ∃ c. I x = Intv c ∧ real (c + 1) ≤ v x + t}
assume C : ?C = {}
let ?R = region X I r
have (v ⊕ t) ∈ ?R
proof (rule, goal-cases)

case 1

215

with ‹t ≥ 0 › ‹v ∈ ?R› show ?case by (auto simp: cval-add-def)
next

case 2
show ?case
proof (standard, case-tac I x, goal-cases)

case (1 x c)
with no-consts show ?case by auto

next
case (2 x c)
with ‹v ∈ ?R› have c < v x by fastforce
with ‹t ≥ 0 › have c < v x + t by auto
moreover from 2 C have v x + t < c + 1 by fastforce
ultimately show ?case by (auto simp: 2 cval-add-def)

next
case (3 x c)
with ‹v ∈ ?R› have c < v x by fastforce
with ‹t ≥ 0 › have c < v x + t by auto
then show ?case by (auto simp: 3 cval-add-def)

qed
next

show {x ∈ X . ∃ d. I x = Intv d} = {x ∈ X . ∃ d. I x = Intv d} ..
next

let ?X0 = {x ∈ X . ∃ d. I x = Intv d}
{ fix x d :: real fix c:: nat assume A: c < x x + d < c + 1 d ≥ 0

then have d < 1 − frac x unfolding frac-def using floor-eq3
of-nat-Suc by fastforce

} note intv-frac = this
{ fix x assume x: x ∈ ?X0

then obtain c where x: x ∈ X I x = Intv c by auto
with ‹v ∈ ?R› have ∗: c < v x by fastforce
with ‹t ≥ 0 › have c < v x + t by auto
from x C have v x + t < c + 1 by auto
from intv-frac[OF ∗ this ‹t ≥ 0 ›] have t < 1 − frac (v x) by auto

} note intv-frac = this
{ fix x y assume x: x ∈ ?X0 and y: y ∈ ?X0

from frac-add-leIFF [OF ‹t ≥ 0 › intv-frac[OF x] intv-frac[OF y]]
have frac (v x) ≤ frac (v y) ←→ frac ((v ⊕ t) x) ≤ frac ((v ⊕ t) y)
by (auto simp: cval-add-def)

} note frac-cong = this
show ∀ x ∈ ?X0. ∀ y ∈ ?X0. (x, y) ∈ r ←→ frac ((v ⊕ t) x) ≤ frac

((v ⊕ t) y)
proof (standard, standard, goal-cases)

case (1 x y)
with ‹v ∈ ?R› have (x, y) ∈ r ←→ frac (v x) ≤ frac (v y) by auto

216

with frac-cong[OF 1] show ?case by simp
qed

qed
} note critical-empty-intro = this
{ assume const: ∃ x∈X . isConst (I x)

assume t: t > 0
from const have {x ∈ X . ∃ c. I x = Const c} 6= {} by auto

from closest-prestable-1 [OF this less.prems(4) less(3)] R closest-valid-1 [OF
this less.prems(4) less(3)]

obtain I ′′ r ′′

where stability: ∀ v ∈ ?R. ∀ t>0 . ∃ t ′≤t. (v ⊕ t ′) ∈ region X I ′′ r ′′

∧ t ′ ≥ 0
and succ-not-refl: ∀ v ∈ region X I ′′ r ′′. ∀ t≥0 . (v ⊕ t) /∈ ?R
and no-consts: ∀ x ∈ X . ¬ isConst (I ′′ x)
and crit-mono: ∀ v ∈ ?R. ∀ t < 1 . ∀ t ′ ≥ 0 . (v ⊕ t ′) ∈ region X

I ′′ r ′′

−→ {x. x ∈ X ∧ (∃ c. I x = Intv c ∧ v x + t ≥ c +
1)}

= {x. x ∈ X ∧ (∃ c. I ′′ x = Intv c ∧ (v ⊕ t ′) x + (t
− t ′) ≥ c + 1)}

and succ-valid: valid-region X k I ′′ r ′′

by auto
let ?R ′′ = region X I ′′ r ′′

from stability less(4) ‹t > 0 › obtain t1 where t1 : t1 ≥ 0 t1 ≤ t (v ⊕
t1) ∈ ?R ′′ by auto

from stability less(5) ‹t > 0 › obtain t2 where t2 : t2 ≥ 0 t2 ≤ t (v ′

⊕ t2) ∈ ?R ′′ by auto
let ?v = v ⊕ t1
let ?t = t − t1
let ?C ′ = {x ∈ X . ∃ c. I ′′ x = Intv c ∧ real (c + 1) ≤ ?v x + ?t}
from t1 ‹t < 1 › have tt: 0 ≤ ?t ?t < 1 by auto
from crit-mono ‹t < 1 › t1 (1 ,3) ‹v ∈ ?R› have crit:

?C = ?C ′

by auto
with t1 t2 succ-valid no-consts have
∃ t1 ≥ 0 . ∃ t2 ≥ 0 . ∃ I ′ r ′. t1 ≤ t ∧ (v ⊕ t1) ∈ region X I ′ r ′

∧ t2 ≤ t ∧ (v ′ ⊕ t2) ∈ region X I ′ r ′

∧ valid-region X k I ′ r ′

∧ (∀ x ∈ X . ¬ isConst (I ′ x))
∧ ?C = {x ∈ X . ∃ c. I ′ x = Intv c ∧ real (c + 1) ≤ (v ⊕ t1) x + (t

− t1)}
by blast

} note const-dest = this
{ fix t :: real fix v I r x c v ′

217

let ?R = region X I r
assume v: v ∈ ?R
assume v ′: v ′ ∈ ?R
assume valid: valid-region X k I r
assume t: t > 0 t < 1
let ?C = {x ∈ X . ∃ c. I x = Intv c ∧ real (c + 1) ≤ v x + t}
assume C : ?C = {}
assume const: ∃ x ∈ X . isConst (I x)
then have {x ∈ X . ∃ c. I x = Const c} 6= {} by auto

from closest-prestable-1 [OF this less.prems(4) valid] R closest-valid-1 [OF
this less.prems(4) valid]

obtain I ′′ r ′′

where stability: ∀ v ∈ ?R. ∀ t>0 . ∃ t ′≤t. (v ⊕ t ′) ∈ region X I ′′ r ′′

∧ t ′ ≥ 0
and succ-not-refl: ∀ v ∈ region X I ′′ r ′′. ∀ t≥0 . (v ⊕ t) /∈ ?R
and no-consts: ∀ x ∈ X . ¬ isConst (I ′′ x)
and crit-mono: ∀ v ∈ ?R. ∀ t < 1 . ∀ t ′ ≥ 0 . (v ⊕ t ′) ∈ region X

I ′′ r ′′

−→ {x. x ∈ X ∧ (∃ c. I x = Intv c ∧ v x + t ≥ c +
1)}

= {x. x ∈ X ∧ (∃ c. I ′′ x = Intv c ∧ (v ⊕ t ′) x + (t
− t ′) ≥ c + 1)}

and succ-valid: valid-region X k I ′′ r ′′

by auto
let ?R ′′ = region X I ′′ r ′′

from stability v ‹t > 0 › obtain t1 where t1 : t1 ≥ 0 t1 ≤ t (v ⊕ t1)
∈ ?R ′′ by auto

from stability v ′ ‹t > 0 › obtain t2 where t2 : t2 ≥ 0 t2 ≤ t (v ′ ⊕ t2)
∈ ?R ′′ by auto

let ?v = v ⊕ t1
let ?t = t − t1
let ?C ′ = {x ∈ X . ∃ c. I ′′ x = Intv c ∧ real (c + 1) ≤ ?v x + ?t}
from t1 ‹t < 1 › have tt: 0 ≤ ?t ?t < 1 by auto
from crit-mono ‹t < 1 › t1 (1 ,3) ‹v ∈ ?R› have crit:
{x ∈ X . ∃ c. I x = Intv c ∧ real (c + 1) ≤ v x + t}
= {x ∈ X . ∃ c. I ′′ x = Intv c ∧ real (c + 1) ≤ (v ⊕ t1) x + (t −

t1)}
by auto
with C have C : ?C ′ = {} by blast
from critical-empty-intro[OF no-consts t1 (3) tt(1) this] have ((v ⊕ t1)

⊕ ?t) ∈ ?R ′′ .
from region-unique[OF less(2) this] less(2) succ-valid t2 have ∃ t ′≥0 .

(v ′ ⊕ t ′) ∈ [v ⊕ t]R
by (auto simp: cval-add-def)

218

} note intro-const = this
{ fix v I r t x c v ′

let ?R = region X I r
assume v: v ∈ ?R
assume v ′: v ′ ∈ ?R
assume F2 : ∀ x∈X . ¬isConst (I x)
assume x: x ∈ X I x = Intv c v x + t ≥ c + 1
assume valid: valid-region X k I r
assume t: t ≥ 0 t < 1
let ?C ′ = {x ∈ X . ∃ c. I x = Intv c ∧ real (c + 1) ≤ v x + t}
assume C : ?C = ?C ′

have not-in-R: (v ⊕ t) /∈ ?R
proof (rule ccontr , auto)

assume (v ⊕ t) ∈ ?R
with x(1 ,2) have v x + t < c + 1 by (fastforce simp: cval-add-def)
with x(3) show False by simp

qed
have not-in-R ′: (v ′ ⊕ 1) /∈ ?R
proof (rule ccontr , auto)

assume (v ′ ⊕ 1) ∈ ?R
with x have v ′ x + 1 < c + 1 by (fastforce simp: cval-add-def)
moreover from x v ′ have c < v ′ x by fastforce
ultimately show False by simp

qed
let ?X0 = {x ∈ X . isIntv (I x)}
let ?M = {x ∈ ?X0. ∀ y∈?X0. (x, y) ∈ r −→ (y, x) ∈ r}
from x have x: x ∈ X ¬ isGreater (I x) and c: I x = Intv c by auto
with ‹x ∈ X› have ∗: ?X0 6= {} by auto
have ?X0 = {x ∈ X . ∃ d. I x = Intv d} by auto
with valid have r : total-on ?X0 r trans r by auto
from total-finite-trans-max[OF ∗ - this] ‹finite X›
obtain x ′ where x ′: x ′ ∈ ?X0 ∀ y ∈ ?X0. x ′ 6= y −→ (y, x ′) ∈ r by

fastforce
from this(2) have ∀ y∈?X0. (x ′, y) ∈ r −→ (y, x ′) ∈ r by auto
with x ′(1) have ?M 6= {} by fastforce

from closest-prestable-2 [OF F2 less.prems(4) valid this] closest-valid-2 [OF
F2 less.prems(4) valid this]

obtain I ′ r ′

where stability:
∀ v ∈ region X I r . ∀ t≥0 . (v ⊕ t) /∈ region X I r −→ (∃ t ′≤t. (v ⊕

t ′) ∈ region X I ′ r ′ ∧ t ′ ≥ 0)
and critical-mono: ∀ v ∈ region X I r . ∀ t. ∀ t ′.

{x. x ∈ X ∧ (∃ c. I ′ x = Intv c ∧ (v ⊕ t ′) x + (t −
t ′) ≥ real (c + 1))}

219

= {x. x ∈ X ∧ (∃ c. I x = Intv c ∧ v x + t ≥ real
(c + 1))} − ?M

and const-ex: ∃ x∈X . isConst (I ′ x)
and succ-valid: valid-region X k I ′ r ′

by auto
let ?R ′ = region X I ′ r ′

from not-in-R stability ‹t ≥ 0 › v obtain t ′ where
t ′: t ′ ≥ 0 t ′ ≤ t (v ⊕ t ′) ∈ ?R ′

by blast
have (1 ::t) ≥ 0 by auto
with not-in-R ′ stability v ′ obtain t1 where

t1 : t1 ≥ 0 t1 ≤ 1 (v ′ ⊕ t1) ∈ ?R ′

by blast
let ?v = v ⊕ t ′
let ?t = t − t ′
let ?C ′′ = {x ∈ X . ∃ c. I ′ x = Intv c ∧ real (c + 1) ≤ ?v x + ?t}
have ∃ t ′≥0 . (v ′ ⊕ t ′) ∈ [v ⊕ t]R
proof (cases t = t ′)

case True
with t ′ have (v ⊕ t) ∈ ?R ′ by auto
from region-unique[OF less(2) this] succ-valid R-def have [v ⊕ t]R

= ?R ′ by blast
with t1 (1 ,3) show ?thesis by auto

next
case False
with ‹t < 1 › t ′ have tt: 0 ≤ ?t ?t < 1 ?t > 0 by auto
from critical-mono ‹v ∈ ?R› have C-eq: ?C ′′ = ?C ′ − ?M by auto
show ∃ t ′≥0 . (v ′ ⊕ t ′) ∈ [v ⊕ t]R
proof (cases ?C ′ ∩ ?M = {})

case False
from ‹finite X› have finite ?C ′′ finite ?C ′ finite ?M by auto

then have card ?C ′′ < card ?C using C-eq C False by (intro
card-mono-strict-subset) auto

from less(1)[OF this less(2) succ-valid t ′(3) t1 (3) ‹finite X› tt(1 ,2)]
obtain t2 where t2 ≥ 0 ((v ′ ⊕ t1) ⊕ t2) ∈ [(v ⊕ t)]R by (auto

simp: cval-add-def)
moreover have (v ′ ⊕ (t1 + t2)) = ((v ′ ⊕ t1) ⊕ t2) by (auto simp:

cval-add-def)
moreover have t1 + t2 ≥ 0 using ‹t2 ≥ 0 › t1 (1) by auto
ultimately show ?thesis by metis

next
case True
{ fix x c assume x: x ∈ X I x = Intv c real (c + 1) ≤ v x + t

with True have x /∈ ?M by force

220

from x have x ∈ ?X0 by auto
from x(1 ,2) ‹v ∈ ?R› have ∗: c < v x v x < c + 1 by fastforce+
with ‹t < 1 › have v x + t < c + 2 by auto
have ge-1 : frac (v x) + t ≥ 1
proof (rule ccontr , goal-cases)

case 1
then have A: frac (v x) + t < 1 by auto

from ∗ have floor (v x) + frac (v x) < c + 1 unfolding frac-def
by auto

with nat-intv-frac-gt0 [OF ∗] have floor (v x) ≤ c by linarith
with A have v x + t < c + 1 by (auto simp: frac-def)
with x(3) show False by auto

qed
from ‹?M 6= {}› obtain y where y ∈ ?M by force

with ‹x ∈ ?X0› have y: y ∈ ?X0 (y, x) ∈ r −→ (x, y) ∈ r by auto
from y obtain c ′ where c ′: y ∈ X I y = Intv c ′ by auto
with ‹v ∈ ?R› have c ′ < v y by fastforce
from ‹y ∈ ?M › ‹x /∈ ?M › have x 6= y by auto
with y r(1) x(1 ,2) have (x, y) ∈ r unfolding total-on-def by

fastforce
with ‹v ∈ ?R› c ′ x have frac (v x) ≤ frac (v y) by fastforce
with ge-1 have frac: frac (v y) + t ≥ 1 by auto
have real (c ′ + 1) ≤ v y + t
proof (rule ccontr , goal-cases)

case 1
from ‹c ′ < v y› have floor (v y) ≥ c ′ by linarith
with frac have v y + t ≥ c ′ + 1 unfolding frac-def by linarith
with 1 show False by simp

qed
with c ′ True ‹y ∈ ?M › have False by auto

}
then have C : ?C ′ = {} by auto
with C-eq have C ′′: ?C ′′ = {} by auto
from intro-const[OF t ′(3) t1 (3) succ-valid tt(3) tt(2) C ′′ const-ex]

obtain t2 where t2 ≥ 0 ((v ′ ⊕ t1) ⊕ t2) ∈ [v ⊕ t]R by (auto simp:
cval-add-def)

moreover have (v ′ ⊕ (t1 + t2)) = ((v ′ ⊕ t1) ⊕ t2) by (auto simp:
cval-add-def)

moreover have t1 + t2 ≥ 0 using ‹t2 ≥ 0 › t1 (1) by auto
ultimately show ?thesis by metis

qed
qed

} note intro-intv = this
from regions-closed[OF less(2) R less(4 ,7)] less(2) obtain I ′ r ′ where

221

R ′:
[v ⊕ t]R = region X I ′ r ′ valid-region X k I ′ r ′

by auto
with regions-closed ′[OF less(2) R less(4 ,7)] assms(1) have

R ′2 : (v ⊕ t) ∈ [v ⊕ t]R (v ⊕ t) ∈ region X I ′ r ′

by auto
let ?R ′ = region X I ′ r ′

from less(2) R ′ have ?R ′ ∈ R by auto
show ?case
proof (cases ?R ′ = ?R)

case True with less(3 ,5) R ′(1) have (v ′ ⊕ 0) ∈ [v ⊕ t]R by (auto
simp: cval-add-def)

then show ?thesis by auto
next

case False
have t > 0
proof (rule ccontr)

assume ¬ 0 < t
with R ′ ‹t ≥ 0 › have [v]R = ?R ′ by (simp add: cval-add-def)
with region-unique[OF less(2) less(4) R] ‹?R ′ 6= ?R› show False by

auto
qed
show ?thesis
proof (cases ?C = {})

case True
show ?thesis
proof (cases ∃ x ∈ X . isConst (I x))

case False
then have no-consts: ∀ x∈X . ¬isConst (I x) by auto
from critical-empty-intro[OF this ‹v ∈ ?R› ‹t ≥ 0 › True] have (v

⊕ t) ∈ ?R .
from region-unique[OF less(2) this R] less(5) have (v ′ ⊕ 0) ∈ [v ⊕

t]R
by (auto simp: cval-add-def)
then show ?thesis by blast

next
case True
from const-dest[OF this ‹t > 0 ›] obtain t1 t2 I ′ r ′

where t1 : t1 ≥ 0 t1 ≤ t (v ⊕ t1) ∈ region X I ′ r ′

and t2 : t2 ≥ 0 t2 ≤ t (v ′ ⊕ t2) ∈ region X I ′ r ′

and valid: valid-region X k I ′ r ′

and no-consts: ∀ x ∈ X . ¬ isConst (I ′ x)
and C : ?C = {x ∈ X . ∃ c. I ′ x = Intv c ∧ real (c + 1) ≤ (v ⊕

t1) x + (t − t1)}

222

by auto
let ?v = v ⊕ t1
let ?t = t − t1
let ?C ′ = {x ∈ X . ∃ c. I ′ x = Intv c ∧ real (c + 1) ≤ ?v x + ?t}
let ?R ′ = region X I ′ r ′

from C ‹?C = {}› have ?C ′ = {} by blast
from critical-empty-intro[OF no-consts t1 (3) - this] t1 have (?v ⊕

?t) ∈ ?R ′ by auto
from region-unique[OF less(2) this] less(2) valid t2 show ?thesis
by (auto simp: cval-add-def)

qed
next

case False
then obtain x c where x: x ∈ X I x = Intv c v x + t ≥ c + 1 by

auto
then have F : ¬ (∀ x ∈ X . ∃ c. I x = Greater c) by force
show ?thesis
proof (cases ∃ x ∈ X . isConst (I x))

case False
then have ∀ x∈X . ¬isConst (I x) by auto

from intro-intv[OF ‹v ∈ ?R› ‹v ′ ∈ ?R› this x less(3 ,7 ,8)] show
?thesis by auto

next
case True
then have {x ∈ X . ∃ c. I x = Const c} 6= {} by auto
from const-dest[OF True ‹t > 0 ›] obtain t1 t2 I ′ r ′

where t1 : t1 ≥ 0 t1 ≤ t (v ⊕ t1) ∈ region X I ′ r ′

and t2 : t2 ≥ 0 t2 ≤ t (v ′ ⊕ t2) ∈ region X I ′ r ′

and valid: valid-region X k I ′ r ′

and no-consts: ∀ x ∈ X . ¬ isConst (I ′ x)
and C : ?C = {x ∈ X . ∃ c. I ′ x = Intv c ∧ real (c + 1) ≤ (v ⊕

t1) x + (t − t1)}
by auto
let ?v = v ⊕ t1
let ?t = t − t1
let ?C ′ = {x ∈ X . ∃ c. I ′ x = Intv c ∧ real (c + 1) ≤ ?v x + ?t}
let ?R ′ = region X I ′ r ′

show ?thesis
proof (cases ?C ′ = {})

case False
with intro-intv[OF t1 (3) t2 (3) no-consts - - - valid - - C] ‹t < 1 ›

t1 obtain t ′ where
t ′ ≥ 0 ((v ′ ⊕ t2) ⊕ t ′) ∈ [(v ⊕ t)]R

by (auto simp: cval-add-def)

223

moreover have ((v ′ ⊕ t2) ⊕ t ′) = (v ′ ⊕ (t2 + t ′)) by (auto simp:
cval-add-def)

moreover have t2 + t ′ ≥ 0 using ‹t ′ ≥ 0 › ‹t2 ≥ 0 › by auto
ultimately show ?thesis by metis

next
case True
from critical-empty-intro[OF no-consts t1 (3) - this] t1 have ((v ⊕

t1) ⊕ ?t) ∈ ?R ′ by auto
from region-unique[OF less(2) this] less(2) valid t2 show ?thesis
by (auto simp: cval-add-def)

qed
qed

qed
qed

qed

Finally, we can put the two pieces together: for a non-negative shift t, we
first shift btc and then frac t.
lemma set-of-regions:

fixes X k
defines R ≡ {region X I r |I r . valid-region X k I r}
assumes R ∈ R v ∈ R R ′ ∈ Succ R R finite X
shows ∃ t≥0 . [v ⊕ t]R = R ′ using assms

proof −
from assms(4) obtain v ′ t where v ′: v ′ ∈ R R ′ ∈ R 0 ≤ t R ′ = [v ′ ⊕

t]R by fastforce
obtain t1 :: int where t1 : t1 = floor t by auto
with v ′(3) have t1 ≥ 0 by auto
from int-shift-equiv[OF v ′(1) ‹v ∈ R› assms(2)[unfolded R-def] this]

R-def
have ∗: (v ⊕ t1) ∈ [v ′ ⊕ t1]R by auto
let ?v = (v ⊕ t1)
let ?t2 = frac t
have frac: 0 ≤ ?t2 ?t2 < 1 by (auto simp: frac-lt-1)
let ?R = [v ′ ⊕ t1]R
from regions-closed[OF - assms(2) v ′(1)] ‹t1 ≥ 0 › R-def have ?R ∈ R

by auto
with assms obtain I r where R: ?R = region X I r valid-region X k I r

by auto
with ∗ have v: ?v ∈ region X I r by auto
from R regions-closed ′[OF - assms(2) v ′(1)] ‹t1 ≥ 0 › R-def have (v ′ ⊕

t1) ∈ region X I r by auto
from set-of-regions-lt-1 [OF R(2) this v assms(5) frac] R-def obtain t2

where

224

t2 ≥ 0 (?v ⊕ t2) ∈ [(v ′ ⊕ t1) ⊕ ?t2]R
by auto
moreover from t1 have (v ⊕ (t1 + t2)) = (?v ⊕ t2) v ′ ⊕ t = ((v ′ ⊕

t1) ⊕ ?t2)
by (auto simp: frac-def cval-add-def)
ultimately have (v ⊕ (t1 + t2)) ∈ [v ′ ⊕ t]R t1 + t2 ≥ 0 using ‹t1 ≥

0 › ‹t2 ≥ 0 › by auto
with region-unique[OF - this(1)] v ′(2 ,4) R-def show ?thesis by blast

qed

5.4 Compability With Clock Constraints

definition ccval (‹{|-|}› [100]) where ccval cc ≡ {v. v ` cc}

definition acompatible
where

acompatible R ac ≡ ∀ R ∈ R. R ⊆ {v. v `a ac} ∨ {v. v `a ac} ∩ R = {}

lemma acompatibleD:
assumes acompatible R ac R ∈ R u ∈ R v ∈ R u `a ac
shows v `a ac
using assms unfolding acompatible-def by auto

lemma ccompatible1 :
fixes X k fixes c :: real
defines R ≡ {region X I r |I r . valid-region X k I r}
assumes c ≤ k x c ∈ � x ∈ X
shows acompatible R (EQ x c) using assms unfolding acompatible-def

proof (auto, goal-cases)
case A: (1 I r v u)
from A(3 ,9) obtain d where d: c = of-nat d unfolding Nats-def by

auto
with A(8 ,9) have u: u x = c u x = d unfolding ccval-def by auto
have I x = Const d
proof (cases I x, goal-cases)

case (1 c ′)
with A have u x = c ′ by fastforce
with 1 u show ?case by auto

next
case (2 c ′)
with A have c ′ < u x u x < c ′ + 1 by fastforce+
with 2 u show ?case by auto

next
case (3 c ′)

225

with A have c ′ < u x by fastforce
moreover from 3 A(4 ,5) have c ′ ≥ k x by fastforce
ultimately show ?case using u A(2) by auto

qed
with A(4 ,6) d have v x = c by fastforce
with A(3 ,5) have v `a EQ x c by auto
with A show False unfolding ccval-def by auto

qed

lemma ccompatible2 :
fixes X k fixes c :: real
defines R ≡ {region X I r |I r . valid-region X k I r}
assumes c ≤ k x c ∈ � x ∈ X
shows acompatible R (LT x c) using assms unfolding acompatible-def

proof (auto, goal-cases)
case A: (1 I r v u)
from A(3) obtain d :: nat where d: c = of-nat d unfolding Nats-def

by blast
with A have u: u x < c u x < d unfolding ccval-def by auto
have v x < c
proof (cases I x, goal-cases)

case (1 c ′)
with A have u x = c ′ v x = c ′ by fastforce+
with u show v x < c by auto

next
case (2 c ′)
with A have B: c ′ < u x u x < c ′ + 1 c ′ < v x v x < c ′ + 1 by

fastforce+
with u A(3) have c ′ + 1 ≤ d by auto
with d have c ′ + 1 ≤ c by auto
with B u show v x < c by auto

next
case (3 c ′)
with A have c ′ < u x by fastforce
moreover from 3 A(4 ,5) have c ′ ≥ k x by fastforce
ultimately show ?case using u A(2) by auto

qed
with A(4 ,6) have v `a LT x c by auto
with A(7) show False unfolding ccval-def by auto

qed

lemma ccompatible3 :
fixes X k fixes c :: real
defines R ≡ {region X I r |I r . valid-region X k I r}

226

assumes c ≤ k x c ∈ � x ∈ X
shows acompatible R (LE x c) using assms unfolding acompatible-def

proof (auto, goal-cases)
case A: (1 I r v u)
from A(3) obtain d :: nat where d: c = of-nat d unfolding Nats-def

by blast
with A have u: u x ≤ c u x ≤ d unfolding ccval-def by auto
have v x ≤ c
proof (cases I x, goal-cases)

case (1 c ′) with A u show ?case by fastforce
next

case (2 c ′)
with A have B: c ′ < u x u x < c ′ + 1 c ′ < v x v x < c ′ + 1 by

fastforce+
with u A(3) have c ′ + 1 ≤ d by auto
with d u A(3) have c ′ + 1 ≤ c by auto
with B u show v x ≤ c by auto

next
case (3 c ′)
with A have c ′ < u x by fastforce
moreover from 3 A(4 ,5) have c ′ ≥ k x by fastforce
ultimately show ?case using u A(2) by auto

qed
with A(4 ,6) have v `a LE x c by auto
with A(7) show False unfolding ccval-def by auto

qed

lemma ccompatible4 :
fixes X k fixes c :: real
defines R ≡ {region X I r |I r . valid-region X k I r}
assumes c ≤ k x c ∈ � x ∈ X
shows acompatible R (GT x c) using assms unfolding acompatible-def

proof (auto, goal-cases)
case A: (1 I r v u)
from A(3) obtain d :: nat where d: c = of-nat d unfolding Nats-def

by blast
with A have u: u x > c u x > d unfolding ccval-def by auto
have v x > c
proof (cases I x, goal-cases)

case (1 c ′) with A u show ?case by fastforce
next

case (2 c ′)
with A have B: c ′ < u x u x < c ′ + 1 c ′ < v x v x < c ′ + 1 by

fastforce+

227

with d u have c ′ ≥ c by auto
with B u show v x > c by auto

next
case (3 c ′)
with A(4 ,6) have c ′ < v x by fastforce
moreover from 3 A(4 ,5) have c ′ ≥ k x by fastforce
ultimately show ?case using A(2) u(1) by auto

qed
with A(4 ,6) have v `a GT x c by auto
with A(7) show False unfolding ccval-def by auto

qed

lemma ccompatible5 :
fixes X k fixes c :: real
defines R ≡ {region X I r |I r . valid-region X k I r}
assumes c ≤ k x c ∈ � x ∈ X
shows acompatible R (GE x c) using assms unfolding acompatible-def

proof (auto, goal-cases)
case A: (1 I r v u)
from A(3) obtain d :: nat where d: c = of-nat d unfolding Nats-def

by blast
with A have u: u x ≥ c u x ≥ d unfolding ccval-def by auto
have v x ≥ c
proof (cases I x, goal-cases)

case (1 c ′) with A u show ?case by fastforce
next

case (2 c ′)
with A have B: c ′ < u x u x < c ′ + 1 c ′ < v x v x < c ′ + 1 by

fastforce+
with d u have c ′ ≥ c by auto
with B u show v x ≥ c by auto

next
case (3 c ′)
with A(4 ,6) have c ′ < v x by fastforce
moreover from 3 A(4 ,5) have c ′ ≥ k x by fastforce
ultimately show ?case using A(2) u(1) by auto

qed
with A(4 ,6) have v `a GE x c by auto
with A(7) show False unfolding ccval-def by auto

qed

lemma acompatible:
fixes X k fixes c :: real
defines R ≡ {region X I r |I r . valid-region X k I r}

228

assumes c ≤ k x c ∈ � x ∈ X constraint-pair ac = (x, c)
shows acompatible R ac using assms

by (cases ac) (auto intro: ccompatible1 ccompatible2 ccompatible3 ccompat-
ible4 ccompatible5)

definition ccompatible
where

ccompatible R cc ≡ ∀ R ∈ R. R ⊆ {|cc|} ∨ {|cc|} ∩ R = {}

lemma ccompatible:
fixes X k fixes c :: nat
defines R ≡ {region X I r |I r . valid-region X k I r}
assumes ∀ (x,m) ∈ collect-clock-pairs cc. m ≤ k x ∧ x ∈ X ∧ m ∈ �
shows ccompatible R cc using assms

proof (induction cc)
case Nil
then show ?case by (auto simp: ccompatible-def ccval-def clock-val-def)

next
case (Cons ac cc)
then have ccompatible R cc by (auto simp: collect-clock-pairs-def)
moreover have

acompatible R ac
using Cons.prems by (auto intro: acompatible simp: collect-clock-pairs-def
R-def)

ultimately show ?case
unfolding ccompatible-def acompatible-def ccval-def by (fastforce simp:

clock-val-def)
qed

5.5 Compability with Resets

definition region-set
where

region-set R x c = {v(x := c) | v. v ∈ R}

lemma region-set-id:
fixes X k
defines R ≡ {region X I r |I r . valid-region X k I r}
assumes R ∈ R v ∈ R finite X 0 ≤ c c ≤ k x x ∈ X
shows [v(x := c)]R = region-set R x c [v(x := c)]R ∈ R v(x := c) ∈ [v(x

:= c)]R
proof −

from assms obtain I r where R: R = region X I r valid-region X k I r
v ∈ region X I r by auto

229

let ?I = λ y. if x = y then Const c else I y
let ?r = {(y,z) ∈ r . x 6= y ∧ x 6= z}
let ?X0 = {x ∈ X . ∃ c. I x = Intv c}
let ?X0

′ = {x ∈ X . ∃ c. ?I x = Intv c}

from R(2) have refl: refl-on ?X0 r and trans: trans r and total: total-on
?X0 r by auto

have valid: valid-region X k ?I ?r
proof

show ?X0 − {x} = ?X0
′ by auto

next
from refl show refl-on (?X0 − {x}) ?r unfolding refl-on-def by auto

next
from trans show trans ?r unfolding trans-def by blast

next
from total show total-on (?X0 − {x}) ?r unfolding total-on-def by

auto
next

from R(2) have ∀ x ∈ X . valid-intv (k x) (I x) by auto
with ‹c ≤ k x› show ∀ x ∈ X . valid-intv (k x) (?I x) by auto

qed

{ fix v assume v: v ∈ region-set R x c
with R(1) obtain v ′ where v ′: v ′ ∈ region X I r v = v ′(x := c)

unfolding region-set-def by auto
have v ∈ region X ?I ?r
proof (standard, goal-cases)

case 1
from v ′ ‹0 ≤ c› show ?case by auto

next
case 2
from v ′ show ?case
proof (auto, goal-cases)

case (1 y)
then have intv-elem y v ′ (I y) by auto
with ‹x 6= y› show intv-elem y (v ′(x := c)) (I y) by (cases I y) auto

qed
next

show ?X0 − {x} = ?X0
′ by auto

next
from v ′ show ∀ y ∈ ?X0 − {x}. ∀ z ∈ ?X0 − {x}. (y,z) ∈ ?r ←→

frac (v y) ≤ frac (v z) by auto
qed

230

} moreover
{ fix v assume v: v ∈ region X ?I ?r

have ∃ c. v(x := c) ∈ region X I r
proof (cases I x)

case (Const c)
from R(2) have c ≥ 0 by auto
let ?v = v(x := c)
have ?v ∈ region X I r
proof (standard, goal-cases)

case 1
from ‹c≥0 › v show ?case by auto

next
case 2
show ?case
proof (auto, goal-cases)

case (1 y)
with v have intv-elem y v (?I y) by fast

with Const show intv-elem y ?v (I y) by (cases x = y, auto) (cases
I y, auto)

qed
next

from Const show ?X0
′ = ?X0 by auto

with refl have r ⊆ ?X0
′ × ?X0

′ unfolding refl-on-def by auto
then have r : ?r = r by auto
from v have ∀ y ∈ ?X0

′. ∀ z ∈ ?X0
′. (y,z) ∈ ?r ←→ frac (v y) ≤

frac (v z) by fastforce
with r show ∀ y ∈ ?X0

′. ∀ z ∈ ?X0
′. (y,z) ∈ r ←→ frac (?v y) ≤

frac (?v z)
by auto

qed
then show ?thesis by auto

next
case (Greater c)
from R(2) have c ≥ 0 by auto
let ?v = v(x := c + 1)
have ?v ∈ region X I r
proof (standard, goal-cases)

case 1
from ‹c≥0 › v show ?case by auto

next
case 2
show ?case
proof (standard, goal-cases)

case (1 y)

231

with v have intv-elem y v (?I y) by fast
with Greater show intv-elem y ?v (I y) by (cases x = y, auto)

(cases I y, auto)
qed

next
from Greater show ?X0

′ = ?X0 by auto
with refl have r ⊆ ?X0

′ × ?X0
′ unfolding refl-on-def by auto

then have r : ?r = r by auto
from v have ∀ y ∈ ?X0

′. ∀ z ∈ ?X0
′. (y,z) ∈ ?r ←→ frac (v y) ≤

frac (v z) by fastforce
with r show ∀ y ∈ ?X0

′. ∀ z ∈ ?X0
′. (y,z) ∈ r ←→ frac (?v y) ≤

frac (?v z)
by auto

qed
then show ?thesis by auto

next
case (Intv c)
from R(2) have c ≥ 0 by auto
let ?L = {frac (v y) | y. y ∈ ?X0 ∧ x 6= y ∧ (y,x) ∈ r}
let ?U = {frac (v y) | y. y ∈ ?X0 ∧ x 6= y ∧ (x,y) ∈ r}
let ?l = if ?L 6= {} then c + Max ?L else if ?U 6= {} then c else c +

0 .5
let ?u = if ?U 6= {} then c + Min ?U else if ?L 6= {} then c + 1 else

c + 0 .5
from ‹finite X› have fin: finite ?L finite ?U by auto
{ fix y assume y: y ∈ ?X0 x 6= y (y, x) ∈ r

then have L: frac (v y) ∈ ?L by auto
with Max-in[OF fin(1)] have In: Max ?L ∈ ?L by auto
then have frac (Max ?L) = (Max ?L) using frac-frac by fastforce
from Max-ge[OF fin(1) L] have frac (v y) ≤ Max ?L .
also have . . . = frac (Max ?L) using In frac-frac[symmetric] by

fastforce
also have . . . = frac (c + Max ?L) by (auto simp: frac-nat-add-id)
finally have frac (v y) ≤ frac ?l using L by auto

} note L-bound = this
{ fix y assume y: y ∈ ?X0 x 6= y (x,y) ∈ r

then have U : frac (v y) ∈ ?U by auto
with Min-in[OF fin(2)] have In: Min ?U ∈ ?U by auto
then have frac (Min ?U) = (Min ?U) using frac-frac by fastforce

have frac (c + Min ?U) = frac (Min ?U) by (auto simp: frac-nat-add-id)
also have . . . = Min ?U using In frac-frac by fastforce
also from Min-le[OF fin(2) U] have Min ?U ≤ frac (v y) .
finally have frac ?u ≤ frac (v y) using U by auto

} note U-bound = this

232

{ assume ?L 6= {}
from Max-in[OF fin(1) this] obtain l d where l:

Max ?L = frac (v l) l ∈ X x 6= l I l = Intv d
by auto
with v have d < v l v l < d + 1 by fastforce+
with nat-intv-frac-gt0 [OF this] frac-lt-1 l(1) have 0 < Max ?L Max

?L < 1 by auto
then have c < c + Max ?L c + Max ?L < c + 1 by simp+

} note L-intv = this
{ assume ?U 6= {}

from Min-in[OF fin(2) this] obtain u d where u:
Min ?U = frac (v u) u∈ X x 6= u I u = Intv d

by auto
with v have d < v u v u < d + 1 by fastforce+
with nat-intv-frac-gt0 [OF this] frac-lt-1 u(1) have 0 < Min ?U Min

?U < 1 by auto
then have c < c + Min ?U c + Min ?U < c + 1 by simp+

} note U-intv = this
have l-bound: c ≤ ?l
proof (cases ?L = {})

case True
note T = this
show ?thesis
proof (cases ?U = {})

case True
with T show ?thesis by simp

next
case False
with U-intv T show ?thesis by simp

qed
next

case False
with L-intv show ?thesis by simp

qed
have l-bound ′: c < ?u
proof (cases ?L = {})

case True
note T = this
show ?thesis
proof (cases ?U = {})

case True
with T show ?thesis by simp

next
case False

233

with U-intv T show ?thesis by simp
qed

next
case False
with U-intv show ?thesis by simp

qed
have u-bound: ?u ≤ c + 1
proof (cases ?U = {})

case True
note T = this
show ?thesis
proof (cases ?L = {})

case True
with T show ?thesis by simp

next
case False
with L-intv T show ?thesis by simp

qed
next

case False
with U-intv show ?thesis by simp

qed
have u-bound ′: ?l < c + 1
proof (cases ?U = {})

case True
note T = this
show ?thesis
proof (cases ?L = {})

case True
with T show ?thesis by simp

next
case False
with L-intv T show ?thesis by simp

qed
next

case False
with L-intv show ?thesis by simp

qed
have frac-c: frac c = 0 frac (c+1) = 0 by auto
have l-u: ?l ≤ ?u
proof (cases ?L = {})

case True
note T = this
show ?thesis

234

proof (cases ?U = {})
case True
with T show ?thesis by simp

next
case False

with T show ?thesis using Min-in[OF fin(2) False] by (auto
simp: frac-c)

qed
next

case False
with Max-in[OF fin(1) this] have l: ?l = c + Max ?L Max ?L ∈ ?L

by auto
note F = False
from l(1) have ∗: Max ?L < 1 using False L-intv(2) by linarith
show ?thesis
proof (cases ?U = {})

case True
with F l ∗ show ?thesis by simp

next
case False
from Min-in[OF fin(2) this] l(2) obtain l u where l-u:

Max ?L = frac (v l) Min ?U = frac (v u) l ∈ ?X0 u ∈ ?X0 (l,x)
∈ r (x,u) ∈ r

x 6= l x 6= u
by auto
from trans l-u(5−) have (l,u) ∈ ?r unfolding trans-def by blast
with l-u(1−4) v have ∗: Max ?L ≤ Min ?U by fastforce
with l-u(1 ,2) have frac (Max ?L) ≤ frac (Min ?U) by (simp add:

frac-frac)
with frac-nat-add-id l(1) False have frac ?l ≤ frac ?u by simp
with l(1) ∗ False show ?thesis by simp

qed
qed
obtain d where d: d = (?l + ?u) / 2 by blast
with l-u have d2 : ?l ≤ d d ≤ ?u by simp+
from d l-bound l-bound ′ u-bound u-bound ′ have d3 : c < d d < c + 1

d ≥ 0 by simp+
have floor ?l = c
proof (cases ?L = {})

case False
from L-intv[OF False] have 0 ≤ Max ?L Max ?L < 1 by auto
from floor-nat-add-id[OF this] False show ?thesis by simp

next
case True

235

note T = this
show ?thesis
proof (cases ?U = {})

case True
with T show ?thesis by (simp add: floor-nat-add-id)

next
case False
from U-intv[OF False] have 0 ≤ Min ?U Min ?U < 1 by auto
from floor-nat-add-id[OF this] T False show ?thesis by simp

qed
qed
have floor-u: floor ?u = (if ?U = {} ∧ ?L 6= {} then c + 1 else c)
proof (cases ?U = {})

case False
from U-intv[OF False] have 0 ≤ Min ?U Min ?U < 1 by auto
from floor-nat-add-id[OF this] False show ?thesis by simp

next
case True
note T = this
show ?thesis
proof (cases ?L = {})

case True
with T show ?thesis by (simp add: floor-nat-add-id)

next
case False
from L-intv[OF False] have 0 ≤ Max ?L Max ?L < 1 by auto
from floor-nat-add-id[OF this] T False show ?thesis by auto

qed
qed
{ assume ?L 6= {} ?U 6= {}

from Max-in[OF fin(1) ‹?L 6= {}›] obtain w where w:
w ∈ ?X0 x 6= w (w,x) ∈ r Max ?L = frac (v w)

by auto
from Min-in[OF fin(2) ‹?U 6= {}›] obtain z where z:

z ∈ ?X0 x 6= z (x,z) ∈ r Min ?U = frac (v z)
by auto
from w z trans have (w,z) ∈ r unfolding trans-def by blast
with v w z have Max ?L ≤ Min ?U by fastforce

} note l-le-u = this
{ fix y assume y: y ∈ ?X0 x 6= y
from total y ‹x ∈ X› Intv have total: (x,y) ∈ r ∨ (y,x) ∈ r unfolding

total-on-def by auto
have frac (v y) = frac d ←→ (y,x) ∈ r ∧ (x,y) ∈ r
proof safe

236

assume A: (y,x) ∈ r (x,y) ∈ r
from L-bound[OF y A(1)] U-bound[OF y A(2)] have ∗:

frac (v y) ≤ frac ?l frac ?u ≤ frac (v y)
by auto
from A y have ∗∗: ?L 6= {} ?U 6= {} by auto

with L-intv[OF this(1)] U-intv[OF this(2)] have frac ?l = Max ?L
frac ?u = Min ?U

by (auto simp: frac-nat-add-id frac-eq)
with ∗ ∗∗ l-le-u have frac ?l = frac ?u frac (v y) = frac ?l by auto
with d have d = ((floor ?l + floor ?u) + (frac (v y) + frac (v y)))

/ 2
unfolding frac-def by auto
also have . . . = c + frac (v y) using ‹floor ?l = c› floor-u ‹?U 6=

{}› by auto
finally show frac (v y) = frac d using frac-nat-add-id frac-frac by

metis
next

assume A: frac (v y) = frac d
show (y, x) ∈ r
proof (rule ccontr)

assume B: (y,x) /∈ r
with total have B ′: (x,y) ∈ r by auto
from U-bound[OF y this] have u-y:frac ?u ≤ frac (v y) by auto
from y B ′ have U : ?U 6= {} and frac (v y) ∈ ?U by auto
then have u: frac ?u = Min ?U using Min-in[OF fin(2) ‹?U 6=

{}›]
by (auto simp: frac-nat-add-id frac-frac)
show False
proof (cases ?L = {})

case True
from U-intv[OF U] have 0 < Min ?U Min ?U < 1 by auto

then have ∗: frac (Min ?U / 2) = Min ?U / 2 unfolding
frac-eq by simp

from d U True have d = ((c + c) + Min ?U) / 2 by auto
also have . . . = c + Min ?U / 2 by simp

finally have frac d = Min ?U / 2 using ∗ by (simp add:
frac-nat-add-id)

also have . . . < Min ?U using ‹0 < Min ?U › by auto
finally have frac d < frac ?u using u by auto
with u-y A show False by auto

next
case False
then have l: ?l = c + Max ?L by simp
from Max-in[OF fin(1) ‹?L 6= {}›]

237

obtain w where w:
w ∈ ?X0 x 6= w (w,x) ∈ r Max ?L = frac (v w)

by auto
with ‹(y,x) /∈ r› trans have ∗∗: (y,w) /∈ r unfolding trans-def

by blast
from Min-in[OF fin(2) ‹?U 6= {}›] Max-in[OF fin(1) ‹?L 6=

{}›] frac-lt-1
have 0 ≤ Max ?L Max ?L < 1 0 ≤ Min ?U Min ?U < 1 by

auto
then have 0 ≤ (Max ?L + Min ?U) / 2 (Max ?L + Min ?U)

/ 2 < 1 by auto
then have ∗∗∗: frac ((Max ?L + Min ?U) / 2) = (Max ?L +

Min ?U) / 2 unfolding frac-eq ..
from y w have y ∈ ?X0

′ w ∈ ?X0
′ by auto

with v ∗∗ have lt: frac (v y) > frac (v w) by fastforce
from d U l have d = ((c + c) + (Max ?L + Min ?U))/2 by

auto
also have . . . = c + (Max ?L + Min ?U) / 2 by simp
finally have frac d = frac ((Max ?L + Min ?U) / 2) by (simp

add: frac-nat-add-id)
also have . . . = (Max ?L + Min ?U) / 2 using ∗∗∗ by simp
also have . . . < (frac (v y) + Min ?U) / 2 using lt w(4) by

auto
also have . . . ≤ frac (v y) using Min-le[OF fin(2) ‹frac (v y)

∈ ?U ›] by auto
finally show False using A by auto

qed
qed

next
assume A: frac (v y) = frac d
show (x, y) ∈ r
proof (rule ccontr)

assume B: (x,y) /∈ r
with total have B ′: (y,x) ∈ r by auto
from L-bound[OF y this] have l-y:frac ?l ≥ frac (v y) by auto
from y B ′ have L: ?L 6= {} and frac (v y) ∈ ?L by auto
then have l: frac ?l = Max ?L using Max-in[OF fin(1) ‹?L 6=

{}›]
by (auto simp: frac-nat-add-id frac-frac)
show False
proof (cases ?U = {})

case True
from L-intv[OF L] have ∗: 0 < Max ?L Max ?L < 1 by auto
from d L True have d = ((c + c) + (1 + Max ?L)) / 2 by

238

auto
also have . . . = c + (1 + Max ?L) / 2 by simp
finally have frac d = frac ((1 + Max ?L) / 2) by (simp add:

frac-nat-add-id)
also have . . . = (1 + Max ?L) / 2 using ∗ unfolding frac-eq

by auto
also have . . . > Max ?L using ∗ by auto
finally have frac d > frac ?l using l by auto
with l-y A show False by auto

next
case False
then have u: ?u = c + Min ?U by simp
from Min-in[OF fin(2) ‹?U 6= {}›]
obtain w where w:

w ∈ ?X0 x 6= w (x,w) ∈ r Min ?U = frac (v w)
by auto
with ‹(x,y) /∈ r› trans have ∗∗: (w,y) /∈ r unfolding trans-def

by blast
from Min-in[OF fin(2) ‹?U 6= {}›] Max-in[OF fin(1) ‹?L 6=

{}›] frac-lt-1
have 0 ≤ Max ?L Max ?L < 1 0 ≤ Min ?U Min ?U < 1 by

auto
then have 0 ≤ (Max ?L + Min ?U) / 2 (Max ?L + Min ?U)

/ 2 < 1 by auto
then have ∗∗∗: frac ((Max ?L + Min ?U) / 2) = (Max ?L +

Min ?U) / 2 unfolding frac-eq ..
from y w have y ∈ ?X0

′ w ∈ ?X0
′ by auto

with v ∗∗ have lt: frac (v y) < frac (v w) by fastforce
from d L u have d = ((c + c) + (Max ?L + Min ?U))/2 by

auto
also have . . . = c + (Max ?L + Min ?U) / 2 by simp
finally have frac d = frac ((Max ?L + Min ?U) / 2) by (simp

add: frac-nat-add-id)
also have . . . = (Max ?L + Min ?U) / 2 using ∗∗∗ by simp
also have . . . > (Max ?L + frac (v y)) / 2 using lt w(4) by

auto
finally have frac d > frac (v y) using Max-ge[OF fin(1) ‹frac

(v y) ∈ ?L›] by auto
then show False using A by auto

qed
qed

qed
} note d-frac-equiv = this
have frac-l: frac ?l ≤ frac d

239

proof (cases ?L = {})
case True
note T = this
show ?thesis
proof (cases ?U = {})

case True
with T have ?l = ?u by auto
with d have d = ?l by auto
then show ?thesis by auto

next
case False
with T have frac ?l = 0 by auto
moreover have frac d ≥ 0 by auto
ultimately show ?thesis by linarith

qed
next

case False
note F = this
then have l: ?l = c + Max ?L frac ?l = Max ?L using Max-in[OF

fin(1) ‹?L 6= {}›]
by (auto simp: frac-nat-add-id frac-frac)
from L-intv[OF F] have ∗: 0 < Max ?L Max ?L < 1 by auto
show ?thesis
proof (cases ?U = {})

case True
from True F have ?u = c + 1 by auto
with l d have d = ((c + c) + (Max ?L + 1)) / 2 by auto
also have . . . = c + (1 + Max ?L) / 2 by simp

finally have frac d = frac ((1 + Max ?L) / 2) by (simp add:
frac-nat-add-id)

also have . . . = (1 + Max ?L) / 2 using ∗ unfolding frac-eq by
auto

also have . . . > Max ?L using ∗ by auto
finally show frac d ≥ frac ?l using l by auto

next
case False

then have u: ?u = c + Min ?U frac ?u = Min ?U using Min-in[OF
fin(2) False]

by (auto simp: frac-nat-add-id frac-frac)
from U-intv[OF False] have ∗∗: 0 < Min ?U Min ?U < 1 by auto
from l u d have d = ((c + c) + (Max ?L + Min ?U)) / 2 by auto
also have . . . = c + (Max ?L + Min ?U) / 2 by simp
finally have frac d = frac ((Max ?L + Min ?U) / 2) by (simp

add: frac-nat-add-id)

240

also have . . . = (Max ?L + Min ?U) / 2 using ∗ ∗∗ unfolding
frac-eq by auto

also have . . . ≥ Max ?L using l-le-u[OF F False] by auto
finally show ?thesis using l by auto

qed
qed
have frac-u: ?U 6= {} ∨ ?L = {} −→ frac d ≤ frac ?u
proof (cases ?U = {})

case True
note T = this
show ?thesis
proof (cases ?L = {})

case True
with T have ?l = ?u by auto
with d have d = ?u by auto
then show ?thesis by auto

next
case False
with T show ?thesis by auto

qed
next

case False
note F = this

then have u: ?u = c + Min ?U frac ?u = Min ?U using Min-in[OF
fin(2) ‹?U 6= {}›]

by (auto simp: frac-nat-add-id frac-frac)
from U-intv[OF F] have ∗: 0 < Min ?U Min ?U < 1 by auto
show ?thesis
proof (cases ?L = {})

case True
from True F have ?l = c by auto
with u d have d = ((c + c) + Min ?U) / 2 by auto
also have . . . = c + Min ?U / 2 by simp

finally have frac d = frac (Min ?U / 2) by (simp add: frac-nat-add-id)
also have . . . = Min ?U / 2 unfolding frac-eq using ∗ by auto
also have . . . ≤ Min ?U using ‹0 < Min ?U › by auto
finally have frac d ≤ frac ?u using u by auto
then show ?thesis by auto

next
case False

then have l: ?l = c + Max ?L frac ?l = Max ?L using Max-in[OF
fin(1) False]

by (auto simp: frac-nat-add-id frac-frac)
from L-intv[OF False] have ∗∗: 0 < Max ?L Max ?L < 1 by auto

241

from l u d have d = ((c + c) + (Max ?L + Min ?U)) / 2 by auto
also have . . . = c + (Max ?L + Min ?U) / 2 by simp
finally have frac d = frac ((Max ?L + Min ?U) / 2) by (simp

add: frac-nat-add-id)
also have . . . = (Max ?L + Min ?U) / 2 using ∗ ∗∗ unfolding

frac-eq by auto
also have . . . ≤ Min ?U using l-le-u[OF False F] by auto
finally show ?thesis using u by auto

qed
qed
have ∀ y ∈ ?X0 − {x}. (y,x) ∈ r ←→ frac (v y) ≤ frac d
proof (safe, goal-cases)

case (1 y k)
with L-bound[of y] frac-l show ?case by auto

next
case (2 y k)
show ?case
proof (rule ccontr , goal-cases)

case 1
with total 2 ‹x ∈ X› Intv have (x,y) ∈ r unfolding total-on-def

by auto
with 2 U-bound[of y] have ?U 6= {} frac ?u ≤ frac (v y) by auto
with frac-u have frac d ≤ frac (v y) by auto
with 2 d-frac-equiv 1 show False by auto

qed
qed
moreover have ∀ y ∈ ?X0 − {x}. (x,y) ∈ r ←→ frac d ≤ frac (v y)
proof (safe, goal-cases)

case (1 y k)
then have ?U 6= {} by auto
with 1 U-bound[of y] frac-u show ?case by auto

next
case (2 y k)
show ?case
proof (rule ccontr , goal-cases)

case 1
with total 2 ‹x ∈ X› Intv have (y,x) ∈ r unfolding total-on-def

by auto
with 2 L-bound[of y] have frac (v y) ≤ frac ?l by auto
with frac-l have frac (v y) ≤ frac d by auto
with 2 d-frac-equiv 1 show False by auto

qed
qed
ultimately have d:

242

c < d d < c + 1 ∀ y ∈ ?X0 − {x}. (y,x) ∈ r ←→ frac (v y) ≤ frac
d

∀ y ∈ ?X0 − {x}. (x,y) ∈ r ←→ frac d ≤ frac (v y)
using d3 by auto
let ?v = v(x := d)
have ?v ∈ region X I r
proof (standard, goal-cases)

case 1
from ‹d≥0 › v show ?case by auto

next
case 2
show ?case
proof (safe, goal-cases)

case (1 y)
with v have intv-elem y v (?I y) by fast
with Intv d(1 ,2) show intv-elem y ?v (I y) by (cases x = y, auto)

(cases I y, auto)
qed

next
from ‹x ∈ X› Intv show ?X0

′ ∪ {x} = ?X0 by auto
with refl have r ⊆ (?X0

′∪ {x}) × (?X0
′∪ {x}) unfolding refl-on-def

by auto
have ∀ x ∈ ?X0

′. ∀ y ∈ ?X0
′. (x,y) ∈ r ←→ (x,y) ∈ ?r by auto

with v have ∀ x ∈ ?X0
′. ∀ y ∈ ?X0

′. (x,y) ∈ r ←→ frac (v x) ≤
frac (v y) by fastforce

then have ∀ x ∈ ?X0
′. ∀ y ∈ ?X0

′. (x,y) ∈ r ←→ frac (?v x) ≤
frac (?v y) by auto

with d(3 ,4) show ∀ y ∈ ?X0
′ ∪ {x}. ∀ z ∈ ?X0

′ ∪ {x}. (y,z) ∈ r
←→ frac (?v y) ≤ frac (?v z)

proof (auto, goal-cases)
case 1
from refl ‹x ∈ X› Intv show ?case by (auto simp: refl-on-def)

qed
qed
then show ?thesis by auto

qed
then obtain d where v(x := d) ∈ R using R by auto

then have (v(x := d))(x := c) ∈ region-set R x c unfolding re-
gion-set-def by blast

moreover from v ‹x ∈ X› have (v(x := d))(x := c) = v by fastforce
ultimately have v ∈ region-set R x c by simp

}

ultimately have region-set R x c = region X ?I ?r by blast

243

with valid R-def have ∗: region-set R x c ∈ R by auto
moreover from assms have ∗∗: v (x := c) ∈ region-set R x c unfolding

region-set-def by auto
ultimately show [v(x := c)]R = region-set R x c [v(x := c)]R ∈ R v(x

:= c) ∈ [v(x := c)]R
using region-unique[OF - ∗∗ ∗] R-def by auto

qed

definition region-set ′
where

region-set ′ R r c = {[r → c]v | v. v ∈ R}

lemma region-set ′-id:
fixes X k and c :: nat
defines R ≡ {region X I r |I r . valid-region X k I r}
assumes R ∈ R v ∈ R finite X 0 ≤ c ∀ x ∈ set r . c ≤ k x set r ⊆ X
shows [[r → c]v]R = region-set ′ R r c ∧ [[r → c]v]R ∈ R ∧ [r → c]v ∈

[[r → c]v]R using assms
proof (induction r)

case Nil
from regions-closed[OF - Nil(2 ,3)] regions-closed ′[OF - Nil(2 ,3)] re-

gion-unique[OF - Nil(3 ,2)] Nil(1)
have [v]R = R [v ⊕ 0]R ∈ R (v ⊕ 0) ∈ [v ⊕ 0]R by auto
then show ?case unfolding region-set ′-def cval-add-def by simp

next
case (Cons x xs)
then have [[xs→c]v]R = region-set ′ R xs c [[xs→c]v]R ∈ R [xs→c]v ∈

[[xs→c]v]R by force+
note IH = this[unfolded R-def]
let ?v = ([xs→c]v)(x := c)
from region-set-id[OF IH (2 ,3) ‹finite X› ‹c ≥ 0 ›, of x] R-def Cons.prems(5 ,6)
have [?v]R = region-set ([[xs→real c]v]R) x c [?v]R ∈ R ?v ∈ [?v]R by

auto
moreover have region-set ′ R (x # xs) (real c) = region-set ([[xs→real

c]v]R) x c
unfolding region-set-def region-set ′-def
proof (safe, goal-cases)

case (1 y u)
let ?u = [xs→real c]u
have [x # xs→real c]u = ?u(x := real c) by auto
moreover from IH (1) 1 have ?u ∈ [[xs→real c]v]R unfolding R-def

region-set ′-def by auto
ultimately show ?case by auto

next

244

case (2 y u)
with IH (1)[unfolded region-set ′-def R-def [symmetric]] show ?case by

auto
qed
moreover have [x # xs→real c]v = ?v by simp
ultimately show ?case by presburger

qed

This is the only additional lemma necessary to make local α-closures work.
lemma region-set-subs:

fixes X k k ′ and c :: nat
defines R ≡ {region X I r |I r . valid-region X k I r}
defines R ′ ≡ {region X I r |I r . valid-region X k ′ I r}
assumes R ∈ R v ∈ R finite X 0 ≤ c set cs ⊆ X ∀ y. y /∈ set cs −→ k

y ≥ k ′ y
shows [[cs → c]v]R ′ ⊇ region-set ′ R cs c [[cs → c]v]R ′ ∈ R ′ [cs → c]v ∈

