Timed Automata

Simon Wimmer

March 17, 2025

Abstract

Timed automata are a widely used formalism for modeling real-
time systems, which is employed in a class of successful model checkers
such as UPPAAL [LPY97], HyTech [HHWt97] or Kronos [Yov97]. This
work formalizes the theory for the subclass of diagonal-free timed au-
tomata, which is sufficient to model many interesting problems. We
first define the basic concepts and semantics of diagonal-free timed au-
tomata. Based on this, we prove two types of decidability results for
the language emptiness problem.

The first is the classic result of Alur and Dill [AD90, AD94], which
uses a finite partitioning of the state space into so-called regions.

Our second result focuses on an approach based on Difference Bound
Matrices (DBMs), which is practically used by model checkers. We
prove the correctness of the basic forward analysis operations on DBMs.
One of these operations is the Floyd-Warshall algorithm for the all-
pairs shortest paths problem. To obtain a finite search space, a widen-
ing operation has to be used for this kind of analysis. We use Patricia
Bouyer’s [Bou04] approach to prove that this widening operation is
correct in the sense that DBM-based forward analysis in combination
with the widening operation also decides language emptiness. The in-
teresting property of this proof is that the first decidability result is
reused to obtain the second one.

Contents

1 Miscellaneous
1.1 Lists
1.2 Streams
1.3 Mixed Material

2 Graphs
2.1 Basic Definitions and Theorems
2.2 Graphs with a Start Node
2.3 Subgraphs
2.4 Bundles e

2.5 Directed Acyclic Graphs 60

2.6 Finite Graphs 61
2.7 Graph Invariants Lo Lo 61
2.8 Simulations and Bisimulations 64
2.9 CTL e 78
Basic Definitions and Semantics 85
3.1 Syntactic Definition 85
3.2 Operational Semantics 87
3.3 Contracting Runs 89
3.4 Zone Semantics 91
3.5 From Clock Constraints to DBMs 94
3.6 Semantics Based on DBMs 103
Refinement to S-regions 110
4.1 Definition 110
4.2 Basic Properties o oo 113
4.3 Approximation with S-regions 124
4.4 Computing S-Approximation 130
4.5 Auxiliary g-boundedness Theorems 155
The Classic Construction for Decidability 178
5.1 Definition of Regions 178
5.2 Basic Properties 179
53 Setof Regions. o . 189
5.4 Compability With Clock Constraints 225
5.5 Compability with Resets 229
5.6 A Semantics Based on Regions 247
5.7 Correct Approximation of Zones with a-regions 253
5.8 Old Variant Using a Global Set of Regions 254
5.9 A Zone Semantics Abstracting with Closureq, 259
5.10 New Variant 270
5.11 A Semantics Based on Localized Regions 271
5.12 A New Zone Semantics Abstracting with Closureq,,; 276
Correctness of g-approximation from a-regions 281
6.1 Preparing Bouyer’s Theorem 282
6.2 Bouyer’s Main Theorem 302
6.3 Nice Corollaries of Bouyer’s Theorem 332
6.4 A New Zone Semantics Abstracting with Approx B 334

7 Simulation Graphs
7.1 Simulation Graphs,
7.2 Poststability
7.3 Prestability oL
7.4 Double Simulation
7.5 Finite Graphs
7.6 Complete Simulation Graphs
7.7 Finite Complete Double Simulations
7.8 Encoding of Propertiesin Runs
7.9 Instantiation of Simulation Locales

8 Forward Analysis with DBMs and Widening
8.1 DBM-based Semantics with Normalization
8.2 Additional Useful Properties of the Normalized Semantics .
8.3 Appendix: Standard Clock Numberings for Concrete Models

341
341
345
346
350
354
359
362
369
409

430
432

. 447

447

1 Miscellaneous

1.1 Lists

theory More-List
imports
Main
Instantiate- Existentials
begin

1.1.1 First and Last Elements of Lists

lemma (in —) hd-butlast-last-id:
hd xs # tl (butlast zs) Q [last zs] = wxs if length zs > 1
using that by (cases xs) auto

1.1.2 list-all

lemma (in —) list-all-map:

assumes inv: N z. Pr —= 3 y. fy ==
and all: list-all P as

shows 3 as’. map f as’ = as

using all
apply (induction as)

apply (auto dest!: inv)

subgoal for as’ a
by (inst-existentials a # as’) simp

done

1.1.3 list-all2

lemma list-all2-op-map-iff:
list-all2 (A a b. b = fa) xs ys «— map f xs = ys
unfolding list-all2-iff
proof (induction xs arbitrary: ys)
case Nil
then show ?case by auto
next
case (Cons a zs ys)
then show ?case by (cases ys) auto
qed

lemma list-all2-last:
R (last xs) (last ys) if list-all2 R zs ys zs # |]
using that

unfolding list-all2-iff
proof (induction zs arbitrary: ys)
case Nil
then show ?case by simp
next
case (Cons a xs ys)
then show ?case by (cases ys) auto
qed

lemma list-all2-set!:
YV ze€set rs. dracset as. P x za if list-all2 P zs as
using that
proof (induction zs arbitrary: as)
case Nil
then show ?case by auto
next
case (Cons a zs as)
then show ?Zcase by (cases as) auto
qged

lemma list-all2-swap:
list-all2 P zs ys <— list-all2 (A x y. Py x) ys xs
unfolding list-all2-iff by (fastforce simp: in-set-zip)+

lemma list-all2-set2:
YV xe€set as. Jxacset xs. P xa x if list-all2 P zs as
using that by — (rule list-all2-set1, subst (asm) list-all2-swap)

1.1.4 Distinct lists

lemma distinct-length-le: finite s = set xs C s = distinct xs = length
zs < card s
by (metis card-mono distinct-card)

1.1.5 filter

lemma filter-eq-appendD:

3 xs’ ys'. filter P xs’' = xs A\ filter P ys' = ys A\ as = xs’ Q ys’ if filter P
as = rs Q ys

using that
proof (induction xs arbitrary: as)

case Nil

then show “case

by (inst-existentials [] :: 'a list as) auto

next
case (Cons a xs)
from filter-eq-ConsD[OF Cons.prems|[simplified]] obtain us vs where
as = us @ a # vs Vu€set us. -~ P u P a filter P vs = x5 Q ys
by auto

moreover from Cons.IH[OF - = zs @ ys)] obtain xs’ ys where
filter P x5’ = zs vs = x5’ Q ys
by auto

ultimately show ?Zcase
by (inst-existentials us @ [a] @ xs" ys) auto
qged

lemma list-all2-elem-filter:
assumes list-all2 P zs us x € set zs
shows length (filter (P x) us) > 1
using assms by (induction zs arbitrary: us) (auto simp: list-all2-Cons1)

lemma list-all2-replicate-elem-filter:

assumes list-all2 P (concat (replicate n xs)) ys x € set xs

shows length (filter (P z) ys) > n

using assms

by (induction n arbitrary: ys; fastforce dest: list-all2-elem-filter simp:
list-all2-appendl)

1.1.6 Sublists

lemma nths-split:
nths zs (AU B) = nths s A Q nths zs Bif V i € A.V j€ B.i<j
using that
proof (induction xs arbitrary: A B)
case Nil
then show ?case by simp
next
case (Cons a s)
let A = {j. Sucj € A} and ?B = {j. Suc j € B}
from Cons.prems have *: Vi€ ?A. Va€?B. i < a
by auto
have [simp]: {j. Sucj€ AV Sucj € B} = ?A U ?B
by auto
show Zcase
unfolding nths-Cons
proof (clarsimp, safe, goal-cases)
case 2
with Cons.prems have A = {}

by auto
with Cons.IH[OF x| show ?case by auto
qed (use Cons.prems Cons.IH[OF x| in auto)
qed

lemma nths-nth:
nths xs {i} = [zs ! i] if i < length xs
using that
proof (induction xs arbitrary: i)
case Nil
then show ?case by simp
next
case (Cons a xs)
then show Zcase
by (cases i) (auto simp: nths-Cons)
qed

lemma nths-shift:
nths (zs Q ys) S = nths ys {x — length zs | z. z € S} if
V i€ S. length xs < i
using that
proof (induction zs arbitrary: S)
case Nil
then show ?case by auto
next
case (Cons a xs)
have [simp]: {z — length zs |x. Suc x € S} = {x — Suc (length zs) |z. x
cStifo¢ s
using that apply safe
apply force
subgoal for z z’
by (cases z') auto
done
from Cons.prems show ?case
by (simp, subst nths-Cons, subst Cons.IH; auto)
qed

lemma nths-eq-ConsD:
assumes nths xs I = x # as
shows
3 ys zs.
xs = ys Q z # 25 N\ length ys € I N (VY i € 1. 7 > length ys)
A nths zs ({i — length ys — 1 | i. i € I N\ i > length ys}) = as
using assms

proof (induction xs arbitrary: I z as)
case Nil
then show ?case by simp
next
case (Cons a 1s)
from Cons.prems show ?Zcase
unfolding nths-Cons
apply (auto split: if-split-asm)
subgoal
by (inst-existentials [| :: 'a list xs; force intro: arg-cong2lof xs xs - -
nths))
subgoal
apply (drule Cons.IH)
apply safe
subgoal for ys zs
apply (inst-existentials a # ys zs)
apply simp+
apply standard
subgoal for 1
by (cases i; auto)
apply (rule arg-cong2|of zs zs - - nths|)
apply simp
apply safe
subgoal for - ¢
by (cases i; auto)
by force
done
done
qed

lemma nths-out-of-bounds:
nths zs I = [| if Vi € 1. i > length zs

proof —
have
V N as.
(3n. n € N A = length (as::'a list) < n)
V (Y asa. nths (as Q asa) N = nths asa {n — length as |n. n € N})
using nths-shift by blast
then have
Aas. nths as {n — length zs |n. n € I} = nths (zs Q as) [
V nths (zs @Q []) I =[]
using that by fastforce
then have nths (zs Q []) I =[]

by (metis (no-types) nths-nil)
then show ?thesis
by simp
qged

lemma nths-eq-appendD:
assumes nths s I = as Q bs
shows
3 ys zs.
s = ys @Q zs A\ nths ys I = as
A nths zs {i — length ys | i. i € I N\ i > length ys} = bs
using assms
proof (induction as arbitrary: zs I)
case Nil
then show “case
by (inst-existentials [] :: 'a list nths bs) auto
next
case (Cons a ys zs)
from nths-eq-ConsD[of xs I a ys @ bs] Cons.prems
obtain ys’ zs’ where
xs = ys' Q a # zs’
length ys' € 1
Vie I i> length ys’'
nths zs' {i — length ys' — 1 |i. i € I N i > length ys'} = ys Q bs
by auto
moreover from Cons.IH[OF <nths zs' - = -»] obtain ys” zs” where
28’ = ys" @ zs”
ys = nths ys" {i — length ys' — 1 |i. i € I A length ys' < i}
bs = nths zs"" {i — length ys" |i. i € {i — length ys' — 1 |i. i € I A
length ys' < i} A length ys” < i}
by auto
ultimately show ?case
apply (inst-existentials ys' Q@ a # ys'' 2s")
apply (simp; fail)
subgoal
by (simp add: nths-out-of-bounds nths-append nths-Cons)
(rule arg-cong2[of ys"' ys"' - - nths]; force)
subgoal
by safe (rule arg-cong2[of zs"' zs'" - - nths]; force)
done
qged

lemma filter-nths-length:
length (filter P (nths zs 1)) < length (filter P xs)

proof (induction xs arbitrary: I)
case Nil
then show ?Zcase
by simp
next
case Cons
then show ?Zcase

proof —
fix a :: 'a and zsa :: 'a list and Ia :: nat set
assume al: A\I. length (filter P (nths zsa I)) < length (filter P zsa)
have f2:
Vb bs N. if 0 € N then nths ((b::'a) # bs) N =
[b] @ nths bs {n. Suc n € N} else nths (b # bs) N =[] @ nths bs
{n. Suc n € N}
by (simp add: nths-Cons)
have f3:
nths (a # xsa) la = || Q nths xsa {n. Suc n € Ia}
— length (filter P (nths (a # xsa) Ila)) < length (filter P zsa)
using al by (metis append-Nil)
have f/: length (filter P (nths xsa {n. Suc n € Ia})) + 0 < length (filter
P xsa) + 0
using al by simp
have f5:
Suc (length (filter P (nths zsa {n. Suc n € Ia})) + 0)
= length (a # filter P (nths zsa {n. Suc n € Ia}))
by force
have f6: Suc (length (filter P xzsa) + 0) = length (a # filter P zsa)
by simp
{ assume - length (filter P (nths (a # zsa) la)) < length (filter P (a
4 150)
{ assume nths (a # zsa) la # [a] Q nths zsa {n. Suc n € Ia}
moreover
{ assume
nths (a # xsa) Ia = || Q nths xsa {n. Suc n € la}
A length (filter P (a # zsa)) < length (filter P xsa)
then have length (filter P (nths (a # zsa) Ia)) < length (filter P
(a # 250))
using al by (metis (no-types) append-Nil filter.simps(2) impos-
sible-Cons) }
ultimately have length (filter P (nths (a # xsa) Ia)) < length (filter
P (a # xsa))
using f3 f2 by (meson dual-order.trans le-cases) }
then have length (filter P (nths (a # xsa) Ia)) < length (filter P (a

10

wsa))
using f6 f5 f4 al by (metis Suc-le-mono append-Cons append-Nil
filter.simps(2)) }
then show length (filter P (nths (a # xzsa) Ia)) < length (filter P (a #
xsa))
by meson
qed
qed

end

1.2 Streams

theory Stream-More

imports
Transition-Systems-and-Automata.Sequence-LTL
Instantiate- Existentials
HOL- Library. Rewrite

begin

lemma list-all-stake-least:
list-all (Not o P) (stake (LEAST n. P (xs !l n)) zs) (is ?G) if 3 n. P (xs
I'n)
proof (rule ccontr)
let on = LEAST n. P (xs!! n)
assume - ?G
then have 3 z € set (stake ?n xs). P z unfolding list-all-iff by auto
then obtain n’ where n’ < ?n P (zs!! n') using set-stake-snth by metis
with Least-le[of A n. P (zs ! n) n/| show Fualse by auto
qed

lemma alw-stream-all2-mono:

assumes stream-all2 P xzs ys alw Q xs \ zs ys. stream-all2 P xs ys =
Q s = R ys

shows alw R ys

using assms stream.rel-sel by (coinduction arbitrary: zs ys) (blast)

lemma alw-ev-HLD-cycle:
assumes stream-all2 (€) zs (cycle as) a € set as
shows infs (Az. z € a) zs
using assms(1)
proof (coinduct rule: infs-coinduct-shift)
case (infs xs)
have 1: as # [| using assms(2) by auto

11

have 2:
list-all2 (€) (stake (length as) xs) (stake (length as) (cycle as))
stream-all2 (€) (sdrop (length as) zs) (sdrop (length as) (cycle as))
using infs stream-rel-shift stake-sdrop length-stake by metis+
have 3: stake (length as) (cycle as) = as using 1 by simp
have 4: sdrop (length as) (cycle as) = cycle as using sdrop-cycle-eq 1 by
this
have 5: set (stake (length as) zs) N a # {}
using assms(2) 2(1) unfolding list.in-rel 3
by (auto) (metis Intl empty-iff mem-Collect-eq set-zip-leftD split-conv
subsetCE zip-map-fst-snd)
show ?case using 2 5 unfolding /
by force
qed

lemma alw-ev-mono:

assumes alw (ev @) zs and A zs. ¢ zs = 1 xs

shows alw (ev ©) zs

by (rule alw-mp[OF assms(1)]) (auto intro: ev-mono assms(2) simp:
alw-iff-sdrop)

lemma alw-ev-lockstep:
assumes
alw (ev (holds P)) zs stream-all2 Q zs as
ANza Pr=— Qra= Ra
shows
alw (ev (holds R)) as
using assms(1,2)
apply (coinduction arbitrary: xs as rule: alw.coinduct)
apply auto
subgoal
by (metis alw.cases assms(3) ev-holds-sset stream-all2-ssetl)
subgoal
by (meson alw.cases stream.rel-sel)
done

1.2.1 sfilter, wait, nxt

Useful?

lemma nzt-holds-iff-snth: (nzt ~ i) (holds P) xs «— P (zs ! 7)
by (induction i arbitrary: xs; simp add: holds.simps)

Useful?
lemma wait-LEAST:

12

wait (holds P) xs = (LEAST n. P (xzs!! n)) unfolding wait-def nxt-holds-iff-snth

lemma sfilter-SCons-decomp:

assumes sfilter P xs = x ## zs ev (holds P) zs

shows 3 ys’ zs'. xs = ys' Q— z ## 2s' A list-all (Not o P) ys' N P x A
sfilter P zs' = zs
proof —

note [simp| = holds.simps

from ev-imp-shift[OF assms(2)] obtain as bs where zs = as Q— bs holds
P bs

by auto
then have P (shd bs) by auto
with <zs = -» have 3 n. P (s !! n) using assms(2) sdrop-wait by
fastforce

from sdrop-while-sdrop-LEAST|[OF this] have x:
sdrop-while (Not o P) xs = sdrop (LEAST n. P (zs !l n)) xs .
let %xs = sdrop-while (Not o P) xs let n = LEAST n. P (zs !! n)
from assms(1) have x = shd %xs zs = sfilter P (stl ?zs)
by (subst (asm) sfilter.ctr; simp)+
have zs = stake ?n s Q— sdrop ?n xs by simp
moreover have P z using assms(1) unfolding sfilter-eq[OF assms(2)]

moreover from <3 n. P - have list-all (Not o P) (stake ?n zs) by (rule
list-all-stake-least)
ultimately show ?thesis
using <z = - <zs = -» x[symmetric|] by (inst-existentials stake ?n xs stl
21s) auto
qed

lemma sfilter-SCons-decomp’:
assumes sfilter P xs = x ## zs ev (holds P) zs

shows
list-all (Not o P) (stake (wait (holds P) xs) xs) (is ?G1)
Px
3 zs'. xs = stake (wait (holds P) xzs) xs Q— x ## zs' A\ sfilter P zs' =
zs (is ?G2)
proof —

note [simp| = holds.simps
from ev-imp-shift|OF assms(2)] obtain as bs where zs = as @Q— bs holds
P bs

by auto
then have P (shd bs) by auto
with <zs = -» have 3 n. P (zs !! n) using assms(2) sdrop-wait by

13

fastforce thm sdrop-wait
from sdrop-while-sdrop-LEAST[OF this] have x:
sdrop-while (Not o P) xs = sdrop (LEAST n. P (zs ! n)) xs .
let ?zs = sdrop-while (Not o P) xs let ?n = wait (holds P) xs
from assms(1) have x = shd %zs zs = sfilter P (stl ?xs)
by (subst (asm) sfilter.ctr; simp)+
have xs = stake ?n xs Q— sdrop ?n xs by simp
moreover show P z using assms(1) unfolding sfilter-eq[OF assms(2)]

moreover from <3 n. P -) show list-all (Not o P) (stake ?n xs)
by (auto intro: list-all-stake-least simp: wait-LEAST)
ultimately show ?G2

using z = - «zs = -» x[symmetric] by (inst-existentials stl ?xs) (auto
simp: wait-LEAST)
qed

lemma sfilter-shift-decomp:
assumes sfilter P xs = ys Q— zs alw (ev (holds P)) xs
shows 3 ys’ zs’. xs = ys’ Q— zs' A filter P ys’ = ys A sfilter P 28’ = zs
using assms(1,2)
proof (induction ys arbitrary: xs)
case Nil
then show ?case by (inst-existentials || :: 'a list xs; simp)
next
case (Cons y ys)
from alw-ev-imp-ev-alw]OF <alw (ev -) zs)] have ev (holds P) xs
by (auto elim: ev-mono)
with Cons.prems(1) sfilter-SCons-decomplof P xs y ys Q— zs| obtain ys
28’ where decomp:
xs = ys' Q— y #4# 28’ list-all (Not o P) ys' Py sfilter P 28’ = ys Q— zs
by clarsimp
then have sfilter P zs' = ys Q— zs by auto
from <alw (ev -) zs» «xs = -» have alw (ev (holds P)) zs’
by (metis ev.intros(2) ev-shift not-alw-iff stream.sel(2))
from Cons.IH[OF «sfilter P zs' = -» this| obtain zsI zs2 where
zs' = zs1 Q— 282 filter P zs1 = ys sfilter P 252 = zs
by clarsimp
with decomp show ?Zcase
by (inst-ezistentials ys' Q y # 251 2s2; simp add: list.pred-set)
qed

!/

lemma finite-sset-sfilter-decomp:
assumes finite (sset (sfilter P xs)) alw (ev (holds P)) xs
obtains z ws ys zs where s = ws Q— x ## ys Q— x ## 2s P x

14

proof atomize-elim
let ?zs = sfilter P xs
have 1: — sdistinct (sfilter P xs) using sdistinct-infinite-sset assms(1)
by auto
from not-sdistinct-decomp|OF 1] obtain ws ys = zs where guessed1:
sfilter P xs = ws Q— x ## ys Q— x #H 25 .
from sfilter-shift-decomp| OF this assms(2)] obtain ys’ zs’ where guessed2:
zs = ys' Q— zs’
sfilter P 28’ = © ## ys Q— x ## zs
ws = filter P ys’
by clarsimp
then have ev (holds P) zs' using alw-shift assms(2) by blast
from sfilter-SCons-decomp[OF guessed2(2) this| obtain zs! zs2 where
guessed3:
28" = 251 Q— x #H 252
list-all (Not o P) zsl
Pz
sfilter P zs2 = ys Q— x ## zs
by clarsimp
have alw (ev (holds P)) zs2
by (metis alw-ev-stl alw-shift assms(2) guessed2(1) guessed3 (1) stream.sel(2))
from sfilter-shift-decomp[OF guessed3(4) this] obtain zs3 zs/ where
guesseds :
282 = 288 Q— zs4
sfilter P zs4 = x #+# zs
ys = filter P zs8
by clarsimp
have ev (holds P) zs4
using <alw (ev (holds P)) zs2» alw-shift guessedq (1) by blast
from sfilter-SCons-decomp|OF guessedj (2) this| obtain zs5 zs6 where
284 = 285 Q— x #HH# 256
list-all (Not o P) zs5
Pz
zs = sfilter P zs6
by clarsimp
with guessedl guessed?2 guessed3 gquessed4 show Jws ys zs. xs = ws Q—
T H#H# ys Q— x ## 2s N Px
by (inst-existentials ys' Q zs1 x zs3 Q zs5 zs6; simp)
qged

Useful?

lemma sfilter-shd-LEAST:
shd (sfilter P xs) = xs ! (LEAST n. P (zs !l n)) if ev (holds P) xs
proof —

15

note [simp| = holds.simps

from sdrop-wait|OF <ev - zs»] have 3 n. P (zs !! n) by auto

from sdrop-while-sdrop-LEAST[OF this| show ?thesis by simp
qged

lemma alw-nzt-holds-cong:

(nzt =" n) (holds (Az. Pz AN Q z)) xs = (nzt ~ n) (holds Q) zs if alw
(holds P) s

using that unfolding nat-holds-iff-snth alw-iff-sdrop by (simp add: holds.simps)

lemma alw-wait-holds-cong:
wait (holds (Ax. Pz A Q z)) zs = wait (holds Q) s if alw (holds P) xs
unfolding wait-def alw-nxt-holds-cong|OF that] ..

lemma alw-sfilter:
sfilter (A z. P x A\ Q) xs = sfilter Q zs if alw (holds P) xs alw (ev (holds
Q)) s
using that
proof (coinduction arbitrary: xs)
case prems: stream-eq
note [simp| = holds.simps
from prems(3,4) have ev-one: ev (holds (Ax. Pz N Q x)) zs
by (subst ev-conglof - - - holds Q]) (assumption | auto)+
from prems have a = shd (sfilter (Ax. P x A Q z) zs) b = shd (sfilter Q
xs)
by (metis stream.sel(1))+
with prems(3,4) have
a=axs ! (LEAST n. P (zs ! n) A Q (zs ' n)) b = as ! (LEAST n. Q
(zs !l n))
using ev-one by (auto 4 3 dest: sfilter-shd-LEAST)
with alw-wait-holds-conglunfolded wait-LEAST, OF <alw (holds P) zs]
have a = b by simp
from sfilter-SCons-decomp’|OF prems(1)[symmetric], OF ev-one] obtain
u2 where guessed-a:
list-all (Not o (Az. P x A Q x)) (stake (wait (holds (A\x. Pz N Q z))
xs) xs)
xzs = stake (wait (holds (Az. P x A Q x)) xs) s Q— a ## u2
u = sfilter (Az. Px A Q x) u2
by clarsimp
have ev (holds Q) zs using prems(4) by blast
from sfilter-SCons-decomp’|OF prems(2)[symmetric|, OF this| obtain v2
where
list-all (Not o Q) (stake (wait (holds Q) xs) xs)
xs = stake (wait (holds Q) xs) xs Q— b ## v2

16

v = sfilter Q v2
by clarsimp
with guessed-a <a = b» show ?case
apply (intro conjl exl)
apply assumption+
apply (simp add: alw-wait-holds-cong[OF prems(3)], metis shift-left-inj
stream.inject)
by (metis alw.cases alw-shift prems(3,4) stream.sel(2))+
ged

lemma alw-ev-holds-mp:
alw (holds P) xs = ev (holds Q) zs = ev (holds (Az. P x N\ Q x)) wxs
by (subst ev-cong, assumption) (auto simp: holds.simps)

lemma alw-ev-conjl:

alw (ev (holds (A z. Pz A Q x))) xs if alw (holds P) zs alw (ev (holds
Q)) s

using that(2,1) by — (erule alw-mp, coinduction arbitrary: xs, auto intro:
alw-ev-holds-mp)

1.2.2 Useful?

lemma alw-holds-pred-stream-iff:
alw (holds P) xs <— pred-stream P zs
by (simp add: alw-iff-sdrop stream-pred-snth holds.simps)

lemma alw-holds-sset:
alw (holds P) xs = (V x € sset zs. P x)
by (simp add: alw-holds-pred-stream-iff stream.pred-set)

lemma pred-stream-sfilter:
assumes alw-ev: alw (ev (holds P)) xs
shows pred-stream P (sfilter P xs)
using alw-ev
proof (coinduction arbitrary: zs)
case (stream-pred xs)
then have ev (holds P) xs by auto
have sfilter P xs = shd (sfilter P xs) ## stl (sfilter P xs)
by (cases sfilter P xs) auto
from sfilter-SCons-decomp[OF this <ev (holds P) zs»] obtain ys’ zs’
where
zs = ys' Q— shd (sdrop-while (Not o P) xs) ## zs'
list-all (Not o P) ys'
P (shd (sdrop-while (Not o P) zs))

17

sfilter P zs' =
sfilter P (stl (sdrop-while (Not o P) xs))
by clarsimp
then show “case

apply (inst-existentials zs")
apply (metis sfilter.simps(1) stream.sel(1) stream-pred(1))
apply (metis scons-eq sfilter.simps(2) stream-pred(1))
apply (metis alw-ev-stl alw-shift stream.sel(2) stream-pred(2))
done

qged

lemma alw-ev-sfilter-mono:
assumes alw-ev: alw (ev (holds P)) xs
and mono: \ z. Pz = Q=
shows pred-stream @Q (sfilter P xs)
using stream.pred-monolof P Q] assms pred-stream-sfilter by blast

lemma sset-sfilter:
sset (sfilter P xs) C sset xs if alw (ev (holds P)) xs
proof —
have alw (holds (A z. © € sset xs)) zs by (simp add: alw-iff-sdrop holds.simps)
with <alw (ev -) - alw-sfilter[OF this <alw (ev -) -», symmetric]
have pred-stream (A z. © € sset xs) (sfilter P xs)
by (simp) (rule alw-ev-sfilter-mono; auto intro: alw-ev-conjl)
then have V z € sset (sfilter P xs). © € sset zs unfolding stream.pred-set
by this
then show ?thesis by blast
qged

lemma stream-all2-weaken:
stream-all2 @Q zs ys if stream-all2 Pxsys N xy. Pxy = Qzy
using that by (coinduction arbitrary: zs ys) auto

lemma stream-all2-SCons1:

stream-all2 P (x ## xs) ys = (Fz zs. ys = z ## 2s N P x z N\ stream-all2
P zs zs)

by (subst (3) stream.collapse[symmetric], simp del: stream.collapse, force)

lemma stream-all2-SCons2:
stream-all2 P xs (y ## ys) = (2 zs. xs = z #4 28 N P z y N stream-all2
P zs ys)

by (subst stream.collapse[symmetric], simp del: stream.collapse, force)

lemma stream-all2-combine:

18

stream-all2 R zs zs if
stream-all2 P xs ys stream-all2 Q ys zs Nz yz. Pry N Qyz— Ruzz
using that(1,2)
by (coinduction arbitrary: zs ys zs)
(auto intro: that(3) simp: stream-all2-SConsl stream-all2-SCons2)

lemma stream-all2-shift1:
stream-all2 P (xsl Q— xs2) ys =
(3 yst ys2. ys = ysl Q— ys2 A list-all2 P zs1 ys1 A stream-all2 P zs2
ys2)
apply (induction xsl arbitrary: ys)
apply (simp; fail)
apply (simp add: stream-all2-SCons1 list-all2-Cons1)
apply safe
subgoal for a xs1 ys z zs ys1 ys2
by (inst-existentials z # ys1 ys2; simp)
subgoal for a xs1 ys ys1 ys2 z zs
by (inst-existentials z zs Q— ys2 zs ys2; simp)
done

lemma stream-all2-shift2:

stream-all2 P ys (xsl1 Q— zs2) =

(3 yst ys2. ys = ysl Q— ys2 A list-all2 P ys1 xsl N stream-all2 P ys2
xs2)

by (meson list.rel-flip stream.rel-flip stream-all2-shift1)

lemma stream-all2-bisim:

assumes stream-all2 (€) xs as stream-all2 (€) ys as sset as C S

shows stream-all2 Az y. 3 a.x €a Ny € aNacsl)axsys

using assms

apply (coinduction arbitrary: as xs ys)

subgoal for a u b v as zs ys
apply (rule conjI)
apply (inst-existentials shd as, auto simp: stream-all2-SConsl; fail)
apply (inst-existentials stl as, auto 4 8 simp: stream-all2-SConsl; fail)
done

done

end

1.3 Mixed Material

theory TA-Misc
imports Main HOL.Real

19

begin

1.3.1 Reals

Properties of fractions lemma frac-add-le-preservation:
fixes a d :: real and b :: nat
assumes a < bd < 1 — frac a
shows a + d < b

proof —
from assms have a + d < a + 1 — frac a by auto
also have ... = (a — frac a) + 1 by auto
also have ... = floor a + 1 unfolding frac-def by auto
also have ... < b using <a < b

by (metis floor-less-iff int-less-real-le of-int-1 of-int-add of-int-of-nat-eq)
finally show a + d < b .
qed

lemma [t-lt-1-ccontr:
(a:int) < b= b < a+ 1 = Fualse by auto

lemma int-intv-frac-gt0:
(a:int) < b= b< a+ 1 = frac b > 0 by auto

lemma floor-frac-add-preservation:
fixes a d :: real
assumes (0 < dd < 1 — frac a
shows floor a = floor (a + d)
proof —
have frac a > 0 by auto
with assms(2) have d < 1 by linarith
from assms have a + d < a + 1 — frac a by auto
also have ... = (a — frac a) + 1 by auto
also have ... = (floor a) + 1 unfolding frac-def by auto
finally have *x: ¢ + d < floor a + 1 .
have floor (a + d) > floor a using «d > 0) by linarith
moreover from x have floor (a + d) < floor a + 1 by linarith
ultimately show floor a = floor (a + d) by auto
qed

lemma frac-distr:

fixes a d :: real

assumes () < dd < 1 — frac a

shows frac (a + d) > 0 frac a + d = frac (a + d)
proof —

20

have frac a > 0 by auto
with assms(2) have d < 1 by linarith
from assms have a + d < a + I — frac a by auto
also have ... = (a — frac a) + 1 by auto
also have ... = (floor a) + 1 unfolding frac-def by auto
finally have *: a + d < floor a + 1 .
have xx: floor a < a + d using assms(1) by linarith
have frac (a + d) # 0
proof (rule ccontr, auto, goal-cases)
case I
then obtain b :: int where b = a + d by (metis Ints-cases)
with x xx have b < floor a + 1 floor a« < b by auto
with [t-lt-1-ccontr show ?case by blast
qed
then show frac (a + d) > 0 by auto
from floor-frac-add-preservation assms have floor a = floor (a + d) by
auto
then show frac a + d = frac (a + d) unfolding frac-def by force
qged

lemma frac-add-leD:

fixes a d :: real

assumes 0 < dd < 1 — fracad < 1 — frac b frac (a + d) < frac (b +
)

shows frac a < frac b
proof —

from floor-frac-add-preservation assms have

floor a = floor (a + d) floor b = floor (b + d)

by auto

with assms(4) show frac a < frac b unfolding frac-def by auto
ged

lemma floor-frac-add-preservation’”:
fixes a d :: real
assumes 0 < dd < 1 — frac a
shows floor a = floor (a + d)
using assms floor-frac-add-preservation by (cases d = 0) auto

lemma frac-add-lelFF:
fixes a d :: real
assumes 0 < dd <1 — fracad < 1 — frac b
shows frac a < frac b +— frac (a + d) < frac (b + d)
proof —
from floor-frac-add-preservation’ assms have

21

floor a = floor (a + d) floor b = floor (b + d)
by auto
then show ?thesis unfolding frac-def by auto
qged

lemma nat-intv-frac-gt0:
fixes c :: nat fixes x :: real
assumes ¢ < ¢z < real (¢ + 1)
shows frac x > 0
proof (rule ccontr, auto, goal-cases)
case 1
then obtain d :: int where d: ©z = d by (metis Ints-cases)
with assms have ¢ < d d < int ¢ + 1 by auto
with int-intv-frac-gt0[OF this] 1 d show False by auto
qed

lemma nat-intv-frac-decomp:
fixes ¢ :: nat and d :: real
assumes c < dd < c+ 1
shows d = ¢ + frac d

proof —
from assms have int ¢ = |d| by linarith
thus ?thesis by (simp add: frac-def)

qed

lemma nat-intv-not-int:
fixes c :: nat
assumes real c < dd < c + 1
shows d ¢ Z
proof (standard, goal-cases)
case |
then obtain £ :: int where d = k using Ints-cases by auto
then have frac d = 0 by auto
moreover from nat-intv-frac-decomp|OF assms| have x: d = ¢ + frac d
by auto
ultimately have d = c by linarith
with assms show ?case by auto
qed

lemma frac-nat-add-id: frac ((n :: nat) + (r :: real)) = frac r — Found by
sledgehammer
proof —
have Ar. frac (r:real) < 1
by (meson frac-lt-1)

22

then show ?thesis
by (simp add: floor-add frac-def)
qed

lemma floor-nat-add-id: 0 < (r :: real) = r < 1 = floor (real (n::nat)
+ r) = n by linarith

lemma int-intv-frac-gt-0":

(acreal) eZ = (breal) e Z = a<b=a#b=a<b— 1
proof (goal-cases)

case 1

then have a < b by auto

from 1(1,2) obtain k[:: int where a = real-of-int k b = real-of-int |
by (metis Ints-cases)

with (a < b show ?case by auto
qed

lemma int-lt-Suc-le:
(acreal) eZ = (bureal) €eZ = a<b+1=a<b
proof (goal-cases)
case |
from 1(1,2) obtain k[:: int where a = real-of-int k b = real-of-int |
by (metis Ints-cases)
with <a < b + 1> show ?case by auto
qed

lemma int-lt-neq-Suc-lt:

(azreal) e Z = (bureal) e Z=—=a<b=a+1#b= a+ 1
<b
proof (goal-cases)

case 1

from 1(1,2) obtain k[:: int where a = real-of-int k b = real-of-int |
by (metis Ints-cases)

with 1 show Zcase by auto
qged

lemma int-lt-neq-prev-it:

(acreal) €eZ = (breal) €eZ=—=a—-1<b=a#b=a<b
proof (goal-cases)

case |

from 1(1,2) obtain k[:: int where a = real-of-int k b = real-of-int |
by (metis Ints-cases)

with 1 show ?case by auto
qged

23

lemma ints-le-add-fraci:
fixes a b x :: real
assumes 0 < zzx < laeZbe”Za+z<b
shows a < b

using assms by auto

lemma ints-le-add-frac2:
fixes a b x :: real
assumes 0 < zzx < la€c€ZbeZb<a-+zx
shows b < ¢
using assms
by (metis add.commute add-le-cancel-left add-mono-thms-linordered-semiring(1)
int-lt-Suc-le leD le-less-linear)

1.3.2 Ordering Fractions

lemma distinct-twice-contradiction:
zsli=zc=2as!j=0=1i<j=j < length xs = — distinct xs
proof (rule ccontr, simp, induction zs arbitrary: i j)
case Nil thus “case by auto
next
case (Cons y xs)
show ?case
proof (cases i = 0)
case True
with Cons have y = z by auto
moreover from True Cons have z € set xs by auto
ultimately show Fulse using Cons(6) by auto
next
case Fulse
with Cons have
zs! (it —1)=azas! (j—1)=2xi—1<j—1j— 1< lengthzs
distinct xs
by auto
from Cons.IH|[OF this| show False .
qed
qed

lemma distinct-nth-unique:

xsli=uxs!j =i < length xs = j < length vs = distinct xs = i
=]

apply (rule ccontr)

apply (cases i < j)

24

apply auto
apply (auto dest: distinct-twice-contradiction)
using distinct-twice-contradiction by fastforce

lemma (in linorder) linorder-order-fun:
fixes S :: ‘a set
assumes finite S
obtains f :: ‘a = nat
where (V 2 € S.V ye S. fa < fy+— z<y) and range f C {0..card
S —1}
proof —
obtain [where [-def: | = sorted-list-of-set S by auto
with sorted-list-of-set(1)[OF assms] have [: set | = S sorted | distinct
by auto
from I(1,3) «finite S> have len: length | = card S using distinct-card by
force
let of = AN x. ifx ¢ Sthen 0 else THE i. i < length IN 1! i =2z
{fixzyassume A:z € Sye Sz <y
with /(1) obtain ¢ j where x: [! i =z 1! j =y i < length lj < length
l
by (meson in-set-conv-nth)
have i < j
proof (rule ccontr, goal-cases)
case |
with sorted-nth-mono[OF [(2)] «<i < length > have [| j < [! i by
auto
with % A(3) show Fulse by auto
qged
moreover have ?fz = i using * [(3) A(1) by (auto) (rule, auto intro:
distinct-nth-unique)
moreover have ?fy = j using * [(3) A(2) by (auto) (rule, auto intro:
distinct-nth-unique)
ultimately have ?f z < ¢f y by auto
} moreover
{fixzyassume A:z € Sye S %z < Yy
with /(1) obtain 7 j where «: [! i =z 1! j =y i < length lj < length
l
by (meson in-set-conv-nth)
moreover have ?f r = i using * [(3) A(1) by (auto) (rule, auto intro:
distinct-nth-unique)
moreover have ?fy = j using * [(3) A(2) by (auto) (rule, auto intro:
distinct-nth-unique)
ultimately have xx: [! 2fz =2 1! ?fy = y i < j using A(3) by auto
have z < y

25

proof (rule ccontr, goal-cases)
case 1
then have y < z by simp
moreover from sorted-nth-mono[OF [(2), of i j] *+(3) * have z < y
by auto
ultimately show Fualse using distinct-nth-unique]OF - %(3,4) 1(3)]
x(1,2) *xx(3) by fastforce
qed
}
ultimately have V. z € S.V y € S. 9fz < ?fy «— z < y by force
moreover have range ?f C {0..card S — 1}
proof (auto, goal-cases)
case (1)
with [(1) obtain ¢ where x: [| i = x i < length | by (meson
in-set-conv-nth)
then have ?f z = ¢ using I(3) 1 by (auto) (rule, auto intro: dis-
tinct-nth-unique)
with len show ?case using *(2) 1 by auto
qed
ultimately show ?thesis ..
qed

locale enumerateable =
fixes T :: 'a set
fixes less :: 'a = 'a = bool (infix «<» 50)
assumes finite: finite T
assumes total: Vz e T.VyeT.zo#y— (z<y)V (y <2z
assumes trans: Ve € T.V y€e T.V ze T. (z::"a) <y — y <2z —
r <z
assumes asymmetric:V x € T.V ye T.z <y — - (y <)
begin

lemma non-empty-set-has-least”:

SCT=S#{}=3JdzeSVyeS rz#ty—y=<z
proof (rule ccontr, induction card S arbitrary: S)

case (then show ?case using finite by (auto simp: finite-subset)
next

case (Suc n)

then obtain z where z: z € S by blast

from finite Suc.prems(1) have finite: finite S by (auto simp: finite-subset)

let 25 =S — {xz}

show Zcase

proof (cases S = {z})

case True

26

with Suc.prems(3) show False by auto
next
case Fulse
then have S: 25 # {} using z by blast
show Fulse
proof (cases dx € 25.Vye?S. x £y — -y < x)
case Fulse
have n = card ?S using Suc.hyps finite by (simp add: x)

from Suc.hyps(1)[OF this - S False] Suc.prems(1) show False by auto

next
case True

then obtain z’ where z: Vye?S. 2’ #y — -y <2’ 2’ € 25z #

z’ by auto

from total Suc.prems(1) z'(2) have A y.y€ S =z’ # y = -y

< 2/ = 2z’ < y by auto

from total Suc.prems(1) z'(1,2) have x: ¥V y € 2S. z' # y — 2z’ <

y by auto
from Suc.prems(3) z'(1,2) have xx: x < z’ by auto
haveV ye€ 25. 2z <y
proof
fix y assume y: y € S — {z}
show z < y
proof (cases y = ')
case True then show ?thesis using *x by simp
next
case Fulse
with x y have z’ < y by auto
with trans Suc.prems(1) xx y z'(2) z *x show ?thesis by auto
qed
qed
with = Suc.prems(1,3) show False using asymmetric by blast
qged
qed
qed

lemma non-empty-set-has-least’”:

SCT=S8S#4#{}=3lzeSVyeSrs#ty—y=<=z
proof (intro ex-exll, goal-cases)

case 1

with non-empty-set-has-least'|OF this] show ?case by auto
next

case (2 z y)

show ?Zcase

proof (rule ccontr)

27

assume z # y
with 2 total have z < y V y < = by blast
with 2(2—) <z # y show Fulse by auto
qed
qed

abbreviation least S = THE t :: 'la. t e SA(V ye S. t#y — -y <

t)

lemma non-empty-set-has-least:
SCT=S#{}=least S€ SA(V ye€ S. least S #y — -y <

least S)

proof goal-cases
case 1
note A = this

show ?thesis
proof (rule thel’, goal-cases)
case |
from non-empty-set-has-least”|OF A] show ?case .
qed
qed

fun [:: 'a set = nat = 'a list
where
fSo0=11|
fS (Suc n) =least S # f (S — {least S}) n

inductive sorted :: 'a list = bool where
Nil [iff]: sorted []
| Cons: Vy€Eset xs. x < y = sorted xs = sorted (r # xs)

lemma f-set:
SCT=n=card S = set (fSn)=29
proof (induction n arbitrary: S)
case 0 then show ?Zcase using finite by (auto simp: finite-subset)
next
case (Suc n)
then have fin: finite S using finite by (auto simp: finite-subset)
with Suc.prems have S # {} by auto
from non-empty-set-has-least[OF Suc.prems(1) this| have least: least S
€ S by blast
let 25 = S — {least S}
from fin least Suc.prems have ¢S C T n = card ¢S by auto
from Suc.IH[OF this| have set (f 25 n) = 25 .

28

with least show ?case by auto
qged

lemma f-distinct:

SCT = n=card S = distinct (f S n)
proof (induction n arbitrary: S)

case (then show ?case using finite by (auto simp: finite-subset)
next

case (Suc n)

then have fin: finite S using finite by (auto simp: finite-subset)

with Suc.prems have S # {} by auto

from non-empty-set-has-least|OF Suc.prems(1) this] have least: least S
€ S by blast

let 25 = S — {least S}

from fin least Suc.prems have 25 C T n = card ?S by auto

from Suc.IH[OF this] f-set|OF this| have distinct (f 2S n) set (f S n)
= 25 .

then show ?case by simp
qged

lemma f-sorted:
SCT = n=card S = sorted (f S n)
proof (induction n arbitrary: S)
case (then show ?case by auto
next
case (Suc n)
then have fin: finite S using finite by (auto simp: finite-subset)
with Suc.prems have S # {} by auto
from non-empty-set-has-least| OF Suc.prems(1) this| have least:
least S € S (V y € S. least S # y — — y < least S)
by blast+
let 25 =S — {least S}
{ fix = assume z: z € 5
with least have — = < least S by auto
with total z Suc.prems(1) least(1) have least S < z by blast
} note le = this
from fin least Suc.prems have 25 C T n = card ¢S by auto
from f-set[OF this] Suc.IH[OF this| have x: set (f S n) = 25 sorted (f
?Sn) .
with le have V = € set (f 25 n). least S < x by auto
with %(2) show ?case by (auto intro: Cons)
ged

lemma sorted-nth-mono:

29

sorted xs — 1 < j = j < length xs —> xs!i < ws!j
proof (induction xs arbitrary: i j)
case Nil thus ?case by auto
next
case (Cons x zs)
show “case
proof (cases i = 0)
case True
with Cons.prems show ?thesis by (auto elim: sorted.cases)
next
case Fulse
from Cons.prems have sorted xs by (auto elim: sorted.cases)
from Cons.IH[OF this| Cons.prems False show ?thesis by auto
qed
qed

lemma order-fun:
fixes S :: 'a set
assumes S C T
obtains f :: ‘a = nat whereV z € S.Vye S fa<fy+—z=<y
and range f C {0..card S — 1}
proof —
obtain [where I-def: | = f S (card S) by auto
with f-set f-distinct f-sorted assms have [: set | = S sorted | distinct | by
auto
then have len: length | = card S using distinct-card by force
let ?f = Nz if x ¢ S then 0 else THE i. i < length LN 1 i =z
{fixzy:’aassume A: z€ Sye Sz <y
with /(1) obtain 7 j where «: [! i =z 1! j =y i < length lj < length
[
by (meson in-set-conv-nth)
have i # j
proof (rule ccontr, goal-cases)
case !
with A x have x < = by auto
with asymmetric A assms show Fualse by auto
qged
have 7 < j
proof (rule ccontr, goal-cases)
case I
with «i # j» sorted-nth-mono[OF 1(2)] «<i < length I» have [l j <[]
1 by auto
with * A(3) A assms asymmetric show False by auto
qged

30

moreover have ?fz = i using * [(3) A(1) by (auto) (rule, auto intro:
distinct-nth-unique)
moreover have ?fy = j using * [(3) A(2) by (auto) (rule, auto intro:
distinct-nth-unique)
ultimately have ?f z < ¢fy by auto
} moreover
{fixzyassume A:z € Sye S ?%x< ?y
with /(1) obtain ¢ j where x: [! i =z 1! j =y i < length | j < length
l
by (meson in-set-conv-nth)
moreover have ?fz = ¢ using * [(3) A(1) by (auto) (rule, auto intro:
distinct-nth-unique)
moreover have ?f y = j using * [(3) A(2) by (auto) (rule, auto intro:
distinct-nth-unique)
ultimately have s«x: [! ?fx =z ! ?fy = y i < j using A(3) by auto
from sorted-nth-mono[OF 1(2), of i j] **(3) * have z < y by auto
}
ultimately haveV z € S.V y € S. ?fz < 9fy +— x < y by force
moreover have range ?f C {0..card S — 1}
proof (auto, goal-cases)
case (1)
with [(1) obtain ¢ where x: [| ¢ = x i < length | by (meson
in-set-conv-nth)
then have ?f z = i using [(3) 1 by (auto) (rule, auto intro: dis-
tinct-nth-unique)
with len show ?case using *(2) 1 by auto
qed
ultimately show ?thesis ..
qed

end

lemma finite-total-preorder-enumeration:

fixes X :: ‘a set

fixes r :: 'a rel

assumes fin: finite X

assumes tot: total-on X r

assumes refl: refl-on X r

assumes trans: trans r

obtains f :: ‘a = nat whereV z € X.V ye X. fe < fy+— (z,9) €
r
proof —

let PA=Az.{ye X .(y,z) €er Az, y €r}

have ex: V z € X. x € YA z using refl unfolding refl-on-def by auto

31

let R=MXS. SOME y. y € S
let T ={?Az|z. z€ X}
{ fix A assume A: A € ?T
then obtain z where z: z € X ?A © = A by auto
then have z € A using refl unfolding refi-on-def by auto
then have 7R A € A by (auto intro: somel)
with z(2) have (?R A, z) € r (z, R A) € r by auto
with trans have (YR A, ?R A) € r unfolding trans-def by blast
} note refi-lifted = this
{ fix A assume A: A € ?T
then obtain z where z: z € X 94 x = A by auto
then have z € A using refl unfolding refl-on-def by auto
then have ?R A € A by (auto intro: somel)
} note R-in = this
{fix Ayzassume A: A€ ?Tand y: y € Aand z: z € A
from A obtain z where z: x € X ?A © = A by auto
then have z € A using refl unfolding refi-on-def by auto
with z y have (z, y) € r (y, ©) € r by auto
moreover from z z have (z,z) € r (z,2) € r by auto
ultimately have (y, z) € r (z, y) € r using trans unfolding trans-def
by blast+
} note A-dest’ = this
{fix Ayassume A € ?T and y € A
with A-dest/|OF - - R-in] have (?R A, y) € r (y, ?R A) € r by blast+
} note A-dest = this
{fix A yzassume A: A € ?T and y: y € Aand 2: z € X and 7: (y,
z)€r(z,y)er
from A obtain x where z: z € X ?A © = A by auto
then have z € A using refi unfolding refi-on-def by auto
with z y have (z,y) € r (y,) € r by auto
with r have (z,z) € r (z,2) € r using trans unfolding trans-def by
blast+
with z z have z € A by auto
} note A-intro’ = this
{fix A yassume A: A € ?T and y: y € X and 7: (?R A, y) € r (y,
RA)er
with A-intro’ R-in have y € A by blast
} note A-intro = this
{fix ABC
assume r1: (YR A, 7R B) € rand r2: (R B, R C) € r
with trans have (7R A, R C) € r unfolding trans-def by blast
} note trans-lifted[intro] = this
{fix ABab
assume A: A € ?T and B: B € ¢T

32

and a: a € Aand b: b€ B
and r: (a, b) € v (b, a) € r
with R-in have YR A € A ?R B € B by blast+
have A = B
proof auto
fix r assume z: x € A
with A have z € X by auto
from A-intro’|OF B b this] A-dest|OF A x a] r trans[unfolded trans-def]
show x € B by blast
next
fix x assume z: z € B
with B have z € X by auto
from A-intro’|OF A a this] A-dest’|OF B z b] r trans[unfolded trans-def]
show z € A by blast
qged
} note eg-lifted” = this
{fix ABC
assume A: A € ?T and B: B€ ?T and r: (R A, R B) € r (YR B,
R A)er
with eg-lifted”” R-in have A = B by blast
} note eqg-lifted’ = this
{fix ABC
assume A: A € ?T and B: B€ ?T and eq: YR A= ?R B
from R-in[OF A] A have 7R A € X by auto
with refl have (?R A, YR A) € r unfolding refl-on-def by auto
with eg-lifted |OF A B] eq have A = B by auto
} note eq-lifted = this
{fix A B
assume A: A € T and B: B € ?T and neq: A # B
from neq eq-lifted[OF A B] have 7R A # ?R B by metis
moreover from A B R-in have R A € X R B € X by auto
ultimately have (?R A, YR B) € v V (?R B, R A) € r using tot
unfolding total-on-def by auto
} note total-lifted = this
{fixzyassume z: z € X and y: y € X
from z y have ?A x € ?T ?A y € ?T by auto
from R-in[OF this(1)] R-in|OF this(2)] have 7R (YA z) € ?A z ?R
(?A y) € ?A y by auto
then have (z, R (YA z)) € r (R (?A y),y) € r (R (?Ax),z) €Er
(y, ?R (?A y)) € r by auto
with trans[unfolded trans-def] have (z, y) € r +— (7R (?A z), 7R (?A
y)) € r by meson
} note repr = this
interpret interp: enumerateable {?A z |z. x € X} N A B. A# B A (?R

33

A, ?RB)er
proof (standard, goal-cases)
case I
from fin show ?case by auto
next
case 2
with total-lifted show ?case by auto
next
case 3
then show ?case unfolding transp-def
proof (standard, standard, standard, standard, standard, goal-cases)
case (1 A B ()
note A = this
with trans-lifted have (?R A,?R C) € r by blast
moreover have A # C
proof (rule ccontr, goal-cases)
case 1
with A have (YR A,?R B) € r (YR B,?R A) € r by auto
with eg-lifted |OF A(1,2)] A show Fualse by auto
qged
ultimately show ?case by auto
qged
next
case 4
{ fix A Bassume A: A € ?T and B: B € ?T and neq: A # B (YR A,
R B) € r
with eg-lifted |OF A B] neq have - (YR B, /R A) € r by auto
}
then show ?case by auto
qed
from interp.order-fun[OF subset-refl] obtain f :: ‘a set = nat where
[(Vaee?T.Yye?T.fe<fy<+«—xz#yA(?Rz, Ry) € rrange
f C{0..card ?T — 1}
by auto
let of = A xz. ifx € X then f (24 z) else 0
{fix zyassume z: z € X and y: y € X
have ?fz < ?fy +— (z, y) € r
proof (cases © = y)
case True
with refl x show ?thesis unfolding refl-on-def by auto
next
case Fulse
note F' = this
from ez z y have x: Az € T ?Ayec ?Tx e Azy e ?A y by

34

auto
show %thesis
proof (cases (z,y) € r A (y, z) € 1)
case True
from eq-lifted”’|OF x| True = y have ?f z = ?f y by auto
with True show ?thesis by auto
next
case Faulse
with A-dest’|OF %(1,3), of y] *(4) have xx: A x # ?A y by auto
from total-lifted|OF x(1,2) this| have (?R (?A), R (YA y)) € r
V (PR (?A y), R (YA x)) er.
then have neq: ?fx # ?fy
proof (standard, goal-cases)
case !
with f %(1,2) =« have f (74 z) < f (YA y) by auto
with * show ?case by auto
next
case 2
with f x(1,2) =+ have f (?4 y) < f (?A z) by auto
with * show ?case by auto
qed
then have ?thesis = (?fz < ?fy <— (z, y) € r) by linarith
moreover from f ** x have (?fz < ?fy «— (?R (?A), R (YA
y)) € r) by auto

moreover from repr * have ... «— (z, y) € r by auto
ultimately show ?thesis by auto
qed
qged

}

then haveV z € X.V y € X. ?fz < ?fy «<— (z, y) € r by blast
then show ?thesis ..
qged

1.3.3 Finiteness

lemma pairwise-finitel:

assumes finite {b. 3a. P a b} (is finite ?B)

assumes finite {a. 3b. P a b}

shows finite {(a,b). P a b} (is finite 7C)
proof —

from assms(1) have finite 7B .

let 2f = X\ b. {(a,b) | a. P a b}

{fix b

have ?f b C {(a,b) | a. 3b. P a b} by blast

35

moreover have finite ... using assms(2) by auto
ultimately have finite (?f b) by (blast intro: finite-subset)
}
with assms(1) have finite ((J (?f ¢ ?B)) by auto
moreover have ?C C |J (?f ‘ ?B) by auto
ultimately show ?thesis by (blast intro: finite-subset)
qed

lemma finite-ex-and1:

assumes finite {b. Ja. P a b} (is finite 7A)

shows finite {b. 3a. P a b A Q a b} (is finite ?B)
proof —

have ?B C ?A by auto

with assms show ?thesis by (blast intro: finite-subset)
qed

lemma finite-ex-and2:

assumes finite {b. Ja. Q a b} (is finite ?A)

shows finite {b. 3a. P a b A Q a b} (is finite ?B)
proof —

have ?B C ?A by auto

with assms show ?thesis by (blast intro: finite-subset)
qed

1.3.4 Numbering the elements of finite sets

lemma upt-last-append: a < b = [a..<b] Q [b] = [a ..< Suc b] by (induction
b) auto

lemma map-of-zip-dom-to-range:
a € set A = length B = length A = the (map-of (zip A B) a) € set B
by (metis map-of-SomeD map-of-zip-is-None option.collapse set-zip-rightD)

lemma zip-range-id:
length A = length B = snd * set (zip A B) = set B
by (metis map-snd-zip set-map)

lemma map-of-zip-in-range:
distinct A = length B = length A = b € set B = 3 a € set A. the
(map-of (zip A B) a) = b
proof goal-cases
case I
from ran-distinct[of zip A B] 1(1,2) have
ran (map-of (zip A B)) = set B

36

by (auto simp: zip-range-id)

with 1(3) obtain a where map-of (zip A B) a = Some b unfolding
ran-def by auto

with map-of-zip-is-Some|OF 1(2)[symmetric]| have the (map-of (zip A
B) a) = b a € set A by auto

then show ?case by blast
qed

lemma distinct-zip-ing:
distinct ys = (a, b) € set (zip zs ys) = (¢, b) € set (zip zs ys) = a
=c
proof (induction ys arbitrary: xs)
case Nil then show ?case by auto
next
case (Cons y ys)
from this(3) have zs # || by auto
then obtain z zs where zs: s = z # zs by (cases xs) auto
show Zcase
proof (cases (a, b) € set (zip zs ys))
case True
note T = this
then have b: b € set ys by (meson in-set-zipE)
show ?thesis
proof (cases (c, b) € set (zip zs ys))
case True
with T Cons show ?thesis by auto
next
case Fulse
with Cons.prems xs b show ?thesis by auto
qged
next
case Fulse
with Cons.prems zs have b: a = 2z b = y by auto
show ?thesis
proof (cases (c, b) € set (zip zs ys))
case True
then have b € set ys by (meson in-set-zipE)
with b <distinct (y#ys)> show ?thesis by auto
next
case Fulse
with Cons.prems xs b show ?thesis by auto
ged
qed
qged

37

lemma map-of-zip-distinct-ing:

distinct B = length A = length B = inj-on (the o map-of (zip A B))
(set A)
unfolding inj-on-def proof (clarify, goal-cases)

case (1 z y)

with map-of-zip-is-Some[OF 1(2)] obtain a where

map-of (zip A B) x = Some a map-of (zip A B) y = Some a

by auto

then have (z, a) € set (zip A B) (y, a) € set (zip A B) using map-of-SomeD
by metis+

from distinct-zip-inj[OF - this| 1 show ?Zcase by auto
qged

lemma nat-not-ge-1D: = Suc 0 < x = xz = 0 by auto

lemma standard-numbering:
assumes finite A
obtains v :: ‘/a = nat and n where bij-betw v A {1..n}
andV ce A. ve> 0
andV c.c¢ A—vec>n
proof —
from assms obtain L where L: distinct L set L = A by (meson fi-
nite-distinct-list)
let 2N = length L + 1
let ?P = zip L [1..<?N]
let 20 = X\ z. let v = map-of ?P x in if v = None then ?N else the v
from length-upt have len: length [1..<?N] = length L by auto (cases L,
auto)
then have Ilsimp: length [Suc 0 ..<Suc (length L)] = length L by simp
note x = map-of-zip-dom-to-range| OF - len)]
have bij-betw v A {1..length L} unfolding bij-betw-def
proof
show ?v ¢ A = {1..length L} apply auto
apply (auto simp: L)[]
apply (auto simp only: upt-last-append)[] using * apply force
using * apply (simp only: upt-last-append) apply force
apply (simp only: upt-last-append) using L(2) apply (auto dest:
nat-not-ge-1D)
apply (subgoal-tac x € set [1..< length L +1])
apply (force dest!: map-of-zip-in-range[OF L(1) len])
apply auto
done
next

38

from L map-of-zip-distinct-inj[OF distinct-upt, of L 1 length L + 1] len
have inj-on (the o map-of ?P) A by auto
moreover have inj-on (the o map-of ?P) A = inj-on %v A
using len L(2) by — (rule inj-on-cong, auto)
ultimately show inj-on ?v A by blast
qed
moreover haveV ¢ € A. 2v¢ > 0
proof
fix ¢
show %v ¢ > 0
proof (cases ¢ € set L)
case Fulse
then show ?thesis by auto
next
case True
with dom-map-of-zip[OF len|[symmetric]] obtain x where
Some x = map-of ?P ¢ x € set [1..<length L + 1]
by (metis * domlff option.collapse)
then have ?v ¢ € set [1..<length L + 1] using % True len by auto
then show ?thesis by auto
qed
qed
moreover have V ¢. ¢ ¢ A — %v ¢ > length L using L by auto
ultimately show ?thesis ..
qed

1.3.5 Products

lemma prod-set-fst-id:
r=yifVacux fsta=bV acy. fsta=bsnd ‘x=snd‘y
using that by (auto 4 6 simp: fst-def snd-def image-def split: prod.splits)

end

2 Graphs

theory Graphs
imports
More-List Stream-More
HOL— Library. Rewrite
begin

39

2.1 Basic Definitions and Theorems

locale Graph-Defs =
fixes F :: 'a = 'a = bool
begin

inductive steps where
Single: steps [x] |
Cons: steps (v # y # zs) if E x y steps (y # xs)

lemmas [intro] = steps.intros

lemma steps-append:
steps (zs Q tl ys) if steps zs steps ys last xs = hd ys
using that by induction (auto 4 4 elim: steps.cases)

lemma steps-append’:
steps xs if steps as steps bs last as = hd bs as Q tl bs = zs
using steps-append that by blast

coinductive run where

run (x ## y #4# xs) if Ex y run (y #4# xs)

lemmas [intro] = run.intros

lemma steps-appendD1 :

steps xs if steps (zs Q ys) xs # ||

using that proof (induction xs)

case Nil

then show ?case by auto
next

case (Cons a 1s)

then show “case

by — (cases xs; auto elim: steps.cases)

qged

lemma steps-appendD2:
steps ys if steps (zs @ ys) ys # |]
using that by (induction xs) (auto elim: steps.cases)

lemma steps-appendDS3:
steps (xs Q [z]) A E z y if steps (zs Q [z, y])
using that proof (induction xs)
case Nil

40

then show ?Zcase by (auto elim!: steps.cases)
next

case prems: (Cons a zs)

then show ?case by (cases xs) (auto elim: steps.cases)
qed

lemma steps-ConsD:
steps xs if steps (x # xs) xs # ||
using that by (auto elim: steps.cases)

lemmas stepsD = steps-ConsD steps-appendD1 steps-appendD2

lemma steps-alt-induct[consumes 1, case-names Single Snoc]:
assumes
steps © (N\z. P [z])
Ny zzs. Eyx = steps (xs Q [y]) = P (zs Q [y]) = P (xs Q [y,z])
shows P z
using assms(1)
proof (induction rule: rev-induct)
case Nil
then show ?case by (auto elim: steps.cases)
next
case prems: (snoc z xs)
then show Zcase by (cases xs rule: rev-cases) (auto intro: assms(2,3)
dest!: steps-appendD3)
qed

lemma steps-appendl:
steps (zs Q [z, y]) if steps (zs Q [z]) Fz y
using that
proof (induction xs)
case Nil
then show ?case by auto
next
case (Cons a xs)
then show ?Zcase by (cases zs; auto elim: steps.cases)
qged

lemma steps-append-single:
assumes
steps xs E (last xs) x xs # ||
shows steps (zs Q [z])
using assms(3,1,2) by (induction xs rule: list-nonempty-induct) (auto 4
4 elim: steps.cases)

41

lemma extend-run:
assumes
steps xs E (last xs) x run (z #4# ys) zs # ||
shows run (zs Q— z ## ys)
using assms(4,1—3) by (induction zs rule: list-nonempty-induct) (auto
4 3 elim: steps.cases)

lemma run-cycle:
assumes steps xs E (last zs) (hd zs) xs # ||
shows run (cycle xs)
using assms proof (coinduction arbitrary: xs)
case run
then show ?case
apply (rewrite at <cycle zs) stream.collapse[symmetric])
apply (rewrite at «stl (cycle zs)» stream.collapse[symmetric])
apply clarsimp
apply (erule steps.cases)
subgoal for z
apply (rule conjl)
apply (simp; fail)
apply (rule disjl1)
apply (inst-existentials xs)
apply (simp, metis cycle-Cons|of x ||, simplified])
by auto
subgoal for z y zs’
apply (rule conjl)
apply (simp; fail)
apply (rule disjl1)
apply (inst-existentials y # xzs' Q [z])
using steps-append-single[of y # xs’ z]
apply (auto elim: steps.cases split: if-split-asm simp: cycle-Cons)
done
done
qged

lemma run-stl:
run (stl zs) if run zs
using that by (auto elim: run.cases)

lemma run-sdrop:

run (sdrop n zs) if run zs
using that by (induction n arbitrary: zs) (auto intro: run-stl)

42

lemma run-reachable”:
assumes run (z ## zs) E** zo
shows pred-stream (\ x. E** xy z) xs
using assms by (coinduction arbitrary: z xs) (auto 4 3 elim: run.cases)

lemma run-reachable:
assumes run (zo ## xs)
shows pred-stream (\ x. E** xy) xs
by (rule run-reachable’|OF assms]) blast

lemma run-decomp:
assumes run (zs Q— ys) zs # []
shows steps xs A run ys A E (last xs) (shd ys)
using assms(2,1) proof (induction xs rule: list-nonempty-induct)
case (single x)
then show ?Zcase by (auto elim: run.cases)
next
case (cons x zs)
then show ?Zcase by (cases xs; auto 4 4 elim: run.cases)
ged

lemma steps-decomp:
assumes steps (zs Q ys) xzs # [| ys # ||
shows steps xs A steps ys A E (last xs) (hd ys)
using assms(2,1,3) proof (induction xzs rule: list-nonempty-induct)
case (single x)
then show ?Zcase by (auto elim: steps.cases)
next
case (cons x zs)
then show ?Zcase by (cases xs; auto 4 4 elim: steps.cases)
ged

lemma steps-rotate:
assumes steps (z # xs Q y # ys Q [z])
shows steps (y # ys Q@ x # xs @Q [y])
proof —
from steps-decomplof © # zs y # ys Q [z]] assms have
steps (z # xs) steps (y # ys Q [z]) E (last (x # xs)) y
by auto
then have steps ((z # zs) Q [y]) by (blast intro: steps-append-single)
from steps-append|OF <steps (y # ys Q [z])» this] show ?thesis by auto
ged

lemma run-shift-coinduct[case-names run-shift, consumes 1]:

43

assumes R w
and A w. Rw=—= F uvzy w=uQ— z ## y #+# v A steps (u @
@) A Eay AR (y 44 v)
shows run w
using assms(2)[OF <R w] proof (coinduction arbitrary: w)
case (run w)
then obtain v v x y where w = u Q— z ## y ## v steps (v Q [z]) E
Ty R (y #4 v)
by auto
then show ?Zcase
apply —
apply (drule assms(2))
apply (cases u)

apply force
subgoal for z zs

apply (cases zs)
subgoal
apply simp
apply safe
apply (force elim: steps.cases)
subgoal for v’ v’ z’ y’
by (inst-existentials x # u’) (cases u'; auto)
done
subgoal for a as
apply simp
apply safe
apply (force elim: steps.cases)
subgoal for v’ v’ 2’ y’
apply (inst-existentials a # as @ z # u’)
using steps-append|of a # as Q [z, y] u’ Q [2']]
apply simp
apply (drule steps-appendI|[of a # as x, rotated])
by (cases u'; force elim: steps.cases)+
done
done
done
qged

lemma run-flat-coinduct|case-names run-shift, consumes 1|:
assumes R zss
and
\ xs ys xss.
R (ws ## ys ## wxss) = zs # [| A steps xs A E (last zs) (hd ys) A R

(ys #t# wss)

44

shows run (flat zss)
proof —
obtain zs ys zss’ where xss = xs ## ys ## xss’ by (metis stream.collapse)
with assms(2)[OF assms(1)[unfolded this]] show ?thesis
proof (coinduction arbitrary: xs ys xss’ xss rule: run-shift-coinduct)
case (run-shift zs ys xss’ xss)
from run-shift show ?case
apply (cases zss’)
apply clarify
apply (drule assms(2))
apply (inst-existentials butlast xzs tl ys Q— flat zss’ last xs hd ys)
apply (cases ys)
apply (simp; fail)
subgoal premises prems for z1 z2 z zs
proof (cases zs = [])
case True
with prems show ?thesis
by auto
next
case Fulse
then have zs = butlast s Q [last zs] by auto
then have butlast xs Q— last xs ## tail = s Q— tail for tail
by (metis shift.simps(1,2) shift-append)
with prems show ?thesis by simp
qed
apply (simp; fail)
apply assumption
subgoal for ws wss
by (inst-existentials ys ws wss) (cases ys, auto)
done
qged
qged

lemma steps-non-empty[simp]:
- steps ||
by (auto elim: steps.cases)

lemma steps-non-empty’[simp]:

zs # [] if steps xs
using that by auto

lemma steps-replicate:
steps (hd zs # concat (replicate n (tl xs))) if last zs = hd zs steps zs n >

45

0
using that
proof (induction n)
case (
then show ?case by simp
next
case (Suc n)
show ?case
proof (cases n)
case (
with Suc.prems show ?thesis by (cases zs; auto)
next
case prems: (Suc nat)
from Suc.prems have [simp|: hd zs # tl zs Q ys = zs Q ys for ys
by (cases xs; auto)
from Suc.prems have *x: tl zs Q ys = tl (zs Q ys) for ys
by (cases xs; auto)
from prems Suc show ?thesis
by (fastforce intro: steps-append’)
qed
qed

notation F (<- — -» [100, 100] 40)

abbreviation reaches (- —x -» [100, 100] 40) where reaches z y = E**

Yy

abbreviation reaches! («- —* - [100, 100] 40) where reachesl z y
Ett ¢ y

lemma steps-reaches:
hd zs —x* last xs if steps xs
using that by (induction zs) auto

lemma steps-reaches’”:
x —x y if steps xs hd xs = x last s = y
using that steps-reaches by auto

lemma reaches-steps:
3 xs. hd zs = x A last xs = y N steps zs if © —x* y
using that
apply (induction)
apply force
apply clarsimp

46

subgoal for z s
by (inst-existentials xs Q [z], (cases zs; simp), auto intro: steps-append-single)
done

lemma reaches-steps-iff:
z =%y +— (3 zs. hd zs = x A last xs = y A steps xs)
using steps-reaches reaches-steps by fast

lemma steps-reachesli:

r —1 y if steps (z # zs Q [y])

by (metis list.sel(1,3) rtranclp-into-tranclp2 snoc-eq-iff-butlast steps.cases
steps-reaches that)

lemma stepsl:
steps (z # xs) if x — hd xs steps xs
using that by (cases xs) auto

lemma reachesl-steps:
3 zs. steps (z # xs Q [y]) if z —T y
proof —
from that obtain z where z — 2z z —x* y
by atomize-elim (simp add: tranclpD)
from reaches-steps|OF this(2)] obtain zs where x: hd s = z last s =
y steps s
by auto
then obtain zs’ where [simp]: zs = zs’ Q [y]
by atomize-elim (auto 4 3 intro: append-butlast-last-id[symmetric])
with «x — 2> *x show ?thesis
by (auto intro: stepsl)
qged

lemma reachesi-steps-iff:
T =Ty +— (3 zs. steps (x # zs Q [y]))
using steps-reachesl reaches1-steps by fast

lemma reaches-steps-iff2:

T —xy <+ (x=1yV (Jus. steps (x # vs Q [y])))

by (simp add: Nitpick.rtranclp-unfold reaches1-steps-iff)
lemma reachesl-reaches-iff1:

=T y+— (T 22— 2Nz =% y)

by (auto dest: tranclpD)

lemma reachesl-reaches-iff2:

47

=T y+— 3z oz Az y)

apply safe

apply (metis Nitpick.rtranclp-unfold tranclp.cases)
by auto

lemma
T =T zifr sxyy =T 2
using that by auto

lemma
r—T zifz =T yy =% 2
using that by auto

lemma steps-append?2:
steps (xs @ x # ys) if steps (xs Q [z]) steps (z # ys)
using that by (auto dest: steps-append)

lemma reachesi-steps-append:
assumes a — 1 b steps xs hd xs = b
shows 3 ys. steps (a # ys Q xs)
using assms by (fastforce intro: steps-append’ dest: reachesI-steps)

lemma steps-last-step:
3 a. a — last zs if steps xs length xs > 1
using that by induction auto

lemma steps-remove-cycleE:
assumes steps (a # xs @Q [b])
obtains ys where steps (a # ys Q [b]) distinct ys a ¢ set ys b ¢ set ys
set ys C set xs
using assms
proof (induction length xs arbitrary: xs rule: less-induct)
case less
note prems = less.prems(2) and intro = less.prems(1) and IH = less.hyps
consider
distinct s a ¢ set xs b ¢ set xs | a € set xs | b € set xs | = distinct xs
by auto
then consider (goal) ?case
| (a) as bs where zs = as @ a # bs | (b) as bs where zs = as Q b # bs
| (between) x as bs cs where xs = as Q = # bs @ x # cs
using prems by (cases; fastforce dest: not-distinct-decomp simp: split-list
intro: intro)
then show ?case
proof cases

48

case a
with prems show ?thesis
by — (rule IH|[where zs = bs], auto 4 3 intro: intro dest: stepsD)
next
case b
with prems have steps (a # as @ b # [] @ (bs @ [b]))
by simp
then have steps (a # as Q [b])
by (metis Cons-eq-appendl Graph-Defs.steps-appendD1 append-eq-appendl
neq-Nil-conv)
with b show ?thesis
by — (rule IH|where zs = as|, auto 4 3 dest: stepsD intro: intro)
next
case between
with prems have steps (a # as Q@ x # cs @ [b])
by simp (metis
stepsl append-Cons list.distinct(1) list.sel(1) list.sel(3) steps-append
steps-decomp)
with between show ?thesis
by — (rule IH[where zs = as @ x # cs|, auto 4 3 intro: intro dest:
stepsD)
qed
qed

lemma reachesl-stepsk:
assumes a —1 b
obtains zs where steps (a # zs Q [b]) distinct zs a ¢ set xs b ¢ set xs
proof —
from assms obtain zs where steps (a # xs @ [b))
by (auto dest: reaches1-steps)
then show ?thesis
by — (erule steps-remove-cycleE, rule that)
ged

lemma reaches-stepskE:
assumes a —* b
obtains a = b | zs where steps (a # xs @ [b]) distinct zs a ¢ set zs b ¢
set xs
proof —
from assms consider a = b | zs where a —7* b
by (meson rtranclpD)
then show ?thesis
by cases ((erule reaches1-stepsE)?; rule that; assumption)+
qged

49

definition sink where
sinka=3b.a—b

lemma sink-or-cycle:
assumes finite {b. reaches a b}
obtains b where reaches a b sink b | b where reaches a b reachesl b b
proof —
let ?S = {b. reachesl a b}
have 25 C {b. reaches a b}
by auto
then have finite 25
using assms by (rule finite-subset)
then show ?thesis
using that
proof (induction ?S arbitrary: a rule: finite-psubset-induct)
case psubset
consider (empty) Collect (reaches! a) = {} | b where reaches! a b
by auto
then show Zcase
proof cases
case empty
then have sink a
unfolding sink-def by auto
with psubset.prems show ?thesis
by auto
next
case 2
show “thesis
proof (cases reaches b a)
case True
with <reachesl a b> have reaches! a a
by auto
with psubset.prems show ?thesis
by auto
next
case Fulse
show ?thesis
proof (cases reachesl b b)
case True
with <reachesl a by psubset.prems show ?thesis
by (auto intro: tranclp-into-rtranclp)
next
case Fulse

50

with <= reaches b a) <reachesl a by have Collect (reachesl b) C
Collect (reaches! a)
by (intro psubsetl) auto
then show ?thesis
using <reachesl a by psubset.prems
by — (erule psubset.hyps; meson tranclp-into-rtranclp tran-
clp-rtranclp-tranclp)
qged
qed
qed
qed
qed

A directed graph where every node has at least one ingoing edge, contains
a directed cycle.

lemma directed-graph-indegree-ge-1-cycle’:
assumes finite S S # {}Vye S. 3 zeS Ezrxy
shows 3 ze€ S. 3 y. Fxy N E*™ yx
using assms
proof (induction arbitrary: E rule: finite-ne-induct)
case (singleton x)
then show ?case by auto
next
case (insert x S E)
from insert.prems obtain y where y € insert t S F y x
by auto
show Zcase
proof (cases y = x)
case True
with «F y > show Zthesis by auto
next
case Fulse
with <y € -» have y € S by auto
define F' where E'ab=EabV (a=y AN Ezb)forabd
have E-E: 3 c. Eac AN E** cbif E'abfor ab
using that <E y z> unfolding E’-def by auto
have [intro]: E** a bif E' a b for a b
using that <E y z> unfolding E’-def by auto
have [intro]: E** a b if E** a b for a b
using that by (induction; blast intro: rtranclp-trans)
have VyeS. 3zeS. E' 'z y
proof (rule balll)
fix b assume b € S
with insert.prems obtain a where a € insert ¢t S F a b

o1

by auto
show 3acS. E'a b
proof (cases a =)
case True
with <F a b» have E’ y b unfolding E’-def by simp
with «y € S) show ?thesis ..
next
case Fulse
with <a € - <F a b> show ?thesis unfolding E’-def by auto
qged
qged
from insert.IH[OF this| obtain z y where z € S E' z y E** y z by
safe
then show ?thesis by (blast intro: rtranclp-trans dest: E'-E)
qged
qed

lemma directed-graph-indegree-ge-1-cycle:

assumes finite S S #{}Vye S. 3 zeS Exy

shows3d ze€ 5.3y z -T2z

using directed-graph-indegree-ge-1-cycle’|OF assms] reaches1-reaches-iff1
by blast

Vertices of a graph
definition vertices = {z. 3y. Exy V F y x}

lemma reachesi-verts:

assumes —71 y

shows z € vertices and y € wvertices

using assms reachesi-reaches-iff2 reachesl-reaches-iff1 vertices-def by
blast+

lemmas graphl =
steps.intros
steps-append-single
steps-reaches’
stepsl

end

2.2 Graphs with a Start Node
locale Graph-Start-Defs = Graph-Defs +

52

fixes sg :: 'a

begin

definition reachable where
reachable = E** s

lemma start-reachable[intro!, simp]:
reachable sg
unfolding reachable-def by auto

lemma reachable-step:
reachable b if reachable a E a b
using that unfolding reachable-def by auto

lemma reachable-reaches:
reachable b if reachable a a —* b
using that(2,1) by induction (auto intro: reachable-step)

lemma reachable-steps-append:
assumes reachable a steps s hd xs = a last zs = b
shows reachable b
using assms by (auto intro: graphl reachable-reaches)

lemmas steps-reachable = reachable-steps-append|of so, simplified]

lemma reachable-steps-elem:
reachable y if reachable x steps xs y € set xs hd s = x
proof —
from (y € set xs» obtain as bs where [simp|: ©s = as Q y # bs
by (auto simp: in-set-conv-decomp)
show ?thesis
proof (cases as = |])
case True
with that show ?thesis
by simp
next
case Fulse

from <steps zs» have steps (as @ [y])
by (auto intro: stepsD)

with <as # []» <hd zs = 2> <reachable x> show ?thesis
by (auto 4 3 intro: reachable-reaches graphl)
qed
qged

93

lemma reachable-steps:
3 ws. steps xs N\ hd xs = sg A last xs = z if reachable x
using that unfolding reachable-def
proof induction
case base
then show ?Zcase by (inst-existentials [so); force)
next
case (step y z)
from step.IH obtain zs where steps xs s) = hd xzs y = last zs by clarsimp
with step.hyps show ?case
apply (inst-existentials zs Q [z])
apply (force intro: graphl)
by (cases zs; auto)+
qed

lemma reachable-cycle-iff:
reachable z A x =T x +— (3 ws zs. steps (sop # ws Q [z] @ zs @ [z]))
proof (safe, goal-cases)
case (2 ws)
then show “case
by (auto intro: steps-reachable stepsD)
next
case (3 ws zs)
then show ?case
by (auto intro: stepsD steps-reachesl)
next
case prems: 1
from <reachable x> prems(2) have sp —1 z
unfolding reachable-def by auto
with <z =) show ?case
by (fastforce intro: steps-append’ dest: reachesI-steps)
ged

lemma reachable-induct[consumes 1, case-names start step, induct pred:
reachable]:
assumes reachable x
and P sg
and A a b. reachable « = Pa=— a — b= Pb
shows P z
using assms(1) unfolding reachable-def
by induction (auto intro: assms(2—)[unfolded reachable-def])

lemmas graphl-aggressive =

54

tranclp-into-rtranclp
rtranclp.rtrancl-into-rtrancl
tranclp.trancl-into-trancl
rtranclp-into-tranclp2

lemmas graphl-aggressivel =
graphl-aggressive
steps-append’

lemmas graphl-aggressive2 =
graphl-aggressive
stepsD
steps-reachesl
steps-reachable

lemmas graphD =
reachesi-steps

lemmas graphD-aggressive =
tranclpD

lemmas graph-start] =
reachable-reaches
start-reachable

end

2.3 Subgraphs

2.3.1 Edge-induced Subgraphs

locale Subgraph-Defs = G: Graph-Defs +
fixes E' :: 'a = 'a = bool

begin

sublocale G": Graph-Defs E’ .

end

locale Subgraph-Start-Defs = G: Graph-Start-Defs +
fixes £ :: 'a = 'a = bool
begin

sublocale G': Graph-Start-Defs E' s .

