The independence of Tarski’s Euclidean axiom

T. J. M. Makarios
March 17, 2025

Abstract

Tarski’s axioms of plane geometry are formalized and, using the
standard real Cartesian model, shown to be consistent. A substantial
theory of the projective plane is developed. Building on this theory, the
Klein—Beltrami model of the hyperbolic plane is defined and shown to
satisfy all of Tarski’s axioms except his Euclidean axiom; thus Tarski’s
FEuclidean axiom is shown to be independent of his other axioms of
plane geometry.

An earlier version of this work was the subject of the author’s MSc
thesis [2], which contains natural-language explanations of some of the
more interesting proofs.

Contents

1 Metric and semimetric spaces

2 Miscellaneous results

3 Tarski’s geometry
3.1 Theaxioms
3.2 Semimetric spaces satisfy the first three axioms
3.3 Some consequences of the first three axioms
3.4 Some consequences of the first five axioms
3.5 Simple theorems about betweenness
3.6 Simple theorems about congruence and betweenness

4 Real Euclidean space and Tarski’s axioms
4.1 Real Euclidean space satisfies the first five axioms
4.2 Real Euclidean space also satisfies axioms 6, 7, and 11
4.3 Real Euclidean space satisfies the Euclidean axiom
4.4 The real Euclidean plane.
4.5 Special cases of theorems of Tarski’s geometry

5 Linear algebra

5.1 Matrices e

11
12
12
13
17
18
20

20
20
25
30
31
35

37

6 Right group actions 41

7 Projective geometry 42
7.1 Proportionality on non-zero vectors 43
7.2 Points of the real projective plane 45
7.3 Lines of the real projective plane 49
7.4 Collineations of the real projective plane 67

741 Asagroup e 71
742 Asagroupaction 74
7.4.3 Parts of some Statements from [1] 80
7.5 Crossratios 88
7.6 Cartesian subspace of the real projective plane 96

8 The hyperbolic plane and Tarski’s axioms 105
8.1 Characterizing a specific conic in the projective plane 105
8.2 Some specific points and lines of the projective plane 114
8.3 Definition of the Klein—Beltrami model of the hyperbolic plane119
8.4 K-isometries map the interior of the conic to itself 125
8.5 The K-isometries form a group action 140
8.6 The Klein—Beltrami model satisfies Tarski’s first three axioms 141
8.7 Some lemmas about betweenness 155
8.8 The Klein—Beltrami model satisfies axiom 4 162
8.9 More betweenness theorems 167
8.10 Perpendicularity00 177
8.11 Functions of distance 190

8.11.1 A formula for a cross ratio involving a perpendicular
foot 207
8.12 The Klein—Beltrami model satisfies axiom 5 210
8.13 The Klein—Beltrami model satisfies axioms 6, 7, and 11 . . . 216
8.14 The Klein—Beltrami model satisfies the dimension-specific ax-
IOMS . . o v o e 219
8.15 The Klein-Beltrami model violates the Fuclidean axiom . . . 222

1 Metric and semimetric spaces

theory Metric
imports HOL— Analysis. Multivariate- Analysis

begin

locale semimetric =
fixes dist :: 'p = 'p = real
assumes nonneg [simp|: dist z y > 0
and eq-0 [simp]: distzy =0 — =1y
and symm: dist x y = dist y x

begin

lemma refl [simp|: dist x = 0
by simp
end

locale metric =
fixes dist :: 'p = 'p = real
assumes [simp]: distzy = 0 +— z =y
and triangle: dist x z < dist y x + dist y 2z

sublocale metric < semimetric
proof
{ fix w
have dist w w = 0 by simp }
note [simp] = this

fixzy
show 0 < dist z y
proof —
from triangle [of y y z] show 0 < dist y by simp
qed

show dist t y = 0 «— x = y by simp
show dist z y = dist y x
proof —
{ fix w2
have dist w z < dist z w
proof —
from triangle [of w z z] show dist w z < dist z w by simp
qed }
hence dist x y < dist y x and dist y x < dist x y by simp+
thus dist z y = dist y x by simp
qed
qed

definition norm-dist :: ('a::real-normed-vector) = ’‘a = real where
[simp]: norm-dist x y = norm (z — v)

interpretation norm-metric: metric norm-dist
proof
fix zy
show norm-dist t y = 0 <— x = y by simp
fix z
from norm-triangle-ineq [of © — y y — z] have
norm (z — z) < norm (z — y) + norm (y — z) by simp
with norm-minus-commute [of © y] show
norm-dist x z < norm-dist y x + norm-dist y z by simp
qed

end

2 Miscellaneous results

theory Miscellany
imports Metric
begin

lemma unordered-pair-element-equality:
assumes {p, ¢} = {r, s}and p=1r
shows ¢ = s
using assms by (auto simp: doubleton-eq-iff)

lemma unordered-pair-equality: {p, ¢} = {q, p}
by auto

lemma cosine-rule:

fixes a b ¢ :: real ~ ('n::finite)

shows (norm-dist a c¢)? =

(norm-dist a b)? + (norm-dist b ¢)?> + 2 * ((a — b) - (b — ¢))
proof —

have (a — b) + (b — ¢) = a — ¢ by simp

with dot-norm [of a — b b — (]

have (a — b) - (b — ¢) =
((norm (a — ¢))? — (norm (a — b))?> — (norm (b — ¢))?) / 2
by simp

thus ?thesis by simp

qed

lemma scalar-equiv: ™ *xs © = 1 *g T
by wvector

lemma norm-dist-dot: (norm-dist z y)*> = (v — y) + (z — v)
by (simp add: power2-norm-eg-inner)

definition dep?2 :: 'a::real-vector = 'a = bool where
dep2uv23wrs u=r*p wWAvV=25%p W

lemma real2-eq:
fixes u v :: real”2
assumes u$! = v$7 and u$2 = v$2
shows u = v
by (simp add: vec-eq-iff [of u v] forall-2 assms)

definition rotate2 :: real 2 = real”2 where
rotate2 x = vector [—1$2, 1$1]

declare vector-2 [simp]

lemma rotate2 [simp):
(rotate2 z)$1 = —x$2

(rotate2 x)$2 = 281
by (simp add: rotate2-def)+

lemma rotate2-rotate2 [simpl: rotate2 (rotate2 z) = —zx
proof —
have (rotate2 (rotate2 x))$1 = —2$1 and (rotate2 (rotate2 z))$2 = —x$2
by simp+
with real2-eq show rotate2 (rotate2 x) = —z by simp
qed

lemma rotate2-dot [simp]: (rotate2 u) - (rotate2 v) = u + v
unfolding inner-vec-def
by (simp add: sum-2)

lemma rotate2-scaleR [simp]: rotate2 (k xr) = k xg (rotate2 x)
proof —
have (rotate2 (k xr x))$1 = (k *gr (rotate2 x))$1 and
(rotate2 (k xr x))$2 = (k *r (rotate2 x))$2 by simp+
with real2-eq show ?thesis by simp

qed
lemma rotate2-uminus [simp]: rotate2 (—x) = —(rotate2 x)
proof —
from scaleR-minus-left [of 1] have
—1 %g © = —z and —1 =g (rotate2 r) = —(rotate2 z) by auto
with rotate2-scaleR [of —1 x| show ?thesis by simp
qged

lemma rotate2-eq [iff]: rotate2 & = rotate2 y +— z =y
proof
assume r = y
thus rotate2 x = rotate2 y by simp
next
assume rotate?2 r = rotatel y
hence rotate2 (rotate2 x) = rotate2 (rotate2 y) by simp
hence —(—z) = —(—y) by simp
thus z = y by simp
qged

lemma dot2-rearrange-1:
fixes u z :: real”2
assumes u - £ = 0 and z$1 # 0
shows v = (u$2 / 81) xr (rotate2 x) (is u = 7u’)
proof —
from <u - z = 0> have u$1 * 281 = —(u$2) = (2$2)
unfolding inner-vec-def
by (simp add: sum-2)
hence u$1 * 81 / 281 = —u$2 / 281 * 282 by simp
with «z$1 # 0> have u$1 = ?u’$1 by simp

from <z$1 # 0> have u$2 = ?u'$2 by simp
with <u$1 = 2u’$1) and real2-eq show u = ?u’ by simp
qed

lemma dot2-rearrange-2:
fixes u z :: real 2
assumes v - ¢ = 0 and 282 # 0
shows u = —(u$1 / 282) xg (rotate2 z) (is u = ?u’)
proof —
from assms and dot2-rearrange-1 [of rotate2 u rotate2 z] have
rotate2 v = rotate2 ?u’ by simp
thus u = 2u’ by blast
qed

lemma dot2-rearrange:

fixes u z :: real 2

assumes v - z = 0 and z # 0

shows k. u = k xp (rotate?2 z)
proof cases

assume 1281 = 0

with real2-eq [of 0] and «x # 0> have 2$2 # 0 by auto

with dot2-rearrange-2 and <u - © = 0> show ?thesis by blast
next

assume 281 # 0

with dot2-rearrange-1 and <u - x = 0> show ?thesis by blast
qed

lemma real2-orthogonal-dep2:
fixes u v x :: real 2
assumes t # 0and u - x =0 and v - z = 0
shows dep2 u v

proof —
let 2w = rotate2 x
from dot2-rearrange and assms have

drs.u=71x%xp wAv=sx*g wby simp

with dep2-def show ?thesis by auto

qed

lemma dot-left-diff-distrib:
fixes u v z :: realn
shows (v —v) -z =(u-2z) — (v-x)
proof —
have (v - z) — (v-z) = O i€ UNIV. u$i x 28i) — (O i€ UNIV. v8$i x 187)
unfolding inner-vec-def
by simp
also from sum-subtractf [of A i. u$i * 287 X . v8i = 2$i] have
.= (O_4€UNIV. u$i x 28i — v$i x z3%) by simp
also from left-diff-distrib [where 'a = real] have
.= (D_i€UNIV. (u$i — v3$7) * 2$7) by simp

also have
=(u—w) -z
unfolding inner-vec-def
by simp
finally show ?thesis ..
qed

lemma dot-right-diff-distrib:
fixes v vz :: Teal n
shows z - (u — v) = (z - u) — (z - v)
proof —
from inner-commute have x - (u — v) = (u — v) - z by auto
also from dot-left-diff-distrib [of v v z] have
= UCT — VT
also from inner-commute [of z] have
...=zT-u—z v by simp
finally show ?thesis .
qed

lemma am-gm2:
fixes a b :: real
assumes a > () and b > 0
shows sgrt (a * b) < (a + b) / 2
and sqrt (a*b) =(a+b) /2+—a=1b
proof —
have 0 < (a — b) *x (¢ — b) and 0 = (a — b) x (a — b) +— a = b by simp+
with right-diff-distrib [of a — b a b] and left-diff-distrib [of a b] have
0<axa—2%xa*xb+bxbd
and 0 =a*xa—2*xaxb+ bxb<+— a=0bDby auto
hence / xaxb<axa+ 2xaxb+bxb
and 4 xaxb=axa+ 2xaxb+ bxb<— a=bby auto
with distrib-right [of a + b a b] and distrib-left [of a b] have
4 %axb<(a+b)*(a+ D)
and 4 xax b= (a+ b) x (a+ b) «— a=>bDby (simp add: field-simps)+
with real-sqrt-le-mono [of 4 * a * b (a + b) * (a + b)]
and real-sqrt-eq-iff [of 4 * a x b (a + b) * (a + b)] have
sqrt (4 % a x b) < sqrt ((a + b) * (a + b))
and sqrt (4 * a * b) = sgrt ((a + b) * (a + b)) «— a = b by simp+
with <a > 0> and 0» have sgrt (4 x axb) <a+ b
and sqrt (4 *x ax b) = a+ b<+— a = 0bDby simp+
with real-sqrt-abs2 [of 2] and real-sqrt-mult [of 4 a x b] show
sqrt (a % b) < (a+10b)/ 2
and sqrt (a * b) = (a + b) / 2 +— a = b by (simp add: ac-simps)+
qed

lemma refl-on-allrel: refl-on A (A x A)
unfolding refi-on-def
by simp

lemma refi-on-restrict:
assumes refl-on A r
shows refl-on (AN B) (rN B x B)
proof —
from <refl-on A ry and refl-on-alirel [of B] and refi-on-Int
show ?thesis by auto
qed

lemma sym-allrel: sym (A x A)
unfolding sym-def
by simp

lemma sym-restrict:
assumes sym r
shows sym (r N A x A)
proof —
from «sym m and sym-allrel and sym-Int
show ?thesis by auto
qed

lemma trans-allrel: trans (A x A)
unfolding trans-def
by simp

lemma equiv-Int:
assumes equiv A r and equiv B s
shows equiv (AN B) (r N s)
proof —
from assms and refl-on-Int [of A r B s| and sym-Int and trans-Int
show ?thesis
unfolding equiv-def
by auto
qed

lemma equiv-allrel: equiv A (A x A)
unfolding equiv-def
by (simp add: refl-on-allrel sym-allrel trans-allrel)

lemma equiv-restrict:
assumes equiv A r
shows equiv (A N B) (r N B x B)
proof —
from <equiv A r» and equiv-allrel [of B] and equiv-Int
show ?thesis by auto
qed

lemma invertible-times-eq-zero:
)

fixes z :: real'n and A :: real 'n"n
assumes invertible A and A xvz = 0

shows =z = 0
using assms invertible-def matriz-left-invertible-ker by blast

lemma times-invertible-eq-zero:
fixes z :: real'n and A :: real 'n"'n
assumes invertible A and z vx A = 0
shows z = 0
using transpose-invertible assms invertible-times-eq-zero by fastforce

)

lemma matriz-id-invertible:
invertible (mat 1 :: (‘a::semiring-1)"'n""n)
by (simp add: invertible-def)

lemma Image-refl-on-nonempty:
assumes refl-on A r and x € A
shows z € r*{z}
proof
from «<refl-on A r» and <z € A> show (z,) € r
unfolding refi-on-def
by simp
qed

lemma quotient-element-nonempty:
assumes equiv A rand X € A//r
shows 3 z. z € X
using assms in-quotient-imp-non-empty by fastforce

lemma zero-3: (3:3) = 0
by simp

lemma card-suc-ge-insert:
fixes A and z
shows card A + 1 > card (insert x A)
using card-insert-le-m1 by fastforce

lemma card-le-UNIV:
fixes A :: ('n:finite) set
shows card A < CARD('n)
by (simp add: card-mono)

lemma partition-Image-element:
assumes equiv A rand X € A//r and z € X
shows r‘{z} = X
by (metis Image-singleton-iff assms equiv-class-eq-iff quotientE)

lemma card-insert-ge: card (insert x A) > card A
by (metis card.infinite card-insert-le zero-le)

lemma choose-1:

assumes card S = 1

shows 3 z. S = {z}

using <card S = 1) and card-eq-SucD [of S 0]
by simp

lemma choose-2:
assumes card S = 2
shows 3 z y. S = {z,y}
proof —
from <card S = 2» and card-eq-SucD [of S 1]
obtain z and T where S = insert ¢ T and card T = 1 by auto
from <card T = 1> and choose-1 obtain y where T = {y} by auto
with «S = insert © T» have S = {z,y} by simp
thus 3 z y. S = {z,y} by auto
qed

lemma choose-3:
assumes card S = 3
shows 3 z y 2. S = {z,y,2}
proof —
from <card S = 3 and card-eq-SucD [of S 2]
obtain z and T where S = insert ¢ T and card T = 2 by auto
from <card T = 2> and choose-2 [of T| obtain y and z where T = {y,z} by
auto
with «S = insert T» have S = {z,y,z} by simp
thus 3 z y z. S = {x,9,2} by auto
qed

lemma card-gt-0-diff-singleton:
assumes card S > 0 and z € S
shows card (S — {z}) = card S — 1

proof —
from <card S > 0> have finite S by (rule card-ge-0-finite)
with <z € &)

show card (S — {z}) = card S — 1 by (simp add: card-Diff-singleton)
qed

lemma eg-3-or-of-3:

fixes j :: 4

shows j = 3 vV (3 j:3. j = of-int (Rep-bit! j'))
proof (induct j)

fix j-int :: int

assume 0 < j-int

assume j-int < int CARD(4)

hence j-int < 3 by simp

show of-int j-int = (3::4) vV (3 j":3. of-int j-int = of-int (Rep-bitl j’))

proof cases
assume j-int = 3

10

thus
of-int j-int = (3::4) V (3 j":3. of-int j-int = of-int (Rep-bitl j’))
by simp
next
assume j-int # 3
with ¢j-int < 3 have j-int < & by simp
with <0 < j-int> have j-int € {0..<3} by simp
hence Rep-bitl1 (Abs-bitl j-int :: 3) = j-int
by (simp add: bit1.Abs-inverse)
hence of-int j-int = of-int (Rep-bitl (Abs-bitl j-int :: 3)) by simp
thus
of-int j-int = (8::4) vV (3 j:8. of-int j-int = of-int (Rep-bitl j'))
by auto
qed
qed

lemma sgn-plus:
fixes z y :: 'a::linordered-idom
assumes sgn T = sgn y
shows sgn (x + y) = sgn «
by (simp add: assms same-sgn-sgn-add)

lemma sgn-div:
fixes z y :: 'a::linordered-field
assumes y # 0 and sgn x = sgn y
shows z / y > 0
using assms sgn-1-pos sgn-eq-0-iff by fastforce

lemma abs-plus:
fixes z y :: 'a::linordered-idom
assumes sgn T = sgn y
shows |z + y| = |z + |y|
by (simp add: assms same-sgn-abs-add)

lemma sgn-plus-abs:
fixes z y :: 'a::linordered-idom
assumes |z| > |y
shows sgn (z + y) = sgn «
by (cases x > 0) (use assms in auto)

end

3 Tarski’s geometry
theory Tarski

imports Complex-Main Miscellany Metric
begin

11

3.1 The axioms

The axioms, and all theorems beginning with th followed by a number, are
based on corresponding axioms and theorems in [3].

locale tarski-firsts =
fixes C:'p="p="p="p=bool («--=--199,99,99,99] 50)
assumes Al:Vab. ab=ba
and A2:Vabpgrs.ab=pqgAhNab=rs—pqg=rs
and A3:Vabc.ab=cc—a=0

locale tarski-firstd = tarski-first3 +
fixes B:: 'p = 'p = 'p = bool
assumes A4:Vqabc. dz. Bgax Naz=bc
and A5:Vabcda b'c’'d. a#bANBabcANBa b c
ANab=a'b'ANbec=b'c’Nad=a"d AND
d=1b"d’
—cd=cd

locale tarski-absolute-space = tarski-firstd +
assumes A6:Vab. Baba— a=1b
and A7:Vabecpqg BapecANBbge— (3z. BpxbA Bgza)
and A11:VX Y. 3aVzy.z€ XANyeY — Bazy)
— @b Vzy.z2e XANyeY —Bzby)

locale tarski-absolute = tarski-absolute-space +

assumes A8: dabc. - BabcAN—-BbcaN—-Bcab

and A9:Vpqgqabec.p#*qgNhap=aqANbp=bgAcp=cq
— BabcV BbcaV Bcab

locale tarski-space = tarski-absolute-space +
assumes A10:Vabcdt. BadtANBbdcANa#d
— (3zy.Babz ANBacy AN Bzty)

locale tarski = tarski-absolute + tarski-space

3.2 Semimetric spaces satisfy the first three axioms

context semimetric

begin
definition smC :: 'p = 'p = 'p = 'p = bool (¢- - =5 - - [99,99,99,99] 50)
where [simp]: a b =4, ¢ d = dist a b = dist ¢ d
end

sublocale semimetric < tarski-first3 smC

proof
from symm show Va b. a b =g, b a by simp
showVabpqgrs. ab=ga,pqgNab=s, 1rs— pq=sm rsby simp
show Va b c. a b=s, cc— a=bby simp

qed

12

3.3 Some consequences of the first three axioms

context tarski-first3
begin
lemma A1 ab="ba
by (simp add: A1)

lemma A2 Jab=pgab=rsl]=pqg=rs
proof —

assume ab=pgand ab=rs

with A2 show ?thesis by blast
qed

lemma A3 ab=cc= a=»
by (simp add: A3)

theorem th2-1: ab=ab
proof —

from A2’ [of baabab] and A1’ [of b a] show ?thesis by simp
qed

theorem th2-2: ab=cd = cd=ab
proof —

assume a b= c d

with A2’ [of a b ¢ d a b] and th2-1 [of a b] show ?thesis by simp
qged

theorem th2-3: [ab=cd;cd=¢ef]=ab=cef
proof —

assume a b=cd

with th2-2 [of a b ¢ d] have ¢ d = a b by simp

assume cd = e f

with A2’ [of c d a b e f] and <c d = a b> show ?thesis by simp
qed

theorem th2-/: a b=cd = ba=cd
proof —

assume a b= c d

with th2-3 [of b a a b c d] and A1’ [of b a] show ?Zthesis by simp
qed

theorem th2-5: ab=cd = ab=dc
proof —

assume a b= c d

with th2-3 [of a b ¢ d d c] and A1’ [of ¢ d] show ?thesis by simp
qed

definition is-segment :: 'p set = bool where
is-segment X £ 3z y. X = {z, y}

13

definition segments :: 'p set set where
segments = {X. is-segment X}

definition SC :: 'p set = 'p set = bool where
SCXY23wazyz X={w s} ANY={y, 2} Awz=yz

definition SC-rel :: (p set x p set) set where
SC-rel ={(X,Y)| XY.SCXY}

lemma left-segment-congruence:
assumes {a, b} = {p, ¢t and pg=-cd
shows a b= c d
proof cases
assume a = p
with unordered-pair-element-equality [of a b p q] and <{a, b} = {p, ¢p
have b = ¢ by simp
with <p ¢ = ¢ d> and <a = p» show ?thesis by simp
next
assume a # p
with «{a, b} = {p, ¢}> have a = ¢ by auto
with unordered-pair-element-equality [of a b ¢ p] and «{a, b} = {p, ¢p
have b = p by auto
with <p ¢ = ¢ d>» and <a = ¢» have b a = ¢ d by simp
with th2-/ [of b a ¢ d] show ?thesis by simp
qed

lemma right-segment-congruence:
assumes {c¢, d} = {p, ¢} and a b = p ¢
shows a b= c d
proof —
from th2-2 [of a b p ¢ and have p ¢ = a b by simp
with left-segment-congruence [of ¢ d p ¢ a b] and {c¢, d} = {p, ¢}>
have ¢ d = a b by simp
with th2-2 [of ¢ d a b] show ?thesis by simp
qed

lemma C-SC-equiv: a b = ¢ d = SC {a, b} {c, d}
proof
assume a b= c d
with SC-def [of {a, b} {c, d}] show SC {a, b} {¢, d} by auto
next
assume SC {a, b} {c, d}
with SC-def [of {a, b} {c, d}]
obtain w z y z where {a, b} = {w, z} and {¢, d} = {y, 2z} and wz = y 2
by blast
from left-segment-congruence [of a b w x y 2] and
{a, b} = {w, z}> and
wr =y
have a b = y z by simp

14

with right-segment-congruence [of ¢ d y z a b] and {¢, d} = {y, z}»
show a b = ¢ d by simp
qed

lemmas SC-refl = th2-1 [simplified]

lemma SC-rel-refl: refl-on segments SC-rel
proof —
note refl-on-def [of segments SC-rel]
moreover
{ fix Z
assume Z € SC-rel
with SC-rel-def obtain X Y where Z = (X, Y) and SC X Y by auto
from «SC X Y» and SC-def [of X Y]
have 3w z. X = {w, 2} and Jy z. Y = {y, 2z} by auto
with is-segment-def [of X] and is-segment-def [of Y]
have is-segment X and is-segment Y by auto
with segments-def have X € segments and Y € segments by auto
with «Z = (X, Y)» have Z € segments X segments by simp }
hence SC-rel C segments x segments by auto
moreover
{ fix X
assume X € segments
with segments-def have is-segment X by auto
with is-segment-def [of X] obtain z y where X = {z, y} by auto
with SC-def [of X X] and SC-refl have SC X X by (simp add: C-SC-equiv)
with SC-rel-def have (X, X) € SC-rel by simp }
hence V X. X € segments — (X, X) € SC-rel by simp
ultimately show ¢thesis by simp
qed

lemma SC-sym:
assumes SC X Y
shows SC Y X
proof —
from SC-def [of X Y] and <SC X V>
obtain wz y z where X = {w, 2z} and VY = {y, z} and wz = y 2
by auto
from th2-2 [of wz y 2] and «<w z = y 2> have y z = w z by simp
with SC-def [of Y X] and <X = {w, z}> and (Y = {y, 2z}
show SC Y X by (simp add: C-SC-equiv)
qed

lemma SC-sym”: SCX Y =8CY X
proof

assume SC X Y

with SC-sym [of X Y] show SC Y X by simp
next

assume SC YV X

15

with SC-sym [of Y X] show SC X Y by simp
qed

lemma SC-rel-sym: sym SC-rel
proof —
{fix XY
assume (X, Y) € SC-rel
with SC-rel-def have SC X Y by simp
with SC-sym’ have SC Y X by simp
with SC-rel-def have (Y, X) € SC-rel by simp }
with sym-def [of SC-rel] show %thesis by blast
qed

lemma SC-trans:
assumes SC X Y and SC Y 7
shows SC X Z
proof —
from SC-def [of X Y] and <SC X Y»
obtain wz y 2 where X = {w, 2z} and Y = {y, z} and wz = y 2
by auto
from SC-def [of Y Z] and <SC' Y Z»
obtain p ¢ r s where Y = {p, ¢} and Z = {r, s} and p ¢ = r s by auto
from <Y = {y, zp» and <Y = {p, ¢p> and <p ¢ = r &
have y z = r s by (simp add: C-SC-equiv)
with th2-3 [of wz y zr s] and <w z = y 2> have w z = r s by simp
with SC-def [of X Z] and <X = {w, z}» and <Z = {r, sp
show SC X Z by (simp add: C-SC-equiv)
qed

lemma SC-rel-trans: trans SC-rel
proof —
{(Ax X Y Z
assume (X, Y) € SC-rel and (Y, Z) € SC-rel
with SC-rel-def have SC X Y and SC Y Z by auto
with SC-trans [of X Y Z] have SC X Z by simp
with SC-rel-def have (X, Z) € SC-rel by simp }
with trans-def [of SC-rel] show ?thesis by blast
qed

lemma A3-reversed:
assumes a a = b ¢
shows b = ¢
proof —
from <a a = b ¢» have b ¢ = a a by (rule th2-2)
thus b = ¢ by (rule A3’)
qed

lemma equiv-segments-SC-rel: equiv segments SC-rel
by (simp add: equiv-def SC-rel-refl SC-rel-sym SC-rel-trans)