[[cs → c]v]R ′

proof −
from assms obtain I r where R: R = region X I r valid-region X k I r

v ∈ region X I r by auto
— The set of movers, that is all intervals that now are unbounded due to

changing from k to k ′

let ?M = {x ∈ X . isIntv (I x) ∧ intv-const (I x) ≥ k ′ x ∨ intv-const (I
x) > k ′ x}

let ?I = λ y.
if y ∈ set cs then (if c ≤ k ′ y then Const c else Greater (k ′ y))
else if (isIntv (I y) ∧ intv-const (I y) ≥ k ′ y ∨ intv-const (I y) > k ′ y)

then Greater (k ′ y)
else I y

let ?r = {(y,z) ∈ r . y /∈ set cs ∧ z /∈ set cs ∧ y /∈ ?M ∧ z /∈ ?M}
let ?X0 = {x ∈ X . ∃ c. I x = Intv c}
let ?X0

′ = {x ∈ X . ∃ c. ?I x = Intv c}

from R(2) have refl: refl-on ?X0 r and trans: trans r and total: total-on
?X0 r by auto

have valid: valid-region X k ′ ?I ?r
proof

show ?X0
′ = ?X0

′ by auto
next

from refl show refl-on ?X0
′ ?r unfolding refl-on-def by auto

next
from trans show trans ?r unfolding trans-def by auto

next

245

from total show total-on ?X0
′ ?r unfolding total-on-def by auto

next
from R(2) have ∀ x ∈ X . valid-intv (k x) (I x) by auto
then show ∀ x ∈ X . valid-intv (k ′ x) (?I x)

apply safe
subgoal for x ′

using ‹∀ y. y /∈ set cs −→ k y ≥ k ′ y›
by (cases I x ′; force)

done
qed

{ fix v assume v: v ∈ region-set ′ R cs c
with R(1) obtain v ′ where v ′: v ′ ∈ region X I r v = [cs → c]v ′

unfolding region-set ′-def by auto
have v ∈ region X ?I ?r
proof (standard, goal-cases)

case 1
from v ′ ‹0 ≤ c› show ?case

apply −
apply rule
subgoal for x

by (cases x ∈ set cs) auto
done

next
case 2
from v ′ show ?case

apply −
apply rule
subgoal for x ′

by (cases I x ′; cases x ′ ∈ set cs; force)
done

next
show ?X0

′ = ?X0
′ by auto

next
from v ′ show ∀ y ∈ ?X0

′. ∀ z ∈ ?X0
′. (y,z) ∈ ?r ←→ frac (v y) ≤

frac (v z) by auto
qed

}
then have region-set ′ R cs c ⊆ region X ?I ?r by blast
moreover from valid have ∗: region X ?I ?r ∈ R ′ unfolding R ′-def by

blast
moreover from assms have ∗∗: [cs → c]v ∈ region-set ′ R cs c unfolding

region-set ′-def by auto
ultimately show

246

[[cs → c]v]R ′ ⊇ region-set ′ R cs c [[cs → c]v]R ′ ∈ R ′ [cs → c]v ∈ [[cs
→ c]v]R ′

using region-unique[of R ′, OF - - ∗, unfolded R ′-def , OF HOL.refl]
unfolding R ′-def [symmetric] by auto

qed

5.6 A Semantics Based on Regions

5.6.1 Single step

inductive step-r ::
(′a, ′c, t, ′s) ta ⇒ (′c, t) zone set ⇒ ′s ⇒ (′c, t) zone ⇒ ′s ⇒ (′c, t) zone
⇒ bool
(‹-,- ` 〈-, -〉 〈-, -〉› [61 ,61 ,61 ,61] 61)
where

step-t-r :
[[R = {region X I r |I r . valid-region X k I r}; valid-abstraction A X k; R
∈ R; R ′ ∈ Succ R R;

R ′ ⊆ {|inv-of A l|}]] =⇒ A,R ` 〈l,R〉 〈l,R ′〉 |
step-a-r :
[[R = {region X I r |I r . valid-region X k I r}; valid-abstraction A X k; A
` l −→g,a,r l ′; R ∈ R]]

=⇒ A,R ` 〈l,R〉 〈l ′,region-set ′ (R ∩ {u. u ` g}) r 0 ∩ {u. u ` inv-of
A l ′}〉

inductive-cases[elim!]: A,R ` 〈l, u〉 〈l ′, u ′〉

declare step-r .intros[intro]

lemma region-cover ′:
assumes R = {region X I r |I r . valid-region X k I r} and ∀ x∈X . 0 ≤

v x
shows v ∈ [v]R [v]R ∈ R

proof −
from region-cover [OF assms(2), of k] assms obtain R where R: R ∈ R

v ∈ R by auto
from regions-closed ′[OF assms(1) R, of 0] show v ∈ [v]R unfolding

cval-add-def by auto
from regions-closed[OF assms(1) R, of 0] show [v]R ∈ R unfolding

cval-add-def by auto
qed

lemma step-r-complete-aux:
fixes R r A l ′ g

247

defines R ′ ≡ region-set ′ (R ∩ {u. u ` g}) r 0 ∩ {u. u ` inv-of A l ′}
assumes R = {region X I r |I r . valid-region X k I r}

and valid-abstraction A X k
and u ∈ R
and R ∈ R
and A ` l −→g,a,r l ′
and u ` g
and [r→0]u ` inv-of A l ′

shows R = R ∩ {u. u ` g} ∧ R ′ = region-set ′ R r 0 ∧ R ′ ∈ R
proof −

note A = assms(2−)
from A(2) have ∗:
∀ (x, m)∈clkp-set A. m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �
collect-clkvt (trans-of A) ⊆ X
finite X

by (fastforce elim: valid-abstraction.cases)+
from A(5) ∗(2) have r : set r ⊆ X unfolding collect-clkvt-def by fastforce
from ∗(1) A(5) have ∀ (x, m)∈collect-clock-pairs g. m ≤ real (k x) ∧ x
∈ X ∧ m ∈ �

unfolding clkp-set-def collect-clkt-def by fastforce
from ccompatible[OF this, folded A(1)] A(3 ,4 ,6) have R ⊆ {|g|}
unfolding ccompatible-def ccval-def by blast
then have R-id: R ∩ {u. u ` g} = R unfolding ccval-def by auto
from region-set ′-id[OF A(4)[unfolded A(1)] A(3) ∗(3) - - r , of 0 , folded

A(1)]
have ∗∗:
[[r→0]u]R = region-set ′ R r 0 [[r→0]u]R ∈ R [r→0]u ∈ [[r→0]u]R

by auto
let ?R = [[r→0]u]R
from ∗(1) A(5) have ∗∗∗:
∀ (x, m) ∈ collect-clock-pairs (inv-of A l ′). m ≤ real (k x) ∧ x ∈ X ∧ m

∈ �
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce
from ccompatible[OF this, folded A(1)] ∗∗(2−) A(7) have ?R ⊆ {|inv-of

A l ′|}
unfolding ccompatible-def ccval-def by blast
then have ∗∗∗: ?R ∩ {u. u ` inv-of A l ′} = ?R unfolding ccval-def by

auto
with ∗∗(1 ,2) R-id show ?thesis by (auto simp: R ′-def)

qed

lemma step-r-complete:
[[A ` 〈l, u〉 → 〈l ′,u ′〉; R = {region X I r |I r . valid-region X k I r};

valid-abstraction A X k;

248

∀ x ∈ X . u x ≥ 0]] =⇒ ∃ R ′. A,R ` 〈l, ([u]R)〉 〈l ′,R ′〉 ∧ u ′ ∈ R ′ ∧
R ′ ∈ R
proof (induction rule: step.induct, goal-cases)

case (1 A l u a l ′ u ′)
note A = this
then obtain g r where u ′: u ′ = [r→0]u A ` l −→g,a,r l ′ u ` g u ′ `

inv-of A l ′
by (cases rule: step-a.cases) auto
let ?R ′= region-set ′ (([u]R) ∩ {u. u ` g}) r 0 ∩ {u. u ` inv-of A l ′}
from region-cover ′[OF A(2 ,4)] have R: [u]R ∈ R u ∈ [u]R by auto
from step-r-complete-aux[OF A(2 ,3) this(2 ,1) u ′(2 ,3)] u ′

have ∗: [u]R = ([u]R) ∩ {u. u ` g} ?R ′ = region-set ′ ([u]R) r 0 ?R ′ ∈ R
by auto

from 1 (2 ,3) have collect-clkvt (trans-of A) ⊆ X finite X by (auto elim:
valid-abstraction.cases)

with u ′(2) have r : set r ⊆ X unfolding collect-clkvt-def by fastforce
from ∗ u ′(1) R(2) have u ′ ∈ ?R ′ unfolding region-set ′-def by auto
moreover have A,R ` 〈l,([u]R)〉 〈l ′,?R ′〉 using R(1) A(2 ,3) u ′(2)

by auto
ultimately show ?case using ∗(3) by meson

next
case (2 A l u d l ′ u ′)
hence u ′: u ′ = (u ⊕ d) u ⊕ d ` inv-of A l 0 ≤ d and l = l ′ by (auto

elim!: step-t.cases)
from region-cover ′[OF 2 (2 ,4)] have R: [u]R ∈ R u ∈ [u]R by auto
from SuccI2 [OF 2 (2) this(2 ,1) ‹0 ≤ d›, of [u ′]R] u ′(1) have u ′1 :
[u ′]R ∈ Succ R ([u]R) [u ′]R ∈ R

by auto
from regions-closed ′[OF 2 (2) R(1 ,2) ‹0 ≤ d›] u ′(1) have u ′2 : u ′ ∈ [u ′]R

by simp
from 2 (3) have ∗:
∀ (x, m)∈clkp-set A. m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �
collect-clkvt (trans-of A) ⊆ X
finite X

by (fastforce elim: valid-abstraction.cases)+
from ∗(1) u ′(2) have ∀ (x, m)∈collect-clock-pairs (inv-of A l). m ≤ real

(k x) ∧ x ∈ X ∧ m ∈ �
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from ccompatible[OF this, folded 2 (2)] u ′1 (2) u ′2 u ′(1 ,2 ,3) R have
[u ′]R ⊆ {|inv-of A l|}

unfolding ccompatible-def ccval-def by auto
with 2 u ′1 R(1) have A,R ` 〈l, ([u]R)〉 〈l,([u ′]R)〉 by auto
with u ′1 (2) u ′2 ‹l = l ′› show ?case by meson

qed

249

Compare this to lemma step-z-sound. This version is weaker because for
regions we may very well arrive at a successor for which not every valuation
can be reached by the predecessor. This is the case for e.g. the region with
only Greater (k x) bounds.

lemma step-r-sound:
A,R ` 〈l, R〉 〈l ′,R ′〉 =⇒ R = {region X I r |I r . valid-region X k I r}
=⇒ R ′ 6= {} =⇒ (∀ u ∈ R. ∃ u ′ ∈ R ′. A ` 〈l, u〉 → 〈l ′,u ′〉)

proof (induction rule: step-r .induct)
case (step-t-r R X k A R R ′ l)
note A = this[unfolded this(1)]
show ?case
proof

fix u assume u: u ∈ R
from set-of-regions[OF A(3) this A(4), folded step-t-r(1)] A(2)

obtain t where t: t ≥ 0 [u ⊕ t]R = R ′ by (auto elim: valid-abstraction.cases)
with regions-closed ′[OF A(1 ,3) u this(1)] step-t-r(1) have ∗: (u ⊕ t)

∈ R ′ by auto
with u t(1) A(5 ,6) have A ` 〈l, u〉 → 〈l,(u ⊕ t)〉 unfolding ccval-def

by auto
with t ∗ show ∃ u ′∈R ′. A ` 〈l, u〉 → 〈l,u ′〉 by meson

qed
next

case A: (step-a-r R X k A l g a r l ′ R)
show ?case
proof

fix u assume u: u ∈ R
from A(6) obtain v where v: v ∈ R v ` g [r→0]v ` inv-of A l ′

unfolding region-set ′-def by auto
let ?R ′ = region-set ′ (R ∩ {u. u ` g}) r 0 ∩ {u. u ` inv-of A l ′}
from step-r-complete-aux[OF A(1 ,2) v(1) A(4 ,3) v(2−)] have R:

R = R ∩ {u. u ` g} ?R ′ = region-set ′ R r 0
by auto

from A have collect-clkvt (trans-of A) ⊆ X by (auto elim: valid-abstraction.cases)
with A(3) have r : set r ⊆ X unfolding collect-clkvt-def by fastforce
from u R have ∗: [r→0]u ∈ ?R ′ u ` g [r→0]u ` inv-of A l ′ unfolding

region-set ′-def by auto
with A(3) have A ` 〈l, u〉 → 〈l ′,[r→0]u〉 apply (intro step.intros(1))

apply rule by auto
with ∗ show ∃ a∈?R ′. A ` 〈l, u〉 → 〈l ′,a〉 by meson

qed
qed

250

5.6.2 Multi Step

inductive
steps-r :: (′a, ′c, t, ′s) ta ⇒ (′c, t) zone set ⇒ ′s ⇒ (′c, t) zone ⇒ ′s ⇒

(′c, t) zone ⇒ bool
(‹-,- ` 〈-, -〉 ∗ 〈-, -〉› [61 ,61 ,61 ,61 ,61 ,61] 61)
where

refl: A,R ` 〈l, R〉 ∗ 〈l, R〉 |
step: A,R ` 〈l, R〉 ∗ 〈l ′, R ′〉 =⇒ A,R ` 〈l ′, R ′〉 〈l ′′, R ′′〉 =⇒ A,R `
〈l, R〉 ∗ 〈l ′′, R ′′〉

declare steps-r .intros[intro]

lemma steps-alt:
A ` 〈l, u〉 →∗ 〈l ′,u ′〉 =⇒ A ` 〈l ′, u ′〉 → 〈l ′′,u ′′〉 =⇒ A ` 〈l, u〉 →∗ 〈l ′′,u ′′〉

by (induction rule: steps.induct) auto

lemma emptiness-preservance: A,R ` 〈l, R〉 〈l ′,R ′〉 =⇒ R = {} =⇒ R ′

= {}
by (induction rule: step-r .cases) (auto simp: region-set ′-def)

lemma emptiness-preservance-steps: A,R ` 〈l, R〉 ∗ 〈l ′,R ′〉 =⇒ R = {}
=⇒ R ′ = {}
apply (induction rule: steps-r .induct)
apply blast

apply (subst emptiness-preservance)
by blast+

Note how it is important to define the multi-step semantics “the right way
round". This is also the direction Bouyer implies for her implicit induction.

lemma steps-r-sound:
A,R ` 〈l, R〉 ∗ 〈l ′, R ′〉 =⇒ R = {region X I r |I r . valid-region X k I

r}
=⇒ R ′ 6= {} =⇒ u ∈ R =⇒ ∃ u ′ ∈ R ′. A ` 〈l, u〉 →∗ 〈l ′, u ′〉

proof (induction rule: steps-r .induct)
case refl then show ?case by auto

next
case (step A R l R l ′ R ′ l ′′ R ′′)
from emptiness-preservance[OF step.hyps(2)] step.prems have R ′ 6= {}

by fastforce
with step obtain u ′ where u ′: u ′ ∈ R ′ A ` 〈l, u〉 →∗ 〈l ′,u ′〉 by auto
with step-r-sound[OF step(2 ,4 ,5)] obtain u ′′ where u ′′ ∈ R ′′ A ` 〈l ′,

u ′〉 → 〈l ′′,u ′′〉 by blast
with u ′ show ?case by (auto 4 5 intro: steps-alt)

251

qed

lemma steps-r-sound ′:
A,R ` 〈l, R〉 ∗ 〈l ′, R ′〉 =⇒ R = {region X I r |I r . valid-region X k I

r}
=⇒ R ′ 6= {} =⇒ (∃ u ′ ∈ R ′. ∃ u ∈ R. A ` 〈l, u〉 →∗ 〈l ′, u ′〉)

proof goal-cases
case 1
with emptiness-preservance-steps[OF this(1)] obtain u where u ∈ R by

auto
with steps-r-sound[OF 1 this] show ?case by auto

qed

lemma single-step-r :
A,R ` 〈l, R〉 〈l ′, R ′〉 =⇒ A,R ` 〈l, R〉 ∗ 〈l ′, R ′〉

by (metis steps-r .refl steps-r .step)

lemma steps-r-alt:
A,R ` 〈l ′, R ′〉 ∗ 〈l ′′, R ′′〉 =⇒ A,R ` 〈l, R〉 〈l ′, R ′〉 =⇒ A,R ` 〈l, R〉
 ∗ 〈l ′′, R ′′〉
apply (induction rule: steps-r .induct)
apply (rule single-step-r)

by auto

lemma single-step:
x1 ` 〈x2 , x3 〉 → 〈x4 ,x5 〉 =⇒ x1 ` 〈x2 , x3 〉 →∗ 〈x4 ,x5 〉

by (metis steps.intros)

lemma steps-r-complete:
[[A ` 〈l, u〉 →∗ 〈l ′,u ′〉; R = {region X I r |I r . valid-region X k I r};

valid-abstraction A X k;
∀ x ∈ X . u x ≥ 0]] =⇒ ∃ R ′. A,R ` 〈l, ([u]R)〉 ∗ 〈l ′,R ′〉 ∧ u ′ ∈ R ′

proof (induction rule: steps.induct)
case (refl A l u)
from region-cover ′[OF refl(1 ,3)] show ?case by auto

next
case (step A l u l ′ u ′ l ′′ u ′′)
from step-r-complete[OF step(1 ,4−6)] obtain R ′ where R ′:

A,R ` 〈l, ([u]R)〉 〈l ′,R ′〉 u ′ ∈ R ′ R ′ ∈ R
by auto
with step(4) ‹u ′ ∈ R ′› have ∀ x∈X . 0 ≤ u ′ x by auto
with step obtain R ′′ where R ′′: A,R ` 〈l ′, ([u ′]R)〉 ∗ 〈l ′′,R ′′〉 u ′′ ∈ R ′′

by auto
with region-unique[OF step(4) R ′(2 ,3)] R ′(1) have A,R ` 〈l, ([u]R)〉 ∗

252

〈l ′′,R ′′〉
by (subst steps-r-alt) auto
with R ′′ region-cover ′[OF step(4 ,6)] show ?case by auto

qed

end
theory Closure

imports Regions
begin

5.7 Correct Approximation of Zones with α-regions

lemma subset-int-mono: A ⊆ B =⇒ A ∩ C ⊆ B ∩ C by blast

lemma zone-set-mono:
A ⊆ B =⇒ zone-set A r ⊆ zone-set B r

unfolding zone-set-def by auto

lemma zone-delay-mono:
A ⊆ B =⇒ A↑ ⊆ B↑

unfolding zone-delay-def by auto

lemma step-z-mono:
A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ Z ⊆ W =⇒ ∃ W ′. A ` 〈l, W 〉 a 〈l ′,W ′〉 ∧

Z ′ ⊆ W ′

proof (cases rule: step-z.cases, assumption, goal-cases)
case A: 1
let ?W ′ = W ↑ ∩ {u. u ` inv-of A l}
from A have A ` 〈l, W 〉 a 〈l ′,?W ′〉 by auto
moreover have Z ′ ⊆ ?W ′

apply (subst A(5))
apply (rule subset-int-mono)
by (auto intro!: zone-delay-mono A(2))

ultimately show ?thesis by meson
next

case A: (2 g a r)
let ?W ′ = zone-set (W ∩ {u. u ` g}) r ∩ {u. u ` inv-of A l ′}
from A have A ` 〈l, W 〉 �a 〈l ′,?W ′〉 by auto
moreover have Z ′ ⊆ ?W ′

apply (subst A(4))
apply (rule subset-int-mono)
apply (rule zone-set-mono)

253

apply (rule subset-int-mono)
apply (rule A(2))

done
ultimately show ?thesis by (auto simp: A(3))

qed

5.8 Old Variant Using a Global Set of Regions

Shared Definitions for Local and Global Sets of Regions locale
Alpha-defs =

fixes X :: ′c set
begin

definition V :: (′c, t) cval set where V ≡ {v . ∀ x ∈ X . v x ≥ 0}

lemma up-V : Z ⊆ V =⇒ Z ↑ ⊆ V
unfolding V-def zone-delay-def cval-add-def by auto

lemma reset-V : Z ⊆ V =⇒ (zone-set Z r) ⊆ V
unfolding V-def unfolding zone-set-def by (induction r , auto)

lemma step-z-V : A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ Z ′ ⊆ V
apply (induction rule: step-z.induct)
apply (rule le-infI1)
apply (rule up-V)
apply blast

apply (rule le-infI1)
apply (rule reset-V)

by blast

end

This is the classic variant using a global clock ceiling k and thus a global
set of regions. It is also the version that is necessary to prove the classic
extrapolation correct. It is preserved here for comparison with P. Bouyer’s
proofs and to outline the only slight adoptions that are necessary to obtain
the new version.

locale AlphaClosure-global =
Alpha-defs X for X :: ′c set +
fixes k R
defines R ≡ {region X I r | I r . valid-region X k I r}
assumes finite: finite X

begin

254

lemmas set-of-regions-spec = set-of-regions[OF - - - finite, of - k, folded
R-def]
lemmas region-cover-spec = region-cover [of X - k, folded R-def]
lemmas region-unique-spec = region-unique[of R X k, folded R-def , sim-
plified]
lemmas regions-closed ′-spec = regions-closed ′[of R X k, folded R-def , sim-
plified]

lemma valid-regions-distinct-spec:
R ∈ R =⇒ R ′ ∈ R =⇒ v ∈ R =⇒ v ∈ R ′ =⇒ R = R ′

unfolding R-def using valid-regions-distinct
by auto (drule valid-regions-distinct, assumption+, simp)+

definition cla (‹Closureα -› [71] 71)
where

cla Z =
⋃
{R ∈ R. R ∩ Z 6= {}}

The Nice and Easy Properties Proved by Bouyer lemma clo-
sure-constraint-id:
∀ (x, m)∈collect-clock-pairs g. m ≤ real (k x) ∧ x ∈ X ∧ m ∈ � =⇒

Closureα {|g|} = {|g|} ∩ V
proof goal-cases

case 1
show ?case
proof auto

fix v assume v: v ∈ Closureα {|g|}
then obtain R where R: v ∈ R R ∈ R R ∩ {|g|} 6= {} unfolding

cla-def by auto
with ccompatible[OF 1 , folded R-def] show v ∈ {|g|} unfolding ccom-

patible-def by auto
from R show v ∈ V unfolding V-def R-def by auto

next
fix v assume v: v ∈ {|g|} v ∈ V
with region-cover [of X v k, folded R-def] obtain R where R ∈ R v ∈

R unfolding V-def by auto
then show v ∈ Closureα {|g|} unfolding cla-def using v by auto

qed
qed

lemma closure-id ′:
Z 6= {} =⇒ Z ⊆ R =⇒ R ∈ R =⇒ Closureα Z = R

proof goal-cases
case 1

255

note A = this
then have R ⊆ Closureα Z unfolding cla-def by auto
moreover
{ fix R ′ assume R ′: Z ∩ R ′ 6= {} R ′ ∈ R R 6= R ′

with A obtain v where v ∈ R v ∈ R ′ by auto
with R-regions-distinct[OF - A(3) this(1) R ′(2−)] R-def have False

by auto
}
ultimately show ?thesis unfolding cla-def by auto

qed

lemma closure-id:
Closureα Z 6= {} =⇒ Z ⊆ R =⇒ R ∈ R =⇒ Closureα Z = R

proof goal-cases
case 1
then have Z 6= {} unfolding cla-def by auto
with 1 closure-id ′ show ?case by blast

qed

lemma closure-update-mono:
Z ⊆ V =⇒ set r ⊆ X =⇒ zone-set (Closureα Z) r ⊆ Closureα(zone-set

Z r)
proof −

assume A: Z ⊆ V set r ⊆ X
let ?U = {R ∈ R. Z ∩ R 6= {}}
from A(1) region-cover-spec have ∀ v ∈ Z . ∃ R. R ∈ R ∧ v ∈ R

unfolding V-def by auto
then have Z =

⋃
{Z ∩ R | R. R ∈ ?U}

proof (auto, goal-cases)
case (1 v)
then obtain R where R ∈ R v ∈ R by auto
moreover with 1 have Z ∩ R 6= {} v ∈ Z ∩ R by auto
ultimately show ?case by auto

qed
then obtain U where U : Z =

⋃
{Z ∩ R | R. R ∈ U} ∀ R ∈ U . R ∈

R by blast
{ fix R assume R: R ∈ U
{ fix v ′ assume v ′: v ′∈ zone-set (Closureα (Z ∩ R)) r − Closureα(zone-set

(Z ∩ R) r)
then obtain v where ∗:

v ∈ Closureα (Z ∩ R) v ′ = [r → 0]v
unfolding zone-set-def by auto
with closure-id[of Z ∩ R R] R U (2) have ∗∗:

Closureα (Z ∩ R) = R Closureα (Z ∩ R) ∈ R

256

by fastforce+
with region-set ′-id[OF - ∗(1) finite - - A(2), of k 0 , folded R-def , OF

this(2)]
have ∗∗∗: zone-set R r ∈ R [r→0]v ∈ zone-set R r
unfolding zone-set-def region-set ′-def by auto
from ∗ have Z ∩ R 6= {} unfolding cla-def by auto
then have zone-set (Z ∩ R) r 6= {} unfolding zone-set-def by auto
from closure-id ′[OF this - ∗∗∗(1)] have Closureα zone-set (Z ∩ R) r

= zone-set R r
unfolding zone-set-def by auto
with v ′ ∗∗(1) have False by auto

}
then have zone-set (Closureα (Z ∩ R)) r ⊆ Closureα(zone-set (Z ∩ R)

r) by auto
} note Z-i = this
from U (1) have Closureα Z =

⋃
{Closureα (Z ∩ R) | R. R ∈ U}

unfolding cla-def by auto
then have zone-set (Closureα Z) r =

⋃
{zone-set (Closureα (Z ∩ R)) r

| R. R ∈ U}
unfolding zone-set-def by auto
also have . . . ⊆

⋃
{Closureα(zone-set (Z ∩ R) r) | R. R ∈ U} using

Z-i by auto
also have . . . = Closureα

⋃
{(zone-set (Z ∩ R) r) | R. R ∈ U} unfolding

cla-def by auto
also have . . . = Closureα zone-set (

⋃
{Z ∩ R| R. R ∈ U}) r

proof goal-cases
case 1
have zone-set (

⋃
{Z ∩ R| R. R ∈ U}) r =

⋃
{(zone-set (Z ∩ R) r) |

R. R ∈ U}
unfolding zone-set-def by auto
then show ?case by auto

qed
finally show zone-set (Closureα Z) r ⊆ Closureα(zone-set Z r) using U

by simp
qed

lemma SuccI3 :
R ∈ R =⇒ v ∈ R =⇒ t ≥ 0 =⇒ (v ⊕ t) ∈ R ′ =⇒ R ′ ∈ R =⇒ R ′ ∈ Succ
R R
apply (intro SuccI2 [of R X k, folded R-def , simplified])

apply assumption+
apply (intro region-unique[of R X k, folded R-def , simplified, symmet-

ric])
by assumption+

257

lemma closure-delay-mono:
Z ⊆ V =⇒ (Closureα Z)↑ ⊆ Closureα (Z ↑)

proof
fix v assume v: v ∈ (Closureα Z)↑ and Z : Z ⊆ V
then obtain u u ′ t R where A:

u ∈ Closureα Z v = (u ⊕ t) u ∈ R u ′ ∈ R R ∈ R u ′ ∈ Z t ≥ 0
unfolding cla-def zone-delay-def by blast
from A(3 ,5) have ∀ x ∈ X . u x ≥ 0 unfolding R-def by fastforce
with region-cover-spec[of v] A(2 ,7) obtain R ′ where R ′:

R ′ ∈ R v ∈ R ′

unfolding cval-add-def by auto
with set-of-regions-spec[OF A(5 ,4), OF SuccI3 , of u] A obtain t where

t:
t ≥ 0 [u ′ ⊕ t]R = R ′

by auto
with A have (u ′ ⊕ t) ∈ Z ↑ unfolding zone-delay-def by auto
moreover from regions-closed ′-spec[OF A(5 ,4)] t have (u ′ ⊕ t) ∈ R ′ by

auto
ultimately have R ′ ∩ (Z ↑) 6= {} by auto
with R ′ show v ∈ Closureα (Z ↑) unfolding cla-def by auto

qed

lemma region-V : R ∈ R =⇒ R ⊆ V using V-def R-def region.cases by
auto

lemma closure-V :
Closureα Z ⊆ V

unfolding cla-def using region-V by auto

lemma closure-V-int:
Closureα Z = Closureα (Z ∩ V)

unfolding cla-def using region-V by auto

lemma closure-constraint-mono:
Closureα g = g =⇒ g ∩ (Closureα Z) ⊆ Closureα (g ∩ Z)

unfolding cla-def by auto

lemma closure-constraint-mono ′:
assumes Closureα g = g ∩ V
shows g ∩ (Closureα Z) ⊆ Closureα (g ∩ Z)

proof −
from assms closure-V-int have Closureα (g ∩ V) = g ∩ V by auto
from closure-constraint-mono[OF this, of Z] have

258

g ∩ (V ∩ Closureα Z) ⊆ Closureα (g ∩ Z ∩ V)
by (metis Int-assoc Int-commute)
with closure-V [of Z] closure-V-int[of g ∩ Z] show ?thesis by auto

qed

lemma cla-empty-iff :
Z ⊆ V =⇒ Z = {} ←→ Closureα Z = {}

unfolding cla-def V-def using region-cover-spec by fast

lemma closure-involutive-aux:
U ⊆ R =⇒ Closureα

⋃
U =

⋃
U

unfolding cla-def using valid-regions-distinct-spec by blast

lemma closure-involutive-aux ′:
∃ U . U ⊆ R ∧ Closureα Z =

⋃
U

unfolding cla-def by (rule exI [where x = {R ∈ R. R ∩ Z 6= {}}]) auto

lemma closure-involutive:
Closureα Closureα Z = Closureα Z

using closure-involutive-aux closure-involutive-aux ′ by metis

lemma closure-involutive ′:
Z ⊆ Closureα W =⇒ Closureα Z ⊆ Closureα W

unfolding cla-def using valid-regions-distinct-spec by fast

lemma closure-subs:
Z ⊆ V =⇒ Z ⊆ Closureα Z

unfolding cla-def V-def using region-cover-spec by fast

lemma cla-mono ′:
Z ′ ⊆ V =⇒ Z ⊆ Z ′ =⇒ Closureα Z ⊆ Closureα Z ′

by (meson closure-involutive ′ closure-subs subset-trans)

lemma cla-mono:
Z ⊆ Z ′ =⇒ Closureα Z ⊆ Closureα Z ′

using closure-V-int cla-mono ′[of Z ′ ∩ V Z ∩ V] by auto

5.9 A Zone Semantics Abstracting with Closureα
5.9.1 Single step

inductive step-z-alpha ::
(′a, ′c, t, ′s) ta ⇒ ′s ⇒ (′c, t) zone ⇒ ′a action ⇒ ′s ⇒ (′c, t) zone ⇒

bool

259

(‹- ` 〈-, -〉 α(-) 〈-, -〉› [61 ,61 ,61] 61)
where

step-alpha: A ` 〈l, Z 〉 a 〈l ′, Z ′〉 =⇒ A ` 〈l, Z 〉 α(a) 〈l ′, Closureα Z ′〉

inductive-cases[elim!]: A ` 〈l, u〉 α(a) 〈l ′,u ′〉

declare step-z-alpha.intros[intro]

definition
step-z-alpha ′ :: (′a, ′c, t, ′s) ta ⇒ ′s ⇒ (′c, t) zone ⇒ ′s ⇒ (′c, t) zone ⇒

bool
(‹- ` 〈-, -〉 α 〈-, -〉› [61 ,61 ,61] 61)
where

A ` 〈l, Z 〉 α 〈l ′, Z ′′〉 = (∃ Z ′ a. A ` 〈l, Z 〉 τ 〈l, Z ′〉 ∧ A ` 〈l, Z ′〉
 α(�a) 〈l ′, Z ′′〉)

Single-step soundness and completeness follows trivially from cla-empty-iff.
lemma step-z-alpha-sound:

A ` 〈l, Z 〉 α(a) 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ Z ′ 6= {} =⇒ ∃ Z ′′. A ` 〈l, Z 〉
 a 〈l ′,Z ′′〉 ∧ Z ′′ 6= {}
by (induction rule: step-z-alpha.induct) (auto dest: cla-empty-iff step-z-V)

lemma step-z-alpha ′-sound:
A ` 〈l, Z 〉 α 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ Z ′ 6= {} =⇒ ∃ Z ′′. A ` 〈l, Z 〉
〈l ′,Z ′′〉 ∧ Z ′′ 6= {}

oops

lemma step-z-alpha-complete ′:
A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ ∃ Z ′′. A ` 〈l, Z 〉 α(a) 〈l ′,Z ′′〉 ∧

Z ′ ⊆ Z ′′

by (auto dest: closure-subs step-z-V)

lemma step-z-alpha-complete:
A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ Z ′ 6= {} =⇒ ∃ Z ′′. A ` 〈l, Z 〉
 α(a) 〈l ′,Z ′′〉 ∧ Z ′′ 6= {}

by (blast dest: step-z-alpha-complete ′)

lemma step-z-alpha ′-complete ′:
A ` 〈l, Z 〉 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ ∃ Z ′′. A ` 〈l, Z 〉 α 〈l ′,Z ′′〉 ∧ Z ′

⊆ Z ′′

unfolding step-z-alpha ′-def step-z ′-def by (blast dest: step-z-alpha-complete ′

step-z-V)

lemma step-z-alpha ′-complete:

260

A ` 〈l, Z 〉 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ Z ′ 6= {} =⇒ ∃ Z ′′. A ` 〈l, Z 〉 α

〈l ′,Z ′′〉 ∧ Z ′′ 6= {}
by (blast dest: step-z-alpha ′-complete ′)

5.9.2 Multi step

abbreviation
steps-z-alpha :: (′a, ′c, t, ′s) ta ⇒ ′s ⇒ (′c, t) zone ⇒ ′s ⇒ (′c, t) zone
⇒ bool
(‹- ` 〈-, -〉 α∗ 〈-, -〉› [61 ,61 ,61] 61)
where

A ` 〈l, Z 〉 α∗ 〈l ′, Z ′′〉 ≡ (λ (l, Z) (l ′, Z ′′). A ` 〈l, Z 〉 α 〈l ′, Z ′′〉)∗∗
(l, Z) (l ′, Z ′′)

P. Bouyer’s calculation for Post (Closureα Z , e) ⊆ Closureα Post (Z , e)

This is now obsolete as we argue solely with monotonicty of steps-z w.r.t
Closureα
lemma calc:

valid-abstraction A X k =⇒ Z ⊆ V =⇒ A ` 〈l, Closureα Z 〉 a 〈l ′, Z ′〉
=⇒ ∃Z ′′. A ` 〈l, Z 〉 α(a) 〈l ′, Z ′′〉 ∧ Z ′ ⊆ Z ′′

proof (cases rule: step-z.cases, assumption, goal-cases)
case 1
note A = this
from A(1) have ∀ (x, m)∈clkp-set A. m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �
by (fastforce elim: valid-abstraction.cases)
then have ∀ (x, m)∈collect-clock-pairs (inv-of A l). m ≤ real (k x) ∧ x ∈

X ∧ m ∈ �
unfolding clkp-set-def collect-clki-def inv-of-def by auto
from closure-constraint-id[OF this] have ∗: Closureα {|inv-of A l|} =

{|inv-of A l|} ∩ V .
have (Closureα Z)↑ ⊆ Closureα (Z ↑) using A(2) by (blast intro!: clo-

sure-delay-mono)
then have Z ′ ⊆ Closureα (Z ↑ ∩ {u. u ` inv-of A l})
using closure-constraint-mono ′[OF ∗, of Z ↑] unfolding ccval-def by (auto

simp: Int-commute A(6))
with A(4 ,3) show ?thesis by (auto elim!: step-z.cases)

next
case (2 g a r)
note A = this
from A(1) have ∗:
∀ (x, m)∈clkp-set A. m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �
collect-clkvt (trans-of A) ⊆ X
finite X

by (auto elim: valid-abstraction.cases)

261

from ∗(1) A(5) have ∀ (x, m)∈collect-clock-pairs (inv-of A l ′). m ≤ real
(k x) ∧ x ∈ X ∧ m ∈ �

unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from closure-constraint-id[OF this] have ∗∗: Closureα {|inv-of A l ′|} =
{|inv-of A l ′|} ∩ V .

from ∗(1) A(6) have ∀ (x, m)∈collect-clock-pairs g. m ≤ real (k x) ∧ x
∈ X ∧ m ∈ �

unfolding clkp-set-def collect-clkt-def by fastforce
from closure-constraint-id[OF this] have ∗∗∗: Closureα {|g|} = {|g|} ∩ V .
from ∗(2) A(6) have ∗∗∗∗: set r ⊆ X unfolding collect-clkvt-def by

fastforce
from closure-constraint-mono ′[OF ∗∗∗, of Z] have

(Closureα Z) ∩ {u. u ` g} ⊆ Closureα (Z ∩ {u. u ` g}) unfolding
ccval-def

by (subst Int-commute) (subst (asm) (2) Int-commute, assumption)
moreover have zone-set . . . r ⊆ Closureα (zone-set (Z ∩ {u. u ` g}) r)

using ∗∗∗∗ A(2)
by (intro closure-update-mono, auto)
ultimately have Z ′ ⊆ Closureα (zone-set (Z ∩ {u. u ` g}) r ∩ {u. u `

inv-of A l ′})
using closure-constraint-mono ′[OF ∗∗, of zone-set (Z ∩ {u. u ` g}) r]

unfolding ccval-def
apply (subst A(5))
apply (subst (asm) (5 7) Int-commute)
apply (rule subset-trans)
defer
apply assumption

apply (subst subset-int-mono)
defer
apply rule

apply (rule subset-trans)
defer
apply assumption

apply (rule zone-set-mono)
apply assumption

done
with A(6) show ?thesis by (auto simp: A(4))

qed

Turning P. Bouyers argument for multiple steps into an inductive proof is not
direct. With this initial argument we can get to a point where the induction
hypothesis is applicable. This breaks the "information hiding" induced by
the different variants of steps.
lemma steps-z-alpha-closure-involutive ′-aux:

262

A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ Closureα Z ⊆ Closureα W =⇒ valid-abstraction
A X k =⇒ Z ⊆ V
=⇒ ∃ W ′. A ` 〈l, W 〉 a 〈l ′,W ′〉 ∧ Closureα Z ′ ⊆ Closureα W ′

proof (induction rule: step-z.induct)
case A: (step-t-z A l Z)
let ?Z ′ = Z ↑ ∩ {u. u ` inv-of A l}
let ?W ′ = W ↑ ∩ {u. u ` inv-of A l}
from R-def have R-def ′: R = {region X I r |I r . valid-region X k I r}

by simp
have step-z: A ` 〈l, W 〉 τ 〈l,?W ′〉 by auto
moreover have Closureα ?Z ′ ⊆ Closureα ?W ′

proof
fix v assume v: v ∈ Closureα ?Z ′

then obtain R ′ v ′ where 1 : R ′ ∈ R v ∈ R ′ v ′ ∈ R ′ v ′ ∈ ?Z ′ unfolding
cla-def by auto

then obtain u d where
u ∈ Z and v ′: v ′ = u ⊕ d u ⊕ d ` inv-of A l 0 ≤ d

unfolding zone-delay-def by blast
with closure-subs[OF A(3)] A(1) obtain u ′ R where u ′: u ′ ∈ W u ∈

R u ′ ∈ R R ∈ R
unfolding cla-def by blast
then have ∀ x∈X . 0 ≤ u x unfolding R-def by fastforce
from region-cover ′[OF R-def ′ this] have R: [u]R ∈ R u ∈ [u]R by auto
from SuccI2 [OF R-def ′ this(2 ,1) ‹0 ≤ d›, of [v ′]R] v ′(1) have v ′1 :
[v ′]R ∈ Succ R ([u]R) [v ′]R ∈ R

by auto
from regions-closed ′-spec[OF R(1 ,2) ‹0 ≤ d›] v ′(1) have v ′2 : v ′ ∈ [v ′]R

by simp
from A(2) have ∗:
∀ (x, m)∈clkp-set A. m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �
collect-clkvt (trans-of A) ⊆ X
finite X

by (auto elim: valid-abstraction.cases)
from ∗(1) u ′(2) have ∀ (x, m)∈collect-clock-pairs (inv-of A l). m ≤ real

(k x) ∧ x ∈ X ∧ m ∈ �
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from ccompatible[OF this, folded R-def ′] v ′1 (2) v ′2 v ′(1 ,2) have 3 :
[v ′]R ⊆ {|inv-of A l|}

unfolding ccompatible-def ccval-def by auto
with A v ′1 R(1) R-def ′ have A,R ` 〈l, ([u]R)〉 〈l,([v ′]R)〉 by auto

with valid-regions-distinct-spec[OF v ′1 (2) 1 (1) v ′2 1 (3)] region-unique-spec[OF
u ′(2 ,4)]

have step-r : A,R ` 〈l, R〉 〈l, R ′〉 and 2 : [v ′]R = R ′ [u]R = R by
auto

263

from set-of-regions-spec[OF u ′(4 ,3)] v ′1 (1) 2 obtain t where t: t ≥ 0
[u ′ ⊕ t]R = R ′ by auto

with regions-closed ′-spec[OF u ′(4 ,3) this(1)] step-t-r(1) have ∗: u ′ ⊕ t
∈ R ′ by auto

with t(1) 3 2 u ′(1 ,3) have A ` 〈l, u ′〉 → 〈l, u ′ ⊕ t〉 u ′ ⊕ t ∈ ?W ′

unfolding zone-delay-def ccval-def by auto
with ∗ 1 (1) have R ′ ⊆ Closureα ?W ′ unfolding cla-def by auto
with 1 (2) show v ∈ Closureα ?W ′ ..

qed
ultimately show ?case by auto

next
case A: (step-a-z A l g a r l ′ Z)
let ?Z ′ = zone-set (Z ∩ {u. u ` g}) r ∩ {u. u ` inv-of A l ′}
let ?W ′ = zone-set (W ∩ {u. u ` g}) r ∩ {u. u ` inv-of A l ′}
from R-def have R-def ′: R = {region X I r |I r . valid-region X k I r}

by simp
from A(1) have step-z: A ` 〈l, W 〉 �a 〈l ′,?W ′〉 by auto
moreover have Closureα ?Z ′ ⊆ Closureα ?W ′

proof
fix v assume v: v ∈ Closureα ?Z ′

then obtain R ′ v ′ where 1 : R ′ ∈ R v ∈ R ′ v ′ ∈ R ′ v ′ ∈ ?Z ′ unfolding
cla-def by auto

then obtain u where
u ∈ Z and v ′: v ′ = [r→0]u u ` g v ′ ` inv-of A l ′

unfolding zone-set-def by blast
let ?R ′= region-set ′ (([u]R) ∩ {u. u ` g}) r 0 ∩ {u. u ` inv-of A l ′}
from ‹u ∈ Z › closure-subs[OF A(4)] A(2) obtain u ′ R where u ′: u ′ ∈

W u ∈ R u ′ ∈ R R ∈ R
unfolding cla-def by blast
then have ∀ x∈X . 0 ≤ u x unfolding R-def by fastforce
from region-cover ′[OF R-def ′ this] have R: [u]R ∈ R u ∈ [u]R by auto
from step-r-complete-aux[OF R-def ′ A(3) this(2 ,1) A(1) v ′(2)] v ′

have ∗: [u]R = ([u]R) ∩ {u. u ` g} ?R ′ = region-set ′ ([u]R) r 0 ?R ′ ∈
R by auto

from R-def ′ A(3) have collect-clkvt (trans-of A) ⊆ X finite X
by (auto elim: valid-abstraction.cases)
with A(1) have r : set r ⊆ X unfolding collect-clkvt-def by fastforce
from ∗ v ′(1) R(2) have v ′ ∈ ?R ′ unfolding region-set ′-def by auto
moreover have A,R ` 〈l,([u]R)〉 〈l ′,?R ′〉 using R(1) R-def ′ A(1 ,3)

v ′(2) by auto
thm valid-regions-distinct-spec

with valid-regions-distinct-spec[OF ∗(3) 1 (1) ‹v ′ ∈ ?R ′› 1 (3)] re-
gion-unique-spec[OF u ′(2 ,4)]

have 2 : ?R ′ = R ′ [u]R = R by auto

264

with ∗ u ′ have ∗: [r→0]u ′ ∈ ?R ′ u ′ ` g [r→0]u ′ ` inv-of A l ′
unfolding region-set ′-def by auto
with A(1) have A ` 〈l, u ′〉 → 〈l ′,[r→0]u ′〉 apply (intro step.intros(1))

apply rule by auto
moreover from ∗ u ′(1) have [r→0]u ′ ∈ ?W ′ unfolding zone-set-def

by auto
ultimately have R ′ ⊆ Closureα ?W ′ using ∗(1) 1 (1) 2 (1) unfolding

cla-def by auto
with 1 (2) show v ∈ Closureα ?W ′ ..

qed
ultimately show ?case by meson

qed

lemma steps-z-alpha-closure-involutive ′-aux ′:
A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ Closureα Z ⊆ Closureα W =⇒ valid-abstraction

A X k =⇒ Z ⊆ V =⇒ W ⊆ Z
=⇒ ∃ W ′. A ` 〈l, W 〉 a 〈l ′,W ′〉 ∧ Closureα Z ′ ⊆ Closureα W ′ ∧ W ′

⊆ Z ′

proof (induction rule: step-z.induct)
case A: (step-t-z A l Z)
let ?Z ′ = Z ↑ ∩ {u. u ` inv-of A l}
let ?W ′ = W ↑ ∩ {u. u ` inv-of A l}
from R-def have R-def ′: R = {region X I r |I r . valid-region X k I r}

by simp
have step-z: A ` 〈l, W 〉 τ 〈l,?W ′〉 by auto
moreover have Closureα ?Z ′ ⊆ Closureα ?W ′

proof
fix v assume v: v ∈ Closureα ?Z ′

then obtain R ′ v ′ where 1 : R ′ ∈ R v ∈ R ′ v ′ ∈ R ′ v ′ ∈ ?Z ′ unfolding
cla-def by auto

then obtain u d where
u ∈ Z and v ′: v ′ = u ⊕ d u ⊕ d ` inv-of A l 0 ≤ d

unfolding zone-delay-def by blast
with closure-subs[OF A(3)] A(1) obtain u ′ R where u ′: u ′ ∈ W u ∈

R u ′ ∈ R R ∈ R
unfolding cla-def by blast
then have ∀ x∈X . 0 ≤ u x unfolding R-def by fastforce
from region-cover ′[OF R-def ′ this] have R: [u]R ∈ R u ∈ [u]R by auto
from SuccI2 [OF R-def ′ this(2 ,1) ‹0 ≤ d›, of [v ′]R] v ′(1) have v ′1 :
[v ′]R ∈ Succ R ([u]R) [v ′]R ∈ R

by auto
from regions-closed ′-spec[OF R(1 ,2) ‹0 ≤ d›] v ′(1) have v ′2 : v ′ ∈ [v ′]R

by simp
from A(2) have ∗:

265

∀ (x, m)∈clkp-set A. m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �
collect-clkvt (trans-of A) ⊆ X
finite X

by (auto elim: valid-abstraction.cases)
from ∗(1) u ′(2) have ∀ (x, m)∈collect-clock-pairs (inv-of A l). m ≤ real

(k x) ∧ x ∈ X ∧ m ∈ �
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from ccompatible[OF this, folded R-def ′] v ′1 (2) v ′2 v ′(1 ,2) have 3 :
[v ′]R ⊆ {|inv-of A l|}

unfolding ccompatible-def ccval-def by auto
with A v ′1 R(1) R-def ′ have A,R ` 〈l, ([u]R)〉 〈l,([v ′]R)〉 by auto

with valid-regions-distinct-spec[OF v ′1 (2) 1 (1) v ′2 1 (3)] region-unique-spec[OF
u ′(2 ,4)]

have step-r : A,R ` 〈l, R〉 〈l, R ′〉 and 2 : [v ′]R = R ′ [u]R = R by
auto

from set-of-regions-spec[OF u ′(4 ,3)] v ′1 (1) 2 obtain t where t: t ≥ 0
[u ′ ⊕ t]R = R ′ by auto

with regions-closed ′-spec[OF u ′(4 ,3) this(1)] step-t-r(1) have ∗: u ′ ⊕ t
∈ R ′ by auto

with t(1) 3 2 u ′(1 ,3) have A ` 〈l, u ′〉 → 〈l, u ′ ⊕ t〉 u ′ ⊕ t ∈ ?W ′

unfolding zone-delay-def ccval-def by auto
with ∗ 1 (1) have R ′ ⊆ Closureα ?W ′ unfolding cla-def by auto
with 1 (2) show v ∈ Closureα ?W ′ ..

qed
moreover have ?W ′ ⊆ ?Z ′ using ‹W ⊆ Z › unfolding zone-delay-def

by auto
ultimately show ?case by auto

next
case A: (step-a-z A l g a r l ′ Z)
let ?Z ′ = zone-set (Z ∩ {u. u ` g}) r ∩ {u. u ` inv-of A l ′}
let ?W ′ = zone-set (W ∩ {u. u ` g}) r ∩ {u. u ` inv-of A l ′}
from R-def have R-def ′: R = {region X I r |I r . valid-region X k I r}

by simp
from A(1) have step-z: A ` 〈l, W 〉 �a 〈l ′,?W ′〉 by auto
moreover have Closureα ?Z ′ ⊆ Closureα ?W ′

proof
fix v assume v: v ∈ Closureα ?Z ′

then obtain R ′ v ′ where R ′ ∈ R v ∈ R ′ v ′ ∈ R ′ v ′ ∈ ?Z ′ unfolding
cla-def by auto

then obtain u where
u ∈ Z and v ′: v ′ = [r→0]u u ` g v ′ ` inv-of A l ′

unfolding zone-set-def by blast
let ?R ′= region-set ′ (([u]R) ∩ {u. u ` g}) r 0 ∩ {u. u ` inv-of A l ′}
from ‹u ∈ Z › closure-subs[OF A(4)] A(2) obtain u ′ R where u ′: u ′ ∈

266

W u ∈ R u ′ ∈ R R ∈ R
unfolding cla-def by blast
then have ∀ x∈X . 0 ≤ u x unfolding R-def by fastforce
from region-cover ′[OF R-def ′ this] have [u]R ∈ R u ∈ [u]R by auto
have ∗:
[u]R = ([u]R) ∩ {u. u ` g}
region-set ′ ([u]R) r 0 ⊆ [[r→0]u]R [[r→0]u]R ∈ R
([[r→0]u]R) ∩ {u. u ` inv-of A l ′} = [[r→0]u]R

proof −
from A(3) have collect-clkvt (trans-of A) ⊆ X

by (auto elim: valid-abstraction.cases)
with A(1) have set r ⊆ X ∀ y. y /∈ set r −→ k y ≤ k y

unfolding collect-clkvt-def by fastforce+
with

region-set-subs[of - X k - 0 , where k ′ = k, folded R-def , OF ‹[u]R
∈ R› ‹u ∈ [u]R› finite]

show region-set ′ ([u]R) r 0 ⊆ [[r→0]u]R [[r→0]u]R ∈ R by auto
from A(3) have ∗:
∀ (x, m)∈clkp-set A. m ≤ real (k x) ∧ x ∈ X ∧ m ∈ �
by (fastforce elim: valid-abstraction.cases)+

from ∗ A(1) have ∗∗∗: ∀ (x, m)∈collect-clock-pairs g. m ≤ real (k x)
∧ x ∈ X ∧ m ∈ �

unfolding clkp-set-def collect-clkt-def by fastforce
from ‹u ∈ [u]R› ‹[u]R ∈ R› ccompatible[OF this, folded R-def] ‹u `

g› show
[u]R = ([u]R) ∩ {u. u ` g}
unfolding ccompatible-def ccval-def by blast

have ∗∗: [r→0]u ∈ [[r→0]u]R
using ‹R ′ ∈ R› ‹v ′ ∈ R ′› region-unique-spec v ′(1) by blast

from ∗ have
∀ (x, m)∈collect-clock-pairs (inv-of A l ′). m ≤ real (k x) ∧ x ∈ X ∧

m ∈ �
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce

from ∗∗ ‹[[r→0]u]R ∈ R› ccompatible[OF this, folded R-def] ‹v ′ ` -›
show

([[r→0]u]R) ∩ {u. u ` inv-of A l ′} = [[r→0]u]R
unfolding ccompatible-def ccval-def ‹v ′ = -› by blast

qed
from ∗ ‹v ′ = -› ‹u ∈ [u]R› have v ′ ∈ [[r→0]u]R unfolding re-

gion-set ′-def by auto
from valid-regions-distinct-spec[OF ∗(3) ‹R ′ ∈ R› ‹v ′ ∈ [[r→0]u]R› ‹v ′

∈ R ′›]
have [[r→0]u]R = R ′ .
from region-unique-spec[OF u ′(2 ,4)] have [u]R = R by auto

267

from ‹[u]R = R› ∗(1 ,2) ∗(4) ‹u ′ ∈ R› have
[r→0]u ′ ∈ [[r→0]u]R u ′ ` g [r→0]u ′ ` inv-of A l ′
unfolding region-set ′-def by auto

with u ′(1) have [r→0]u ′ ∈ ?W ′ unfolding zone-set-def by auto
with ‹[r→0]u ′ ∈ [[r→0]u]R› ‹[[r→0]u]R ∈ R› have [[r→0]u]R ⊆

Closureα ?W ′

unfolding cla-def by auto
with ‹v ∈ R ′› show v ∈ Closureα ?W ′ unfolding ‹- = R ′› ..

qed
moreover have ?W ′ ⊆ ?Z ′ using ‹W ⊆ Z › unfolding zone-set-def by

auto
ultimately show ?case by meson

qed

lemma steps-z-alpha-V : A ` 〈l, Z 〉 α∗ 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ Z ′ ⊆ V
by (induction rule: rtranclp-induct2)

(use closure-V in ‹auto dest: step-z-V simp: step-z-alpha ′-def ›)

lemma steps-z-alpha-closure-involutive ′:
A ` 〈l, Z 〉 α∗ 〈l ′, Z ′〉 =⇒ A ` 〈l ′, Z ′〉 τ 〈l ′, Z ′′〉 =⇒ A ` 〈l ′, Z ′′〉 �a
〈l ′′,Z ′′′〉
=⇒ valid-abstraction A X k =⇒ Z ⊆ V
=⇒ ∃ W ′′′. A ` 〈l, Z 〉 ∗ 〈l ′′,W ′′′〉 ∧ Closureα Z ′′′ ⊆ Closureα W ′′′ ∧

W ′′′ ⊆ Z ′′′

proof (induction arbitrary: a Z ′′ Z ′′′ l ′′ rule: rtranclp-induct2)
case refl then show ?case unfolding step-z ′-def by blast

next
case A: (step l ′ Z ′ l ′′1 Z ′′1)

from A(2) obtain Z ′1 Z a ′ where Z ′′1 :
Z ′′1 = Closureα Z A ` 〈l ′, Z ′〉 τ 〈l ′, Z ′1 〉 A ` 〈l ′, Z ′1 〉 �a ′ 〈l ′′1 ,Z〉
unfolding step-z-alpha ′-def by auto

from A(3)[OF this(2 ,3) A(6 ,7)] obtain W ′′′ where W ′′′:
A ` 〈l, Z 〉 ∗ 〈l ′′1 ,W ′′′〉 Closureα Z ⊆ Closureα W ′′′ W ′′′ ⊆ Z
by auto

have Z ′′ ⊆ V
by (metis A(4) Z ′′1 (1) closure-V step-z-V)

have Z ⊆ V
by (meson A Z ′′1 step-z-V steps-z-alpha-V)

from closure-subs[OF this] ‹W ′′′ ⊆ Z› have ∗: W ′′′ ⊆ Closureα Z by
auto

from A(4) ‹Z ′′1 = -› have A ` 〈l ′′1 , Closureα Z〉 τ 〈l ′′1 , Z ′′〉 by simp
from steps-z-alpha-closure-involutive ′-aux ′[OF this - A(6) closure-V ∗]

W ′′′(2) obtain W ′

268

where ∗∗∗: A ` 〈l ′′1 , W ′′′〉 τ 〈l ′′1 , W ′〉 Closureα Z ′′ ⊆ Closureα W ′

W ′ ⊆ Z ′′

by atomize-elim (auto simp: closure-involutive)

This shows how we could easily add more steps before doing the final closure
operation!

from steps-z-alpha-closure-involutive ′-aux ′[OF A(5) this(2) A(6) ‹Z ′′ ⊆
V › this(3)] obtain W ′′

where
A ` 〈l ′′1 , W ′〉 �a 〈l ′′, W ′′〉 Closureα Z ′′′ ⊆ Closureα W ′′ W ′′ ⊆ Z ′′′

by auto
with ∗∗∗ W ′′′ show ?case

unfolding step-z ′-def by (blast intro: rtranclp.rtrancl-into-rtrancl)
qed

lemma steps-z-alpha-closure-involutive:
A ` 〈l, Z 〉 α∗ 〈l ′,Z ′〉 =⇒ valid-abstraction A X k =⇒ Z ⊆ V
=⇒ ∃ Z ′′. A ` 〈l, Z 〉 ∗ 〈l ′,Z ′′〉 ∧ Closureα Z ′ ⊆ Closureα Z ′′ ∧ Z ′′ ⊆

Z ′

proof (induction rule: rtranclp-induct2)
case refl show ?case by blast

next
case 2 : (step l ′ Z ′ l ′′ Z ′′′)
then obtain Z ′′ a Z ′′1 where ∗:

A ` 〈l ′, Z ′〉 τ 〈l ′,Z ′′〉 A ` 〈l ′, Z ′′〉 �a 〈l ′′,Z ′′1 〉 Z ′′′ = Closureα Z ′′1
unfolding step-z-alpha ′-def by auto

from steps-z-alpha-closure-involutive ′[OF 2 (1) this(1 ,2) 2 (4 ,5)] obtain
W ′′′ where W ′′′:

A ` 〈l, Z 〉 ∗ 〈l ′′,W ′′′〉 Closureα Z ′′1 ⊆ Closureα W ′′′ W ′′′ ⊆ Z ′′1 by
blast

have W ′′′ ⊆ Z ′′′

unfolding ∗
by (rule order-trans[OF ‹W ′′′⊆ Z ′′1 ›] closure-subs step-z-V steps-z-alpha-V

∗ 2 (1 ,5))+
with ∗ closure-involutive W ′′′ show ?case by auto

qed

lemma steps-z-V :
A ` 〈l, Z 〉 ∗ 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ Z ′ ⊆ V
unfolding step-z ′-def by (induction rule: rtranclp-induct2) (auto dest!:

step-z-V)

269

lemma steps-z-alpha-sound:
A ` 〈l, Z 〉 α∗ 〈l ′,Z ′〉 =⇒ valid-abstraction A X k =⇒ Z ⊆ V =⇒ Z ′ 6=
{}
=⇒ ∃ Z ′′. A ` 〈l, Z 〉 ∗ 〈l ′,Z ′′〉 ∧ Z ′′ 6= {} ∧ Z ′′ ⊆ Z ′

proof goal-cases
case 1
from steps-z-alpha-closure-involutive[OF 1 (1−3)] obtain Z ′′ where

A ` 〈l, Z 〉 ∗ 〈l ′,Z ′′〉 Closureα Z ′ ⊆ Closureα Z ′′ Z ′′ ⊆ Z ′

by blast
moreover with 1 (4) cla-empty-iff [OF steps-z-alpha-V [OF 1 (1)], OF

1 (3)]
cla-empty-iff [OF steps-z-V , OF this(1) 1 (3)] have Z ′′ 6= {} by auto

ultimately show ?case by auto
qed

lemma step-z-alpha-mono:
A ` 〈l, Z 〉 α(a) 〈l ′,Z ′〉 =⇒ Z ⊆ W =⇒ W ⊆ V =⇒ ∃ W ′. A ` 〈l, W 〉
 α(a) 〈l ′,W ′〉 ∧ Z ′ ⊆ W ′

proof goal-cases
case 1
then obtain Z ′′ where ∗: A ` 〈l, Z 〉 a 〈l ′,Z ′′〉 Z ′ = Closureα Z ′′ by

auto
from step-z-mono[OF this(1) 1 (2)] obtain W ′ where A ` 〈l, W 〉 a
〈l ′,W ′〉 Z ′′ ⊆ W ′ by auto

moreover with ∗(2) have Z ′ ⊆ Closureα W ′ unfolding cla-def by auto
ultimately show ?case by blast

qed

end

5.10 New Variant

New Definitions hide-const collect-clkt collect-clki clkp-set valid-abstraction

definition collect-clkt :: (′a, ′c, ′t, ′s) transition set ⇒ ′s ⇒ (′c ∗ ′t) set
where

collect-clkt S l =
⋃
{collect-clock-pairs (fst (snd t)) | t . t ∈ S ∧ fst t =

l}

definition collect-clki :: (′c, ′t, ′s) invassn ⇒ ′s ⇒ (′c ∗ ′t) set
where

collect-clki I s = collect-clock-pairs (I s)

270

definition clkp-set :: (′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c ∗ ′t) set
where

clkp-set A s = collect-clki (inv-of A) s ∪ collect-clkt (trans-of A) s

lemma collect-clkt-alt-def :
collect-clkt S l =

⋃
(collect-clock-pairs ‘ (fst o snd) ‘ {t. t ∈ S ∧ fst t =

l})
unfolding collect-clkt-def by fastforce

inductive valid-abstraction
where
[[∀ l. ∀ (x,m) ∈ clkp-set A l. m ≤ k l x ∧ x ∈ X ∧ m ∈ �; collect-clkvt

(trans-of A) ⊆ X ; finite X ;
∀ l g a r l ′ c. A ` l −→g,a,r l ′ ∧ c /∈ set r −→ k l ′ c ≤ k l c
]]
=⇒ valid-abstraction A X k

locale AlphaClosure =
Alpha-defs X for X :: ′c set +
fixes k :: ′s ⇒ ′c ⇒ nat and R
defines R l ≡ {region X I r | I r . valid-region X (k l) I r}
assumes finite: finite X

begin

5.11 A Semantics Based on Localized Regions

5.11.1 Single step

inductive step-r ::
(′a, ′c, t, ′s) ta ⇒ - ⇒ ′s ⇒ (′c, t) zone ⇒ ′a action ⇒ ′s ⇒ (′c, t) zone
⇒ bool
(‹-,- ` 〈-, -〉 - 〈-, -〉› [61 ,61 ,61 ,61 ,61] 61)
where

step-t-r :
A,R ` 〈l,R〉 τ 〈l,R ′〉 if
valid-abstraction A X (λ x. real o k x) R ∈ R l R ′ ∈ Succ (R l) R R ′ ⊆
{|inv-of A l|} |

step-a-r :
A,R ` 〈l,R〉 �a 〈l ′, R ′〉 if
valid-abstraction A X (λ x. real o k x) A ` l −→g,a,r l ′ R ∈ R l
R ⊆ {|g|} region-set ′ R r 0 ⊆ R ′ R ′ ⊆ {|inv-of A l ′|} R ′ ∈ R l ′

inductive-cases[elim!]: A,R ` 〈l, u〉 a 〈l ′, u ′〉

271

declare step-r .intros[intro]

inductive step-r ′ ::
(′a, ′c, t, ′s) ta ⇒ - ⇒ ′s ⇒ (′c, t) zone ⇒ ′a ⇒ ′s ⇒ (′c, t) zone ⇒ bool

(‹-,- ` 〈-, -〉 - 〈-, -〉› [61 ,61 ,61 ,61 ,61] 61)
where

A,R ` 〈l,R〉 a 〈l ′,R ′′〉 if A,R ` 〈l,R〉 τ 〈l,R ′〉 A,R ` 〈l,R ′〉 �a 〈l ′,
R ′′〉

lemmas R-def ′ = meta-eq-to-obj-eq[OF R-def]
lemmas region-cover ′ = region-cover ′[OF R-def ′]

abbreviation part ′′ (‹[-]-› [61 ,61] 61) where part ′′ u l1 ≡ part u (R l1)
no-notation part (‹[-]-› [61 ,61] 61)

lemma step-r-complete-aux:
fixes R u r A l ′ g
defines R ′ ≡ [[r→0]u]l ′
assumes valid-abstraction A X (λ x. real o k x)

and u ∈ R
and R ∈ R l
and A ` l −→g,a,r l ′
and u ` g
and [r→0]u ` inv-of A l ′

shows R = R ∩ {u. u ` g} ∧ region-set ′ R r 0 ⊆ R ′ ∧ R ′ ∈ R l ′ ∧ R ′ ⊆
{|inv-of A l ′|}
proof −

note A = assms(2−)
from A(1) obtain a1 b1 where ∗:

A = (a1 , b1)
∀ l. ∀ x∈clkp-set (a1 , b1) l. case x of (x, m) ⇒ m ≤ real (k l x) ∧ x ∈

X ∧ m ∈ �
collect-clkvt (trans-of (a1 , b1)) ⊆ X
finite X
∀ l g a r l ′ c. (a1 , b1) ` l −→g,a,r l ′ ∧ c /∈ set r −→ k l ′ c ≤ k l c
by (clarsimp elim!: valid-abstraction.cases)

from A(4) ∗(1 ,3) have r : set r ⊆ X unfolding collect-clkvt-def by
fastforce

from A(4) ∗(1 ,5) have ceiling-mono: ∀ y. y /∈ set r −→ k l ′ y ≤ k l y by
auto

from A(4) ∗(1 ,2) have ∀ (x, m)∈collect-clock-pairs g. m ≤ real (k l x) ∧
x ∈ X ∧ m ∈ �

unfolding clkp-set-def collect-clkt-def by fastforce

272

from ccompatible[OF this, folded R-def] A(2 ,3 ,5) have R ⊆ {|g|}
unfolding ccompatible-def ccval-def by blast

then have R-id: R ∩ {u. u ` g} = R unfolding ccval-def by auto
from
region-set-subs[OF A(3)[unfolded R-def] A(2) ‹finite X› - r ceiling-mono,

of 0 , folded R-def]
have ∗∗:
[[r→0]u]l ′ ⊇ region-set ′ R r 0 [[r→0]u]l ′ ∈ R l ′ [r→0]u ∈ [[r→0]u]l ′
by auto

let ?R = [[r→0]u]l ′
from ∗(1 ,2) have ∗∗∗:
∀ (x, m) ∈ collect-clock-pairs (inv-of A l ′). m ≤ real (k l ′ x) ∧ x ∈ X ∧

m ∈ �
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce

from ccompatible[OF this, folded R-def] ∗∗(2−) A(6) have ?R ⊆ {|inv-of
A l ′|}

unfolding ccompatible-def ccval-def by blast
then have ∗∗∗: ?R ∩ {u. u ` inv-of A l ′} = ?R unfolding ccval-def by

auto
with ∗∗(1 ,2) R-id ‹?R ⊆ -› show ?thesis by (auto simp: R ′-def)

qed

lemma step-t-r-complete:
assumes

A ` 〈l, u〉 →d 〈l ′,u ′〉 valid-abstraction A X (λ x. real o k x) ∀ x ∈ X . u
x ≥ 0

shows ∃ R ′. A,R ` 〈l, ([u]l)〉 τ 〈l ′,R ′〉 ∧ u ′ ∈ R ′ ∧ R ′ ∈ R l ′
using assms(1) proof (cases)

case A: 1
hence u ′: u ′ = (u ⊕ d) u ⊕ d ` inv-of A l 0 ≤ d and l = l ′ by auto
from region-cover ′[OF assms(3)] have R: [u]l ∈ R l u ∈ [u]l by auto
from SuccI2 [OF R-def ′ this(2 ,1) ‹0 ≤ d›, of [u ′]l] u ′(1) have u ′1 :
[u ′]l ∈ Succ (R l) ([u]l) [u ′]l ∈ R l
by auto

from regions-closed ′[OF R-def ′ R ‹0 ≤ d›] u ′(1) have u ′2 : u ′ ∈ [u ′]l by
simp

from assms(2) obtain a1 b1 where
A = (a1 , b1)
∀ l. ∀ x∈clkp-set (a1 , b1) l. case x of (x, m) ⇒ m ≤ real (k l x) ∧ x ∈

X ∧ m ∈ �
collect-clkvt (trans-of (a1 , b1)) ⊆ X
finite X
∀ l g a r l ′ c. (a1 , b1) ` l −→g,a,r l ′ ∧ c /∈ set r −→ k l ′ c ≤ k l c
by (clarsimp elim!: valid-abstraction.cases)

273

note ∗ = this
from ∗(1 ,2) u ′(2) have
∀ (x, m)∈collect-clock-pairs (inv-of A l). m ≤ real (k l x) ∧ x ∈ X ∧ m

∈ �
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce

from ccompatible[OF this, folded R-def] u ′1 (2) u ′2 u ′(1 ,2) have [u ′]l ⊆
{|inv-of A l|}

unfolding ccompatible-def ccval-def by auto
with u ′1 R(1) assms have A,R ` 〈l, ([u]l)〉 τ 〈l,([u ′]l)〉 by auto
with u ′1 (2) u ′2 ‹l = l ′› show ?thesis by meson

qed

lemma step-a-r-complete:
assumes

A ` 〈l, u〉 →a 〈l ′,u ′〉 valid-abstraction A X (λ x. real o k x) ∀ x ∈ X . u
x ≥ 0

shows ∃ R ′. A,R ` 〈l, ([u]l)〉 �a 〈l ′,R ′〉 ∧ u ′ ∈ R ′ ∧ R ′ ∈ R l ′
using assms(1) proof cases
case A: (1 g r)
then obtain g r where u ′: u ′ = [r→0]u A ` l −→g,a,r l ′ u ` g u ′ `

inv-of A l ′
by auto

let ?R ′= [[r→0]u]l ′
from region-cover ′[OF assms(3)] have R: [u]l ∈ R l u ∈ [u]l by auto
from step-r-complete-aux[OF assms(2) this(2 ,1) u ′(2 ,3)] u ′ have ∗:
[u]l ⊆ {|g|} ?R ′ ⊇ region-set ′ ([u]l) r 0 ?R ′ ∈ R l ′ ?R ′ ⊆ {|inv-of A l ′|}
by (auto simp: ccval-def)

from assms(2 ,3) have collect-clkvt (trans-of A) ⊆ X finite X
by (auto elim: valid-abstraction.cases)

with u ′(2) have r : set r ⊆ X unfolding collect-clkvt-def by fastforce
from ∗ u ′(1) R(2) have u ′ ∈ ?R ′ unfolding region-set ′-def by auto
moreover have A,R ` 〈l,([u]l)〉 �a 〈l ′,?R ′〉 using R(1) u ′(2) ∗ assms(2 ,3)

by (auto 4 3)
ultimately show ?thesis using ∗(3) by meson

qed

lemma step-r-complete:
assumes

A ` 〈l, u〉 → 〈l ′,u ′〉 valid-abstraction A X (λ x. real o k x) ∀ x ∈ X . u
x ≥ 0

shows ∃ R ′ a. A,R ` 〈l, ([u]l)〉 a 〈l ′,R ′〉 ∧ u ′ ∈ R ′ ∧ R ′ ∈ R l ′
using assms by cases (drule step-a-r-complete step-t-r-complete; auto)+

Compare this to lemma step-z-sound. This version is weaker because for

274

regions we may very well arrive at a successor for which not every valuation
can be reached by the predecessor. This is the case for e.g. the region with
only Greater (k x) bounds.

lemma step-t-r-sound:
assumes A,R ` 〈l, R〉 τ 〈l ′,R ′〉
shows ∀ u ∈ R. ∃ u ′ ∈ R ′. ∃ d ≥ 0 . A ` 〈l, u〉 →d 〈l ′,u ′〉
using assms(1) proof cases
case A: step-t-r
show ?thesis
proof

fix u assume u ∈ R
from set-of-regions[OF A(3)[unfolded R-def], folded R-def , OF this

A(4)] A(2)
obtain t where t: t ≥ 0 [u ⊕ t]l = R ′ by (auto elim: valid-abstraction.cases)
with regions-closed ′[OF R-def ′ A(3) ‹u ∈ R› this(1)] step-t-r(1) have

(u ⊕ t) ∈ R ′ by auto
with t(1) A(5) have A ` 〈l, u〉 →t 〈l,(u ⊕ t)〉 unfolding ccval-def by

auto
with t ‹- ∈ R ′› ‹l ′ = l› show ∃ u ′∈R ′. ∃ t ≥ 0 . A ` 〈l, u〉 →t 〈l ′,u ′〉

by meson
qed

qed

lemma step-a-r-sound:
assumes A,R ` 〈l, R〉 �a 〈l ′,R ′〉
shows ∀ u ∈ R. ∃ u ′ ∈ R ′. A ` 〈l, u〉 →a 〈l ′,u ′〉

using assms proof cases
case A: (step-a-r g r)
show ?thesis
proof

fix u assume u ∈ R
from ‹u ∈ R› A(4−6) have u ` g [r→0]u ` inv-of A l ′ [r→0]u ∈ R ′

unfolding region-set ′-def ccval-def by auto
with A(2) have A ` 〈l, u〉 →a 〈l ′,[r→0]u〉 by (blast intro: step-a.intros)
with ‹- ∈ R ′› show ∃ u ′∈R ′. A ` 〈l, u〉 →a 〈l ′,u ′〉 by meson

qed
qed

lemma step-r-sound:
assumes A,R ` 〈l, R〉 a 〈l ′,R ′〉
shows ∀ u ∈ R. ∃ u ′ ∈ R ′. A ` 〈l, u〉 → 〈l ′,u ′〉
using assms
by (cases a; simp) (drule step-a-r-sound step-t-r-sound; fastforce)+

275

lemma step-r ′-sound:
assumes A,R ` 〈l, R〉 a 〈l ′,R ′〉
shows ∀ u ∈ R. ∃ u ′ ∈ R ′. A ` ′ 〈l, u〉 → 〈l ′,u ′〉
using assms by cases (blast dest!: step-a-r-sound step-t-r-sound)

5.12 A New Zone Semantics Abstracting with Closureα,l
definition cla (‹Closureα,-(-)› [71 ,71] 71)
where

cla l Z =
⋃
{R ∈ R l. R ∩ Z 6= {}}

5.12.1 Single step

inductive step-z-alpha ::
(′a, ′c, t, ′s) ta ⇒ ′s ⇒ (′c, t) zone ⇒ ′a action ⇒ ′s ⇒ (′c, t) zone ⇒

bool
(‹- ` 〈-, -〉 α(-) 〈-, -〉› [61 ,61 ,61] 61)
where

step-alpha: A ` 〈l, Z 〉 a 〈l ′, Z ′〉 =⇒ A ` 〈l, Z 〉 α(a) 〈l ′, Closureα,l ′
Z ′〉

inductive-cases[elim!]: A ` 〈l, u〉 α(a) 〈l ′,u ′〉

declare step-z-alpha.intros[intro]

Single-step soundness and completeness follows trivially from cla-empty-iff.

lemma step-z-alpha-sound:
A ` 〈l, Z 〉 α(a) 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ Z ′ 6= {}
=⇒ ∃ Z ′′. A ` 〈l, Z 〉 a 〈l ′,Z ′′〉 ∧ Z ′′ 6= {}

apply (induction rule: step-z-alpha.induct)
apply (frule step-z-V)
apply assumption

apply (rotate-tac 3)
by (fastforce simp: cla-def)

context
fixes l l ′ :: ′s

begin

interpretation alpha: AlphaClosure-global - k l ′ R l ′ by standard (rule
finite)

lemma [simp]:

276

alpha.cla = cla l ′
unfolding cla-def alpha.cla-def ..

lemma step-z-alpha-complete:
A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ Z ⊆ V =⇒ Z ′ 6= {}
=⇒ ∃ Z ′′. A ` 〈l, Z 〉 α(a) 〈l ′,Z ′′〉 ∧ Z ′′ 6= {}
apply (frule step-z-V)
apply assumption

apply (rotate-tac 3)
apply (drule alpha.cla-empty-iff)
by auto

end

5.12.2 Multi step

definition
step-z-alpha ′ :: (′a, ′c, t, ′s) ta ⇒ ′s ⇒ (′c, t) zone ⇒ ′s ⇒ (′c, t) zone ⇒

bool
(‹- ` 〈-, -〉 α 〈-, -〉› [61 ,61 ,61] 61)
where

A ` 〈l, Z 〉 α 〈l ′, Z ′′〉 = (∃ Z ′ a. A ` 〈l, Z 〉 τ 〈l, Z ′〉 ∧ A ` 〈l, Z ′〉
 α(�a) 〈l ′, Z ′′〉)

abbreviation
steps-z-alpha :: (′a, ′c, t, ′s) ta ⇒ ′s ⇒ (′c, t) zone ⇒ ′s ⇒ (′c, t) zone
⇒ bool
(‹- ` 〈-, -〉 α∗ 〈-, -〉› [61 ,61 ,61] 61)
where

A ` 〈l, Z 〉 α∗ 〈l ′, Z ′′〉 ≡ (λ (l, Z) (l ′, Z ′′). A ` 〈l, Z 〉 α 〈l ′, Z ′′〉)∗∗
(l, Z) (l ′, Z ′′)

P. Bouyer’s calculation for Post(Closureα,l Z , e) ⊆ Closureα,l(Post (Z , e))

This is now obsolete as we argue solely with monotonicty of steps-z w.r.t
Closureα,l

Turning P. Bouyers argument for multiple steps into an inductive proof is not
direct. With this initial argument we can get to a point where the induction
hypothesis is applicable. This breaks the "information hiding" induced by
the different variants of steps.

context
fixes l l ′ :: ′s

begin

277

interpretation alpha: AlphaClosure-global - k l R l by standard (rule fi-
nite)
lemma [simp]: alpha.cla = cla l unfolding alpha.cla-def cla-def ..

interpretation alpha ′: AlphaClosure-global - k l ′ R l ′ by standard (rule
finite)
lemma [simp]: alpha ′.cla = cla l ′ unfolding alpha ′.cla-def cla-def ..

lemma steps-z-alpha-closure-involutive ′-aux ′:
A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ Closureα,l Z ⊆ Closureα,l W =⇒ valid-abstraction

A X k =⇒ Z ⊆ V
=⇒ W ⊆ Z =⇒ ∃ W ′. A ` 〈l, W 〉 a 〈l ′,W ′〉 ∧ Closureα,l ′ Z ′ ⊆

Closureα,l ′ W ′ ∧ W ′ ⊆ Z ′

proof (induction A ≡ A l ≡ l - - l ′ ≡ l ′ -rule: step-z.induct)
case A: (step-t-z Z)
let ?Z ′ = Z ↑ ∩ {u. u ` inv-of A l}
let ?W ′ = W ↑ ∩ {u. u ` inv-of A l}
have step-z: A ` 〈l, W 〉 τ 〈l,?W ′〉 by auto
moreover have Closureα,l ?Z ′ ⊆ Closureα,l ?W ′

proof
fix v assume v: v ∈ Closureα,l ?Z ′

then obtain R ′ v ′ where 1 : R ′ ∈ R l v ∈ R ′ v ′ ∈ R ′ v ′ ∈ ?Z ′ unfolding
cla-def by auto

then obtain u d where
u ∈ Z and v ′: v ′ = u ⊕ d u ⊕ d ` inv-of A l 0 ≤ d

unfolding zone-delay-def by blast
with alpha.closure-subs[OF A(4)] A(2) obtain u ′ R where u ′:

u ′ ∈ W u ∈ R u ′ ∈ R R ∈ R l
by (simp add: cla-def) blast
then have ∀ x∈X . 0 ≤ u x unfolding R-def by fastforce
from region-cover ′[OF this] have R: [u]l ∈ R l u ∈ [u]l by auto
from SuccI2 [OF R-def ′ this(2 ,1) ‹0 ≤ d›, of [v ′]l] v ′(1) have v ′1 :
[v ′]l ∈ Succ (R l) ([u]l) [v ′]l ∈ R l

by auto
from alpha.regions-closed ′-spec[OF R(1 ,2) ‹0 ≤ d›] v ′(1) have v ′2 : v ′

∈ [v ′]l by simp
from A(3) have
∀ (x, m)∈clkp-set A l. m ≤ real (k l x) ∧ x ∈ X ∧ m ∈ �

by (auto elim!: valid-abstraction.cases)
then have
∀ (x, m)∈collect-clock-pairs (inv-of A l). m ≤ real (k l x) ∧ x ∈ X ∧

m ∈ �
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from ccompatible[OF this, folded R-def ′] v ′1 (2) v ′2 v ′(1 ,2) have 3 :

278

[v ′]l ⊆ {|inv-of A l|}
unfolding ccompatible-def ccval-def by auto
from

alpha.valid-regions-distinct-spec[OF v ′1 (2) 1 (1) v ′2 1 (3)]
alpha.region-unique-spec[OF u ′(2 ,4)]

have 2 : [v ′]l = R ′ [u]l = R by auto
from alpha.set-of-regions-spec[OF u ′(4 ,3)] v ′1 (1) 2 obtain t where t:

t ≥ 0 [u ′ ⊕ t]l = R ′ by auto
with alpha.regions-closed ′-spec[OF u ′(4 ,3) this(1)] step-t-r(1) have ∗:

u ′ ⊕ t ∈ R ′ by auto
with t(1) 3 2 u ′(1 ,3) have A ` 〈l, u ′〉 → 〈l, u ′ ⊕ t〉 u ′ ⊕ t ∈ ?W ′

unfolding zone-delay-def ccval-def by auto
with ∗ 1 (1) have R ′ ⊆ Closureα,l ?W ′ unfolding cla-def by auto
with 1 (2) show v ∈ Closureα,l ?W ′ ..

qed
moreover have ?W ′ ⊆ ?Z ′ using ‹W ⊆ Z › unfolding zone-delay-def

by auto
ultimately show ?case unfolding ‹l = l ′› by auto

next
case A: (step-a-z g a r Z)
let ?Z ′ = zone-set (Z ∩ {u. u ` g}) r ∩ {u. u ` inv-of A l ′}
let ?W ′ = zone-set (W ∩ {u. u ` g}) r ∩ {u. u ` inv-of A l ′}
from A(1) have step-z: A ` 〈l, W 〉 �a 〈l ′,?W ′〉 by auto
moreover have Closureα,l ′ ?Z ′ ⊆ Closureα,l ′ ?W ′

proof
fix v assume v: v ∈ Closureα,l ′ ?Z ′

then obtain R ′ v ′ where R ′ ∈ R l ′ v ∈ R ′ v ′ ∈ R ′ v ′ ∈ ?Z ′ unfolding
cla-def by auto

then obtain u where
u ∈ Z and v ′: v ′ = [r→0]u u ` g v ′ ` inv-of A l ′

unfolding zone-set-def by blast
let ?R ′= region-set ′ (([u]l) ∩ {u. u ` g}) r 0 ∩ {u. u ` inv-of A l ′}
from ‹u ∈ Z › alpha.closure-subs[OF A(4)] A(2) obtain u ′ R where u ′:

u ′ ∈ W u ∈ R u ′ ∈ R R ∈ R l
by (simp add: cla-def) blast
then have ∀ x∈X . 0 ≤ u x unfolding R-def by fastforce
from region-cover ′[OF this] have [u]l ∈ R l u ∈ [u]l by auto
have ∗:
[u]l = ([u]l) ∩ {u. u ` g}
region-set ′ ([u]l) r 0 ⊆ [[r→0]u]l ′ [[r→0]u]l ′ ∈ R l ′
([[r→0]u]l ′) ∩ {u. u ` inv-of A l ′} = [[r→0]u]l ′

proof −
from A(3) have collect-clkvt (trans-of A) ⊆ X
∀ l g a r l ′ c. A ` l −→g,a,r l ′ ∧ c /∈ set r −→ k l ′ c ≤ k l c

279

by (auto elim: valid-abstraction.cases)
with A(1) have set r ⊆ X ∀ y. y /∈ set r −→ k l ′ y ≤ k l y

unfolding collect-clkvt-def by (auto 4 8)
with

region-set-subs[
of - X k l - 0 , where k ′ = k l ′, folded R-def , OF ‹[u]l ∈ R l› ‹u ∈

[u]l› finite
]

show region-set ′ ([u]l) r 0 ⊆ [[r→0]u]l ′ [[r→0]u]l ′ ∈ R l ′ by auto
from A(3) have ∗:
∀ l. ∀ (x, m)∈clkp-set A l. m ≤ real (k l x) ∧ x ∈ X ∧ m ∈ �
by (fastforce elim: valid-abstraction.cases)+

with A(1) have ∗∗∗: ∀ (x, m)∈collect-clock-pairs g. m ≤ real (k l x)
∧ x ∈ X ∧ m ∈ �

unfolding clkp-set-def collect-clkt-def by fastforce
from ‹u ∈ [u]l› ‹[u]l ∈ R l› ccompatible[OF this, folded R-def] ‹u `

g› show
[u]l = ([u]l) ∩ {u. u ` g}
unfolding ccompatible-def ccval-def by blast

have ∗∗: [r→0]u ∈ [[r→0]u]l ′
using ‹R ′ ∈ R l ′› ‹v ′ ∈ R ′› alpha ′.region-unique-spec v ′(1) by blast

from ∗ have
∀ (x, m)∈collect-clock-pairs (inv-of A l ′). m ≤ real (k l ′ x) ∧ x ∈ X

∧ m ∈ �
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce

from ∗∗ ‹[[r→0]u]l ′ ∈ R l ′› ccompatible[OF this, folded R-def] ‹v ′ `
-› show

([[r→0]u]l ′) ∩ {u. u ` inv-of A l ′} = [[r→0]u]l ′
unfolding ccompatible-def ccval-def ‹v ′ = -› by blast

qed
from ∗ ‹v ′ = -› ‹u ∈ [u]l› have v ′ ∈ [[r→0]u]l ′ unfolding region-set ′-def

by auto
from alpha ′.valid-regions-distinct-spec[OF ∗(3) ‹R ′∈ R l ′› ‹v ′∈ [[r→0]u]l ′›

‹v ′ ∈ R ′›]
have [[r→0]u]l ′ = R ′ .
from alpha.region-unique-spec[OF u ′(2 ,4)] have [u]l = R by auto
from ‹[u]l = R› ∗(1 ,2) ∗(4) ‹u ′ ∈ R› have
[r→0]u ′ ∈ [[r→0]u]l ′ u ′ ` g [r→0]u ′ ` inv-of A l ′
unfolding region-set ′-def by auto

with u ′(1) have [r→0]u ′ ∈ ?W ′ unfolding zone-set-def by auto
with ‹[r→0]u ′ ∈ [[r→0]u]l ′› ‹[[r→0]u]l ′ ∈ R l ′› have [[r→0]u]l ′ ⊆

Closureα,l ′ ?W ′

unfolding cla-def by auto
with ‹v ∈ R ′› show v ∈ Closureα,l ′ ?W ′ unfolding ‹- = R ′› ..

280

qed
moreover have ?W ′ ⊆ ?Z ′ using ‹W ⊆ Z › unfolding zone-set-def by

auto
ultimately show ?case by meson

qed

end

lemma step-z-alpha-mono:
A ` 〈l, Z 〉 α(a) 〈l ′,Z ′〉 =⇒ Z ⊆ W =⇒ W ⊆ V =⇒ ∃ W ′. A ` 〈l, W 〉
 α(a) 〈l ′,W ′〉 ∧ Z ′ ⊆ W ′

proof goal-cases
case 1
then obtain Z ′′ where ∗: A ` 〈l, Z 〉 a 〈l ′,Z ′′〉 Z ′ = Closureα,l ′ Z ′′ by

auto
from step-z-mono[OF this(1) 1 (2)] obtain W ′ where A ` 〈l, W 〉 a
〈l ′,W ′〉 Z ′′ ⊆ W ′ by auto

moreover with ∗(2) have Z ′ ⊆ Closureα,l ′ W ′ unfolding cla-def by
auto

ultimately show ?case by blast
qed

end

end
theory Approx-Beta

imports DBM-Zone-Semantics Regions-Beta Closure
begin

no-notation infinity (‹∞›)

6 Correctness of β-approximation from α-regions

Merging the locales for the two types of regions
locale Regions-defs =

Alpha-defs X for X :: ′c set+
fixes v :: ′c ⇒ nat and n :: nat

281

begin

abbreviation vabstr :: (′c, t) zone ⇒ - ⇒ - where
vabstr S M ≡ S = [M]v,n ∧ (∀ i≤n. ∀ j≤n. M i j 6= ∞ −→ get-const (M

i j) ∈ �)

definition V ′ ≡ {Z . Z ⊆ V ∧ (∃ M . vabstr Z M)}

end

locale Regions-global =
Regions-defs X v n for X :: ′c set and v n +
fixes k :: ′c ⇒ nat and not-in-X
assumes finite: finite X
assumes clock-numbering: clock-numbering ′ v n ∀ k≤n. k > 0 −→ (∃ c ∈

X . v c = k)
∀ c ∈ X . v c ≤ n

assumes not-in-X : not-in-X /∈ X
assumes non-empty: X 6= {}

begin

definition R-def : R ≡ {Regions.region X I r | I r . Regions.valid-region X
k I r}

sublocale alpha-interp:
AlphaClosure-global X k R by (unfold-locales) (auto simp: finite R-def

V-def)

sublocale beta-interp: Beta-Regions ′ X k v n not-in-X
rewrites beta-interp.V = V
using finite non-empty clock-numbering not-in-X unfolding V-def
by − ((subst Beta-Regions.V-def)?, unfold-locales; (assumption | rule

HOL.refl))+

abbreviation Rβ where Rβ ≡ beta-interp.R

lemmas Rβ-def = beta-interp.R-def

abbreviation Approxβ ≡ beta-interp.Approxβ

6.1 Preparing Bouyer’s Theorem

lemma region-dbm:
assumes R ∈ R

282

defines v ′ ≡ λ i. THE c. c ∈ X ∧ v c = i
obtains M
where[M]v,n = R
and ∀ i ≤ n. ∀ j ≤ n. M i 0 = ∞ ∧ j > 0 ∧ i 6= j−→ M i j = ∞ ∧ M

j i = ∞
and ∀ i ≤ n. M i i = Le 0
and ∀ i ≤ n. ∀ j ≤ n. i > 0 ∧ j > 0 ∧ M i 0 6= ∞ ∧ M j 0 6= ∞ −→

(∃ d :: int.
(− k (v ′ j) ≤ d ∧ d ≤ k (v ′ i) ∧ M i j = Le d ∧ M j i = Le (−d))
∨ (− k (v ′ j) ≤ d − 1 ∧ d ≤ k (v ′ i) ∧ M i j = Lt d ∧ M j i = Lt

(−d + 1)))
and ∀ i ≤ n. i > 0 ∧ M i 0 6= ∞ −→

(∃ d :: int. d ≤ k (v ′ i) ∧ d ≥ 0
∧ (M i 0 = Le d ∧ M 0 i = Le (−d) ∨ M i 0 = Lt d ∧ M 0 i =

Lt (−d + 1)))
and ∀ i ≤ n. i > 0 −→ (∃ d :: int. − k (v ′ i) ≤ d ∧ d ≤ 0 ∧ (M 0 i =

Le d ∨ M 0 i = Lt d))
and ∀ i. ∀ j. M i j 6= ∞ −→ get-const (M i j) ∈ �
and ∀ i ≤ n. ∀ j ≤ n. M i j 6= ∞ ∧ i > 0 ∧ j > 0 −→

(∃ d:: int. (M i j = Le d ∨ M i j = Lt d) ∧ (− k (v ′ j)) ≤ d ∧ d ≤ k
(v ′ i))
proof −

from assms obtain I r where R: R = region X I r valid-region X k I r
unfolding R-def by blast

let ?X0 = {x ∈ X . ∃ d. I x = Regions.intv.Intv d}
define f where f ≡
λ x. if isIntv (I x) then Lt (real (intv-const (I x) + 1))

else if isConst (I x) then Le (real (intv-const (I x)))
else ∞

define g where g ≡
λ x. if isIntv (I x) then Lt (− real (intv-const (I x)))

else if isConst (I x) then Le (− real (intv-const (I x)))
else Lt (− real (k x))

define h where h ≡
λ x y. if isIntv (I x) ∧ isIntv (I y) then

if (y, x) ∈ r ∧ (x, y) /∈ r then Lt (real-of-int (int (intv-const (I x)) −
intv-const (I y) + 1))

else if (x, y) ∈ r ∧ (y, x) /∈ r then Lt (int (intv-const (I x)) − intv-const
(I y))

else Le (int (intv-const (I x)) − intv-const (I y))
else if isConst (I x) ∧ isConst (I y) then Le (int (intv-const (I x)) −

intv-const (I y))
else if isIntv (I x) ∧ isConst (I y) then Lt (int (intv-const (I x)) + 1 −

intv-const (I y))

283

else if isConst (I x) ∧ isIntv (I y) then Lt (int (intv-const (I x)) −
intv-const (I y))

else ∞
let ?M = λ i j. if i = 0 then if j = 0 then Le 0 else g (v ′ j)

else if j = 0 then f (v ′ i) else if i = j then Le 0 else h (v ′ i)
(v ′ j)

have [?M]v,n ⊆ R
proof

fix u assume u: u ∈ [?M]v,n
show u ∈ R unfolding R
proof (standard, goal-cases)

case 1
show ?case
proof

fix c assume c: c ∈ X
with clock-numbering have c2 : v c ≤ n v c > 0 v ′ (v c) = c unfolding

v ′-def by auto
with u have dbm-entry-val u None (Some c) (g c)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
then show 0 ≤ u c by (cases isIntv (I c); cases isConst (I c)) (auto

simp: g-def)
qed

next
case 2
show ?case
proof

fix c assume c: c ∈ X
with clock-numbering have c2 : v c ≤ n v c > 0 v ′ (v c) = c unfolding

v ′-def by auto
with u have ∗: dbm-entry-val u None (Some c) (g c) dbm-entry-val

u (Some c) None (f c)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
show intv-elem c u (I c)
proof (cases I c)

case (Const d)
then have ¬ isIntv (I c) isConst (I c) by auto
with ∗ Const show ?thesis unfolding g-def f-def using Const by

auto
next

case (Intv d)
then have isIntv (I c) ¬ isConst (I c) by auto
with ∗ Intv show ?thesis unfolding g-def f-def by auto

next
case (Greater d)

284

then have ¬ isIntv (I c) ¬ isConst (I c) by auto
with ∗ Greater R(2) c show ?thesis unfolding g-def f-def by

fastforce
qed

qed
next

show ?X0 = ?X0 ..
show ∀ x ∈ ?X0. ∀ y ∈ ?X0. (x, y) ∈ r ←→ frac (u x) ≤ frac (u y)
proof (standard, standard)

fix x y assume A: x ∈ ?X0 y ∈ ?X0

show (x, y) ∈ r ←→ frac (u x) ≤ frac (u y)
proof (cases x = y)

case True
have refl-on ?X0 r using R(2) by auto
with A True show ?thesis unfolding refl-on-def by auto

next
case False
from A obtain d d ′ where AA:

I x = Intv d I y = Intv d ′ isIntv (I x) isIntv (I y) ¬ isConst (I
x) ¬ isConst (I y)

by auto
from A False clock-numbering have B:

v x ≤ n v x > 0 v ′ (v x) = x v y ≤ n v y > 0 v ′ (v y) = y v x 6=
v y

unfolding v ′-def by auto
with u have ∗:
dbm-entry-val u (Some x) (Some y) (h x y) dbm-entry-val u (Some

y) (Some x) (h y x)
dbm-entry-val u None (Some x) (g x) dbm-entry-val u (Some x)

None (f x)
dbm-entry-val u None (Some y) (g y) dbm-entry-val u (Some y)

None (f y)
unfolding DBM-zone-repr-def DBM-val-bounded-def by force+
show (x, y) ∈ r ←→ frac (u x) ≤ frac (u y)
proof

assume C : (x, y) ∈ r
show frac (u x) ≤ frac (u y)
proof (cases (y, x) ∈ r)

case False
with ∗ AA C have ∗∗:

u x − u y < int d − d ′

d < u x u x < d + 1 d ′ < u y u y < d ′ + 1
unfolding f-def g-def h-def by auto

from nat-intv-frac-decomp[OF ∗∗(2 ,3)] nat-intv-frac-decomp[OF

285

∗∗(4 ,5)] ∗∗(1) show
frac (u x) ≤ frac (u y)

by simp
next

case True
with ∗ AA C have ∗∗:

u x − u y ≤ int d − d ′

d < u x u x < d + 1 d ′ < u y u y < d ′ + 1
unfolding f-def g-def h-def by auto

from nat-intv-frac-decomp[OF ∗∗(2 ,3)] nat-intv-frac-decomp[OF
∗∗(4 ,5)] ∗∗(1) show

frac (u x) ≤ frac (u y)
by simp

qed
next

assume frac (u x) ≤ frac (u y)
show (x, y) ∈ r
proof (rule ccontr)

assume C : (x,y) /∈ r
moreover from R(2) have total-on ?X0 r by auto

ultimately have (y, x) ∈ r using False A unfolding total-on-def
by auto

with ∗(2−) AA C have ∗∗:
u y − u x < int d ′ − d
d < u x u x < d + 1 d ′ < u y u y < d ′ + 1

unfolding f-def g-def h-def by auto
from nat-intv-frac-decomp[OF ∗∗(2 ,3)] nat-intv-frac-decomp[OF

∗∗(4 ,5)] ∗∗(1) have
frac (u y) < frac (u x)

by simp
with ‹frac - ≤ -› show False by auto

qed
qed

qed
qed

qed
qed
moreover have R ⊆ [?M]v,n
proof

fix u assume u: u ∈ R
show u ∈ [?M]v,n unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (safe, goal-cases)

case 1 then show ?case by auto
next

286

case (2 c)
with clock-numbering have c ∈ X by metis
with clock-numbering have ∗: c ∈ X v c > 0 v ′ (v c) = c unfolding

v ′-def by auto
with R u have intv-elem c u (I c) valid-intv (k c) (I c) by auto
then have dbm-entry-val u None (Some c) (g c) unfolding g-def by

(cases I c) auto
with ∗ show ?case by auto

next
case (3 c)
with clock-numbering have c ∈ X by metis
with clock-numbering have ∗: c ∈ X v c > 0 v ′ (v c) = c unfolding

v ′-def by auto
with R u have intv-elem c u (I c) valid-intv (k c) (I c) by auto
then have dbm-entry-val u (Some c) None (f c) unfolding f-def by

(cases I c) auto
with ∗ show ?case by auto

next
case (4 c1 c2)
with clock-numbering have c1 ∈ X c2 ∈ X by metis+
with clock-numbering have ∗:

c1 ∈ X v c1 > 0 v ′ (v c1) = c1 c2 ∈ X v c2 > 0 v ′ (v c2) = c2
unfolding v ′-def by auto
with R u have

intv-elem c1 u (I c1) valid-intv (k c1) (I c1)
intv-elem c2 u (I c2) valid-intv (k c2) (I c2)

by auto
then have dbm-entry-val u (Some c1) (Some c2) (h c1 c2) unfolding

h-def
proof(cases I c1 , cases I c2 , fastforce+, cases I c2 , fastforce, goal-cases)
case (1 d d ′)

then show ?case
proof (cases (c2 , c1) ∈ r , goal-cases)

case 1
show ?case
proof (cases (c1 , c2) ∈ r)

case True
with 1 ∗(1 ,4) R(1) u have frac (u c1) = frac (u c2) by auto

with 1 have u c1 − u c2 = real d − d ′ by (fastforce dest:
nat-intv-frac-decomp)

with 1 show ?thesis by auto
next

case False with 1 show ?thesis by auto
qed

287

next
case 2
show ?case
proof (cases c1 = c2)

case True then show ?thesis by auto
next

case False
with 2 R(2) ∗(1 ,4) have (c1 , c2) ∈ r by (fastforce simp:

total-on-def)
with 2 ∗(1 ,4) R(1) u have frac (u c1) < frac (u c2) by auto

with 2 have u c1 − u c2 < real d − d ′ by (fastforce dest:
nat-intv-frac-decomp)

with 2 show ?thesis by auto
qed

qed
qed fastforce+
then show ?case
proof (cases v c1 = v c2 , goal-cases)

case True with ∗ clock-numbering have c1 = c2 by auto
then show ?thesis by auto

next
case 2 with ∗ show ?case by auto

qed
qed

qed
ultimately have [?M]v,n = R by blast
moreover have ∀ i ≤ n. ∀ j ≤ n. ?M i 0 = ∞ ∧ j > 0 ∧ i 6= j −→ ?M

i j = ∞ ∧ ?M j i = ∞
unfolding f-def h-def by auto
moreover have ∀ i ≤ n. ?M i i = Le 0 by auto
moreover
{ fix i j assume A: i ≤ n j ≤ n i > 0 j > 0 ?M i 0 6= ∞ ?M j 0 6= ∞

with clock-numbering(2) obtain c1 c2 where B: v c1 = i v c2 = j c1
∈ X c2 ∈ X by meson

with clock-numbering(1) A have C : v ′ i = c1 v ′ j = c2 unfolding
v ′-def by force+

from R(2) B have valid: valid-intv (k c1) (I c1) valid-intv (k c2) (I
c2) by auto

have ∃ d :: int. (− k (v ′ j) ≤ d ∧ d ≤ k (v ′ i) ∧ ?M i j = Le d ∧ ?M
j i = Le (−d)

∨ (− k (v ′ j) ≤ d − 1 ∧ d ≤ k (v ′ i) ∧ ?M i j = Lt d ∧ ?M j i = Lt
(−d + 1)))

proof (cases i = j)
case True

288

then show ?thesis by auto
next

case False
then show ?thesis
proof (cases I c1 , goal-cases)

case 1
then show ?case
proof (cases I c2)

case Const
let ?d = int (intv-const (I c1)) − int (intv-const (I c2))
from Const 1 have isConst (I c1) isConst (I c2) by auto

with A(1−4) C valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

next
case Intv
let ?d = int(intv-const (I c1)) − int (intv-const (I c2))
from Intv 1 have isConst (I c1) isIntv (I c2) by auto

with A(1−4) C valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

next
case Greater
then have ¬ isIntv (I c2) ¬ isConst (I c2) by auto
with A 1 (1) C have False unfolding f-def by simp
then show ?thesis by fast

qed
next

case 2
then show ?case
proof (cases I c2)

case Const
let ?d = int (intv-const (I c1)) + 1 − int (intv-const (I c2))
from Const 2 have isIntv (I c1) isConst (I c2) by auto

with A(1−4) C valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

next
case Intv
with 2 have ∗: isIntv (I c1) isIntv (I c2) by auto
from Intv A(1−4) C show ?thesis apply simp
proof (standard, goal-cases)

case 1
show ?case
proof (cases (c2 , c1) ∈ r)

case True
note T = this

289

show ?thesis
proof (cases (c1 , c2) ∈ r)

case True
let ?d = int (intv-const (I c1)) − int (intv-const (I c2))
from True T ∗ valid show ?thesis unfolding h-def by (intro

exI [where x = ?d]) auto
next

case False
let ?d = int (intv-const (I c1)) − int (intv-const (I c2)) + 1

from False T ∗ valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

qed
next

case False
let ?d = int (intv-const (I c1)) − int (intv-const (I c2))

from False ∗ valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

qed
qed

next
case Greater
then have ¬ isIntv (I c2) ¬ isConst (I c2) by auto
with A 2 (1) C have False unfolding f-def by simp
then show ?thesis by fast

qed
next

case 3
then have ¬ isIntv (I c1) ¬ isConst (I c1) by auto
with A 3 (1) C have False unfolding f-def by simp
then show ?thesis by fast

qed
qed

}
moreover
{ fix i assume A: i ≤ n i > 0 ?M i 0 6= ∞

with clock-numbering(2) obtain c1 where B: v c1 = i c1 ∈ X by
meson

with clock-numbering(1) A have C : v ′ i = c1 unfolding v ′-def by
force+

from R(2) B have valid: valid-intv (k c1) (I c1) by auto
have ∃ d :: int. d ≤ k (v ′ i) ∧ d ≥ 0
∧ (?M i 0 = Le d ∧ ?M 0 i = Le (−d) ∨ ?M i 0 = Lt d ∧ ?M 0 i =

Lt (−d + 1))
proof (cases i = 0)

290

case True
then show ?thesis by auto

next
case False
then show ?thesis
proof (cases I c1 , goal-cases)

case 1
let ?d = int (intv-const (I c1))
from 1 have isConst (I c1) ¬ isIntv (I c1) by auto

with A C valid show ?thesis unfolding f-def g-def by (intro
exI [where x = ?d]) auto

next
case 2
let ?d = int (intv-const (I c1)) + 1
from 2 have isIntv(I c1) ¬ isConst (I c1) by auto

with A C valid show ?thesis unfolding f-def g-def by (intro
exI [where x = ?d]) auto

next
case 3
then have ¬ isIntv (I c1) ¬ isConst (I c1) by auto
with A 3 (1) C have False unfolding f-def by simp
then show ?thesis by fast

qed
qed

}
moreover
{ fix i assume A: i ≤ n i > 0

with clock-numbering(2) obtain c1 where B: v c1 = i c1 ∈ X by
meson

with clock-numbering(1) A have C : v ′ i = c1 unfolding v ′-def by
force+

from R(2) B have valid: valid-intv (k c1) (I c1) by auto
have ∃ d :: int. − k (v ′ i) ≤ d ∧ d ≤ 0 ∧ (?M 0 i = Le d ∨ ?M 0 i =

Lt d)
proof (cases i = 0)

case True
then show ?thesis by auto

next
case False
then show ?thesis
proof (cases I c1 , goal-cases)

case 1
let ?d = − int (intv-const (I c1))
from 1 have isConst (I c1) ¬ isIntv (I c1) by auto

291

with A C valid show ?thesis unfolding f-def g-def by (intro
exI [where x = ?d]) auto

next
case 2
let ?d = − int (intv-const (I c1))
from 2 have isIntv(I c1) ¬ isConst (I c1) by auto

with A C valid show ?thesis unfolding f-def g-def by (intro
exI [where x = ?d]) auto

next
case 3
let ?d = − (k c1)
from 3 have ¬ isIntv (I c1) ¬ isConst (I c1) by auto
with A C show ?thesis unfolding g-def by (intro exI [where x =

?d]) auto
qed

qed
}
moreover have ∀ i. ∀ j. ?M i j 6= ∞ −→ get-const (?M i j) ∈ �

unfolding f-def g-def h-def by auto
moreover have ∀ i ≤ n. ∀ j ≤ n. i > 0 ∧ j > 0 ∧ ?M i j 6= ∞
−→ (∃ d:: int. (?M i j = Le d ∨ ?M i j = Lt d) ∧ (− k (v ′ j)) ≤ d ∧

d ≤ k (v ′ i))
proof (auto, goal-cases)

case A: (1 i j)
with clock-numbering(2) obtain c1 c2 where B: v c1 = i c1 ∈ X v c2

= j c2 ∈ X by meson
with clock-numbering(1) A have C : v ′ i = c1 v ′ j = c2 unfolding

v ′-def by force+
from R(2) B have valid: valid-intv (k c1) (I c1) valid-intv (k c2) (I

c2) by auto
with A B C show ?case
proof (simp, goal-cases)

case 1
show ?case
proof (cases I c1 , goal-cases)

case 1
then show ?case
proof (cases I c2)

case Const
let ?d = int (intv-const (I c1)) − int (intv-const (I c2))
from Const 1 have isConst (I c1) isConst (I c2) by auto

with A(1−4) C valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

next

292

case Intv
let ?d = int(intv-const (I c1)) − int (intv-const (I c2))
from Intv 1 have isConst (I c1) isIntv (I c2) by auto

with A(1−4) C valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

next
case Greater
then have ¬ isIntv (I c2) ¬ isConst (I c2) by auto
with A 1 (1) C show ?thesis unfolding h-def by simp

qed
next

case 2
then show ?case
proof (cases I c2)

case Const
let ?d = int (intv-const (I c1)) + 1 − int (intv-const (I c2))
from Const 2 have isIntv (I c1) isConst (I c2) by auto

with A(1−4) C valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

next
case Intv
with 2 have ∗: isIntv (I c1) isIntv (I c2) by auto
from Intv A(1−4) C show ?thesis
proof goal-cases

case 1
show ?case
proof (cases (c2 , c1) ∈ r)

case True
note T = this
show ?thesis
proof (cases (c1 , c2) ∈ r)

case True
let ?d = int (intv-const (I c1)) − int (intv-const (I c2))
from True T ∗ valid show ?thesis unfolding h-def by (intro

exI [where x = ?d]) auto
next

case False
let ?d = int (intv-const (I c1)) − int (intv-const (I c2)) + 1

from False T ∗ valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

qed
next

case False
let ?d = int (intv-const (I c1)) − int (intv-const (I c2))

293

from False ∗ valid show ?thesis unfolding h-def by (intro
exI [where x = ?d]) auto

qed
qed

next
case Greater
then have ¬ isIntv (I c2) ¬ isConst (I c2) by auto
with A 2 (1) C show ?thesis unfolding h-def by simp

qed
next

case 3
then have ¬ isIntv (I c1) ¬ isConst (I c1) by auto
with A 3 (1) C show ?thesis unfolding h-def by simp

qed
qed

qed
moreover show ?thesis

apply (rule that)
apply (rule calculation(1))

apply (rule calculation(2))
apply (rule calculation(3))

apply (blast intro: calculation)+
apply (rule calculation(7))

using calculation(8) apply blast
done

qed

lemma len-inf-elem:
(a, b) ∈ set (arcs i j xs) =⇒ M a b = ∞ =⇒ len M i j xs = ∞

apply (induction rule: arcs.induct)
apply (auto simp: add)
apply (rename-tac a ′ b ′ x xs)
apply (case-tac M a ′ x)

by auto

lemma zone-diag-lt:
assumes a ≤ n b ≤ n and C : v c1 = a v c2 = b and not0 : a > 0 b > 0
shows [(λ i j. if i = a ∧ j = b then Lt d else ∞)]v,n = {u. u c1 − u c2

< d}
unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (standard, goal-cases)

case 1
then show ?case using ‹a ≤ n› ‹b ≤ n› C by fastforce

next

294

case 2
then show ?case
proof (safe, goal-cases)

case 1 from not0 show ?case unfolding dbm-le-def by auto
next

case 2 with not0 show ?case by auto
next

case 3 with not0 show ?case by auto
next

case (4 u ′ y z)
show ?case
proof (cases v y = a ∧ v z = b)

case True
with 4 clock-numbering C ‹a ≤ n› ‹b ≤ n› have u ′ y − u ′ z < d by

metis
with True show ?thesis by auto

next
case False then show ?thesis by auto

qed
qed

qed

lemma zone-diag-le:
assumes a ≤ n b ≤ n and C : v c1 = a v c2 = b and not0 : a > 0 b > 0
shows [(λ i j. if i = a ∧ j = b then Le d else ∞)]v,n = {u. u c1 − u c2
≤ d}
unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (rule, goal-cases)

case 1
then show ?case using ‹a ≤ n› ‹b ≤ n› C by fastforce

next
case 2
then show ?case
proof (safe, goal-cases)

case 1 from not0 show ?case unfolding dbm-le-def by auto
next

case 2 with not0 show ?case by auto
next

case 3 with not0 show ?case by auto
next

case (4 u ′ y z)
show ?case
proof (cases v y = a ∧ v z = b)

case True

295

with 4 clock-numbering C ‹a ≤ n› ‹b ≤ n› have u ′ y − u ′ z ≤ d by
metis

with True show ?thesis by auto
next

case False then show ?thesis by auto
qed

qed
qed

lemma zone-diag-lt-2 :
assumes a ≤ n and C : v c = a and not0 : a > 0
shows [(λ i j. if i = a ∧ j = 0 then Lt d else ∞)]v,n = {u. u c < d}

unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (rule, goal-cases)

case 1
then show ?case using ‹a ≤ n› C by fastforce

next
case 2
then show ?case
proof (safe, goal-cases)

case 1 from not0 show ?case unfolding dbm-le-def by auto
next

case 2 with not0 show ?case by auto
next

case (3 u c)
show ?case
proof (cases v c = a)

case False then show ?thesis by auto
next

case True
with 3 clock-numbering C ‹a ≤ n› have u c < d by metis
with C show ?thesis by auto

qed
next

case (4 u ′ y z)
from clock-numbering(1) have 0 < v z by auto
then show ?case by auto

qed
qed

lemma zone-diag-le-2 :
assumes a ≤ n and C : v c = a and not0 : a > 0
shows [(λ i j. if i = a ∧ j = 0 then Le d else ∞)]v,n = {u. u c ≤ d}

unfolding DBM-zone-repr-def DBM-val-bounded-def

296

proof (rule, goal-cases)
case 1
then show ?case using ‹a ≤ n› C by fastforce

next
case 2
then show ?case
proof (safe, goal-cases)

case 1 from not0 show ?case unfolding dbm-le-def by auto
next

case 2 with not0 show ?case by auto
next

case (3 u c)
show ?case
proof (cases v c = a)

case False then show ?thesis by auto
next

case True
with 3 clock-numbering C ‹a ≤ n› have u c ≤ d by metis
with C show ?thesis by auto

qed
next

case (4 u ′ y z)
from clock-numbering(1) have 0 < v z by auto
then show ?case by auto

qed
qed

lemma zone-diag-lt-3 :
assumes a ≤ n and C : v c = a and not0 : a > 0
shows [(λ i j. if i = 0 ∧ j = a then Lt d else ∞)]v,n = {u. − u c < d}

unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (rule, goal-cases)

case 1
then show ?case using ‹a ≤ n› C by fastforce

next
case 2
then show ?case
proof (safe, goal-cases)

case 1 from not0 show ?case unfolding dbm-le-def by auto
next

case (2 u c)
show ?case
proof (cases v c = a, goal-cases)

case False then show ?thesis by auto

297

next
case True
with 2 clock-numbering C ‹a ≤ n› have − u c < d by metis
with C show ?thesis by auto

qed
next

case (3 u) with not0 show ?case by auto
next

case (4 u ′ y z)
from clock-numbering(1) have 0 < v y by auto
then show ?case by auto

qed
qed

lemma len-int-closed:
∀ i j. (M i j :: real) ∈ � =⇒ len M i j xs ∈ �

by (induction xs arbitrary: i) auto

lemma get-const-distr :
a 6= ∞ =⇒ b 6= ∞ =⇒ get-const (a + b) = get-const a + get-const b

by (cases a) (cases b, auto simp: add)+

lemma len-int-dbm-closed:
∀ (i, j) ∈ set (arcs i j xs). (get-const (M i j) :: real) ∈ � ∧ M i j 6= ∞
=⇒ get-const (len M i j xs) ∈ � ∧ len M i j xs 6= ∞

by (induction xs arbitrary: i) (auto simp: get-const-distr , simp add: dbm-add-not-inf
add)

lemma zone-diag-le-3 :
assumes a ≤ n and C : v c = a and not0 : a > 0
shows [(λ i j. if i = 0 ∧ j = a then Le d else ∞)]v,n = {u. − u c ≤ d}

unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (rule, goal-cases)

case 1
then show ?case using ‹a ≤ n› C by fastforce

next
case 2
then show ?case
proof (safe, goal-cases)

case 1 from not0 show ?case unfolding dbm-le-def by auto
next

case (2 u c)
show ?case
proof (cases v c = a)

298

case False then show ?thesis by auto
next

case True
with 2 clock-numbering C ‹a ≤ n› have − u c ≤ d by metis
with C show ?thesis by auto

qed
next

case (3 u) with not0 show ?case by auto
next

case (4 u ′ y z)
from clock-numbering(1) have 0 < v y by auto
then show ?case by auto

qed
qed

lemma dbm-lt ′:
assumes [M]v,n ⊆ V M a b ≤ Lt d a ≤ n b ≤ n v c1 = a v c2 = b a >