95

end

locale Subgraph = Subgraph-Defs +
assumes subgraph[intro]: E' a b = E a b
begin

lemma non-subgraph-cycle-decomp:
3 c¢d. G.reaches a ¢ N Ecd N - E'¢cd N G.reaches d b if
G.reachesl a b — G'.reachesl a b for a b
using that
proof induction
case (base y)
then show Zcase
by auto
next
case (step y z)
show Zcase
proof (cases E' y z)
case True
with step have — G'.reachesl a y
by (auto intro: tranclp.trancl-into-trancl)
with step obtain ¢ d where
G.reaches a ¢ E ¢ d — E' ¢ d G.reaches d y
by auto
with «E’ y 2> show ?thesis
by (blast intro: rtranclp.rtrancl-into-rtrancl)
next
case Fulse
with step show ?thesis
by (intro exl conjl) auto
qged
qed

lemma reaches:

G.reaches a b if G'.reaches a b

using that by induction (auto intro: rtranclp.intros(2))
lemma reachesi:

G.reachesl a b if G'.reaches! a b

using that by induction (auto intro: tranclp.intros(2))

end

o6

locale Subgraph-Start = Subgraph-Start-Defs + Subgraph
begin

lemma reachable-subgraphlintro|: G.reachable b if <G.reachable a> «G'.reaches
a by for a b
using that by (auto intro: G.graph-start] mono-rtranclp[rule-format, of

2)

lemma reachable:

G.reachable x if G'.reachable x
using that by (fastforce simp: G.reachable-def G'.reachable-def)

end

2.3.2 Node-induced Subgraphs

locale Subgraph-Node-Defs = Graph-Defs +
fixes V :: 'a = bool
begin

definition £’ where E'zy=Fxzy AN Va A Vy
sublocale Subgraph E E’ by standard (auto simp: E'-def)

lemma subgraph”:
E'zyifExzyVaVy
using that unfolding E’-def by auto

lemma E’-V1:
Veif E'zy
using that unfolding E’-def by auto

lemma E’-V2:
Vyif E'zy
using that unfolding E’-def by auto

lemma G'-reaches-V:
Vy if G'.reaches zy V x
using that by (cases) (auto intro: E'-V2)

lemma G'-steps-V-all:

list-all V xs if G'.steps xs V (hd xs)
using that by induction (auto intro: E'-V?2)

o7

lemma G'-steps-V-last:
V (last xs) if G'.steps xs V (hd xs)
using that by induction (auto dest: E'-V2)

lemmas subgraphl = E'-V1 E'-V2 G’-reaches-V
lemmas subgraphD = E'-V1 E'-V2 G'-reaches-V

end

locale Subgraph-Node-Defs-Notation = Subgraph-Node-Defs
begin

no-notation E (- — - [100, 100] 40)
notation E’ (- — -» [100, 100] 40)
no-notation reaches (<- —* -» [100, 100] 40)
notation G'.reaches (<- —x* - [100, 100] 40)
no-notation reaches! («- =1 - [100, 100] 40)
notation G'.reachesl (<- =T - [100, 100] 40)

end

2.3.3 The Reachable Subgraph

context Graph-Start-Defs
begin

interpretation Subgraph-Node-Defs-Notation F reachable .
sublocale reachable-subgraph: Subgraph-Node-Defs E reachable .

lemma reachable-supgraph:
x — y if E z y reachable x
using that unfolding E’-def by (auto intro: graph-startl)

lemma reachable-reaches-equiv: reaches x y <— © —x y if reachable x for
Ty
apply standard
subgoal premises prems
using prems <reachable x»
by induction (auto dest: reachable-supgraph intro: graph-startl graphl-aggressive)
subgoal premises prems
using prems <reachable x>

o8

by induction (auto dest: subgraph)
done

lemma reachable-reachesi-equiv: reachesl x y +— x —T y if reachable z
for z y
apply standard
subgoal premises prems
using prems <reachable x>
by induction (auto dest: reachable-supgraph intro: graph-startl graphl-aggressive)
subgoal premises prems
using prems <reachable x>
by induction (auto dest: subgraph)
done

lemma reachable-steps-equiv:
steps (x # xs) «— G'.steps (z # xs) if reachable
apply standard
subgoal premises prems
using prems <reachable x>
by (induction © # zs arbitrary: x zs) (auto dest: reachable-supgraph
intro: graph-startl)
subgoal premises prems
using prems by induction auto

done
end
2.4 Bundles

bundle graph-automation
begin

lemmas [intro] = Graph-Defs.graphl Graph-Start-Defs.graph-start]
lemmas [dest] = Graph-Start-Defs.graphD

end

bundle reaches-steps-iff =
Graph-Defs.reaches1-steps-iff [iff]
Graph-Defs.reaches-steps-iff [iff]

bundle graph-automation-aggressive
begin

99

unbundle graph-automation

lemmas [intro] = Graph-Start-Defs.graphl-aggressive
lemmas [dest] = Graph-Start-Defs.graphD-aggressive

end

bundle subgraph-automation
begin

unbundle graph-automation

lemmas [intro] = Subgraph-Node-Defs.subgraphl
lemmas [dest] = Subgraph-Node-Defs.subgraphD

end

2.5 Directed Acyclic Graphs

locale DAG = Graph-Defs +
assumes acyclic: - ET T z z
begin

lemma topological-numbering:
fixes S assumes finite S
shows 3f :: - = nat. inj-on fS ANz e S Vye S. Exzy— fa<fy)
using assms
proof (induction rule: finite-psubset-induct)
case (psubset A)
show Zcase
proof (cases A = {})
case True
then show ?thesis
by simp
next
case Fulse
then obtain z where z: x € AVyec A. -Fyzx
using directed-graph-indegree-ge-1-cycle[OF <finite A»] acyclic by auto
let A = A — {z}
from «x € A> have 74 C A
by auto
from psubset.IH(1)[OF this| obtain f :: - = nat where f:
inj-on f PAVze?A. VyeclA. v -y — fz < fy
by blast

60

let 2f = A\y. if ¢ # y then fy + 1 else 0

from «x € A> have A = insert z 7A
by auto

from <inj-on f ?A» have inj-on 7f A
by (auto simp: inj-on-def)

moreover from f(2) z(2) have Vz€A. VycA. z -y — ?fz < ?fy
by auto

ultimately show ?thesis
by blast

qed
qged

end

2.6 Finite Graphs

locale Finite-Graph = Graph-Defs +
assumes finite-graph: finite vertices

locale Finite-DAG = Finite-Graph + DAG
begin

lemma finite-reachable:
finite {y. x —x y} (is finite 25)
proof —
have ?2S C insert x vertices
by (metis insertCI mem-Collect-eq reachesI-verts(2) rtranclpD subsetl)
also from finite-graph have finite
finally show ?thesis .
qed

end

2.7 Graph Invariants

locale Graph-Invariant = Graph-Defs +
fixes P :: 'a = bool
assumes invariant: Pa =— o - b= P b
begin

lemma invariant-steps:

list-all P as if steps (a # as) P a
using that by (induction a # as arbitrary: as a) (auto intro: invariant)

61

lemma invariant-reaches:
Pbifa—xbPa
using that by (induction; blast intro: invariant)

lemma invariant-run:

assumes run: run (x ## xs) and P: Pz

shows pred-stream P (z ## xs)

using run P by (coinduction arbitrary: x xs) (auto 4 3 elim: invariant
TUN.cases)

Every graph invariant induces a subgraph.

sublocale Subgraph-Node-Defs where £F = F and V = P .

lemma subgraph”:
assumes ¢ — y Pz
shows E' z y
using assms by (intro subgraph’) (auto intro: invariant)

lemma invariant-steps-iff:
G'.steps (v # vs) <— steps (v # vs) if P v
apply (rule iff])
subgoal
using G'.steps-alt-induct steps-appendl by blast
subgoal premises prems
using prems <P v» by (induction v # vs arbitrary: v vs) (auto intro:
subgraph’ invariant)
done

lemma invariant-reaches-iff:

G'.reaches u v <— reaches u v if P u

using that by (simp add: reaches-steps-iff2 G'.reaches-steps-iff2 invari-
ant-steps-iff)

lemma invariant-reaches1-iff:

G'.reachesl u v < reachesl u v if P u

using that by (simp add: reachesl-steps-iff G'.reachesl-steps-iff invari-
ant-steps-iff)

end
locale Graph-Invariants = Graph-Defs +
fixes P Q :: 'a = bool
assumes invariant: Pa = a - b= @ band Q-P: Q a = P a

begin

62

sublocale Pre: Graph-Invariant E P
by standard (blast intro: invariant Q-P)

sublocale Post: Graph-Invariant E Q)
by standard (blast intro: invariant Q-P)

lemma invariant-steps:
list-all Q as if steps (a # as) P a
using that by (induction a # as arbitrary: as a) (auto intro: invariant

Q-P)

lemma invariant-run:

assumes run: run (x ## xs) and P: Pz

shows pred-stream @ xs

using run P by (coinduction arbitrary: x xs) (auto 4 4 elim: invariant
run.cases intro: Q-P)

lemma invariant-reacheslI:
Qbifa =T bPa
using that by (induction; blast intro: invariant Q-P)

end

locale Graph-Invariant-Start = Graph-Start-Defs + Graph-Invariant +
assumes P-sy: P sg
begin

lemma invariant-steps:
list-all P as if steps (so # as)
using that P-sy by (rule invariant-steps)

lemma invariant-reaches:
Pbifsgy—xb
using invariant-reaches|OF that P-sp] .
lemmas invariant-run = invariant-run[OF - P-so]
end
locale Graph-Invariant-Strong = Graph-Defs +
fixes P :: 'a = bool
assumes invariant: a - b = P b

begin

63

sublocale inv: Graph-Invariant by standard (rule invariant)

lemma P-invariant-steps:
list-all P as if steps (a # as)
using that by (induction a # as arbitrary: as a) (auto intro: invariant)

lemma steps-last-invariant:
P (last zs) if steps (xz # xs) xs # ||
using steps-last-step|of © # wxs| that by (auto intro: invariant)

lemmas invariant-reaches = inv.invariant-reaches

lemma invariant-reaches?:
Pbifa—*b
using that by (induction; blast intro: invariant)

end

2.8 Simulations and Bisimulations

locale Simulation-Defs =
fixes A :: 'a = 'a = bool and B :: 'b = 'b = bool
and sim :: ‘a = 'b = bool (infixr (~ 60)
begin

sublocale A: Graph-Defs A .
sublocale B: Graph-Defs B .
end

locale Simulation = Simulation-Defs +
assumes A-B-step: N aba’. Aab=—= a~a = (3. Ba"b'Nb~
b’)

begin

lemma simulation-reaches:

3. B* bbb ANa ~bif A aa' a~D

using that by (induction rule: rtranclp-induct) (auto intro: rtranclp.intros(2)
dest: A-B-step)

lemma simulation-reachesl:
0. Bttt b A ~bifATT aa’a~Db

64

using that by (induction rule: tranclp-induct) (auto 4 3 intro: tran-
clp.intros(2) dest: A-B-step)

lemma simulation-steps:

3 bs. B.steps (b # bs) A list-all2 (A a b. a ~ b) as bs if A.steps (a # as)
a~b

using that

apply (induction a # as arbitrary: a b as)

apply force

apply (frule A-B-step, auto)

done

lemma simulation-run:
3 ys. B.run (y ## ys) A stream-all2 (~) zs ys if A.run (x ## zs) z ~ y
proof —
let ?ys = sscan (A a’ b. SOME b Bbb' N a' ~b) zsy
have B.run (y ## ?ys)
using that by (coinduction arbitrary: x y xzs) (force dest!: somel-ex
A-B-step elim: A.run.cases)
moreover have stream-all2 (~) xs ?ys
using that by (coinduction arbitrary: x y zs) (force dest!: somel-ex
A-B-step elim: A.run.cases)
ultimately show ?thesis by blast
qed

end

lemma (in Subgraph) Subgraph-Simulation:
Simulation E' E (=)
by standard auto

locale Simulation-Invariant = Simulation-Defs +

fixes PA :: 'a = bool and PB :: 'b = bool

assumes A-B-step: N aba Aab— PAa— PBa' — a~d =
(3 b.Ba b Ab~ b

assumes A-invariant|intro]:)\ a b. PA a = A ab= PA b

assumes B-invariant|[intro]: \ a b. PBa = Ba b= PBb
begin

definition equiv’= X ab. a ~ b A PAa AN PBb
sublocale Simulation A B equiv’ by standard (auto dest: A-B-step simp:

equiv’-def)

65

sublocale PA-invariant: Graph-Invariant A PA by standard blast
sublocale PB-invariant: Graph-Invariant B PB by standard blast

lemma simulation-reaches:
3. B*bb ANa'~b NPAa'NPBbif A** aa’a~bPAaPBb
using simulation-reaches[of a a’ b] that unfolding equiv’-def by simp

lemma simulation-steps:
3 bs. B.steps (b # bs) A list-all2 (A a b. a ~ b N PA a N PBb) as bs
if A.steps (a # as) a ~ b PA a PBb
using simulation-steps|of a as b] that unfolding equiv’-def by simp

lemma simulation-steps’:

3 bs. B.steps (b # bs) A list-all2 (A a b. a ~ b) as bs A list-all PA as A
list-all PB bs

if A.steps (a # as) a ~ b PA a PBb

using simulation-steps| OF that]

by (force dest: list-all2-set1 list-all2-set2 simp: list-all-iff elim: list-all2-mono)

context

fixes f

assumes eq: a ~ b = b= fa
begin

lemma simulation-steps’-map:
3 bs.
B.steps (b # bs) A bs = map f as
A list-all2 (X a b. a ~ b) as bs
A list-all PA as A list-all PB bs
if A.steps (a # as) a ~ b PA a PBb
proof —
from simulation-steps’|OF that] obtain bs where guessed:
B.steps (b # bs)
list-all2 (~) as bs
list-all PA as
list-all PB bs
by safe
from this(2) have bs = map f as
by (induction; simp add: eq)
with guessed show ?thesis
by auto
qed

66

end
end

locale Simulation-Invariants = Simulation-Defs +
fixes PA QA :: 'a = bool and PB QB :: 'b = bool
assumes A-B-step: N aba’ Aab=— PAa=— PBa' — a~d =
(3 b.Ba' b Ab~ b
assumes A-invariant[intro]: \ a b. PA a = Aa b= QA D
assumes B-invariant|[intro]: \ a b. PBa = Bab=— QBb
assumes PA-QAlintro]: \ a. QA a« = PA a and PB-QBl[intro]: \ a.
@B a=— PBa
begin

sublocale Pre: Simulation-Invariant A B (~) PA PB
by standard (auto intro: A-B-step)

sublocale Post: Simulation-Invariant A B (~) QA QB
by standard (auto intro: A-B-step)

sublocale A-invs: Graph-Invariants A PA QA
by standard auto

sublocale B-invs: Graph-Invariants B PB QB
by standard auto

lemma simulation-reachesl:

3 b2. B.reachesl b1 b2 N a2 ~ b2 N QB b2 if A.reaches! al a2 al ~ bl
PA a1l PB b1

using that

by — (drule Pre.simulation-reachesl, auto intro: B-invs.invariant-reaches1
simp: Pre.equiv’-def)

lemma reaches1-unique:
assumes unique: \ b2. a ~ b2 — QB b2 — b2 = b
and that: A.reachesl a a a ~ b PA a PB b
shows B.reachesl b b
using that by (auto dest: unique simulation-reachesl)

end
locale Bisimulation = Stmulation-Defs +
assumes A-B-step: N aba. Aab=—=a~a = (3. Ba'b'Nb~

b

67

assumes B-A-step: AN aa’ V. Ba'bV/ = a~a" = (3 b. AabNb~
)
begin

sublocale A-B: Simulation A B (~) by standard (rule A-B-step)
sublocale B-A: Simulation B A X z y. y ~ x by standard (rule B-A-step)

lemma A-B-reaches:
3. B*bbANa ~bif A aa a~D
using A-B.simulation-reaches|OF that] .

lemma B-A-reaches:
30 A*DbV ANV ~a'if B*aa b~ a
using B-A.simulation-reaches| OF that] .

end

locale Bisimulation-Invariant = Simulation-Defs +

fixes PA :: 'a = bool and PB :: 'b = bool

assumes A-B-step: N aba' Aab=— a~a = PAa— PBd —
(3 b.Ba' b Ab~ D

assumes B-A-step: \ a o’ b. Ba'b' = a ~ o' = PAa = PBd
— 3 b AabAb~b)

assumes A-invariant|intro]: \ a b. PA a = A ab= PA b

assumes B-invariant[intro|: \ a b. PBa = Ba b= PBb
begin

sublocale PA-invariant: Graph-Invariant A PA by standard blast
sublocale PB-invariant: Graph-Invariant B PB by standard blast
lemmas B-steps-invariant[intro] = PB-invariant.invariant-reaches
definition equiv’= X ab. a ~ b AN PAa N PBb
sublocale bisim: Bisimulation A B equiv’

by standard (clarsimp simp add: equiv’-def, frule A-B-step B-A-step, as-

sumption; auto)+

sublocale A-B: Simulation-Invariant A B (~) PA PB
by (standard; blast intro: A-B-step B-A-step)

sublocale B-A: Simulation-Invariant B A X zy. y ~ © PB PA

68

by (standard; blast intro: A-B-step B-A-step)

context
fixes f
assumes eq: a ~ b+— b= fa
and inj:V ab. PB(fa) NPAbANfa=fb— a=10
begin

lemma list-all2-inj-map-eq:

as = bs if list-all2 (Aa b. a = fb) (map f as) bs list-all PB (map [as)
list-all PA bs

using that inj

by (induction map f as bs arbitrary: as rule: list-all2-induct) (auto simp:
inj-on-def)

lemma steps-map-equiv:
A.steps (a # as) «— B.steps (b # map fas) if a ~ b PA a PB b
using A-B.simulation-steps’-map|of f a as b] B-A.simulation-steps’[of b
map f as a] that eq
by (auto dest: list-all2-inj-map-eq)

lemma steps-map:
3 as. bs = map f as if B.steps (f a # bs) PA a PB (f a)
proof —
have a ~ f a unfolding eq ..
from B-A.simulation-steps’|OF that(1) this <PB -» «PA -] obtain as
where
A.steps (a # as)
list-all2 (Aa b. b ~ a) bs as
list-all PB bs
list-all PA as
by safe
from this(2) show ?thesis
unfolding eq by (inst-existentials as, induction rule: list-all2-induct,
auto)
qed

lemma reaches-equiv:
A.reaches a o’ +— B.reaches (f a) (f a’) if PA a PB (f a)
apply safe
apply (drule A-B.simulation-reaches|of a o f a]; simp add: eq that)
apply (drule B-A.simulation-reaches)
defer
apply (rule that | clarsimp simp: eq | metis inj)+

69

done
end

lemma equiv’-D:
a~ bif A-B.equiv’ a b
using that unfolding A-B.equiv’-def by auto

lemma equiv’-rotate-1:
B-A.equiv’ b a if A-B.equiv’ a b
using that by (auto simp: B-A.equiv’-def A-B.equiv’-def)

lemma equiv’-rotate-2:
A-B.equiv’ a b if B-A.equiv’ b a
using that by (auto simp: B-A.equiv’-def A-B.equiv’-def)

lemma stream-all2-equiv’-D:
stream-all2 (~) zs ys if stream-all2 A-B.equiv’ xs ys
using stream-all2-weaken|OF that equiv’-D] by fast

lemma stream-all2-equiv’-D2:
stream-all2 B-A.equiv’ ys xs = stream-all2 ((~)"171) ys xs
by (coinduction arbitrary: zs ys) (auto simp: B-A.equiv’-def)

lemma stream-all2-rotate-1:
stream-all2 B-A.equiv’ ys xs = stream-all2 A-B.equiv’ zs ys
by (coinduction arbitrary: zs ys) (auto simp: B-A.equiv’-def A-B.equiv’-def)

lemma stream-all2-rotate-2:
stream-all2 A-B.equiv’ zs ys = stream-all2 B-A.equiv’ ys xs
by (coinduction arbitrary: zs ys) (auto simp: B-A.equiv’-def A-B.equiv’-def)

end

locale Bisimulation-Invariants = Simulation-Defs +

fixes PA QA :: 'a = bool and PB QB :: 'b = bool

assumes A-B-step: N aba. Aab=— a~a = PAa—=— PBad =
3 6. Ba' b Ab~ b

assumes B-A-step: A\ a o’ b. Ba'b' = a~ o' = PAa = PBad
— (3 b.AabAb~b)

assumes A-invariantintrol:)\ a b. PAa = Aab= QA Db

assumes B-invariant[intro]: \ a b. PBa = Ba b= @QBb

assumes PA-QA[intro]: \ a. QA a« = PA a and PB-QB[intro]: \ a.
QB a = PBa

70

begin

sublocale PA-invariant: Graph-Invariant A PA by standard blast
sublocale PB-invariant: Graph-Invariant B PB by standard blast
sublocale QA-invariant: Graph-Invariant A QA by standard blast
sublocale @B-invariant: Graph-Invariant B QB by standard blast

sublocale Pre-Bisim: Bisimulation-Invariant A B (~) PA PB
by standard (auto intro: A-B-step B-A-step)

sublocale Post-Bisim: Bisimulation-Invariant A B (~) QA QB
by standard (auto intro: A-B-step B-A-step)

sublocale A-B: Simulation-Invariants A B (~) PA QA PB QB
by standard (blast intro: A-B-step)+

sublocale B-A: Simulation-Invariants B A X xy. y ~ x PB QB PA QA
by standard (blast intro: B-A-step)+

context
fixes f
assumes eq[simp|: a ~ b <— b= fa
and inj:V ab. QB (fa) NQAbDAfa=fb— a=0b
begin

lemmas list-all2-inj-map-eq = Post-Bisim.list-all2-inj-map-eq| OF eq inj]
lemmas steps-map-equiv’ = Post-Bisim.steps-map-equiv| OF eq ingj]

lemma list-all2-inj-map-eq”:

as = bs if list-all2 (Aa b. a = fb) (map f as) bs list-all QB (map f as)
list-all QA bs

using that by (rule list-all2-inj-map-eq)

lemma steps-map-equiv:
A.steps (a # as) <— B.steps (b # map fas) if a ~ b PA a PBb
proof
assume A.steps (a # as)
then show B.steps (b # map [as)
proof cases
case Single
then show ?thesis by auto

71

next
case prems: (Cons a’ s)
from A-B-step[OF <A a o’y <a ~ by <PA a» <PB b)] obtain b’ where
Bbb a ~b
by auto
with steps-map-equiv’|OF <a’ ~ b’ of xs| prems that show ?thesis
by auto
qed
next
assume B.steps (b # map f as)
then show A.steps (a # as)
proof cases
case Single
then show ?thesis by auto
next
case prems: (Cons b’ xs)
from B-A-step[OF <B b b’ <a ~ by <PA a)> <PB b)] obtain o’ where
Aaa a' ~ b
by auto
with that prems have QA o’ QB b’
by auto
with <A a a’y <a’ ~ by steps-map-equiv'|OF <a’ ~ b", of tl as| prems
that show ?thesis
apply clarsimp
subgoal for z zs
using inj[rule-format, of z a'] by auto
done
qed
qed

lemma steps-map:
3 as. bs = map f as if B.steps (f a # bs) PA a PB (f a)
using that proof cases
case Single
then show ?thesis by simp
next
case prems: (Cons b’ xs)
from B-A-step|OF «B - b’y - <PA a) <PB (f a)] obtain o’ where A a o’
a"~ b’
by auto
with that prems have QA o’ QB b’
by auto
with Post-Bisim.steps-map|OF eq inj, of a’ xs] prems <a’ ~ b’» obtain
ys where zs = map [ys

72

by auto

with <bs = -» <a’ ~ b"» show ?thesis
by (inst-existentials a’ # ys) auto
qged

[Nab.a~b=(b=72fa);Vab. QB (?fa) N QAbLA %fa=2[b— a=
b; QA ?2a; QB (?f %a)] = A.reaches ?a ?a’ = B.reaches (?f ?a) (?f ?a’)
cannot be lifted directly: injectivity cannot be applied for the reflexive case.

lemma reachesl-equiv:
A.reachesl a o’ +— B.reachesl (f a) (f a’) if PA a PB (f a)
proof safe
assume A.reachesl a a’
then obtain o’ where prems: A a o'’ A.reaches o'’ o’
including graph-automation-aggressive by blast
from A-B-step[OF <A a -» - that] obtain b where B (fa) b a” ~ b
by auto
with that prems have QA a” QB b
by auto
with Post-Bisim.reaches-equiv|OF eq inj, of a” a'] prems «B (f a) b <a”
~ b
show B.reaches1 (f a) (f a’)
by auto
next
assume B.reachesl (f a) (f a’)
then obtain b where prems: B (f a) b B.reaches b (f a’)
including graph-automation-aggressive by blast
from B-A-step[OF <B - by - <PA a> <PB (f a))] obtain a” where 4 «
a// a// ~ b
by auto
with that prems have QA o” QB b
by auto
with Post-Bisim.reaches-equiv|OF eq inj, of a” a'] prems <A a o'y <a" ~
b
show A.reachesl a a’
by auto
qed

end
end
lemma Bisimulation-Invariant-composition:

assumes
Bisimulation-Invariant A B sim1 PA PB

73

Bisimulation-Invariant B C' sim2 PB PC
shows
Bisimulation-Invariant A C (XA a ¢. 3 b. PB b A siml a b A sim2 b c)
PA PC
proof —
interpret A: Bisimulation-Invariant A B sim1 PA PB
by (rule assms(1))
interpret B: Bisimulation-Invariant B C sim2 PB PC
by (rule assms(2))
show “thesis
by (standard; (blast dest: A.A-B-step B.A-B-step | blast dest: A.B-A-step
B.B-A-step))
qged

lemma Bisimulation-Invariant-filter:
assumes
Bisimulation-Invariant A B sim PA PB
A ab simab=— PAa=— PBb=— FAa<+— FBb
ANab AabANFAb+— A'ab
Nab BabNFBb<— B'ab
shows
Bisimulation-Invariant A’ B’ sim PA PB
proof —
interpret Bisimulation-Invariant A B sim PA PB
by (rule assms(1))
have unfold:
A'=Nab. AabANFAD) B'=(Nab. BabA FBb)
using assms(3,4) by auto
show ?thesis
unfolding unfold
apply standard
using assms(2) apply (blast dest: A-B-step)
using assms(2) apply (blast dest: B-A-step)
by blast+
qged

lemma Bisimulation-Invariants-filter:

assumes
Bisimulation-Invariants A B sim PA QA PB QB
Nab QAa—=— QBb=— FAa<+— FBb
Nab AabANFAb+— A'ab
Nab BabNFBb<— B'ab

shows
Bisimulation-Invariants A" B’ sim PA QA PB QB

74

proof —
interpret Bisimulation-Invariants A B sim PA QA PB QB
by (rule assms(1))
have unfold:
A'=Nab. AabANFAb) B =(ANab. BabA FBb)
using assms(3,4) by auto
show ?thesis
unfolding unfold
apply standard
using assms(2) apply (blast dest: A-B-step)
using assms(2) apply (blast dest: B-A-step)
by blast+
qged

lemma Bisimulation-Invariants-composition:
assumes
Bisimulation-Invariants A B sim1 PA QA PB (B
Bisimulation-Invariants B C sim2 PB QB PC QC
shows
Bisimulation-Invariants A C (A a ¢c. 3 b. PBb A siml a b A sim2 b c)
PA QA PC QC
proof —
interpret A: Bisimulation-Invariants A B siml1 PA QA PB QB
by (rule assms(1))
interpret B: Bisimulation-Invariants B C sim2 PB QB PC QC
by (rule assms(2))
show “thesis
by (standard, blast dest: A.A-B-step B.A-B-step) (blast dest: A.B-A-step
B.B-A-step)+
qged

lemma Bisimulation-Invariant-Invariants-composition:
assumes
Bisimulation-Invariant A B sim1 PA PB
Bisimulation-Invariants B C sim2 PB QB PC QC
shows
Bisimulation-Invariants A C (A a c. 3 b. PBb A siml a b A sim2 b c)
PA PA PC QC
proof —
interpret Bisimulation-Invariant A B sim1 PA PB
by (rule assms(1))
interpret B: Bisimulation-Invariants B C sim2 PB (B PC QC
by (rule assms(2))
interpret A: Bisimulation-Invariants A B sim1 PA PA PB QB

75

by (standard; blast intro: A-B-step B-A-step)+
show “thesis
by (standard; (blast dest: A.A-B-step B.A-B-step | blast dest: A.B-A-step
B.B-A-step))
qed

lemma Bisimulation-Invariant- Bisimulation-Invariants:
assumes Bisimulation-Invariant A B sim PA PB
shows Bisimulation-Invariants A B sim PA PA PB PB
proof —
interpret Bisimulation-Invariant A B sim PA PB
by (rule assms)
show ?thesis
by (standard; blast intro: A-B-step B-A-step)
qed

lemma Bisimulation-Invariant-strengthen-post:
assumes
Bisimulation-Invariant A B sim PA PB
ANab PA'a = PAb=— Aab= PA'D
N\ a. PA'’a = PA a
shows Bisimulation-Invariant A B sim PA' PB
proof —
interpret Bisimulation-Invariant A B sim PA PB
by (rule assms)
show ?thesis
by (standard; blast intro: A-B-step B-A-step assms)
qged

lemma Bisimulation-Invariant-strengthen-post’:
assumes
Bisimulation-Invariant A B sim PA PB
Nab PB a=— PBb=— Bab= PB'b
N\ a. PB'a = PBa
shows Bisimulation-Invariant A B sim PA PB’
proof —
interpret Bisimulation-Invariant A B sim PA PB
by (rule assms)
show ?thesis
by (standard; blast intro: A-B-step B-A-step assms)
qged

lemma Simulation-Invariant-strengthen-post:
assumes

76

Simulation-Invariant A B sim PA PB
Nab PAa=— PAb=—= Aab= PA'D
N\ a. PA'a = PA a
shows Simulation-Invariant A B sim PA’ PB
proof —
interpret Simulation-Invariant A B sim PA PB
by (rule assms)
show ?thesis
by (standard; blast intro: A-B-step assms)
qged

lemma Simulation-Invariant-strengthen-post”:
assumes
Simulation-Invariant A B sim PA PB
Nab. PBa=— PBb=— Bab=— PB'b
N\ a. PB'a = PBa
shows Simulation-Invariant A B sim PA PB’
proof —
interpret Simulation-Invariant A B sim PA PB
by (rule assms)
show “thesis
by (standard; blast intro: A-B-step assms)
qed

lemma Simulation-Invariants-strengthen-post:
assumes
Simulation-Invariants A B sim PA QA PB QB
Nab PAa=— QAb=— Aab=— QA'D
A a QA"a = QA a
shows Simulation-Invariants A B sim PA QA' PB QB
proof —
interpret Simulation-Invariants A B sim PA QA PB (B
by (rule assms)
show “thesis
by (standard; blast intro: A-B-step assms)
qed

lemma Simulation-Invariants-strengthen-post”:
assumes
Stmulation-Invariants A B sim PA QA PB QB
Nab PBa— QBb=— Bab—=— QB'b
N a QB'a = @B a
shows Simulation-Invariants A B sim PA QA PB QB’
proof —

77

interpret Simulation-Invariants A B sim PA QA PB QB
by (rule assms)
show ?thesis
by (standard; blast intro: A-B-step assms)
qed

lemma Bisimulation-Invariant-sim-replace:
assumes Bisimulation-Invariant A B sim PA PB
and A\ a b. PAa = PBb= simab<+— sim’ab
shows Bisimulation-Invariant A B sim’ PA PB
proof —
interpret Bisimulation-Invariant A B sim PA PB
by (rule assms(1))
show ?thesis
apply standard
using assms(2) apply (blast dest: A-B-step)
using assms(2) apply (blast dest: B-A-step)
by blast+
qged

end

2.9 CTL

theory CTL
imports Graphs
begin

lemmas [simp] = holds.simps

context Graph-Defs
begin

definition
Alw-ev ¢ © =V xs. run (x ## xs) — ev (holds) (z #H# x3)

definition
Alw-alw ¢ © =V xs. run (¢ #4# xs) — alw (holds @) (x ## xs)

definition
Ez-ev ¢ © = 3 xs. run (x ## xs) N ev (holds @) (v ## xs)

definition
Ez-alw ¢ © = 3 zs. run (z ## xs) A\ alw (holds) (x #4# xs)

78

definition
leadsto ¢ ¥ © = Alw-alw (A z. ¢ © — Alw-ev ¢ x) z

definition
deadlocked x = = (3 y. = — y)

definition
deadlock x = 3 y. reaches x y A deadlocked y

lemma no-deadlockD:
= deadlocked y if — deadlock = reaches z y
using that unfolding deadlock-def by auto

lemma not-deadlockedFE:
assumes — deadlocked x
obtains y where x — y
using assms unfolding deadlocked-def by auto

lemma holds-Not:
holds (Not o ¢) = (A z. = holds ¢ x)
by auto

lemma Alw-alw-iff:
Alw-alw ¢ = +— — Ex-ev (Not 0 @) x
unfolding Alw-alw-def Ez-ev-def holds-Not not-ev-not[symmetric] by simp

lemma FEz-alw-iff:
Ez-alw ¢ © «— = Alw-ev (Not o ¢) z
unfolding Alw-ev-def Ez-alw-def holds-Not not-ev-not[symmetric] by simp

lemma leadsto-iff:
leadsto ¢ ¥ © <— — Ex-ev (A z. o © A = Alw-ev ¢ x) z
unfolding leadsto-def Alw-alw-iff by (simp add: comp-def)

lemma run-siterate-from:
assumes Vy. z —x y — (3 2. y — 2)
shows run (siterate (A x. SOME y. x — y) z) (is run (siterate ?f x))
using assms
proof (coinduction arbitrary: x)
case (run)
let %y = SOME y. z — y
from run have z — %y
by (auto intro: somel)

79

with run show ?case including graph-automation-aggressive by auto
qged

lemma eztend-run”:
run zs if steps xs run ys last s = shd ys xs Q— stl ys = zs

by (metis
Graph-Defs.run.cases Graph-Defs.steps-non-empty’ extend-run
stream.exhaust-sel stream.inject that)

lemma no-deadlock-run-extend:
3 ys. run (z ## zs Q— ys) if = deadlock x steps (x # xs)
proof —
include graph-automation
let 7z = last (z # zs) let f = X\ x. SOME y. x — y let ?ys = siterate
of 2x
have dz. y — z if %2 —x* y for y
proof —
from «steps (z # zs)» have z —x %z
by auto
from x —x 22> <%z —x* 1y have x —x* y
by auto
with = deadlock x> show ?thesis
by (auto dest: no-deadlockD elim: not-deadlockedE)
qed
then have run ?ys
by (blast intro: run-siterate-from)
with ¢steps (z # xs)» show ?thesis
by (fastforce intro: extend-run’)
ged

lemma FEz-ev:
Ez-ev o £ +— (3 y. z =x y A ¢ y) if = deadlock x
unfolding Fz-ev-def
proof safe
fix zs assume prems: run (x ## xs) ev (holds) (x ## xs)
show Jy. 2 =»x y A p y
proof (cases ¢)
case True
then show ?thesis
by auto
next
case Fulse

80

with prems obtain y ys zs where
o yzs=ys Q- y ## zsy & set ys
unfolding ev-holds-sset by (auto elim!:split-stream-first’)
with prems have steps (z # ys Q [y])
by (auto intro: run-decomp[THEN conjunctl1])
with «p 3> show ?thesis
including graph-automation by (auto 4 3)
qed
next
fix y assume z —x* y ¢ y
then obtain zs where
¢ (last xs) © = hd xs steps zs y = last zs
by (auto dest: reaches-steps)
then show Jzs. run (v ## xs) A ev (holds @) (z ## xs)
by (cases xs)
(auto split: if-split-asm simp: ev-holds-sset dest!: no-deadlock-run-extend[OF
that])
qed

lemma Alw-ev:
Alw-ev ¢ © +— = (3 zs. run (z #4# zs) A\ alw (holds (Not o ¢)) (x ##
25))
unfolding Alw-ev-def
proof (safe, goal-cases)
case prems: (1 zs)
then have ev (holds ¢) (x ## xs) by auto
then show “case
using prems(2,3) by induction (auto intro: run-stl)
next
case prems: (2 xs)
then have — alw (holds (Not o ¢)) (x ## xs)
by auto
moreover have (A z. = holds (Not o) x) = holds ¢
by (rule ext) simp
ultimately show ?Zcase
unfolding not-alw-iff by simp
qged

lemma leadsto-iff "
leadsto ¢ ¢ © < (By. z —* y A @ y A = Alw-ev 1) y) if = deadlock x
unfolding leadsto-iff Ex-ev|OF <= deadlock x> ..

end

81

context Bisimulation-Invariant
begin

context

fixes ¢ :: 'a = bool and ¢ :: 'b = bool

assumes compatible: A-B.equiv’ a b = o a +— 1 b
begin

lemma ev-y-p:
ev (holds @) xs if stream-all2 B-A.equiv’ ys xs ev (holds 1) ys
using that
apply —
apply (drule stream-all2-rotate-1)
apply (drule ev-imp-shift)
apply clarify
unfolding stream-all2-shift2
apply (subst (asm) stream.rel-sel)
apply (auto intro!: ev-shift dest!: compatible[symmetric])
done

lemma ev-p-:
ev (holds) ys if stream-all2 A-B.equiv’ zs ys ev (holds ¢) s
using that
apply —
apply (subst (asm) stream.rel-flip[symmetric])
apply (drule ev-imp-shift)
apply clarify
unfolding stream-all2-shift2
apply (subst (asm) stream.rel-sel)
apply (auto intro!: ev-shift dest!: compatible)
done

lemma FEz-ev-iff:
A.Ez-ev ¢ a < B.Ez-ev ¢ b if A-B.equiv’ a b
unfolding Graph-Defs. Ex-ev-def
apply safe
subgoal for zs
apply (drule A-B.simulation-run[of a xs b])
subgoal
using that .
apply clarify
subgoal for ys
apply (inst-existentials ys)
using that

82

apply (auto intro!: ev-p-1 dest: stream-all2-rotate-1)
done
done
subgoal for ys
apply (drule B-A.simulation-runlof b ys a))
subgoal
using that by (rule equiv’-rotate-1)
apply clarify
subgoal for zs
apply (inst-existentials xs)
using that
apply (auto introl: ev-ip-p dest: equiv’-rotate-1)
done
done
done

lemma Alw-ev-iff:
A Alw-ev ¢ a «— B.Alw-ev ¢ b if A-B.equiv’ a b
unfolding Graph-Defs. Alw-ev-def
apply safe
subgoal for ys
apply (drule B-A.simulation-run[of b ys a])
subgoal
using that by (rule equiv’-rotate-1)
apply safe
subgoal for zs
apply (inst-existentials xs)
apply (elim allE impE, assumption)
using that
apply (auto intro!: ev-p-1) dest: stream-all2-rotate-1)
done
done
subgoal for zs
apply (drule A-B.simulation-run[of a xs b])
subgoal
using that .
apply safe
subgoal for ys
apply (inst-existentials ys)
apply (elim allE impE, assumption)
using that
apply (auto introl: ev-ih-p elim!: equiv’-rotate-1 stream-all2-rotate-2)
done
done

83

done
end

context

fixes ¢ :: ‘a = bool and 1 :: 'b = bool

assumes compatiblel: A-B.equiv’ a b = ¢ a <— ¢ b
begin

lemma Alw-alw-iff-strong:

A Alw-alw ¢ a +— B.Alw-alw 1 b if A-B.equiv’ a b

unfolding Graph-Defs. Alw-alw-iff using that by (auto dest: compatiblel
intro!: Ex-ev-iff)

lemma FEz-alw-iff:

A.Ez-alw ¢ a < B.Ez-alw ¢ b if A-B.equiv’ a b

unfolding Graph-Defs. Ez-alw-iff using that by (auto dest: compatiblel
intro!: Alw-ev-iff)

end

context
fixes ¢ :: 'a = bool and ¢ :: 'b = bool
and ¢’ :: 'a = bool and ¢’ :: 'b = bool
assumes compatiblel: A-B.equiv' a b = @ a <— ¢ b
assumes compatible2: A-B.equiv’ a b = ¢’ a +— ' b
begin

lemma Leadsto-iff:
A.leadsto ¢ ¢’ a <— B.leadsto ¢ 1’ b if A-B.equiv’ a b
unfolding Graph-Defs.leadsto-def
by (auto
dest: Alw-ev-iff [of ¢’ 1’, rotated] compatiblel compatible2 equiv’-D
introl: Alw-alw-iff-strong[OF - that]

)

end

lemma deadlock-iff:
A.deadlock a +— B.deadlock b if a ~ b PA a PB b
using that unfolding A.deadlock-def A.deadlocked-def B.deadlock-def B.deadlocked-def
by (force dest: A-B-step B-A-step B-A.simulation-reaches A-B.simulation-reaches)

end

84

lemmas [simp del] = holds.simps

end
theory Timed-Automata

imports library/ Graphs Difference-Bound-Matrices. Zones
begin

3 Basic Definitions and Semantics

3.1 Syntactic Definition

Clock constraints

datatype (’c, 't) acconstraint =
LT 'c 't |
LE 'c 't |
EQ 'c 't |
GT 'c 't |
GE 'c 't

type-synonym (’c, 't) cconstraint = ('c, 't) acconstraint list

For an informal description of timed automata we refer to Bengtsson and
Yi [BY03]. We define a timed automaton A

type-synonym
(‘c, "time, 's) invassn = 's = ('c, "time) cconstraint

type-synonym

(‘a, 'c, "time, 's) transition = 's x ('

¢, 'time) cconstraint * 'a x 'c list * 's

type-synonym
(‘a, 'c, time, 's) ta = ('a, 'c, "time,
mnvassn

's) transition set x ('c, "time, 's)

definition trans-of :: (‘a, 'c, 'time, 's) ta = ('a, 'c, 'time, 's) transition set
where
trans-of = fst
definition inv-of :: (‘a, 'c, 'time, 's) ta = ('c, 'time, 's) invassn where
mv-of = snd

abbreviation transition ::

(‘a, 'c, 'time, 's) ta = 's = ('c, 'time) cconstraint = 'a = 'c list = 's =

bool

85

(- F - —s7 o [61,61,61,61,61,61] 61) where
(AF 1 —9%" 1) = (l,9,a,r,l") € trans-of A

3.1.1 Collecting Information About Clocks

fun constraint-clk :: (‘c, 't) acconstraint = 'c

where
constraint-clk (LT ¢ -) = ¢ |
constraint-clk (LE ¢ -) = ¢ |
constraint-clk (EQ ¢ -) = ¢ |
constraint-clk (GE ¢ -) = c¢ |
constraint-clk (GT ¢ -) = ¢

definition collect-clks :: ('c, 't) cconstraint = 'c set
where
collect-clks cc = constraint-clk ¢ set cc

fun constraint-pair :: ('c, 't) acconstraint = ('c x 't)
where

constraint-pair (LT x m) = (xz, m) |
constraint-pair (LE x m) = (z, m) |
constraint-pair (EQ x m) = (z, m) |
constraint-pair (GE x m) = (z, m) |
constraint-pair (GT x m) = (z, m)

definition collect-clock-pairs :: ('c, 't) cconstraint = ('c x 't) set
where

collect-clock-pairs cc = constraint-pair ‘ set cc

definition collect-clkt :: (‘a, 'c, 't, 's) transition set = ('c *'t) set
where
collect-clkt S = |J {collect-clock-pairs (fst (snd t)) | t.t € S}

definition collect-clki :: (‘c, 't, 's) invassn = ('c x't) set
where
collect-clki I = | {collect-clock-pairs (I x) | z. True}

definition clkp-set :: (‘a, 'c, 't, 's) ta = (‘c *t) set
where
clkp-set A = collect-clki (inv-of A) U collect-clkt (trans-of A)

definition collect-clkvt :: ('a, 'c, 't, 's) transition set = 'c set

where

collect-clkvt S = |J {set ((fst o snd o snd o snd) t) |t .t € S}

86

abbreviation clk-set where clk-set A = fst ‘ clkp-set A U collect-clkvt
(trans-of A)

inductive valid-abstraction
where

IV (z,m) € clkp-set A. m < kzx ANz € X AN m € N; collect-clkvt (trans-of
A) C X; finite X]

= walid-abstraction A X k

3.2 Operational Semantics

inductive clock-val-a («- F, - [62, 62] 62) where

[uc<d] = ubtqg LT c d |
[uc<dl = utqy LEcd |
[uc=4d] = utys EQ cd |
[uec>d] = ut, GEcd |
[uec>dl = utq GT cd
inductive-cases utqe LT ¢ d
inductive-cases|elim!]: v+, LE ¢ d

[elim!]:
[elim!]:
inductive-cases|elim!]: u -, EQ ¢ d
inductive-cases|elim!]: v F, GE ¢ d
inductive-cases|elim!]: u F, GT ¢ d

declare clock-val-a.intros[intro)
definition clock-val :: ('c, 't) cval = (’
5 [62, 62] 62)
where

u b cc = list-all (clock-val-a u) cc

¢, 't::time) cconstraint = bool (<- +

lemma atomic-guard-continuous:
assumes u b4 gu ® th, g 0 < (th:'t::time) t/ < ¢
shows u & t't, ¢
using assms
by (induction g;
auto 4 3
simp: cval-add-def order-le-less-subst2 order-subst2 add-increasing2
intro: less-le-trans

)

lemma guard-continuous:

87

assumes u - gu dth g0 < t't'<t
shows u & t'+ g
using assms by (auto intro: atomic-guard-continuous simp: clock-val-def

list-all-iff)

inductive step-t :
("a, 'c, 't, 's) ta = 's = (‘¢, 't) cval = ("t::time) = 's = (‘c, 't) cval =
bool
(¢-F (-, -y = (-, -)» [61,61,61] 61)
where
[u® dF inv-of Al; d> 0] = A+ (I, u) - (I, u @ d)

lemmas [intro| = step-t.intros

context
notes step-t.cases|elim!] step-t.intros|intro!]
begin

lemma step-t-determinacyl :
A (L u) 54 (u) = AF {1, u) =% 1"u) = 1'=1"
by auto

lemma step-t-determinacy2:
AF(Luy =T (V) = Ak (1 u) 54 (") = o' = u”
by auto

lemma step-t-contl:
d>0=e>0= AF (I, u) =% (I'u) = A+ (I, u)) = 1" u"
— A (I, u) =%Fe (1" u")

proof —
assume A: d > 0e> 0AF (I, u) =% (u) A (I, w)) =€ (1" u")
hence v/ = (u ® d) v = (v’ & €) by auto
hence v = (u @ (d + €)) unfolding cval-add-def by auto
with A show ?thesis by auto

qed

end

inductive step-a ::
(‘a, e, 't, 's) ta = 's = (¢, ("t::time)) cval = 'a = 's = ('c, 't) cval =
bool
(¢-F (- -y = (-, -)» [61,61,61] 61)
where

88

[A I—/l />—>g7a7r Usub g u' b inv-of Al ' =[r = 0lu] = (AF (I, u)
—q (I, u))

inductive step ::

(‘a, 'c, 't, 's) ta = 's = ('c, ("t::time)) cval = 's = (‘c, 't) cval = bool
(¢-F (- -y = (--)» [61,61,61] 61)
where

step-a: A F (I, u) =4 (Uuy = (AF (I, u) = (I'u)) |

step-t: A F (I, u) =% (I'uy = (A F (I, u) — (')

declare step.intros[intro]
declare step.cases|elim]

inductive
steps = (Ya, ‘e, 't, 's) ta = ‘s = (‘e, (“t::time)) cval = 's = (¢, 't) cval
= bool
(- F (= =) =% (-, - [61,61,61] 61)
where

refl: A (I, u) —=* (I, u) |
step: A (I, u) = (I, u) = A+ (I, u) =« (I", v") = AF (I, u) —x
(0",

declare steps.intros|intro]

3.3 Contracting Runs

inductive step’ :

(‘a, 'c, 't, 's) ta = 's = ('c, ("t::time)) cval = 's = (‘e, 't) cval = bool
(- " (-, -y = (-, -» [61,61,61] 61)
where

step A (I, u) =4 (I)y = AF (I, u) =4 (", u") = A+ (I, u)
= (1" u")

lemmas step'[intro]

lemma step’-altl:
assumes
AL —9%" "y ddFgu®dbinv-of A10 < d
u'=1[r— 0)(u®d) ut inv-of A
shows A ' (I, u) — (I', u')
using assms by (auto intro: step-a.intros)

inductive
steps’ :: ('a, ‘e, 't, 's) ta = 's = (¢, ("t::time)) cval = 's = (‘e, 't) cval

89

= bool
(- E" (-, -y =% (-, -0 [61,61,61] 61)
where
refl A" (1, u) —* (I, u) |
step” A (I, u) —» (I, vy = AF (I, v) =% (", v') = AF' (I, u)
— (1" u'h)

lemmas steps’.intros[intro]

lemma steps’-altl:
AF 1 uy = 07)y if AF (I u) = (U, 0y A (U, u') — (17, u”)
using that by induction auto

lemma step-d-refl]intro]:
A (1 u) =0 (1, u) if u b inv-of Al
proof —
from that have A+ (I, u) =7 (I, u ® 0) by — (rule step-t.intros; force
simp: cval-add-def)
then show ?thesis by (simp add: cval-add-def)
ged

lemma cval-add-simp:
(udd) @d =ud(d+ d)for dd ::'t: time
unfolding cval-add-def by auto

context
notes [elim!] = step’.cases step-t.cases
and [introl] = step-t.intros

begin

lemma step—t—trans:/)
A (L u)y =»4T ™ if A (1 u)y =9 (1 u)) A (1 ul) -2 (1 ')
using that by (auto simp add: cval-add-simp)

lemma steps’-complete:
Ju A (I u) = (U,) if AF (I, u) —=* (', u') ut inv-of Al
using that
proof (induction)
case (refl A | u)
then show ?case by blast
next
case (step A lul' u' 1" u")
then have u’F inv-of A I’ by (auto elim: step-a.cases)
from step(1) show ?Zcase

90

proof cases
case (step-a a)
with <u b - <u' b - step(8) show ?thesis by (auto 4 5)
next
case (step-t d)
then have [simp]: I’ = | by auto
from step(3) «<u’ F - obtain u0 where A F' (I, u/) —x (I", u0) by
auto
then show “thesis
proof cases
case refl’
then show ?thesis by blast
next
case (step’ 11 ul)
with step-t show ?Zthesis by (auto 4 7 intro: step-t-trans)
qed
qed
qed

lemma steps’-sound:
AFE (L u)y =« U u) if AF (1 u) == (1) u')
using that by (induction; blast)

lemma steps-steps’-equiv:

Fu' Al u) = (I, u)) «— 3 v A (I, u) = (I, u) if u F
inv-of A |

using that steps’-sound steps’-complete by metis

end

3.4 Zone Semantics

datatype a action = Tau («7») | Action 'a (<]-))

inductive step-z ::
(‘a, 'c, 't, 's) ta = 's = (‘e, ("t::time)) zone = 'a action = 's = ('¢, 't)
zone = bool
(- F (4,) ~_ (-,) [61,61,61,61] 61)
where
step-t-z:
AV, Z) ~- (l, Z' 0 {u. u '+ inv-of A 1}) |
step-a-z:
ALl Z) ~1q (U, zone-set (Z 0 {u. ul g}) r N {u. ub inv-of AI'})
if AR —9%"]

91

lemmas step-z.intros[intro]
inductive-cases step-t-z-E[elim]: A b (I, u) ~+ (I, u')
inductive-cases step-a-z-Elelim]: A &= (I, u) ~1, (I, u')

3.4.1 Zone Semantics for Compressed Runs

definition

step-z' 2 ('a, 'c, 't, 's) ta = 's = (‘e, ("t::time)) zone = 's = (‘c, 't) zone
= bool
(- F (=) ~ (- =) [61,61,61] 61)
where

Ab (L, 2y~ (I 2" = (3 2 0 Ab (I, Z) ~r (L Z) A AF (I, 27~
(', 2")

abbreviation

steps-z :: (Ya, ‘e, ', 's) ta = 's = (‘e, ('t::time)) zone = s = (¢, 't) zone
= bool
(¢-F (= =) ~x (-, -} [61,61,61] 61)
where

AFELZ) ~« (I, Z"y =N, Z2) (U, 2. A (1, Z) ~ (I, Z")** (I,
ARG

context
notes [elim!] = step.cases step’.cases step-t.cases step-z.cases
begin

lemma step-t-z-sound:
AL Z) s (N2 =V w'eZ. FueZ 3 d Ar (I, u) =% 1)
by (auto 4 5 simp: zone-delay-def zone-set-def)

lemma step-a-z-sound:
AL, Z) o, (U2 =V uweZ FueZ 3 d Akl u) —q{l'u)
by (auto 4 4 simp: zone-delay-def zone-set-def intro: step-a.intros)

lemma step-z-sound:
A, Z) o (U2 =V u' e Z 3 ueZ AF(l,u) — ('u)

by (auto 4 6 simp: zone-delay-def zone-set-def intro: step-a.intros)

lemma step-a-z-complete:

AF(lbu) o (l,u) = uweZ =3 Z AF(l, Z) ~ 1, (I',) Z)) Nu'
ez’

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

92

lemma step-t-z-complete:

AF(Lu) =4y = ueZ=3 Z AF(,Z) ~. (I Z) Nu'e
Z/

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

lemma step-z-complete:

A (Lu - u)=uweZ=3 Z a AF{,Z) ~. I,/ Z") Nu'
e 7’

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

end

lemma step-z-sound':
A, Z) ~(U'ZY =V ueZ FueZ AF (I, u — (I'u)
unfolding step-z’-def by (fastforce dest!: step-t-z-sound step-a-z-sound)

lemma step-z-complete”:

A (Lbu)y - (uy=wuweZ=3Z A, Z) ~ (I, Z) Nu' €
Z/

unfolding step-z'-def by (auto dest!: step-a-z-complete step-t-z-complete
elim!: step’.cases)

lemma steps-z-sound:
AF (L, Z) (I Z) = v eZ = F ueZ AF' (I, u) —»x (I, v)
by (induction arbitrary: u' rule: rtranclp-induct2;
fastforce intro: steps’-altl dest!: step-z-sound’)

lemma steps-z-complete:

A (bu)y =« (u)y =weZ =3 Z A, Z) ~* (', Z) N u
e 7'

oops

lemma ta-zone-sim:
Simulation
A, w) (U u)). A (1 w)y — (U, u)
N1, Z2) (I, 2. A (1, Z) ~ (I, Z™)
ANlLw) (I, 2), ue ZANTL=1)
by standard (auto dest!: step-z-complete’)

lemma steps’-iff:

A w) (U, w'). A (L u)y — (U u))™ (1 u) (U, u)) «— A (1, u) —x
(', u)

apply standard

subgoal

93

by (induction rule: rtranclp-induct2; blast intro: steps’-altl)
subgoal

by (induction rule: steps’.induct; blast intro: converse-rtranclp-into-rtranclp)
done

lemma steps-z-complete:
A (Lbu)y =« (hu)y =wvweZ= 3 Z A, Z) ~* (', Z) N u
e 7’
using Simulation.simulation-reaches|OF ta-zone-sim, of A (1, u) (I, u')]
unfolding steps’-iff by auto

end

3.5 From Clock Constraints to DBMs

theory TA-DBM-Operations
imports Timed-Automata Difference-Bound-Matrices. DBM-Operations
begin

fun abstra ::
(e, 't::{linordered-cancel-ab-monoid-add,uminus}) acconstraint = "t DBM
= (c = nat) = 't DBM
where
abstra (EQ ¢ d) M v =
ANij.ifi=0Nj=vcthen min (Mij) (Le (—d)) else if i = v c A
j = 0 then min (M ij) (Le d) else M i j) |
abstra (LT ¢ d) M v =
(MNij.ifi=vecANj=0then min (Mij) (Lt d) else M i3j) |
abstra (LE ¢ d) M v =
Nij.ifi=vecANj=0then min (Mij) (Le d) else M ij) |
abstra (GT ¢ d) M v =
Nij.ifi=0Nj=vcthen min (Mij) (Lt (— d)) else M ij) |
abstra (GE ¢ d) M v =
ANij.ifit=0Nj=vcthen min (Mij) (Le (— d)) else M i j)

fun abstr ::('c, 't::{linordered-cancel-ab-monoid-add,uminus}) cconstraint
= 't DBM = ('c = nat) = 't DBM
where

abstr cc M v = fold (A ac M. abstra ac M v) cc M

lemma collect-clks-Cons|simp]:
collect-clks (ac # cc) = insert (constraint-clk ac) (collect-clks cc)
unfolding collect-clks-def by auto

94

lemma abstr-id1:

¢ & collect-clks cc = clock-numbering’ vn =V ¢ € collect-clks cc. v ¢
<n

= abstr cc Mv 0 (ve)= MO (vc)

apply (induction cc arbitrary: M c)
apply (simp; fail)

subgoal for «a

apply simp

apply (cases a)

by auto
done

lemma abstr-id2:

¢ ¢ collect-clks cc = clock-numbering’ vn =V ¢ € collect-clks cc. v ¢
<n

= abstr cc Mv (ve) 0 =M (ve) 0

apply (induction cc arbitrary: M c)
apply (simp; fail)

subgoal for a

apply simp

apply (cases a)

by auto
done

This lemma is trivial because we constrained our theory to difference con-
straints.

lemma abstra-id3:
assumes clock-numbering v
shows abstra ac M v (v el) (ve2) =M (vel) (vce2)
proof —
have Ac. v ¢ = 0 = Fulse
proof —
fix ¢ assume v ¢ = 0
moreover from assms have v ¢ > 0 by auto
ultimately show Fualse by linarith
qed
then show ?thesis by (cases ac) auto
qged

lemma abstr-id3:

clock-numbering v = abstr cc M v (v cl) (ve2) =M (vel) (ve2)
by (induction cc arbitrary: M) (auto simp add: abstra-id3)

95

lemma abstra-id3":
assumes Vec. 0 < vec
shows abstra ac M v 00 = M 0 0
proof —
have Ac. v ¢ = 0 = Fulse
proof —
fix ¢ assume v ¢ = 0
moreover from assms have v ¢ > 0 by auto
ultimately show Fulse by linarith
qed
then show ?thesis by (cases ac) auto
qed

lemma abstr-id3":
clock-numbering v => abstr cc M v 00 = M 0 0
by (induction cc arbitrary: M) (auto simp add: abstra-id3’)

lemma clock-numberingD:
assumes clock-numbering v v ¢ = 0
shows A
proof—
from assms(1) have v ¢ > 0 by auto
with <v ¢ = 0> show %thesis by linarith
qed

lemma dbm-abstra-soundness:
[u bq ac; u by M; clock-numbering’ v n; v (constraint-clk ac) < n]
= DBM-val-bounded v u (abstra ac M v) n
proof (unfold DBM-val-bounded-def, auto, goal-cases)
case prems: 1
from abstra-id3'|OF this(4)] have abstra ac M v 00 =M 00 .
with prems show ?case unfolding dbm-le-def by auto
next
case prems: (2 c)
then have clock-numbering’ v n by auto
note A = prems(1) this prems(6,3)
let ?c = constraint-clk ac
show ?Zcase
proof (cases ¢ = %c)
case True
then show ?thesis using prems by (cases ac) (auto split: split-min
intro: clock-numberingD)
next

96

case Fulse
then show ?thesis using A(3) prems by (cases ac) auto
qed
next
case prems: (3 ¢)
then have clock-numbering’ v n by auto
then have ¢gt0: v ¢ > 0 by auto
let ?c = constraint-clk ac
show ?Zcase
proof (cases ¢ = ?c)
case True
then show ?thesis using prems gt0 by (cases ac) (auto split: split-min
intro: clock-numberingD)
next
case Fulse
then show ?thesis using <clock-numbering’ v ny prems by (cases ac)
auto
qed
next

Trivial because of missing difference constraints

case prems: (4 ¢l c2)

from abstra-id3[OF this(4)] have abstra ac M v (v cl) (v c2) = M (v
cl) (v ¢2) by auto

with prems show ?case by auto
qed

lemma dbm-abstr-soundness”:
[u b cc; ubypn M; clock-numbering’ v n; ¥ ¢ € collect-clks cc. v ¢ < n
—> DBM-val-bounded v u (abstr cc M v) n
by (induction cc arbitrary: M) (auto simp: clock-val-def dest: dbm-abstra-soundness)

lemmas dbm-abstr-soundness = dbm-abstr-soundness’|OF - DBM-triv]

lemma dbm-abstra-completeness:

[DBM-val-bounded v u (abstra ac M v) n; ¥Ye. v ¢ > 0; v (constraint-clk
ac) < nj

— u by ac

proof (cases ac, goal-cases)

case prems: (1 ¢ d)

then have v ¢ < n by auto

with prems(1,4) have dbm-entry-val u (Some ¢) None ((abstra (LT c d)
M) (ve) 0)

by (auto simp: DBM-val-bounded-def)

97

moreover from prems(2) have v ¢ > 0 by auto

ultimately show ?case using prems(4) by (auto dest: dbm-entry-dbm-min3)
next

case prems: (2 ¢ d)

from this have v ¢ < n by auto

with prems(1,4) have dbm-entry-val u (Some ¢) None ((abstra (LE ¢ d)
M) (ve)0)

by (auto simp: DBM-val-bounded-def)

moreover from prems(2) have v ¢ > 0 by auto

ultimately show ?case using prems(4) by (auto dest: dbm-entry-dbm-min3)
next

case prems: (3 ¢ d)

from this have c: v ¢ > 0 v ¢ < n by auto

with prems(1,4) have B:

dbm-entry-val u (Some ¢) None ((abstra (EQ ¢ d) M v) (v ¢) 0)
dbm-entry-val uw None (Some ¢) ((abstra (EQ ¢ d) M v) 0 (v ¢))

by (auto simp: DBM-val-bounded-def)

from ¢ B have u ¢ < d — u ¢ < —d by (auto dest: dbm-entry-dbm-min2
dbm-entry-dbm-min3)

with prems(4) show ?case by auto
next

case prems: (4 ¢ d)

from this have v ¢ < n by auto

with prems(1,4) have dbm-entry-val u None (Some c) ((abstra (GT ¢ d)
Mwv) 0 (v c))

by (auto simp: DBM-val-bounded-def)

moreover from prems(2) have v ¢ > 0 by auto

ultimately show ?case using prems(4) by (auto dest!: dbm-entry-dbm-min2)
next

case prems: (5 ¢ d)

from this have v ¢ < n by auto

with prems(1,4) have dbm-entry-val u None (Some c) ((abstra (GE ¢ d)
Mwv) 0 (v c))

by (auto simp: DBM-val-bounded-def)

moreover from prems(2) have v ¢ > 0 by auto

ultimately show ?case using prems(4) by (auto dest!: dbm-entry-dbm-min2)
qged

lemma abstra-mono:
abstra ac Mvij < Mij
by (cases ac) auto

lemma abstra-subset:
[abstra ac M v]y.n C [M]y.n

I

98

using abstra-mono

apply (simp add: less-eq)
apply safe

by (rule DBM-le-subset; force)

lemma abstr-subset:
[abstr cc M v|yn € [M]yn

apply (induction cc arbitrary: M)
apply (simp; fail)
using abstra-subset by fastforce

lemma dbm-abstra-zone-eq:
assumes clock-numbering’ v n v (constraint-clk ac) < n
shows [abstra ac M v]yn = {u. utq ac} N [M]yn
apply safe
subgoal
unfolding DBM-zone-repr-def using assms by (auto intro: dbm-abstra-completeness)
subgoal
using abstra-subset by blast
subgoal
unfolding DBM-zone-repr-def using assms by (auto intro: dbm-abstra-soundness)
done

lemma [simp]:
u k]
by (force simp: clock-val-def)

lemma clock-val-Cons:
assumes u -, ac u - cc
shows u - (ac # cc)
using assms by (induction cc) (auto simp: clock-val-def)

lemma abstra-commute:
abstra acl (abstra ac2 M v) v = abstra ac2 (abstra acl M v) v

by (cases acl; cases ac2; fastforce simp: min.commute min.left-commute
clock-val-def)

lemma dbm-abstr-completeness-aux:

[DBM-val-bounded v w (abstr cc (abstra ac M v) v) n; ¥Ye. v e > 0; v
(constraint-clk ac) < n]

— u b4 ac
apply (induction cc arbitrary: M)

99

apply (auto intro: dbm-abstra-completeness; fail)
apply simp

apply (subst (asm) abstra-commute)

by auto

lemma dbm-abstr-completeness:

[DBM-val-bounded v u (abstr cc M v) n; Ve. ve > 0,V ¢ € collect-clks
cc. v e < nf

= u F cc

apply (induction cc arbitrary: M)
apply (simp; fail)
apply (rule clock-val-Cons)
apply (rule dbm-abstr-completeness-aur)
by auto

lemma dbm-abstr-zone-eq:

assumes clock-numbering’ v n ¥V c€collect-clks cc. v ¢ < n

shows [abstr cc (Aij. 00) v]yn = {u. u F cc}
using dbm-abstr-soundness dbm-abstr-completeness assms unfolding DBM-zone-repr-def
by metis

lemma dbm-abstr-zone-eq2:
assumes clock-numbering’ v n ¥V c€collect-clks cc. v ¢ < n
shows [abstr cc M vy n = [M]y,n N {u. u 't cc}
apply standard
apply (rule Int-greatest)
apply (rule abstr-subset)
unfolding DBM-zone-repr-def
apply safe
apply (rule dbm-abstr-completeness)
using assms apply auto[3]
apply (rule dbm-abstr-soundness’)
using assms by auto

abbreviation global-clock-numbering ::
(‘a, 'c, 't, 's) ta = ('c = nat) = nat = bool
where
global-clock-numbering A v n =
clock-numbering’ vn N (Y ¢ € clk-set A. ve < n) AN Vk<n. k>0 —
(Fe.ve=k))

lemma dbm-int-all-abstra:
assumes dbm-int-all M snd (constraint-pair ac) € Z

100

shows dbm-int-all (abstra ac M v)
using assms by (cases ac) (auto split: split-min)

lemma dbm-int-all-abstr:
assumes dbm-int-all M ¥ (x, m) € collect-clock-pairs g. m € Z
shows dbm-int-all (abstr g M v)
using assms
proof (induction g arbitrary: M)
case Nil
then show ?case by auto
next
case (Cons ac cc)
from Cons.IH[OF dbm-int-all-abstra, OF Cons.prems(1)] Cons.prems(2—)
have
dbm-int-all (abstr cc (abstra ac M v) v)
unfolding collect-clock-pairs-def by force
then show ?case by auto
qed

lemma dbm-int-all-abstr':
assumes V (z, m) € collect-clock-pairs g. m € Z
shows dbm-int-all (abstr g (i j. o0) v)

apply (rule dbm-int-all-abstr)

using assms by auto

lemma dbm-int-all-inv-abstr:
assumes V (z,m) € clkp-set A. m € N
shows dbm-int-all (abstr (inv-of A 1) (Aij. o0) v)
proof —
from assms have V (z, m) € collect-clock-pairs (inv-of A l). m € Z
unfolding clkp-set-def collect-clki-def inv-of-def using Nats-subset-Ints
by auto
from dbm-int-all-abstr'|OF this| show ?thesis .
qed

lemma dbm-int-all-guard-abstr:
assumes V (z, m) € clkp-set A. m e N A+ | —9®"]/
shows dbm-int-all (abstr g (i j. 00) v)
proof —
from assms have V (z, m) € collect-clock-pairs g. m € Z
unfolding clkp-set-def collect-clkt-def using assms(2) Nats-subset-Ints
by fastforce
from dbm-int-all-abstr'|OF this] show ?thesis .
qged

101

lemma dbm-int-abstra:
assumes dbm-int M n snd (constraint-pair ac) € Z
shows dbm-int (abstra ac M v) n

using assms by (cases ac) (auto split: split-min)

lemma dbm-int-abstr:
assumes dbm-int M n ¥ (z, m) € collect-clock-pairs g. m € Z
shows dbm-int (abstr ¢ M v) n
using assms
proof (induction g arbitrary: M)
case Nil
then show ?case by auto
next
case (Cons ac cc)
from Cons.IH[OF dbm-int-abstra, OF Cons.prems(1)] Cons.prems(2—)
have
dbm-int (abstr cc (abstra ac M v) v) n
unfolding collect-clock-pairs-def by force
then show ?case by auto
qed

lemma dbm-int-abstr’.
assumes YV (z, m) € collect-clock-pairs g. m € Z
shows dbm-int (abstr g (i j. o0) v) n

apply (rule dbm-int-abstr)

using assms by auto

lemma int-zone-dbm:

assumes clock-numbering’ v n

V (-,d) € collect-clock-pairs cc. d € Z N ¢ € collect-clks cc. ve < n
obtains M where {u. u t cc} = [M]yn
and Vi<nVji<n Mij# oco— get-const (M ij)eZ

proof —

let ?M = abstr cc (Aij. c0) v

from assms(2) haveV i < n.V j < n. 2Mij# oo — get-const (?M i
)ez

by (rule dbm-int-abstr’)

with dbm-abstr-zone-eqOF assms(1) assms(3)] show ?thesis by (auto
intro: that)
qged

lemma dbm-int-inv-abstr:
assumes Y (z,m) € clkp-set A. m € N

102

shows dbm-int (abstr (inv-of A1) (Aij. o0) v) n
proof —
from assms have V (z, m) € collect-clock-pairs (inv-of A l). m € Z
unfolding clkp-set-def collect-clki-def inv-of-def using Nats-subset-Ints
by auto
from dbm-int-abstr'|OF this] show ?thesis .
qed

lemma dbm-int-guard-abstr:
assumes V (z, m) € clkp-set A. m e N A+ [—9%" [/
shows dbm-int (abstr g (Ai j. 00) v) n
proof —
from assms have V (z, m) € collect-clock-pairs g. m € Z
unfolding clkp-set-def collect-clkt-def using assms(2) Nats-subset-Ints
by fastforce
from dbm-int-abstr'|OF this] show ?thesis .
qged

lemma collect-clks-id: collect-clks cc = fst ¢ collect-clock-pairs cc
proof —
have constraint-clk ac = fst (constraint-pair ac) for ac by (cases ac) auto
then show ?%thesis unfolding collect-clks-def collect-clock-pairs-def by
auto
qed

end

3.6 Semantics Based on DBMs

theory DBM-Zone-Semantics
imports TA-DBM-Operations
begin

no-notation infinity (<0o»)
hide-const (open) D

3.6.1 Single Step

inductive step-z-dbm ::
(‘a, 'c, 't, 's) ta = 's = 't :: {linordered-cancel-ab-monoid-add,uminus}
DBM
= (¢ = nat) = nat = 'a action = 's = 't DBM = bool
(- b (=)~ (= - [61,61,61,61] 61)
where

103

step-t-z-dbm:
D-inv = abstr (inv-of A1) (Aij. 00) v = AF (I,D) ~ypnr (l,And (up
D) D-inv) |
step-a-z-dbm:
AF 1l —9%m]
= AF (I,D) ~ypn1q (I, And (reset’ (And D (abstr g (i j. o) v)) nr
v 0)
(abstr (inv-of A 1) (Aij. 00) v))
inductive-cases step-z-t-cases: A & (I, D) ~ypn - (I', D)
inductive-cases step-z-a-cases: A &= (I, D) ~, 1, (I, D)
lemmas step-z-cases = step-z-a-cases step-z-t-cases

declare step-z-dbm.intros[intro)

lemma step-z-dbm-preserves-int-all:

fixes D D' :: ('t :: {time, ring-1} DBM)

assumes A - (I,D) ~y. o (I',D’) global-clock-numbering A vn ¥V (z, m)
€ clkp-set A. m € N

dbm-int-all D

shows dbm-int-all D'
using assms
proof (cases, goal-cases)

case (1 D")

hence V ceclk-set A. v ¢ < n by blast+

from dbm-int-all-inv-abstr[OF 1(2)] 1 have D"-int: dbm-int-all D" by
simp

show ?thesis unfolding 1(6)

by (intro And-int-all-preservation up-int-all-preservation dbm-int-inv-abstr
D"-int 1)
next

case (2gar)

hence assms: clock-numbering’ v n V ceclk-set A. v e < n

by blast+
from dbm-int-all-inv-abstr[OF 2(2)] have D’-int:
dbm-int-all (abstr (inv-of A 1l") (Aij. o0) v)

by simp

from dbm-int-all-guard-abstr 2 have D"-int: dbm-int-all (abstr g (\i j.
o0) v) by simp

have set r C clk-set A using 2(6) unfolding trans-of-def collect-clkvt-def
by fastforce

hence x:V c€set r. v ¢ < n using assms(2) by fastforce

show ?thesis unfolding 2(5)

by (intro And-int-all-preservation DBM-reset’-int-all-preservation dbm-int-all-inv-abstr
2 D"-int)

104

(simp-all add: assms(1) *)
qged

lemma step-z-dbm-preserves-int:
fixes D D' :: ('t :: {time, ring-1} DBM)
assumes A = (I,D) ~y. 4 (I',D’) global-clock-numbering A vn ¥V (z, m)
€ clkp-set A. m € N
dbm-int D n
shows dbm-int D' n
using assms
proof (cases, goal-cases)
case (1 D")
from dbm-int-inv-abstr[OF 1(2)] 1 have D"-int: dbm-int D" n by simp
show ?thesis unfolding 1(6)
by (intro And-int-preservation up-int-preservation dbm-int-inv-abstr
D"-int 1)
next
case (2gar)
hence assms: clock-numbering’ v n V ceclk-set A. v e < n
by blast+
from dbm-int-inv-abstr[OF 2(2)] have D’-int: dbm-int (abstr (inv-of A
Iy (Nij. o0)v)n
by simp
from dbm-int-guard-abstr 2 have D"-int: dbm-int (abstr g (M\i j. 00) v)
n by simp
have set r C clk-set A using 2(6) unfolding trans-of-def collect-clkvt-def
by fastforce
hence x:V c€set r. v ¢ < n using assms(2) by fastforce
show ?thesis unfolding 2(5)
by (intro And-int-preservation DBM-reset’-int-preservation dbm-int-inv-abstr
2 D"-int)
(simp-all add: assms(1) 2(2) x)
ged

lemma up-correct:
assumes clock-numbering’ v n
shows [up M|y = [M]yn!

using assms

apply safe
apply (rule DBM-up-sound’)
apply assumption+

apply (rule DBM-up-complete’)
apply auto

done

105

lemma step-z-dbm-sound:
assumes A = (I, D) ~+y 5.4 (I, D') global-clock-numbering A v n
shows A & (I, [D]yn) ~a (I, [Do,n)
using assms
proof (cases, goal-cases)
case (1 D")
hence clock-numbering’ v n ¥V ceclk-set A. v ¢ < n by blast+
note assms = assms(1) this
from assms(3) have x: ¥V c€collect-clks (inv-of Al). ve <n
unfolding clkp-set-def collect-clki-def inv-of-def by (fastforce simp: col-
lect-clks-id)
from 1 have D":[D"), y, = {u. u F inv-of A I} using dbm-abstr-zone-eq|OF
assms(2) x| by metis
with And-correct have A11: [And D D"y n = ([D]v,n) N ({u. u & inv-of
A l}) by blast
from D" have
Do = ([p Dlurn) 0 ({1 u - inv-of A 1})
unfolding 1(4) And-correct[symmetric] by simp
with up-correct[OF assms(2)] A11 have [D]yn = ([D]yn)' N {u. u +
inv-of A I} by metis
then show ?thesis by (auto simp: 1(2,3))
next
case (2gar)
hence clock-numbering’ vn ¥V ceclk-set A. ve < nVk<n. k>0 — (e
v e =k) by blast+
note assms = assms(1) this
from assms(3) have *: V c€collect-clks (inv-of Al). ve <n
unfolding clkp-set-def collect-clki-def inv-of-def by (fastforce simp: col-
lect-clks-id)
have D":
[abstr (inv-of A l") (Xij. 00) v|yn = {u. vt inv-of A1}
using 2 dbm-abstr-zone-eq[OF assms(2) x| by simp
from assms(3) 2(4) have x: V cecollect-clks g. vec < n
unfolding clkp-set-def collect-clkt-def inv-of-def by (fastforce simp: col-
lect-clks-id)
have D":[abstr g (Xi j. 00) v]yn = {u. ut g} using 2 dbm-abstr-zone-eq[OF
assms(2) *| by auto
with And-correct have A11: [And D (abstr g (Xi j. 00) v)]v,n = ([D]v,n)
N ({u. u - g}) by blast
let D = reset’ (And D (abstr g (i j. 00) v)) nrv 0
have set r C clk-set A using 2(4) unfolding trans-of-def collect-clkvt-def
by fastforce
hence x*x:V c€set r. v ¢ < n using assms(3) by fastforce

106

have D-reset: [?D]y , = zone-set (([D]yn) N {u. ut g}) r
proof safe
fix u assume u: u € [?D]yp
from DBM-reset’-sound[OF assms(4,2) *x this] obtain ts where
set-clocks v ts u € [And D (abstr g (Aij. 00) v)|vn
by auto
with A11 have x: set-clocks v ts u € ([D]y,n) N ({u. u - g}) by blast
from DBM-reset’-resets|OF assms(4,2) *x] u
have V¢ € set r. u ¢ = 0 unfolding DBM-zone-repr-def by auto
from reset-set| OF this| have [r— 0]set-clocks r ts v = u by simp
with * show u € zone-set (([D]y,n) N {u. v - g}) r unfolding
zone-set-def by force
next
fix v assume u: u € zone-set (([D]v,n) N {u. u 't g}) r
from DBM-reset’-complete| OF - assms(2) *x| u A1l
show u € [?D],, unfolding DBM-zone-repr-def zone-set-def by force
qed
from D’ And-correct D-reset have A22:
[And ?D (abstr (inv-of A 1l") (Ai j. 00) v)]o.n = ([?D]v,n) N ({u. w F
inv-of A 1'})
by blast
with D-reset 2(2—/) show ?thesis by auto
qed

lemma step-z-dbm-DBM:
assumes A = (I, [D]yn) ~q (I, Z) global-clock-numbering A v n
obtains D’ where A = (I, D) ~>y .o (I', D) Z = [D'yn
using assms
proof (cases, goal-cases)
case I
hence clock-numbering’ v n V ceclk-set A. v ¢ < n by metis+
note assms = assms(1) this
from assms(3) have x: V cecollect-clks (inv-of Al). ve <n
unfolding clkp-set-def collect-clki-def inv-of-def by (fastforce simp: col-
lect-clks-id)
obtain D" where D"-def: D" = abstr (inv-of A 1) (A\ij. 00) v by auto
hence D":[D")y n = {u. u F inv-of A I} using dbm-abstr-zone-eq[OF
assms(2) x| by metis
obtain D-up where D-up”. D-up = up D by blast
with up-correct assms(2) have D-up: [D-uply n = ([D]vn)" by metis
obtain A2 where A2: A2 = And D-up D" by fast
with And-correct D" have A22: [A2]y 5 = ([D-uplo,n) N ({u. u = inv-of
A l}) by blast
have A F (I, D) ~+y n7 (I, A2) unfolding A2 D-up’ D"-def by blast

107

moreover have
[A2]y.n = ([D]yn)" N {u. u b inv-of A I}
unfolding A22 D-up ..
ultimately show thesis using 1 by (intro that[of A2]) auto
next
case (2gar)
hence clock-numbering’ vn ¥V ceclk-set A. ve < nVk<n. k>0 — (Jec.
v ¢ = k) by metis+
note assms = assms(1) this
from assms(3) have *: V c€collect-clks (inv-of Al'). ve <n
unfolding clkp-set-def collect-clki-def inv-of-def by (fastforce simp: col-
lect-clks-id)
obtain D’ where D'-def: D' = abstr (inv-of A ') (X\ij. 00) v by blast
hence D":[D",, = {u. u & inv-of A I’} using dbm-abstr-zone-eq|OF
assms(2)] by simp
from assms(3) 2(5) have x: V c€collect-clks g. v e < n
unfolding clkp-set-def collect-clkt-def inv-of-def by (fastforce simp: col-
lect-clks-id)
obtain D" where D"-def: D" = abstr g (\i j. o0) v by blast
hence D":[D"]y n = {u. u F g} using dbm-abstr-zone-eq OF assms(2) x|
by auto
obtain A1 where A1: A1 = And D D" by fast
with And-correct D" have A11: [A1]yn = ([D]v,n) N {u. vt g}) by
blast
let ?D = reset’ Alnrwv0
have set r C clk-set A using 2(5) unfolding trans-of-def collect-clkvt-def
by fastforce
hence #x:V c€set r. v ¢ < n using assms(3) by fastforce
have D-reset: [?D]y , = zone-set (([D]yn) N {u. ut g}) r
proof safe
fix u assume u: u € [?D]yp
from DBM-reset’-sound|OF assms(4,2) #x this| obtain ts where
set-clocks v ts u € [Al]yn
by auto
with A11 have x: set-clocks r ts u € ([D]y,n) N ({u. u - g}) by blast
from DBM-reset’-resets|OF assms(4,2) *x] u
have V¢ € set r. u ¢ = 0 unfolding DBM-zone-repr-def by auto
from reset-set|OF this| have [r—0]set-clocks r ts uw = u by simp
with * show u € zone-set (([D]y,n) N {u. v F g}) r unfolding
zone-set-def by force
next
fix u assume u: u € zone-set (([D]yn) N {u. ut g}) r
from DBM-reset’-complete| OF - assms(2) *x| u A11
show u € [?D], , unfolding DBM-zone-repr-def zone-set-def by force

108

qed

obtain A2 where A2: A2 = And ?D D’ by fast

with And-correct D' have A22: [A2]y.n = ([?D]vn) N ({u. u F inv-of A
I'}) by blast

from 2(5) A2 D’-def D"-def A1 have A &= (I,D) ~, , 1, (I’,A2) by blast

moreover from A22 D-reset have

[A2]yn = zone-set (([D])v,n) N {u. ut g}) r N {u. ut inv-of AU’}

by auto

ultimately show ?thesis using 2 by (intro that[of A2]) simp+
qged

lemma step-z-computable:
assumes A & (I, [D]yn) ~q (I',Z) global-clock-numbering A v n
obtains D’ where Z = [D']y

using step-z-dbm-DBM|[OF assms| by blast

lemma step-z-dbm-complete:
assumes global-clock-numbering A vn A+ (I, u) — (I',u’)
and u € [(D)lon
shows 3 D" a. At (I, D) ~yna (D) Nu" € [Dyn
proof —
note A = assms
from step-z-complete[OF A(2,3)] obtain Z' a where Z"
AF (I, [Dlyn) ~a (I\Z") ' € Z' by auto
with step-z-dbm-DBM[OF Z'(1) A(1)] obtain D’ where D"
A (I, D) ~ypa ("D Z' = [D)on
by metis
with Z'(2) show ?thesis by auto
qed

3.6.2 Additional Useful Properties

lemma step-z-equiv:

assumes global-clock-numbering A v n A & (I, [D]yn) ~>a (I, Z) [D]vn
= [M]o,n

shows A & (I, [M]yn) ~a (I, Z)
using step-z-dbm-complete[OF assms(1)] step-z-dbm-sound|OF - assms(1),
THEN step-z-sound)
assms(2,3) by force

lemma step-z-dbm-equiv:

assumes global-clock-numbering A v n A & (I, D) ~ypna (I, D) [D]yn
= [Mun

ShOWS 3 M/. A l_ <l7 M> 'V")U7n7a <ll, M’> /\ [D’]U7n — [Mqv7n

109

proof —

from step-z-dbm-sound|OF assms(2,1)] have A &b (I, [D]yn) ~q (U,
D) -

with step-z-equiv|OF assms(1) this assms(3)] have A & (I, [M]yn) ~q
<l/’ [D,]v,n> by auto

from step-z-dbm-DBM[OF this assms(1)] show ?thesis by auto
qed

lemma step-z-empty:
assumes A - (I, {}) ~, (I, Z)
shows 7 = {}

using step-z-sound[OF assms| by auto

lemma step-z-dbm-empty:

assumes global-clock-numbering A v n A & (I, D) ~>ypnq (I, D) [D]y.n
= {}

shows [D'), n, = {}
using step-z-dbm-sound[OF assms(2,1)] assms(3) by — (rule step-z-empty,
auto)

end
theory Regions-Beta
imports

TA-Misc
Difference-Bound-Matrices. DBM-Normalization
Difference-Bound-Matrices. DBM-Operations
Difference-Bound-Matrices. Zones

begin

4 Refinement to pg-regions

4.1 Definition

type-synonym ’c ceiling = (‘c = nat)

datatype intv =
Const nat |
Intv nat |
Greater nat

datatype intv’ =
Const’ int |
Intv’ int |
Greater' int |

110

Smaller’ int
type-synonym t = real

inductive valid-intv :: nat = intv = bool
where
0 < d= d < ¢ = valid-intv ¢ (Const d) |
0 <d= d< ¢ = valid-intv ¢ (Intv d) |
valid-intv ¢ (Greater c)

inductive valid-intv’ :: int = int = intv’ = bool
where
valid-intv" | - (Smaller’ (=1)) |
-1 < d = d < u = valid-intv’ | u (Const’ d) |
-1 <d= d < u = valid-intv’ | u (Intv’ d) |
valid-intv” - u (Greater')

inductive intv-elem :: 'c = ('c,t) cval = intv = bool
where
uz = d = intv-elem z u (Const d) |
d<uzr= uz <d+ 1 = intv-elem z u (Intv d) |
¢ < uz = intv-elem = u (Greater c)

inductive intv’-elem :: 'c = "¢ = (c,t) cval = intv’ = bool

where
ur —uy < c= intv'-elem z y u (Smaller’ c) |
ur —uy=d= intv-elem x y u (Const’ d) |
d<ur—uwy=uz—uy<d+ 1= intv'-elemzy u (Intv’ d) |
c<uz—uy= intv-elem x y u (Greater' c)

abbreviation total-preorder r = refl r A trans r

inductive isConst :: intv = bool
where
isConst (Const -)

inductive isIntv :: intv = bool
where
isIntv (Intv -)

inductive isGreater :: intv = bool

where
isGreater (Greater -)

111

declare isIntv.intros[introl| isConst.intros[intro!] isGreater.intros|intro!]
declare isIntv.cases[elim!] isConst.cases[elim!] isGreater.cases|elim!]

inductive wvalid-region :: 'c set = ('c = nat) = ('c = intv) = ('c = 'c
= intv’) = ‘¢ rel = bool
where
[Xo ={z € X.3 d. I z = Intv d}; refl-on X¢ r; trans r; total-on X¢ r;
V z € X. valid-intv (k z) (I z);
V ze X.V ye X. isGreater (I z) V isGreater (I y) — valid-intv’ (k

y) (kz) (Jzy)]
= wvalid-region X kI J r

inductive-set region for X I J r
where

VeeX ur>0=V ze€ X. intvelemzu (I 2) = Xo = {z € X.
3d. Iz=Intvd} =

Ve lXoVyeXo (z,y) €r+— frac (uz) < frac (uy) =

V ze X.V ye X. isGreater (I x) V isGreater (I y) — intv’-elem z y
u (Jzy)

= u€region XIJr

Defining the unique element of a partition that contains a valuation

definition part (<[-]-» [61,61] 61) where part v R = THER. R € R A v
€R

First we need to show that the set of regions is a partition of the set of all
clock assignments. This property is only claimed by P. Bouyer.

inductive-cases|elim!]: intv-elem = u (Const d)
inductive-cases|elim!]: intv-elem = u (Intv d)
inductive-cases|elim!]: intv-elem x u (Greater d)
inductive-cases|elim!]: valid-intv ¢ (Greater d)
inductive-cases[elim!]: valid-intv ¢ (Const d)
inductive-cases|elim!]: valid-intv ¢ (Intv d)
inductive-cases|elim!]: intv’-elem x y u (Const’ d)
inductive-cases|elim!]: intv’-elem x y u (Intv’ d)
inductive-cases|elim!]: intv’-elem x y u (Greater’ d)

[elim!]

[elim!]

[elim!]

[elim!]

[elim!]

S 333333

|
|

inductive-cases|elim!]: intv’-elem x y u (Smaller’ d)

inductive-cases|elim!]: valid-intv’ | u (Greater’ d)

inductive-cases|elim!]: valid-intv’ | u (Smaller’ d)

: valid-intv’ 1 u (Const’ d)

: valid-intv’ 1w (Intv’ d)

inductive-cases|elim!
inductive-cases|elim/!

declare valid-intv.intros|intro]

112

declare valid-intv’.intros|intro]
declare intv-elem.intros[intro]
declare intv’-elem.intros|intro]

declare region.cases|elim)]
declare valid-region.cases|elim]

4.2 Basic Properties

First we show that all valid intervals are distinct

lemma valid-intv-distinct:

valid-intv ¢ I = wvalid-intv ¢ I’ = intv-elem v u [= intv-elem x u I’
— I =1
by (cases I) (cases I', auto)+

lemma valid-intv’-distinct:

—c¢ < d = walid-intv’ ¢ d I = wvalid-intv’ ¢ d I' = intv"-elem x y u I
= intv’-elem z y u I’

= I=1
by (cases I) (cases 1', auto)+

From this we show that all valid regions are distinct

lemma valid-regions-distinct:
valid-region X k I J r = wvalid-region X k I' J' r' = v € region X I J
r= v € region X I' J'r’
= region X I Jr = region X I' J' r’
proof goal-cases
case 1
note A = 1
{ fix z assume z: v € X
with A(1) have valid-intv (k z) (I z) by auto
moreover from A(2) z have valid-intv (k z) (I’ x) by auto
moreover from A(3) z have intv-elem z v (I) by auto
moreover from A(4) z have intv-elem xz v (I’ x) by auto
ultimately have [z = I’ x using valid-intv-distinct by fastforce
} note *x = this
{ fix x y assume z: z € X and y: y € X and B: isGreater (I z) V
isGreater (I y)
with * have C: isGreater (I') V isGreater (I' y) by auto
from A(1) z y B have valid-intv’ (ky) (k z) (J z y) by fastforce
moreover from A(2) z y C have valid-intv’ (k y) (k z) (J' z y) by
fastforce
moreover from A(3) z y B have intv’-elem z y v (J x y) by force
moreover from A(4) z y C have intv’-elem z y v (J' x y) by force

113

moreover from z y valid-intv’-distinct have — int (k y) < int (k z)
by simp
ultimately have J z y = J' z y by (blast intro: valid-intv’-distinct)
} note xx = this
from A show ?thesis
proof (auto, goal-cases)
case (1 u)
note A = this
{ fix z assume z: z € X
from A(5) z have intv-elem z u (I x) by auto
with x z have intv-elem z u (I’ z) by auto
}
then have V z € X. intv-elem x u (I’) by auto
note B = this
{ fix z y assume z: z € X and y: y € X and B: isGreater (I' z) V
isGreater (I' y)
with x have isGreater (I z) V isGreater (I y) by auto
with z y A(5) have intv’-elem z y u (J z y) by force
with «x[OF z y <isGreater (I z) V -] have intv’-elem z y u (J' z y)
by simp
} note C = this
let ?Xg={z€ X.3 d. I'z = Intv d}
{ fix z y assume x: z € ?Xg and y: y € ?Xj
have (z, y) € v’ «— frac (u z) < frac (u y)
proof
assume frac (v z) < frac (u y)
with A(5) z y = have (z,y) € r by auto
with A(3) z y * have frac (v z) < frac (v y) by auto
with A(4) zy show (z,y) € v’ by auto
next
assume (z,y) € r’
with A(4) zy have frac (v z) < frac (v y) by auto
with A(3) z y * have (z,y) € r by auto
with A(5) z y * show frac (u z) < frac (u y) by auto
qed
}
then have x:V z € ?X(.V y € ?X¢. (2, y) € v’ +— frac (v z) < frac
(u y) by auto
from A(5) have VzeX. 0 < u z by auto
from region.intros|OF this B - x| C' show ?case by auto
next
case (2 u)
note A = this
{ fix x assume 2: z € X

114

from A(5) x have intv-elem z u (I' z) by auto
with x z have intv-elem z u (I x) by auto
}
then have V z € X. intv-elem z u (I) by auto
note B = this
{ fix z y assume z: z € X and y: y € X and B: isGreater (I z) V
isGreater (I y)
with x have isGreater (I’ z) V isGreater (I' y) by auto
with z y A(5) have intv’-elem z y u (J' z y) by force
with xx[OF z y «isGreater (I x) V -] have intv’-elem z y u (J z y)
by simp
} note C = this
let ?Xog ={z € X.3 d. Iz = Intv d}
{ fix z y assume z: z € ?Xg and y: y € ?Xj
have (z, y) € r «— frac (u z) < frac (u y)
proof
assume frac (v z) < frac (u y)
with A(5) z y * have (z,y) € r’ by auto
with A(4) =z y * have frac (v z) < frac (v y) by auto
with A(3) zy show (z,y) € r by auto
next
assume (z,y) € 7
with A(3) zy have frac (v z) < frac (v y) by auto
with A(4) z y x have (z,y) € r’ by auto
with A(5) z y * show frac (u z) < frac (u y) by auto
qed
}
then have «:V z € ?X(.V y € ?Xg. (x, y) € r «— frac (u z) < frac
(u y) by auto
from A(5) have VzeX. 0 < u z by auto
from region.intros|OF this B - x| C' show ?case by auto
qed
ged

locale Beta-Regions =
fixes X :: ‘c set and k :: 'c = nat
assumes finite: finite X
assumes non-empty: X # {}
begin

definition
R = {region X I Jr | IJr. valid-region X kI J r}

definition V :: (¢, t) cval set where

115

V={v.VeeX ve>0}

lemma R-regions-distinct:
[ReR,veER, RReR;R#R]| = v¢ R’
unfolding R-def using wvalid-regions-distinct by blast

Secondly, we also need to show that every valuations belongs to a region
which is part of the partition.

definition intv-of :: nat = t = intv where
mntv-of c v =
if (v > c) then Greater ¢
else if (3 z :: nat. x = v) then (Const (nat (floor v)))
else (Intv (nat (floor v)))

definition intv’-of :: int = int = t = intv’ where
intv’-of luv =
if (v > u) then Greater' u
else if (v < 1) then Smaller’ 1
else if (3 z :: int. x = v) then (Const’ (floor v))
else (Intv’ (floor v))

lemma region-cover:
VeeX. vz>0=3dR RecRANvVER
proof (standard, standard)
assume assm:V z € X. 0 < vz
let I = X z. intv-of (k z) (v x)
let 2J = X\ zy. intv’-of (ky) (kz) (ve — vy)
let ?Xo={z€ X.3 d. ?Iz= Intv d}
let 7r = {(z,y). x € ?Xo Ay € ?Xo A frac (v) < frac (v y)}
{fixzydassume A: z € Xye X
then have intv’-elem = y v (intv’-of (— int (ky)) (int (kz)) (v — v
y)) unfolding intv’-of-def
proof (auto, goal-cases)
case (1 a)
then have [vz — v y| = va — vy by (metis of-int-floor-cancel)
then show ?case by auto
next
case 2
then have (v — v y|] < vz — vy by (meson eqiff floor-eq-iff
not-less)
with 2 show ?case by auto
ged
} note intro = this
show v € region X 91 2J 9r

116

proof (standard, auto simp: assm intro: intro, goal-cases)

case (1 x)

thus ?case unfolding intv-of-def

proof (auto, goal-cases)
case (1 a)
note A = this
from A(2) have |v x| = v z by (metis floor-of-int of-int-of-nat-eq)
with assm A(1) have v z = real (nat |v z|) by auto
then show ?case by auto

next
case 2
note A = this
from A(1,2) have real (nat |vz]) < vz
proof —

have f1: 0 < vz
using assm 1 by blast
have v z # real-of-int (int (nat |v z]))
by (metis (no-types) 2(2) of-int-of-nat-eq)
then show %thesis
using f1 by linarith
qed
moreover from assm have v z < real (nat (|v z]) + 1) by linarith
ultimately show ?case by auto
qed
qed
{fixzyassumez € Xye X
then have valid-intv’ (int (k y)) (int (k z)) (intv’-of (— int (k y)) (int
(kz)) (ve—wvy))
unfolding intv’-of-def
apply auto
apply (metis floor-of-int le-floor-iff linorder-not-less of-int-minus
of-int-of-nat-eq valid-intv’.simps)
by (metis floor-less-iff less-eq-real-def not-less of-int-minus of-int-of-nat-eq
valid-intv’.intros(3))

moreover
{ fix z assume z: z € X
then have valid-intv (k z) (intv-of (k x) (v x))
proof (auto simp: intv-of-def, goal-cases)
case (1 a)
then show “case
by (intro valid-intv.intros(1)) (auto, linarith)
next
case 2

117

then show ?case

apply (intro valid-intv.intros(2))

using assm floor-less-iff nat-less-iff by fastforce+

qged
}
ultimately have valid-region X k 21 2J %r
by (intro valid-region.intros, auto simp: refl-on-def trans-def total-on-def)
then show region X ?I 2J ?r € R unfolding R-def by auto
ged

lemma region-cover-V:ve V= 3 R. R € R A v € R using region-cover
unfolding V-def by simp

Note that we cannot show that every region is non-empty anymore. The
problem are regions fixing differences between an ’infeasible’ constant.