16

end

3.4 Some consequences of the first five axioms

context tarski-firsts
begin
lemma A4 3z. BqaxzNaz=bc
by (simp add: A4 [simplified])

theorem th2-8: aa =bb

proof —
from A4’ [of - a b b] obtain x where o = b b by auto
with A3’ [of a z b] have z = a by simp
with <a z = b by show ?thesis by simp

qed

definition OFS :: ['p,’p,’p,’n,’p,’p,’p,’D] = bo0l Where
OFSabcda' b ¢’ d &
BabcABa'bc’Nab=a"b'’ANbec=bc’Nad=a"d Nbd=b"d’

lemma A5 [OFSabcda' b ¢’ d;a# b = cd=c'd
proof —

assume OFSabcda’ b’ ¢’d and a # b

with A5 and OFS-def show ?thesis by blast
qed

theorem th2-11:
assumes hypotheses:

Babec

Ba' b c
ab=ab’
be=1b ¢’

shows a ¢ = a’ ¢’
proof cases
assume a = b
with <a b = a’ b have o’ = b’ by (simp add: A3-reversed)
with <b ¢ = b’ ¢/» and (a = b» show ?thesis by simp
next
assume a # b
moreover
note A5' [ofabcaa’b ¢ o] and
unordered-pair-equality [of a ¢] and
unordered-pair-equality [of a’ ¢]
moreover
from OFS-def [of a b caa’ b’ ¢’ a] and
hypotheses and
th2-8 [of a a’] and
unordered-pair-equality [of a b] and

17

unordered-pair-equality [of a’ b’]
have OFS a b caa’ b’ ¢’ a’ by (simp add: C-SC-equiv)
ultimately show ?thesis by (simp add: C-SC-equiv)
qed

lemma A4-unique:
assumes ¢ # aand Bgazand az =b ¢
and Bgqaz'andaz' = bc
shows z = z’
proof —
from SC-sym’ and SC-trans and C-SC-equiv and <a ' = b ¢» and <a z = b

o
have a z = a z’ by blast
with th2-11 [of ga z g a 2] and «<B q a > and «B q a ' and SC-refl
have ¢ x = ¢ 2’ by simp
with OFS-def [of ¢ a z z ¢ a z 2] and
«<B qax and
SC-refl and
ar=azxh
have OFS qa zx q a x ' by simp
with A5/ [of ga zz qaz 2] and <q¢ # a> have z z = x 2’ by simp
thus z = z’ by (rule A3-reversed)
qed

theorem th2-12:
assumes ¢ # a
shows 3lz. Bgax ANaxz=bc
using «¢ # a> and A/’ and A/-unique
by blast
end

3.5 Simple theorems about betweenness

theorem (in tarski-first5) th3-1: Ba b b
proof —
from A4 [rule-format, of a b b b] obtain z where Ba bz and bz = b b by
auto
from A3 [rule-format, of b z b] and <b z = b b> have b = z by simp
with «<B a b x> show B a b b by simp
qed

context tarski-absolute-space
begin
lemma A6":
assumes Baba
shows a = b
proof —
from A6 and <B a b a» show a = b by simp
qed

18

lemma A7":

assumes Bapcand Bbqc

shows dz. Bpxb AN Bqxa
proof —

from A7 and <B a p ¢» and (B b q ¢» show ?thesis by blast
qed

lemma A11"

assumesV zy. € X AyeY — Baxy

shows 3 b.Vzy z€e XANyeY —Bzby

proof —

from assms have 3 a.V zy. 2 € X Ny € Y — Baxy by (rule exl)
thus3 b.Vzy.z2€ X Aye Y — Buzbyby (rule A11 [rule-format))
qed

theorem th3-2:
assumes B a b ¢
shows B c b a
proof —
from th3-1 have B b ¢ ¢ by simp
with A7’ and <B a b ¢» obtain z where B b z b and B ¢ = a by blast
from A6’ and <B b z b> have z = b by auto
with <B ¢ z a> show B ¢ b a by simp
qed

theorem th3-4:
assumes Babcand Bbac
shows a = b

proof —
from «(Babcyand <Bbac and A7 [of a b ¢ b a]
obtain z where B b z b and B a = a by auto
hence b = z and a = z by (simp-all add: A6")
thus a = b by simp

qed

theorem th3-5-1:
assumes Babdand Bbcd
shows Ba b c
proof —
from «Ba b dyand <Bbcd and A7 [of a b d b (]
obtain z where B b x b and B ¢ z a by auto
from <B b z b> have b = z by (rule AG’)
with <B ¢ z a> have B ¢ b a by simp
thus B a b ¢ by (rule th3-2)
qed

theorem th3-6-1:
assumes Babcand Bacd

19

shows B b c d
proof —
from (B a ¢ d> and <B a b ¢» and th3-2 have B d ¢ a and B ¢ b a by fast+
hence B d ¢ b by (rule th3-5-1)
thus B b ¢ d by (rule th3-2)
qed

theorem th3-7-1:
assumes b # cand Babcand Bbcd
shows B a cd

proof —
from A/’ obtain x where B a ¢ z and ¢ z = ¢ d by fast
from «Ba b ¢» and <B a ¢ > have B b ¢ z by (rule th3-6-1)
have ¢ d = ¢ d by (rule th2-1)
with <b# ¢o and <Bbcx and <cz = cd> and <Bbc d
have z = d by (rule Af-unique)
with <B a ¢ x> show B a ¢ d by simp

qed

theorem th3-7-2:
assumes b # cand Babcand Bbcd
shows Ba b d

proof —
from <B b c d and <B a b ¢» and th3-2 have B d ¢ band B ¢ b a by fast+
with «b # ¢ and th3-7-1 [of ¢ b d o] have B d b a by simp
thus B a b d by (rule th3-2)

qed

end

3.6 Simple theorems about congruence and betweenness

definition (in tarski-first5) Col :: 'p = 'p = 'p = bool where
Colabc2 BabcVBbcaV Bcab

end

4 Real Euclidean space and Tarski’s axioms

theory Fuclid-Tarski
imports Tarski
begin

4.1 Real Euclidean space satisfies the first five axioms

abbreviation
real-euclid-C' :: [real ('n::finite), real ('n), real ('n), real ('n)] = bool
(- - =R - - [99,99,99,99] 50) where
real-euclid-C' = norm-metric.smC

20

definition real-euclid-B :: [real ('n::finite), real ('n), real ('n)] = bool
(¢Br - - - [99,99,99] 50) where
BRabcéEll.Ogl/\lgl/\b—a:l*R(c—a)

interpretation real-euclid: tarski-firsts real-euclid-C' real-euclid-B
proof

By virtue of being a semimetric space, real Euclidean space is already known
to satisfy the first three axioms.

{fixqabc
have dz. BR qax ANax =g bc
proof cases
assume ¢ = a
let v =a+ c— b
have BRr ¢ a %z
proof —
let ¢ = 0 :: real
note real-euclid-B-def [of q a ?z]
moreover
have ?/ > 0 and ?] < 1 by auto
moreover
from <¢ = @> have a — ¢ = 0 by simp
hence a — ¢ = ?l xp (%2 — q) by simp
ultimately show ?thesis by auto
qed
moreover
have a — %2 = b — ¢ by simp
hence a ?z =g b ¢ by (simp add: field-simps)
ultimately show ?thesis by blast
next
assume ¢q # a
hence norm-dist ¢ a > 0 by simp
let %k = norm-dist b ¢ / norm-dist q a
let %2 = a + %k *g (a — q)
have Br q a %z
proof —
let 20 =1 /(1 + %)
have ¢l > 0 by (simp add: add-pos-nonneg)
note real-euclid-B-def [of q a 7z
moreover
have ?] > 0 and 2] < 1 by (auto simp add: add-pos-nonneg)
moreover
from scaleR-left-distrib [of 1 %k a —]
have (1 + %) xg (a — q) = %z — ¢ by simp
hence ?l xg (1 + %k) xr (a — q)) = 2l xg (22 — q) by simp
with <2l > 0> and scaleR-right-diff-distrib [of 21 ?z q]
have a — ¢ = ?l xg (%2 — q) by simp
ultimately show Br ¢ a ?z by blast
qed
moreover

21

have a 7z =g b ¢

proof —
from norm-scaleR [of %k a — ¢] have
norm-dist a ?x = |2k| * norm (a — q) by simp
also have

... = %k x norm (a — q) by simp
also from norm-metric.symm [of q a] have
... = %k x norm-dist q a by simp
finally have
norm-dist a ?x = norm-dist b ¢ / norm-dist q a x norm-dist q a .
with <norm-dist ¢ a > 0> show a 7z =R b ¢ by auto
qed
ultimately show ?thesis by blast
qed }
thusVqgabec dz. BR gax N ax =R b c by auto
{fixabcda' b ¢ d
assume a # b and
Br a b ¢c and
Bgr a’ b’ ¢’ and
ab=g a b and
bec=R b c and
ad=r a’d and

bd=g b d
have c d =g ¢’ d’
proof —

{ fix m

fix p q r :: real ('n::finite)
assume (0 < m and
m < 1 and
p # ¢q and
q—p=msx*pg(r—p)
from p # ¢ and <¢ — p = m *g (r — p)» have m # 0
proof —
{ assume m = 0
with <¢ — p = m xp (r — p)» have ¢ — p = 0 by simp
with «(p # ¢» have Fualse by simp }
thus ?thesis ..
qed
with <m > 0»> have m > 0 by simp
from <¢ — p = m *xg (r — p)> and
scaleR-right-diff-distrib [of m r p]
have ¢ — p = m xg 7 — m *z p by simp
hence ¢ — p—qg+p— mxgr=
m*Rp T — M*R P — ¢+ p— M*RpT
by simp
with scaleR-left-diff-distrib [of 1 m p] and
scaleR-left-diff-distrib [of 1 m q]
have (I — m)*g p — (I — m) xr ¢ = m *g ¢ — m *g 7 by auto
with scaleR-right-diff-distrib [of 1 — m p ¢] and

22

scale R-right-diff-distrib [of m q r]
have (1 — m) xgr (p — ¢) = m xg (¢ —) by simp
with norm-scaleR [of 1 — m p — ¢q] and norm-scaleR [of m q — 7]
have |1 — m| * norm (p — ¢q) = |m| * norm (¢ — r) by simp
with ¢m > 0> and «<m < 1)
have norm (¢ — r) = (1 — m) / m * norm (p — q) by simp
moreover from <p # ¢ have norm (p — ¢q) # 0 by simp
ultimately
have norm (¢ — r) / norm (p — q) = (1 — m) / m by simp
with (m # 0> have
norm-dist ¢ v / norm-dist p ¢ = (1 — m) / m and m # 0 by auto }
note linelemma = this
from real-euclid-B-def [of a b ¢] and <Bgr a b ¢
obtain [where 0 < land [< I and b — a =1%g (¢ — a) by auto
from real-euclid-B-def [of a’ b’ ¢/] and <Bgr a’ b’ ¢’
obtain !’ where0 < !’and I’< { and b’ — o’ =1'xg (¢’ — a') by auto
from <a # b and <a b =g a’ b"» have a’ # b’ by auto
from linelemma [of I a b ¢] and
<l > 0> and
<l < 1) and
<a # by and
<b—a=1%gr (c — a)
have | # 0 and (1 — I) / | = norm-dist b ¢ / norm-dist a b by auto
from (1 — 1) / | = norm-dist b ¢ / norm-dist a by and
<a b =g a’ b and
hec=g b ch
have (1 — 1) / | = norm-dist b’ ¢’ | norm-dist a’ b’ by simp
with linelemma [of I" a’ b’ ¢] and
«’"> 0> and
«(’< 1) and
<a’" # by and
b —a'=1"xg (¢’ — a'p
have I'’# O and (1 — 1) /1= (1 — 1) /I’ by auto
from«(1 -0 /1= -1)/1"»
have (1 — 1) /Ilx1x1'=(1 —=1)/1'x*1x1'by simp
with «I # 0> and ' # 0> have (1 — 1) x I’ = (1 — I') x [by simp
with left-diff-distrib [of 1 11'] and left-diff-distrib [of 1 1"]
have | = I’ by simp
{ fix m
fix p ¢ r s real ('n::finite)
assume m # 0 and
q—p=mxg(r—p)
with scaleR-scaleR have r — p = (1/m) *r (¢ — p) by simp
with cosine-rule [of 1 s p|
have (norm-dist v s)> = (norm-dist r p)?> + (norm-dist p s)*> +
2% (1/m) *r (4 -) - (0 — 9))
by simp
also from inner-scaleR-left [of 1/m ¢ — p p —
have ... =

23

(norm-dist r p)® + (norm-dist p s)®> + 2/m * ((¢g — p) - (p — s))
by simp
also from (m # 0> and cosine-rule [of q s p)
have ... = (norm-dist v p)?> + (norm-dist p s)* +
1/m % ((norm-dist q s)?> — (norm-dist q p)* —
by simp
finally have (norm-dist r s)?> = (norm-dist r p)> + (norm-dist p s)* +
1/m * ((norm-dist q s)?> — (norm-dist q p)> — (norm-dist p s)?) .
moreover
{ from norm-dist-dot [of r p] and <r — p = (1/m) xg (¢ — p)»
have (norm-dist v p)? = ((1/m) *r (¢ — p)) - ((1/m) *r (¢ — p))
by simp
also from inner-scaleR-left [of 1/m ¢ — p] and
inner-scaleR-right [of - 1/m q — p)

(norm-dist p s)?)

have ... = 1/m® x ((¢ — p) - (¢ — p))
by (simp add: power2-eq-square)
also from norm-dist-dot [of ¢ p] have ... = 1/m? x (norm-dist q p)*
by simp

finally have (norm-dist r p)?> = 1/m? % (norm-dist q p)® . }
ultimately have
(norm-dist r 8)? = 1/m? x (norm-dist q p)®> + (norm-dist p s)®> +
1/m * ((norm-dist q s)? — (norm-dist q p)?> — (norm-dist p s)?)
by simp
with norm-metric.symm [of q p]
have (norm-dist v s)> = 1/m? % (norm-dist p q)* + (norm-dist p s)* +
1/m * ((norm-dist q s)?> — (norm-dist p q)®> — (norm-dist p s)?)
by simp }
note fiveseglemma = this
from fiveseglemma [of b a ¢ d] and <] # 0> and <b — a = [*p (¢ — a)
have (norm-dist ¢ d)? = 1/1?> x (norm-dist a b)®> + (norm-dist a d)? +
1/l % ((norm-dist b d)*> — (norm-dist a b)?> — (norm-dist a d)?)
by simp
also from <« = [’y and
<a b =g a’b» and
<a d =g a’ d» and

b d=g b d>

have ... = 1/1” x (norm-dist a’ b")?> + (norm-dist a’ d')? +

1/1" ((norm-dist b’ d')? — (norm-dist a’ b")? — (norm-dist a’ d’)?)
by simp
also from fiveseglemma [of I’ b’ o’ ¢’ d'] and

I’ # 0» and
' —a'=1"xg (¢ — a')p

have ... = (norm-dist ¢’ d’)? by simp

finally have (norm-dist ¢ d)? = (norm-dist ¢’ d’)? .
hence sqrt ((norm-dist ¢ d)?) = sqrt ((norm-dist ¢’ d")?) by simp
with real-sqrt-abs show ¢ d =g ¢’ d’ by simp
qed }
thusVabecda' b ¢’ d
aZbANBrabcABra b A

24

ab=Ra' bVANbc=pRb c’'Nad=gRa d Nbd=gb d —
cd=gcd
by blast
qed

4.2 Real Euclidean space also satisfies axioms 6, 7, and 11

lemma rearrange-real-euclid-B:
fixes w y z :: real ('n) and h
shows y —w=hxg (z —w)+— y=hxg 2+ (I —h) *xg w
proof
assume y — w = h xg (z — w)
hence y — w + w = h *g (z — w) + w by simp
hence y = h *g (z — w) + w by simp
with scaleR-right-diff-distrib [of h z w)]
have y = h *xgp 2 + w — h xg w by simp
with scaleR-left-diff-distrib [of 1 h w)
show y = h xg z + (I — h) xg w by simp
next
assume y = h xg 2 + (I — h) xg w
with scaleR-left-diff-distrib [of 1 h w)]
have y = h *xgp 2z + w — h xg w by simp
with scaleR-right-diff-distrib [of h z w]
have y = h xg (z — w) + w by simp
hence y — w4+ w = h xg (2 — w) + w by simp
thus y — w = h g (2 — w) by simp
qed

interpretation real-euclid: tarski-absolute-space real-euclid-C real-euclid-B
proof
{fixabd
assume Br a b a
with real-euclid-B-def [of a b a)
obtain [where b — a = [g (a — a) by auto
hence a = b by simp }
thus Va b. BR a b a — a = b by auto
{fixabcpgq
assume Br apcand Br b qc
from real-euclid-B-def [of a p ¢] and «Br a p ¢
obtain ¢ where ¢ > 0 and { < 1 and p — a = i *xg (¢ — a) by auto
have dz. Bk px b AN Br gz a
proof cases
assume ¢ = (
with <p — a = i *xg (¢ — a)» have p = a by simp
hence p — a = 0 *g (b — p) by simp
moreover have (0::real) > 0 and (0::real) < 1 by auto
moreover note real-euclid-B-def [of p a b
ultimately have Br p a b by auto
moreover

25

{ have ¢ — ¢ =1 g (a — q) by simp
moreover have (1::real) > 0 and (1::real) < 1 by auto
moreover note real-euclid-B-def [of q a a]
ultimately have Br ¢ a a by blast }
ultimately have Br p a b A Br q a a by simp
thus dz. Br p x b A Br q = a by auto
next
assume ¢ # 0
from real-euclid-B-def [of b q ¢] and <Bg b q ¢
obtain j where j > 0 and j < 7 and ¢ — b = j *xg (¢ — b) by auto
from «; > 0» and i < 1)
have 1 — i > 0 and 1 — i < 1 by auto
from <j > 0> and <1 — i > 0
have j « (1 — i) > 0 by auto
with i > 0» and i # 0> have i + j * (I — i) > 0 by simp
hence i + j x (1 — i) # 0 by simp
let 2l=jx (1 —14)/ (i+7*(1—1))
from diff-divide-distrib [of i + j % (1 — i) j* (I — i) i+ j* (I — i) and
G+ G (1 —1)# O
have I — 2l =1/ (i + j * (1 — i)) by simp
let 2k=ix (1 —5)/(G+ix(1—7)
from right-diff-distrib [of i 1 j] and
right-diff-distrib [of j 1 7] and
mult.commute [of i j] and
add.commute [of i j]
have j+ i % (I —j) =i+ j* (I — i) by simp
with <i + j* (1 — i) # 0> have j + ¢ = (I — j) # 0 by simp
with diff-divide-distrib [of j + i % (1 —j) i+ (I —j)j+ 1% (I — j)]
have 1 — %k =35/ (j+ix* (I —j)) by simp
with «1 — 2l=4¢/ (i+j* (1 — 1)) and
GHix(l —j)=i+7* (1 — i) and
times-divide-eq-left [of - i + j x (I — i)] and
mult.commute [of © j]
have (1 — 2) xj = (1 — ?k) % i by simp
moreover
{from«l —?%=j/(G+i*x(1—j) and
GHix (I —j=i+7*x(1—1ip
have 2l = (1 — %) = (1 — i) by simp }
moreover
{from <1 —2l=4¢/(i+j=* (1 — 1)) and
GHix(1 —j)=i+7*(—ip
have (1 — ?2l) x (1 — j) = %k by simp }
ultimately
have 7l xg a + (1 — ?l) xj) xr ¢ + ((Z — 20
%k xr b+ (1 — 2k) i) *xg c+ (I — %) x
by simp
with scaleR-scaleR
have ?l xga+ (I — ?) *xgjxrc+ (I — 2) xg (1 —j) *xg b =
?k’*Rb—l-(] - ?k’)*RZ’*RC—I—(I - ?k)*R(I —z')*Ra

* (1 =J)*r b=
(I—Z'))*RCL

26

by simp
with scaleR-right-distrib [of (1 — ?1) j xg ¢ (I — j) *g b] and
scaleR-right-distrib [of (1 — ?k) i g ¢ (I — ©) *r a] and
add.assoc [of 2l xg a (I — 21) g j *g ¢ (1 — ?1) *gr (1 — j) *g b] and
add.assoc [of 2k xg b (1 — %k) xg i xg ¢ (I — %k) xg (I — i) %R d]
have ?l xg a + (1 — ?l) *g (j*r c + (I — j) *r b) =
?]{I*Rb+(1 — ?]{I)*R(Z*RC+(1 7’5)*3@)
by arith
from <?lxp a+ (1 — 2) g (Jrrc+ (I —j) g b) =
% xr b+ (1 — 2k) *g (i *g ¢ + (I — %) *r a)> and
<(p —a=1%g (c — a) and
g — b=7jx*g (c — b) and
rearrange-real-euclid-B [of p a i ¢] and
rearrange-real-euclid-B [of ¢ b j (]
have ?l xg a + (I — %) g ¢ = %k xg b+ (I — %k) *xp p by simp
let 92 = ?lxg a + (1 — ?1) *p ¢
from rearrange-real-euclid-B [of %z q ¢l a]
have %z — ¢ = 2l g (a — q) by simp
from <%z = %k xg b+ (I — %k) g p» and
rearrange-real-euclid-B [of ?x p 2k b
have %z — p = %k xg (b — p) by simp
from < + j x (I — i) > 0> and
j*x (1 —14)> 0> and
zero-le-divide-iff [of j x (1 — i) i 4+ j x (1 —)]
have ¢l > 0 by simp
from i + j x (1 — i) > 0» and
<i > 0> and
zero-le-divide-iff [of i i + j x (1 —)] and
1 —=10/(@+jFx(-0
have 1 — %l > 0 by simp
hence 7] < 1 by simp
with <2l > 0y and
< — q = ?l xg (a — q)» and
real-euclid-B-def [of q %z d]
have Br ¢ 7z a by auto
from <j < 1> have 1 — j > 0 by simp
with <1 — 2] > 0» and
«(1 =2« (1 —j) = %> and
zero-le-mult-iff [of 1 — 211 — j]
have %k > 0 by simp
from <j > 0> have 1 — j < 1 by simp
from <?] > 0> have 1 — ?] < 1 by simp
with <7 — j < 1) and
<1 —j >0 and
mult-mono [of 1 — 2011 — j 1] and
(1 =20 % (1 —j) = %
have 7k < I by simp
with «?k > 0y and
< — p= %k xg (b — p)» and