0 b > 0
shows [M]v,n ⊆ {u ∈ V . u c1 − u c2 < d}

proof −
from assms have [M]v,n ⊆ [(λ i j. if i = a ∧ j = b then Lt d else ∞)]v,n

apply safe
apply (rule DBM-le-subset)

unfolding less-eq dbm-le-def by auto
moreover from zone-diag-lt[OF ‹a ≤ n› ‹b ≤ n› assms(5−)]
have [(λ i j. if i = a ∧ j = b then Lt d else ∞)]v,n = {u. u c1 − u c2 <

d} by blast
moreover from assms have [M]v,n ⊆ V by auto
ultimately show ?thesis by auto

qed

lemma dbm-lt ′2 :
assumes [M]v,n ⊆ V M a 0 ≤ Lt d a ≤ n v c1 = a a > 0
shows [M]v,n ⊆ {u ∈ V . u c1 < d}

proof −
from assms(2) have [M]v,n ⊆ [(λ i j. if i = a ∧ j = 0 then Lt d else
∞)]v,n

apply safe
apply (rule DBM-le-subset)

unfolding less-eq dbm-le-def by auto
moreover from zone-diag-lt-2 [OF ‹a ≤ n› assms(4 ,5)]
have [(λ i j. if i = a ∧ j = 0 then Lt d else ∞)]v,n = {u. u c1 < d} by

blast
ultimately show ?thesis using assms(1) by auto

299

qed

lemma dbm-lt ′3 :
assumes [M]v,n ⊆ V M 0 a ≤ Lt d a ≤ n v c1 = a a > 0
shows [M]v,n ⊆ {u ∈ V . − u c1 < d}

proof −
from assms(2) have [M]v,n ⊆ [(λ i j. if i = 0 ∧ j = a then Lt d else
∞)]v,n

apply safe
apply (rule DBM-le-subset)

unfolding less-eq dbm-le-def by auto
moreover from zone-diag-lt-3 [OF ‹a ≤ n› assms(4 ,5)]
have [(λ i j. if i = 0 ∧ j = a then Lt d else ∞)]v,n = {u. − u c1 < d}

by blast
ultimately show ?thesis using assms(1) by auto

qed

lemma dbm-le ′:
assumes [M]v,n ⊆ V M a b ≤ Le d a ≤ n b ≤ n v c1 = a v c2 = b a >

0 b > 0
shows [M]v,n ⊆ {u ∈ V . u c1 − u c2 ≤ d}

proof −
from assms have [M]v,n ⊆ [(λ i j. if i = a ∧ j = b then Le d else ∞)]v,n

apply safe
apply (rule DBM-le-subset)

unfolding less-eq dbm-le-def by auto
moreover from zone-diag-le[OF ‹a ≤ n› ‹b ≤ n› assms(5−)]
have [(λ i j. if i = a ∧ j = b then Le d else ∞)]v,n = {u. u c1 − u c2 ≤

d} by blast
moreover from assms have [M]v,n ⊆ V by auto
ultimately show ?thesis by auto

qed

lemma dbm-le ′2 :
assumes [M]v,n ⊆ V M a 0 ≤ Le d a ≤ n v c1 = a a > 0
shows [M]v,n ⊆ {u ∈ V . u c1 ≤ d}

proof −
from assms(2) have [M]v,n ⊆ [(λ i j. if i = a ∧ j = 0 then Le d else
∞)]v,n

apply safe
apply (rule DBM-le-subset)

unfolding less-eq dbm-le-def by auto
moreover from zone-diag-le-2 [OF ‹a ≤ n› assms(4 ,5)]
have [(λ i j. if i = a ∧ j = 0 then Le d else ∞)]v,n = {u. u c1 ≤ d} by

300

blast
ultimately show ?thesis using assms(1) by auto

qed

lemma dbm-le ′3 :
assumes [M]v,n ⊆ V M 0 a ≤ Le d a ≤ n v c1 = a a > 0
shows [M]v,n ⊆ {u ∈ V . − u c1 ≤ d}

proof −
from assms(2) have [M]v,n ⊆ [(λ i j. if i = 0 ∧ j = a then Le d else
∞)]v,n

apply safe
apply (rule DBM-le-subset)

unfolding less-eq dbm-le-def by auto
moreover from zone-diag-le-3 [OF ‹a ≤ n› assms(4 ,5)]
have [(λ i j. if i = 0 ∧ j = a then Le d else ∞)]v,n = {u. − u c1 ≤ d}

by blast
ultimately show ?thesis using assms(1) by auto

qed

lemma int-zone-dbm:
assumes ∀ (-,d) ∈ collect-clock-pairs cc. d ∈ � ∀ c ∈ collect-clks cc. v c
≤ n

obtains M where {u. u ` cc} = [M]v,n and dbm-int M n
using int-zone-dbm[OF - assms] clock-numbering(1) by auto

lemma non-empty-dbm-diag-set ′:
assumes clock-numbering ′ v n ∀ i≤n. ∀ j≤n. M i j 6= ∞ −→ get-const (M

i j) ∈ �
[M]v,n 6= {}

obtains M ′ where [M]v,n = [M ′]v,n ∧ (∀ i≤n. ∀ j≤n. M ′ i j 6= ∞ −→
get-const (M ′ i j) ∈ �)
∧ (∀ i ≤ n. M ′ i i = 0)

proof −
let ?M = λi j. if i = j then 0 else M i j
from non-empty-dbm-diag-set[OF assms(1 ,3)] have [M]v,n = [?M]v,n by

auto
moreover from assms(2) have ∀ i≤n. ∀ j≤n. ?M i j 6= ∞ −→ get-const

(?M i j) ∈ �
unfolding neutral by auto
moreover have ∀ i ≤ n. ?M i i = 0 by auto
ultimately show ?thesis by (auto intro: that)

qed

lemma dbm-entry-int:

301

(x :: t DBMEntry) 6= ∞ =⇒ get-const x ∈ � =⇒ ∃ d :: int. x = Le d ∨
x = Lt d
apply (cases x) using Ints-cases by auto

6.2 Bouyer’s Main Theorem

theorem region-zone-intersect-empty-approx-correct:
assumes R ∈ R Z ⊆ V R ∩ Z = {} vabstr Z M
shows R ∩ Approxβ Z = {}

proof −
define v ′ where v ′ ≡ λ i. THE c. c ∈ X ∧ v c = i
from region-dbm[OF assms(1)] obtain MR where MR:
[MR]v,n = R ∀ i≤n. ∀ j≤n. MR i 0 = ∞ ∧ 0 < j ∧ i 6= j −→ MR i j

= ∞ ∧ MR j i = ∞
∀ i≤n. MR i i = Le 0
∀ i≤n. ∀ j≤n. 0 < i ∧ 0 < j ∧ MR i 0 6= ∞ ∧ MR j 0 6= ∞ −→
(∃ d. − int (k (THE c. c ∈ X ∧ v c = j)) ≤ d ∧ d ≤ int (k (THE c. c

∈ X ∧ v c = i))
∧ MR i j = Le d ∧ MR j i = Le (real-of-int (− d))
∨ − int (k (THE c. c ∈ X ∧ v c = j)) ≤ d − 1 ∧ d ≤ int (k (THE

c. c ∈ X ∧ v c = i))
∧ MR i j = Lt d ∧ MR j i = Lt (real-of-int (− d + 1)))

∀ i≤n. 0 < i ∧ MR i 0 6= ∞ −→ (∃ d≤int (k (THE c. c ∈ X ∧ v c =
i)). d ≥ 0 ∧

(MR i 0 = Le d ∧ MR 0 i = Le (real-of-int (− d)) ∨ MR i 0 = Lt d
∧ MR 0 i = Lt (real-of-int (− d + 1))))
∀ i≤n. 0 < i −→ (∃ d≥− int (k (THE c. c ∈ X ∧ v c = i)). d ≤ 0 ∧

(MR 0 i = Le d ∨ MR 0 i = Lt d))
∀ i j. MR i j 6= ∞ −→ get-const (MR i j) ∈ �
∀ i≤n. ∀ j≤n. MR i j 6= ∞ ∧ 0 < i ∧ 0 < j −→ (∃ d. (MR i j = Le d

∨ MR i j = Lt d)
∧ − int (k (THE c. c ∈ X ∧ v c = j)) ≤ d ∧ d ≤ int (k (THE c. c

∈ X ∧ v c = i)))
.
show ?thesis
proof (cases R = {})

case True then show ?thesis by auto
next

case False
from clock-numbering(2) have cn-weak: ∀ k≤n. 0 < k −→ (∃ c. v c =

k) by auto

show ?thesis
proof (cases Z = {})

302

case True
then show ?thesis using beta-interp.apx-empty by blast

next
case False
from assms(4) have

Z = [M]v,n ∀ i≤n. ∀ j≤n. M i j 6= ∞ −→ get-const (M i j) ∈ �
by auto
from this(1) non-empty-dbm-diag-set ′[OF clock-numbering(1) this(2)]

‹Z 6= {}› obtain M where M :
Z = [M]v,n ∧ (∀ i≤n. ∀ j≤n. M i j 6= ∞ −→ get-const (M i j) ∈ �)

∧ (∀ i≤n. M i i = 0)
by auto

with not-empty-cyc-free[OF cn-weak] False have cyc-free M n by auto
then have cycle-free M n using cycle-free-diag-equiv by auto
from M have Z = [FW M n]v,n unfolding neutral by (auto intro!:

FW-zone-equiv[OF cn-weak])
moreover from fw-canonical[OF ‹cyc-free M -›] M have canonical

(FW M n) n
unfolding neutral by auto

moreover from FW-int-preservation M have
∀ i≤n. ∀ j≤n. FW M n i j 6= ∞ −→ get-const (FW M n i j) ∈ �

by auto
ultimately obtain M where M :

[M]v,n = Z canonical M n ∀ i≤n. ∀ j≤n. M i j 6= ∞ −→ get-const
(M i j) ∈ �

by blast
let ?M = λ i j. min (M i j) (MR i j)
from M (1) MR(1) assms have [M]v,n ∩ [MR]v,n = {} by auto

moreover from DBM-le-subset[folded less-eq, of n ?M M] have [?M]v,n
⊆ [M]v,n by auto

moreover from DBM-le-subset[folded less-eq, of n ?M MR] have
[?M]v,n ⊆ [MR]v,n by auto

ultimately have [?M]v,n = {} by blast
then have ¬ cyc-free ?M n using cyc-free-not-empty[of n ?M v]

clock-numbering(1) by auto
then obtain i xs where xs: i ≤ n set xs ⊆ {0 ..n} len ?M i i xs < 0

by auto
from this(1 ,2) canonical-shorten-rotate-neg-cycle[OF M (2) this(2 ,1 ,3)]

obtain i ys where ys:
len ?M i i ys < 0
set ys ⊆ {0 ..n} successive (λ(a, b). ?M a b = M a b) (arcs i i ys) i

≤ n
and distinct: distinct ys i /∈ set ys
and cycle-closes: ys 6= [] −→ ?M i (hd ys) 6= M i (hd ys) ∨ ?M (last

303

ys) i 6= M (last ys) i
by fastforce

have one-M-aux:
len ?M i j ys = len MR i j ys if ∀ (a,b) ∈ set (arcs i j ys). M a b ≥

MR a b for j
using that by (induction ys arbitrary: i) (auto simp: min-def)
have one-M : ∃ (a,b) ∈ set (arcs i i ys). M a b < MR a b
proof (rule ccontr , goal-cases)

case 1
then have ∀ (a, b)∈set (arcs i i ys). MR a b ≤ M a b by auto
from one-M-aux[OF this] have len ?M i i ys = len MR i i ys .
with Nil ys(1) xs(3) have len MR i i ys < 0 by simp

from DBM-val-bounded-neg-cycle[OF - ‹i ≤ n› ‹set ys ⊆ -› this
cn-weak]

have [MR]v,n = {} unfolding DBM-zone-repr-def by auto
with ‹R 6= {}› MR(1) show False by auto

qed
have one-M-R-aux:

len ?M i j ys = len M i j ys if ∀ (a,b) ∈ set (arcs i j ys). M a b ≤
MR a b for j

using that by (induction ys arbitrary: i) (auto simp: min-def)
have one-M-R: ∃ (a,b) ∈ set (arcs i i ys). M a b > MR a b
proof (rule ccontr , goal-cases)

case 1
then have ∀ (a, b)∈set (arcs i i ys). MR a b ≥ M a b by auto
from one-M-R-aux[OF this] have len ?M i i ys = len M i i ys .
with Nil ys(1) xs(3) have len M i i ys < 0 by simp

from DBM-val-bounded-neg-cycle[OF - ‹i ≤ n› ‹set ys ⊆ -› this
cn-weak]

have [M]v,n = {} unfolding DBM-zone-repr-def by auto
with ‹Z 6= {}› M (1) show False by auto

qed

have 0 : (0 ,0) /∈ set (arcs i i ys)
proof (cases ys = [])

case False with distinct show ?thesis using arcs-distinct1 by blast
next

case True with ys(1) have ?M i i < 0 by auto
then have M i i < 0 ∨ MR i i < 0 by (simp add: min-less-iff-disj)
from one-M one-M-R True show ?thesis by auto

qed

{ fix a b assume A: (a,b) ∈ set (arcs i i ys)

304

assume not0 : a > 0
from aux1 [OF ys(4 ,4 ,2) A] have C2 : a ≤ n by auto
then obtain c1 where C : v c1 = a c1 ∈ X
using clock-numbering(2) not0 unfolding v ′-def by meson
then have v ′ a = c1 using clock-numbering C2 not0 unfolding

v ′-def by fastforce
with C C2 have ∃ c ∈ X . v c = a ∧ v ′ a = c a ≤ n by auto

} note clock-dest-1 = this
{ fix a b assume A: (a,b) ∈ set (arcs i i ys)

assume not0 : b > 0
from aux1 [OF ys(4 ,4 ,2) A] have C2 : b ≤ n by auto
then obtain c2 where C : v c2 = b c2 ∈ X
using clock-numbering(2) not0 unfolding v ′-def by meson
then have v ′ b = c2 using clock-numbering C2 not0 unfolding

v ′-def by fastforce
with C C2 have ∃ c ∈ X . v c = b ∧ v ′ b = c b ≤ n by auto

} note clock-dest-2 = this
have clock-dest:∧

a b. (a,b) ∈ set (arcs i i ys) =⇒ a > 0 =⇒ b > 0 =⇒
∃ c1 ∈ X . ∃ c2 ∈ X . v c1 = a ∧ v c2 = b ∧ v ′ a = c1 ∧ v ′ b =

c2 &&& a ≤ n &&& b ≤ n
using clock-dest-1 clock-dest-2 by (auto) presburger

{ fix a assume A: (a,0) ∈ set (arcs i i ys)
assume not0 : a > 0
assume bounded: MR a 0 6= ∞
assume lt: M a 0 < MR a 0
from clock-dest-1 [OF A not0] obtain c1 where C :

v c1 = a c1 ∈ X v ′ a = c1 and C2 : a ≤ n
by blast
from C2 not0 bounded MR(5) obtain d :: int where ∗:

d ≤ int (k (v ′ a))
MR a 0 = Le d ∧ MR 0 a = Le (− d) ∨ MR a 0 = Lt d ∧ MR 0

a = Lt (− d + 1)
unfolding v ′-def by auto
with C have ∗∗: d ≤ int (k c1) by auto
from ∗(2) have ?thesis
proof (standard, goal-cases)

case 1
with lt have M a 0 < Le d by auto
then have M a 0 ≤ Lt d unfolding less less-eq dbm-le-def by

(fastforce elim!: dbm-lt.cases)
from dbm-lt ′2 [OF assms(2)[folded M (1)] this C2 C (1) not0] have
[M]v,n ⊆ {u ∈ V . u c1 < d}

305

by auto
from beta-interp.β-boundedness-lt ′[OF ∗∗ C (2) this, unfolded

Rβ-def] have
Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 < d}

.
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c1) None (MR a 0) dbm-entry-val u

None (Some c1) (MR 0 a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
then have u c1 = d using 1 by auto
then have u /∈ {u ∈ V . u c1 < d} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

next
case 2
from 2 lt have M a 0 6= ∞ by auto
with dbm-entry-int[OF this] M (3) ‹a ≤ n›

obtain d ′ :: int where d ′: M a 0 = Le d ′ ∨ M a 0 = Lt d ′ by auto
then have M a 0 ≤ Le (d − 1) using lt 2
apply (auto simp: less-eq dbm-le-def less)
apply (cases rule: dbm-lt.cases)

apply auto
apply rule
apply (cases rule: dbm-lt.cases)
by auto
with lt have M a 0 ≤ Le (d − 1) by auto

from dbm-le ′2 [OF assms(2)[folded M (1)] this C2 C (1) not0] have
[M]v,n ⊆ {u ∈ V . u c1 ≤ d − 1}

by auto
from beta-interp.β-boundedness-le ′[OF - C (2) this] ∗∗ have

Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 ≤ d − 1}
by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u None (Some c1) (MR 0 a)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
then have u c1 > d − 1 using 2 by auto
then have u /∈ {u ∈ V . u c1 ≤ d − 1} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

qed

306

} note bounded-zero-1 = this

{ fix a assume A: (0 ,a) ∈ set (arcs i i ys)
assume not0 : a > 0
assume bounded: MR a 0 6= ∞
assume lt: M 0 a < MR 0 a
from clock-dest-2 [OF A not0] obtain c1 where C :

v c1 = a c1 ∈ X v ′ a = c1 and C2 : a ≤ n
by blast
from C2 not0 bounded MR(5) obtain d :: int where ∗:

d ≤ int (k (v ′ a))
MR a 0 = Le d ∧ MR 0 a = Le (− d) ∨ MR a 0 = Lt d ∧ MR 0

a = Lt (− d + 1)
unfolding v ′-def by auto
with C have ∗∗: − int (k c1) ≤ − d by auto
from ∗(2) have ?thesis
proof (standard, goal-cases)

case 1
with lt have M 0 a < Le (−d) by auto
then have M 0 a ≤ Lt (−d) unfolding less less-eq dbm-le-def by

(fastforce elim!: dbm-lt.cases)
from dbm-lt ′3 [OF assms(2)[folded M (1)] this C2 C (1) not0] have
[M]v,n ⊆ {u ∈ V . d < u c1}

by auto
from beta-interp.β-boundedness-gt ′[OF - C (2) this] ∗∗ have

Approxβ ([M]v,n) ⊆ {u ∈ V . − u c1 < −d}
by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c1) None (MR a 0) dbm-entry-val u

None (Some c1) (MR 0 a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with 1 have u /∈ {u ∈ V . − u c1 < −d} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

next
case 2
from 2 lt have M 0 a 6= ∞ by auto
with dbm-entry-int[OF this] M (3) ‹a ≤ n›
obtain d ′ :: int where d ′: M 0 a = Le d ′ ∨ M 0 a = Lt d ′ by auto
then have M 0 a ≤ Le (−d) using lt 2

apply (auto simp: less-eq dbm-le-def less)
apply (cases rule: dbm-lt.cases)

307

apply auto
apply rule

apply (metis get-const.simps(2) 2 of-int-less-iff of-int-minus
zless-add1-eq)

apply (cases rule: dbm-lt.cases)
apply auto
apply (rule dbm-lt.intros(5))

by (simp add: int-lt-Suc-le)
from dbm-le ′3 [OF assms(2)[folded M (1)] this C2 C (1) not0] have

[M]v,n ⊆ {u ∈ V . d ≤ u c1}
by auto
from beta-interp.β-boundedness-ge ′[OF - C (2) this] ∗∗ have

Approxβ ([M]v,n) ⊆ {u ∈ V . − u c1 ≤ −d}
by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c1) None (MR a 0)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with 2 have u /∈ {u ∈ V . − u c1 ≤ −d} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

qed
} note bounded-zero-2 = this

{ fix a b c c1 c2 assume A: (a,b) ∈ set (arcs i i ys)
assume not0 : a > 0 b > 0
assume lt: M a b = Lt c
assume neg: M a b + MR b a < 0
assume C : v c1 = a v c2 = b c1 ∈ X c2 ∈ X and C2 : a ≤ n b ≤ n
assume valid: −k c2 ≤ −get-const (MR b a) −get-const (MR b a)

≤ k c1
from neg have MR b a 6= ∞ by auto

then obtain d where ∗: MR b a = Le d ∨ MR b a = Lt d by (cases
MR b a, auto)+

with MR(7) ‹- - - 6= ∞› have d ∈ � by fastforce
with ∗ obtain d :: int where ∗: MR b a = Le d ∨ MR b a = Lt d

using Ints-cases by auto
with valid have valid: − k c2 ≤ −d −d ≤ k c1 by auto
from ∗ neg lt have M a b ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
from dbm-lt ′[OF assms(2)[folded M (1)] this C2 C (1 ,2) not0] have
[M]v,n ⊆ {u ∈ V . u c1 − u c2 < − d}

308

.
from beta-interp.β-boundedness-diag-lt ′[OF valid C (3 ,4) this] have

Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 − u c2 < −d}
.
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c2) (Some c1) (MR b a)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with ∗ have u /∈ {u ∈ V . u c1 − u c2 < −d} by auto

}
ultimately have ?thesis using MR(1) M (1) by auto

} note neg-sum-lt = this

{ fix a b assume A: (a,b) ∈ set (arcs i i ys)
assume not0 : a > 0 b > 0
assume neg: M a b + MR b a < 0
from clock-dest[OF A not0] obtain c1 c2 where

C : v c1 = a v c2 = b c1 ∈ X c2 ∈ X and C2 : a ≤ n b ≤ n
by blast

then have C3 : v ′ a = c1 v ′ b = c2 unfolding v ′-def using
clock-numbering(1) by auto

from neg have inf : M a b 6= ∞ MR b a 6= ∞ by auto
from MR(8) inf not0 C (3 ,4) C2 C3 obtain d :: int where d:

MR b a = Le d ∨ MR b a = Lt d − int (k c1) ≤ d d ≤ int (k c2)
unfolding v ′-def by auto

from inf obtain c where c: M a b = Le c ∨ M a b = Lt c by (cases
M a b) auto

{ assume ∗∗: M a b ≤ Lt (−d)
from dbm-lt ′[OF assms(2)[folded M (1)] this C2 C (1 ,2) not0] have

[M]v,n ⊆ {u ∈ V . u c1 − u c2 < (− d)}
.

from beta-interp.β-boundedness-diag-lt ′[OF - - C (3 ,4) this] d have
Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 − u c2 < −d}

by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c2) (Some c1) (MR b a)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have u /∈ {u ∈ V . u c1 − u c2 < −d} by auto

}
ultimately have ?thesis using MR(1) M (1) by auto

} note aux = this

309

from c have ?thesis
proof (standard, goal-cases)

case 2
with neg d have M a b ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case 1
note A = this
from d(1) show ?thesis
proof (standard, goal-cases)

case 1
with A neg d have M a b ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case 2

with A neg d have M a b ≤ Le (−d) unfolding less-eq dbm-le-def
add neutral less

by (auto elim!: dbm-lt.cases)
from dbm-le ′[OF assms(2)[folded M (1)] this C2 C (1 ,2) not0]

have
[M]v,n ⊆ {u ∈ V . u c1 − u c2 ≤ − d}

.
from beta-interp.β-boundedness-diag-le ′[OF - - C (3 ,4) this] d

have
Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 − u c2 ≤ −d}

by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c2) (Some c1) (MR b a)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have u /∈ {u ∈ V . u c1 − u c2 ≤ −d} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

qed
qed

} note neg-sum-1 = this

{ fix a b assume A: (a,0) ∈ set (arcs i i ys)
assume not0 : a > 0

310

assume neg: M a 0 + MR 0 a < 0
from clock-dest-1 [OF A not0] obtain c1 where C : v c1 = a c1 ∈

X and C2 : a ≤ n by blast
with clock-numbering(1) have C3 : v ′ a = c1 unfolding v ′-def by

auto
from neg have inf : M a 0 6= ∞ MR 0 a 6= ∞ by auto
from MR(6) not0 C2 C3 obtain d :: int where d:

MR 0 a = Le d ∨ MR 0 a = Lt d − int (k c1) ≤ d d ≤ 0
unfolding v ′-def by auto
from inf obtain c where c: M a 0 = Le c ∨ M a 0 = Lt c by

(cases M a 0) auto
{ assume M a 0 ≤ Lt (−d)
from dbm-lt ′2 [OF assms(2)[folded M (1)] this C2 C (1) not0] have
[M]v,n ⊆ {u ∈ V . u c1 < − d}

.
from beta-interp.β-boundedness-lt ′[OF - C (2) this] d have

Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 < −d}
by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u None (Some c1) (MR 0 a)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have u /∈ {u ∈ V . u c1 < −d} by auto

}
ultimately have ?thesis using MR(1) M (1) by auto

} note aux = this
from c have ?thesis
proof (standard, goal-cases)

case 2
with neg d have M a 0 ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case 1
note A = this
from d(1) show ?thesis
proof (standard, goal-cases)

case 1
with A neg d have M a 0 ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

311

next
case 2

with A neg d have M a 0 ≤ Le (−d) unfolding less-eq dbm-le-def
add neutral less

by (auto elim!: dbm-lt.cases)
from dbm-le ′2 [OF assms(2)[folded M (1)] this C2 C (1) not0]

have
[M]v,n ⊆ {u ∈ V . u c1 ≤ − d}

.
from beta-interp.β-boundedness-le ′[OF - C (2) this] d have

Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 ≤ −d}
by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u None (Some c1) (MR 0 a)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have u /∈ {u ∈ V . u c1 ≤ −d} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

qed
qed

} note neg-sum-1 ′ = this

{ fix a b assume A: (0 ,b) ∈ set (arcs i i ys)
assume not0 : b > 0
assume neg: M 0 b + MR b 0 < 0
from clock-dest-2 [OF A not0] obtain c2 where

C : v c2 = b c2 ∈ X and C2 : b ≤ n
by blast
with clock-numbering(1) have C3 : v ′ b = c2 unfolding v ′-def by

auto
from neg have M 0 b 6= ∞ MR b 0 6= ∞ by auto
with MR(5) not0 C2 C3 obtain d :: int where d:

MR b 0 = Le d ∨ MR b 0 = Lt d d ≤ k c2
unfolding v ′-def by fastforce
from ‹M 0 b 6= ∞› obtain c where c: M 0 b = Le c ∨ M 0 b = Lt

c by (cases M 0 b) auto
{ assume M 0 b ≤ Lt (−d)
from dbm-lt ′3 [OF assms(2)[folded M (1)] this C2 C (1) not0] have
[M]v,n ⊆ {u ∈ V . u c2 > d}

by simp
from beta-interp.β-boundedness-gt ′[OF - C (2) this] d have

Approxβ ([M]v,n) ⊆ {u ∈ V . − u c2 < −d}

312

by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c2) None (MR b 0)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have u /∈ {u ∈ V . − u c2 < −d} by auto

}
ultimately have ?thesis using MR(1) M (1) by auto

} note aux = this
from c have ?thesis
proof (standard, goal-cases)

case 2
with neg d have M 0 b ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case A: 1
from d(1) show ?thesis
proof (standard, goal-cases)

case 1
with A neg have M 0 b ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case 2

with A neg c have M 0 b ≤ Le (−d) unfolding less-eq dbm-le-def
add neutral less

by (auto elim!: dbm-lt.cases)
from dbm-le ′3 [OF assms(2)[folded M (1)] this C2 C (1) not0]

have
[M]v,n ⊆ {u ∈ V . u c2 ≥ d}

by simp
from beta-interp.β-boundedness-ge ′[OF - C (2) this] d(2) have

Approxβ ([M]v,n) ⊆ {u ∈ V . − u c2 ≤ −d}
by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c2) None (MR b 0)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have u /∈ {u ∈ V . − u c2 ≤ −d} by auto

313

}
ultimately show ?thesis using MR(1) M (1) by auto

qed
qed

} note neg-sum-1 ′′ = this

{ fix a b assume A: (a,b) ∈ set (arcs i i ys)
assume not0 : b > 0 a > 0
assume neg: MR a b + M b a < 0
from clock-dest[OF A not0 (2 ,1)] obtain c1 c2 where

C : v c1 = a v c2 = b c1 ∈ X c2 ∈ X and C2 : a ≤ n b ≤ n
by blast

then have C3 : v ′ a = c1 v ′ b = c2 unfolding v ′-def using
clock-numbering(1) by auto

from neg have inf : M b a 6= ∞ MR a b 6= ∞ by auto
with MR(8) not0 C (3 ,4) C2 C3 obtain d :: int where d:

MR a b = Le d ∨ MR a b = Lt d d ≥ −int (k c2) d ≤ int (k c1)
unfolding v ′-def by blast

from inf obtain c where c: M b a = Le c ∨ M b a = Lt c by (cases
M b a) auto

{ assume M b a ≤ Lt (−d)
from dbm-lt ′[OF assms(2)[folded M (1)] this C2 (2 ,1) C (2 ,1) not0]

have
[M]v,n ⊆ {u ∈ V . u c2 − u c1 < − d}

.
from beta-interp.β-boundedness-diag-lt ′[OF - - C (4 ,3) this] d
have Approxβ ([M]v,n) ⊆ {u ∈ V . u c2 − u c1 < −d} by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c1) (Some c2) (MR a b)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have u /∈ {u ∈ V . u c2 − u c1 < −d} by auto

}
ultimately have ?thesis using MR(1) M (1) by auto

} note aux = this
from c have ?thesis
proof (standard, goal-cases)

case 2
with neg d have M b a ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next

314

case A: 1
from d(1) show ?thesis
proof (standard, goal-cases)

case 1
with A neg d have M b a ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case 2

with A neg d have M b a ≤ Le (−d) unfolding less-eq dbm-le-def
add neutral less

by (auto elim!: dbm-lt.cases)
from dbm-le ′[OF assms(2)[folded M (1)] this C2 (2 ,1) C (2 ,1)

not0] have
[M]v,n ⊆ {u ∈ V . u c2 − u c1 ≤ − d}

.
from beta-interp.β-boundedness-diag-le ′[OF - - C (4 ,3) this] d
have Approxβ ([M]v,n) ⊆ {u ∈ V . u c2 − u c1 ≤ −d} by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c1) (Some c2) (MR a b)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have u /∈ {u ∈ V . u c2 − u c1 ≤ −d} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

qed
qed

} note neg-sum-2 = this

{ fix a b assume A: (a,0) ∈ set (arcs i i ys)
assume not0 : a > 0
assume neg: MR a 0 + M 0 a < 0
from clock-dest-1 [OF A not0] obtain c1 where C : v c1 = a c1 ∈

X and C2 : a ≤ n by blast
with clock-numbering(1) have C3 : v ′ a = c1 unfolding v ′-def by

auto
from neg have inf : M 0 a 6= ∞ MR a 0 6= ∞ by auto
with MR(5) not0 C2 C3 obtain d :: int where d:

MR a 0 = Le d ∨ MR a 0 = Lt d d ≤ int (k c1) d ≥ 0
unfolding v ′-def by auto
from inf obtain c where c: M 0 a = Le c ∨ M 0 a = Lt c by

(cases M 0 a) auto

315

{ assume M 0 a ≤ Lt (−d)
from dbm-lt ′3 [OF assms(2)[folded M (1)] this C2 C (1) not0] have
[M]v,n ⊆ {u ∈ V . u c1 > d}

by simp
from beta-interp.β-boundedness-gt ′[OF - C (2) this] d have

Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 > d}
by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c1) None (MR a 0)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have u /∈ {u ∈ V . u c1 > d} by auto

}
ultimately have ?thesis using MR(1) M (1) by auto

} note aux = this
from c have ?thesis
proof (standard, goal-cases)

case 2
with neg d have M 0 a ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case A: 1
from d(1) show ?thesis
proof (standard, goal-cases)

case 1
with A neg d have M 0 a ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case 2

with A neg d have M 0 a ≤ Le (−d) unfolding less-eq dbm-le-def
add neutral less

by (auto elim!: dbm-lt.cases)
from dbm-le ′3 [OF assms(2)[folded M (1)] this C2 C (1) not0]

have
[M]v,n ⊆ {u ∈ V . u c1 ≥ d}

by simp
from beta-interp.β-boundedness-ge ′[OF - C (2) this] d have

Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 ≥ d}
by auto

316

moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c1) None (MR a 0)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have u /∈ {u ∈ V . u c1 ≥ d} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

qed
qed

} note neg-sum-2 ′ = this

{ fix a b assume A: (0 ,b) ∈ set (arcs i i ys)
assume not0 : b > 0
assume neg: MR 0 b + M b 0 < 0
from clock-dest-2 [OF A not0] obtain c2 where

C : v c2 = b c2 ∈ X and C2 : b ≤ n
by blast
with clock-numbering(1) have C3 : v ′ b = c2 unfolding v ′-def by

auto
from neg have M b 0 6= ∞ MR 0 b 6= ∞ by auto
with MR(6) not0 C2 C3 obtain d :: int where d:

MR 0 b = Le d ∨ MR 0 b = Lt d −d ≤ k c2
unfolding v ′-def by fastforce
from ‹M b 0 6= ∞› obtain c where c: M b 0 = Le c ∨ M b 0 =

Lt c by (cases M b 0) auto
{ assume M b 0 ≤ Lt (−d)
from dbm-lt ′2 [OF assms(2)[folded M (1)] this C2 C (1) not0] have
[M]v,n ⊆ {u ∈ V . u c2 < − d}

by simp
from beta-interp.β-boundedness-lt ′[OF - C (2) this] d have

Approxβ ([M]v,n) ⊆ {u ∈ V . u c2 < −d}
by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u None (Some c2) (MR 0 b)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have u /∈ {u ∈ V . u c2 < −d} by auto

}
ultimately have ?thesis using MR(1) M (1) by auto

} note aux = this
from c have ?thesis
proof (standard, goal-cases)

317

case 2
with neg d have M b 0 ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case 1
note A = this
from d(1) show ?thesis
proof (standard, goal-cases)

case 1
with A neg have M b 0 ≤ Lt (−d) unfolding less-eq dbm-le-def

add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .

next
case 2

with A neg c have M b 0 ≤ Le (−d) unfolding less-eq dbm-le-def
add neutral less

by (auto elim!: dbm-lt.cases)
from dbm-le ′2 [OF assms(2)[folded M (1)] this C2 C (1) not0]

have
[M]v,n ⊆ {u ∈ V . u c2 ≤ − d}

by simp
from beta-interp.β-boundedness-le ′[OF - C (2) this] d(2) have

Approxβ ([M]v,n) ⊆ {u ∈ V . u c2 ≤ −d}
by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u None (Some c2) (MR 0 b)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have u /∈ {u ∈ V . u c2 ≤ −d} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

qed
qed

} note neg-sum-2 ′′ = this

{ fix a b assume A: (a,b) ∈ set (arcs i i ys)
assume not0 : a > 0 b > 0
assume bounded: MR a 0 6= ∞ MR b 0 6= ∞
assume lt: M a b < MR a b
from clock-dest[OF A not0] obtain c1 c2 where

318

C : v c1 = a v c2 = b c1 ∈ X c2 ∈ X and C2 : a ≤ n b ≤ n
by blast

from C C2 clock-numbering(1 ,3) have C3 : v ′ b = c2 v ′ a = c1
unfolding v ′-def by blast+

with C C2 not0 bounded MR(4) obtain d :: int where ∗:
− int (k c2) ≤ d ∧ d ≤ int (k c1) ∧ MR a b = Le d ∧ MR b a =

Le (− d)
∨ − int (k c2) ≤ d − 1 ∧ d ≤ int (k c1) ∧ MR a b = Lt d ∧ MR

b a = Lt (− d + 1)
unfolding v ′-def by force
from ∗ have ?thesis
proof (standard, goal-cases)

case 1
with lt have M a b < Le d by auto

then have M a b ≤ Lt d unfolding less less-eq dbm-le-def by
(fastforce elim!: dbm-lt.cases)

from dbm-lt ′[OF assms(2)[folded M (1)] this C2 C (1 ,2) not0] have
[M]v,n ⊆ {u ∈ V . u c1 − u c2 < d}

.
from beta-interp.β-boundedness-diag-lt ′[OF - - C (3 ,4) this] 1
have Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 − u c2 < d} by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c1) (Some c2) (MR a b) dbm-entry-val

u (Some c2) (Some c1) (MR b a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with 1 have u /∈ {u ∈ V . u c1 − u c2 < d} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

next
case 2
with lt have M a b 6= ∞ by auto
with dbm-entry-int[OF this] M (3) ‹a ≤ n› ‹b ≤ n›
obtain d ′ :: int where d ′: M a b = Le d ′ ∨ M a b = Lt d ′ by auto
then have M a b ≤ Le (d − 1) using lt 2
apply (auto simp: less-eq dbm-le-def less)
apply (cases rule: dbm-lt.cases)

apply auto
apply (rule dbm-lt.intros)
apply (cases rule: dbm-lt.cases)

by auto
with lt have M a b ≤ Le (d − 1) by auto

from dbm-le ′[OF assms(2)[folded M (1)] this C2 C (1 ,2) not0] have

319

[M]v,n ⊆ {u ∈ V . u c1 − u c2 ≤ d − 1}
.
from beta-interp.β-boundedness-diag-le ′[OF - - C (3 ,4) this] 2
have Approxβ ([M]v,n) ⊆ {u ∈ V . u c1 − u c2 ≤ d − 1} by auto
moreover
{ fix u assume u: u ∈ [MR]v,n

with C C2 have
dbm-entry-val u (Some c2) (Some c1) (MR b a)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with 2 have u /∈ {u ∈ V . u c1 − u c2 ≤ d − 1} by auto

}
ultimately show ?thesis using MR(1) M (1) by auto

qed
} note bounded = this

{ assume not-bounded: ∀ (a,b) ∈ set (arcs i i ys). M a b < MR a b
−→ MR a 0 = ∞ ∨ MR b 0 = ∞

have ∃ y z zs. set zs ∪ {0 , y, z} = set (i # ys) ∧ len ?M 0 0 (y #
z # zs) < Le 0 ∧

(∀ (a,b) ∈ set (arcs 0 0 (y # z # zs)). M a b < MR a b
−→ a = y ∧ b = z)

∧ M y z < MR y z ∧ distinct (0 # y # z # zs) ∨ ?thesis
proof (cases ys)

case Nil
show ?thesis
proof (cases M i i < MR i i)

case True
then have ?M i i = M i i by simp
with Nil ys(1) xs(3) have ∗: M i i < 0 by simp

with neg-cycle-empty[OF cn-weak - ‹i ≤ n›, of [] M] have [M]v,n
= {} by auto

with ‹Z 6= {}› M (1) show ?thesis by auto
next

case False
then have ?M i i = MR i i by (simp add: min-absorb2)
with Nil ys(1) xs(3) have MR i i < 0 by simp

with neg-cycle-empty[OF cn-weak - ‹i ≤ n›, of [] MR] have
[MR]v,n = {} by auto

with ‹R 6= {}› MR(1) show ?thesis by auto
qed

next
case (Cons w ws)
note ws = this
show ?thesis

320

proof (cases ws)
case Nil
with ws ys xs(3) have ∗:

?M i w + ?M w i < 0 ?M w i = M w i −→ ?M i w 6= M i w
(i, w) ∈ set (arcs i i ys)

by auto
have R ∩ Approxβ Z = {}
proof (cases ?M w i = M w i)

case True
with ∗(2) have ?M i w = MR i w unfolding min-def by auto
with ∗(1) True have neg: MR i w + M w i < 0 by auto
show ?thesis
proof (cases i = 0)

case True
show ?thesis
proof (cases w = 0)

case True with 0 ‹i = 0 › ∗(3) show ?thesis by auto
next

case False with ‹i = 0 › neg-sum-2 ′′ ∗(3) neg show ?thesis
by blast

qed
next

case False
show ?thesis
proof (cases w = 0)

case True with ‹i 6= 0 › neg-sum-2 ′ ∗(3) neg show ?thesis
by blast

next
case False with ‹i 6= 0 › neg-sum-2 ∗(3) neg show ?thesis

by blast
qed

qed
next

case False
have MR w i < M w i
proof (rule ccontr , goal-cases)

case 1
then have MR w i ≥ M w i by auto
with False show False unfolding min-def by auto

qed
with one-M ws Nil have M i w < MR i w by auto
then have ?M i w = M i w unfolding min-def by auto

moreover from False ∗(2) have ?M w i = MR w i unfolding
min-def by auto

321

ultimately have neg: M i w + MR w i < 0 using ∗(1) by
auto

show ?thesis
proof (cases i = 0)

case True
show ?thesis
proof (cases w = 0)

case True with 0 ‹i = 0 › ∗(3) show ?thesis by auto
next

case False with ‹i = 0 › neg-sum-1 ′′ ∗(3) neg show ?thesis
by blast

qed
next

case False
show ?thesis
proof (cases w = 0)

case True with ‹i 6= 0 › neg-sum-1 ′ ∗(3) neg show ?thesis
by blast

next
case False with ‹i 6= 0 › neg-sum-1 ∗(3) neg show ?thesis

by blast
qed

qed
qed
then show ?thesis by simp

next
case zs: (Cons z zs)
from one-M obtain a b where ∗:
(a,b) ∈ set (arcs i i ys) M a b < MR a b

by fastforce
from cycle-rotate-3 ′[OF - ∗(1) ys(3)] ws cycle-closes obtain ws ′

where ws ′:
len ?M i i ys = len ?M a a (b # ws ′) set (a # b # ws ′) = set

(i # ys)
1 + length ws ′ = length ys set (arcs i i ys) = set (arcs a a (b #

ws ′))
and successive: successive (λ(a, b). ?M a b = M a b) (arcs a a

(b # ws ′) @ [(a, b)])
by blast
from successive have successive-arcs:

successive (λ(a, b). ?M a b = M a b) (arcs a b (b # ws ′ @ [a]))
using arcs-decomp-tail by auto
from ws ′(4) one-M-R ∗(2) obtain c d where ∗∗:
(c,d) ∈ set (arcs a a (b # ws ′)) M c d > MR c d (a,b) 6= (c,d)

322

by fastforce
from card-distinct[of a # b # ws ′] distinct-card[of i # ys] ws ′(2 ,3)

distinct
have distinct: distinct (a # b # ws ′) by simp
from ws zs ws ′(3) have ws ′ 6= [] by auto

then obtain z zs where z: ws ′ = zs @ [z] by (metis ap-
pend-butlast-last-id)

then have b # ws ′ = (b # zs) @ [z] by simp
with len-decomp[OF this, of ?M a a] arcs-decomp-tail have

rotated:
len ?M a a (b # ws ′) = len ?M z z (a # b # zs)
set (arcs a a (b # ws ′)) = set (arcs z z (a # b # zs))

by (auto simp add: comm)
from ys(1) xs(3) ws ′(1) have len ?M a a (b # ws ′) < 0 by auto
from ws ′(2) ys(2) ‹i ≤ n› z have n-bounds: a ≤ n b ≤ n set ws ′

⊆ {0 ..n} z ≤ n by auto
from ∗ have a-b: ?M a b = M a b by simp

from successive successive-split[of - arcs a z (b # zs) [(z,a), (a,b)]]
have first: successive (λ(a, b). ?M a b = M a b) (arcs a z (b #

zs)) and
last-two: successive (λ(a, b). ?M a b = M a b) [(z, a), (a, b)]

using arcs-decomp-tail z by auto
from ∗ not-bounded have not-bounded ′: MR a 0 = ∞ ∨ MR b 0

= ∞ by auto
from this(1) have z = 0
proof

assume inf : MR b 0 = ∞
from a-b successive obtain z where z: (b,z) ∈ set (arcs b a

ws ′) ?M b z 6= M b z
by (cases ws ′) auto
then have ?M b z = MR b z by (meson min-def)

from arcs-distinct2 [OF - - - - z(1)] distinct have b 6= z by auto
from z n-bounds have z ≤ n

apply (induction ws ′ arbitrary: b)
apply auto[]
apply (rename-tac ws ′ b)

apply (case-tac ws ′)
apply auto

done
have MR b z = ∞
proof (cases z = 0)

case True
with inf show ?thesis by auto

next

323

case False
with inf MR(2) ‹b 6= z› ‹z ≤ n› ‹b ≤ n› show ?thesis by

blast
qed
with ‹?M b z = MR b z› have len ?M b a ws ′ = ∞ by (auto

intro: len-inf-elem[OF z(1)])
then have ∞ = len ?M a a (b # ws ′) by simp
with ‹len ?M a a - < 0 › show ?thesis by auto

next
assume inf : MR a 0 = ∞
show z = 0
proof (rule ccontr)

assume z 6= 0
with last-two a-b have ?M z a = MR z a by (auto simp:

min-def)
from distinct z have a 6= z by auto
with ‹z 6= 0 › ‹a ≤ n› ‹z ≤ n› MR(2) inf have MR z a = ∞

by blast
with ‹?M z a = MR z a› have len ?M z z (a # b # zs) = ∞

by (auto intro: len-inf-elem)
with ‹len ?M a a - < 0 › rotated show False by auto

qed
qed
{ fix c d assume A: (c, d) ∈ set (arcs 0 0 (a # b # zs)) M c d

< MR c d
then have ∗: ?M c d = M c d by simp
from rotated(2) A ‹z = 0 › not-bounded ws ′(4) have ∗∗: MR c

0 = ∞ ∨ MR d 0 = ∞ by auto
{ assume inf : MR c 0 = ∞

fix x assume x: (x, c) ∈ set (arcs a 0 (b # zs)) ?M x c 6= M
x c

from x(2) have ?M x c = MR x c unfolding min-def by
auto

from arcs-elem[OF x(1)] z ‹z = 0 › have
x ∈ set (a # b # ws ′) c ∈ set (a # b # ws ′)

by auto
with n-bounds have x ≤ n c ≤ n by auto
have x = 0
proof (rule ccontr)

assume x 6= 0
from distinct z arcs-distinct1 [OF - - - - x(1)] ‹z = 0 ›have

x 6= c by auto
with ‹x 6= 0 › ‹c ≤ n› ‹x ≤ n› MR(2) inf have MR x c =

∞ by blast

324

with ‹?M x c = MR x c› have
len ?M a 0 (b # zs) = ∞

by (fastforce intro: len-inf-elem[OF x(1)])
with ‹z = 0 › have len ?M z z (a # b # zs) = ∞ by auto
with ‹len ?M a a - < 0 › rotated show False by auto

qed
with arcs-distinct-dest1 [OF - x(1), of z] z distinct x ‹z = 0 ›

have False by auto
} note c-0-inf = this
have a = c ∧ b = d
proof (cases (c, d) = (0 , a))

case True
with last-two ‹z = 0 › ∗ a-b have False by auto
then show ?thesis by simp

next
case False
show ?thesis
proof (rule ccontr , goal-cases)

case 1
with False A(1) have ∗∗∗: (c, d) ∈ set (arcs b 0 zs) by auto
from successive z ‹z = 0 › have
successive (λ(a, b). ?M a b = M a b) ([(a, b)] @ arcs b 0 zs

@ [(0 , a), (a, b)])
by (simp add: arcs-decomp)
then have ∗∗∗∗: successive (λ(a, b). ?M a b = M a b) (arcs

b 0 zs)
using successive-split[of - [(a, b)] arcs b 0 zs @ [(0 , a), (a,

b)]]
successive-split[of - arcs b 0 zs [(0 , a), (a, b)]]

by auto
from successive-predecessor [OF ∗∗∗ - this] successive z
obtain x where x: (x, c) ∈ set (arcs a 0 (b # zs)) ?M x c

6= M x c
proof (cases c = b)

case False
then have zs 6= [] using ∗∗∗ by auto

from successive-predecessor [OF ∗∗∗ False ∗∗∗∗ - this] ∗
obtain x where x:

(zs = [c] ∧ x = b ∨ (∃ ys. zs = c # d # ys ∧ x = b)
∨ (∃ ys. zs = ys @ [x, c] ∧ d = 0) ∨ (∃ ys ws. zs = ys

@ x # c # d # ws))
?M x c 6= M x c

by blast+
from this(1) have (x, c) ∈ set (arcs a 0 (b # zs)) using

325

arcs-decomp by auto
with x(2) show ?thesis by (auto intro: that)

next
case True
have ∗∗∗∗: successive (λ(a, b). ?M a b = M a b) (arcs a 0

(b # zs))
using first ‹z = 0 › arcs-decomp successive-arcs z by auto
show ?thesis
proof (cases zs)

case Nil
with ∗∗∗∗ True ∗∗∗ ∗ show ?thesis by (auto intro: that)

next
case (Cons u us)

with ∗∗∗ True distinct z ‹z = 0 › have distinct (b # u #
us @ [0]) by auto

from arcs-distinct-fix[OF this] ∗∗∗ True Cons have d =
u by auto

with ∗∗∗∗ ∗ Cons True show ?thesis by (auto intro: that)
qed

qed
show False
proof (cases d = 0)

case True
from ∗∗ show False
proof

assume MR c 0 = ∞ from c-0-inf [OF this x] show
False .

next
assume MR d 0 = ∞ with ‹d = 0 › MR(3) show False

by auto
qed

next
case False with ∗∗∗ have zs 6= [] by auto

from successive-successor [OF ‹(c,d) ∈ set (arcs b 0 zs)›
False ∗∗∗∗ - this] ∗

obtain e where
(zs = [d] ∧ e = 0 ∨ (∃ ys. zs = d # e # ys) ∨ (∃ ys. zs

= ys @ [c, d] ∧ e = 0)
∨ (∃ ys ws. zs = ys @ c # d # e # ws)) ?M d e 6= M d e

by blast
then have e: (d, e) ∈ set (arcs b 0 zs) ?M d e 6= M d e

using arcs-decomp by auto
from ∗∗ show False
proof

326

assume inf : MR d 0 = ∞
from e have ?M d e = MR d e by (meson min-def)

from arcs-distinct2 [OF - - - - e(1)] z ‹z = 0 › distinct
have d 6= e by auto

from z n-bounds have set zs ⊆ {0 ..n} by auto
with e have e ≤ n

apply (induction zs arbitrary: d)
apply auto

apply (case-tac zs)
apply auto

done
from n-bounds z arcs-elem(2)[OF A(1)] have d ≤ n by

auto
have MR d e = ∞
proof (cases e = 0)

case True
with inf show ?thesis by auto

next
case False
with inf MR(2) ‹d 6= e› ‹e ≤ n› ‹d ≤ n› show ?thesis

by blast
qed
with ‹?M d e = MR d e› have len ?M b 0 zs = ∞ by

(auto intro: len-inf-elem[OF e(1)])
with ‹z = 0 › rotated have ∞ = len ?M a a (b # ws ′)

by simp
with ‹len ?M a a - < 0 › show ?thesis by auto

next
assume MR c 0 = ∞ from c-0-inf [OF this x] show

False .
qed

qed
qed

qed
}
then have ∀ (c, d)∈set (arcs 0 0 (a # b # zs)). M c d < MR c

d −→ c = a ∧ d = b
by blast

moreover from ys(1) xs(3) have len ?M i i ys < Le 0 unfolding
neutral by auto

moreover with rotated ws ′(1) have len ?M z z (a # b # zs) <
Le 0 by auto

moreover from ‹z = 0 › z ws ′(2) have set zs ∪ {0 , a, b} = set
(i # ys) by auto

327

moreover from ‹z = 0 › distinct z have distinct (0 # a # b #
zs) by auto

ultimately show ?thesis using ‹z = 0 › ‹M a b < MR a b› by
blast

qed
qed note ∗ = this
{ assume ¬ ?thesis

with ∗ obtain y z zs where ∗:
set zs ∪ {0 , y, z} = set (i # ys) len ?M 0 0 (y # z # zs) < Le 0
∀ (a, b)∈set (arcs 0 0 (y # z # zs)). M a b < MR a b −→ a = y

∧ b = z M y z < MR y z
and distinct ′: distinct (0 # y # z # zs)

by blast
then have y 6= 0 z 6= 0 by auto
let ?r = len MR z 0 zs
have ∀ (a, b)∈set (arcs z 0 zs). ?M a b = MR a b
proof (safe, goal-cases)

case A: (1 a b)
have MR a b ≤ M a b
proof (rule ccontr , goal-cases)

case 1
with ∗(3) A have a = y b = z by auto

with A distinct ′ arcs-distinct3 [OF - A, of y] show False by
auto

qed
then show ?case by (simp add: min-def)

qed
then have r : len ?M z 0 zs = ?r by (induction zs arbitrary: z)

auto
with ∗(2) have ∗∗: ?M 0 y + (?M y z + ?r) < Le 0 by simp
from MR(1) ‹R 6= {}› obtain u where u: DBM-val-bounded v u

MR n
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
from ∗(1) ‹i ≤ n› ‹set ys ⊆ -› have y ≤ n z ≤ n by fastforce+
from ∗(1) ys(2 ,4) have set zs ⊆ {0 ..n} by auto
from ‹y ≤ n› ‹z ≤ n› clock-numbering(2) ‹y 6= 0 › ‹z 6= 0 › obtain

c1 c2 where C :
c1 ∈ X c2 ∈ X v c1 = y v c2 = z

by blast+
with clock-numbering(1 ,3) have C2 : v ′ y = c1 v ′ z = c2 unfolding

v ′-def by auto
with C have v (v ′ z) = z by auto
with DBM-val-bounded-len ′1 [OF u, of zs v ′ z] have dbm-entry-val

u (Some (v ′ z)) None ?r

328

using ‹z ≤ n› clock-numbering(2) ‹set zs ⊆ -› distinct ′ by force
from len-inf-elem ∗∗ have tl-not-inf : ∀ (a, b)∈set (arcs z 0 zs). MR

a b 6= ∞ by fastforce
with MR(7) len-int-dbm-closed have get-const ?r ∈ � ∧ ?r 6= ∞

by blast
then obtain r :: int where r ′: ?r = Le r ∨ ?r = Lt r using

Ints-cases by (cases ?r) auto
from r ′ ‹dbm-entry-val - - - -› C C2 have le: u (v ′ z) ≤ r by

fastforce
from arcs-ex-head obtain z ′ where (z, z ′) ∈ set (arcs z 0 zs) by

blast
then have z ′:
(z, z ′) ∈ set (arcs 0 0 (y # z # zs)) (z, z ′) ∈ set (arcs z 0 zs)

by auto
have MR z 0 6= ∞
proof (rule ccontr , goal-cases)

case 1
then have inf : MR z 0 = ∞ by auto
have MR z z ′ = ∞
proof (cases z ′ = 0)

case True
with 1 show ?thesis by auto

next
case False
from arcs-elem[OF z ′(1)] ∗(1) ‹i ≤ n› ‹set ys ⊆ -› have z ′ ≤

n by fastforce
moreover from distinct ′ ∗(1) arcs-distinct1 [OF - - - - z ′(1)]

have z 6= z ′ by auto
ultimately show ?thesis using MR(2) ‹z ≤ n› False inf by

blast
qed
with tl-not-inf z ′(2) show False by auto

qed
with MR(5) ‹z 6= 0 › ‹z ≤ n› obtain d :: int where d:

MR z 0 = Le d ∧ MR 0 z = Le (−d) ∨ MR z 0 = Lt d ∧ MR 0
z = Lt (−d + 1)

d ≤ k (v ′ z) 0 ≤ d
unfolding v ′-def by auto

Needs property that len of integral dbm entries is integral and definition of
M-R

from this (1) have rr : ?r ≥ MR z 0
proof (standard, goal-cases)

case A: 1

329

with u ‹z ≤ n› C C2 have ∗: − u (v ′ z) ≤ −d unfolding
DBM-val-bounded-def by fastforce

from r ′ show ?case
proof (standard, goal-cases)

case 1
with le ∗ A show ?case unfolding less-eq dbm-le-def by

fastforce
next

case 2
with ‹dbm-entry-val - - - -› C C2 have u (v ′ z) < r by fastforce
with ∗ have r > d by auto

with A 2 show ?case unfolding less-eq dbm-le-def by fastforce
qed

next
case A: 2
with u ‹z ≤ n› C C2 have ∗: − u (v ′ z) < −d + 1 unfolding

DBM-val-bounded-def by fastforce
from r ′ show ?case
proof (standard, goal-cases)

case 1
with le ∗ A show ?case unfolding less-eq dbm-le-def by

fastforce
next

case 2
with ‹dbm-entry-val - - - -› C C2 have u (v ′ z) ≤ r by fastforce
with ∗ have r ≥ d by auto

with A 2 show ?case unfolding less-eq dbm-le-def by fastforce
qed

qed
with ∗(3) ‹y 6= 0 › have M 0 y ≥ MR 0 y by fastforce
then have ?M 0 y = MR 0 y by (simp add: min.absorb2)
moreover from ∗(4) have ?M y z = M y z unfolding min-def

by auto
ultimately have ∗∗: MR 0 y + (M y z + MR z 0) < Le 0
using ∗∗ add-mono-right[OF add-mono-right[OF rr], of MR 0 y M

y z] by simp
from ∗∗ have not-inf : MR 0 y 6= ∞ M y z 6= ∞ MR z 0 6= ∞ by

auto
from MR(6) ‹y 6= 0 › ‹y ≤ n› obtain c :: int where c:

MR 0 y = Le c ∨ MR 0 y = Lt c − k (v ′ y) ≤ c c ≤ 0
unfolding v ′-def by auto
have ?thesis
proof (cases MR 0 y + MR z 0 = Lt (c + d))

case True

330

from ∗∗ have (MR 0 y + MR z 0) + M y z < Le 0 using comm
add.assoc by metis

with True have ∗∗: Lt (c + d) + M y z < Le 0 by simp
then have M y z ≤ Le (− (c + d)) unfolding less less-eq

dbm-le-def add
by (cases M y z) (fastforce elim!: dbm-lt.cases)+

from dbm-le ′[OF assms(2)[folded M (1)] this ‹y ≤ n› ‹z ≤ n›
C (3 ,4)] ‹y 6= 0 › ‹z 6= 0 › M

have subs: Z ⊆ {u ∈ V . u c1 − u c2 ≤ − (c + d)} by blast
with c d have − k (v ′ z) ≤ − (c + d) − (c + d) ≤ k (v ′ y) by

auto
with beta-interp.β-boundedness-diag-le ′[OF - - C (1 ,2) subs] C2

have
Approxβ Z ⊆ {u ∈ V . u c1 − u c2 ≤ − (c + d)}

by auto
moreover
{ fix u assume u: u ∈ R

with C ‹y ≤ n› ‹z ≤ n› MR(1) have
dbm-entry-val u (Some c2) None (MR z 0) dbm-entry-val u

None (Some c1) (MR 0 y)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with True c d(1) have u /∈ {u ∈ V . u c1 − u c2 ≤ − (c +

d)} unfolding add by auto
}
ultimately show ?thesis by blast

next
case False
with c d have MR 0 y + MR z 0 = Le (c + d) unfolding add

by fastforce
moreover from ∗∗ have (MR 0 y + MR z 0) + M y z < Le 0

using comm add.assoc by metis
ultimately have ∗∗: Le (c + d) + M y z < Le 0 by simp

then have M y z ≤ Lt (− (c + d)) unfolding less less-eq
dbm-le-def add

by (cases M y z) (fastforce elim!: dbm-lt.cases)+
from dbm-lt ′[OF assms(2)[folded M (1)] this ‹y ≤ n› ‹z ≤ n›