We can show that there is always exactly one region a valid valuation belongs
to. Note that we do not need non-emptiness for that.

lemma regions-partition:
Ve X.0<vrz=3JIReR.vER
proof goal-cases
case I
note A = this
with region-cover|OF | obtain R where R: R € R A v € R by fastforce
moreover
{ fix R"assume R'"€¢ R A v € R’
with R valid-regions-distinct|OF - - - -] have R’ = R unfolding R-def
by blast
}
ultimately show ?thesis by auto
qed

lemma region-unique:
vER=RecR = [vjJr =R
proof goal-cases
case 1
note A = this
from A obtain [J r where *:
valid-region X kI Jr R = region X I Jrv € region X I J r
by (auto simp: R-def)
from this(3) have VzeX. 0 < v z by auto
from thel[OF regions-partition| OF this|] obtain I’ J' r’ where
v: valid-region X k I' J' r' [vlg = region X I' J' r' v € region X I" J' r’
unfolding part-def R-def by auto

118

from valid-regions-distinct|OF (1) v(1) *(3) v(3)] v(2) *(2) show ?case
by auto
qed

lemma regions-partition’:
VieX. 0 <vz=VzeX. 0 <v' z= v € vJg = [v|r = [v|r
proof goal-cases
case I
note A = this
from thel|OF regions-partition|OF A(1)]] A(3) obtain I J r where
v: valid-region X k I J r [v]gr = region X I J r v’ € region X I J r
unfolding part-def R-def by blast
from thel|OF regions-partition|OF A(2)]] obtain I’ J' r’ where
v”s valid-region X k 1" J' r' [v|g = region X I" J' r' v’ € region X 1" J'
,r,/
unfolding part-def R-def by auto
from walid-regions-distinct[OF v'(1) v(1) v'(8) v(3)] v(2) v'(2) show
Zcase by simp
qged

lemma regions-closed:
RER—vER=1t>20= [vBtlr €R
proof goal-cases
case 1
note A = this
then obtain 7/ J r where v € region X I J r unfolding R-def by auto
from this(1) have V z € X. vz > 0 by auto
with A(3) have V z € X. (v @ t) z > 0 unfolding cval-add-def by
stmp
from regions-partition| OF this] obtain R’ where R' € R (v & t) € R’
by auto
with region-unique| OF this(2,1)] show ?case by auto
ged

lemma regions-closed:
ReER=—=veER=t>0= (v@t)€vdir
proof goal-cases
case I
note A = this
then obtain I J r where v € region X I J r unfolding R-def by auto
from this(1) have V z € X. vz > 0 by auto
with A(3) have V z € X. (v & t) z > 0 unfolding cval-add-def by
simp
from regions-partition| OF this] obtain R’ where R’ € R (v @ t) € R’

119

by auto
with region-unique| OF this(2,1)] show ?case by auto
qed

lemma valid-regions-1-cong:
valid-region X kI Jr =V zxe X. Iz =1"x
=V ze X.V ye X. (isGreater (I z) V isGreater (I y)) — Jzxy =
J'zy
= region X I J r = region X I' J' r A valid-region X k1" J' r
proof (auto, goal-cases)
case (1 v)
note A = this
then have [simp]:
Ne.zeX=TITz=1Izx
Nzy ze X = ye X = isGreater (I) V isGreater (I y) = Jx
=J'zy
by metis+
show ?case
proof (standard, goal-cases)
case 1 from A(4) show ?case by auto
next
case 2 from A(4) show ?case by auto
next
case 3 show {z € X.3d. Iz = Intvd} = {z € X.3d. I' z = Intv d}
by auto
next
case 4
let ?Xo = {z € X.3d. I z = Intv d}
from A(4) show V z € ?X(.V y € ?Xo. ((z, y) € r) = (frac (vz) <
frac (v y)) by auto
next
case 5 from A(4) show ?case by force
qed
next
case (2 v)
note A = this
then have [simp]:
Ne.zeX=TITz=1Izx
Nzy ze X = ye X = isGreater (I z) V isGreater (I y) = Jx
y=J'zy
by metis+
show “case
proof (standard, goal-cases)
case ! from A(4) show ?case by auto

120

next
case 2 from A(/) show ?case by auto
next
case 3
show {z € X.3d. I'z = Intv d} = {z € X. 3d. I x = Intv d} by auto
next
case 4
let ?Xg ={z € X.3d. I'x = Intv d}
from A(4) show V z € ?Xo. V y € ?Xo. ((z, y) €) = (frac (vz) <
frac (v y)) by auto
next
case 5 from A(4) show ?Zcase by force
qed
next
case 3
note A = this
then have [simp]:
Ne.zeX=TIT'z=1Izx
Nzy ze€ X = ye X = isGreater (I z) V isGreater (I y) = Jx
y=J'zy
by metis+
show “case
apply rule
apply (subgoal-tac {z € X. 3d. [z =Intvd} ={z € X.3d. ['z
= Intv d})
apply assumption
using A by force+
qged

fun intv-const :: intv = nat
where
intv-const (Const d) = d |
intv-const (Intv d) = d |
intv-const (Greater d) = d

fun intv’-const :: intv’ = int
where
intv’-const (Smaller’ d) = d |
intv’-const (Const’ d) = d |
intv’-const (Intv’ d) = d |
(

intv’-const (Greater’ d) = d

lemma finite-R-aux:
fixes P A B assumes finite {z. A z} finite {z. B z}

121

shows finite {(I, J) | I J. PIJr NAIANBJ}
using assms by (fastforce intro: pairwise-finitel finite-ex-and1 finite-ex-and2)

lemma finite-R:
notes [[simproc add: finite-Collect]]
shows finite R
proof —
{ fix I J r assume A: valid-region X kI J r
let ?Xo ={z € X.3d. I v = Intv d}
from A have refl-on ?Xy r by auto
then have r C X x X by (auto simp: refl-on-def)
then have r € Pow (X x X) by auto
}
then have {r. 31 J. valid-region X kI J r} C Pow (X x X) by auto
from finite-subset|OF this] finite have fin: finite {r. 31 J. valid-region X
kIJr} by auto
let %u = Maz {kz | z. z € X}
let 2l = — Max {kz |z z € X}
let ?I = {intv. intv-const intv < Zu}
let ?2J = {intv. 7l < intv’-const intv A intv’-const intv < ?u}
let ¢S = {r. 31 J. valid-region X kI J r}
let ?fin-mapl = A I.Vz. (r e X — Tz € ?I) N (x ¢ X — Iz = Const
0)
let ?fin-mapJ = X J.Vz. Vy. (1€ X Nye X — Jazy e ?2J)
ANzgX—Jazy=Const’ O) N (y¢ X — Jz
y = Const’ 0)
let 2R = {region X I J r | I J r. valid-region X kI J r N ?fin-mapl I A
?fin-mapJ J}
let 2f = Ar. {region X I Jr | I J . valid-region X k I Jr N ?fin-mapl I
A 2fin-mapJ J}
let 29 = Ar. {(1, J) | IJ . valid-region X kIJr A ?fin-mapl I A\ ?fin-mapJ
J}
have 7] = (Const ‘{d. d < ?u}) U (Intv ‘{d. d < ?u}) U (Greater ‘ {d.
d < ?u})
by auto (case-tac x, auto)
then have finite I by auto
from finite-set-of-finite-funs|OF «finite X» this] have finl: finite {I.
?fin-mapl I} .
have ?J = (Smaller’ “{d. 2l < d N d < ?u}) U (Const’ “{d. 2l < d A
d < %u})
U (Intv” “{d. 21 < d N d < 2u}) U (Greater’ “{d. 2l < d N d <
2u})
by auto (case-tac x, auto)
then have finite 2J by auto

122

from finite-set-of-finite-funs2[OF «finite X» <finite X> this| have finJ:
finite {J. ?fin-mapJ J} .
from finite-R-auz|OF finl finJ, of valid-region X k] have ¥V r € 2S. finite
(%9 r) by simp
moreover have V r € 25. ?fr = (X (I, J). region X I Jr) ‘ %9 r by
auto
ultimately have Vr € ?S. finite (?f r) by auto
moreover have ?R = |J (¢ ‘?S) by auto
ultimately have finite R using fin by auto
moreover have R C 7R
proof
fix R assume R: R € R
then obtain [J r where I: R = region X I J r valid-region X kI J r
unfolding R-def by auto
let 21 = X z. if z € X then I x else Const 0
let 2J =Xzy. ife e X Ny e X A (isGreater (I x) V isGreater (I y))
then J z y else Const’ 0
let R = region X 21 2J r
from wvalid-regions-I-cong[OF I(2)] I have *: R = ?R valid-region X k
¢ 2J r by auto
have Vz. 2 ¢ X — 2l x = Const 0 by auto
moreover have Vz. x € X — intv-const (I z) < %u
proof auto
fix x assume z: z € X
with 1(2) have valid-intv (k z) (I z) by auto
moreover from «finite X» x have k z < ?u by (auto intro: Maz-ge)
ultimately show intv-const (I x) < Maz {k z |z. x € X} by (cases
I z) auto
qed
ultimately have xx: ?fin-mapl ?I by auto
have Vzy. x ¢ X — ?Jzy = Const’ 0 by auto
moreover have Vz y. y ¢ X — 2J z y = Const’ 0 by auto
moreover have Vz.V y. z € X Ay € X — 2l < intv’-const (?J z y)
A intv'-const (2J z y) < %u
proof clarify
fix z y assume 2: z € X assume y: y € X
show 21 < intv’-const (2J z y) A intv’-const (?J z y) < %u
proof (cases isGreater (I z) V isGreater (I y))
case True
with z y I(2) have valid-intv’ (k y) (k z) (J z y) by fastforce
moreover from <finite X> x have k x < ?u by (auto intro: Max-ge)
moreover from <finite X» y have ?l < —k y by (auto intro: Max-ge)
ultimately show ?thesis by (cases J = y) auto
next

123

case Fulse then show ?thesis by auto
qed

qed

ultimately have ?fin-mapJ ?J by auto

with * xx show R € ?R by blast
qed
ultimately show finite R by (blast intro: finite-subset)

qed

end

4.3 Approximation with S-regions

locale Beta-Regions’ = Beta-Regions +

fixes v n not-in-X

assumes clock-numbering: ¥ c.ve > 0N Vz.Vy vz <nAvy<nA
VT =0y — T =Y)

Vk:nat <n. k>0 — JceX. ve=kV c€

X.ve<n

assumes not-in-X: not-in-X ¢ X
begin

definition v/ =X i. if 0 < i ANi < nthen (THE c. c € X N v c = 1) else
not-in-X

lemma v-v":
VeeX v(ve)=c
using clock-numbering unfolding v’-def by auto

abbreviation
vabstr (S = ('a, t) zone) M = S = [M]yn A (V i<n. V j<n. M ij # oo
— get-const (M i j) € Z)

definition normalized:
normalized M =
Vij.0<iNi<nANO<jANj<nAMij+#oco—
Lt (— (real((kov') §)) < MijANMij< Le ((kowv) i)
ANV i<ni>0-— (Mi0O<Le((kov')i)VvMi0O=o0)ALt(—
((kowv')i) < MO0

definition apz-def:

Approzg Z = {S. 3 UM.S=J UANUCRANZCS A vabstr S M
A normalized M}

124

definition
normalized’ M =
Vij0<iAi<nAO<jAj<nAMij#oconi#j—
Lt (— (real((k o v")) < MijANMij< Le ((kov')i))
ANV i<ni>0— (Mi0O<Le((kov)i)VvMiO=o0)ALt(—
(kowv')i) < MO0i)

lemma normalized’-normalized:
assumes Vi < n. M i1 = 0 normalized’ M
shows normalized M
using assms unfolding normalized’-def normalized
apply auto
apply (smt Lt-le-Lel neutral of-nat-0-le-iff Le-le-Lel)+
done

lemma normalized-normalized":
normalized’ M if normalized M
using that unfolding normalized’-def normalized by simp

lemma apz-min:

S=UJJU=UCR= 8= [Mypn=V i<n.V j<n. Mij+# o
— get-const (M ij) € Z

= normalized M = 7 C S = Approzg Z C S
unfolding apz-def by blast

lemma R-union: | JR = V using region-cover unfolding V-def R-def by
auto

definition V-dbm where
V-dbm = i j. if i = 0 then Le 0 else oo

lemma v-not-eq-0:
ve#0
using clock-numbering(1) by (metis not-less-zero)

lemma V-dbm-eq-V: [V-dbm]yn, = V

unfolding V-dbm-def V-def DBM-zone-repr-def DBM-val-bounded-def
proof ((clarsimp; safe), goal-cases)

case (1 u c)

with clock-numbering have dbm-entry-val u None (Some c) (Le 0) by
auto

then show ?case by auto
next

case (4 u c)

125

with clock-numbering have ¢ € X by blast
with /(1) show ?Zcase by auto
qed (auto simp: v-not-eq-0)

lemma V-dbm-int:
V i<n. VY j<n. V-dbm i j # oo — get-const (V-dbm i j) € Z
unfolding V-dbm-def by auto

lemma normalized-V-dbm:
normalized V-dbm
unfolding V-dbm-def normalized less-eq dbm-le-def by auto

lemma all-dbm: 3 M. vabstr (JR) M A normalized M
using V-dbm-eq-V V-dbm-int normalized-V-dbm using R-union by auto

lemma R-int:
ReR = R'€e R=— R# R'=— RN R'={} using R-regions-distinct
by blast

lemma auzl:
uER=—=ReR—=—=UCR=—uelJ U= RC|J U using R-int
by blast

lemma quz2: x € (| U= U # {} = 3 S € U. z € S by blast
lemma auz2:z € (| U= U #{} =V S € U.z € S by blast
lemma apz-subset: Z C Approxg Z unfolding apz-def by auto

lemma aux3:
VXelUVYeUXNYeU=SCU= S+#{} = finite S
= SeU
proof goal-cases
case !
with finite-list obtain [where set | = S by blast
then show ?thesis using 1
proof (induction | arbitrary: S)
case Nil thus ?case by auto
next
case (Cons x xs)
show ?Zcase
proof (cases set xs = {})
case Fulse
with Cons have [(set zs) € U by auto

126

with Cons.prems(1—3) show ?thesis by force
next
case True
with Cons.prems show ?thesis by auto
qed
qed
qed

lemma empty-zone-dbm:

3 M :: t DBM. vabstr {} M A normalized M N (Vk < n. Mkk < Le 0)
proof —

from non-empty obtain ¢ where c: ¢ € X by auto

with clock-numbering have c¢": v ¢ > 0 v ¢ < n by auto

let M = Xij.ifi=veANj=0Vi=jthen Le (0::t) elseif i = 0 N j
= v ¢ then Lt 0 else oo

have [?M],, = {} unfolding DBM-zone-repr-def DBM-val-bounded-def
using ¢’ by auto

moreover have V i<n.V j<n. ?Mij # oo — get-const (?M i j) € Z
by auto

moreover have normalized ?M unfolding normalized less-eq dbm-le-def
by auto

ultimately show ?thesis by auto
qed

lemma DBM-set-diag:

assumes [M], , # {}

shows [M]yn = [(Aij. if i = j then Le 0 else M i j)|yn
using non-empty-dbm-diag-set[OF clock-numbering(1) assms] unfolding
neutral by auto

lemma apz-min’:
S=JUU=UCR= 8= [Mypn=V i<n.V j<n. Mij# o
— get-const (M ij) € Z
= normalized’ M = 7 C S = Approzg Z C S
proof (cases S = {}, goal-cases)
case 1
then show ?thesis
using empty-zone-dbm apz-min by metis
next
case 2
let M = (\ij. if i = j then Le 0 else M i j)
from DBM-set-diag 2 have [M]y n = [?M]y.n
by blast
moreover from <normalized’ -) have normalized ?M

127

by (intro normalized’-normalized; simp add: normalized’-def neutral)
ultimately show ?thesis
using 2 by (intro apz-min[where M = ?M]) auto
qged

lemma valid-dbms-int:

VXe{S. IM. vabstr S M}. ¥V Ye{S. IM. vabstr S M}. X NV € {S.
I M. vabstr S M}
proof (auto, goal-cases)

case (1 M1 M2)

obtain M’ where M’ M' = And M1 M2 by fast

from DBM-and-sound1|[OF | DBM-and-sound2[OF| DBM-and-complete[OF
]

have [M1]yn N [M2]yn = [M'y,n unfolding DBM-zone-repr-def M' by
auto

moreover from ! haveV i<n.V j<n. M'ij # co — get-const (M’ i
pez

unfolding M’ by (auto split: split-min)

ultimately show ?case by auto
ged

lemma split-min'”:
P(minij)=((minij=1i— Pi)AN(minij=j— Pj))
unfolding min-def by auto

lemma normalized-and-preservation:
normalized M1 = normalized M2 = normalized (And M1 M2)
unfolding normalized by safe (subst And.simps, split split-min’, fast-
force)+

lemma valid-dbms-int':

V Xe{S. I M. vabstr S M A normalized M}. ¥V Ye{S. 3 M. vabstr S M A
normalized M}.

XNYe{S IM. vabstr S M N normalized M}

proof (auto, goal-cases)

case (1 M1 M2)

obtain M’ where M’ M' = And M1 M2 by fast

from DBM-and-soundl DBM-and-sound?2 DBM-and-complete

have [M1],n N [M2]y,n = [M']y,n, unfolding M’ DBM-zone-repr-def by
auto

moreover from M’ 1 have V i<n.V j<n. M’ ij # oo — get-const
(M"ij) ez

by (auto split: split-min)

moreover from normalized-and-preservation|OF 1(2,4)] have normal-

128

ized M’ unfolding M’ .
ultimately show ?case by auto
qed

lemma apz-in:
Z CV = Approzg Z € {S.3 UM.S=J UANUCRANZCSA
vabstr S M A normalized M}
proof —
assume Z C V
let PA={S. 3 UM.S=JUANUCRANZCS A vabstr S M A
normalized M}
let /U ={ReR.V Se€?A. RC S}
have YA C {S.3 U. S= U A U C R} by auto
moreover from finite-R have finite ... by auto
ultimately have finite ?A by (auto intro: finite-subset)
from all-dbm obtain M where M:
vabstr (JR) M normalized M
by auto
with «- C V) R-union[symmetric] have V € 74
by safe (intro conjl exl; auto)
then have ?4 # {} by blast
have ?A C {S. 3 M. vabstr S M A normalized M} by auto
with aux3[OF valid-dbms-int’ this <?A # - «finite ?4>] have
N ?A € {S.3 M. vabstr S M N normalized M}
by blast
then obtain M where *: vabstr (Approzs Z) M normalized M unfolding
apx-def by auto
have |J U =) 74
proof (safe, goal-cases)
case I
show Zcase
proof (cases Z = {})
case Fulse
then obtain v where v € Z by auto
with region-cover «Z C V) obtain R where R € R v € R unfolding
V-def by blast
with auz1[OF this(2,1)] «v € Z> have R € ?U by blast
with 1 show ?thesis by blast
next
case True
with empty-zone-dbm have {} € ?4 by auto
with 1(1,%) show ?thesis by blast
qged
next

129

case (2 v)
from auz2[OF 2 <?A # -)] obtain S where v € S S € ?A by blast
then obtain R where v € R R € R by auto
{ fix S assume S € 74
with auz2’[OF 2 «?A # -] have v € S by auto
with «§ € ?A) obtain U M R’ where x:
vER RPeRS=UUUCRvabstr SMZ C S
by blast
from auzl[OF this(1,2,4)] *(8) <«v € S» have R’ C S by blast
moreover from R-regions-distinct|OF x(2,1) <R € R»] <v € R) have
R’ = R by fast
ultimately have R C S by fast
}
with <R € R» have R € ?U by auto
with <v € R» show ?Zcase by auto
qed
then have Approzg Z = \|J?U ?U C R Z C Approzg Z unfolding
apx-def by auto
with * show ?thesis by blast
ged

lemma apz-empty:

Approzg {} = {}
unfolding apz-def using empty-zone-dbm by blast

end

4.4 Computing [S-Approximation
4.4.1 Computation

context Beta-Regions’
begin

lemma dbm-regions:

vabstr S M = normalized’ M = [M]yn # {} = [M]o,n C V = 3
UCR.S=U U
proof goal-cases

case A: 1

let U =

{ReR.3I IJr.R=region XIJr A valid-region X k1 Jr A
(V ce X.
(Vdlc=Constd— M (ve)O>LedANMO (vc)> Le (—d))

130

Vdlc=Intvd— M (vec)0>Lt(d+1)ANMO (ve)> Lt
(=d)) A
(I ¢ = Greater (kc¢) — M (vec) 0 = 00)
) A
Vze X.VyeX.
VedIe=IntveNTy=Intvd — M (vz) (vy) >
(if (z, y) € rthen if (y, z) € r then Le (¢ — d) else Lt (¢ — d)
else Lt (¢ — d + 1))) A
VedIe=Intve NlTy=Intvd — M (vy) (vz) >
(if (y,) € 7 then if (z, y) € r then Le (d — ¢) else Lt (d — ¢)
else Lt (d — ¢+ 1))) A
(Ved Iz = Constc NIy= Constd — M (vz) (vy) > Le (c

(Ved Ix= Constc NIy= Constd — M (vy) (vz) > Le (d
VedIo=IntvcNIy= Constd — M (vz) (vy) > Lt (¢ —
Ved Ie=Intve NIy= Constd — M (vy) (vz)> Lt (d —
Ved Io=ConstcNIy=1Intvd — M (vz) (vy) > Lt (c —

(Ved Io=ConstcNIy=1Intvd — M (vy) (vz) > Lt (d —
c+ 1)) A
((isGreater (I z) V isGreater (I y)) A J xzy = Greater’ (kx) — M
(v5) () =) A
(V c. (isGreater (I z) V isGreater (I y)) N Jxy = Const’ ¢
— M (vz) (vy) > LecANM (vy) (vz) > Le (— ¢)) A
(V c. (isGreater (I z) V isGreater (I y)) AN Jxy = Intv' ¢
— M (vz) (vy) > Lt (c+ 1) ANM (vy) (vz) > Lt (— ¢))
)

¥
have | ?U = [M]y,, unfolding DBM-zone-repr-def DBM-val-bounded-def

proof (standard, goal-cases)
case I
show Zcase
proof (auto, goal-cases)
case 1
from A(3) show Le 0 < M 0 0 unfolding DBM-zone-repr-def
DBM-val-bounded-def by auto

next
case (2ulJrc)
note B = this

from B(6) clock-numbering have ¢ € X by blast
with B(1) v-v" have x: intv-elem ¢ u (I ¢) v’ (v ¢) = ¢ by auto

131

from clock-numbering(1) have v ¢ > 0 by auto
show ?Zcase
proof (cases I ¢)
case (Const d)
with B(4) «c € X> have M 0 (v ¢) > Le (— real d) by auto
with « Const show ?thesis by — (rule dbm-entry-val-mono2|folded
less-eql, auto)
next
case (Intv d)
with B(4) «c € X»> have M 0 (v ¢) > Lt (— real d) by auto
with x Intv show %thesis by — (rule dbm-entry-val-mono2|folded
less-eql, auto)
next
case (Greater d)
with B(3) «c € X» have I ¢ = Greater (k c¢) by fastforce
with x have — u ¢ < — k ¢ by auto
moreover from A(2) %(2) <«v ¢ < n» <v ¢ > 0> have
Lt (—ke) < MO (ve)
unfolding normalized’-def by force
ultimately show ?thesis by — (rule dbm-entry-val-mono2[folded
less-eq], auto)

qged

next
case (3ulJrc)
note B = this

from B(6) clock-numbering have ¢ € X by blast
with B(1) v-v" have x: intv-elem ¢ u (I ¢) v’ (v ¢) = ¢ by auto
from clock-numbering(1) have v ¢ > 0 by auto
show ?case
proof (cases I ¢)
case (Const d)
with B(4) «c € X» have M (v ¢) 0 > Le d by auto
with x Const show ?thesis by — (rule dbm-entry-val-mono8|folded
less-eql, auto)
next
case (Intv d)
with B(4) «c € X» have M (v ¢) 0 > Lt (real d + 1) by auto
with x Intv show Zthesis by — (rule dbm-entry-val-mono8|folded
less-eq], auto)
next
case (Greater d)
with B(3) «c € X»> have I ¢ = Greater (k c) by fastforce
with B(4) «c € X» show ?%thesis by auto
qed

132

next
case B: (fulJrcl c2)
from B(6,7) clock-numbering have c1 € X ¢2 € X by blast+
with B(1) v-v" have x:
intv-elem ¢l u (I 1) intv-elem c¢2 u (I ¢2) v’ (v cl) = ¢l v' (v c2)
= c2

by auto
from clock-numbering(1) have v ¢c1 > 0 v ¢2 > 0 by auto

{ assume C: isGreater (I c1) V isGreater (I c2)
with B(1) <c1 € X» <¢2 € X> have *x: intv’-elem c1 ¢2 u (J ¢l ¢2)

by force
have ?case
proof (cases J c1 ¢2)

case (Smaller’ c)
with C B(3) «c¢1 € X» «¢2 € X> have ¢ < — k ¢2 by fastforce

moreover from C «c1 € X» «¢2 € X» *x Smaller’ have u c1 —

u c2 < ¢ by auto
moreover from A(2) x(3,4) B(6,7) <v el > 0> <v c2 > 0> have

M (vel) (ve2) > Lt (—ke2) VM (vel) (ve2) =00 Vol
=vc2
unfolding normalized’-def by fastforce
ultimately show ?thesis
by — (safe, rule dbm-entry-val-monol [folded less-eq|, auto,
smt x(3,4) int-le-real-less of-int-1 of-nat-0-le-iff)

next

case (Const’ ¢)
with C B(5) «c1 € X» <«¢2 € X> have M (v cl) (vc2) > Le ¢ by

auto
with Const’ xx <c1 € X» «c2 € X»> show ?thesis
by (auto intro: dbm-entry-val-monol [folded less-eq])
next

case (Intv’ ¢)
with C B(5) «c1 € X» «<c2 € X> have M (v cl) (v c2) > Lt

(real-of-int ¢ + 1) by auto
with Intv’ xx «c1 € X» «¢2 € X» show ?thesis
by (auto intro: dbm-entry-val-monol [folded less-eq])

next

case (Greater' c)
with C B(3) «c¢1 € X» «¢2 € X> have ¢ = k cI by fastforce

with Greater’ C B(5) «c1 € X» <c2 € X» show ?thesis by auto
qed
} note Greaterl = this
show ?case
proof (cases I c1)

133

case (Const c)
show “thesis
proof (cases I c2, goal-cases)
case (1 d)
with Const <c1 € X» <c¢2 € X» %(1,2) have ucl = cuc2 = d
by auto
moreover from <c! € X» «<c2 € X> 1 Const B(5) have
Le (real ¢ — real d) < M (v cl) (v c2)
by meson
ultimately show ?thesis by (auto intro: dbm-entry-val-monol [folded
less-eq])
next
case (Intv d)
with Const <«c1 € X»> «¢2 € X> %(1,2) have u cl = cd < u ¢2
by auto
then have u ¢! — u ¢2 < ¢ — real d by auto
moreover from Const «c1 € X» «¢2 € X» Intv B(5) have
Lt (real ¢ — d) < M (v ecl) (v c2)
by meson
ultimately show ?thesis by (auto intro: dbm-entry-val-monol [folded
less-eq])
next
case Greater then show ?thesis by (auto intro: Greaterl)
qged
next
case (Intv c)
show ?thesis
proof (cases I ¢2, goal-cases)
case (Const d)
with Intv <c1 € X> «<c2 € X> x(1,2) have ucl < c+ 1d=uc2
by auto
then have u cl — u c2 < ¢ — real d + 1 by auto
moreover from «c1 € X» «¢2 € X> Intv Const B(5) have
Lt (real ¢ — real d + 1) < M (v cl) (v ¢2)
by meson
ultimately show ?thesis by (auto intro: dbm-entry-val-monol [folded
less-eq])
next
case (2 d)
show “case
proof (cases (c1,c2) € r)
case True
note T = this
show “thesis

134

proof (cases (c2,c1) € 1)
case True
with T B(5) 2 Intv <c1 € X» <c2 € X» have
Le (real ¢ — real d) < M (v c1) (v c2)
by auto
moreover from nat-intv-frac-decomplof ¢ u c1] nat-intv-frac-decomp|of
d u c2]
B(1,2) <c1 € X» «c2 € Xo T True Intv 2 %(1,2)
have u c1 — u ¢2 = real ¢ — d by auto
ultimately show ?thesis by (auto intro: dbm-entry-val-monol [folded
less-eq])
next
case Fulse
with T B(5) 2 Intv <c1 € X» <c2 € X» have
Lt (real ¢ — real d) < M (v cl) (v c2)
by auto
moreover from nat-intv-frac-decomplof ¢ u c1] nat-intv-frac-decomp|of
d u c2]
B(1,2) <c1 € X» «c2 € X» T False Intv 2 %(1,2)
have u c1 — u ¢2 < real ¢ — d by auto
ultimately show ?thesis by (auto intro: dbm-entry-val-monol [folded
less-eq])
qed
next
case Fulse
with B(5) 2 Intv <c1 € X» <¢2 € X» have
Lt (real ¢ — real d + 1) < M (v cl) (v c2)
by meson
moreover from 2 Intv <c1 € X» «¢2 € X» x have u ¢l — u c2
< ¢ — real d + 1 by auto
ultimately show ?thesis by (auto intro: dbm-entry-val-monol [folded
less-eq])
qed
next
case Greater then show ?thesis by (auto intro: Greaterl)
qed
next
case Greater then show ?thesis by (auto intro: Greaterl)
qed
qed
next
case 2 show ?case
proof (safe, goal-cases)
case (I u)

135

with A(4) have u € V unfolding DBM-zone-repr-def DBM-val-bounded-def
by auto
with region-cover obtain R where R € R u € R unfolding V-def
by auto
then obtain I J r where R: R = region X I J r valid-region X kI J
r unfolding R-def by auto
have (VceX. (Vd. I ¢ = Const d — Le (real d) < M (v ¢) 0 N Le
(—real d) < MO (vc)) A
(Vd. Ic=Intvd — Lt (reald + 1) < M (ve) 0 N Lt (—
real d) < M 0 (v c)) A
(I ¢ = Greater (kc¢) — M (vc) 0 = 0))
proof safe
fix c assume c € X
with R «u € Ry have x: intv-elem ¢ u (I ¢) by auto
fix d assume *x: [¢ = Const d
with * have u ¢ = d by fastforce
moreover from xx clock-numbering(3) «¢ € X» 1 have
dbm-entry-val v (Some ¢) None (M (v ¢) 0)
by auto
ultimately show Le (real d) < M (v ¢) 0
unfolding less-eq dbm-le-def by (cases M (v ¢) 0) auto
next
fix c assume ¢ € X
with R <u € R) have x: intv-elem ¢ u (I ¢) by auto
fix d assume *x: [¢ = Const d
with *x have u ¢ = d by fastforce
moreover from xx clock-numbering(3) <c € X» 1 have
dbm-entry-val uw None (Some ¢) (M 0 (v c))
by auto
ultimately show Le (— real d) < M 0 (v ¢)
unfolding less-eq dbm-le-def by (cases M 0 (v ¢)) auto
next
fix c assume c € X
with R «u € Ry have x: intv-elem ¢ u (I ¢) by auto
fix d assume *x: [¢ = Intv d
with x have d < v cu ¢ < d + 1 by fastforce+
moreover from xx clock-numbering(3) «¢ € X» 1 have
dbm-entry-val v (Some ¢) None (M (v ¢) 0)
by auto
moreover have
M (ve) 0 # oo = get-const (M (vc) 0) € Z
using ¢ € X clock-numbering A(1) by auto
ultimately show Lt (real d + 1) < M (v ¢) 0 unfolding less-eq
dbm-le-def

136

apply (cases M (v ¢) 0)
apply auto
apply (rename-tac x1)
apply (subgoal-tac 1 > d)
apply (rule dbm-lt.intros(5))
apply (metis nat-intv-frac-gt0 frac-eq-0-iff less-irrefl linorder-not-le
of-nat-1 of-nat-add)
apply simp
apply (rename-tac x2)
apply (subgoal-tac 2 > d + 1)
apply (rule dbm-lt.intros(6))
apply (metis of-nat-1 of-nat-add)
apply simp
by (metis nat-intv-not-int One-nat-def add.commute add.right-neutral
add-Suc-right le-less-trans
less-eq-real-def linorder-neqFE-linordered-idom semir-
ing-1-class.of-nat-simps(2))
next
fix ¢ assume ¢ € X
with R «u € Ry have x: intv-elem ¢ u (I ¢) by auto
fix d assume *x: [¢ = Intv d
with x have d < uw cu ¢ < d + 1 by fastforce+
moreover from xx clock-numbering(3) «¢ € X» 1 have
dbm-entry-val u None (Some ¢) (M 0 (v c))
by auto
moreover have M 0 (v ¢) # oo = get-const (M 0 (v ¢)) € Z
using <¢ € X clock-numbering A(1) by auto
ultimately show Lt (— real d) < M 0 (v ¢) unfolding less-eq
dbm-le-def
proof (cases M 0 (v ¢), —, auto, goal-cases)
case prems: (1 x1)
then have u ¢ = d + frac (u ¢) by (metis nat-intv-frac-decomp
we<d+ 1)
with prems(5) have — 21 < d + frac (u ¢) by auto
with prems(1) frac-ge-0 frac-lt-1 have — z1 < d
by — (rule ints-le-add-frac2[of frac (u ¢) d —x1]; fastforce)
with prems have — d < z1 by auto
then show ?case by auto
next
case prems: (2 z1)
then have u ¢ = d + frac (u ¢) by (metis nat-intv-frac-decomp
we<d+ 1)
with prems(5) have — 21 < d + frac (u ¢) by auto
with prems(1) frac-ge-0 frac-lt-1 have — z1 < d

137

by — (rule ints-le-add-frac2[of frac (u c¢) d —x1]; fastforce)
with prems(6) have — d < zI by auto
then show ?case by auto
qed
next
fix ¢ assume ¢ € X
with R «u € Ry have x: intv-elem ¢ u (I ¢) by auto
fix d assume xx: I ¢ = Greater (k c)
have M (ve¢) 0 < Le (ko v') (ve)) VM (ve) 0 =00
using A(2) <c € X» clock-numbering unfolding normalized’-def by
auto
with v-v' <¢c € X> have M (vc¢) 0 < Le (kc¢)V M (ve¢) 0 = oo by
auto
moreover from x xx have k ¢ < u ¢ by fastforce
moreover from xx clock-numbering(3) «¢ € X» 1 have
dbm-entry-val v (Some ¢) None (M (v ¢) 0)
by auto
moreover have
M (ve) 0 # oo = get-const (M (vc) 0) € Z
using ¢ € X clock-numbering A(1) by auto
ultimately show M (v ¢) 0 = oo unfolding less-eq dbm-le-def
apply —
apply (rule ccontr)
using xx apply (cases M (v ¢) 0)
by auto
qed
moreover
{fixzyassume X: z € Xye X
with R <u € R) have *: intv-elem z u (I x) intv-elem y u (I y) by
auto
from X R <u € R» have #*x:
isGreater (I x) V isGreater (I y) — intv’-elem x y u (J z y)
by force
have int: M (v z) (v y) # co = get-const (M (v z) (vy)) € Z
using X clock-numbering A(1)
by auto
have int2: M (v y) (v) # co = get-const (M (v y) (v z)) € Z
using X clock-numbering A(1)
by auto
from 1 clock-numbering(3) X 1 have xx:
dbm-entry-val u (Some z) (Some y) (M (v z) (v y))
dbm-entry-val v (Some y) (Some z) (M (vy) (v x))
by auto
have

138

VedIe=IntveNTy=Intvd — M (vz) (vy) >
(if (z, y) € rthen if (y,) € r then Le (¢ — d) else Lt (¢ — d)
else Lt (¢ — d+ 1))) A
VedIe=IntveNTy=Intvd — M (vy) (vz)>
(if (y, x) € r then if (z, y) € r then Le (d — ¢) else Lt (d — ¢)
else Lt (d — ¢+ 1))) A
(Vecd Ix= Constc NIy= Constd — M (vz) (vy) > Le (c
—d)) A
(Ved Ix=Constc ANIy= Constd— M (vy) (va)> Le (d
—) A
VedIz=IntveNTy= Constd — M (vz) (vy) > Lt (¢ —
d+ 1)) A
Ved Iz=Intve NIy= Constd — M (vy) (va) > Lt (d —
c)) A
Ved Ie=ConstecNIy=1Intvd — M (vz) (vy) > Lt (¢ —
d)) A
(Ved Io=ConstcNIy=1Intvd — M (vy) (va)> Lt (d —
c+ 1)) A
((isGreater (I x) V isGreater (I y)) A J zy = Greater’' (k z) —
M (vz) (vy) =00) A
(V c. (isGreater (I x) V isGreater (I y)) N Jxy = Const’ ¢
— M (vz) (vy) > LecANM (vy) (vz) > Le (— ¢)) A
(V c. (isGreater (I x) V isGreater (I y)) N Jxy = Intv’ ¢
— M (vz) (vy) > Lt (c+ 1) AM (vy) (va) > Lt (— ¢))
proof (auto, goal-cases)
case xx: (1 ¢ d)
with R <u € R» X have frac (u z) = frac (u y) by auto
with * %% nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomp|of d
u y| have
uxr —uy=realc—d
by auto
with s#x show ?Zcase unfolding less-eq dbm-le-def by (cases M
(vz) (vy)) auto
next
case *x: (2 ¢ d)
with R «u € Ry X have frac (u z) > frac (u y) by auto
with * xx nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomp|of d
u y| have
realc —d<ur—uyuvzr —uvy<realc—d+ 1
by auto
with *xxx int show ?case unfolding less-eq dbm-le-def
by (cases M (v z) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+
next

139

case **: (3 ¢ d)
from s« R <u € R> X have frac (u z) < frac (u y) by auto
with x xx nat-intv-frac-decomplof ¢ u x| nat-intv-frac-decomp|of d
u y] have
realc—d—1<ux—uyuxr—uy<relc—d
by auto
with *xx int show ?case unfolding less-eq dbm-le-def
by (cases M (v z) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+
next
case (4 ¢ d) with R(1) <u € R> X show ?case by auto
next
case *x: (5 ¢ d)
with R <u € R» X have frac (u z) = frac (u y) by auto
with * xx nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomp|of d
u y| have
uxr —uy = real c — d by auto
with s#x show ?Zcase unfolding less-eq dbm-le-def by (cases M
(vy) (vz)) auto
next
case #*: (6 ¢ d)
from *x R <u € Ry X have frac (u z) < frac (u y) by auto
with x xx nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomp|of d
u y] have
reald —c<uy—uvuzuy—uvzr<reld—c+ 1
by auto
with s int2 show ?case unfolding less-eq dbm-le-def
by (cases M (v y) (v z), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+
next
case xx: (7 ¢ d)
from xx R <u € Ry X have frac (u x) > frac (u y) by auto
with * xx nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomp|of d
u y] have
reald —c—1<uy—uzuvy—uzr<reld—c
by auto
with *xxx int2 show ?case unfolding less-eq dbm-le-def
by (cases M (v y) (v z), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-It)+
next
case (8 ¢ d) with R(1) <u € R» X show ?case by auto
next
case (9 ¢ d)
with x nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomplof d u

140

y] have
uxr —uy = real ¢c — d by auto
with s#x show ?Zcase unfolding less-eq dbm-le-def by (cases M
(vz) (vy)) auto
next
case (10 c d)
with * nat-intv-frac-decomplof ¢ u | nat-intv-frac-decomplof d u
y] have
ur —uy=relc— d
by auto
with s#x show ?case unfolding less-eq dbm-le-def by (cases M
(vy) (vzx)) auto
next
case (11 ¢ d)
with * nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomplof d u
y] have
realc —d<uzxr—uy
by auto
with #xx int show ?case unfolding less-eq dbm-le-def
by (cases M (v z) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+
next
case (12 c d)
with x nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomplof d u
y] have
reald —c—1<uy—ux
by auto
with *xxx int2 show ?case unfolding less-eq dbm-le-def
by (cases M (v y) (v z), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-It)+
next
case (13 c d)
with x nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomplof d u
y] have
realc —d—1<ux—uy
by auto
with *xxx int show ?case unfolding less-eq dbm-le-def
by (cases M (v z) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-It)+
next
case (14 c d)
with x nat-intv-frac-decomp|of ¢ u z] nat-intv-frac-decomp|of d u
y] have
reald —c<uy—ux

141

by auto
with *xxx int2 show ?case unfolding less-eq dbm-le-def
by (cases M (v y) (v z), auto) (fastforce intro: int-lt-Suc-le
int-lt-neg-prev-lt)+
next
case (15 d)
have M (vz) (vy) < Le ((kov) (vz)) VM (vz) (vy) =oc0 Vv
=0y
using A(2) X clock-numbering unfolding normalized’-def by
metis
with v-0" X have M (vz) (vy) < Le (kz) V M (vz) (vy) = o0
V vax = vy by auto
moreover from 15 * xx have ux — v y > k x by auto
ultimately show ?case
unfolding less-eq dbm-le-def using sxx
by (cases M (v z) (v y), auto) (smt X (1) X(2) of-nat-0-le-iff
v-v')+
next
case (16 d)
have M (vz) (vy) < Le ((kov') (vz)) VM (vz) (vy) =oc0 Vv
rT=0y
using A(2) X clock-numbering unfolding normalized’-def by metis
with v-v’ X have M (vz) (vy) < Le (kz) V M (vz) (vy) =00
V vz =wvy by auto
moreover from 16 x xx have vz — v y > k = by auto
ultimately show ?case
unfolding less-eq dbm-le-def using sxx
by (cases M (v z) (v y), auto) (smt X(1) X(2) of-nat-0-le-iff
v-v)+
next
case 17 with *xx sxxx show ?Zcase unfolding less-eq dbm-le-def by
(cases M (v z) (v y), auto)
next
case 18 with #x xxx show ?case unfolding less-eq dbm-le-def by
(cases M (v y) (v x), auto)
next
case 19 with xx sxx show ?case unfolding less-eq dbm-le-def by
(cases M (v z) (v y), auto)
next
case 20 with *xx xxx show ?case unfolding less-eq dbm-le-def by
(cases M (v y) (v x), auto)
next
case (21 c d)
with xx have ¢ < u z — u y by auto

142

with *xx int show ?case unfolding less-eq dbm-le-def
by (cases M (v z) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-It)+
next
case (22 c d)
with *x have ux — u y < ¢ + I by auto
then have vy — uz > — ¢ — 1 by auto
with #xx int2 show ?case unfolding less-eq dbm-le-def
by (cases M (v y) (v z), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-lt)+
next
case (23 c d)
with xx have ¢ < u z — u y by auto
with *xx int show ?case unfolding less-eq dbm-le-def
by (cases M (v z) (v y), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-It)+
next
case (24 c d)
with *x have uz — v y < ¢ + 1 by auto
then have vy — vz > — ¢ — 1 by auto
with *xx int2 show ?case unfolding less-eq dbm-le-def
by (cases M (v y) (v z), auto) (fastforce intro: int-lt-Suc-le
int-lt-neq-prev-It)+
qged
}
ultimately show ?case using R <u € R) <R € R
apply —
apply standard
apply standard
apply rule
apply assumption
apply (rule exl[where z = I], rule exI[where z = J], rule exI [where
z =r))
by auto
qged
qed
with A have S = |J U by auto
moreover have ?U C R by blast
ultimately show ?case by blast
qed

lemma dbm-regions”:

vabstr S M = normalized' M — SC V=3 UCR.S= U
using dbm-regions by (cases S = {}) auto

143

lemma dbm-regions’"
dbm-int M n = normalized’ M = M)y C V =3 U C R. [M]yn

using dbm-regions’ by auto

lemma DBM-le-subset:
assumes Vi< n.V j<mi#j—Mij<Mij
andV i<n. M'ii> Le 0
and u € My
shows u € [M')yp
proof —
let M = XN ij. if i = jthen Le 0 else M ij
have Vij. i <n—j<n— ?Mij< M'ijusing assms(1,2) by
auto
moreover from DBM-set-diag assms(3) have u € [?M], n by auto
ultimately show ?thesis using DBM-le-subset|folded less-eq, of n ¢M M’
u v] by auto
qged

lemma neg-diag-empty-spec:

assumes 1 < nMii <0

shows [M]yn = {}
using assms neg-diag-empty[where v=vand M = M, OF - assms] clock-numbering(2)
by auto

lemma canonical-empty-zone-spec:

assumes canonical M n

shows [M]yn = {} +— (Fi<n. M ii < 0)
using canonical-empty-zone[of n v M, OF - - assms| clock-numbering by
auto

lemma norm-set-diag:

assumes canonical M n [M]yn # {}

obtains M’ where [M]y n = [M']yn [norm M (k o v') nlyn = [norm M’
(ko) nlyn

V i<n M'ii= 0 canonical M' n

proof —

from assms(2) neg-diag-empty-spec have x: ¥V i<n. M i i > Le 0 un-
folding neutral by force

let ?M = Xij. if i = j then Le 0 else M i j

let YNM = norm M (k o v') n

let ?M2 = Xij. if i = j then Le 0 else ?NM i j

from assms have [?NM], , # {}

144

by (metis Collect-empty-eq norm-mono DBM-zone-repr-def clock-numbering(1)
mem-Collect-eq)

from DBM-set-diag[OF this| DBM-set-diag| OF assms(2)] have

(M)yn = [?M]y.n [!NM]yn = [?M2]yn

by auto

moreover have norm ?M (k o v') n = ?M2 unfolding norm-def norm-diag-def
by fastforce

moreover have V i < n. ?M i i = 0 unfolding neutral by auto

moreover have canonical ?M n using assms(1) *

unfolding neutral[symmetric] less-eq[symmetric] add[symmetric] by fast-
force

ultimately show ?thesis by (auto intro: that)
qged

lemma norm-normalizes”:
notes any-le-inf[intro)
shows normalized’ (norm M (k o v’) n)
unfolding normalized’-def
proof (safe, goal-cases)
case (1 17j)
show ?case
proof (cases M ij < Lt (— real (k (v'j))))
case True with 1 show ?thesis unfolding norm-def less by (auto simp:
Let-def neutral)

next
case Fulse
with 7 show ?thesis unfolding norm-def by (auto simp: Let-def)
qed
next
case (21 j)

have xx: — real ((k o v') j) < (k o v') i by simp
then have x: Lt (— k (v'j)) < Le (k (v’ 1)) by (auto intro: Lt-lt-Lel)
show Zcase
proof (cases M i j < Le (real (k (v’ 17))))
case Fulse with 2 show ?thesis
unfolding norm-def less-eq dbm-le-def by (auto simp: Let-def neutral
split: if-split-asm)
next
case True with 2 show ?thesis unfolding norm-def by (auto simp:
Let-def split: if-split-asm)
qed
next
case (3 1)
show Zcase

145

proof (cases M i 0 < Le (real (k (v'1))))
case Fulse then have Le (real (k (v’ i))) < M i 0 unfolding less-eq
dbm-le-def by auto
with & show ?thesis unfolding norm-def by auto
next
case True
with 8 show ?thesis unfolding norm-def less-eq dbm-le-def by (auto
simp: Let-def)
qed
next
case (4 1)
show Zcase
proof (cases M 0 i < Lt (— real (k (v'1))))
case True with 4 show ?thesis unfolding norm-def less by auto
next
case Fualse with 4 show ?thesis unfolding norm-def by (auto simp:
Let-def)
qed
qged

lemma norm-normalizes:
assumes Vi <n. Mii=0
shows normalized (norm M (k o v") n)
apply (rule normalized’-normalized)
subgoal
using assms unfolding norm-def norm-diag-def by (auto simp: DBM .neutral)
by (rule norm-normalizes’)

lemma norm-int-preservation:
fixes M :: real DBM
assumes dbm-int Mni < nj<nnorm M (kov')nij# o
shows get-const (norm M (ko v') nij) € Z
using assms unfolding norm-def by (auto simp: Let-def norm-diag-def)

lemma norm-V-preservation'”:

notes any-le-inf[intro)

assumes [M]y, , C V canonical M n [M]yn # {}

shows [norm M (k o v') njyn C V
proof —

let M = norm M (k o v') n

from non-empty-cycle-free|OF assms(3)| clock-numbering(2) have *: cy-
cle-free M n by auto

{ fix c assume c € X

with clock-numbering have c: ¢ € X v ¢ > 0vc < n by auto

146

with assms(2) have
MO (ve)+ M (ve)0>MOO
unfolding add less-eq by blast
moreover from cycle-free-diag|OF x| have M 0 0 > Le 0 unfolding
neutral by auto
ultimately have ge-0: M 0 (vc¢) + M (v c¢) 0 > Le 0 by auto
have M 0 (vec) < Le 0
proof (cases M 0 (v ¢))
case (Le d)
with ge-0 have M (v ¢) 0 > Le (—d)
unfolding add by (cases M (v ¢) 0) auto
with Le canonical-saturated-2[where v = v, OF - - <cycle-free M n»
assms(2) c(3)]
clock-numbering(1)

obtain u where u € (M|, u ¢ = —d by auto

with assms(1) ¢(1) Le show ?thesis unfolding V-def by fastforce
next

case (Lt d)

show ?thesis
proof (cases d < 0)
case True
then have Lt d < Le 0 by (auto intro: Lt-lt-Lel)
with Lt show ?thesis by auto
next
case Fualse
then have d > 0 by auto
note Lt' = Lt
show ?thesis
proof (cases M (v c) 0)
case (Le d')
with Lt ge-0 have x: d > —d’ unfolding add by auto
show ?thesis
proof (cases d' < 0)
case True
from
 clock-numbering(1)
canonical-saturated-1|where v = v, OF - - <cycle-free - -
assms(2) ¢(3)] Lt Le
obtain v where u € [M],, u c = d’
by auto
with <d’ < 0y assms(1) «¢c € X» show ?thesis unfolding V-def
by fastforce
next
case Fulse

147

then have d’ > 0 by auto
with <d > 0> have Le (d / 2) < Lt d Le (— (d /2)) < Le d’' by
auto
with
canonical-saturated-2[where v = v, OF - - <cycle-free - -
assms(2) c(3)]
Lt Le clock-numbering(1)
obtain u where v € M)y uc=—(d/ 2)
by auto (metis Le-le-LtD <Le (d / 2) < Lt d»)
with <d > 0» assms(1) <c € X» show ?thesis unfolding V-def
by fastforce
qed
next
case (Lt d’)
with Lt’ ge-0 have *: d > —d’ unfolding add by auto
then have xx: —d < d’ by auto
show %thesis
proof (cases d' < 0)
case True
from assms(1,3) ¢ obtain u where u:
u € V dbm-entry-val u (Some ¢) None (M (v ¢) 0)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with u(1) True Lt <¢c € X> show ?thesis unfolding V-def by

auto
next
case Fulse
with <d > 0> have Le (d / 2) < Lt d Le (— (d /2)) < Lt d' by
auto
with
canonical-saturated-2|where v = v, OF - - <cycle-free - -

assms(2) ¢(3)]
Lt Lt clock-numbering(1)
obtain u where u € M}y, uc=—(d/ 2)
by auto (metis Le-le-LtD <Le (d / 2) < Lt d»)
with «d > 0> assms(1) <c € X»> show ?thesis unfolding V-def
by fastforce
qed
next
case INF
show ?thesis
proof (cases d > 0)

case True
from «d > 0> have Le (d / 2) < Lt d by auto
with

148

INF canonical-saturated-2[where v = v, OF - - <cycle-free - -»
assms(2) c(3)]
Lt clock-numbering(1)
obtain u where v € M|y, uc=—(d/ 2)
by auto (metis Le-le-LtD <Le (d / 2) < Lt d» any-le-inf)
with <d > 0» assms(1) <c € X> show ?thesis unfolding V-def
by fastforce
next
case Fulse
with Lt show ?thesis by auto
qged
qed
qed
next
case INF
obtain u r where u € (M|, uc=—17>0
proof (cases M (v ¢) 0)
case (Le d)
let ?2d = if d < 0 then —d + 1 else d
from Le INF canonical-saturated-2[where v = v, OF - - <cycle-free
- -y assms(2) c(3), of ?d]
clock-numbering(1)
obtain u where v € [M]y, u ¢ = — ?d by (cases d < 0) (auto
simp: any-le-inf, smt)
from that[OF this] show thesis by auto

next
case (Lt d)
let 9d = if d < 0 then —d + 1 else d
from Lt INF canonical-saturated-2|where v = v, OF - - (cycle-free

- -y assms(2) c(3), of ?d]
clock-numbering(1)
obtain u where u € [M]y, u ¢ = — ?d by (cases d < 0) (auto
simp: any-le-inf, smt)
from that[OF this] show thesis by auto
next
case INF
with
(M 0 (v ¢) = o0 canonical-saturated-2|where v = v, OF - -
ccycle-free - -» assms(2) c(3)]
clock-numbering(1)

obtain « where u € [M]y, u ¢ = — 1 by auto
from that[OF this| show thesis by auto
qed

with assms(1) <¢ € X)> show ?thesis unfolding V-def by fastforce

149

qed
moreover then have = Le 0 < M 0 (v ¢) unfolding less[symmetric]
by auto
ultimately have x: M 0 (v c¢) < Le 0
using assms(3) ¢ unfolding norm-def by (auto simp: Let-def)
fix v assume u: u € [?M]y 5
with ¢ have dbm-entry-val u None (Some ¢) (?M 0 (v c))
unfolding DBM-val-bounded-def DBM-zone-repr-def by auto
with = have u ¢ > 0 by (cases M 0 (v ¢)) auto
} note ge-0 = this
then show ?thesis unfolding V-def by auto
qed

lemma norm-V-preservation:
assumes [M], , C V canonical M n
shows [norm M (k o v') nlyn C V (is [?M]yn C V)
proof (cases [M]yn = {})
case True
obtain ¢ where i: ¢ < n M ii < 0 by (metis True assms(2) canoni-
cal-empty-zone-spec)
have — Le (real (k (v’ i))) < Le 0 unfolding less by (cases k (v' i) =
0, auto)
with ¢ have ?M i i < 0 unfolding norm-def by (auto simp: neutral less
Let-def norm-diag-def)
with neg-diag-empty-spec[OF <i < m] have [?M]yn = {} .
then show ?thesis by auto
next
case Fulse
with assms show ?thesis
apply —
apply (rule norm-set-diag|OF assms(2) False])
apply (rule norm-V-preservation’)
apply auto
done
qged

lemma norm-min:
assumes normalized’ M1 [M]yn C [M1]yn
canonical M n [M]yn # {} [M]yjn €V
shows [norm M (k o v') nlyn C [M1]yn (is [2M2]yn C [M1]yn)
proof —
have le: N ij. i <n=>j<n=>i#j=> Mij<Mlij
using assms(2,3,4) clock-numbering(2)
by (auto introl: DBM-canonical-subset-le[OF - - - - - - clock-numbering(1)])

150

from assms have [M1],, # {} by auto
with neg-diag-empty-spec have x: V i<n. M1 i ¢ > Le 0 unfolding
neutral by force
from assms norm-V-preservation have V: [?M2],, C V by auto
have u € [M1]y, if u € [?M2], , for u
proof —
from that V have V: u € V by fast
show ?thesis unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (safe, goal-cases)
case 1 with x show ?case unfolding less-eq by fast
next
case (2 ¢)
then have c: ve¢> 0ve<ncée Xv' (vc)= cusing clock-numbering
v-v’ by metis+
with V have v-bound: dbm-entry-val uw None (Some ¢) (Le 0) un-
folding V-def by auto
from that ¢ have bound:
dbm-entry-val u None (Some ¢) (?M2 0 (v c))
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
show Zcase
proof (cases M 0 (vc) < Lt (— k ¢))
case Fulse
show ?thesis
proof (cases Le 0 < M 0 (v c))
case True
with le ¢(1,2) have Le 0 < M1 0 (v ¢) by fastforce
with dbm-entry-val-mono2[OF v-bound, folded less-eq] show ?thesis
by fast
next
case F': Fulse
with assms(3) False ¢ have ?M2 0 (v ¢) = M 0 (v ¢) unfolding
less norm-def by auto
with le ¢ bound show ?thesis by (auto intro: dbm-entry-val-mono2|folded
less-eq])
qed
next
case True
have Lt (real-of-int (— k ¢)) < Le 0 by auto
with True ¢ assms(3) have ?M2 0 (v ¢) = Lt (— k ¢) unfolding
less norm-def by auto
moreover from assms(1) ¢ have Lt (— k ¢) < M1 0 (v ¢) unfolding
normalized’-def by auto
ultimately show ?thesis using le ¢ bound by (auto intro: dbm-entry-val-mono2|folded
less-eq])

151

qed
next
case (3 ¢)
then have c: ve¢> 0ve<nce Xv' (vc)= cusing clock-numbering
v-v’ by metis+
from that ¢ have bound:
dbm-entry-val u (Some ¢) None (?M2 (v ¢) 0)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
show Zcase
proof (cases M (v ¢) 0 < Le (k ¢))
case Fulse
with le ¢ have = M1 (v ¢) 0 < Le (k ¢) by fastforce
with assms(1) ¢ show ?thesis unfolding normalized’-def by fastforce
next
case True
show ?thesis
proof (cases M (v ¢) 0 < Lt 0)
case T: True
have - Le (real (k ¢)) < Lt 0 by auto
with T True ¢ have ?M2 (v ¢) 0 = Lt 0 unfolding norm-def less
by (auto simp: Let-def)
with bound V ¢ show ?thesis unfolding V-def by auto
next
case Fulse
with True assms(3) ¢ have M2 (v ¢) 0 = M (v ¢) 0 unfolding
less less-eq norm-def
by (auto simp: Let-def)
with dbm-entry-val-mono3[OF bound, folded less-eq| le ¢ show
?thesis by auto
qed
qged
next
case (4 cl c2)
then have c:
vel >0vel <ncleXv (vel)=clve2>0vc2<n
c2 € Xv (ve2) =c2
using clock-numbering v-v’ by metis+
from that ¢ have bound:
dbm-entry-val u (Some c1) (Some c2) (?M2 (v cl) (v c2))
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
show Zcase
proof (cases c1 = c2)
case True
then have dbm-entry-val u (Some c1) (Some c2) (Le 0) by auto

152

with ¢ True x dbm-entry-val-monol[OF this, folded less-eq] show
?thesis by auto
next
case Fulse
with clock-numbering(1) <v ¢l < n» <v c2 < n) have neq: v ¢l # v
c2 by auto
show ?thesis
proof (cases Le (k c1) < M (v cl) (v c2))
case Fulse
show ?thesis
proof (cases M (v cl) (v c2) < Lt (— real (k c2)))
case F: Fulse
with ¢ False assms(3) neq have
M2 (vel) (ve2) =M (vel) (vel)
unfolding norm-def norm-diag-def less by simp
with dbm-entry-val-monol [OF bound, folded less-eq| le ¢ neq
show ?thesis by auto
next
case True
with ¢ Fualse assms(3) neq have ?M2 (v c¢1) (v c2) = Lt (— k
c2)
unfolding less norm-def by simp
moreover from assms(1) ¢ have M1 (v ¢l) (v c2) = o0 V M1
(vel) (ve2) > Lt (— kc2)
using neq unfolding normalized’-def by fastforce
ultimately show ?thesis using dbm-entry-val-mono1[OF bound,
folded less-eq] by auto
qed
next
case True
with le ¢ neq have M1 (v c¢1) (v ¢2) > Le (k c¢1) by fastforce
moreover from True ¢ assms(3) neq have ?M2 (v cl) (v c2) =

unfolding norm-def less by simp
moreover from assms(1) ¢ have M1 (v cl) (ve2) =00V M1 (v
cl) (ve2) < Le (kcl)
using neq unfolding normalized’-def by fastforce
ultimately show ?thesis by auto
qed
qed
qged
qged
then show ?thesis by blast
qged

153

lemma apz-norm-eq:
assumes canonical M n [M]y, € V dbm-int M n
shows Approzg ([M)y,n) = [norm M (k o v') n]yn
proof —
let ?M = norm M (ko v') n
from assms norm-V-preservation norm-int-preservation norm-normalizes’
have x:
vabstr ([?M]y.n) ?M normalized’ ?M [?M]ypn C V
by auto
from dbm-regions’|OF this] obtain U where U: U C R [?M],, =J U
by auto
from assms(3) have sx: [M],, C [?M]y.n by (simp add: norm-mono
clock-numbering(1) subsetl)
show “thesis
proof (cases [M]yn = {})
case True
from canonical-empty-zone-spec[OF <canonical M ny] True obtain i
where i:
i <nMii <0
by auto
then have ?M i i < 0
unfolding norm-def norm-diag-def by (auto simp: DBM .neutral
DBM .less)
from neg-diag-emptylof n v i ?M, OF - <i < ny this] clock-numbering
have
[?M]on = {}
by (auto intro: Lt-lt-Lel)
with apz-empty True show ?thesis by auto
next
case Fulse
from apz-in[OF assms(2)] obtain U’ M1 where U"
Approzg ((Mlyn) = U U U' C R [Mlyn C Approzs ([M]v,n)
vabstr (Approxg ([M]y,n)) M1 normalized M1
by auto
from norm-min|[OF - - assms(1) False assms(2)] U'(3,4,5) *(1) apz-min'|OF
U(2,1) - - x(2) *x]
show ?thesis
by (auto dest!: normalized-normalized”)
qed
qged

end

154

4.5 Auxiliary f-boundedness Theorems

context Beta-Regions’
begin

lemma S-boundedness-diag-lt:
fixes m :: int
assumes — ky<mm<kzrzzrxe Xye X
shows3 UCR.J U={uveV.uz—uy<m}
proof —
note A = assms
note B = A(1,2)
let 2U={ReR.3 IJrcd (e: int). R = region X IJr A valid-region
XkEIJrA
(Iz= Constc NIy = ConstdA realc — d < mV
ITx=ConstcANIy=Intvd Nrealc —d<mV
ITx=Intve N1Ty=ConstdANrealc+ 1 —d<mV
ITe=Intve Nly=1Intvd Nrealc —d<mA (z,y) € r N (y, z) ¢
TV
Ix=Intve Nly=Intvd Nrealc —d<mA (y,z) €rV
(I z = Greater (kz) V Iy = Greater (ky)) AN Jzy= Smaller’ (— k
y) v
(I z = Greater (kx) V Iy = Greater (ky)) N Jxy=1Intv' e Ne<
m V
(I = Greater (kz) V Iy = Greater (ky)) N Jzy= Const’ e A\ e <

)}

{ fix u I Jr assume u € region X I Jr Iz = Greater (kz)V Iy =
Greater (k y)
with A(3,4) have intv’-elem x y u (J z y) by force
} note x = this
{ fix u [Jr assume u € region X I J r
with A(3,4) have intv-elem z u (I x) intv-elem y u (I y) by force+
} note xx = this
have | 2U={ue V.uz —uy < m}
proof (safe, goal-cases)
case (2 u) with xx[OF this(1)] show ?case by auto
next
case (4 u) with xx[OF this(1)] show ?case by auto
next
case (6 u) with xx[OF this(1)] show ?case by auto
next
case (SuXIJrcd)
from this A(3,4) have intv-elem z u (I x) intv-elem y u (I y) frac (u

m

155

x) < frac (u y) by force+
with nat-intv-frac-decomp 8(4,5) have
ur=c+ frac (uz) uy =d+ frac (uy) frac (ux) < frac (u y)
by force+
with 8(6) show ?case by linarith
next
case (10u X I Jrcd)
with #x[OF this(1)] 10(4,5) have vz < ¢ + 1 d < u y by auto
then have vz — vy < real (¢ + 1) — real d by linarith
moreover from 10(6) have real ¢ + 1 — d < m
proof —
have int ¢ — int d < m
using 10(6) by linarith
then show ?thesis
by simp
qed
ultimately show ?case by linarith
next
case 12 with *[OF this(1)] B show ?Zcase by auto
next
case 14 with *[OF this(1)] B show ?Zcase by auto
next
case (23 u)
from region-cover-V[OF this(1)] obtain R where R: R € R u € R by
auto
then obtain I J r where R": R = region X I J r valid-region X kI J r
unfolding R-def by auto
with R’ R(2) A have C:
intv-elem = u (I z) intv-elem y u (I y) valid-intv (k z) (I =) valid-intv
(ky) (Iy)
by auto
{ assume A: I © = Greater (kz) V Iy = Greater (ky)
obtain intv and d :: int where intv:
valid-intv” (k y) (k x) intv intv’-elem = y u intv
intv = Smaller’ (— k y) V intv = Intv’ d A d < m V intv = Const’
dNd<m
proof (casesuz — uy < — int (ky))
case True
have valid-intv’ (k y) (k z) (Smaller’ (— k y)) ..
moreover with True have intv’-elem x y u (Smaller’ (— k y)) by
auto
ultimately show thesis by (auto intro: that)
next
case Fulse

156

show thesis
proof (cases 3 (¢ ::int). uzr — uy = c)
case True
then obtain c :: int where ¢c: vz — v y = ¢ by auto
have valid-intv’ (k y) (k) (Const’ ¢) using False B(2) 23(2) ¢
by fastforce
moreover with ¢ have intv’-elem z y u (Const’ ¢) by auto
moreover have ¢ < m using ¢ 23(2) by auto
ultimately show thesis by (auto intro: that)
next
case Fulse
then obtain c :: real where ¢: uz — uy = ¢ ¢ ¢ Z by (metis
Ints-cases)
have valid-intv’ (k y) (k z) (Intv’ (floor ¢))
proof
show — int (k y) < |[c¢] using (- - < - ¢ by linarith
show |c| < int (k z) using B(2) 23(2) ¢ by linarith
qed
moreover have intv’-elem z y u (Intv’ (floor c))
proof
from c(1,2) show |c¢] < uz — u y by (meson False eq-iff not-le
of-int-floor-le)
from ¢(1,2) show uz — uy < |c| + 1 by simp
qed
moreover have |c|] < m using ¢ 23(2) by linarith
ultimately show thesis using that by auto
qed
qed
let 2J =Xab. ifx=aANy=>then intvelse Jab
let YR = region X I ¢J r
let ?Xog = {2z € X.3d. Iz = Intv d}
have u € 7R
proof (standard, goal-cases)
case I from R R’ show ?case by auto

next

case 2 from R R’ show ?Zcase by auto
next

case 3 show ?Xg = ?Xy by auto
next

case / from R R'show Vze?X,. Vye?Xy. (z, y) € r «— frac (u
z) < frac (u y) by auto
next
case 5
show Zcase

157

proof (clarify, goal-cases)
case (1 a b)
show Zcase
proof (casesz = a Ay =10)
case True with intv show ?thesis by auto
next
case Fulse
with R(2) R'(1) 1 show ?thesis by force
qed
qed
qed
have valid-region X k I 2J r
proof
show ?Xo = ?XO .
show refl-on ?Xg r using R’ by auto
show trans r using R’ by auto
show total-on ?Xo r using R’ by auto
show VzeX. valid-intv (k z) (I z) using R’ by auto
show VzacX. VyacX. isGreater (I za) V isGreater (I ya)
— walid-intv’ (int (k ya)) (int (k za)) (if £ = za A\ y = ya then
intv else J za ya)
proof (clarify, goal-cases)
case (1 a b)
show Zcase
proof (casesz = a Ay =)
case True
with B intv show ?thesis by auto
next
case Fulse
with R’(2) 1 show ?thesis by force
qed
qed
qged
moreover then have ?R € R unfolding R-def by auto
ultimately have ?R € ?U using intv
apply clarify
apply (rule exI[where x = I|, rule exI[where z = ?J], rule
exl[where z = 7])
using A by fastforce
with (u € region - - - -» have ?case by (intro Complete-Lattices. Unionl)
blast+
} note x = this
show ?Zcase
proof (cases I x)

158

case (Const c)
show %thesis
proof (cases I y, goal-cases)
case (1 d)
with C(1,2) Const A(2,3) 23(2) have real ¢ — real d < m by auto
with Const 1 R R’ show ?thesis by blast
next
case (Intv d)
with C(1,2) Const A(2,3) 23(2) have real ¢ — (d + 1) < m by
auto
then have ¢ < 1 + (d + m) by linarith
then have real ¢ — d < m by simp
with Const Intv R R’ show ?thesis by blast
next
case (Greater d) with x C(4) show ?thesis by auto
qed
next
case (Intv c)
show %thesis
proof (cases Iy, goal-cases)
case (Const d)
with C(1,2) Intv A(2,3) 23(2) have real ¢ — d < m by auto
then have real ¢ < m + d by linarith
then have ¢ < m + d by linarith
then have real c + 1 — d < m by simp
with Const Intv R R’ show ?thesis by blast
next
case (2 d)
show ?thesis
proof (cases (y, z) € r)
case True
with C(1,2) R R’ Intv 2 A(3,4) have
c<uzur<cH+ld<uyuy<d+ 1frac (uz) > frac (uy)
by force+
with 23(2) nat-intv-frac-decomp have ¢ + frac (v z) — (d + frac
(uy)) < m by auto
with <frac - > - have real ¢ — real d < m by linarith
with Intv 2 True R R’ show ?thesis by blast
next
case Fulse
with R R’ A(3,4) Intv 2 have (z,y) € r by fastforce
with C(1,2) R R’ Intv 2 have c < uzuy < d + 1 by force+
with 23(2) have ¢ < 1 + d + m by auto
then have real ¢ — d < m by simp

159

with Intv 2 False <- € r» R R’ show ?thesis by blast
qged
next
case (Greater d) with x C(4) show ?thesis by auto
qed
next
case (Greater d) with x C(3) show ?thesis by auto
qged
qed (auto intro: A simp: V-def, (fastforce dest!: x)+)
moreover have U C R by fastforce
ultimately show ?thesis by blast
qed

lemma [-boundedness-diag-eq:
fixes m :: int
assumes — ky<mm<kzrzrzeXyeX
shows3I UCR. YU U={ueV.uzx—uy=m}
proof —
note A = assms
note B = A(1,2)
let ?U={ReR.I1Jrcd(e: int). R = region X I Jr A valid-region
XEIJrA
(Iz= Const c NIy = Constd A realc — d=mV
ITe=Intve NTy=1Intvd ANrealc —d=mA (z,y) €1 A (y,)
eErv
(I z = Greater (kz) VvV Iy = Greater (ky)) AN Jzy= Const’ e A e =

)}

{ fix uIJrassume u € region X I Jr Iz = Greater (kz)V Iy =
Greater (k y)
with A(3,4) have intv’-elem = y u (J z y) by force
} note x = this
{ fix w I Jr assume u € region X I Jr
with A(3,4) have intv-elem z u (I x) intv-elem y u (I y) by force+
} note xx = this
have | U={ue V.uzr —uy=m}
proof (safe, goal-cases)
case (2 u) with xx[OF this(1)] show ?Zcase by auto
next
case (4uXIJrcd)
from this A(3,4) have intv-elem x u (I z) intv-elem y u (I y) frac (u
z) = frac (u y) by force+
with nat-intv-frac-decomp 4(4,5) have
vz =c+ frac (uz) uy =d+ frac (uy) frac (u x) = frac (u y)

m

160

by force+
with /(6) show ?Zcase by linarith
next
case (9 u)
from region-cover-V[OF this(1)] obtain R where R: R € R u € R by
auto
then obtain [J r where R R = region X I J r valid-region X kI J r
unfolding R-def by auto
with R’ R(2) A have C:
intv-elem = u (I z) intv-elem y u (I y) valid-intv (k z) (I z) valid-intv
(ky) (Iy)
by auto
{ assume A: [x = Greater (kz) V Iy = Greater (k y)
obtain intv where intv:
valid-intv” (k y) (k x) intv intv’-elem z y u intv intv = Const’ m
proof (casesuz — uy < — int (kvy))
case True
with 9 B show “thesis by auto
next
case Fulse
show thesis
proof (cases 3 (¢ ::int). ux — uy = c)
case True
then obtain c :: int where c: uxz — v y = ¢ by auto
have valid-intv’ (k y) (k z) (Const’ ¢) using False B(2) 9(2) ¢ by
fastforce
moreover with ¢ have intv’-elem z y u (Const’ ¢) by auto
moreover have ¢ = m using ¢ 9(2) by auto
ultimately show thesis by (auto intro: that)
next
case Fulse
then have u z — u y ¢ Z by (metis Ints-cases)
with 9 show %thesis by auto
qed
qed
let 2J =Xab.ifx=aAy=>then intvelse Jab
let ?R = region X I ?J r
let ?Xg ={z € X.3d. I v = Intv d}
have v € ?R
proof (standard, goal-cases)
case I from R R’ show ?case by auto
next
case 2 from R R’ show ?case by auto
next

161

case 3 show ?Xg = ?Xg by auto
next
case / from R R’'show Vze?X(. Vye?Xy. (z, y) € r «— frac (u
z) < frac (u y) by auto
next
case 5
show Zcase
proof (clarify, goal-cases)
case (1 a b)
show Zcase
proof (casesz = a Ny =b)
case True with intv show ?thesis by auto
next
case Fulse with R(2) R'(1) 1 show ?thesis by force
qed
qed
qed
have valid-region X k I 2J r
proof (standard, goal-cases)
show ?Xy = 2X, ..
show refl-on ?Xg r using R’ by auto
show trans r using R’ by auto
show total-on ?X(r using R’ by auto
show VzeX. valid-intv (k z) (I z) using R’ by auto
next
case 6
then show Zcase
proof (clarify, goal-cases)
case (1 a b)
show ?case
proof (casesxz =a Ay =10)
case True with B intv show ?thesis by auto
next
case Fulse with R'(2) 1 show ?thesis by force
qed
qed
qed
moreover then have ?R € R unfolding R-def by auto
ultimately have ?R € ?U using intv
apply clarify
apply (rule exI[where z = I|, rule exI[where z = ?J], rule
exl[where = = r])
using A by fastforce
with (u € region - - - -» have ?case by (intro Complete-Lattices. Unionl)

162

blast+
} note x = this
show Zcase
proof (cases I x)
case (Const c)
show %thesis
proof (cases Iy, goal-cases)
case (1 d)
with C(1,2) Const A(2,3) 9(2) have real ¢ — d = m by auto
with Const 1 R R’ show ?thesis by blast
next
case (Intv d)
from Intv Const C(1,2) have range: d < uyuy < d + 1 and eq:
u x = c by auto
from eq have u z € Z by auto
with nat-intv-not-int[OF range] have v z — u y ¢ Z using Ints-diff
by fastforce
with 9 show ?thesis by auto
next
case Greater with C * show ?thesis by auto
qed
next
case (Intv c)
show “thesis
proof (cases I y, goal-cases)
case (Const d)
from Intv Const C(1,2) have range: ¢ < uzuz < ¢ + 1 and eq:
uy = d by auto
from eq have u y € Z by auto
with nat-intv-not-int[OF range] have u x — u y ¢ Z using Ints-add
by fastforce
with 9 show ?thesis by auto
next
case (2 d)
with Intv C' have range: c < uzuzr < c+ 1ld<uyuy<d+ 1
by auto
show ?thesis
proof (cases (z, y) € 1)
case True
note T = this
show %thesis
proof (cases (y, z) € r)
case True
with Intv 2 T R’ <u € R> A(3,4) have frac (u z) = frac (u y)

163

by force
with nat-intv-frac-decomp|OF range(1,2)] nat-intv-frac-decomp| OF
range(3,4)] have
ur — uy = real c — real d
by algebra
with 9 have real ¢ — d = m by auto
with T True Intv 2 R R’ show ?thesis by force
next
case Fulse
with Intv 2 T R’ «u € R> A(3,4) have frac (u z) < frac (u y)
by force
then have
frac (ux —uy) # 0
by (metis add.left-neutral diff-add-cancel frac-add frac-unique-iff
less-irrefl)
then have u z — u y ¢ Z by (metis frac-eq-0-iff)
with 9 show ?thesis by auto
qed
next
case Fulse
note F' = this
show “thesis
proof (cases z = y)
case True
with R'(2) Intv <z € X» have (z, y) € r (y,) € r by (auto
simp: refl-on-def)
with Intv True R R 9(2) show ?thesis by force
next
case Fulse
with F R'(2) Intv 2 «<x € X»> <y € X> have (y, z) € r by (fastforce
simp: total-on-def)
with F Intv 2 R’ <u € Ry A(3,4) have frac (u z) > frac (u y)
by force
then have
frac (ux —uy) # 0
by (metis add.left-neutral diff-add-cancel frac-add frac-unique-iff
less-irrefl)
then have u z — u y ¢ Z by (metis frac-eq-0-iff)
with 9 show ?thesis by auto
qed
qed
next
case Greater with x C show ?thesis by force
qed

164

next
case Greater with x C' show ?thesis by force
qed
qged (auto intro: A simp: V-def dest: x)
moreover have ?U C R by fastforce
ultimately show ?thesis by blast
qed

lemma (-boundedness-It:
fixes m :: int
assumes m < kzzx € X
shows 3 UCR.|J U={ue V.uzr < m}
proof —
note A = assms
let YU ={Re€R.3 IJrec R=region XIJr A valid-region X kIJr
A
(Iz=ConstcNc<mVIz=IntveAc<m)}
{ fix u [Jr assume u € region X I J r
with A have intv-elem z u (I x) by force+
} note xx = this
have | U ={ue V. uz < m}
proof (safe, goal-cases)
case (2 u) with xx[OF this(1)] show ?case by auto
next
case (4 u) with xx[OF this(1)] show ?Zcase by auto
next
case (5 u)
from region-cover-V[OF this(1)] obtain R where R: R € R u € R by
auto
then obtain I J r where R R = region X I J r valid-region X kI J r
unfolding R-def by auto
with R’ R(2) A have C:
intv-elem = u (I z) valid-intv (k z) (I x)
by auto
show Zcase
proof (cases I x)
case (Const c)
with 5 C(1) have ¢ < m by auto
with R R’ Const show ?thesis by blast
next
case (Intv c)
with 5 C(1) have ¢ < m by auto
with R R’ Intv show ?thesis by blast
next

165

case (Greater ¢) with 5 C' A Greater show ?thesis by auto
qged
qed (auto intro: A simp: V-def)
moreover have U C R by fastforce
ultimately show ?thesis by blast
qged

lemma S-boundedness-gt:
fixes m :: int
assumes m < kzz e X
shows 3 UCR. YU U={ueV.uz>m}
proof —
note A = assms
let 2U={ReR.3 IJrc R=region XIJr A wvalid-region X kI Jr
A
(Iz=Constc Nec>mV Iz=1IntveANc>mVIz= Greater (k
)}
{ fix u [Jr assume u € region X I J r
with A have intv-elem z u (I x) by force+
} note xx = this
have | U ={ue V. uz > m}
proof (safe, goal-cases)
case (2 u) with xx[OF this(1)] show ?case by auto
next
case (4 u) with xx[OF this(1)] show ?Zcase by auto
next
case (0 u) with A «x[OF this(1)] show ?case by auto
next
case (7 u)
from region-cover-V[OF this(1)] obtain R where R: R € R u € R by
auto
then obtain I J r where R": R = region X I J r valid-region X k I J r
unfolding R-def by auto
with R’ R(2) A have C:
intv-elem z u (I x) valid-intv (k z) (I x)
by auto
show “case
proof (cases I x)
case (Const c)
with 7 C(1) have ¢ > m by auto
with R R’ Const show ?thesis by blast
next
case (Intv c)
with 7 C(1) have ¢ > m by auto

166

with R R’ Intv show ?thesis by blast
next
case (Greater c)
with C have k z = ¢ by auto
with R R’ Greater show ?thesis by blast
qged
qed (auto intro: A simp: V-def)
moreover have ?U C R by fastforce
ultimately show ?thesis by blast
qged

lemma $-boundedness-eq:
fixes m :: int
assumes m < kzzx € X
shows 3 UCR.|J U={ue V.uzx=m}
proof —
note A = assms
let 2U={ReR.3 IJrc R=region XIJr A wvalid-region X kI Jr
NIz = Constc N\ c=m}
have | U ={ue V. uz=m}
proof (safe, goal-cases)
case (2 u) with A show ?Zcase by force
next
case (3 u)
from region-cover-V[OF this(1)] obtain R where R: R € R u € R by
auto
then obtain [J r where R R = region X I J r valid-region X kI J r
unfolding R-def by auto
with R’ R(2) A have C: intv-elem z u (I z) valid-intv (k x) (I z) by
auto
show Zcase
proof (cases I x)
case (Const c)
with 3 C(1) have ¢ = m by auto
with R R’ Const show ?thesis by blast
next
case (Intv c)
with C have ¢ < uz vz < ¢ + 1 by auto
from nat-intv-not-int[OF this| 3 show ?thesis by auto
next
case (Greater c)
with C 3 A show ?thesis by auto
qged
qed (force intro: A simp: V-def)

167

moreover have ?U C R by fastforce
ultimately show ?thesis by blast
qed

lemma (-boundedness-diag-le:

fixes m :: int

assumes — ky<mm<kzrze XyeX

shows3 UCR. YU U={ueV.uzx—uy<m}
proof —

from (-boundedness-diag-eq|OF assms] 3-boundedness-diag-lt]|OF assms]
obtain Ul U2 where A:

UlCRUUl={ueV.uz—uy<mjU2CRJ U2={uecV.

ur —uy=m}

by blast

then have {u e V.uz —uwy<m} = (U1 UU2) Ul UU2CR by
auto

then show ?thesis by blast
qed

lemma [$-boundedness-le:
fixes m :: int
assumes m < kzrzzx € X
shows 3 UCR.|J U={uve V.uzr <m}
proof —
from [-boundedness-lt|OF assms| B-boundedness-eq|OF assms] obtain
Ul U2 where A:
UICRYU Ul ={ueV.uzx <m}U2CRY U2={ueV.uz
by blast
then have {u € V.uz <m} =] (Ul U U2) Ul U U2 C R by auto
then show ?thesis by blast
qged

lemma [-boundedness-ge:

fixes m :: int

assumes m < kzzx € X

shows 3 UCR.|J U={ue V.ux>m}
proof —

from [-boundedness-gt[OF assms] B-boundedness-eq|OF assms| obtain
Ul U2 where A:

UlCRU Ul ={ueV.uzx >m}U2CRY U2={ueV.ux
by blast
then have {u € V.uz >m} = (Ul U U2) Ul U U2 C R by auto

168

then show ?thesis by blast
qged

lemma (-boundedness-diag-It'":
fixes m :: int
shows
—ky<(muint) = m<kr—=zecX=—=yeX=27Z2C{ueclV.
ur —uy < m}
= Approzg Z C{u € V.uz —uy < m}
proof (goal-cases)
case 1
note A = this
from [-boundedness-diag-It]OF A(1—/)] obtain U where U:
UCR{veV.uzxz—uy<m}=JU
by auto
from 1 clock-numbering have x: vae > 0vy > 0vae < nvy<nby
auto
have *x: \ c. v ¢ = 0 = Faulse
proof —
fix ¢ assume v ¢ = 0
moreover from clock-numbering(1) have v ¢ > 0 by auto
ultimately show Fulse by auto
qed
let M =Xij. if (i=vx Aj=vy) then Lt (real-of-int m) else if i =
j VvV i= 0then Le 0 else co
have {u € V. vz — vy < m} = [?M]y , unfolding DBM-zone-repr-def
DBM-val-bounded-def
using * *x proof (auto, goal-cases)
case (1 u c)
with clock-numbering have ¢ € X by metis
with 7 show ?case unfolding V-def by auto
next
case (2 u cl c2)
with clock-numbering(1) have x = ¢l y = ¢2 by auto
with 2(5) show Zcase by auto
next
case (3 u cl c2)
with clock-numbering(1) have c1 = c¢2 by auto
then show ?case by auto
next
case (4 u cl c2)
with clock-numbering(1) have c1 = c¢2 by auto
then show ?case by auto
next

169

case (5 u cl c2)
with clock-numbering(1) have x = ¢1 y = ¢2 by auto
with 5(6) show Zcase by auto
next
case (6 u)
show ?case unfolding V-def
proof safe
fix ¢ assume ¢c € X
with clock-numbering have v ¢ > 0 v ¢ < n by auto
with 6(6) show u ¢ > 0 by auto
qged
next
case (7 u)
then have dbm-entry-val v (Some z) (Some y) (Lt (real-of-int m)) by
metis
then show ?case by auto
qed
then have vabstr {u € V. uz — uy < m} ?M by auto
moreover have normalized ?M unfolding normalized less-eq dbm-le-def
using A v-v’ by auto
ultimately show ?thesis using apz-min[OF U(2,1)] A(5) by blast
qged

lemma S-boundedness-diag-le”:
fixes m :: int
shows
—ky<(muint) = m<kr=zcecX=ycX=272C{ucV.
vr —uy < m}
= Approzg Z C{uec V.uzx —uy < m}
proof (goal-cases)
case 1
note A = this
from [-boundedness-diag-le]OF A(1—4)] obtain U where U:
UCR{ueV.uz—uy<m}=U
by auto
from 1 clock-numbering have x: v > 0vy > 0vae < nvy<nby
auto
have *x: \ c. v ¢ = 0 = Fulse
proof —
fix ¢ assume v ¢ = 0
moreover from clock-numbering(1) have v ¢ > 0 by auto
ultimately show Fulse by auto
qed
let M = Xij.if (i=vx Aj=vy) then Le (real-of-int m) else if i =

170

iV i= 0then Le 0 else co
have {u € V. vz — vy < m} = [?M], , unfolding DBM-zone-repr-def
DBM-val-bounded-def
using * %
proof (auto, goal-cases)
case (1 u ¢)
with clock-numbering have ¢ € X by metis
with 1 show ?case unfolding V-def by auto
next
case (2 u cl c2)
with clock-numbering(1) have z = c¢1 y = ¢2 by auto
with 2(5) show Zcase by auto
next
case (3 u cl c2)
with clock-numbering(1) have c1 = ¢2 by auto
then show ?case by auto
next
case (4 u cl c2)
with clock-numbering(1) have c1 = ¢2 by auto
then show ?case by auto
next
case (5 u cl c2)
with clock-numbering(1) have z = ¢l y = ¢2 by auto
with 5(6) show Zcase by auto
next
case (6 u)
show ?case unfolding V-def
proof safe
fix c assume ¢ € X
with clock-numbering have v ¢ > 0 v ¢ < n by auto
with 6(6) show u ¢ > 0 by auto
qged
next
case (7 u)
then have dbm-entry-val u (Some x) (Some y) (Le (real-of-int m)) by
metis
then show ?case by auto
qed
then have vabstr {u € V. uz — uy < m} ?M by auto
moreover have normalized ?M unfolding normalized less-eq dbm-le-def
using A v-v’ by auto
ultimately show ?thesis using apz-min[OF U(2,1)] A(5) by blast
qed

171

lemma (-boundedness-It’:
fixes m :: int
shows
m<kr=zre€X=7C{uecV.uz<m}= Approzg Z C {u €
V.uz < m}
proof (goal-cases)
case !
note A = this
from [-boundedness-lt{OF A(1,2)] obtain U where U: U C R {u € V.
uwz < m} = U by auto
from 1 clock-numbering have x: vz > 0 v x < n by auto
have *x: \ c. v ¢ = 0 = False
proof —
fix ¢ assume v ¢ = 0
moreover from clock-numbering(1) have v ¢ > 0 by auto
ultimately show Fulse by auto
qed
let M = Xij.if (i=wvx Aj=0) then Lt (real-of-int m) else if i = j
V i = 0 then Le 0 else oo
have {uv € V. uz < m} =[?M], 5, unfolding DBM-zone-repr-def DBM-val-bounded-def
using * *x
proof (auto, goal-cases)
case (1 u c)
with clock-numbering have ¢ € X by metis
with 7 show ?case unfolding V-def by auto
next
case (2 u cl)
with clock-numbering(1) have z = c¢1 by auto
with 2(4) show Zcase by auto
next
case (3 u c)
with clock-numbering have ¢ € X by metis
with 8 show ?case unfolding V-def by auto
next
case (4 u cl ¢2)
with clock-numbering(1) have c1 = ¢2 by auto
then show ?case by auto
next
case (5 u)
show ?case unfolding V-def
proof safe
fix ¢ assume c € X
with clock-numbering have v ¢ > 0 v ¢ < n by auto
with 5(4) show u ¢ > 0 by auto

172

qed
qed
then have vabstr {u € V. vz < m} ?M by auto
moreover have normalized ?M unfolding normalized less-eq dbm-le-def
using A v-v’ by auto
ultimately show ?thesis using apz-min[OF U(2,1)] A(3) by blast
qed

lemma [-boundedness-gt':
fixes m :: int
shows
m<kr=2ecX=27ZC{uecV.uzx>m}= Approzg Z C {u €
V.uz>m}
proof goal-cases
case 1
from [-boundedness-gt[OF this(1,2)] obtain U where U: U C R {u €
V.uz > m} =JU by auto
from 1 clock-numbering have x: vz > 0 v x < n by auto
have *x: \ c¢. v ¢ = 0 = False
proof —
fix c assume v c = 0
moreover from clock-numbering(1) have v ¢ > 0 by auto
ultimately show Fulse by auto
qed
obtain M where vabstr {u € V. ux > m} M normalized M
proof (cases m > 0)
case True
let M = Xij.if (i =0 Nj=vzx) then Lt (—real-of-int m) else if i
=3V = 0then Le 0 else 0o
have {v € V. u z > m} = [?M],,, unfolding DBM-zone-repr-def
DBM-val-bounded-def
using * %
proof (auto, goal-cases)
case (1 u c)
with clock-numbering(1) have z = ¢ by auto
with 1(5) show ?Zcase by auto
next
case (2 u c)
with clock-numbering have ¢ € X by metis
with 2 show ?case unfolding V-def by auto
next
case (3 u cl c2)
with clock-numbering(1) have c1 = c¢2 by auto
then show ?case by auto

173

next
case (4 u cl c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto
next
case (5 u)
show ?case unfolding V-def
proof safe
fix ¢ assume ¢ € X
with clock-numbering have c: v ¢ > 0 v ¢ < n by auto
show uw ¢ > 0
proof (cases v ¢ = v x)
case Fulse
with 5(4) ¢ show ?thesis by auto
next
case True
with 5(4) ¢ have — u ¢ < — m by auto
with «<m > 0) show %thesis by auto
qed
qged
qed
moreover have normalized ?M unfolding normalized using 1 v-v’ by
auto
ultimately show ?thesis by (intro that[of ?M]) auto
next
case Fulse
then have {u € V. uz > m} = V unfolding V-def using «x € X»
by auto
with R-union all-dbm that show ?thesis by auto
qed
with apz-min[OF U(2,1)] 1(3) show ?thesis by blast
qged

lemma obtains-dbm-le:
fixes m :: int
assumes r € X m < kzx
obtains M where vabstr {u € V. vz < m} M normalized M
proof —
from assms clock-numbering have x: vz > 0 v x < n by auto
have *x: A\ c. v ¢ = 0 = Fulse
proof —
fix ¢ assume v ¢ = 0
moreover from clock-numbering(1) have v ¢ > 0 by auto
ultimately show Fulse by auto

174

qed
let M =Xij. if (i=vx Aj= 0) then Le (real-of-int m) else if i = j
V i = 0 then Le 0 else co
have {u € V. uz < m} = [?M], , unfolding DBM-zone-repr-def DBM-val-bounded-def
using * #x
proof (auto, goal-cases)
case (1 u c)
with clock-numbering have ¢ € X by metis
with 7 show ?case unfolding V-def by auto
next
case (2 u cl)
with clock-numbering(1) have z = c1 by auto
with 2(4) show Zcase by auto
next
case (3 u ¢)
with clock-numbering have ¢ € X by metis
with & show ?case unfolding V-def by auto
next
case (4 u cl c2)
with clock-numbering(1) have c1 = c¢2 by auto
then show ?case by auto
next
case (5 u)
show ?case unfolding V-def
proof safe
fix c assume ¢ € X
with clock-numbering have v ¢ > 0 v ¢ < n by auto
with 5(4) show u ¢ > 0 by auto
qed
qed
then have vabstr {u € V. vz < m} ?M by auto
moreover have normalized ?M unfolding normalized using assms v-v’
by auto
ultimately show ?Zthesis ..
qged

lemma f-boundedness-le’:
fixes m :: int
shows
m<kr=zre€X=7C{uecV.uzx<m}= Approzg Z C {u €
V.uz < m}
proof (goal-cases)
case [

175

from [-boundedness-le[OF this(1,2)] obtain U where U: U C R {u €
V.uz <m} = U by auto

from obtains-dbm-le 1 obtain M where vabstr {u € V. ux < m} M
normalized M by auto

with apz-min|OF U(2,1)] 1(3) show ?thesis by blast
qged

lemma obtains-dbm-ge:
fixes m :: int
assumes z € X m < kz
obtains M where vabstr {u € V. vz > m} M normalized M
proof —
from assms clock-numbering have x: vz > 0 v x < n by auto
have *x: A\ c. v ¢ = 0 = Fulse
proof —
fix ¢ assume v ¢ = 0
moreover from clock-numbering(1) have v ¢ > 0 by auto
ultimately show Fulse by auto
qed
obtain M where vabstr {u € V. ux > m} M normalized M
proof (cases m > 0)
case True
let 2M = Xij.if (i=0 A j=vzx) then Le (—real-of-int m) else if i
=jV i = 0then Le 0 else co
have {v € V. u z > m} = [?M],, unfolding DBM-zone-repr-def
DBM-val-bounded-def
using * xx
proof (auto, goal-cases)
case (I u c)
with clock-numbering(1) have z = ¢ by auto
with 1(5) show ?case by auto
next
case (2 u c)
with clock-numbering have ¢ € X by metis
with 2 show ?case unfolding V-def by auto
next
case (3 u cl c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?Zcase by auto
next
case (4 u cl c2)
with clock-numbering(1) have c1 = c2 by auto
then show ?case by auto
next

176

case (5 u)
show ?case unfolding V-def
proof safe
fix ¢ assume ¢ € X
with clock-numbering have c: v ¢ > 0 v ¢ < n by auto
show uw ¢ > 0
proof (cases v ¢ = v x)
case Fulse
with 5(4) ¢ show ?thesis by auto
next
case True
with 5(4) ¢ have — v ¢ < — m by auto
with <m > 0> show ?thesis by auto
qed
qed
qed
moreover have normalized ?M unfolding normalized using assms
v-v’ by auto
ultimately show ?thesis by (intro that[of ?M]) auto
next
case Fulse
then have {u € V. uz > m} = V unfolding V-def using z € X»
by auto
with R-union all-dbm that show ?thesis by auto
qed
then show ?thesis ..
qed

lemma [S-boundedness-ge':

fixes m :: int

shows m<kz =2 X = Z2C{ueV.uz>m}= Approzg Z
C{ueV.uz>m}
proof (goal-cases)

case |

from [-boundedness-ge[OF this(1,2)] obtain U where U: U C R {u €
V.uz >m} = U by auto

from obtains-dbm-ge 1 obtain M where vabstr {u € V. uz > m} M
normalized M by auto

with apz-min|OF U(2,1)] 1(3) show ?thesis by blast
qed

end

end

177

5 The Classic Construction for Decidability

theory Regions
imports Timed-Automata TA-Misc
begin

The following is a formalization of regions in the correct version of Patricia
Bouyer et al.

5.1 Definition of Regions

type-synonym ’c ceiling = (‘c = nat)

datatype intv =
Const nat |
Intv nat |
Greater nat

type-synonym t = real

inductive valid-intv :: nat = intv = bool
where
0 < d= d < ¢ = valid-intv ¢ (Const d) |
0 <d= d < ¢ = valid-intv ¢ (Intv d) |
valid-intv ¢ (Greater c)

inductive intv-elem :: 'c = ('c,t) cval = intv = bool
where
uz = d = intv-elem z u (Const d) |
d<uzrz= uz <d+ 1 = intv-elem z u (Intv d) |
¢ < uz = intv-elem = u (Greater c)

abbreviation total-preorder r = refl r A trans r

inductive wvalid-region :: 'c set = ('c = nat) = ('c = intv) = 'c rel =
bool
where

[Xo ={z € X.3 d. Iz = Intvd}; refl-on Xg r; trans r; total-on X¢ r;
V z € X. valid-intv (k z) (I z)]

= wvalid-region X k I r

inductive-set region for X I r
where

178

VeeX ues>0=VY zeX. intvelemzu ([z) = Xo={z € X.
3d. Iz=Intvd} =

VoeXoVyeXo (z,y) €r<+— frac (uz) < frac (uy)

= u € region X I r

Defining the unique element of a partition that contains a valuation

definition part («[-]-» [61,61] 61) where part v R = THER. R€ R AN v
€R

inductive-set Succ for R R where
tuER=—ReER—=R eER=—=t>0= R =[udtjr = R €
Suce R R

First we need to show that the set of regions is a partition of the set of all
clock assignments. This property is only claimed by P. Bouyer.

|: intv-elem = u (Const d)
|: intv-elem z u (Intv d)

inductive-cases|elim!]:
. intv-elem x u (Greater d)

inductive-cases|elim!
inductive-cases[elim!
inductive-cases|elim!]: valid-intv ¢ (Greater d)
[valid-intv ¢ (Const d)
[

valid-intv ¢ (Intv d)

inductive-cases|elim/!
inductive-cases|elim/!