27

real-euclid-B-def [of p %z b]
have Br p %z b by auto
with <Br ¢q ?z a> show ?thesis by auto
qed }
thusVabcecpgq. BRapcABrbqgec— (3z. BR px b A Br qza) by auto
{fix XY
assume Ja. Vzy.z€ X ANye Y — Brazy
then obtain a where Vz y. 2 € X A y € Y — Br a z y by auto
have 3b.Vzy. 2 €¢ X AyeY — Brzby
proof cases
assume X C {a} V Y = {}
let 26 = a
{fixzy
assume z € X and y € Y
with <X C {a} V Y = {}» have 2 = a by auto
from Vzy. 2 €e XANyeY — Brazy and <z € X» and <y € Y
have Br a z y by simp
with <z = a)> have Br z ?b y by simp }
henceVzy. 2 € X ANye Y — Br z ?b y by simp
thus ?thesis by auto
next
assume (X C {a} V Y = {})
hence X — {a} # {} and Y # {} by auto
from <X — {a} # {}> obtain ¢ where ¢ € X and ¢ # a by auto
from <c # a» have ¢ — a # 0 by simp
{fixy
assume y € Y
with Vzy. 2 € X Aye Y — Brazxzy and <c € X»
have Bgr a ¢ y by simp
with real-euclid-B-def [of a ¢ y]
obtain [where [> 0 and [< I and ¢ — a = | xg (y — a) by auto
from ¢ — a =1l xr (y — a)» and <¢ — a # 0> have | # 0 by simp
with <[> 0» have | > 0 by simp
with <¢c — a =l *g (y — a)» have y — a = (1 /1) *g (¢ — a) by simp
from « > 0> and « < 1) have 1/l > 1 by simp
with <y — a = (1/1) *xg (¢ — a)
have 3j>1.y — a = j g (¢ — a) by auto }
note ylemma = this
from <Y # {}» obtain d where d € Y by auto
with ylemma [of d]
obtain jd where jd > 1 and d — a = jd *g (¢ — a) by auto
{ fixz
assume r € X
with Vzy 2 € XAye Y — Brazxzy and <d € V>
have Br a x d by simp
with real-euclid-B-def [of a z d]
obtain [where | > 0 and z — a = [g (d — a) by auto
from <z — a = | *xg (d — a)) and
«d — a = jd xg (c — a)) and

28

scaleR-scaleR
have z — a = (I * jd) *g (¢ — a) by simp
hence 3i. x — a = i *g (¢ — a) by auto }
note zlemma = this
let 2S={j.j> 1A 3yeY. y—a=jx*g (c— a)}
from «d € Y» and jd > 1> and «d — a = jd *xg (¢ — a)
have 25 # {} by auto
let 2k = Inf 95
let 26 = %k xg ¢+ (1 — %) *r a
from rearrange-real-euclid-B [of ?b a %k]
have %0 — a = %k xr (¢ — a) by simp
{fixzy
assume z € X and y € Y
from zlemma [of z] and <z € X)
obtain ¢ where z — a = i *g (¢ — a) by auto
from ylemma [of y] and <y € Y
obtain j where j > 1 and y — a = j *g (¢ — a) by auto
with <y € Y» have j € 25 by auto
then have 2k < j by (auto intro: cInf-lower)
{ fix h
assume h € 25
hence h > 1 by simp
from <h € 75
obtain z where z € Y and z — a = h *xg (¢ — a) by auto
from Vzy. 2 € XANyeY — Brazy and <z € X» and <z € V)
have Br a = z by simp
with real-euclid-B-def [of a x 2]
obtain [where [< I and z — a = [*p (z — a) by auto
with <z — a = h xg (¢ — a)» and scaleR-scaleR
have z — a = (I x h) *g (¢ — a) by simp
with «<x — a = { %g (¢ — a)
have i xg (¢ — a) = (I * h) xg (¢ — a) by auto
with scaleR-cancel-right and <¢ — a # 0» have ¢ = | * h by blast
with <[< 1) and <h > 1> have i < h by simp }
with «2S # {}» and cInf-greatest [of 7S] have i < %k by simp
have y — 2 = (y — a) — (x — a) by simp
with <y —a=jxg (c — a)» and <z — a = i *g (¢ — a)
have y — 2z = j *xg (¢ — a) — i xg (¢ — a) by simp
with scaleR-left-diff-distrib [of j i ¢ — a]
have y — z = (j —) *g (¢ — a) by simp
have ?b — z = (?b — a) — (z — a) by simp
with «?b — a = %k xg (¢ — a)» and <z — a = i *g (¢ — a)
have %0 — x = %k xg (¢ — a) — i xg (¢ — a) by simp
with scaleR-left-diff-distrib [of %k i ¢ — a]
have %0 — z = (%k — @) *g (¢ — a) by simp
have Br z ?b y
proof cases
assume { = j
with < < 2k and <%k < j» have %k = { by simp

29

with <%0 — x = (?k — @) *xgr (¢ — a)» have %0 — z = 0 by simp

hence %0 — z = 0 xr (y — x) by simp

with real-euclid-B-def [of x ?b y] show Br z ?b y by auto

next

assume i # j

with < < %k and <2k < j» have j — i > 0 by simp

with <y — 2 = (j — 7) *g (¢ — a)) and scaleR-scaleR
have c —a=(1/ (j — 7)) *r (y — z) by simp

with <%0 — © = (% — i) *gr (¢ — a)» and scaleR-scaleR
have ?b — x = ((?k —) / (j — ©)) *xr (y — z) by simp

let 20 = (%k — 1)/ (j — 1)

from <%k < j» have 2k — ¢ < j — i by simp

with <j — i > 0> have ¢l < 1 by simp

from « < %k and <j — i > 0> and pos-le-divide-eq [of j — i 0 7k — 1]
have %l > 0 by simp

with real-euclid-B-def [of z ?b y] and

<2l < 1y and
?b —xz = 2 *xg (y — z)»
show Br z ?b y by auto
qed }
thus 3b6. Vzy. 2 € X ANy € Y — Bgr z b y by auto
qed }
thus VX Y. (3a.Vzy2€e€ XAyeY — Brazxzy) —
(F3b.Vzy.z € XANyeY — Brzby)
by auto
qed

4.3 Real Euclidean space satisfies the Euclidean axiom

lemma rearrange-real-euclid-B-2:
fixes a b ¢ :: real ('n::finite)
assumes [# 0
shows b —a=1l*g (c—a)+— c=(1/l)*gr b+ (I — 1/]) xg a
proof
from scaleR-right-diff-distrib [of 1/1 b a]
have (1/1) xg (b—a) =c—a<+— (1/l) xg b — (1/]) *xgr a + a = ¢ by auto
also with scaleR-left-diff-distrib [of 1 1/ a]
have ... «— ¢ = (1/]) *g b+ (1 — 1/1) *r a by auto
finally have eq:
(1/)xg (b—a)=c—a+—c={1/l)xg b+ (1 — 1/]) *g a .
{ assume b — a =1 % (¢ — a)
with «I # 0> have (1/]) *g (b — a) = ¢ — a by simp
with eq show ¢ = (1/l) xg b+ (1 — 1/]) *r a .. }
{ assume ¢ = (1/) *g b+ (I — 1/]) g a
with eq have (1/1) xg (b —a) =c — a ..
hence | xp (1/1) xg (b — a) =1 xg (¢ — a) by simp
with <[# 0) show b — a =1 xg (¢ — a) by simp }
qed

30

interpretation real-euclid: tarski-space real-euclid-C' real-euclid-B
proof
{fixabcdt
assume Br a dtand Br b d c and a # d
from real-euclid-B-def [of a d t] and <Bgr a d t
obtain j where j > 0 and j < 1 and d — a = j *g (t — a) by auto
from <d — a = j *g (t — a)» and <a # d> have j # 0 by auto
with <d — a = j *g (t — a)» and rearrange-real-euclid-B-2
have t = (1/j) xg d + (I — 1/j) *r a by auto
let 22 = (1/j) *r b+ (1 — 1/7) *r a
let 2y = (1/j) *r ¢+ (1 — 1/7) *r a
from «j # 0> and rearrange-real-euclid-B-2 have
b—a=j*p (%2 —a)and ¢ — a = j *xg (y — a) by auto
with real-euclid-B-def and <j > 0> and ¢j < 1) have
Br a b ?z and Br a ¢ ?y by auto
from real-euclid-B-def and <Br b d ¢ obtain k£ where
k>0and k<1 and d — b=k xg (¢c — b) by blast
from <t = (1/§) *r d + (1 — 1/j) *g @ have
t— %2 =(1/§) xr d — (1/j) *g b by simp
also from scaleR-right-diff-distrib [of 1/j d b] have
...=(1/9) *g (d — b) by simp
also from «d — b = k g (¢ — b)> have
...=kxg (1/4) *r (¢ — b) by simp
also from scaleR-right-diff-distrib [of 1/j ¢ b] have
...=kxg (?y — ?z) by simp
finally have t — %z = k xp (%y — %x) .
with real-euclid-B-def and <k > 0> and <k < 1) have Br 2z t ?y by blast
with <Br a b %2> and (Bgr a ¢ %4> have
Jzy. BRabxz ABracyA Br zty by auto }
thusVabcdt. BRadt ANBrbdcANa#d—
(3zy. BRabxz ABracy AN Brzty)
by auto
qed

4.4 The real Euclidean plane

lemma Col-dep2:
real-euclid.Col a b ¢ <— dep2 (b — a) (¢ — a)
proof —
from real-euclid. Col-def have
real-euclid.Col a b ¢ «— Br abcV Br bcaV Br cabby auto
moreover from dep2-def have
dep2 (b—a) (¢c —a)«— Bwrs.b—a=r*gwAc—a=s*p W)
by auto
moreover
{assume Br abcV BRbcaV Brcabd
moreover
{ assume Bgr a b ¢
with real-euclid-B-def obtain [where b — a = [xg (¢ — a) by blast

31

moreover have ¢ — a = 1 xg (¢ — a) by simp
ultimately have 3w rs. b —a=1r*p wA ¢ — a = s xg w by blast }
moreover
{ assume Br b c a
with real-euclid-B-def obtain [where ¢ — b = [xg (a — b) by blast
moreover have ¢ — a = (¢ — b) — (a — b) by simp
ultimately have ¢ — a = [*xg (a — b) — (a — b) by simp
with scaleR-left-diff-distrib [of | 1 a — b] have
c—a=(—1)xg (a —b) by simp
moreover from scaleR-minus-left [of 1 a — b] have
b—a=(—1)+*g (a — b) by simp
ultimately have 3w rs. b — a =1 g wA ¢ — a = s xg w by blast }
moreover
{ assume Bgr ca b
with real-euclid-B-def obtain [where a — ¢ = [xg (b — ¢) by blast
moreover have ¢ — a = —(a — ¢) by simp
ultimately have ¢ — a = —(l g (b — ¢)) by simp
with scaleR-minus-left have ¢ — a = (—1) *xg (b — ¢) by simp
moreover have b — a = (b — ¢) + (¢ — a) by simp
ultimately have b — a = 1 xg (b — ¢) + (=) *g (b — ¢) by simp
with scaleR-left-distrib [of 1 —1 b — ¢] have
b—a=(1+ (=1) *r (b — ¢) by simp
with <¢ — a = (=) *g (b — ¢)» have
Jwrs. b—a=rx*gwAc— a=sx*gr w by blast }
ultimately have 3w rs. b — a=7r*gr w A ¢ — a = s xg w by auto }
moreover
{assume Jwrs. b—a=rxgwAc—a=S%*gpw
then obtain w r s where b — a = r xg w and ¢ — a = s xg w by auto
have B abcV BR bcaV Brcabd
proof cases
assume s = (
with <¢ — a = s xg w» have a = ¢ by simp
with real-euclid.th3-1 have Br b ¢ a by simp
thus ?thesis by simp
next
assume s # ()
with (¢ — a = s *g w» have w = (1/s)
with <b — a = r xg w» have b — a = (
have r/s < 0V (r/s >0 AT/s < 1)V
moreover
{ assume /s > 0 A r/s < 1
with real-euclid-B-def and <b — a = (r/s) *gr (¢ — a)» have Br a b ¢
by auto
hence ?thesis by simp }
moreover
{ assume /s > 1
with <b — a = (r/s) xg (¢ — a)» have ¢ — a = (s/r) *g (b — a) by auto
from «r/s > 1> and le-imp-inverse-le [of 1 r/s] have
s/r < 1 by simp

r (¢ — a) by simp
) *r (¢ — a) by simp

*
r/s
r/s > 1 by arith

32

from «r/s > 1> and inverse-positive-iff-positive [of r/s] have
s/r > 0 by simp
with real-euclid-B-def
and ¢ — a = (s/r) xg (b — a)
and <s/r < 1»
have Br a ¢ b by auto
with real-euclid.th3-2 have Br b ¢ a by auto
hence ?thesis by simp }
moreover
{ assume /s < 0
have b — ¢ = (b — a) + (a — ¢) by simp
with <b — a = (r/s) xg (¢ — a)) have
b—c=(r/s) *r (¢ — a) + (a — ¢) by simp
have ¢ — a = —(a — ¢) by simp
with scaleR-minus-right [of r/s a — c| have
(r/s) *xgr (¢ — a) = —((r/s) *r (a — ¢)) by arith
with <b — ¢ = (r/s) *r (¢ — a) + (a — ¢)» have
b—c=—(r/s) *r (a — ¢) + (a — ¢) by simp
with scaleR-left-distrib [of —(r/s) 1 a — c] have
b—c=(—(r/s) + 1) *g (a — ¢) by simp
moreover from «r/s < 0> have —(r/s) + 1 > 1 by simp
ultimately have a — ¢ = (1 / (—=(r/s) + 1)) *gr (b — ¢) by auto
let 2l=1/(—(r/s) + 1)
from <—(r/s) + 1 > 1> and le-imp-inverse-le [of 1 —(r/s) + 1] have
?l < 1 by simp
from <—(r/s) + 1 > 1>
and inverse-positive-iff-positive [of —(r/s) + 1]
have
2l > 0 by simp
with real-euclid-B-def and <%l < 1> and <a — ¢ = ?l g (b — ¢)» have
Br c a b by blast
hence ?thesis by simp }
ultimately show ?thesis by auto
qed }
ultimately show #¢thesis by blast
qed

lemma non-Col-ezample:
—(real-euclid.Col 0 (vector [1/2,0] :: real”2) (vector [0,1/2]))
(is = (real-euclid.Col ?a ?b %c))
proof —
{ assume dep2 (?b — %a) (?c — %a)
with dep2-def [of ?b — %a ?c — ?a] obtain w r s where
?b — %a =r xg wand ?c — %a = s xg w by auto
have 7681 = 1/2 by simp
with «?b — %a = r xg w» have r x (w$1) = 1/2 by simp
hence w$1 # 0 by auto
have ?c$1 = 0 by simp
with «?c — %a = s xp w> have s * (w$1) = 0 by simp

33

with «<w$1 # 0> have s = 0 by simp
have %¢$2 = 1/2 by simp
with (?c — %a = s *g w> have s * (w$2) = 1/2 by simp
with «s = 0) have False by simp }
hence —(dep2 (?b — %a) (?c — %a)) by auto
with Col-dep2 show —(real-euclid.Col ?a ?b ?c) by blast
qed

interpretation real-euclid:
tarski real-euclid-C'::([real ™2, real™2, real”2, real”2] = bool) real-euclid-B
proof
{let %a = 0 :: real™2
let ?b = vector [1/2, 0] :: real 2
let ?c = wvector [0, 1/2] :: real™2
from non-Col-example and real-euclid. Col-def have
- Br ?a ?b ?2c A= Br ?b %c Ya A = Br ?c %a ?b by auto }
thus 3abc:real™ 2. - BrRabcAN—-BrbcaAN—-Brcabd
by auto
{fixpgabc:real2
assume p # gand a p=r agqand bp=g bqgand cp =g cq
let ?m = (1/2) *r (p + q)
from scaleR-right-distrib [of 1/2 p ¢] and
scale R-right-diff-distrib [of 1/2 q p] and
scaleR-left-diff-distrib [of 1/2 1 p]
have ?m — p = (1/2) *r (¢ — p) by simp
with <p # ¢ have ?m — p # 0 by simp
from scaleR-right-distrib [of 1/2 p q] and
scale R-right-diff-distrib [of 1/2 p ¢] and
scaleR-left-diff-distrib [of 1/2 1 ¢]
have m — ¢ = (1/2) *r (p — ¢) by simp
with <m — p = (1/2) *g (¢ — p)»
and scaleR-minus-right [of 1/2 q — p]
have ?m — ¢ = —(%m — p) by simp
with norm-minus-cancel [of ?m — p] have
(norm (?m — q))? = (norm (?m — p))? by (simp only: norm-minus-cancel)
{ fix d
assume d p =g d ¢
hence (norm (d — p))* = (norm (d — q))* by simp
have (d — ?m) - (Ym — p) =0
proof —
have d + (—q) = d — q by simp
have d + (—p) = d — p by simp
with dot-norm [of d — ?m ?m — p|] have
(d — #m) - (?m — p) =
((norm (d — p))? — (norm (d — ?m))? — (norm(?m — p))?) / 2
by simp
also from ((norm (d — p))? = (norm (d — q))*
and «(norm (#m — q))> = (norm (?m — p))*
have

34

.= ((norm (d — q))* — (norm (d — ?m))? — (norm(?m — q))?) / 2
by simp
also from dot-norm [of d — ?m ?m — (]
and «d + (—¢)=d — ¢
have
.=(d—=%m) - (m — ¢) by simp
also from inner-minus-right [of d — ?m ?m — p|
and <m — g = —(?m — p)
have
.= —((d = ?m) - (?m — p)) by (simp only: inner-minus-left)
finally have (d — ?m) - (?m — p) = —((d — ?m) - (?m — p)) .
thus (d — %m) - (m — p) = 0 by arith
qed }
note m-lemma = this
with <a p =g a ¢ have (a — ?m) - (m — p) = 0 by simp
{ fix d
assume d p =g d ¢
with m-lemma have (d — ?m) - (?m — p) = 0 by simp
with dot-left-diff-distrib [of d — ?m a — ?m ?m — p)
and «(a — ?m) - (m — p) = O»
have (d — a) - (?m — p) = 0 by (simp add: inner-diff-left inner-diff-right) }
with <b p =g b ¢ and «c p =r ¢ ¢» have
(b—a):(m —p)=0and (c —a):- (m — p) = 0 by simp+
with real2-orthogonal-dep2 and <%m — p # 0 have dep2 (b — a) (¢ — a)
by blast
with Col-dep2 have real-euclid.Col a b ¢ by auto
with real-euclid. Col-def have Br a b ¢V Br b caV Bgr ¢ a b by auto }
thus Vp qa b c:: real™2.
pEFeANap=RaqANbDp=RbgANcp=Rcq—
BrRabcecV BrRbcaVv Brcab
by blast
qed

4.5 Special cases of theorems of Tarski’s geometry

lemma real-euclid-B-disjunction:
assumes | > 0 and b — a = [g (c — a)
shows BR abcV Bracb

proof cases
assume [< I
with </ > 0> and <b — a = [xg (¢ — a)»
have Br a b ¢ by (unfold real-euclid-B-def) (simp add: exI [of - I])
thus B abcV Brach..

next
assume — (I < 1)
hence 1/1 < 1 by simp

from <« > 0> have 1/l > 0 by simp

35

from b — a =l xg (¢ — a)
have (1/1]) xg (b — a) = (1/1) *r (I *xg (¢ — a)) by simp
with <= (I < 1)» have ¢ — a = (1/]) *r (b — a) by simp
with <1/l > 0» and <1/1 < 1)
have Bg a ¢ b by (unfold real-euclid-B-def) (simp add: exI [of - 1/1])
thus BR abcV Brach ..
qed

The following are true in Tarski’s geometry, but to prove this would
require much more development of it, so only the Euclidean case is proven
here.

theorem real-euclid-th5-1:
assumes a # band Br a bcand Br a b d
shows BR acdV Br adc
proof —
from (Br a b ¢» and <Br a b d»
obtain [/ and m where | > 0 and b — a = [g (¢ — a)
and m > 0 and b — a = m xp (d — a)
by (unfold real-euclid-B-def) auto
from <b — a = m *i (d — a)» and <a # b> have m # 0 by auto

from < > 0> and «m > 0> have [/m > 0 by (simp add: zero-le-divide-iff)

from <b — a =l *g (c — a)) and <b — a = m x5 (d — a)»
have m g (d — a) = [*g (¢ — a) by simp
hence (1/m) *g (m xg (d — a)) = (1/m) *xg (I xg (¢ — a)) by simp
with <m # 0> have d — a = (I/m) xr (¢ — a) by simp
with «//m > 0> and real-euclid-B-disjunction
show Br a ¢ d V Br a d c by auto
qed

theorem real-euclid-th5-3:
assumes Br a bdand Br a c d
shows BR abcV Bracb
proof —
from <Br a b d> and <Bgr a ¢ d>
obtain | and m where | > 0 and b — a = | xg (d — a)
and m > 0 and ¢ — a = m *g (d — a)
by (unfold real-euclid-B-def) auto

show BR abcV Bracb

proof cases
assume [= (
with <b — a =l %z (d — a)) have b — a = [xg (¢ — a) by simp
with « = O»
have Br a b ¢ by (unfold real-euclid-B-def) (simp add: exI [of - 1])
thus B abcV BRach..

next
assume [# 0

36

from « > 0> and <m > 0> have m/l > 0 by (simp add: zero-le-divide-iff)

from <b — a =1 *g (d — a)
have (1/1) g (b — a) = (1/1) *g (I xg (d — a)) by simp
with <[# 0> have d — a = (1/]) xg (b — a) by simp
with <¢ — a = m xp (d — a)» have ¢ — a = (m/]) *xg (b — a) by simp
with «¢m/l > 0> and real-euclid-B-disjunction
show Br a b ¢V Br a ¢ b by auto
qged
qed

end

5 Linear algebra

theory Linear-Algebra2
imports Miscellany
begin

lemma exhaust-4:
fixes x :: 4
showsz=1Vzez=2Ve=38Vaze=/

proof (induct x)
case (of-int z)
hence 0 < z and z < 4 by simp-all
hence z =0V z2=1V 2= 2V z= 3 by arith
thus ?case by auto

qed

lemma forall-4: (V i:4. Pi)+— P1ANP2AP3ANP/
by (metis exhaust-4)

lemma UNIV-4: (UNIV::(4 set)) = {1, 2, 3, 4}
using erhaust-4
by auto

lemma vector-4:
fixes w :: ‘a::zero
shows (vector [w, =, y, 2] = 'a™4)$

~
I
g

and (vector [w, z, y, 2] = 'a™4)$2 =z
and (vector [w, x, y, 2] = 'a™4)$3 =y
and (vector [w, x, y, 2] = 'a™4)$4 = z

unfolding vector-def
by simp-all

definition

is-basis :: (real”'n) set = bool where
is-basis S =& independent S A span S = UNIV

37

lemma card-finite:
assumes card S = CARD('n::finite)
shows finite S
proof —
from <card S = CARD('n)» have card S # 0 by simp
with card-eq-0-iff [of S] show finite S by simp
qed

lemma independent-is-basis:
fixes B :: (real™'n) set
shows independent B A card B = CARD('n) <— is-basis B
proof
assume L: independent B A card B = CARD('n)
then have card (Basis::(real™'n) set) = card B
by simp
with L show is-basis B
by (metis (no-types) card-eg-dim dim-UNIV independent-bound is-basis-def sub-
set-antisym top-greatest)
next
assume is-basis B
then show independent B A card B = CARD('n)
by (metis DIM-cart DIM-real basis-card-eq-dim dim-UNIV is-basis-def mult.right-neutral
top.extremum)
qed

lemma basis-finite:
fixes B :: (real”'n) set
assumes is-basis B
shows finite B

proof —
from independent-is-basis [of B] and <is-basis B> have card B = CARD('n)
by simp
with card-finite [of B, where 'n = 'n] show finite B by simp
qed

lemma basis-expand:
assumes is-basis B
shows Jc¢. v = (D] weB. (¢ w) *g w)
proof —
from «(is-basis B> have v € span B unfolding is-basis-def by simp
from basis-finite [of B] and «<is-basis B> have finite B by simp
with span-finite [of B] and v € span B>
show J¢. v = (D weB. (¢ w) *xgr w) by (simp add: scalar-equiv) auto
qed

lemma not-span-independent-insert:

fixes v :: (‘a::real-vector) 'n
assumes independent S and v ¢ span S

38

shows independent (insert v S)
by (simp add: assms independent-insert)

lemma orthogonal-sum:

fixes v :: real™n

assumes Aw. weS = orthogonal v w

shows orthogonal v (>, weS. ¢ w *s w)

by (metis (no-types, lifting) assms orthogonal-clauses(1,2) orthogonal-rvsum
scalar-equiv sum.infinite)

lemma orthogonal-self-eq-0:
fixes v :: (‘as:real-inner) 'n
assumes orthogonal v v
shows v = 0
using inner-eq-zero-iff [of v] and assms
unfolding orthogonal-def
by simp

lemma orthogonal-in-span-eq-0:
fixes v :: real™n
assumes v € span S and Aw. weS = orthogonal v w
shows v = 0
using assms orthogonal-self orthogonal-to-span by blast

lemma orthogonal-independent:
fixes v :: real™n
assumes independent S and v # 0 and Aw. weS = orthogonal v w
shows independent (insert v S)
using assms not-span-independent-insert orthogonal-in-span-eq-0 by blast

lemma dot-scaleR-mult:
shows (kxg a) - b=k=x(a-b)and a- (k*xg b)) =k=x(a-D)
by auto

lemma dependent-explicit-finite:
fixes S :: ((Ya::{real-vector,field}) 'n) set
assumes finite S
shows dependent S <— (3 u. (3 v€S. wv # 0) A (D vES. uv *g v) = 0)
by (simp add: assms dependent-finite)

lemma dependent-explicit-2:

fixes v w :: (a::{field,real-vector}) 'n

assumes v # w

shows dependent {v, w} «— (3 ij. ({1 #0Vji#0)Nixgv+j*pw=0)
proof

let 25 = {v, w}

have finite 25 by simp

{ assume dependent 25

39

with dependent-explicit-finite [of 2S] and «finite 25> and v # w»
show 3 (j. ({1 A0V j#0)Nixgv+j*gp w= 0 by auto }