C (3 ,4)] ‹y 6= 0 › ‹z 6= 0 › M
have subs: Z ⊆ {u ∈ V . u c1 − u c2 < − (c + d)} by auto
from c d(2−) C2 have − k c2 ≤ − (c + d) − (c + d) ≤ k c1

by auto
from beta-interp.β-boundedness-diag-lt ′[OF this C (1 ,2) subs] have

Approxβ Z ⊆ {u ∈ V . u c1 − u c2 < − (c + d)}
.
moreover

331

{ fix u assume u: u ∈ R
with C ‹y ≤ n› ‹z ≤ n› MR(1) have

dbm-entry-val u (Some c2) None (MR z 0) dbm-entry-val u
None (Some c1) (MR 0 y)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with c d(1) have u /∈ {u ∈ V . u c1 − u c2 < − (c + d)} by

auto
}
ultimately show ?thesis by auto

qed
} then have ?thesis by auto

}
with bounded 0 bounded-zero-1 bounded-zero-2 show ?thesis by blast

qed
qed

qed

6.3 Nice Corollaries of Bouyer’s Theorem

lemma R-V :
⋃
R = V unfolding V-def R-def using region-cover [of X

- k] by auto

lemma regions-beta-V : R ∈ Rβ =⇒ R ⊆ V unfolding V-def Rβ-def by
auto

lemma apx-V : Z ⊆ V =⇒ Approxβ Z ⊆ V
proof (goal-cases)

case 1
from beta-interp.apx-in[OF 1] obtain U where Approxβ Z =

⋃
U U ⊆

Rβ by auto
with regions-beta-V show ?thesis by auto

qed

corollary approx-β-closure-α:
assumes Z ⊆ V vabstr Z M
shows Approxβ Z ⊆ Closureα Z

proof −
note T = region-zone-intersect-empty-approx-correct[OF - assms(1) -

assms(2−)]
have −

⋃
{R ∈ R. R ∩ Z 6= {}} =

⋃
{R ∈ R. R ∩ Z = {}} ∪ − V

proof (safe, goal-cases)
case 1 with R-V show False by fast

next
case 2 then show ?case using alpha-interp.valid-regions-distinct-spec

332

by fastforce
next

case 3 then show ?case using R-V unfolding V-def by blast
qed
with T apx-V [OF assms(1)] have Approxβ Z ∩ −

⋃
{R ∈ R. R ∩ Z 6=

{}} = {} by auto
then show ?thesis unfolding alpha-interp.cla-def by blast

qed

corollary approx-β-closure-α ′: Z ∈ V ′ =⇒ Approxβ Z ⊆ Closureα Z
using approx-β-closure-α unfolding V ′-def by auto

We could prove this more directly too (without using Closureα Z), obviously
lemma apx-empty-iff :

assumes Z ⊆ V vabstr Z M
shows Z = {} ←→ Approxβ Z = {}

using alpha-interp.cla-empty-iff [OF assms(1)] approx-β-closure-α[OF assms]
beta-interp.apx-subset
by auto

lemma apx-empty-iff ′:
assumes Z ∈ V ′ shows Z = {} ←→ Approxβ Z = {}

using apx-empty-iff assms unfolding V ′-def by force

lemma apx-V ′:
assumes Z ⊆ V shows Approxβ Z ∈ V ′

proof (cases Z = {})
case True
with beta-interp.apx-empty beta-interp.empty-zone-dbm show ?thesis un-

folding V ′-def neutral by auto
next

case False
then have non-empty: Approxβ Z 6= {} using beta-interp.apx-subset by

blast
from beta-interp.apx-in[OF assms] obtain U M where ∗:

Approxβ Z =
⋃

U U ⊆ Rβ Z ⊆ Approxβ Z vabstr (Approxβ Z) M
by blast
moreover from ∗ beta-interp.R-union have

⋃
U ⊆ V by blast

ultimately show ?thesis using ∗(1 ,4) unfolding V ′-def by auto
qed

end

lemma valid-abstraction-pairsD:

333

∀ (x, m)∈Timed-Automata.clkp-set A. x ∈ X ∧ m ∈ � if valid-abstraction
A X k

using that
apply cases
unfolding clkp-set-def Timed-Automata.clkp-set-def
unfolding collect-clki-def Timed-Automata.collect-clki-def
unfolding collect-clkt-def Timed-Automata.collect-clkt-def
by blast

6.4 A New Zone Semantics Abstracting with Approxβ
locale Regions =

Regions-defs X v n for X and v :: ′c ⇒ nat and n :: nat +
fixes k :: ′s ⇒ ′c ⇒ nat and not-in-X
assumes finite: finite X
assumes clock-numbering:

clock-numbering ′ v n ∀ k≤n. k > 0 −→ (∃ c ∈ X . v c = k) ∀ c ∈ X . v
c ≤ n

assumes not-in-X : not-in-X /∈ X
assumes non-empty: X 6= {}

begin

definition R-def : R l ≡ {Regions.region X I r | I r . Regions.valid-region
X (k l) I r}

definition Rβ-def :
Rβ l ≡ {Regions-Beta.region X I J r | I J r . Regions-Beta.valid-region X

(k l) I J r}

sublocale
AlphaClosure X k R by (unfold-locales) (auto simp: finite R-def V-def)

abbreviation Approxβ l Z ≡ Beta-Regions ′.Approxβ X (k l) v n not-in-X
Z

6.4.1 Single Step

inductive step-z-beta ::
(′a, ′c, t, ′s) ta ⇒ ′s ⇒ (′c, t) zone ⇒ ′a action ⇒ ′s ⇒ (′c, t) zone ⇒

bool
(‹- ` 〈-, -〉 β(-) 〈-, -〉› [61 ,61 ,61 ,61] 61)
where

step-beta: A ` 〈l, Z 〉 a 〈l ′, Z ′〉 =⇒ A ` 〈l, Z 〉 β(a) 〈l ′, Approxβ l ′ Z ′〉

334

inductive-cases[elim!]: A ` 〈l, u〉 β(a) 〈l ′,u ′〉

declare step-z-beta.intros[intro]

context
fixes l ′ :: ′s

begin

interpretation regions: Regions-global - - - k l ′
by standard (rule finite clock-numbering not-in-X non-empty)+

lemma step-z-V ′:
assumes A ` 〈l,Z 〉 a 〈l ′,Z ′〉 valid-abstraction A X k ∀ c∈clk-set A. v c
≤ n Z ∈ V ′

shows Z ′ ∈ V ′

proof −
from assms(3) clock-numbering have numbering: global-clock-numbering

A v n by metis
from assms(4) obtain M where M :

Z ⊆ V Z = [M]v,n dbm-int M n
unfolding V ′-def by auto

from valid-abstraction-pairsD[OF assms(2)] have ∀ (x, m)∈Timed-Automata.clkp-set
A. m ∈ �

by blast
from step-z-V [OF assms(1) M (1)] M (2) assms(1) step-z-dbm-DBM [OF

- numbering]
step-z-dbm-preserves-int[OF - numbering this M (3)]

obtain M ′ where M ′: Z ′ ⊆ V Z ′ = [M ′]v,n dbm-int M ′ n by metis
then show ?thesis unfolding V ′-def by blast

qed

lemma step-z-alpha-sound:
A ` 〈l, Z 〉 β(a) 〈l ′,Z ′〉 =⇒ valid-abstraction A X k =⇒ ∀ c∈clk-set A. v

c ≤ n =⇒ Z ∈ V ′

=⇒ Z ′ 6= {} =⇒ ∃ Z ′′. A ` 〈l, Z 〉 a 〈l ′,Z ′′〉 ∧ Z ′′ 6= {}
apply (induction l ′ ≡ l ′ Z ′ rule: step-z-beta.induct)
apply (frule step-z-V ′)

apply assumption+
apply (rotate-tac 5)

apply (drule regions.apx-empty-iff ′)
by blast

335

lemma step-z-alpha-complete:
A ` 〈l, Z 〉 a 〈l ′,Z ′〉 =⇒ valid-abstraction A X k =⇒ ∀ c∈clk-set A. v c
≤ n =⇒ Z ∈ V ′

=⇒ Z ′ 6= {} =⇒ ∃ Z ′′. A ` 〈l, Z 〉 β(a) 〈l ′, Z ′′〉 ∧ Z ′′ 6= {}
apply (frule step-z-V ′)

apply assumption+
apply (rotate-tac 4)
apply (drule regions.apx-empty-iff ′)
by blast

lemma alpha-beta-step:
A ` 〈l, Z 〉 β(a) 〈l ′, Z ′〉 =⇒ valid-abstraction A X k =⇒ ∀ c∈clk-set A.

v c ≤ n =⇒ Z ∈ V ′

=⇒ ∃ Z ′′. A ` 〈l, Z 〉 α(a) 〈l ′, Z ′′〉 ∧ Z ′ ⊆ Z ′′

apply (induction l ′ ≡ l ′ Z ′ rule: step-z-beta.induct)
apply (frule step-z-V ′)

apply assumption+
apply (rotate-tac 4)
apply (drule regions.approx-β-closure-α ′)
apply auto

done

lemma alpha-beta-step ′:
A ` 〈l, Z 〉 β(a) 〈l ′, Z ′〉 =⇒ valid-abstraction A X k =⇒ ∀ c∈clk-set A.

v c ≤ n =⇒ Z ∈ V ′ =⇒ W ⊆ V
=⇒ Z ⊆ W =⇒ ∃ W ′. A ` 〈l, W 〉 α(a) 〈l ′, W ′〉 ∧ Z ′ ⊆ W ′

proof (induction l ′ ≡ l ′ Z ′ rule: step-z-beta.induct)
case (step-beta A l Z a Z ′)
from step-z-mono[OF step-beta(1 ,6)] obtain W ′ where W ′:

A ` 〈l, W 〉 a 〈l ′,W ′〉 Z ′ ⊆ W ′

by blast
from regions.approx-β-closure-α ′[OF step-z-V ′[OF step-beta(1−4)]]

regions.alpha-interp.cla-mono[OF this(2)] this(1)
show ?case by auto

qed

lemma apx-mono:
Z ′ ⊆ V =⇒ Z ⊆ Z ′ =⇒ Approxβ l ′ Z ⊆ Approxβ l ′ Z ′

proof (goal-cases)
case 1
with regions.beta-interp.apx-in have

regions.Approxβ Z ′ ∈ {S . ∃U M . S =
⋃

U ∧ U ⊆ regions.Rβ ∧ Z ′ ⊆

336

S ∧ regions.beta-interp.vabstr S M
∧ regions.beta-interp.normalized M}

by auto
with 1 obtain U M where

regions.Approxβ Z ′ =
⋃

U U ⊆ regions.Rβ Z ⊆ regions.Approxβ Z ′

regions.beta-interp.vabstr (regions.Approxβ Z ′) M
regions.beta-interp.normalized M

by auto
with regions.beta-interp.apx-min show ?thesis by auto

qed

end

lemma step-z ′-V ′:
assumes A ` 〈l,Z 〉 〈l ′,Z ′〉 valid-abstraction A X k ∀ c∈clk-set A. v c
≤ n Z ∈ V ′

shows Z ′ ∈ V ′

using assms unfolding step-z ′-def by (auto elim: step-z-V ′)

lemma steps-z-V ′:
A ` 〈l,Z 〉 ∗ 〈l ′,Z ′〉 =⇒ valid-abstraction A X k =⇒ ∀ c∈clk-set A. v c
≤ n =⇒ Z ∈ V ′ =⇒ Z ′ ∈ V ′

by (induction rule: rtranclp-induct2 ; blast intro: step-z ′-V ′)

6.4.2 Multi step

definition
step-z-beta ′ :: (′a, ′c, t, ′s) ta ⇒ ′s ⇒ (′c, t) zone ⇒ ′s ⇒ (′c, t) zone ⇒

bool
(‹- ` 〈-, -〉 β 〈-, -〉› [61 ,61 ,61] 61)
where

A ` 〈l, Z 〉 β 〈l ′, Z ′′〉 = (∃ Z ′ a. A ` 〈l, Z 〉 τ 〈l, Z ′〉 ∧ A ` 〈l, Z ′〉
 β(�a) 〈l ′, Z ′′〉)

abbreviation
steps-z-beta :: (′a, ′c, t, ′s) ta ⇒ ′s ⇒ (′c, t) zone ⇒ ′s ⇒ (′c, t) zone ⇒

bool
(‹- ` 〈-, -〉 β∗ 〈-, -〉› [61 ,61 ,61] 61)
where

A ` 〈l, Z 〉 β∗ 〈l ′, Z ′′〉 ≡ (λ (l, Z) (l ′, Z ′′). A ` 〈l, Z 〉 β 〈l ′, Z ′′〉)∗∗
(l, Z) (l ′, Z ′′)

lemma V ′-V : Z ∈ V ′ =⇒ Z ⊆ V unfolding V ′-def by auto

337

context
fixes A :: (′a, ′c, t, ′s) ta
assumes valid-ta: valid-abstraction A X k ∀ c∈clk-set A. v c ≤ n

begin

interpretation alpha: AlphaClosure-global - k l ′ R l ′ by standard (rule
finite)
lemma [simp]: alpha.cla l ′ = cla l ′ unfolding alpha.cla-def cla-def ..

lemma step-z-alpha ′-V :
Z ′ ⊆ V if Z ⊆ V A ` 〈l, Z 〉 α 〈l ′, Z ′〉
using that alpha.closure-V [simplified] unfolding step-z-alpha ′-def by

blast

lemma step-z-beta ′-V ′:
Z ′ ∈ V ′ if A ` 〈l,Z 〉 β 〈l ′,Z ′〉 Z ∈ V ′

proof −
interpret regions: Regions-global - - - k l ′

by standard (rule finite clock-numbering not-in-X non-empty)+
from that valid-ta show ?thesis

unfolding step-z-beta ′-def by (blast intro: step-z-V ′ regions.apx-V ′[OF
V ′-V])
qed

lemma steps-z-beta-V ′:
A ` 〈l,Z 〉 β∗ 〈l ′,Z ′〉 =⇒ Z ∈ V ′ =⇒ Z ′ ∈ V ′

by (induction rule: rtranclp-induct2 ; blast intro: step-z-beta ′-V ′)

Soundness lemma alpha ′-beta ′-step:
A ` 〈l, Z 〉 β 〈l ′, Z ′〉 =⇒ Z ∈ V ′ =⇒ W ⊆ V =⇒ Z ⊆ W =⇒ ∃ W ′.

A ` 〈l, W 〉 α 〈l ′, W ′〉 ∧ Z ′ ⊆ W ′

unfolding step-z-beta ′-def step-z-alpha ′-def
apply (elim exE conjE)
apply (frule step-z-mono, assumption)
apply (elim exE conjE)
apply (frule alpha-beta-step ′[OF - valid-ta])

prefer 3
using valid-ta by (blast intro: step-z-V ′ dest: step-z-V)+

lemma alpha-beta-sim:
Simulation-Invariant
(λ(l, Z) (l ′, Z ′′). A ` 〈l, Z 〉 β 〈l ′, Z ′′〉)
(λ(l, Z) (l ′, Z ′′). A ` 〈l, Z 〉 α 〈l ′, Z ′′〉)

338

(λ(l, Z) (l ′, Z ′). l = l ′ ∧ Z ⊆ Z ′) (λ(-, Z). Z ∈ V ′) (λ(-, Z). Z ⊆ V)
by standard (auto elim: alpha ′-beta ′-step step-z-beta ′-V ′ dest: step-z-alpha ′-V)

interpretation
Simulation-Invariant
λ (l, Z) (l ′, Z ′′). A ` 〈l, Z 〉 β 〈l ′, Z ′′〉
λ (l, Z) (l ′, Z ′′). A ` 〈l, Z 〉 α 〈l ′, Z ′′〉
λ (l, Z) (l ′, Z ′). l = l ′ ∧ Z ⊆ Z ′

λ (-, Z). Z ∈ V ′ λ (-, Z). Z ⊆ V
by (fact alpha-beta-sim)

lemma alpha-beta-steps:
A ` 〈l, Z 〉 β∗ 〈l ′, Z ′〉 =⇒ Z ∈ V ′ =⇒ ∃ Z ′′. A ` 〈l, Z 〉 α∗ 〈l ′, Z ′′〉
∧ Z ′ ⊆ Z ′′

using simulation-reaches[of (l, Z) (l ′, Z ′) (l, Z)] by (auto dest: V ′-V)

end

Completeness lemma step-z-beta-mono:
A ` 〈l, Z 〉 β(a) 〈l ′, Z ′〉 =⇒ Z ⊆ W =⇒ W ⊆ V =⇒ ∃ W ′. A ` 〈l, W 〉
 β(a) 〈l ′, W ′〉 ∧ Z ′ ⊆ W ′

proof (goal-cases)
case 1
then obtain Z ′′ where ∗: A ` 〈l, Z 〉 a 〈l ′,Z ′′〉 Z ′ = Approxβ l ′ Z ′′ by

auto
from step-z-mono[OF this(1) 1 (2)] obtain W ′ where

A ` 〈l, W 〉 a 〈l ′,W ′〉 Z ′′ ⊆ W ′

by auto
moreover with ∗(2) apx-mono[OF step-z-V] ‹W ⊆ V › have

Z ′ ⊆ Approxβ l ′ W ′

by metis
ultimately show ?case by blast

qed

lemma step-z-beta ′-V :
Z ′ ⊆ V if A ` 〈l, Z 〉 β 〈l ′, Z ′〉 Z ⊆ V

proof −
interpret regions: Regions-global - - - k l ′

by standard (rule finite clock-numbering not-in-X non-empty)+
from that show ?thesis unfolding step-z-beta ′-def

by (auto intro: regions.apx-V dest: step-z-V del: subsetI)

339

qed

lemma steps-z-beta-V :
Z ′ ⊆ V if A ` 〈l, Z 〉 β∗ 〈l ′, Z ′〉 Z ⊆ V
using that by (induction rule: rtranclp-induct2 ; blast intro: step-z-beta ′-V

del: subsetI)

lemma step-z-beta ′-mono:
∃ W ′. A ` 〈l, W 〉 β 〈l ′, W ′〉 ∧ Z ′ ⊆ W ′ if A ` 〈l, Z 〉 β 〈l ′, Z ′〉 Z ⊆

W W ⊆ V
using that unfolding step-z-beta ′-def
apply (elim exE conjE)
apply (frule step-z-mono, assumption)
apply (elim exE conjE)
apply (drule step-z-beta-mono, assumption)
apply (auto dest: step-z-V)

done

lemma steps-z-beta-mono:
A ` 〈l, Z 〉 β∗ 〈l ′, Z ′〉 =⇒ Z ⊆ W =⇒ W ⊆ V =⇒ ∃ W ′. A ` 〈l, W 〉
 β∗ 〈l ′, W ′〉 ∧ Z ′ ⊆ W ′

apply (induction rule: rtranclp-induct2)
apply blast

apply (clarsimp; drule step-z-beta ′-mono;
blast intro: rtranclp.intros(2) steps-z-beta-V del: subsetI)

done

end

end
theory Simulation-Graphs

imports
library/CTL
library/More-List

begin

lemmas [simp] = holds.simps

340

7 Simulation Graphs

7.1 Simulation Graphs

locale Simulation-Graph-Defs = Graph-Defs C for C :: ′a ⇒ ′a ⇒ bool +
fixes A :: ′a set ⇒ ′a set ⇒ bool

begin

sublocale Steps: Graph-Defs A .

abbreviation Steps ≡ Steps.steps
abbreviation Run ≡ Steps.run

lemmas Steps-appendD1 = Steps.steps-appendD1

lemmas Steps-appendD2 = Steps.steps-appendD2

lemmas steps-alt-induct = Steps.steps-alt-induct

lemmas Steps-appendI = Steps.steps-appendI

lemmas Steps-cases = Steps.steps.cases

end

locale Simulation-Graph-Poststable = Simulation-Graph-Defs +
assumes poststable: A S T =⇒ ∀ s ′ ∈ T . ∃ s ∈ S . C s s ′

locale Simulation-Graph-Prestable = Simulation-Graph-Defs +
assumes prestable: A S T =⇒ ∀ s ∈ S . ∃ s ′ ∈ T . C s s ′

locale Double-Simulation-Defs =
fixes C :: ′a ⇒ ′a ⇒ bool — Concrete step relation
and A1 :: ′a set ⇒ ′a set ⇒ bool — Step relation for the first abstraction

layer
and P1 :: ′a set ⇒ bool — Valid states of the first abstraction layer

and A2 :: ′a set ⇒ ′a set ⇒ bool — Step relation for the second
abstraction layer

and P2 :: ′a set ⇒ bool — Valid states of the second abstraction layer
begin

sublocale Simulation-Graph-Defs C A2 .

sublocale pre-defs: Simulation-Graph-Defs C A1 .

341

definition closure a = {x. P1 x ∧ a ∩ x 6= {}}

definition A2 ′ a b ≡ ∃ x y. a = closure x ∧ b = closure y ∧ A2 x y

sublocale post-defs: Simulation-Graph-Defs A1 A2 ′ .

lemma closure-mono:
closure a ⊆ closure b if a ⊆ b
using that unfolding closure-def by auto

lemma closure-intD:
x ∈ closure a ∧ x ∈ closure b if x ∈ closure (a ∩ b)
using that closure-mono by blast

end

locale Double-Simulation = Double-Simulation-Defs +
assumes prestable: A1 S T =⇒ ∀ s ∈ S . ∃ s ′ ∈ T . C s s ′

and closure-poststable: s ′ ∈ closure y =⇒ A2 x y =⇒ ∃ s∈closure x .
A1 s s ′

and P1-distinct: P1 x =⇒ P1 y =⇒ x 6= y =⇒ x ∩ y = {}
and P1-finite: finite {x. P1 x}
and P2-cover : P2 a =⇒ ∃ x. P1 x ∧ x ∩ a 6= {}

begin

sublocale post: Simulation-Graph-Poststable A1 A2 ′

unfolding A2 ′-def by standard (auto dest: closure-poststable)

sublocale pre: Simulation-Graph-Prestable C A1
by standard (rule prestable)

end

locale Finite-Graph = Graph-Defs +
fixes x0

assumes finite-reachable: finite {x. E∗∗ x0 x}

locale Simulation-Graph-Complete-Defs =
Simulation-Graph-Defs C A for C :: ′a ⇒ ′a ⇒ bool and A :: ′a set ⇒ ′a

set ⇒ bool +
fixes P :: ′a set ⇒ bool — well-formed abstractions

locale Simulation-Graph-Complete = Simulation-Graph-Complete-Defs +

342

simulation: Simulation-Invariant C A (∈) λ -. True P
begin

lemmas complete = simulation.A-B-step
lemmas P-invariant = simulation.B-invariant

end

locale Simulation-Graph-Finite-Complete = Simulation-Graph-Complete +
fixes a0

assumes finite-abstract-reachable: finite {a. A∗∗ a0 a}
begin

sublocale Steps-finite: Finite-Graph A a0

by standard (rule finite-abstract-reachable)

end

locale Double-Simulation-Complete = Double-Simulation +
fixes a0

assumes complete: C x y =⇒ x ∈ S =⇒ P2 S =⇒ ∃ T . A2 S T ∧ y ∈ T
assumes P2-invariant: P2 a =⇒ A2 a a ′ =⇒ P2 a ′

and P2-a0: P2 a0

begin

sublocale Simulation-Graph-Complete C A2 P2
by standard (blast intro: complete P2-invariant)+

sublocale P2-invariant: Graph-Invariant-Start A2 a0 P2
by (standard; blast intro: P2-invariant P2-a0)

end

locale Double-Simulation-Finite-Complete = Double-Simulation-Complete
+

assumes finite-abstract-reachable: finite {a. A2 ∗∗ a0 a}
begin

sublocale Simulation-Graph-Finite-Complete C A2 P2 a0

by standard (blast intro: complete finite-abstract-reachable P2-invariant)+

end

locale Simulation-Graph-Complete-Prestable = Simulation-Graph-Complete

343

+ Simulation-Graph-Prestable
begin

sublocale Graph-Invariant A P by standard (rule P-invariant)

end

locale Double-Simulation-Complete-Bisim = Double-Simulation-Complete
+
assumes A1-complete: C x y =⇒ P1 S =⇒ x ∈ S =⇒ ∃ T . A1 S T ∧ y
∈ T

and P1-invariant: P1 S =⇒ A1 S T =⇒ P1 T
begin

sublocale bisim: Simulation-Graph-Complete-Prestable C A1 P1
by standard (blast intro: A1-complete P1-invariant)+

end

locale Double-Simulation-Finite-Complete-Bisim =
Double-Simulation-Finite-Complete + Double-Simulation-Complete-Bisim

locale Double-Simulation-Complete-Bisim-Cover = Double-Simulation-Complete-Bisim
+

assumes P2-P1-cover : P2 a =⇒ x ∈ a =⇒ ∃ a ′. a ∩ a ′ 6= {} ∧ P1 a ′ ∧
x ∈ a ′

locale Double-Simulation-Finite-Complete-Bisim-Cover =
Double-Simulation-Finite-Complete-Bisim + Double-Simulation-Complete-Bisim-Cover

locale Double-Simulation-Complete-Abstraction-Prop =
Double-Simulation-Complete +
fixes ϕ :: ′a ⇒ bool — The property we want to check
assumes ϕ-A1-compatible: A1 a b =⇒ b ⊆ {x. ϕ x} ∨ b ∩ {x. ϕ x} = {}

and ϕ-P2-compatible: P2 a =⇒ a ∩ {x. ϕ x} 6= {} =⇒ P2 (a ∩ {x.
ϕ x})

and ϕ-A2-compatible: A2 ∗∗ a0 a =⇒ a ∩ {x. ϕ x} 6= {} =⇒ A2 ∗∗ a0

(a ∩ {x. ϕ x})
and P2-non-empty: P2 a =⇒ a 6= {}

locale Double-Simulation-Complete-Abstraction-Prop-Bisim =
Double-Simulation-Complete-Abstraction-Prop + Double-Simulation-Complete-Bisim

locale Double-Simulation-Finite-Complete-Abstraction-Prop =

344

Double-Simulation-Complete-Abstraction-Prop + Double-Simulation-Finite-Complete

locale Double-Simulation-Finite-Complete-Abstraction-Prop-Bisim =
Double-Simulation-Finite-Complete-Abstraction-Prop + Double-Simulation-Finite-Complete-Bisim

7.2 Poststability

context Simulation-Graph-Poststable
begin

lemma Steps-poststable:
∃ xs. steps xs ∧ list-all2 (∈) xs as ∧ last xs = x if Steps as x ∈ last as
using that

proof induction
case (Single a)
then show ?case by auto

next
case (Cons a b as)
then obtain xs where A a b steps xs list-all2 (∈) xs (b # as) x = last

xs
by clarsimp

then have hd xs ∈ b by (cases xs) auto
with poststable[OF ‹A a b›] obtain y where y ∈ a C y (hd xs) by auto
with ‹list-all2 - - -› ‹steps -› ‹x = -› show ?case by (cases xs) auto

qed

lemma reaches-poststable:
∃ x ∈ a. reaches x y if Steps.reaches a b y ∈ b
using that unfolding reaches-steps-iff Steps.reaches-steps-iff
apply clarify
apply (drule Steps-poststable, assumption)
apply clarify
subgoal for as xs

apply (cases xs = [])
apply force

apply (rule bexI [where x = hd xs])
using list.rel-sel by (auto dest: Graph-Defs.steps-non-empty ′)

done

lemma Steps-steps-cycle:
∃ x xs. steps (x # xs @ [x]) ∧ (∀ x ∈ set xs. ∃ a ∈ set as ∪ {a}. x ∈ a)
∧ x ∈ a

if assms: Steps (a # as @ [a]) finite a a 6= {}
proof −

345

define E where
E x y = (∃ xs. steps (x # xs @ [y]) ∧ (∀ x ∈ set xs ∪ {x, y}. ∃ a ∈ set

as ∪ {a}. x ∈ a))
for x y

from assms(2−) have ∃ x. E x y ∧ x ∈ a if y ∈ a for y
using that unfolding E-def
apply simp
apply (drule Steps-poststable[OF assms(1), simplified])
apply clarify
subgoal for xs

apply (inst-existentials hd xs tl (butlast xs))
subgoal by (cases xs) auto
subgoal by (auto elim: steps.cases dest!: list-all2-set1)
subgoal by (drule list-all2-set1) (cases xs, auto dest: in-set-butlastD)
by (cases xs) auto

done
with ‹finite a› ‹a 6= {}› obtain x y where cycle: E x y E∗∗ y x x ∈ a

by (force dest!: Graph-Defs.directed-graph-indegree-ge-1-cycle ′)
have trans[intro]: E x z if E x y E y z for x y z

using that unfolding E-def
apply safe
subgoal for xs ys

apply (inst-existentials xs @ y # ys)
apply (drule steps-append, assumption; simp; fail)

by (cases ys, auto dest: list.set-sel(2)[rotated] elim: steps.cases)
done

have E x z if E∗∗ y z E x y x ∈ a for x y z
using that proof induction

case base
then show ?case unfolding E-def by force

next
case (step y z)
then show ?case by auto

qed
with cycle have E x x by blast
with ‹x ∈ a› show ?thesis unfolding E-def by auto

qed

end

7.3 Prestability

context Simulation-Graph-Prestable
begin

346

lemma Steps-prestable:
∃ xs. steps (x # xs) ∧ list-all2 (∈) (x # xs) as if Steps as x ∈ hd as
using that

proof (induction arbitrary: x)
case (Single a)
then show ?case by auto

next
case (Cons a b as)
from prestable[OF ‹A a b›] ‹x ∈ -› obtain y where y ∈ b C x y by auto
with Cons.IH [of y] obtain xs where y ∈ b C x y steps (y # xs) list-all2

(∈) xs as
by clarsimp

with ‹x ∈ -› show ?case by auto
qed

lemma reaches-prestable:
∃ y. reaches x y ∧ y ∈ b if Steps.reaches a b x ∈ a
using that unfolding reaches-steps-iff Steps.reaches-steps-iff
by (force simp: hd-map last-map dest: list-all2-last dest!: Steps-prestable)

Abstract cycles lead to concrete infinite runs.
lemma Steps-run-cycle-buechi:
∃ xs. run (x ## xs) ∧ stream-all2 (∈) xs (cycle (as @ [a]))
if assms: Steps (a # as @ [a]) x ∈ a

proof −
note C = Steps-prestable[OF assms(1), simplified]
define P where P ≡ λ x xs. steps (last x # xs) ∧ list-all2 (∈) xs (as @

[a])
define f where f ≡ λ x. SOME xs. P x xs
from Steps-prestable[OF assms(1)] ‹x ∈ a› obtain ys where ys:

steps (x # ys) list-all2 (∈) (x # ys) (a # as @ [a])
by auto

define xs where xs = flat (siterate f ys)
from ys have P [x] ys unfolding P-def by auto
from ‹P - -› have ∗: ∃ xs. P xs ys by blast
have P-1 [intro]:ys 6= [] if P xs ys for xs ys using that unfolding P-def

by (cases ys) auto
have P-2 [intro]: last ys ∈ a if P xs ys for xs ys

using that P-1 [OF that] unfolding P-def by (auto dest: list-all2-last)
from ∗ have stream-all2 (∈) xs (cycle (as @ [a]))
unfolding xs-def proof (coinduction arbitrary: ys rule: stream-rel-coinduct-shift)
case prems: stream-rel
then have ys 6= [] last ys ∈ a by (blast dest: P-1 P-2)+

347

from ‹ys 6= []› C [OF ‹last ys ∈ a›] have ∃ xs. P ys xs unfolding P-def
by auto

from someI-ex[OF this] have P ys (f ys) unfolding f-def .
with ‹ys 6= []› prems show ?case

apply (inst-existentials ys flat (siterate f (f ys)) as @ [a] cycle (as @
[a]))

apply (subst siterate.ctr ; simp; fail)
apply (subst cycle-decomp; simp; fail)

by (auto simp: P-def)
qed
from ∗ have run xs
unfolding xs-def proof (coinduction arbitrary: ys rule: run-flat-coinduct)
case prems: (run-shift xs ws xss ys)
then have ys 6= [] last ys ∈ a by (blast dest: P-1 P-2)+
from ‹ys 6= []› C [OF ‹last ys ∈ a›] have ∃ xs. P ys xs unfolding P-def

by auto
from someI-ex[OF this] have P ys (f ys) unfolding f-def .
with ‹ys 6= []› prems show ?case by (auto elim: steps.cases simp: P-def)

qed
with P-1 [OF ‹P - -›] ‹steps (x # ys)› have run (x ## xs)

unfolding xs-def
by (subst siterate.ctr , subst (asm) siterate.ctr) (cases ys; auto elim:

steps.cases)
with ‹stream-all2 - - -› show ?thesis by blast

qed

lemma Steps-run-cycle-buechi ′′:
∃ xs. run (x ## xs) ∧ (∀ x ∈ sset xs. ∃ a ∈ set as ∪ {a}. x ∈ a) ∧ infs

(λx. x ∈ b) (x ## xs)
if assms: Steps (a # as @ [a]) x ∈ a b ∈ set (a # as @ [a])
using Steps-run-cycle-buechi[OF that(1 ,2)] that(2 ,3)
apply safe
apply (rule exI conjI)+
apply assumption

apply (subst alw-ev-stl[symmetric])
by (force dest: alw-ev-HLD-cycle[of - - b] stream-all2-sset1)

lemma Steps-run-cycle-buechi ′:
∃ xs. run (x ## xs) ∧ (∀ x ∈ sset xs. ∃ a ∈ set as ∪ {a}. x ∈ a) ∧ infs

(λx. x ∈ a) (x ## xs)
if assms: Steps (a # as @ [a]) x ∈ a
using Steps-run-cycle-buechi ′′[OF that] ‹x ∈ a› by auto

lemma Steps-run-cycle ′:

348

∃ xs. run (x ## xs) ∧ (∀ x ∈ sset xs. ∃ a ∈ set as ∪ {a}. x ∈ a)
if assms: Steps (a # as @ [a]) x ∈ a
using Steps-run-cycle-buechi ′[OF assms] by auto

lemma Steps-run-cycle:
∃ xs. run xs ∧ (∀ x ∈ sset xs. ∃ a ∈ set as ∪ {a}. x ∈ a) ∧ shd xs ∈ a
if assms: Steps (a # as @ [a]) a 6= {}
using Steps-run-cycle ′[OF assms(1)] assms(2) by force

Unused lemma Steps-cycle-every-prestable ′:
∃ b y. C x y ∧ y ∈ b ∧ b ∈ set as ∪ {a}
if assms: Steps (as @ [a]) x ∈ b b ∈ set as
using assms

proof (induction as @ [a] arbitrary: as)
case Single
then show ?case by simp

next
case (Cons a c xs)
show ?case
proof (cases a = b)

case True
with prestable[OF ‹A a c›] ‹x ∈ b› obtain y where y ∈ c C x y

by auto
with ‹a # c # - = -› show ?thesis

apply (inst-existentials c y)
proof (assumption+, cases as, goal-cases)

case (2 a list)
then show ?case by (cases list) auto

qed simp
next

case False
with Cons.hyps(3)[of tl as] Cons.prems Cons.hyps(1 ,2 ,4−) show ?thesis

by (cases as) auto
qed

qed

lemma Steps-cycle-first-prestable:
∃ b y. C x y ∧ x ∈ b ∧ b ∈ set as ∪ {a} if assms: Steps (a # as @ [a]) x
∈ a
proof (cases as)

case Nil
with assms show ?thesis by (auto elim!: Steps-cases dest: prestable)

next

349

case (Cons b as)
with assms show ?thesis by (auto 4 4 elim: Steps-cases dest: prestable)

qed

lemma Steps-cycle-every-prestable:
∃ b y. C x y ∧ y ∈ b ∧ b ∈ set as ∪ {a}
if assms: Steps (a # as @ [a]) x ∈ b b ∈ set as ∪ {a}
using assms Steps-cycle-every-prestable ′[of a # as a] Steps-cycle-first-prestable

by auto

end

7.4 Double Simulation

context Double-Simulation
begin

lemma closure-involutive:
closure (

⋃
(closure x)) = closure x

unfolding closure-def by (auto dest: P1-distinct)

lemma closure-finite:
finite (closure x)
using P1-finite unfolding closure-def by auto

lemma closure-non-empty:
closure x 6= {} if P2 x
using that unfolding closure-def by (auto dest!: P2-cover)

lemma P1-closure-id:
closure R = {R} if P1 R R 6= {}
unfolding closure-def using that P1-distinct by blast

lemma A2 ′-A2-closure:
A2 ′ (closure x) (closure y) if A2 x y
using that unfolding A2 ′-def by auto

lemma Steps-Union:
post-defs.Steps (map closure xs) if Steps xs

using that proof (induction xs rule: rev-induct)
case Nil
then show ?case by auto

next
case (snoc y xs)

350

show ?case
proof (cases xs rule: rev-cases)

case Nil
then show ?thesis by auto

next
case (snoc ys z)
with Steps-appendD1 [OF ‹Steps (xs @ [y])›] have Steps xs by simp
then have ∗: post-defs.Steps (map closure xs) by (rule snoc.IH)
with ‹xs = -› snoc.prems have A2 z y
by (metis Steps.steps-appendD3 append-Cons append-assoc append-self-conv2)

with ‹A2 z y› have A2 ′ (closure z) (closure y) by (auto dest!: A2 ′-A2-closure)
with ∗ post-defs.Steps-appendI show ?thesis

by (simp add: ‹xs = -›)
qed

qed

lemma closure-reaches:
post-defs.Steps.reaches (closure x) (closure y) if Steps.reaches x y
using that
unfolding Steps.reaches-steps-iff post-defs.Steps.reaches-steps-iff
apply clarify
apply (drule Steps-Union)
subgoal for xs

by (cases xs = []; force simp: hd-map last-map)
done

lemma post-Steps-non-empty:
x 6= {} if post-defs.Steps (a # as) x ∈ b b ∈ set as
using that

proof (induction a # as arbitrary: a as)
case Single
then show ?case by auto

next
case (Cons a c as)
then show ?case by (auto simp: A2 ′-def closure-def)

qed

lemma Steps-run-cycle ′:
∃ xs. run xs ∧ (∀ x ∈ sset xs. ∃ a ∈ set as ∪ {a}. x ∈

⋃
a) ∧ shd xs ∈⋃

a
if assms: post-defs.Steps (a # as @ [a]) finite a a 6= {}

proof −
from post.Steps-steps-cycle[OF assms] obtain a1 as1 where guessed:

pre-defs.Steps (a1 # as1 @ [a1])

351

∀ x∈set as1 . ∃ a∈set as ∪ {a}. x ∈ a
a1 ∈ a
by atomize-elim

from assms(1) ‹a1 ∈ a› have a1 6= {} by (auto dest!: post-Steps-non-empty)
with guessed pre.Steps-run-cycle[of a1 as1] obtain xs where

run xs ∀ x∈sset xs. ∃ a∈set as1 ∪ {a1}. x ∈ a shd xs ∈ a1
by atomize-elim auto

with guessed(2 ,3) show ?thesis
by (inst-existentials xs) (metis Un-iff UnionI empty-iff insert-iff)+

qed

lemma Steps-run-cycle:
∃ xs. run xs ∧ (∀ x ∈ sset xs. ∃ a ∈ set as ∪ {a}. x ∈

⋃
(closure a)) ∧

shd xs ∈
⋃

(closure a)
if assms: Steps (a # as @ [a]) P2 a

proof −
from Steps-Union[OF assms(1)] have post-defs.Steps (closure a # map

closure as @ [closure a])
by simp

from Steps-run-cycle ′[OF this closure-finite closure-non-empty[OF ‹P2
a›]]

show ?thesis by (force dest: list-all2-set2)
qed

lemma Steps-run-cycle2 :
∃ x xs. run (x ## xs) ∧ x ∈

⋃
(closure a0)

∧ (∀ x ∈ sset xs. ∃ a ∈ set as ∪ {a} ∪ set bs. x ∈
⋃

a)
∧ infs (λx. x ∈

⋃
a) (x ## xs)

if assms: post-defs.Steps (closure a0 # as @ a # bs @ [a]) a 6= {}
proof −

note as1 = assms
from

post-defs.Steps.steps-decomp[of closure a0 # as a # bs @ [a]]
as1 (1)[unfolded this]

have ∗:
post-defs.Steps (closure a0 # as)
post-defs.Steps (a # bs @ [a])
A2 ′ (last (closure a0 # as)) (a)
by (simp split: if-split-asm add: last-map)+

then have finite a
unfolding A2 ′-def by (metis closure-finite)

from post.Steps-steps-cycle[OF ∗(2) ‹finite a› ‹a 6= {}›] obtain a1 as1
where as1 :

pre-defs.Steps (a1 # as1 @ [a1])

352

∀ x∈set as1 . ∃ a∈set bs ∪ {a}. x ∈ a
a1 ∈ a
by atomize-elim

with post.poststable[OF ∗(3)] obtain a2 where a2 ∈ last (closure a0 #
as) A1 a2 a1

by auto
with post.Steps-poststable[OF ∗(1), of a2] obtain as2 where as2 :

pre-defs.Steps as2 list-all2 (∈) as2 (closure a0 # as) last as2 = a2
by (auto split: if-split-asm simp: last-map)

from as2 (2) have hd as2 ∈ closure a0 by (cases as2) auto
then have hd as2 6= {} unfolding closure-def by auto
then obtain x0 where x0 ∈ hd as2 by auto
from pre.Steps-prestable[OF as2 (1) ‹x0 ∈ -›] obtain xs where xs:

steps (x0 # xs) list-all2 (∈) (x0 # xs) as2
by auto

with ‹last as2 = a2 › have last (x0 # xs) ∈ a2
unfolding list-all2-Cons1 by (auto intro: list-all2-last)

with pre.prestable[OF ‹A1 a2 a1 ›] obtain y where C (last (x0 # xs)) y
y ∈ a1 by auto

from pre.Steps-run-cycle-buechi ′[OF as1 (1) ‹y ∈ a1 ›] obtain ys where
ys:

run (y ## ys) ∀ x∈sset ys. ∃ a∈set as1 ∪ {a1}. x ∈ a infs (λx. x ∈ a1)
(y ## ys)

by auto
from ys(3) ‹a1 ∈ a› have infs (λx. x ∈

⋃
a) (y ## ys)

by (auto simp: HLD-iff elim!: alw-ev-mono)
from extend-run[OF xs(1) ‹C - -› ‹run (y ## ys)›] have run ((x0 # xs)

@− y ## ys) by simp
then show ?thesis

apply (inst-existentials x0 xs @− y ## ys)
apply (simp; fail)

using ‹x0 ∈ -› ‹hd as2 ∈ -› apply (auto; fail)
using xs(2) as2 (2) ∗(2) ‹y ∈ a1 › ‹a1 ∈ -› ys(2) as1 (2)
unfolding list-all2-op-map-iff list-all2-Cons1 list-all2-Cons2

apply auto
apply (fastforce dest!: list-all2-set1)

apply blast
using ‹infs (λx. x ∈

⋃
a) (y ## ys)›

by (simp add: sdrop-shift)
qed

lemma Steps-run-cycle ′′:
∃ x xs. run (x ## xs) ∧ x ∈

⋃
(closure a0)

∧ (∀ x ∈ sset xs. ∃ a ∈ set as ∪ {a} ∪ set bs. x ∈
⋃

(closure a))

353

∧ infs (λx. x ∈
⋃

(closure a)) (x ## xs)
if assms: Steps (a0 # as @ a # bs @ [a]) P2 a

proof −
from Steps-Union[OF assms(1)] have post-defs.Steps (map closure (a0

as @ a # bs @ [a]))
by simp

from Steps-run-cycle2 [OF this[simplified] closure-non-empty[OF ‹P2 a›]]
show ?thesis

by clarify (auto simp: image-def intro!: exI conjI)
qed

Unused lemma post-Steps-P1 :
P1 x if post-defs.Steps (a # as) x ∈ b b ∈ set as
using that

proof (induction a # as arbitrary: a as)
case Single
then show ?case by auto

next
case (Cons a c as)
then show ?case by (auto simp: A2 ′-def closure-def)

qed

lemma strong-compatibility-impl-weak:
fixes ϕ :: ′a ⇒ bool — The property we want to check
assumes ϕ-closure-compatible:

∧
x a. x ∈ a =⇒ ϕ x ←→ (∀ x ∈

⋃
(closure a). ϕ x)

shows ϕ x =⇒ x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ ϕ y
by (auto simp: closure-def dest: ϕ-closure-compatible)

end

7.5 Finite Graphs

context Finite-Graph
begin

7.5.1 Infinite Büchi Runs Correspond to Finite Cycles

lemma run-finite-state-set:
assumes run (x0 ## xs)
shows finite (sset (x0 ## xs))

proof −
let ?S = {x. E∗∗ x0 x}

354

from run-reachable[OF assms] have sset xs ⊆ ?S unfolding stream.pred-set
by auto

moreover have finite ?S using finite-reachable by auto
ultimately show ?thesis by (auto intro: finite-subset)

qed

lemma run-finite-state-set-cycle:
assumes run (x0 ## xs)
shows
∃ ys zs. run (x0 ## ys @− cycle zs) ∧ set ys ∪ set zs ⊆ {x0} ∪ sset xs

∧ zs 6= []
proof −

from run-finite-state-set[OF assms] have finite (sset (x0 ## xs)) .
with sdistinct-infinite-sset[of x0 ## xs] not-sdistinct-decomp[of x0 ##

xs] obtain x ws ys zs
where x0 ## xs = ws @− x ## ys @− x ## zs
by force

then have decomp: x0 ## xs = (ws @ [x]) @− ys @− x ## zs by simp
from run-decomp[OF assms[unfolded decomp]] have decomp-first:

steps (ws @ [x])
run (ys @− x ## zs)
x → (if ys = [] then shd (x ## zs) else hd ys)
by auto

from run-sdrop[OF assms, of length (ws @ [x])] have run (sdrop (length
ws) xs)

by simp
moreover from decomp have sdrop (length ws) xs = ys @− x ## zs

by (cases ws; simp add: sdrop-shift)
ultimately have run ((ys @ [x]) @− zs) by simp
from run-decomp[OF this] have steps (ys @ [x]) run zs x → shd zs

by auto
from run-cycle[OF this(1)] decomp-first have

run (cycle (ys @ [x]))
by (force split: if-split-asm)

with
extend-run[of (ws @ [x]) if ys = [] then shd (x ## zs) else hd ys stl

(cycle (ys @ [x]))]
decomp-first

have
run ((ws @ [x]) @− cycle (ys @ [x]))
apply (simp split: if-split-asm)
subgoal

using cycle-Cons[of x [], simplified] by auto
apply (cases ys)

355

apply (simp; fail)
by (simp add: cycle-Cons)

with decomp show ?thesis
apply (inst-existentials tl (ws @ [x]) (ys @ [x]))
by (cases ws; force)+

qed

lemma buechi-run-finite-state-set-cycle:
assumes run (x0 ## xs) alw (ev (holds ϕ)) (x0 ## xs)
shows
∃ ys zs.

run (x0 ## ys @− cycle zs) ∧ set ys ∪ set zs ⊆ {x0} ∪ sset xs
∧ zs 6= [] ∧ (∃ x ∈ set zs. ϕ x)

proof −
from run-finite-state-set[OF assms(1)] have finite (sset (x0 ## xs)) .
with sset-sfilter [OF ‹alw (ev -) -›] have finite (sset (sfilter ϕ (x0 ##

xs)))
by (rule finite-subset)

from finite-sset-sfilter-decomp[OF this assms(2)] obtain x ws ys zs where
decomp: x0 ## xs = (ws @ [x]) @− ys @− x ## zs and ϕ x
by simp metis

from run-decomp[OF assms(1)[unfolded decomp]] have decomp-first:
steps (ws @ [x])
run (ys @− x ## zs)
x → (if ys = [] then shd (x ## zs) else hd ys)
by auto

from run-sdrop[OF assms(1), of length (ws @ [x])] have run (sdrop
(length ws) xs)

by simp
moreover from decomp have sdrop (length ws) xs = ys @− x ## zs

by (cases ws; simp add: sdrop-shift)
ultimately have run ((ys @ [x]) @− zs) by simp
from run-decomp[OF this] have steps (ys @ [x]) run zs x → shd zs

by auto
from run-cycle[OF this(1)] decomp-first have

run (cycle (ys @ [x]))
by (force split: if-split-asm)

with
extend-run[of (ws @ [x]) if ys = [] then shd (x ## zs) else hd ys stl

(cycle (ys @ [x]))]
decomp-first

have
run ((ws @ [x]) @− cycle (ys @ [x]))

356

apply (simp split: if-split-asm)
subgoal

using cycle-Cons[of x [], simplified] by auto
apply (cases ys)
apply (simp; fail)

by (simp add: cycle-Cons)
with decomp ‹ϕ x› show ?thesis

apply (inst-existentials tl (ws @ [x]) (ys @ [x]))
by (cases ws; force)+

qed

lemma run-finite-state-set-cycle-steps:
assumes run (x0 ## xs)
shows ∃ x ys zs. steps (x0 # ys @ x # zs @ [x]) ∧ {x} ∪ set ys ∪ set zs
⊆ {x0} ∪ sset xs
proof −

from run-finite-state-set-cycle[OF assms] obtain ys zs where guessed:
run (x0 ## ys @− cycle zs)
set ys ∪ set zs ⊆ {x0} ∪ sset xs
zs 6= []
by auto

from ‹zs 6= []› have cycle zs = (hd zs # tl zs @ [hd zs]) @− cycle (tl zs
@ [hd zs])

apply (cases zs)
apply (simp; fail)

apply simp
apply (subst cycle-Cons[symmetric])
apply (subst cycle-decomp)
by simp+

from guessed(1)[unfolded this] have
run ((x0 # ys @ hd zs # tl zs @ [hd zs]) @− cycle (tl zs @ [hd zs]))
by simp

from run-decomp[OF this] guessed(2 ,3) show ?thesis
by (inst-existentials hd zs ys tl zs) (auto dest: list.set-sel)

qed

lemma buechi-run-finite-state-set-cycle-steps:
assumes run (x0 ## xs) alw (ev (holds ϕ)) (x0 ## xs)
shows
∃ x ys zs.

steps (x0 # ys @ x # zs @ [x]) ∧ {x} ∪ set ys ∪ set zs ⊆ {x0} ∪ sset xs
∧ (∃ y ∈ set (x # zs). ϕ y)

proof −

357

from buechi-run-finite-state-set-cycle[OF assms] obtain ys zs x where
guessed:

run (x0 ## ys @− cycle zs)
set ys ∪ set zs ⊆ {x0} ∪ sset xs
zs 6= []
x ∈ set zs
ϕ x
by safe

from ‹zs 6= []› have cycle zs = (hd zs # tl zs @ [hd zs]) @− cycle (tl zs
@ [hd zs])

apply (cases zs)
apply (simp; fail)

apply simp
apply (subst cycle-Cons[symmetric])
apply (subst cycle-decomp)
by simp+

from guessed(1)[unfolded this] have
run ((x0 # ys @ hd zs # tl zs @ [hd zs]) @− cycle (tl zs @ [hd zs]))
by simp

from run-decomp[OF this] guessed(2 ,3 ,4 ,5) show ?thesis
by (inst-existentials hd zs ys tl zs) (auto 4 4 dest: list.set-sel)

qed

lemma cycle-steps-run:
assumes steps (x0 # ys @ x # zs @ [x])
shows ∃ xs. run (x0 ## xs) ∧ sset xs = {x} ∪ set ys ∪ set zs

proof −
from assms have steps (x0 # ys @ [x]) steps (x # zs @ [x])

apply (metis Graph-Defs.steps-appendD1 append.assoc append-Cons
append-Nil snoc-eq-iff-butlast)

by (metis Graph-Defs.steps-appendD2 append-Cons assms snoc-eq-iff-butlast)

from this(2) have x → hd (zs @ [x]) steps (zs @ [x])
apply (metis Graph-Defs.steps-decomp last-snoc list.sel(1) list.sel(3)

snoc-eq-iff-butlast steps-ConsD steps-append ′)
by (meson steps-ConsD ‹steps (x # zs @ [x])› snoc-eq-iff-butlast)

from run-cycle[OF this(2)] this(1) have run (cycle (zs @ [x])) by auto
with extend-run[OF ‹steps (x0 # ys @ [x])›, of hd (zs @ [x]) stl (cycle

(zs @ [x]))] ‹x → -›
have run (x0 ## ys @− x ## cycle (zs @ [x]))

by simp (metis cycle.ctr)
then show ?thesis

358

by auto
qed

lemma buechi-run-lasso:
assumes run (x0 ## xs) alw (ev (holds ϕ)) (x0 ## xs)
obtains x where reaches x0 x reaches1 x x ϕ x

proof −
from buechi-run-finite-state-set-cycle-steps[OF assms] obtain x ys zs y

where
steps (x0 # ys @ x # zs @ [x]) y ∈ set (x # zs) ϕ y
by safe

from ‹y ∈ -› consider y = x | as bs where zs = as @ y # bs
by (meson set-ConsD split-list)

then have ∃ as bs. steps (x0 # as @ [y]) ∧ steps (y # bs @ [y])
proof cases

case 1

with ‹steps -› show ?thesis
by simp (metis Graph-Defs.steps-appendD2 append.assoc append-Cons

list.distinct(1))
next

case 2
with ‹steps -› show ?thesis

by simp (metis (no-types)
reaches1-steps steps-reaches append-Cons last-appendR list.distinct(1)

list.sel(1)
reaches1-reaches-iff2 reaches1-steps-append steps-decomp)

qed
with ‹ϕ y› show ?thesis
including graph-automation by (intro that[of y]) (auto intro: steps-reaches1)

qed

end

7.6 Complete Simulation Graphs

context Simulation-Graph-Defs
begin

definition abstract-run x xs = x ## sscan (λ y a. SOME b. A a b ∧ y ∈
b) xs x

lemma abstract-run-ctr :
abstract-run x xs = x ## abstract-run (SOME b. A x b ∧ shd xs ∈ b) (stl

359

xs)
unfolding abstract-run-def by (subst sscan.ctr) (rule HOL.refl)

end

context Simulation-Graph-Complete
begin

lemma steps-complete:
∃ as. Steps (a # as) ∧ list-all2 (∈) xs as if steps (x # xs) x ∈ a P a
using that by (induction xs arbitrary: x a) (erule steps.cases; fastforce

dest!: complete)+

lemma abstract-run-Run:
Run (abstract-run a xs) if run (x ## xs) x ∈ a P a
using that

proof (coinduction arbitrary: a x xs)
case (run a x xs)
obtain y ys where xs = y ## ys by (metis stream.collapse)
with run have C x y run (y ## ys) by (auto elim: run.cases)
from complete[OF ‹C x y› - ‹P a› ‹x ∈ a›] obtain b where A a b ∧ y
∈ b by auto

then have A a (SOME b. A a b ∧ y ∈ b) ∧ y ∈ (SOME b. A a b ∧ y ∈
b) by (rule someI)

moreover with ‹P a› have P (SOME b. A a b ∧ y ∈ b) by (blast intro:
P-invariant)

ultimately show ?case using ‹run (y ## ys)› unfolding ‹xs = -›
apply (subst abstract-run-ctr , simp)
apply (subst abstract-run-ctr , simp)
by (auto simp: abstract-run-ctr [symmetric])

qed

lemma abstract-run-abstract:
stream-all2 (∈) (x ## xs) (abstract-run a xs) if run (x ## xs) x ∈ a P

a
using that proof (coinduction arbitrary: a x xs)

case run: (stream-rel x ′ u b ′ v a x xs)
obtain y ys where xs = y ## ys by (metis stream.collapse)
with run have C x y run (y ## ys) by (auto elim: run.cases)
from complete[OF ‹C x y› - ‹P a› ‹x ∈ a›] obtain b where A a b ∧ y
∈ b by auto

then have A a (SOME b. A a b ∧ y ∈ b) ∧ y ∈ (SOME b. A a b ∧ y ∈
b) by (rule someI)

with ‹run (y ## ys)› ‹x ∈ a› ‹P a› run(1 ,2) ‹xs = -› show ?case

360

by (subst (asm) abstract-run-ctr) (auto intro: P-invariant)
qed

lemma run-complete:
∃ as. Run (a ## as) ∧ stream-all2 (∈) xs as if run (x ## xs) x ∈ a P a
using abstract-run-Run[OF that] abstract-run-abstract[OF that]
apply (subst (asm) abstract-run-ctr)
apply (subst (asm) (2) abstract-run-ctr)
by auto

end

7.6.1 Runs in Finite Complete Graphs

context Simulation-Graph-Finite-Complete
begin

lemma run-finite-state-set-cycle-steps:
assumes run (x0 ## xs) x0 ∈ a0 P a0

shows ∃ x ys zs.
Steps (a0 # ys @ x # zs @ [x]) ∧ (∀ a ∈ {x} ∪ set ys ∪ set zs. ∃ x ∈

{x0} ∪ sset xs. x ∈ a)
using run-complete[OF assms]
apply safe
apply (drule Steps-finite.run-finite-state-set-cycle-steps)
apply safe
subgoal for as x ys zs

apply (inst-existentials x ys zs)
using assms(2) by (auto dest: stream-all2-sset2)

done

lemma buechi-run-finite-state-set-cycle-steps:
assumes run (x0 ## xs) x0 ∈ a0 P a0 alw (ev (holds ϕ)) (x0 ## xs)
shows ∃ x ys zs.

Steps (a0 # ys @ x # zs @ [x])
∧ (∀ a ∈ {x} ∪ set ys ∪ set zs. ∃ x ∈ {x0} ∪ sset xs. x ∈ a)
∧ (∃ y ∈ set (x # zs). ∃ a ∈ y. ϕ a)

using run-complete[OF assms(1−3)]
apply safe
apply (drule Steps-finite.buechi-run-finite-state-set-cycle-steps[where ϕ

= λ S . ∃ x ∈ S . ϕ x])
subgoal for as

using assms(4)
apply (subst alw-ev-stl[symmetric], simp)

361

apply (erule alw-stream-all2-mono[where Q = ev (holds ϕ)], fastforce)
by (metis (mono-tags, lifting) ev-holds-sset stream-all2-sset1)

apply safe
subgoal for as x ys zs y a

apply (inst-existentials x ys zs)
using assms(2) by (auto dest: stream-all2-sset2)

done

lemma buechi-run-finite-state-set-cycle-lasso:
assumes run (x0 ## xs) x0 ∈ a0 P a0 alw (ev (holds ϕ)) (x0 ## xs)
shows ∃ a. Steps.reaches a0 a ∧ Steps.reaches1 a a ∧ (∃ y ∈ a. ϕ y)

proof −
from buechi-run-finite-state-set-cycle-steps[OF assms] obtain b as bs a y

where lasso:
Steps (a0 # as @ b # bs @ [b]) a ∈ set (b # bs) y ∈ a ϕ y
by safe

from ‹a ∈ set -› consider b = a | bs1 bs2 where bs = bs1 @ a # bs2
using split-list by fastforce

then have Steps.reaches a0 a ∧ Steps.reaches1 a a
using ‹Steps -›
apply cases
apply safe

subgoal
by (simp add: Steps.steps-reaches ′)

subgoal
by (blast dest: Steps.stepsD intro: Steps.steps-reaches1)

subgoal for bs1 bs2
by (subgoal-tac Steps ((a0 # as @ b # bs1 @ [a]) @ (bs2 @ [b])))
(drule Steps.stepsD, auto elim: Steps.steps-reaches ′)

subgoal
by (metis (no-types)

Steps.steps-reaches1 Steps.steps-rotate Steps-appendD2 append-Cons
append-eq-append-conv2

list.distinct(1))
done

with lasso show ?thesis
by auto

qed

end

7.7 Finite Complete Double Simulations

context Double-Simulation

362

begin

lemma Run-closure:
post-defs.Run (smap closure xs) if Run xs

using that proof (coinduction arbitrary: xs)
case prems: run
then obtain x y ys where xs = x ## y ## ys A2 x y Run (y ## ys)

by (auto elim: Steps.run.cases)
with A2 ′-A2-closure[OF ‹A2 x y›] show ?case

by force
qed

lemma closure-set-finite:
finite (closure ‘ UNIV) (is finite ?S)

proof −
have ?S ⊆ {x. x ⊆ {x. P1 x}}

unfolding closure-def by auto
also have finite . . .

using P1-finite by auto
finally show ?thesis .

qed

lemma A2 ′-empty-step:
b = {} if A2 ′ a b a = {}
using that closure-poststable unfolding A2 ′-def by auto

lemma A2 ′-empty-invariant:
Graph-Invariant A2 ′ (λ x. x = {})
by standard (rule A2 ′-empty-step)

end

context Double-Simulation-Complete
begin

lemmas P2-invariant-Steps = P2-invariant.invariant-steps

interpretation Steps-finite: Finite-Graph A2 ′ closure a0

proof
have {x. post-defs.Steps.reaches (closure a0) x} ⊆ closure ‘ UNIV

by (auto 4 3 simp: A2 ′-def elim: rtranclp.cases)
also have finite . . .

by (fact closure-set-finite)
finally show finite {x. post-defs.Steps.reaches (closure a0) x} .