]
]
]
]

declare valid-intv.intros[intro]
declare intv-elem.intros|intro]
declare Succ.intros|intro]

declare Succ.cases|elim)]

declare region.cases|elim)]
declare valid-region.cases|elim]

5.2 Basic Properties

First we show that all valid intervals are distinct.

lemma valid-intv-distinct:

valid-intv ¢ I = valid-intv ¢ I’ = intv-elem z v I = intv-elem z u I’
= I1=1
by (cases I; cases I’; auto)

From this we show that all valid regions are distinct.

lemma valid-regions-distinct:
valid-region X k I r = wvalid-region X k I' v’ = v € region X [T = v
€ region X I' r’

179

= region X I r = region X I' r’
proof goal-cases
case A: 1
{ fix z assume z: z € X
with A(1) have valid-intv (k z) (I z) by auto
moreover from A(2) z have valid-intv (k z) (I’ z) by auto
moreover from A(3) z have intv-elem z v (I) by auto
moreover from A(4) z have intv-elem x v (I x) by auto
ultimately have [z = I’ z using valid-intv-distinct by fastforce
} note *x = this
from A show “thesis
proof (safe, goal-cases)
case A: (1 u)
have intv-elem z u (I' z) if z € X for z using A(5) that by auto
then have B: V z € X. intv-elem z u (I’ z) by auto
let ?Xg={z€ X.3 d. I'z = Intv d}
{ fix x y assume z: z € Xy and y: y € ?Xo
have (z, y) € v’ <— frac (u z) < frac (u y)
proof
assume frac (v z) < frac (u y)
with A(5) z y = have (z,y) € r by auto
with A(3) z y * have frac (v z) < frac (v y) by auto
with A(4) zy show (z,y) € r’ by auto
next
assume (z,y) € r’
with A(4) zy have frac (v z) < frac (v y) by auto
with A(3) z y = have (z,y) € r by auto
with A(5) z y * show frac (u z) < frac (u y) by auto
qed
}
then have «:V z € ?X(.V y € ?X¢. (2, y) € v’ <— frac (u z) < frac
(u y) by auto
from A(5) have VzeX. 0 < u z by auto
from region.intros|OF this B - x| show ?case by auto
next
case A: (2 u)
have intv-elem z u (I z) if © € X for = using x A(5) that by auto
then have B:V z € X. intv-elem z u (I x) by auto
let X9 ={z € X.3 d. Iz = Intv d}
{ fix z y assume z: z € ?Xg and y: y € ?Xj
have (z, y) € r +— frac (u z) < frac (u y)
proof
assume frac (v z) < frac (u y)
with A(5) z y x have (z,y) € r’ by auto

180

with A(4) z y * have frac (v z) < frac (v y) by auto
with A(3) zy show (z,y) € r by auto
next
assume (z,y) € 7
with A(%3) zy have frac (v z) < frac (v y) by auto
with A(4) z y x have (z,y) € r’ by auto
with A(5) z y * show frac (u z) < frac (u y) by auto
qed
}
then have «V z € ?Xo.V y € ?Xq. (x, y) € r «— frac (u z) < frac
(u y) by auto
from A(5) have VzeX. 0 < u z by auto
from region.intros|OF this B - x| show ?case by auto
qed
qed

lemma R-regions-distinct:

[R = {region X I r | I r. valid-region X kI r}; R € R; v € R; R' € R;
R#R| = v¢ R’
using valid-regions-distinct by blast

Secondly, we also need to show that every valuations belongs to a region
which is part of the partition.

definition intv-of :: nat = t = intv where
mtv-of k ¢ =
if (¢ > k) then Greater k
else if (3 z :: nat. x = ¢) then (Const (nat (floor c)))
else (Intv (nat (floor c)))

lemma region-cover:
VezeX uz>0= 3 R. R {region X Ir|Ir. valid-region X kI r}
ANueR
proof (standard, standard)
assume assm:V z € X. 0 < uzx
let I = X z. intv-of (k z) (u x)
let ?Xg ={z € X.3 d. Iz = Intv d}
let 7r = {(z,y). z € ?Xo ANy € ?Xo A frac (u z) < frac (u y)}
show u € region X ?I or
proof (standard, auto simp: assm, goal-cases)
case (1 z)
thus ?case unfolding intv-of-def
proof (auto, goal-cases)
case A: (1 a)
from A(2) have |u z| = uz by (metis of-int-floor-cancel of-int-of-nat-eq)

181

with assm A(1) have u z = real (nat |u z]) by auto
then show ?case by auto
next
case A: 2
from A(1,2) have real (nat |u z]) < ux
by (metis assm floor-less-iff int-nat-eq less-eq-real-def less-irrefl not-less
of-int-of-nat-eq of-nat-0)
moreover from assm have u z < real (nat (|u z|) + 1) by linarith
ultimately show ?case by auto
qed
qed
have valid-intv (k z) (intv-of (k z) (u z)) if z € X for z using that
proof (auto simp: intv-of-def, goal-cases)
case 1 then show ?case by (intro valid-intv.intros(1)) (auto, linarith)
next
case 2
then show ?case using assm floor-less-iff nat-less-iff
by (intro valid-intv.intros(2)) fastforce+
qed
then have valid-region X k ¢1 ?r
by (intro valid-region.intros) (auto simp: refl-on-def trans-def total-on-def)
then show region X ?I ?r € {region X I r | I r. valid-region X k I r} by
auto
qed

lemma intv-not-empty:
obtains d where intv-elem z (v(z := d)) (I z)
proof (cases I z, goal-cases)
case (1 d)
then have intv-elem z (v(x := d)) (I z) by auto
with 1 show Zcase by auto
next
case (2 d)
then have intv-elem z (v(z := d + 0.5)) (I z) by auto
with 2 show ?case by auto
next
case (3 d)
then have intv-elem z (v(z := d + 0.5)) (I) by auto
with 8 show ?case by auto
qed

fun get-intv-val :: intv = real = real
where

get-intv-val (Const d) - =4d |

182

get-intv-val (Intv d) f=d+ f |
get-intv-val (Greater d) - = d + 1

lemma region-not-empty-auz:

assumes 0 < ff<10<gg<1

shows frac (get-intv-val (Intv d) f) < frac (get-intv-val (Intv d’) g) +—
f<y
using assms by (simp, metis frac-eq frac-nat-add-id less-eq-real-def)

lemma region-not-empty:
assumes finite X valid-region X k I r
shows 3 u. u € region X I r
proof —
let ?Xg ={z € X.3d. I z = Intv d}
obtain f :: '/a = nat where f:
Vze?Xy. Vye?Xy. fe < fy<+— (z,y) €r
apply (rule finite-total-preorder-enumeration)
apply (subgoal-tac finite ?Xy)
apply assumption
using assms by auto
let M = if ?Xog # {} then Max {fz | z. z € ?Xo} else 1
let 2of =Xz (fz+1)/ (M + 2)
let %v = X\ z. get-intv-val (I x) (if x € ?Xq then ?f x else 1)
have frac-intv: Vze?Xg. 0 < ofx N ofx < 1
proof (standard, goal-cases)
case (1)
then have x: ?Xy # {} by auto
have fz < Maz {fz | z. z € ?Xo} apply (rule Maz-ge) using «finite
X» 1 by auto
with 1 show ?case by auto
qged
with region-not-empty-auzr have x:
Vze?Xy. Yye?Xy. frac (v x) < frac (v y) «— %fx < ?fy
by force
have Vze?X,. Vye?Xy. fx < ?fy «— fz < fy by (simp add: di-
vide-le-cancel)+
with f have Vze?X(. Vye?Xy. 9z < ?fy +— (x, y) € r by auto
with * have frac-order: Vz€?Xy. YV y€?Xy. frac (?v z) < frac (%vy) «—
(z, y) € r by auto
have v € region X I r
proof standard
show VzeX. intv-elem x %v (I x)
proof (standard, case-tac I z, goal-cases)
case (2 z d)

183

then have x: z € ?X by auto
with frac-intv have 0 < ?fx ?fx < 1 by auto
moreover from 2 have %vz = d + ?f z by auto
ultimately have vz < d + 1 A d < v z by linarith
then show intv-elem x ?v (I z) by (subst 2(2)) (intro intv-elem.intros(2),
auto)
qed auto
next
show VzeX. 0 < get-intv-val (I z) (if v € ?X¢ then ?f x else 1)
by (standard, case-tac I) auto
next
show {z € X. 3d. Iz = Intvd} = {z € X. 3d. [© = Intv d} ..
next
from frac-order show Vze ?Xy. Vye?Xy. ((z, y) € r) = (frac (v z) <
frac (?v y)) by blast
qed
then show ?thesis by auto
qed

Now we can show that there is always exactly one region a valid valuation
belongs to.

lemma regions-partition:

R = {region X I v | I r. valid-region X kIr} =Vzre X. 0 < uzr =
FI'ReR. ueR
proof (goal-cases)

case 1

note A = this

with region-cover[OF A(2)] obtain R where R: R € R A u € R by
fastforce

moreover have R'= Rif R € R A u € R’ for R’
using that R valid-regions-distinct unfolding A(1) by blast
ultimately show ?thesis by auto

ged

lemma region-unique:

R = {region X I v | I r. valid-region X kIr} —= u€ R— R € R —
[ulr = R
proof (goal-cases)

case 1

note A = this

from A obtain [r where x: valid-region X k I r R = region X I r u €
region X I r by auto

from this(3) have VzeX. 0 < u z by auto

from thel|OF regions-partition| OF A(1) this|]] A(1) obtain I’ r’ where

184

v: valid-region X k I' v’ [ulg = region X I' v’ u € region X 1" r’
unfolding part-def by auto
from valid-regions-distinct|OF (1) v(1) *(3) v(3)] v(2) *(2) show ?case
by auto
qed

lemma regions-partition’:
R = {region X I r | I r. valid-region X k I r} = VzeX. 0 < vz =
VeeX. 0 <v'z= v € [vjg
= [vr = [v]r
proof (goal-cases)
case !
note A = this
from thel|OF regions-partition|OF A(1,2)]] A(1,4) obtain I r where
v: valid-region X k I r [vJg = region X I r v’ € region X I r
unfolding part-def by auto
from thel|OF regions-partition|OF A(1,3)]] A(1) obtain I’ r’ where
v valid-region X k I' r' [v|g = region X I' r' v' € region X I" r’
unfolding part-def by auto
from walid-regions-distinct[OF v'(1) v(1) v'(8) v(3)] v(2) v'(2) show
Zcase by simp
qged

lemma regions-closed:

R = {region X I v | I r. valid-region X kIr} — R€ R — v € R —
t>0=[vdtlr €R
proof goal-cases

case A: 1

then obtain I » where v € region X I r by auto

from this(1) have V z € X. vz > 0 by auto

with A(4) have V z € X. (v & t) z > 0 unfolding cval-add-def by
simp

from regions-partition|OF A(1) this] obtain R’ where R’ € R (v @ t)
€ R’ by auto

with region-unique[OF A(1) this(2,1)] show ?case by auto
qed

lemma regions-closed:

R = {region X I r | I r. valid-region X kIr} = R€ R — v € R =
t>0= (v t)evdtr
proof goal-cases

case A: 1

then obtain I r where v € region X I r by auto

from this(1) have V z € X. vz > 0 by auto

185

with A(4) have V z € X. (v & t) z > 0 unfolding cval-add-def by
simp

from regions-partition| OF A(1) this| obtain R’ where R’ € R (v & t)
€ R’ by auto

with region-unique]OF A(1) this(2,1)] show ?case by auto
qged

lemma valid-regions-I-cong:
valid-region X kI r =V z € X. [z = I' t = region X I r = region
X I' v A wvalid-region X kI’ r
proof (safe, goal-cases)
case (1 v)
note A = this
then have [simp|:\ . © € X = " z = I x by metis
show “case
proof (standard, goal-cases)
case [
from A(3) show ?Zcase by auto
next
case 2
from A(3) show ?Zcase by auto
next
case J
show {z € X.3d. Iz = Intvd} = {z € X. 3d. I' z = Intv d} by auto
next
case 4
let ?Xo = {z € X.3d. I z = Intv d}
from A(3) show V z € ?Xo. V y € ?Xo. ((z, y) €) = (frac (vz) <
frac (v y)) by auto
qed
next
case (2 v)
note A = this
then have [simp|:\ ©z. 2 € X = " z = I x by metis
show “case
proof (standard, goal-cases)
case 1
from A(3) show ?Zcase by auto
next
case 2
from A(3) show Zcase by auto
next
case J
show {z € X.3d. I'z = Intv d} = {z € X. 3d. I z = Intv d} by auto

186

next
case 4
let ?Xg ={z € X.3d. I'z = Intv d}
from A(8) show V z € ?X.V y € ?Xo. ((z, y) € r) = (frac (v) <
frac (v y)) by auto
qed
next
case 3
note A = this
then have [simp|:\ z. 2 € X = " 2 = I x by metis
show “case
apply rule
apply (subgoal-tac {z € X.3d. Iz = Intvd} ={z € X.3d. 'z =
Intv d})
apply assumption
using A by auto
qged

fun intv-const :: intv = nat
where
intv-const (Const d) = d |
intv-const (Intv d) = d |
intv-const (Greater d) = d

lemma finite-R:
notes [[simproc add: finite-Collect]] finite-subset|intro]
fixes X k
defines R = {region X I r | I r. valid-region X k I r}
assumes finite X
shows finite R
proof —
{ fix I r assume A: valid-region X k I r
let ?Xo = {z € X.3d. I v = Intv d}
from A have refi-on ?Xy r by auto
then have r C X x X by (auto simp: refl-on-def)
then have r € Pow (X x X) by auto
}
then have {r. 3 1. valid-region X k I r} C Pow (X x X) by auto
with <finite X> have fin: finite {r. 3 1. valid-region X k I r} by auto
let Ym = Max {kz | z. z € X}
let ?I = {intv. intv-const intv < ?m}
let ?fin-map =X 1.Vz. (r € X — Tz € ?2[) N (z ¢ X — [z = Const
0)
let ?R = {region X I r | I r. valid-region X k I r N\ ?fin-map I}

187

have ?I = (Const ‘{d. d < ?m}) U (Intv ‘ {d. d < ?m}) U (Greater *
{d. d < ?m})
by auto (case-tac x, auto)
then have finite ?I by auto
from finite-set-of-finite-funs|OF «finite X» this] have finite {I. ?fin-map
I} .
with fin have finite {(I, r). valid-region X k I r A ?fin-map I}
by (fastforce intro: pairwise-finitel finite-ez-andl frac-add-le-preservation
del: finite-subset)
then have finite YR by fastforce
moreover have R C 2R
proof
fix R assume R: R € R
then obtain I r where I: R = region X I r valid-region X k I r
unfolding R-def by auto
let 21 = X x. if x € X then I z else Const 0
let ?R = region X ?I r
from valid-regions-I-cong|OF 1(2)] I have R = ?R wvalid-region X k I
r by auto
moreover have Vz. z ¢ X — ?[z = Const 0 by auto
moreover have V. z € X — intv-const (I) < ¢m
proof auto
fix x assume z: z € X
with 7(2) have valid-intv (k z) (I x) by auto
moreover from «<finite X» x have k z < ?m by (auto intro: Maz-ge)
ultimately show intv-const (I) < Max {k z |z. x € X} by (cases
I z) auto
qged
ultimately show R € ?R by force
qed
ultimately show finite R by blast
qged

lemma Succl?:

R = {region X I r | I r. valid-region X kI r} — v€ R— Re R =
t>0= R =[v& lr

— R'€ Succ R R
proof goal-cases

case A: 1

from Succ.intros|OF A(2) A(8) regions-closed|OF A(1,3,2,4)] A(4)]
A(5) show ?case by auto
ged

188

5.3 Set of Regions

The first property Bouyer shows is that these regions form a ’set of regions’.

For the unbounded region in the upper right corner, the set of successors
only contains itself.

lemma Succ-refi:
R = {region X I r |I r. valid-region X k I r} = finite X = R € R =
R € Succ R R
proof goal-cases
case A: 1
then obtain I » where R: valid-region X k I r R = region X I r by auto
with A region-not-empty obtain v where v: v € region X I r by metis
with R have x: (v @ 0) € R unfolding cval-add-def by auto
from regions-closed'|OF A(1,3—)] v R have (v & 0) € [v ® 0]g by auto
from region-unique[OF A(1) x A(3)] A(3) v[unfolded R(2)[symmetric]]
show ?case by auto
ged

lemma Succ-refl”:
R = {region X I r |I r. valid-region X k I r} = finite X = V z € X.
3 c. I x = Greater ¢
= region X I r € R = Succ R (region X I r) = {region X I r}
proof goal-cases
case A: 1
have *: (v @ t) € region X I r if v: v € region X [r and ¢: t > 0 for v
and ¢ :: ¢
proof ((rule region.intros), auto, goal-cases)
case 1
with v ¢t show ?case unfolding cval-add-def by auto
next
case (2)
with A obtain ¢ where c¢: I x = Greater ¢ by auto
with v 2 have v x > ¢ by fastforce
with ¢ have vz + t > ¢ by auto
then have (v @ t) z > ¢ by (simp add: cval-add-def)
from intv-elem.intros(3)[of ¢ v @ t, OF this] ¢ show ?case by auto
next
case (3)
from this(1) A obtain ¢ where I z = Greater ¢ by auto
with 3(2) show Zcase by auto
next
case (4)
from this(1) A obtain ¢ where I © = Greater ¢ by auto

189

with /(2) show Zcase by auto
qed
show ?case
proof (standard, standard)
fix R assume R: R € Succ R (region X I r)
then obtain v ¢{ where v:
veregion XITR=[vdtlr ReRt>0
by (cases rule: Succ.cases) auto
from v(1) have *x: Vz € X. 0 < v z by auto
with v(4) have Vz € X. 0 < (v & t) = unfolding cval-add-def by
auto
from *x[OF v(1,4)] regions-partition |OF A(1) xx this] region-unique[OF
A(1) (1) A4)] v(2)
show R € {region X I r} by auto
next
from A(/) obtain I’ r’ where R’ region X I r = region X I' r’
valid-region X k I r’
unfolding A(1) by auto
with region-not-empty[OF A(2) this(2)] obtain v where v: v € region
X I r by auto
from region-unique[OF A(1) this A(4)] have x: [v & 0]g = region X I

unfolding cval-add-def by auto
with v A(4) have [v @ 0]r € Succ R (region X I r) by (intro Succ.intros;
auto)
with * show {region X I r} C Succ R (region X I r) by auto
qed
qged

Defining the closest successor of a region. Only exists if at least one interval
is upper-bounded.

definition

succ R R =

(SOMER'.R' € Suc RRAN ueRVt>0. (udt)¢ R— (3 t’
<t (udtheR AO<L)))

inductive isConst :: intv = bool
where
isConst (Const -)

inductive isIntv :: intv = bool

where
isIntv (Intv -)

190

inductive isGreater :: intv = bool
where
isGreater (Greater -)

declare isIntv.intros[introl| isConst.intros|intro!] isGreater.intros|intro!]

declare isIntv.cases[elim!] isConst.cases[elim!] isGreater.cases|elim!]

What Bouyer states at the end. However, we have to be a bit more precise
than in her statement.

lemma closest-prestable-1:
fixes I X kr
defines R = {region X I r |I r. valid-region X k I r}
defines R = region X I r
defines Z = {z € X . 3 ¢. [z = Const ¢}
assumes 7 # {}
defines I'= \ z. if x ¢ Z then I x else if intv-const (I) = k z then
Greater (k) else Intv (intv-const (I x))
defines r'=r U {(z,y) .z € Z ANy € X A intv-const (I z) < kx A isIntv
(1")}
assumes finite X
assumes valid-region X k I r
shows V v € R VY t>0. 3t'<t. (v® t') € region X I'r' Nt/ >0
and VYV v € region XI'r'.V t>0.(v®dt)¢ R
and V z € X. - isConst (I' z)
and VoveRVi<I1I.V >0 (vt e region XI'r'
—{r.zeXNFecle=htvchvez+t>c+ 1)}
={z.zeXNFcl'z=mntvch(vdthae+ (t-—1t)>
c+ 1)}
proof (safe, goal-cases)
fix v assume v: v € R fix ¢t :: { assume ¢: 0 <
have elem: intv-elem z v (I z) if z: x € X for z using v z unfolding
R-def by auto
have x: (v @ t) € region X I' r'if A:V z € X. = isIntv ([z) and ¢: t >
0t <1 fort
proof (standard, goal-cases)
case I
from v have V z € X. v 2 > 0 unfolding R-def by auto
with ¢t show ?case unfolding cval-add-def by auto
next
case 2
show Zcase
proof (standard, case-tac I z, goal-cases)
case (I = c)

191

with elem[OF «z € X>] have v z = ¢ by auto
show ?Zcase
proof (cases intv-const (I x) = k z, auto simp: 1 I'-def Z-def, goal-cases)
case I
with <v z = ¢ have vz = k = by auto
with ¢ show Zcase by (auto simp: cval-add-def)
next
case 2
from assms(8) 1 have ¢ < k z by (cases rule: valid-region.cases)
auto
with 2 have ¢ < k z by linarith
from t <v x = ¢» show ?case by (auto simp: cval-add-def)
qed
next
case (2 zx c)
with A show ?case by auto
next
case (3 z c)
then have I’ © = Greater ¢ unfolding I'-def Z-def by auto
with t 3 elem[OF «x € X»] show Zcase by (auto simp: cval-add-def)
qed
next
case 8 show {z € X. 3d. I'z = Intv d} = {z € X. 3d. I' z = Intv
d} ..
next
case 4
let ?X¢'={z € X.3d. I'z = Intv d}
show Vze Xy Vye?Xo' ((z, y) € r') = (frac (v & t) z) < frac ((v
@ 1) y))
proof (safe, goal-cases)
case (1 zy dd
note B = this
have z € Z apply (rule ccontr) using A B by (auto simp: I'-def)
with elem[OF B(1)] have frac (v z) = 0 unfolding Z-def by auto
with frac-distrjof t v z] t have *: frac (v z + t) = t by auto
have y € Z apply (rule ccontr) using A B by (auto simp: I’-def)
with elem[OF B(3)] have frac (v y) = 0 unfolding Z-def by auto
with frac-distr[of t v y] t have frac (vy + t) = t by auto
with * show ?case unfolding cval-add-def by auto
next
case B: (2 z)
have = € Z apply (rule ccontr) using A B by (auto simp: I'-def)
with B have intv-const (I z) # k z unfolding I’-def by auto
with B(1) assms(8) have intv-const (I x) < k x by (fastforce elim!:

192

valid-intv. cases)
with B <z € Z» show ?case unfolding r’-def by auto
qed
qed
let S = {1 — frac (vz) | z. z € X A isIntv (I z)}
let 2t = Min S
{ assume A: 3 z € X. isIntv (I)
from <finite X» have finite ?S by auto
from A have 7S # {} by auto
from Min-in[OF «finite ?S> this| obtain z where
z:x € XisIntv ([z) %t =1 — frac (v z)
by force
have frac (v z) < 1 by (simp add: frac-lt-1)
then have ?¢t > 0 by (simp add: z(3))
then have 7t / 2 > 0 by auto
from z(2) obtain ¢ where [z = Intv ¢ by (auto)
with elem[OF z(1)] have v-z: c < vz vz < ¢ + 1 by auto
from nat-intv-frac-gt0| OF this| have frac (v z) > 0 .
with z(3) have ?t < 1 by auto
{fixt:tassume t: 0 < tt< % /2
{ fix y assume y € X isIntv (I y)
then have 1 — frac (v y) € ?S by auto
from Min-le[OF «finite ?S» this| <?t > 0> t have t < 1 — frac (v
y) by linarith
} note frac-bound = this
have (v @ t) € region X I' r’
proof (standard, goal-cases)
case I
from v have V z € X. v 2 > 0 unfolding R-def by auto
with <%t > 0» t show ?case unfolding cval-add-def by auto
next
case 2
show “case
proof (standard, case-tac I z, goal-cases)
case A: (1 z c)
with elem[OF <z € X>] have vz = ¢ by auto
show “case
proof (cases intv-const (I) = k z, auto simp: A 1'-def Z-def,
goal-cases)
case I
with v z = ¢ have vz = k x by auto
with <2t > 0) t show ?case by (auto simp: cval-add-def)
next
case 2

193

from assms(8) A have ¢ < k z by (cases rule: valid-region.cases)

auto
with 2 have ¢ < k x by linarith
from (v x = ¢ <2t < 1) t show Zcase
by (auto simp: cval-add-def)
qed
next
case (2 z ¢)
with elem[OF <z € X>] have v: ¢ < vz vz < ¢+ 1 by auto
with <2t > 0> have ¢ < vz + (%t / 2) by auto
from 2 have [’ x = [r unfolding I'-def Z-def by auto
from frac-bound[OF 2(1)] 2(2) have t < 1 — frac (v z) by auto
from frac-add-le-preservation[OF v(2) this] t v(1) 2 show Zcase
unfolding cval-add-def <I' z = I) by auto
next
case (3 z c)
then have I’ x = Greater ¢ unfolding I’-def Z-def by auto
with 3 elem[OF <z € X»| t show ?case
by (auto simp: cval-add-def)
qged
next

case S show {r € X. 3d. I'z = Intv d} = {z € X. 3d. I' z = Intv
d} ..
next
case 4
let ?Xy ={z € X.3d. Iz = Intv d}
let ?X¢'={z € X.3d. I'z = Intv d}
show Vze?Xy' Vye?Xy' ((z, y) € r') = (frac (v ® t) z) < frac
(v 1))
proof (safe, goal-cases)
case (1 zy dd
note B = this
show Zcase
proof (cases © € Z)
case Fulse
note F' = this
show ?Zthesis
proof (cases y € Z)
case Fulse
with F' B have x: z € 7X(y € ?X(unfolding I’-def by auto
from B(5) show ?thesis unfolding r’-def
proof (safe, goal-cases)
case I
with v * have le: frac (v z) <= frac (v y) unfolding R-def

194

by auto
from frac-bound x have t < 1 — frac (vz) t < 1 — frac (v
y) by fastforce+
with frac-distr t have
frac (vz) + t = frac (v + t) frac (vy) + t = frac (vy + t)
by simp+
with [e show ?case unfolding cval-add-def by fastforce
next
case 2
from this(1) elem have xx: frac (v z) = 0 unfolding Z-def
by force
from 2(4) obtain ¢ where I’ y = Intv ¢ by (auto)
then have y € Z V I y = Intv c unfolding I'-def by presburger
then show ?case
proof
assume y € 7
with elem[OF 2(2)] have xxx: frac (v y) = 0 unfolding
Z-def by force
show ?thesis by (simp add: xx xxx frac-add cval-add-def)
next
assume A: [y = Intv ¢
have le: frac (v x) <= frac (v y) by (simp add: *x)
from frac-bound * have t < 1 — frac (vz) t < 1 — frac (v
y) by fastforce+
with 2 t have
frac (vz) + t = frac (v + t) frac (vy) + t = frac (vy

+ t)
using F' by blast+
with le show ?case unfolding cval-add-def by fastforce
qed
qed
next
case True
then obtain d’ where d”: I y = Const d’ unfolding Z-def by
auto
from B(5) show ?thesis unfolding r’-def
proof (safe, goal-cases)
case I
from d’ have y ¢ ?X(by auto
moreover from assms(8) have refi-on ?Xo r by auto
ultimately show ?case unfolding refl-on-def using 1 by
auto
next
case 2

195

with F' show ?case by simp
qed
qed
next
case True
with elem have xx: frac (v) = 0 unfolding Z-def by force
from B(4) have y € Z V [y = Intv d’ unfolding I’-def by
presburger
then show “thesis
proof
assume y € Z
with elem[OF B(3)] have xxx: frac (v y) = 0 unfolding Z-def
by force
show ?thesis by (simp add: xx xxx frac-add cval-add-def)
next
assume A: [y = Intv d’
with B(3) have y € ?X(by auto
with frac-bound have t < 1 — frac (v y) by fastforce+
moreover from xx <7t < 1» have ?t / 2 < 1 — frac (v z) by

linarith
ultimately have
frac (vx) + t = frac (v + t) frac (vy) + t = frac (vy + ©)
using frac-distr t by simp+
moreover have frac (v) <= frac (v y) by (simp add: xx)
ultimately show ?thesis unfolding cval-add-def by fastforce
qed
qed
next

case B: (2zy dd)
show “case
proof (cases x € Z, goal-cases)
case True
with B(1,2) have intv-const (I z) # k = unfolding I’-def by
auto
with B(1) assms(8) have intv-const (I z) < k = by (fastforce
elim!: valid-intv.cases)
with B True show ?thesis unfolding r’-def by auto
next
case (False)
with B(1,2) have z-intv: isIntv (I z) unfolding Z-def I'-def by
auto
show “thesis
proof (cases y € Z)
case Fulse

196

with B(3,4) have y-intv: isIntv (I y) unfolding Z-def I'-def
by auto
with frac-bound z-intv B(1,3) have t < 1 — frac (vz) t < 1
— frac (v y) by auto
from frac-add-leD[OF - this| B(5) t have
frac (v z) < frac (v y)
by (auto simp: cval-add-def)
with v assms(2) B(1,3) z-intv y-intv have (z, y) € r by (auto

then show ?thesis by (simp add: r'-def)
next
case True
from frac-bound x-intv B(1) have b: t < 1 — frac (v z) by auto
from z-intv obtain ¢ where I © = Intv ¢ by auto
with elem[OF <z € X»] have v: ¢ < vz vz < ¢+ 1 by auto
from True elem[OF <y € X»] have x: frac (vy) = 0 unfolding
Z-def by auto
with ¢ <%t < 1) floor-frac-add-preservation’[of t v y] have
floor (vy + t) = floor (v y)
by auto
then have frac (vy +t) =t
by (metis x add-diff-cancel-left’ diff-add-cancel diff-self frac-def)
moreover from nat-intv-frac-gt0[OF v] have 0 < frac (v z) .
moreover from frac-distr[|OF - b] t have frac (vz + t) = frac
(vz) + t by auto
ultimately show ?thesis using B(5) unfolding cval-add-def
by auto
qed
qed
qed
qged
}
with <?¢/2 > 0> have 0 < 2t/2 N (V t. 0 <t ANt < 2t/2 — (v &
t) € region X I' r’) by auto
} note xx = this
show 3¢'<t. (v @ t') € region X I' ' N 0 < ¢/
proof (cases 3 z € X. isIntv (I z))
case True
note T = this
show ?thesis
proof (cases t < ?t/2)
case True with T t xx show ?thesis by auto
next
case Fulse

197

then have ?¢/2 < t by auto
moreover from T *x have (v @ ?t/2) € region X I' ' %t/2 > 0 by
auto
ultimately show ?thesis by (fastforce del: region.cases)
qed
next
case Fulse
note F' = this
show ?thesis
proof (cases t < 1)
case True with F t x show ?thesis by auto
next
case Fulse
then have 0.5 < t by auto
moreover from F x have (v & 0.5) € region X I’ r’ by auto
ultimately show ?thesis by (fastforce del: region.cases)
qged
qed
next
fix vt assume A: v € region X I'r' 0 <t (v® t) € R
from assms(3,4) obtain z ¢ where z: [© = Const cx € Zz € X by
auto
with A(1) have intv-elem x v (I' x) by auto
with z have v z > ¢ unfolding I’-def
apply (auto elim: intv-elem.cases)
apply (cases ¢ = k x)
by auto
moreover from A(3) z(1,3) have vz + t = ¢
by (fastforce elim!: intv-elem.cases simp: cval-add-def R-def)
ultimately show Fulse using A(2) by auto
next
fix z c assume x € X I’ x = Const ¢
then show Fulse
apply (auto simp: I'-def Z-def)
apply (cases Ve. I x # Const c)
apply auto
apply (rename-tac c’)
apply (case-tac ¢’ = k x)

by auto

next
case (Jvtt zc)
note A = this

then have I’ z = Intv ¢ unfolding I’-def Z-def by auto
moreover from A have real (¢ + 1) < (v @ t') z + (¢ — t/) unfolding

198

cval-add-def by auto
ultimately show ?case by blast
next
case A: (bvtt'zc)
show Zcase
proof (cases x € Z)
case Fulse
with A have I z = Intv ¢ unfolding I’-def by auto
with A show ?thesis unfolding cval-add-def by auto
next
case True
with A(6) have [= = Const c
apply (auto simp: 1'-def)
apply (cases intv-const (I x) = k z)
by (auto simp: Z-def)
with A(1,5) R-def have v z = ¢ by fastforce
with A(2,7) show ?thesis by (auto simp: cval-add-def)
qed
qged

lemma closest-valid-1:

fixes I X kr

defines R = {region X I r |I r. valid-region X k I r}

defines R = region X I r

defines Z = {r € X . 3 ¢. [z = Const ¢}

assumes Z # {}

defines I'= X\ z. if © ¢ Z then I x else if intv-const (I x) = k z then
Greater (k) else Intv (intv-const (I x))

defines r'=r U {(z,y) .z € Z ANy € X A intv-const (I z) < kx A isIntv
(1’)}

assumes finite X

assumes valid-region X k I r

shows wvalid-region X k I’ r’
proof

let ?Xg = {z € X.3d. I z = Intv d}

let ?X¢'={z € X.3d. I'z = Intv d}

let 2S ={(z,y). x € Z ANy e X A intv-const (I z) < kx A isIntv (I'y)}

show ?Xol = ?XQI .

from assms(8) have refl: refl-on ?Xo r and total: total-on ?Xy r and
trans: trans r

and valid: \ z. v € X = wvalid-intv (k z) (I)

by auto

then have r

then have r

?Xy x ?Xo unfolding refl-on-def by auto

-
C ?2Xy’ x ?Xy' unfolding I'-def Z-def by auto

199

moreover have 25 C ?2X,' x ?X,’
apply (auto)
apply (auto simp: Z-def)]]
apply (auto simp: 1'-def)]]|
done
ultimately have r'C ?X,’ x ?X,’ unfolding r'-def by auto
then show refl-on ?X,’ r’ unfolding refl-on-def
proof auto
fix z d assume A: z € X I'z = Intv d
show (z, z) € r’
proof (cases x € Z)
case True
with A have intv-const (I x) # k z unfolding I’-def by auto
with assms(8) A(1) have intv-const (I z) < k = by (fastforce elim!:
valid-intv. cases)
with True A show (z,z) € v’ by (auto simp: r'-def)
next
case Fulse
with A refl show (z,z) € v’ by (auto simp: I'-def refl-on-def r'-def)
ged
qed
show total-on ?X’ r’ unfolding total-on-def
proof (standard, standard, standard)
fix r y assume z € ?Xo' y e ?Xo' v #y
then obtain d d’ where A: zeXyeXI' z = (Intv d) I' y = (Intv d') =
% y by auto
let ?thesis = (z, y) € 'V (y,) € r’
show ?thesis
proof (cases z € Z)
case True
with A have intv-const (I z) # k = unfolding I’-def by auto
with assms(8) A(1) have intv-const (I z) < k z by (fastforce elim!:
valid-intv.cases)
with True A show ?thesis by (auto simp: r'-def)
next
case F': Fulse
show %thesis
proof (cases y € Z)
case True
with A have intv-const (I y) # k y unfolding I’-def by auto
with assms(8) A(2) have intv-const (I y) < k y by (fastforce elim!:
valid-intv.cases)
with True A show ?thesis by (auto simp: r'-def)
next

200

case Fulse
with A F have I z = Intv d I y = Intv d’ by (auto simp: I'-def)
with A(1,2,5) total show ?thesis unfolding total-on-def r’-def by
auto
qed
qged
qed
show trans r’ unfolding trans-def
proof safe
fix z y z assume A: (z, y) € r' (y, 2) € 1’
show (z, z) € r’
proof (cases (z,y) € r)
case True
then have y ¢ Z using refl unfolding Z-def refl-on-def by auto
then have (y, z) € r using A unfolding r’-def by auto
with trans True show ?thesis unfolding trans-def r’-def by blast
next
case Fulse
with A(1) have F: = € Z intv-const (I z) < k z unfolding r'-def by
auto
moreover from A(2) refl have z € X isIntv (I’ 2)
by (auto simp: r’-def refl-on-def) (auto simp: I'-def Z-def)
ultimately show ?thesis unfolding r’-def by auto
qed
qed
show VzeX. valid-intv (k z) (I’ z)
proof (auto simp: I'-def intro: valid, goal-cases)
case (1)
with assms(8) have intv-const (I z) < k x by (fastforce elim!: valid-intv.cases)
then show ?case by auto
qged
qged

lemma closest-prestable-2:
fixes I X kr
defines R = {region X I r |I r. valid-region X k I r}
defines R = region X I r
assumes V z € X. = isConst (I)
defines Xy = {z € X. isIntv (I z)}
defines M = {z € Xo.V y € Xo. (z,y) € r — (y, z) € 1}
defines I'= \ z. if x ¢ M then I x else Const (intv-const (I z) + 1)
defines r' = {(z,y) e r.a ¢ M Ny ¢ M}
assumes finite X
assumes valid-region X k I r

201

assumes M # {}
shows V v e RV t>0. (v t)¢ R— (Ft'<t. (v t)) € region X
I'r' At > 0)
and VYV v € region XI'r'.V t>0. (v®dt)¢ R
and VoeveRVUt {z.zeXNBcl'z=ntvch(vdtha+(t
—t) > real (¢ + 1))}
={z.ze XNFeclz =IntvcANvz+t>rel (c+
)} - M
and 3 z € X. isConst (I' z)
proof (safe, goal-cases)
fix v assume v: v € Rfix t:: tassume t: t > 0 (v® t) ¢ R
note M = assms(10)
then obtain 2 ¢ where z: x € M [x = Intv c z € X z € X unfolding
M-def Xo-def by force
let 9t = 1 — frac (v x)
let 7v=v & %
have elem: intv-elem z v (I z) if z € X for z using that v unfolding
R-def by auto
from assms(9) have x: trans r total-on {z € X. 3d. I x = Intv d} r by
auto
then have translintro]: Nz y z. (z, y) € r = (y, 2) € r = (z, 2) € 1
unfolding trans-def
by blast
have {z € X. 3d. [x = Intv d} = X unfolding X(-def by auto
with %(2) have total: total-on Xy r by auto
{ fix y assume y: y ¢ My € X
have — (z, y) € r using z y unfolding M-def by auto
moreover with total x y have (y,) € r unfolding total-on-def by
auto
ultimately have — (z, y) € r A (y,) € 7 ..
} note M-max = this
{ fix y assume T1: y € Mz # y
then have T2: y € Xy unfolding M-def by auto
with total x T1 have (z, y) € r V (y,) € r by (auto simp: total-on-def)
with T1(1) z(1) have (z, y) € r (y,) € r unfolding M-def by auto
} note M-eq = this
{ fix y assume y: y ¢ My € X
with M-maz have - (z, y) € r (y,) € r by auto
with v[unfolded R-def] Xo-def z(4) y(2) have frac (v y) < frac (v x)
by auto
then have ?t < 1 — frac (v y) by auto
} note t-bound’ = this
{ fix y assume y: y € X
have 7t < 1 — frac (v y)

202

proof (cases z = y)
case True thus ?thesis by simp
next
case Fulse
have (y, z) € r
proof (cases y € M)
case False with M-maz y show ?thesis by auto
next
case True with Fualse M-eq y show ?thesis by auto
qged
with v[unfolded R-def] Xo-def x(4) y have frac (v y) < frac (v z) by
auto
then show %t < 1 — frac (v y) by auto
qed
} note t-bound’"’ = this
have frac (v z) < 1 by (simp add: frac-lt-1)
then have ?¢t > 0 by (simp add: z(3))
{fixcyfixt:tassume y: y¢ MIy=Intvcyec Xand t:t > 0t
< %
then have y € Xy unfolding X-def by auto
with ¢-bound’ y have 7t < 1 — frac (v y) by auto
with t have t < 1 — frac (v y) by auto
moreover from elem|[OF <y € X»] y have c < vyvy < ¢+ I by
auto
ultimately have (v y + t) < ¢ + 1 using frac-add-le-preservation by
blast
with «¢ < v » t have intv-elem y (v & t) (I y) by (auto simp:
cval-add-def y)
} note t-bound = this
from elem[OF z(3)] z(2) have v-z: ¢ < vz vz < ¢+ 1 by auto
then have floor (v z) = ¢ by linarith
then have shift: vz + ?t = ¢ + 1 unfolding frac-def by auto
have vz +t>c+ 1
proof (rule ccontr, goal-cases)
case I
then have AA: vz + t < ¢ + 1 by simp
with shift have lt: t < ?t by auto
let %o =0v Pt
have v € region X I'r
proof (standard, goal-cases)
case I
from v have V 2 € X. v 2 > 0 unfolding R-def by auto
with ¢ show ?case unfolding cval-add-def by auto
next

203

case 2
show ?Zcase
proof (safe, goal-cases)
case (1 y)
note A = this
with elem have e: intv-elem y v (I y) by auto
show Zcase
proof (cases y € M)
case Fulse
then have [simp]: I’ y = [y by (auto simp: I'-def)
show %thesis
proof (cases Iy, goal-cases)
case I with assms(3) A show Zcase by auto
next
case (2 ¢)
from t-bound|OF False this A t(1)] It show ?Zcase by (auto simp:
cval-add-def 2)
next
case (3 ¢)
with e have v y > ¢ by auto
with 3 t(1) show Zcase by (auto simp: cval-add-def)
qed
next
case True
then have y € X by (auto simp: M-def)
note T = this True
show “thesis
proof (cases z = y)
case Fulse
with M-eq T have (z, y) € r (y, x) € r by presburger+
with v[unfolded R-def] Xo-def (4) T(1) have *: frac (v y) =
frac (v x) by auto
from 7(1) obtain ¢ where c: [y = Intv ¢ by (auto simp:
Xo-def)
with elem T(1) have ¢ < vy vy < ¢ + 1 by (fastforce simp:
Xo—d@f)‘F
then have floor (v y) = ¢ by linarith
with x [t have (v y + t) < ¢ + 1 unfolding frac-def by auto
with <¢ < v y» t show ?thesis by (auto simp: ¢ cval-add-def)
next
case True with <¢c < v x> t AA = show ?thesis by (auto simp:
cval-add-def)
qed
qed

204

qed
next

show Xo = {z € X. 3d. I z = Intv d} by (auto simp add: X-def)
next

have ¢t > 0

proof (rule ccontr, goal-cases)

case I with ¢t v show Fulse unfolding cval-add-def by auto
qed
show VyeXy. Vze€Xy. ((y, z) € r) = (frac ((v @ t)y) < frac (v B 1)

proof (auto simp: Xo-def, goal-cases)
case (1 yzdd)
note A = this
from A have [simp]: y € X z € X unfolding X-def I'-def by

auto

from A v[unfolded R-def] have le: frac (v y) < frac (v z) by (auto

simp: r'-def)

from t-bound”’ have 7t < 1 — frac (vy) ?t < 1 — frac (v z) by

auto

with [t have t < 1 — frac (vy) t < 1 — frac (v z) by auto
with frac-distr|OF <t > 0»] have

frac (vy) + t = frac (vy + t) frac (v z) + t = frac (v z + t)
by auto
with le show ?case by (auto simp: cval-add-def)

next
case (2yzdd’)
note A = this

from A have [simp]: y € Xo z € X unfolding X-def by auto
from t-bound”’ have 7t < 1 — frac (vy) ?t < 1 — frac (v z) by

auto

with [t have t < 1 — frac (vy) t < 1 — frac (v z) by auto
from frac-add-leD|OF <t > 0> this] A(5) have
frac (v y) < frac (v z)
by (auto simp: cval-add-def)
with v[unfolded R-def] A show ?case by auto
qed
qged
with t R-def show Fulse by simp

qed

with shift have t > 2t by simp

let ?R = region X I’ r'

let ?Xo={z € X.3d. I'z = Intv d}
have (v & %) € ?R

proof (standard, goal-cases)

205

case I
from v have V z € X. v 2 > 0 unfolding R-def by auto
with <2t > 0) t show ?case unfolding cval-add-def by auto
next
case 2
show Zcase
proof (safe, goal-cases)
case (1 y)
note A = this
with elem have e: intv-elem y v (I y) by auto
show Zcase
proof (cases y € M)
case Fulse
then have [simp|: I' y = I y by (auto simp: I'-def)
show ?thesis
proof (cases I y, goal-cases)
case 1 with assms(3) A show ?Zcase by auto
next
case (2 ¢)
from ¢-bound[OF False this A] <%t > 0» show ?case by (auto simp:
cval-add-def 2)
next
case (3 ¢)
with e have v y > ¢ by auto
with 3 «?t > 0> show ?Zcase by (auto simp: cval-add-def)
qed
next
case True
then have y € X by (auto simp: M-def)
note T = this True
show ?thesis
proof (cases © = y)
case Fulse
with M-eq T'(2) have (z, y) € r (y,) € r by auto
with v[unfolded R-def] Xo-def z(4) T(1) have x: frac (v y) = frac
(v z) by auto
from 7'(1) obtain ¢ where c: I y = Intv ¢ by (auto simp: Xo-def)
with elem T(1) have ¢ < vy vy < ¢ + 1 by (fastforce simp:
Xo-def)+
then have floor (v y) = ¢ by linarith
with x have (v y + ?t) = ¢ + 1 unfolding frac-def by auto
with T'(2) show ?thesis by (auto simp: ¢ cval-add-def I'-def)
next
case True with shift z show ?thesis by (auto simp: cval-add-def

206

I'-def)
qged
qed
qged
next
show ?Xy = ?Xg ..
next
show Vye?Xy. Vze€?2Xy. ((y, z) € ') = (frac (v & 1 — frac (v x))y)
< frac (v ® 1 — frac (v x)) 2))
proof (safe, goal-cases)
case (1 yzdd
note A = this
then have y ¢ M z ¢ M unfolding [’-def by auto
with A have [simp]: I'y=1TyI'2=1z2y € Xy z € X; unfolding
Xo-def I'-def by auto
from A v[unfolded R-def] have le: frac (v y) < frac (v z) by (auto
simp: r'-def)
from ¢-bound’ <y ¢ M) <z ¢ M) have %t < 1 — frac (vy) 7t < 1 —
frac (v z) by auto
with frac-distr[OF <?t > 0)] have
frac (vy) + %t = frac (vy + %t) frac (v z) + 2t = frac (v z + 2t)
by auto
with le show ?Zcase by (auto simp: cval-add-def)
next
case (2yzdd
note A = this
then have M: y ¢ M z ¢ M unfolding I’-def by auto
with A have [simp]: ['y=1yI'z=1zy € Xy z € Xo unfolding
Xo-def I'-def by auto
from ¢-bound’ <y ¢ M) <z ¢ M> have 7t < 1 — frac (vy) 7t < 1 —
frac (v z) by auto
from frac-add-leD[OF <%t > 0» this] A(5) have
frac (vy) < frac (v z)
by (auto simp: cval-add-def)
with v[unfolded R-def] A M show ?case by (auto simp: r’-def)
qed
qed
with <2t > 0> «?t < t» show 3t'<t. (v & t') € region X I' r' AN 0 < ¢/
by auto
next
fix v t assume A: v € region X I'r' 0 <t (v® t) € R
from assms(10) obtain z ¢ where z:
e Xolo=Intvcxe Xz eM
unfolding M-def Xo-def by force

207

with A(1) have intv-elem x v (I' x) by auto

with 7 have v z = ¢ + 1 unfolding I’-def by auto

moreover from A(3) z(2,3) have vz + t < ¢ + 1 by (fastforce simp:
cval-add-def R-def)

ultimately show Fulse using A(2) by auto
next

case A: (3vt'zc)

from A(3) have [z = Intv ¢ by (auto simp: I'-def) (cases z € M, auto)

with A(4) show ?case by (auto simp: cval-add-def)
next

case 4

then show ?case unfolding I’-def by auto
next

case A: (5vt'zc)

then have I’ x = Intv ¢ unfolding I’-def by auto

moreover from A have real (¢ + 1) < (v & t') z + (¢t — t') by (auto
simp: cval-add-def)

ultimately show ?case by blast
next

from assms(5,10) obtain = where z: © € M by blast

then have isConst (I’ z) by (auto simp: I'-def)

with z show JzeX. isConst (I’ z) unfolding M-def X(-def by force
qed

lemma closest-valid-2:
fixes I X kr
defines R = {region X I r |I r. valid-region X k I r}
defines R = region X I r
assumes V z € X. = isConst (I)
defines Xy = {z € X. isIntv (I)}
defines M = {z € Xo.V y € Xo. (z,y) € r — (y, x) € r}
defines I'= X\ z. if x ¢ M then I x else Const (intv-const (I z) + 1)
defines r'={(z,y) €.z ¢ M Ny ¢ M}
assumes finite X
assumes valid-region X k I r
assumes M # {}
shows wvalid-region X k I’ r’
proof
let ?Xg = {z € X. 3d. I z = Intv d}
let ?X¢' = {2z € X.3d. I'z = Intv d}
show ?Xy' = 2X¢’ ..
from assms(9) have refi: refi-on ?Xo r and total: total-on ?X¢ r and
trans: trans r
and valid: \ z. x € X = walid-intv (k z) (I z)

208

by auto
have subs: v’ C r unfolding r’-def by auto
from refl have r C ?Xy x ?X(unfolding refl-on-def by auto
then have r'C ?X,’ x ?X,’ unfolding r’-def I'-def by auto
then show refl-on ?X,’ r’ unfolding refl-on-def
proof auto
fix z d assume A: z € X'z = Intv d
then have x ¢ M by (force simp: 1'-def)
with A have I z = Intv d by (force simp: I'-def)
with A refl have (z,z) € r by (auto simp: refl-on-def)
then show (z, z) € r’' by (auto simp: r'-def «x ¢ M)>)
qed
show total-on ?X’ r’ unfolding total-on-def
proof (safe, goal-cases)
case (1 zydd’)
note A = this
then have x: z ¢ M y ¢ M by (force simp: I'-def)+
with A have I z = Intv d I y = Intv d’ by (force simp: I'-def)+
with A total have (z, y) € r V (y, x) € r by (auto simp: total-on-def)
with A(6) x show ?case unfolding r’-def by auto
qed
show trans r’ unfolding trans-def
proof safe
fix x y z assume A: (z, y) € v’ (y, 2) € 1
from trans have [intro|:
Nzyz (vy)er= (y,2)er=(z,2) €r
unfolding trans-def by blast
from A show (z, z) € r’' by (auto simp: r'-def)
qed
show VzeX. valid-intv (k z) (I')
using valid unfolding I’-def
proof (auto simp: I'-def intro: valid, goal-cases)
case (1 z)
with assms(9) have intv-const (I x) < k x by (fastforce simp: M-def
Xo-def)
then show ?case by auto
qed
qed

!/

5.3.1 Putting the Proof for the ’Set of Regions’ Property To-
gether

Misc lemma total-finite-trans-maz:
X #{} = finite X = total-on X r = transr = F z € X.V y €

209

X.z#y— (y,x) €r
proof (induction card X arbitrary: X)
case (
then show ?Zcase by auto
next
case (Suc n)
then obtain x where z: z € X by blast
show ?Zcase
proof (cases n = 0)
case True
with Suc.hyps(2) <finite X» = have X = {z} by (metis card-Suc-eq
empty-iff insertE)
then show ?thesis by auto
next
case Fulse
show ?thesis
proof (cases VyeX.xz # y — (y, z) € r)
case True with z show ?thesis by auto
next
case Fulse
then obtain y where y: y € Xz # y = (y,) € r by auto
with z Suc.prems(3) have (z, y) € r unfolding total-on-def by blast
let X = X — {z}
have tot: total-on ?X r using <total-on X r unfolding total-on-def
by auto
from z Suc.hyps(2) «finite X> have card: n = card ?X by auto
with «finite X> <n # 0> have ?X # {} by auto
from Suc.hyps(1)[OF card this - tot <trans] <finite X) obtain z’
where
IH: '€ ?XV ye ?X. 2’ 4y — (y,2)) er
by auto
have (z/, z) ¢ r
proof (rule ccontr, auto)
assume A: (z/, z) € r
with y(3) have z’ # y by auto
with y IH have (y,) € r by auto
with <trans r» A have (y, z) € r unfolding trans-def by blast
with y show Fulse by auto
qed
with «x € X» «z' € 2X> <total-on X r) have (z, z') € r unfolding
total-on-def by auto
with IH show ?thesis by auto
qged
qed

210

qed

lemma card-mono-strict-subset:

finite A = finite B = finite C —= ANB#{} = C=A—- B—=
card C < card A
by (metis Diff-disjoint Diff-subset inf-commute less-le psubset-card-mono)

Proof First we show that a shift by a non-negative integer constant means
that any two valuations from the same region are being shifted to the same
region.

lemma int-shift-equiv:
fixes X k fixes t :: int
defines R = {region X I r |I r. valid-region X k I r}
assumes v € Rv e RReRt>0
shows (v' @ t) € [v @ t]g using assms
proof —
from assms obtain I r where A: R = region X I r valid-region X k I r
by auto
from regions-closed|OF - assms(4,2), of X k t] assms(1,5) obtain I’ r’
where RR:
[v @ tlg = region X I' r' valid-region X k I’ r'
by auto
from regions-closed'|OF - assms(4,2), of X k t] assms(1,5) have RR": (v
@ t) € [v@ tlgr by auto
show ?thesis
proof (simp add: RR(1), rule, goal-cases)
case I
from v’ € Ry A(1) have VzeX. 0 < v’ z by auto
with <t > 0> show ?case unfolding cval-add-def by auto
next
case 2
show Zcase
proof safe
fix r assume z: z € X
with v/ € R) «v € Ry A(1) have I: intv-elem x v (I z) intv-elem z v’
(I z) by auto
from 2z RR RR' have I" intv-elem z (v & t) (I’ z) by auto
show intv-elem z (v' & t) (I' z)
proof (cases I’)
case (Const c)
from Const I’ have v x + t = ¢ unfolding cval-add-def by auto
with z A(1) <«v € Ry <t > 0> have x: vz = ¢ — nat t t < ¢ by
fastforce+

211

have I x = Const (¢ — nat t)
proof (cases I x)
case (Greater c')
with RR(2) Const <z € X» have ¢ < k z by fastforce
with * <t > 0» have x: vz < k z by auto
from Greater A(2) «x € X» have ¢’ = k z by fastforce
moreover from (1) Greater have v z > ¢’ by auto
ultimately show ?thesis
using <c < k z» * by auto
qed (use I in <auto simp: *»)
with I <t > 0> x(2) have v’ x + ¢t = ¢ by auto
with Const show ?thesis unfolding cval-add-def by auto
next
case (Intv c)
with [’ have ¢ < vz + tvz + t < ¢ + 1 unfolding cval-add-def
by auto
with z A(1) «v € Ry <t > 0»
have x: c —natt <vzvzr<c—natt+ 1t<c¢
by fastforce+
have I z = Intv (¢ — nat t)
proof (cases I x)
case (Greater c')
with RR(2) Intv <z € X» have ¢ < k z by fastforce
with x have *: v 2 < k x using Intv RR(2) z by fastforce
from Greater A(2) <z € X»> have ¢’ = k z by fastforce
moreover from (1) Greater have v z > ¢’ by auto
ultimately show ?thesis
using <¢ < k x> * by auto
qed (use I * in <auto simp del: of-nat-diff»)
with I «t < ¢» have c < v’z + nat t vz + t < ¢ + 1 by auto
with Intv <t > 0) show ?thesis unfolding cval-add-def by auto
next
case (Greater c)
with I’ have x: ¢ < v z + t unfolding cval-add-def by auto
show ?thesis
proof (cases I x)
case (Const ¢’
with © A(1) I(2) «v € R» «v' € R» have vz = v' z by fastforce
with Greater * show ?thesis unfolding cval-add-def by auto
next
case (Intv ¢’
with z A(1) I(2) <v € R» «v' € Ry have #x: ¢/ < vzvz < c +
1<z
by fastforce+

212

then have ¢/ + t<vz +tvz +t<c' +t+ 1 Dby auto
with x have ¢ < ¢’ + ¢ by auto
with xx(3) have v’ z + t > ¢ by auto
with Greater * show ?thesis unfolding cval-add-def by auto
next
fix ¢’ assume ¢" [z = Greater ¢’
with 2 A(1) I(2) <v € Ry <v’' € R) have xx: ¢/ < vz ¢’ < v z by
fastforce+
from Greater RR(2) ¢’ A(2) <z € X»> have ¢/ =k z c =k z by
fastforce+
with <t > 0y xx(2) Greater show intv-elem z (v’ @ real-of-int t)
(1" 2)
unfolding cval-add-def by auto
qed
qed
qed
next
show {z € X.3d. I'z = Intvd} = {x € X. 3d. I' z = Intv d} ..
next
let ?Xg ={z € X.3d. I'z = Intv d}
{ fix z y :: real
have frac (z + t) < frac (y + t) «— frac © < frac y by (simp add:
frac-def)
} note frac-equiv = this
{fixzy
have frac (v @ t) z) < frac (v @ t) y) «— frac (v z) < frac (v y)
unfolding cval-add-def using frac-equiv by auto
} note frac-equiv’ = this
{fixzy
have frac ((v' @& t) z) < frac (v' & t) y) «— frac (v’ z) < frac (v’ y)
unfolding cval-add-def using frac-equiv by auto
} note frac-equiv” = this
{ fix z y assume z: z € X and y: y € X and B: — isGreater(I z) —
isGreater(I y)
have frac (v z) < frac (vy) «— frac (v' z) < frac (v’ y)
proof (cases I x)
case (Const c)
with z «<v € R) «v’ € Ry A(1) have vz = ¢ v' x = ¢ by fastforce+
then have frac (v z) < frac (vy) frac (v’ z) < frac (v' y) unfolding
frac-def by simp+
then show ?thesis by auto
next
case (Intv c)
with z «v € Ry A(1) have v: c < vz vz < ¢+ 1 by fastforce+

213

from Intv z v’ € Ry A(1) have vc < v zv' z < ¢+ 1 by
fastforce+
show ?thesis
proof (cases I y, goal-cases)
case (Const c')
with y <«v € Ry «v' € R» A(1) have vy = ¢’ v" y = ¢’ by fastforce+
then have frac (v y) = 0 frac (v' y) = 0 by auto
with nat-intv-frac-gt0[OF v] nat-intv-frac-gt0[OF v']
have = frac (v) < frac (v y) = frac (v' z) < frac (v’ y) by
linarith+
then show ?thesis by auto
next
case 2: (Intv ¢’)
with z y Intv <v € B> «v' € R) A(1) have
(z, y) € r < frac (vz) < frac (v y)
(2, y) € r +— frac (v' z) < frac (v’ y)
by auto
then show ?thesis by auto
next
case Greater
with B show ?thesis by auto
qged
next
case Greater with B show ?thesis by auto
qed
} note frac-cong = this
have not-greater: = isGreater (I z) if z: * € X = isGreater (I' z) for x
proof (rule ccontr, auto, goal-cases)
case (I ¢)
with z «v € Ry A(1,2) have ¢ < v z by fastforce+
moreover from z A(2) 1 have ¢ = k x by fastforce+
ultimately have x: £k z < v x 4+ t using <t > 0> by simp
from RR(1,2) RR' x have I intv-elem z (v & t) (I’ z) valid-intv (k
z) (I' z) by auto
from x show Fulse
proof (cases I' x, auto)
case (Const ¢’
with I’ x show False by (auto simp: cval-add-def)
next
case (Intv ¢’
with I’ x show False by (auto simp: cval-add-def)
qed
qged
show V z € ?Xo. Vy € ?Xo. ((z, y) € r') = (frac (v & t) z) < frac

214

(v & 1))

proof (standard, standard)
fix x y assume z: z € ?Xp and y: y € ?X)
then have B: — isGreater (I' z) — isGreater (I’ y) by auto
with z y not-greater have — isGreater (I x) — isGreater (I y) by auto
with z y frac-cong have frac (v z) < frac (v y) +— frac (v’ z) < frac
(v’ y) by auto
moreover from z y RR(1) RR' have (z, y) € r’ +— frac (v & t)
%) < frac (v 1) 1)
by fastforce
ultimately show (z, y) € 7’ «— frac (v @ t) z) < frac ((v' D t) y)
using frac-equiv’ frac-equiv’’ by blast
qed
qed
qed

Now, we can use the 'immediate’ induction proposed by P. Bouyer for shifts
smaller than one. The induction principle is not at all obvious: the induction
is over the set of clocks for which the valuation is shifted beyond the current
interval boundaries. Using the two successor operations, we can see that
either the set of these clocks remains the same (Z =) or strictly decreases
(z=).
lemma set-of-regions-lt-1:
fixes X kIrtwo
defines R = {region X I r |I r. valid-region X k I r}
defines C={z.z e XN T c lz=IntvcANvz+t>c+ 1)}
assumes valid-region X k [r v € region X I r v’ € region X I r finite X
0<tt< 1
shows 3 t">0. (v @ t) € [v @ t]g using assms
proof (induction card C arbitrary: C I r v v’ t rule: less-induct)
case less
let ?R = region X I r
let 7C ={z e X.Je. ITx=IntvcAreal (c+ 1) <vz+ t}
from less have R: R € R by auto
{fixvIkrfixt:t
assume no-consts: Vz€X. —isConst (I)
assume v: v € region X I r
assume t: t > 0
let 2C ={ze€ X.Je. Tx=1IntvcAreal (c+ 1) <vzx+ t}
assume C: ?C = {}
let YR = region X I r
have (v @ t) € ?R
proof (rule, goal-cases)
case 1

215

with <t > 0) <v € ?R) show ?case by (auto simp: cval-add-def)
next
case 2
show ?Zcase
proof (standard, case-tac I z, goal-cases)
case (1 z ¢)
with no-consts show ?case by auto
next
case (2 z c)
with <v € ?R) have ¢ < v z by fastforce
with <t > 0> have ¢ < vz + ¢ by auto
moreover from 2 C have vz + t < ¢ + 1 by fastforce
ultimately show ?case by (auto simp: 2 cval-add-def)
next
case (3 ¢)
with (v € ?R) have ¢ < v z by fastforce
with «¢ > 0» have ¢ < v z + t by auto
then show ?case by (auto simp: 3 cval-add-def)
qed
next
show {z € X.3d. Iz =Intvd} = {z € X. 3d. [z = Intv d} ..
next
let ?Xg ={z € X.3d. I v = Intv d}
{ fix z d :: real fix c¢:: nat assume A: c<zz+d<c+1d>0
then have d < I — frac ¢ unfolding frac-def using floor-eq3
of-nat-Suc by fastforce
} note intv-frac = this
{ fix z assume z: z € ?X)
then obtain ¢ where z: © € X [z = Intv ¢ by auto
with <v € ?R»> have *: ¢ < v z by fastforce
with <t > 0> have ¢ < v 2 + t by auto
from z C' have vz + t < ¢ + 1 by auto
from intv-frac[OF « this <t > 0>] have t < I — frac (vx) by auto
} note intv-frac = this
{ fix z y assume z: z € ?Xy and y: y € ?X
from frac-add-leIFF[OF <t > 0y intv-frac|OF z] intv-frac|OF y]]
have frac (v z) < frac (v y) <— frac (v ® t) z) < frac ((v & t) y)
by (auto simp: cval-add-def)
} note frac-cong = this
show V z € ?X(.V y € ?Xo. (z, y) € 7 <— frac (v & t)) < frac
(v@t)y)
proof (standard, standard, goal-cases)
case (1 zy)
with <v € ?R) have (z, y) € r +— frac (v z) < frac (v y) by auto

216

with frac-cong[OF 1] show ?case by simp
qed
qed
} note critical-empty-intro = this
{ assume const: 3zeX. isConst (I z)
assume ¢: ¢t > 0
from const have {z € X. J¢. I © = Const ¢} # {} by auto
from closest-prestable-1[OF this less.prems(4) less(3)] R closest-valid-1[OF
this less.prems(4) less(3)]
obtain " r”
where stability: V v € ?R. VY t>0. 3t'<t. (v @ t') € region X I"" r"
ANt'>0
and succ-not-refl: V v € region X I" r". ¥ t>0. (v & t) ¢ ?R
and no-consts: V z € X. - isConst (I" x)
and crit-mono: YV v € RV t< 1.V t'> 0. (vt € region X
I// T,//
—{r.ceXNFecle=IntvcAhve+t>c+

1)}
={z.zeXNBecl"z=IhtvcAN(vat)z+ (¢
—th>c+ 1)}
and succ-valid: valid-region X k I" r"’
by auto

let ?R" = region X I r"
from stability less(4) <t > 0> obtain t1 where t1: t1 > 0t1 <t (v ®
t1) € ?R" by auto
from stability less(5) <t > 0> obtain t2 where t2: t2 > 0t2 < t (v’
® t2) € ?R” by auto
let v = v @ t1
let 7t =t — t1
let 2C'={z e X.3c. "z =IntvcAreal (c+ 1)< vz + 7}
from t1 <t < 1» have tt: 0 < %t %t < 1 by auto
from crit-mono <t < 1> t1(1,3) <v € ?R» have crit:
7C = 2C'
by auto
with 1 t2 succ-valid no-consts have
3t1>0.32>0.31"r.t1 <tAN(vdtl) € region X1'r’
ANt2 <tA (v t2) e region X I'r’
A wvalid-region X k I r’
A Y ze X —isConst (I'x))
AN?C={zeX.Je.I'e=IntvcAreal (c+ 1)< (vDtl)z+ (¢
~)
by blast
} note const-dest = this
{fixt:real fixvirzcov

217

let YR = region X I r
assume v: v € 7R
assume v v’ € 7R
assume valid: valid-region X k I r
assume :t > 0t < 1
let 2C ={z € X.Je. ITx=1IntvcAreal (c+ 1) <vx+ t}
assume C: ?C = {}
assume const: 3 x € X. isConst (I x)
then have {z € X. J¢c. [z = Const ¢} # {} by auto
from closest-prestable-1[OF this less.prems(4) valid] R closest-valid-1[OF
this less.prems(4) valid]
obtain 1" r"
where stability: V v € ?R.V t>0. 3t'<t. (v t') € region X I" r”
ANt'>0
and succ-not-refl: V v € region X I" r". ¥ t>0. (v ® t) ¢ ?R
and no-consts: V z € X. = isConst (I" x)
and crit-mono: ¥V v € RV t< 1.V t'>0. (vt € region X
I// T,//
—{r.ceXNFecle=Intvchve+t>c+

1)}
={z.zeXNBcl"z=MIntvcAN(v®thz+ (t
—th>c+ 1)}
and succ-valid: wvalid-region X k I" r"
by auto

let ?R" = region X I" r"

from stability v <t > 0» obtain tI where t1: t1 > 0t <t (v ® t1)
€ ?R" by auto

from stability v’ <t > 0> obtain t2 where t2: t2 > 012 < t (v @® t2)
€ ?R" by auto

let v =v @ tI1

let 9t =1t — t1

let 2C'={z e X.3c. I["z=IntvcArea (c+ 1)< vz + 7t}

from t1 <t < 1» have tt: 0 < %t %t < 1 by auto

from crit-mono <t < 1> t1(1,3) «v € ?R> have crit:

{reX. e ITe=IntveArel (c+ 1) <vz+ t}
={zeX JeI"z=IntveANreal (c+ 1)< (v tl)z+ (t—

)}

by auto

with C have C: ?C’ = {} by blast

from critical-empty-intro| OF no-consts t1(3) tt(1) this] have ((v & t1)
® %) e ?R".

from region-unique[OF less(2) this| less(2) succ-valid t2 have 3t'>0.
(wethelvatr

by (auto simp: cval-add-def)

218

} note intro-const = this
{fixvIrtzco
let R = region X I r
assume v: v € 7R
assume v v’ € 7R
assume F2: VzeX. —isConst (I x)
assume z: z € X Iz =Intvcvzrz+t>c+ 1
assume valid: valid-region X k I r
assume t: t > 0t < 1
let ?C'={zx € X.3c. Iz =1IntvcAreal (¢c+ 1) <vz+ t}
assume C: ?C = ?7C'
have not-in-R: (v ® t) ¢ 7R
proof (rule ccontr, auto)
assume (v & t) € ?R
with z(1,2) have vz + ¢t < ¢ + 1 by (fastforce simp: cval-add-def)
with z(3) show False by simp
qged
have not-in-R" (v @ 1) ¢ ?R
proof (rule ccontr, auto)
assume (v' @ 1) € ?R
with z have v/ z + 1 < ¢ + 1 by (fastforce simp: cval-add-def)
moreover from z v’ have ¢ < v’ x by fastforce
ultimately show Fulse by simp
qed
let Xy = {z € X. isIntv (I z)}
let M = {z € 7Xy. Vye?Xy. (z,y) € r — (y,) € 1}
from z have z: x € X — isGreater (I z) and ¢: I © = Intv ¢ by auto
with «z € X» have x: ?X¢ # {} by auto
have ?Xo = {z € X. 3d. I x = Intv d} by auto
with valid have r: total-on ?Xy r trans r by auto
from total-finite-trans-maz|OF * - this] «finite X»
obtain z’ where z”: 2z’ € ?XoV y € ?Xg. 2/ 4y — (y, 2') € r by
fastforce
from this(2) have Vye?X,. (2, y) € r — (y, ') € r by auto
with z/(1) have ?M # {} by fastforce
from closest-prestable-2[OF F2 less.prems(4) valid this] closest-valid-2[OF
F2 less.prems(4) valid this]
obtain I’ r’
where stability:
V v e region XIr.V t>0. (v @ t) ¢ region X Im — (Ft'<t. (v@
t') € region X I' v’ N t' > 0)
and critical-mono: ¥ v € region X I r.Vt.V t'.
{z.zeXNBcl'z=Intvch (v th)z+ (t—
t") > real (¢ + 1))}

219

={z.ze XN T clzx =IntvcANvz+t> real
(c+ 1)} - M

and const-ex: JzeX. isConst (I' x)
and succ-valid: wvalid-region X k I’ r'
by auto

let ?R’' = region X I’ r’
from not-in-R stability <t > 0» v obtain ¢’ where
tht'>0t'<t(wet) e ?R
by blast
have (1::t) > 0 by auto
with not-in-R’ stability v’ obtain ¢t/ where
t1:t1 > 0t1 <1 (v @ t1) € ?R’
by blast
let v = v @ t’
let 7t =t — t’
let 2C"={ze X. Je.I'e=IntvcAreal (c+ 1)< vz + 7}
have 3t">0. (v & t)) € [v @ t|r
proof (cases t = t')
case True
with ¢’ have (v @ t) € ?R’ by auto
from region-unique[OF less(2) this| succ-valid R-def have [v & t|g
= ?R’ by blast
with ¢1(1,3) show ?thesis by auto
next
case Fulse
with <t < 1) t'have tt: 0 < 2t 2t < 1 ?t > 0 by auto
from critical-mono <v € ?R) have C-eq: ?C" = ?2C' — ?M by auto
show 3t>0. (v & t') € [v & t|r
proof (cases ?C' N ?M = {})
case Fulse
from «(finite X» have finite ?C" finite ?C’ finite ?M by auto
then have card ?C" < card ?C using C-eq C False by (intro
card-mono-strict-subset) auto
from less(1)[OF this less(2) succ-valid t'(3) t1(3) <finite X» tt(1,2)]
obtain 2 where t2 > 0 ((v' @ t1) & t2) € [(v & t)]r by (auto
simp: cval-add-def)
moreover have (v' @ (t1 + t2)) = ((v' @ t1) @ t2) by (auto simp:
cval-add-def)
moreover have t1 + t2 > (using «t2 > 0) t1(1) by auto
ultimately show ?thesis by metis
next
case True
{fixzcassume z:z € X Iz =Intvcreal (c+ 1) <wvz+1
with True have = ¢ ?M by force

220

from z have z € ?X(by auto
from z(1,2) «v € ?R) have x: c < vz vz < ¢+ 1 by fastforce+
with <t < 1> have vz + t < ¢ + 2 by auto
have ge-1: frac (vzx) + t > 1
proof (rule ccontr, goal-cases)
case I
then have A: frac (vz) + ¢t < 1 by auto
from x have floor (v z) + frac (vz) < ¢ + 1 unfolding frac-def
by auto
with nat-intv-frac-gt0|OF x| have floor (v) < ¢ by linarith
with A have vz + t < ¢ + 1 by (auto simp: frac-def)
with z(3) show False by auto
qed
from «?M # {}» obtain y where y € ?M by force
with «z € ?X¢» have y: y € X (y, z) € r — (z, y) € r by auto
from y obtain ¢’ where ¢ y € X I y = Intv ¢’ by auto
with (v € ?R) have ¢’ < v y by fastforce
from «y € ?M> <z ¢ ?M)> have = # y by auto
with y (1) z(1,2) have (z, y) € r unfolding total-on-def by
fastforce
with v € ?Ry ¢’ z have frac (v z) < frac (v y) by fastforce
with ge-1 have frac: frac (v y) + t > 1 by auto
have real (¢'+ 1) <wvy+t
proof (rule ccontr, goal-cases)
case I
from <¢’ < v y» have floor (v y) > ¢’ by linarith
with frac have vy + t > ¢’ + 1 unfolding frac-def by linarith
with 1 show Fulse by simp
qed
with ¢’ True <y € ?M)» have False by auto
}
then have C: ?C’ = {} by auto
with C-eq have C": 2C" = {} by auto
from intro-const[OF t'(3) t1(3) succ-valid tt(3) tt(2) C" const-ex]
obtain 2 where t2 > 0 ((v' ® t1) ® t2) € [v ® t|gr by (auto simp:
cval-add-def)
moreover have (v' @ (t1 + t2)) = ((v' @ t1) @ t2) by (auto simp:
cval-add-def)
moreover have t1 + t2 > (using «t2 > 0) t1(1) by auto
ultimately show ?thesis by metis
qed
ged
} note intro-intv = this
from regions-closed[OF less(2) R less(4,7)] less(2) obtain I’ r’ where

221

R
[v & tlgr = region X I' r' valid-region X k I' r'
by auto
with regions-closed'|OF less(2) R less(4,7)] assms(1) have
R2: (v t)€vd tlgr (v&t) € region X I' r’
by auto
let 7R’ = region X I' r’
from less(2) R’ have ?R’ € R by auto
show ?case
proof (cases ?R' = ?R)
case True with less(3,5) R'(1) have (v @ 0) € [v @ t|g by (auto
simp: cval-add-def)
then show ?thesis by auto
next
case Fulse
have ¢ > 0
proof (rule ccontr)
assume — 0 < ¢
with R’ «t > 0» have [v]g = ?R’ by (simp add: cval-add-def)
with region-unique[OF less(2) less(4) R] <?R’ # ?R» show Fulse by
auto
qged
show ?thesis
proof (cases ?C = {})
case True
show ?thesis
proof (cases 3 z € X. isConst (I z))
case Fulse
then have no-consts: Vxe€X. —isConst (I z) by auto
from critical-empty-intro[OF this <v € ?R> <t > 0) True] have (v
Dt)e ?R.
from region-unique[OF less(2) this R] less(5) have (v/ @ 0) € [v @
tlr
by (auto simp: cval-add-def)
then show ?thesis by blast
next
case True
from const-dest[OF this <t > 0»] obtain ¢1 t2 1" 1’
where ¢1: t1 > 0t1 <t (v tl) € region X I' r’
and 2: 2> 0t2 <t (v ®t2) € region X I' r'
and wvalid: valid-region X k I’ r'
and no-consts: ¥ z € X. = isConst (I’ z)
and C: C={zeX. e Il'z=IIntvcArel (c+ 1)< (v
t1) z + (t — t1)}

222

by auto
let v = v @ t1
let 9t =1t — t1
let 2C'={z e X.3c. 'z =Intvc Areal (¢c+ 1) < vz + 7t}
let R’ = region X I' r’
from C «?C = {}» have ?C’' = {} by blast
from critical-empty-intro{OF no-consts t1(3) - this| t1 have (%v &
?t) € 7R’ by auto
from region-unique[OF less(2) this] less(2) valid t2 show ?thesis
by (auto simp: cval-add-def)
qed
next
case Fulse
then obtain 2 ¢ where z: x € X o =Intvcvz +t > c+ 1 by
auto
then have F: = (V z € X. 3 ¢. [x = Greater c) by force
show ?thesis
proof (cases 3 z € X. isConst (I z))
case Fulse
then have VzeX. —isConst (I z) by auto
from intro-intv[OF v € Ry v’ € 7Ry this x less(3,7,8)] show
?thesis by auto
next
case True
then have {z € X. J¢c. [x = Const ¢} # {} by auto
from const-dest|OF True <t > 0)] obtain t1 t2 1’ r'
where t1: t1 > 0t1 <t (v&@ tl) € region X I' r'
and 2: 2> 0t2 <t (v ® t2) € region X I' r’
and valid: valid-region X k I’ r’
and no-consts: V x € X. — isConst (I' z)
and C: C={zeX.Jel'zc=IntvcArel (c+1)<(v®
t1) z + (t — t1)}
by auto
let v = v & t1
let 2t =t — t1
let 2C'={z e X.Jc. 'z =Intvc Areal (¢c + 1) < vz + 7t}
let ?R’' = region X I’ r’
show ?thesis
proof (cases ?C' = {})
case Fulse
with intro-intv[OF t1(3) t2(3) no-consts - - - valid - - C] <t < 1»
t1 obtain t’ where
t'>0 (vVaet2)dthellve t)r
by (auto simp: cval-add-def)

223

moreover have ((v' & t2) & t') = (v & (12 + t')) by (auto simp:
cval-add-def)
moreover have t2 + t’ > (0 using <t' > 0) <t2 > 0> by auto
ultimately show ?thesis by metis
next
case True
from critical-empty-intro| OF no-consts t1(3) - this] t1 have ((v &
t1) ® ?t) € ?R’ by auto
from region-unique[OF less(2) this] less(2) valid t2 show ?Zthesis
by (auto simp: cval-add-def)
qed
qed
qed
qed
qed

Finally, we can put the two pieces together: for a non-negative shift ¢, we
first shift |¢| and then frac t.

lemma set-of-regions:

fixes X k

defines R = {region X I r |I r. valid-region X k I r}

assumes R € R v € R R’ € Succ R R finite X

shows 3 t>0. [v @ t|Jg = R’ using assms
proof —

from assms(4) obtain v’ t where v: v € RR'"e R0 <tR =[v®
tlr by fastforce

obtain t1 :: int where t1: t1 = floor t by auto

with v/(3) have t1 > 0 by auto

from int-shift-equiv[OF v'(1) <v € R» assms(2)[unfolded R-def] this]
R-def

have *: (v @ t1) € [v' @ t1|g by auto

let v = (v & t1)

let %t2 = fract

have frac: 0 < ?t2 %t2 < 1 by (auto simp: frac-lt-1)

let R =[v' @ tl]r

from regions-closed|OF - assms(2) v'(1)] <t1 > 0> R-def have ?R € R
by auto

with assms obtain [r where R: ?R = region X I r valid-region X k I r
by auto

with * have v: %v € region X I r by auto

from R regions-closed'|OF - assms(2) v'(1)] <t1 > 0> R-def have (v’ @
t1) € region X I r by auto

from set-of-regions-lt-1[OF R(2) this v assms(9) frac] R-def obtain t2
where

224

t2>0 (v t2) elvetl)d 2%2r

by auto

moreover from t1 have (v @ (t1 + t2)) = (v ® t2) v ® t = ((vV &
t1) @ ?t2)

by (auto simp: frac-def cval-add-def)

ultimately have (v @ (t1 + t2)) € [v' @ t]g tI + t2 > 0 using «t1 >
0y <t2 > 0> by auto

with region-unique|OF - this(1)] v(2,4) R-def show ?thesis by blast
ged

5.4 Compability With Clock Constraints
definition ccval (<{-}» [100]) where ccval cc = {v. v I cc}

definition acompatible
where
acompatible R ac =V R € R. R C {v. vtq ac} V{v. vk, act N R={}

lemma acompatibleD:
assumes acompatible R ac R€e Ru€e Rv e R ulby ac
shows v I, ac
using assms unfolding acompatible-def by auto

lemma ccompatiblel :
fixes X k fixes c :: real
defines R = {region X I r |I r. valid-region X k I r}
assumes c < krxce Nz e X
shows acompatible R (EQ z ¢) using assms unfolding acompatible-def
proof (auto, goal-cases)
case A: (1 17 vu)
from A(3,9) obtain d where d: ¢ = of-nat d unfolding Nats-def by
auto
with A(8,9) have u: u x = ¢ u x = d unfolding ccval-def by auto
have I © = Const d
proof (cases I x, goal-cases)
case (1 ¢')
with A have v x = ¢’ by fastforce
with 7 v show ?case by auto
next
case (2 ¢')
with A have ¢’ < wzuz < ¢+ 1 by fastforce+
with 2 u show ?case by auto
next
case (3 ¢')

225

with A have ¢’ < u z by fastforce
moreover from 3 A(/,5) have ¢’ > k z by fastforce
ultimately show ?case using u A(2) by auto

qed

with A(4,6) d have v z = ¢ by fastforce

with A(3,5) have v -, EQ z ¢ by auto

with A show Fulse unfolding ccval-def by auto

qed

lemma ccompatible2:
fixes X k fixes c :: real
defines R = {region X I r |I r. valid-region X k I r}
assumes c < kzrxce Nz e X
shows acompatible R (LT x ¢) using assms unfolding acompatible-def
proof (auto, goal-cases)
case A: (1 17 vu)
from A(3) obtain d :: nat where d: ¢ = of-nat d unfolding Nats-def
by blast
with A have u: v z < ¢ u z < d unfolding ccval-def by auto
have vz < ¢
proof (cases I x, goal-cases)
case (1 ¢')
with A have u z = ¢’ vz = ¢’ by fastforce+
with v show v z < ¢ by auto
next
case (2 ¢’
with A have B: ¢/ < uwzuzx < cd +1c <vzxvr<c + 1 by
fastforce+
with u A(3) have ¢’ + 1 < d by auto
with d have ¢’ + 1 < ¢ by auto
with B u show v z < ¢ by auto
next
case (3 ¢')
with A have ¢’ < u = by fastforce
moreover from 3 A(/,5) have ¢’ > k z by fastforce
ultimately show ?case using u A(2) by auto
qed
with A(4,6) have v -, LT z ¢ by auto
with A(7) show False unfolding ccval-def by auto
qed

lemma ccompatible3:
fixes X k fixes c :: real
defines R = {region X I r |I r. valid-region X k I r}

226

assumes c < krxce Nz e X
shows acompatible R (LE z c) using assms unfolding acompatible-def
proof (auto, goal-cases)
case A: (1 1rvu)
from A(3) obtain d :: nat where d: ¢ = of-nat d unfolding Nats-def
by blast
with A have u: v ¢ < ¢ v z < d unfolding ccval-def by auto
have vz < ¢
proof (cases I x, goal-cases)
case (1 ¢) with A u show Zcase by fastforce
next
case (2 ¢')
with A have B: ¢/ < uwzuz < cd +1c <vzvzr<c + 1 by
fastforce+
with u A(8) have ¢’ + 1 < d by auto
with d v A(3) have ¢’ + 1 < ¢ by auto
with B u show v z < ¢ by auto
next
case (3 ¢')
with A have ¢’ < u z by fastforce
moreover from 3 A(/,5) have ¢’ > k x by fastforce
ultimately show ?case using u A(2) by auto
qed
with A(4,6) have v -, LE = ¢ by auto
with A(7) show Fualse unfolding ccval-def by auto
qed

lemma ccompatible/:
fixes X k fixes c :: real
defines R = {region X I r |I r. valid-region X k I r}
assumes c < krxce Nz e X
shows acompatible R (GT x c¢) using assms unfolding acompatible-def
proof (auto, goal-cases)
case A: (1 Irvu)
from A(3) obtain d :: nat where d: ¢ = of-nat d unfolding Nats-def
by blast
with A have u: vz > ¢ u z > d unfolding ccval-def by auto
have vz > ¢
proof (cases I x, goal-cases)
case (1 ¢) with A u show Zcase by fastforce
next
case (2 ¢')
with A have B: ¢/ < uwzuzx < c +1c <vzxvr<c +1by
fastforce+

227

with d v have ¢’ > ¢ by auto
with B u show v z > ¢ by auto
next
case (3 ¢’
with A(4,6) have ¢’ < v z by fastforce
moreover from 3 A(/,5) have ¢’ > k x by fastforce
ultimately show ?case using A(2) u(1) by auto
qed
with A(4,6) have v -, GT z ¢ by auto
with A(7) show Fulse unfolding ccval-def by auto
qged

lemma ccompatible5:
fixes X k fixes c :: real
defines R = {region X I r |I r. valid-region X k I r}
assumes c < krxce Nz e X
shows acompatible R (GE z c¢) using assms unfolding acompatible-def
proof (auto, goal-cases)
case A: (1 Irvu)
from A(3) obtain d :: nat where d: ¢ = of-nat d unfolding Nats-def
by blast
with A have u: v x > ¢ v z > d unfolding ccval-def by auto
have vz > ¢
proof (cases I x, goal-cases)
case (1 ¢) with A u show Zcase by fastforce
next
case (2 ¢')
with A have B: ¢/ < uwzuzx < c +1c <vzxvrx<c + 1by
fastforce+
with d v have ¢’ > ¢ by auto
with B u show v z > ¢ by auto
next
case (3 ¢')
with A(4,6) have ¢’ < v z by fastforce
moreover from 3 A(/,5) have ¢’ > k z by fastforce
ultimately show ?case using A(2) u(1) by auto
qed
with A(4,6) have v -, GE z ¢ by auto
with A(7) show False unfolding ccval-def by auto
qed

lemma acompatible:
fixes X k fixes c :: real
defines R = {region X I r |I r. valid-region X k I r}

228

assumes ¢ < kz ¢ € N z € X constraint-pair ac = (z, c)

shows acompatible R ac using assms
by (cases ac) (auto intro: ccompatiblel ccompatible2 ccompatible3 ccompat-
ible ccompatible5)

definition ccompatible
where
ccompatible R cc =V R € R. R C {ccf} V {ec} N R = {}

lemma ccompatible:
fixes X k fixes c :: nat
defines R = {region X I r |I r. valid-region X k I r}
assumes VY (z,m) € collect-clock-pairs cc. m < kx ANz € X Am €N
shows ccompatible R cc using assms
proof (induction cc)
case Nil
then show ?Zcase by (auto simp: ccompatible-def ccval-def clock-val-def)
next
case (Cons ac cc)
then have ccompatible R cc by (auto simp: collect-clock-pairs-def)
moreover have
acompatible R ac
using Cons.prems by (auto intro: acompatible simp: collect-clock-pairs-def
R-def)
ultimately show ?case
unfolding ccompatible-def acompatible-def ccval-def by (fastforce simp:
clock-val-def)
qged

5.5 Compability with Resets

definition region-set
where
region-set R v ¢ = {v(z :== ¢) | v. v € R}

lemma region-set-id:

fixes X k

defines R = {region X I r |I r. valid-region X k I r}

assumes Re Rve R finite X0 < cc<kzxzxe X

shows [v(z := ¢)|g = region-set R x ¢ [v(z := ¢)]g € R v(z := ¢) € [v(z
= o)z
proof —

from assms obtain I r where R: R = region X I r valid-region X k I r
v € region X I r by auto

229

let 21 = X\ y. if x = y then Const c else I y
let or = {(y,2) € r.x #y Nz # z}

let ?Xg ={z € X.3 c. Iz = Intv ¢}

let ?Xo'={z € X.3 c. 21z = Intv ¢}

from R(2) have refl: refl-on ?X¢ r and trans: trans r and total: total-on
?Xo r by auto

have wvalid: valid-region X k 21 ?r
proof
show X, — {z} = ?Xy by auto
next
from refl show refl-on (?Xo — {z}) ?r unfolding refli-on-def by auto
next
from trans show trans ?r unfolding trans-def by blast
next
from total show total-on (?X¢ — {z}) ?r unfolding total-on-def by
auto
next
from R(2) have V z € X. valid-intv (k z) (I) by auto
with «¢ < k 2> show V z € X. valid-intv (k x) (¢I z) by auto
qed

{ fix v assume v: v € region-set R z ¢
with R(1) obtain v’ where v" v’ € region X I r v = v'(z := ¢)
unfolding region-set-def by auto
have v € region X 21 %r
proof (standard, goal-cases)
case I
from v’ <0 < ¢» show ?case by auto
next
case 2
from v’ show ?case
proof (auto, goal-cases)
case (1 y)
then have intv-elem y v’ (I y) by auto
with <z # y» show intv-elem y (v/(z := ¢)) (I y) by (cases I y) auto
qed
next
show ?X, — {z} = ?Xy’ by auto
next
from v/ show V y € ?X¢ — {z}. V z € ?Xo — {z}. (y,2) € or +—
frac (v y) < frac (v z) by auto
qged

230

} moreover
{ fix v assume v: v € region X ?I ?r
have 3 c. v(z := ¢) € region X I r
proof (cases I x)
case (Const c)
from R(2) have ¢ > 0 by auto
let 2v = v(z := ¢)
have v € region X I'r
proof (standard, goal-cases)
case I
from <c>0> v show ?case by auto
next
case 2
show Zcase
proof (auto, goal-cases)
case (1 y)
with v have intv-elem y v (?I y) by fast
with Const show intv-elem y ?v (I y) by (cases x = y, auto) (cases
Iy, auto)
qged
next
from Const show ?Xy' = ?X, by auto
with refl have r C ?Xy’ x ?X,’ unfolding refi-on-def by auto
then have r: ?r = r by auto
from v have V y € ?X. V 2z € ?Xy. (y,2) € ?r +— frac (vy) <
frac (v z) by fastforce
with r show V y € 2X(.V z € 2X¢". (y,2) € r «— frac (v y) <
frac (?v z)
by auto
qed
then show ?thesis by auto
next
case (Greater c)
from R(2) have ¢ > 0 by auto
let v = v(z :=c+ 1)
have ?v € region X I r
proof (standard, goal-cases)
case I
from <c>0»> v show ?case by auto
next
case 2
show Zcase
proof (standard, goal-cases)
case (1 y)

231

with v have intv-elem y v (?I y) by fast
with Greater show intv-elem y ?v (I y) by (cases x = y, auto)
(cases Iy, auto)
qed
next
from Greater show ?X,' = ?X, by auto
with refl have r C ?Xy’ x ?Xy’ unfolding refl-on-def by auto
then have r: 2r = r by auto
from v have V y € ?X,.V 2z € ?Xy’. (y,2) € ?r «— frac (vy) <
frac (v z) by fastforce
with 7 show V y € X,V z € ?X¢". (y,2) € r +— frac (Pvy) <
frac (?v 2)
by auto
qed
then show ?thesis by auto
next
case (Intv c)
from R(2) have ¢ > 0 by auto
let 2L = {frac (vy) |y.y€ ?Xo ANz # y A (y,x) € 1}
let 2U = {frac (vy) | y.y € ?Xo ANz #yA (z,y) € r}
let 21 = if 2L # {} then ¢ + Max ?L else if ?U # {} then c else ¢ +
0.5
let %u = if 2U # {} then ¢ + Min ?U else if ?L # {} then ¢ + 1 else
c+ 0.5
from <finite X»> have fin: finite ?L finite ?U by auto
{ fix yassume y: y € ?Xgz # y (y, z) € r
then have L: frac (v y) € 7L by auto
with Maz-in[OF fin(1)] have In: Maz ?L € ?L by auto
then have frac (Max ?L) = (Max ?L) using frac-frac by fastforce
from Maz-ge|OF fin(1) L] have frac (v y) < Maz 7L .

also have ... = frac (Mazx ?L) using In frac-frac[symmetric] by
fastforce
also have ... = frac (¢ + Maz ?L) by (auto simp: frac-nat-add-id)

finally have frac (v y) < frac ?l using L by auto
} note L-bound = this
{ fix y assume y: y € ?Xoz # y (z,y) €1
then have U: frac (vy) € ?U by auto
with Min-in[OF fin(2)] have In: Min ?U € ?U by auto
then have frac (Min ?U) = (Min ?U) using frac-frac by fastforce
have frac (¢ + Min ?U) = frac (Min ?U) by (auto simp: frac-nat-add-id)
also have ... = Min ?U using In frac-frac by fastforce
also from Min-le[OF fin(2) U] have Min ?U < frac (v y) .
finally have frac ?u < frac (v y) using U by auto
} note U-bound = this

232

{ assume ?L # {}
from Maz-in[OF fin(1) this] obtain | d where [:
Maz ?L = frac (vi) l€e Xz # 111l = Intvd
by auto
with v have d < vlvl < d + 1 by fastforce+
with nat-intv-frac-gt0[OF this] frac-lt-11(1) have 0 < Max ?L Max
L < 1 by auto
then have ¢ < ¢ + Max ?L ¢ + Mazx ?L < ¢ + 1 by simp+
} note L-intv = this
{ assume ?U # {}
from Min-in[OF fin(2) this] obtain u d where u:
Min ?2U = frac (vu) ve Xz # v lu=Intvd
by auto
with v have d < vu v u < d + 1 by fastforce+
with nat-intv-frac-gt0[OF this] frac-lt-1 u(1) have 0 < Min ?U Min
?U < 1 by auto
then have ¢ < ¢ + Min ?U ¢ + Min ?U < ¢ + 1 by simp+
} note U-intv = this
have [-bound: ¢ < 2]
proof (cases ?L = {})
case True
note T = this
show ?Zthesis
proof (cases ?U = {})
case True
with T show ?thesis by simp
next
case Fulse
with U-intv T show ?thesis by simp
qed
next
case Fulse
with L-intv show ?thesis by simp
qed
have [-bound” ¢ < ?u
proof (cases ?L = {})
case True
note T = this
show ?thesis
proof (cases ?U = {})
case True
with T show ¢thesis by simp
next
case Fulse