{assume 3 ij. (i 0V j#0)Ni*xgv+j*gw=70
then obtain 7 and j where i # 0 V j # 0 and i xg v + j *xg w = 0 by auto
let 2u = X\ z. if x = v then i else j
from i # 0V j # 0» and <v # w» have 3 z€%S5. 2u x # 0 by simp
from i g v + j *xg w = 0> and v # w»
have (> z€?S. u z xg) = 0 by simp
with dependent-explicit-finite [of ?S)
and <finite 25> and <3 z€?S. 2ux # 0>
show dependent ¢S by best }
qed

5.1 Matrices

lemma zero-not-invertible:
= (invertible (0::real™'n"'n))
using invertible-times-eq-zero matriz-vector-mult-0 by blast

Based on matrix-vector-column in HOL/Multivariate Analysis/Euclidean_Space.thy
in Isabelle 2009-1:

lemma vector-matriz-row:
fixes z :: (‘a::comm-semiring-1)"'m and A :: (‘la”'n"'m)
shows z vx A = (> i€ UNIV. (237) xs (487))
unfolding vector-matriz-mult-def
by (simp add: vec-eq-iff mult.commute)

lemma matriz-inv:

assumes invertible M

shows matriz-inv M *xx M = mat 1

and M xx matriz-inv M = mat 1

using «invertible M and somel-ex [of A N. M #x N = mat 1 A N #x M = mat
1]

unfolding invertible-def and matriz-inv-def

by simp-all

lemma matriz-inv-invertible:
assumes invertible M
shows invertible (matriz-inv M)
using <invertible M> and matriz-inv
unfolding invertible-def [of matriz-inv M]
by auto

lemma invertible-times-non-zero:
fixes M :: real 'n"'n
assumes invertible M and v # 0
shows M xv v # 0
using <invertible M» and <v # 0> and invertible-times-eq-zero [of M v)

40

by auto

lemma matriz-right-invertible-ker:
fixes M :: real ™ ('m::finite) 'n
shows (3 M. M xx M'=mat 1) +— YV z.zvx M =0 — 2= 0)
using left-invertible-transpose matriz-left-invertible-ker by force

lemma left-invertible-iff-invertible:
fixes M :: real™'n"'n
shows (3 N. N xx M = mat 1) <— invertible M
by (simp add: invertible-def matriz-left-right-inverse)

lemma right-invertible-iff-invertible:
fixes M :: real'n"'n
shows (3 N. M x N = mat 1) <— invertible M
by (simp add: invertible-def matriz-left-right-inverse)

definition symmatriz :: ‘a”'n"'n = bool where
symmatrizc M £ transpose M = M

lemma symmatriz-preserve:
fixes M N :: (‘a::comm-semiring-1) "'n"'n
assumes symmatric M
shows symmatriz (N sx M xx transpose N)
proof —
have transpose (N sx M xx transpose N) = N s (M xx transpose N)
by (metis (no-types) transpose-transpose assms matriz-transpose-mul symma-
triz-def)
then show ?thesis
by (simp add: matriz-mul-assoc symmatriz-def)
qed

lemma non-zero-mult-invertible-non-zero:
fixes M :: real 'n"'n
assumes v # 0 and invertible M
shows v vx M # 0
using (v # 0> and <invertible M»> and times-invertible-eq-zero
by auto

end

6 Right group actions
theory Action

imports HOL— Algebra.Group
begin

locale action = group +
fixes act :: 'b = 'a = 'b (infixl <o) 69)

41

assumes id-act [simp]: b <o1=1>

and act-act”:

g € carrier G AN h € carrier G — (b <o g) <oh=1b <0 (¢ ® h)
begin

lemma act-act:
assumes g € carrier G and h € carrier G
shows (b <0 g) <oh=1b <0 (9 ® h)
proof —
from <g € carrier G» and <h € carrier G> and act-act’
show (b <0 g) <o h =b <o (g ® h) by simp
qed

lemma act-act-inv [simp]:
assumes ¢ € carrier G
shows b <0 g <o inv g=>
proof —
from «<g € carrier G» have inv g € carrier G by (rule inv-closed)
with <g € carrier G> have b <o g <o inv g = b <0 g ® inv g by (rule act-act)
with «g € carrier G> show b <o g <o inv g = b by simp
qed

lemma act-inv-act [simp):
assumes g € carrier G
shows b <o invg <og=1»
using «g € carrier G> and act-act-inv [of inv g
by simp

lemma act-inv-iff:

assumes ¢ € carrier G

shows b <oinvg=c+—=b=c<og
proof

assume b <o inv g = ¢

hence b <o inv g <o g = ¢ <o g by simp

with <g € carrier G» show b = ¢ <o g by simp
next

assume b = c <o g

hence b <o inv g = ¢ <o g <o inv g by simp

with «g € carrier G> show b <o inv g = ¢ by simp
qed

end

end

7 Projective geometry

theory Projective
imports Linear-Algebra?2

42

Fuclid-Tarski
Action
begin

7.1 Proportionality on non-zero vectors

context vector-space
begin

definition proportionality :: ('b x 'b) set where
proportionality = {(z, y). 1 # 0 ANy # 0 A (3k. © = scale k y)}

definition non-zero-vectors :: 'b set where
A
non-zero-vectors = {x. © # 0}

lemma proportionality-refl-on: refl-on local.non-zero-vectors local.proportionality
proof —
have local.proportionality C local.non-zero-vectors x local.non-zero-vectors
unfolding proportionality-def non-zero-vectors-def
by auto
moreover have V x€local.non-zero-vectors. (z, z) € local.proportionality
proof
fix z
assume z € local.non-zero-vectors
hence z # 0 unfolding non-zero-vectors-def ..
moreover have z = scale 1 x by simp
ultimately show (z, z) € local.proportionality
unfolding proportionality-def
by blast
qed
ultimately show refi-on local.non-zero-vectors local.proportionality
unfolding refl-on-def ..
qed

lemma proportionality-sym: sym local.proportionality
proof —
{fixzy
assume (z, y) € local.proportionality
hence z # 0 and y # 0 and 3k. © = scale k y
unfolding proportionality-def
by simp+
from «3k. z = scale k y> obtain k£ where x = scale k y by auto
with «x # 0> have k # 0 by simp
with «z = scale k y> have y = scale (1/k) z by simp
with «z # 0> and «y # 0» have (y, x) € local.proportionality
unfolding proportionality-def
by auto

}

thus sym local.proportionality

43

unfolding sym-def
by blast
qed

lemma proportionality-trans: trans local.proportionality
proof —
{fixzyz
assume (z, y) € local.proportionality and (y, z) € local.proportionality
hence z # 0 and z # 0 and 3j. z = scale j y and k. y = scale k z
unfolding proportionality-def
by simp+
from «3dj. x = scale j y» and Ak. y = scale k 2>
obtain j and k¥ where z = scale j y and y = scale k z by auto+
hence z = scale (j * k) z by simp
with «z # 0> and «z # 0> have (z, z) € local.proportionality
unfolding proportionality-def
by auto
}
thus trans local.proportionality
unfolding trans-def
by blast
qed

theorem proportionality-equiv: equiv local.non-zero-vectors local.proportionality
unfolding equiv-def
by (simp add:
proportionality-refl-on
proportionality-sym
proportionality-trans)

end

definition invertible-proportionality ::
((real ('n::finite) “'n) x (real™'n"'n)) set where
invertible-proportionality =
real-vector.proportionality N (Collect invertible x Collect invertible)

lemma invertible-proportionality-equiv:
equiv (Collect invertible :: (real ('n::finite) "'n) set)
invertible-proportionality
(is equiv ?invs -)
proof —
from zero-not-invertible
have real-vector.non-zero-vectors N %invs = ?2invs
unfolding real-vector.non-zero-vectors-def
by auto
from equiv-restrict and real-vector.proportionality-equiv
have equiv (real-vector.non-zero-vectors N %invs) invertible-proportionality
unfolding invertible-proportionality-def

44

by auto
with <real-vector.non-zero-vectors N ?invs = ?invs»
show equiv ?invs invertible-proportionality
by simp
qed

7.2 Points of the real projective plane

typedef proj2 = (real-vector.non-zero-vectors :: (real”8) set)//real-vector.proportionality
proof
have (azis 1 1 :: real™3) € real-vector.non-zero-vectors
unfolding real-vector.non-zero-vectors-def
by (simp add: azis-def vec-eq-iff [where ‘a=real])
thus real-vector.proportionality *“ {axis 1 1} € (real-vector.non-zero-vectors ::
(real™3) set)//real-vector.proportionality
unfolding quotient-def
by auto
qed

definition proj2-rep :: proj2 = real”3 where
proj2-rep x £ € v. v € Rep-proj2 x

definition proj2-abs :: real”3 = proj2 where
proj2-abs v = Abs-proj2 (real-vector.proportionality “ {v})

lemma proj2-rep-in: proj2-rep v € Rep-proj2 x
proof —
let ?v = proj2-rep x
from quotient-element-nonempty and
real-vector.proportionality-equiv and
Rep-proj2 [of z
have 3 w. w € Rep-proj2 z
by auto
with somel-ex [of A z. z € Rep-proj2 z
show ?v € Rep-proj2 x
unfolding proj2-rep-def
by simp
qed

lemma proj2-rep-non-zero: proj2-rep x # 0
proof —
from
Union-quotient [of real-vector.non-zero-vectors real-vector.proportionality]
and real-vector.proportionality-equiv
and Rep-proj2 [of z] and proj2-rep-in [of x|
have proj2-rep x € real-vector.non-zero-vectors
unfolding quotient-def
by auto
thus proj2-rep x # 0

45

unfolding real-vector.non-zero-vectors-def
by simp
qed

lemma proj2-rep-abs:
fixes v :: real”3
assumes v € real-vector.non-zero-vectors
shows (v, proj2-rep (proj2-abs v)) € real-vector.proportionality
proof —
from «v € real-vector.non-zero-vectors»
have real-vector.proportionality * {v} € (real-vector.non-zero-vectors :: (real”3)
set) /[real-vector.proportionality
unfolding quotient-def
by auto
with Abs-proj2-inverse
have Rep-proj2 (proj2-abs v) = real-vector.proportionality *“ {v}
unfolding proj2-abs-def
by simp
with proj2-rep-in
have proj2-rep (proj2-abs v) € real-vector.proportionality ““ {v} by auto
thus (v, proj2-rep (proj2-abs v)) € real-vector.proportionality by simp
qged

lemma proj2-abs-rep: proj2-abs (proj2-rep x) = x
proof —
from partition-Image-element
[of real-vector.non-zero-vectors
real-vector.proportionality
Rep-proj2 z
proj2-rep
and real-vector.proportionality-equiv
and Rep-proj2 [of z] and proj2-rep-in [of z]
have real-vector.proportionality “ {proj2-rep z} = Rep-proj2 z
by simp
with Rep-proj2-inverse show proj2-abs (proj2-rep z) = x
unfolding proj2-abs-def
by simp
qged

lemma proj2-abs-mult:

assumes ¢ # 0

shows proj2-abs (¢ xp v) = proj2-abs v
proof cases

assume v = (

thus proj2-abs (¢ xg v) = proj2-abs v by simp
next

assume v #

with <c # 0»

have (¢ xg v, v) € real-vector.proportionality

46

and c¢ xg v € real-vector.non-zero-vectors
and v € real-vector.non-zero-vectors
unfolding real-vector.proportionality-def
and real-vector.non-zero-vectors-def

by simp-all

with eg-equiv-class-iff

[of real-vector.non-zero-vectors
real-vector.proportionality
C R VU
v]
and real-vector.proportionality-equiv

have real-vector.proportionality ““ {c xg v} =
real-vector.proportionality ““ {v}
by simp

thus proj2-abs (¢ *g v) = proj2-abs v
unfolding proj2-abs-def
by simp

qed

lemma proj2-abs-mult-rep:
assumes ¢ # 0
shows proj2-abs (c *g proj2-rep =) = x
using proj2-abs-mult and proj2-abs-rep and assms
by simp

lemma proj2-rep-inj: inj proj2-rep
by (simp add: inj-on-inversel [of UNIV proj2-abs proj2-rep| proj2-abs-rep)

lemma proj2-rep-abs2:
assumes v # 0
shows 3 k. k # 0 A proj2-rep (proj2-abs v) = k xg v
proof —
from proj2-rep-abs [of v] and v # 0»
have (v, proj2-rep (proj2-abs v)) € real-vector.proportionality
unfolding real-vector.non-zero-vectors-def
by simp
then obtain ¢ where v = ¢ xg proj2-rep (proj2-abs v)
unfolding real-vector.proportionality-def
by auto
with (v # 0> have ¢ # 0 by auto
hence 1/c # 0 by simp

from (v = ¢ xg proj2-rep (proj2-abs v)»
have (1/c¢) xgr v = (1/c) *r ¢ *g proj2-rep (proj2-abs v)
by simp
with ¢ # 0> have proj2-rep (proj2-abs v) = (1/c) xg v by simp

with «1/c # 0> show 3 k. k # 0 A proj2-rep (proj2-abs v) = k g v
by blast

47

qed

lemma proj2-abs-abs-mult:
assumes proj2-abs v = proj2-abs w and w # 0
shows d c. v = ¢ *xgp w
proof cases
assume v = 0
hence v = 0 xg w by simp
thus 4 c. v = c xg w ..
next
assume v # 0
from (proj2-abs v = proj2-abs w»
have proj2-rep (proj2-abs v) = proj2-rep (proj2-abs w) by simp
with proj2-rep-abs2 and «w # 0>
obtain k£ where proj2-rep (proj2-abs v) = k xr w by auto
with proj2-rep-abs2 [of v] and v # 0>
obtain j where j # 0 and j xp v = k *xz w by auto
hence (1/4) *g j *r v = (1/§) *g k *xg w by simp
with <j # 0> have v = (k/j) *r w by simp
thus 4 c. v = c xg w ..
qed

lemma dependent-proj2-abs:
assumes p# Jand g# Oand i # 0V j# 0and i xg p+ j*g ¢q= 0
shows proj2-abs p = proj2-abs q
proof —
have i # 0
proof
assume ¢ =
with < £ 0 V j # 0> have j # 0 by simp
with < xg p + j *g ¢ = 0> and <q # 0> have i xg p # 0 by auto
with < = 0> show Fulse by simp
qed
with «<p # 0> and i *g p + j *xg ¢ = 0> have j # 0 by auto

from i # 0»
have proj2-abs p = proj2-abs (i xg p) by (rule proj2-abs-mult [symmetric])
also from i xg p + j *g ¢ = 0> and proj2-abs-mult [of —1 j *g (|

have ... = proj2-abs (j *xg q) by (simp add: algebra-simps [symmetric])
also from ¢j # 0> have ... = proj2-abs q by (rule proj2-abs-mult)
finally show proj2-abs p = proj2-abs q .

qed

lemma proj2-rep-dependent:
assumes i xg proj2-rep v + j xr proj2-rep w = 0
(isi*p %p + j*r 9= 0)
andi# 0V j#0
shows v = w
proof —

48

have ?p # 0 and ?q # 0 by (rule proj2-rep-non-zero)+
with i # 0V j # 0> and i xg %p + j *g %9 = O»
have proj2-abs ?p = proj2-abs ?q by (simp add: dependent-proj2-abs)
thus v = w by (simp add: proj2-abs-rep)
qed

lemma proj2-rep-independent:
assumes p # ¢
shows independent {proj2-rep p, proj2-rep q}
proof
let ?p’ = proj2-rep p
let ?2q’ = proj2-rep q
let 25 = { %', 2¢'}
assume dependent 2S5
from proj2-rep-inj and <p # ¢> have ?p’ # ?q’
unfolding inj-on-def
by auto
with dependent-explicit-2 [of ?p’ ?q'] and <dependent 2S)
obtain i and j where i xgp ?p' + j*g ?¢'=0and i # 0V j# 0
by (simp add: scalar-equiv) auto
with proj2-rep-dependent have p = g by simp
with <p # ¢ show Fulse ..
qed

7.3 Lines of the real projective plane

definition proj2-Col :: [proj2, proj2, proj2] = bool where
proj2-Col p g r &
(3 ijk. i xr proj2-rep p + j xr proj2-rep q + k *xg proj2-rep r = 0
A (i£0 V j£0 V k#£0))

lemma proj2-Col-abs:
assumes p# Jand g# Oandr# 0and i# 0V j# 0V k#0
andi*xgp+j*gr q+ k*xgr=20
shows proj2-Col (proj2-abs p) (proj2-abs q) (proj2-abs r)
(is proj2-Col ?pp ?pq ?pr)
proof —
from «p # 0> and proj2-rep-abs2
obtain ¢’ where i’ # 0 and proj2-rep ?pp = i’ xg p (is ?rp = -) by auto
from <q # 0> and proj2-rep-abs2
obtain j’ where j’ # 0 and proj2-rep ?pq = j' xr q (is %rq = -) by auto
from «r # 0> and proj2-rep-abs2
obtain k£’ where k' # 0 and proj2-rep ?pr = k' xg r (is ?rr = -) by auto
with <t xg p+j*g g+ kxgr =0
and «i' # 0» and <proj2-rep ?pp = i’ xg P>
and «j' # 0» and (proj2-rep ?pq = j' *r @
have (i/i) xgr %rp + (j/j') *r %rq + (k/k') xr %rr = 0 by simp

from i’ # 0y and «j' # 0> and <k’ # 0> and <i £ 0V j#£ 0V k # 0

49

have i/i'" £ 0V j/j'# 0V k/k' # 0 by simp

with «(i/i’) g ?rp + (j/§') *r ?rq + (k/k') x5 2rr = 0>

show proj2-Col ?pp ?pq ?pr by (unfold proj2-Col-def, best)
qed

lemma proj2-Col-permute:
assumes proj2-Col a b ¢
shows proj2-Col a ¢ b
and proj2-Col b a ¢
proof —
let ?a’ = proj2-rep a
let b’ = proj2-rep b
let ?¢’ = proj2-rep c
from <proj2-Col a b ¢
obtain ¢ and j and k¥ where
i*g 20’ + j*g b+ kxg %¢'=0
andi#0Vj#0VEk#0
unfolding proj2-Col-def
by auto

from i xp %0’ + j xp '+ k xp ?c'= O
have i xg %0’ + k g ¢’ + j xg 20’ =0
and j xp 20’ + i xg %a’ + k xp ¢’ =0
by (simp-all add: ac-simps)
moreover from i = 0V j# 0V k# O
have i 0V Ek#0Vj#*0andj# 0V i# 0V k%0 by auto
ultimately show proj2-Col a ¢ b and proj2-Col b a ¢
unfolding proj2-Col-def
by auto
qed

lemma proj2-Col-coincide: proj2-Col a a ¢
proof —
have 1 xg proj2-rep a + (—1) *g proj2-rep a + 0 *g proj2-rep ¢ = 0
by simp
moreover have (1::real) # 0 by simp
ultimately show proj2-Col a a c
unfolding proj2-Col-def
by blast
qed

lemma proj2-Col-iff:

assumes a # r

shows proj2-Col a r t +—

t=aV (3 i t=proj2-abs (i xr (proj2-rep a) + (proj2-rep r)))
proof

let ?a’ = proj2-rep a

let ?r’ = proj2-rep r

let ?t' = proj2-rep t

50

{ assume proj2-Col a r t
then obtain h and j and k where
h*g ?a’+ j*g 27" + kxg ?2t' =0
and h#0Vji£0VkEk#0
unfolding proj2-Col-def
by auto

show ¢t = a V (3 i. t = proj2-abs (i xg %a’ + ?r'))
proof cases
assume j = 0
with <h # 0V j# 0V k# 0>have h # 0V k # 0 by simp
with proj2-rep-dependent
and <h *p %a’ + j*xg ' + k*xg ' = O
and ¢ = 0>
have t = a by auto
thus t = a V (3 i. t = proj2-abs (i xg %a’ + ?r')) ..
next
assume j # 0
have k # 0
proof (rule ccontr)
assume — k # 0
with proj2-rep-dependent
and <h *p %0’ + j*p r’' + k*g ' = O
and <j # 0»
have a = r by simp
with <a # 7> show False ..

qed

from <h xp %a’ + j*g '+ kxg ' = O

have h xg %0’ + j *xg 7' + k xp %t — k xg 2’ = —k xg ?t' by simp
hence h xr ?a’ + j *xp ?r' = —k x ?t' by simp

with proj2-abs-mult-rep [of —k| and <k # 0>
have proj2-abs (h *g %a’ + j *r ?r') = t by simp
with proj2-abs-mult [of 1/j h xg 2a’ + j xg ?r] and < # O»
have proj2-abs ((h/j) xr 20’ + 2r') =t
by (simp add: scaleR-right-distrib)
hence 3 i. t = proj2-abs (i xg ?a’ + ?r’) by auto
thus t = a V (3 i. t = proj2-abs (i xg %a’ + ?r')) ..
qed

}

{ assume ¢t = a V (3 i. t = proj2-abs (i xg %a’ + ?r'))
show proj2-Col a r t
proof cases
assume { = ¢
with proj2-Col-coincide and proj2-Col-permute
show proj2-Col a r t by blast
next

o1

assume ¢ # a

with <¢ = a vV (3 i. t = proj2-abs (i xg %a’ + 2r'))

obtain i where ¢t = proj2-abs (i xg ?a’ + ?r’) by auto

from proj2-rep-dependent [of i a 1 r] and <a #

have i xg ?a’ + ?r' # 0 by auto

with proj2-rep-abs2 and <t = proj2-abs (i *g %a’ + ?r')

obtain j where ?t' = j xg (i *xg ?a’ + ?r’') by auto

hence 7t — 7t/ = (j x i) *xgp %a’ + j *g 20’ + (—1) xg 7’
by (simp add: scaleR-right-distrib)

hence (j * i) xg %0’ + j*xg ?r'+ (—=1) *gr ?t' = 0 by simp

have 3 hjk. hxg %0’ + jxg 1" + kxg 7' =0
ANh#A0NVj#0VEk+#D0)

proof standard+
from «(j * i) xg %a’ + jxg ?r'+ (—1) g %' = O»
show (j % i) *g %0’ + jxg r' + (—1) g 2’ = 0 .
show j*x i # 0V j# 0V (—1:real) # 0 by simp

qed

thus proj2-Col a r ¢
unfolding proj2-Col-def .

qed

}

qged

definition proj2-Col-coeff :: proj2 = proj2 = proj2 = real where
proj2-Col-coeff a r t £ € i. t = proj2-abs (i xg proj2-rep a + proj2-rep r)

lemma proj2-Col-coeff:

assumes proj2-Col a vt and a # r and t # a

shows t = proj2-abs ((proj2-Col-coeff a r t) xg proj2-rep a + proj2-rep r)
proof —

from <a # ™ and <proj2-Col a r t» and <t # a» and proj2-Col-iff

have 3 i. t = proj2-abs (i xr proj2-rep a + proj2-rep r) by simp

thus t = proj2-abs ((proj2-Col-coeff a r t) g proj2-rep a + proj2-rep r)

by (unfold proj2-Col-coeff-def) (rule somel-ex)

qed

lemma proj2-Col-coeff-unique’:
assumes a # 0 and r # 0 and proj2-abs a # proj2-abs r
and proj2-abs (i xg a + 1) = proj2-abs (j *xg a + 1)
shows i = j
proof —
from <a # 0> and «r # 0> and <proj2-abs a # proj2-abs >
and dependent-proj2-abs [of a r - 1]
have i xg a + r # 0 and j xg a + r # 0 by auto
with proj2-rep-abs2 [of i g a + 7]
and proj2-rep-abs2 [of j *r a + 7]
obtain k and [where k£ # 0
and proj2-rep (proj2-abs (i xgr a + 1)) = k *g (i *g a + 1)
and proj2-rep (proj2-abs (j xr a + 1)) =l *g (j *r a + 1)