363

qed

theorem infinite-run-cycle-iff ′:
assumes

∧
x xs. run (x ## xs) =⇒ x ∈

⋃
(closure a0) =⇒ ∃ y ys. y ∈

a0 ∧ run (y ## ys)
shows
(∃ x0 xs. x0 ∈

⋃
(closure a0) ∧ run (x0 ## xs)) ←→

(∃ as a bs. post-defs.Steps (closure a0 # as @ a # bs @ [a]) ∧ a 6= {})
proof (safe, goal-cases)

case prems: (1 x0 X xs)
from assms[OF prems(1)] prems(2 ,3) obtain y ys where y ∈ a0 run (y

ys)
by auto

from run-complete[OF this(2 ,1) P2-a0] obtain as where Run (a0 ##
as) stream-all2 (∈) ys as

by auto
from P2-invariant.invariant-run[OF ‹Run -›] have ∗: ∀ a ∈ sset (a0 ##

as). P2 a
unfolding stream.pred-set by auto

from Steps-finite.run-finite-state-set-cycle-steps[OF Run-closure[OF ‹Run
-›, simplified]] show ?case

using ‹stream-all2 - - -› ‹y ∈ -› ∗ closure-non-empty by force+
next

case prems: (2 as a bs x)
with post-defs.Steps.steps-decomp[of closure a0 # as @ [a] bs @ [a]] have

post-defs.Steps (closure a0 # as @ [a]) post-defs.Steps (bs @ [a]) A2 ′ a
(hd (bs @ [a]))

by auto
from prems(2 ,3) Steps-run-cycle2 [OF prems(1)] show ?case

by auto
qed

corollary infinite-run-cycle-iff :
(∃ x0 xs. x0 ∈ a0 ∧ run (x0 ## xs)) ←→
(∃ as a bs. post-defs.Steps (closure a0 # as @ a # bs @ [a]) ∧ a 6= {})

if
⋃
(closure a0) = a0 P2 a0

by (subst ‹- = a0›[symmetric]) (rule infinite-run-cycle-iff ′, auto simp:
that)

context
fixes ϕ :: ′a ⇒ bool — The property we want to check
assumes ϕ-closure-compatible: P2 a =⇒ x ∈

⋃
(closure a) =⇒ ϕ x ←→

(∀ x ∈
⋃

(closure a). ϕ x)
begin

364

We need the condition a 6= {} in the following theorem because we cannot
prove a lemma like this:

lemma
∃ bs. Steps bs ∧ closure a # as = map closure bs if post-defs.Steps (closure

a # as)
using that
oops

One possible fix would be to add the stronger assumption A2 a b =⇒ P2 b.

theorem infinite-buechi-run-cycle-iff-closure:
assumes∧

x xs. run (x ## xs) =⇒ x ∈
⋃
(closure a0) =⇒ alw (ev (holds ϕ)) xs

=⇒ ∃ y ys. y ∈ a0 ∧ run (y ## ys) ∧ alw (ev (holds ϕ)) ys
and

∧
a. P2 a =⇒ a ⊆

⋃
(closure a)

shows
(∃ x0 xs. x0 ∈

⋃
(closure a0) ∧ run (x0 ## xs) ∧ alw (ev (holds ϕ)) (x0

xs))
←→ (∃ as a bs. a 6= {} ∧ post-defs.Steps (closure a0 # as @ a # bs @

[a]) ∧ (∀ x ∈
⋃

a. ϕ x))
proof (safe, goal-cases)

case prems: (1 x0 xs)
from assms(1)[OF prems(3)] prems(1 ,2 ,4) obtain y ys where

y ∈ a0 run (y ## ys) alw (ev (holds ϕ)) ys
by auto

from run-complete[OF this(2 ,1) P2-a0] obtain as where Run (a0 ##
as) stream-all2 (∈) ys as

by auto
from P2-invariant.invariant-run[OF ‹Run -›] have pred-stream P2 (a0

as)
by auto

from Run-closure[OF ‹Run -›] have post-defs.Run (closure a0 ## smap
closure as)

by simp
from ‹alw (ev (holds ϕ)) ys› ‹stream-all2 - - -› have alw (ev (holds (λ a.
∃ x ∈ a. ϕ x))) as

by (rule alw-ev-lockstep) auto
then have alw (ev (holds (λ a. ∃ x ∈

⋃
a. ϕ x))) (closure a0 ## smap

closure as)
apply −
apply rule
apply (rule alw-ev-lockstep[where Q = λ a b. b = closure a ∧ P2 a],

assumption)
subgoal

365

using ‹Run (a0 ## as)›
by − (rule stream-all2-combine[where P = eq-onp P2 and Q = λ a

b. b = closure a],
subst stream.pred-rel[symmetric],

auto dest: P2-invariant.invariant-run simp: stream.rel-refl eq-onp-def
)

subgoal for a x
by (auto dest!: assms(2))

done
from Steps-finite.buechi-run-finite-state-set-cycle-steps[OF ‹post-defs.Run

(- ## -)› this]
obtain a ys zs where guessed:

post-defs.Steps (closure a0 # ys @ a # zs @ [a])
a = closure a0 ∨ a ∈ closure ‘ sset as
set ys ⊆ insert (closure a0) (closure ‘ sset as)
set zs ⊆ insert (closure a0) (closure ‘ sset as)
(∃ y∈a. ∃ x∈y. ϕ x) ∨ (∃ y∈set zs. ∃ y ′∈y. ∃ x∈y ′. ϕ x)
by clarsimp

from guessed(5) show ?case
proof (standard, goal-cases)

case prems: 1
from guessed(1) have post-defs.Steps (closure a0 # ys @ [a])

by (metis
Graph-Defs.graphI (3) Graph-Defs.steps-decomp append.simps(2)

list.sel(1) list.simps(3)
)

from ‹pred-stream - -› guessed(2) obtain a ′ where a = closure a ′ P2
a ′

by (auto simp: stream.pred-set)
from prems obtain x R where x ∈ R R ∈ a ϕ x by auto
with ‹P2 a ′› have ∀ x ∈

⋃
a. ϕ x

unfolding ‹a = -› by (subst ϕ-closure-compatible[symmetric]) auto
with guessed(1 ,2) show ?case

using ‹R ∈ a› by blast
next

case prems: 2
then obtain R b x where ∗: x ∈ R R ∈ b b ∈ set zs ϕ x

by auto
from ‹b ∈ set zs› obtain zs1 zs2 where zs = zs1 @ b # zs2 by (force

simp: split-list)
with guessed(1) have post-defs.Steps ((closure a0 # ys @ a # zs1 @

[b]) @ zs2 @ [a])
by simp

with guessed(1) have post-defs.Steps (closure a0 # ys @ a # zs1 @ [b])

366

by − (drule Graph-Defs.steps-decomp, auto)
from ‹pred-stream - -› guessed(4) ‹zs = -› obtain b ′ where b = closure

b ′ P2 b ′

by (auto simp: stream.pred-set)
with ∗ have ∗: ∀ x ∈

⋃
b. ϕ x

unfolding ‹b = -› by (subst ϕ-closure-compatible[symmetric]) auto
from ‹zs = -› guessed(1) have post-defs.Steps ((closure a0 # ys) @ (a

zs1 @ [b]) @ zs2 @ [a])
by simp

then have post-defs.Steps (a # zs1 @ [b]) by (blast dest!: post-defs.Steps.steps-decomp)
with ‹zs = -› guessed ∗ show ?case

using
‹R ∈ b›
post-defs.Steps.steps-append[of closure a0 # ys @ a # zs1 @ b # zs2

@ [a] a # zs1 @ [b]]
by (inst-existentials ys @ a # zs1 b zs2 @ a # zs1) auto

qed
next

case prems: (2 as a bs x)
then have a 6= {}

by auto
from prems post-defs.Steps.steps-decomp[of closure a0 # as @ [a] bs @

[a]] have
post-defs.Steps (closure a0 # as @ [a])
by auto

with Steps-run-cycle2 [OF prems(1) ‹a 6= {}›] prems show ?case
unfolding HLD-iff by clarify (drule alw-ev-mono[where ψ = holds ϕ],

auto)
qed

end

end

context Double-Simulation-Finite-Complete
begin

lemmas P2-invariant-Steps = P2-invariant.invariant-steps

theorem infinite-run-cycle-iff ′:
assumes P2 a0

∧
x xs. run (x ## xs) =⇒ x ∈

⋃
(closure a0) =⇒ ∃ y

ys. y ∈ a0 ∧ run (y ## ys)
shows (∃ x0 xs. x0 ∈ a0 ∧ run (x0 ## xs)) ←→ (∃ as a bs. Steps (a0 #

as @ a # bs @ [a]))

367

proof (safe, goal-cases)
case (1 x0 xs)
from run-finite-state-set-cycle-steps[OF this(2 ,1)] ‹P2 a0› show ?case by

auto
next

case prems: (2 as a bs)
with Steps.steps-decomp[of a0 # as @ [a] bs @ [a]] have Steps (a0 # as

@ [a]) by auto
from P2-invariant-Steps[OF this] have P2 a by auto
from Steps-run-cycle ′′[OF prems this] assms(2) show ?case by auto

qed

corollary infinite-run-cycle-iff :
(∃ x0 xs. x0 ∈ a0 ∧ run (x0 ## xs)) ←→ (∃ as a bs. Steps (a0 # as @

a # bs @ [a]))
if

⋃
(closure a0) = a0 P2 a0

by (rule infinite-run-cycle-iff ′, auto simp: that)

context
fixes ϕ :: ′a ⇒ bool — The property we want to check
assumes ϕ-closure-compatible: x ∈ a =⇒ ϕ x ←→ (∀ x ∈

⋃
(closure a).

ϕ x)
begin

theorem infinite-buechi-run-cycle-iff :
(∃ x0 xs. x0 ∈ a0 ∧ run (x0 ## xs) ∧ alw (ev (holds ϕ)) (x0 ## xs))
←→ (∃ as a bs. Steps (a0 # as @ a # bs @ [a]) ∧ (∀ x ∈

⋃
(closure a).

ϕ x))
if

⋃
(closure a0) = a0

proof (safe, goal-cases)
case (1 x0 xs)
from buechi-run-finite-state-set-cycle-steps[OF this(2 ,1) P2-a0, of ϕ] this(3)

obtain a ys zs
where
infs ϕ xs
Steps (a0 # ys @ a # zs @ [a])
x0 ∈ a ∨ (∃ x∈sset xs. x ∈ a)
∀ a∈set ys ∪ set zs. x0 ∈ a ∨ (∃ x∈sset xs. x ∈ a)
(∃ x∈a. ϕ x) ∨ (∃ y∈set zs. ∃ x∈y. ϕ x)
by clarsimp

note guessed = this(2−)
from guessed(4) show ?case
proof (standard, goal-cases)

case 1

368

then obtain x where x ∈ a ϕ x by auto
with ϕ-closure-compatible have ∀ x ∈

⋃
(closure a). ϕ x by blast

with guessed(1 ,2) show ?case by auto
next

case 2
then obtain b x where x ∈ b b ∈ set zs ϕ x by auto
with ϕ-closure-compatible have ∗: ∀ x ∈

⋃
(closure b). ϕ x by blast

from ‹b ∈ set zs› obtain zs1 zs2 where zs = zs1 @ b # zs2 by (force
simp: split-list)

with guessed(1) have Steps ((a0 # ys) @ (a # zs1 @ [b]) @ zs2 @ [a])
by simp

then have Steps (a # zs1 @ [b]) by (blast dest!: Steps.steps-decomp)
with ‹zs = -› guessed ∗ show ?case

apply (inst-existentials ys @ a # zs1 b zs2 @ a # zs1)
using Steps.steps-append[of a0 # ys @ a # zs1 @ b # zs2 @ [a] a #

zs1 @ [b]]
by auto

qed
next

case prems: (2 as a bs)
with Steps.steps-decomp[of a0 # as @ [a] bs @ [a]] have Steps (a0 # as

@ [a]) by auto
from P2-invariant-Steps[OF this] have P2 a by auto
from Steps-run-cycle ′′[OF prems(1) this] prems this that show ?case

apply safe
subgoal for x xs b

by (inst-existentials x xs) (auto elim!: alw-ev-mono)
done

qed

end

end

7.8 Encoding of Properties in Runs

This approach only works if we assume strong compatibility of the property.
For weak compatibility, encoding in the automaton is likely the right way.

context Double-Simulation-Complete-Abstraction-Prop
begin

definition C-ϕ x y ≡ C x y ∧ ϕ y
definition A1-ϕ a b ≡ A1 a b ∧ b ⊆ {x. ϕ x}

369

definition A2-ϕ S S ′ ≡ ∃ S ′′. A2 S S ′′ ∧ S ′′ ∩ {x. ϕ x} = S ′ ∧ S ′ 6= {}

lemma A2-ϕ-P2-invariant:
P2 a if A2-ϕ∗∗ a0 a

proof −
interpret invariant: Graph-Invariant-Start A2-ϕ a0 P2

by standard (auto intro: ϕ-P2-compatible P2-invariant P2-a0 simp:
A2-ϕ-def)

from invariant.invariant-reaches[OF that] show ?thesis .
qed

sublocale phi: Double-Simulation-Complete C-ϕ A1-ϕ P1 A2-ϕ P2 a0

proof (standard, goal-cases)
case (1 S T)
then show ?case unfolding A1-ϕ-def C-ϕ-def by (auto 4 4 dest: ϕ-A1-compatible

prestable)
next

case (2 y b a)
then obtain c where A2 a c c ∩ {x. ϕ x} = b unfolding A2-ϕ-def by

auto
with ‹y ∈ -› have y ∈ closure c by (auto dest: closure-intD)
moreover have y ⊆ {x. ϕ x}

by (smt 2 (1) ϕ-A1-compatible ‹A2 a c› ‹c ∩ {x. ϕ x} = b› ‹y ∈ closure
c› closure-def

closure-poststable inf-assoc inf-bot-right inf-commute mem-Collect-eq)
ultimately show ?case using ‹A2 a c› unfolding A1-ϕ-def A2-ϕ-def

by (auto dest: closure-poststable)
next

case (3 x y)
then show ?case by (rule P1-distinct)

next
case 4
then show ?case by (rule P1-finite)

next
case (5 a)
then show ?case by (rule P2-cover)

next
case (6 x y S)
then show ?case unfolding C-ϕ-def A2-ϕ-def by (auto dest!: complete)

next
case (7 a a ′)
then show ?case unfolding A2-ϕ-def by (auto intro: P2-invariant ϕ-P2-compatible)

next
case 8

370

then show ?case by (rule P2-a0)
qed

lemma phi-run-iff :
phi.run (x ## xs) ∧ ϕ x ←→ run (x ## xs) ∧ pred-stream ϕ (x ## xs)

proof −
have phi.run xs if run xs pred-stream ϕ xs for xs

using that by (coinduction arbitrary: xs) (auto elim: run.cases simp:
C-ϕ-def)

moreover have run xs if phi.run xs for xs
using that by (coinduction arbitrary: xs) (auto elim: phi.run.cases simp:

C-ϕ-def)
moreover have pred-stream ϕ xs if phi.run (x ## xs) ϕ x
using that by (coinduction arbitrary: xs x) (auto 4 3 elim: phi.run.cases

simp: C-ϕ-def)
ultimately show ?thesis by auto

qed

end

context Double-Simulation-Finite-Complete-Abstraction-Prop
begin

sublocale phi: Double-Simulation-Finite-Complete C-ϕ A1-ϕ P1 A2-ϕ P2
a0

proof (standard, goal-cases)
case 1
have {a. A2-ϕ∗∗ a0 a} ⊆ {a. Steps.reaches a0 a}

apply safe
subgoal premises prems for x

using prems
proof (induction x1 ≡ a0 x rule: rtranclp.induct)

case rtrancl-refl
then show ?case by blast

next
case prems: (rtrancl-into-rtrancl b c)
then have c 6= {}

by − (rule P2-non-empty, auto intro: A2-ϕ-P2-invariant)
from ‹A2-ϕ b c› obtain S ′′ x where

A2 b S ′′ c = S ′′ ∩ {x. ϕ x} x ∈ S ′′ ϕ x
unfolding A2-ϕ-def by auto

with prems ‹c 6= {}› ϕ-A2-compatible[of S ′′] show ?case
including graph-automation-aggressive by auto

qed

371

done
then show ?case (is finite ?S) using finite-abstract-reachable by (rule

finite-subset)
qed

corollary infinite-run-cycle-iff :
(∃ x0 xs. x0 ∈ a0 ∧ run (x0 ## xs) ∧ pred-stream ϕ (x0 ## xs)) ←→
(∃ as a bs. phi.Steps (a0 # as @ a # bs @ [a]))

if
⋃
(closure a0) = a0 a0 ⊆ {x. ϕ x}

unfolding phi.infinite-run-cycle-iff [OF that(1) P2-a0, symmetric] phi-run-iff [symmetric]
using that(2) by auto

theorem Alw-ev-mc:
(∀ x0 ∈ a0. Alw-ev (Not o ϕ) x0) ←→ ¬ (∃ as a bs. phi.Steps (a0 # as

@ a # bs @ [a]))
if

⋃
(closure a0) = a0 a0 ⊆ {x. ϕ x}

unfolding Alw-ev alw-holds-pred-stream-iff infinite-run-cycle-iff [OF that,
symmetric]

by (auto simp: comp-def)

end

context Simulation-Graph-Defs
begin

definition represent-run x as = x ## sscan (λ b x. SOME y. C x y ∧ y
∈ b) as x

lemma represent-run-ctr :
represent-run x as = x ## represent-run (SOME y. C x y ∧ y ∈ shd as)

(stl as)
unfolding represent-run-def by (subst sscan.ctr) (rule HOL.refl)

end

context Simulation-Graph-Prestable
begin

lemma represent-run-Run:
run (represent-run x as) if Run (a ## as) x ∈ a

using that
proof (coinduction arbitrary: a x as)

case (run a x as)
obtain b bs where as = b ## bs by (metis stream.collapse)

372

with run have A a b Run (b ## bs) by (auto elim: Steps.run.cases)
from prestable[OF ‹A a b›] ‹x ∈ a› obtain y where C x y ∧ y ∈ b by

auto
then have C x (SOME y. C x y ∧ y ∈ b) ∧ (SOME y. C x y ∧ y ∈ b) ∈

b by (rule someI)
then show ?case using ‹Run (b ## bs)› unfolding ‹as = -›

apply (subst represent-run-ctr , simp)
apply (subst represent-run-ctr , simp)
by (auto simp: represent-run-ctr [symmetric])

qed

lemma represent-run-represent:
stream-all2 (∈) (represent-run x as) (a ## as) if Run (a ## as) x ∈ a

using that
proof (coinduction arbitrary: a x as)

case (stream-rel x ′ xs a ′ as ′ a x as)
obtain b bs where as = b ## bs by (metis stream.collapse)
with stream-rel have A a b Run (b ## bs) by (auto elim: Steps.run.cases)
from prestable[OF ‹A a b›] ‹x ∈ a› obtain y where C x y ∧ y ∈ b by

auto
then have C x (SOME y. C x y ∧ y ∈ b) ∧ (SOME y. C x y ∧ y ∈ b) ∈

b by (rule someI)
with ‹x ′ ## xs = -› ‹a ′ ## as ′ = -› ‹x ∈ a› ‹Run (b ## bs)› show

?case unfolding ‹as = -›
by (subst (asm) represent-run-ctr) auto

qed

end

context Simulation-Graph-Complete-Prestable
begin

lemma step-bisim:
∃ y ′. C x ′ y ′ ∧ (∃ a. P a ∧ y ∈ a ∧ y ′ ∈ a) if C x y x ∈ a x ′ ∈ a P a

proof −
from complete[OF ‹C x y› - ‹P a› ‹x ∈ a›] obtain b ′ where A a b ′ y ∈

b ′

by auto
from prestable[OF ‹A a b ′›] ‹x ′ ∈ a› obtain y ′ where y ′ ∈ b ′ C x ′ y ′

by auto
with ‹P a› ‹A a b ′› ‹y ∈ b ′› show ?thesis

by auto
qed

373

sublocale steps-bisim:
Bisimulation-Invariant C C λ x y. ∃ a. P a ∧ x ∈ a ∧ y ∈ a λ -. True λ

-. True
by (standard; meson step-bisim)

lemma runs-bisim:
∃ ys. run (y ## ys) ∧ stream-all2 (λ x y. ∃ a. x ∈ a ∧ y ∈ a ∧ P a) xs

ys
if run (x ## xs) x ∈ a y ∈ a P a
using that
by − (drule steps-bisim.bisim.A-B.simulation-run[of - - y],

auto elim!: stream-all2-weaken simp: steps-bisim.equiv ′-def
)

lemma runs-bisim ′:
∃ ys. run (y ## ys) if run (x ## xs) x ∈ a y ∈ a P a
using runs-bisim[OF that] by blast

context
fixes Q :: ′a ⇒ bool
assumes compatible: Q x =⇒ x ∈ a =⇒ y ∈ a =⇒ P a =⇒ Q y

begin

lemma Alw-ev-compatible ′:
assumes ∀ xs. run (x ## xs) −→ ev (holds Q) (x ## xs) run (y ##

xs) x ∈ a y ∈ a P a
shows ev (holds Q) (y ## xs)

proof −
from assms obtain ys where run (x ## ys) stream-all2 steps-bisim.equiv ′

xs ys
by (auto 4 3 simp: steps-bisim.equiv ′-def dest: steps-bisim.bisim.A-B.simulation-run)

with assms(1) have ev (holds Q) (x ## ys)
by auto

from ‹stream-all2 - - -› assms have stream-all2 steps-bisim.B-A.equiv ′ (x
ys) (y ## xs)

by (fastforce
simp: steps-bisim.equiv ′-def steps-bisim.A-B.equiv ′-def
intro: steps-bisim.stream-all2-rotate-2

)
then show ?thesis

by − (rule steps-bisim.ev-ψ-ϕ[OF - - ‹ev - -›],
auto dest: compatible simp: steps-bisim.A-B.equiv ′-def
)

qed

374

lemma Alw-ev-compatible:
Alw-ev Q x ←→ Alw-ev Q y if x ∈ a y ∈ a P a
unfolding Alw-ev-def using that by (auto intro: Alw-ev-compatible ′)

end

lemma steps-bisim:
∃ ys. steps (y # ys) ∧ list-all2 (λ x y. ∃ a. x ∈ a ∧ y ∈ a ∧ P a) xs ys
if steps (x # xs) x ∈ a y ∈ a P a
using that
by (auto 4 4

dest: steps-bisim.bisim.A-B.simulation-steps
intro: list-all2-mono simp: steps-bisim.equiv ′-def
)

end

context Subgraph-Node-Defs
begin

lemma subgraph-runD:
run xs if G ′.run xs
by (metis G ′.run.cases run.coinduct subgraph that)

lemma subgraph-V-all:
pred-stream V xs if G ′.run xs
by (metis (no-types, lifting) G ′.run.simps Subgraph-Node-Defs.E ′-V1 stream.inject

stream-pred-coinduct that)

lemma subgraph-runI :
G ′.run xs if pred-stream V xs run xs
using that
by (coinduction arbitrary: xs) (metis Subgraph-Node-Defs.E ′-def run.cases

stream.pred-inject)

lemma subgraph-run-iff :
G ′.run xs ←→ pred-stream V xs ∧ run xs
using subgraph-V-all subgraph-runD subgraph-runI by blast

end

context Double-Simulation-Finite-Complete-Abstraction-Prop-Bisim
begin

375

sublocale sim-complete: Simulation-Graph-Complete-Prestable C-ϕ A1-ϕ
P1

by (standard; force dest: P1-invariant ϕ-A1-compatible A1-complete simp:
C-ϕ-def A1-ϕ-def)

lemma runs-closure-bisim:
∃ y ys. y ∈ a0 ∧ phi.run (y ## ys) if phi.run (x ## xs) x ∈

⋃
(phi.closure

a0)
using that(2) sim-complete.runs-bisim ′[OF that(1)] unfolding phi.closure-def

by auto

lemma infinite-run-cycle-iff ′:
(∃ x0 xs. x0 ∈ a0 ∧ phi.run (x0 ## xs)) = (∃ as a bs. phi.Steps (a0 # as

@ a # bs @ [a]))
by (intro phi.infinite-run-cycle-iff ′ P2-a0 runs-closure-bisim)

corollary infinite-run-cycle-iff :
(∃ x0 xs. x0 ∈ a0 ∧ run (x0 ## xs) ∧ pred-stream ϕ (x0 ## xs)) ←→
(∃ as a bs. phi.Steps (a0 # as @ a # bs @ [a]))

if a0 ⊆ {x. ϕ x}
unfolding infinite-run-cycle-iff ′[symmetric] phi-run-iff [symmetric] using

that by auto

theorem Alw-ev-mc:
(∀ x0 ∈ a0. Alw-ev (Not o ϕ) x0) ←→ ¬ (∃ as a bs. phi.Steps (a0 # as

@ a # bs @ [a]))
if a0 ⊆ {x. ϕ x}
unfolding Alw-ev alw-holds-pred-stream-iff infinite-run-cycle-iff [OF that,

symmetric]
by (auto simp: comp-def)

lemma phi-Steps-Alw-ev:
¬ (∃ as a bs. phi.Steps (a0 # as @ a # bs @ [a])) ←→ phi.Steps.Alw-ev

(λ -. False) a0

unfolding phi.Steps.Alw-ev
by (auto 4 3 dest:

sdrop-wait phi.Steps-finite.run-finite-state-set-cycle-steps phi.Steps-finite.cycle-steps-run
simp: not-alw-iff comp-def
)

theorem Alw-ev-mc ′:
(∀ x0 ∈ a0. Alw-ev (Not o ϕ) x0) ←→ phi.Steps.Alw-ev (λ -. False) a0

376

if a0 ⊆ {x. ϕ x}
unfolding Alw-ev-mc[OF that] phi-Steps-Alw-ev[symmetric] ..

end

context Graph-Start-Defs
begin

interpretation Bisimulation-Invariant E E (=) reachable reachable
including graph-automation by standard auto

lemma Alw-alw-iff-default:
Alw-alw ϕ x ←→ Alw-alw ψ x if

∧
x. reachable x =⇒ ϕ x ←→ ψ x

reachable x
by (rule Alw-alw-iff-strong) (auto simp: that A-B.equiv ′-def)

lemma Alw-ev-iff-default:
Alw-ev ϕ x ←→ Alw-ev ψ x if

∧
x. reachable x =⇒ ϕ x ←→ ψ x reachable

x
by (rule Alw-ev-iff) (auto simp: that A-B.equiv ′-def)

end

context Double-Simulation-Complete-Bisim-Cover
begin

lemma P2-closure-subs:
a ⊆

⋃
(closure a) if P2 a

using P2-P1-cover [OF that] unfolding closure-def by fastforce

lemma (in Double-Simulation-Complete) P2-Steps-last:
P2 (last as) if Steps as a0 = hd as
using that by − (cases as, auto dest!: P2-invariant-Steps simp: list-all-iff

P2-a0)

lemma (in Double-Simulation) compatible-closure:
assumes compatible:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P

y
and ∀ x ∈ a. P x

shows ∀ x ∈
⋃
(closure a). P x

unfolding closure-def using assms(2) by (auto dest: compatible)

lemma compatible-closure-all-iff :
assumes compatible:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P

377

y and P2 a
shows (∀ x ∈ a. P x) ←→ (∀ x ∈

⋃
(closure a). P x)

using ‹P2 a› by (auto dest!: P2-closure-subs dest: compatible simp: clo-
sure-def)

lemma compatible-closure-ex-iff :
assumes compatible:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P

y and P2 a
shows (∃ x ∈ a. P x) ←→ (∃ x ∈

⋃
(closure a). P x)

using ‹P2 a› by (auto 4 3 dest!: P2-closure-subs dest: compatible P2-cover
simp: closure-def)

lemma (in Double-Simulation-Complete-Bisim) no-deadlock-closureI :
∀ x0 ∈

⋃
(closure a0). ¬ deadlock x0 if ∀ x0 ∈ a0. ¬ deadlock x0

using that by − (rule compatible-closure, simp, rule bisim.steps-bisim.deadlock-iff ,
auto)

context
fixes P
assumes P1-P:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y

begin

lemma reaches-all-1 :
fixes b :: ′a set and y :: ′a and as :: ′a set list
assumes A: ∀ y. (∃ x0∈

⋃
(closure (hd as)). ∃ xs. hd xs = x0 ∧ last xs = y

∧ steps xs) −→ P y
and y ∈ last as and a0 = hd as and Steps as

shows P y
proof −

from assms obtain bs where [simp]: as = a0 # bs by (cases as) auto
from Steps-Union[OF ‹Steps -›] have post-defs.Steps (map closure as) .
from ‹Steps as› ‹a0 = -› have P2 (last as)

by (rule P2-Steps-last)
obtain b2 where b2 : y ∈ b2 b2 ∈ last (closure a0 # map closure bs)

apply atomize-elim
apply simp
apply safe
using ‹y ∈ -› P2-closure-subs[OF ‹P2 (last as)›]
by (auto simp: last-map)

with post.Steps-poststable[OF ‹post-defs.Steps -›, of b2] obtain as ′ where
as ′:

pre-defs.Steps as ′ list-all2 (∈) as ′ (closure a0 # map closure bs) last as ′

= b2
by auto

378

then obtain x0 where x0 ∈ hd as ′

by (cases as ′) (auto split: if-split-asm simp: closure-def)
from pre.Steps-prestable[OF ‹pre-defs.Steps -› ‹x0 ∈ -›] obtain xs where

steps (x0 # xs) list-all2 (∈) (x0 # xs) as ′

by auto
from ‹x0 ∈ -› ‹list-all2 (∈) as ′ -› have x0 ∈

⋃
(closure a0)

by (cases as ′) auto
with A ‹steps -› have P (last (x0 # xs))

by fastforce
from as ′ have P1 b2

using b2 by (auto simp: closure-def last-map split: if-split-asm)
from ‹list-all2 (∈) as ′ -› ‹list-all2 (∈) - as ′› ‹- = b2 › have last (x0 # xs)
∈ b2

by (fastforce dest!: list-all2-last)
from P1-P[OF this ‹y ∈ b2 › ‹P1 b2 ›] ‹P -› show P y ..

qed

lemma reaches-all-2 :
fixes x0 a xs
assumes A: ∀ b y. (∃ xs. hd xs = a0 ∧ last xs = b ∧ Steps xs) ∧ y ∈ b
−→ P y

and hd xs ∈ a and a ∈ closure a0 and steps xs
shows P (last xs)

proof −
{

fix y x0 xs
assume hd xs ∈ a0 and steps xs
then obtain x ys where [simp]: xs = x # ys x ∈ a0 by (cases xs) auto
from steps-complete[of x ys a0] ‹steps xs› P2-a0 obtain as where

Steps (a0 # as) list-all2 (∈) ys as
by auto

then have last xs ∈ last (a0 # as)
by (fastforce dest: list-all2-last)

with A ‹Steps -› ‹x ∈ -› have P (last xs)
by (force split: if-split-asm)

} note ∗ = this
from ‹a ∈ closure a0› obtain x where x: x ∈ a x ∈ a0 P1 a

by (auto simp: closure-def)
with ‹hd xs ∈ a› ‹steps xs› bisim.steps-bisim[of hd xs tl xs a x] obtain

xs ′ where
hd xs ′ = x steps xs ′ list-all2 (λ x y. ∃ a. x ∈ a ∧ y ∈ a ∧ P1 a) xs xs ′

apply atomize-elim
apply clarsimp
subgoal for ys

379

by (inst-existentials x # ys; force simp: list-all2-Cons2)
done

with ∗[of xs ′] x have P (last xs ′)
by auto

from ‹steps xs› ‹list-all2 - xs xs ′› obtain b where last xs ∈ b last xs ′ ∈
b P1 b

by atomize-elim (fastforce dest!: list-all2-last)
from P1-P[OF this] ‹P (last xs ′)› show P (last xs) ..

qed

lemma reaches-all:
(∀ y. (∃ x0∈

⋃
(closure a0). reaches x0 y) −→ P y)←→ (∀ b y. Steps.reaches

a0 b ∧ y ∈ b −→ P y)
unfolding reaches-steps-iff Steps.reaches-steps-iff using reaches-all-1 reaches-all-2

by auto

lemma reaches-all ′:
(∀ x0∈

⋃
(closure a0). ∀ y. reaches x0 y −→ P y) = (∀ y. Steps.reaches a0

y −→ (∀ x∈y. P x))
using reaches-all by auto

lemma reaches-all ′′:
(∀ y. ∀ x0∈a0. reaches x0 y −→ P y) ←→ (∀ b y. Steps.reaches a0 b ∧ y
∈ b −→ P y)
proof −

have (∀ x0∈a0. ∀ y. reaches x0 y −→ P y) ←→ (∀ x0∈
⋃
(closure a0). ∀ y.

reaches x0 y −→ P y)
apply (rule compatible-closure-all-iff [OF - P2-a0])
apply safe
subgoal for a x y y ′

by (blast dest: P1-P bisim.steps-bisim.A-B.simulation-reaches[of - - x])
subgoal for a x y y ′

by (blast dest: P1-P bisim.steps-bisim.A-B.simulation-reaches[of - - y])
done

from this[unfolded reaches-all ′] show ?thesis
by auto

qed

lemma reaches-ex:
(∃ y. ∃ x0∈

⋃
(closure a0). reaches x0 y ∧ P y) = (∃ b y. Steps.reaches a0

b ∧ y ∈ b ∧ P y)
proof (safe, goal-cases)

case (1 y x0 X)
then obtain x where x ∈ X x ∈ a0 P1 X

380

unfolding closure-def by auto
with ‹x0 ∈ -› ‹reaches - -› obtain y ′ Y where reaches x y ′ P1 Y y ′ ∈ Y

y ∈ Y
by (auto dest: bisim.steps-bisim.A-B.simulation-reaches[of - - x])

with simulation.simulation-reaches[OF ‹reaches x y ′› ‹x ∈ a0› - P2-a0]
‹P -› show ?case

by (auto dest: P1-P)
next

case (2 b y)
with ‹y ∈ b› obtain Y where y ∈ Y Y ∈ closure b P1 Y

unfolding closure-def
by (metis (mono-tags, lifting) P2-P1-cover P2-invariant.invariant-reaches

mem-Collect-eq)
from closure-reaches[OF ‹Steps.reaches - -›] have

post-defs.Steps.reaches (closure a0) (closure b)
by auto

from post.reaches-poststable[OF this ‹Y ∈ -›] obtain X where
X ∈ closure a0 pre-defs.Steps.reaches X Y
by auto

then obtain x where x ∈ X x ∈ a0

unfolding closure-def by auto
from pre.reaches-prestable[OF ‹pre-defs.Steps.reaches X Y › ‹x ∈ X›] ob-

tain y ′ where
reaches x y ′ y ′ ∈ Y
by auto

with ‹x ∈ X› ‹X ∈ -› ‹P y› ‹P1 Y › ‹y ∈ Y › show ?case
by (auto dest: P1-P)

qed

lemma reaches-ex ′:
(∃ y. ∃ x0∈a0. reaches x0 y ∧ P y) ←→ (∃ b y. Steps.reaches a0 b ∧ y ∈

b ∧ P y)
proof −

have (∃ x0∈a0. ∃ y. reaches x0 y ∧ P y) ←→ (∃ x0∈
⋃
(closure a0). ∃ y.

reaches x0 y ∧ P y)
apply (rule compatible-closure-ex-iff [OF - P2-a0])
apply safe
subgoal for a x y y ′

by (blast dest: P1-P bisim.steps-bisim.A-B.simulation-reaches[of - - y])
subgoal for a x y y ′

by (blast dest: P1-P bisim.steps-bisim.A-B.simulation-reaches[of - - x])
done

from this reaches-ex show ?thesis

381

by auto
qed

end

lemma (in Double-Simulation-Complete-Bisim) P1-deadlocked-compatible:
deadlocked x = deadlocked y if x ∈ a y ∈ a P1 a for x y a
unfolding deadlocked-def using that apply auto
subgoal

using A1-complete prestable by blast
subgoal using A1-complete prestable by blast
done

lemma steps-Steps-no-deadlock:
¬ Steps.deadlock a0

if no-deadlock: ∀ x0 ∈
⋃
(closure a0). ¬ deadlock x0

proof −
from P1-deadlocked-compatible have
(∀ y. (∃ x0∈

⋃
(closure a0). reaches x0 y) −→ (Not ◦ deadlocked) y) =

(∀ b y. Steps.reaches a0 b ∧ y ∈ b −→ (Not ◦ deadlocked) y)
using reaches-all[of Not o deadlocked] unfolding comp-def by blast

then show ¬ Steps.deadlock a0

using no-deadlock
unfolding Steps.deadlock-def deadlock-def
apply safe
subgoal

by (simp add: Graph-Defs.deadlocked-def)
(metis P2-cover P2-invariant.invariant-reaches disjoint-iff-not-equal

simulation.A-B-step)
subgoal

by auto
done

qed

lemma steps-Steps-no-deadlock1 :
¬ Steps.deadlock a0

if no-deadlock: ∀ x0 ∈ a0. ¬ deadlock x0 and closure-simp:
⋃
(closure a0)

= a0

using steps-Steps-no-deadlock[unfolded closure-simp, OF no-deadlock] .

lemma Alw-alw-iff :
(∀ x0 ∈

⋃
(closure a0). Alw-alw P x0) ←→ Steps.Alw-alw (λ a. ∀ c ∈ a.

P c) a0

if P1-P:
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y

382

and no-deadlock: ∀ x0 ∈
⋃
(closure a0). ¬ deadlock x0

proof −
from steps-Steps-no-deadlock[OF no-deadlock] show ?thesis
by (simp add: Alw-alw-iff Steps.Alw-alw-iff no-deadlock Steps.Ex-ev Ex-ev)

(rule reaches-all ′[simplified]; erule P1-P; assumption)
qed

lemma Alw-alw-iff1 :
(∀ x0 ∈ a0. Alw-alw P x0) ←→ Steps.Alw-alw (λ a. ∀ c ∈ a. P c) a0

if P1-P:
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y
and no-deadlock: ∀ x0 ∈ a0. ¬ deadlock x0 and closure-simp:

⋃
(closure

a0) = a0

using Alw-alw-iff [OF P1-P] no-deadlock unfolding closure-simp by auto

lemma Alw-alw-iff2 :
(∀ x0 ∈ a0. Alw-alw P x0) ←→ Steps.Alw-alw (λ a. ∀ c ∈ a. P c) a0

if P1-P:
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y
and no-deadlock: ∀ x0 ∈ a0. ¬ deadlock x0

proof −
have (∀ x0 ∈ a0. Alw-alw P x0) ←→ (∀ x0 ∈

⋃
(closure a0). Alw-alw P

x0)
apply −

apply (rule compatible-closure-all-iff , rule bisim.steps-bisim.Alw-alw-iff-strong)
unfolding bisim.steps-bisim.A-B.equiv ′-def
by (blast intro: P2-a0 dest: P1-P)+

also have . . . ←→ Steps.Alw-alw (λ a. ∀ c ∈ a. P c) a0

by (rule Alw-alw-iff [OF P1-P no-deadlock-closureI [OF no-deadlock]])
finally show ?thesis .

qed

lemma Steps-all-Alw-ev:
∀ x0 ∈ a0. Alw-ev P x0 if Steps.Alw-ev (λ a. ∀ c ∈ a. P c) a0

using that unfolding Alw-ev-def Steps.Alw-ev-def
apply safe
apply (drule run-complete[OF - - P2-a0], assumption)
apply safe
apply (elim allE impE , assumption)
subgoal premises prems for x xs as

using prems(4 ,3 ,1)
by (induction a0 ## as arbitrary: a0 as x xs rule: ev.induct)

(auto 4 3 elim: stream.rel-cases intro: ev-Stream)
done

lemma closure-compatible-Steps-all-ex-iff :

383

Steps.Alw-ev (λ a. ∀ c ∈ a. P c) a0 ←→ Steps.Alw-ev (λ a. ∃ c ∈ a. P
c) a0

if closure-P:
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P2 a =⇒ P x ←→ P y
proof −

interpret Bisimulation-Invariant A2 A2 (=) P2 P2
by standard auto

show ?thesis
using P2-a0

by − (rule Alw-ev-iff , unfold A-B.equiv ′-def ; meson P2-cover closure-P
disjoint-iff-not-equal)
qed

lemma (in −) compatible-imp:
assumes

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y

and
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ Q x ←→ Q y
shows

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ (Q x −→ P x) ←→ (Q

y −→ P y)
using assms by metis

lemma Leadsto-iff :
(∀ x0 ∈

⋃
(closure a0). leadsto P Q x0) ←→ Steps.Alw-alw (λa. ∀ c∈a. P

c −→ Alw-ev Q c) a0

if P1-P:
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y
and P1-Q:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ Q x ←→ Q y

and no-deadlock: ∀ x0 ∈
⋃
(closure a0). ¬ deadlock x0

unfolding leadsto-def
by (subst Alw-alw-iff [OF - no-deadlock],

intro compatible-imp bisim.Alw-ev-compatible,
(subst (asm) P1-Q; force), (assumption | intro HOL.refl P1-P)+
)

lemma Leadsto-iff1 :
(∀ x0 ∈ a0. leadsto P Q x0)←→ Steps.Alw-alw (λa. ∀ c∈a. P c −→ Alw-ev

Q c) a0

if P1-P:
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y
and P1-Q:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ Q x ←→ Q y

and no-deadlock: ∀ x0 ∈ a0. ¬ deadlock x0 and closure-simp:
⋃
(closure

a0) = a0

by (subst closure-simp[symmetric], rule Leadsto-iff)
(auto simp: closure-simp no-deadlock dest: P1-Q P1-P)

lemma Leadsto-iff2 :
(∀ x0 ∈ a0. leadsto P Q x0)←→ Steps.Alw-alw (λa. ∀ c∈a. P c −→ Alw-ev

Q c) a0

384

if P1-P:
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y
and P1-Q:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ Q x ←→ Q y

and no-deadlock: ∀ x0 ∈ a0. ¬ deadlock x0

proof −
have (∀ x0 ∈ a0. leadsto P Q x0) ←→ (∀ x0 ∈

⋃
(closure a0). leadsto P

Q x0)
apply −
apply (rule compatible-closure-all-iff , rule bisim.steps-bisim.Leadsto-iff)
unfolding bisim.steps-bisim.A-B.equiv ′-def by (blast intro: P2-a0 dest:

P1-P P1-Q)+
also have . . . ←→ Steps.Alw-alw (λa. ∀ c∈a. P c −→ Alw-ev Q c) a0

by (rule Leadsto-iff [OF - - no-deadlock-closureI [OF no-deadlock]]; rule
P1-P P1-Q)

finally show ?thesis .
qed

lemma (in −) compatible-convert1 :
assumes

∧
x y a. P x =⇒ x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P y

shows
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y
by (auto intro: assms)

lemma (in −) compatible-convert2 :
assumes

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y

shows
∧

x y a. P x =⇒ x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P y
using assms by meson

lemma (in Double-Simulation-Defs)
assumes compatible:

∧
x y a. P x =⇒ x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P

y
and that: ∀ x ∈ a. P x

shows ∀ x ∈
⋃
(closure a). P x

using that unfolding closure-def by (auto dest: compatible)

end

context Double-Simulation-Finite-Complete-Bisim-Cover
begin

lemma Alw-ev-Steps-ex:
(∀ x0 ∈

⋃
(closure a0). Alw-ev P x0) −→ Steps.Alw-ev (λ a. ∃ c ∈ a. P

c) a0

if closure-P:
∧

a x y. x ∈
⋃

(closure a) =⇒ y ∈
⋃
(closure a) =⇒ P2 a

=⇒ P x ←→ P y
unfolding Alw-ev Steps.Alw-ev

385

apply safe
apply (frule Steps-finite.run-finite-state-set-cycle-steps)
apply clarify
apply (frule Steps-run-cycle ′′)
apply (auto dest!: P2-invariant.invariant-run simp: stream.pred-set; fail)
unfolding that
apply clarify

subgoal premises prems for xs x ys zs x ′ xs ′ R
proof −

from ‹x ′ ∈ R› ‹R ∈ -› that have ‹x ′ ∈
⋃

(closure a0)›
by auto

with prems(5 ,9) have
∀ c ∈ {x ′} ∪ sset xs ′. ∃ y ∈ {a0} ∪ sset xs. c ∈

⋃
(closure y)

by fast
with prems(3) have ∗:
∀ c ∈ {x ′} ∪ sset xs ′. ∃ y ∈ {a0} ∪ sset xs. c ∈

⋃
(closure y) ∧ (∀ c

∈ y. ¬ P c)
unfolding alw-holds-sset by simp

from ‹Run -› have ∗∗: P2 y if y ∈ {a0} ∪ sset xs for y
using that by (auto dest!: P2-invariant.invariant-run simp: stream.pred-set)
have ∗∗∗: ¬ P c if c ∈

⋃
(closure y) ∀ d ∈ y. ¬ P d P2 y for c y

proof −
from that P2-cover [OF ‹P2 y›] obtain d where d ∈ y d ∈

⋃
(closure

y)
by (fastforce dest!: P2-closure-subs)

with that closure-P show ?thesis
by blast

qed
from ∗ have ∀ c ∈ {x ′} ∪ sset xs ′. ¬ P c

by (fastforce intro: ∗∗ dest!: ∗∗∗[rotated])
with prems(1) ‹run -› ‹x ′ ∈

⋃
(closure -)› show ?thesis

unfolding alw-holds-sset by auto
qed
done

lemma Alw-ev-Steps-ex2 :
(∀ x0 ∈ a0. Alw-ev P x0) −→ Steps.Alw-ev (λ a. ∃ c ∈ a. P c) a0

if closure-P:
∧

a x y. x ∈
⋃
(closure a) =⇒ y ∈

⋃
(closure a) =⇒ P2 a

=⇒ P x ←→ P y
and P1-P:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y

proof −
have (∀ x0 ∈ a0. Alw-ev P x0) ←→ (∀ x0 ∈

⋃
(closure a0). Alw-ev P x0)

by (intro compatible-closure-all-iff bisim.Alw-ev-compatible; auto dest:
P1-P simp: P2-a0)

386

also have . . . −→ Steps.Alw-ev (λ a. ∃ c ∈ a. P c) a0

by (intro Alw-ev-Steps-ex that)
finally show ?thesis .

qed

lemma Alw-ev-Steps-ex1 :
(∀ x0 ∈ a0. Alw-ev P x0) −→ Steps.Alw-ev (λ a. ∃ c ∈ a. P c) a0 if⋃
(closure a0) = a0

and closure-P:
∧

a x y. x ∈
⋃
(closure a) =⇒ y ∈

⋃
(closure a) =⇒ P2

a =⇒ P x ←→ P y
by (subst that(1)[symmetric]) (intro Alw-ev-Steps-ex closure-P; assump-

tion)

lemma closure-compatible-Alw-ev-Steps-iff :
(∀ x0 ∈ a0. Alw-ev P x0) ←→ Steps.Alw-ev (λ a. ∀ c ∈ a. P c) a0

if closure-P:
∧

a x y. x ∈
⋃

(closure a) =⇒ y ∈
⋃
(closure a) =⇒ P2 a

=⇒ P x ←→ P y
and P1-P:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y

apply standard
subgoal

apply (subst closure-compatible-Steps-all-ex-iff [OF closure-P])
prefer 4
apply (rule Alw-ev-Steps-ex2 [OF that, rule-format])

by (auto dest!: P2-closure-subs)
by (rule Steps-all-Alw-ev) (auto dest: P2-closure-subs)

lemma Leadsto-iff ′:
(∀ x0 ∈ a0. leadsto P Q x0)
←→ Steps.Alw-alw (λ a. (∀ c ∈ a. P c) −→ Steps.Alw-ev (λ a. ∀ c ∈ a.

Q c) a) a0

if P1-P:
∧

a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P x ←→ P y
and P1-Q:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ Q x ←→ Q y

and closure-Q:
∧

a x y. x ∈
⋃
(closure a) =⇒ y ∈

⋃
(closure a) =⇒

P2 a =⇒ Q x ←→ Q y
and closure-P:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P2 a =⇒ P x ←→ P y

and no-deadlock: ∀ x0 ∈ a0. ¬ deadlock x0 and closure-simp:
⋃
(closure

a0) = a0

apply (subst Leadsto-iff1 , (rule that; assumption)+)
subgoal

apply (rule P2-invariant.Alw-alw-iff-default)
subgoal premises prems for a
proof −

have P2 a
by (rule P2-invariant.invariant-reaches[OF prems[unfolded Graph-Start-Defs.reachable-def]])

387

interpret a: Double-Simulation-Finite-Complete-Bisim-Cover C A1
P1 A2 P2 a

apply standard
apply (rule complete; assumption; fail)

apply (rule P2-invariant; assumption)
subgoal

by (fact ‹P2 a›)
subgoal
proof −

have {b. Steps.reaches a b} ⊆ {b. Steps.reaches a0 b}
by (blast intro: rtranclp-trans prems[unfolded Graph-Start-Defs.reachable-def])
with finite-abstract-reachable show ?thesis

by − (rule finite-subset)
qed

apply (rule A1-complete; assumption)
apply (rule P1-invariant; assumption)

apply (rule P2-P1-cover ; assumption)
done

from ‹P2 a› show ?thesis
by − (subst a.closure-compatible-Alw-ev-Steps-iff [symmetric], (rule

that; assumption)+,
auto dest: closure-P intro: that
)

qed
..

done

context
fixes P :: ′a ⇒ bool — The property we want to check
assumes closure-P:

∧
a x y. x ∈

⋃
(closure a) =⇒ y ∈

⋃
(closure a) =⇒

P2 a =⇒ P x ←→ P y
and P1-P:

∧
a x y. P x =⇒ x ∈ a =⇒ y ∈ a =⇒ P1 a =⇒ P y

begin

lemma run-alw-ev-bisim:
run (x ## xs) =⇒ x ∈

⋃
(closure a0) =⇒ alw (ev (holds P)) xs

=⇒ ∃ y ys. y ∈ a0 ∧ run (y ## ys) ∧ alw (ev (holds P)) ys
unfolding closure-def
apply safe
apply (rotate-tac 3)
apply (drule bisim.runs-bisim, assumption+)
apply (auto elim: P1-P dest: alw-ev-lockstep[of P - - - P])
done

388

lemma ϕ-closure-compatible:
P2 a =⇒ x ∈

⋃
(closure a) =⇒ P x ←→ (∀ x ∈

⋃
(closure a). P x)

using closure-P by blast

theorem infinite-buechi-run-cycle-iff :
(∃ x0 xs. x0 ∈

⋃
(closure a0) ∧ run (x0 ## xs) ∧ alw (ev (holds P)) (x0

xs))
←→ (∃ as a bs. a 6= {} ∧ post-defs.Steps (closure a0 # as @ a # bs @

[a]) ∧ (∀ x ∈
⋃

a. P x))
by (rule

infinite-buechi-run-cycle-iff-closure[OF
ϕ-closure-compatible run-alw-ev-bisim P2-closure-subs
]

)
end

end

Possible Solution
context Graph-Invariant
begin

definition E-inv x y ≡ E x y ∧ P x ∧ P y

lemma bisim-E-inv:
Bisimulation-Invariant E E-inv (=) P P
by standard (auto intro: invariant simp: E-inv-def)

interpretation G-inv: Graph-Defs E-inv .

lemma steps-G-inv-steps:
steps (x # xs) ←→ G-inv.steps (x # xs) if P x

proof −
interpret Bisimulation-Invariant E E-inv (=) P P

by (rule bisim-E-inv)
from ‹P x› show ?thesis

by (auto 4 3 simp: equiv ′-def list.rel-eq
dest: bisim.A-B.simulation-steps bisim.B-A.simulation-steps

list-all2-mono[of - - - (=)]
)

qed

end

389

R-of /from-R definition R-of lR = snd ‘ lR

definition from-R l R = {(l, u) | u. u ∈ R}

lemma from-R-fst:
∀ x∈from-R l R. fst x = l
unfolding from-R-def by auto

lemma R-of-from-R [simp]:
R-of (from-R l R) = R
unfolding R-of-def from-R-def image-def by auto

lemma from-R-loc:
l ′ = l if (l ′, u) ∈ from-R l Z
using that unfolding from-R-def by auto

lemma from-R-val:
u ∈ Z if (l ′, u) ∈ from-R l Z
using that unfolding from-R-def by auto

lemma from-R-R-of :
from-R l (R-of S) = S if ∀ x ∈ S . fst x = l
using that unfolding from-R-def R-of-def by force

lemma R-ofI [intro]:
Z ∈ R-of S if (l, Z) ∈ S
using that unfolding R-of-def by force

lemma from-R-I [intro]:
(l ′, u ′) ∈ from-R l ′ Z ′ if u ′ ∈ Z ′

using that unfolding from-R-def by auto

lemma R-of-non-emptyD:
a 6= {} if R-of a 6= {}
using that unfolding R-of-def by simp

lemma R-of-empty[simp]:
R-of {} = {}
using R-of-non-emptyD by metis

lemma fst-simp:
x = l if ∀ x∈a. fst x = l (x, y) ∈ a
using that by auto

390

lemma from-R-D:
u ∈ Z if (l ′, u) ∈ from-R l Z
using that unfolding from-R-def by auto

locale Double-Simulation-paired-Defs =
fixes C :: (′a × ′b) ⇒ (′a × ′b) ⇒ bool — Concrete step relation

and A1 :: (′a × ′b set) ⇒ (′a × ′b set) ⇒ bool
— Step relation for the first abstraction layer
and P1 :: (′a × ′b set) ⇒ bool — Valid states of the first abstraction

layer
and A2 :: (′a × ′b set) ⇒ (′a × ′b set) ⇒ bool
— Step relation for the second abstraction layer
and P2 :: (′a × ′b set) ⇒ bool — Valid states of the second abstraction

layer
begin

definition
A1 ′ = (λ lR lR ′. ∃ l l ′. (∀ x ∈ lR. fst x = l) ∧ (∀ x ∈ lR ′. fst x = l ′)
∧ P1 (l, R-of lR) ∧ A1 (l, R-of lR) (l ′, R-of lR ′)
)

definition
A2 ′ = (λ lR lR ′. ∃ l l ′. (∀ x ∈ lR. fst x = l) ∧ (∀ x ∈ lR ′. fst x = l ′)
∧ P2 (l, R-of lR) ∧ A2 (l, R-of lR) (l ′, R-of lR ′)
)

definition
P1 ′ = (λ lR. ∃ l. (∀ x ∈ lR. fst x = l) ∧ P1 (l, R-of lR))

definition
P2 ′ = (λ lR. ∃ l. (∀ x ∈ lR. fst x = l) ∧ P2 (l, R-of lR))

definition closure ′ l a = {x. P1 (l, x) ∧ a ∩ x 6= {}}

sublocale sim: Double-Simulation-Defs C A1 ′ P1 ′ A2 ′ P2 ′ .

end

locale Double-Simulation-paired = Double-Simulation-paired-Defs +
assumes prestable: P1 (l, S) =⇒ A1 (l, S) (l ′, T) =⇒ ∀ s ∈ S . ∃ s ′ ∈

T . C (l, s) (l ′, s ′)
and closure-poststable:

s ′ ∈ closure ′ l ′ y =⇒ P2 (l, x) =⇒ A2 (l, x) (l ′, y)
=⇒ ∃ s∈closure ′ l x . A1 (l, s) (l ′, s ′)

391

and P1-distinct: P1 (l, x) =⇒ P1 (l, y) =⇒ x 6= y =⇒ x ∩ y = {}
and P1-finite: finite {(l, x). P1 (l, x)}
and P2-cover : P2 (l, a) =⇒ ∃ x. P1 (l, x) ∧ x ∩ a 6= {}

begin

sublocale sim: Double-Simulation C A1 ′ P1 ′ A2 ′ P2 ′

proof (standard, goal-cases)
case (1 S T)
then show ?case
unfolding A1 ′-def by (metis from-R-I from-R-R-of from-R-val prestable

prod.collapse)
next

case (2 s ′ y x)
then show ?case

unfolding A2 ′-def A1 ′-def sim.closure-def
unfolding P1 ′-def
apply clarify
subgoal premises prems for l l1 l2
proof −

from prems have l2 = l1
by force

from prems have R-of s ′ ∈ closure ′ l1 (R-of y)
unfolding closure ′-def by auto

with ‹A2 - -› ‹P2 -› closure-poststable[of R-of s ′ l1 R-of y l R-of x]
obtain s where

s ∈ closure ′ l (R-of x) A1 (l, s) (l1 , R-of s ′)
by auto

with prems from-R-fst R-of-from-R show ?thesis
apply −
unfolding ‹l2 = l1 ›
apply (rule bexI [where x = from-R l s])
apply (inst-existentials l l1)

apply (simp add: from-R-fst; fail)+
subgoal

unfolding closure ′-def by auto
apply (simp; fail)

unfolding closure ′-def
apply (intro CollectI conjI exI)

apply fastforce
apply fastforce

apply (fastforce simp: R-of-def from-R-def)
done

qed
done

392

next
case (3 x y)
then show ?case

unfolding P1 ′-def using P1-distinct
by (smt disjoint-iff-not-equal eq-fst-iff from-R-R-of from-R-val)

next
case 4
have {x. ∃ l. (∀ x∈x. fst x = l) ∧ P1 (l, R-of x)} ⊆ (λ (l, x). from-R l x)