233

with U-intv T show ?thesis by simp
qged
next
case Fulse
with U-intv show ?thesis by simp
qed
have u-bound: 2u < ¢ + 1
proof (cases ?U = {})
case True
note T = this
show ?thesis
proof (cases ?L = {})
case True
with T show ?thesis by simp
next
case Fulse
with L-intv T show ¢thesis by simp
qed
next
case Fulse
with U-intv show ?thesis by simp
qged
have u-bound”: 71 < ¢ + 1
proof (cases ?U = {})
case True
note T = this
show ?thesis
proof (cases ?L = {})
case True
with T show ?thesis by simp
next
case Fulse
with L-intv T show ?thesis by simp
qed
next
case Fulse
with L-intv show ?thesis by simp
qed
have frac-c: frac ¢ = 0 frac (¢c+1) = 0 by auto
have [-u: 2] < %u
proof (cases ?L = {})
case True
note T = this
show ?thesis

234

proof (cases ?U = {})
case True
with T show %thesis by simp
next
case Fulse
with T show ?Zthesis using Min-in[OF fin(2) False] by (auto
sitmp: frac-c)
qged
next
case Fualse
with Maz-in[OF fin(1) this] have I: 2l = ¢ + Max ?L Mazx ?L € ?L
by auto
note F' = Fulse
from [(1) have x: Max ?L < 1 using False L-intv(2) by linarith
show ?thesis
proof (cases ?U = {})
case True
with F' [x show ?Zthesis by simp
next
case Fulse
from Min-in[OF fin(2) this] [(2) obtain [u where [-u:
Max ?L = frac (v 1) Min ?U = frac (vu) l € ?Xg u € ?X¢ (l,2)
€r(zu) er
T #Elx #u
by auto
from trans l-u(5—) have (l,u) € ?r unfolding trans-def by blast
with [-u(1—4) v have x: Maz ?L < Min ?U by fastforce
with l-u(1,2) have frac (Max ?L) < frac (Min ?U) by (simp add:
frac-frac)
with frac-nat-add-id I(1) False have frac ?1 < frac ?u by simp
with [(1) * False show ?thesis by simp
qed
qged
obtain d where d: d = (7l + ?u) / 2 by blast
with [-u have d2: 7] < d d < ?u by simp+
from d I-bound I-bound’ u-bound u-bound’ have d3: ¢ < dd < ¢ + 1
d > 0 by simp+
have floor 2l = ¢
proof (cases ?L = {})
case Fulse
from L-intv[OF False] have 0 < Max ?L Mazx ?L < 1 by auto
from floor-nat-add-id[OF this| False show ?Zthesis by simp
next
case True

235

note T = this
show ?thesis
proof (cases ?U = {})
case True
with T show ?thesis by (simp add: floor-nat-add-id)
next
case Fulse
from U-intv[OF Fulse] have 0 < Min ?U Min ?U < 1 by auto
from floor-nat-add-id[OF this] T False show ?Zthesis by simp
qed
qed
have floor-u: floor ?u = (if U = {} N ¢L # {} then ¢ + 1 else ¢)
proof (cases ?U = {})
case Fulse
from U-intv[OF False] have 0 < Min ?U Min ?U < 1 by auto
from floor-nat-add-id[OF this| False show ?thesis by simp
next
case True
note T = this
show ?thesis
proof (cases 7L = {})
case True
with T show ?thesis by (simp add: floor-nat-add-id)
next
case Fulse
from L-intv[OF Fulse] have 0 < Max ?L Max ?L < 1 by auto
from floor-nat-add-id[OF this] T False show ?thesis by auto
qed
qed
{ assume ?L # {} U # {}
from Maz-in[OF fin(1) <L # {}>] obtain w where w:
we ?Xo z# w (wzx) € r Max ?L = frac (v w)
by auto
from Min-in[OF fin(2) <?U # {}>] obtain z where z:
z € ?Xox # z (2,2) € r Min ?U = frac (v 2)
by auto
from w z trans have (w,z) € r unfolding trans-def by blast
with v w z have Max ?L < Min ?U by fastforce
} note [-le-u = this
{ fix y assume y: y € ?Xgz # y
from total y <z € X» Intv have total: (z,y) € r V (y,x) € r unfolding
total-on-def by auto
have frac (v y) = frac d <— (y,z) € 7 A (z,y) € 7
proof safe

236

assume A: (y,x) € 7 (z,y) € 7
from L-bound[OF y A(1)] U-bound[OF y A(2)] have x:
frac (vy) < frac ?l frac 2u < frac (v y)

by auto

from A y have xx: L # {} ?U # {} by auto

with L-intv|OF this(1)] U-intv[OF this(2)] have frac ?1 = Maz ?L
frac ?u = Min ?U

by (auto simp: frac-nat-add-id frac-eq)

with * xx [-le-u have frac ?l = frac ?u frac (v y) = frac ?l by auto

with d have d = ((floor 21 + floor ?u) + (frac (vy) + frac (v y)))
/ 2

unfolding frac-def by auto

also have ... = ¢ + frac (v y) using <floor ?l = ¢ floor-u «?U #
{}> by auto
finally show frac (v y) = frac d using frac-nat-add-id frac-frac by
metis
next

assume A: frac (v y) = frac d

show (y, z) € r

proof (rule ccontr)
assume B: (y,z) ¢ r
with total have B" (z,y) € r by auto
from U-bound[OF y this| have u-y:frac ?u < frac (v y) by auto
from y B’ have U: ?U # {} and frac (v y) € ?U by auto
then have u: frac ?u = Min ?U using Min-in[OF fin(2) «?U #

by (auto simp: frac-nat-add-id frac-frac)
show Fulse
proof (cases ?L = {})
case True
from U-intv[OF U] have 0 < Min ?U Min ?U < 1 by auto
then have x: frac (Min ?U / 2) = Min ?U / 2 unfolding
frac-eq by simp
from d U True have d = ((¢ + ¢) + Min ?U) / 2 by auto
also have ... = ¢ + Min ?U / 2 by simp
finally have frac d = Min ?U / 2 using * by (simp add:
frac-nat-add-id)
also have ... < Min ?U using <0 < Min ?U> by auto
finally have frac d < frac ?u using u by auto
with u-y A show Fulse by auto
next
case Fulse
then have [: ¢l = ¢ + Maz ?L by simp
from Maz-in[OF fin(1) <?L # {}]

237

obtain w where w:
w e ?Xo z # w (w,x) € r Maz ?L = frac (v w)
by auto
with «(y,z) ¢ r» trans have xx: (y,w) ¢ r unfolding trans-def
by blast
from Min-in[OF fin(2) <?U # {}»] Maz-in[OF fin(1) <?L #
{P] frac-it-1
have 0 < Mazx ?L Mazx ?L < 1 0 < Min ?U Min ?U < 1 by
auto
then have 0 < (Maz ?L + Min ?U) / 2 (Maz ?L + Min ?U)
/ 2 < 1 by auto
then have xxx: frac ((Maz ?L + Min ?U) / 2) = (Max ?L +
Min ?2U) / 2 unfolding frac-eq ..
from y w have y € ?Xy' w € ?Xy’ by auto
with v xx have It: frac (v y) > frac (v w) by fastforce
from d Ul have d = ((¢ + ¢) + (Maz ?L + Min ?U))/2 by
auto
also have ... = ¢ + (Maz ?L + Min ?U) / 2 by simp
finally have frac d = frac ((Max ?L + Min ?U) / 2) by (simp
add: frac-nat-add-id)
also have ... = (Maz ?L + Min ?U) / 2 using xxx by simp
also have ... < (frac (v y) + Min ?U) / 2 using It w(4) by
auto
also have ... < frac (v y) using Min-le]OF fin(2) <frac (v y)
€ ?U>] by auto
finally show Fulse using A by auto
qed
qed
next
assume A: frac (v y) = frac d
show (z, y) € r
proof (rule ccontr)
assume B: (z,y) ¢ r
with total have B": (y,z) € r by auto
from L-bound[OF y this] have l-y:frac ?l > frac (v y) by auto
from y B’ have L: ?L # {} and frac (v y) € ?L by auto
then have [: frac ?l = Maxz ?L using Maz-in|OF fin(1) <?L #

by (auto simp: frac-nat-add-id frac-frac)

show Fulse

proof (cases ?U = {})
case True
from L-intv[OF L] have x: 0 < Max ?L Max ?L < 1 by auto
from d L True have d = ((¢ + ¢) + (I + Max ?L)) / 2 by

238

auto

also have ... = ¢ + (I + Max ?L) / 2 by simp

finally have frac d = frac ((1 + Maz ?L) / 2) by (simp add:
frac-nat-add-id)

also have ... = (I + Maz ?L) / 2 using * unfolding frac-eq
by auto

also have ... > Max ?L using * by auto

finally have frac d > frac ?] using | by auto

with [-y A show Fulse by auto

next

case Fulse

then have u: %u = ¢ + Min ?U by simp

from Min-in[OF fin(2) <?U # {}]

obtain w where w:

we ?Xgz# w (z,w) € r Min ?2U = frac (v w)

by auto

with «(z,y) ¢ r trans have xx: (w,y) ¢ r unfolding trans-def
by blast

from Min-in[OF fin(2) «?U # {}»] Maz-in[OF fin(1) <?L #

{P] frac-lt-1

have 0 < Max ?L Max ?L < 1 0 < Min U Min ?U < 1 by
auto

then have 0 < (Maz ?L + Min ?U) / 2 (Maz ?L + Min ?U)
/ 2 < 1 by auto

then have xxx: frac ((Maz ?L + Min ?U) / 2) = (Max ?L +
Min ?2U) / 2 unfolding frac-eq ..

from y w have y € ?Xy' w € ?Xy’ by auto

with v xx have It: frac (v y) < frac (v w) by fastforce

from d L u have d = ((¢ + ¢) + (Mazx ?L + Min ?U))/2 by
auto

also have ... = ¢ + (Maz ?L + Min ?U) / 2 by simp

finally have frac d = frac ((Max ?L + Min ?U) / 2) by (simp
add: frac-nat-add-id)

also have ... = (Maz ?L + Min ?U) / 2 using xxx by simp

also have ... > (Maz ?L + frac (vy)) / 2 using It w(4) by
auto

finally have frac d > frac (v y) using Maz-ge|OF fin(1) «frac
(vy) € ?L»] by auto

then show Fulse using A by auto

qed
qed
qed
} note d-frac-equiv = this
have frac-l: frac ?l < frac d

239

proof (cases ?L = {})
case True
note T = this
show ?thesis
proof (cases ?U = {})
case True
with T have ?[= %u by auto
with d have d = ?] by auto
then show ?thesis by auto
next
case Fulse
with T have frac ?l = 0 by auto
moreover have frac d > 0 by auto
ultimately show ?thesis by linarith
qged
next
case False
note F' = this
then have I: 7l = ¢ + Maz ?L frac ?l = Maz ?L using Maz-in[OF
fin(1) 2L # {}p)]
by (auto simp: frac-nat-add-id frac-frac)
from L-intv[OF F] have x: 0 < Maz ?L Maz ?L < 1 by auto
show ?Zthesis
proof (cases ?U = {})
case True
from True F have ?u = ¢ + 1 by auto
with [d have d = ((¢ + ¢) + (Maz ?L + 1)) / 2 by auto
also have ... = ¢ + (I + Max ?L) / 2 by simp
finally have frac d = frac ((1 + Max ?L) / 2) by (simp add:
frac-nat-add-id)
also have ... = (1 + Mazx ?L) / 2 using * unfolding frac-eq by
auto
also have ... > Max ?L using * by auto
finally show frac d > frac ?l using [by auto
next
case Fulse
then have u: u = ¢ + Min ?U frac ?u = Min ?U using Min-in[OF
fin(2) False]
by (auto simp: frac-nat-add-id frac-frac)
from U-intv[OF False] have xx: 0 < Min ?U Min ?U < 1 by auto
from [u d have d = ((¢ + ¢) + (Max ?L + Min ?U)) / 2 by auto
also have ... = ¢ + (Maz ?L + Min ?U) / 2 by simp
finally have frac d = frac ((Maz ?L + Min ?U) / 2) by (simp
add: frac-nat-add-id)

240

also have ... = (Maz L + Min ?U) / 2 using * *x unfolding
frac-eq by auto
also have ... > Maz ?L using l-le-u[OF F Fulse] by auto
finally show ?thesis using [by auto
qed
qed
have frac-u: ?U # {} V 2L = {} — frac d < frac %u
proof (cases ?U = {})
case True
note T = this
show ?thesis
proof (cases ?L = {})
case True
with T have ?l = ?u by auto
with d have d = ?u by auto
then show ?thesis by auto
next
case Fulse
with T show ?thesis by auto
qged
next
case Fulse
note F' = this
then have u: ?u = ¢ + Min ?U frac ?u = Min ?U using Min-in[OF
fin(2) 2U # {p]
by (auto simp: frac-nat-add-id frac-frac)
from U-intv[OF F| have x: 0 < Min ?U Min ?U < 1 by auto
show ?thesis
proof (cases ?L = {})
case True
from True F have ?l = ¢ by auto
with u d have d = ((¢ + ¢) + Min ?U) / 2 by auto

also have ... = ¢ + Min ?U / 2 by simp
finally have frac d = frac (Min ?U / 2) by (simp add: frac-nat-add-id)
also have ... = Min ?U / 2 unfolding frac-eq using * by auto

also have ... < Min ?U using <0 < Min ?U» by auto
finally have frac d < frac ?u using u by auto
then show ?thesis by auto
next
case Fulse
then have [: 7l = ¢ + Maz ?L frac ?l = Max ?L using Max-in[OF
fin(1) False]
by (auto simp: frac-nat-add-id frac-frac)
from L-intv|OF False] have xx: 0 < Maz ?L Max ?L < 1 by auto

241

from [u d have d = ((¢ + ¢) + (Max ?L + Min ?2U)) / 2 by auto
also have ... = ¢ + (Maz ?L + Min ?U) / 2 by simp
finally have frac d = frac ((Max ?L + Min ?U) / 2) by (simp
add: frac-nat-add-id)
also have ... = (Maz L + Min ?U) / 2 using * xx unfolding
frac-eq by auto
also have ... < Min ?U using l-le-u|OF Fulse F] by auto
finally show ?thesis using u by auto
qged
qged
have V y € ?Xy — {z}. (y,x) € r <— frac (vy) < frac d
proof (safe, goal-cases)
case (1 y k)
with L-bound[of y| frac-l show ?case by auto
next
case (2 y k)
show Zcase
proof (rule ccontr, goal-cases)
case I
with total 2 «x € X» Intv have (z,y) € r unfolding total-on-def
by auto
with 2 U-bound|of y] have ?U # {} frac ?u < frac (v y) by auto
with frac-u have frac d < frac (v y) by auto
with 2 d-frac-equiv 1 show Fulse by auto
qed
qed
moreover have V y € ?Xg — {z}. (z,y) € r +— frac d < frac (v y)
proof (safe, goal-cases)
case (1 y k)
then have ?U # {} by auto
with 1 U-bound|of y] frac-u show Zcase by auto
next
case (2 y k)
show Zcase
proof (rule ccontr, goal-cases)
case I
with total 2 <z € X» Intv have (y,z) € r unfolding total-on-def
by auto
with 2 L-bound[of y| have frac (v y) < frac ?l by auto
with frac-l have frac (v y) < frac d by auto
with 2 d-frac-equiv 1 show Fulse by auto
qed
qed
ultimately have d:

242

c<dd<c+ 1Y ye ?Xyg —{z}. (y,x) € r +— frac (vy) < frac

Vye ?Xg — {z}. (z,y) € 7 < frac d < frac (v y)
using d3 by auto
let %v = v(z := d)
have v € region X I'r
proof (standard, goal-cases)
case I
from «d>0) v show ?case by auto
next
case 2
show ?case
proof (safe, goal-cases)
case (1 y)
with v have intv-elem y v (?I y) by fast
with Intv d(1,2) show intv-elem y ?v (I y) by (cases © = y, auto)
(cases Iy, auto)
qed
next
from «z € X» Intv show ?X,' U {z} = ?X by auto
with refl have r C (?Xo'U {z}) x (?Xo'U {z}) unfolding refl-on-def
by auto
haveV z € ?X¢". V y € ?X¢. (z,y) € r +— (z,y) € ?r by auto
with v have V z € ?X,". V y € 2X¢". (z,y) € r +— frac (vz) <
frac (v y) by fastforce
then have V z € ?X,. V y € ?Xy. (z,y) € r +— frac (%v z) <
frac (%v y) by auto
with d(3,4) show V y € ?Xo' U {z}. V 2z € 2Xo' U {z}. (y,2) € r
> frac (?v y) < frac (%v z)
proof (auto, goal-cases)

case |
from refl «<x € X> Intv show ?case by (auto simp: refl-on-def)
qed
qed
then show ?thesis by auto

qed
then obtain d where v(z := d) € R using R by auto
then have (v(z := d))(z := ¢) € region-set R = ¢ unfolding re-
gion-set-def by blast
moreover from v «z € X) have (v(z := d))(z := ¢) = v by fastforce
ultimately have v € region-set R z ¢ by simp

}

ultimately have region-set R © ¢ = region X ?I ?r by blast

243

with valid R-def have x: region-set R x ¢ € R by auto

moreover from assms have xx: v (z := ¢) € region-set R x ¢ unfolding
region-set-def by auto

ultimately show [v(z := ¢)|gr = region-set R = ¢ [v(z := ¢)]g € R v(z
=c¢) € [v(z =)]r

using region-unique| OF - xx x| R-def by auto
qed

definition region-set’
where
region-set’ R r ¢ = {[r — cJv | v. v € R}

lemma region-set’-id:
fixes X k and ¢ :: nat
defines R = {region X I r |I r. valid-region X k I r}
assumes R €e Rv e R finite X0 < cV zx€setr.c< kzxsetr CX
shows [[r — c|v]g = region-set’ R r ¢ A [[r — cJoJg € R A [r — cJv €
[[r — c]ulr using assms
proof (induction r)
case Nil
from regions-closed|OF - Nil(2,3)] regions-closed’|OF - Nil(2,3)] re-
gion-unique| OF - Nil(3,2)] Nil(1)
have [vjJr = R[v® 0lr € R (v & 0) € [v & 0]g by auto
then show ?Zcase unfolding region-set’-def cval-add-def by simp
next
case (Cons x xs)
then have [[zs—c|v]g = region-set’ R zs ¢ [[zs—c]vjr € R [zs—c]v €
[[zs— c|v]r by force+
note IH = this[unfolded R-def]
let v = ([zs—c]v)(z = ¢)
from region-set-id[OF IH(2,3) «finite X» <¢c > 0>, of z] R-def Cons.prems(5,6)
have [?v]gr = region-set ([[zs—real c]v]r) z ¢ [Pv]r € R %v € [%v]r by
auto
moreover have region-set’ R (z # zs) (real ¢) = region-set ([[zs—real
cJulr) x ¢
unfolding region-set-def region-set’-def
proof (safe, goal-cases)
case (1 y u)
let %u = [zs—real c]u
have [z # zs—real c]Ju = ?u(z := real ¢) by auto
moreover from [H(1) 1 have ?u € [[xzs—real c]v]g unfolding R-def
region-set’-def by auto
ultimately show ?case by auto
next

244

case (2 y u)
with TH(1)[unfolded region-set’-def R-def[symmetric]] show ?case by
auto
qed
moreover have [z # xs—real c]lv = v by simp
ultimately show ?case by presburger
qed

This is the only additional lemma necessary to make local a-closures work.

lemma region-set-subs:
fixes X k k' and ¢ :: nat
defines R = {region X I r |I r. valid-region X k I r}
defines R’ = {region X I r |I r. valid-region X k' I r}
assumes R € R v € R finite X 0 < cset cs C XV y. y & set cs — k
y=>k'y
shows [[cs — c|v]r’ D region-set’ R cs ¢ [[cs — c]v|r’ € R [es — c]v €
[[es = c]v]r’
proof —
from assms obtain I r where R: R = region X I r valid-region X k I r
v € region X I r by auto
— The set of movers, that is all intervals that now are unbounded due to
changing from k to k’
let M = {z € X. isIntv (I) A intv-const (I) > k' x \V intv-const (I
z) > k' z}
let 21 = A\ y.
if y € set cs then (if ¢ < k' y then Const ¢ else Greater (k' y))
else if (isIntv (I y) A intv-const (Iy) > k" y V intv-const (I'y) > k' y)
then Greater (k' y)
else Iy
let ?r = {(y,2) €er.y ¢ setes Nz ¢ setes Ny ¢ ?M Az ¢ ?M}
let ?Xo={z€ X.3 c. Iz = Intvc}
let ?Xo'={z € X.3 ¢. 2z = Intv c}

from R(2) have refl: refl-on ?X¢ r and trans: trans r and total: total-on
¢?Xo r by auto

have valid: valid-region X k' 2I r
proof
show ?X,’ = ?Xy’ by auto
next
from refl show refl-on ?Xy’ ?r unfolding refl-on-def by auto
next
from trans show trans ?r unfolding trans-def by auto
next

245

from total show total-on ?Xy’ ?r unfolding total-on-def by auto
next
from R(2) have V z € X. valid-intv (k z) (I) by auto
then show V = € X. valid-intv (k' z) (21 z)
apply safe
subgoal for z’
using <V y. y & set cs — ky > k' p
by (cases I x'; force)
done
qed

{ fix v assume v: v € region-set’ R cs ¢
with R(1) obtain v’ where v" v’ € region X I r v = [cs — c]v’
unfolding region-set’-def by auto
have v € region X 21 %r
proof (standard, goal-cases)
case 1
from v’ <0 < ¢» show Zcase
apply —
apply rule
subgoal for z
by (cases z € set cs) auto
done
next
case 2
from v’ show ?case
apply —
apply rule
subgoal for z’
by (cases I x'; cases z' € set cs; force)
done
next
show ?Xy’' = 72Xy’ by auto
next
from v’ show V y € X"V 2z € 2X¢'. (y,2) € ?r +— frac (vy) <
frac (v z) by auto
qged
}
then have region-set’ R cs ¢ C region X ?I ?r by blast
moreover from valid have x: region X ?I ?r € R’ unfolding R’-def by
blast
moreover from assms have xx: [cs — c|v € region-set’ R ¢s ¢ unfolding
region-set’-def by auto
ultimately show

246

[[cs — c]v]r’ 2 region-set’ R ¢s ¢ [[es — c|vlr’ € R [es — c|v € [[cs
— cJvlr’
using region-uniqueof R', OF - - %, unfolded R’-def, OF HOL.refl]
unfolding R’-def[symmetric] by auto
qed

5.6 A Semantics Based on Regions
5.6.1 Single step

inductive step-r ::
(‘a, 'c, t,'s) ta = ('c, t) zone set = 's = (c, t) zone = 's = ('c, t) zone
= bool
(o F (=, =) ~ (-, =) [61,61,61,61] 61)
where
step-t-r:
[R = {region X I r |I r. valid-region X k I r}; valid-abstraction A X k; R
€ R; R’ € Succ R R;
R’ C {inv-of A l}] = AR F (LLR) ~ (l,R") |
step-a-r:
[R = {region X I r |I r. valid-region X k I r}; valid-abstraction A X k; A
Fl—9%" 1" ReR]
= ARt (L,LR) ~ (I';region-set’ (R N {u. ut g}) r 0 N {u. u - inv-of
A

inductive-cases|elim!]: AR F (I, u) ~ (I, u')
declare step-r.intros[intro]

lemma region-cover":

assumes R = {region X I r |I r. valid-region X k I r} and VzeX. 0 <
v

shows v € [v]g [v]r € R
proof —

from region-cover|OF assms(2), of k] assms obtain R where R: R € R
v € R by auto

from regions-closed’|OF assms(1) R, of 0] show v € [v]g unfolding
cval-add-def by auto

from regions-closed[OF assms(1) R, of 0] show [v]g € R unfolding
cval-add-def by auto
qed

lemma step-r-complete-auz:

fixes RrAl'yg

247

defines R’ = region-set’ (R N {u. ut g}) r 0 N {u. u F inv-of A1}
assumes R = {region X I r |I r. valid-region X k I r}
and valid-abstraction A X k
and v € R
and R € R
and A+ | —9%"]/
and u - g
and [r—0]u F inv-of A1’
shows R = RN {u. ut g} AN R"= region-set’ R0 N R' € R
proof —
note A = assms(2—)
from A(2) have x*:
Y (z, m)eclkp-set A. m < real (kz) Nz € X Am €N
collect-clkvt (trans-of A) C X
finite X
by (fastforce elim: valid-abstraction.cases)+
from A(5) x(2) have r: set r C X unfolding collect-clkvt-def by fastforce
from (1) A(5) have VY (z, m)€collect-clock-pairs g. m < real (k z) A z
eXAmeN
unfolding clkp-set-def collect-clkt-def by fastforce
from ccompatible]OF' this, folded A(1)] A(3,4,6) have R C {g|
unfolding ccompatible-def ccval-def by blast
then have R-id: R N {u. u - g} = R unfolding ccval-def by auto
from region-set’-id|OF A(4)[unfolded A(1)] A(3) %(3) - - r, of 0, folded
A(1))
have x:
[[r—0]ulr = region-set’ R r 0 [[r—0]Julg € R [r—0]u € [[r—0]ulr
by auto
let R = [[r—0]ulr
from *(1) A(5) have sxx:
Y (z, m) € collect-clock-pairs (inv-of Al"). m < real (kz) Nz € X Am
eN
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce
from ccompatible] OF this, folded A(1)] *x(2—) A(7) have ?R C {inv-of
AL
unfolding ccompatible-def ccval-def by blast
then have xxx: 2R N {u. u - inv-of A I’} = ?R unfolding ccval-def by
auto
with *x(1,2) R-id show ?thesis by (auto simp: R’-def)
qed

lemma step-r-complete:

[AF (, vy = ("u); R = {region X I r |I r. valid-region X k I r};
valid-abstraction A X k;

248

VeeX uz>0]= 3 R.ARE (I, ([ur)) ~ (I''R) Nu" € R' A
R'eR
proof (induction rule: step.induct, goal-cases)
case (1 Alual u')
note A = this
then obtain g r where v v’ = [r—=0lu AF 1 —9%" "yt gu'F
inv-of Al
by (cases rule: step-a.cases) auto
let R'= region-set’ (([u]lr) N {u. u tF g}) 70 N {u. ut inv-of A 1"}
from region-cover'|OF A(2,4)] have R: [ulg € R u € [ulgr by auto
from step-r-complete-auz|OF A(2,3) this(2,1) u'(2,3)] u’
have «: [ulg = ([ulgr) N {u. uF g} ?R’ = region-set’ ([ulg) r 0 R’ € R
by auto
from 1(2,3) have collect-clkvt (trans-of A) C X finite X by (auto elim:
valid-abstraction.cases)
with 4/(2) have r: set r C X unfolding collect-clkvt-def by fastforce
from * u/(1) R(2) have v’ € ?R’ unfolding region-set’-def by auto
moreover have AR + (I,([ulr)) ~ (I',?R’) using R(1) A(2,3) u'(2)
by auto
ultimately show ?case using *(3) by meson
next
case (2 A ludl u)
hence v v/ = (u ® d) u ® d F inv-of A1 0 < dand | = ' by (auto
elim!: step-t.cases)
from region-cover’|OF 2(2,4)] have R: [ulg € R u € [u]gr by auto
from SuccI2[OF 2(2) this(2,1) <0 < &, of [u/|r] u'(1) have u'1:
[u]r € Succ R ([ulr) [ur € R
by auto
from regions-closed'|OF 2(2) R(1,2) <0 < d>] v/(1) have u'2: v’ € [u'|g
by simp
from 2(%) have *:
Y (z, m)eclkp-set A. m < real (kz) Nz € X Am €N
collect-clkuvt (trans-of A) C X
finite X
by (fastforce elim: valid-abstraction.cases)+
from (1) u/(2) have Y (z, m)€collect-clock-pairs (inv-of A l). m < real
(kz)y Nz e X AmeN
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from ccompatible[OF this, folded 2(2)] u'1(2) u'2 u'(1,2,3) R have
[l C {inv-of A 1
unfolding ccompatible-def ccval-def by auto
with 2 4’1 R(1) have AR F (I, ([ulr)) ~ (I,([u]r)) by auto
with «'1(2) u'2 <l = Iy show ?case by meson
qged

249

Compare this to lemma step-z-sound. This version is weaker because for
regions we may very well arrive at a successor for which not every valuation
can be reached by the predecessor. This is the case for e.g. the region with
only Greater (k x) bounds.

lemma step-r-sound:
ARGE (I, R) ~ (I'R") = R = {region X I r |I r. valid-region X k I r}
—= R #{} = NV ueR I ueR. AF (I, u — (I'u))
proof (induction rule: step-r.induct)
case (step-t-r R Xk A R R'1)
note A = this[unfolded this(1)]
show “case
proof
fix v assume u: u € R
from set-of-regions|OF A(3) this A(4), folded step-t-r(1)] A(2)
obtain ¢t where t: t > 0 [u ® t|Jg = R’ by (auto elim: valid-abstraction.cases)
with regions-closed’ |OF A(1,3) u this(1)] step-t-r(1) have x: (u @ t)
€ R’ by auto
with u t(1) A(5,6) have A - (I, u) — (I,(u @ t)) unfolding ccval-def
by auto
with ¢ x show Ju'eR". A+ (I, u) = (l,u) by meson
qed
next
case A: (step-a-r R Xk Algarl R)
show “case
proof
fix v assume u: u € R
from A(6) obtain v where v: v € R v F g [r—0]v F inv-of A1’
unfolding region-set’-def by auto
let ?R’ = region-set’' (R N {u. ut g}) r 0
from step-r-complete-auz[OF A(1,2) v(1)
R=RnN{u. ut g} ?R' = region-set’ R
by auto
from A have collect-clkvt (trans-of A) C X by (auto elim: valid-abstraction.cases)
with A(3) have r: set r C X unfolding collect-clkvt-def by fastforce
from u R have *: [r—0]u € R’ ut g [r—0]u t- inv-of A I’ unfolding
region-set’-def by auto
with A(3) have A I (I, u) — (I',[r—0]u) apply (intro step.intros(1))
apply rule by auto
with * show Jac?R’. A+ (I, u) — (I';a) by meson
qged
qed

N {u. ut inv-of A1’}
A(4,3) v(2—)] have R:
r 0

250

5.6.2 Multi Step

inductive

steps-r = ('a, 'c, t,'s) ta = ('c, t) zone set = 's = (¢, t) zone = 's =
("c, t) zone = bool
(e b (o,)~k (-, 0 [61,61,61,61,61,61] 61)
where

refl: A/R = (I, R) ~»x (I, R) |

step: AR E (I, Ry ~x (I, R) = ARFE (I, R) ~ (I", R") = AR+
(L, R~ (1", R)

declare steps-r.intros[intro]

lemma steps-alt:
A (L u) =+ (') = AF {1 u)y = (I"u"y = AF (I, u) = (1" u")

by (induction rule: steps.induct) auto

lemma emptiness-preservance: AR + (I, R) ~ (I'R") = R ={} = R’

={}

by (induction rule: step-r.cases) (auto simp: region-set’-def)

lemma emptiness-preservance-steps: AR + (I, R) ~* (I'R") = R = {}
— R'={}
apply (induction rule: steps-r.induct)
apply blast
apply (subst emptiness-preservance)
by blast+

Note how it is important to define the multi-step semantics “the right way
round". This is also the direction Bouyer implies for her implicit induction.

lemma steps-r-sound:

AR F (I, R) ~x (I',/ Ry = R = {region X I r |I r. valid-region X k I
"

¥

= R #{}=uwveR= 3 v eR. A (I, u) =« (', u)
proof (induction rule: steps-r.induct)

case refl then show ?case by auto
next

case (step ARIRI'R"I"R")

from emptiness-preservance| OF step.hyps(2)] step.prems have R’ # {}
by fastforce

with step obtain v’ where u”: v' € R" A F (I, u) —x (I';u’) by auto

with step-r-sound|[OF step(2,4,5)] obtain u” where u” € R"” A+ (I,
u'y — (I"u") by blast

with u' show Zcase by (auto 4 5 intro: steps-alt)

251

qed

lemma steps-r-sound’:

AR F (I, R) ~x (I', Ry = R = {region X I r |I r. valid-region X k I
-

}

= R #{}= J v eR.JueR Ar (l,u) = (' u))
proof goal-cases

case 1

with emptiness-preservance-steps|OF this(1)] obtain v where u € R by
auto

with steps-r-sound[OF 1 this] show ?case by auto
qed

lemma single-step-r:
ARGE (I, R) ~ (I, RY = AR F (I, R) ~x (I, R")
by (metis steps-r.refl steps-r.step)

lemma steps-r-alt:
ARE (') Ry »»x (I") R") = ARF (I, R) ~ (I, R) = AR+ (I, R)
o <l”, R")
apply (induction rule: steps-r.induct)
apply (rule single-step-r)
by auto

lemma single-step:
zl F (22, x8) — (24,25) = x1 F (22, 28) —* (z},z5)
by (metis steps.intros)

lemma steps-r-complete:
[AE (I, u)y == (I''u’); R = {region X I r |I r. valid-region X k I r};
valid-abstraction A X k;
VeeX uzx>0]= 3 R.ARF (I, ([ulr)) ~* (I'R) Nu' € R’
proof (induction rule: steps.induct)
case (refl A | u)
from region-cover’|OF refl(1,3)] show ?case by auto
next
case (step Alul u' 1" u")
from step-r-complete[OF step(1,4—06)] obtain R’ where R":
ARF (1, ([ug)) ~ (I"R) u' € R'R' € R
by auto
with step(4) «<u’ € R’ have VzeX. 0 < u’ x by auto
with step obtain R” where R”: AR (I, ([u]r)) ~= (I",R") u" € R"
by auto
with region-unique| OF step(4) R'(2,3)] R'(1) have AR F (I, ([ulr)) ~>x*

252

)

by (subst steps-r-alt) auto

with R region-cover’|OF step(4,6)] show Zcase by auto
qged

end

theory Closure
imports Regions

begin

5.7 Correct Approximation of Zones with a-regions

lemma subset-int-mono: A C B=—= AN C C BN C by blast

lemma zone-set-mono:
A C B = zone-set A r C zone-set B r
unfolding zone-set-def by auto

lemma zone-delay-mono:
ACB= AT C Bt
unfolding zone-delay-def by auto

lemma step-z-mono:
AE(, Z) o (U2 = ZC W =3 W.AE I, W) ~q I,/ W) A
z7'cw’
proof (cases rule: step-z.cases, assumption, goal-cases)
case A: 1
let W' = W' N {u. ulk inv-of A l}
from A have At (I, W) ~, (I',?W’) by auto
moreover have Z' C ?W’'
apply (subst A(5))
apply (rule subset-int-mono)
by (auto intro!: zone-delay-mono A(2))
ultimately show ?thesis by meson
next
case A: (2gar)
let ?W’' = zone-set (W N {u. ut g}) r N {u. ukt inv-of A1}
from A have A &= (I, W) ~q, (I',?W’') by auto
moreover have 7' C ?W’'
apply (subst A(4))
apply (rule subset-int-mono)
apply (rule zone-set-mono)

253

apply (rule subset-int-mono)
apply (rule A(2))
done
ultimately show ?thesis by (auto simp: A(3))
qed

5.8 Old Variant Using a Global Set of Regions

Shared Definitions for Local and Global Sets of Regions locale
Alpha-defs =

fixes X :: 'c set
begin

definition V :: (‘c, t) cval set where V={v.V z€ X. vz > 0}

lemma up-V: Z C V = Ztcv
unfolding V-def zone-delay-def cval-add-def by auto

lemma reset-V: Z C V = (zone-set Zr) C V
unfolding V-def unfolding zone-set-def by (induction r, auto)

lemma step-z-V: Ab (I, Z) ~, (I'\Z) = ZCV = Z'CV
apply (induction rule: step-z.induct)
apply (rule le-infl1)
apply (rule up-V)
apply blast
apply (rule le-infI1)
apply (rule reset-V)
by blast

end

This is the classic variant using a global clock ceiling £ and thus a global
set of regions. It is also the version that is necessary to prove the classic
extrapolation correct. It is preserved here for comparison with P. Bouyer’s
proofs and to outline the only slight adoptions that are necessary to obtain
the new version.

locale AlphaClosure-global =
Alpha-defs X for X :: 'c set +
fixes kR
defines R = {region X I r | I r. valid-region X k I r}
assumes finite: finite X
begin

254

lemmas set-of-regions-spec = set-of-regions|OF - - - finite, of - k, folded
R-def]

lemmas region-cover-spec = region-cover|of X - k, folded R-def]

lemmas region-unique-spec = region-unique[of R X k, folded R-def, sim-
plified)

lemmas regions-closed’-spec = regions-closed’[of R X k, folded R-def, sim-
plified)

lemma valid-regions-distinct-spec:

ReR=R eR=veR=veER = R=R'
unfolding R-def using valid-regions-distinct
by auto (drule valid-regions-distinct, assumption+, simp)+

definition cla (<Closure, - [71] 71)
where
claZ=JU{ReR. RN Z #{}}

The Nice and Easy Properties Proved by Bouyer lemma clo-
sure-constraint-id:
Y (z, m)€collect-clock-pairs g. m < real (kz) Nz € X AN m € N =
Closures {g} = {9} NV
proof goal-cases
case !
show ?Zcase
proof auto
fix v assume v: v € Closure,, {gf}
then obtain R where R: v € R R € R R N {g} # {} unfolding
cla-def by auto
with ccompatible[OF 1, folded R-def] show v € {g} unfolding ccom-
patible-def by auto
from R show v € V unfolding V-def R-def by auto
next
fix v assume v: v € {gf v e V
with region-cover[of X v k, folded R-def] obtain R where R € R v €
R unfolding V-def by auto
then show v € Closure, {g[} unfolding cla-def using v by auto
qed
qed

lemma closure-id":

Z#{} = ZCR= RecR = Closure, Z = R
proof goal-cases

case [

255

note A = this
then have R C Closure, Z unfolding cla-def by auto
moreover
{ fix R'assume R: ZNR'#{} RRe R R# R’
with A obtain v where v € R v € R’ by auto
with R-regions-distinct|OF - A(3) this(1) R'(2—)] R-def have False
by auto
}
ultimately show ?thesis unfolding cla-def by auto
qed

lemma closure-id:

Closureq Z # {} = Z C R = R € R = Closureq, Z = R
proof goal-cases

case [

then have Z # {} unfolding cla-def by auto

with 1 closure-id’ show ?case by blast
qed

lemma closure-update-mono:
Z CV = setr C X = zone-set (Closure,, Z) r C Closurey(zone-set
Zr)
proof —
assume A: 7 C Vsetr C X
let U ={ReR.ZNRF#*{}}
from A(1) region-cover-spec have V v € Z. 3 R. R € R N v € R
unfolding V-def by auto
then have 7 =|J {ZNR| R. R € ?U}
proof (auto, goal-cases)
case (1 v)
then obtain R where R € R v € R by auto
moreover with / have Z N R # {} v € Z N R by auto
ultimately show ?case by auto
qed
then obtain U where U: Z =|J {ZNR|R Re U}V ReU.RE€
R by blast
{ fix R assume R: R € U
{ fix v’ assume v": v’ € zone-set (Closure, (Z N R)) r — Closure, (zone-set
(ZNR)r)
then obtain v where x*:
v € Closure,, (Z N R) v/ = [r — 0]v
unfolding zone-set-def by auto
with closure-id[of Z N R R] R U(2) have xx:
Closureq, (Z N R) = R Closure, (Z N R) € R

256

by fastforce+
with region-set’-id[OF - x(1) finite - - A(2), of k 0, folded R-def, OF
this(2)]
have sk zone-set R r € R [r—0]v € zone-set R r
unfolding zone-set-def region-set’-def by auto
from « have Z N R # {} unfolding cla-def by auto
then have zone-set (Z N R) r # {} unfolding zone-set-def by auto
from closure-id'|OF this - xxx(1)] have Closure, zone-set (Z N R) r
= zone-set R r
unfolding zone-set-def by auto
with v’ xx(1) have Fualse by auto
}
then have zone-set (Closure, (Z N R)) r C Closure,(zone-set (Z N R)
r) by auto
} note Z-i = this
from U(1) have Closure, Z = |J {Closure, (Z N R) | R. R € U}
unfolding cla-def by auto
then have zone-set (Closure, Z) r = |J {zone-set (Closure, (Z N R)) r
| R. R e U}
unfolding zone-set-def by auto
also have ... C |J {Closure,(zone-set (Z N R) r) | R. R € U} using
Z-1 by auto
also have ... = Closure, |J {(zone-set (ZN R) r) | R. R € U} unfolding
cla-def by auto
also have ... = Closure, zone-set ((J {ZNR| R.Re U})r
proof goal-cases
case I
have zone-set (|J {Z N R| R. R € U}) r = {(zone-set (Z N R) r) |
R. R e U}
unfolding zone-set-def by auto
then show ?case by auto
qed
finally show zone-set (Closure, Z) r C Closureq(zone-set Z r) using U
by simp
qged

lemma Succl3:

ReR=veER=1t>0= (v®t) € "= R'€ R = R’ € Succ
R R
apply (intro SuccI2[of R X k, folded R-def, simplified])

apply assumption+

apply (intro region-unique[of R X k, folded R-def, simplified, symmet-
ric)
by assumption+

257

lemma closure-delay-mono:
7 C V = (Closure, Z)' C Closure, (Z1)
proof
fix v assume v: v € (Closure, Z)' and Z: Z C V
then obtain v u’ t R where A:
u € Closureq, Zv=(u®dt)uec Ru e RReRu' e€Zt>0
unfolding cla-def zone-delay-def by blast
from A(3,5) have V z € X. u z > 0 unfolding R-def by fastforce
with region-cover-spec[of v] A(2,7) obtain R’ where R"
R'e RveR
unfolding cval-add-def by auto
with set-of-regions-spec[OF A(5,4), OF Succl3, of u] A obtain t where

t>0u®tlg =R

by auto

with A have (v’ @ t) € Z unfolding zone-delay-def by auto

moreover from regions-closed’-spec[OF A(5,4)] t have (v’ @ t) € R’ by
auto

ultimately have R’ N (Z1) # {} by auto

with R’ show v € Closure, (Z') unfolding cla-def by auto
qged

lemma region-V: R € R = R C V using V-def R-def region.cases by
auto

lemma closure-V:
Closure, Z C V
unfolding cla-def using region-V by auto

lemma closure-V-int:
Closure, Z = Closure,, (Z N'V)
unfolding cla-def using region-V by auto

lemma closure-constraint-mono:
Closureq, g = g = g N (Closurey Z) C Closure, (g N Z)
unfolding cla-def by auto

lemma closure-constraint-mono’:
assumes Closure, g =g NV
shows g N (Closure, Z) C Closure, (g N Z)
proof —
from assms closure-V-int have Closure, (9 N V) = g N V by auto
from closure-constraint-mono|OF this, of Z] have

258

g N (V N Closure, Z) C Closure,, (¢ N Z N V)
by (metis Int-assoc Int-commute)
with closure-V{[of Z] closure-V-intlof ¢ N Z] show ?thesis by auto
qged

lemma cla-empty-iff:
Z CV = Z={} «— Closureq Z = {}
unfolding cla-def V-def using region-cover-spec by fast

lemma closure-involutive-aux:
UCR = Closure, |y U= U
unfolding cla-def using wvalid-regions-distinct-spec by blast

lemma closure-involutive-auz':
3 U. UCRA Closure, Z =) U
unfolding cla-def by (rule exI[where z = {R € R. RN Z # {}}]) auto

lemma closure-involutive:
Closure, Closure, Z = Closure,, Z
using closure-involutive-auz closure-involutive-auz’ by metis

lemma closure-involutive’:
Z C Closure, W —> Closure, Z C Closure, W
unfolding cla-def using wvalid-regions-distinct-spec by fast

lemma closure-subs:
Z CV = Z C Closure, Z
unfolding cla-def V-def using region-cover-spec by fast

lemma cla-mono”:
7'CV = 7 C Z' = Closure,, Z C Closure, Z'
by (meson closure-involutive’ closure-subs subset-trans)

lemma cla-mono:

7 C 7' = Closure, Z C Closure, 7'
using closure-V-int cla-mono’lof Z' N V Z N V] by auto
5.9 A Zone Semantics Abstracting with Closure,
5.9.1 Single step

inductive step-z-alpha ::
(‘a, e, t,'s) ta = 's = (‘c, t) zone = 'a action = 's = (‘c, t) zone =
bool

259

(- F (- =) ~»aq (- - [61,61,61] 61)
where
step-alpha: A& (1, Z) ~a (I, Z) = AF(l, Z) ~ () (I, Closureq Z')

inductive-cases[elim!]: A F (I, u) ~(q) (I'u)
declare step-z-alpha.intros|intro]

definition

step-z-alpha’ :: (‘a, 'c, t, 's) ta = 's = (¢, t) zone = 's = (e, t) zone =
bool
(<' + <'a '> a <'7 '>> [61761761] 61)
where

AF(LZ) o (I, 2"y =3 Z'a. AV (I, Z) ~+ (I, Z) N A+ ({1, Z')
“a(la) (1, 2")
Single-step soundness and completeness follows trivially from cla-empty-iff.
lemma step-z-alpha-sound:

A+, Z) ~a(a) (V'Zh = ZCV=2Z'"#£{}=3Z" A+ (l, 2)

~a (1527) N 2" # 4}
by (induction rule: step-z-alpha.induct) (auto dest: cla-empty-iff step-z-V')

lemma step-z-alpha’-sound:
AL, Z) > (U2 = ZCV =2'"#4#{} =3 Z" A+ (l, Z) ~
(152" N Z"#{}

oops

lemma step-z-alpha-complete’:

AB, Z) »o (U2 = ZC V=3 Z" AF{, Z) ~a(a) (.z" A
Z/ C Z/l

by (auto dest: closure-subs step-z-V')

lemma step-z-alpha-complete:

ALl Z)y o (U2 = Z2CV=2"#{} =3 Z" A+ (l, Z)
“a(a) (Z2" N 2" # {}

y (blast dest: step-z-alpha-complete’)

lemma step-z-alpha’-complete’:

AV (L 2Z) = (U2 = ZC V=3 2" A+ (I, Z) ~a (I"Z") A Z'
C Z//

unfolding step-z-alpha’-def step-z'-def by (blast dest: step-z-alpha-complete’
step-z-V)

lemma step-z-alpha’-complete:

260

AR (L 2) > (2N = Z2C V= 2'#4{} =3 2" A+ (I, Z) ~q

(12" N 2" # {}
by (blast dest: step-z-alpha’-complete’)

5.9.2 Multi step

abbreviation

steps-z-alpha :: ('a, 'c, t,'s) ta = 's = (c, t) zone = 's = ('c, t) zone
= bool
(- F (o,) ~ax (-) [61,61,61] 61)
where

AF (1, Z) oot (I, 2 = (N (L Z) (I, Z"). A+ (I, Z) ~q (I, Z')*
t, 2) (1), 2")

P. Bouyer’s calculation for Post (Closure, Z, ¢) C Closure, Post (Z, e)

This is now obsolete as we argue solely with monotonicty of steps-z w.r.t
Closure,,

lemma calc:
valid-abstraction A X k = Z C V. = A+ (I, Closure, Z) ~q (I, Z')
= 32" AF (I, Z) ~aa) (14 2"V N 21 C 2"
proof (cases rule: step-z.cases, assumption, goal-cases)
case 1
note A = this
from A(1) have V (z, m)€clkp-set A. m < real (kz) Nz € X AN m €N
by (fastforce elim: valid-abstraction.cases)
then have V (z, m)€collect-clock-pairs (inv-of A l). m < real (kz) N\ x €
XAmeN
unfolding clkp-set-def collect-clki-def inv-of-def by auto
from closure-constraint-id[OF this] have x: Closure, {inv-of A I} =
{inv-of A} N V.
have (Closure, Z)' C Closure, (Z') using A(2) by (blast intro!: clo-
sure-delay-mono)
then have Z' C Closure, (Z' N {u. u - inv-of A 1})
using closure-constraint-mono’|OF x, of Z1] unfolding ccval-def by (auto
simp: Int-commute A(6))
with A(4,3) show ?thesis by (auto elim!: step-z.cases)
next
case (2gar)
note A = this
from A(1) have x:
Y (z, m)Eclkp-set A. m < real (kx) Nz € X Am €N
collect-clkvt (trans-of A) C X
finite X
by (auto elim: valid-abstraction.cases)

261

from (1) A(5) have V (z, m)€collect-clock-pairs (inv-of A l). m < real
(kz)y Nz € X AmeN
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from closure-constraint-id[OF this| have xx: Closure, {inv-of A l'} =
{inv-of AU} N V.
from x(1) A(6) have Y (z, m)ecollect-clock-pairs g. m < real (k z) N\
ceXAmeN
unfolding clkp-set-def collect-clkt-def by fastforce
from closure-constraint-id[OF this] have ssxx: Closure, {9} = {9} N V .
from %(2) A(6) have xxxx: set r C X unfolding collect-clkvt-def by
fastforce
from closure-constraint-mono’|OF xxx, of Z] have
(Closureq Z) N {u. u g} C Closure, (Z N {u. u F g}) unfolding
ccval-def
by (subst Int-commute) (subst (asm) (2) Int-commute, assumption)
moreover have zone-set ... r C Closure, (zone-set (Z N {u. ut g}) r)
using sk A(2)
by (intro closure-update-mono, auto)
ultimately have Z' C Closure, (zone-set (Z N {u. ut g}) r N {u. u b
inv-of A 1'})
using closure-constraint-mono’|OF xx, of zone-set (Z N {u. u & g}) 7]
unfolding ccval-def
apply (subst A(5H))
apply (subst (asm) (5 7) Int-commute)
apply (rule subset-trans)
defer
apply assumption
apply (subst subset-int-mono)
defer
apply rule
apply (rule subset-trans)
defer
apply assumption
apply (rule zone-set-mono)
apply assumption
done
with A(6) show ?thesis by (auto simp: A(4))
qed

Turning P. Bouyers argument for multiple steps into an inductive proof is not
direct. With this initial argument we can get to a point where the induction
hypothesis is applicable. This breaks the "information hiding" induced by
the different variants of steps.

lemma steps-z-alpha-closure-involutive’-auz:

262

AF(l, Z) ~q (I,Z"y = Closureq Z C Closure, W = wvalid-abstraction
AXk= ZCV
=3 W.AE (I, W) ~q I,/ W) A Closure, Z'C Closure, W'
proof (induction rule: step-z.induct)
case A: (step-t-z A1 Z)
let 22’ = Z' N {u. u F inv-of A I}
let ?W’ = W' N {u. ut inv-of A1}
from R-def have R-def”: R = {region X I r |I r. valid-region X k I r}
by simp
have step-z: A F (I, W) ~, (I,?W') by auto
moreover have Closure, ?Z' C Closure, ?W'
proof
fix v assume v: v € Closure, 27
then obtain R’ v’ where 1: R'€ R v e R'v' € R'v' € ?Z' unfolding
cla-def by auto
then obtain u d where
ve Zand v v =ud du®dF inv-of Al0O < d
unfolding zone-delay-def by blast
with closure-subs|OF A(3)] A(1) obtain v’ R where v v' € Wu €
Ru'e RReR
unfolding cla-def by blast
then have VzeX. 0 < u z unfolding R-def by fastforce
from region-cover’|OF R-def’ this] have R: [ulg € R u € [u|r by auto
from SuccI2[OF R-def’ this(2,1) <0 < d», of [v|g] v'(1) have v'1:
[V € Succ R ([ulr) [v]r € R
by auto
from regions-closed’-spec|OF R(1,2) <0 < d»] v'(1) have v'2: v' € [v|g
by simp
from A(2) have x:
V (z, m)Eclkp-set A. m < real (kx) Nz € X Am €N
collect-clkvt (trans-of A) C X
finite X
by (auto elim: valid-abstraction.cases)
from x(1) u/(2) have V (z, m)€collect-clock-pairs (inv-of A 1). m < real
(kz)y Nz € X AmeN
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from ccompatible[OF this, folded R-def’] v'1(2) v'2 v'(1,2) have 3:
[wlr C finv-of A I
unfolding ccompatible-def ccval-def by auto
with A v'1 R(1) R-def’ have AR (I, (Julr)) ~ (I,([vr)) by auto

/

with valid-regions-distinct-spec|OF v'1(2) 1(1) v'2 1(8)] region-unique-spec| OF

u'(2,4)]
have step-r: A/R (I, R) ~ (I, R') and 2: [v|x = R’ [ulJrx = R by
auto

263

from set-of-regions-spec[OF u'(4,3)] v'1(1) 2 obtain t where t: t > 0
[u' ® tlg = R’ by auto
with regions-closed’-spec|OF uw'(4,3) this(1)] step-t-r(1) have x: v’ & ¢
€ R’ by auto
with t(1) 3 24/(1,3) have AF ([, u) - (Lu' @& t) u' Dt € ?W'
unfolding zone-delay-def ccval-def by auto
with « 1(1) have R’ C Closure, ?W' unfolding cla-def by auto
with 1(2) show v € Closure, W’ ..
qed
ultimately show ?case by auto
next
case A: (step-a-z Algarl 7)
let 27’ = zone-set (Z N {u. ut g}) r N {u. ut inv-of A1’}
let ?W’' = zone-set (W N {u. ut g}) r N {u. ut inv-of A1}
from R-def have R-def": R = {region X I r |I r. valid-region X k I r}
by simp
from A(1) have step-z: A= (I, W) ~, (I',?W') by auto
moreover have Closure, ?Z' C Closures, ?W'
proof
fix v assume v: v € Closure, 7?7
then obtain R’ v’ where 1: R'€ R v e R'v' € R'v' € ?Z' unfolding
cla-def by auto
then obtain u where
uw € Zand v v = [r—=0luut gov't inv-of Al
unfolding zone-set-def by blast
let ?R'= region-set’ (([ulr) N {u. ut g}) r 0 N {u. ut inv-of A 1"}
from <u € Z» closure-subs[OF A(4)] A(2) obtain v’ R where u" u’ €
WueRu' e RReR
unfolding cla-def by blast
then have Vz€X. 0 < u z unfolding R-def by fastforce
from region-cover’|OF R-def’ this] have R: [ulg € R u € [u]g by auto
from step-r-complete-aux|OF R-def’ A(3) this(2,1) A(1) v'(2)] v’
have *: [ulg = ([ulg) N {u. uF g} ?R’ = region-set’ ([ulgr) r 0 R’ €
R by auto
from R-def’ A(3) have collect-clkvt (trans-of A) C X finite X
by (auto elim: valid-abstraction.cases)
with A(7) have r: set r C X unfolding collect-clkvt-def by fastforce
from v'(1) R(2) have v’ € ?R’ unfolding region-set’-def by auto
moreover have AR (I,([u]r)) ~ (I',?R’) using R(1) R-def’ A(1,3)
v'(2) by auto
thm valid-regions-distinct-spec
with wvalid-regions-distinct-spec[OF %(8) 1(1) «v' € 2R 1(3)] re-
gion-unique-spec[OF u'(2,4)]
have 2: R’ = R’ [ulg = R by auto

/

264

with x u" have x: [r—0]Ju’ € R u'F g [r—0]u’F inv-of Al
unfolding region-set’-def by auto
with A(1) have A+ (I, u'y — (I',[r—0]u’y apply (intro step.intros(1))
apply rule by auto
moreover from * u/(1) have [r—0]u’ € ?W’ unfolding zone-set-def
by auto
ultimately have R’ C Closure, W' using (1) 1(1) 2(1) unfolding
cla-def by auto
with 1(2) show v € Closure, W’ ..
qed
ultimately show ?case by meson
qed

lemma steps-z-alpha-closure-involutive’-auz":
A, Z) ~q (1,2 = Closureq Z C Closure, W = wvalid-abstraction
AXk=Z7CV=WCZ
= 3 WL AFE (I, W) ~q (I',/ W) A Closure, Z' C Closure, W' N W'
cz
proof (induction rule: step-z.induct)
case A: (step-t-z Al Z)
let 27’ = 7" N {u. u - inv-of A 1}
let W’ = W' N {u. ut inv-of A1}
from R-def have R-def" R = {region X I r |I r. valid-region X k I r}
by simp
have step-z: A+ (I, W) ~, (I,?W') by auto
moreover have Closure, ?Z' C Closure, ?W'
proof
fix v assume v: v € Closure, ?Z
then obtain R’ v’ where 1: R'€ R v € R'v' € R'v' € ?Z" unfolding
cla-def by auto
then obtain u d where
veEZand v v =udduddF inv-of A10 < d
unfolding zone-delay-def by blast
with closure-subs|OF A(3)] A(1) obtain v’ R where v v' € Wu €
Ru' e RReR
unfolding cla-def by blast
then have VzeX. 0 < u z unfolding R-def by fastforce
from region-cover’|OF R-def’ this] have R: [ulg € R u € [u|r by auto
from SuccI2[OF R-def’ this(2,1) <0 < d», of [v|g] v'(1) have v'I:
[vr € Suce R ([ulr) [v]r € R
by auto
from regions-closed’-spec|OF R(1,2) <0 < d»] v'(1) have v'2: v' € [v'|g
by simp
from A(2) have x:

/

265

V (z, m)eclkp-set A. m < real (kz) Nz € X Am €N
collect-clkvt (trans-of A) C X
finite X

by (auto elim: valid-abstraction.cases)

from x(1) u/(2) have V (z, m)€collect-clock-pairs (inv-of A 1). m < real
(kz)y Nz e X AmeN

unfolding clkp-set-def collect-clki-def inv-of-def by fastforce

from ccompatible[OF this, folded R-def’] v'1(2) v'2 v'(1,2) have 3:

[v]r C {inv-of A I}

unfolding ccompatible-def ccval-def by auto

with A v'1 R(1) R-def’ have A,R b (I, ([ulr)) ~ (I,([v|r)) by auto

with valid-regions-distinct-spec|OF v'1(2) 1(1) v'2 1(3)] region-unique-spec[OF
w(2.4)

have step-r: AR + (I, R) ~ (I, R') and 2: [v|g = R’ [ulJgx = R by
auto

from set-of-regions-spec[OF u'(4,3)] v'1(1) 2 obtain t where t: t > 0
[u' ® tl]g = R’ by auto

with regions-closed’-spec|OF uw'(4,3) this(1)] step-t-r(1) have x: v’ @ ¢
€ R’ by auto

with t(1) 3 24'(1,3) have AF ([, u) - (lLu' @& t) u' ®t € ?W’

unfolding zone-delay-def ccval-def by auto

with % 1(1) have R’ C Closure, ?W' unfolding cla-def by auto

with 1(2) show v € Closure, W’ ..

qed

moreover have W’ C ?7Z' using «W C Z) unfolding zone-delay-def
by auto

ultimately show ?case by auto
next

case A: (step-a-z Algarl Z)
let 27’ = zone-set (Z N {u. ut g}) r N {u. ut inv-of A1’}
let ?W’' = zone-set (W N {u. ut g}) r N {u. ut inv-of A1}
from R-def have R-def" R = {region X I r |I r. valid-region X k I r}
by simp
from A(1) have step-z: A= (I, W) ~q, (I',?W') by auto
moreover have Closure, ?Z' C Closure, ?W'
proof
fix v assume v: v € Closure, 27’
then obtain R’ v' where R’ € R v € R’ v' € R' v/ € ?Z' unfolding
cla-def by auto
then obtain u where
uw € Zand v v' = [r—=0luut gov't inv-of A1
unfolding zone-set-def by blast
let ?R'= region-set’ (([ulr) N {u. u b g}) r 0 N {u. ut inv-of A 1"}
from «u € Z» closure-subs|OF A(4)] A(2) obtain u’ R where v u’ €

266

WueRu' e RReR
unfolding cla-def by blast
then have VzeX. 0 < u x unfolding R-def by fastforce
from region-cover'|OF R-def’ this| have [ulg € R u € [u]g by auto
have x:
[ulr = ([ulzr) N {u. ut g}
region-set’ ([ulg) r 0 C [[r—0]Julr [[r—0]ulr € R
([[r=0]ulr) N {u. u F inv-of A '} = [[r—0]ulr
proof —
from A(3) have collect-clkvt (trans-of A) C X
by (auto elim: valid-abstraction.cases)
with A(1) have set r C X Vy. y ¢ setr — ky<ky
unfolding collect-clkvt-def by fastforce+
with
region-set-subs[of - X k - 0, where k' = k, folded R-def, OF <[u]r
€ Ry <u € [u]lr» finite]
show region-set’ ([ulg) r 0 C [[r—0]ulg [[r—0]ulgr € R by auto
from A(%) have x*:
Y (z, m)eclkp-set A. m < real (kz) Nz € X Am €N
by (fastforce elim: valid-abstraction.cases)+
from x A(1) have xxx: V (z, m)€Ecollect-clock-pairs g. m < real (k x)
ANzxeXAmeN
unfolding clkp-set-def collect-clkt-def by fastforce
from <u € [ulr> <[ulr € R» ccompatible]OF this, folded R-def] «u
g> show
[ulz = ([ulr) N {u. vt g}
unfolding ccompatible-def ccval-def by blast
have s« [r—0]u € [[r—0]ulr
using (R’ € R «v' € R’ region-unique-spec v'(1) by blast
from x have
Y (z, m)€collect-clock-pairs (inv-of A 1l"). m < real (kz) Nz € X A
m € N
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce
from sx ([[r—0]ulgr € R> ccompatible] OF this, folded R-def] <v’'F -
show
([[r=0]ulr) N {u. u & inv-of A '} = [[r—0]ulr
unfolding ccompatible-def ccval-def v’ = -» by blast
qed
from * «v' = - «u € [ulg> have v’ € [[r—0]ulg unfolding re-
gion-set’-def by auto
from wvalid-regions-distinct-spec|OF *(3) <R" € Ry v’ € [[r—=0]ulr)> v’
€ R"]
have [[r—0]ulg = R’.
from region-unique-spec|OF u'(2,4)] have [ulg = R by auto

267

from ([ulg = R» %(1,2) *(4) v’ € R»> have
[r—=0]u’ € [[r—=0Julg v'F g [r—=0]u’'F inv-of A1
unfolding region-set’-def by auto
with «/(1) have [r—0]u’ € ?W’ unfolding zone-set-def by auto
with «r—0Ju’ € [[r—=0]Julr> «[[r—0]ulr € R» have [[r—0]ulg C
Closure,, ?W'
unfolding cla-def by auto
with (v € R’y show v € Closure, W' unfolding - = R’ ..
qed
moreover have ?W’' C 27’ using «W C Z) unfolding zone-set-def by
auto
ultimately show Zcase by meson
qged

lemma steps-z-alpha-V: A& (I, Z) ~ox (2 = Z CV = Z'C V
by (induction rule: rtranclp-induct?2)
(use closure-V in <auto dest: step-z-V simp: step-z-alpha’-def»)

lemma steps-z-alpha-closure-involutive:

Al Z) wax (I, 20) = AR (U, Z) ~p (U, 27) = A (U, Z7) ~q,
<ZN,ZW>

= wvalid-abstraction A X k = Z C V

= 3 W" AF (I, Z) ~x (I"W") A Closure, Z"' C Closure, W' N\
W/// C Z///
proof (induction arbitrary: a Z" Z'" 1" rule: rtranclp-induct?2)

case refl then show ?case unfolding step-z'-def by blast
next

case A: (step I' Z'1"1 Z"'1)

from A(2) obtain Z'1 Z o’ where 7''1:
21 = Closureq Z Ak (I, Z') ~op (I, 2'1) Ab (U, Z'1) w40 (I'1,2)
unfolding step-z-alpha’-def by auto
from A(3)[OF this(2,3) A(6,7)] obtain W' where W'
AE(l, Z) ~x* (I"1,W'") Closure, Z C Closureq, W' W' C Z
by auto
have Z""C V
by (metis A(4) Z"1(1) closure-V step-z-V)
have Z C V
by (meson A Z"'1 step-2-V steps-z-alpha-V)
from closure-subs[OF this] «<W'"" C Z) have x: W' C Closure, Z by
auto
from A(4) <Z"1 = - have A\ ("1, Closureq Z) ~+ (I"1, Z") by simp
from steps-z-alpha-closure-involutive’-auz'|OF this - A(6) closure-V]
W'(2) obtain W'

268

where xxx: A F (11, W)~ (11, W) Closure,, Z" C Closure, W'
w'c z"

by atomize-elim (auto simp: closure-involutive)

This shows how we could easily add more steps before doing the final closure
operation!

from steps-z-alpha-closure-involutive’-auz |OF A(5) this(2) A(6) <Z" C
V) this(3)] obtain W”
where
A", W) ~sq, (17, W) Closureq Z"' C Closure, W' W' C 2"
by auto
with xxx W'’ show Zcase
unfolding step-z'-def by (blast intro: rtranclp.rtrancl-into-rtrancl)
qed

lemma steps-z-alpha-closure-involutive:
AE (I, Z) ~ox (I',Z) = valid-abstraction A X k = Z C V
= 3 Z". A, Z) ~x (I',Z") N Closure, Z' C Closureo, Z" N Z" C
Z/
proof (induction rule: rtranclp-induct?)
case refl show ?case by blast
next
case 2: (step I' Z" 1" Z")
then obtain 7" a Z”1 where x:
Al 2%~ (V27 AU, Z27) ~q, (17,271) 2" = Closures, Z''1
unfolding step-z-alpha’-def by auto
from steps-z-alpha-closure-involutive’|OF 2(1) this(1,2) 2(4,5)] obtain
W’ where W'
A, Z)y ~x (I",W") Closureq Z"'1 C Closure, W"' W' C Z"1 by
blast
have W/// g Z/l/
unfolding x
by (rule order-trans|OF «W'" C Z"15] closure-subs step-z-V steps-z-alpha-V

x 2(1,5))+
with * closure-involutive W' show ?case by auto
qed

lemma steps-z-V:

AL, Z) >+ (U7 = Z CV = 27'CV

unfolding step-z'-def by (induction rule: rtranclp-induct2) (auto dest!:
step-z-V)

269

lemma steps-z-alpha-sound:
At (l, Z) ~ox (I,Z") = valid-abstraction A X k = Z C V= 7' #
{}
= 3 2N AF L, Z) ek (L2 ANZ £ VA2 C 2
proof goal-cases
case 1
from steps-z-alpha-closure-involutive[OF 1(1—3)] obtain Z" where
A Al Z) ~x (I, Z") Closureq Z' C Closure, Z" Z" C 7'
by blast
moreover with 1(4) cla-empty-iff[OF steps-z-alpha-V[OF 1(1)], OF
1(3)
cla-empty-iff [OF steps-z-V, OF this(1) 1(3)] have Z" # {} by auto
ultimately show ?case by auto
qed

lemma step-z-alpha-mono:

AF (L, Z) o INZ) = ZC W= WC V=3 W.AF (1, W)
~a(a) (l’,W’> NZ'C W
proof goal-cases

case |

then obtain Z” where x: A & (I, Z) ~4 (I',Z") Z' = Closure, Z' by
auto

from step-z-mono[OF this(1) 1(2)] obtain W’ where A - (I, W) ~,
(W Z" C W' by auto

moreover with x(2) have Z’ C Closure, W' unfolding cla-def by auto

ultimately show ?case by blast
qged

end

5.10 New Variant

New Definitions hide-const collect-clkt collect-clki clkp-set valid-abstraction

definition collect-clkt :: ('a, 'c, 't, 's) transition set = 's = ('c x't) set
where
collect-clkt S 1 = {collect-clock-pairs (fst (snd t)) |t .t € S A fstt =

1}
definition collect-clki :: (‘e, 't, 's) invassn = 's = ('c x't) set

where
collect-clki I s = collect-clock-pairs (I s)

270

definition clkp-set :: (‘a, 'c, 't, 's) ta = 's = (‘¢ ¥t) set
where
clkp-set A s = collect-clki (inv-of A) s U collect-clkt (trans-of A) s

lemma collect-clkt-alt-def:
collect-clkt S 1 = (collect-clock-pairs < (fst o snd) ‘{t. t € S A fst t =

1})

unfolding collect-clkt-def by fastforce

inductive valid-abstraction
where

[V I.V(z,m) € clkp-set Al. m < klxz ANz e X Am e N; collect-clkvt
(trans-of A) C X; finite X;

Vigarl'c Al —9%"U'Ncésetr — kl'c<klc

]

= valid-abstraction A X k

locale AlphaClosure =
Alpha-defs X for X :: 'c set +
fixes k :: 's = ‘¢ = nat and R
defines R | = {region X I r | I r. valid-region X (k1) I r}
assumes finite: finite X
begin

5.11 A Semantics Based on Localized Regions
5.11.1 Single step

inductive step-r ::

('a, 'c, t, 's) ta = - = 's = (e, t) zone = 'a action = 's = ('c, t) zone
= bool
(4o b (=,)~ (-,) [61,61,61,61,61] 61)
where

step-t-r:

AR b (LR) ~r (LR if

valid-abstraction A X (A z. real o kz) R € R I R' € Succ (R 1) R R’ C
{inv-of A I} |

step-a-r:

AR (LR) ~q (I RY if

valid-abstraction A X (A z. real o kz) A1 —9%" "R e R 1

R C {g}} region-set’ R v 0 C R' R’ C {inv-of AI'} R"e Rl

inductive-cases|elim!]: AR b (I, u) ~, (I, u/)

271

declare step-r.intros[intro]

inductive step-r’ :

(‘a, 'c, t, 's) ta = - = 's = ('c, t) zone = 'a = 's = (c, t) zone = bool
(4o b (=,)~ (=,) [61,61,61,61,61] 61)
where

AR F (LLR) ~, (I'R") if AR+ (l,R) ~+ (l,R") AR} (l,R) ~1a (',
R")

lemmas R-def’ = meta-eq-to-obj-eq| OF R-def]
lemmas region-cover’ = region-cover’|OF R-def’]

abbreviation part” («[-]-» [61,61] 61) where part” w1l = part u (R 1)
no-notation part («[-]-» [61,61] 61)

lemma step-r-complete-aux:
fixes RurAlyg
defines R’ = [[r—0]u);’
assumes valid-abstraction A X (X z. real o k z)
and v € R
and Re R
and A+ | —9%7]/
and u g
and [r—0]u - inv-of Al
shows R = RN {u. ut g} A region-set’ R70 C R"ANR' e RI'"AN R'C
{inv-of A U’}
proof —
note A = assms(2—)
from A(1) obtain al b1 where x:
A= (al, bl)
V1. Vazeclkp-set (al, bl) l. case x of (x, m) = m < real (klz) Nz €
XAmeN
collect-clkvt (trans-of (al, b1)) C X
finite X
Vigarl e (al,bl) 1 —9%"U'Ncé¢ setr — kl'c<klc
by (clarsimp elim!: valid-abstraction.cases)
from A(4) %(1,3) have r: set r C X unfolding collect-clkvt-def by
fastforce
from A(4) %(1,5) have ceiling-mono: Vy. y & setr — kl'y < kly by
auto
from A(4) *(1,2) have V (z, m)€&collect-clock-pairs g. m < real (k1 x) A
ze€ X AmeN
unfolding clkp-set-def collect-clkt-def by fastforce

272

from ccompatible] OF this, folded R-def] A(2,3,5) have R C {g|}
unfolding ccompatible-def ccval-def by blast
then have R-id: R N {u. u + g} = R unfolding ccval-def by auto
from
region-set-subs| OF A(3)[unfolded R-def] A(2) «finite X» - r ceiling-mono,
of 0, folded R-def]
have xx:
[[r—0]u);” 2 region-set’ R r 0 [[r—0]u];’ € R ' [r—0]u € [[r—0]u];’
by auto
let R = [[r—0]u];’
from x(1,2) have xxx:
Y (z, m) € collect-clock-pairs (inv-of A 1"). m < real (kl'z) Nz € X A
m € N
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce
from ccompatible[OF this, folded R-def] xx(2—) A(6) have ?R C {inv-of
Al'}
unfolding ccompatible-def ccval-def by blast
then have xxx: R N {u. u I inv-of A I'} = ?R unfolding ccval-def by
auto
with xx(1,2) R-id <?R C - show ?thesis by (auto simp: R’-def)
qed

lemma step-t-r-complete:
assumes
AF (1, u) =% (I'u') valid-abstraction A X (A z. real o kz) V = € X. u
z >0
shows 3 R AR F (I, ([u);)) ~+ (’'RYANuw' € RRANR e Rl
using assms(1) proof (cases)
case A: 1
hence v v' = (u ® d) u ® d + inv-of A1 0 < d and | = I’ by auto
from region-cover’|OF assms(3)] have R: [u]; € R | u € [u]; by auto
from SuccI2[OF R-def’ this(2,1) <0 < d», of [u'];] v/(1) have u'I:
[u; € Suce (R1) ([u];) [u]i € R 1
by auto
from regions-closed'|OF R-def’ R «0 < d»] u'(1) have u'2: u’ € [u']; by
simp
from assms(2) obtain al b1 where
A= (al, bl)
V1. Y zeclkp-set (al, b1) l. case x of (x, m) = m < real (klx) ANz €
XAmeN
collect-clkvt (trans-of (al, b1)) C X
finite X
Vigarle (al,b1)F 1 —9%" "N cé¢ setr — kl'c<klc
by (clarsimp elim!: valid-abstraction.cases)

273

note x = this
from *(1,2) u/(2) have
Y (z, m)€collect-clock-pairs (inv-of Al). m < real (klz) Nz € X Am
eN
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from ccompatible[OF this, folded R-def] u'1(2) u'2 u'(1,2) have [u/]; C
{inv-of A I}
unfolding ccompatible-def ccval-def by auto
with «'1 R(1) assms have AR F (I, ([u];)) ~+ (I,([u];)) by auto
with «'1(2) u'2 <l = Iy show ?thesis by meson
qged

lemma step-a-r-complete:
assumes
At (1, uy =4 (I',u’) valid-abstraction A X (A x. real o kz) V z € X. u
Tz >0
shows 3 R". AR = (I, ([u]1)) ~1q ('’ R) Nu' € R"ANR' € RV
using assms(1) proof cases
case A: (1 gr)
then obtain g » where v v’ = [r—0lu AF 1 —9%" "yt gu'F
inv-of A1’
by auto
let R'= [[r—0]u];’
from region-cover’|OF assms(3)] have R: [u]; € R |l u € [u]; by auto
from step-r-complete-auz[OF assms(2) this(2,1) u'(2,3)] v’ have x:
[ul; C {g} 7R’ D region-set’ ([u;) 7 0 ?R" € R I ?R' C {inv-of A U}
by (auto simp: ccval-def)
from assms(2,3) have collect-clkvt (trans-of A) C X finite X
by (auto elim: valid-abstraction.cases)
with 4/(2) have r: set r C X unfolding collect-clkvt-def by fastforce
from x u'(1) R(2) have v’ € R’ unfolding region-set’-def by auto
moreover have AR = (I,([u];)) ~14 (I, ?R') using R(1) u'(2) * assms(2,3)
by (auto 4 3)
ultimately show ?thesis using x(3) by meson
qged

lemma step-r-complete:
assumes
AF (I, u)y = (I',u’) valid-abstraction A X (A z. real o k) V z € X. u
T >0
shows 3 R a. AR (I, ([u];)) ~a (I',RY Nu'"€ R”"ANR e R
using assms by cases (drule step-a-r-complete step-t-r-complete; auto)+

Compare this to lemma step-z-sound. This version is weaker because for

274

regions we may very well arrive at a successor for which not every valuation
can be reached by the predecessor. This is the case for e.g. the region with
only Greater (k x) bounds.

lemma step-t-r-sound:
assumes AR (I, R) ~, (I',R)
showsV ue R.Iuw' e R.Id>0.AF (I, u) =% (I'u)
using assms(1) proof cases
case A: step-t-r
show “thesis
proof

fix u assume u € R
from set-of-regions|OF A(3)[unfolded R-def], folded R-def, OF this
AW A2)
obtain ¢t where t: t > 0 [u ® t|; = R’ by (auto elim: valid-abstraction.cases)
with regions-closed’ |OF R-def’ A(3) «u € R» this(1)] step-t-r(1) have
(u @ t) € R' by auto
with ¢(1) A(5) have A F (I, u) ="' (I,(u ® t)) unfolding ccval-def by
auto
with ¢t - € R ' =1 show Ju/eR’. 3 t > 0. A+ (I, u) = (I'u))
by meson
qed
qged

lemma step-a-r-sound:
assumes A,R = (I, R) ~q, (I',R)
showsV we R.3 u' € R. Ak (I, u) =4 (I'u)
using assms proof cases
case A: (step-a-r g 1)
show %thesis
proof
fix v assume u € R
from (v € Ry A(/—6) have u + g [r—0u - inv-of A l' [r—0]u € R’
unfolding region-set’-def ccval-def by auto
with A(2) have A F (I, u) —4 (I,[r—0]u) by (blast intro: step-a.intros)
with (- € Ry show Fu'eR’. A+ (I, u) —, (I',u’) by meson
qed
qged

lemma step-r-sound:
assumes AR + (I, R) ~4 (I',R’)
showsV v € R.3 v € R. At (I, u) — (I')u)
using assms
by (cases a; simp) (drule step-a-r-sound step-t-r-sound; fastforce)+

275

lemma step-r’-sound:
assumes AR + (I, R) ~, (IR’
showsV vwe R.3 v e R.AF (I, u)y — (I'u)
using assms by cases (blast dest!: step-a-r-sound step-t-r-sound)

5.12 A New Zone Semantics Abstracting with Closure, ;

definition cla («Closure, -(-)» [71,71] 71)
where
calZ=U{ReRILRNZ#{}}

5.12.1 Single step

inductive step-z-alpha ::

(‘a, 'c, t, 's) ta = 's = ('c, t) zone = 'a action = 's = ('c, t) zone =
bool
(- F (=)~ (= - [61,61,61] 61)
where

step-alpha: A &= (1, Z) ~q (I, Z') = A& (I, Z) ~4(q) (I, Closurea,’
Z’)

inductive-cases[elim!]: A & (I, u) ~qq) (I';u))

declare step-z-alpha.intros|intro]

Single-step soundness and completeness follows trivially from cla-empty-iff.

lemma step-z-alpha-sound:
AF <l, Z> ~a(a) <l/,Z,> — ZCV = Z,# {}
= A Z" AL (I, Z) ~q U Z"Y NZ" £ {}
apply (induction rule: step-z-alpha.induct)
apply (frule step-z-V')
apply assumption
apply (rotate-tac 3)
by (fastforce simp: cla-def)

context
fixes [1’ ::'s

begin

interpretation alpha: AlphaClosure-global - k 1" R I’ by standard (rule
finite)

lemma [simp]:

276

alpha.cla = cla I’
unfolding cla-def alpha.cla-def ..

lemma step-z-alpha-complete:
AL, Z) »o (U2 = Z CV = Z"#{}
=3 2" AF (I, Z) o (W27 N 27 # {}
apply (frule step-z-V')
apply assumption
apply (rotate-tac 3)
apply (drule alpha.cla-empty-iff)
by auto

end

5.12.2 Multi step

definition

step-z-alpha’ :: ('a, 'c, t,'s) ta = 's = (‘c, t) zone = 's = (¢, t) zone =
bool
(¢-F (= =) ~q (- -)» [61,61,61] 61)
where

AV, Z) o (I, 2N =@ Z'ac Ab (I, Z) ~r (L Z) N AF (I, Z)
~a(la) (', Z2"))

abbreviation

steps-z-alpha :: (‘a, 'c, t, 's) ta = 's = (¢, t) zone = 's = (‘c, t) zone
= bool
(¢-F (= =) ~ax (-, -)» [61,61,61] 61)
where

AL Z) ~ox (U, 2"y = N, Z) (U, 2. AE (1, Z) ~q (U, Z)**
(1, 2) (I, z")

P. Bouyer’s calculation for Post(Closures,; Z, e) C Closureq, (Post (Z, €))

This is now obsolete as we argue solely with monotonicty of steps-z w.r.t
Closureq,

Turning P. Bouyers argument for multiple steps into an inductive proof is not
direct. With this initial argument we can get to a point where the induction
hypothesis is applicable. This breaks the "information hiding" induced by
the different variants of steps.

context
fixes [1" ::'s

begin

277

interpretation alpha: AlphaClosure-global - k I R | by standard (rule fi-
nite)
lemma [simp|: alpha.cla = cla | unfolding alpha.cla-def cla-def ..

interpretation alpha’. AlphaClosure-global - k 1" R 1’ by standard (rule
finite)

lemma [simp]: alpha’.cla = cla I’ unfolding alpha’.cla-def cla-def ..

lemma steps-z-alpha-closure-involutive’-auz”:
A1, Z) ~q (I',Z"y = Closureq; Z C Closure,; W = valid-abstraction
AXk= ZCV
= W CZ= 3 W.AF (I, W) ~gq W) N Closure,," Z' C
Closureq,,” W' N W' C Z'
proof (induction A = Al=1--1"=1"-rule: step-z.induct)
case A: (step-t-z Z)
let 7' = Z" N {u. u - inv-of A I}
let W' = W' N {u. ut inv-of A I}
have step-z: A+ (I, W) ~, (I,?W') by auto
moreover have Closure,,; ?Z' C Closureq; ¢W'
proof
fix v assume v: v € Closurey,; 77’
then obtain R’ v’ where 1: R'€ R lve R'v' € R'v' € ?Z' unfolding
cla-def by auto
then obtain v d where
ve Zand v v =ud du®d dt inv-of Al0 < d
unfolding zone-delay-def by blast
with alpha.closure-subs|OF A(4)] A(2) obtain v’ R where u”.
v'e WueRu eRReRI
by (simp add: cla-def) blast
then have Vz€X. 0 < u z unfolding R-def by fastforce
from region-cover’|OF this| have R: [u]; € R | u € [u]; by auto
from SuccI2[OF R-def’ this(2,1) <0 < d», of [v');] v'(1) have v'I:
[v]; € Succ (R 1) ([u];) [v]i € R 1
by auto
from alpha.regions-closed’-spec|OF R(1,2) <0 < d)] v'(1) have v'2: v’
€ [v]; by simp
from A(%) have
V(z, m)eclkp-set Al. m <real (klz) Nz € X NmeN
by (auto elim!: valid-abstraction.cases)
then have
Y (z, m)€collect-clock-pairs (inv-of A l). m < real (klx) Nz € X A
m € N
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from ccompatible|OF this, folded R-def’] v'1(2) v'2 v'(1,2) have 3:

278

[v]; C {inv-of A I}
unfolding ccompatible-def ccval-def by auto
from
alpha.valid-regions-distinct-spec[OF v'1(2) 1(1) v'2 1(3)]
alpha.region-unique-spec[OF u'(2,4)]
have 2: [v/; = R’ [u]; = R by auto
from alpha.set-of-regions-spec|OF u'(4,3)] v'1(1) 2 obtain ¢ where ¢:
t> 0 [u'® t]; = R' by auto
with alpha.regions-closed’-spec|OF u'(4,3) this(1)] step-t-r(1) have x:
u' @ t € R by auto
with #(1) 3 2u/(1,3) have A+ (I, vy = (v ® t) v’ & t € ?W’
unfolding zone-delay-def ccval-def by auto
with x 1(1) have R’ C Closure,,; W’ unfolding cla-def by auto
with 1(2) show v € Closure,, W' ..
qed
moreover have W’ C ?7Z' using «W C Z) unfolding zone-delay-def
by auto
ultimately show ?case unfolding ¢/ = I» by auto
next
case A: (step-a-z g ar Z)
let ?Z' = zone-set (Z N {u. ut g}) r N {u. ut inv-of A1’}
let W' = zone-set (W N {u. ut g}) r N {u. ut inv-of A1’}
from A(1) have step-z: A = (I, W) ~q, (I',?W') by auto
moreover have Closure,,;’ ?Z’ C Closureq,;” ?W'
proof
fix v assume v: v € Closurey ;" 27’
then obtain R’ v’ where R’ € R I'v e R'v' € R'v' € 27’ unfolding
cla-def by auto
then obtain u where
we Zand v:v' =[r—0luubt gv't inv-of AU
unfolding zone-set-def by blast
let ?R'= region-set’ (([u];) N {u. u 't g}) r 0 N {u. u t inv-of A1}
from «u € Z» alpha.closure-subs|OF A(4)] A(2) obtain u’ R where u”:
v'e WueRue€RReRI
by (simp add: cla-def) blast
then have VzeX. 0 < u x unfolding R-def by fastforce
from region-cover’|OF this] have [u]; € R | u € [u]; by auto
have x:
[ule = ([ulp) 0 {u. ul g}
region-set’ ([u];) r 0 C [[r—0]ul;" [[r—0]u)," € R I’
([[r=0]u);) N {u. u b inv-of A 1"} = [[r—0]u);’
proof —
from A(3) have collect-clkvt (trans-of A) C X
Vigarl'c Al —9%"U'Ncésetr —kl'c<klc

279

by (auto elim: valid-abstraction.cases)
with A(1) have set r C X Vy. y & setr — kl'y<kly
unfolding collect-clkvt-def by (auto 4 8)
with
region-set-subs|
of - X kl-0,where k' =k, folded R-def, OF <[u]; € R Iy <u €
[u]p> finite
]
show region-set’ ([u];) v 0 C [[r—0]u);’ [[r—0]u];" € R I’ by auto
from A(3) have x*:
ViV (z, m)eclkp-set Al. m < real (klzx) Nz € X ANm €N
by (fastforce elim: valid-abstraction.cases)+
with A(1) have s*x: V¥ (z, m)€&collect-clock-pairs g. m < real (k1 x)
ANzxeXAmeN
unfolding clkp-set-def collect-clkt-def by fastforce
from «u € [u]p <[u]; € R Iy ccompatible] OF this, folded R-def] <u
g> show
[ui = ([uls) N {u. uF g}
unfolding ccompatible-def ccval-def by blast
have xx: [r—0]u € [[r—0]u];’
using (R’ € R Iy «v’ € R") alpha’.region-unique-spec v'(1) by blast
from * have
Y (z, m)€collect-clock-pairs (inv-of A l'). m < real (k1l'z) Nz € X
AmeN
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce
from sx «[[r—0]ul;’ € R 1> ccompatible|OF this, folded R-def] v’
-» show
([[r—=0]ul;") N {u. u b inv-of A 1"} = [[r—0]u);’
unfolding ccompatible-def ccval-def v’ = -) by blast
qged
from x <v' = -» (u € [u]p have v’ € [[r—0]u];" unfolding region-set’-def
by auto
from alpha’.valid-regions-distinct-spec|OF x(3) «<R' € R 1" «v' € [[r—0]u];"
w' € R
have [[r—0]u];’ = R’.
from alpha.region-unique-spec[OF u'(2,4)] have [u]; = R by auto
from «[u]; = R» %(1,2) *(4) <u’ € R» have
[r—=0]u’ € [[r—=0]u]," u't g [r—0]u"F inv-of Al
unfolding region-set’-def by auto
with «/(1) have [r—0]u’ € ?W’ unfolding zone-set-def by auto
with «[r—0]u" € [[r—0]u];» <[[r—0]u];" € R I have [[r—0]u);’ C
Closureq ;" ?W'
unfolding cla-def by auto
with v € R’ show v € Closure,,;” W' unfolding ¢- = R') ..