52

by auto
with <proj2-abs (i *g a + 1) = proj2-abs (j g a +)
have (kx i) *xpa+ k*pr=(xj)*gpa+ lxgr
by (simp add: scaleR-right-distrib)
hence (k*xi—Ilxj)*ga+ (k—1)*gr =10
by (simp add: algebra-simps vec-eq-iff)
with <a # 0> and «r # 0> and «proj2-abs a # proj2-abs
and dependent-proj2-abs [of a rk x i — I % jk —]
have k « i — [« j= 0 and k — [= 0 by auto
from <k — | = 0> have k = | by simp
with <k * ¢ — [« j = 0> have k x ¢ = k * j by simp
with <k # 0> show i = j by simp
qed

lemma proj2-Col-coeff-unique:
assumes a # r
and proj2-abs (i xr proj2-rep a + proj2-rep)
= proj2-abs (j *r proj2-rep a + proj2-rep)
shows i = j
proof —
let ?a’ = proj2-rep a
let 2r’ = proj2-rep r
have %a’ # 0 and ?r’' # 0 by (rule proj2-rep-non-zero)+

from <a # r have proj2-abs ?a’ # proj2-abs ?r’ by (simp add: proj2-abs-rep)
with <%a’ # 0> and <?r' #£ 0>
and <proj2-abs (i xr %a’ + r') = proj2-abs (j xg %a’ + ?r')
and proj2-Col-coeff-unique’
show ¢ = j by simp
qed

datatype proj2-line = P2L proj2

definition L2P :: proj2-line = proj2 where
L2P 1 = case l of P2L p = p

lemma L2P-P2L [simp]: L2P (P2L p) = p
unfolding L2P-def
by simp

lemma P2L-L2P [simp]: P2L (L2P 1) =1
by (induct 1) simp

lemma L2P-inj [simp]:
assumes L2P [= L2P m
shows [= m
using P2L-L2P [of I] and assms
by simp

93

lemma P2L-to-L2P: P2Lp =1<+— p= L2P 1
proof
assume P2L p =1
hence L2P (P2L p) = L2P | by simp
thus p = L2P | by simp
next
assume p = L2P
thus P2L p = [by simp
qed

definition proj2-line-abs :: real”3 = proj2-line where
proj2-line-abs v & P2L (proj2-abs v)

definition proj2-line-rep :: proj2-line = real”3 where
proj2-line-rep | = proj2-rep (L2P 1)

lemma proj2-line-rep-abs:
assumes v # 0
shows 3 k. k # 0 A proj2-line-rep (proj2-line-abs v) = k xg v
unfolding proj2-line-rep-def and proj2-line-abs-def
using proj2-rep-abs2 and <v # 0>
by simp

lemma proj2-line-abs-rep [simp): proj2-line-abs (proj2-line-rep 1) = 1
unfolding proj2-line-abs-def and proj2-line-rep-def
by (simp add: proj2-abs-rep)

lemma proj2-line-rep-non-zero: proj2-line-rep | # 0
unfolding proj2-line-rep-def
using proj2-rep-non-zero
by simp

lemma proj2-line-rep-dependent:
assumes i xg proj2-line-rep | + j *r proj2-line-rep m = 0
and i A0V j#0
shows [= m
using proj2-rep-dependent [of i L2P | j L2P m] and assms
unfolding proj2-line-rep-def
by simp

lemma proj2-line-abs-mult:
assumes k # 0
shows proj2-line-abs (k *r v) = proj2-line-abs v
unfolding proj2-line-abs-def
using <k # O»
by (subst proj2-abs-mult) simp-all

lemma proj2-line-abs-abs-mult:
assumes proj2-line-abs v = proj2-line-abs w and w # 0

54

shows 3 k. v = k xp w
using assms
by (unfold proj2-line-abs-def) (simp add: proj2-abs-abs-mult)

definition proj2-incident :: proj2 = proj2-line = bool where
proj2-incident p 1 & (proj2-rep p) - (proj2-line-rep 1) = 0

lemma proj2-points-define-line:
shows 3 [. proj2-incident p | N\ proj2-incident q 1
proof —
let ?p’ = proj2-rep p
let ?2q’ = proj2-rep q
let ?B = {%p/, 2¢'}
from card-suc-ge-insert [of ?p’ {?¢’}] have card ?B < 2 by simp
with dim-le-card’ [of ?B] have dim ?B < 3 by simp
with lowdim-subset-hyperplane [of ?B]
obtain !’ where [’ # 0 and span ?B C {z. I’ - x = 0} by auto
let 21 = proj2-line-abs I’
let 2l = proj2-line-rep 21
from proj2-line-rep-abs and I’ # 0>
obtain k where ?I" = k g I’ by auto

have ?p’ € 7B and ?¢' € ?B by simp-all
with span-superset [of ?B] and «span ?B C {z. ' -z = 0}
have I’ - ?p’ = 0 and I’ - ?¢’ = 0 by auto

hence ?p’ -1’ = 0 and ?¢’ - I’ = 0 by (simp-all add: inner-commute)

with dot-scaleR-mult(2) [of - k 1] and <2l = k g 1"
have proj2-incident p ¢l A proj2-incident q ?1
unfolding proj2-incident-def
by simp
thus 3 . proj2-incident p I A proj2-incident q | by auto
qed

definition proj2-line-through :: proj2 = proj2 = proj2-line where
proj2-line-through p q £ € 1. proj2-incident p I A\ proj2-incident q 1

lemma proj2-line-through-incident:
shows proj2-incident p (proj2-line-through p q)
and proj2-incident q (proj2-line-through p q)
unfolding proj2-line-through-def
using proj2-points-define-line
and somel-ex [of A l. proj2-incident p | A\ proj2-incident q]
by simp-all

lemma proj2-line-through-unique:
assumes p # g and proj2-incident p | and proj2-incident q |
shows [= proj2-line-through p q

proof —
let 21’ = proj2-line-rep |

95

let ?m = proj2-line-through p q

let ?m’ = proj2-line-rep ?m

let ?p’ = proj2-rep p

let ?2q’ = proj2-rep q

let 24 = {%’, 2¢'}

let ?B = insert ?m’ ?A

from proj2-line-through-incident

have proj2-incident p ?m and proj2-incident q ?m by simp-all

with «proj2-incident p > and <proj2-incident q 1>

have ortho: Aw. we?A = orthogonal ?m’ w Aw. we?A = orthogonal 71" w
unfolding proj2-incident-def and orthogonal-def
by (metis empty-iff inner-commute insert-iff)+

from proj2-rep-independent and «p # ¢» have independent ?A by simp

from proj2-line-rep-non-zero have ?m’ # 0 by simp

with orthogonal-independent <independent ?A> ortho

have independent ?B by auto

from proj2-rep-inj and <p # ¢> have ?p’ # ?¢’
unfolding inj-on-def
by auto
hence card ?A = 2 by simp
moreover have ?m’ ¢ 74
using ortho(1) orthogonal-self proj2-line-rep-non-zero by auto
ultimately have card ?B = 3 by simp
with independent-is-basis [of ?B] and <independent ?B»
have is-basis B by simp
with basis-ezpand obtain ¢ where ?I' = (> v€?B. ¢ v *p v) by auto
let 21" = 2" — ¢ ?m’ xp ?m’
from «?l' = (> vE?B. c v *xg v)> and «?m’ ¢ 24
have 71" = (3 ve?A. ¢ v g v) by simp
with orthogonal-sum [of ?A] ortho
have orthogonal ?1’ ?I” and orthogonal ?m’ 71"
by (simp-all add: scalar-equiv)
from <orthogonal ?m’ 21"
have orthogonal (¢ ?m’ xg ?m’) 21" by (simp add: orthogonal-clauses)
with <orthogonal 21" 21"
have orthogonal 21"’ 21" by (simp add: orthogonal-clauses)
with orthogonal-self-eq-0 [of ?1”] have ?I" = 0 by simp
with proj2-line-rep-dependent [of 11 — ¢ m’ ?m] show | = ?m by simp
qed

lemma proj2-incident-unique:
assumes proj2-incident p |
and proj2-incident q 1
and proj2-incident p m
and proj2-incident ¢ m
shows p=¢qVIi=m
proof cases
assume p = ¢

o6

thusp=gqVi=m..
next
assume p # ¢
with «proj2-incident p > and <proj2-incident q 1>
and proj2-line-through-unique
have [= proj2-line-through p q by simp
moreover from «p # ¢» and <proj2-incident p m» and <proj2-incident g m»
have m = proj2-line-through p q by (rule proj2-line-through-unique)
ultimately show p = ¢ V | = m by simp
qed

lemma proj2-lines-define-point: 3 p. proj2-incident p I A proj2-incident p m
proof —
let 21’ = L2P |
let #m’ = L2P m
from proj2-points-define-line [of 21" ?m/]
obtain p’ where proj2-incident 7l p’ A proj2-incident ?m’ p’ by auto
hence proj2-incident (L2P p’) I A proj2-incident (L2P p’) m
unfolding proj2-incident-def and proj2-line-rep-def
by (simp add: inner-commute)
thus 3 p. proj2-incident p | N\ proj2-incident p m by auto
qged

definition proj2-intersection :: proj2-line = proj2-line = proj2 where
proj2-intersection | m = L2P (proj2-line-through (L2P 1) (L2P m))

lemma proj2-incident-switch:
assumes proj2-incident p |
shows proj2-incident (L2P 1) (P2L p)
using assms
unfolding proj2-incident-def and proj2-line-rep-def
by (simp add: inner-commute)

lemma proj2-intersection-incident:

shows proj2-incident (proj2-intersection I m) [

and proj2-incident (proj2-intersection I m) m

using proj2-line-through-incident(1) [of L2P | L2P m]
and proj2-line-through-incident(2) [of L2P m L2P]
and proj2-incident-switch [of L2P]
and proj2-incident-switch [of L2P m]

unfolding proj2-intersection-def

by simp-all

lemma proj2-intersection-unique:
assumes [# m and proj2-incident p | and proj2-incident p m
shows p = proj2-intersection I m
proof —
from <« # m» have L2P [# L2P m by auto
from <proj2-incident p I» and <proj2-incident p m»

o7

and proj2-incident-switch

have proj2-incident (L2P 1) (P2L p) and proj2-incident (L2P m) (P2L p)
by simp-all

with <L2P | # L2P m» and proj2-line-through-unique

have P2L p = proj2-line-through (L2P 1) (L2P m) by simp

thus p = proj2-intersection | m
unfolding proj2-intersection-def
by (simp add: P2L-to-L2P)

qed

lemma proj2-not-self-incident:
= (proj2-incident p (P2L p))
unfolding proj2-incident-def and proj2-line-rep-def
using proj2-rep-non-zero and inner-eq-zero-iff [of proj2-rep p]
by simp

lemma proj2-another-point-on-line:
3 q. ¢ # p N\ proj2-incident q 1
proof —
let Ym = P2L p
let ?q = proj2-intersection | ?m
from proj2-intersection-incident
have proj2-incident ?q | and proj2-incident ?q ?m by simp-all
from <proj2-incident ?q ?m> and proj2-not-self-incident have ?q # p by auto
with <proj2-incident ?q I» show 3 q. ¢ # p A proj2-incident q | by auto
qged

lemma proj2-another-line-through-point:
3 m. m # 1 A proj2-incident p m
proof —
from proj2-another-point-on-line
obtain ¢ where q # L2P | A proj2-incident q (P2L p) by auto
with proj2-incident-switch [of ¢ P2L p]
have P2L q # | A proj2-incident p (P2L q) by auto
thus 3 m. m # [A proj2-incident p m ..
qed

lemma proj2-incident-abs:

assumes v # (0 and w # 0

shows proj2-incident (proj2-abs v) (proj2-line-abs w) +— v - w = 0
proof —

from (v # 0> and proj2-rep-abs2

obtain j where j # 0 and proj2-rep (proj2-abs v) = j xg v by auto

from «w # 0> and proj2-line-rep-abs
obtain k£ where k # 0
and proj2-line-rep (proj2-line-abs w) = k xg w
by auto
with <j # 0> and «proj2-rep (proj2-abs v) = j *g v

o8

show proj2-incident (proj2-abs v) (proj2-line-abs w) <— v+ w = 0
unfolding proj2-incident-def
by (simp add: dot-scaleR-mult)
qed

lemma proj2-incident-left-abs:

assumes v # 0

shows proj2-incident (proj2-abs v) | <— v - (proj2-line-rep) = 0
proof —

have proj2-line-rep | # 0 by (rule proj2-line-rep-non-zero)

with v # 0> and proj2-incident-abs [of v proj2-line-rep |

show proj2-incident (proj2-abs v) I <— v - (proj2-line-rep 1) = 0 by simp
qed

lemma proj2-incident-right-abs:

assumes v # 0

shows proj2-incident p (proj2-line-abs v) <— (proj2-rep p) + v =0
proof —

have proj2-rep p # 0 by (rule proj2-rep-non-zero)

with v # 0» and proj2-incident-abs [of proj2-rep p v

show proj2-incident p (proj2-line-abs v) +— (proj2-rep p) - v =0

by (simp add: proj2-abs-rep)

qed

definition proj2-set-Col :: proj2 set = bool where
proj2-set-Col S & 3 1.V peS. proj2-incident p 1

lemma proj2-subset-Col:
assumes T C S and proj2-set-Col S
shows proj2-set-Col T
using <7 C S» and «<proj2-set-Col S»
by (unfold proj2-set-Col-def) auto

definition proj2-no-3-Col :: proj2 set = bool where
proj2-no-3-Col S = card S = 4 A (¥ p€S. = proj2-set-Col (S — {p}))

lemma proj2-Col-iff-not-invertible:
proj2-Col p q r
+— = invertible (vector [proj2-rep p, proj2-rep q, proj2-rep r| :: real"373)
(is - +— = invertible (vector [?u, ?v, ?w]))
proof —
let ?M = wvector [?u,?v,?w] :: real 373
have proj2-Colp gr +— (3 z. z # 0 Az vx ?M = 0)
proof
assume proj2-Col p q r
then obtain 7 and j and &
where i # 0V j# 0V k# 0and ixp %u+ j*g v+ k*xg %w=10
unfolding proj2-Col-def
by auto

99

let %z = vector [i,j,k] :: real”3
from i £ 0V j#0VEk#0D
have %z # 0
unfolding vector-def
by (simp add: vec-eq-iff forall-3)
moreover {
from i xgp %u + j *xg v + k xp w= 0>
have %z vx M = 0
unfolding vector-def and vector-matriz-mult-def
by (simp add: sum-3 vec-eq-iff algebra-simps) }
ultimately show 3 z. x # 0 A z vx ?M = 0 by auto
next
assume 3 z. x # 0 ANz vx 2M = 0
then obtain z where z # 0 and z vx M = 0 by auto

let 7 = z$1
let 2j = 2$2
let % = z$3

from «x # 0> have 2i £ 0V % # 0 V 2k # 0 by (simp add: vec-eq-iff forall-3)
moreover {
from <z v« ?2M = 0>
have % xg 2u + 9f xgp v + %k xg 2w =0
unfolding vector-matriz-mult-def and sum-3 and vector-def
by (simp add: vec-eq-iff algebra-simps) }
ultimately show proj2-Col p g r
unfolding proj2-Col-def
by auto
qed
also from matriz-right-invertible-ker [of ?M]
have ... +— = (3 M'. ?M *x M' = mat 1) by auto
also from matriz-left-right-inverse
have ... <— — invertible ?M
unfolding invertible-def
by auto
finally show proj2-Col p q r <— — invertible ?M .
qed

lemma not-invertible-iff-proj2-set-Col:
- gnvertible (vector [proj2-rep p, proj2-rep q, proj2-rep r] :: real " 373)
+— proj2-set-Col {p,q,r}
(is — invertible M <— -)
proof —
from left-invertible-iff-invertible
have — invertible ?M <— = (3 M'. M’ xx ?M = mat 1) by auto
also from matriz-left-invertible-ker [of ?M]
have ... «— (3 y. y # 0 AN ?M xv y = 0) by auto
also have ... «— (3 1.V s€{p,q,r}. proj2-incident s l)
proof
assume 3 y. y # 0 A ?M xvy = 0
then obtain y where y # 0 and ?M *v y = 0 by auto

60

let 21 = proj2-line-abs y
from <?M xvy = 0>
have V s€{p,q,r}. proj2-rep s - y = 0
unfolding vector-def
and matriz-vector-mult-def
and inner-vec-def
and sum-3
by (simp add: vec-eq-iff forall-3)
with <y # 0> and proj2-incident-right-abs
have V se{p,q,r}. proj2-incident s ?1 by simp
thus 3 1. V s€{p,q,r}. proj2-incident s I ..
next
assume 3 [. YV s€{p,q,r}. proj2-incident s
then obtain [where V s€{p,q,r}. proj2-incident s I ..
let 2y = proj2-line-rep |
have %y # 0 by (rule proj2-line-rep-non-zero)
moreover {
from v se{p,q,r}. proj2-incident s Iy
have ?M xv %y = 0
unfolding vector-def
and matriz-vector-mult-def
and inner-vec-def
and sum-3
and proj2-incident-def
by (simp add: vec-eq-iff) }
ultimately show 3 y. y # 0 A ?M xv y = 0 by auto
qed
finally show — invertible M <— proj2-set-Col {p,q,r}
unfolding proj2-set-Col-def .
qed

lemma proj2-Col-iff-set-Col:
proj2-Col p q v «— proj2-set-Col {p,q,r}
by (simp add: proj2-Col-iff-not-invertible
not-invertible-iff-proj2-set- Col)

lemma proj2-incident-Col:
assumes proj2-incident p | and proj2-incident q | and proj2-incident r |
shows proj2-Col p q r

proof —
from <proj2-incident p I» and <proj2-incident q > and <proj2-incident r >
have proj2-set-Col {p,q,r} by (unfold proj2-set-Col-def) auto
thus proj2-Col p q r by (subst proj2-Col-iff-set-Col)

qed

lemma proj2-incident-iff-Col:
assumes p # ¢q and proj2-incident p | and proj2-incident q |
shows proj2-incident v | <— proj2-Col p q r

proof

61

assume proj2-incident r |
with «proj2-incident p Iy and <proj2-incident q I»
show proj2-Col p q r by (rule proj2-incident-Col)
next
assume proj2-Col p q r
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
then obtain m where V s€{p,q,r}. proj2-incident s m
unfolding proj2-set-Col-def ..
hence proj2-incident p m and proj2-incident ¢ m and proj2-incident r m
by simp-all
from «p # ¢» and <proj2-incident p Iy and <proj2-incident q I
and <proj2-incident p m» and <proj2-incident q¢ m»
and proj2-incident-unique
have m = [by auto
with «proj2-incident r m) show proj2-incident r | by simp
qed

lemma proj2-incident-iff:
assumes p # g and proj2-incident p | and proj2-incident q |
shows proj2-incident r [
+—r=7pV (3 k r=proj2-abs (k xg proj2-rep p + proj2-rep q))
proof —
from «p # ¢» and <proj2-incident p Iy and <proj2-incident q I
have proj2-incident r | <— proj2-Col p q r by (rule proj2-incident-iff-Col)
with <p # ¢» and proj2-Col-iff
show proj2-incident r |
+—r=pV (3 k r=proj2-abs (k xg proj2-rep p + proj2-rep q))
by simp
qed

lemma not-proj2-set-Col-iff-span:

assumes card S = 3

shows — proj2-set-Col S +— span (proj2-rep S) = UNIV
proof —

from <card S = 3» and choose-3 [of 5]

obtain p and ¢ and r where S = {p,q,r} by auto

let ?u = proj2-rep p

let v = proj2-rep q

let ?w = proj2-rep r

let ?M = vector [?u, ?v, w| :: real 373

from «S = {p,q,rp and not-invertible-iff-proj2-set-Col [of p q 7]

have — proj2-set-Col S +— invertible ?M by auto

also from left-invertible-iff-invertible

have ... «— (3 N. N xx ¢M = mat 1) ..

also from matriz-left-invertible-span-rows

have ... <— span (rows ?M) = UNIV by auto

finally have — proj2-set-Col S <— span (rows ?M) = UNIV .

have rows ?M = {%u, %v, ?w}

62

proof
{ fix z
assume z € rows ?M
then obtain i :: § where z = ?M § i
unfolding rows-def and row-def
by (auto simp add: vec-lambda-beta vec-lambda-eta)
with erhaust-3 have r = 20V 2 = 20V z = %w
unfolding vector-def
by auto
hence z € {?u, ?v, ?w} by simp }
thus rows ?M C {%u, %v, ?w} ..
{ fix z
assume z € {%u, v, 7w}
hence z = ?u vV z = %0V x = 2w by simp
hencez =?M$1Vae=2?M$2Vve=22M$3
unfolding vector-def
by simp
hence z € rows ?M
unfolding rows-def row-def vec-lambda-eta
by blast }
thus {?u, %v, 2w} C rows M ..
qed
with «S = {p,q,r}»
have rows ?M = proj2-rep © S
unfolding image-def
by auto
with <= proj2-set-Col S +— span (rows ¢M) = UNIV>»
show — proj2-set-Col S <— span (proj2-rep *S) = UNIV by simp
qed

lemma proj2-no-3-Col-span:
assumes proj2-no-3-Col S and p € §
shows span (proj2-rep ‘(S — {p})) = UNIV
proof —
from <«proj2-no-3-Col S» have card S = 4 unfolding proj2-no-3-Col-def ..
with «p € S» and <card S = 4> and card-gt-0-diff-singleton [of S p]
have card (S — {p}) = 3 by simp

from <proj2-no-3-Col S» and «p € S»
have — proj2-set-Col (S — {p})
unfolding proj2-no-3-Col-def
by simp
with «card (S — {p}) = 3> and not-proj2-set- Col-iff-span
show span (proj2-rep (S — {p})) = UNIV by simp
qed

lemma fourth-proj2-no-3-Col:

assumes — proj2-Col p q r
shows 3 s. proj2-no-3-Col {s,r,p,q}

63

proof —
from «— proj2-Col p q r» and proj2-Col-coincide have p # q by auto
hence card {p,q} = 2 by simp

from <= proj2-Col p q r» and proj2-Col-coincide and proj2-Col-permute

have r ¢ {p,q} by fast
with <card {p,q} = 2> have card {r,p,q} = 3 by simp

have finite {r,p,q} by simp

let ?s = proj2-abs (> te{r,p,q}. proj2-rep t)
have 3 j. (3 te{r,p,q}. proj2-rep t) = j xg proj2-rep s
proof cases
assume (Y te{r,p,q}. proj2-rep t) = 0
hence (> te{r,p,q}. proj2-rep t) = 0 xr proj2-rep ?s by simp
thus 3 j. (O te{r,p,q}. proj2-rep t) = j xg proj2-rep s ..
next
assume (> te{r,p,q}. proj2-rep t) # 0
with proj2-rep-abs2
obtain k¥ where k # 0
and proj2-rep ?s = k xg (3. te{r,p,q}. proj2-rep t)
by auto
hence (1/k) xr proj2-rep ?s = (>_ te{r,p,q}. proj2-rep t) by simp
from this [symmetric]
show 3 j. (0 te{r,p,q}. proj2-rep t) = j xg proj2-rep s ..
qged
then obtain j where (> te{r,p,q}. proj2-rep t) = j xg proj2-rep ?s ..
let 2c = XA t. if t = ?s then 1 — jelse 1
from «p # ¢» have ?cp # 0 V ?c q # 0 by simp

let 2d = X\ t. if t = %s then j else —1
let 25 = {%s,m,p,q}

have ?s ¢ {r,p,q}
proof

assume ?s € {r,p,q}

from «r ¢ {p,q}p> and p # @
have ?c r xg proj2-rep r + ?c p xg proj2-rep p + ¢ q xr proj2-rep q
= (3" te{r,p,q}. %c t xg proj2-rep t)
by (simp add: sum.insert [of - - X\ t. ?c t xg proj2-rep t))
also from «finite {r,p,q}> and <?%s € {r,p,qp
have ... = %c 25 xg proj2-rep %s + (> te{r,p,q}—{?%s}. %c t xr proj2-rep t)
by (simp only:
sum.remove [of {r,p,q} ?s A t. ?c t xg proj2-rep t])
also have ...
= —j *p proj2-rep ?s + (proj2-rep ?s + (> te{r,p,q}—{?s}. proj2-rep t))
by (simp add: algebra-simps)

64

also from «finite {r,p,q}> and <%s € {r,p,qp
have ... = —j xp proj2-rep ?s + (>_ te{r,p,q}. proj2-rep t)

by (simp only:

sum.remove [of {r,p,q} ?s A t. proj2-rep t,symmetric))

also from «(>_ te{r,p,q}. proj2-rep t) = j *p proj2-rep ?s»
have ... = 0 by simp
finally
have ?c r xg proj2-rep r + ?c p xg proj2-rep p + ¢ q xr proj2-rep q = 0

with «%cp # 0 V %c q # O»
have proj2-Col p q r
by (unfold proj2-Col-def) (auto simp add: algebra-simps)
with = proj2-Col p ¢ r» show Fulse ..
qed
with «card {r,p,q} = 3> have card S = J by simp

from <= proj2-Col p q r and proj2-Col-permute
have — proj2-Col r p q by fast
hence — proj2-set-Col {r,p,q} by (subst proj2-Col-iff-set-Col [symmetric])

have V u€?S. - proj2-set-Col (7S — {u})
proof
fix u
assume u € 25
with «card ?S = /» have card (25 — {u}) = 3 by simp
show — proj2-set-Col (25 — {u})
proof cases
assume u = s
with <%s ¢ {r,p,q}» have 25 — {u} = {r,p,q} by simp
with (= proj2-set-Col {r,p,q}> show — proj2-set-Col (25 — {u}) by simp
next
assume u 7% ?s
hence insert ?s ({r,p,q} — {u}) = 25 — {u} by auto

from «(finite {r,p,q}» have finite ({r,p,q} — {u}) by simp

from «?s ¢ {r,p,q}> have %s ¢ {r,p,q} — {u} by simp
hence V te{r,p,q}—{u}. ?dt = —1 by auto

from <u # %s» and «u € 25> have u € {r,p,q} by simp
hence (> te{r,p,q}. proj2-rep t)