‘ {(l, x). P1 (l, x)}
using from-R-R-of image-iff by fastforce

with P1-finite show ?case
unfolding P1 ′-def by (auto elim: finite-subset)

next
case (5 a)
then show ?case

unfolding P1 ′-def P2 ′-def
apply clarify
apply (frule P2-cover)
apply clarify
subgoal for l x

apply (inst-existentials from-R l x l, (simp add: from-R-fst)+)
using R-of-def by (fastforce simp: from-R-fst)

done
qed

context
assumes P2-invariant: P2 a =⇒ A2 a a ′ =⇒ P2 a ′

begin

lemma A2-A2 ′-bisim: Bisimulation-Invariant A2 A2 ′ (λ (l, Z) b. b =
from-R l Z) P2 P2 ′

apply standard
subgoal A2-A2 ′ for a b a ′

unfolding P2 ′-def
apply clarify
apply (inst-existentials from-R (fst b) (snd b))
subgoal for x y l

unfolding A2 ′-def
apply simp
apply (inst-existentials l)
by (auto dest!: P2-cover simp: from-R-def)

by clarsimp
subgoal A2 ′-A2 for a a ′ b ′

393

using from-R-fst by (fastforce dest: sim.P2-cover simp: from-R-R-of
A2 ′-def)

subgoal P2-invariant for a b
by (fact P2-invariant)

subgoal P2 ′-invariant for a b
unfolding P2 ′-def A2 ′-def using P2-invariant by blast

done

end

end

locale Double-Simulation-Complete-paired = Double-Simulation-paired +
fixes l0 a0

assumes complete: C (l, x) (l ′, y) =⇒ x ∈ S =⇒ P2 (l, S) =⇒ ∃ T . A2
(l, S) (l ′, T) ∧ y ∈ T

assumes P2-invariant: P2 a =⇒ A2 a a ′ =⇒ P2 a ′

and P2-a0
′: P2 (l0, a0)

begin

interpretation Bisimulation-Invariant A2 A2 ′ λ (l, Z) b. b = from-R l Z
P2 P2 ′

by (rule A2-A2 ′-bisim[OF P2-invariant])

sublocale Double-Simulation-Complete C A1 ′ P1 ′ A2 ′ P2 ′ from-R l0 a0

proof (standard, goal-cases)
case prems: (1 x y S) — complete
then show ?case

unfolding A2 ′-def P2 ′-def using from-R-fst
by (clarify; cases x; cases y; simp; fastforce dest!: complete[of - - - - R-of

S])
next

case prems: (2 a a ′) — P2 invariant
then show ?case

by (meson A2 ′-def P2 ′-def P2-invariant)
next

case prems: 3 — P2 start
then show ?case

using P2 ′-def P2-a0
′ from-R-fst by fastforce

qed

sublocale P2-invariant ′: Graph-Invariant-Start A2 (l0, a0) P2
by (standard; rule P2-a0

′)

394

end

locale Double-Simulation-Finite-Complete-paired = Double-Simulation-Complete-paired
+

assumes finite-abstract-reachable: finite {(l, a). A2 ∗∗ (l0, a0) (l, a) ∧ P2
(l, a)}
begin

interpretation Bisimulation-Invariant A2 A2 ′ λ (l, Z) b. b = from-R l Z
P2 P2 ′

by (rule A2-A2 ′-bisim[OF P2-invariant])

sublocale Double-Simulation-Finite-Complete C A1 ′ P1 ′ A2 ′ P2 ′ from-R
l0 a0

proof (standard, goal-cases)
case prems: 1 — The set of abstract reachable states is finite.
have ∗: ∃ l. x = from-R l (R-of x) ∧ A2 ∗∗ (l0, a0) (l, R-of x)

if sim.Steps.reaches (from-R l0 a0) x for x
using bisim.B-A-reaches[OF that, of (l0, a0)] P2-a0

′ P2 ′-def equiv ′-def
from-R-fst by fastforce

have {a. sim.Steps.reaches (from-R l0 a0) a}
⊆ (λ (l, R). from-R l R) ‘ {(l, a). A2 ∗∗ (l0, a0) (l, a) ∧ P2 (l, a)}
using P2-a0

′ by (fastforce dest: ∗ intro: P2-invariant ′.invariant-reaches)
then show ?case

using finite-abstract-reachable by (auto elim!: finite-subset)
qed

end

locale Double-Simulation-Complete-Bisim-paired = Double-Simulation-Complete-paired
+

assumes A1-complete: C (l, x) (l ′, y) =⇒ P1 (l,S) =⇒ x ∈ S =⇒ ∃ T .
A1 (l, S) (l ′, T) ∧ y ∈ T

and P1-invariant: P1 (l, S) =⇒ A1 (l, S) (l ′, T) =⇒ P1 (l ′, T)
begin

sublocale Double-Simulation-Complete-Bisim C A1 ′ P1 ′ A2 ′ P2 ′ from-R
l0 a0

proof (standard, goal-cases)
case (1 x y S)

then show ?case
unfolding A1 ′-def P1 ′-def
apply (cases x; cases y; simp)
apply (drule A1-complete[where S = R-of S])

395

apply fastforce
apply fastforce

apply clarify
subgoal for a b l ′ ba l T

by (inst-existentials from-R l ′ T l l ′) (auto simp: from-R-fst)
done

next
case (2 S T)
then show ?case

unfolding A1 ′-def P1 ′-def by (auto intro: P1-invariant)
qed

end

locale Double-Simulation-Finite-Complete-Bisim-paired = Double-Simulation-Finite-Complete-paired
+

Double-Simulation-Complete-Bisim-paired
begin

sublocale Double-Simulation-Finite-Complete-Bisim C A1 ′ P1 ′ A2 ′ P2 ′

from-R l0 a0 ..

end

locale Double-Simulation-Complete-Bisim-Cover-paired =
Double-Simulation-Complete-Bisim-paired +
assumes P2-P1-cover : P2 (l, a) =⇒ x ∈ a =⇒ ∃ a ′. a ∩ a ′ 6= {} ∧ P1

(l, a ′) ∧ x ∈ a ′

begin

sublocale Double-Simulation-Complete-Bisim-Cover C A1 ′ P1 ′ A2 ′ P2 ′

from-R l0 a0

apply standard
unfolding P2 ′-def P1 ′-def
apply clarify
apply (drule P2-P1-cover , force)
apply clarify
subgoal for a aa b l a ′

by (inst-existentials from-R l a ′) (fastforce simp: from-R-fst)+
done

end

locale Double-Simulation-Finite-Complete-Bisim-Cover-paired =

396

Double-Simulation-Complete-Bisim-Cover-paired +
Double-Simulation-Finite-Complete-Bisim-paired

begin

sublocale Double-Simulation-Finite-Complete-Bisim-Cover C A1 ′ P1 ′ A2 ′

P2 ′ from-R l0 a0 ..

end

locale Double-Simulation-Complete-Abstraction-Prop-paired =
Double-Simulation-Complete-paired +
fixes P :: ′a ⇒ bool — The property we want to check
assumes P2-non-empty: P2 (l, a) =⇒ a 6= {}

begin

definition ϕ = P o fst

lemma P2-ϕ:
a ∩ Collect ϕ = a if P2 ′ a a ∩ Collect ϕ 6= {}
using that unfolding ϕ-def P2 ′-def by (auto simp del: fst-conv)

sublocale Double-Simulation-Complete-Abstraction-Prop C A1 ′ P1 ′ A2 ′

P2 ′ from-R l0 a0 ϕ
proof (standard, goal-cases)

case (1 a b)
then obtain l where ∀ x∈b. fst x = l

unfolding A1 ′-def by fast
then show ?case

unfolding ϕ-def by (auto simp del: fst-conv)
next

case (2 a)
then show ?case

by − (frule P2-ϕ, auto)
next

case prems: (3 a)
then have P2 ′ a

by (simp add: P2-invariant.invariant-reaches)
from P2-ϕ[OF this] prems show ?case

by simp
next

case (4 a)
then show ?case

unfolding P2 ′-def by (auto dest!: P2-non-empty)
qed

397

end

locale Double-Simulation-Finite-Complete-Abstraction-Prop-paired =
Double-Simulation-Complete-Abstraction-Prop-paired +
Double-Simulation-Finite-Complete-paired

begin

sublocale Double-Simulation-Finite-Complete-Abstraction-Prop C A1 ′ P1 ′

A2 ′ P2 ′ from-R l0 a0 ϕ ..

end

locale Double-Simulation-Complete-Abstraction-Prop-Bisim-paired =
Double-Simulation-Complete-Abstraction-Prop-paired +
Double-Simulation-Complete-Bisim-paired

begin

interpretation bisim: Bisimulation-Invariant A2 A2 ′ λ (l, Z) b. b = from-R
l Z P2 P2 ′

by (rule A2-A2 ′-bisim[OF P2-invariant])

sublocale Double-Simulation-Complete-Abstraction-Prop-Bisim
C A1 ′ P1 ′ A2 ′ P2 ′ from-R l0 a0 ϕ ..

lemma P2 ′-non-empty:
P2 ′ a =⇒ a 6= {}
using P2-non-empty unfolding P2 ′-def by force

lemma from-R-int-ϕ[simp]:
from-R l R ∩ Collect ϕ = from-R l R if P l
using from-R-fst that unfolding ϕ-def by fastforce

interpretation Gϕ: Graph-Start-Defs
λ (l, Z) (l ′, Z ′). A2 (l, Z) (l ′, Z ′) ∧ P l ′ (l0, a0) .

interpretation Bisimulation-Invariant λ (l, Z) (l ′, Z ′). A2 (l, Z) (l ′, Z ′)
∧ P l ′

A2-ϕ λ (l, Z) b. b = from-R l Z P2 P2 ′

apply standard
unfolding A2-ϕ-def

apply clarify
subgoal for l a l ′ a ′

apply (drule bisim.A-B-step)

398

prefer 3
apply assumption

apply safe
apply (frule P-invariant, assumption+)

using from-R-fst by (fastforce simp: ϕ-def P2 ′-def dest!: P2 ′-non-empty)+
subgoal for a a ′ b ′

apply clarify
apply (drule bisim.B-A-step)

prefer 2
apply assumption

apply safe
apply (frule P2-invariant, assumption+)
apply (subst (asm) (3) ϕ-def)
apply simp
apply (elim allE impE , assumption)
using from-R-fst apply force
apply (subst (asm) (2) from-R-int-ϕ)
using from-R-fst by fastforce+

subgoal
by blast

subgoal
using ϕ-P2-compatible by blast

done

lemma from-R-subs-ϕ:
from-R l a ⊆ Collect ϕ if P l
using that unfolding ϕ-def from-R-def by auto

lemma P2 ′-from-R:
∃ l ′ Z ′. x = from-R l ′ Z ′ if P2 ′ x
using that unfolding P2 ′-def by (fastforce dest: from-R-R-of)

lemma P2-from-R-list ′:
∃ as ′. map (λ(x, y). from-R x y) as ′ = as if list-all P2 ′ as
by (rule list-all-map[OF - that]) (auto dest!: P2 ′-from-R)

end

locale Double-Simulation-Finite-Complete-Abstraction-Prop-Bisim-paired =
Double-Simulation-Complete-Abstraction-Prop-Bisim-paired +
Double-Simulation-Finite-Complete-Bisim-paired

begin

interpretation bisim: Bisimulation-Invariant A2 A2 ′ λ (l, Z) b. b = from-R

399

l Z P2 P2 ′

by (rule A2-A2 ′-bisim[OF P2-invariant])

sublocale Double-Simulation-Finite-Complete-Abstraction-Prop-Bisim
C A1 ′ P1 ′ A2 ′ P2 ′ from-R l0 a0 ϕ ..

interpretation Gϕ: Graph-Start-Defs
λ (l, Z) (l ′, Z ′). A2 (l, Z) (l ′, Z ′) ∧ P l ′ (l0, a0) .

interpretation Bisimulation-Invariant λ (l, Z) (l ′, Z ′). A2 (l, Z) (l ′, Z ′)
∧ P l ′

A2-ϕ λ (l, Z) b. b = from-R l Z P2 P2 ′

apply standard
unfolding A2-ϕ-def

apply clarify
subgoal for l a l ′ a ′

apply (drule bisim.A-B-step)
prefer 3

apply assumption
apply safe

apply (frule P-invariant, assumption+)
using from-R-fst by (fastforce simp: ϕ-def P2 ′-def dest!: P2 ′-non-empty)+

subgoal for a a ′ b ′

apply clarify
apply (drule bisim.B-A-step)

prefer 2
apply assumption

apply safe
apply (frule P2-invariant, assumption+)
apply (subst (asm) (3) ϕ-def)
apply simp
apply (elim allE impE , assumption)
using from-R-fst apply force
apply (subst (asm) (2) from-R-int-ϕ)
using from-R-fst by fastforce+

subgoal
by blast

subgoal
using ϕ-P2-compatible by blast

done

theorem Alw-ev-mc:
(∀ x0∈a0. sim.Alw-ev (Not ◦ ϕ) (l0, x0)) ←→
¬ P l0 ∨ (@ as a bs. Gϕ.steps ((l0, a0) # as @ a # bs @ [a]))

400

apply (subst steps-map-equiv[of λ (l, Z). from-R l Z - from-R l0 a0])
apply force

apply (clarsimp simp: from-R-def)
subgoal

by (fastforce dest!: P2 ′-non-empty)
apply (simp; fail)

apply (rule P2-a0
′; fail)

apply (rule phi.P2-a0; fail)
proof (cases P l0, goal-cases)

case 1
have ∗: (∀ x0∈a0. sim.Alw-ev (Not ◦ ϕ) (l0, x0)) ←→ (∀ x0∈from-R l0 a0.

sim.Alw-ev (Not ◦ ϕ) x0)
unfolding from-R-def by auto

from ‹P -› show ?case
unfolding ∗
apply (subst Alw-ev-mc[OF from-R-subs-ϕ], assumption)
apply (auto simp del: map-map)
apply (frule phi.P2-invariant.invariant-steps)
apply (auto dest!: P2 ′-from-R P2-from-R-list ′)
done

next
case 2
then have ∀ x0∈a0. sim.Alw-ev (Not ◦ ϕ) (l0, x0)

unfolding sim.Alw-ev-def by (force simp: ϕ-def)
with ‹¬ P l0› show ?case

by auto
qed

theorem Alw-ev-mc1 :
(∀ x0∈a0. sim.Alw-ev (Not ◦ ϕ) (l0, x0)) ←→ ¬ (P l0 ∧ (∃ a. Gϕ.reachable

a ∧ Gϕ.reaches1 a a))
unfolding Alw-ev-mc using Gϕ.reachable-cycle-iff by auto

end

context Double-Simulation-Complete-Bisim-Cover-paired
begin

interpretation bisim: Bisimulation-Invariant A2 A2 ′ λ (l, Z) b. b = from-R
l Z P2 P2 ′

by (rule A2-A2 ′-bisim[OF P2-invariant])

interpretation Start: Double-Simulation-Complete-Abstraction-Prop-Bisim-paired
C A1 P1 A2 P2 l0 a0 λ -. True

401

using P2-cover by − (standard, blast)

lemma sim-reaches-equiv:
P2-invariant ′.reaches (l, Z) (l ′, Z ′) ←→ sim.Steps.reaches (from-R l Z)

(from-R l ′ Z ′)
if P2 (l, Z)
apply (subst bisim.reaches-equiv[of λ (l, Z). from-R l Z])

apply force
apply clarsimp

subgoal
by (metis Int-emptyI R-of-from-R from-R-fst sim.P2-cover)
apply (rule that)

subgoal
apply clarsimp
using P2 ′-def from-R-fst that by force

by auto

lemma reaches-all:
assumes∧

u u ′ R l. u ∈ R =⇒ u ′ ∈ R =⇒ P1 (l, R) =⇒ P l u ←→ P l u ′

shows
(∀ u. (∃ x0∈

⋃
(sim.closure (from-R l0 a0)). sim.reaches x0 (l, u)) −→

P l u) ←→
(∀ Z u. P2-invariant ′.reaches (l0, a0) (l, Z) ∧ u ∈ Z −→ P l u)

proof −
let ?P = λ (l, u). P l u
have ∗:

∧
a x y. x ∈ a =⇒ y ∈ a =⇒ P1 ′ a =⇒ ?P x = ?P y

unfolding P1 ′-def by clarsimp (subst assms[rotated 2], force+, metis
fst-conv)+

let ?P = λ (l ′, u). l ′ = l −→ P l u
have ∗: x ∈ a =⇒ y ∈ a =⇒ P1 ′ a =⇒ ?P x = ?P y for a x y

by (frule ∗[of x a y], assumption+; auto simp: P1 ′-def ; metis fst-conv)
have
(∀ b. (∃ y∈sim.closure (from-R l0 a0). ∃ x0∈y. sim.reaches x0 (l, b)) −→

P l b) ←→
(∀ b ba. sim.Steps.reaches (from-R l0 a0) b ∧ (l, ba) ∈ b −→ P l ba)

unfolding sim.reaches-steps-iff sim.Steps.reaches-steps-iff
apply safe
subgoal for b b ′ xs

apply (rule reaches-all-1 [of ?P xs (l, b ′), simplified])
apply (erule ∗; assumption; fail)

apply (simp; fail)+
done

402

subgoal premises prems for b y a b ′ xs
apply (rule

reaches-all-2 [of ?P xs y, unfolded ‹last xs = (l, b)›, simplified]
)
apply (erule ∗; assumption; fail)

using prems by auto
done

then show ?thesis
unfolding sim-reaches-equiv[OF P2-a0

′]
apply simp
subgoal premises prems

apply safe
subgoal for Z u

unfolding from-R-def by auto
subgoal for a u

apply (frule P2-invariant.invariant-reaches)
apply (auto dest!: Start.P2 ′-from-R simp: from-R-def)
done

done
done

qed

context
fixes P Q :: ′a ⇒ bool — The state properties we want to check

begin

definition ϕ ′ = P o fst

definition ψ = Q o fst

lemma ψ-closure-compatible:
ψ (l, x) =⇒ x ∈ a =⇒ y ∈ a =⇒ P1 (l, a) =⇒ ψ (l, y)
unfolding ϕ ′-def ψ-def by auto

lemma ψ-closure-compatible ′:
(Not o ψ) (l, x) =⇒ x ∈ a =⇒ y ∈ a =⇒ P1 (l, a) =⇒ (Not o ψ) (l, y)
by (auto dest: ψ-closure-compatible)

lemma P1-P1 ′:
R 6= {} =⇒ P1 (l, R) =⇒ P1 ′ (from-R l R)
using P1 ′-def from-R-fst by fastforce

lemma ψ-Alw-ev-compatible:
assumes u ∈ R u ′ ∈ R P1 (l, R)

403

shows sim.Alw-ev (Not ◦ ψ) (l, u) = sim.Alw-ev (Not ◦ ψ) (l, u ′)
apply (rule bisim.Alw-ev-compatible[of - - from-R l R])
subgoal for x a y
using ψ-closure-compatible unfolding P1 ′-def by (metis ψ-def comp-def)

using assms by (auto intro: P1-P1 ′)

interpretation Graph-Start-Defs A2 (l0, a0) .

interpretation Gψ: Graph-Start-Defs
λ (l, Z) (l ′, Z ′). A2 (l, Z) (l ′, Z ′) ∧ Q l ′ (l0, a0) .

end

end

context Double-Simulation-Finite-Complete-Bisim-Cover-paired
begin

interpretation bisim: Bisimulation-Invariant A2 A2 ′ λ (l, Z) b. b = from-R
l Z P2 P2 ′

by (rule A2-A2 ′-bisim[OF P2-invariant])

context
fixes P Q :: ′a ⇒ bool — The state properties we want to check

begin

interpretation Graph-Start-Defs A2 (l0, a0) .

interpretation Gψ: Graph-Start-Defs
λ (l, Z) (l ′, Z ′). A2 (l, Z) (l ′, Z ′) ∧ Q l ′ (l0, a0) .

lemma Alw-ev-mc1 :
(∀ x0∈from-R l Z . sim.Alw-ev (Not ◦ ψ Q) x0) ←→
¬ (Q l ∧ (∃ a. Gψ.reaches (l, Z) a ∧ Gψ.reaches1 a a))

if P2-invariant ′.reachable (l, Z) for l Z
proof −

from that have P2 (l, Z)
using P2-invariant ′.invariant-reaches unfolding P2-invariant ′.reachable-def

by auto
interpret Start ′: Double-Simulation-Finite-Complete-Abstraction-Prop-Bisim-paired

C A1 P1 A2 P2 l Z Q
apply standard
subgoal

by (fact complete)

404

subgoal
by (fact P2-invariant)

subgoal
by (fact ‹P2 (l, Z)›)

subgoal
using P2-cover by blast

subgoal
by (fact A1-complete)

subgoal
by (fact P1-invariant)

subgoal
proof −

have {(l ′, a). A2 ∗∗ (l,Z) (l ′,a) ∧ P2 (l ′,a)} ⊆ {(l, a). A2 ∗∗ (l0,a0)
(l,a) ∧ P2 (l,a)}

using that unfolding P2-invariant ′.reachable-def by auto
with finite-abstract-reachable show ?thesis

by − (erule finite-subset)
qed
done

show ?thesis
using Start ′.Alw-ev-mc1 [unfolded Start ′.ϕ-def]
unfolding ψ-def Graph-Start-Defs.reachable-def from-R-def by auto

qed

theorem leadsto-mc1 :
(∀ x0∈a0. sim.leadsto (ϕ ′ P) (Not ◦ ψ Q) (l0, x0)) ←→
(@ x. P2-invariant ′.reaches (l0, a0) x ∧ P (fst x) ∧ Q (fst x)
∧ (∃ a. Gψ.reaches x a ∧ Gψ.reaches1 a a)

)
if no-deadlock: ∀ x0∈a0. ¬ sim.deadlock (l0, x0)

proof −
from steps-Steps-no-deadlock[OF no-deadlock-closureI] no-deadlock have
¬ sim.Steps.deadlock (from-R l0 a0)
unfolding from-R-def by auto

then have no-deadlock ′: ¬ P2-invariant ′.deadlock (l0, a0)
by (subst bisim.deadlock-iff) (auto simp: P2-a0

′ from-R-fst P2 ′-def)
have (∀ x0∈a0. sim.leadsto (ϕ ′ P) (Not ◦ ψ Q) (l0, x0)) ←→
(∀ x0∈from-R l0 a0. sim.leadsto (ϕ ′ P) (Not ◦ ψ Q) x0)

unfolding from-R-def by auto
also have . . . ←→ sim.Steps.Alw-alw (λa. ∀ c∈a. ϕ ′ P c −→ sim.Alw-ev

(Not ◦ ψ Q) c) (from-R l0 a0)
apply (rule Leadsto-iff2 [OF - - -])
subgoal for a x y

405

unfolding P1 ′-def ϕ ′-def by (auto dest: fst-simp)
subgoal for a x y

unfolding P1 ′-def ψ-def by (auto dest: fst-simp)
subgoal

using no-deadlock unfolding from-R-def by auto
done

also have
. . .←→ P2-invariant ′.Alw-alw (λ(l,Z).∀ c∈from-R l Z . ϕ ′ P c −→ sim.Alw-ev

(Not ◦ ψ Q) c) (l0,a0)
by (auto simp: bisim.A-B.equiv ′-def P2-a0 P2-a0

′ intro!: bisim.Alw-alw-iff-strong[symmetric])
also have
. . . ←→ P2-invariant ′.Alw-alw
(λ(l, Z). P l −→ ¬ (Q l ∧ (∃ a. Gψ.reaches (l, Z) a ∧ Gψ.reaches1 a

a))) (l0, a0)
by (rule P2-invariant ′.Alw-alw-iff-default)

(auto simp: ϕ ′-def from-R-def dest: Alw-ev-mc1 [symmetric])
also have
. . . ←→ (@ x. P2-invariant ′.reaches (l0,a0) x ∧ P (fst x) ∧ Q (fst x)
∧ (∃ a. Gψ.reaches x a ∧ Gψ.reaches1 a a))

unfolding P2-invariant ′.Alw-alw-iff by (auto simp: P2-invariant ′.Ex-ev
no-deadlock ′)

finally show ?thesis .
qed

end

end

The second bisimulation property in prestable and complete sim-
ulation graphs. context Simulation-Graph-Complete-Prestable
begin

lemma C-A-bisim:
Bisimulation-Invariant C A (λ x a. x ∈ a) (λ-. True) P
by (standard; blast intro: complete dest: prestable)

interpretation Bisimulation-Invariant C A λ x a. x ∈ a λ -. True P
by (rule C-A-bisim)

lemma C-A-Leadsto-iff :
fixes ϕ ψ :: ′a ⇒ bool
assumes ϕ-compatible:

∧
x y a. ϕ x =⇒ x ∈ a =⇒ y ∈ a =⇒ P a =⇒

ϕ y

406

and ψ-compatible:
∧

x y a. ψ x =⇒ x ∈ a =⇒ y ∈ a =⇒ P a =⇒ ψ y
and x ∈ a P a

shows leadsto ϕ ψ x = Steps.leadsto (λ a. ∀ x ∈ a. ϕ x) (λ a. ∀ x ∈ a.
ψ x) a

by (rule Leadsto-iff)
(auto intro: ϕ-compatible ψ-compatible simp: ‹x ∈ a› ‹P a› simula-

tion.equiv ′-def)

end

Comments

• Pre-stability can easily be extended to infinite runs (see construction
with sscan above)

• Post-stability can not

• Pre-stability + Completeness means that for every two concrete states
in the same abstract class, there are equivalent runs

• For Büchi properties, the predicate has to be compatible with whole
closures instead of single P1 -states. This is because for a finite graph
where every node has at least indegree one, we cannot necessarily
conclude that there is a cycle through every node.

locale Graph-Abstraction =
Graph-Defs A for A :: ′a set ⇒ ′a set ⇒ bool +

fixes α :: ′a set ⇒ ′a set
assumes idempotent: α(α(x)) = α(x)
assumes enlarging: x ⊆ α(x)
assumes α-mono: x ⊆ y =⇒ α(x) ⊆ α(y)
assumes mono: a ⊆ a ′ =⇒ A a b =⇒ ∃ b ′. b ⊆ b ′ ∧ A a ′ b ′

assumes finite-abstraction: finite (α ‘ UNIV)
begin

definition E where E a b ≡ ∃ b ′. A a b ′ ∧ b = α(b ′)

interpretation sim1 : Simulation-Invariant A E λa b. α(a) ⊆ b λ-. True
λ-. True

apply standard
unfolding E-def

apply auto
apply (frule mono[rotated])
apply (erule order .trans[rotated], rule enlarging)

apply (auto intro!: α-mono)

407

done

interpretation sim2 : Simulation-Invariant A E λa b. a ⊆ b λ-. True λx.
α(x) = x

apply standard
subgoal

unfolding E-def
apply auto
apply (drule (1) mono)
apply safe
apply (intro conjI exI)

apply assumption
apply (rule HOL.refl)

apply (erule order .trans, rule enlarging)
done

apply assumption
unfolding E-def
apply (elim exE conjE)
apply (simp add: idempotent)
done

This variant needs the least assumptions.
interpretation sim3 : Simulation-Invariant A E λa b. a ⊆ b λ-. True λ-.
True

apply standard
unfolding E-def

apply auto
apply (drule (1) mono)
apply safe
apply (intro conjI exI)

apply assumption
apply (rule HOL.refl)

apply (erule order .trans, rule enlarging)
done

interpretation sim4 : Simulation-Invariant A E λa b. a ⊆ b λ-. True λa.
∃ a ′. α a ′ = a

apply standard
unfolding E-def

apply auto
apply (drule (1) mono)
apply safe
apply (intro conjI exI)

apply assumption

408

apply (rule HOL.refl)
apply (erule order .trans, rule enlarging)
done

end

lemmas [simp del] = holds.simps

end
theory Simulation-Graphs-TA

imports Simulation-Graphs DBM-Zone-Semantics Approx-Beta
begin

7.9 Instantiation of Simulation Locales

inductive step-trans ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) cval ⇒ ((′c, ′t) cconstraint × ′a
× ′c list)
⇒ ′s ⇒ (′c, ′t) cval ⇒ bool

(‹- `t 〈-, -〉 →- 〈-, -〉› [61 ,61 ,61] 61)
where
[[A ` l −→g,a,r l ′; u ` g; u ′ ` inv-of A l ′; u ′ = [r → 0]u]]
=⇒ (A `t 〈l, u〉 →(g,a,r) 〈l ′, u ′〉)

inductive step-trans ′ ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) cval ⇒ (′c, ′t) cconstraint × ′a ×

′c list
⇒ ′s ⇒ (′c, ′t) cval ⇒ bool

(‹- ` ′′ 〈-, -〉 →- 〈-, -〉› [61 ,61 ,61 ,61] 61)
where

step ′: A ` 〈l, u〉 →d 〈l ′, u ′〉 =⇒ A `t 〈l ′, u ′〉 →t 〈l ′′, u ′′〉 =⇒ A ` ′ 〈l, u〉
→t 〈l ′′, u ′′〉

inductive step-trans-z ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) zone
⇒ ((′c, ′t) cconstraint × ′a × ′c list) action ⇒ ′s ⇒ (′c, ′t) zone ⇒ bool

(‹- ` 〈-, -〉 - 〈-, -〉› [61 ,61 ,61 ,61] 61)
where

step-trans-t-z:
A ` 〈l, Z 〉 τ 〈l, Z ↑ ∩ {u. u ` inv-of A l}〉 |
step-trans-a-z:
A ` 〈l, Z 〉 �(g,a,r) 〈l ′, zone-set (Z ∩ {u. u ` g}) r ∩ {u. u ` inv-of A

l ′}〉
if A ` l −→g,a,r l ′

409

inductive step-trans-z ′ ::
(′a, ′c, ′t, ′s) ta ⇒ ′s ⇒ (′c, (′t::time)) zone ⇒ ((′c, ′t) cconstraint × ′a
× ′c list)
⇒ ′s ⇒ (′c, ′t) zone ⇒ bool

(‹- ` ′′ 〈-, -〉 - 〈-, -〉› [61 ,61 ,61 ,61] 61)
where

step-trans-z ′:
A ` 〈l, Z 〉 τ 〈l, Z ′〉 =⇒ A ` 〈l, Z ′〉 �t 〈l ′, Z ′′〉 =⇒ A ` ′ 〈l, Z 〉 t 〈l ′,

Z ′′〉

lemmas [intro] =
step-trans.intros
step-trans ′.intros
step-trans-z.intros
step-trans-z ′.intros

context
notes [elim!] =

step.cases step-t.cases
step-trans.cases step-trans ′.cases step-trans-z.cases step-trans-z ′.cases

begin

lemma step-trans-t-z-sound:
A ` 〈l, Z 〉 τ 〈l ′,Z ′〉 =⇒ ∀ u ′ ∈ Z ′. ∃ u ∈ Z . ∃ d. A ` 〈l, u〉 →d 〈l ′,u ′〉
by (auto 4 5 simp: zone-delay-def zone-set-def)

lemma step-trans-a-z-sound:
A ` 〈l, Z 〉 �t 〈l ′,Z ′〉 =⇒ ∀ u ′ ∈ Z ′. ∃ u ∈ Z . ∃ d. A `t 〈l, u〉 →t 〈l ′,u ′〉
by (auto 4 4 simp: zone-delay-def zone-set-def)

lemma step-trans-a-z-complete:
A `t 〈l, u〉 →t 〈l ′, u ′〉 =⇒ u ∈ Z =⇒ ∃ Z ′. A ` 〈l, Z 〉 �t 〈l ′, Z ′〉 ∧ u ′

∈ Z ′

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

lemma step-trans-t-z-complete:
A ` 〈l, u〉 →d 〈l ′, u ′〉 =⇒ u ∈ Z =⇒ ∃ Z ′. A ` 〈l, Z 〉 τ 〈l ′, Z ′〉 ∧ u ′ ∈

Z ′

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

lemma step-trans-t-z-iff :
A ` 〈l, Z 〉 τ 〈l ′, Z ′〉 = A ` 〈l, Z 〉 τ 〈l ′, Z ′〉
by auto

410

lemma step-z-complete:
A ` 〈l, u〉 → 〈l ′, u ′〉 =⇒ u ∈ Z =⇒ ∃ Z ′ t. A ` 〈l, Z 〉 t 〈l ′, Z ′〉 ∧ u ′

∈ Z ′

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

lemma step-trans-a-z-exact:
u ′ ∈ Z ′ if A `t 〈l, u〉 →t 〈l ′, u ′〉 A ` 〈l, Z 〉 �t 〈l ′, Z ′〉 u ∈ Z
using that by (auto 4 4 simp: zone-delay-def zone-set-def)

lemma step-trans-t-z-exact:
u ′ ∈ Z ′ if A ` 〈l, u〉 →d 〈l ′, u ′〉 A ` 〈l, Z 〉 τ 〈l ′, Z ′〉 u ∈ Z
using that by (auto simp: zone-delay-def)

lemma step-trans-z ′-exact:
u ′ ∈ Z ′ if A ` ′ 〈l, u〉 →t 〈l ′, u ′〉 A ` ′ 〈l, Z 〉 t 〈l ′, Z ′〉 u ∈ Z
using that by (auto 4 4 simp: zone-delay-def zone-set-def)

lemma step-trans-z-step-z-action:
A ` 〈l, Z 〉 �a 〈l ′,Z ′〉 if A ` 〈l, Z 〉 �(g,a,r) 〈l ′, Z ′〉
using that by auto

lemma step-trans-z-step-z:
∃ a. A ` 〈l, Z 〉 a 〈l ′,Z ′〉 if A ` 〈l, Z 〉 t 〈l ′, Z ′〉
using that by auto

lemma step-z-step-trans-z-action:
∃ g r . A ` 〈l, Z 〉 �(g,a,r) 〈l ′, Z ′〉 if A ` 〈l, Z 〉 �a 〈l ′,Z ′〉
using that by (auto 4 4)

lemma step-z-step-trans-z:
∃ t. A ` 〈l, Z 〉 t 〈l ′, Z ′〉 if A ` 〈l, Z 〉 a 〈l ′,Z ′〉
using that by cases auto

end

lemma step-z ′-step-trans-z ′:
∃ t. A ` ′ 〈l, Z 〉 t 〈l ′, Z ′′〉 if A ` 〈l, Z 〉 〈l ′, Z ′′〉
using that unfolding step-z ′-def
by (auto dest!: step-z-step-trans-z-action simp: step-trans-t-z-iff [symmetric])

lemma step-trans-z ′-step-z ′:
A ` 〈l, Z 〉 〈l ′, Z ′′〉 if A ` ′ 〈l, Z 〉 t 〈l ′, Z ′′〉
using that unfolding step-z ′-def

411

by (auto elim!: step-trans-z ′.cases dest!: step-trans-z-step-z-action simp:
step-trans-t-z-iff)

lemma step-trans-z-determ:
Z1 = Z2 if A ` 〈l, Z 〉 t 〈l ′, Z1 〉 A ` 〈l, Z 〉 t 〈l ′, Z2 〉
using that by (auto elim!: step-trans-z.cases)

lemma step-trans-z ′-determ:
Z1 = Z2 if A ` ′ 〈l, Z 〉 t 〈l ′, Z1 〉 A ` ′ 〈l, Z 〉 t 〈l ′, Z2 〉
using that by (auto elim!: step-trans-z ′.cases step-trans-z.cases)

lemma (in Alpha-defs) step-trans-z-V : A ` 〈l, Z 〉 t 〈l ′,Z ′〉 =⇒ Z ⊆ V
=⇒ Z ′ ⊆ V

by (induction rule: step-trans-z.induct; blast intro!: reset-V le-infI1 up-V)

7.9.1 Additional Lemmas on Regions

context AlphaClosure
begin

inductive step-trans-r ::
(′a, ′c, t, ′s) ta ⇒ - ⇒ ′s ⇒ (′c, t) zone ⇒ ((′c, t) cconstraint × ′a × ′c

list) action
⇒ ′s ⇒ (′c, t) zone ⇒ bool

(‹-,- ` 〈-, -〉 - 〈-, -〉› [61 ,61 ,61 ,61 ,61] 61)
where

step-trans-t-r :
A,R ` 〈l,R〉 τ 〈l,R ′〉 if
valid-abstraction A X (λ x. real o k x) R ∈ R l R ′ ∈ Succ (R l) R R ′ ⊆
{|inv-of A l|} |

step-trans-a-r :
A,R ` 〈l,R〉 �(g,a,r) 〈l ′, R ′〉 if
valid-abstraction A X (λ x. real o k x) A ` l −→g,a,r l ′ R ∈ R l
R ⊆ {|g|} region-set ′ R r 0 ⊆ R ′ R ′ ⊆ {|inv-of A l ′|} R ′ ∈ R l ′

lemmas [intro] = step-trans-r .intros

lemma step-trans-t-r-iff [simp]:
A,R ` 〈l,R〉 τ 〈l ′,R ′〉 = A,R ` 〈l,R〉 τ 〈l ′,R ′〉
by (auto elim!: step-trans-r .cases)

lemma step-trans-r-step-r-action:
A,R ` 〈l,R〉 �a 〈l ′,R ′〉 if A,R ` 〈l,R〉 �(g,a,r) 〈l ′,R ′〉
using that by (auto elim: step-trans-r .cases)

412

lemma step-r-step-trans-r-action:
∃ g r . A,R ` 〈l,R〉 �(g,a,r) 〈l ′,R ′〉 if A,R ` 〈l,R〉 �a 〈l ′,R ′〉
using that by (auto elim: step-trans-r .cases)

inductive step-trans-r ′ ::
(′a, ′c, t, ′s) ta ⇒ - ⇒ ′s ⇒ (′c, t) zone ⇒ (′c, t) cconstraint × ′a × ′c

list
⇒ ′s ⇒ (′c, t) zone ⇒ bool

(‹-,- ` ′′ 〈-, -〉 - 〈-, -〉› [61 ,61 ,61 ,61 ,61] 61)
where

A,R ` ′ 〈l,R〉 t 〈l ′,R ′′〉 if A,R ` 〈l,R〉 τ 〈l,R ′〉 A,R ` 〈l,R ′〉 �t 〈l ′,
R ′′〉

lemma step-trans-r ′-step-r ′:
A,R ` 〈l,R〉 a 〈l ′,R ′〉 if A,R ` ′ 〈l,R〉 (g,a,r) 〈l ′,R ′〉
using that by cases (auto dest: step-trans-r-step-r-action intro!: step-r ′.intros)

lemma step-r ′-step-trans-r ′:
∃ g r . A,R ` ′ 〈l,R〉 (g,a,r) 〈l ′,R ′〉 if A,R ` 〈l,R〉 a 〈l ′,R ′〉
using that by cases (auto dest: step-r-step-trans-r-action intro!: step-trans-r ′.intros)

lemma step-trans-a-r-sound:
assumes A,R ` 〈l, R〉 �a 〈l ′,R ′〉
shows ∀ u ∈ R. ∃ u ′ ∈ R ′. A `t 〈l, u〉 →a 〈l ′,u ′〉

using assms proof cases
case A: (step-trans-a-r g a r)
show ?thesis
unfolding A(1) proof

fix u assume u ∈ R
from ‹u ∈ R› A have u ` g [r→0]u ` inv-of A l ′ [r→0]u ∈ R ′

unfolding region-set ′-def ccval-def by auto
with A show ∃ u ′∈R ′. A `t 〈l, u〉 →(g,a,r) 〈l ′,u ′〉

by auto
qed

qed

lemma step-trans-r ′-sound:
assumes A,R ` ′ 〈l, R〉 t 〈l ′, R ′〉
shows ∀ u∈R. ∃ u ′∈R ′. A ` ′ 〈l, u〉 →t 〈l ′, u ′〉
using assms by cases (auto 6 0 dest!: step-trans-a-r-sound step-t-r-sound)

end

413

context AlphaClosure
begin

context
fixes l l ′ :: ′s and A :: (′a, ′c, t, ′s) ta
assumes valid-abstraction: valid-abstraction A X k

begin

interpretation alpha: AlphaClosure-global - k l R l by standard (rule fi-
nite)
lemma [simp]: alpha.cla = cla l unfolding alpha.cla-def cla-def ..

interpretation alpha ′: AlphaClosure-global - k l ′ R l ′ by standard (rule
finite)
lemma [simp]: alpha ′.cla = cla l ′ unfolding alpha ′.cla-def cla-def ..

lemma regions-poststable1 :
assumes

A ` 〈l, Z 〉 a 〈l ′,Z ′〉 Z ⊆ V R ′ ∈ R l ′ R ′ ∩ Z ′ 6= {}
shows ∃ R ∈ R l. A,R ` 〈l,R〉 a 〈l ′,R ′〉 ∧ R ∩ Z 6= {}

using assms proof (induction A ≡ A l ≡ l - - l ′≡ l ′ -rule: step-trans-z.induct)
case A: (step-trans-t-z Z)
from ‹R ′ ∩ (Z ↑ ∩ {u. u ` inv-of A l}) 6= {}› obtain u d where u:

u ∈ Z u ⊕ d ∈ R ′ u ⊕ d ` inv-of A l 0 ≤ d
unfolding zone-delay-def by blast+

with alpha.closure-subs[OF A(2)] obtain R where R1 : u ∈ R R ∈ R l
by (simp add: cla-def) blast

from ‹Z ⊆ V › ‹u ∈ Z › have ∀ x∈X . 0 ≤ u x unfolding V-def by
fastforce

from region-cover ′[OF this] have R: [u]l ∈ R l u ∈ [u]l by auto
from SuccI2 [OF R-def ′ this(2 ,1) ‹0 ≤ d› HOL.refl] u(2) have v ′1 :
[u ⊕ d]l ∈ Succ (R l) ([u]l) [u ⊕ d]l ∈ R l
by auto

from alpha.regions-closed ′-spec[OF R(1 ,2) ‹0 ≤ d›] have v ′2 : u ⊕ d ∈
[u ⊕ d]l by simp

from valid-abstraction have
∀ (x, m)∈clkp-set A l. m ≤ real (k l x) ∧ x ∈ X ∧ m ∈ �
by (auto elim!: valid-abstraction.cases)

then have
∀ (x, m)∈collect-clock-pairs (inv-of A l). m ≤ real (k l x) ∧ x ∈ X ∧ m

∈ �
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce

from ccompatible[OF this, folded R-def ′] v ′1 (2) v ′2 u(2 ,3) have
[u ⊕ d]l ⊆ {|inv-of A l|}

414

unfolding ccompatible-def ccval-def by auto
from

alpha.valid-regions-distinct-spec[OF v ′1 (2) - v ′2 ‹u ⊕ d ∈ R ′›] ‹R ′ ∈ -›
‹l = l ′›

alpha.region-unique-spec[OF R1]
have [u ⊕ d]l = R ′ [u]l = R by auto
from valid-abstraction ‹R ∈ -› ‹- ∈ Succ (R l) -› ‹- ⊆ {|inv-of A l|}› have

A,R ` 〈l, R〉 τ 〈l, R ′〉
by (auto simp: comp-def ‹[u ⊕ d]l = R ′› ‹- = R›)

with ‹l = l ′› ‹R ∈ -› ‹u ∈ R› ‹u ∈ Z › show ?case by − (rule bexI [where
x = R]; auto)
next

case A: (step-trans-a-z g a r Z)
from A(4) obtain u v ′ where

u ∈ Z and v ′: v ′ = [r→0]u u ` g v ′ ` inv-of A l ′ v ′ ∈ R ′

unfolding zone-set-def by blast
from ‹u ∈ Z › alpha.closure-subs[OF A(2)] A(1) obtain u ′ R where u ′:

u ∈ R u ′ ∈ R R ∈ R l
by (simp add: cla-def) blast

then have ∀ x∈X . 0 ≤ u x unfolding R-def by fastforce
from region-cover ′[OF this] have [u]l ∈ R l u ∈ [u]l by auto
have ∗:
[u]l ⊆ {|g|} region-set ′ ([u]l) r 0 ⊆ [[r→0]u]l ′
[[r→0]u]l ′ ∈ R l ′ [[r→0]u]l ′ ⊆ {|inv-of A l ′|}

proof −
from valid-abstraction have collect-clkvt (trans-of A) ⊆ X
∀ l g a r l ′ c. A ` l −→g,a,r l ′ ∧ c /∈ set r −→ k l ′ c ≤ k l c
by (auto elim: valid-abstraction.cases)

with A(1) have set r ⊆ X ∀ y. y /∈ set r −→ k l ′ y ≤ k l y
unfolding collect-clkvt-def by (auto 4 8)

with
region-set-subs[

of - X k l - 0 , where k ′ = k l ′, folded R-def , OF ‹[u]l ∈ R l› ‹u ∈
[u]l› finite

]
show region-set ′ ([u]l) r 0 ⊆ [[r→0]u]l ′ [[r→0]u]l ′ ∈ R l ′ by auto
from valid-abstraction have ∗:
∀ l. ∀ (x, m)∈clkp-set A l. m ≤ real (k l x) ∧ x ∈ X ∧ m ∈ �
by (fastforce elim: valid-abstraction.cases)+

with A(1) have ∀ (x, m)∈collect-clock-pairs g. m ≤ real (k l x) ∧ x ∈
X ∧ m ∈ �

unfolding clkp-set-def collect-clkt-def by fastforce
from ‹u ∈ [u]l› ‹[u]l ∈ R l› ccompatible[OF this, folded R-def] ‹u ` g›

show [u]l ⊆ {|g|}

415

unfolding ccompatible-def ccval-def by blast
have ∗∗: [r→0]u ∈ [[r→0]u]l ′

using ‹R ′ ∈ R l ′› ‹v ′ ∈ R ′› alpha ′.region-unique-spec v ′(1) by blast
from ∗ have
∀ (x, m)∈collect-clock-pairs (inv-of A l ′). m ≤ real (k l ′ x) ∧ x ∈ X ∧

m ∈ �
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce

from ∗∗ ‹[[r→0]u]l ′ ∈ R l ′› ccompatible[OF this, folded R-def] ‹v ′ ` -›
show

[[r→0]u]l ′ ⊆ {|inv-of A l ′|}
unfolding ccompatible-def ccval-def ‹v ′ = -› by blast

qed
from ∗ ‹v ′ = -› ‹u ∈ [u]l› have v ′ ∈ [[r→0]u]l ′ unfolding region-set ′-def

by auto
from alpha ′.valid-regions-distinct-spec[OF ∗(3) ‹R ′∈ R l ′› ‹v ′∈ [[r→0]u]l ′›

‹v ′ ∈ R ′›]
have [[r→0]u]l ′ = R ′ .
from alpha.region-unique-spec[OF u ′(1 ,3)] have [u]l = R by auto
from A valid-abstraction ‹R ∈ -› ∗ have A,R ` 〈l, R〉 �(g,a,r) 〈l ′, R ′〉

by (auto simp: comp-def ‹- = R ′› ‹- = R›)
with ‹R ∈ -› ‹u ∈ R› ‹u ∈ Z › show ?case by − (rule bexI [where x =

R]; auto)
qed

lemma regions-poststable ′:
assumes

A ` 〈l, Z 〉 a 〈l ′,Z ′〉 Z ⊆ V R ′ ∈ R l ′ R ′ ∩ Z ′ 6= {}
shows ∃ R ∈ R l. A,R ` 〈l,R〉 a 〈l ′,R ′〉 ∧ R ∩ Z 6= {}
using assms
by (cases a)
(auto dest!: regions-poststable1 dest: step-trans-r-step-r-action step-z-step-trans-z-action

simp: step-trans-t-z-iff [symmetric]
)

end

lemma regions-poststable2 :
assumes valid-abstraction: valid-abstraction A X k
and prems: A ` ′ 〈l, Z 〉 a 〈l ′,Z ′〉 Z ⊆ V R ′ ∈ R l ′ R ′ ∩ Z ′ 6= {}

shows ∃ R ∈ R l. A,R ` ′ 〈l,R〉 a 〈l ′,R ′〉 ∧ R ∩ Z 6= {}
using prems(1) proof (cases)

case steps: (step-trans-z ′ Z1)
with prems have Z1 ⊆ V

by (blast dest: step-trans-z-V)

416

from regions-poststable1 [OF valid-abstraction steps(2) ‹Z1 ⊆ V › prems(3 ,4)]
obtain R1 where R1 :

R1 ∈ R l A,R ` 〈l, R1 〉 �a 〈l ′, R ′〉 R1 ∩ Z1 6= {}
by auto

from regions-poststable1 [OF valid-abstraction steps(1) ‹Z ⊆ V › R1 (1 ,3)]
obtain R where

R∈R l A,R ` 〈l, R〉 τ 〈l, R1 〉 R ∩ Z 6= {}
by auto

with R1 (2) show ?thesis
by (auto intro: step-trans-r ′.intros)

qed

Poststability of Closures: For every transition in the zone graph and each
region in the closure of the resulting zone, there exists a similar transition
in the region graph.
lemma regions-poststable:

assumes valid-abstraction: valid-abstraction A X k
and A:

A ` 〈l, Z 〉 τ 〈l ′,Z ′〉 A ` 〈l ′, Z ′〉 �a 〈l ′′,Z ′′〉
Z ⊆ V R ′′ ∈ R l ′′ R ′′ ∩ Z ′′ 6= {}

shows ∃ R ∈ R l. A,R ` 〈l,R〉 a 〈l ′′,R ′′〉 ∧ R ∩ Z 6= {}
proof −

from A(1) ‹Z ⊆ V › have Z ′ ⊆ V by (rule step-z-V)
from A(1) have [simp]: l ′ = l by auto
from regions-poststable ′[OF valid-abstraction A(2) ‹Z ′⊆ V › ‹R ′′ ∈ -› ‹R ′′

∩ Z ′′ 6= {}›] obtain R ′

where R ′: R ′∈R l ′ A,R ` 〈l ′, R ′〉 �a 〈l ′′, R ′′〉 R ′ ∩ Z ′ 6= {}
by auto

from regions-poststable ′[OF valid-abstraction A(1) ‹Z ⊆ V › R ′(1 ,3)] ob-
tain R where

R ∈ R l A,R ` 〈l, R〉 τ 〈l, R ′〉 R ∩ Z 6= {}
by auto

with R ′(2) show ?thesis by − (rule bexI [where x = R]; auto intro:
step-r ′.intros)
qed

lemma step-t-r-loc:
l ′ = l if A,R ` 〈l, R〉 τ 〈l ′, R ′〉
using that by cases auto

lemma R-V :
u ∈ V if R ∈ R l u ∈ R
using that unfolding R-def V-def by auto

417

lemma step-r ′-complete:
assumes A ` ′ 〈l, u〉 → 〈l ′,u ′〉 valid-abstraction A X (λ x. real o k x) u ∈

V
shows ∃ a R ′. u ′ ∈ R ′ ∧ A,R ` 〈l, [u]l〉 a 〈l ′,R ′〉
using assms
apply cases
apply (drule step-t-r-complete, (rule assms; fail), simp add: V-def)
apply clarify
apply (frule step-a-r-complete)
by (auto dest: step-t-r-loc simp: R-def simp: region-unique intro!: step-r ′.intros)

lemma step-r-R:
R ′ ∈ R l ′ if A,R ` 〈l, R〉 a 〈l ′, R ′〉
using that by (auto elim: step-r .cases)

lemma step-r ′-R:
R ′ ∈ R l ′ if A,R ` 〈l, R〉 a 〈l ′, R ′〉
using that by (auto intro: step-r-R elim: step-r ′.cases)

end

context Regions
begin

lemma closure-parts-mono:
{R ∈ R l. R ∩ Z 6= {}} ⊆ {R ∈ R l. R ∩ Z ′ 6= {}} if Closureα,l Z ⊆

Closureα,l Z ′

proof (clarify, goal-cases)
case prems: (1 R)
with that have R ⊆ Closureα,l Z ′

unfolding cla-def by auto
from ‹- 6= {}› obtain u where u ∈ R u ∈ Z by auto
with ‹R ⊆ -› obtain R ′ where R ′ ∈ R l u ∈ R ′ R ′ ∩ Z ′ 6= {} unfolding

cla-def by force
from R-regions-distinct[OF R-def ′ this(1 ,2) ‹R ∈ -›] ‹u ∈ R› have R =

R ′ by auto
with ‹R ′ ∩ Z ′ 6= {}› ‹R ∩ Z ′ = {}› show ?case by simp

qed

lemma closure-parts-id:
{R ∈ R l. R ∩ Z 6= {}} = {R ∈ R l. R ∩ Z ′ 6= {}} if
Closureα,l Z = Closureα,l Z ′

using closure-parts-mono that by blast

418

More lemmas on regions context
fixes l ′ :: ′s

begin

interpretation regions: Regions-global - - - k l ′
by standard (rule finite clock-numbering not-in-X non-empty)+

context
fixes A :: (′a, ′c, t, ′s) ta
assumes valid-abstraction: valid-abstraction A X k

begin

lemmas regions-poststable = regions-poststable[OF valid-abstraction]

lemma clkp-set-clkp-set1 :
∃ l. (c, x) ∈ clkp-set A l if (c, x) ∈ Timed-Automata.clkp-set A
using that
unfolding Timed-Automata.clkp-set-def Closure.clkp-set-def
unfolding Timed-Automata.collect-clki-def Closure.collect-clki-def
unfolding Timed-Automata.collect-clkt-def Closure.collect-clkt-def
by fastforce

lemma clkp-set-clkp-set2 :
(c, x) ∈ Timed-Automata.clkp-set A if (c, x) ∈ clkp-set A l for l
using that
unfolding Timed-Automata.clkp-set-def Closure.clkp-set-def
unfolding Timed-Automata.collect-clki-def Closure.collect-clki-def
unfolding Timed-Automata.collect-clkt-def Closure.collect-clkt-def
by fastforce

lemma clock-numbering-le: ∀ c∈clk-set A. v c ≤ n
proof

fix c assume c ∈ clk-set A
then have c ∈ X
proof (safe, clarsimp, goal-cases)

case (1 x)
then obtain l where (c, x) ∈ clkp-set A l by (auto dest: clkp-set-clkp-set1)
with valid-abstraction show c ∈ X by (auto elim!: valid-abstraction.cases)

next
case 2

with valid-abstraction show c ∈ X by (auto elim!: valid-abstraction.cases)
qed
with clock-numbering show v c ≤ n by auto

qed

419

lemma beta-alpha-step:
A ` 〈l, Z 〉 α(a) 〈l ′, Closureα,l ′ Z ′〉 if A ` 〈l, Z 〉 β(a) 〈l ′, Z ′〉 Z ∈ V ′

proof −
from that obtain Z1 ′ where Z1 ′: Z ′ = Approxβ l ′ Z1 ′ A ` 〈l, Z 〉 a
〈l ′, Z1 ′〉

by (clarsimp elim!: step-z-beta.cases)
with ‹Z ∈ V ′› have Z1 ′ ∈ V ′

using valid-abstraction clock-numbering-le by (auto intro: step-z-V ′)
let ?alpha = Closureα,l ′ Z1 ′ and ?beta = Closureα,l ′ (Approxβ l ′ Z1 ′)
have ?beta ⊆ ?alpha
using regions.approx-β-closure-α ′[OF ‹Z1 ′∈ V ′›] regions.alpha-interp.closure-involutive
by (auto 4 3 dest: regions.alpha-interp.cla-mono)

moreover have ?alpha ⊆ ?beta
by (intro regions.alpha-interp.cla-mono[simplified] regions.beta-interp.apx-subset)

ultimately have ?beta = ?alpha ..
with Z1 ′ show ?thesis by auto

qed

lemma beta-alpha-region-step:
∃ a. ∃ R ∈ R l. R ∩ Z 6= {} ∧ A,R ` 〈l, R〉 a 〈l ′, R ′〉 if
A ` 〈l, Z 〉 β 〈l ′, Z ′〉 Z ∈ V ′ R ′ ∈ R l ′ R ′ ∩ Z ′ 6= {}

proof −
from that(1) obtain l ′′ a Z ′′ where steps:

A ` 〈l, Z 〉 τ 〈l ′′, Z ′′〉 A ` 〈l ′′, Z ′′〉 β(�a) 〈l ′, Z ′〉
unfolding step-z-beta ′-def by metis

with ‹Z ∈ V ′› steps(1) have Z ′′ ∈ V ′

using valid-abstraction clock-numbering-le by (blast intro: step-z-V ′)
from beta-alpha-step[OF steps(2) this] have A ` 〈l ′′, Z ′′〉 α�a 〈l ′, Clo-

sureα,l ′(Z ′)〉 .
from step-z-alpha.cases[OF this] obtain Z1 where Z1 :

A ` 〈l ′′, Z ′′〉 �a 〈l ′, Z1 〉 Closureα,l ′(Z ′) = Closureα,l ′(Z1)
by metis

from closure-parts-id[OF this(2)] that(3 ,4) have R ′ ∩ Z1 6= {} by blast
from regions-poststable[OF steps(1) Z1 (1) - ‹R ′ ∈ -› this] ‹Z ∈ V ′› show

?thesis
by (auto dest: V ′-V)

qed

lemmas step-z-beta ′-V ′= step-z-beta ′-V ′[OF valid-abstraction clock-numbering-le]

lemma step-trans-z ′-closure-subs:
assumes

420

A ` ′ 〈l, Z 〉 t 〈l ′, Z ′〉 Z ⊆ V ∀ R ∈ R l. R ∩ Z 6= {} −→ R ∩ W 6=
{}

shows
∃ W ′. A ` ′ 〈l, W 〉 t 〈l ′, W ′〉 ∧ (∀ R ∈ R l ′. R ∩ Z ′ 6= {} −→ R ∩

W ′ 6= {})
proof −

from assms(1) obtain W ′ where step: A ` ′ 〈l, W 〉 t 〈l ′, W ′〉
by (auto elim!: step-trans-z.cases step-trans-z ′.cases)

have R ′ ∩ W ′ 6= {} if R ′ ∈ R l ′ R ′ ∩ Z ′ 6= {} for R ′

proof −
from regions-poststable2 [OF valid-abstraction assms(1) - that] ‹Z ⊆ V ›

obtain R where R:
R∈R l A,R ` ′ 〈l, R〉 t 〈l ′, R ′〉 R ∩ Z 6= {}
by auto

with assms(3) obtain u where u ∈ R u ∈ W
by auto

with step-trans-r ′-sound[OF R(2)] obtain u ′ where u ′ ∈ R ′ A ` ′ 〈l,
u〉 →t 〈l ′, u ′〉

by auto
with step-trans-z ′-exact[OF this(2) step ‹u ∈ W ›] show ?thesis

by auto
qed
with step show ?thesis

by auto
qed

lemma step-trans-z ′-closure-eq:
assumes

A ` ′ 〈l, Z 〉 t 〈l ′, Z ′〉 Z ⊆ V W ⊆ V ∀ R ∈ R l. R ∩ Z 6= {} ←→ R
∩ W 6= {}

shows
∃ W ′. A ` ′ 〈l, W 〉 t 〈l ′, W ′〉 ∧ (∀ R ∈ R l ′. R ∩ Z ′ 6= {} ←→ R ∩

W ′ 6= {})
proof −

from assms(4) have ∗:
∀ R ∈ R l. R ∩ Z 6= {} −→ R ∩ W 6= {} ∀ R ∈ R l. R ∩ W 6= {}