280

qed

moreover have ?W' C 27’ using «W C Z) unfolding zone-set-def by
auto

ultimately show ?case by meson
qed

end

lemma step-z-alpha-mono:

AR(L Z) »oqy (Z2) = Z2C W= WC V=3 W.AF (I, W)
~a(a) <ll,W/> NZ'C W
proof goal-cases

case 1

then obtain Z” where x: A& (I, Z) ~, (I'Z") Z' = Closure,,;' Z" by
auto

from step-z-mono[OF this(1) 1(2)] obtain W’ where A F (I, W) ~,
(W' zZ" C W' by auto

moreover with x(2) have Z' C Closure, ;" W' unfolding cla-def by
auto

ultimately show ?case by blast
qged

end

end
theory Approz-Beta

imports DBM-Zone-Semantics Regions-Beta Closure
begin

no-notation infinity (<0o»)

6 Correctness of f-approximation from a-regions

Merging the locales for the two types of regions

locale Regions-defs =
Alpha-defs X for X :: 'c set+
fixes v :: ‘c = nat and n :: nat

281

begin

abbreviation vabstr :: ('c, t) zone = - = - where
vabstr SM = S = [M]yn A (VY i<n. V j<n. M i j # oo — get-const (M
ij) €7Z)

definition V' ={Z. Z C V A (3 M. vabstr Z M)}
end

locale Regions-global =

Regions-defs X vn for X :: 'c set and v n +

fixes k :: 'c = nat and not-in-X

assumes finite: finite X

assumes clock-numbering: clock-numbering’ vn Vk<n. k> 0 — (Jc €
X.ve=k)

VeeX ve<n

assumes not-in-X: not-in-X ¢ X

assumes non-empty: X # {}
begin

definition R-def: R = {Regions.region X I r | I r. Regions.valid-region X
kIr}

sublocale alpha-interp:
AlphaClosure-global X k R by (unfold-locales) (auto simp: finite R-def
V-def)

sublocale beta-interp: Beta-Regions’ X k v n not-in-X
rewrites beta-interp.V =V
using finite non-empty clock-numbering not-in-X unfolding V-def
by — ((subst Beta-Regions.V-def)?, unfold-locales; (assumption | rule
HOL.refl))+
abbreviation Rz where Rg = beta-interp. R
lemmas Rg-def = beta-interp. R-def
abbreviation Approrg = beta-interp. Approxg

6.1 Preparing Bouyer’s Theorem

lemma region-dbm:
assumes R € R

282

defines v = \Ni. THEc.ce X Nvec=1

obtains M

where[M]y,, = R

andV i <n.Vji<n Mi0=c0oAj>0Ni#j— Mij=c0AM

ji =00
andV i <n Mii= Le0
andV i< n.Vji<ni>0ANj>0ANMi0F#£c0oANMjO#oco—
(3 d :: int.
(k)N <dANd<kWiN)AMij=LedANMji= Le (—d))
V(i—k@iH<d—-—I1nNd<k@i)ANMij=LtdANMji=Lt
(~d + 1))

andV i <n.i>0AMi0 #oco—
(Fdeint. d<k@i)ANd>
AN(MiO=LedNMOi=
Lt (—d + 1)))
andV i<n.i>0— 3 duint. — k(i) <dANd<OANMOi=
LedVv M 0i= Lt d))
andV .V j. M ij # oo —> get-const (M ij) € Z
andV i <n.V j<n Mij#ocoAi>0Nj>0 —s
(Fdint. (Mij=LedV Mij=Ltd)N(—k (v'j)<dANd<k
(v"4))
proof —
from assms obtain I r where R: R = region X I r valid-region X k I r
unfolding R-def by blast
let ?Xo = {z € X. 3d. I © = Regions.intv.Intv d}
define f where f =
A z. if isIntv (I x) then Lt (real (intv-const (I z) + 1))
else if isConst (I x) then Le (real (intv-const (I x)))
else oo
define g where g =
A z. if isIntv (I x) then Lt (— real (intv-const (I x)))
else if isConst (I z) then Le (— real (intv-const (I x)))
else Lt (— real (k x))
define h where h =
Xz y. if isIntv (I x) A isIntv (I y) then
if (y, z) € r A (z, y) & rthen Lt (real-of-int (int (intv-const (I z)) —
intv-const (I'y) + 1))
else if (z,y) € r A (y, x) ¢ rthen Lt (int (intv-const (I x)) — intv-const
(1y))
else Le (int (intv-const (I z)) — intv-const (I y))
else if isConst (I x) A isConst (I y) then Le (int (intv-const (I x)) —
intv-const (I y))
else if isIntv (I z) A isConst (I y) then Lt (int (intv-const (I x)) + 1 —
intv-const (I y))

0
Le (—d)V Mi0=LtdANMOi=

283

else if isConst (I x) A isIntv (I y) then Lt (int (intv-const (I z)) —
intv-const (I y))
else 0o
let 2M = X ij.if i = 0 then if j = 0 then Le 0 else g (v’ j)
else if j = 0 then f (v’ Q) else if i = j then Le 0 else h (v’ i)
(v')
have [?M],, C R
proof
fix v assume u: u € [?M],
show u € R unfolding R
proof (standard, goal-cases)
case |
show “case
proof
fix c assume c: c € X
with clock-numbering have c¢2: ve¢<nwvec> 0v' (vc)= cunfolding
v’-def by auto
with u have dbm-entry-val u None (Some ¢) (g c)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
then show 0 < u ¢ by (cases isIntv (I ¢); cases isConst (I ¢)) (auto
simp: g-def)
qged
next
case 2
show ?case
proof
fix c assume c: c € X
with clock-numbering have c¢2: vc¢<nwve> 0v' (vc)= cunfolding
v'-def by auto
with u have x: dbm-entry-val u None (Some ¢) (g ¢) dbm-entry-val
u (Some ¢) None (f c)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
show intv-elem ¢ u (I c)
proof (cases I c)
case (Const d)
then have — isIntv (I ¢) isConst (I ¢) by auto
with x Const show ?thesis unfolding g-def f-def using Const by
auto
next
case (Intv d)
then have isIntv (I ¢) = isConst (I ¢) by auto
with *x Intv show ?Zthesis unfolding g-def f-def by auto
next
case (Greater d)

284

then have — isIntv (I ¢) = isConst (I ¢) by auto
with x Greater R(2) ¢ show ?thesis unfolding g-def f-def by
fastforce
qed
qed
next
show ?X, = ?2Xg ..
show Vz € 2Xo.V y € 2Xq. (z, y) € r +— frac (u z) < frac (u y)
proof (standard, standard)
fix z y assume A: x € ?Xg y € ?Xj
show (z, y) € r «+— frac (u z) < frac (u y)
proof (cases z = y)
case True
have refl-on ?Xy r using R(2) by auto
with A True show ?thesis unfolding refi-on-def by auto
next
case Fulse
from A obtain d d’ where AA:
Iz =1IntvdIy= Intvd isIntv (I z) isIntv (I y) — isConst (I
z) = isConst (I y)
by auto
from A Fualse clock-numbering have B:
ve<nvzr>0v (vr)=zvy<novy>0v (vy =yvz#
vy
unfolding v’-def by auto
with u have x*:
dbm-entry-val u (Some x) (Some y) (h z y) dbm-entry-val u (Some
y) (Some z) (hy x)
dbm-entry-val uw None (Some z) (g x) dbm-entry-val u (Some x)
None (f x)
dbm-entry-val uw None (Some y) (g y) dbm-entry-val u (Some y)
None (f y)
unfolding DBM-zone-repr-def DBM-val-bounded-def by force+
show (z, y) € r «— frac (u x) < frac (u y)
proof
assume C: (z, y) € r
show frac (u x) < frac (u y)
proof (cases (y, z) € 1)
case Fulse
with * AA C have xx:
ur —uy<intd—d
d<uzuz<d+1d<uyuy<d+1
unfolding f-def g-def h-def by auto
from nat-intv-frac-decomp[OF xx(2,3)] nat-intv-frac-decomp| OF

285

xx(4,5)] #+(1) show
frac (u z) < frac (u y)
by simp
next
case True
with * AA C have xx:
vr —uy<intd—d
d<uzuzrz<d+1d<uyuvy<d+1
unfolding f-def g-def h-def by auto
from nat-intv-frac-decomp|OF *x(2,3)] nat-intv-frac-decomp|OF
x%(4,5)] **(1) show
frac (u z) < frac (u y)
by simp
qed
next
assume frac (v z) < frac (u y)
show (z, y) € r
proof (rule ccontr)
assume C: (z,y) ¢ 7
moreover from R(2) have total-on ?X¢ r by auto
ultimately have (y, z) € r using False A unfolding total-on-def
by auto
with %(2—) AA C have *x:
vy —uzx<intd —d
d<uvzuz<d+ 1d <uyuy<d+1
unfolding f-def g-def h-def by auto
from nat-intv-frac-decomp|OF xx(2,3)] nat-intv-frac-decomp| OF
xx(4,5)] *x(1) have
frac (v y) < frac (u z)

by simp
with <frac - < -» show Fulse by auto
qed
qed
qed
qed
qed

qed
moreover have R C [?M],
proof

fix v assume u: v € R
show u € [?M],,, unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (safe, goal-cases)
case I then show ?case by auto
next

286

case (2 ¢)
with clock-numbering have ¢ € X by metis
with clock-numbering have x: ¢ € X v ¢ > 0 v’ (v ¢) = ¢ unfolding
v’-def by auto
with R u have intv-elem c u (I ¢) valid-intv (k ¢) (I ¢) by auto
then have dbm-entry-val u None (Some ¢) (g ¢) unfolding g-def by
(cases I ¢) auto
with * show ?case by auto
next
case (3 ¢)
with clock-numbering have ¢ € X by metis
with clock-numbering have x: ¢ € X v ¢ > 0 v' (v ¢) = ¢ unfolding
v’-def by auto
with R u have intv-elem c u (I ¢) valid-intv (k ¢) (I ¢) by auto
then have dbm-entry-val u (Some ¢) None (f ¢) unfolding f-def by
(cases I ¢) auto
with * show ?case by auto
next
case (4 cl1 c2)
with clock-numbering have c1 € X ¢2 € X by metis+
with clock-numbering have x:
cleXvel >0v (vel)=clc2e€Xve2>0v (ve2) = c2
unfolding v’-def by auto
with R v have
intv-elem c1 u (I c1) valid-intv (k c1) (I c1)
intv-elem c2 u (I ¢2) valid-intv (k c2) (I c2)
by auto
then have dbm-entry-val u (Some c1) (Some c2) (h ¢l c2) unfolding
h-def
proof(cases I c1, cases I c2, fastforce+, cases I ¢2, fastforce, goal-cases)
case (1 d d’)
then show ?case
proof (cases (c2, c1) € r, goal-cases)
case !
show Zcase
proof (cases (c1, c2) € r)
case True
with 1 *(1,4) R(1) v have frac (u c1) = frac (u ¢2) by auto
with 1 have u ¢l — u ¢2 = real d — d’ by (fastforce dest:
nat-intv-frac-decomp)
with 1 show ?thesis by auto
next
case Fualse with I show ¢thesis by auto
qed

287

next
case 2
show Zcase
proof (cases c1 = ¢2)
case True then show ?thesis by auto
next
case Fulse
with 2 R(2) x(1,4) have (c1, c¢2) € r by (fastforce simp:
total-on-def)
with 2 *(1,4) R(1) v have frac (u c1) < frac (u ¢2) by auto
with 2 have u ¢! — u ¢2 < real d — d’ by (fastforce dest:
nat-intv-frac-decomp)
with 2 show ?thesis by auto
qed
qged
qed fastforce+
then show “case
proof (cases v c1 = v c2, goal-cases)
case True with x clock-numbering have c1 = c2 by auto
then show ?thesis by auto
next
case 2 with x show ?case by auto
qed
qed
qed
ultimately have [?M], , = R by blast
moreover haveV i < n.V j<n. 2Mi0=c0oANj>0Ni#j— M
ij=o00 AN ?Mji=o0
unfolding f-def h-def by auto
moreover haveV i < n. ?M i i = Le 0 by auto
moreover
{fixijassume A: i <nj<ni>0j>0?Mi0 # o0 ?Mj0 #
with clock-numbering(2) obtain c1 c2 where B: vc¢l =ivc2 =jcl
€ X c2 € X by meson
with clock-numbering(1) A have C: v’ i = ¢l v’ j = ¢2 unfolding
v'-def by force+
from R(2) B have wvalid: valid-intv (k c1) (I c¢1) valid-intv (k c2) (I
c2) by auto
have 3 d :int. (— k(v j) <dANd<k W i)ANMij=LedN ?M

ji= Le (—d)
V(—EWH<d—1Nd<k@iANMij=LtdN ?Mji= Lt
(=d + 1))
proof (cases i = j)
case True

288

then show ?thesis by auto
next
case Fulse
then show ?thesis
proof (cases I c1, goal-cases)
case I
then show ?Zcase
proof (cases I c2)
case Const
let ?d = int (intv-const (I c1)) — int (intv-const (I c2))
from Const 1 have isConst (I c1) isConst (I c2) by auto
with A(1—4) C valid show ?thesis unfolding h-def by (intro
exI[where = = ?2d]) auto
next
case Intv
let ?d = int(intv-const (I c1)) — int (intv-const (I c2))
from Intv 1 have isConst (I c1) isIntv (I c2) by auto
with A(1—4) C valid show ?%thesis unfolding h-def by (intro
exlI[where = = ?d]) auto
next
case Greater
then have — isIntv (I ¢2) — isConst (I c¢2) by auto
with A 1(1) C have Fualse unfolding f-def by simp
then show ?thesis by fast
qed
next
case 2
then show Zcase
proof (cases I ¢2)
case Const
let ?d = int (intv-const (I c1)) + 1 — int (intv-const (I c2))
from Const 2 have isIntv (I c1) isConst (I ¢2) by auto
with A(1—4) C valid show ?thesis unfolding h-def by (intro
exlI[where =z = ?d]) auto
next
case Intv
with 2 have x: isIntv (I c1) isIntv (I c2) by auto
from Intv A(1—4) C show ?thesis apply simp
proof (standard, goal-cases)
case I
show Zcase
proof (cases (¢2, c1) € r)
case True
note 1" = this

289

show ?thesis
proof (cases (c1, c2) € 1)
case True
let ?d = int (intv-const (I c1)) — int (intv-const (I c2))
from True T * valid show ?thesis unfolding h-def by (intro
exlI[where = = ?d]) auto
next
case Fulse
let ?d = int (intv-const (I c¢1)) — int (intv-const (I ¢2)) + 1
from Fualse T x valid show ?thesis unfolding h-def by (intro
exl[where =z = ?2d]) auto
ged
next
case Fulse
let ?d = int (intv-const (I c¢1)) — int (intv-const (I c2))
from Fulse x valid show ?thesis unfolding h-def by (intro
exI[where = = ?2d]) auto
qed
qed
next
case Greater
then have — isIntv (I ¢2) — isConst (I c¢2) by auto
with A 2(1) C have Fualse unfolding f-def by simp
then show ?thesis by fast
qed
next
case 3
then have — isIntv (I c1) — isConst (I c1) by auto
with A 3(1) C have Fualse unfolding f-def by simp
then show ?thesis by fast
qged
qged
}
moreover
{fix iassume A: i <ni>0?Mi0 #
with clock-numbering(2) obtain cI where B: v ¢l = i cl € X by
meson
with clock-numbering(1) A have C: v’ i = c¢I unfolding v’-def by
force+
from R(2) B have wvalid: valid-intv (k c1) (I c1) by auto
have 3 d :int. d <k (v' i) ANd >0
AN(PMi0=1Led N ?MOi=Le(—d)V ¢Mi0=LtdA ?M0i=
Lt (-d + 1))
proof (cases i = 0)

290

case True
then show ?thesis by auto
next
case Fulse
then show ?thesis
proof (cases I c1, goal-cases)
case I
let ?d = int (intv-const (I c1))
from 1 have isConst (I c¢1) = isIntv (I c1) by auto
with A C wvalid show ?thesis unfolding f-def g-def by (intro
exl[where =z = ?2d]) auto
next
case 2
let ?d = int (intv-const (I c1)) + 1
from 2 have isIntv(I c1) — isConst (I c¢1) by auto
with A C wvalid show ?thesis unfolding f-def g-def by (intro
exI[where = = ?2d]) auto
next
case 3
then have — isIntv (I ¢1) — isConst (I c1) by auto
with A 3(1) C have Fulse unfolding f-def by simp
then show ?thesis by fast
qed
qed
}
moreover
{ fix i assume A: i < ni> 0
with clock-numbering(2) obtain ¢! where B: v ¢l = icl € X by
meson
with clock-numbering(1) A have C: v’ i = c¢I unfolding v’-def by
force+
from R(2) B have valid: valid-intv (k c1) (I c1) by auto
have 3 d = int. — k (v i) <dANd<ON(?MOi=1LedV ?M0i=
Lt d)
proof (cases i = 0)
case True
then show ?thesis by auto
next
case Fulse
then show ?thesis
proof (cases I c1, goal-cases)
case I
let ?d = — int (intv-const (I c1))
from 1 have isConst (I c¢1) = isIntv (I c1) by auto

291

with A C wvalid show ?thesis unfolding f-def g-def by (intro
exlI[where = = ?2d]) auto
next
case 2
let ?d = — int (intv-const (I c1))
from 2 have isIntv(I c1) — isConst (I c¢1) by auto
with A C wvalid show ?thesis unfolding f-def g-def by (intro
exlI[where = = ?d]) auto
next
case 3
let ?2d = — (k c1)
from 3 have — isIntv (I c1) — isConst (I c¢1) by auto
with A C show ?thesis unfolding g-def by (intro exI[where z =
2d]) auto
qed
qed
}
moreover have V . V j. ?M i j # oo — get-const (?M i j) € Z
unfolding f-def g-def h-def by auto
moreover haveV i <n.V j<n.i>0ANj>0N?Mij+# o
— (3 d::int. (PMij=LedV Mij=Ltd) N(—k (v'j) <dA
d <k (v'i)
proof (auto, goal-cases)
case A: (11i}7)
with clock-numbering(2) obtain cI ¢2 where B: vecl =icl € X v c2
= jc2 € X by meson
with clock-numbering(1) A have C: v’ i = ¢I v’ j = ¢2 unfolding
v’-def by force+
from R(2) B have wvalid: valid-intv (k c¢1) (I c¢1) valid-intv (k ¢2) (I
c2) by auto
with A B C show ?Zcase
proof (simp, goal-cases)
case 1
show ?case
proof (cases I c1, goal-cases)
case I
then show Zcase
proof (cases I ¢2)
case Const
let ?d = int (intv-const (I c¢1)) — int (intv-const (I c¢2))
from Const 1 have isConst (I c1) isConst (I c2) by auto
with A(1—4) C valid show ?thesis unfolding h-def by (intro
exlI[where = = ?d]) auto
next

292

case Intv
let ?d = int(intv-const (I c1)) — int (intv-const (I c2))
from Intv 1 have isConst (I c1) isIntv (I c2) by auto
with A(1—4) C valid show ?thesis unfolding h-def by (intro
exI[where = = ?d]) auto
next
case Greater
then have — isIntv (I ¢2) — isConst (I c2) by auto
with A 1(1) C show ?%thesis unfolding h-def by simp
qed
next
case 2
then show Zcase
proof (cases I ¢2)
case Const
let ?d = int (intv-const (I c¢1)) + 1 — int (intv-const (I c2))
from Const 2 have isIntv (I c1) isConst (I c2) by auto
with A(1—4) C valid show ?%thesis unfolding h-def by (intro
exlI[where = = ?d]) auto
next
case Intv
with 2 have x: isIntv (I c1) isIntv (I c2) by auto
from Intv A(1—4) C show ?thesis
proof goal-cases
case I
show “case
proof (cases (¢2, c1) € r)
case True
note 1" = this
show %thesis
proof (cases (c1, c2) € r)
case True
let ?d = int (intv-const (I c1)) — int (intv-const (I c2))
from True T * valid show ?thesis unfolding h-def by (intro
exI[where z = ?d]) auto
next
case Fulse
let ?d = int (intv-const (I c¢1)) — int (intv-const (I ¢2)) + 1
from False T * valid show ?thesis unfolding h-def by (intro
exI[where z = ?d]) auto
qed
next
case Fulse
let ?d = int (intv-const (I c¢1)) — int (intv-const (I c¢2))

293

from Fulse x valid show ?thesis unfolding h-def by (intro
exlI[where = = ?2d]) auto
qed
qed
next
case Greater
then have — isIntv (I c2) — isConst (I ¢2) by auto
with A 2(1) C show ?thesis unfolding h-def by simp
qged
next
case 3
then have — isIntv (I c1) — isConst (I c1) by auto
with A 3(1) C show ?thesis unfolding h-def by simp
qed
qged
qed
moreover show ?thesis
apply (rule that)
apply (rule calculation(1))
apply (rule calculation(2))
apply (rule calculation(3))
apply (blast intro: calculation)+
apply (rule calculation(7))
using calculation(8) apply blast
done
qed

lemma len-inf-elem:

(a, b) € set (arcs ijxs) = M ab=o00=len M ijzs= 00
apply (induction rule: arcs.induct)

apply (auto simp: add)

apply (rename-tac o’ b’ x xs)

apply (case-tac M o’ x)
by auto

lemma zone-diag-It:
assumes ¢ < nb<nand C:vcl =avc2=>band notl: a > 0b> 0
shows [(A ¢ j. if i = a AN j = b then Lt d else 00)]y,n = {u. u c1 — u c2
< d}
unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (standard, goal-cases)
case 1
then show ?Zcase using <a < ny <b < n» C by fastforce
next

294

case 2
then show ?case
proof (safe, goal-cases)
case 1 from not0 show ?Zcase unfolding dbm-le-def by auto
next
case 2 with not0 show ?case by auto
next
case 3 with not0 show ?case by auto
next
case (4 u' y 2)
show ?case
proof (casesvy =a A vz=D0)
case True
with /4 clock-numbering C <a < n» <b < n» have v’y — v’ 2 < d by
metis
with True show ?thesis by auto
next
case Fulse then show ?thesis by auto
qged
qed
qed

lemma zone-diag-le:
assumes ¢ < nb<nand C:vcl =avc2=>band notl: a> 0b> 0
shows [(A i j. if i = a A j = b then Le d else 00)]yn = {u. u c1 — u c2
< d}
unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (rule, goal-cases)
case [
then show ?Zcase using <a < ny <b < n» C by fastforce
next
case 2
then show ?case
proof (safe, goal-cases)
case ! from not0 show ?Zcase unfolding dbm-le-def by auto
next
case 2 with not0 show ?case by auto
next
case 8 with not0 show ?case by auto
next
case (4 u' y 2)
show ?case
proof (casesvy =a A vz="0)
case True

295

with /4 clock-numbering C <a < n» <b < n» have v’y — v’ 2 < d by
metis
with True show ?thesis by auto
next
case Fulse then show ?thesis by auto
qged
qed
qed

lemma zone-diag-lt-2:
assumes ¢ < nand C: v ¢ = a and not0: a > 0
shows [(A i j. ifi = a N j = 0then Lt d else o))y = {u. v c < d}
unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (rule, goal-cases)
case [
then show ?case using <a < ny C by fastforce
next
case 2
then show ?Zcase
proof (safe, goal-cases)
case 1 from not0 show ?case unfolding dbm-le-def by auto
next
case 2 with not0 show ?case by auto
next
case (3 u c)
show ?case
proof (cases v ¢ = a)
case Fulse then show ?thesis by auto
next
case True
with 3 clock-numbering C <a < ny have u ¢ < d by metis
with C show ?thesis by auto
ged
next
case (4 u' y 2)
from clock-numbering(1) have 0 < v z by auto
then show ?case by auto
qed
qged

lemma zone-diag-le-2:

assumes ¢ < nand C: v ¢ = a and not0: a > 0

shows [(A i j. if i = a N j = 0 then Le d else 0)]y,n = {u. v c < d}
unfolding DBM-zone-repr-def DBM-val-bounded-def

296

proof (rule, goal-cases)
case |
then show ?case using <a < ny C by fastforce
next
case 2
then show ?case
proof (safe, goal-cases)
case 1 from not0 show ?case unfolding dbm-le-def by auto
next
case 2 with not0 show ?case by auto
next
case (3 u c)
show ?case
proof (cases v ¢ = a)
case Fulse then show ?thesis by auto
next
case True
with 3 clock-numbering C <a < n» have u ¢ < d by metis
with C show ?thesis by auto
ged
next
case (4 u' y 2)
from clock-numbering(1) have 0 < v z by auto
then show ?case by auto
qed
qed

lemma zone-diag-lt-3:
assumes ¢ < nand C: v ¢ = a and not0: a > 0
shows [(A i j. ifi = 0 A j = athen Lt d else 00)]yn = {u. — v c < d}
unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (rule, goal-cases)
case [
then show ?case using (a < n» C by fastforce
next
case 2
then show ?case
proof (safe, goal-cases)
case 1 from not0 show ?case unfolding dbm-le-def by auto
next
case (2 u ¢)
show ?case
proof (cases v ¢ = a, goal-cases)
case Fulse then show ?Zthesis by auto

297

next
case True
with 2 clock-numbering C <a < n» have — u ¢ < d by metis
with C show ?thesis by auto
qed
next
case (3 u) with not0 show ?case by auto
next
case (4 u'y z)
from clock-numbering(1) have 0 < v y by auto
then show ?case by auto
qed
qged

lemma len-int-closed:
Vij(Mij:real) € Z = len Mijzs €Z
by (induction xs arbitrary: i) auto

lemma get-const-distr:
a # 00 = b # oo = get-const (a + b) = get-const a + get-const b
by (cases a) (cases b, auto simp: add)+

lemma len-int-dbm-closed:

V (i, j) € set (arcs i j xs). (get-const (M i j) :: real) € Z N M ij # o0

= get-const (len M ijzs) € Z N len M i jxs # oo
by (induction zs arbitrary: i) (auto simp: get-const-distr, simp add: dbm-add-not-inf
add)

lemma zone-diag-le-3:
assumes ¢ < nand C: v ¢ = a and not0: a > 0
shows [(A i j. if i = 0 N j = a then Le d else 0)]y.n = {u. — v c < d}
unfolding DBM-zone-repr-def DBM-val-bounded-def
proof (rule, goal-cases)
case !
then show ?case using <a < n» C by fastforce
next
case 2
then show ?case
proof (safe, goal-cases)
case | from not0 show ?case unfolding dbm-le-def by auto
next
case (2 u c)
show ?case
proof (cases v ¢ = a)

298

case Fulse then show ¢thesis by auto
next
case True
with 2 clock-numbering C <a < n» have — u ¢ < d by metis
with C show ?thesis by auto
qged
next
case (3 u) with not0 show ?Zcase by auto
next
case (4 u' y 2)
from clock-numbering(1) have 0 < v y by auto
then show “case by auto
qed
qed

lemma dbm-It".
assumes My, C VMab< Ltda<nb<nwvcl=avc2=0ba>
0b>10
shows [M]yn, C{ue V.ucl —uc2 <d}
proof —
from assms have [M]yn C [(Aij. ifi = a A j = b then Lt d else 00)]yn
apply safe
apply (rule DBM-le-subset)
unfolding less-eq dbm-le-def by auto
moreover from zone-diag-lt{OF <a < ny <b < n) assms(5—)]
have [(A i j. if i = a A j = b then Lt d else 00)]yn = {u. ucl — uc2 <
d} by blast
moreover from assms have [M],, C V by auto
ultimately show ?thesis by auto
qged

lemma dbm-It'2:
assumes My, C VMa0<Ltda<nvcl =aa>0
shows [M]yn, C {ue V. ucl < d}
proof —
from assms(2) have M|y, C [(Aij. if i = a AN j = 0 then Lt d else
OO)]v,n
apply safe
apply (rule DBM-le-subset)
unfolding less-eq dbm-le-def by auto
moreover from zone-diag-lt-2[OF <a < n) assms(4,5)]
have (A ij. if i = a A j = 0 then Lt d else 00)]yn = {u. u cl < d} by
blast
ultimately show ?thesis using assms(1) by auto

299

qed

lemma dbm-It's:
assumes My, C VMOa<Ltda<nvcl =aa>0
shows [M]yn C{ue V. —ucl <d}
proof —
from assms(2) have [M]yn C [(Aij. if i = 0 N j = a then Lt d else
OO)]v,n
apply safe
apply (rule DBM-le-subset)
unfolding less-eq dbm-le-def by auto
moreover from zone-diag-lt-3[OF <a < ny assms(4,5)]
have [(A ij. if i = 0 A j = a then Lt d else 00)]yn = {u. — u cl < d}
by blast
ultimately show ?thesis using assms(1) by auto
qed

lemma dbm-le".
assumes My, C VMab<Leda<nb<nwvcl =avc2=0ba>
0b>0
shows [M]yn, C{ue V.ucl —uc2 < d}
proof —
from assms have [M]yn C [(Aij. if i = a A j = b then Le d else 00)]yn
apply safe
apply (rule DBM-le-subset)
unfolding less-eq dbm-le-def by auto
moreover from zone-diag-le]OF <a < n» <b < n» assms(5—)]
have [(A ¢ j. ifi = a A j = b then Le d else 00)]yn = {u. ucl —uc2 <
d} by blast
moreover from assms have [M],, C V by auto
ultimately show ?thesis by auto
qged

lemma dbm-le’2:
assumes My, C VMa0<Leda<nvel =aa>0
shows [M]yn, C {ue V. ucl <d}
proof —
from assms(2) have [M]y, C [(Aij. if i = a A j = 0 then Le d else
OO)]v,n
apply safe
apply (rule DBM-le-subset)
unfolding less-eq dbm-le-def by auto
moreover from zone-diag-le-2[OF <a < n) assms(4,5)]
have [(A ij. if i = a A j = 0 then Le d else 00)]yn = {u. u ¢l < d} by

300

blast
ultimately show ?thesis using assms(1) by auto
qed

lemma dbm-le’3:
assumes My, C VMOa<Leda<nwvcl =aa>0
shows [M]yn C{ue V. —ucl < d}
proof —
from assms(2) have [M]yn, C [(Aij. if i = 0 N j = a then Le d else
OO)]v,n
apply safe
apply (rule DBM-le-subset)
unfolding less-eq dbm-le-def by auto
moreover from zone-diag-le-3[OF <a < n) assms(4,5)]
have [(A i j. if i = 0 A j = a then Le d else 00)]yn = {u. — u ¢l < d}
by blast
ultimately show ?thesis using assms(1) by auto
qed

lemma int-zone-dbm:

assumes YV (-,d) € collect-clock-pairs cc. d € Z N ¢ € collect-clks cc. v ¢
<n

obtains M where {u. u F cc} = [M]y, and dbm-int M n
using int-zone-dbm|[OF - assms] clock-numbering(1) by auto

lemma non-empty-dbm-diag-set’:

assumes clock-numbering’ v n ¥V i<n.Vj<n. M ij # oo — get-const (M
ij) €Z

Mo #)

obtains M’ where [M],, = [M']yn A (Vi<n. Vj<n. M'ij # oo —

get-const (M' i j) € Z)
ANV i<n Mii=0)

proof —

let M = Xij. if i = j then 0 else M i j

from non-empty-dbm-diag-set|OF assms(1,3)] have [M]y n = [?M]yn by
auto

moreover from assms(2) have Vi<n.Vj<n. M ij # oo — get-const
(?Mij) ez

unfolding neutral by auto

moreover have V i < n. ?M i { = 0 by auto

ultimately show ?thesis by (auto intro: that)
ged

lemma dbm-entry-int:

301

(z :: t DBMEntry) # oo = get-const v € Z =—> 3 d :: int. x = Le d V
x=1Ltd
apply (cases z) using Ints-cases by auto

6.2 Bouyer’s Main Theorem

theorem region-zone-intersect-empty-approz-correct:
assumes R € R Z C VRN Z = {} vabstr Z M
shows R N Approzg Z = {}
proof —
define v where v' =\ i. THE c.c€ X Nve =1
from region-dbm[OF assms(1)] obtain Mp where Mp:
[Mplon = RVi<n. Vj<n. Mpi0 =co A0 <jAi#j— Mpij
=00 AMpji=o
Vi<n. Mg i1 = Le 0
Vi<n. Vj<n. 0 < i N0 <jAMrpi0#0c0ANMgrj0 # oo —
(3d. —int (k (THEc. ce X Nve=7) <dAd<int(k(THE c. c
eEX ANve=1))
ANMpij=Led N Mpgji= Le (real-of-int (— d))
V —int (k(THEc.ce X Nve=3j) <d—-1ANd<int(k(THE
c.cce X Nve=ri))
ANMpij=LtdAN Mg ji= Lt (real-of-int (— d + 1)))
Vi<n. 0 < iANMpi0# oo — (Fd<int (k (THEc.c€e X Nvc=
i)).d>0AN
(Mrp 10 =1LedAN Mg 0i= Le (real-of-int (— d)) V Mr i 0 = Lt d
AN Mg 01 = Lt (real-of-int (— d + 1))))
Vi<n. 0 < i — (3d>— int (k (THEc. c€ X Nve=1)).d<0A
(MR Oi=LedV Mg 0i= Lt d))
Vij. Mrij# oo — get-const (Mg ij) € Z
Vi<n. Vji<n. Mpij# oo N0 <iNO0<j— (3d. (Mrij= Led
V Mpij= Ltd)
AN—int (k(THEc.ce X Nve=17j) <dANd<int(k(THE c. c
e X ANve=1)))

show ?thesis
proof (cases R = {})
case True then show ?thesis by auto
next
case False
from clock-numbering(2) have cn-weak: Vk<n. 0 <k — (3 c. vec =
k) by auto

show ?thesis
proof (cases Z = {})

302

case True
then show ?thesis using beta-interp.apx-empty by blast
next
case Fulse
from assms(4) have
Z = [M]ynV i<n. ¥V j<n. M i j # oo — get-const (M i j) € Z
by auto
from this(1) non-empty-dbm-diag-set’|OF clock-numbering(1) this(2)]
«Z # {}> obtain M where M:
Z = [M]yn N (Vi<n. Vj<n. M ij # oo — get-const (M i j) € Z)
A(Vi<n. Mii=0)
by auto
with not-empty-cyc-free|OF cn-weak] False have cyc-free M n by auto
then have cycle-free M n using cycle-free-diag-equiv by auto
from M have Z = [FW M n], , unfolding neutral by (auto intro!:
FW-zone-equiv[OF cn-weak])
moreover from fw-canonical|OF <cyc-free M -] M have canonical
(FW Mn)n
unfolding neutral by auto
moreover from FW-int-preservation M have
Vi<n.Vj<n. FW M nij # oo — get-const (FW M nij) € Z
by auto
ultimately obtain M where M:
[M]y,n = Z canonical M n ¥Vi<n. Vj<n. M ij # oo — get-const
(Mij)ez
by blast
let M = X i j. min (M ij) (Mg ij)
from M (1) Mg(1) assms have [M]y, N [MRglyn = {} by auto
moreover from DBM-le-subset|folded less-eq, of n M M| have [?M]y p
C [M]y,n by auto
moreover from DBM-le-subset|folded less-eq, of n M Mp] have
[?M]y,n C [MR]y,n by auto
ultimately have [?M], , = {} by blast
then have — cyc-free ?M n using cyc-free-not-empty[of n M v]
clock-numbering(1) by auto
then obtain ¢ zs where zs: i < n set s C {0..n} len ?M i i zs < 0
by auto
from this(1,2) canonical-shorten-rotate-neg-cycle]OF M(2) this(2,1,3)]
obtain ¢ ys where ys:
len ?Miiys < 0
set ys C {0..n} successive (A(a, b). ?M a b= M a b) (arcs i i ys) i
<n
and distinct: distinct ys i ¢ set ys
and cycle-closes: ys # [| — ?M i (hd ys) # M i (hd ys) V ?M (last

303

ys) i # M (last ys) i
by fastforce

have one-M-aux:
len ?M i jys = len Mg ijysif vV (a,b) € set (arcsijys). Mab>
Mp a b for j
using that by (induction ys arbitrary: i) (auto simp: min-def)
have one-M: 3 (a,b) € set (arcs i iys). Mab< Mg ab
proof (rule ccontr, goal-cases)
case I
then have V (a, b)€set (arcs i i ys). Mg a b < M a b by auto
from one-M-auz[OF this| have len ?M i iys = len Mp i i ys .
with Nil ys(1) zs(3) have len Mg i i ys < 0 by simp
from DBM-val-bounded-neg-cycle[OF - <i < n» <set ys C -» this
cn-weak]
have [MRg|yn = {} unfolding DBM-zone-repr-def by auto
with (R # {}> Mr(1) show Fulse by auto
qed
have one-M-R-auz:
len M ijys=1len MijysifV (a,b) € set (arcsijys). Mab<
Mp a b for j
using that by (induction ys arbitrary: i) (auto simp: min-def)
have one-M-R: 3 (a,b) € set (arcs iiys). Mab> Mg ab
proof (rule ccontr, goal-cases)
case I
then have V (a, b)eset (arcs iiys). Mg a b > M a b by auto
from one-M-R-auz[OF this| have len ?M iiys = len M i i ys .
with Nil ys(1) zs(3) have len M i i ys < 0 by simp
from DBM-val-bounded-neg-cycle[OF - <i < n» <set ys C -» this
cn-weak]
have [M], , = {} unfolding DBM-zone-repr-def by auto
with «Z # {}» M(1) show False by auto
qged

have 0: (0,0) ¢ set (arcs i i ys)

proof (cases ys = [])
case Fulse with distinct show ?thesis using arcs-distinct! by blast
next

case True with ys(1) have ?M i i < 0 by auto
then have M ii < 0V Mg ii < 0 by (simp add: min-less-iff-disj)
from one-M one-M-R True show ?thesis by auto

qed

{ fix a b assume A: (a,b) € set (arcs i i ys)

304

assume not0: a > 0
from aux1[OF ys(4,4,2) A] have C2: a < n by auto
then obtain c7 where C: vcl =acl € X
using clock-numbering(2) not0 unfolding v’-def by meson
then have v/ a = c1 using clock-numbering C2 not0 unfolding
v’-def by fastforce
with C C2 haved c€ X.vc=a A v a=ca<nby auto
} note clock-dest-1 = this
{ fix a b assume A: (a,b) € set (arcs i i ys)
assume not0: b > 0
from aux1[OF ys(4,4,2) Al have C2: b < n by auto
then obtain ¢2 where C: v ¢c2 =bc2 € X
using clock-numbering(2) not0 unfolding v’-def by meson
then have v/ b = ¢2 using clock-numbering C2 not0) unfolding
v’-def by fastforce
with C C2 haved c€ X.vc=bA v b= cb<nby auto
} note clock-dest-2 = this
have clock-dest:
N\ ab. (a,b) € set (arcsiiys) = a>0=b> 0=
JceleX. F3c2eXvel =ahNve2=bAva=cl ANv' b=
c2 &&& a < n &&& b < n
using clock-dest-1 clock-dest-2 by (auto) presburger

{ fix a assume A: (a,0) € set (arcs i i ys)
assume not0: a > 0
assume bounded: Mpr a 0 # oo
assume lt: M a 0 < Mg a 0
from clock-dest-1[OF A not0] obtain cI where C:
vel =acl € Xv'a=cland C2:a<n
by blast
from C2 not0 bounded M r(5) obtain d :: int where x*:
d < int (k (v" a))
MraO=Led NMgrOa=Le(—d)VMrpaO=LtdNMpgr?O0
a=Lt(—d+1)
unfolding v’-def by auto
with C have xx: d < int (k c1) by auto
from x(2) have ?thesis
proof (standard, goal-cases)
case 1
with [t have M o 0 < Le d by auto
then have M o 0 < Lt d unfolding less less-eq dbm-le-def by
(fastforce elim!: dbm-It.cases)
from dbm-It'2[OF assms(2)[folded M(1)] this C2 C(1) not0] have
Mlyn C{ue V.uecl <d}

305

by auto
from beta-interp.3-boundedness-It'|OF xx C(2) this, unfolded
Rp-def] have
Approzg ([Mlyn) C {ue V. ucl < d}

moreover
{ fix v assume u: u € [MR|yn
with C' C2 have
dbm-entry-val u (Some c¢1) None (Mg a 0) dbm-entry-val u
None (Some c1) (Mg 0 a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
then have u cI = d using 1 by auto
then have u ¢ {u € V. u ¢l < d} by auto
}
ultimately show ?thesis using M r(1) M(1) by auto
next
case 2
from 2 It have M a 0 # oo by auto
with dbm-entry-int[OF this] M(3) <a < m»
obtain d’:: int where d: M a 0 = Led'V M a 0 = Lt d' by auto
then have M a 0 < Le (d — 1) using It 2
apply (auto simp: less-eq dbm-le-def less)
apply (cases rule: dbm-lt.cases)
apply auto
apply rule
apply (cases rule: dbm-lt.cases)
by auto
with It have M a 0 < Le (d — 1) by auto
from dbm-le’2[OF assms(2)[folded M(1)] this C2 C(1) not0] have
Mlyn C{ue V.ucel <d-— 1}
by auto
from beta-interp.3-boundedness-le’|OF - C(2) this] *x have
Approzg ((Mlyn) C{ue V.ucl <d— 1}
by auto
moreover
{ fix v assume u: v € [MRg]yn
with C' C2 have
dbm-entry-val u None (Some c1) (Mg 0 a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
then have u ¢! > d — 1 using 2 by auto
then have u ¢ {u € V. ucl < d — 1} by auto
}
ultimately show #thesis using M (1) M(1) by auto
qed

306

} note bounded-zero-1 = this

{ fix a assume A: (0,a) € set (arcs i i ys)
assume not0: a > 0
assume bounded: Mp a 0 # oo
assume lt: M 0a < Mg 0 a
from clock-dest-2][OF A not0] obtain ¢! where C:
vel =acl € Xv'a=-cland C2: a <n
by blast
from C2 not0 bounded M r(5) obtain d :: int where x*:
d < int (k (v’ a))
MrpaO=Led NMprpOa=Le(—d)VMrpaO=LtdANMpgr?O0
a=Lt(—d+1)
unfolding v’-def by auto
with C have xx: — int (k c¢1) < — d by auto
from x(2) have ?thesis
proof (standard, goal-cases)
case |
with I/t have M 0 a < Le (—d) by auto
then have M 0 a < Lt (—d) unfolding less less-eq dbm-le-def by
(fastforce elim!: dbm-It.cases)
from dbm-It'3[OF assms(2)[folded M(1)] this C2 C(1) not0] have
My C{ue V.d <wucl}
by auto
from beta-interp.B-boundedness-gt'|OF - C(2) this] *+ have
Approzg ((Mlyn) C{ue V. —ucl < —d}
by auto
moreover
{ fix v assume u: u € [MR|yn
with C' C2 have
dbm-entry-val u (Some c¢1) None (Mg a 0) dbm-entry-val u
None (Some c1) (Mg 0 a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with 7 have u ¢ {u € V. — u c1 < —d} by auto
}
ultimately show ?thesis using M (1) M(1) by auto
next
case 2
from 2 It have M 0 a # oo by auto
with dbm-entry-int[OF this] M(3) <a < n»
obtain d’:: int where d: M 0 a = Led' VvV M 0 a = Lt d’ by auto
then have M 0 a < Le (—d) using It 2
apply (auto simp: less-eq dbm-le-def less)
apply (cases rule: dbm-lt.cases)

307

apply auto
apply rule
apply (metis get-const.simps(2) 2 of-int-less-iff of-int-minus
zless-add1-eq)

apply (cases rule: dbm-lt.cases)
apply auto
apply (rule dbm-lt.intros(5))

by (simp add: int-lt-Suc-le)

from dbm-le'3[OF assms(2)[folded M(1)] this C2 C(1) not0] have
Mlyn C{ue V.d < ucl}

by auto

from beta-interp.5-boundedness-ge'|OF - C(2) this] xx have
Approzg ((Mlyn) C{ue V. —ucl < —d}

by auto

moreover

{ fix v assume u: v € [MR]yn
with C' C2 have

dbm-entry-val u (Some c¢1) None (Mg a 0)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with 2 have u ¢ {u € V. — u c1 < —d} by auto

}

ultimately show ?thesis using M r(1) M(1) by auto

qed
} note bounded-zero-2 = this

{ fix a b ccl c2 assume A: (a,b) € set (arcs i i ys)
assume not0: a > 0b > 0
assume lt: M a b= Lt c
assume neg: Ma b+ Mp ba < 0
assume C:vcl =ave2=bcleXc2eXand C2: a<nb<n
assume valid: —k c¢2 < —get-const (Mpr b a) —get-const (Mg b a)
<kecl
from neg have Mg b a # oo by auto
then obtain d where x: Mg ba= LedV Mg b a = Lt d by (cases
Mpg b a, auto)+
with Mg(7) «- - - # co» have d € Z by fastforce
with * obtain d :: int where x: Mrba=LedV Mrpba=Ltd
using Ints-cases by auto
with valid have valid: — k c2 < —d —d < k c1 by auto
from x neg It have M a b < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
from dbm-It'[OF assms(2)[folded M(1)] this C2 C(1,2) not0] have
M]yn C{ue V.uecl —uc2 < —d}

308

from beta-interp.S-boundedness-diag-lt'|OF wvalid C(3,4) this| have
Approxzg ([M]yn) C{ue V.ucl —uc2 < —d}

moreover
{ fix u assume u: v € [Mg]yn
with C' C2 have
dbm-entry-val u (Some ¢2) (Some c1) (Mg b a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with * have v ¢ {u € V. ucl — u c2 < —d} by auto
}
ultimately have ?thesis using Mr(1) M(1) by auto
} note neg-sum-it = this

{ fix a b assume A: (a,b) € set (arcs i i ys)
assume not0: a > 0 b > 0
assume neg: M a b+ Mgr ba < 0
from clock-dest[OF A not0] obtain c1 c2 where
Civel =avce2=bcleXc2ecXand C2:a<nb<n
by blast
then have C3: v/ a = ¢l v/ b = ¢2 unfolding v’-def using
clock-numbering(1) by auto
from neg have inf: M a b # oo Mg b a # oo by auto
from Mg(8) inf not0 C(3,4) C2 C3 obtain d :: int where d:
Mrba=LedV Mgpba=1Ltd—int (kcl)<dd<int(kc2)
unfolding v’-def by auto
from inf obtain ¢ where ¢: M a b= Le ¢V M a b= Lt c by (cases
M a b) auto
{ assume xx: M a b < Lt (—d)
from dbm-lt'|OF assms(2)[folded M(1)] this C2 C(1,2) not0] have
Mlyn C{ue V.ucl —uc2 < (- d)}

from beta-interp.3-boundedness-diag-lt'|OF - - C(3,4) this] d have
Approxzg ([Mlyn) C{ue V.ucl —uc2 < —d}
by auto
moreover
{ fix v assume w: u € [MRg]yn
with C C2 have
dbm-entry-val u (Some c2) (Some c1) (Mg b a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have v ¢ {u € V. ucl — u c2 < —d} by auto
}
ultimately have ?thesis using M (1) M(1) by auto
} note aux = this

309

from c have %thesis
proof (standard, goal-cases)
case 2
with neg d have M a b < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-lt.cases)
with auzr show ?thesis .
next
case 1
note A = this
from d(1) show ?thesis
proof (standard, goal-cases)
case |
with A neg d have M a b < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with auxr show ?thesis .
next
case 2
with A neg d have M a b < Le (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
from dbm-le’|OF assms(2)[folded M(1)] this C2 C(1,2) not0]

have
M]yn C{ue V.ucl —uc2 <—d}
from beta-interp.S-boundedness-diag-le'|OF - - C(3,4) this] d
have
Approxzg ([Mlyn) C{ue€ V.ucl —uc2 < —d}
by auto
moreover
{ fix v assume u: v € [MRplyn
with C C2 have
dbm-entry-val v (Some c2) (Some c1) (Mg b a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have u ¢ {u € V. ucl — u c2 < —d} by auto
}
ultimately show ?thesis using Mr(1) M(1) by auto
qed
qed

} note neg-sum-1 = this

{ fix a b assume A: (a,0) € set (arcs i i ys)
assume not0: a > 0

310

assume neg: M a 0 + Mp 0a < 0

from clock-dest-1][OF A not0] obtain cI where C: v cl = acl €
X and C2: a < n by blast

with clock-numbering(1) have C3: v’ a = c¢1 unfolding v’-def by
auto

from neg have inf: M a 0 # co Mg 0 a # oo by auto

from Mg(6) not0 C2 C3 obtain d :: int where d:

MrpOa=LedV Mg Oa=1Ltd— int (kcl)<dd<20

unfolding v’-def by auto

from inf obtain ¢ where ¢: M a 0 = Le ¢V M a 0 = Lt ¢ by
(cases M a 0) auto

{ assume M a 0 < Lt (—d)

from dbm-It'2[OF assms(2)[folded M(1)] this C2 C(1) not0] have

My C{ue V.ucl < —d}

from beta-interp.3-boundedness-lt'|OF - C(2) this|] d have
Approxzg ([Mlyn) C{ue V. ucl < —d}
by auto
moreover
{ fix v assume u: u € [MR|yn
with C' C2 have
dbm-entry-val u None (Some c1) (Mg 0 a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have u ¢ {u € V. u ¢l < —d} by auto
}
ultimately have ?thesis using Mr(1) M(1) by auto
} note aux = this
from c have ?thesis
proof (standard, goal-cases)
case 2
with neg d have M a 0 < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with aur show Zthesis .
next
case |
note A = this
from d(1) show ?thesis
proof (standard, goal-cases)
case I
with A neg d have M a 0 < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with auz show “thesis .

311

next
case 2
with A neg d have M a 0 < Le (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
from dbm-le’2[OF assms(2)[folded M(1)] this C2 C(1) not0]

have

M]yn C{ue V.uecl <—d}

from beta-interp.3-boundedness-le’|OF - C(2) this| d have
Approzg ([Myn) C{ue V. ucl < —d}

by auto

moreover

{ fix v assume u: u € [MRlyn
with C C2 have

dbm-entry-val uw None (Some c1) (Mg 0 a)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have v ¢ {u € V. u ¢l < —d} by auto

}

ultimately show ?thesis using Mr(1) M(1) by auto

qed
qged
} note neg-sum-1"= this

{ fix a b assume A: (0,b) € set (arcs i i ys)

assume not0: b > 0

assume neg: M 0 b+ M b0 < 0

from clock-dest-2]OF A not0] obtain c2 where
C:ve2=bc2eXand C2: b<n

by blast

with clock-numbering(1) have C3: v/ b = ¢2 unfolding v’-def by

auto

from neg have M 0 b # co Mr b 0 # oo by auto

with Mg(5) not0 C2 C3 obtain d :: int where d:
Mrb0O=LedV Mrb0=Ltdd <kc2

unfolding v’-def by fastforce

from <M 0 b # co» obtain ¢ where ¢: M 0b=LecV M 0b= Lt

¢ by (cases M 0 b) auto
{ assume M 0 b < Lt (—d)
from dbm-It'3[OF assms(2)[folded M(1)] this C2 C(1) not0] have
M)yn C{ue V.uc2 > d}
by simp
from beta-interp.B-boundedness-gt'|OF - C(2) this| d have
Approzg ((Mlyn) C{ue V. —uc2 < —d}

312

by auto
moreover
{ fix v assume u: v € [MRg]yn
with C' C2 have
dbm-entry-val u (Some c2) None (Mg b 0)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have v ¢ {u € V. — u ¢2 < —d} by auto
}
ultimately have ?thesis using M (1) M(1) by auto
} note aux = this
from c have %thesis
proof (standard, goal-cases)
case 2
with neg d have M 0 b < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with auxr show ?thesis .
next
case A: 1
from d(1) show ?thesis
proof (standard, goal-cases)
case I
with A neg have M 0 b < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with auzr show ?thesis .
next
case 2
with A neg ¢ have M 0 b < Le (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
from dbm-le’3[OF assms(2)[folded M(1)] this C2 C(1) not0]
have
M]yn C{ue V.uc2 > d}
by simp
from beta-interp.B-boundedness-ge'|OF - C(2) this] d(2) have
Approzg ((Myn) C{ue V. —uc2 < —d}
by auto
moreover
{ fix v assume u: u € [MR|yn
with C C2 have
dbm-entry-val u (Some c2) None (Mg b 0)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have v ¢ {u € V. — u c2 < —d} by auto

313

}

ultimately show ?thesis using Mr(1) M(1) by auto
qed
qed
} note neg-sum-1"" = this

{ fix a b assume A: (a,b) € set (arcs i i ys)
assume not0: b > 0 a > 0
assume neqg: Mpab+ Mba < 0
from clock-dest[OF A not0(2,1)] obtain ¢! ¢2 where
Civel =ave2=bcleXc2ecXand C2:a<nb<n
by blast
then have C3: v/ a = ¢1 v/ b = ¢2 unfolding v’-def using
clock-numbering(1) by auto
from neg have inf: M b a # co M a b # oo by auto
with Mr(8) not0 C(3,4) C2 C3 obtain d :: int where d:
Mrab=LedV Mrab=1Ltdd> —int (kc2)d<int (kcl)
unfolding v’-def by blast
from inf obtain ¢ where ¢: M ba= LecV Mba= Lt c by (cases
M b a) auto
{ assume M b a < Lt (—d)
from dbm-It'|OF assms(2)[folded M(1)] this C2(2,1) C(2,1) not0]
have
My C{ue V.uc2 —ucl < —d}

from beta-interp.3-boundedness-diag-lt'|OF - - C(4,3) this] d
have Approzs ([M]yn) € {u € V. uc2 — ucl < —d} by auto
moreover
{ fix v assume u: u € [MR|yn
with C C2 have
dbm-entry-val u (Some c1) (Some c2) (Mg a b)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have v ¢ {u € V. v c2 — u cl < —d} by auto
}
ultimately have ?thesis using M (1) M(1) by auto
} note aux = this
from ¢ have ?thesis
proof (standard, goal-cases)
case 2
with neg d have M b a < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with aux show ?thesis .
next

314

case A: 1
from d(1) show ?Zthesis
proof (standard, goal-cases)
case I
with A neg d have M b a < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with aux show ?thesis .
next
case 2
with A neg d have M b a < Le (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
from dbm-le'|OF assms(2)[folded M(1)] this C2(2,1) C(2,1)
not0] have
M]yn C{u€e V.uc2 —ucl <—d}

from beta-interp.3-boundedness-diag-le’|OF - - C(4,3) this] d
have Approzg ([M]yn) C{u € V. uc2 — ucl < —d} by auto
moreover
{ fix v assume u: v € [MRglyn
with C C2 have
dbm-entry-val u (Some c1) (Some c2) (Mg a b)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have u ¢ {u € V. u c2 — u cl < —d} by auto
}
ultimately show ?thesis using Mr(1) M(1) by auto
qed
qed
} note neg-sum-2 = this

{ fix a b assume A: (a,0) € set (arcs i i ys)
assume not0: a > 0
assume neg: Mra 0+ M 0a < 0
from clock-dest-1][OF A not0] obtain cI where C: v cl = acl €
X and C2: a < n by blast
with clock-numbering(1) have C3: v’ a = c¢1 unfolding v’-def by
auto
from neg have inf: M 0 a # co Mr a 0 # oo by auto
with Mr(5) not0 C2 C3 obtain d :: int where d:
MrpaO=LedV MrpaO=Ltdd<int(kcl)d>0
unfolding v’-def by auto
from inf obtain ¢ where ¢: M 0 a = Le ¢ V M 0 a = Lt ¢ by
(cases M 0 a) auto

315

{ assume M 0 a < Lt (—d)
from dbm-It'3[OF assms(2)[folded M(1)] this C2 C(1) not0] have
M)yn C{ue V.ucl > d}
by simp
from beta-interp.3-boundedness-gt'|OF - C(2) this| d have
Approxzg ([Mlyn) € {ue V. ucl > d}
by auto
moreover
{ fix v assume u: u € [MR|yn
with C' C2 have
dbm-entry-val u (Some c¢1) None (Mg a 0)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have v ¢ {u € V. u ¢l > d} by auto
}
ultimately have ?thesis using M (1) M(1) by auto
} note aux = this
from c have ?thesis
proof (standard, goal-cases)
case 2
with neg d have M 0 a < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with auz show ?thesis .
next
case A: 1
from d(1) show ?Zthesis
proof (standard, goal-cases)
case [
with A neg d have M 0 a < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with auz show “thesis .
next
case 2
with A neg d have M 0 a < Le (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-lt.cases)
from dbm-le’3[OF assms(2)[folded M(1)] this C2 C(1) not0]
have
My C{u € V. ucl > d}
by simp
from beta-interp.B-boundedness-ge'|OF - C(2) this] d have
Approzg ([M]yn) C {ue V. ucl > d}
by auto

316

moreover
{ fix u assume u: v € [Mg]yn
with C' C2 have
dbm-entry-val u (Some c1) None (Mg a 0)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have v ¢ {u € V. u ¢l > d} by auto
}
ultimately show ?thesis using M (1) M(1) by auto
qed
qed
} note neg-sum-2' = this

{ fix a b assume A: (0,b) € set (arcs i i ys)
assume not0: b > 0
assume neg: Mp 0b+ M b 0 < 0
from clock-dest-2]{OF A not0] obtain c2 where
C: ve2=bc2e Xand C2: b<n
by blast
with clock-numbering(1) have C3: v/ b = ¢2 unfolding v’-def by
auto
from neg have M b 0 # co M 0 b # oo by auto
with Mr(6) not0 C2 C3 obtain d :: int where d:
MrOb=LedV Mr0b=1Ltd —d <k c2
unfolding v’-def by fastforce
from <M b 0 # oo> obtain ¢ where ¢: M b 0 = LecV Mb 0 =
Lt ¢ by (cases M b 0) auto
{ assume M b 0 < Lt (—d)
from dbm-It'2[OF assms(2)[folded M(1)] this C2 C(1) not0] have
My C{ue V.uc2 < — d}
by simp
from beta-interp.3-boundedness-lt'|OF - C(2) this| d have
Approxzg ([Mlyn) C{ue V. uc2 < —d}
by auto
moreover
{ fix v assume w: u € [MRg]yn
with C' C2 have
dbm-entry-val u None (Some c2) (Mg 0 b)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with d have u ¢ {u € V. u ¢2 < —d} by auto
}
ultimately have ?thesis using M (1) M(1) by auto
} note aux = this
from c have ?thesis
proof (standard, goal-cases)

317

case 2
with neg d have M b 0 < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-lt.cases)
with aux show ?thesis .
next
case [
note A = this
from d(1) show ?thesis
proof (standard, goal-cases)
case |
with A neg have M b 0 < Lt (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
with auxr show ?thesis .
next
case 2
with A neg c have M b 0 < Le (—d) unfolding less-eq dbm-le-def
add neutral less
by (auto elim!: dbm-It.cases)
from dbm-le’2[OF assms(2)[folded M(1)] this C2 C(1) not0]

have

M]yn C{ue V.uc2 < —d}

by simp

from beta-interp.B-boundedness-le’|OF - C(2) this] d(2) have
Approzg ([Myn) C{ue V. uc2 < —d}

by auto

moreover

{ fix v assume u: u € [MR|yn
with C' C2 have

dbm-entry-val uw None (Some ¢2) (Mg 0 b)

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with A 2 have v ¢ {u € V. u ¢2 < —d} by auto

}

ultimately show ?thesis using Mr(1) M(1) by auto

qed
qed

} note neg-sum-2" = this

{ fix a b assume A: (a,b) € set (arcs i i ys)
assume not0: a > 0 b > 0
assume bounded: Mp a 0 # 0o Mp b 0 # o
assume lt: Mab< Mp ab
from clock-dest[OF A not0] obtain cI ¢2 where

318

Civel =ave2=bcleXc2eXand C2:a<nb<n
by blast
from C C2 clock-numbering(1,3) have C3: v/ b = c2 v’ a = cl
unfolding v’-def by blast+
with C C2 not0 bounded M r(4) obtain d :: int where x:
—int (ke2)<dANd<int(kcl) NMrab=Led N Mrba=
Le (— d)
V—int(kc2)<d—-—1Nd<int(kcl)NMrab=LtdAN Mg
ba=Lt(—d+ 1)
unfolding v’-def by force
from * have ?thesis
proof (standard, goal-cases)
case 1
with [t have M o b < Le d by auto
then have M a b < Lt d unfolding less less-eq dbm-le-def by
(fastforce elim!: dbm-It.cases)
from dbm-lt'|OF assms(2)[folded M(1)] this C2 C(1,2) not0] have
My C{ue V.ucl —ucl <d}

from beta-interp.B-boundedness-diag-it'|OF - - C(8,4) this] 1
have Approzs ([M]yn) C {u € V. ucl — uc2 < d} by auto
moreover
{ fix v assume u: u € [MRlyn
with C' C2 have
dbm-entry-val u (Some c1) (Some ¢2) (Mg a b) dbm-entry-val
u (Some c2) (Some c1) (Mg b a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with 7 have u ¢ {u € V. u ¢l — u c2 < d} by auto
}
ultimately show ?thesis using M (1) M(1) by auto
next
case 2
with It have M a b # oo by auto
with dbm-entry-int[OF this| M(3) <a < n» <b < m»
obtain d’:: int where d: M a b= Led' Vv Mab= Lt d' by auto
then have M a b < Le (d — 1) using It 2
apply (auto simp: less-eq dbm-le-def less)
apply (cases rule: dbm-lt.cases)
apply auto
apply (rule dbm-lIt.intros)
apply (cases rule: dbm-lt.cases)
by auto
with [t have M a b < Le (d — 1) by auto
from dbm-le'|OF assms(2)|[folded M(1)] this C2 C(1,2) not0] have

319

Mlyn C{ue V.ucel —uc2 <d— 1}

from beta-interp.3-boundedness-diag-le’|OF - - C(8,4) this] 2
have Approzs ([M]yn) C{ue V.ucl —uc2 <d— 1} by auto
moreover
{ fix v assume u: u € [MR]yn
with C C2 have
dbm-entry-val u (Some ¢2) (Some c1) (Mg b a)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with 2 have u ¢ {u € V. ucl — uc2 < d— 1} by auto
}
ultimately show ?thesis using M (1) M(1) by auto
qged
} note bounded = this

{ assume not-bounded: ¥V (a,b) € set (arcs iiys). Mab< Mr ab
— Mrp a0 =00V Mrb0 =0
have 3 y z zs. set zs U {0, y, z} = set (i # ys) N len ?M 0 0 (y #
z # 2s) < Le 0 A
(V (a,b) € set (arcs 00 (y # 2z # 25)). Mab< Mp ab
—a=yANb=2)
ANMyz< MpyzA distinct (0 # y # z # zs) V ?thesis
proof (cases ys)
case Nil
show ?thesis
proof (cases M ii < Mp i1i)
case True
then have ?M i 7 = M ¢ i by simp
with Nil ys(1) zs(3) have =: M ii < 0 by simp
with neg-cycle-empty|OF cn-weak - <i < n, of [| M] have [M]yp
= {} by auto
with «Z # {}» M(1) show ?thesis by auto
next
case False
then have ?M i i = Mg i i by (simp add: min-absorb2)
with Nil ys(1) zs(3) have Mg i i < 0 by simp
with neg-cycle-empty[OF cn-weak - <i < n», of [| Mg] have
[Mplun = {} by auto
with (R # {}> Mr(1) show ?thesis by auto
qed
next
case (Cons w ws)
note ws = this
show ?thesis

320

proof (cases ws)
case Nil
with ws ys zs(3) have x:
Miw+Mwi<O0Mwi=Mwi— Miw#Miw
(i, w) € set (arcs i1 ys)
by auto
have R N Approzg Z = {}
proof (cases ?M w i = M w 7)
case True
with %(2) have ?M { w = Mg i w unfolding min-def by auto
with %(1) True have neg: Mp i w + M w i < 0 by auto
show “thesis
proof (cases i = 0)
case True
show ?Zthesis
proof (cases w = 0)
case True with 0 <i = 0) *(3) show ?thesis by auto
next
case False with <i = 0> neg-sum-2" %(3) neg show ?thesis
by blast
qed
next
case Fulse
show ?Zthesis
proof (cases w = 0)
case True with i # 0> neg-sum-2' x(3) neg show ?thesis
by blast
next
case Fulse with i # 0> neg-sum-2 *(3) neg show ?thesis
by blast
qged
qed
next
case Fulse
have Mp wi < M w i
proof (rule ccontr, goal-cases)
case I
then have Mr wi > M w i by auto
with Fulse show Fualse unfolding min-def by auto
qed
with one-M ws Nil have M i w < Mg © w by auto
then have ?M | w = M { w unfolding min-def by auto
moreover from False x(2) have ?M w i = Mp w i unfolding
min-def by auto

321

ultimately have neg: M i w + Mp w i < 0 using %(1) by
auto
show “thesis
proof (cases i = 0)
case True
show ?Zthesis
proof (cases w = 0)
case True with 0 «i = 0> x(8) show ?Zthesis by auto
next
case False with <i = 0) neg-sum-1" %(3) neg show ¢thesis
by blast
qed
next
case Fulse
show ?Zthesis
proof (cases w = 0)
case True with < # 0> neg-sum-1' x(8) neg show ?thesis
by blast
next
case Fulse with i # 0> neg-sum-1 *(3) neg show ?thesis
by blast
qed
ged
qged
then show ?thesis by simp
next
case zs: (Cons z zs)
from one-M obtain a b where *:
(a,b) € set (arcsiiys) Mab< Mpab
by fastforce
from cycle-rotate-3'[OF - x(1) ys(3)] ws cycle-closes obtain ws
where ws”:

len M iiys=len ?M a a (b # ws’) set (a # b # ws’) = set

/

(1 # ys)

ws’))
and successive: successive (N(a, b). M a b= M ab) (arcs a a
(b # ws') @ [(a, b)])
by blast
from successive have successive-arcs:
successive (Ma, b). M a b= M a b) (arcs a b (b # ws’ Q [a]))
using arcs-decomp-tail by auto
from ws'(/) one-M-R %(2) obtain ¢ d where *x:
(c,d) € set (arcs a a (b # ws")) Mcd > Mg ¢ d (a,b) # (c,d)

1 + length ws’ = length ys set (arcs i i ys) = set (arcs a a (b #

322

by fastforce
from card-distinct[of a # b # ws'] distinct-card|of i # ys] ws'(2,3)
distinct
have distinct: distinct (a # b # ws’) by simp
from ws zs ws'(3) have ws’ # [| by auto
then obtain z zs where z: ws’ = zs @ [z] by (metis ap-
pend-butlast-last-id)
then have b # ws' = (b # zs) Q [z] by simp
with len-decomp[OF this, of ?M a a] arcs-decomp-tail have
rotated:
len M a a (b # ws') = len M z z (a # b # zs)
set (arcs a a (b # ws’)) = set (arcs z z (a # b # 2s))
by (auto simp add: comm,)
from ys(1) zs(3) ws'(1) have len ?M a a (b # ws’) < 0 by auto
from ws’(2) ys(2) «<i < n» z have n-bounds: a < n b < n set ws’
C {0..n} z < n by auto
from * have a-b: /M a b = M a b by simp
from successive successive-split[of - arcs a z (b # zs) [(z,a), (a,b)]]
have first: successive (A(a, b). ?M a b = M a b) (arcs a z (b #
zs)) and
last-two: successive (A(a, b). ?M a b = M a b) [(z, a), (a, b)]
using arcs-decomp-tail z by auto
from * not-bounded have not-bounded”: Mr a 0 = ooV Mgr b 0
= oo by auto
from this(1) have z = 0
proof
assume inf: Mp b 0 =
from a-b successive obtain z where z: (b,z) € set (arcs b a
ws) IMbz#Mbz
by (cases ws’) auto
then have ?M b z = Mg b z by (meson min-def)
from arcs-distinct2[OF - - - - z(1)] distinct have b # z by auto
from 2z n-bounds have z < n
apply (induction ws’ arbitrary: b)
apply autol]
apply (rename-tac ws’ b)
apply (case-tac ws’)
apply auto
done
have Mr b z = o©
proof (cases z = 0)
case True
with inf show ?thesis by auto
next

323

case Fulse
with inf Mr(2) <b # 2 <z < ny <b < n)» show ?thesis by
blast
qed
with <M b 2 = Mg b 2> have len ?M b a ws’ = oo by (auto
intro: len-inf-elem[OF z(1)])
then have oo = len ?M a a (b # ws') by simp
with <len ?M a a - < 0> show ?thesis by auto
next
assume inf: Mp a 0 = c©
show z = 0
proof (rule ccontr)
assume 2z # 0
with last-two a-b have ?M z a = Mp z a by (auto simp:
min-def)
from distinct z have a # z by auto
with <z # 0> <a < n» <z < n» Mg(2) inf have Mp z a = 0o
by blast
with <?M za = Mp z a> have len ?M z z (a # b # 25) = 00
by (auto intro: len-inf-elem)
with <len ?M a a - < 0) rotated show Fulse by auto
qed
qed
{ fix ¢ d assume A: (¢, d) € set (arcs 00 (a # b # zs)) M cd
< Mgpcd
then have x: M ¢ d = M ¢ d by simp
from rotated(2) A <z = 0> not-bounded ws'(4) have xx: Mg ¢
0 =00V Mgr d 0 = o by auto
{ assume inf: Mp c 0 = c©
fix © assume z: (z, ¢) € set (arcs a 0 (b # zs)) Mz c# M

xc
from z(2) have ?M z ¢ = Mp z ¢ unfolding min-def by
auto
from arcs-elem[OF z(1)] z <z = 0> have
z € set (a # b# ws') c € set (a # b # ws')
by auto
with n-bounds have xr < n ¢ < n by auto
have z = 0
proof (rule ccontr)
assume z # 0
from distinct z arcs-distinct1 [OF - - - - z(1)] <z = 0>have
z # ¢ by auto
with «x # 0> <¢ < n» <x < nm> Mg(2) inf have Mp z ¢ =
oo by blast

324

with <?M 2 ¢ = Mg x ¢» have
len 2M a 0 (b # zs) = o0
by (fastforce intro: len-inf-elem[OF z(1)])
with <z = 0> have len ?M z z (a # b # zs) = oo by auto
with «len ?M a a - < 0> rotated show False by auto
qed
with arcs-distinct-dest1[OF - z(1), of z| z distinct © <z = 0»
have Fualse by auto
} note c-0-inf = this
have a = c AN b=d
proof (cases (¢, d) = (0, a))
case True
with last-two <z = 0> * a-b have Fualse by auto
then show ?thesis by simp
next
case False
show “thesis
proof (rule ccontr, goal-cases)
case I
with False A(1) have sxx: (¢, d) € set (arcs b 0 zs) by auto
from successive z <z = 0> have
successive (N(a, b). ?M a b= M ab) ([(a, b)] Q@ arcs b 0 zs
Q@ [(0, a), (a, b)])
by (simp add: arcs-decomp)
then have xxxx: successive (A(a, b). M a b = M a b) (arcs

using successive-split[of - [(a, b)] arcs b 0 zs Q [(0, a), (a,

successive-split[of - arcs b 0 zs [(0, a), (a, b)]]
by auto
from successive-predecessor|OF sxx - this| successive z
obtain z where z: (z, ¢) € set (arcs a 0 (b # 25)) M x ¢
= Mzxc
proof (cases ¢ = b)
case Fulse
then have zs # [] using *** by auto
from successive-predecessor[OF sxx False sxxx - this| x
obtain z where z:
(zs=[cJ]ANz=bV (Tys.zs=cH#H d# ys Nz =0>)
V (3ys.zs=ys Q [z, c] ANd=0)V (Fys ws. zs = ys
Quz # c# d# ws))
‘Mxc# Mzxc
by blast+
from this(1) have (z, ¢) € set (arcs a 0 (b # zs)) using

325

arcs-decomp by auto
with z(2) show ?thesis by (auto intro: that)
next
case True
have xxxx: successive (A(a, b). ?M a b= M a b) (arcs a 0
(b # 2))
using first <z = 0> arcs-decomp successive-arcs z by auto
show “thesis
proof (cases zs)
case Nil
with sxxx True sx* x show ?thesis by (auto intro: that)
next
case (Cons u us)
with sk« True distinct z <z = 0» have distinct (b # u #
us @ [0]) by auto
from arcs-distinct-fix[OF this] x++ True Cons have d =
u by auto
with skxx x Cons True show ?thesis by (auto intro: that)
qed
qed
show Fulse
proof (cases d = 0)
case True
from *x show Fulse
proof
assume Mp ¢ 0 = oo from c-0-inf[OF this z] show
False .
next
assume Mp d 0 = oo with «d = 0> Mg(3) show False
by auto
ged
next
case False with xxx have zs # [| by auto
from successive-successor|OF «(c,d) € set (arcs b 0 zs)»
False sxxx - this] x
obtain e where
(zs=[d]ANe=0V ys. zs=d # e # ys) V (Jys. zs
=ys Q[c, d N e=0)
V (Jysws. zs=ysQcH#H d# e# ws)) ?Mde# Mde
by blast
then have e: (d, e) € set (arcs b 0 zs) ?Mde# Mde
using arcs-decomp by auto
from *x show Fulse
proof

326

assume inf: Mp d 0 = c©
from e have ?M d e = My d e by (meson min-def)
from arcs-distinct2[OF - - - - e(1)] z <z = 0> distinct
have d # e by auto
from z n-bounds have set zs C {0..n} by auto
with e have e < n
apply (induction zs arbitrary: d)
apply auto
apply (case-tac zs)
apply auto
done
from n-bounds z arcs-elem(2)[OF A(1)] have d < n by
auto
have M d e = o0
proof (cases e = 0)
case True
with inf show ?thesis by auto
next
case Fulse
with inf Mr(2) <«d # e <e < n» <«d < n» show ?thesis
by blast
qed
with «(?M d e = Mg d e» have len ?M b 0 zs = oo by
(auto intro: len-inf-elem|[OF e(1)])
with <z = 0 rotated have co = len ?M a a (b # ws’)

by simp
with «len ?M a a - < 0> show ?thesis by auto
next
assume Mp ¢ 0 = oo from c-0-inf[OF this x| show

False .

ged

qed
ged

ged
}
then have V (¢, d)eset (arcs 00 (a # b # zs)). Mcd < Mp ¢
d—c=aNd=1D
by blast
moreover from ys(1) zs(3) have len ?M i i ys < Le 0 unfolding
neutral by auto
moreover with rotated ws'(1) have len ?M z z (a # b # 2s) <
Le 0 by auto
moreover from «z = 0> z ws'(2) have set zs U {0, a, b} = set

(i # ys) by auto

327

moreover from <z = 0> distinct z have distinct (0 # a # b #
zs) by auto
ultimately show ?thesis using <z = 0> <M a b < Mg a b> by
blast
qed
ged note x = this
{ assume — ?thesis
with * obtain y z zs where *:
set zs U {0, y, z} = set (i # ys) len PM 00 (y # z # 2s) < Le 0
V(a, b)eset (arcs 00 (y # z# 28)). Mab< Mpab— a=y
ANb=z2zMyz< Mpuyz
and distinct”: distinct (0 # y # z # 25)
by blast
then have y # 0 z # 0 by auto
let 2r = len Mg 2z 0 zs
have V (a, b)eset (arcs z 0 zs). M ab= Mg ab
proof (safe, goal-cases)
case A: (1 ab)
have Mrab < Mad
proof (rule ccontr, goal-cases)
case |
with %(3) A have a = y b = z by auto
with A distinct’ arcs-distinct3[OF - A, of y] show Fualse by

auto
qed
then show ?case by (simp add: min-def)
qed
then have 7: len ?M z 0 zs = ?r by (induction zs arbitrary: z)
auto
with %(2) have xx: M 0y + (?My z + ?r) < Le 0 by simp
from Mpr(1) <R # {}» obtain u where u: DBM-val-bounded v u
MR n

unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
from (1) <i < n» <set ys C - have y < n z < n by fastforce+
from (1) ys(2,4) have set zs C {0 ..n} by auto
from <y < n» <z < ny clock-numbering(2) <y # 0y <z # 0> obtain
cl c2 where C:
cleXc2eXvel =yve2 =z
by blast+
with clock-numbering(1,3) have C2: v’y = ¢1 v’ z = ¢2 unfolding
v'-def by auto
with C have v (v’ z) = z by auto
with DBM-val-bounded-len’1[OF u, of zs v’ z] have dbm-entry-val
u (Some (v’ z)) None ?r

328

using <z < n» clock-numbering(2) «set zs C -» distinct’ by force
from len-inf-elem xx have tl-not-inf: ¥ (a, b)€set (arcs z 0 zs). Mg
a b # oo by fastforce
with Mg(7) len-int-dbm-closed have get-const r € Z. N\ ?r # oo
by blast
then obtain r :: int where v ?r = Le r V %r = Lt r using
Ints-cases by (cases ?r) auto
from r’ «dbm-entry-val - - - - C C2 have le: u (v’ 2) < r by
fastforce
from arcs-ez-head obtain 2’ where (z, 2’) € set (arcs z 0 zs) by
blast
then have 2"
(2, 2') € set (arcs 00 (y # z # 25)) (2, 2') € set (arcs z 0 zs)
by auto
have Mp 2z 0 #
proof (rule ccontr, goal-cases)
case 1
then have inf: Mp z 0 = co by auto
have My 2z 2/ =
proof (cases z' = 0)
case True
with 1 show %thesis by auto
next
case Fulse
from arcs-elem|[OF z'(1)] (1) <i < n» <set ys C - have z’' <
n by fastforce
moreover from distinct’ (1) arcs-distinctl [OF - - - - 2'(1)]
have 2 # 2’ by auto
ultimately show ?thesis using Mr(2) <z < n» False inf by
blast
qged
with tl-not-inf 2'(2) show False by auto
qed
with Mz(5) <z # 0> <z < n» obtain d :: int where d:
Mrpz0=Led NMrOz=1Le(—d)V Mrz0=LtdAN Mpr 0
z=1Lt(—d+ 1)
d<k@z0<d
unfolding v’-def by auto

Needs property that len of integral dbm entries is integral and definition of
M-R

from this (1) have rr: 9r > Mp z 0
proof (standard, goal-cases)
case A: 1

329

with u <z < n» C C2 have *: — u (v’ 2) < —d unfolding
DBM-val-bounded-def by fastforce
from r’ show ?case
proof (standard, goal-cases)
case I
with le x A show ?Zcase unfolding less-eq dbm-le-def by
fastforce
next
case 2
with «dbm-entry-val - - - -» C C2 have u (v’ 2) < r by fastforce
with x have r > d by auto
with A 2 show ?case unfolding less-eq dbm-le-def by fastforce
qged
next
case A: 2
with u <z < ny C C2 have x: — u (v' 2) < —d + 1 unfolding
DBM-val-bounded-def by fastforce
from r’ show ?case
proof (standard, goal-cases)
case 1
with le x A show ?case unfolding less-eq dbm-le-def by
fastforce
next
case 2
with «dbm-entry-val - - - -» C C2 have u (v’ 2) < r by fastforce
with x have r > d by auto
with A 2 show ?case unfolding less-eq dbm-le-def by fastforce
qed
qed
with %(8) <y # 0> have M 0y > Mp 0 y by fastforce
then have ?M 0y = Mpr 0y by (simp add: min.absorb2)
moreover from x(/) have ?M y z = M y z unfolding min-def
by auto
ultimately have xx: Mp 0y + (M yz+ Mg 20) < Le 0
using xx add-mono-right|OF add-mono-right|OF rr], of Mg 0y M
y z] by simp
from *xx have not-inf: Mr 0y # 0o My z# oo Mg z 0 # oo by
auto
from Mpg(6) <y # 0> <y < n» obtain ¢ :: int where c:
MrOy=LecVMrOy=Ltc—Fk vy <cec<0
unfolding v’-def by auto
have ?thesis
proof (cases Mp 0y + Mg 2 0 = Lt (¢ + d))
case True

330

from *x have (Mg 0y + Mp 20) + My z < Le 0 using comm
add.assoc by metis
with True have xx: Lt (¢ + d) + M y z < Le 0 by simp
then have M y z < Le (— (¢ + d)) unfolding less less-eq
dbm-le-def add
by (cases M y z) (fastforce elim!: dbm-It.cases)+
from dbm-le'|OF assms(2)[folded M(1)] this <y < n» <z < m»

C(3,4) <y # 0> <z# 0 M
have subs: Z C{ue€ V.ucl —uc2 < — (c+ d)} by blast
) <k (

with ¢ d have — k (v 2) < — (¢ + d) — (¢ + d) < k (v' y) by
auto
with beta-interp.S-boundedness-diag-le’|OF - - C(1,2) subs| C2
have
Approzg Z C{u € V.ucl —uc2 < — (c+ d)}
by auto
moreover

{ fix v assume u: u € R
with C «y < ny <z < n» Mpr(1) have
dbm-entry-val u (Some ¢2) None (Mg z 0) dbm-entry-val u
None (Some c1) (Mg 0 y)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with True ¢ d(1) have u ¢ {u€ V.ucl —uc2 < — (c+
d)} unfolding add by auto
}
ultimately show ?thesis by blast
next
case Fulse
with ¢ d have Mr 0y + Mp 2 0 = Le (¢ + d) unfolding add
by fastforce
moreover from xx have (Mp 0y + Mp 20) + My z < Le 0
using comm add.assoc by metis
ultimately have xx: Le (¢ + d) + M y z < Le 0 by simp
then have M y z < Lt (— (¢ + d)) unfolding less less-eq
dbm-le-def add
by (cases M y z) (fastforce elim!: dbm-It.cases)+
from dbm-It'|OF assms(2)[folded M(1)] this <y < n» <z < n»
C(3.4)] <y# 0y <z# 00 M
have subs: Z C {u € V.ucl —uc2 < — (¢c+ d)} by auto
from ¢ d(2—) C2 have — kc2 < — (¢ + d) — (c + d) < k ¢l
by auto
from beta-interp.3-boundedness-diag-lt'|OF this C(1,2) subs| have
Approzg Z C{u e V.ucl —uc2 < — (c+ d)}

moreover

331

{ fix v assume u: v € R
with C <y < n < < n Mpg(1) have
dbm-entry-val v (Some c2) None (Mg z 0) dbm-entry-val u
None (Some c1) (Mg 0 y)
unfolding DBM-zone-repr-def DBM-val-bounded-def by auto
with ¢ d(1) have u ¢ {u € V.ucl —uc2 < — (¢c+ d)} by

}

ultimately show ?thesis by auto
ged
} then have ?thesis by auto
}
with bounded 0 bounded-zero-1 bounded-zero-2 show ?thesis by blast
qed
qed
qed

auto

6.3 Nice Corollaries of Bouyer’s Theorem

lemma R-V:|J R = V unfolding V-def R-def using region-cover[of X
- k] by auto

lemma regions-beta-V: R € Rg = R C V unfolding V-def Rg-def by
auto

lemma apz-V: Z C V = Approzg Z C V
proof (goal-cases)
case !
from beta-interp.apz-in[OF 1] obtain U where Approzg Z =JU U C
Rs by auto
with regions-beta-V show ?thesis by auto
qed

corollary approx-G-closure-a:
assumes Z C V vabstr Z M
shows Approzg Z C Closure, Z

proof —
note T = region-zone-intersect-empty-approz-correct|OF - assms(1) -
assms(2—)]

have - J{ReR. RNZ#{}}=U{ReER.RNZ={}}Uu-V
proof (safe, goal-cases)

case 1 with R-V show Fulse by fast
next

case 2 then show ?case using alpha-interp.valid-regions-distinct-spec

332

by fastforce

next

case 3 then show ?case using R-V unfolding V-def by blast

qed

with T apz-V[OF assms(1)] have Approzg Z N — J{R € R. RN Z #
{}} = {} by auto

then show ?thesis unfolding alpha-interp.cla-def by blast
qed

corollary approz-3-closure-a”: Z € V' = Approxg Z C Closure, Z
using approz-S-closure-a unfolding V'-def by auto

We could prove this more directly too (without using Closure, Z), obviously

lemma apz-empty-iff:
assumes Z C V vabstr Z M
shows Z = {} «— Approzs Z = {}
using alpha-interp.cla-empty-iff[OF assms(1)] approx-3-closure-a[OF assms]
beta-interp.apx-subset
by auto

lemma apz-empty-iff
assumes Z € V’'shows Z = {} «— Approzg Z = {}
using apz-empty-iff assms unfolding V’'-def by force

lemma apz-V"

assumes Z C V shows Approzg Z € V'
proof (cases Z = {})

case True

with beta-interp.apz-empty beta-interp.empty-zone-dbm show ?thesis un-
folding V'-def neutral by auto
next

case Fulse

then have non-empty: Approxg Z # {} using beta-interp.apz-subset by
blast

from beta-interp.apz-in| OF assms] obtain U M where x:

Approxg Z =\JU U C Rg Z C Approxg Z vabstr (Approxg Z) M

by blast

moreover from x beta-interp.R-union have | J U C V by blast

ultimately show ?thesis using *(1,/) unfolding V'-def by auto
qed

end

lemma valid-abstraction-pairsD:

333

Y (z, m)€ Timed-Automata.clkp-set A. x € X N m € N if valid-abstraction
AXEk

using that

apply cases

unfolding clkp-set-def Timed-Automata.clkp-set-def

unfolding collect-clki-def Timed-Automata.collect-clki-def

unfolding collect-clkt-def Timed-Automata.collect-clkt-def

by blast

6.4 A New Zone Semantics Abstracting with Approzs

locale Regions =

Regions-defs X v n for X and v :: 'c = nat and n :: nat +

fixes k :: s = ‘c = nat and not-in-X

assumes finite: finite X

assumes clock-numbering:

clock-numbering’ vn VYk<n. k> 0 — 3ce X.vec=k)V ce X. v

c<n

assumes not-in-X: not-in-X ¢ X

assumes non-empty: X # {}
begin

definition R-def: R | = {Regions.region X I r | I r. Regions.valid-region
X (kl)Ir}

definition Rg-def:
Rp | = {Regions-Beta.region X I J r | I J r. Regions-Beta.valid-region X
(ki) IJr}

sublocale
AlphaClosure X k R by (unfold-locales) (auto simp: finite R-def V-def)

abbreviation Approzs | Z = Beta-Regions’. Approzg X (k1) v n not-in-X
Z

6.4.1 Single Step

inductive step-z-beta ::
('a, 'c, t, 's) ta = 's = (‘e, t) zone = 'a action = 's = (‘c, t) zone =
bool
(- F (- =)~y (- 0 [61,61,61,61] 61)
where
step-beta: A= (I, Z) ~q (I, Z') = A+ (L, Z) ~pq) (I, Approzg I Z')

334

inductive-cases[elim!]: A &= (I, u) ~ g, (I';u)

declare step-z-beta.intros|intro]

context
fixes I’ :: s
begin
interpretation regions: Regions-global - - - k 1’

by standard (rule finite clock-numbering not-in-X non-empty)+

lemma step-z-V".
assumes A b (1,Z) ~, (I',Z") valid-abstraction A X k ¥V c€clk-set A. v ¢
<nzZecV
shows 7' € V'
proof —
from assms(3) clock-numbering have numbering: global-clock-numbering
A v n by metis
from assms(4) obtain M where M:
Z CVZ=[M]yyn dm-int M n
unfolding V'-def by auto
from valid-abstraction-pairsD[OF assms(2)] have V (z, m)€ Timed- Automata. clkp-set
A.meN
by blast
from step-z-V[OF assms(1) M(1)] M(2) assms(1) step-z-dbm-DBM|[OF
- numbering]
step-z-dbm-preserves-int| OF - numbering this M(3)]
obtain M’ where M" Z' C V Z' = [M)y,n, dbm-int M’ n by metis
then show ?thesis unfolding V’-def by blast
qged

lemma step-z-alpha-sound:

AEA(l, Z) ~p(q) (I Z") = valid-abstraction A X k = V c€clk-set A. v
c<n=2Z¢V'

= Z'£{} =3 Z" A, Z) ~, (I',Z") N Z" £ {}

apply (induction I’ = 1" Z' rule: step-z-beta.induct)

apply (frule step-z-V')

apply assumption+

apply (rotate-tac 5)

apply (drule regions.apz-empty-iff’)
by blast

335

lemma step-z-alpha-complete:

A (l, Z) ~q (I,Z") = wvalid-abstraction A X k = V c€clk-set A. v ¢
<n=2Z¢V

= Z'£{}=3 7" A+, Z) ~5(a) (', z" N Z"+{}

apply (frule step-z-V')

apply assumption+

apply (rotate-tac 4)

apply (drule regions.apz-empty-iff’)

by blast

lemma alpha-beta-step:
At (l, Z) ~p(q) (I, Z') = wvalid-abstraction A X k = V c€clk-set A.
ve<n=Z2Z¢cV
— 3 2" AF (1, Z) v (I 2" A2/ C 2"
apply (induction I’ = 1" Z' rule: step-z-beta.induct)
apply (frule step-2-V")
apply assumption+
apply (rotate-tac 4)
apply (drule regions.approz-f3-closure-a)
apply auto
done

lemma alpha-beta-step”:

At (l, Z) ~pgq) (I, Z') = wvalid-abstraction A X k = V c€clk-set A.
ve<n=2€V = WCV

= ZCW =3 WA (I, W) g (s WYAZ C W
proof (induction ' = 1" Z' rule: step-z-beta.induct)

case (step-beta A1 Z a Z)

from step-z-mono[OF step-beta(1,6)] obtain W' where W'

AF (1, W)~ (LW 2/ C W
by blast
from regions.approx-f-closure-o/|OF step-z-V'[OF step-beta(1—4)]]
regions.alpha-interp.cla-mono[OF this(2)] this(1)

show ?case by auto

ged

lemma apz-mono:
Z7'CV =7 C 7' = Approzg ' Z C Approzg ' Z'
proof (goal-cases)
case 1
with regions.beta-interp.apx-in have
regions. Approzg Z' € {S.3U M. S = U A U C regions.Rg N Z' C

336

S A regions.beta-interp.vabstr S M
A regions.beta-interp.normalized M}
by auto
with 1 obtain U M where
regions. Approzg Z' = J U U C regions.Rg Z C regions.Approxg Z'
regions.beta-interp.vabstr (regions. Approzg Z') M
regions.beta-interp.normalized M
by auto
with regions.beta-interp.apz-min show ?thesis by auto
qged

end

lemma step-z'-V":

assumes A - (1,Z) ~ (I',Z') valid-abstraction A X k ¥V ceclk-set A. v ¢
<nzZecV

shows 7' € V'

using assms unfolding step-z’-def by (auto elim: step-z-V')

lemma steps-z-V"

AF(1,Z) ~x (I'\Z") = wvalid-abstraction A X k = V c€clk-set A. v ¢
<n=>2¢cV = Z'eV'

by (induction rule: rtranclp-induct2; blast intro: step-z'-V')

6.4.2 Multi step

definition

step-z-beta’ :: ('a, 'c, t, 's) ta = 's = (‘c, t) zone = 's = (¢, t) zone =
bool
(<— (-, -> ~ g <—, —>> [61,6],61] 61)
where

AV, Z) g (I 2" =@ Z'a. A (I, Z) ~r (I, Z) NAF (I, Z7)
v (I, 2")

B(la) \">

abbreviation

steps-z-beta :: ('a, 'c, t,'s) ta = 's = ('c, t) zone = 's = (‘c, t) zone =
bool
(- F (=)~k (-, - [61,61,61] 61)
where

A, Z) ~px (I, Z"y = (N, Z2) (I, Z"). AF (1, Z) ~g (I, Z"))**
(2) (1, 2"

lemma V'-V: Z ¢ V' = Z C V unfolding V’-def by auto

337

context

fixes A :: ('a, 'c, t, 's) ta

assumes valid-ta: valid-abstraction A X k V c€clk-set A. vec < n
begin

interpretation alpha: AlphaClosure-global - k 1" R I’ by standard (rule
finite)

lemma [simp]: alpha.cla I" = cla I" unfolding alpha.cla-def cla-def ..

lemma step-z-alpha’-V:

Z'CVIEZC VARl Z) ~4 (I, Z))

using that alpha.closure-V[simplified] unfolding step-z-alpha’-def by
blast

lemma step-z-beta’- V"
Z'e Vit AF (1LZ) g (12" Z € V'
proof —
interpret regions: Regions-global - - - k I’
by standard (rule finite clock-numbering not-in-X non-empty)+
from that valid-ta show ?thesis
unfolding step-z-beta’-def by (blast intro: step-z-V' regions.apz-V'[OF
V-Vl
qed

lemma steps-z-beta-V'":
A (L,Z) »px (U2 = Z e VI = Z'e V'
by (induction rule: rtranclp-induct2; blast intro: step-z-beta’- V")

Soundness lemma alpha’-beta’-step:

AF (L, Z)~p (U Z)=Z2Zec¢V = WCV=ZCW=3 W.
AF (I, W) wao (I, WY N Z'C W'

unfolding step-z-beta’-def step-z-alpha’-def

apply (elim ezE conjFE)

apply (frule step-z-mono, assumption)

apply (elim ezE conjFE)

apply (frule alpha-beta-step’|OF - valid-ta))

prefer 3
using valid-ta by (blast intro: step-z-V' dest: step-z-V)+

lemma alpha-beta-sim:

Simulation-Invariant
A1, 2) (U, Z2"). AE(l, Z) ~5 (I, Z"))
A, Z) (U, 2. Al Z) ~ (U, Z)

338

WL Z) (U, Z) 0=UNZCZ) N 2). Z€ V) N- 2). ZC V)
by standard (auto elim: alpha’-beta’-step step-z-beta’- V' dest: step-z-alpha’-V)

interpretation
Simulation-Invariant
AN Z) (U, Z2"). A (1, Z) ~p (U, Z")
AN, Z) (U, 2. AE(l, Z) ~q (U, Z7)
AN, 2y, Z2).l=UNZCZ!
N+ 2).Ze V' N(-,2).ZCV
by (fact alpha-beta-sim)

lemma alpha-beta-steps:

AF (1, Z) wpx (I, 2 = Z € V=3 Z". A b (I, Z) ~ax (I, 2"
N ARSAL

using simulation-reaches[of (I, Z) (I', Z') (I, Z)] by (auto dest: V'-V)

end

Completeness lemma step-z-beta-mono:
AF(Z,Z}WB(G) (V2N = ZCW= WC V=3 W.AF(l, W)
~B(a) <l/, W’) NZ'C W
proof (goal-cases)
case |
then obtain Z" where x: A (I, Z) ~, (I',\Z") Z' = Approzs " Z" by
auto
from step-z-mono[OF this(1) 1(2)] obtain W’ where
A Al, W) ~so (LW Z7C WY
by auto
moreover with *(2) apz-mono[OF step-z-V] «W C V) have
Z' C Approxzg U' W'
by metis
ultimately show ?case by blast
qed

lemma step-z-beta’-V:
Z'CVIEAR(, Z) ~g (I, Z) ZCV
proof —
interpret regions: Regions-global - - - k I’
by standard (rule finite clock-numbering not-in-X non-empty)+
from that show ?thesis unfolding step-z-beta’-def
by (auto intro: regions.apz-V dest: step-z-V del: subsetl)

339

qed

lemma steps-z-beta-V:

Z'CVIEAE (1, Z) ~px (I, Z") ZCV

using that by (induction rule: rtranclp-induct2; blast intro: step-z-beta’-V
del: subsetl)

lemma step-z-beta’-mono:

AIWLAE, W) g (U, WYNZ'CW'IEAF (1, Z) 5 (I, Z") Z C
WWwWcCV

using that unfolding step-z-beta’-def

apply (elim ezE conjFE)

apply (frule step-z-mono, assumption)

apply (elim ezE conjFE)

apply (drule step-z-beta-mono, assumption)

apply (auto dest: step-z-V')

done

lemma steps-z-beta-mono:

AF(LZ) »px (I, Z2) = ZC W= WC V=3 W.AF(l, W)
~gx (U, WHY N ZNC WY

apply (induction rule: rtranclp-induct2)

apply blast

apply (clarsimp; drule step-z-beta’-mono;

blast intro: rtranclp.intros(2) steps-z-beta-V del: subsetl)
done

end

end
theory Simulation-Graphs
imports
library/ CTL
library/ More-List
begin

lemmas [simp] = holds.simps

340

7 Simulation Graphs

7.1 Simulation Graphs
locale Simulation-Graph-Defs = Graph-Defs C for C :: 'a = 'a = bool +

fixes A :: 'a set = 'a set = bool
begin
sublocale Steps: Graph-Defs A .

abbreviation Steps = Steps.steps
abbreviation Run = Steps.run

lemmas Steps-appendD1 = Steps.steps-appendD1
lemmas Steps-appendD2 = Steps.steps-appendD2
lemmas steps-alt-induct = Steps.steps-alt-induct
lemmas Steps-appendl = Steps.steps-appendl
lemmas Steps-cases = Steps.steps.cases

end

locale Simulation-Graph-Poststable = Sitmulation-Graph-Defs +
assumes poststable: A ST =V s'e T.3 s S. Css’

locale Simulation-Graph-Prestable = Simulation-Graph-Defs +
assumes prestable: A ST =V sc S.3s'e€T. Css’

locale Double-Simulation-Defs =
fixes C :: 'a = 'a = bool — Concrete step relation

and A1 :: 'a set = 'a set = bool — Step relation for the first abstraction
layer

and P1 :: 'a set = bool — Valid states of the first abstraction layer

and A2 :: 'a set = 'a set = bool — Step relation for the second

abstraction layer

and P2 :: 'a set = bool — Valid states of the second abstraction layer
begin

sublocale Simulation-Graph-Defs C A2 .

sublocale pre-defs: Simulation-Graph-Defs C Al .