= proj2-rep u + (> te{r,p,q}—{u}. proj2-rep t)

by (simp add: sum.remove)
with <> te{r,p,q}. proj2-rep t) = j xr proj2-rep ?s»
have proj2-rep u

= j xg proj2-rep ?s — (> te{r,p,q}—{u}. proj2-rep t)

by simp
also from «V te{r,p,q}—{u}. ?dt = —1»
have ... = j xg proj2-rep ?s + (O_ te{r,p,qt—{u}. 2d t xr proj2-rep t)

65

by (simp add: sum-negf)
also from «finite ({r,p,q} — {u})» and «?s ¢ {r,p,q} — {up
have ... = () teinsert ?s ({r,p,q}—{u}). 2d t xr proj2-rep t)
by (simp add: sum.insert)
also from «insert ?s ({r,p,q} — {u}) = 25 — {u}

have ... = (3 t€?S—{u}. ?d t xg proj2-rep t) by simp
finally have proj2-rep v = (> t€2S—{u}. ?d t xg proj2-rep t) .
moreover

have V t€?5—{u}. 2d t xr proj2-rep t € span (proj2-rep ‘ (25 — {u}))
by (simp add: span-clauses)

ultimately have proj2-rep u € span (proj2-rep ‘ (25 — {u}))
by (metis (no-types, lifting) span-sum)

have V te{r,p,q}. proj2-rep t € span (proj2-rep ‘(25 — {u}))
proof
fix t
assume ¢ € {r,p,q}
show proj2-rep ¢t € span (proj2-rep ‘(25 — {u}))
proof cases
assume ¢t = u
from «proj2-rep u € span (image proj2-rep (25 — {u}))
show proj2-rep t € span (proj2-rep ‘(¢S — {u}))
by (subst «t = u»)
next
assume t # u
with «t € {r,p,¢h
have proj2-rep t € proj2-rep ‘ (25 — {u}) by simp
with span-superset [of proj2-rep ‘ (?S — {u})]
show proj2-rep t € span (proj2-rep ‘(25 — {u})) by fast
qed
qed
hence proj2-rep ‘ {r,p,q} C span (proj2-rep ‘(25 — {u}))
by (simp only: image-subset-iff)
hence
span (proj2-rep * {r.p,q}) C span (span (proj2-rep * (25 — {u})))
by (simp only: span-mono)
hence span (proj2-rep ‘ {r,p,q}) C span (proj2-rep ‘ (¢S — {u}))
by (simp only: span-span)
moreover
from <— proj2-set-Col {r,p,q}>»
and «card {r,p,q} = 3
and not-proj2-set-Col-iff-span
have span (proj2-rep ‘{r,p,q}) = UNIV by simp
ultimately have span (proj2-rep ¢ (25 — {u})) = UNIV by auto
with «card (25 — {u}) = 3» and not-proj2-set-Col-iff-span
show — proj2-set-Col (25 — {u}) by simp
qed
qged
with <card 25 = /»

66

have proj2-no-3-Col 25 by (unfold proj2-no-3-Col-def) fast
thus 3 s. proj2-no-3-Col {s,r,p,q} ..
qed

lemma proj2-set-Col-expand:
assumes proj2-set-Col S and {p,q,r} C Sand p # gand r # p
shows 3 k. r = proj2-abs (k xr proj2-rep p + proj2-rep q)
proof —
from <proj2-set-Col S»
obtain [where V t€S. proj2-incident t | unfolding proj2-set-Col-def ..
with «({p,q,r} C S» and <p # ¢ and «r # p> and proj2-incident-iff [of p q 1 r]
show 3 k. r = proj2-abs (k *r proj2-rep p + proj2-rep q) by simp
qed

7.4 Collineations of the real projective plane

typedef clin2 =
(Collect invertible :: (real”373) set)//invertible-proportionality
proof
from matriz-id-invertible have (mat 1 :: real”373) € Collect invertible
by simp
thus invertible-proportionality ““ {mat 1} €
(Collect invertible :: (real”373) set)//invertible-proportionality
unfolding quotient-def
by auto
qed

definition cltn2-rep :: cltn2 = real 873 where
cltn2-rep A £ € B. B € Rep-cltn2 A

definition cltn2-abs :: real 373 = cltn2 where
cltn2-abs B & Abs-cltn2 (invertible-proportionality ““ { B})

definition cltn2-independent :: cltn2 set = bool where
cltn2-independent X = independent {cltn2-rep A | A. A € X}

definition apply-cltn2 :: proj2 = cltn2 = proj2 where
apply-cltn2 x A £ proj2-abs (proj2-rep = vx clin2-rep A)

lemma cltn2-rep-in: cltn2-rep B € Rep-clitn2 B
proof —
let YA = cltn2-rep B
from quotient-element-nonempty and
invertible-proportionality-equiv and
Rep-cltn2 [of B]
have 3 C. C € Rep-clin2 B
by auto
with somel-ex [of A C. C € Rep-cltn2 B)
show ?A € Rep-cltn2 B

67

unfolding cltn2-rep-def
by simp
qed

lemma cltn2-rep-invertible: invertible (cltn2-rep A)
proof —

from

Union-quotient [of Collect invertible invertible-proportionality]
and invertible-proportionality-equiv
and Rep-cltn2 [of A] and cltn2-rep-in [of A]

have clin2-rep A € Collect invertible
unfolding quotient-def
by auto

thus invertible (cltn2-rep A)
unfolding invertible-proportionality-def
by simp

qed

lemma cltn2-rep-abs:
fixes A :: real” 373
assumes invertible A

shows (A4, cltn2-rep (cltn2-abs A)) € invertible-proportionality
proof —

from <invertible A»
have invertible-proportionality ““{ A} € (Collect invertible :: (real”3738) set)//invertible-proportionality
unfolding quotient-def
by auto
with Abs-cltn2-inverse
have Rep-cltn2 (cltn2-abs A) = invertible-proportionality *“ {A}
unfolding cltn2-abs-def
by simp
with cltn2-rep-in
have cltn2-rep (cltn2-abs A) € invertible-proportionality ““ {A} by auto

thus (A, cltn2-rep (cltn2-abs A)) € invertible-proportionality by simp
qed

lemma cltn2-rep-abs2:
assumes invertible A

shows 3 k. k # 0 A cltn2-rep (clin2-abs A) = k xp A
proof —

from <invertible Ay and cltn2-rep-abs

have (A, cltn2-rep (cltn2-abs A)) € invertible-proportionality by simp
then obtain ¢ where A = ¢ xg cltn2-rep (clin2-abs A)

unfolding invertible-proportionality-def and real-vector.proportionality-def
by auto

with <invertible A> and zero-not-invertible have ¢ # 0 by auto
hence 1/c # 0 by simp

let % = 1/c¢

68

from (A = ¢ xp cltn2-rep (clin2-abs A)»

have %k xgp A = %k *p ¢ xg cltn2-rep (clin2-abs A) by simp

with <c # 0» have cltn2-rep (clin2-abs A) = %k xr A by simp

with <%k # 0

show 3 k. k # 0 A cltn2-rep (cltn2-abs A) = k xr A by blast
qed

lemma cltn2-abs-rep: clin2-abs (cltn2-rep A) = A
proof —
from partition-Image-element
[of Collect invertible
invertible-proportionality
Rep-clin2 A
cltn2-rep A|
and invertible-proportionality-equiv
and Rep-cltn2 [of A] and cltn2-rep-in [of A]
have invertible-proportionality {cltn2-rep A} = Rep-clin2 A
by simp
with Rep-cltn2-inverse
show cltn2-abs (cltn2-rep A) = A
unfolding cltn2-abs-def
by simp
qed

lemma cltn2-abs-mult:
assumes k # (0 and invertible A
shows cltn2-abs (k xg A) = cltn2-abs A
proof —
from <k # 0> and <invertible A> and scalar-invertible
have invertible (k xg A) by auto
with <nvertible A»
have (k xgr A, A) € invertible-proportionality
unfolding invertible-proportionality-def
and real-vector.proportionality-def
by (auto simp add: zero-not-invertible)
with eg-equiv-class-iff
[of Collect invertible invertible-proportionality k xr A A
and invertible-proportionality-equiv
and <invertible A> and <invertible (k xg A)>
have invertible-proportionality ““ {k xr A}
= {nvertible-proportionality ““ { A}
by simp
thus cltn2-abs (k xg A) = cltn2-abs A
unfolding cltn2-abs-def
by simp
qed

lemma cltn2-abs-mult-rep:
assumes k # 0

69

shows cltn2-abs (k xg cltn2-rep A) = A
using cltn2-rep-invertible and cltn2-abs-mult and cltn2-abs-rep and assms
by simp

lemma apply-clin2-abs:

assumes z # (0 and invertible A

shows apply-clin2 (proj2-abs z) (cltn2-abs A) = proj2-abs (z vx A)
proof —

from proj2-rep-abs2 and <x # 0>

obtain k& where k # 0 and proj2-rep (proj2-abs x) = k *g z by auto

from cltn2-rep-abs2 and <invertible A»
obtain ¢ where ¢ # 0 and cltn2-rep (cltn2-abs A) = ¢ *p A by auto

from <k # 0> and <c # 0> have k x ¢ # 0 by simp

from <proj2-rep (proj2-abs x) = k xr x> and «cltn2-rep (cltn2-abs A) = ¢ xg A»

have proj2-rep (proj2-abs x) vx clin2-rep (cltn2-abs A) = (kxc) xp (x v A)
by (simp add: scaleR-vector-matriz-assoc vector-scaleR-matriz-ac)

with <k x ¢ # O»

show apply-cltn2 (proj2-abs z) (cltn2-abs A) = proj2-abs (z vx A)
unfolding apply-clin2-def
by (simp add: proj2-abs-mult)

qed

lemma apply-cltn2-left-abs:
assumes v % 0
shows apply-clin2 (proj2-abs v) C = proj2-abs (v v cltn2-rep C)
proof —
have cltn2-abs (cltn2-rep C) = C by (rule cltn2-abs-rep)
with v # 0» and cltn2-rep-invertible and apply-cltn2-abs [of v cltn2-rep C)|
show apply-cltn2 (proj2-abs v) C = proj2-abs (v vx cltn2-rep C)
by simp
qed

lemma apply-cltn2-right-abs:
assumes invertible M
shows apply-clin2 p (cltn2-abs M) = proj2-abs (proj2-rep p vx M)
proof —
from proj2-rep-non-zero and <invertible M»> and apply-cltn2-abs
have apply-clin2 (proj2-abs (proj2-rep p)) (cltn2-abs M)
= proj2-abs (proj2-rep p vx M)
by simp
thus apply-cltn2 p (cltn2-abs M) = proj2-abs (proj2-rep p vx M)
by (simp add: proj2-abs-rep)
qed

lemma non-zero-mult-rep-non-zero:
assumes v # 0

70

shows v vx clin2-rep C # 0
using v # 0> and cltn2-rep-invertible and times-invertible-eq-zero
by auto

lemma rep-mult-rep-non-zero: proj2-rep p vk clin2-rep A # 0
using proj2-rep-non-zero
by (rule non-zero-mult-rep-non-zero)

definition cltn2-image :: proj2 set = cltn2 = proj2 set where
cltn2-image P A = {apply-cltn2p A | p. p € P}

7.4.1 As a group

definition cltn2-id :: cltn2 where
cltn2-id = cltn2-abs (mat 1)

definition cltn2-compose :: cltn2 = cltn2 = cltn2 where
cltn2-compose A B £ cltn2-abs (cltn2-rep A x* cltn2-rep B)

definition cltn2-inverse :: cltn2 = cltn2 where
cltn2-inverse A = cltn2-abs (matriz-inv (cltn2-rep A))

lemma cltn2-compose-abs:

assumes invertible M and invertible N

shows cltn2-compose (cltn2-abs M) (cltn2-abs N) = cltn2-abs (M #x N)
proof —

from <invertible M> and <invertible Ny and invertible-mult

have invertible (M *x N) by auto

from <invertible M> and <invertible Ny and cltn2-rep-abs2
obtain j and k¥ where j # 0 and k # 0

and cltn2-rep (cltn2-abs M) = j xg M

and cltn2-rep (cltn2-abs N) = k g N

by blast

from «j # 0> and <k # 0> have j * k # 0 by simp

from «<cltn2-rep (cltn2-abs M) = j xg M> and <cltn2-rep (cltn2-abs N) = k =g
N
have cltn2-rep (clin2-abs M) *x clin2-rep (cltn2-abs N)
= (j* k) xg (M *x N)
by (simp add: matriz-scalar-ac scalar-matriz-assoc [symmetric])
with «j % k # 0> and <invertible (M *x N)»
show cltn2-compose (cltn2-abs M) (cltn2-abs N) = cltn2-abs (M *x N)
unfolding cltn2-compose-def
by (simp add: cltn2-abs-mult)
qed

lemma cltn2-compose-left-abs:

71

assumes invertible M
shows cltn2-compose (cltn2-abs M) A = cltn2-abs (M x cltn2-rep A)
proof —
from <invertible M> and cltn2-rep-invertible and cltn2-compose-abs
have cltn2-compose (cltn2-abs M) (cltn2-abs (cltn2-rep A))
= cltn2-abs (M *x cltn2-rep A)
by simp
thus cltn2-compose (cltn2-abs M) A = cltn2-abs (M ** cltn2-rep A)
by (simp add: cltn2-abs-rep)
qged

lemma cltn2-compose-right-abs:
assumes invertible M
shows cltn2-compose A (cltn2-abs M) = cltn2-abs (cltn2-rep A *xx M)
proof —
from <invertible M» and cltn2-rep-invertible and cltn2-compose-abs
have cltn2-compose (cltn2-abs (clin2-rep A)) (cltn2-abs M)
= cltn2-abs (clin2-rep A xx M)
by simp
thus cltn2-compose A (cltn2-abs M) = cltn2-abs (cltn2-rep A xx M)
by (simp add: cltn2-abs-rep)
qged

lemma cltn2-abs-rep-abs-mult:

assumes invertible M and invertible N

shows cltn2-abs (cltn2-rep (cltn2-abs M) xx N) = cltn2-abs (M *x N)
proof —

from <invertible M» and <invertible N>

have invertible (M xx N) by (simp add: invertible-mult)

from <invertible M» and cltn2-rep-abs2
obtain k& where k # 0 and cltn2-rep (cltn2-abs M) = k xg M by auto
from «cltn2-rep (cltn2-abs M) = k xg M)
have cltn2-rep (cltn2-abs M) xx N = k xg M +x N by simp
with <k # 0> and <invertible (M *x N)» and clin2-abs-mult
show cltn2-abs (cltn2-rep (cltn2-abs M) xx N) = cltn2-abs (M xx N)
by (simp add: scalar-matriz-assoc [symmetric])
qged

lemma cltn2-assoc:

cltn2-compose (cltn2-compose A B) C = cltn2-compose A (cltn2-compose B C)
proof —

let ?A’ = cltn2-rep A

let ?B’ = cltn2-rep B

let ?C’' = cltn2-rep C

from clin2-rep-invertible

have invertible A’ and invertible ?B’ and invertible ?C’ by simp-all

with invertible-mult

have invertible (?A’ xx ?B’) and invertible (?B’ xx 2C")

72

and invertible (?A’ xx ?B' xx 2C")

by auto
from <invertible (?A’ xx ¢B’)y and <invertible ?C"y and cltn2-abs-rep-abs-mult
have cltn2-abs (cltn2-rep (cltn2-abs (?A" xx ?B’)) x 7C")

= cltn2-abs (?A’ xx 2B’ xx 2C")

by simp

from <invertible (?B’ xx 2C")y and clin2-rep-abs2 [of 7B’ xx 2C']
obtain k¥ where k # 0
and clin2-rep (clin2-abs (?B' xx 2C")) = k *g (2B’ xx 2C)
by auto
from <cltn2-rep (cltn2-abs (B’ xx 2C")) = k xg (B’ #x 2C')»
have ?A’ xx cltn2-rep (cltn2-abs (7B’ xx 2C")) = k xg (?A’ xx 2B’ xx 2C")
by (simp add: matriz-scalar-ac matriz-mul-assoc scalar-matriz-assoc)
with <k # 0> and <invertible (24’ #x B’ xx 2C")
and cltn2-abs-mult [of k ?A" xx 2B xx 2C']
have cltn2-abs (4’ *x cltn2-rep (cltn2-abs (7B’ xx 2C")))
= cltn2-abs (?A' xx 2B’ xx 2C")
by simp
with «cltn2-abs (cltn2-rep (cltn2-abs (A’ «x ?B’)) sx 2C")
= cltn2-abs (?A" xx 7B’ xx 2C")
show
cltn2-compose (cltn2-compose A B) C = clin2-compose A (cltn2-compose B C')
unfolding cltn2-compose-def
by simp
qged

lemma cltn2-left-id: cltn2-compose cltn2-id A = A
proof —
let ?A’ = cltn2-rep A
from cltn2-rep-invertible have invertible ?A’ by simp
with matriz-id-invertible and cltn2-abs-rep-abs-mult [of mat 1 24|
have cltn2-compose cltn2-id A = cltn2-abs (cltn2-rep A)
unfolding cltn2-compose-def and cltn2-id-def
by (auto simp add: matriz-mul-lid)
with cltn2-abs-rep show cltn2-compose cltn2-id A = A by simp
qed

lemma cltn2-left-inverse: clitn2-compose (cltn2-inverse A) A = cltn2-id
proof —
let ?M = cltn2-rep A
let M’ = matriz-inv M
from clin2-rep-invertible have invertible ?M by simp
with matriz-inv-invertible have invertible ?M’ by auto
with <invertible M> and cltn2-abs-rep-abs-mult
have cltn2-compose (cltn2-inverse A) A = cltn2-abs (?M' *x ?M)
unfolding cltn2-compose-def and clin2-inverse-def
by simp
with <invertible ?M>

73

show cltn2-compose (cltn2-inverse A) A = cltn2-id
unfolding cltn2-id-def
by (simp add: matriz-inv)
qed

lemma cltn2-left-inverse-ex:
3 B. cltn2-compose B A = cltn2-id
using cltn2-left-inverse ..

interpretation cltn2:
group (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
using cltn2-assoc and cltn2-left-id and cltn2-left-inverse-ex
and groupl [of (|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)]
by simp-all

lemma cltn2-inverse-inv [simp]:
mv(\carrier = UNIV, mult = clin2-compose, one = cltn2-id|) A

= cltn2-inverse A

using cltn2-left-inverse [of A] and cltn2.inv-equality

by simp

lemmas clin2-inverse-id [simp] = cltn2.inv-one [simplified]
and cltn2-inverse-compose = cltn2.inv-mult-group [simplified)

7.4.2 As a group action

lemma apply-clin2-id [simp]: apply-clin2 p cltn2-id = p
proof —
from matriz-id-invertible and apply-cltn2-right-abs
have apply-clin2 p clin2-id = proj2-abs (proj2-rep p vx mat 1)
unfolding clin2-id-def by blast
thus apply-cltn2 p cltn2-id = p
by (simp add: proj2-abs-rep)
qed

lemma apply-cltn2-compose:
apply-clin2 (apply-clin2 p A) B = apply-clin2 p (cltn2-compose A B)
proof —
from rep-mult-rep-non-zero and cltn2-rep-invertible and apply-cltn2-abs
have apply-cltn2 (apply-cltn2 p A) (clin2-abs (clin2-rep B))
= proj2-abs ((proj2-rep p vk cltn2-rep A) vk cltn2-rep B)
unfolding apply-cltn2-def [of p A]
by simp
hence apply-cltn2 (apply-cltn2 p A) B
= proj2-abs (proj2-rep p vx (cltn2-rep A *x clin2-rep B))
by (simp add: cltn2-abs-rep vector-matriz-mul-assoc)

from cltn2-rep-invertible and invertible-mult
have invertible (cltn2-rep A *x cltn2-rep B) by auto

74

with apply-clin2-right-abs

have apply-cltn2 p (cltn2-compose A B)
= proj2-abs (proj2-rep p vx (cltn2-rep A *x clin2-rep B))
unfolding cltn2-compose-def
by simp

with <apply-cltn2 (apply-cltn2 p A) B
= proj2-abs (proj2-rep p vx (cltn2-rep A *x clin2-rep B))»

show apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (cltn2-compose A B)
by simp

qged

interpretation cltn2:
action (|carrier = UNIV |, mult = cltn2-compose, one = cltn2-id|) apply-clin2
proof
let G = (Jecarrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
fix p
show apply-clin2 p 195 = p by simp
fix A B
have apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (A ® ¢ B)
by simp (rule apply-cltn2-compose)
thus A € carrier /G N B € carrier ?G
— apply-cltn2 (apply-clin2 p A) B = apply-clin2 p (A ®9q B)

qed

definition cltn2-transpose :: cltn2 = cltn2 where
cltn2-transpose A £ cltn2-abs (transpose (cltn2-rep A))

definition apply-cltn2-line :: proj2-line = cltn2 = proj2-line where
apply-cltn2-line | A
2 P2L (apply-cltn2 (L2P 1) (cltn2-transpose (cltn2-inverse A)))

lemma cltn2-transpose-abs:

assumes invertible M

shows cltn2-transpose (cltn2-abs M) = cltn2-abs (transpose M)
proof —

from <invertible M» and transpose-invertible have invertible (transpose M) by
auto

from <invertible M> and cltn2-rep-abs2
obtain k£ where k # 0 and cltn2-rep (cltn2-abs M) = k xg M by auto

from «cltn2-rep (cltn2-abs M) = k g M)

have transpose (cltn2-rep (cltn2-abs M)) = k g transpose M
by (simp add: transpose-scalar)

with <k # 0> and <invertible (transpose M)»

show cltn2-transpose (cltn2-abs M) = cltn2-abs (transpose M)
unfolding cltn2-transpose-def
by (simp add: cltn2-abs-mult)

75

qed

lemma cltn2-transpose-compose:
cltn2-transpose (cltn2-compose A B)
= cltn2-compose (cltn2-transpose B) (cltn2-transpose A)
proof —
from clin2-rep-invertible
have invertible (cltn2-rep A) and invertible (clin2-rep B)
by simp-all
with transpose-invertible
have invertible (transpose (cltn2-rep A))
and invertible (transpose (cltn2-rep B))
by auto

from <invertible (cltn2-rep A)» and <invertible (cltn2-rep B)»
and dnvertible-mult
have invertible (cltn2-rep A *x cltn2-rep B) by auto
with <invertible (cltn2-rep A xx cltn2-rep B)> and cltn2-transpose-abs
have cltn2-transpose (cltn2-compose A B)
= cltn2-abs (transpose (cltn2-rep A xx cltn2-rep B))
unfolding cltn2-compose-def
by simp
also have ... = clin2-abs (transpose (cltn2-rep B) *x transpose (cltn2-rep A))
by (simp add: matriz-transpose-mul)
also from <invertible (transpose (cltn2-rep B))»
and <invertible (transpose (cltn2-rep A))»
and cltn2-compose-abs

have ... = cltn2-compose (cltn2-transpose B) (cltn2-transpose A)
unfolding cltn2-transpose-def
by simp

finally show cltn2-transpose (cltn2-compose A B)
= cltn2-compose (cltn2-transpose B) (cltn2-transpose A) .
qed

lemma clin2-transpose-transpose: cltn2-transpose (cltn2-transpose A) = A
proof —
from cltn2-rep-invertible have invertible (cltn2-rep A) by simp
with transpose-invertible have invertible (transpose (cltn2-rep A)) by auto
with cltn2-transpose-abs [of transpose (clin2-rep A))
have
cltn2-transpose (cltn2-transpose A) = cltn2-abs (transpose (transpose (cltn2-rep
4))
unfolding cltn2-transpose-def [of A
by simp
with clin2-abs-rep and transpose-transpose [of cltn2-rep Al
show cltn2-transpose (cltn2-transpose A) = A by simp
qed

lemma cltn2-transpose-id [simp]: clin2-transpose cltn2-id = cltn2-id

76

using cltn2-transpose-abs
unfolding cltn2-id-def
by (simp add: transpose-mat matriz-id-invertible)

lemma apply-cltn2-line-id [simpl: apply-cltn2-line | cltn2-id = 1
unfolding apply-cltn2-line-def
by simp

lemma apply-cltn2-line-compose:
apply-clin2-line (apply-clin2-line | A) B
= apply-clin2-line | (cltn2-compose A B)
proof —
have cltn2-compose
(cltn2-transpose (cltn2-inverse A)) (cltn2-transpose (cltn2-inverse B))
= cltn2-transpose (cltn2-inverse (cltn2-compose A B))
by (simp add: cltn2-transpose-compose cltn2-inverse-compose)
thus apply-cltn2-line (apply-cltn2-line | A) B
= apply-cltn2-line 1 (cltn2-compose A B)
unfolding apply-clin2-line-def
by (simp add: apply-cltn2-compose)
qed

interpretation cltn2-line:
action
(|carrier = UNIV, mult = cltn2-compose, one = cltn2-id)|)
apply-cltn2-line
proof
let G = (Jcarrier = UNIV, mult = cltn2-compose, one = cltn2-id|)
fix [
show apply-cltn2-line | 105 = | by simp
fix A B
have apply-cltn2-line (apply-cltn2-line l A) B
= apply-cltn2-line | (A ®oq B)
by simp (rule apply-clin2-line-compose)
thus A € carrier ?G N B € carrier G
— apply-cltn2-line (apply-cltn2-line | A) B
= apply-clin2-line | (A ®¢q B)

qed

lemmas apply-cltn2-inv [simp] = cltn2.act-act-inv [simplified)
lemmas apply-cltn2-line-inv [simp] = cltn2-line.act-act-inv [simplified)

lemma apply-clin2-line-alt-def:
apply-cltn2-line | A
= proj2-line-abs (clin2-rep (cltn2-inverse A) *v proj2-line-rep [)
proof —
have invertible (cltn2-rep (cltn2-inverse A)) by (rule clin2-rep-invertible)
hence invertible (transpose (cltn2-rep (cltn2-inverse A)))