−→ R ∩ Z 6= {}
by auto

from step-trans-z ′-closure-subs[OF assms(1 ,2) ∗(1)] obtain W ′ where
W ′:

A ` ′ 〈l, W 〉 t 〈l ′, W ′〉 (∀R∈R l ′. R ∩ Z ′ 6= {} −→ R ∩ W ′ 6= {})
by auto

with step-trans-z ′-closure-subs[OF W ′(1) ‹W ⊆ V › ∗(2)] assms(1) show
?thesis

421

by (fastforce dest: step-trans-z ′-determ)
qed

lemma step-z ′-closure-subs:
assumes

A ` 〈l, Z 〉 〈l ′, Z ′〉 Z ⊆ V ∀ R ∈ R l. R ∩ Z 6= {} −→ R ∩ W 6= {}
shows
∃ W ′. A ` 〈l, W 〉 〈l ′, W ′〉 ∧ (∀ R ∈ R l ′. R ∩ Z ′ 6= {} −→ R ∩ W ′

6= {})
using assms(1)
by (auto

dest: step-trans-z ′-step-z ′

dest!: step-z ′-step-trans-z ′ step-trans-z ′-closure-subs[OF - assms(2 ,3)]
)

end

lemma apx-finite:
finite {Approxβ l ′ Z | Z . Z ⊆ V } (is finite ?S)

proof −
have finite regions.Rβ

by (simp add: regions.beta-interp.finite-R)
then have finite {S . S ⊆ regions.Rβ}

by auto
then have finite {

⋃
S | S . S ⊆ regions.Rβ}

by auto
moreover have ?S ⊆ {

⋃
S | S . S ⊆ regions.Rβ}

by (auto dest!: regions.beta-interp.apx-in)
ultimately show ?thesis by (rule finite-subset[rotated])

qed

lemmas apx-subset = regions.beta-interp.apx-subset

lemma step-z-beta ′-empty:
Z ′ = {} if A ` 〈l, {}〉 β 〈l ′, Z ′〉
using that
by (auto

elim!: step-z.cases
simp: step-z-beta ′-def regions.beta-interp.apx-empty zone-delay-def zone-set-def
)

end

lemma step-z-beta ′-complete:

422

assumes A ` ′ 〈l, u〉 → 〈l ′, u ′〉 u ∈ Z Z ⊆ V
shows ∃ Z ′. A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ u ′ ∈ Z ′

proof −
from assms(1) obtain l ′′ u ′′ d a where steps:

A ` 〈l, u〉 →d 〈l ′′, u ′′〉 A ` 〈l ′′, u ′′〉 →a 〈l ′, u ′〉
by (force elim!: step ′.cases)

then obtain Z ′′ where
A ` 〈l, Z 〉 τ 〈l ′′, Z ′′〉 u ′′ ∈ Z ′′

by (meson ‹u ∈ Z › step-t-z-complete)
moreover with steps(2) obtain Z ′ where

A ` 〈l ′′, Z ′′〉 �a 〈l ′, Z ′〉 u ′ ∈ Z ′

by (meson ‹u ′′ ∈ Z ′′› step-a-z-complete)
ultimately show ?thesis

unfolding step-z-beta ′-def using ‹Z ⊆ V › apx-subset by blast
qed

end

7.9.2 Instantiation of Double Simulation

7.9.3 Auxiliary Definitions

definition state-set :: (′a, ′c, ′time, ′s) ta ⇒ ′s set where
state-set A ≡ fst ‘ (fst A) ∪ (snd o snd o snd o snd) ‘ (fst A)

lemma finite-trans-of-finite-state-set:
finite (state-set A) if finite (trans-of A)
using that unfolding state-set-def trans-of-def by auto

lemma state-setI1 :
l ∈ state-set A if A ` l −→g,a,r l ′
using that unfolding state-set-def trans-of-def image-def by (auto 4 4)

lemma state-setI2 :
l ′ ∈ state-set A if A ` l −→g,a,r l ′
using that unfolding state-set-def trans-of-def image-def by (auto 4 4)

lemma (in AlphaClosure) step-r ′-state-set:
l ′ ∈ state-set A if A,R ` 〈l, R〉 a 〈l ′, R ′〉
using that by (blast intro: state-setI2 elim: step-r ′.cases)

lemma (in Regions) step-z-beta ′-state-set2 :
l ′ ∈ state-set A if A ` 〈l, Z 〉 β 〈l ′, Z ′〉
using that unfolding step-z-beta ′-def by (force simp: state-set-def trans-of-def)

423

7.9.4 Instantiation

locale Regions-TA = Regions X - - k for X :: ′c set and k :: ′s ⇒ ′c ⇒
nat +

fixes A :: (′a, ′c, t, ′s) ta
assumes valid-abstraction: valid-abstraction A X k

and finite-state-set: finite (state-set A)
begin

no-notation Regions-Beta.part (‹[-]-› [61 ,61] 61)
notation part ′′ (‹[-]-› [61 ,61] 61)

lemma step-z-beta ′-state-set1 :
l ∈ state-set A if A ` 〈l, Z 〉 β 〈l ′, Z ′〉
using that unfolding step-z-beta ′-def by (force simp: state-set-def trans-of-def)

sublocale sim: Double-Simulation-paired
λ (l, u) (l ′, u ′). A ` ′ 〈l, u〉 → 〈l ′, u ′〉 — Concrete step relation
λ (l, Z) (l ′, Z ′). ∃ a. A,R ` 〈l, Z 〉 a 〈l ′, Z ′〉 ∧ Z ′ 6= {}
— Step relation for the first abstraction layer
λ (l, R). l ∈ state-set A ∧ R ∈ R l — Valid states of the first abstraction

layer
λ (l, Z) (l ′, Z ′). A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ Z ′ 6= {}
— Step relation for the second abstraction layer
λ (l, Z). l ∈ state-set A ∧ Z ∈ V ′ ∧ Z 6= {} — Valid states of the second

abstraction layer
proof (standard, goal-cases)

case (1 S T)
then show ?case

by (auto dest!: step-r ′-sound)
next

case prems: (2 R ′ l ′ Z ′ l Z)
from prems(3) have l ∈ state-set A

by (blast intro: step-z-beta ′-state-set1)
from prems show ?case

unfolding Double-Simulation-paired-Defs.closure ′-def
by (blast dest: beta-alpha-region-step[OF valid-abstraction] step-z-beta ′-state-set1)

next
case prems: (3 l R R ′)
then show ?case

using R-regions-distinct[OF R-def ′] by auto
next

424

case 4
have ∗: finite (R l) for l

unfolding R-def by (intro finite-R finite)
have
{(l, R). l ∈ state-set A ∧ R ∈ R l} = (

⋃
l ∈ state-set A. ((λ R. (l, R))

‘ {R. R ∈ R l}))
by auto

also have finite . . .
by (auto intro: finite-UN-I [OF finite-state-set] ∗)

finally show ?case by auto
next

case (5 l Z)
then show ?case

apply safe
subgoal for u

using region-cover ′[of u l] by (auto dest!: V ′-V , auto simp: V-def)
done

qed

sublocale Graph-Defs
λ (l, Z) (l ′, Z ′). A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ Z ′ 6= {} .

lemmas step-z-beta ′-V ′ = step-z-beta ′-V ′[OF valid-abstraction]

lemma step-r ′-complete-spec:
assumes A ` ′ 〈l, u〉 → 〈l ′,u ′〉 u ∈ V
shows ∃ a R ′. u ′ ∈ R ′ ∧ A,R ` 〈l, [u]l〉 a 〈l ′,R ′〉
using assms valid-abstraction by (auto simp: comp-def V-def intro!: step-r ′-complete)

end

7.9.5 Büchi Runs

locale Regions-TA-Start-State = Regions-TA - - - - - A for A :: (′a, ′c, t,
′s) ta +

fixes l0 :: ′s and Z 0 :: (′c, t) zone
assumes start-state: l0 ∈ state-set A Z 0 ∈ V ′ Z 0 6= {}

begin

definition a0 = from-R l0 Z 0

sublocale sim-complete ′: Double-Simulation-Finite-Complete-paired
λ (l, u) (l ′, u ′). A ` ′ 〈l, u〉 → 〈l ′, u ′〉 — Concrete step relation
λ (l, Z) (l ′, Z ′). ∃ a. A,R ` 〈l, Z 〉 a 〈l ′, Z ′〉 ∧ Z ′ 6= {}

425

— Step relation for the first abstraction layer
λ (l, R). l ∈ state-set A ∧ R ∈ R l — Valid states of the first abstraction

layer
λ (l, Z) (l ′, Z ′). A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ Z ′ 6= {}
— Step relation for the second abstraction layer
λ (l, Z). l ∈ state-set A ∧ Z ∈ V ′ ∧ Z 6= {} — Valid states of the second

abstraction layer
l0 Z 0

proof (standard, goal-cases)
case (1 x y S)
— Completeness
then show ?case

by (force dest: step-z-beta ′-complete[rotated 2 , OF V ′-V])
next

case 4
— Finiteness

have ∗: Z ∈ V ′ if A ` 〈l0, Z 0〉 β∗ 〈l, Z 〉 for l Z
using that start-state step-z-beta ′-V ′ by (induction rule: rtranclp-induct2)

blast+
have Z ∈ {Approxβ l Z | Z . Z ⊆ V } ∨ (l, Z) = (l0, Z 0)

if reaches (l0, Z 0) (l, Z) for l Z
using that proof (induction rule: rtranclp-induct2)
case refl
then show ?case

by simp
next

case prems: (step l Z l ′ Z ′)
from prems(1) have A ` 〈l0, Z 0〉 β∗ 〈l, Z 〉

by induction (auto intro: rtranclp-trans)
then have Z ∈ V ′

by (rule ∗)
with prems show ?case

unfolding step-z-beta ′-def using start-state(2) by (auto 0 1 dest!:
V ′-V elim!: step-z-V)

qed
then have {(l, Z). reaches (l0, Z 0) (l, Z) ∧ l ∈ state-set A ∧ Z ∈ V ′ ∧

Z 6= {}}
⊆ {(l, Z) | l Z . l ∈ state-set A ∧ Z ∈ {Approxβ l Z | Z . Z ⊆ V }} ∪

{(l0, Z 0)}
by auto

also have finite . . . (is finite ?S)
proof −

have ?S = {(l0, Z 0)} ∪
⋃

((λ l. (λ Z . (l, Z)) ‘ {Approxβ l Z | Z . Z ⊆

426

V }) ‘ (state-set A))
by blast

also have finite . . .
by (blast intro: apx-finite finite-state-set)

finally show ?thesis .
qed
finally show ?case

by simp
next

case prems: (2 a a ′)
then show ?case

by (auto intro: step-z-beta ′-V ′ step-z-beta ′-state-set2)
next

case 3
from start-state show ?case unfolding a0-def by (auto simp: from-R-fst)

qed

sublocale sim-complete-bisim ′: Double-Simulation-Finite-Complete-Bisim-Cover-paired
λ (l, u) (l ′, u ′). A ` ′ 〈l, u〉 → 〈l ′, u ′〉 — Concrete step relation
λ (l, Z) (l ′, Z ′). ∃ a. A,R ` 〈l, Z 〉 a 〈l ′, Z ′〉 ∧ Z ′ 6= {}
— Step relation for the first abstraction layer
λ (l, R). l ∈ state-set A ∧ R ∈ R l — Valid states of the first abstraction

layer
λ (l, Z) (l ′, Z ′). A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ Z ′ 6= {}
— Step relation for the second abstraction layer
λ (l, Z). l ∈ state-set A ∧ Z ∈ V ′ ∧ Z 6= {} — Valid states of the second

abstraction layer
l0 Z 0

proof (standard, goal-cases)
case (1 l x l ′ y S)
then show ?case

apply clarify
apply (drule step-r ′-complete-spec, (auto intro: R-V ; fail))
by (auto simp: R-def region-unique)

next
case (2 l S l ′ T)
then show ?case

by (auto simp add: step-r ′-state-set step-r ′-R)
next

case prems: (3 l Z u)
then show ?case

using region-cover ′[of u l] by (auto dest!: V ′-V simp: V-def)+
qed

427

7.9.6 State Formulas

context
fixes P :: ′s ⇒ bool — The state property we want to check

begin

definition ϕ = P o fst

State formulas are compatible with closures.

Runs satisfying a formula all the way long interpretation Gϕ:
Graph-Start-Defs
λ (l, Z) (l ′, Z ′). A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ Z ′ 6= {} ∧ P l ′ (l0, Z 0) .

theorem Alw-ev-mc1 :
(∀ x0∈a0. sim.sim.Alw-ev (Not ◦ ϕ) x0) ←→ ¬ (P l0 ∧ (∃ a. Gϕ.reachable

a ∧ Gϕ.reaches1 a a))
using sim-complete-bisim ′.Alw-ev-mc1
unfolding Gϕ.reachable-def a0-def sim-complete-bisim ′.ψ-def ϕ-def
by auto

end

7.9.7 Leads-To Properties

context
fixes P Q :: ′s ⇒ bool — The state properties we want to check

begin

definition ψ = Q o fst

interpretation Gψ: Graph-Defs
λ (l, Z) (l ′, Z ′). A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ Z ′ 6= {} ∧ Q l ′ .

theorem leadsto-mc1 :
(∀ x0∈a0. sim.sim.leadsto (ϕ P) (Not ◦ ψ) x0) ←→
(@ x. reaches (l0, Z 0) x ∧ P (fst x) ∧ Q (fst x) ∧ (∃ a. Gψ.reaches x a ∧

Gψ.reaches1 a a))
if ∀ x0∈a0. ¬ sim.sim.deadlock x0

proof −
from that have ∗: ∀ x0∈Z 0. ¬ sim.sim.deadlock (l0, x0)

unfolding a0-def by auto
show ?thesis

using sim-complete-bisim ′.leadsto-mc1 [OF ∗, symmetric, of P Q]

428

unfolding ψ-def ϕ-def sim-complete-bisim ′.ϕ ′-def sim-complete-bisim ′.ψ-def
a0-def

by (auto dest: from-R-D from-R-loc)
qed

end

lemma from-R-reaches:
assumes sim.sim.Steps.reaches (from-R l0 Z 0) b
obtains l Z where b = from-R l Z
using assms by cases (fastforce simp: sim.A2 ′-def dest!: from-R-R-of)+

lemma ta-reaches-ex-iff :
assumes compatible:∧

l u u ′ R.
u ∈ R =⇒ u ′ ∈ R =⇒ R ∈ R l =⇒ l ∈ state-set A =⇒ P (l, u) = P

(l, u ′)
shows
(∃ x0 ∈ a0. ∃ l u. sim.sim.reaches x0 (l, u) ∧ P (l, u)) ←→
(∃ l Z . ∃ u ∈ Z . reaches (l0, Z 0) (l, Z) ∧ P (l, u))

proof −
have ∗: (∃ x0 ∈ a0. ∃ l u. sim.sim.reaches x0 (l, u) ∧ P (l, u))
←→ (∃ y. ∃ x0∈from-R l0 Z 0. sim.sim.reaches x0 y ∧ P y)
unfolding a0-def by auto

show ?thesis
unfolding ∗
apply (subst sim-complete-bisim ′.sim-reaches-equiv)
subgoal

by (simp add: start-state)
apply (subst sim-complete-bisim ′.reaches-ex ′[of P])
unfolding a0-def
apply clarsimp

subgoal
unfolding sim.P1 ′-def by (clarsimp simp: fst-simp) (metis R-ofI

compatible fst-conv)
apply safe
apply (rule from-R-reaches, assumption)

using from-R-fst by (force intro: from-R-val)+
qed

lemma ta-reaches-all-iff :
assumes compatible:∧

l u u ′ R.
u ∈ R =⇒ u ′ ∈ R =⇒ R ∈ R l =⇒ l ∈ state-set A =⇒ P (l, u) = P

429

(l, u ′)
shows
(∀ x0 ∈ a0. ∀ l u. sim.sim.reaches x0 (l, u) −→ P (l, u)) ←→
(∀ l Z . reaches (l0, Z 0) (l, Z) −→ (∀ u ∈ Z . P (l, u)))

proof −
have ∗: (∀ x0 ∈ a0. ∀ l u. sim.sim.reaches x0 (l, u) −→ P (l, u))
←→ (∀ y. ∀ x0∈from-R l0 Z 0. sim.sim.reaches x0 y −→ P y)
unfolding a0-def by auto

show ?thesis
unfolding ∗
apply (subst sim-complete-bisim ′.sim-reaches-equiv)
subgoal

by (simp add: start-state)
apply (subst sim-complete-bisim ′.reaches-all ′′[of P])
unfolding a0-def
apply clarsimp

subgoal
unfolding sim.P1 ′-def by (clarsimp simp: fst-simp) (metis R-ofI

compatible fst-conv)
apply auto
apply (rule from-R-reaches, assumption)
using from-R-fst by (force intro: from-R-val)+

qed

end

end

8 Forward Analysis with DBMs and Widening
theory Normalized-Zone-Semantics

imports DBM-Zone-Semantics Approx-Beta Simulation-Graphs-TA
begin

hide-const (open) D
no-notation infinity (‹∞›)

lemma rtranclp-backwards-invariant-iff :
assumes invariant:

∧
y z. E∗∗ x y =⇒ P z =⇒ E y z =⇒ P y

and E ′: E ′ = (λ x y. E x y ∧ P y)
shows E ′∗∗ x y ∧ P x ←→ E∗∗ x y ∧ P y
unfolding E ′

430

by (safe; induction rule: rtranclp-induct; auto dest: invariant intro: rtran-
clp.intros(2))

context Bisimulation-Invariant
begin

context
fixes ϕ :: ′a ⇒ bool and ψ :: ′b ⇒ bool
assumes compatible: a ∼ b =⇒ PA a =⇒ PB b =⇒ ϕ a ←→ ψ b

begin

lemma reaches-ex-iff :
(∃ b. A.reaches a b ∧ ϕ b) ←→ (∃ b. B.reaches a ′ b ∧ ψ b) if a ∼ a ′ PA

a PB a ′

using that by (force simp: compatible equiv ′-def dest: bisim.A-B-reaches
bisim.B-A-reaches)

lemma reaches-all-iff :
(∀ b. A.reaches a b −→ ϕ b) ←→ (∀ b. B.reaches a ′ b −→ ψ b) if a ∼ a ′

PA a PB a ′

using that by (force simp: compatible equiv ′-def dest: bisim.A-B-reaches
bisim.B-A-reaches)

end

end

lemma step-z-dbm-delay-loc:
l ′ = l if A ` 〈l, D〉 v,n,τ 〈l ′, D ′〉
using that by (auto elim!: step-z-dbm.cases)

lemma step-z-dbm-action-state-set1 :
l ∈ state-set A if A ` 〈l, D〉 v,n,�a 〈l ′, D ′〉
using that by (auto elim!: step-z-dbm.cases intro: state-setI1)

lemma step-z-dbm-action-state-set2 :
l ′ ∈ state-set A if A ` 〈l, D〉 v,n,�a 〈l ′, D ′〉
using that by (auto elim!: step-z-dbm.cases intro: state-setI2)

lemma step-delay-loc:
l ′ = l if A ` 〈l, u〉 →d 〈l ′, u ′〉
using that by (auto elim!: step-t.cases)

431

lemma step-a-state-set1 :
l ∈ state-set A if A ` 〈l, u〉 →a 〈l ′, u ′〉
using that by (auto elim!: step-a.cases intro: state-setI1)

lemma step ′-state-set1 :
l ∈ state-set A if A ` ′ 〈l, u〉 → 〈l ′, u ′〉
using that by (auto elim!: step ′.cases intro: step-a-state-set1 dest: step-delay-loc)

8.1 DBM-based Semantics with Normalization

8.1.1 Single Step

inductive step-z-norm ::
(′a, ′c, t, ′s) ta
⇒ ′s ⇒ t DBM ⇒ (′s ⇒ nat ⇒ nat) ⇒ (′c ⇒ nat) ⇒ nat ⇒ ′a action
⇒ ′s ⇒ t DBM ⇒ bool
(‹- ` 〈-, -〉 -,-,-,- 〈-, -〉› [61 ,61 ,61 ,61 ,61 ,61] 61)
where step-z-norm:

A ` 〈l,D〉 v,n,a 〈l ′, D ′〉 =⇒ A ` 〈l,D〉 k,v,n,a 〈l ′, norm (FW D ′ n) (k
l ′) n〉

inductive step-z-norm ′ ::
(′a, ′c, t, ′s) ta ⇒ ′s ⇒ t DBM ⇒ (′s ⇒ nat ⇒ nat) ⇒ (′c ⇒ nat) ⇒

nat ⇒ ′s ⇒ t DBM ⇒ bool
(‹- ` ′′ 〈-, -〉 -,-,- 〈-, -〉› [61 ,61 ,61 ,61 ,61] 61)
where

step: A ` 〈l ′, Z ′〉 v,n,τ 〈l ′′, Z ′′〉
=⇒ A ` 〈l ′′, Z ′′〉 k,v,n,�(a) 〈l ′′′, Z ′′′〉
=⇒ A ` ′ 〈l ′, Z ′〉 k,v,n 〈l ′′′, Z ′′′〉

abbreviation steps-z-norm ::
(′a, ′c, t, ′s) ta ⇒ ′s ⇒ t DBM ⇒ (′s ⇒ nat ⇒ nat) ⇒ (′c ⇒ nat) ⇒

nat ⇒ ′s ⇒ t DBM ⇒ bool
(‹- ` 〈-, -〉 -,-,-∗ 〈-, -〉› [61 ,61 ,61 ,61 ,61] 61) where
A ` 〈l,D〉 k,v,n∗ 〈l ′, D ′〉 ≡ (λ (l, Z) (l ′, Z ′). A ` ′ 〈l, Z 〉 k,v,n 〈l ′, Z ′〉)∗∗
(l, D) (l ′, D ′)

lemma norm-empty-diag-preservation-real:
fixes k :: nat ⇒ nat
assumes i ≤ n
assumes M i i < Le 0
shows norm M (real o k) n i i < Le 0
using assms unfolding norm-def by (auto simp: Let-def norm-diag-def

432

DBM .less)

context Regions-defs
begin

inductive valid-dbm where
[M]v,n ⊆ V =⇒ dbm-int M n =⇒ valid-dbm M

inductive-cases valid-dbm-cases[elim]: valid-dbm M

declare valid-dbm.intros[intro]

end

locale Regions-common =
Regions-defs X v n for X :: ′c set and v n +
fixes not-in-X
assumes finite: finite X
assumes clock-numbering: clock-numbering ′ v n ∀ k≤n. k > 0 −→ (∃ c ∈

X . v c = k)
∀ c ∈ X . v c ≤ n

assumes not-in-X : not-in-X /∈ X
assumes non-empty: X 6= {}

begin

lemma FW-zone-equiv-spec:
shows [M]v,n = [FW M n]v,n

apply (rule FW-zone-equiv) using clock-numbering(2) by auto

lemma dbm-non-empty-diag:
assumes [M]v,n 6= {}
shows ∀ k ≤ n. M k k ≥ 0

proof safe
fix k assume k: k ≤ n
have ∀ k≤n. 0 < k −→ (∃ c. v c = k) using clock-numbering(2) by blast
from k not-empty-cyc-free[OF this assms(1)] show 0 ≤ M k k by (simp

add: cyc-free-diag-dest ′)
qed

lemma cn-weak: ∀ k≤n. 0 < k −→ (∃ c. v c = k) using clock-numbering(2)
by blast

lemma negative-diag-empty:
assumes ∃ k ≤ n. M k k < 0

433

shows [M]v,n = {}
using dbm-non-empty-diag assms by force

lemma non-empty-cyc-free:
assumes [M]v,n 6= {}
shows cyc-free M n
using FW-neg-cycle-detect FW-zone-equiv-spec assms negative-diag-empty

by blast

lemma FW-valid-preservation:
assumes valid-dbm M
shows valid-dbm (FW M n)

proof standard
from FW-int-preservation assms show dbm-int (FW M n) n by blast

next
from FW-zone-equiv-spec[of M , folded neutral] assms show [FW M n]v,n
⊆ V by fastforce
qed

end

context Regions-global
begin

sublocale Regions-common by standard (rule finite clock-numbering not-in-X
non-empty)+

abbreviation v ′ ≡ beta-interp.v ′

lemma apx-empty-iff ′′:
assumes canonical M1 n [M1]v,n ⊆ V dbm-int M1 n
shows [M1]v,n = {} ←→ [norm M1 (k o v ′) n]v,n = {}
using beta-interp.apx-norm-eq[OF assms] apx-empty-iff ′[of [M1]v,n] assms
unfolding V ′-def by blast

lemma norm-FW-empty:
assumes valid-dbm M
assumes [M]v,n = {}
shows [norm (FW M n) (k o v ′) n]v,n = {} (is [?M]v,n = {})

proof −
from assms(2) cyc-free-not-empty clock-numbering(1) have ¬ cyc-free M

n
by metis

from FW-neg-cycle-detect[OF this] obtain i where i: i ≤ n FW M n i

434

i < 0 by auto
with norm-empty-diag-preservation-real[folded neutral] have

?M i i < 0
unfolding comp-def by auto
with ‹i ≤ n› show ?thesis using beta-interp.neg-diag-empty-spec by auto

qed

lemma apx-norm-eq-spec:
assumes valid-dbm M

and [M]v,n 6= {}
shows beta-interp.Approxβ ([M]v,n) = [norm (FW M n) (k o v ′) n]v,n

proof −
note cyc-free = non-empty-cyc-free[OF assms(2)]
from assms(1) FW-zone-equiv-spec[of M] have [M]v,n = [FW M n]v,n

by (auto simp: neutral)
with beta-interp.apx-norm-eq[OF fw-canonical[OF cyc-free] - FW-int-preservation]

dbm-non-empty-diag[OF assms(2)] assms(1)
show Approxβ ([M]v,n) = [norm (FW M n) (k o v ′) n]v,n by auto

qed

lemma norm-FW-valid-preservation-non-empty:
assumes valid-dbm M [M]v,n 6= {}
shows valid-dbm (norm (FW M n) (k o v ′) n) (is valid-dbm ?M)

proof −
from FW-valid-preservation[OF assms(1)] have valid: valid-dbm (FW M

n) .
show ?thesis
proof standard

from valid beta-interp.norm-int-preservation show dbm-int ?M n by
blast

next
from fw-canonical[OF non-empty-cyc-free] assms have canonical (FW

M n) n by auto
from beta-interp.norm-V-preservation[OF - this] valid show [?M]v,n ⊆

V by fast
qed

qed

lemma norm-int-all-preservation:
fixes M :: real DBM
assumes dbm-int-all M
shows dbm-int-all (norm M (k o v ′) n)

using assms unfolding norm-def norm-diag-def by (auto simp: Let-def)

435

lemma norm-FW-valid-preservation-empty:
assumes valid-dbm M [M]v,n = {}
shows valid-dbm (norm (FW M n) (k o v ′) n) (is valid-dbm ?M)

proof −
from FW-valid-preservation[OF assms(1)] have valid: valid-dbm (FW M

n) .
show ?thesis
proof standard

from valid beta-interp.norm-int-preservation show dbm-int ?M n by
blast

next
from norm-FW-empty[OF assms(1 ,2)] show [?M]v,n ⊆ V by fast

qed
qed

lemma norm-FW-valid-preservation:
assumes valid-dbm M
shows valid-dbm (norm (FW M n) (k o v ′) n)

using assms norm-FW-valid-preservation-empty norm-FW-valid-preservation-non-empty
by metis

lemma norm-FW-equiv:
assumes valid: dbm-int D n dbm-int M n [D]v,n ⊆ V

and equiv: [D]v,n = [M]v,n
shows [norm (FW D n) (k o v ′) n]v,n = [norm (FW M n) (k o v ′) n]v,n

proof (cases [D]v,n = {})
case False
with equiv fw-shortest[OF non-empty-cyc-free] FW-zone-equiv-spec have

canonical (FW D n) n canonical (FW M n) n [FW D n]v,n = [D]v,n
[FW M n]v,n = [M]v,n

by blast+
with valid equiv show ?thesis
apply −
apply (subst beta-interp.apx-norm-eq[symmetric])
prefer 4
apply (subst beta-interp.apx-norm-eq[symmetric])

by (simp add: FW-int-preservation)+
next

case True
show ?thesis
apply (subst norm-FW-empty)
prefer 3
apply (subst norm-FW-empty)

using valid equiv True by blast+

436

qed

end

context Regions
begin

sublocale Regions-common by standard (rule finite clock-numbering not-in-X
non-empty)+

definition v ′ ≡ λ i. if 0 < i ∧ i ≤ n then (THE c. c ∈ X ∧ v c = i) else
not-in-X

abbreviation step-z-norm ′ (‹- ` 〈-, -〉 N (-) 〈-, -〉› [61 ,61 ,61 ,61] 61)
where

A ` 〈l, D〉 N (a) 〈l ′, D ′〉 ≡ A ` 〈l, D〉 (λ l. k l o v ′),v,n,a 〈l ′, D ′〉

definition step-z-norm ′′ (‹- ` ′′ 〈-, -〉 N (-) 〈-, -〉› [61 ,61 ,61 ,61] 61)
where

A ` ′ 〈l, D〉 N (a) 〈l ′′, D ′′〉 ≡
∃ l ′ D ′. A ` 〈l, D〉 v,n,τ 〈l ′, D ′〉 ∧ A ` 〈l ′, D ′〉 N (�a) 〈l ′′, D ′′〉

abbreviation steps-z-norm ′ (‹- ` 〈-, -〉 N ∗ 〈-, -〉› [61 ,61 ,61] 61)
where

A ` 〈l, D〉 N ∗ 〈l ′, D ′〉 ≡ (λ (l,D) (l ′,D ′). ∃ a. A ` ′ 〈l, D〉 N (a) 〈l ′,
D ′〉)∗∗ (l,D) (l ′,D ′)

inductive-cases step-z-norm ′-elims[elim!]: A ` 〈l, u〉 N (a) 〈l ′,u ′〉

declare step-z-norm.intros[intro]

lemma step-z-valid-dbm:
assumes A ` 〈l, D〉 v,n,a 〈l ′, D ′〉

and global-clock-numbering A v n valid-abstraction A X k valid-dbm D
shows valid-dbm D ′

proof −
from step-z-V step-z-dbm-sound[OF assms(1 ,2)] step-z-dbm-preserves-int[OF

assms(1 ,2)]
assms(3 ,4)

have
dbm-int D ′ n A ` 〈l, [D]v,n〉 a 〈l ′, [D ′]v,n〉

by (fastforce dest!: valid-abstraction-pairsD)+

437

with step-z-V [OF this(2)] assms(4) show ?thesis by auto
qed

lemma step-z-norm-induct[case-names - step-z-norm step-z-refl]:
assumes x1 ` 〈x2 , x3 〉 (λ l. k l o v ′),v,n,a 〈x7 ,x8 〉

and step-z-norm:∧
A l D l ′ D ′.

A ` 〈l, D〉 v,n,a 〈l ′,D ′〉 =⇒
P A l D l ′ (norm (FW D ′ n) (k l ′ o v ′) n)

shows P x1 x2 x3 x7 x8
using assms by (induction rule: step-z-norm.inducts) auto

context
fixes l ′ :: ′s

begin

interpretation regions: Regions-global - - - k l ′
by standard (rule finite clock-numbering not-in-X non-empty)+

lemma regions-v ′-eq[simp]:
regions.v ′ = v ′

unfolding v ′-def regions.beta-interp.v ′-def by simp

lemma step-z-norm-int-all-preservation:
assumes

A ` 〈l,D〉 N (a) 〈l ′,D ′〉 global-clock-numbering A v n
∀ (x, m)∈Timed-Automata.clkp-set A. m ∈ � dbm-int-all D

shows dbm-int-all D ′

using assms
apply cases
apply simp
apply (rule regions.norm-int-all-preservation[simplified])
apply (rule FW-int-all-preservation)
apply (erule step-z-dbm-preserves-int-all)

by fast+

lemma step-z-norm-valid-dbm-preservation:
assumes

A ` 〈l,D〉 N (a) 〈l ′,D ′〉 global-clock-numbering A v n valid-abstraction
A X k valid-dbm D

shows valid-dbm D ′

using assms
by cases (simp; rule regions.norm-FW-valid-preservation[simplified]; erule

438

step-z-valid-dbm; fast)

lemma norm-beta-sound:
assumes A ` 〈l,D〉 N (a) 〈l ′,D ′〉 global-clock-numbering A v n valid-abstraction

A X k
and valid-dbm D

shows A ` 〈l,[D]v,n〉 β(a) 〈l ′,[D ′]v,n〉 using assms(2−)
apply (induction A l D l ′≡ l ′ D ′ rule: step-z-norm-induct, (subst assms(1);

blast))
proof goal-cases

case step-z-norm: (1 A l D D ′)
from step-z-dbm-sound[OF step-z-norm(1 ,2)] have A ` 〈l, [D]v,n〉 a
〈l ′,[D ′]v,n〉 by blast

then have ∗: A ` 〈l, [D]v,n〉 β(a) 〈l ′,Approxβ l ′ ([D ′]v,n)〉 by force
show ?case
proof (cases [D ′]v,n = {})

case False
from regions.apx-norm-eq-spec[OF step-z-valid-dbm[OF step-z-norm]

False] ∗
show ?thesis by auto

next
case True
with

regions.norm-FW-empty[OF step-z-valid-dbm[OF step-z-norm] this]
regions.beta-interp.apx-empty ∗

show ?thesis by auto
qed

qed

lemma step-z-norm-valid-dbm:
assumes

A ` 〈l, D〉 N (a) 〈l ′,D ′〉 global-clock-numbering A v n
valid-abstraction A X k valid-dbm D

shows valid-dbm D ′ using assms(2−)
apply (induction A l D l ′≡ l ′ D ′ rule: step-z-norm-induct, (subst assms(1);
blast))
proof goal-cases

case step-z-norm: (1 A l D D ′)
with regions.norm-FW-valid-preservation[OF step-z-valid-dbm[OF step-z-norm]]

show ?case by auto
qed

lemma norm-beta-complete:

439

assumes A ` 〈l,[D]v,n〉 β(a) 〈l ′,Z 〉 global-clock-numbering A v n valid-abstraction
A X k

and valid-dbm D
obtains D ′ where A ` 〈l,D〉 N (a) 〈l ′,D ′〉 [D ′]v,n = Z valid-dbm D ′

proof −
from assms(3) have ta-int: ∀ (x, m)∈Timed-Automata.clkp-set A. m ∈
�

by (fastforce dest!: valid-abstraction-pairsD)
from assms(1) obtain Z ′ where Z ′: A ` 〈l,[D]v,n〉 a 〈l ′,Z ′〉 Z =

Approxβ l ′ Z ′ by auto
from assms(4) have dbm-int D n by auto
with step-z-dbm-DBM [OF Z ′(1) assms(2)] step-z-dbm-preserves-int[OF

- assms(2) ta-int] obtain D ′

where D ′: A ` 〈l, D〉 v,n,a 〈l ′,D ′〉 Z ′ = [D ′]v,n dbm-int D ′ n
by auto
note valid-D ′ = step-z-valid-dbm[OF D ′(1) assms(2 ,3)]
obtain D ′′ where D ′′: D ′′ = norm (FW D ′ n) (k l ′ ◦ v ′) n by auto
show ?thesis
proof (cases Z ′ = {})

case False
with D ′ have ∗: [D ′]v,n 6= {} by auto

from regions.apx-norm-eq-spec[OF valid-D ′ this] D ′′ D ′(2) Z ′(2) assms(4)
have Z = [D ′′]v,n

by auto
with regions.norm-FW-valid-preservation[OF valid-D ′] D ′ D ′′ ∗ assms(4)
show thesis

apply −
apply (rule that[of D ′′])
by (drule step-z-norm.intros[where k = λ l. k l o v ′]) simp+

next
case True
with regions.norm-FW-empty[OF valid-D ′[OF assms(4)]] D ′′ D ′ Z ′(2)

regions.norm-FW-valid-preservation[OF valid-D ′[OF assms(4)]] re-
gions.beta-interp.apx-empty

show thesis
apply −
apply (rule that[of D ′′])

apply blast
by fastforce+

qed
qed

lemma step-z-norm-mono:

440

assumes A ` 〈l,D〉 N (a) 〈l ′,D ′〉 global-clock-numbering A v n valid-abstraction
A X k

and valid-dbm D valid-dbm M
and [D]v,n ⊆ [M]v,n
shows ∃ M ′. A ` 〈l, M 〉 N (a) 〈l ′, M ′〉 ∧ [D ′]v,n ⊆ [M ′]v,n

proof −
from norm-beta-sound[OF assms(1 ,2 ,3 ,4)] have A ` 〈l, [D]v,n〉 β(a)
〈l ′, [D ′]v,n〉 .

from step-z-beta-mono[OF this assms(6)] assms(5) obtain Z where
A ` 〈l, [M]v,n〉 β(a) 〈l ′, Z 〉 [D ′]v,n ⊆ Z

by auto
with norm-beta-complete[OF this(1) assms(2 ,3 ,5)] show ?thesis by metis

qed

lemma step-z-norm-equiv:
assumes step: A ` 〈l,D〉 N (a) 〈l ′,D ′〉

and prems: global-clock-numbering A v n valid-abstraction A X k
and valid: valid-dbm D valid-dbm M
and equiv: [D]v,n = [M]v,n

shows ∃ M ′. A ` 〈l, M 〉 N (a) 〈l ′, M ′〉 ∧ [D ′]v,n = [M ′]v,n
using step
apply cases
apply (frule step-z-dbm-equiv[OF prems(1)])
apply (rule equiv)
apply clarify
apply (drule regions.norm-FW-equiv[rotated 3])

prefer 4
apply force

using step-z-valid-dbm[OF - prems] valid by (simp add: valid-dbm.simps)+

end

8.1.2 Multi Step

lemma valid-dbm-V ′:
assumes valid-dbm M
shows [M]v,n ∈ V ′

using assms unfolding V ′-def by force

lemma step-z-empty:
assumes A ` 〈l, Z 〉 a 〈l ′, Z ′〉 Z = {}
shows Z ′ = {}
using assms
apply cases

441

unfolding zone-delay-def zone-set-def
by auto

8.1.3 Connecting with Correctness Results for Approximating
Semantics

context
fixes A :: (′a, ′c, real, ′s) ta

assumes gcn: global-clock-numbering A v n
and va: valid-abstraction A X k

begin

context
notes [intro] = step-z-valid-dbm[OF - gcn va]

begin

lemma valid-dbm-step-z-norm ′′:
valid-dbm D ′ if A ` ′ 〈l, D〉 N (a) 〈l ′, D ′〉 valid-dbm D
using that unfolding step-z-norm ′′-def by (auto intro: step-z-norm-valid-dbm[OF

- gcn va])

lemma steps-z-norm ′-valid-dbm-invariant:
valid-dbm D ′ if A ` 〈l, D〉 N ∗ 〈l ′, D ′〉 valid-dbm D
using that by (induction rule: rtranclp-induct2) (auto intro: valid-dbm-step-z-norm ′′)

lemma norm-beta-sound ′′:
assumes A ` ′ 〈l, D〉 N (a) 〈l ′′, D ′′〉

and valid-dbm D
shows A ` 〈l, [D]v,n〉 β 〈l ′′, [D ′′]v,n〉

proof −
from assms(1) obtain l ′ D ′ where

A ` 〈l, D〉 v,n,τ 〈l ′, D ′〉 A ` 〈l ′, D ′〉 N (�a) 〈l ′′, D ′′〉
by (auto simp: step-z-norm ′′-def)

moreover with ‹valid-dbm D› have valid-dbm D ′

by auto
ultimately have A ` 〈l ′, [D ′]v,n〉 β�a 〈l ′′, [D ′′]v,n〉

by − (rule norm-beta-sound[OF - gcn va])
with step-z-dbm-sound[OF ‹A ` 〈l, D〉 v,n,τ 〈l ′, D ′〉› gcn] show ?thesis

unfolding step-z-beta ′-def by − (frule step-z.cases[where P = l ′ = l];
force)
qed

lemma norm-beta-complete1 :
assumes A ` 〈l,[D]v,n〉 β 〈l ′′,Z ′′〉

442

and valid-dbm D
obtains a D ′′ where A ` ′ 〈l,D〉 N (a) 〈l ′′,D ′′〉 [D ′′]v,n = Z ′′ valid-dbm

D ′′

proof −
from assms(1) obtain a l ′ Z ′ where steps:

A ` 〈l, [D]v,n〉 τ 〈l ′, Z ′〉 A ` 〈l ′, Z ′〉 β(�a) 〈l ′′, Z ′′〉
by (auto simp: step-z-beta ′-def)

from step-z-dbm-DBM [OF this(1) gcn] obtain D ′ where D ′:
A ` 〈l, D〉 v,n,τ 〈l ′, D ′〉 Z ′ = [D ′]v,n
by auto

with ‹valid-dbm D› have valid-dbm D ′

by auto
from steps D ′ show ?thesis

by (auto
intro!: that[unfolded step-z-norm ′′-def]
elim!: norm-beta-complete[OF - gcn va ‹valid-dbm D ′›]
)

qed

lemma bisim:
Bisimulation-Invariant
(λ (l, Z) (l ′, Z ′). A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ Z ′ 6= {})
(λ (l, D) (l ′, D ′). ∃ a. A ` ′ 〈l, D〉 N (a) 〈l ′, D ′〉 ∧ [D ′]v,n 6= {})
(λ (l, Z) (l ′, D). l = l ′ ∧ Z = [D]v,n)
(λ -. True) (λ (l, D). valid-dbm D)

proof (standard, goal-cases)
— β ⇒ N
case (1 a b a ′)
then show ?case

by (blast elim: norm-beta-complete1)
next

— N ⇒ β
case (2 a a ′ b ′)
then show ?case

by (blast intro: norm-beta-sound ′′)
next

— β invariant
case (3 a b)
then show ?case

by simp
next

— N invariant
case (4 a b)

443

then show ?case
unfolding step-z-norm ′′-def
by (auto intro: step-z-norm-valid-dbm[OF - gcn va])

qed

end

interpretation Bisimulation-Invariant
λ (l, Z) (l ′, Z ′). A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ Z ′ 6= {}
λ (l, D) (l ′, D ′). ∃ a. A ` ′ 〈l, D〉 N (a) 〈l ′, D ′〉 ∧ [D ′]v,n 6= {}
λ (l, Z) (l ′, D). l = l ′ ∧ Z = [D]v,n
λ -. True λ (l, D). valid-dbm D
by (rule bisim)

lemma step-z-norm ′′-non-empty:
[D]v,n 6= {} if A ` ′ 〈l, D〉 N (a) 〈l ′, D ′〉 [D ′]v,n 6= {} valid-dbm D

proof −
from that B-A-step[of (l, D) (l ′, D ′) (l, [D]v,n)] have

A ` 〈l, [D]v,n〉 β 〈l ′, [D ′]v,n〉
by auto

with ‹- 6= {}› show ?thesis
by (auto 4 3 dest: step-z-beta ′-empty)

qed

lemma norm-steps-empty:
A ` 〈l, D〉 N ∗ 〈l ′, D ′〉 ∧ [D ′]v,n 6= {} ←→ B.reaches (l, D) (l ′, D ′) ∧

[D]v,n 6= {}
if valid-dbm D
apply (subst rtranclp-backwards-invariant-iff [

of λ(l, D) (l ′, D ′). ∃ a. A ` ′ 〈l, D〉 N (a) 〈l ′, D ′〉 (l, D) λ(l, D). [D]v,n
6= {},

simplified
])

using ‹valid-dbm D›
by (auto dest!: step-z-norm ′′-non-empty intro: steps-z-norm ′-valid-dbm-invariant)

context
fixes P Q :: ′s ⇒ bool — The state property we want to check

begin

interpretation bisim-ψ: Bisimulation-Invariant
λ (l, Z) (l ′, Z ′). A ` 〈l, Z 〉 β 〈l ′, Z ′〉 ∧ Z ′ 6= {} ∧ Q l ′
λ (l, D) (l ′, D ′). ∃ a. A ` ′ 〈l, D〉 N (a) 〈l ′, D ′〉 ∧ [D ′]v,n 6= {} ∧ Q l ′

444

λ (l, Z) (l ′, D). l = l ′ ∧ Z = [D]v,n
λ -. True λ (l, D). valid-dbm D
by (rule Bisimulation-Invariant-filter [OF bisim, of λ (l, -). Q l λ (l, -).

Q l]) auto

end

context
assumes finite-state-set: finite (state-set A)

begin

interpretation R: Regions-TA
by (standard; rule va finite-state-set)

lemma A-reaches-non-empty:
Z ′ 6= {} if A.reaches (l, Z) (l ′, Z ′) Z 6= {}
using that by cases auto

lemma A-reaches-start-non-empty-iff :
(∃Z ′. (∃ u. u ∈ Z ′) ∧ A.reaches (l, Z) (l ′, Z ′)) ←→ (∃Z ′. A.reaches (l,

Z) (l ′, Z ′)) ∧ Z 6= {}
apply safe

apply blast
subgoal

by (auto dest: step-z-beta ′-empty elim: converse-rtranclpE2)
by (auto dest: A-reaches-non-empty)

lemma step-z-norm ′′-state-set1 :
l ∈ state-set A if A ` ′ 〈l, D〉 Na 〈l ′, D ′〉
using that unfolding step-z-norm ′′-def
by (auto dest: step-z-dbm-delay-loc intro: step-z-dbm-action-state-set1)

lemma step-z-norm ′′-state-set2 :
l ′ ∈ state-set A if A ` ′ 〈l, D〉 Na 〈l ′, D ′〉
using that unfolding step-z-norm ′′-def by (auto intro: step-z-dbm-action-state-set2)

theorem steps-z-norm-decides-emptiness:
assumes valid-dbm D
shows (∃ D ′. A ` 〈l, D〉 N ∗ 〈l ′,D ′〉 ∧ [D ′]v,n 6= {})
←→ (∃ u ∈ [D]v,n. (∃ u ′. A ` ′ 〈l, u〉 →∗ 〈l ′, u ′〉))

proof (cases [D]v,n = {})
case True
then show ?thesis

445

unfolding norm-steps-empty[OF ‹valid-dbm D›] by auto
next

case F : False
show ?thesis
proof (cases l ∈ state-set A)

case True
interpret Regions-TA-Start-State v n not-in-X X k A l [D]v,n

using assms F True by − (standard, auto elim!: valid-dbm-V ′)
show ?thesis

unfolding steps ′-iff [symmetric] norm-steps-empty[OF ‹valid-dbm D›]
using

reaches-ex-iff [of λ (l, -). l = l ′ λ (l, -). l = l ′ (l, [D]v,n) (l, D)]
‹valid-dbm D› ta-reaches-ex-iff [of λ (l, -). l = l ′]

by (auto simp: A-reaches-start-non-empty-iff from-R-def a0-def)
next

case False
have A ` 〈l, D〉 N ∗ 〈l ′,D ′〉 ←→ (D ′ = D ∧ l ′ = l) for D ′

using False by (blast dest: step-z-norm ′′-state-set1 elim: converse-rtranclpE2)
moreover have A ` ′ 〈l, u〉 →∗ 〈l ′, u ′〉 ←→ (u ′ = u ∧ l ′ = l) for u u ′

unfolding steps ′-iff [symmetric] using False
by (blast dest: step ′-state-set1 elim: converse-rtranclpE2)

ultimately show ?thesis
using F by auto

qed
qed

end

end

context
fixes A :: (′a, ′c, real, ′s) ta

assumes gcn: global-clock-numbering A v n
and va: valid-abstraction A X k

begin

lemmas
step-z-norm-valid-dbm ′ = step-z-norm-valid-dbm[OF - gcn va]

lemmas
step-z-valid-dbm ′ = step-z-valid-dbm[OF - gcn va]

lemmas norm-beta-sound ′ = norm-beta-sound[OF - gcn va]

446

lemma v-bound:
∀ c ∈ clk-set A. v c ≤ n
using gcn by blast

lemmas alpha-beta-step ′′ = alpha-beta-step ′[OF - va v-bound]

lemmas step-z-dbm-sound ′ = step-z-dbm-sound[OF - gcn]

lemmas step-z-V ′′ = step-z-V ′[OF - va v-bound]

end

end

8.2 Additional Useful Properties of the Normalized Seman-
tics

Obsolete

lemma norm-diag-alt-def :
norm-diag e = (if e < 0 then Lt 0 else if e = 0 then e else ∞)
unfolding norm-diag-def DBM .neutral DBM .less ..

lemma norm-diag-preservation:
assumes ∀ l≤n. M1 l l ≤ 0
shows ∀ l≤n. (norm M1 (k :: nat ⇒ nat) n) l l ≤ 0
using assms unfolding norm-def norm-diag-alt-def by (auto simp: DBM .neutral)

8.3 Appendix: Standard Clock Numberings for Concrete Mod-
els

locale Regions ′ =
fixes X and k :: ′c ⇒ nat and v :: ′c ⇒ nat and n :: nat and not-in-X
assumes finite: finite X
assumes clock-numbering ′: ∀ c ∈ X . v c > 0 ∀ c. c /∈ X −→ v c > n
assumes bij: bij-betw v X {1 ..n}
assumes non-empty: X 6= {}
assumes not-in-X : not-in-X /∈ X

begin

lemma inj: inj-on v X using bij-betw-imp-inj-on bij by simp

lemma cn-weak: ∀ c. v c > 0 using clock-numbering ′ by force

447

lemma in-X : assumes v x ≤ n shows x ∈ X using assms clock-numbering ′(2)
by force

end

sublocale Regions ′ ⊆ Regions-global
proof (unfold-locales, auto simp: finite clock-numbering ′ non-empty cn-weak
not-in-X , goal-cases)

case (1 x y) with inj in-X show ?case unfolding inj-on-def by auto
next

case (2 k)
from bij have v ‘ X = {1 ..n} unfolding bij-betw-def by auto
from 2 have k ∈ {1 ..n} by simp
then obtain x where x ∈ X v x = k unfolding image-def
by (metis (no-types, lifting) ‹v ‘ X = {1 ..n}› imageE)
then show ?case by blast

next
case (3 x) with bij show ?case unfolding bij-betw-def by auto

qed

lemma standard-abstraction:
assumes

finite (Timed-Automata.clkp-set A) finite (Timed-Automata.collect-clkvt
(trans-of A))
∀ (-,m::real) ∈ Timed-Automata.clkp-set A. m ∈ �

obtains k :: ′c ⇒ nat where Timed-Automata.valid-abstraction A (clk-set
A) k
proof −

from assms have 1 : finite (clk-set A) by auto
have 2 : Timed-Automata.collect-clkvt (trans-of A) ⊆ clk-set A by auto
from assms obtain L where L: distinct L set L = Timed-Automata.clkp-set

A
by (meson finite-distinct-list)

let ?M = λ c. {m . (c, m) ∈ Timed-Automata.clkp-set A}
let ?X = clk-set A
let ?m = map-of L
let ?k = λ x. if ?M x = {} then 0 else nat (floor (Max (?M x)) + 1)
{ fix c m assume A: (c, m) ∈ Timed-Automata.clkp-set A

from assms(1) have finite (snd ‘ Timed-Automata.clkp-set A) by auto
moreover have ?M c ⊆ (snd ‘ Timed-Automata.clkp-set A) by force
ultimately have fin: finite (?M c) by (blast intro: finite-subset)
then have Max (?M c) ∈ {m . (c, m) ∈ Timed-Automata.clkp-set A}

using Max-in A by auto

448

with assms(3) have Max (?M c) ∈ � by auto
then have floor (Max (?M c)) = Max (?M c) by (metis Nats-cases

floor-of-nat of-int-of-nat-eq)
have ∗: ?k c = Max (?M c) + 1
proof −

have real (nat (n + 1)) = real-of-int n + 1
if Max {m. (c, m) ∈ Timed-Automata.clkp-set A} = real-of-int n
for n :: int and x :: real

proof −
from that have real-of-int (n + 1) ∈ �

using ‹Max {m. (c, m) ∈ Timed-Automata.clkp-set A} ∈ �› by
auto

then show ?thesis
by (metis Nats-cases ceiling-of-int nat-int of-int-1 of-int-add

of-int-of-nat-eq)
qed
with A ‹floor (Max (?M c)) = Max (?M c)› show ?thesis

by auto
qed
from fin A have Max (?M c) ≥ m by auto
moreover from A assms(3) have m ∈ � by auto
ultimately have m ≤ ?k c m ∈ � c ∈ clk-set A using A ∗ by force+

}
then have ∀ (x, m) ∈ Timed-Automata.clkp-set A. m ≤ ?k x ∧ x ∈ clk-set

A ∧ m ∈ � by blast
with 1 2 have Timed-Automata.valid-abstraction A ?X ?k by − (standard,

assumption+)
then show thesis ..

qed

definition
finite-ta A ≡
finite (Timed-Automata.clkp-set A) ∧ finite (Timed-Automata.collect-clkvt

(trans-of A))
∧ (∀ (-,m) ∈ Timed-Automata.clkp-set A. m ∈ �) ∧ clk-set A 6= {} ∧
−clk-set A 6= {}

lemma finite-ta-Regions ′:
fixes A :: (′a, ′c, real, ′s) ta
assumes finite-ta A
obtains v n x where Regions ′ (clk-set A) v n x

proof −
from assms obtain x where x: x /∈ clk-set A unfolding finite-ta-def by

auto

449

from assms(1) have finite (clk-set A) unfolding finite-ta-def by auto
with standard-numbering[of clk-set A] assms obtain v and n :: nat where

bij-betw v (clk-set A) {1 ..n}
∀ c∈clk-set A. 0 < v c ∀ c. c /∈ clk-set A −→ n < v c

by auto
then have Regions ′ (clk-set A) v n x using x assms unfolding fi-

nite-ta-def by − (standard, auto)
then show ?thesis ..

qed

lemma finite-ta-RegionsD:
fixes A :: (′a, ′c, t, ′s) ta
assumes finite-ta A
obtains k :: ′c ⇒ nat and v n x where

Regions ′ (clk-set A) v n x Timed-Automata.valid-abstraction A (clk-set
A) k

global-clock-numbering A v n
proof −

from standard-abstraction assms obtain k :: ′c ⇒ nat where k:
Timed-Automata.valid-abstraction A (clk-set A) k

unfolding finite-ta-def by blast
from finite-ta-Regions ′[OF assms] obtain v n x where ∗: Regions ′ (clk-set

A) v n x .
then interpret interp: Regions ′ clk-set A k v n x .
from interp.clock-numbering have global-clock-numbering A v n by blast
with ∗ k show ?thesis ..

qed

definition valid-dbm where valid-dbm M n ≡ dbm-int M n ∧ (∀ i ≤ n. M
0 i ≤ 0)

lemma dbm-positive:
assumes M 0 (v c) ≤ 0 v c ≤ n DBM-val-bounded v u M n
shows u c ≥ 0

proof −
from assms have dbm-entry-val u None (Some c) (M 0 (v c)) unfolding

DBM-val-bounded-def by auto
with assms(1) show ?thesis
proof (cases M 0 (v c), goal-cases)

case 1
then show ?case unfolding less-eq neutral using order-trans by

(fastforce dest!: le-dbm-le)
next

case 2

450

then show ?case unfolding less-eq neutral
by (auto dest!: lt-dbm-le) (meson less-trans neg-0-less-iff-less not-less)

next
case 3
then show ?case unfolding neutral less-eq dbm-le-def by auto

qed
qed

lemma valid-dbm-pos:
assumes valid-dbm M n
shows [M]v,n ⊆ {u. ∀ c. v c ≤ n −→ u c ≥ 0}

using dbm-positive assms unfolding valid-dbm-def unfolding DBM-zone-repr-def
by fast

lemma (in Regions ′) V-alt-def :
shows {u. ∀ c. v c > 0 ∧ v c ≤ n −→ u c ≥ 0} = V

unfolding V-def using clock-numbering by metis

end

References

[AD90] Rajeev Alur and D. L. Dill. Automata for modeling real-time sys-
tems. In Proceedings of the Seventeenth International Colloquium
on Automata, Languages and Programming, pages 322–335, New
York, NY, USA, 1990. Springer-Verlag New York, Inc.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183–235, 1994.

[Bou04] Patricia Bouyer. Forward analysis of updatable timed automata.
Formal Methods in System Design, 24(3):281–320, 2004.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics, al-
gorithms and tools. In Lectures on Concurrency and Petri Nets,
Advances in Petri Nets [This tutorial volume originates from the
4th Advanced Course on Petri Nets, ACPN 2003, held in Eich-
stätt, Germany in September 2003. In addition to lectures given
at ACPN 2003, additional chapters have been commissioned],
pages 87–124, 2003.

[HHWt97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-toi.
Hytech: A model checker for hybrid systems. Software Tools
for Technology Transfer, 1:460–463, 1997.

451

[LPY97] G. Kim Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
nutshell. International Journal on Software Tools for Technology
Transfer, 1(1):134–152, 1997.

[Yov97] Sergio Yovine. KRONOS: A verification tool for real-time sys-
tems. STTT, 1(1-2):123–133, 1997.

452

	Miscellaneous
	Lists
	Streams
	Mixed Material

	Graphs
	Basic Definitions and Theorems
	Graphs with a Start Node
	Subgraphs
	Bundles
	Directed Acyclic Graphs
	Finite Graphs
	Graph Invariants
	Simulations and Bisimulations
	CTL

	Basic Definitions and Semantics
	Syntactic Definition
	Operational Semantics
	Contracting Runs
	Zone Semantics
	From Clock Constraints to DBMs
	Semantics Based on DBMs

	Refinement to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -regions
	Definition
	Basic Properties
	Approximation with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -regions
	Computing 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -Approximation
	Auxiliary 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -boundedness Theorems

	The Classic Construction for Decidability
	Definition of Regions
	Basic Properties
	Set of Regions
	Compability With Clock Constraints
	Compability with Resets
	A Semantics Based on Regions
	Correct Approximation of Zones with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -regions
	Old Variant Using a Global Set of Regions
	A Zone Semantics Abstracting with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Closure
	New Variant
	A Semantics Based on Localized Regions
	A New Zone Semantics Abstracting with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Closure,l

	Correctness of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -approximation from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -regions
	Preparing Bouyer's Theorem
	Bouyer's Main Theorem
	Nice Corollaries of Bouyer's Theorem
	A New Zone Semantics Abstracting with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Approx

	Simulation Graphs
	Simulation Graphs
	Poststability
	Prestability
	Double Simulation
	Finite Graphs
	Complete Simulation Graphs
	Finite Complete Double Simulations
	Encoding of Properties in Runs
	Instantiation of Simulation Locales

	Forward Analysis with DBMs and Widening
	DBM-based Semantics with Normalization
	Additional Useful Properties of the Normalized Semantics
	Appendix: Standard Clock Numberings for Concrete Models