341

definition closure a = {x. P1 z A a Nz # {}}
definition A2’ a b =3 zy. a = closure x A b = closure y N A2z y
sublocale post-defs: Simulation-Graph-Defs A1 A2’ .

lemma closure-mono:
closure a C closure b if a C b
using that unfolding closure-def by auto

lemma closure-intD:
z € closure a A\ x € closure b if x € closure (a N b)
using that closure-mono by blast

end

locale Double-Simulation = Double-Simulation-Defs +
assumes prestable: A1 ST —V s€S.3s'e€T. Css’
and closure-poststable: s’ € closure y = A2 z y = I s€closure 1.
Al s s’
and Pl-distinct: Plx — Ply =z #y =z Ny ={}
and PI-finite: finite {z. P1 x}
and P2-cover: P2a = 3 z. Plz Az N a# {}
begin

sublocale post: Simulation-Graph-Poststable A1 A2’
unfolding A2’-def by standard (auto dest: closure-poststable)

sublocale pre: Simulation-Graph-Prestable C' A1
by standard (rule prestable)

end
locale Finite-Graph = Graph-Defs +
fixes zg
assumes finite-reachable: finite {x. E** zy z}
locale Simulation-Graph-Complete-Defs =
Simulation-Graph-Defs C' A for C :: 'a = 'a = bool and A :: 'a set = 'a
set = bool +

fixes P :: 'a set = bool — well-formed abstractions

locale Simulation-Graph-Complete = Simulation-Graph-Complete-Defs +

342

simulation: Simulation-Invariant C A (€) A -. True P
begin

lemmas complete = simulation.A-B-step
lemmas P-invariant = simulation. B-invariant

end

locale Simulation-Graph-Finite-Complete = Simulation-Graph-Complete +
fixes ag
assumes finite-abstract-reachable: finite {a. A** ag a}

begin

sublocale Steps-finite: Finite-Graph A ag
by standard (rule finite-abstract-reachable)

end

locale Double-Simulation-Complete = Double-Simulation +
fixes ag
assumes complete: Coy=—zc€ S = P2S =3 T.A25TANyeT
assumes P2-invariant: P2 a = A2 a o' = P2 a’
and P2-ag: P2 ag
begin

sublocale Simulation-Graph-Complete C A2 P2
by standard (blast intro: complete P2-invariant)+

sublocale P2-invariant: Graph-Invariant-Start A2 ag P2
by (standard; blast intro: P2-invariant P2-ag)

end
locale Double-Simulation-Finite-Complete = Double-Simulation-Complete
+

assumes finite-abstract-reachable: finite {a. A2** ag a}

begin

sublocale Simulation-Graph-Finite-Complete C A2 P2 ag
by standard (blast intro: complete finite-abstract-reachable P2-invariant)+

end

locale Simulation-Graph-Complete- Prestable = Simulation-Graph-Complete

343

+ Simulation- Graph-Prestable
begin

sublocale Graph-Invariant A P by standard (rule P-invariant)
end

locale Double-Simulation-Complete-Bisim = Double-Simulation-Complete
|
assumes Al-complete: Cxy=— P1 S =z € S= 3 T. A1 ST ANy
eT

and Pl-invariant: P1 S = A1 ST = PI1 T
begin

sublocale bisim: Simulation-Graph-Complete-Prestable C A1 P1
by standard (blast intro: Al-complete P1-invariant)+

end

locale Double-Simulation-Finite-Complete- Bisim =
Double-Simulation-Finite-Complete + Double-Simulation-Complete-Bisim

locale Double-Simulation-Complete- Bisim-Cover = Double-Simulation-Complete- Bisim
+

assumes P2-Pl-cover: P2a = z€a= 3 a. ana #{} N Pla A
z € a

locale Double-Simulation-Finite-Complete-Bisim-Cover =
Double-Simulation- Finite- Complete- Bisim + Double-Simulation-Complete- Bisim-Cover

locale Double-Stmulation-Complete-Abstraction-Prop =
Double-Simulation-Complete +
fixes ¢ :: 'a = bool — The property we want to check
assumes p-Al-compatible: Al ab=— b C{z. ¢z} VbN{z. ¢z} ={}
and p-P2-compatible: P2 o = a N {z. ¢ z} # {} = P2 (a N {z.
¢ z})
and p-A2-compatible: A2** ay a = a N {z. ¢ z} # {} = A2** q
(a0 {z. ¢ 7})
and P2-non-empty: P2 a = a # {}

locale Double-Simulation-Complete-Abstraction-Prop-Bisim =
Double-Simulation- Complete-Abstraction-Prop + Double-Simulation-Complete- Bisim

locale Double-Simulation-Finite-Complete- Abstraction-Prop =

344

Double-Simulation-Complete- Abstraction-Prop + Double-Simulation-Finite- Complete

locale Double-Simulation-Finite-Complete- Abstraction- Prop-Bisim =
Double-Simulation- Finite- Complete- Abstraction-Prop + Double-Simulation-Finite-Complete- Bisim

7.2 Poststability

context Simulation-Graph-Poststable
begin

lemma Steps-poststable:
3 zs. steps xs A list-all2 (€) zs as N last zs = x if Steps as x € last as
using that
proof induction
case (Single a)
then show ?case by auto
next
case (Cons a b as)
then obtain zs where A a b steps s list-all2 (€) xs (b # as) z = last
xs
by clarsimp
then have hd xs € b by (cases zs) auto
with poststable[OF <A a b)] obtain y where y € a C y (hd zs) by auto
with <list-all2 - - - «steps -» «x = -» show Zcase by (cases xs) auto
ged

lemma reaches-poststable:
3 x € a. reaches x y if Steps.reaches a by € b
using that unfolding reaches-steps-iff Steps.reaches-steps-iff
apply clarify
apply (drule Steps-poststable, assumption)
apply clarify
subgoal for as zs
apply (cases zs = [])

apply force
apply (rule bexI[where z = hd xs))

using list.rel-sel by (auto dest: Graph-Defs.steps-non-empty")
done

lemma Steps-steps-cycle:

3z zs. steps (z # 25 Q [z]) A (V = € set zs. 3 a € set as U {a}. z € a)
ANx € a

if assms: Steps (a # as Q [a]) finite a a # {}
proof —

345

define F where
Ezy= (3 xs. steps (x # xs Q [y]) A (VY z € set xs U {z, y}. I a € set
as U {a}. z € a))
for z y
from assms(2—) have 3 z. Exy ANz € aif y € a for y
using that unfolding FE-def
apply simp
apply (drule Steps-poststable]OF assms(1), simplified])
apply clarify
subgoal for zs
apply (inst-existentials hd xs tl (butlast xs))
subgoal by (cases xs) auto
subgoal by (auto elim: steps.cases dest!: list-all2-set1)
subgoal by (drule list-all2-setl) (cases xs, auto dest: in-set-butlastD)
by (cases zs) auto
done
with «finite a> <a # {}> obtain z y where cycle: Exy E** yzx € a
by (force dest!: Graph-Defs.directed-graph-indegree-ge-1-cycle’)
have trans[intro]: Ex zif Ex y Ey z for z y 2
using that unfolding FE-def
apply safe
subgoal for zs ys
apply (inst-existentials zs Q y # ys)
apply (drule steps-append, assumption; simp; fail)
by (cases ys, auto dest: list.set-sel(2)[rotated] elim: steps.cases)
done
have Fzx zif F** y2 Fzxyz € aforzyz
using that proof induction
case base
then show ?case unfolding FE-def by force
next
case (step y z)
then show ?case by auto
qed
with cycle have F x x by blast
with <z € a> show ?thesis unfolding F-def by auto
qged

end

7.3 Prestability

context Simulation-Graph-Prestable
begin

346

lemma Steps-prestable:
3 ws. steps (z # xs) A list-all2 (€) (x # zs) as if Steps as x € hd as
using that
proof (induction arbitrary: x)
case (Single a)
then show ?case by auto
next
case (Cons a b as)
from prestable]OF <A a by] <z € -» obtain y where y € b C x y by auto
with Cons.IH|[of y] obtain xs where y € b C z y steps (y # xs) list-all2
(€) zs as
by clarsimp
with «z € -» show ?case by auto
qed

lemma reaches-prestable:
3 y. reaches x y N\ y € b if Steps.reaches a b x € a
using that unfolding reaches-steps-iff Steps.reaches-steps-iff
by (force simp: hd-map last-map dest: list-all2-last dest!: Steps-prestable)

Abstract cycles lead to concrete infinite runs.

lemma Steps-run-cycle-buechi:
3 zs. run (z ## xs) A stream-all2 (€) xs (cycle (as Q [a]))
if assms: Steps (a # as Q [a]) = € a
proof —
note C = Steps-prestable]OF assms(1), simplified]
define P where P = \ z xs. steps (last © # xs) A list-all2 (€) xs (as @
o]
define f where f = A . SOMFE zs. P x xs
from Steps-prestable[OF assms(1)] <z € a> obtain ys where ys:
steps (x # ys) list-all2 (€) (z # ys) (a # as Q [a])
by auto
define zs where xs = flat (siterate f ys)
from ys have P [z] ys unfolding P-def by auto
from <P - -» have x: 3 zs. P zs ys by blast
have P-1[introl:ys # [] if P zs ys for zs ys using that unfolding P-def
by (cases ys) auto
have P-2[introl: last ys € a if P xs ys for zs ys
using that P-1[OF that] unfolding P-def by (auto dest: list-all2-last)
from * have stream-all2 (€) zs (cycle (as @ [a]))
unfolding zs-def proof (coinduction arbitrary: ys rule: stream-rel-coinduct-shift)
case prems: stream-rel
then have ys # [| last ys € a by (blast dest: P-1 P-2)+

347

from «ys # [|» C[OF <last ys € a»] have 3 zs. P ys zs unfolding P-def
by auto
from somel-ex|OF this| have P ys (f ys) unfolding f-def .
with «ys # [|» prems show Zcase
apply (inst-ezistentials ys flat (siterate f (f ys)) as Q [a] cycle (as @Q
[a]))

apply (subst siterate.ctr; simp; fail)
apply (subst cycle-decomp; simp; fail)
by (auto simp: P-def)
qed
from x have run zs
unfolding xs-def proof (coinduction arbitrary: ys rule: run-flat-coinduct)
case prems: (run-shift s ws xzss ys)
then have ys # [| last ys € a by (blast dest: P-1 P-2)+
from «ys # [|» C[OF <last ys € a»] have 3 zs. P ys zs unfolding P-def
by auto
from somel-ex[OF this| have P ys (f ys) unfolding f-def .
with «ys # [|» prems show ?case by (auto elim: steps.cases simp: P-def)
qed
with P-1[OF (P - -] <steps (z # ys)» have run (z ## xs)
unfolding zs-def
by (subst siterate.ctr, subst (asm) siterate.ctr) (cases ys; auto elim:
steps.cases)
with <stream-all2 - - -» show ?thesis by blast
qed

lemma Steps-run-cycle-buechi’:

3 as. run (v ## xs) N (VY © € sset zs. 3 a € set as U {a}. z € a) A infs
(Az. z € b) (x ## ws)

if assms: Steps (a # as Q [a]) z € a b € set (a # as Q [a])

using Steps-run-cycle-buechi[OF that(1,2)] that(2,3)

apply safe

apply (rule exl conjl)+

apply assumption

apply (subst alw-ev-stl[symmetric])

by (force dest: alw-ev-HLD-cycle[of - - b] stream-all2-ssetl)

lemma Steps-run-cycle-buechi”:
3 zs. run (v ## xs) N (¥ © € sset zs. 3 a € set as U {a}. z € a) A infs

(Az. z € a) (z #4# zs)
if assms: Steps (a # as Q [a]) z € a
using Steps-run-cycle-buechi”|OF that] <z € a) by auto

lemma Steps-run-cycle”:

348

3 zs. run (z #4# zs) A (Y z € sset zs. 3 a € set as U {a}. z € a)
if assms: Steps (a # as Q [a]) z € a
using Steps-run-cycle-buechi’|OF assms| by auto

lemma Steps-run-cycle:
3 azs. runxs A (V x € sset zs. 3 a € set as U {a}. x € a) A shd xs € a
if assms: Steps (a # as Q [a]) a # {}
using Steps-run-cycle’|OF assms(1)] assms(2) by force

Unused lemma Steps-cycle-every-prestable’:
Jby. CzyNyebANbe setasU {a}
if assms: Steps (as @ [a]) x € b b € set as
using assms

proof (induction as @ [a] arbitrary: as)
case Single
then show ?case by simp

next
case (Cons a ¢ xs)
show ?Zcase
proof (cases a = b)

case True

with prestable[OF <A a ¢] <x € b obtain y where y € ¢ Cz y
by auto

with <a # ¢ # - = -» show ?thesis

apply (inst-existentials ¢)
proof (assumption+, cases as, goal-cases)
case (2 a list)
then show Zcase by (cases list) auto
qed simp
next
case Fulse
with Cons.hyps(3)[of tl as] Cons.prems Cons.hyps(1,2,4—) show ?thesis
by (cases as) auto
qed
ged

lemma Steps-cycle-first-prestable:

by CxyANzebAbe setasU{a} if assms: Steps (a # as Q [a]) z
ca
proof (cases as)

case Nil

with assms show ?thesis by (auto elim!: Steps-cases dest: prestable)
next

349

case (Cons b as)
with assms show ?thesis by (auto 4 4 elim: Steps-cases dest: prestable)
qed

lemma Steps-cycle-every-prestable:

Jby. CxyNyebAbe setasU {a}

if assms: Steps (a # as Q [a]) z € b b € set as U {a}

using assms Steps-cycle-every-prestable’|of a # as a] Steps-cycle-first-prestable
by auto

end

7.4 Double Simulation

context Double-Simulation
begin

lemma closure-involutive:
closure (|J (closure x)) = closure x
unfolding closure-def by (auto dest: P1-distinct)

lemma closure-finite:
finite (closure x)
using PI-finite unfolding closure-def by auto

lemma closure-non-empty:
closure © # {} if P2
using that unfolding closure-def by (auto dest!: P2-cover)

lemma P1-closure-id:
closure R = {R} if P1 R R # {}
unfolding closure-def using that P1-distinct by blast

lemma A2'-A2-closure:
A2’ (closure x) (closure y) if A2 zy
using that unfolding A2’-def by auto

lemma Steps-Union:
post-defs.Steps (map closure xs) if Steps xs
using that proof (induction xs rule: rev-induct)
case Nil
then show ?Zcase by auto
next
case (snoc y zs)

350

show Zcase
proof (cases xs rule: rev-cases)
case Nil
then show ?thesis by auto
next
case (snoc ys z)
with Steps-appendD1[OF <Steps (zs Q [y])»] have Steps xs by simp
then have x: post-defs.Steps (map closure zs) by (rule snoc.IH)
with <xs = -» snoc.prems have A2 z y
by (metis Steps.steps-appendD3 append-Cons append-assoc append-self-conv2)
with <A2 z y» have A2’ (closure z) (closure y) by (auto dest!: A2'-A2-closure)
with x post-defs.Steps-appendl show ?thesis
by (simp add: <xs = -)
qed
qed

lemma closure-reaches:
post-defs.Steps.reaches (closure x) (closure y) if Steps.reaches x y
using that
unfolding Steps.reaches-steps-iff post-defs.Steps.reaches-steps-iff
apply clarify
apply (drule Steps-Union)
subgoal for zs
by (cases zs = [|; force simp: hd-map last-map)
done

lemma post-Steps-non-empty:
z # {} if post-defs.Steps (a # as) x € b b € set as
using that
proof (induction a # as arbitrary: a as)
case Single
then show ?case by auto
next
case (Cons a ¢ as)
then show ?case by (auto simp: A2'-def closure-def)
qed

lemma Steps-run-cycle”:
3 as.runaxs AN (Y z € sset xs. 3 a € set as U {a}. z € |J a) A shd xs €
U a
if assms: post-defs.Steps (a # as Q [a]) finite a a # {}
proof —
from post.Steps-steps-cycle]OF assms] obtain al asl where guessed:
pre-defs.Steps (al # asl Q [al])

351

Vzeset asl. Jacset as U {a}. = € a
al €a
by atomize-elim
from assms(1) <al € a» have al # {} by (auto dest!: post-Steps-non-empty)
with guessed pre.Steps-run-cycle[of al asl] obtain xzs where
run xs ¥ x€sset xs. Jacset asl U {al}. z € a shd zs € al
by atomize-elim auto
with guessed(2,3) show ?Zthesis
by (inst-existentials zs) (metis Un-iff Unionl empty-iff insert-iff)+
qged

lemma Steps-run-cycle:
3 azs. run xzs A (V x € sset zs. 3 a € set as U {a}. z € |J (closure a)) A
shd zs € |J (closure a)
if assms: Steps (a # as Q [a]) P2 a
proof —
from Steps-Union[OF assms(1)] have post-defs.Steps (closure a # map
closure as @ [closure a))
by simp
from Steps-run-cycle’|OF this closure-finite closure-non-empty|OF <P2
»]]
show ?thesis by (force dest: list-all2-set2)
qed

lemma Steps-run-cycle2:
3 zas. run (x ## xs) Az € |J (closure ap)
ANV x € ssetas. 3 a€ setasU{a} Usetbs. zel] a)
A dnfs (Az. z € | a) (x ## xs)
if assms: post-defs.Steps (closure ag # as Q a # bs Q [a]) a # {}
proof —
note asl = assms
from
post-defs.Steps.steps-decomplof closure ag # as a # bs @ [a]]
as1(1)[unfolded this]
have *:
post-defs.Steps (closure ag # as)
post-defs.Steps (a # bs @ [a])
A2’ (last (closure ag # as)) (a)
by (simp split: if-split-asm add: last-map)+
then have finite a
unfolding A2’-def by (metis closure-finite)
from post.Steps-steps-cycle[OF *(2) «finite a) <a # {}>] obtain al as1
where as1:
pre-defs.Steps (al # asl Q [al])

352

Vazeset asl. Jacset bs U {a}. z € a
al € a
by atomize-elim
with post.poststable[OF %(3)] obtain a2 where a2 € last (closure ag #
as) Al a2 al
by auto
with post.Steps-poststable[OF *(1), of a2] obtain as2 where as2:
pre-defs.Steps as2 list-all2 (€) as2 (closure ag # as) last as2 = a2
by (auto split: if-split-asm simp: last-map)
from as2(2) have hd as2 € closure ag by (cases as2) auto
then have hd as2 # {} unfolding closure-def by auto
then obtain zg where zo € hd as2 by auto
from pre.Steps-prestable[OF as2(1) <xg € -)] obtain zs where zs:
steps (xg # ws) list-all2 (€) (zo # xs) as2
by auto
with <last as2 = a2» have last (zo # zs) € a2
unfolding list-all2-Consl by (auto intro: list-all2-last)
with pre.prestable]OF <A1 a2 al)] obtain y where C (last (zo # xs)) y
y € al by auto
from pre.Steps-run-cycle-buechi’|OF as1(1) <y € al)] obtain ys where
ys:
run (y ## ys) Vx€sset ys. Jacset asl U {al}. z € ainfs (\z. z € al)
(y #7F ys)
by auto
from ys(3) <al € a> have infs (Az. z € |J a) (y ## ys)
by (auto simp: HLD-iff elim!: alw-ev-mono)
from extend-run[OF zs(1) «C - -» <run (y ## ys)>] have run ((zo # xs)
Q— y #4 ys) by simp
then show ?thesis
apply (inst-existentials To s Q— y ## ys)
apply (simp; fail)
using <zg € - <hd as2 € -» apply (auto; fail)
using zs(2) as2(2) *(2) «y € al» <al € - ys(2) as1(2)
unfolding list-all2-op-map-iff list-all2-Cons1 list-all2-Cons2
apply auto
apply (fastforce dest!: list-all2-set1)
apply blast
using <infs (A\z. z € |J a) (y ## ys)»
by (simp add: sdrop-shift)
qed

lemma Steps-run-cycle’”:

3 zas. run (x ## xs) ANz € |J (closure agp)
AN (Y z € ssetas. 3 a € setasU {a} U set bs. z € |J (closure a))

353

A infs (Az. x € |J (closure a)) (x ## xs)
if assms: Steps (ag # as @ a # bs Q [a]) P2 a
proof —
from Steps-Union|OF assms(1)] have post-defs.Steps (map closure (ag
as Q a # bs Q [a]))
by simp
from Steps-run-cycle2|OF this[simplified] closure-non-empty|OF <P2 a)|]
show ?thesis
by clarify (auto simp: image-def intro!: exI conjl)
qged

Unused lemma post-Steps-P1:
P1 z if post-defs.Steps (a # as) x € b b € set as
using that
proof (induction a # as arbitrary: a as)
case Single
then show ?case by auto
next
case (Cons a ¢ as)
then show ?case by (auto simp: A2'-def closure-def)
qged

lemma strong-compatibility-impl-weak:

fixes ¢ :: '7a = bool — The property we want to check

assumes p-closure-compatible: \ x a. © € a = p z +— (V =z € |
(closure a). ¢ x)

shows pr=—=zr€a=yc€ca=— Pla= ¢y

by (auto simp: closure-def dest: @-closure-compatible)

end

7.5 Finite Graphs

context Finite-Graph
begin

7.5.1 Infinite Biichi Runs Correspond to Finite Cycles

lemma run-finite-state-set:
assumes run (zo ## xs)
shows finite (sset (xg ## xs))
proof —
let 9S = {z. E** 2o x}

354

from run-reachable] OF assms| have sset xs C 25 unfolding stream.pred-set
by auto

moreover have finite ¢S using finite-reachable by auto

ultimately show ?thesis by (auto intro: finite-subset)
qed

lemma run-finite-state-set-cycle:
assumes run (rg ## xs)
shows
3 ys zs. run (g ## ys Q— cycle zs) N set ys U set zs C {xo} U sset xs
A zs #]
proof —
from run-finite-state-set|OF assms] have finite (sset (o ## zs)) .
with sdistinct-infinite-sset|of o ## xs| not-sdistinct-decomp|of xo ##
zs] obtain z ws ys zs
where zg ## 1s = ws Q— x ## ys Q— x #4 2zs
by force
then have decomp: xy ## xs = (ws Q [z]) Q— ys Q— z #H# zs by simp
from run-decomp[OF assms[unfolded decompl]] have decomp-first:
steps (ws @ [z])
run (ys Q— x #4# 2s)
z — (if ys =[] then shd (x ## zs) else hd ys)
by auto
from run-sdrop[OF assms, of length (ws Q [z])] have run (sdrop (length
ws) s)
by simp
moreover from decomp have sdrop (length ws) zs = ys Q— x ## zs
by (cases ws; simp add: sdrop-shift)
ultimately have run ((ys @Q [z]) @Q— zs) by simp
from run-decomp|OF this] have steps (ys Q [z]) run zs x — shd zs
by auto
from run-cycle[OF this(1)] decomp-first have
run (cycle (ys Q [z]))
by (force split: if-split-asm)
with
extend-runfof (ws @ [z]) if ys = [| then shd (x #H# zs) else hd ys stl
(cycle (ys @ [z]))]
decomp-first
have
run ((ws Q [z]) @Q— cycle (ys Q [z]))
apply (simp split: if-split-asm)
subgoal
using cycle-Cons|of z ||, simplified] by auto
apply (cases ys)

355

apply (simp; fail)
by (simp add: cycle-Cons)
with decomp show ?thesis
apply (inst-existentials tl (ws Q [z]) (ys @ [z]))
by (cases ws; force)+
qged

lemma buechi-run-finite-state-set-cycle:
assumes run (zg ## xs) alw (ev (holds ¢)) (xg ## xs)
shows
3 ys zs.
run (zog ## ys Q— cycle zs) N set ys U set zs C {zo} U sset xs
Nzs# [AN (3 x € setzs. ¢ x)
proof —
from run-finite-state-set|OF assms(1)] have finite (sset (zo ## ws)) .
with sset-sfilter|OF <alw (ev -) -] have finite (sset (sfilter ¢ (xo ##
2)))
by (rule finite-subset)
from finite-sset-sfilter-decomp| OF this assms(2)] obtain z ws ys zs where
decomp: xog ## xs = (ws Q [z]) Q— ys Q— z ## zs and ¢
by simp metis
from run-decomp[OF assms(1)[unfolded decomp]] have decomp-first:
steps (ws @ [z])
run (ys Q— z #4# 2s)
z — (if ys =[] then shd (z ## zs) else hd ys)
by auto
from run-sdrop[OF assms(1), of length (ws @Q [z])] have run (sdrop
(length ws) xs)
by simp
moreover from decomp have sdrop (length ws) zs = ys Q— x ## zs
by (cases ws; simp add: sdrop-shift)
ultimately have run ((ys @ [z]) @Q— zs) by simp
from run-decomp[OF this] have steps (ys Q [z]) run zs © — shd zs
by auto
from run-cycle[OF this(1)] decomp-first have
run (cycle (ys Q [z]))
by (force split: if-split-asm)
with
extend-runfof (ws @ [z]) if ys = [] then shd (z ## zs) else hd ys stl
(cycle (ys @ [a]))
decomp-first
have
run ((ws @Q [z]) @Q— cycle (ys Q [z]))

356

apply (simp split: if-split-asm)
subgoal
using cycle-Cons|of x ||, simplified] by auto

apply (cases ys)
apply (simp; fail)
by (simp add: cycle-Cons)

with decomp «p x> show ?thesis
apply (inst-existentials tl (ws Q [z]) (ys @ [z]))
by (cases ws; force)+

qged

lemma run-finite-state-set-cycle-steps:
assumes run (zg ## ©s)
shows 3 1 ys zs. steps (zg # ys Q x # zs Q [z]) A {z} U set ys U set zs
C {zo} U sset zs
proof —
from run-finite-state-set-cycle]OF assms| obtain ys zs where guessed:
run (zo ## ys Q— cycle zs)
set ys U set zs C {xo} U sset xs
zs #]
by auto
from <zs # [» have cycle zs = (hd zs # tl zs Q [hd zs]) Q— cycle (tl zs
Q@ [hd zs])
apply (cases zs)
apply (simp; fail)
apply simp
apply (subst cycle-Cons|[symmetric])
apply (subst cycle-decomp)
by simp+
from guessed(1)[unfolded this] have
run ((zo # ys @Q hd zs # tl zs Q [hd zs]) Q— cycle (tl zs Q [hd zs]))
by simp
from run-decomp[OF this| guessed(2,3) show ?thesis
by (inst-existentials hd zs ys tl zs) (auto dest: list.set-sel)
qged

lemma buechi-run-finite-state-set-cycle-steps:
assumes run (zg ## xs) alw (ev (holds ¢)) (vo ## xs)
shows
d x ys zs.
steps (xo # ys Q x # 2zs Q [z]) A {z} U set ys U set zs C {zo} U sset s
A (T y e set (x # 25). ¢ y)
proof —

357

from buechi-run-finite-state-set-cycle[OF assms] obtain ys zs © where
guessed:
run (zo ## ys Q— cycle zs)
set ys U set zs C {xo} U sset xs
2 #
T € set zs
o
by safe
from <zs # [» have cycle zs = (hd zs # tl zs Q [hd zs]) Q— cycle (tl zs
Q@ [hd zs])
apply (cases zs)
apply (simp; fail)
apply simp
apply (subst cycle-Cons[symmetric])
apply (subst cycle-decomp)
by simp+
from guessed(1)[unfolded this] have
run ((zo # ys Q hd zs # tl zs Q [hd zs]) Q— cycle (tl zs Q [hd zs]))
by simp
from run-decomp[OF this] guessed(2,3,4,5) show ?thesis
by (inst-existentials hd zs ys tl zs) (auto 4 4 dest: list.set-sel)
qged

lemma cycle-steps-run:

assumes steps (zo # ys Q z # zs Q [z])

shows 3 xs. run (zg ## xs) A sset xs = {x} U set ys U set zs
proof —

from assms have steps (zg # ys Q [z]) steps (z # zs Q [z])

apply (metis Graph-Defs.steps-appendD1 append.assoc append-Cons
append-Nil snoc-eq-iff-butlast)
by (metis Graph-Defs.steps-appendD2 append-Cons assms snoc-eq-iff-butlast)

from this(2) have x — hd (zs Q [z]) steps (zs Q [z])
apply (metis Graph-Defs.steps-decomp last-snoc list.sel(1) list.sel(3)
snoc-eq-iff-butlast steps-ConsD steps-append”)
by (meson steps-ConsD «steps (z # zs Q [z])» snoc-egq-iff-butlast)
from run-cycle[OF this(2)] this(1) have run (cycle (zs Q [z])) by auto
with extend-run[OF <steps (zg # ys Q [z])», of hd (zs Q [z]) stl (cycle
(zs Q [z]))] <z — -
have run (zg ## ys Q— x ## cycle (zs Q [z]))
by simp (metis cycle.ctr)
then show ?thesis

358

by auto
qged

lemma buechi-run-lasso:
assumes run (zg ## xs) alw (ev (holds ¢)) (zo ## xs)
obtains © where reaches xg x reachesl r r ¢ x
proof —
from buechi-run-finite-state-set-cycle-steps| OF assms] obtain = ys zs y
where
steps (zo # ys Q z # 25 Q [z]) y € set (x # 25) p y
by safe
from (y € -» consider y = z | as bs where zs = as Q@ y # bs
by (meson set-ConsD split-list)
then have 3 as bs. steps (zg # as Q [y]) A steps (y # bs Q [y])
proof cases
case 1

with <steps -» show ?thesis
by simp (metis Graph-Defs.steps-appendD2 append.assoc append-Cons
list.distinct(1))
next
case 2
with (steps -» show ?thesis
by simp (metis (no-types)
reaches1-steps steps-reaches append-Cons last-appendR list.distinct(1)
list.sel(1)
reaches1-reaches-iff2 reaches1-steps-append steps-decomp)
qged
with «p 3> show ?thesis
including graph-automation by (intro that]of y]) (auto intro: steps-reaches?)
ged

end

7.6 Complete Simulation Graphs

context Simulation-Graph-Defs
begin

definition abstract-run © xs = x ## sscan (A y a. SOME b. A a b A y €
b) xs x

lemma abstract-run-ctr:
abstract-run x xs = x ## abstract-run (SOME b. A b A shd zs € b) (stl

359

xs)
unfolding abstract-run-def by (subst sscan.ctr) (rule HOL.refl)

end

context Simulation-Graph-Complete
begin

lemma steps-complete:
3 as. Steps (a # as) A list-all2 (€) s as if steps (v # zs) x € a P a
using that by (induction zs arbitrary: © a) (erule steps.cases; fastforce
dest!: complete)+

lemma abstract-run-Run:
Run (abstract-run a xzs) if run (x ## zs) ¢ € a P a
using that
proof (coinduction arbitrary: a T xs)
case (run a x xs)
obtain y ys where xs = y ## ys by (metis stream.collapse)
with run have C z y run (y ## ys) by (auto elim: run.cases)
from complete[OF «C z y» - <P a» <z € a)] obtain b where A a b A\ y
€ b by auto
then have A a (SOME b. AabANyeb)Nye (SOMEb. AabANye
b) by (rule somel)
moreover with <P a» have P (SOME b. A a b A\ y € b) by (blast intro:
P-invariant)
ultimately show ?case using <run (y #+# ys)» unfolding (zs = -
apply (subst abstract-run-ctr, simp)
apply (subst abstract-run-ctr, simp)
by (auto simp: abstract-run-ctr[symmetric])
ged

lemma abstract-run-abstract:

stream-all2 (€) (z ## xs) (abstract-run a xs) if run (x ## zs) © € a P
a
using that proof (coinduction arbitrary: a x zs)

case run: (stream-rel z' u b’ v a z s)

obtain y ys where xs = y ## ys by (metis stream.collapse)

with run have C x y run (y ## ys) by (auto elim: run.cases)

from complete[OF <C z y» - <P a» <z € @] obtain b where 4 a b A y
€ b by auto

then have A a (SOMEb. AabANyecb) Nye (SOMEb. AabAvyc
b) by (rule somel)

with «run (y ## ys)» «x € @ <P o> run(1,2) <zs = -» show Zcase

360

by (subst (asm) abstract-run-ctr) (auto intro: P-invariant)
qged

lemma run-complete:
3 as. Run (a ## as) A stream-all2 (€) zs as if run (v ## zs) t € a P a
using abstract-run-Run|OF that] abstract-run-abstract|OF that]
apply (subst (asm) abstract-run-ctr)
apply (subst (asm) (2) abstract-run-ctr)
by auto

end

7.6.1 Runs in Finite Complete Graphs

context Simulation-Graph-Finite-Complete
begin

lemma run-finite-state-set-cycle-steps:
assumes run (xo ## xs) Tg € ag P agp
shows 3 z ys zs.
Steps (ap # ys Q x # 25 Q [z]) A (V a € {x} U set ys U set zs. I x €
{z0} U sset zs. = € a)
using run-complete[OF assms]
apply safe
apply (drule Steps-finite.run-finite-state-set-cycle-steps)
apply safe
subgoal for as x ys zs
apply (inst-existentials x ys zs)
using assms(2) by (auto dest: stream-all2-sset2)
done

lemma buechi-run-finite-state-set-cycle-steps:
assumes run (ro ## xs) o € ag P ag alw (ev (holds ¢)) (xo ## xs)
shows 3 z ys zs.
Steps (ap # ys Q z # zs Q [z])
AV a€{z} UsetysUsetzs. 3 z € {0} U sset xs. © € a)
ANE@yeset(z#2s).3acy. ¢a)
using run-complete] OF assms(1—3)]
apply safe
apply (drule Steps-finite.buechi-run-finite-state-set-cycle-steps|where ¢
=AS. Jzefl pa])
subgoal for as
using assms(4)
apply (subst alw-ev-stl[symmetric], simp)

361

apply (erule alw-stream-all2-mono[where @ = ev (holds p)], fastforce)
by (metis (mono-tags, lifting) ev-holds-sset stream-all2-ssetl)
apply safe
subgoal for as z ys zs y a
apply (inst-ezistentials x ys zs)
using assms(2) by (auto dest: stream-all2-sset2)
done

lemma buechi-run-finite-state-set-cycle-lasso:
assumes run (rg ## xs) o € ag P ag alw (ev (holds ¢)) (xo ## xs)
shows Ja. Steps.reaches ag a N Steps.reachesl a a A (y € a. ¢ y)
proof —
from buechi-run-finite-state-set-cycle-steps| OF assms] obtain b as bs a y
where lasso:
Steps (ap # as Q b # bs Q [b]) a € set (b# bs) y€Eapy
by safe
from <a € set -» consider b = a | bsl bs2 where bs = bs! Q a # bs2
using split-list by fastforce
then have Steps.reaches ag a N\ Steps.reaches! a a
using <Steps -
apply cases
apply safe
subgoal
by (simp add: Steps.steps-reaches’)
subgoal
by (blast dest: Steps.stepsD intro: Steps.steps-reachesl)
subgoal for bs1 bs2
by (subgoal-tac Steps ((ap # as Q@ b # bs1 Q [a]) @ (bs2 @ [b])))
(drule Steps.stepsD, auto elim: Steps.steps-reaches’)
subgoal
by (metis (no-types)
Steps.steps-reachesl Steps.steps-rotate Steps-appendD2 append-Cons
append-eq-append-conv2
list.distinct(1))
done
with lasso show Zthesis
by auto
qed

end

7.7 Finite Complete Double Simulations

context Double-Simulation

362

begin

lemma Run-closure:
post-defs. Run (smap closure xs) if Run xs
using that proof (coinduction arbitrary: xs)
case prems: run
then obtain z y ys where zs = © ## y ## ys A2 x y Run (y ## ys)
by (auto elim: Steps.run.cases)
with A2"-A2-closure]OF <A2 z y»] show ?Zcase
by force
qged

lemma closure-set-finite:
finite (closure * UNIV) (is finite ?S)
proof —
have 7S C {z. z C {z. PI z}}
unfolding closure-def by auto
also have finite ...
using PI1-finite by auto
finally show %thesis .
qed

lemma A2’-empty-step:
b={}if A2 aba={}
using that closure-poststable unfolding A2'-def by auto

lemma A2’-empty-invariant:
Graph-Invariant A2' (X z. © = {})
by standard (rule A2'-empty-step)

end

context Double-Simulation- Complete
begin

lemmas P2-invariant-Steps = P2-invariant.invariant-steps

interpretation Steps-finite: Finite-Graph A2’ closure ag
proof
have {z. post-defs.Steps.reaches (closure ag) x} C closure * UNIV
by (auto 4 3 simp: A2'-def elim: rtranclp.cases)
also have finite ...
by (fact closure-set-finite)
finally show finite {x. post-defs.Steps.reaches (closure ag) z} .

363

qed

theorem infinite-run-cycle-iff ":
assumes A z zs. run (¢ ## xs) = = € |J(closure ag) = 3 y ys. y €
a0 A run (y 44 y5)
shows
(3 z0 xs. zg € U (closure ag) N run (xo ## xs)) «—
(3 as a bs. post-defs.Steps (closure ag # as Q a # bs Q [a]) A a # {})
proof (safe, goal-cases)
case prems: (1 xy X xs)
from assms|OF prems(1)] prems(2,3) obtain y ys where y € ag run (y
ys)
by auto
from run-complete[OF this(2,1) P2-ag] obtain as where Run (ay ##
as) stream-all2 (€) ys as
by auto
from P2-invariant.invariant-run[OF «Run -] have x: V a € sset (ag ##
as). P2 a
unfolding stream.pred-set by auto
from Steps-finite.run-finite-state-set-cycle-steps| OF Run-closure[OF <Run
-y, simplified]] show ?Zcase
using <stream-all2 - - -» <y € - * closure-non-empty by force+
next
case prems: (2 as a bs x)
with post-defs.Steps.steps-decomp|of closure ag # as Q [a] bs @ [a]] have
post-defs.Steps (closure ag # as Q [a]) post-defs.Steps (bs Q [a]) A2’ a
(hd (bs @ [a]))
by auto
from prems(2,3) Steps-run-cycle2[OF prems(1)] show ?case
by auto
ged

corollary infinite-run-cycle-iff:
(3 zo xs. o € ag N run (zo ## xs)) +—
(3 as a bs. post-defs.Steps (closure ag # as @ a # bs @Q [a]) A a # {})
if | (closure ag) = ag P2 ag
by (subst <- = ag»[symmetric]) (rule infinite-run-cycle-iff’; auto simp:
that)

context

fixes ¢ :: 'a = bool — The property we want to check

assumes @-closure-compatible: P2 a => x € |J (closure a) = ¢ © +—
(V z e (closure a). ¢ z)
begin

364

We need the condition a # {} in the following theorem because we cannot
prove a lemma like this:

lemma

3 bs. Steps bs N\ closure a # as = map closure bs if post-defs.Steps (closure
a # as)

using that

oops

One possible fix would be to add the stronger assumption A2 ¢ b = P2 b.

theorem infinite-buechi-run-cycle-iff-closure:
assumes
N\ z zs. run (z ## xs) = z € |J (closure ag) = alw (ev (holds ¢)) xs
= J yys.y € ap N\ run (y ## ys) N alw (ev (holds ¢)) ys
and A\ a. P2 a = a C | (closure a)
shows
(3 zo xs. zg € |J (closure ag) A run (zo ## xs) A alw (ev (holds ¢)) (zo
4t 15))
< (3 as a bs. a # {} N post-defs.Steps (closure ay # as Q a # bs Q
) A (s el apa)
proof (safe, goal-cases)
case prems: (1 xy xs)
from assms(1)[OF prems(3)] prems(1,2,4) obtain y ys where
y € ag Tun (y ## ys) alw (ev (holds ¢)) ys
by auto
from run-complete[OF this(2,1) P2-ay] obtain as where Run (ag ##
as) stream-all2 (€) ys as
by auto
from P2-invariant.invariant-run[OF <Run -»] have pred-stream P2 (ag
44 as)
by auto
from Run-closure[OF <Run -] have post-defs. Run (closure ag ## smap
closure as)
by simp
from <alw (ev (holds ¢)) ys» <stream-all2 - - -» have alw (ev (holds (X a.
3z €a pur))) as
by (rule alw-ev-lockstep) auto
then have alw (ev (holds (A a. 3 z € |J a. ¢ x))) (closure ag ## smap
closure as)
apply —
apply rule
apply (rule alw-ev-lockstep[where QQ = X a b. b = closure a A P2 a,
assumption)
subgoal

365

using <Run (ag ## as)
by — (rule stream-all2-combine[where P = eg-onp P2 and Q =)\ a
b. b = closure al,
subst stream.pred-rel[symmetric],
auto dest: P2-invariant.invariant-run simp: stream.rel-refl eq-onp-def
)
subgoal for a z
by (auto dest!: assms(2))
done
from Steps-finite.buechi-run-finite-state-set-cycle-steps| OF <post-defs. Run
(- #4 -)» this]
obtain a ys zs where guessed:
post-defs.Steps (closure ag # ys Q a # zs Q [a])
a = closure ag V a € closure ‘ sset as
set ys C insert (closure ap) (closure sset as)
set zs C insert (closure ag) (closure ¢ sset as)
(Jy€a. Fz€y. v) V (Fy€eset zs. Jy'ey. Jzey’. ¢ x)
by clarsimp
from guessed(5) show ?case
proof (standard, goal-cases)
case prems: 1
from guessed(1) have post-defs.Steps (closure ag # ys Q [a])
by (metis
Graph-Defs.graphI(3) Graph-Defs.steps-decomp append.simps(2)
list.sel(1) list.simps(3)
)

from «(pred-stream - -» guessed(2) obtain o’ where a = closure a’ P2
al
by (auto simp: stream.pred-set)
from prems obtain z R where € R R € a ¢ = by auto
with <P2 a» haveV z € | a. ¢ z
unfolding <a = -» by (subst @-closure-compatible[symmetric]) auto
with guessed(1,2) show ?Zcase
using <R € a> by blast
next
case prems: 2
then obtain R b x where x: t € RRe bbesetzspux
by auto
from <b € set zs» obtain zs! zs2 where zs = zs1 Q b # zs2 by (force
sitmp: split-list)
with guessed(1) have post-defs.Steps ((closure ag # ys Q a # 2s1 @
[b]) @ zs2 Q@ [a])
by simp
with guessed(1) have post-defs.Steps (closure ag # ys Q a # zs1 Q [b])

366

by — (drule Graph-Defs.steps-decomp, auto)
from <pred-stream - -» guessed(4) <zs = -» obtain b’ where b = closure
/ /
b" P2 b
by (auto simp: stream.pred-set)
with « have 'V z € |J b. ¢ z

unfolding «b = -» by (subst p-closure-compatible[symmetric]) auto
from <zs = - guessed(1) have post-defs.Steps ((closure ag # ys) Q (a
2zs1 @ [b]) @ zs2 Q@ [a])
by simp

then have post-defs.Steps (a # zs1 Q [b]) by (blast dest!: post-defs.Steps.steps-decomp)
with (zs = -» guessed * show Zcase
using
(R e b
post-defs.Steps.steps-append|of closure ag # ys @ a # zs1 Q b # zs2
Q [a] a # zs1 @ [b]]
by (inst-existentials ys Q a # zs1 b zs2 Q a # zs1) auto
qed
next
case prems: (2 as a bs x)
then have a # {}
by auto
from prems post-defs.Steps.steps-decomp|of closure ay # as @Q [a] bs @
[a]] have
post-defs.Steps (closure ay # as @ [a])
by auto
with Steps-run-cycle2[OF prems(1) <a # {}»] prems show ?Zcase
unfolding HLD-iff by clarify (drule alw-ev-mono|where 1) = holds ¢,
auto)
qed

end
end

context Double-Simulation-Finite-Complete
begin

lemmas P2-invariant-Steps = P2-invariant.invariant-steps

theorem infinite-run-cycle-iff ":

assumes P2 ag \ z zs. run (x ## xs) = z € |J(closure ap) = I y
ys. y € ag A run (y ## ys)

shows (3 zg xs. zg € ag A run (zg ## xs)) «— (I as a bs. Steps (ag #
as Q@ a # bs Q [a]))

367

proof (safe, goal-cases)

case (1 xg xs)

from run-finite-state-set-cycle-steps| OF this(2,1)] <P2 ap> show ?case by
auto
next

case prems: (2 as a bs)

with Steps.steps-decomp|of ap # as Q [a] bs Q [a]] have Steps (ap # as
Q@ [a]) by auto

from P2-invariant-Steps|OF this| have P2 a by auto

from Steps-run-cycle’|OF prems this| assms(2) show Zcase by auto
qged

corollary infinite-run-cycle-iff:

(3 zo @s. xg € ag A Tun (ro ## xs)) «— (3 as a bs. Steps (ap # as Q
a # bs @ [a]))

if | (closure ag) = ag P2 ag

by (rule infinite-run-cycle-iff’, auto simp: that)

context

fixes ¢ :: '/a = bool — The property we want to check

assumes @-closure-compatible: x € a = ¢ © «— (¥ z € |J (closure a).
¢ z)
begin

theorem infinite-buechi-run-cycle-iff:
(3 zo zs. o € ag A run (zo #7# zs) A alw (ev (holds ¢)) (zo ## xs))
«— (3 as a bs. Steps (ap # as Q a # bs Q [a]) A (V z € | (closure a).
¢)
if | (closure ag) = ag
proof (safe, goal-cases)
case (1 zp zs)
from buechi-run-finite-state-set-cycle-steps| OF this(2,1) P2-ag, of | this(3)
obtain a ys zs
where
infs ¢ xs
Steps (ap # ys Q a # zs Q [a])
zo € a V (FzEsset zs. x € a)
Vacset ys U set zs. ko € a V (Fz€sset zs. x € a)
(Fz€a. p) V (Jyeset zs. Jzey. ¢ z)
by clarsimp
note guessed = this(2—)
from guessed(4) show ?case
proof (standard, goal-cases)
case 1

368

then obtain z where z € ¢ ¢ x by auto
with -closure-compatible have ¥V = € | (closure a). ¢ = by blast
with guessed(1,2) show ?Zcase by auto
next
case 2
then obtain b x where z € b b € set zs ¢ x by auto
with ¢-closure-compatible have x: V z € |J(closure b). ¢ x by blast
from <b € set zs» obtain zs! zs2 where zs = zs1 Q b # 252 by (force
simp: split-list)
with guessed(1) have Steps ((ag # ys) Q (a # zs1 Q [b]) Q zs2 Q [a])
by simp
then have Steps (a # zs1 Q@ [b]) by (blast dest!: Steps.steps-decomp)
with (zs = -» guessed * show ?case
apply (inst-existentials ys Q a # zs1 b zs2 Q a # zs1)
using Steps.steps-append|of ay # ys Q a # zs1 Q b # 2s2 Q [a] a #
zs1 @ [b]]
by auto
qed
next
case prems: (2 as a bs)
with Steps.steps-decomp|of ap # as Q [a] bs @ [a]] have Steps (ag # as
@ [a]) by auto
from P2-invariant-Steps|OF this| have P2 a by auto
from Steps-run-cycle”|OF prems(1) this| prems this that show ?case
apply safe
subgoal for z zs b
by (inst-existentials x xs) (auto elim!: alw-ev-mono)
done
qed

end

end

7.8 Encoding of Properties in Runs

This approach only works if we assume strong compatibility of the property.
For weak compatibility, encoding in the automaton is likely the right way.

context Double-Simulation-Complete- Abstraction-Prop
begin

definition C-p zy=Czy A py
definition A7-p a b= A1 ab A bC {z. p z}

369

definition A2-¢ §$S§'=3 §”. A2 S S"ANS"Nn{z. pa}=8"NS"#{}

lemma A2-p-P2-invariant:

P2 a if A2-0** ag a
proof —

interpret invariant: Graph-Invariant-Start A2-p ag P2

by standard (auto intro: p-P2-compatible P2-invariant P2-ag simp:

A2-p-def)

from invariant.invariant-reaches|OF that] show ?thesis .
qged

sublocale phi: Double-Simulation-Complete C-p Al-p P1 A2-p P2 ag
proof (standard, goal-cases)
case (1 S T)
then show ?case unfolding A1-¢-def C-p-def by (auto 4 4 dest: p-A1-compatible
prestable)
next
case (2y b a)
then obtain ¢ where A2 a c ¢ N {z. ¢ z} = b unfolding A2-¢-def by
auto
with <y € -» have y € closure ¢ by (auto dest: closure-intD)
moreover have y C {z. ¢ z}
by (smt 2(1) p-Al-compatible <A2 a ¢» <¢c N {x. ¢ x} = by <y € closure
¢ closure-def
closure-poststable inf-assoc inf-bot-right inf-commute mem-Collect-eq)
ultimately show ?case using (A2 a ¢> unfolding A1-p-def A2-p-def
by (auto dest: closure-poststable)
next
case (3 z y)
then show ?Zcase by (rule P1-distinct)
next
case 4
then show ?Zcase by (rule P1-finite)
next
case (5 a)
then show ?case by (rule P2-cover)
next
case (6zy S)
then show ?case unfolding C-p-def A2-p-def by (auto dest!: complete)
next
case (7 a a’)
then show ?case unfolding A2-p-def by (auto intro: P2-invariant o-P2-compatible)
next
case §

370

then show ?case by (rule P2-ap)
qged

lemma phi-run-iff:
phi.run (x ## 25) N @ © «— run (z ## xs) A pred-stream ¢ (z ## xs)
proof —
have phi.run xs if run zs pred-stream ¢ xs for xs
using that by (coinduction arbitrary: xs) (auto elim: run.cases simp:
C-ip-def)
moreover have run zs if phi.run zs for zs
using that by (coinduction arbitrary: zs) (auto elim: phi.run.cases simp:
C-p-def)
moreover have pred-stream ¢ xs if phi.run (z ## xs) ¢ z
using that by (coinduction arbitrary: xs z) (auto 4 3 elim: phi.run.cases
simp: C-p-def)
ultimately show ?thesis by auto
qged

end

context Double-Simulation-Finite-Complete-Abstraction-Prop
begin

sublocale phi: Double-Simulation-Finite-Complete C-p Al-p P1 A2-¢ P2
ag
proof (standard, goal-cases)
case I
have {a. A2-0** ap a} C {a. Steps.reaches ag a}
apply safe
subgoal premises prems for x
using prems
proof (induction x1 = ag z rule: rtranclp.induct)
case rtrancl-refl
then show ?case by blast
next
case prems: (rtrancl-into-rtrancl b c)
then have ¢ # {}
by — (rule P2-non-empty, auto intro: A2-p-P2-invariant)
from <A2-¢ b ¢» obtain S” z where
A2b 8" ec=8"Nn{z. oz} ze S pu
unfolding A2-p-def by auto
with prems ¢ # {}» p-A2-compatible[of S"| show ?case
including graph-automation-aggressive by auto
qed

371

done
then show ?Zcase (is finite ?S) using finite-abstract-reachable by (rule
finite-subset)
qged

corollary infinite-run-cycle-iff:
(3 xo zs. o € ag A run (zo #F# zs) A pred-stream ¢ (zo #H# xs)) «—
(3 as a bs. phi.Steps (ag # as Q a # bs Q [a]))
if | (closure ap) = ag ap C {z. ¢ x}
unfolding phi.infinite-run-cycle-iff[OF that(1) P2-ag, symmetric] phi-run-iff [symmetric]
using that(2) by auto

theorem Alw-ev-me:

(V zo € ag. Alw-ev (Not o) zg) <— — (3 as a bs. phi.Steps (ag # as
Q@ a # bs @ [a]))

if | (closure ag) = ag ap C {z. ¢ x}

unfolding Alw-ev alw-holds-pred-stream-iff infinite-run-cycle-iff [OF that,
symmetric]

by (auto simp: comp-def)

end

context Simulation-Graph-Defs
begin

definition represent-run x as = x ## sscan (A b x. SOME y. Cxy N\ y
€b)asx

lemma represent-run-ctr:

represent-run x as = x ## represent-run (SOME y. Cxy A y € shd as)
(stl as)

unfolding represent-run-def by (subst sscan.ctr) (rule HOL.refl)

end

context Simulation-Graph-Prestable
begin

lemma represent-run-Run:
run (represent-run x as) if Run (a ## as) z € a
using that
proof (coinduction arbitrary: a = as)
case (rTun a x as)
obtain b bs where as = b ## bs by (metis stream.collapse)

372

with run have A a b Run (b ## bs) by (auto elim: Steps.run.cases)
from prestable[OF <A a by] <x € a)> obtain y where Cz y A y € b by
auto
then have Cz (SOME y. Czy ANy € b) AN (SOMEy. Czy Ay €b) e
b by (rule somel)
then show ?Zcase using <Run (b ## bs)> unfolding <as = -
apply (subst represent-run-ctr, simp)
apply (subst represent-run-ctr, simp)
by (auto simp: represent-run-ctr|[symmetric|)
qged

lemma represent-run-represent:

stream-all2 (€) (represent-run x as) (a ## as) if Run (a ## as) x € a
using that
proof (coinduction arbitrary: a = as)

case (stream-rel ' xs a’ as’ a x as)

obtain b bs where as = b ## bs by (metis stream.collapse)

with stream-rel have A a b Run (b #+# bs) by (auto elim: Steps.run.cases)

from prestable[OF <A a by] <z € a)» obtain y where Czy A y € b by
auto

then have C 2z (SOMEy. Czy ANy € b) AN (SOMEy. Czy Ay €b) e
b by (rule somel)

with <z’ ## xs = - <o’ ## as’' = - @ € & (Run (b ## bs)> show
?case unfolding <as = -»

by (subst (asm) represent-run-ctr) auto

qed

end

context Simulation-Graph-Complete-Prestable
begin

lemma step-bisim:
dy. Cz'yAN(Fa. PaNnyeany e€a)if Czyzcazr’'€aPa
proof —
from complete|OF <«C z y» - <P a) <x € a] obtain b’ where A a b’ y €
b/
by auto
from prestable[OF <A a b)] <z’ € a) obtain y’ where y' € b’ C z’ y’
by auto
with <P a» <A a b <y € b’y show ?thesis
by auto
qed

373

sublocale steps-bisim:

Bisimulation-Invariant C C Az y. 3 a. PaANx € a Ny € al- True)
-. True

by (standard; meson step-bisim)

lemma runs-bisim:
3 ys. run (y #4# ys) A stream-all2 Az y. 3 a.x €aNy€aAN Pa)as
ys
if run (z ## zs) x€cay€aPa
using that
by — (drule steps-bisim.bisim.A-B.simulation-run[of - - y],
auto elim!: stream-all2-weaken simp: steps-bisim.equiv’-def

)

lemma runs-bisim”:
3 ys. run (y ## ys) if run (z ## xs) x € ay € a P a
using runs-bisim[OF that] by blast

context

fixes Q :: ‘a = bool

assumes compatible: Q x —= r€a—=y <€ a=— Pa= Qy
begin

lemma Alw-ev-compatible’:
assumes Vzs. run (x ## zs) — ev (holds Q) (z ## xs) run (y #+#
)z €ay€c€aPa
shows ev (holds Q) (y ## xs)
proof —
from assms obtain ys where run (x ## ys) stream-all2 steps-bisim.equiv’
s Ys
by (auto 4 3 simp: steps-bisim.equiv’-def dest: steps-bisim.bisim.A-B.simulation-run)
with assms(1) have ev (holds Q) (x ## ys)
by auto
from (stream-all2 - - -» assms have stream-all2 steps-bisim.B-A.equiv’ (z
B4 ys) (y ## as)
by (fastforce
simp: steps-bisim.equiv’-def steps-bisim.A-B.equiv’-def
intro: steps-bisim.stream-all2-rotate-2
)
then show ?thesis
by — (rule steps-bisim.ev-1-p[OF - - <ev - -],
auto dest: compatible simp: steps-bisim.A-B.equiv’-def
)

qged

374

lemma Alw-ev-compatible:
Alw-ev Q x +— Alw-ev Qyuifz €ay € a Pa
unfolding Alw-ev-def using that by (auto intro: Alw-ev-compatible”)

end

lemma steps-bisim:
3 ys. steps (y # ys) A list-all2 Azy. 3 a.x €a Ny €aNPa)zsys
if steps (t # xs) x € ay € aPa
using that
by (auto 4 4
dest: steps-bisim.bisim.A-B.simulation-steps
intro: list-all2-mono simp: steps-bisim.equiv’-def

)

end

context Subgraph-Node-Defs
begin

lemma subgraph-runD:
run xs if G'.run xs
by (metis G'.run.cases run.coinduct subgraph that)

lemma subgraph-V-all:

pred-stream 'V xs if G'.run xs

by (metis (no-types, lifting) G'.run.simps Subgraph-Node-Defs.E'-V1 stream.inject
stream-pred-coinduct that)

lemma subgraph-runl:

G'.run zs if pred-stream V xs run s

using that

by (coinduction arbitrary: xs) (metis Subgraph-Node-Defs. E'-def run.cases
stream.pred-inject)

lemma subgraph-run-iff:
G'.run zs <— pred-stream V xs A\ run s
using subgraph-V-all subgraph-runD subgraph-runl by blast

end

context Double-Simulation-Finite-Complete- Abstraction-Prop-Bisim
begin

375

sublocale sim-complete: Simulation-Graph-Complete-Prestable C-o Al-
P1

by (standard; force dest: P1-invariant p-A1-compatible A1-complete simp:
C-p-def Al-p-def)

lemma runs-closure-bisim:

Jyys. y € ag A phi.run (y ## ys) if phi.run (x ## xs) x € |J (phi.closure
ap)

using that(2) sim-complete.runs-bisim’|OF that(1)] unfolding phi.closure-def
by auto

lemma infinite-run-cycle-iff "
(Fzo xs. zg € ag A phi.run (zo ## zs)) = (Fas a bs. phi.Steps (ap # as
Q@ a # bs @ [a]))

by (intro phi.infinite-run-cycle-iff " P2-ay runs-closure-bisim)

corollary infinite-run-cycle-iff:
(3 zo xs. o € ag A run (zo ## xs) A pred-stream ¢ (xg ## 15)) +—
(3 as a bs. phi.Steps (ap # as Q a # bs Q [a]))
if ap C {z. ¢ z}
unfolding infinite-run-cycle-iff [symmetric] phi-run-iff [symmetric] using
that by auto

theorem Alw-ev-mc:

(V zo € ap. Alw-ev (Not o) zg) <— — (3 as a bs. phi.Steps (ag # as
Q@ a # bs Q [a]))

if ap C {z. p z}

unfolding Alw-ev alw-holds-pred-stream-iff infinite-run-cycle-iff [OF that,
symmetric]

by (auto simp: comp-def)

lemma phi-Steps-Alw-ev:
= (3 as a bs. phi.Steps (ap # as Q a # bs Q [a])) +— phi.Steps. Alw-ev
(X -. False) ag
unfolding phi.Steps. Alw-ev
by (auto 4 3 dest:
sdrop-wait phi.Steps-finite.run-finite-state-set-cycle-steps phi.Steps-finite. cycle-steps-run
simp: not-alw-iff comp-def

)

theorem Alw-ev-mc”:
(V z0 € ag. Alw-ev (Not o @) xg) <— phi.Steps. Alw-ev (X -. False) ag

376

if ap C {z. ¢ =}
unfolding Alw-ev-mc[OF that] phi-Steps-Alw-ev[symmetric] ..

end

context Graph-Start-Defs
begin

interpretation Bisimulation-Invariant E E (=) reachable reachable
including graph-automation by standard auto

lemma Alw-alw-iff-default:

Alw-alw ¢ x «— Alw-alw ¢ x if A z. reachable t = ¢ © +— ¢ =
reachable x

by (rule Alw-alw-iff-strong) (auto simp: that A-B.equiv’-def)

lemma Alw-ev-iff-default:

Alw-ev ¢ x +— Alw-ev ¢ z if A\ z. reachable 1 = ¢ © <— 1 x reachable
x

by (rule Alw-ev-iff) (auto simp: that A-B.equiv’-def)

end

context Double-Simulation-Complete-Bisim-Cover
begin

lemma P2-closure-subs:
a C U (closure a) if P2 a
using P2-P1-cover[OF that] unfolding closure-def by fastforce

lemma (in Double-Simulation-Complete) P2-Steps-last:

P2 (last as) if Steps as ag = hd as

using that by — (cases as, auto dest!: P2-invariant-Steps simp: list-all-iff
PQ-ao)

lemma (in Double-Simulation) compatible-closure:
assumes compatible: AN azy. x € a = y€ a=— Pla=— Pz <+— P

Y
andV z € a. Pz

shows V z € | (closure a). Pz
unfolding closure-def using assms(2) by (auto dest: compatible)

lemma compatible-closure-all-iff:
assumes compatible: A\ azy.x € a = y€ a—=— Pla— Pz +— P

377

y and P2 a

shows (V z € a. P z) +— (V x € |J(closure a). P x)

using (P2 a> by (auto dest!: P2-closure-subs dest: compatible simp: clo-
sure-def)

lemma compatible-closure-ex-iff:

assumes compatible: \ a zy. * € a — y € a = Pla=— Pz <— P
y and P2 a

shows (3 z € a. P z) +— (3 =z € |J(closure a). P x)

using (P2 a) by (auto 4 3 dest!: P2-closure-subs dest: compatible P2-cover
simp: closure-def)

lemma (in Double-Simulation-Complete-Bisim) no-deadlock-closurel:

vV zo € | (closure ag). = deadlock xo if ¥V g € ag. = deadlock x

using that by — (rule compatible-closure, simp, rule bisim.steps-bisim.deadlock-iff
auto)

context

fixes P

assumes PI-P: Nazrzy. s €a=—y€a=— Pla=— Pz +— Py
begin

lemma reaches-all-1:
fixes b :: 'a set and y :: 'a and as :: 'a set list
assumes A: Vy. (3zoel (closure (hd as)). Fzs. hd xs = zo A last zs = y
A steps xs) — Py
and y € last as and ag = hd as and Steps as
shows P y
proof —
from assms obtain bs where [simp]: as = ag # bs by (cases as) auto
from Steps-Union|OF <Steps -»] have post-defs.Steps (map closure as) .
from (Steps as) <ag = -» have P2 (last as)
by (rule P2-Steps-last)
obtain b2 where b2: y € b2 b2 € last (closure ag # map closure bs)
apply atomize-elim
apply simp
apply safe
using «y € -» P2-closure-subs|OF <P2 (last as))]
by (auto simp: last-map)
with post.Steps-poststable[OF <post-defs.Steps -», of b2] obtain as’ where
as”:
pre-defs.Steps as' list-all2 (€) as’ (closure ag # map closure bs) last as’
=02
by auto

378

then obtain zy where zy € hd as’
by (cases as’) (auto split: if-split-asm simp: closure-def)
from pre.Steps-prestable]OF <pre-defs.Steps -» <xy € -] obtain zs where
steps (o # xs) list-all2 (€) (zo # xs) as’
by auto
from «z¢ € - «list-all2 (€) as’ - have zy € |J (closure ap)
by (cases as’) auto
with A «steps -» have P (last (zo # xs))
by fastforce
from as’ have P1 b2
using 02 by (auto simp: closure-def last-map split: if-split-asm)
from «list-all2 (€) as’ - «list-all2 (€) - as» - = b2) have last (zog # xs)
€ b2
by (fastforce dest!: list-all2-last)
from P1-P[OF this <y € b2> <P1 b2)] <P -» show Py ..
qed

lemma reaches-all-2:
fixes zg a xs
assumes A: Vb y. (as. hd zs = ag A last xs = b A Steps xs) ANy € b
— Py
and hd zs € a and a € closure ag and steps zs
shows P (last xs)
proof —
{
fix y o xs
assume hd zs € ap and steps zs
then obtain z ys where [simp|: xs = z # ys x € ag by (cases zs) auto
from steps-complete|of © ys ap] <steps xs» P2-ay obtain as where
Steps (ag # as) list-all2 (€) ys as
by auto
then have last s € last (ag # as)
by (fastforce dest: list-all2-last)
with A «Steps -» «x € -» have P (last xs)
by (force split: if-split-asm)
} note *x = this
from <a € closure ag> obtain x where z: v € a x € a9 PI a
by (auto simp: closure-def)
with <hd xs € a> <steps xsy bisim.steps-bisim[of hd zs tl xs a z] obtain
xs’ where
hd zs' = z steps xs’ list-all2 Az y. 3 a. x € a ANy € a A P1 a) zs xs’
apply atomize-elim
apply clarsimp
subgoal for ys

379

by (inst-existentials © # ys; force simp: list-all2-Cons2)
done
with x[of xs] x have P (last zs’)
by auto
from <steps xs» <list-all2 - zs xs’» obtain b where last zs € b last xs’ €
b P1b
by atomize-elim (fastforce dest!: list-all2-last)
from P1-P[OF this] <P (last zs")> show P (last xs) ..
ged

lemma reaches-all:

(V y. (3 zoel (closure ag). reaches xg y) — P y) «— (V¥ b y. Steps.reaches
abNyeb— Py)

unfolding reaches-steps-iff Steps.reaches-steps-iff using reaches-all-1 reaches-all-2
by auto

lemma reaches-all”:

(VY zoel (closure ag). Yy. reaches zog y — P y) = (Vy. Steps.reaches ag
y — (Vzey. Px))

using reaches-all by auto

lemma reaches-all”"
(V y.V zo€ag. reaches zg y —> P y) «— (V b y. Steps.reaches ag b A y
€b— Py)
proof —
have (Vzo€ag. Vy. reaches xg y — P y) «— (Vzo€l (closure ag). V y.
reaches tog y — P y)
apply (rule compatible-closure-all-iff[OF - P2-ag))
apply safe
subgoal for a z y y’
by (blast dest: P1-P bisim.steps-bisim.A-B.simulation-reaches|of - - x])
subgoal for a z y y’
by (blast dest: P1-P bisim.steps-bisim.A-B.simulation-reaches|of - - y])
done
from this[unfolded reaches-all’] show ?thesis
by auto
qged

lemma reaches-ez:

(y. Fzoel (closure ap). reaches xg y A P y) = (3 b y. Steps.reaches agp
bAyebAPYy)
proof (safe, goal-cases)

case (1 yzg X)

then obtain z where z € X z € a9 P1 X

380

unfolding closure-def by auto
with «zg € -» <reaches - -» obtain y’ Y where reaches x y' P1 Yy' € Y
yey
by (auto dest: bisim.steps-bisim.A-B.simulation-reaches[of - - x])
with simulation.simulation-reaches|OF <reaches x y» <x € ag> - P2-ay)
<P -y show ?case
by (auto dest: P1-P)
next
case (2 b y)
with <y € b» obtain Y where y € Y Y € closure b P1 Y
unfolding closure-def
by (metis (mono-tags, lifting) P2-P1-cover P2-invariant.invariant-reaches
mem-Collect-eq)

from closure-reaches|OF «Steps.reaches - -y] have
post-defs.Steps.reaches (closure ag) (closure b)
by auto

from post.reaches-poststable]OF this <Y € -] obtain X where
X € closure ag pre-defs.Steps.reaches X Y
by auto
then obtain z where z € X = € qg
unfolding closure-def by auto
from pre.reaches-prestable| OF <pre-defs.Steps.reaches X Y «x € X»] ob-
tain y’ where
reaches ty' y' € Y
by auto
with <z € Xb «(X € > <Py P11 Y>«y € Y) show ?case
by (auto dest: P1-P)
qged

lemma reaches-ex’:

(3 y. 3 zo€ap. reaches xo y N P y) <— (I b y. Steps.reaches ag b N y €
bA Py
proof —

have (Fzo€ag. Jy. reaches g y A P y) +— (Fzoel (closure ag). I y.
reaches o y N P y)
apply (rule compatible-closure-ex-iff [OF - P2-ag))
apply safe
subgoal for a z y y’
by (blast dest: P1-P bisim.steps-bisim.A-B.simulation-reaches|of - - y])
subgoal for a z y y’
by (blast dest: P1-P bisim.steps-bisim.A-B.simulation-reaches|of - - x])
done
from this reaches-ex show “thesis

381

by auto
qged

end

lemma (in Double-Simulation-Complete-Bisim) P1-deadlocked-compatible:
deadlocked x = deadlocked y if x € a y € a P1 a for x y a
unfolding deadlocked-def using that apply auto
subgoal
using AI-complete prestable by blast
subgoal using AI-complete prestable by blast
done

lemma steps-Steps-no-deadlock:
- Steps.deadlock ag
if no-deadlock: ¥ zo € |J (closure ag). = deadlock x
proof —
from PI1-deadlocked-compatible have
(Vy. (3zoel (closure ag). reaches xg y) — (Not o deadlocked) y)
(Vb y. Steps.reaches ag b A y € b — (Not o deadlocked) y)
using reaches-all[of Not o deadlocked] unfolding comp-def by blast
then show — Steps.deadlock ag
using no-deadlock
unfolding Steps.deadlock-def deadlock-def
apply safe
subgoal
by (simp add: Graph-Defs.deadlocked-def)
(metis P2-cover P2-invariant.invariant-reaches disjoint-iff-not-equal
stmulation.A-B-step)
subgoal
by auto
done
ged

lemma steps-Steps-no-deadlockl:
- Steps.deadlock ag
if no-deadlock: ¥ xo € ag. = deadlock xo and closure-simp: |J (closure ap)

= agp
using steps-Steps-no-deadlock[unfolded closure-simp, OF no-deadlock] .

lemma Alw-alw-iff:

(V zo € U (closure ap). Alw-alw P x¢) <— Steps.Alw-alw (X a. V ¢ € a.
P¢) ag

if PI-P:Narzy 2 €a—y€a— Pla=— Pz +— Py

382

and no-deadlock: ¥ zo € |J (closure ag). = deadlock x
proof —
from steps-Steps-no-deadlock|OF no-deadlock] show ?thesis
by (simp add: Alw-alw-iff Steps. Alw-alw-iff no-deadlock Steps.Ex-ev Ex-ev)
(rule reaches-all’[simplified]; erule P1-P; assumption)
qged

lemma Alw-alw-iff1:

(V zo € ag. Alw-alw P xgy) <— Steps.Alw-alw (A a. ¥V ¢ € a. P ¢) ap

if PI-P: Nazy s €a=—y€a— Pla=— Prx+— Py

and no-deadlock: ¥ zy € ag. = deadlock xy and closure-simp: | J (closure
ag) = ag

using Alw-alw-iff[OF P1-P] no-deadlock unfolding closure-simp by auto

lemma Alw-alw-iff2:
(V zo € ag. Alw-alw P xg) <— Steps.Alw-alw (A a. ¥ ¢ € a. P ¢) agp
if PI-P: Nary.zx€a=—y€a=— Pla=— Pz <+— Py
and no-deadlock: ¥V xg € ag. - deadlock xg
proof —
have (V zg € ap. Alw-alw P zo) «— (V zo € | (closure ap). Alw-alw P
z0)
apply —
apply (rule compatible-closure-all-iff, rule bisim.steps-bisim. Alw-alw-iff-strong)
unfolding bisim.steps-bisim.A-B.equiv’-def
by (blast intro: P2-ag dest: P1-P)+
also have ... +— Steps.Alw-alw (A a.V ¢ € a. P ¢) ap
by (rule Alw-alw-iff[OF P1-P no-deadlock-closurel [OF no-deadlock]])
finally show ?thesis .
qed

lemma Steps-all-Alw-ev:
Y zo € ag. Alw-ev P xg if Steps.Alw-ev (A a. ¥V ¢ € a. P ¢) ag
using that unfolding Alw-ev-def Steps. Alw-ev-def
apply safe
apply (drule run-complete] OF - - P2-ap|, assumption)
apply safe
apply (elim allE impE, assumption)
subgoal premises prems for z zs as
using prems(4,3,1)
by (induction ay ## as arbitrary: ay as x xs rule: ev.induct)
(auto 4 3 elim: stream.rel-cases intro: ev-Stream)
done

lemma closure-compatible-Steps-all-ex-iff:

383

Steps. Alw-ev (A a. V ¢ € a. P ¢) a9 «— Steps.Alw-ev (A a. 3 ¢ € a. P
¢) ap
if closure-P: Nazy.x € a —= y€a=— P2a—=— Pz <+— Py
proof —
interpret Bisimulation-Invariant A2 A2 (=) P2 P2
by standard auto
show “thesis
using P2-ag
by — (rule Alw-ev-iff, unfold A-B.equiv’-def; meson P2-cover closure-P
disjoint-iff-not-equal)
qged

lemma (in —) compatible-imp:
assumes N azy.r€a—y€a=— Pla=— Pz +— Py
and Nazyz€a=—yca=—Pla=— Qz+— Qy
shows Nazy. z€ca=—=y€ca= Pla= (Qz — Puz)+— (Q
y — Py)
using assms by metis

lemma Leadsto-iff:
(V zo € U (closure ag). leadsto P Q xg) <— Steps.Alw-alw (Aa. V c€a. P
¢ — Alw-ev Q ¢) ap
if PI-PNazy.rx€a—y€a—=— Pla=— Pzx+— Py
and PI-Q: Nazy s €a—y€a— Pla— Qur+— Quy
and no-deadlock: ¥ zo € |J (closure ag). = deadlock x
unfolding leadsto-def
by (subst Alw-alw-iff [OF - no-deadlock],
intro compatible-imp bisim.Alw-ev-compatible,
(subst (asm) P1-Q; force), (assumption | intro HOL.refl P1-P)+

)

lemma Leadsto-iff1:

(V o € ap. leadsto P Q xg) «— Steps. Alw-alw (Aa. ¥V cea. P ¢ — Alw-ev
Q c) ao

if PI-P: Nazyr€a—y€a— Pla— Pz+— Py

and PI-Q: Nazrzy. s €a—y€a=— Pla=— Qr+— Qy

and no-deadlock: ¥ zy € ag. = deadlock xy and closure-simp: | J (closure
(ZQ) = ap

by (subst closure-simp[symmetric], rule Leadsto-iff)

(auto simp: closure-simp no-deadlock dest: P1-Q) P1-P)

lemma Leadsto-iff2:
(V zg € ag. leadsto P Q xy) «— Steps.Alw-alw (Aa. V c€a. P ¢ — Alw-ev
Q ¢) ag

384

if PI-PNazyrx€a—y€a=— Pla=— Pzx+— Py
and PI-Q: Nazy z€a—=—y€a— Pla— Quz+— Quy
and no-deadlock: ¥V xg € ag. - deadlock xg
proof —
have (V zg € ag. leadsto P Q zo) «— (V zo € J (closure ap). leadsto P
Q z0)
apply —
apply (rule compatible-closure-all-iff , rule bisim.steps-bisim.Leadsto-iff)
unfolding bisim.steps-bisim.A-B.equiv’-def by (blast intro: P2-ag dest:
P1-P P1-Q)+
also have ... +— Steps.Alw-alw (Aa. ¥V c€a. P ¢ — Alw-ev Q ¢) ag
by (rule Leadsto-iff[OF - - no-deadlock-closurel[OF no-deadlock]]; rule
P1-P P1-Q)
finally show ?thesis .
qed

lemma (in —) compatible-convert1:
assumes A zya. Pr—=zr€a=—y€a=— Pla=— Py
shows Nazy s ca=yca= Pla= Pz <+— Py
by (auto intro: assms)

lemma (in —) compatible-convert2:
assumes N\ azy.r € a—y€a—=— Pla=— Pz +— Py
shows N\zya. Pr—=1€a—=—y€a— Pla=— Py
using assms by meson

lemma (in Double-Simulation-Defs)
assumes compatible: N xya. Pr =z € a — y€ a=— Pla=— P

Y
and that:V z € a. Px

shows V z € |J(closure a). P x
using that unfolding closure-def by (auto dest: compatible)

end

context Double-Simulation-Finite-Complete- Bisim-Cover
begin

lemma Alw-ev-Steps-ex:

(V zo € U (closure ag). Alw-ev P x9) — Steps.Alw-ev (A a. 3 ¢ € a. P
¢) ag

if closure-P: \ a z y. z € | (closure a) = y € |J (closure a) = P2 a
— Pz<+— Py

unfolding Alw-ev Steps. Alw-ev

385

apply safe

apply (frule Steps-finite.run-finite-state-set-cycle-steps)

apply clarify

apply (frule Steps-run-cycle")

apply (auto dest!: P2-invariant.invariant-run simp: stream.pred-set; fail)
unfolding that

apply clarify

subgoal premises prems for zs z ys zs ©’ s’ R

proof —
from <z’ € R) <R € -» that have «z' € |J (closure ap)»
by auto

with prems(5,9) have

V ce{z'} Ussetazs’. 3 y € {ap} U sset zs. ¢ € |J (closure y)

by fast
with prems(3) have x:

V oce{z'} Ussetxs’. 3 y € {ap} U sset zs. ¢ € |J(closure y) A (¥ ¢

€y. - Pec)

unfolding alw-holds-sset by simp
from «Run -» have xx: P2 y if y € {ap} U sset xs for y
using that by (auto dest!: P2-invariant.invariant-run simp: stream.pred-set)
have xxx: = P ¢ if ¢ € | (closure y) V d € y. =~ P d P2 y for c y
proof —

from that P2-cover[OF «P2 y)] obtain d where d € y d € | (closure

y)
by (fastforce dest!: P2-closure-subs)
with that closure-P show ?thesis
by blast
qged
from x have V ¢ € {2} U sset zs’. = P ¢
by (fastforce intro: xx dest!: xxx[rotated))
with prems(1) <run -» <z’ € |J (closure -)) show ?Zthesis
unfolding alw-holds-sset by auto
qed
done

lemma Alw-ev-Steps-ex2:

(V zo € ag. Alw-ev P xg) —> Steps.Alw-ev (A a. 3 ¢ € a. P ¢) ag

if closure-P: \ a zy. x € |J(closure a) = y € |J (closure a) = P2 a
= Prz+— Py

and PI-P: Nazy s €a=—y€a=— Pla=— Prx<+— Py
proof —

have (V zp € ag. Alw-ev P zg) «— (¥ z¢ € | (closure ag). Alw-ev P zp)

by (intro compatible-closure-all-iff bisim.Alw-ev-compatible; auto dest:

P1-P simp: P2-ag)

386

also have ... — Steps.Alw-ev (A a. 3 ¢ € a. P ¢) ap
by (intro Alw-ev-Steps-ex that)
finally show “thesis .
qged

lemma Alw-ev-Steps-exl:

(V z0 € ap. Alw-ev P z9) — Steps.Alw-ev (A a. 3 ¢ € a. P ¢) ag if
U (closure ag) = ag

and closure-P: \ a z y. © € |J(closure a) = y € |J (closure a) = P2
a=—> Px+— Py

by (subst that(1)[symmetric]) (intro Alw-ev-Steps-ex closure-P; assump-
tion)

lemma closure-compatible- Alw-ev-Steps-iff:
(V zo € ag. Alw-ev P xg) <— Steps.Alw-ev (A a. ¥ ¢ € a. P ¢) ag
if closure-P: \ a z y. z € | (closure a) = y € |J (closure a) = P2 a
= Prz+— Py
and PI-P: Nazy r€a=—y€a— Pla=— Px<+— Py
apply standard
subgoal
apply (subst closure-compatible-Steps-all-ex-iff [OF closure-P])
prefer 4
apply (rule Alw-ev-Steps-ex2[OF that, rule-format))
by (auto dest!: P2-closure-subs)
by (rule Steps-all-Alw-ev) (auto dest: P2-closure-subs)

lemma Leadsto-iff "
(V zg € ag. leadsto P @ xo)
> Steps. Alw-alw (X a. (V ¢ € a. P ¢) — Steps.Alw-ev (A a. ¥V ¢ € a.
Q c) a) ag
if PI-P:Nazyrx€a=—y€a=— Pla=— Px<+— Py
and PI-Q: Nazy s €a=—y€a=— Pla=— Qz+— Qy
and closure-Q: \ a z y. © € |J(closure a) = y € |J(closure a) =
P2a= Qz+— Quy
and closure-P: N azy. s € a = y€ a— P2a— Pz +— Py
and no-deadlock: ¥ xy € ag. — deadlock xo and closure-simp: | J (closure
ag) = ag
apply (subst Leadsto-iff1, (rule that; assumption)+)
subgoal
apply (rule P2-invariant. Alw-alw-iff-default)
subgoal premises prems for a
proof —
have P2 a
by (rule P2-invariant.invariant-reaches| OF prems[unfolded Graph-Start-Defs.reachable-def]))

387

interpret a: Double-Simulation-Finite- Complete-Bisim-Cover C Al
P1 A2 P2 a
apply standard
apply (rule complete; assumption; fail)
apply (rule P2-invariant; assumption)
subgoal
by (fact <P2 a)
subgoal
proof —
have {b. Steps.reaches a b} C {b. Steps.reaches ay b}
by (blast intro: rtranclp-trans prems[unfolded Graph-Start-Defs.reachable-def])
with finite-abstract-reachable show ¢thesis
by — (rule finite-subset)
qed

apply (rule A1-complete; assumption)

apply (rule Pl-invariant; assumption)
apply (rule P2-P1-cover; assumption)
done

from P2 a» show ?thesis
by — (subst a.closure-compatible- Alw-ev-Steps-iff [symmetric], (rule
that; assumption)+,
auto dest: closure-P intro: that

)

qed
done

context

fixes P :: 'a = bool — The property we want to check

assumes closure-P: \ a zy. x € | (closure a) = y € |J (closure a) =
P2a=— Px<+— Py

and PI-P: Nazy. Pr —=1r€a—=—y€a— Pla=— Py
begin

lemma run-alw-ev-bisim:

run (¢ ## zs) = ¢ € |J(closure ag) = alw (ev (holds P)) xs
= J yys. y € ap A run (y ## ys) A alw (ev (holds P)) ys

unfolding closure-def

apply safe

apply (rotate-tac 3)

apply (drule bisim.runs-bisim, assumption+)

apply (auto elim: P1-P dest: alw-ev-lockstep|of P - - - P])

done

388

lemma p-closure-compatible:
P2 a = z € J(closure a) = Pz <— (¥ = € |J(closure a). P x)
using closure-P by blast

theorem infinite-buechi-run-cycle-iff:
(3 zo zs. zo € | (closure ag) A run (zo ## xs) A alw (ev (holds P)) (zo
5))
<« (3 as a bs. a # {} A post-defs.Steps (closure ag # as Q a # bs @
[a) AN (V z € a. Px))
by (rule
infinite-buechi-run-cycle-iff-closure] OF
p-closure-compatible run-alw-ev-bisim P2-closure-subs
]
)

end

end

Possible Solution

context Graph-Invariant
begin

definition F-invzy=FExy AN Pz APy

lemma bisim-E-inv:
Bisimulation-Invariant E E-inv (=) P P

by standard (auto intro: invariant simp: E-inv-def)
interpretation G-inv: Graph-Defs E-inv .

lemma steps-G-inv-steps:
steps (x # xs) «— G-inv.steps (v # xs) if P x
proof —
interpret Bisimulation-Invariant E E-inv (=) P P
by (rule bisim-E-inv)
from <P z» show %thesis
by (auto 4 3 simp: equiv’-def list.rel-eq
dest: bisim.A-B.simulation-steps bisim.B-A.simulation-steps
list-all2-monolof - - - (=)]
)

ged

end

389

R-of /from-R definition R-of IR = snd ‘ IR
definition from-R Il R = {(I, u) | u. u € R}

lemma from-R-fst:
Vzefrom-R I R. fstx =1
unfolding from-R-def by auto

lemma R-of-from-R [simp]:
R-of (from-R I R) = R
unfolding R-of-def from-R-def image-def by auto

lemma from-R-loc:
U'=1if (I', u) € from-R 1 Z
using that unfolding from-R-def by auto

lemma from-R-val:
uwe Zif (I'; u) € from-R17Z
using that unfolding from-R-def by auto

lemma from-R-R-of:
from-R 1 (R-of S) = SifVzeS. fstx=1
using that unfolding from-R-def R-of-def by force

lemma R-ofl[intro]:
Z € R-of Sif (I, Z) e S
using that unfolding R-of-def by force

lemma from-R-1[intro:
(I, u') € from-R 1" Z'if v’ € Z'
using that unfolding from-R-def by auto

lemma R-of-non-emptyD:

o # {} if R-of a # {}
using that unfolding R-of-def by simp

lemma R-of-empty[simp]:

R-of {} = {}

using R-of-non-emptyD by metis
lemma fst-simp:

r=1ifVaeca fstz=1(z,y) €a
using that by auto

390

lemma from-R-D:
we Zif (I'; u) € from-R1Z
using that unfolding from-R-def by auto

locale Double-Simulation-paired-Defs =
fixes C' :: ("a x 'b) = ('a x 'b) = bool — Concrete step relation
and A1 :: ('a x 'b set) = (‘a x 'b set) = bool
— Step relation for the first abstraction layer
and PI :: (‘a x 'b set) = bool — Valid states of the first abstraction
layer
and A2 :: (‘a x 'b set) = (‘a x b set) = bool
— Step relation for the second abstraction layer
and P2 :: (‘a x 'b set) = bool — Valid states of the second abstraction
layer
begin

definition
A1"=NIRIR. FIlI. WV xz€lR. fstx=1) NN z € IR fstxz=1)
A P1 (I, R-of IR) N A1 (I, R-of IR) (I', R-of IR’
)

definition
A2"'=(NIRIR.FII. VNV ze€lR. fstx=1) NN z€lR" fstz =1
A P2 (I, R-of IR) A A2 (I, R-of IR) (I', R-of IR’
)

definition
P1'=(\IR. 3 1.V z€lR. fstxz=1) NP1 (I, R-of IR))

definition

P2'=(NIR. 3 1. (V z €lR. fstz=1) N P2 (l, R-of IR))
definition closure’ l a = {z. P1 (I, z) A a Nz # {}}
sublocale sim: Double-Simulation-Defs C A1’ P1' A2’ P2’ .
end
locale Double-Simulation-paired = Double-Simulation-paired-Defs +
assumes prestable: P1 (I, S) = A1 (I, S) (I, T) =V se€ S.3 s’ ¢
T.C (1, s) (I, s
and closure-poststable:

s" € closure’ l' y = P2 (I, x) = A2 (I, z) (I, y)
— Jseclosure’ lz. A1 (1, s) (I', s

391

and PI-distinct: P1 (I, z) = P1 (l,y) = #y=zNy={}
and PI-finite: finite {(l, z). P1 (I,)}
and P2-cover: P2 (I, a) = 3 z. P1 ([, z) ANz Na#{}

begin

sublocale sim: Double-Simulation C A1’ P1' A2’ P2’
proof (standard, goal-cases)
case (1 ST)
then show “case
unfolding A1'-def by (metis from-R-I from-R-R-of from-R-val prestable
prod.collapse)
next
case (2s’' yx)
then show ?case
unfolding A2'-def A1’-def sim.closure-def
unfolding P1’-def
apply clarify
subgoal premises prems for [[1 [2
proof —
from prems have [2 = [1
by force
from prems have R-of s’ € closure’ l1 (R-of y)
unfolding closure’-def by auto
with A2 - - <P2 - closure-poststable[of R-of s’ 11 R-of y | R-of z]
obtain s where
s € closure’ | (R-of x) A1 (1, s) (l1, R-of s')
by auto
with prems from-R-fst R-of-from-R show ?thesis
apply —
unfolding <2 = 1>
apply (rule bexl[where z = from-R 1 s])
apply (inst-existentials [11)
apply (simp add: from-R-fst; fail)+
subgoal
unfolding closure’-def by auto
apply (simp; fail)
unfolding closure’-def
apply (intro Collectl conjl ex)
apply fastforce
apply fastforce
apply (fastforce simp: R-of-def from-R-def)
done
qged
done

392

next
case (3 z y)
then show “case
unfolding P1’-def using PI1-distinct
by (smt disjoint-iff-not-equal eq-fst-iff from-R-R-of from-R-val)
next
case 4
have {z. 3. (Vze€z. fstx = 1) A P1 (I, R-of)} C (XA (I, z). from-R [x)
“A(l, z). P1 (I, z)}
using from-R-R-of image-iff by fastforce
with PI1-finite show ?case
unfolding P1’-def by (auto elim: finite-subset)
next
case (5 a)
then show ?case
unfolding P1’-def P2'-def
apply clarify
apply (frule P2-cover)
apply clarify
subgoal for [z
apply (inst-existentials from-R | z 1, (simp add: from-R-fst)+)
using R-of-def by (fastforce simp: from-R-fst)
done
qed

context
assumes P2-invariant: P2 a = A2 a a' = P2 a’
begin

lemma A2-A2'-bisim: Bisimulation-Invariant A2 A2" (X (I, Z) b. b =
from-R | Z) P2 P2’
apply standard
subgoal A2-A2' for a b o’
unfolding P2'-def
apply clarify
apply (inst-existentials from-R (fst b) (snd b))
subgoal for z y |
unfolding A2'-def
apply simp
apply (inst-existentials 1)
by (auto dest!: P2-cover simp: from-R-def)
by clarsimp
subgoal A2’-A2 for a a’ b’

393

using from-R-fst by (fastforce dest: sim.P2-cover simp: from-R-R-of
A2'-def)
subgoal P2-invariant for a b
by (fact P2-invariant)
subgoal P2’-invariant for a b
unfolding P2’-def A2'-def using P2-invariant by blast
done

end
end

locale Double-Simulation-Complete-paired = Double-Simulation-paired +
fixes l(] an
assumes complete: C (I, z) (I',y) =2z € S = P2 (I, S) = 3 T. A2
(LS)(U, TYNye T
assumes P2-invariant: P2 a = A2 a o’ = P2a’
and PQ—GOI: P2 (l(), (10)
begin

interpretation Bisimulation-Invariant A2 A2' X (I, Z) b. b = from-R 1 Z
P2 P2’
by (rule A2-A2'-bisim[OF P2-invariant))

sublocale Double-Simulation-Complete C A1’ P1" A2’ P2’ from-R ly ag
proof (standard, goal-cases)
case prems: (1 z y S) — complete
then show ?case
unfolding A2'-def P2'-def using from-R-fst
by (clarify; cases x; cases y; simp; fastforce dest!: complete|[of - - - - R-of
S)
next
case prems: (2 a a’) — P2 invariant
then show ?case
by (meson A2'-def P2'-def P2-invariant)
next
case prems: 3 — P2 start
then show ?case
using P2'-def P2-ay’ from-R-fst by fastforce
qed

sublocale P2-invariant”. Graph-Invariant-Start A2 (ly, ag) P2
by (standard; rule P2-ay’)

394

end

locale Double-Simulation-Finite-Complete-paired = Double-Simulation-Complete-paired
+
assumes finite-abstract-reachable: finite {(I, a). A2** (ly, ao) (I, a) N P2

(1,)}

begin

interpretation Bisimulation-Invariant A2 A2' X\ (I, Z) b. b = from-R 1 Z
P2 P2’
by (rule A2-A2'-bisim|OF P2-invariant))

sublocale Double-Simulation-Finite-Complete C A1’ P1" A2’ P2’ from-R
lo ag
proof (standard, goal-cases)
case prems: 1 — The set of abstract reachable states is finite.
have *: 3 . z = from-R | (R-of) N A2** (lo, ap) (I, R-of)
if sim.Steps.reaches (from-R ly ag) = for z
using bisim.B-A-reaches|OF that, of (lo, ap)] P2-ay’ P2'-def equiv’-def
from-R-fst by fastforce
have {a. sim.Steps.reaches (from-R ly ap) a}
C (A (I, R). from-R I R) ‘{(l, a). A2** (ly, ao) (I, a) AN P2 (I, a)}
using P2-a¢’ by (fastforce dest: x intro: P2-invariant’.invariant-reaches)
then show ?case
using finite-abstract-reachable by (auto elim!: finite-subset)
qed

end

locale Double-Simulation-Complete- Bisim-paired = Double-Simulation-Complete-paired
|
assumes AI-complete: C (I, z) (I', y) = P1 (I,§) = 2z € S =3 T.
A1 (L, S)Y (U, TYNye T
and Pl-invariant: P1 (I, S) = A1 (1, S) (I', T) = P1 (I', T)
begin

sublocale Double-Simulation-Complete-Bisim C A1’ P1' A2’ P2’ from-R
lg ag
proof (standard, goal-cases)
case (1 zyS)
then show ?case
unfolding A1’-def P1'-def
apply (cases z; cases y; simp)
apply (drule A1-complete[where S = R-of S])

395

apply fastforce
apply fastforce
apply clarify
subgoal for a b1’ ba | T
by (inst-ezistentials from-R 1" T 1l’) (auto simp: from-R-fst)
done
next
case (25 T)
then show “case
unfolding A1’-def P1'-def by (auto intro: P1-invariant)
qged

end

locale Double-Simulation-Finite-Complete- Bisim-paired = Double-Simulation- Finite-Complete-paire
+

Double-Simulation-Complete- Bisim-paired
begin

sublocale Double-Simulation-Finite-Complete-Bisim C A1’ P1’' A2’ P2’
from-R Iy ag ..

end

locale Double-Simulation-Complete- Bisim-Cover-paired =
Double-Simulation-Complete-Bisim-paired +
assumes P2-Pl-cover: P2 (I, a) = z € a = 3 o’ ana’ # {} N P1
(I, a) Nz ea
begin

sublocale Double-Simulation-Complete-Bisim-Cover C A1’ P1’ A2’ P2’
from-R ly ag

apply standard

unfolding P2’-def P1'-def

apply clarify

apply (drule P2-P1-cover, force)

apply clarify

subgoal for a aa b [a’

by (inst-ezistentials from-R | a’) (fastforce simp: from-R-fst)+
done

end

locale Double-Simulation-Finite-Complete- Bisim-Cover-paired =

396

Double-Simulation-Complete- Bisim-Cover-paired +
Double-Simulation-Finite- Complete- Bisim-paired
begin

sublocale Double-Simulation-Finite-Complete-Bisim-Cover C A1’ P1' A2’
P2’ from-R ly ag ..