77

by (rule transpose-invertible)

hence
apply-cltn2 (L2P 1) (cltn2-transpose (cltn2-inverse A))
= proj2-abs (proj2-rep (L2P 1) vk transpose (cltn2-rep (cltn2-inverse A)))
unfolding cltn2-transpose-def
by (rule apply-cltn2-right-abs)

hence apply-cltn2 (L2P 1) (cltn2-transpose (cltn2-inverse A))
= proj2-abs (cltn2-rep (cltn2-inverse A) *v proj2-line-rep l)
unfolding proj2-line-rep-def
by simp

thus apply-clin2-line [A
= proj2-line-abs (cltn2-rep (cltn2-inverse A) xv proj2-line-rep)
unfolding apply-clin2-line-def and proj2-line-abs-def ..

qed

lemma rep-mult-line-rep-non-zero: cltn2-rep A xv proj2-line-rep | # 0
using proj2-line-rep-non-zero and cltn2-rep-invertible
and invertible-times-eq-zero
by auto

lemma apply-cltn2-incident:
proj2-incident p (apply-clin2-line | A)
+— proj2-incident (apply-clin2 p (clin2-inverse A)) 1
proof —
have proj2-rep p v+ clin2-rep (cltn2-inverse A) # 0
by (rule rep-mult-rep-non-zero)
with proj2-rep-abs2
obtain j where j # 0
and proj2-rep (proj2-abs (proj2-rep p vx cltn2-rep (clin2-inverse A)))
= j g (proj2-rep p vk cltn2-rep (cltn2-inverse A))
by auto

let %v = cltn2-rep (clin2-inverse A) xv proj2-line-rep |
have %v # 0 by (rule rep-mult-line-rep-non-zero)
with proj2-line-rep-abs [of ?v)
obtain k& where k # 0
and proj2-line-rep (proj2-line-abs ?v) = k xr v
by auto
hence proj2-incident p (apply-clin2-line | A)
< proj2-rep p - (cltn2-rep (cltn2-inverse A) *v proj2-line-rep 1) = 0
unfolding proj2-incident-def and apply-clitn2-line-alt-def
by (simp add: dot-scaleR-mult)
also from dot-lmul-matriz [of proj2-rep p clin2-rep (cltn2-inverse A)]
have
oo & (proj2-rep p vk clin2-rep (cltn2-inverse A)) - proj2-line-rep | = 0
by simp
also from < # 0»
and «proj2-rep (proj2-abs (proj2-rep p v+ cltn2-rep (cltn2-inverse A)))
= j xr (proj2-rep p vx cltn2-rep (clin2-inverse A))»

78

have ... «— proj2-incident (apply-clin2 p (cltn2-inverse A)) I
unfolding proj2-incident-def and apply-clin2-def
by (simp add: dot-scaleR-mult)
finally show ?thesis .
qed

lemma apply-clin2-preserve-incident [iff]:
proj2-incident (apply-clin2 p A) (apply-clin2-line | A)
< proj2-incident p 1
by (simp add: apply-cltn2-incident)

lemma apply-cltn2-preserve-set-Col:
assumes proj2-set-Col S
shows proj2-set-Col {apply-clin2 p C | p. p € S}
proof —
from <proj2-set-Col S»
obtain [where V peS§. proj2-incident p | unfolding proj2-set-Col-def ..
hence V ¢ € {apply-clin2p C | p. p € S}.
proj2-incident q (apply-clin2-line | C)
by auto
thus proj2-set-Col {apply-cltn2p C | p. p € S}
unfolding proj2-set-Col-def ..
qed

lemma apply-cltn2-injective:
assumes apply-clin2 p C = apply-clin2 q C
shows p = ¢
proof —
from <apply-cltn2 p C = apply-clin2 q C»
have apply-cltn2 (apply-cltn2 p C) (cltn2-inverse C')
= apply-cltn2 (apply-clin2 q C) (cltn2-inverse C)
by simp
thus p = ¢ by simp
qed

lemma apply-cltn2-line-injective:
assumes apply-clin2-line | C' = apply-clin2-line m C
shows [= m
proof —
from <apply-cltn2-line | C = apply-cltn2-line m C»
have apply-clin2-line (apply-clin2-line | C) (cltn2-inverse C)
= apply-cltn2-line (apply-cltn2-line m C) (cltn2-inverse C')
by simp
thus [= m by simp
qed

lemma apply-cltn2-line-unique:

assumes p # ¢q and proj2-incident p | and proj2-incident q |
and proj2-incident (apply-clin2 p C) m

79

and proj2-incident (apply-clin2 q C) m
shows apply-cltn2-line | C = m
proof —
from <proj2-incident p
have proj2-incident (apply-cltn2 p C) (apply-clin2-line | C) by simp

from <proj2-incident q I»
have proj2-incident (apply-clin2 q C) (apply-clin2-line | C) by simp

from «p # ¢ and apply-cltn2-injective [of p C

have apply-citn2 p C # apply-cltn2 q C by auto

with <proj2-incident (apply-clin2 p C) (apply-clin2-line | C)»
and <proj2-incident (apply-clin2 q C) (apply-clitn2-line I C)»
and «proj2-incident (apply-cltn2 p C) m»
and «proj2-incident (apply-cltn2 q C) m»
and proj2-incident-unique

show apply-cltn2-line | C = m by fast

qed

lemma apply-cltn2-unique:
assumes | # m and proj2-incident p | and proj2-incident p m
and proj2-incident q (apply-cltn2-line | C)
and proj2-incident q (apply-cltn2-line m C)
shows apply-cltn2 p C = ¢
proof —
from <proj2-incident p >
have proj2-incident (apply-cltn2 p C) (apply-clin2-line | C') by simp

from <proj2-incident p m»
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line m C) by simp

from <l # m» and apply-cltn2-line-injective [of I C m)

have apply-cltn2-line | C # apply-clin2-line m C by auto

with <proj2-incident (apply-clin2 p C) (apply-clin2-line | C)»
and <proj2-incident (apply-clin2 p C) (apply-cltn2-line m C')»
and «proj2-incident q (apply-cltn2-line | C)»
and «proj2-incident q (apply-cltn2-line m C))
and proj2-incident-unique

show apply-cltn2 p C' = q by fast

qed

7.4.3 Parts of some Statements from [1]

All theorems with names beginning with statement are based on correspond-
ing theorems in [1].

lemma statement52-existence:
fixes a :: proj2~3 and a3 :: proj2
assumes proj2-no-3-Col (insert a3 (range (($
shows 3 A. apply-cltn2 (proj2-abs (vector [1,

) a)))
1,1))) A= a3 A

80

(V 4. apply-cltn2 (proj2-abs (azis j 1)) A = a$j)
proof —

let v = proj2-rep a3

let ?B = proj2-rep ‘ range (($) a)

from «proj2-no-3-Col (insert a3 (range (($) a)))
have card (insert a3 (range (($) a))) = 4 unfolding proj2-no-3-Col-def ..

from card-image-le [of UNIV ($) a)
have card (range ((3) a)) < 3 by simp
with card-insert-if [of range (($) a) a3]
and <card (insert a3 (range (($) a))) = 4>
have a3 ¢ range (($) a) by auto
hence (insert a8 (range ((3) a))) — {a3} = range (($) a) by simp
with <proj2-no-3-Col (insert a8 (range ((3) a)))»
and proj2-no-3-Col-span [of insert a3 (range (($) a)) a3]
have span B = UNIV by simp

from card-suc-ge-insert [of a3 range (($) a)]

and <card (insert a8 (range (($) a))) = 4>

and «<card (range (($) a)) < 3»
have card (range (($) a)) = 3 by simp
with card-image [of proj2-rep range (($) a)]

and proj2-rep-inj

and subset-inj-on
have card ?B = 3 by auto
hence finite B by simp
with <span ?B = UNIV» and span-finite [of ?B]
obtain ¢ where (> w € ?B. (c w) xg w) = %v

by (auto simp add: scalar-equiv) (metis (no-types, lifting) UNIV-I rangeE)
let 2C = x i. ¢ (proj2-rep (a$i)) *r (proj2-rep (a$7))
let ?A = cltn2-abs 7C

from proj2-rep-inj and <a3 ¢ range (($) a)> have ?v ¢ ?B
unfolding inj-on-def
by auto

have V i. ¢ (proj2-rep (a$7)) # 0
proof
fix ¢
let ?Bi = proj2-rep ‘ (range (($) a) — {a$i})
have a$i € insert a3 (range (($) a)) by simp
have proj2-rep (a$i) € ?B by auto
from image-set-diff [of proj2-rep] and proj2-rep-inj

have ?Bi = ?B — {proj2-rep (a$i)} by simp
with sum-diff1 [of B \ w. (¢ w) xr w]

81

and «finite ?B>»
and <proj2-rep (a$i) € ?B)
have (}° w € ?Bi. (c w) *gr w) =
(> we ?B. (cw) xg w) — ¢ (proj2-rep (a$i)) *r proj2-rep (a$i)
by simp

from a3 ¢ range (($) a)> have a3 # a$i by auto

hence insert a8 (range ((3) a)) — {a$i} =
insert a3 (range (($3) a) — {a$i}) by auto

hence proj2-rep ¢ (insert a8 (range ((3) a)) — {a$i}) = insert v ?Bi
by simp

moreover from (proj2-no-3-Col (insert a3 (range (($) a)))»
and <a$i € insert a3 (range (($) a))

have span (proj2-rep ¢ (insert a3 (range (($) a)) — {a$i})) = UNIV
by (rule proj2-no-3-Col-span)

ultimately have span (insert %v ?Bi) = UNIV by simp

from «?Bi = ?B — {proj2-rep (a$i)}

and <proj2-rep (a$i) € ?B)

and <card B = %
have card ?Bi = 2 by (simp add: card-gt-0-diff-singleton)
hence finite ?Bi by simp
with <card ?Bi = 2> and dim-le-card’ [of ?Bi] have dim ¢Bi < 2 by simp
hence dim (span ?Bi) < 2 by (subst dim-span)
then have span ?Bi # UNIV

by clarify (auto simp: dim-UNIV')
with «span (insert v ?Bi) = UNIV» and span-redundant
have %v ¢ span ?Bi by auto

{ assume c (proj2-rep (a$i)) = 0
with «(>° w € ?Bi. (¢ w) *xg w) =
(> we ?B. (cw) xg w) — ¢ (proj2-rep (a$i)) *r proj2-rep (a$7)>
and «(>° w € ?B. (c w) *xg w) = v
have ?v = (> w € ?Bi. (c w) *xg w)
by simp
with span-finite [of ?Bi] and «finite ?Bi»
have ?v € span ?Bi by (simp add: scalar-equiv)
with «?v ¢ span ?Bi> have False .. }
thus c (proj2-rep (a$i)) # 0 ..
qed
hence V we?B. c w # 0
unfolding image-def
by auto

have rows ?C = (A w. (c w) *xgr w) ‘ ?B
unfolding rows-def
and row-def
and image-def
by (auto simp: vec-lambda-eta)

82

have V z. z € span (rows ?C)
proof
fix z :: real™3
from «finite B> and span-finite [of ?B] and «span ?B = UNIV)»
obtain ub where (> we?B. (ub w) *xgp w) = x
by (auto simp add: scalar-equiv) (metis (no-types, lifting) UNIV-I rangeE)
have V we?B. (ub w) xgr w € span (rows ?C)
proof
fix w
assume w € ?B
with span-superset [of rows ?C| and <rows ?C = image (A w. (¢ w) *xg w)
B>
have (¢ w) xg w € span (rows ?C) by auto
with span-mul [of (¢ w) *gr w rows ?C (ub w)/(c w)]
have ((ub w)/(c w)) *r ((¢c w) *g w) € span (rows ?C)
by (simp add: scalar-equiv)
with <V we?B. ¢ w # 0> and <w € ?B»
show (ub w) *r w € span (rows ?C) by auto
qed
with span-sum [of ?B A\ w. (ub w) *r w] and <finite ?B>
have (> we?B. (ub w) *xg w) € span (rows ?C) by blast
with «(>° we?B. (ub w) xg w) = x> show z € span (rows ¢C) by simp
qed
hence span (rows ?C') = UNIV by auto
with matriz-left-invertible-span-rows [of 2C]
have 3 C'. C' xx 2C = mat 1 ..
with left-invertible-iff-invertible
have invertible ?C ..

have (vector [1,1,1] :: real™3) # 0
unfolding vector-def
by (simp add: vec-eq-iff forall-3)

with apply-clin2-abs and <invertible ?2C)»

have apply-clin2 (proj2-abs (vector [1,1,1])) ¢4 =
proj2-abs (vector [1,1,1] vx 2C)
by simp

from inj-on-iff-eq-card [of UNIV ($) a] and <card (range (($) a)) = 3»

have inj (($) a) by simp

from ezhaust-3 have V i::3. (vector [1:real,1,1])$i = 1
unfolding vector-def
by auto

with vector-matriz-row [of vector [1,1,1] ?C)

have (vector [1,1,1]) vx ¢C =
(> i€UNIV. (¢ (proj2-rep (a$i))) *r (proj2-rep (a$i)))
by simp

also from sum.reindex

[of (8) a UNIV X z. (¢ (proj2-rep x)) xg (proj2-rep z)]
and «nj (($) a)

83

have ... = (3 z€(range (($) a)). (¢ (proj2-rep z)) *r (proj2-rep x))
by simp
also from sum.reindex
[of proj2-rep range (($) a) A w. (¢ w) *r W)
and proj2-rep-inj and subset-inj-on [of proj2-rep UNIV range ((3) a)]
have ... = (3. we?B. (¢ w) xg w) by simp
also from (> w € ?B. (¢ w) *xg w) = %v» have ... = %v by simp
finally have (vector [1,1,1]) vx ?C = %v.
with <apply-cltn2 (proj2-abs (vector [1,1,1])) ?A =
proj2-abs (vector [1,1,1] vx 2C)»
have apply-cltn2 (proj2-abs (vector [1,1,1])) ¢?A = proj2-abs ?v by simp
with proj2-abs-rep have apply-clin2 (proj2-abs (vector [1,1,1])) A = a3
by simp
have V j. apply-clin2 (proj2-abs (azis j 1)) ?A = a$j
proof
fixj:3
have ((axis j 1)::real”3) # 0 by (simp add: vec-eq-iff azxis-def)
with apply-clin2-abs and <invertible ?2C»
have apply-clin2 (proj2-abs (azis j 1)) ?A = proj2-abs (azis j 1 vk 7C)
by simp

have V i€(UNIV—{j}).
((azis j 1)$i * ¢ (proj2-rep (a$7))) *r (proj2-rep (a$7)) = 0
by (simp add: azis-def)
with sum.mono-neutral-left [of UNIV {j}
A i. ((azis j 1)$i * ¢ (proj2-rep (a$1))) *r (proj2-rep (a$7))]
and vector-matriz-row [of axis j 1 ?C]
have (axis j 1) vx 2C = 2C$j by (simp add: scalar-equiv)
hence (azxis j 1) vx 2C = c (proj2-rep (a$j)) *r (proj2-rep (a$j)) by simp
with proj2-abs-mult-rep and <V i. ¢ (proj2-rep (a$i)) # 0»
and <apply-cltn2 (proj2-abs (axis j 1)) ?A = proj2-abs (axis j 1 vx ?C)»
show apply-cltn2 (proj2-abs (azis j 1)) ?A = a$j
by simp
qed
with <apply-cltn2 (proj2-abs (vector [1,1,1])
show 3 A. apply-cltn2 (proj2-abs (vector [1,
(V 7. apply-cltn2 (proj2-abs (axis j 1)) A =
by auto
qed

) A =
1,1])) Z a3 A
a$j)

lemma statement53-existence:
fixes p :: proj2=4 2

assumes V 1. proj2-no-3-Col (range (() (p$9)))
shows 3 C.V j. apply-clin2 (p$0%j) C = p$13j
proof —

let 2g = x 4. x j::3. p$i § (of-int (Rep-bit! j))

let 2D = x i. € D. apply-clin2 (proj2-abs (vector [1,1,1])) D = pi3
A (VY . apply-cltn2 (proj2-abs (azis j' 1)) D = 2¢i;’)

have V i. apply-clin2 (proj2-abs (vector [1,1,1])) (?D$i) = p$i$3

84

A (Y j'. apply-cltn2 (proj2-abs (axis 7' 1)) (?D3$7) = 2¢3i$;’)
proof
fix ¢
have range ((3) (p$7)) = insert (p$i$3) (range ((3) (2¢%7)))
proof
show range (($) (p$7)) D insert (pi3) (range (($) (9¢%7))) by auto
show range (($) (p$i)) C insert (pi3) (range (($) (2¢%$i)))
proof
fix r
assume 7 € range (($) (p$7))
then obtain j where r = pij by auto
with eg-3-or-of-3 [of j]
show r € insert (pi3) (range ((3) (?¢%7))) by auto
qed
qed
moreover from <V i. proj2-no-3-Col (range (($) (p$7)))>
have proj2-no-3-Col (range (($) (p$9))) ..
ultimately have proj2-no-3-Col (insert (pi3) (range (($) (9¢%7))))
by simp
hence 3 D. apply-clin2 (proj2-abs (vector [1,1,1])) D = pi3
A (Y j'. apply-clin2 (proj2-abs (axis j' 1)) D = 2¢ij")
by (rule statement52-existence)
with somel-ex [of A D. apply-cltn2 (proj2-abs (vector [1,1,1])) D = pi3
A (Y j'. apply-clin2 (proj2-abs (axis j' 1)) D = 2¢ij")]
show apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$i) = p$i$3
A (VY §'. apply-cltn2 (proj2-abs (axis j' 1)) (?D$i) = 2¢$i$;’)
by simp
qed
hence apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$0) = $0$3
and apply-cltn2 (proj2-abs (vector [1,1,1])) (¢D$1) = p$1$
and V j'. apply-clin2 (proj2-abs (azis j' 1)) (?D$0) = 0]
and V j’. apply-cltn2 (proj2-abs (axzis j' 1)) (¢?D$1) = 2¢$1$
by simp-all

let ?C = cltn2-compose (clin2-inverse (¢D3$0)) (?D$1)
have V j. apply-cltn2 (p0j) ?2C = p1;j
proof
fix j
show apply-clin2 (p$08%5) ?2C = p$1$;j
proof cases
assume j = 3
with <apply-cltn2 (proj2-abs (vector [1,1,1])) (?D$0) = p$0$3»
and cltn2.act-inv-iff

have
apply-clin2 (p$08j) (clin2-inverse (?D$0)) = proj2-abs (vector [1,1,1])
by simp

with <apply-cltn2 (proj2-abs (vector [1,1,1])) (¢?D$1) = p$1$3>
and j = $»

and cltn2.act-act [of cltn2-inverse (?D$0) ¢D$1 p$0%j]

85

show apply-cltn2 (p$0%7) ?C = p$1$j by simp
next

assume j # 3

with eg-3-or-of-3 obtain j’ :: 8 where j = of-int (Rep-bit! j’)
by metis

with «V j'. apply-cltn2 (proj2-abs (axis j' 1)) (?D$0) = 2¢$0$5"
and Y j'. apply-cltn2 (proj2-abs (azis j' 1)) (¢D$1) = 9¢$1%5"

have p$08j = apply-cltn2 (proj2-abs (axis j' 1)) (?D3$0)
and p18j = apply-cltn2 (proj2-abs (axis 7' 1)) (?D$1)
by simp-all

from <p$0%j = apply-cltn2 (proj2-abs (azis j' 1)) (¢?D$0)>
and cltn2.act-inv-iff

have apply-clin2 (p$08j) (clin2-inverse (2D$0)) = proj2-abs (azxis j' 1)
by simp

with «p1j = apply-clin2 (proj2-abs (azis j' 1)) (¢D$1)»
and cltn2.act-act [of cltn2-inverse (?D$0) ?D$1 p$083j]

show apply-cltn2 (p$0%7) 7C = p$1$j by simp

qed
qed
thus 3 C.V j. apply-clin2 (p0j) C = p$18j by (rule exl [of - ?C])
qed

lemma apply-clin2-linear:
assumes j xg v + k xg w # 0
shows j g (v vx cltn2-rep C) + k xg (w vx cltn2-rep C) # 0
(is %u # 0)
and apply-clin2 (proj2-abs (j *g v + k *r w)) C
= proj2-abs (j xg (v vx cltn2-rep C) + k xr (w v* cltn-rep C))
proof —
have ?u = (j g v + k *g w) vx cltn2-rep C
by (simp only: vector-matriz-left-distrib scaleR-vector-matriz-assoc)
with <j xgp v + k xg w # 0> and non-zero-mult-rep-non-zero
show ?u # 0 by simp

from «%u = (j xg v + k *xg w) vx cltn2-rep C»
and j *p v+ k *gp w # O»
and apply-clin2-left-abs
show apply-cltn2 (proj2-abs (j *xr v + k xr w)) C = proj2-abs ?u
by simp
qed

lemma apply-cltn2-imp-mult:

assumes apply-cltn2 p C = ¢

shows 3 k. k #£ 0 A proj2-rep p vk cltn2-rep C = k xg proj2-rep q
proof —

have proj2-rep p v+ cltn2-rep C # 0 by (rule rep-mult-rep-non-zero)

from <apply-cltn2 p C' = ¢
have proj2-abs (proj2-rep p vx cltn2-rep C) = q by (unfold apply-clin2-def)

86

hence proj2-rep (proj2-abs (proj2-rep p vx cltn-rep C)) = proj2-rep q
by simp
with («proj2-rep p vx clin2-rep C # 0> and proj2-rep-abs2 [of proj2-rep p vx
cltn2-rep C|
have 3 j. j # 0 A proj2-rep ¢ = j xr (proj2-rep p vx clin2-rep C) by simp
then obtain j where j # 0
and proj2-rep q = j xr (proj2-rep p vx cltn2-rep C) by auto
hence proj2-rep p v+ cltn2-rep C = (1/j) *r proj2-rep q
by (simp add: field-simps)
with ¢ # O»
show 3 k. k # 0 A proj2-rep p vx cltn2-rep C = k xg proj2-rep q
by (simp add: exI [of - 1/§])
qed

lemma statement55:
assumes p # ¢
and apply-cltn2 p C' = ¢
and apply-cltn2 ¢ C = p
and proj2-incident p 1
and proj2-incident q |
and proj2-incident r 1
shows apply-clin2 (apply-cltn2 r C) C = r
proof cases
assume r = p
with <apply-cltn2 p C = ¢» and <apply-cltn2 q C = p»
show apply-cltn2 (apply-cltn2 r C) C = r by simp
next
assume r # p

from <apply-clin2 p C = ¢ and apply-cltn2-imp-mult [of p C q]
obtain ¢ where i # 0 and proj2-rep p vx clin2-rep C' = i xg proj2-rep q
by auto

from <apply-cltn2 q C = p» and apply-clin2-imp-mult [of q C p]
obtain j where j # 0 and proj2-rep q v cltn2-rep C = j xr proj2-rep p
by auto

from «p # ¢
and <proj2-incident p I»
and <proj2-incident q I»
and <(proj2-incident r
and proj2-incident-iff
have r = p vV (3 k. r = proj2-abs (k xr proj2-rep p + proj2-rep q))
by fast
with «r # p
obtain & where r = proj2-abs (k xg proj2-rep p + proj2-rep q) by auto

from <«p # ¢ and proj2-rep-dependent [of k p 1 q]
have k xg proj2-rep p + proj2-rep q # 0 by auto