end

locale Double-Simulation-Complete- Abstraction-Prop-paired =
Double-Simulation- Complete-paired +
fixes P :: 'a = bool — The property we want to check
assumes P2-non-empty: P2 (I, a) = a # {}

begin

definition ¢ = P o fst

lemma P2-¢:
a N Collect ¢ = a if P2" a a N Collect ¢ # {}
using that unfolding ¢-def P2’-def by (auto simp del: fst-conv)

sublocale Double-Simulation-Complete-Abstraction-Prop C A1’ P1’ A2’
P2’ from-R ly ag ¢
proof (standard, goal-cases)
case (1 a b)
then obtain [where Vzeb. fst z = [
unfolding A1’-def by fast
then show ?case
unfolding p-def by (auto simp del: fst-conv)
next
case (2 a)
then show ?Zcase
by — (frule P2-p, auto)
next
case prems: (3 a)
then have P2’ a
by (simp add: P2-invariant.invariant-reaches)
from P2-p[OF this| prems show Zcase
by simp
next
case (4 a)
then show ?case
unfolding P2’-def by (auto dest!: P2-non-empty)
qged

397

end

locale Double-Simulation-Finite-Complete- Abstraction-Prop-paired =
Double-Simulation- Complete- Abstraction- Prop-paired +
Double-Simulation- Finite- Complete-paired

begin

sublocale Double-Simulation-Finite-Complete-Abstraction-Prop C A1’ P1’
A2' P2' from-R ly ag @ ..

end

locale Double-Simulation-Complete- Abstraction- Prop- Bisim-paired =
Double-Simulation-Complete- Abstraction-Prop-paired +
Double-Simulation- Complete- Bisim-paired

begin

interpretation bisim: Bisimulation-Invariant A2 A2’ X (I, Z) b. b = from-R
1 Z P2 P2’
by (rule A2-A2'-bisim[OF P2-invariant))

sublocale Double-Simulation-Complete- Abstraction-Prop-Bisim,
C A1’ P1" A2' P2’ from-R ly ag ¢ ..

lemma P2’-non-empty:
P2'a = a # {}
using P2-non-empty unfolding P2’-def by force

lemma from-R-int-p[simp):
from-R I R N Collect p = from-R I R if Pl
using from-R-fst that unfolding y-def by fastforce

interpretation G,: Graph-Start-Defs
AN, Z2) (U, 2. A2 (1, 2) (I, Z"y A P 1 (lg, ao) -

interpretation Bisimulation-Invariant X (I, Z) (I', Z"). A2 (I, Z) (I, Z)
APl
A2-p XN (I, Z) b. b = from-R 1 Z P2 P2’
apply standard
unfolding A2-p-def
apply clarify
subgoal for [a I’ a’
apply (drule bisim.A-B-step)

398

prefer 3
apply assumption
apply safe
apply (frule P-invariant, assumption+)
using from-R-fst by (fastforce simp: p-def P2'-def dest!: P2'-non-empty)+
subgoal for a a’ b’
apply clarify
apply (drule bisim.B-A-step)
prefer 2
apply assumption
apply safe
apply (frule P2-invariant, assumption+)
apply (subst (asm) (3) p-def)
apply simp
apply (elim allE impE, assumption)
using from-R-fst apply force
apply (subst (asm) (2) from-R-int-p)
using from-R-fst by fastforce+
subgoal
by blast
subgoal
using ¢-P2-compatible by blast
done

lemma from-R-subs-y:
from-R 1 a C Collect ¢ if P [
using that unfolding y-def from-R-def by auto

lemma P2’-from-R:
3172 x= from-RI1 Z'if P2’ z
using that unfolding P2’-def by (fastforce dest: from-R-R-of)

lemma P2-from-R-list".
3 as’. map (M (z, y). from-R z y) as’ = as if list-all P2’ as
by (rule list-all-map|OF - that]) (auto dest!: P2'-from-R)

end

locale Double-Simulation-Finite-Complete- Abstraction-Prop-Bisim-paired =
Double-Simulation- Complete- Abstraction- Prop- Bisim-paired +
Double-Simulation- Finite- Complete- Bisim-paired

begin

interpretation bisim: Bisimulation-Invariant A2 A2’ X\ (I, Z) b. b= from-R

399

1 Z P2 P2’
by (rule A2-A2'-bisim[OF P2-invariant))

sublocale Double-Simulation-Finite- Complete-Abstraction-Prop-Bisim
C A1’ P1" A2’ P2’ from-R ly ag ¢ ..

interpretation G,: Graph-Start-Defs
AN, Z) (U, 2. A2 (I, Z) (I, Z') N P 1 (lp, ao) -

interpretation Bisimulation-Invariant \ (I, Z) (I', Z"). A2 (I, Z) (I', Z")
APl
A2-p XN (I, Z) b. b = from-R | Z P2 P2’
apply standard
unfolding A2-p-def
apply clarify
subgoal for [a I’ a’
apply (drule bisim.A-B-step)
prefer 3
apply assumption
apply safe
apply (frule P-invariant, assumption+)
using from-R-fst by (fastforce simp: p-def P2'-def dest!: P2'-non-empty)+
subgoal for a a’ b’
apply clarify
apply (drule bisim.B-A-step)
prefer 2
apply assumption
apply safe
apply (frule P2-invariant, assumption+)
apply (subst (asm) (3) p-def)
apply simp
apply (elim allE impE, assumption)
using from-R-fst apply force
apply (subst (asm) (2) from-R-int-p)
using from-R-fst by fastforce+
subgoal
by blast
subgoal
using ¢-P2-compatible by blast
done

theorem Alw-ev-mc:

(Vzo€ag. sim.Alw-ev (Not o) (lp, zg)) +—
= PlyV (Bas abs. Gy.steps ((lo, ao) # as @ a # bs Q [a]))

400

apply (subst steps-map-equiviof X (I, Z). from-R | Z - from-R ly ayp))
apply force
apply (clarsimp simp: from-R-def)
subgoal
by (fastforce dest!: P2'-non-empty)
apply (simp; fail)
apply (rule P2-ay’; fail)
apply (rule phi.P2-ag; fail)
proof (cases P ly, goal-cases)
case I
have *: (Vzo€ag. sim.Alw-ev (Not o) (ly, z9)) «— (Y zo€from-R ly ap.
sim. Alw-ev (Not o @) xg)
unfolding from-R-def by auto
from <P -» show ?case
unfolding
apply (subst Alw-ev-mc[OF from-R-subs-p|, assumption)
apply (auto simp del: map-map)
apply (frule phi.P2-invariant.invariant-steps)
apply (auto dest!: P2'-from-R P2-from-R-list")
done
next
case 2
then have Vzo€ag. sim.Alw-ev (Not o ¢) (I, xo)
unfolding sim.Alw-ev-def by (force simp: @-def)
with (= P [y show ?Zcase
by auto
qed

theorem Alw-ev-mcl:

(Vzo€ag. sim.Alw-ev (Not o ¢) (ly, zg)) «— = (P lo A (Fa. Gy.reachable
a N Gy.reachesl a a))

unfolding Alw-ev-mc using G .reachable-cycle-iff by auto

end

context Double-Simulation- Complete- Bisim-Cover-paired
begin

interpretation bisim: Bisimulation-Invariant A2 A2’ X (I, Z) b. b = from-R
1 Z P2 P2’
by (rule A2-A2'-bisim[OF P2-invariant))

interpretation Start: Double-Simulation-Complete- Abstraction- Prop-Bisim-paired
C A1 P1 A2 P21y ag A -. True

401

using P2-cover by — (standard, blast)

lemma sim-reaches-equiv:
P2-invariant’.reaches (I, Z) (I';, Z') +— sim.Steps.reaches (from-R 1 Z)
(from-R I" Z')
if P2 (I, 2)
apply (subst bisim.reaches-equivjof X (I, Z). from-R | Z])
apply force
apply clarsimp
subgoal
by (metis Int-emptyl R-of-from-R from-R-fst sim.P2-cover)
apply (rule that)
subgoal
apply clarsimp
using P2’-def from-R-fst that by force
by auto

lemma reaches-all:
assumes
ANvu Rl.ue R—uve€R= Pl (I, R) = Plu<+— Plu
shows
(V u. (3 zoelU (sim.closure (from-R ly ag)). sim.reaches zo (I, u)) —
Plu)<+—
(V Z u. P2-invariant’.reaches (lo, ao) (I, Z) N u € Z — P lu)
proof —
let P =\ (I, u). Plu
have x: A\azy. 1 € a = y€a=— Pl'a= ?Pz= 9Py
unfolding P1’-def by clarsimp (subst assms[rotated 2|, force+, metis
fst-conv)+
let 2P =X (", u).l'!=1— Plu
have x: 1 € a = y€ a=— Pl'a = %Pz = ?Pyforauzy
by (frule x[of x a y|, assumption+; auto simp: P1’'-def; metis fst-conv)
have
(Vb. (Fyesim.closure (from-R ly ag). Jxg€y. sim.reaches xg (I, b)) —
Plb)+—
(Vb ba. sim.Steps.reaches (from-R ly ag) b A\ (I, ba) € b — P 1 ba)
unfolding sim.reaches-steps-iff sim.Steps.reaches-steps-iff
apply safe
subgoal for b b’ xs
apply (rule reaches-all-1[of ?P s (I, b’), simplified])
apply (erule x; assumption; fail)
apply (simp; fail)+
done

402

subgoal premises prems for b y a b’ xs
apply (rule
reaches-all-2[of ?P xs y, unfolded <last xs = (I, b)», simplified]
)
apply (erule x; assumption; fail)
using prems by auto
done
then show ?thesis
unfolding sim-reaches-equiv|OF P2-ay’]
apply simp
subgoal premises prems
apply safe
subgoal for Z u
unfolding from-R-def by auto
subgoal for a u
apply (frule P2-invariant.invariant-reaches)
apply (auto dest!: Start.P2'-from-R simp: from-R-def)
done
done
done
qed

context
fixes P Q :: 'a = bool — The state properties we want to check
begin

definition ¢’ = P o fst
definition ¢ = @ o fst
lemma 1 -closure-compatible:

v () =zr€a=yc€a= Pl (l,a) = ¢ (I, y)
unfolding ¢’-def -def by auto

lemma -closure-compatible”:
(Noto) (I, z) = x€a=y€a= Pl (I, a) = (Not o) (I, y)
by (auto dest: 1-closure-compatible)

lemma P1-P1":
R # {} = P1 (I, R) = P1' (from-R | R)
using P1’-def from-R-fst by fastforce

lemma - Alw-ev-compatible:
assumes v € R u' € R P1 (I, R)

403

shows sim.Alw-ev (Not o ¢) (I, u) = sim.Alw-ev (Not o) (I, u’)
apply (rule bisim.Alw-ev-compatible|of - - from-R | R))

subgoal for z a y

using -closure-compatible unfolding P1’-def by (metis 1-def comp-def)
using assms by (auto intro: P1-P1")

interpretation Graph-Start-Defs A2 (ly, ap) .

interpretation G,: Graph-Start-Defs
AL 2) (U, Z). A2 (1, Z2) (U, Z') A Q1 (lo, ao) -

end
end

context Double-Simulation-Finite-Complete- Bisim-Cover-paired
begin

interpretation bisim: Bisimulation-Invariant A2 A2’ X (I, Z) b. b = from-R
1 Z P2 P2’
by (rule A2-A2'-bisim[OF P2-invariant))

context
fixes P Q :: 'a = bool — The state properties we want to check
begin

interpretation Graph-Start-Defs A2 (ly, ap) .

interpretation G,: Graph-Start-Defs
A (la Z) (lla Z/) A2 (l7 Z) (l/v Zg A Q I’ (lo, aO) .

lemma Alw-ev-mcl:
(Vxzoefrom-R | Z. sim.Alw-ev (Not o ¢ Q) zg) «—
- (Q I A (Fa. Gy.reaches (I, Z) a N Gy.reaches] a a))
if P2-invariant’.reachable (I, Z) for | Z
proof —
from that have P2 (I, 7)
using P2-invariant’.invariant-reaches unfolding P2-invariant’.reachable-def
by auto
interpret Start”: Double-Simulation-Finite-Complete- Abstraction-Prop-Bisim-paired
CAlI P1 A2P217ZQ
apply standard
subgoal
by (fact complete)

404

subgoal
by (fact P2-invariant)
subgoal
by (fact <P2 (1, Z)»)
subgoal
using P2-cover by blast
subgoal
by (fact A1-complete)
subgoal
by (fact P1-invariant)
subgoal
proof —
have {(I', a). A2** (1,Z) (I';a) A P2 (I';a)} € {(I, a). A2** (ly,ap)
(l,a) N P2 (l,a)}
using that unfolding P2-invariant’.reachable-def by auto
with finite-abstract-reachable show ?thesis
by — (erule finite-subset)
qed
done
show %thesis
using Start’. Alw-ev-mc1 [unfolded Start'.o-def]
unfolding -def Graph-Start-Defs.reachable-def from-R-def by auto
qed

theorem leadsto-mc1:
(Vzo€aq. sim.leadsto (¢’ P) (Not o ¢ Q) (lo, zo)) +—
(A z. P2-invariant’.reaches (lo, ag) = A P (fst) A Q (fst)
A (Fa. Gy.reaches © a N Gy.reachesl a a)
)
if no-deadlock: ¥ xo€ag. — sim.deadlock (ly, o)
proof —
from steps-Steps-no-deadlock] OF no-deadlock-closurel| no-deadlock have
- sim.Steps.deadlock (from-R ly ag)
unfolding from-R-def by auto
then have no-deadlock”. — P2-invariant’.deadlock (ly, ap)
by (subst bisim.deadlock-iff) (auto simp: P2-ay’ from-R-fst P2'-def)
have (Vzo€ag. sim.leadsto (¢’ P) (Not o ¢ Q) (lp, x9)) +—
(VzoEfrom-R ly ag. sim.leadsto (o’ P) (Not o ¥ Q) zp)

unfolding from-R-def by auto
also have ... «— sim.Steps. Alw-alw (Aa. ¥V c€a. ¢’ P ¢ — sim.Alw-ev
(Not o ¢ Q) ¢) (from-R 1y ap)
apply (rule Leadsto-iff2| OF - - -])
subgoal for a = y

405

unfolding P1'-def ¢'-def by (auto dest: fst-simp)
subgoal for a z y
unfolding P1'-def i-def by (auto dest: fst-simp)
subgoal
using no-deadlock unfolding from-R-def by auto
done
also have
.. 4 P2-invariant’. Alw-alw (AN(1,Z).N cefrom-R 1 Z. ' P ¢ — sim.Alw-ev
(Not o & @) ¢) (lo.ao)
by (auto simp: bisim.A-B.equiv’-def P2-ag P2-aqy’ intro!: bisim. Alw-alw-iff-strong[symmetric])
also have
... < P2-invariant’. Alw-alw
A1, Z2). Pl — = (Q I A (Fa. Gy.reaches (I, Z) a N Gy.reachesl a
a))) (lo, ao)
by (rule P2-invariant’. Alw-alw-iff-default)
(auto simp: @'-def from-R-def dest: Alw-ev-mc1[symmetric])
also have
.« (Px. P2-invariant’.reaches (ly,a0) * A P (fst ©) A Q (fst)
A (Fa. Gy.reaches z a N Gy.reachesl a a))
unfolding P2-invariant’. Alw-alw-iff by (auto simp: P2-invariant’. Ez-ev
no-deadlock)
finally show %thesis .
qed

end

end

The second bisimulation property in prestable and complete sim-
ulation graphs. context Simulation-Graph-Complete-Prestable
begin

lemma C-A-bisim:
Bisimulation-Invariant C A (X x a. © € a) (A-. True) P
by (standard; blast intro: complete dest: prestable)

interpretation Bisimulation-Invariant C A A x a. x € a A -. True P
by (rule C-A-bisim)

lemma C-A-Leadsto-iff:
fixes ¢ ¢ = 'a = bool
assumes @-compatible: N xya. pr —= r € a— y € a = P a =

Yy

406

and -compatible: N zya. vz —zr€a=—yc€a=—Pa= 1Yy
and z € a Pa
shows leadsto ¢ ¢ © = Steps.leadsto (A a.V z € a. o) (A a. ¥V z € a.
Y z) a
by (rule Leadsto-iff)
(auto intro: p-compatible -compatible simp: <x € a> <P ay» simula-
tion.equiv’-def)

end

Comments

o Pre-stability can easily be extended to infinite runs (see construction
with sscan above)

¢ Post-stability can not

o Pre-stability + Completeness means that for every two concrete states
in the same abstract class, there are equivalent runs

e For Biichi properties, the predicate has to be compatible with whole
closures instead of single P1-states. This is because for a finite graph
where every node has at least indegree one, we cannot necessarily
conclude that there is a cycle through every node.

locale Graph-Abstraction =
Graph-Defs A for A :: 'a set = 'a set = bool +
fixes a :: 'a set = 'a set
assumes idempotent: a(a(z)) = a(z)
assumes enlarging: © C o(x)
assumes a-mono: ¢ C y = «a(z) C a(y)
assumes mono: a C o' = A ab= 3Ib. bV ANAa D
assumes finite-abstraction: finite (o * UNIV)
begin

definition £ where Fa b =3b". A ab' A b= a(b)

interpretation sim1: Simulation-Invariant A E Xa b. a(a) C b A-. True
A-. True

apply standard

unfolding FE-def

apply auto

apply (frule monolrotated))

apply (erule order.trans[rotated], rule enlarging)

apply (auto intro!: a-mono)

407

done

interpretation sim2: Simulation-Invariant A E Aa b. a C b \-. True Ax.
alz) =z
apply standard
subgoal
unfolding F-def
apply auto
apply (drule (1) mono)
apply safe
apply (intro conjl exl)
apply assumption
apply (rule HOL.refl)
apply (erule order.trans, rule enlarging)
done
apply assumption
unfolding FE-def
apply (elim ezE conjFE)
apply (simp add: idempotent)
done

This variant needs the least assumptions.

interpretation sim3: Simulation-Invariant A E Aa b. a C b A-. True A-.
True
apply standard
unfolding F-def
apply auto
apply (drule (1) mono)
apply safe
apply (intro conjl exI)
apply assumption
apply (rule HOL.refl)
apply (erule order.trans, rule enlarging)
done

interpretation sim/: Simulation-Invariant A E Aa b. a C b X-. True Aa.
Ja’ . aa'=a
apply standard
unfolding F-def
apply auto
apply (drule (1) mono)
apply safe
apply (intro conjl exI)
apply assumption

408

apply (rule HOL.refl)
apply (erule order.trans, rule enlarging)
done

end
lemmas [simp del] = holds.simps

end
theory Simulation-Graphs-TA

imports Simulation-Graphs DBM-Zone-Semantics Approz-Beta
begin

7.9 Instantiation of Simulation Locales

inductive step-trans ::
(‘a, e, 't, 's) ta = 's = (‘e, (t::time)) cval = ((‘e, 't) cconstraint x 'a
x 'c list)
= s = (e, 't) cval = bool
(¢-F¢ (- =) = (-, -» [61,61,61] 61)
where
[AE 1 —9%" 1" ut g u' bt inv-of Al u' = [r — 0]u]
= (A 4 <l7 u> _>(g,a,r) <ll7 u,>)

inductive step-trans’ :

('a, e, 't, 's) ta = 's = (‘c, ("t::time)) cval = ('c, 't) cconstraint x 'a x
‘e list

= s = (e, 't) cval = bool
(<-F" (- -y = (-, -} [61,61,61,61] 61)
where

step A (1, u) =% (1w = Aty (I, u) =4 (17, u"y = AF (I, u)
St (l”, u//>

inductive step-trans-z ::

('a, e, 't, 's) ta = 's = ('c, ("t::time)) zone

= (('c, 't) cconstraint x 'a x 'c list) action = 's = ('¢c, 't) zone = bool
(¢~ F (=)~ (-,) [61,61,61,61] 61)
where

step-trans-t-z:

AF (1, Z) ~T (I, ZV N {u. u F inv-of A 1}) |

step-trans-a-z:

AF (1, Z) 188 (11 zone-set (Z N {u. ut g}) r N {u. ut inv-of A
")

if A1 —9%"]

409

inductive step-trans-z’ ::

(‘a, 'c, 't, 's) ta = 's = (‘e, ("t::time)) zone = (('c, 't) cconstraint x 'a
x 'c list)

= 's = (e, 't) zone = bool
(4= "7 (=,)~ (-,)y [61,61,61,61] 61)
where

step-trans-z":

AR (L Z) T (1, 2 = AF (1, Z) 10 (1 2 = AV (1, Z) ~t (1,
zZ"

lemmas [intro] =
step-trans.intros
step-trans’.intros
step-trans-z.intros
step-trans-z'.intros

context
notes [elim!] =
step.cases step-t.cases
step-trans.cases step-trans’.cases step-trans-z.cases step-trans-z’.cases
begin

lemma step-trans-t-z-sound:
AF (L Z) T2 =V v eZ. F3ueZ T d Ar (I, u) =% 1w
by (auto 4 5 simp: zone-delay-def zone-set-def)

lemma step-trans-a-z-sound:
AR, Z) 112 =V uw'eZ . FuecZ 3 d Al (I, u) = (0
by (auto 4 4 simp: zone-delay-def zone-set-def)

lemma step-trans-a-z-complete:

ALy =y (uw) =ueZ=3Z. AF{l,2Z) ~1t {12 A
S

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

lemma step-trans-t-z-complete:

AF(Lu) =) =ueZ=3 Z A+ (,2)~" (I Z) ANu'e
ZI

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

lemma step-trans-t-z-iff:

At <l7 Z> T <llv Z/> =AkF <l> Z> M <l/7 Z,>
by auto

410

lemma step-z-complete:

AF(Lu) = (" u)=uwecZ=3Z't. AF (I, Z) ~t(I', Z") A u'
ez’

by (auto 4 4 simp: zone-delay-def zone-set-def elim!: step-a.cases)

lemma step-trans-a-z-exact:
w'e Z'if Ay (Lu) = (U, uy A (L Z) 18 2 ue Z
using that by (auto 4 4 simp: zone-delay-def zone-set-def)

lemma step-trans-t-z-ezxact:
we Z'if AR (Lu)y =1 uy AR (1, Z) ~" (I, ZY ue Z
using that by (auto simp: zone-delay-def)

lemma step-trans-z'-exact:
w' e Z'iE AR (L uy =t {1 uy AR (L Z) (U ZY uwe Z
using that by (auto 4 4 simp: zone-delay-def zone-set-def)

lemma step-trans-z-step-z-action:
AF (L, Z) g (1527 i A F (1, Z) ~100r) (1) 77
using that by auto

lemma step-trans-z-step-z:
Fa. A, Z) ~, (I\Z)if AF (I, Z) st (', 7"
using that by auto

lemma step-z-step-trans-z-action:
3 gr. AR (L, Z) 108 (11 20 i AF (1, Z) ~y, (U,2")
using that by (auto 4 4)

lemma step-z-step-trans-z:
AR, Z) >t ZY AV (I, Z) ~q (1,2
using that by cases auto

end

lemma step-z'-step-trans-z":
Jt AR (1, Z) U, 2N i A (1, Z) ~ (I, Z")
using that unfolding step-z'-def
by (auto dest!: step-z-step-trans-z-action simp: step-trans-t-z-iff [symmetric])

lemma step-trans-z'-step-z"

Al Z) ~ (I, Z" if AV (1, Z) ~ {1, 2"
using that unfolding step-z'-def

411

by (auto elim!: step-trans-z'.cases dest!: step-trans-z-step-z-action simp:
step-trans-t-z-iff)

lemma step-trans-z-determ:
71 =22 A (I, Z) ~Y (I, Z1) A+ (1, Z) ~t (I', Z2)
using that by (auto elim!: step-trans-z.cases)

lemma step-trans-z'-determ:
71 =22 A" (I, Z) ~t (1!, Z1) A V' (1, Z) ~' () Z2)
using that by (auto elim!: step-trans-z’.cases step-trans-z.cases)

lemma (in Alpha-defs) step-trans-z-V: A &= (I, Z) ~t (12 = Z C V
— 7'CV
by (induction rule: step-trans-z.induct; blast intro!: reset-V le-infl1 up-V)

7.9.1 Additional Lemmas on Regions

context AlphaClosure
begin

inductive step-trans-r ::

("a, 'c, t,'s) ta = - = 's = (e, t) zone = (('c, t) cconstraint x 'a x 'c
list) action

= 's = (¢, t) zone = bool
(- F (=)~ (-,) [61,61,61,61,61] 61)
where

step-trans-t-r:

AR (LR) ~7 (LR if

valid-abstraction A X (A z. real o kz) R € R I R’ € Succ (R 1) R R' C
{inv-of A I} |

step-trans-a-r:

AR b (LR ~1(g:0r) (1 RN if

valid-abstraction A X (A z. real o kz) A1 —9*"I"Re R

R C {g} region-set’ R v 0 C R' R’ C {inv-of AI'} R"e Rl

lemmas [intro] = step-trans-r.intros

lemma step-trans-t-r-iff [simp]:
AR E (L,R) ~T (I'"R") = ARF (l,R) ~ (IR
by (auto elim!: step-trans-r.cases)

lemma step-trans-r-step-r-action:

AR F (LR) ~, (ILR") if AR & (L,R) ~1(9:07) (1 R
using that by (auto elim: step-trans-r.cases)

412

lemma step-r-step-trans-r-action:
3 gr. AR (LR) ~1000) (I'RY if AR F (LR) ~1, (IR
using that by (auto elim: step-trans-r.cases)

inductive step-trans-r’ :

(‘a, e, t, 's) ta = - = 's = ('c, t) zone = ('c, t) cconstraint x 'a x 'c
list

= 's = (e, t) zone = bool
(<= F"" (=) 5) ~7 (-, -)» [61,61,61,61,61] 61)
where

AR F'(LR) ~! (I'R") if AR F (LR) ~" (LR") A/R F (LLR") ~It (I,
R")

lemma step-trans-r’-step-r':
AR F (LLR) ~4 (I'R") if AR F' (I,R) ~(9:07) (I R")
using that by cases (auto dest: step-trans-r-step-r-action introl: step-r'.intros)

lemma step-r’-step-trans-r':
3 gr. ARF (LR) ~(907) (I' R if AR F (I,R) ~q (I'R’)
using that by cases (auto dest: step-r-step-trans-r-action introl: step-trans-r'.intros)

lemma step-trans-a-r-sound:
assumes AR F (I, R) ~1% (I'R")
showsV v e R.3 v € R. Ak (I, u) =4 (I',u))
using assms proof cases
case A: (step-trans-a-r g a 1)
show %thesis
unfolding A(1) proof
fix v assume u € R
from v € B> A have u b g [r—0]u & inv-of A l' [r—0]u € R’
unfolding region-set’-def ccval-def by auto
with A show Ju'€R" A b (I, u) — (g4 (I'u)
by auto
qed
qed

lemma step-trans-r’-sound:
assumes A,R ' (I, R) ~! (I', R")
shows VucR. Ju'cR’. A ' (I, u) = (I, u')

using assms by cases (auto 6 0 dest!: step-trans-a-r-sound step-t-r-sound)

end

413

context AlphaClosure
begin

context

fixes [I’ :: 'sand A :: (‘a, ‘¢, t, 's) ta

assumes valid-abstraction: valid-abstraction A X k
begin

interpretation alpha: AlphaClosure-global - k 1 R | by standard (rule fi-
nite)
lemma [simp]: alpha.cla = cla | unfolding alpha.cla-def cla-def ..

interpretation alpha’ AlphaClosure-global - k 1" R 1’ by standard (rule
finite)

lemma [simp]: alpha’.cla = cla I’ unfolding alpha’.cla-def cla-def ..

lemma regions-poststablel :
assumes
AV, Z) - (I'ZV ZC VR €eRI'R'NZ' # {}
shows 3 Re R 1. ARF (l,R) ~*(I''RY NRN Z # {}
using assms proof (induction A= Al=1--1"=1"-rule: step-trans-z.induct)
case A: (step-trans-t-z Z)
from (R’ N (Z" N {u. u - inv-of A 1}) # {}> obtain u d where u:
veEZuddeR uddbinv-of AL0<d
unfolding zone-delay-def by blast+
with alpha.closure-subs|OF A(2)] obtain R where R1: u € RR € R I
by (simp add: cla-def) blast
from «Z C V»y «u € Z» have VzeX. 0 < u z unfolding V-def by
fastforce
from region-cover’|OF this] have R: [u]; € R |l u € [u]; by auto
from SuccI2[OF R-def’ this(2,1) <0 < d» HOL.refl] u(2) have v'1:
[u® d); € Succ (R 1) ([u];) [u@ d]; € R1
by auto
from alpha.regions-closed’-spec[OF R(1,2) <0 < d»] have v'2: u & d €
[u @ d]; by simp
from wvalid-abstraction have
Y (z, m)eclkp-set Al.m < real (klz) Nz € X Am N
by (auto elim!: valid-abstraction.cases)
then have
Y (z, m)€collect-clock-pairs (inv-of A l). m < real (klz) Nz € X Am
eN
unfolding clkp-set-def collect-clki-def inv-of-def by fastforce
from ccompatible[OF this, folded R-def’] v'1(2) v'2 u(2,3) have
[u® d]; C {inv-of A I}

414

unfolding ccompatible-def ccval-def by auto
from
alpha.valid-regions-distinct-spec[OF v'1(2) - v'2 <u & d € R»] <R’ € -
d =1
alpha.region-unique-spec| OF R1]
have [u @ d|; = R’ [u]; = R by auto
from valid-abstraction <R € -» <- € Succ (R 1) - <- C {inv-of A I} have
AR E (l, R) ~; (I, R")

by (auto simp: comp-def [u & d]; = R"» <- = R»)
with </ =1 <R € - <u € R) <u € Z»> show ?case by — (rule bexl[where
z = R]; auto)
next

case A: (step-trans-a-z g a r Z)
from A(4) obtain u v’ where
uwe€ Zand v:v' =[r—=0luut gv't inv-of Al'v € R’
unfolding zone-set-def by blast
from «u € Z» alpha.closure-subs|OF A(2)] A(1) obtain u’ R where u"
ue Ru'e RReRI
by (simp add: cla-def) blast
then have VzeX. 0 < u z unfolding R-def by fastforce
from region-cover’|OF this] have [u]; € R | u € [u]; by auto
have x*:
[uls {glt region-set! ([ul) v 0 C [[r—0]u])
[[r—=0]u)," € R U [[r—0]u];’ C {inv-of A '}
proof —
from valid-abstraction have collect-clkvt (trans-of A) C X
Vigarl'c Al —9%"U'Ncgsetr —kl'c<klc
by (auto elim: valid-abstraction.cases)
with A(7) have set r C X Vy. y ¢ setr — kl'y<kly
unfolding collect-clkvt-def by (auto 4 8)
with
region-set-subs|
of - X k1l-0, where k' = kI, folded R-def, OF «[u]; € R Iy <u €
[up> finite
]
show region-set’ ([u];) 7 0 C [[r—0]u);" [[r—0]u);" € R I’ by auto
from valid-abstraction have x:
VI.V(z, m)eclkp-set Al.m <real (klz) Nz € X NmeN
by (fastforce elim: valid-abstraction.cases)+
with A(1) have V (z, m)€collect-clock-pairs g. m < real (klz) N x €
X AmeN
unfolding clkp-set-def collect-clkt-def by fastforce
from <u € [u]p «[u]; € R > ccompatible[OF this, folded R-def] <u - ¢
show [u]; C {g}

415

unfolding ccompatible-def ccval-def by blast
have *x: [r—0]u € [[r—0]u];’
using (R’ € R Iy «v’ € R" alpha’.region-unique-spec v'(1) by blast
from * have
Y (z, m)€collect-clock-pairs (inv-of A 1"). m < real (kl'z) Nz € X A
m € N
unfolding inv-of-def clkp-set-def collect-clki-def by fastforce
from xx «[[r—0]u),” € R Iy ccompatible][OF this, folded R-def] v’ -»
show
[[r—0]ul;" C {inv-of A U}
unfolding ccompatible-def ccval-def v’ = -» by blast
qed
from x v/ = - «u € [u]p have v’ € [[r—0]u];" unfolding region-set’-def
by auto
from alpha’.valid-regions-distinct-spec[OF %(3) <R'€ R Iy v’ € [[r—0]u];"
w’ e RH]
have [[r—0]u];" = R’.
from alpha.region-unique-spec[OF u'(1,3)] have [u]; = R by auto
from A valid-abstraction <R € - have AR F (I, R) ~18:a7) (1" R’
by (auto simp: comp-def <- = R"» <- = R))
with <R € -» <u € Ry <u € Z> show ?case by — (rule bexI[where z =
R]; auto)
qed

lemma regions-poststable’:
assumes
A, Z) ~q (I\Z" ZC VR e RI'"R'NZ"# {}
shows 3 Re R 1. ARF (l,R) ~4 (I'’'RY NRN Z # {}
using assms
by (cases a)
(auto dest!: regions-poststablel dest: step-trans-r-step-r-action step-z-step-trans-z-action
simp: step-trans-t-z-iff [symmetric]

)

end

lemma regions-poststable2:
assumes valid-abstraction: valid-abstraction A X k
and prems: A (I, Z) ~*(I'"Z"y Z C VR e RI'R'nZ" # {}
shows 3 Re R 1. ARF'(LLR) ~* (I'"RY NRN Z # {}
using prems(1) proof (cases)
case steps: (step-trans-z' Z1)
with prems have 71 C V
by (blast dest: step-trans-z-V')

416

from regions-poststable1[OF valid-abstraction steps(2) <Z1 C V' prems(3,4)]
obtain RI where R1:
R1 € RIARF (I, R1) ~1%(I'' R"Y R1 N Z1 # {}
by auto
from regions-poststablel |OF valid-abstraction steps(1) <Z C V» R1(1,3)]
obtain R where
RER I ARFE (I, R) ~T (I, R1) RN Z # {}
by auto
with R1(2) show ?thesis
by (auto intro: step-trans-r'.intros)
qged

Poststability of Closures: For every transition in the zone graph and each
region in the closure of the resulting zone, there exists a similar transition
in the region graph.

lemma regions-poststable:
assumes valid-abstraction: valid-abstraction A X k
and A:
AF (L, Z) ~or (1520 AF (U, Z) ~oq (11,27
ZCVR'eRI"R"NZ"#{}
shows 3 R e R 1. AR F (L,R) ~o (I",RN ARNZ # {}
proof —
from A(1) «Z C V) have Z' C V by (rule step-z-V)
from A(1) have [simp]: I’ = | by auto
from regions-poststable’|OF valid-abstraction A(2) <Z'C V> <R" € -» <R"
N Z" # {})] obtain R’
where R" R'eR I AR (I, R') ~q, (I", R") R"N Z' # {}
by auto
from regions-poststable’| OF valid-abstraction A(1) <Z C V» R'(1,3)] ob-
tain R where
RERIARF (I R) ~r (I, RY RO Z # {}
by auto
with R'(2) show ?thesis by — (rule bexI[where = = R]; auto intro:
step-r'.intros)
qged

lemma step-t-r-loc:
I'=1if AR+ (I, R) ~; (I', R
using that by cases auto

lemma R-V:

ve ViFReRIueR
using that unfolding R-def V-def by auto

417

lemma step-r’-complete:
assumes A ' (I, u) — (I';u’) valid-abstraction A X (X z. real 0 k z) u €
v
shows 3 a R v € R'" N AR b (I, [u];) ~4 (I,R")
using assms
apply cases
apply (drule step-t-r-complete, (rule assms; fail), simp add: V-def)
apply clarify
apply (frule step-a-r-complete)
by (auto dest: step-t-r-loc simp: R-def simp: region-unique intro!: step-r'.intros)

lemma step-r-R:
R'e RUI'If ARFE (I, R) ~, (l', R
using that by (auto elim: step-r.cases)

lemma step-r’-R:
R e RUI'If ARFE (I, R) ~, (l', R)
using that by (auto intro: step-r-R elim: step-r'.cases)

end

context Regions
begin

lemma closure-parts-mono:

{RERILRNZ#A{}} C{ReR I RN Z # {}}if Closure,; Z C
Closureq,; Z'
proof (clarify, goal-cases)

case prems: (1 R)

with that have R C Closure,,; Z'

unfolding cla-def by auto

from «- # {}» obtain v where u € R u € Z by auto

with (R C -» obtain R’ where R’ € R lu € R’ R'n Z'# {} unfolding
cla-def by force

from R-regions-distinct|OF R-def’ this(1,2) <R € -] <u € R» have R =
R’ by auto

with «R'N Z"# {} <R N Z' = {}» show Zcase by simp
qed

lemma closure-parts-id:
{RERILRNZ#A{}}={ReRI.RNZ #{}}if
Closureq, Z = Closureq, Z'
using closure-parts-mono that by blast

418

More lemmas on regions context
fixes I’ :: 's
begin

interpretation regions: Regions-global - - - k I’
by standard (rule finite clock-numbering not-in-X non-empty)+

context

fixes A :: ('a, 'c, t, 's) ta

assumes valid-abstraction: valid-abstraction A X k
begin

lemmas regions-poststable = regions-poststable] OF valid-abstraction)

lemma clkp-set-clkp-setl:
3 1 (¢, x) € clkp-set A 1if (¢,) € Timed-Automata.clkp-set A
using that
unfolding Timed-Automata.clkp-set-def Closure.clkp-set-def
unfolding Timed-Automata.collect-clki-def Closure.collect-clki-def
unfolding Timed-Automata.collect-clkt-def Closure.collect-clkt-def
by fastforce

lemma clkp-set-clkp-set2:
(¢,) € Timed-Automata.clkp-set A if (¢, x) € clkp-set A | for [
using that
unfolding Timed-Automata.clkp-set-def Closure.clkp-set-def
unfolding Timed-Automata.collect-clki-def Closure.collect-clki-def
unfolding Timed-Automata.collect-clkt-def Closure.collect-clkt-def
by fastforce

lemma clock-numbering-le: ¥ c€clk-set A. v ¢ < n
proof
fix ¢ assume c € clk-set A
then have c € X
proof (safe, clarsimp, goal-cases)
case (1 z)
then obtain [where (¢,) € clkp-set A | by (auto dest: clkp-set-clkp-set1)
with valid-abstraction show ¢ € X by (auto elim!: valid-abstraction.cases)
next
case 2
with valid-abstraction show ¢ € X by (auto elim!: valid-abstraction.cases)
qged
with clock-numbering show v ¢ < n by auto
qged

419

lemma beta-alpha-step:
AkE <l, Z> ~a(a) <l/, Closure%l’ Z’) if A+ <l, Z> ~5(a) <l/, Z’> Z eV’
proof —
from that obtain Z1' where Z1": Z' = Approxg ' Z1' A & (I, Z) ~+4
(', 71"
by (clarsimp elim!: step-z-beta.cases)
with «Z € V'’ have Z1' € V'
using valid-abstraction clock-numbering-le by (auto intro: step-z-V')
let Zalpha = Closurey,;’ Z1' and ?beta = Closureq,;’ (Approxzg 1" Z1')
have ?beta C Zalpha
using regions.approz-f3-closure-a’|OF «Z1' € V] regions.alpha-interp. closure-involutive
by (auto 4 3 dest: regions.alpha-interp.cla-mono)
moreover have “alpha C ?beta
by (intro regions.alpha-interp.cla-mono[simplified] regions.beta-interp.apz-subset)
ultimately have ?beta = ?alpha ..
with Z1’ show ?thesis by auto
qed

lemma beta-alpha-region-step:
Ja3RERLRNZ A AARE (I, R) ~q (I, RY if
A (1, 2y~ (I, Z) Z€ V'R eRIR' N Z'# {}
proof —
from that(1) obtain ! a Z' where steps:
AE Al Z) e (U7 Z7) A1, Z7) g1y (U Z)
unfolding step-z-beta’-def by metis
with «Z € V) steps(1) have Z" € V'
using valid-abstraction clock-numbering-le by (blast intro: step-z-V')
from beta-alpha-step|OF steps(2) this| have A &= (1", Z") ~ 41, (', Clo-
sureq 1 '(Z")) .
from step-z-alpha.cases[OF this] obtain Z1 where Z1:
A 1", Z") ~qq (I, Z1) Closuren ;'(Z') = Closurea,'(Z1)
by metis
from closure-parts-id|OF this(2)] that(3,4) have R’ N Z1 # {} by blast
from regions-poststable[OF steps(1) Z1(1) - <R’ € - this] <Z € V' show
?thesis
by (auto dest: V'-V)
qged

lemmas step-z-beta’- V' = step-z-beta’- V[OF valid-abstraction clock-numbering-le]

lemma step-trans-z'-closure-subs:
assumes

420

AR (L, Z)y =t ZYZC VY RERILRNZ#{} — RN W #
{
shows
I WOAR (L W) !t (U, W)ANY RERI.RNZ' #{} — RN
W' #{})
proof —
from assms(1) obtain W' where step: A F' (I, W) ~! (1!, W)
by (auto elim!: step-trans-z.cases step-trans-z'.cases)
have R'nN W' # {} if R"e RI'"R'Nn Z' # {} for R’
proof —
from regions-poststable2|OF wvalid-abstraction assms(1) - that] <Z C V»
obtain R where R:
RERIARF' (I, R) ~' (I RY RN Z # {}
by auto
with assms(3) obtain u where u € Ru e W
by auto
with step-trans-r’-sound[OF R(2)] obtain «’ where v’ € R" A ' (I,
w) —t (1 u')
by auto
with step-trans-z'-exact|OF this(2) step <u € W»] show ?thesis
by auto
qed
with step show ¢thesis
by auto
qed

lemma step-trans-z'-closure-eq:
assumes
AR (L, Z) Y (12 ZC VW CVYRERILRNZ#{}+— R
nw#{}
shows
I WL AR (I, Wy ~t (I, WYAN(NN ReERI.RNZ' #{}+— RN
W’ #{})
proof —
from assms(4) have x:
VReERILRNZ#{} — RNWH{}VReRILRNWH#{}
— RN Z #{}
by auto
from step-trans-z'-closure-subs|OF assms(1,2) #(1)] obtain W' where
W'
A (1, WYy ~E (!, W)Y (VRERI. RN Z'#{} — RN W'# {})
by auto
with step-trans-z'-closure-subs|OF W'(1) «<W C V) %(2)] assms(1) show
?thesis

421

by (fastforce dest: step-trans-z'-determ)
qged

lemma step-z'-closure-subs:
assumes
AF(LZ)~ (I ZNZC VY RERLRNZA{} — RO W £ {}
shows
I WL AR W)~ (I, WYAN RERIRNZ' 4£{} — RO W'
{1
using assms(1)
by (auto
dest: step-trans-z'-step-z'
dest!: step-z'-step-trans-z' step-trans-z'-closure-subs|OF - assms(2,3)]

)

end

lemma apz-finite:
finite {Approxg I Z | Z. Z C V} (is finite 25)
proof —
have finite regions.Rg
by (simp add: regions.beta-interp.finite-R)
then have finite {S. S C regions. Rg}
by auto
then have finite {{J S | S. S C regions.Rg}
by auto
moreover have 7S C {{J S| 5. S C regions.Rg}
by (auto dest!: regions.beta-interp.apz-in)
ultimately show ?thesis by (rule finite-subset[rotated))
qged

lemmas apx-subset = regions.beta-interp.apx-subset

lemma step-z-beta’-empty:
2=} A b (1, {}) ~5 (1) 2)
using that
by (auto
elim!: step-z.cases
simp: step-z-beta’-def regions.beta-interp.apx-empty zone-delay-def zone-set-def

)

end

lemma step-z-beta’-complete:

422

assumes A ' ([, u) - (I, uhYue ZZCV
shows 3 Z" A+ (I, Z) ~p (I, Z") Nu' € Z'
proof —
from assms(1) obtain I” u” d a where steps:
AF (L u) =47 uw"”y AF (17 u"y = (U, u)
by (force elim!: step’.cases)
then obtain Z' where
AF L, Z) ~r (17, 2" u' € 2"
by (meson «u € Z» step-t-z-complete)
moreover with steps(2) obtain Z’ where
A b (7 27 o (I 2 ul € 2
by (meson «u' € Z's step-a-z-complete)
ultimately show ?thesis
unfolding step-z-beta’-def using «Z C V) apz-subset by blast
qed

end

7.9.2 Instantiation of Double Simulation
7.9.3 Auxiliary Definitions

definition state-set :: ('a, 'c, "time, 's) ta = 's set where

state-set A = fst “ (fst A) U (snd o snd o snd o snd) ‘ (fst A)

lemma finite-trans-of-finite-state-set:
finite (state-set A) if finite (trans-of A)
using that unfolding state-set-def trans-of-def by auto

lemma state-setl1:
| € state-set A if A+ | —9%7 [/
using that unfolding state-set-def trans-of-def image-def by (auto 4 4)

lemma state-setl2:
I € state-set A if A1 —9%7]
using that unfolding state-set-def trans-of-def image-def by (auto 4 4)

lemma (in AlphaClosure) step-r’-state-set:
' € state-set A if AR F (I, R) ~, (I', R
using that by (blast intro: state-setI2 elim: step-r'.cases)

lemma (in Regions) step-z-beta’-state-set2:

' € state-set Aif A& (I, Z) ~5 (I, Z')
using that unfolding step-z-beta’-def by (force simp: state-set-def trans-of-def)

423

7.9.4 Instantiation

locale Regions-TA = Regions X - - k for X :: ‘c set and k :: 's = 'c =
nat +
fixes A :: ('a, 'c, t, 's) ta
assumes valid-abstraction: valid-abstraction A X k
and finite-state-set: finite (state-set A)
begin

no-notation Regions-Beta.part (<[-]-» [61,61] 61)
notation part” («[-]-» [61,61] 61)

lemma step-z-beta’-state-setl:
| € state-set A if A (1, Z) ~pg (I, Z)
using that unfolding step-z-beta’-def by (force simp: state-set-def trans-of-def)

sublocale sim: Double-Simulation-paired
Al uw) (U, u). AR (I, u)y — (', u) — Concrete step relation
AN, Z) (U, Z). 3 a ARE (1, Z) ~q (I, ZY N Z"# {}
— Step relation for the first abstraction layer
A (I, R). | € state-set A AN R € R | — Valid states of the first abstraction
layer
AN Z2) (U, ZN). A1, Z) ~p (U, ZY NZT#{}
— Step relation for the second abstraction layer
A (l, Z). | € state-set AN Z € V' N Z # {} — Valid states of the second
abstraction layer
proof (standard, goal-cases)
case (1 ST)
then show “case
by (auto dest!: step-r’-sound)
next
case prems: (2 R'"1'Z'1Z)
from prems(3) have [€ state-set A
by (blast intro: step-z-beta’-state-setl)
from prems show ?Zcase
unfolding Double-Simulation-paired-Defs.closure’-def
by (blast dest: beta-alpha-region-step| OF valid-abstraction] step-z-beta’-state-setl)
next
case prems: (31 R R)
then show “case
using R-regions-distinct|OF R-def'] by auto
next

424

case 4
have x: finite (R [) for I
unfolding R-def by (intro finite-R finite)
have
{(I, R). | € state-set ANR e R I} = ! € state-set A. (A R. (I, R))
‘“{R. R € R 1}))
by auto
also have finite ...
by (auto intro: finite-UN-I[OF finite-state-set] *)
finally show ?case by auto
next
case (51 7)
then show “case
apply safe
subgoal for u
using region-cover’[of u l] by (auto dest!: V'-V auto simp: V-def)
done
qed

sublocale Graph-Defs
N(L Z) (I 2. A b (L, Z) —g (U, 2 A 274 {} -

lemmas step-z-beta’-V' = step-z-beta’-V'[OF valid-abstraction]

lemma step-r’'-complete-spec:
assumes A F' ([, u) = ('u)y ue V
shows 3 a R v’ € R'" N AR F (I, [u];) ~q (I,R’)
using assms valid-abstraction by (auto simp: comp-def V-def intro!: step-r’-complete)

end

7.9.5 Biichi Runs

locale Regions-TA-Start-State = Regions-TA - - - - - A for A :: (Ya, 'c, t,
's) ta +

fixes Iy :: 's and Zg :: ('c, t) zone

assumes start-state: ly € state-set A Zoy € V' Zoy # {}
begin

definition ag = from-R ly Z
sublocale sim-complete”: Double-Simulation-Finite-Complete-paired

Al w) (U, u). AR (I, u) — (I', u')y — Concrete step relation
AL Z) (U 2.3 a0 AR (L Z) = (I, 2 A 2" # {}

425

— Step relation for the first abstraction layer

A (I, R). | € state-set A N R € R | — Valid states of the first abstraction
layer

AN Z) WU, 2. AF (L, Z) ~g (I, Z"Y NZ"# {}

— Step relation for the second abstraction layer

A (1, Z). 1 € state-set AN Z € V' N Z # {} — Valid states of the second
abstraction layer

lo Zo
proof (standard, goal-cases)

case (1 zyS)

— Completeness

then show ?Zcase

by (force dest: step-z-beta’-complete[rotated 2, OF V'-V])

next

case 4

— Finiteness

have «: Z € V'if A& (lo, Zo) ~px (I, Z) for | Z
using that start-state step-z-beta’- V' by (induction rule: rtranclp-induct2)
blast+
have Z € {Approzg 1 Z | Z. Z C V} Vv (I, Z) = (lo, Zo)
if reaches (lo, Zo) (I, Z) for | Z
using that proof (induction rule: rtranclp-induct2)
case refl
then show ?case
by simp
next
case prems: (step 1 Z 1" Z)
from prems(1) have A - (ly, Zo) ~p* (I, Z)
by induction (auto intro: rtranclp-trans)
then have Z ¢ V'
by (rule *)
with prems show ?case
unfolding step-z-beta’-def using start-state(2) by (auto 0 1 dest!:
V-V elim!: step-z-V)
qed
then have {(I, Z). reaches (lo, Zo) (I, Z) N | € state-set AN Z € V' A

Z #{}}
C{{, Z)|1Z. 1€ state-set AN Z € {Approzg 1 Z | Z. Z C V}} U

{(lo, Zo)}

by auto
also have finite ... (is finite ?5)
proof —
have 25 = {(lo, Zo)} UU (AN 1l. (AN Z. (1, Z)) “{Approzg 1 Z | Z. Z C

426

V}) ¢ (state-set A))
by blast
also have finite ...
by (blast intro: apz-finite finite-state-set)
finally show ?thesis .
qed
finally show ?case
by simp
next
case prems: (2 a a’)
then show “case
by (auto intro: step-z-beta’-V' step-z-beta’-state-set2)
next
case 3
from start-state show ?case unfolding ag-def by (auto simp: from-R-fst)
qed

sublocale sim-complete-bisim’: Double-Simulation-Finite- Complete-Bisim-Cover-paired
Al w) (U, u). A (I, u) — (I', u')y — Concrete step relation
AN, Z) (U, Z2). 3 a. ARE (1, Z) ~q (U, ZNY N Z"# {}
— Step relation for the first abstraction layer
A (I, R). | € state-set A N R € R | — Valid states of the first abstraction
layer
AL 2) (I, 27, AV (1, Z) ~g (U, Z') A 2"+ {}
— Step relation for the second abstraction layer
A (1, Z). | € state-set AN Z € V' N Z # {} — Valid states of the second
abstraction layer
lo Zo
proof (standard, goal-cases)
case (11z1'yS)
then show “case
apply clarify
apply (drule step-r'-complete-spec, (auto intro: R-V; fail))
by (auto simp: R-def region-unique)
next
case (21S510'T)
then show “case
by (auto simp add: step-r’-state-set step-r’-R)
next
case prems: (31 Z u)
then show ?case
using region-cover’[of u l] by (auto dest!: V'-V simp: V-def)+
qed

427

7.9.6 State Formulas

context
fixes P :: 's = bool — The state property we want to check
begin

definition ¢ = P o fst
State formulas are compatible with closures.

Runs satisfying a formula all the way long interpretation G:
Graph-Start-Defs
N Z2) WU, ZN A, Z) ~p (U, ZYNZT#{F NP U (lo, Zo) -

theorem Alw-ev-mcl:

(Vzo€ag. sim.sim.Alw-ev (Not o) zg) <— = (P lg A (Fa. Gy.reachable
a N Gy.reaches] a a))

using sim-complete-bisim’. Alw-ev-mcl

unfolding G.reachable-def ag-def sim-complete-bisim'ap-def o-def

by auto

end

7.9.7 Leads-To Properties

context
fixes P Q :: 's = bool — The state properties we want to check
begin

definition ¢ = Q o fst

interpretation G,: Graph-Defs
N(L Z) (I 2. AF (1, Z) =5 (I, ZY A B' £ {} A QU

theorem leadsto-mc1:
(Vzo€ag. sim.sim.leadsto (p P) (Not o 1)) xg) «—
(. reaches (lo, Zo) z A P (fst) A Q (fst) A (Fa. Gy.reaches x a A
Gy.reachesl a a))
if Yzo€ag. - sim.sim.deadlock xg
proof —
from that have *: YV xg€Zy. = sim.sim.deadlock (lp, x¢)
unfolding ag-def by auto
show ?thesis
using sim-complete-bisim'.leadsto-mc1[OF x, symmetric, of P Q]

428

unfolding -def @-def sim-complete-bisim’.p’-def sim-complete-bisim’.ap-def
ag-def
by (auto dest: from-R-D from-R-loc)
qged

end

lemma from-R-reaches:
assumes sim.sim.Steps.reaches (from-R lg Zo) b
obtains [Z where b = from-R | Z
using assms by cases (fastforce simp: sim.A2'-def dest!: from-R-R-of)+

lemma ta-reaches-ex-iff:
assumes compatible:
Nl v v’ R.
ueER=—=u€e€R=— ReRI|=1c state-set A = P (I, u) = P
(1, u’)
shows
(3 zo € ap. 3 1 u. sim.sim.reaches xg (I, u) A P (I, u)) «—
(3 1Z.3 uwe Z reaches (ly, Zo) (I, Z) N P (I, uw))
proof —
have x: (Jz¢ € ag. 3 [u. sim.sim.reaches zo (I, u) A P (I, u))
+— (Jy. JzoEfrom-R ly Zy. sim.sim.reaches xg y N P y)
unfolding ag-def by auto
show “thesis
unfolding
apply (subst sim-complete-bisim'.sim-reaches-equiv)
subgoal
by (simp add: start-state)
apply (subst sim-complete-bisim’.reaches-ex'|of P])
unfolding ag-def
apply clarsimp
subgoal
unfolding sim.P1’-def by (clarsimp simp: fst-simp) (metis R-ofI
compatible fst-conv)
apply safe
apply (rule from-R-reaches, assumption)
using from-R-fst by (force intro: from-R-val)+
qged

lemma ta-reaches-all-iff:
assumes compatible:
Al uwu'R.
ueER=u€e€R= ReRI|=1c state-set A = P (I, u) = P

429

(1, u')
shows
(Y z0 € ap. YV 1 u. sim.sim.reaches xo (I, u) — P (I, u)) +—
(V 1 Z. reaches (lo, Zo) (I, Z) — (Y w € Z. P (I, u)))
proof —
have x: (Vzo € ag. ¥ [u. sim.sim.reaches xg (I, u) — P (I, u))
«—— (Vy. YaoEfrom-R ly Zy. sim.sim.reaches xy y — P y)
unfolding ag-def by auto
show %thesis
unfolding x
apply (subst sim-complete-bisim’.sim-reaches-equiv)
subgoal
by (simp add: start-state)
apply (subst sim-complete-bisim’.reaches-all"[of P])
unfolding ag-def
apply clarsimp
subgoal
unfolding sim.P1’-def by (clarsimp simp: fst-simp) (metis R-ofI
compatible fst-conv)
apply auto
apply (rule from-R-reaches, assumption)
using from-R-fst by (force intro: from-R-val)+
qed

end

end

8 Forward Analysis with DBMs and Widening

theory Normalized-Zone-Semantics
imports DBM-Zone-Semantics Approz-Beta Simulation-Graphs-TA
begin

hide-const (open) D
no-notation infinity (<0o»)

lemma rtranclp-backwards-invariant-iff:
assumes invariant: \ yz. E** 2 y=—= Pz=— Eyz=— Py
and E" E'=ANzy. Exy A Py)
shows E** x y NPx «— E* 2y AN Py
unfolding E’

430

by (safe; induction rule: rtranclp-induct; auto dest: invariant intro: rtran-
clp.intros(2))

context Bisimulation-Invariant
begin

context

fixes ¢ :: 'a = bool and ¢ :: 'b = bool

assumes compatible: a ~ b= PAa=— PBb=— pa<+— ¢ b
begin

lemma reaches-ez-iff:

(3 b. A.reaches a b A ¢ b) «— (3 b. B.reaches a’ b AN ¢ b) if a ~ a’ PA
a PBa'

using that by (force simp: compatible equiv’-def dest: bisim.A-B-reaches
bisim.B-A-reaches)

lemma reaches-all-iff:

(V b. A.reaches a b — ¢ b) <— (¥ b. B.reaches a’ b — 1 b) if a ~ a’
PA a PB o’

using that by (force simp: compatible equiv’-def dest: bisim.A-B-reaches
bisim.B-A-reaches)

end

end

lemma step-z-dbm-delay-loc:
I' = Lif A ¥ (I, D) ~ynr (I, D)
using that by (auto elim!: step-z-dbm.cases)

lemma step-z-dbm-action-state-set1:
I € state-set A if A& (I, D) ~, 5,14 (I, D)
using that by (auto elim!: step-z-dbm.cases intro: state-setll)

lemma step-z-dbm-action-state-set2:
I" € state-set A if A &= (I, D) ~ 14 (I', D)
using that by (auto elim!: step-z-dbm.cases intro: state-setl2)

lemma step-delay-loc:

V=1if AF (I, u) =% (', u))
using that by (auto elim!: step-t.cases)

431

lemma step-a-state-setl:
| € state-set A if At (I, u) —4 (I, u')
using that by (auto elim!: step-a.cases intro: state-setll)

lemma step’-state-setl:
| € state-set A if A+’ (I, u)y — (I', v)
using that by (auto elim!: step’.cases intro: step-a-state-setl dest: step-delay-loc)

8.1 DBM-based Semantics with Normalization
8.1.1 Single Step

inductive step-z-norm ::

('a, e, t, 's) ta

= 's = t DBM = ('s = nat = nat) = (¢ = nat) = nat = 'a action
= 's = t DBM = bool
(- b (=)~ (-) [61,61,61,61,61,61] 61)
where step-z-norm:

A (l,D) ~yna(l!, DY) = AF (,D) ~}, 4 pnq (I', norm (FW D' n) (k
) n)

inductive step-z-norm’ :
(‘a, 'c, t, 's) ta = 's = t DBM = ('s = nat = nat) = (‘¢ = nat) =
nat = 's = t DBM = bool
(- F7 (=)~ (-) [61,61,61,61,61] 61)
where
step: A (U, Z) ~ynr (U, Z7)
— A <l”7 Z//> “ku,n,](a) <lmv ZW>
s A <l/, Z’) . <l”/, Z///>

abbreviation steps-z-norm ::

(‘a, 'c, t, 's) ta = 's = t DBM = ('s = nat = nat) = ('c = nat) =
nat = 's = t DBM = bool
(-F (- =)~ % (-, -)» [61,61,61,61,61] 61) where
Ak <l7D> ~kv,n¥ <l/7 D/> = ()‘ (l’ Z) (lla Zl)' A+’ <l7 Z> ~“kon <l/7 Z/>)**
(I, D) (I', D)

lemma norm-empty-diag-preservation-real:
fixes k :: nat = nat
assumes ; < n
assumes M i i < Le 0
shows norm M (real 0 k) nii < Le 0
using assms unfolding norm-def by (auto simp: Let-def norm-diag-def

432

DBM .less)

context Regions-defs
begin

inductive valid-dbm where
(M]y,n € V = dbm-int M n = valid-dbm M

inductive-cases valid-dbm-cases[elim]: valid-dbm M
declare valid-dbm.intros|intro]
end

locale Regions-common =

Regions-defs X v n for X :: 'c set and v n +

fixes not-in-X

assumes finite: finite X

assumes clock-numbering: clock-numbering’ vn Vk<n. k> 0 — (Jc €
X.ve=k)

VeeX ve<n

assumes not-in-X: not-in-X ¢ X

assumes non-empty: X # {}
begin

lemma F'W-zone-equiv-spec:
shows [M]yn = [FW M n]yn
apply (rule FW-zone-equiv) using clock-numbering(2) by auto

lemma dbm-non-empty-diag:
assumes [M], , # {}
showsVY k< n Mkk>20
proof safe
fix £k assume k: k£ < n
have Vk<n. 0 < k — (Jc. v ¢ = k) using clock-numbering(2) by blast
from k not-empty-cyc-free|OF this assms(1)] show 0 < M k k by (simp
add: cyc-free-diag-dest’)
qed

lemma cn-weak: Vk<n. 0 < k — (Fc. v ¢ = k) using clock-numbering(2)
by blast

lemma negative-diag-empty:
assumes 3 k< n. Mkk<0

433

shows [M],n = {}
using dbm-non-empty-diag assms by force

lemma non-empty-cyc-free:

assumes M|y, # {}

shows cyc-free M n

using FW-neg-cycle-detect FW-zone-equiv-spec assms negative-diag-empty
by blast

lemma F'W-valid-preservation:

assumes valid-dbm M

shows valid-dbm (FW M n)
proof standard

from FW-int-preservation assms show dbm-int (FW M n) n by blast
next

from FW-zone-equiv-speclof M, folded neutral] assms show [FW M n}y
C V by fastforce
qed

end

context Regions-global
begin

sublocale Regions-common by standard (rule finite clock-numbering not-in-X
non-empty)+

abbreviation v’ = beta-interp.v’

lemma apz-empty-iff "
assumes canonical M1 n [M1]y, € V dbm-int M1 n
shows [M1]yn = {} «— [norm M1 (k o v') nlyn = {}
using beta-interp.apz-norm-eq| OF assms| apz-empty-iff [of [M1]y n] assms
unfolding V'-def by blast

lemma norm-FW-empty:

assumes valid-dbm M

assumes M|y, = {}

shows [norm (FW M n) (k o v') nlyn = {} (is [?M]yn = {})
proof —

from assms(2) cyc-free-not-empty clock-numbering(1) have — cyc-free M
n

by metis
from FW-neg-cycle-detect[OF this] obtain i where i: i < n FW M n i

434

i < 0 by auto
with norm-empty-diag-preservation-real|folded neutral] have
IMii<0
unfolding comp-def by auto
with «i < n)» show ?thesis using beta-interp.neg-diag-empty-spec by auto
qged

lemma apz-norm-eq-spec:

assumes valid-dbm M

and [M]y,n # {}

shows beta-interp. Approzs ([Mly.n) = [norm (FW M n) (ko v') nly.n
proof —

note cyc-free = non-empty-cyc-free]OF assms(2)]

from assms(1) FW-zone-equiv-speclof M| have [M]y, = [FW M nlyn
by (auto simp: neutral)

with beta-interp.apz-norm-eq|OF fw-canonical[OF cyc-free] - FW-int-preservation)

dbm-non-empty-diag|OF assms(2)] assms(1)

show Approzs ([Mly,n) = [norm (FW M n) (k o v') nlyn by auto

qged

lemma norm-FW-valid-preservation-non-empty:
assumes valid-dbm M [M]y n # {}
shows wvalid-dbm (norm (FW M n) (k o v') n) (is valid-dbm ?M)
proof —
from FW-valid-preservation|OF assms(1)] have valid: valid-dbm (FW M
show “thesis
proof standard
from walid beta-interp.norm-int-preservation show dbm-int ?M n by
blast
next
from fw-canonical|OF non-empty-cyc-free] assms have canonical (FW
M n) n by auto
from beta-interp.norm-V-preservation|OF - this | valid show [?M]y , C
V by fast
qed
qged

lemma norm-int-all-preservation:
fixes M :: real DBM
assumes dbm-int-all M
shows dbm-int-all (norm M (k o v') n)
using assms unfolding norm-def norm-diag-def by (auto simp: Let-def)

435

lemma norm-FW-valid-preservation-empty:
assumes valid-dbm M [M]y, = {}
shows wvalid-dbm (norm (FW M n) (k o v') n) (is valid-dbm ?M)
proof —
from F'W-valid-preservation|OF assms(1)] have valid: valid-dbm (FW M
show ?thesis
proof standard
from walid beta-interp.norm-int-preservation show dbm-int ?M n by
blast
next
from norm-FW-empty[OF assms(1,2)] show [?M],,, C V by fast
qed
qed

lemma norm-FW-valid-preservation:

assumes valid-dbm M

shows wvalid-dbm (norm (FW M n) (k o v') n)
using assms norm-FW-valid-preservation-empty norm-FW-valid-preservation-non-empty
by metis

lemma norm-FW-equiv:

assumes valid: dbm-int D n dbm-int M n [D]yn C V

and equiv: [D]y.p, = [M]yn

shows [norm (FW D n) (k o v') n]y,n = [norm (FW M n) (k o v') nlyn
proof (cases [D]y.n = {})

case Fulse

with equiv fw-shortest| OF non-empty-cyc-free] FW-zone-equiv-spec have

canonical (FW D n) n canonical (FW M n) n [FW D nlyn = [D]yn

[FW M nly.n = [M]yn

by blast+

with valid equiv show ?thesis

apply —

apply (subst beta-interp.apz-norm-eq[symmetric])

prefer 4

apply (subst beta-interp.apz-norm-eq[symmetric])

by (simp add: FW-int-preservation)+
next

case True

show “thesis

apply (subst norm-FW-empty)

prefer &

apply (subst norm-FW-empty)

using valid equiv True by blast+

436

qed
end

context Regions
begin

sublocale Regions-common by standard (rule finite clock-numbering not-in-X
non-empty)+

definition v/ = X i. if 0 < i AN i < nthen (THE c. c € X N v e = i) else
not-in-X

abbreviation step-z-norm’ (- (-, -) ~xr) (- -) [61,61,61,61] 61)
where
A <l, D) WN(G) <l/, D/> =AF <l, D> W(}\ Lklo v'),v,n,a <l/, D’>

definition step-z-norm” («-+" (-, -) () (-, -)» [61,61,61,61] 61)
where

AF'(l, D) ~ <l” D"y =

30D A+ <l D> ~onr (U, DY NAF (U, D) N (la <l”)

abbreviation steps-z-norm’ (- (-, =) ~n* (-, -)» [61,61,61] 61)
where

AF (I, D) ~sp# (I, Dy = (A (ILD) (1.D). 3 a. A F' {1, D)~y (1,
DY) (1,D) (I".D’)

inductive-cases step-z-norm-elims[elim!]: A = (1, u) ~pr(q) (I',0))
declare step-z-norm.intros|intro

lemma step-z-valid-dbm:
assumes A = (I, D) ~»ypq (I, D)
and global-clock-numbering A v n valid-abstraction A X k valid-dbm D
shows valid-dbm D’

proof —

from step-z-V step-z-dbm-sound[OF assms(1,2)] step-z-dbm-preserves-int| OF

assms(1,2)]
assms(3,4)
have
dbm-int D" n A+ (1, [D]yn) ~>a (I, [D)o,n)
by (fastforce dest!: valid-abstraction-pairsD)+

437

with step-z-V[OF this(2)] assms(4) show ?thesis by auto
qged

lemma step-z-norm-induct|case-names - step-z-norm step-z-refl]:
assumes z! F (22, z3) O L kLo o) una (x7,28)
and step-z-norm:
NAIDI D'
At (l, D) ~ynq (I'\D) =
PAIDIU (norm (FW D'n) (k1 ov') n)
shows P z1 x2 z8 27 z8
using assms by (induction rule: step-z-norm.inducts) auto

context
fixes I’ :: 's
begin
interpretation regions: Regions-global - - - k I’

by standard (rule finite clock-numbering not-in-X non-empty)+

lemma regions-v’-eq[simpl:
regions.v’ = v’
unfolding v’-def regions.beta-interp.v’-def by simp

lemma step-z-norm-int-all-preservation:
assumes
A F (D) ~ pr(q) (I,D) global-clock-numbering A v n
Y (z, m)€ Timed-Automata.clkp-set A. m € N dbm-int-all D
shows dbm-int-all D'
using assms
apply cases
apply simp
apply (rule regions.norm-int-all-preservation|simplified))
apply (rule FW-int-all-preservation)
apply (erule step-z-dbm-preserves-int-all)
by fast+

lemma step-z-norm-valid-dbm-preservation:
assumes
A (I,D) ~pr(q) (I,D) global-clock-numbering A v n valid-abstraction
A X k valid-dbm D
shows valid-dbm D’
using assms
by cases (simp; rule regions.norm-FW-valid-preservation[simplified); erule

438

step-z-valid-dbm; fast)

lemma norm-beta-sound:
assumes A = (I,D) ~ pr(q) (I',D") global-clock-numbering A v n valid-abstraction
AXEk
and valid-dbm D
shows A& (L[D]v,n) ~pg(a) (I',[D]v,n) using assms(2—)
apply (induction A 1D 1'= 1" D' rule: step-z-norm-induct, (subst assms(1);
blast))
proof goal-cases
case step-z-norm: (1 A 1 D D)
from step-z-dbm-sound[OF' step-z-norm(1,2)] have A = (I, [D]yn) ~>a
(I',[Dly,n) by blast
then have «: A+ (I, [D]yn) ~g(4) (I Approzs " ([D']v,n)) by force
show Zcase
proof (cases [D'yn = {})
case Fulse
from regions.apz-norm-eq-spec|OF step-z-valid-dbm[OF step-z-norm]
False]
show ?Zthesis by auto
next
case True
with
regions.norm-FW-empty| OF step-z-valid-dbm[OF step-z-norm] this]
regions.beta-interp.apr-empty *
show ?thesis by auto
qed
ged

lemma step-z-norm-valid-dbm:
assumes
A F (I, D) ~pr(q) (U.D") global-clock-numbering A v n
valid-abstraction A X k valid-dbm D
shows wvalid-dbm D’ using assms(2—)
apply (induction A 1D l'=1" D' rule: step-z-norm-induct, (subst assms(1);
blast))
proof goal-cases
case step-z-norm: (1 A1 D D’)
with regions.norm-FW-valid-preservation| OF step-z-valid-dbm[OF step-z-norm)]
show ?case by auto
ged

lemma norm-beta-complete:

439

assumes A b (1,[D]y,n) ~pg(q) (I'\Z) global-clock-numbering A v n valid-abstraction
AXEk
and valid-dbm D
obtains D’ where A = (I,D) ~x(q) (I\D') [D'lo,n = Z valid-dbm D’
proof —
from assms(3) have ta-int: ¥ (xz, m)e Timed-Automata.clkp-set A. m €
N
by (fastforce dest!: valid-abstraction-pairsD)
from assms(1) obtain Z' where Z A & (I,[D]yn) ~a (I'Z) Z =
Approzg U Z' by auto
from assms(4) have dbm-int D n by auto
with step-z-dbm-DBM|[OF Z'(1) assms(2)] step-z-dbm-preserves-int[OF
assms(2) ta-int] obtain D’
where D A& (I, D) ~yna (I'\D") Z' = [Dlyn dbm-int D' n
by auto
note valid-D' = step-z-valid-dbm[OF D'(1) assms(2,3)]
obtain D" where D": D" = norm (FW D’ n) (k' o v') n by auto
show ?thesis
proof (cases Z' = {})
case False
with D’ have *: [D'], , # {} by auto
from regions.apz-norm-eq-spec|OF valid-D' this] D" D'(2) Z'(2) assms(4)
have Z = [D"], 5,
by auto
with regions.norm-FW-valid-preservation| OF valid-D’) D" D" x assms(4)
show thesis
apply —
apply (rule that[of D"])
by (drule step-z-norm.introsjwhere k = X I. k1 o v']) simp+
next
case True
with regions.norm-FW-empty|OF valid-D'|OF assms(4)]] D" D' Z'(2)
regions.norm-EFW-valid-preservation| OF valid-D'[OF assms(4)]] re-
gions.beta-interp.apzr-empty
show thesis
apply —
apply (rule that[of D"])
apply blast
by fastforce+
qed
qged

lemma step-z-norm-mono:

440

assumes A = (I,D) ~ pr(q) (I',D") global-clock-numbering A v n valid-abstraction
AXEk

and valid-dbm D wvalid-dbm M

and [D]y,n € [M]o,n

ShOWS 3 M’. A l_ <l, M> ’\"')N(a) <l/7 M’> /\ [D/]v’n g I:M,]/U’n
proof —

from norm-beta-sound[OF assms(1,2,5,4)] have A & (I, [D]o,n) ~p(a)
<ll7 [D/]v7n> *

from step-z-beta-mono|OF this assms(6)] assms(5) obtain Z where

Ak <lv [M]U,n> ~7B(a) <l/7 Z> [D/]U:n cz

by auto

with norm-beta-complete| OF this(1) assms(2,3,5)] show ?thesis by metis
qed

lemma step-z-norm-equiv:
assumes step: A b (1,D) ~prq) (I,D)
and prems: global-clock-numbering A v n valid-abstraction A X k
and wvalid: valid-dbm D wvalid-dbm M
and equiv: [D]y.p, = [M]yn
shows 3 M'". A (I, M) ~pr(q) (Vs M) A [DNon = [MTon
using step
apply cases
apply (frule step-z-dbm-equiv[OF prems(1)])
apply (rule equiv)
apply clarify
apply (drule regions.norm-FW-equiv|rotated 3])
prefer 4

apply force
using step-z-valid-dbm[OF - prems| valid by (simp add: valid-dbm.simps)+

end

8.1.2 Multi Step

lemma valid-dbm- V"
assumes valid-dbm M
shows [M]y, € V'
using assms unfolding V'-def by force

lemma step-z-empty:
assumes A - (I, Z) ~, (!, Z") Z = {}
shows 7' = {}
using assms
apply cases

441

unfolding zone-delay-def zone-set-def
by auto

8.1.3 Connecting with Correctness Results for Approximating
Semantics

context
fixes A :: ('a, 'c, real, 's) ta
assumes gcn: global-clock-numbering A v n
and va: valid-abstraction A X k
begin

context
notes [intro| = step-z-valid-dbm[OF - gen val
begin

lemma valid-dbm-step-z-norm”

valid-dbm D" if A =" (l, D) ~pr(q) (I, D) valid-dbm D

using that unfolding step-z-norm’-def by (auto intro: step-z-norm-valid-dbm|OF
- gen wal)

lemma steps-z-norm’-valid-dbm-invariant:
valid-dbm D' if A & (I, D) ~sxx (I', D') valid-dbm D

using that by (induction rule: rtranclp-induct2) (auto intro: valid-dbm-step-z-norm")

lemma norm-beta-sound’":
assumes A ' (I, D) ~pr(q) (I, D)
and wvalid-dbm D
shows A+ (I, [D]yn) ~p (", [D"v,n)
proof —
from assms(1) obtain I’ D’ where
AF (I, D) ~opnr (I, DY Ak (I, D) =g (1 D7)
by (auto simp: step-z-norm’-def)
moreover with (valid-dbm D) have valid-dbm D’
by auto
ultimately have A & (I, [D']yn) ~pg14 (I, [D"]v,n)
by — (rule norm-beta-sound[OF - gcn wval)
with step-z-dbm-sound[OF <A = (I, D) ~>y n.7 (I, D')) gen] show ?thesis
unfolding step-z-beta’-def by — (frule step-z.cases[where P = ' = [];
force)
qed

lemma norm-beta-completel :
assumes A = (1,[D]y.n) ~p (I",2")

442

and valid-dbm D
obtains a D" where A ' (I,D) ~ (1".D"y [D"y,n = Z" valid-dbm
D//
proof —
from assms(1) obtain a I’ Z’' where steps
At (L, [Dlyn) ~- (U, Z") A (', Z7) ~g <l”)
by (auto simp: step-z-beta’-def)
from step-z-dbm-DBM|[OF this(1) gen] obtain D’ where D”:
AF(l, D) ~ynr (I, DY Z' = [Dyn

by auto

with <valid-dbm D) have wvalid-dbm D’
by auto

from steps D’ show ?thesis
by (auto

intro!: that[unfolded step-z-norm'-def]
elim!: norm-beta-complete[OF - gen va <valid-dbm D]

)

qed

lemma bisim:
Bisimulation-Invariant
N, 2Z) (U, 2. A (1, Z) ~p (U, Z’} N Z"#+A{})
(A (L, D) (I, D). 3 a. AF"(l, D) ~pr(q) (I DY) A [Dun # {})
AN, Z2) (I, D). l=1"NZ = [D]y
(A -. True) (A (I, D). valid-dbm D)
proof (standard, goal-cases)
—B=N
case (1 aba)
then show ?case
by (blast elim: norm-beta-completel)
next
— N =5
case (2aa’ b
then show ?case
by (blast intro: norm-beta-sound'’)
next
— [invariant
case (3 a b)
then show ?case
by simp
next
— N invariant
case (4 a b)

,n)

443

then show Zcase
unfolding step-z-norm’’-def
by (auto intro: step-z-norm-valid-dbm[OF' - gen va))
qged

end

interpretation Bisimulation-Invariant
N2, ZN. A, Z) ~p (U, ZY NZT#{}
A (I, D) (I', D). 3 a. AF'{l, D) N (a) (I, D"y N [Don # {}
A, Z) (U, D). l=1UNZ=[Dlyn
A -. True A (I, D). valid-dbm D
by (rule bisim)

lemma step-z-norm’’-non-empty:
[D]yn # {}if AF'(l, D) A (a) (1, D) [Dy,n # {} valid-dbm D
proof —
from that B-A-step[of (I, D) (I, D') (I, [D]v,n)] have
At (L, [Dlv,n) ~p (I [Do,n)
by auto
with «- # {}> show ?thesis
by (auto 4 3 dest: step-z-beta’-empty)
qged

lemma norm-steps-empty:
A (l, D) ~ax (I, D) N [D)yn # {} ¢— B.reaches (I, D) (I', D") A
[Dlon #)
if valid-dbm D
apply (subst rtranclp-backwards-invariant-iff |
of X1, D) (I', D). 3 a. A+"{(l, D) N (a) (1", Dy (1, D) X(I, D). [D]y,n
#{}
simplified
)
using <wvalid-dbm D>
by (auto dest!: step-z-norm'-non-empty intro: steps-z-norm’-valid-dbm-invariant)

context
fixes P Q :: 's = bool — The state property we want to check
begin

interpretation bisim-iy: Bisimulation-Invariant

AL Z) (I, 2. AF (1, Z) ~g (I ZVNZ 4 {3 A QU
A (L D) (I, D). 3 a. AV (I, D) ~ gy (U D) A Do # {3 A QU

444

A, Z) (U, D). l=1UNZ=[Dlyn

A -. True A (I, D). valid-dbm D

by (rule Bisimulation-Invariant-filter|OF bisim, of A (I, -). @ I X (I, -).
Q 1)) auto

end

context
assumes finite-state-set: finite (state-set A)
begin

interpretation R: Regions-TA
by (standard; rule va finite-state-set)

lemma A-reaches-non-empty:
Z' £ {} if A.reaches (1, Z) (I', Z') Z #+ {}

using that by cases auto

lemma A-reaches-start-non-empty-iff:
(32" 3u. uwe Z") N Areaches (1, Z) (I, Z)) «— (3Z". A.reaches (I,
2) (I, 29) A Z # {}
apply safe
apply blast
subgoal
by (auto dest: step-z-beta’-empty elim: converse-rtranclpE2)
by (auto dest: A-reaches-non-empty)

lemma step-z-norm'’-state-set1:
| € state-set A if A+’ (I, D) ~>prq (I, D)
using that unfolding step-z-norm’’-def
by (auto dest: step-z-dbm-delay-loc intro: step-z-dbm-action-state-setl)

lemma step-z-norm'’-state-set2:
I € state-set A if A ' (I, D) ~prq (I'; D)
using that unfolding step-z-norm’-def by (auto intro: step-z-dbm-action-state-set2)

theorem steps-z-norm-decides-emptiness:
assumes valid-dbm D
shows (3 D'. A+ (I, D) ~px (I'D") N [Dyn #{})
(3 ue Dlpn 3 v AF (I, u)y = (I, u')))
proof (cases [D]y.n = {})
case True
then show ?thesis

445

unfolding norm-steps-empty|OF <valid-dbm D>] by auto
next
case F': Fulse
show ?thesis
proof (cases | € state-set A)
case True
interpret Regions-TA-Start-State v n not-in-X X k A 1 [D]yn
using assms F True by — (standard, auto elim!: valid-dbm-V")
show ?thesis
unfolding steps’-iff[symmetric] norm-steps-empty|OF <valid-dbm D>]
using
reaches-ex-iff [of X (I, -). L=1"X (1, -). L =1" (I, [D]o,n) (I, D)]
walid-dbm D> ta-reaches-ex-iff[of X (I, -). | = 1]
by (auto simp: A-reaches-start-non-empty-iff from-R-def ag-def)
next
case Fulse
have A b (I, D) ~sxx (I'D") +— (D'= D A I’ =) for D’
using False by (blast dest: step-z-norm''-state-set1 elim: converse-rtranclpE2)
moreover have A ' (I, u) =« (I', u) +— ("= u A 1"=1) for u u’
unfolding steps’-iff[symmetric] using False
by (blast dest: step’-state-setl elim: converse-rtranclpE2)
ultimately show ?thesis
using F' by auto
qed
qed

end
end
context
fixes A :: ('a, 'c, real, 's) ta
assumes gcn: global-clock-numbering A v n
and va: valid-abstraction A X k

begin

lemmas
step-z-norm-valid-dbm' = step-z-norm-valid-dbm[OF - gcn val

lemmas
step-z-valid-dbm’ = step-z-valid-dbm|OF - gen val

lemmas norm-beta-sound’ = norm-beta-sound|OF - gen val

446

lemma v-bound:
V c€clk-set A.ve<n
using gcn by blast

lemmas alpha-beta-step” = alpha-beta-step’|OF - va v-bound)
lemmas step-z-dbm-sound’ = step-z-dbm-sound|OF - gcn)
lemmas step-z-V" = step-z-V'[OF - va v-bound)]

end

end

8.2 Additional Useful Properties of the Normalized Seman-
tics

Obsolete

lemma norm-diag-alt-def:
norm-diag e = (if e < 0 then Lt 0 else if e = 0 then e else o)
unfolding norm-diag-def DBM .neutral DBM .less ..

lemma norm-diag-preservation:
assumes ViI<n. M111<0
shows V [<n. (norm M1 (k :: nat = nat) n) 11 < 0
using assms unfolding norm-def norm-diag-alt-def by (auto simp: DBM .neutral)

8.3 Appendix: Standard Clock Numberings for Concrete Mod-
els

locale Regions’ =
fixes X and k :: 'c = nat and v :: 'c = nat and n :: nat and not-in-X
assumes finite: finite X
assumes clock-numbering"V c € X.ve> 0V c.c ¢ X —ve>n
assumes bij: bij-betw v X {1..n}
assumes non-empty: X # {}
assumes not-in-X: not-in-X ¢ X

begin
lemma inj: inj-on v X using bij-betw-itmp-inj-on bij by simp

lemma cn-weak: ¥V c. v ¢ > 0 using clock-numbering’ by force

447

lemma in-X: assumes vz < n shows z € X using assms clock-numbering’(2)
by force

end

sublocale Regions’ C Regions-global
proof (unfold-locales, auto simp: finite clock-numbering’ non-empty cn-weak
not-in-X, goal-cases)

case (I z y) with inj in-X show ?Zcase unfolding inj-on-def by auto
next

case (2 k)

from bij have v * X = {1..n} unfolding bij-betw-def by auto

from 2 have k € {1..n} by simp

then obtain z where z € X v 2 = k unfolding image-def

by (metis (no-types, lifting) <v * X = {1..n}> imagekE)

then show ?case by blast
next

case (3 z) with bij show Zcase unfolding bij-betw-def by auto
qged

lemma standard-abstraction:
assumes
finite (Timed-Automata.clkp-set A) finite (Timed-Automata.collect-clkvt
(trans-of A))
Y (-,m:real) € Timed-Automata.clkp-set A. m € N
obtains k :: 'c = nat where Timed-Automata.valid-abstraction A (clk-set
A) k
proof —
from assms have 1: finite (clk-set A) by auto
have 2: Timed-Automata.collect-clkvt (trans-of A) C clk-set A by auto
from assms obtain L where L: distinct L set L = Timed-Automata.clkp-set
A
by (meson finite-distinct-list)
let M = X c. {m . (¢, m) € Timed-Automata.clkp-set A}
let ?X = clk-set A
let ?m = map-of L
let %k = X . if ?M x = {} then 0 else nat (floor (Maz (?M z)) + 1)
{ fix ¢ m assume A: (¢, m) € Timed-Automata.clkp-set A
from assms(1) have finite (snd ¢ Timed-Automata.clkp-set A) by auto
moreover have ?M ¢ C (snd ‘ Timed-Automata.clkp-set A) by force
ultimately have fin: finite (?M c) by (blast intro: finite-subset)
then have Mazx (?M ¢) € {m . (¢, m) € Timed-Automata.clkp-set A}
using Max-in A by auto

448

with assms(3) have Maz (?M ¢) € N by auto
then have floor (Mazx (?M ¢)) = Maz (?M c¢) by (metis Nats-cases
floor-of-nat of-int-of-nat-eq)
have *: %k ¢ = Mazx (M ¢) + 1
proof —
have real (nat (n + 1)) = real-of-int n + 1
if Maz {m. (¢, m) € Timed-Automata.clkp-set A} = real-of-int n
for n :: int and x :: real
proof —
from that have real-of-int (n + 1) € N
using «Maz {m. (¢, m) € Timed-Automata.clkp-set A} € N> by
auto
then show “thesis
by (metis Nats-cases ceiling-of-int nat-int of-int-1 of-int-add
of-int-of-nat-eq)
qed
with A «floor (Mazx (?M ¢)) = Max (?M c)> show ?thesis
by auto
qged
from fin A have Max (?M ¢) > m by auto
moreover from A assms(3) have m € N by auto
ultimately have m < 2k ¢ m € N ¢ € clk-set A using A * by force+
}
then have V (z, m) € Timed-Automata.clkp-set A. m < ?kx A z € clk-set
A N m € N by blast
with 1 2 have Timed-Automata.valid-abstraction A ?X 2k by — (standard,
assumption+)
then show thesis ..
qed

definition

finite-ta A =

finite (Timed-Automata.clkp-set A) A finite (Timed-Automata.collect-clkut
(trans-of A))

A (V(-,m) € Timed-Automata.clkp-set A. m € N) A clk-set A # {} A
—clk-set A # {}

lemma finite-ta-Regions'”:

fixes A :: ('a, 'c, real, 's) ta

assumes finite-ta A

obtains v n x where Regions’ (clk-set A) vn x
proof —

from assms obtain = where z: © ¢ clk-set A unfolding finite-ta-def by
auto

449

from assms(1) have finite (clk-set A) unfolding finite-ta-def by auto
with standard-numbering|of clk-set A] assms obtain v and n :: nat where
bij-betw v (clk-set A) {1..n}
Veecelk-set A. 0 < veVe ¢ clhset A— n<wvec
by auto
then have Regions’ (clk-set A) v n x using z assms unfolding fi-
nite-ta-def by — (standard, auto)
then show ?Zthesis ..
ged

lemma finite-ta-RegionsD:
fixes A :: ('a, 'c, t, 's) ta
assumes finite-ta A
obtains k :: 'c = nat and v n z where
Regions’ (clk-set A) v n x Timed-Automata.valid-abstraction A (clk-set
A) k
global-clock-numbering A v n
proof —
from standard-abstraction assms obtain k :: ‘c = nat where k:
Timed-Automata.valid-abstraction A (clk-set A) k
unfolding finite-ta-def by blast
from finite-ta-Regions'|OF assms| obtain v n z where x: Regions’ (clk-set
Avnzx.
then interpret interp: Regions’ clk-set A kvn x .
from interp.clock-numbering have global-clock-numbering A v n by blast
with x & show ?thesis ..
qed

definition valid-dbm where valid-dbm M n = dbm-int M n A (V i < n. M
0i<0)

lemma dbm-positive:
assumes M 0 (v c) < 0v ¢ < n DBM-val-bounded v u M n
shows v ¢ > 0
proof —
from assms have dbm-entry-val u None (Some ¢) (M 0 (v ¢)) unfolding
DBM-val-bounded-def by auto
with assms(1) show ?thesis
proof (cases M 0 (v c), goal-cases)
case I
then show ?case unfolding less-eq meutral using order-trans by
(fastforce dest!: le-dbm-le)
next
case 2

450

then show ?case unfolding less-eq neutral
by (auto dest!: lt-dbm-le) (meson less-trans neg-0-less-iff-less not-less)
next
case 3
then show ?case unfolding neutral less-eq dbm-le-def by auto
qed
qed

lemma valid-dbm-pos:

assumes valid-dbm M n

shows [M]y, C{u.V c.cve<n—uc>0}
using dbm-positive assms unfolding valid-dbm-def unfolding DBM-zone-repr-def
by fast

lemma (in Regions’) V-alt-def:
shows {u.V ccvec>0ANve<<n—uc>0}=V
unfolding V-def using clock-numbering by metis

end

References

[AD90] Rajeev Alur and D. L. Dill. Automata for modeling real-time sys-
tems. In Proceedings of the Seventeenth International Colloquium

on Automata, Languages and Programming, pages 322—-335, New
York, NY, USA, 1990. Springer-Verlag New York, Inc.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126:183-235, 1994.

[Bou04] Patricia Bouyer. Forward analysis of updatable timed automata.
Formal Methods in System Design, 24(3):281-320, 2004.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics, al-
gorithms and tools. In Lectures on Concurrency and Petri Nets,
Advances in Petri Nets [This tutorial volume originates from the
4th Advanced Course on Petri Nets, ACPN 2003, held in FEich-
statt, Germany in September 2003. In addition to lectures given
at ACPN 2003, additional chapters have been commissioned],
pages 87-124, 2003.

[HHWt97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-toi.
Hytech: A model checker for hybrid systems. Software Tools
for Technology Transfer, 1:460-463, 1997.

451

[LPY97]

[Yov97]

G. Kim Larsen, Paul Pettersson, and Wang Yi. Uppaal in a
nutshell. International Journal on Software Tools for Technology
Transfer, 1(1):134-152, 1997.

Sergio Yovine. KRONOS: A verification tool for real-time sys-
tems. STTT, 1(1-2):123-133, 1997.

452

	Miscellaneous
	Lists
	Streams
	Mixed Material

	Graphs
	Basic Definitions and Theorems
	Graphs with a Start Node
	Subgraphs
	Bundles
	Directed Acyclic Graphs
	Finite Graphs
	Graph Invariants
	Simulations and Bisimulations
	CTL

	Basic Definitions and Semantics
	Syntactic Definition
	Operational Semantics
	Contracting Runs
	Zone Semantics
	From Clock Constraints to DBMs
	Semantics Based on DBMs

	Refinement to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -regions
	Definition
	Basic Properties
	Approximation with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -regions
	Computing 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -Approximation
	Auxiliary 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -boundedness Theorems

	The Classic Construction for Decidability
	Definition of Regions
	Basic Properties
	Set of Regions
	Compability With Clock Constraints
	Compability with Resets
	A Semantics Based on Regions
	Correct Approximation of Zones with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -regions
	Old Variant Using a Global Set of Regions
	A Zone Semantics Abstracting with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Closure
	New Variant
	A Semantics Based on Localized Regions
	A New Zone Semantics Abstracting with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Closure,l

	Correctness of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -approximation from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -regions
	Preparing Bouyer's Theorem
	Bouyer's Main Theorem
	Nice Corollaries of Bouyer's Theorem
	A New Zone Semantics Abstracting with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Approx

	Simulation Graphs
	Simulation Graphs
	Poststability
	Prestability
	Double Simulation
	Finite Graphs
	Complete Simulation Graphs
	Finite Complete Double Simulations
	Encoding of Properties in Runs
	Instantiation of Simulation Locales

	Forward Analysis with DBMs and Widening
	DBM-based Semantics with Normalization
	Additional Useful Properties of the Normalized Semantics
	Appendix: Standard Clock Numberings for Concrete Models