87

with <r = proj2-abs (k xr proj2-rep p + proj2-rep q)»
and apply-cltn2-linear [of k proj2-rep p 1 proj2-rep q|
have k xg (proj2-rep p vx cltn2-rep C) + proj2-rep q vk clin2-rep C # 0
and apply-clin2 r C
= proj2-abs
(k xg (proj2-rep p v« clin2-rep C) + proj2-rep q vx cltn2-rep C)
by simp-all
with <proj2-rep p vx cltn2-rep C = i xg proj2-rep ¢
and <proj2-rep q vk cltn2-rep C' = j xg proj2-rep p»
have (k % i) xg proj2-rep q + j xr proj2-rep p # 0
and apply-cltn2 r C
= proj2-abs ((k * ©) xg proj2-rep q + j *g proj2-rep p)
by simp-all
with apply-clin2-linear
have apply-cltn2 (apply-cltn2 r C) C
= proj2-abs
((k % i) xg (proj2-rep q vk cltn2-rep C)
+ j *g (proj2-rep p vx clin2-rep C))
by simp
with <proj2-rep p vx cltn2-rep C = i xg proj2-rep ¢
and <proj2-rep q vk cltn2-rep C' = j g proj2-rep p»
have apply-cltn2 (apply-cltn2 r C) C
= proj2-abs ((k * © * j) xr proj2-rep p + (j * i) xr proj2-rep q)
by simp
also have ... = proj2-abs ((i * j) xg (k *g proj2-rep p + proj2-rep q))
by (simp add: algebra-simps)
also from (i # 0> and ¢j # 0> and proj2-abs-mult
have ... = proj2-abs (k xr proj2-rep p + proj2-rep q) by simp
also from «r = proj2-abs (k xg proj2-rep p + proj2-rep q)
have ... = r by simp
finally show apply-cltn2 (apply-clin2 r C) C = r .
qed

7.5 Cross ratios

definition cross-ratio :: proj2 = proj2 = proj2 = proj2 = real where
cross-ratio p q r s = proj2-Col-coeff p q s | proj2-Col-coeff p q r

definition cross-ratio-correct :: proj2 = proj2 = proj2 = proj2 = bool where
cross-ratio-correct p q r s &
proj2-set-Col {p,q,r,s} N\p# qANT#pANs#pATF#q

lemma proj2-Col-coeff-abs:
assumes p #* g and j # 0
shows proj2-Col-coeff p q (proj2-abs (i xg proj2-rep p + j *xg proj2-rep q))
= i/j
(is proj2-Col-coeff p q ?r = i/j)
proof —
from <¢j # 0»

88

and proj2-abs-mult [of 1/j i *r proj2-rep p + j *r proj2-rep ¢|
have ?r = proj2-abs ((i/j) *r proj2-rep p + proj2-rep q)
by (simp add: scaleR-right-distrib)

from <p # ¢ and proj2-rep-dependent [of - p 1 q]

have (i/j) *r proj2-rep p + proj2-rep q¢ # 0 by auto

with <%r = proj2-abs ((i/j) *xr proj2-rep p + proj2-rep q)»
and proj2-rep-abs2

obtain k¥ where k # 0
and proj2-rep ?r = k xg ((i/4) *r proj2-rep p + proj2-rep q)
by auto

hence (kxi/j) g proj2-rep p + k xr proj2-rep q — proj2-rep ?r = 0
by (simp add: scaleR-right-distrib)

hence 3 . (kxi/j) xg proj2-rep p + k xgr proj2-rep q + | *g proj2-rep ?r = 0
A kxi/j £ 0NV E#0VI#D)
by (simp add: exI [of - —1])

hence proj2-Col p q ?r by (unfold proj2-Col-def) auto

have 7r # p

proof
assume r = p
with <(kxi/j) xg proj2-rep p + k xr proj2-rep q — proj2-rep ?r = 0»
have (kxi/j — 1) xg proj2-rep p + k xr proj2-rep ¢ = 0

by (simp add: algebra-simps)

with <k # 0> and proj2-rep-dependent have p = ¢ by simp
with <p # ¢ show Fulse ..

qed

with <proj2-Col p q ?ry and <p # ¢

have ?r = proj2-abs (proj2-Col-coeff p q ?r xr proj2-rep p + proj2-rep q)
by (rule proj2-Col-coeff)

with «p # ¢ and «?r = proj2-abs ((i/j) *r proj2-rep p + proj2-rep q)»
and proj2-Col-coeff-unique

show proj2-Col-coeff p q¢ ?r = i/j by simp

qed

lemma proj2-set-Col-coeff:
assumes proj2-set-Col S and {p,q,r} C Sand p # gand r # p
shows r = proj2-abs (proj2-Col-coeff p q v *r proj2-rep p + proj2-rep q)
(is v = proj2-abs (?i *p 2u + %v))
proof —
from «{p,q,r} C S> and «proj2-set-Col S»
have proj2-set-Col {p,q,r} by (rule proj2-subset-Col)
hence proj2-Col p q r by (subst proj2-Col-iff-set-Col)
with <p # ¢ and «r # p» and proj2-Col-coeff
show r = proj2-abs (%i xg %u + %v) by simp
qed

lemma cross-ratio-abs:
fixes v v :: real” 3 and i j k1 :: real

89

assumes u # 0 and v # 0 and proj2-abs u # proj2-abs v
and j # 0 and [# 0
shows cross-ratio (proj2-abs u) (proj2-abs v)
(proj2-abs (i *g u + j g v))
(proj2-abs (k xr u + | xg v))
=jxk/(ix]l)
(is cross-ratio %p ?q ?r 9s = -)
proof —
from <u # 0> and proj2-rep-abs2
obtain g where g # 0 and proj2-rep ?p = g *g u by auto

from v # 0» and proj2-rep-abs2

obtain h where h # 0 and proj2-rep ?q = h xg v by auto

with «g # 0> and «proj2-rep %p = g *xgp w

have ?r = proj2-abs ((i/g) *r proj2-rep ?p + (j/h) *r proj2-rep 2q)
and ?s = proj2-abs ((k/g) *r proj2-rep ?p + (l/h) xg proj2-rep ?q)
by (simp-all add: field-simps)

with «(?p # ?¢> and <h # 0> and j # 0> and < # 0> and proj2-Col-coeff-abs

have proj2-Col-coeff ?p ?2q ?r = hxi/(g+*j)
and proj2-Col-coeff ?p ?q ?s = hxk/(g*l)
by simp-all

with «¢ # 0> and <h # 0»

show cross-ratio ?p ?q ?r 9s = jxk/(ixl)
by (unfold cross-ratio-def) (simp add: field-simps)

qed

lemma cross-ratio-abs2:
assumes p # ¢
shows cross-ratio p q
(proj2-abs (i xr proj2-rep p + proj2-rep q))
(proj2-abs (j g proj2-rep p + proj2-rep q))
=j/i
(is cross-ratio p q ?r %s = -)
proof —
let %u = proj2-rep p
let ?v = proj2-rep q
have %u # 0 and %v # 0 by (rule proj2-rep-non-zero)+

have proj2-abs u = p and proj2-abs ?v = q by (rule proj2-abs-rep)+
with «?u # 0> and «%v # 0» and <p # ¢ and cross-ratio-abs [of ?u ?v 1 1 i j]
show cross-ratio p q ?r %s = j/i by simp

qged

lemma cross-ratio-correct-cltn2:
assumes cross-ratio-correct p q v s
shows cross-ratio-correct (apply-cltn2 p C) (apply-cltn2 q C)
(apply-cltn2 r C) (apply-cltn2 s C')
(is cross-ratio-correct ?pC 2qC 2rC 2sC)
proof —

90

from <cross-ratio-correct p q r s»

have proj2-set-Col {p,q,r,s}
and p #qand r # pand s # pand r # ¢
by (unfold cross-ratio-correct-def) simp-all

have {apply-cltn2t C | t. t € {p,q,r,s}} = {?pC,%¢C,?rC,?sC} by auto
with <proj2-set-Col {p,q,r,s}

and apply-clin2-preserve-set-Col [of {p,q,r,s} C]
have proj2-set-Col {?pC,?2qC,%rC,?sC} by simp

from «p # ¢» and <r # p» and s # p» and «r # ¢ and apply-cltn2-injective
have ?pC # ?¢qC and ?rC # ?pC and ?sC # ?pC and ?rC # ?qC by fast+
with <proj2-set-Col {?pC,?2qC,%rC,?sC}»
show cross-ratio-correct pC 2qC ?rC ?sC
by (unfold cross-ratio-correct-def) simp
qed

lemma cross-ratio-cltn2:
assumes proj2-set-Col {p,q,r,s} and p # g and r # p and s # p
shows cross-ratio (apply-cltn2 p C) (apply-clin2 q C)
(apply-cltn2 r C) (apply-cltn2 s C')
= cross-ratiop q r s
(is cross-ratio ?pC 2qC ?rC ?sC = -)
proof —
let 2u = proj2-rep p
let ?v = proj2-rep q
let 9 = proj2-Col-coeff p q r
let 9j = proj2-Col-coeff p q s
from <proj2-set-Col {p,q,r,s}> and <p # ¢» and «r # p)> and s # p
and proj2-set-Col-coeff
have r = proj2-abs (% xgr ?u + ?v) and s = proj2-abs (%] xg %u + %v)
by simp-all

let 2uC = ?2u vx cltn2-rep C
let 2vC = ?2v vx cltn2-rep C
have 2uC # 0 and ?vC # 0 by (rule rep-mult-rep-non-zero)+

have proj2-abs uC = ?pC and proj2-abs ?vC = 2qC
by (unfold apply-cltn2-def) simp-all

from <p # ¢ and apply-clin2-injective have ?pC # ?2qC by fast

from «p # ¢ and proj2-rep-dependent [of - p 1 q]

have 70 xp ?u + %v # 0 and ?j xp ?u + v # 0 by auto

with <r = proj2-abs (%i xg 2u + %v)> and «s = proj2-abs (%j xg u + 2v)»
and apply-cltn2-linear [of % 2u 1 ?v)
and apply-cltn2-linear [of %j 2u 1 ?v)

have ?rC = proj2-abs (?i xg uC + 2vC)
and ?sC = proj2-abs (%j *p 2uC + ?vC)

91

by simp-all

with (?uC # 0> and «?20C # 0> and <proj2-abs uC = ?pC»
and «(proj2-abs 2vC = 2qC» and (?pC # 2qC»
and cross-ratio-abs [of 2uC ?vC 1 1 %i 7j]

have cross-ratio ?pC 2qC ?rC 2sC = 2j/%i by simp

thus cross-ratio ?pC ?qC ?rC ?sC = cross-ratiop q r s
unfolding cross-ratio-def [of p q 7 5] .

qed

lemma cross-ratio-unique:
assumes cross-ratio-correct p q v s and cross-ratio-correct p q r t
and cross-ratio p q v s = cross-ratio p q vt
shows s =t
proof —
from <cross-ratio-correct p q r s> and <cross-ratio-correct p q r t»
have proj2-set-Col {p,q,r,s} and proj2-set-Col {p,q,r,t}
andp#qandr #pandr # qand s #pand t # p
by (unfold cross-ratio-correct-def) simp-all

let 2u = proj2-rep p
let v = proj2-rep q
let 9 = proj2-Col-coeff p q r
let 9j = proj2-Col-coeff p q s
let %k = proj2-Col-coeff p q t
from «proj2-set-Col {p,q,r,s}> and «proj2-set-Col {p,q,r,t}>
and <p # ¢» and «r # p> and <s # p> and <t # p> and proj2-set-Col-coeff
have r = proj2-abs (% xgr 2u + ?v)
and s = proj2-abs (9 *r %u + %v)
and t = proj2-abs (?k xrp 2u + %v)
by simp-all

from «r # ¢ and <r = proj2-abs (% xgr 2u + 7o)
have % # 0 by (auto simp add: proj2-abs-rep)
with <cross-ratio p q v s = cross-ratio p q v t»
have %j = %k by (unfold cross-ratio-def) simp
with «s = proj2-abs (?j xg ?u + %v)» and <t = proj2-abs (?k xr 2u + ?v)
show s = t by simp
qged

lemma cltn2-three-point-line:
assumes p # qand r # pand r # ¢
and proj2-incident p | and proj2-incident q | and proj2-incident r |
and apply-clin2 p C = p and apply-clin2 ¢ C = q and apply-cltn2 r C = r
and proj2-incident s |
shows apply-clin2 s C = s (is 9sC = s)
proof cases
assume s = p
with <apply-cltn2 p C = p> show ?sC = s by simp
next

92

assume s # p

let ?pC = apply-cltn2 p C
let 2qC = apply-clin2 q C
let ?rC = apply-cltn2 r C

from «(proj2-incident p > and <proj2-incident q > and <proj2-incident r
and <proj2-incident s >

have proj2-set-Col {p,q,r,s} by (unfold proj2-set-Col-def) auto

with <p # ¢» and «r # p> and s # p> and r # @

have cross-ratio-correct p q r s by (unfold cross-ratio-correct-def) simp

hence cross-ratio-correct ?pC 2qC ?rC ?sC
by (rule cross-ratio-correct-cltn2)

with «?pC = p» and <?qC = ¢» and «?rC = r

have cross-ratio-correct p q v ?sC by simp

from <proj2-set-Col {p,q,r,s}> and <p # ¢» and «r # p)> and s # p
have cross-ratio ?pC 2qC ?rC ?sC = cross-ratio p q v s
by (rule cross-ratio-cltn2)
with «?pC = p» and «?¢C = ¢» and «?rC' = r»
have cross-ratio p q r ?2sC = cross-ratio p q r s by simp
with <cross-ratio-correct p q r ?sC» and <cross-ratio-correct p q r $
show ?sC = s by (rule cross-ratio-unique)
qed

lemma cross-ratio-equal-cltn2:
assumes cross-ratio-correct p q v s
and cross-ratio-correct (apply-clin2 p C) (apply-cltn2 q C)
(apply-clin2 r C) ¢
(is cross-ratio-correct ?pC 2qC ?rC t)
and cross-ratio (apply-clin2 p C) (apply-clin2 q C) (apply-cltn2 r C) t
= cross-ratiop q r s
shows t = apply-cltn2 s C (is t = ?sC)
proof —
from <cross-ratio-correct p q r s»
have cross-ratio-correct ?pC ?qC ?rC ?sC by (rule cross-ratio-correct-cltn2)

from <cross-ratio-correct p q r s

have proj2-set-Col {p,q,r,s} and p # qand r # p and s # p
by (unfold cross-ratio-correct-def) simp-all

hence cross-ratio ?pC 2qC ?rC ?sC = cross-ratio p q r s
by (rule cross-ratio-cltn2)

with <cross-ratio ?pC ?qC ?rC t = cross-ratio p q r s>

have cross-ratio ?pC 2qC ?rC t = cross-ratio ?pC ?qC ?rC ?sC by simp

with <cross-ratio-correct ?pC 2qC ?rC t»
and <cross-ratio-correct ?pC 2qC ?rC ?sC)»

show ¢ = ?sC by (rule cross-ratio-unique)

qed

93

lemma proj2-Col-distinct-coeff-non-zero:
assumes proj2-Colp ¢qrand p # gand r # p and r # ¢
shows proj2-Col-coeff p q r # 0

proof
assume proj2-Col-coeff p q r = 0

from «proj2-Col p q r» and <p # ¢ and r # p»
have r = proj2-abs ((proj2-Col-coeff p q) *g proj2-rep p + proj2-rep q)
by (rule proj2-Col-coeff)
with «proj2-Col-coeff p ¢ r = 0> have r = g by (simp add: proj2-abs-rep)
with «r # ¢ show Fulse ..
qed

lemma cross-ratio-product:

assumes proj2-Col p ¢ sand p # g and s # p and s # ¢

shows cross-ratio p q r s * cross-ratio p q s t = cross-ratio p q r t
proof —

from «proj2-Col p q s» and <p # ¢> and s # p» and <s # ¢

have proj2-Col-coeff p q¢ s # 0 by (rule proj2-Col-distinct-coeff-non-zero)

thus cross-ratio p q r s x cross-ratio p q s t = cross-ratio p q r t

by (unfold cross-ratio-def) simp

qged

lemma cross-ratio-equal-1:
assumes proj2-Col p ¢ rand p # gqand r # p and r # ¢
shows cross-ratio p qrr = 1
proof —
from «proj2-Col p q r» and <p # ¢ and <r # p> and «r # ¢
have proj2-Col-coeff p q v # 0 by (rule proj2-Col-distinct-coeff-non-zero)
thus cross-ratio p ¢ r r = 1 by (unfold cross-ratio-def) simp
qed

lemma cross-ratio-1-equal:
assumes cross-ratio-correct p ¢ v s and cross-ratiop qr s = 1
shows r = s
proof —
from <cross-ratio-correct p q r s»
have proj2-set-Col {p,q,r,s} and p # qand r # p and r # ¢
by (unfold cross-ratio-correct-def) simp-all

from «proj2-set-Col {p,q,r,s}
have proj2-set-Col {p,q,r}
by (simp add: proj2-subset-Col [of {p,q,r} {p,q,7,8}])
with <p # ¢ and «r # p» and < #£ ¢
have cross-ratio-correct p q v r by (unfold cross-ratio-correct-def) simp

from «proj2-set-Col {p,q,r}»

have proj2-Col p q r by (subst proj2-Col-iff-set-Col)
with <p # ¢ and «r # p» and <r # @

94

have cross-ratio p ¢ r r = 1 by (simp add: cross-ratio-equal-1)
with <cross-ratiop qr s = 1>
have cross-ratio p q v r = cross-ratio p q r s by simp
with <cross-ratio-correct p q r r» and «<cross-ratio-correct p q r s»
show r = s by (rule cross-ratio-unique)

qed

lemma cross-ratio-swap-34:
shows cross-ratio p ¢ s v = 1 / (cross-ratio p q 1 s)
by (unfold cross-ratio-def) simp

lemma cross-ratio-swap-13-24:
assumes cross-ratio-correct p ¢ r s and r # s
shows cross-ratio v s p ¢ = cross-ratio p q r s
proof —
from <cross-ratio-correct p q r s
have proj2-set-Col {p,q,r,s} and p # qand r # p and s # p and r # ¢
by (unfold cross-ratio-correct-def, simp-all)

have proj2-rep p # 0 (is ?u # 0) and proj2-rep ¢ # 0 (is %v # 0)
by (rule proj2-rep-non-zero)+

have p = proj2-abs ?u and q = proj2-abs ?v
by (simp-all add: proj2-abs-rep)
with <p # ¢ have proj2-abs ?u # proj2-abs ?v by simp

let 9 = proj2-Col-coeff p q r
let 9j = proj2-Col-coeff p q s
from <proj2-set-Col {p,q,r,s}> and <p # ¢» and «r # p)> and s # p
have r = proj2-abs (i g %u + %v) (is r = proj2-abs ?w)
and s = proj2-abs (9j *xr 2u + ?v) (is s = proj2-abs ?x)
by (simp-all add: proj2-set-Col-coeff)
with «r # s have % # ?j by auto

from «?u # 0> and <%0 # 0> and <proj2-abs ?u # proj2-abs ?v»
and dependent-proj2-abs [of ?u v - 1]
have 2w # 0 and %z # 0 by auto

from <r = proj2-abs (%i xg %u + %v)> and «r # @
have % # 0 by (auto simp add: proj2-abs-rep)

have ?w — %z = (%{ — %)) xg ?u by (simp add: algebra-simps)
with <20 # 7
have p = proj2-abs (w — ?z) by (simp add: proj2-abs-mult-rep)

have %j xg 2w — % xg %2 = (%) — %) xg v by (simp add: algebra-simps)
with % # 7))

have q = proj2-abs (9j xr ?w — %i xg ?z) by (simp add: proj2-abs-mult-rep)
with (?w # 0> and <%z # 0> and «r # s and <% # 0» and «r = proj2-abs

95

2w
and <s = proj2-abs ?z) and <p = proj2-abs (fw — ?z))
and cross-ratio-abs [of Pw %z —1 — % 1 ?j]
have cross-ratio r s p ¢ = 2§ / 2i by (simp add: algebra-simps)
thus cross-ratio v s p ¢ = cross-ratio p q r s
by (unfold cross-ratio-def [of p q r s], simp)
qed

lemma cross-ratio-swap-12:
assumes cross-ratio-correct p q v s and cross-ratio-correct ¢ p v 8
shows cross-ratio g p r s = 1 / (cross-ratio p q r s)

proof cases
assume r = §

from <cross-ratio-correct p q r s>
have proj2-set-Col {p,q,r,s} and p # gand r # p and r # ¢
by (unfold cross-ratio-correct-def) simp-all

from «proj2-set-Col {p,q,r,s}> and «r = s
have proj2-Col p q r by (simp-all add: proj2-Col-iff-set-Col)
hence proj2-Col q p r by (rule proj2-Col-permute)
with <proj2-Col p ¢ r» and «p # ¢» and <r # p> and <r # ¢ and «r = &
have cross-ratio p q r s = 1 and cross-ratio ¢ p r s = 1
by (simp-all add: cross-ratio-equal-1)
thus cross-ratio ¢ p r s = 1 / (cross-ratio p q v s) by simp
next
assume 1 #£ s
with <cross-ratio-correct q p r s
have cross-ratio q p r s = cross-ratior s q p
by (simp add: cross-ratio-swap-13-24)

also have ... = 1 / (cross-ratio r s p q) by (rule cross-ratio-swap-34)
also from «<cross-ratio-correct p q v s» and <r # $
have ... = 1 / (cross-ratio p q r s) by (simp add: cross-ratio-swap-13-24)

finally show cross-ratio g p r s = 1 / (cross-ratiop qrs) .
qed

7.6 Cartesian subspace of the real projective plane

definition vector2-appendl! :: real” 2 = real”3 where
vector2-appendl v = vector [v$1, v$2, 1]

lemma vector2-append1-non-zero: vector2-appendl v # 0
proof —
have (vector2-appendl v)$3 # 0%3
unfolding vector2-appendl-def and vector-def
by simp
thus vector2-appendl v # 0 by auto
qed

96

definition proj2-pt :: real”2 = proj2 where
proj2-pt v 2 proj2-abs (vector2-appendl v)

lemma proj2-pt-scalar:
3 c. ¢ # 0 A proj2-rep (proj2-pt v) = c¢ *g vector2-appendl v
unfolding proj2-pt-def
by (simp add: proj2-rep-abs?2 vector2-append1-non-zero)

abbreviation z-non-zero :: proj2 = bool where
z-non-zero p = (proj2-rep p)$3 # 0

definition cart2-pt :: proj2 = real”2 where
cart2-pt p &
vector [(proj2-rep p)$1 |/ (proj2-rep p)$3, (proj2-rep p)$2 / (proj2-rep p)3$3]

definition cart2-appendl :: proj2 = real”3 where
cart2-appendl p £ (1 / ((proj2-rep p)$3)) *r proj2-rep p

lemma cart2-appendi-z:
assumes z-non-zero p
shows (cart2-appendl p)$3 = 1
using <z-non-zero p»
by (unfold cart2-append1-def) simp

lemma cart2-appendi-non-zero:
assumes 2-non-zero p
shows cart2-appendl p # 0
proof —
from <z-non-zero p> have (cart2-append! p)$3 = 1 by (rule cart2-append1-z)
thus cart2-appendl p # 0 by (simp add: vec-eq-iff exI [of - 3])
qed

lemma proj2-rep-cart2-appendl:
assumes 2-n0n-zero p
shows proj2-rep p = ((proj2-rep p)$3) *g cart2-append! p
using <z-non-zero p»
by (unfold cart2-append1-def) simp

lemma proj2-abs-cart2-appendl :

assumes 2-n0n-zero p

shows proj2-abs (cart2-appendl p) = p
proof —

from <z-non-zero p»

have proj2-abs (cart2-appendl p) = proj2-abs (proj2-rep p)

by (unfold cart2-append1-def) (simp add: proj2-abs-mult)

thus proj2-abs (cart2-appendl p) = p by (simp add: proj2-abs-rep)

qed

lemma cart2-appendi-ing:

97

assumes z-non-zero p and cart2-appendl p = cart2-appendl q
shows p = ¢
proof —
from <z-non-zero p» have (cart2-appendl p)$3 = 1 by (rule cart2-appendl-z)
with <cart2-appendl p = cart2-appendl ¢
have (cart2-append! ¢)$3 = 1 by simp
hence z-non-zero q by (unfold cart2-append1-def) auto

from <cart2-appendl p = cart2-appendl ¢
have proj2-abs (cart2-appendl p) = proj2-abs (cart2-appendl q) by simp
with <z-non-zero p> and <z-non-zero ¢
show p = ¢ by (simp add: proj2-abs-cart2-appendl)
qed

lemma cart2-appendl:
assumes z-non-zero p
shows vector2-append! (cart2-pt p) = cart2-appendl p
using (z-non-zero p»
unfolding vector2-appendi-def
and cart2-appendl-def
and cart2-pt-def
and vector-def
by (simp add: vec-eq-iff forall-8)

lemma cart2-proj2: cart2-pt (proj2-pt v) = v
proof —
let ?v’ = vector2-appendl v
let %p = proj2-pt v
from proj2-pt-scalar
obtain ¢ where ¢ # 0 and proj2-rep ?p = ¢ xg ?v’ by auto
hence (cart2-pt ?p)$1 = v$1 and (cart2-pt ?p)$2 = v$2
unfolding cart2-pt-def and vector2-appendl-def and vector-def
by simp+
thus cart2-pt ?p = v by (simp add: vec-eq-iff forall-2)
qed

lemma z-non-zero-proj2-pt: z-non-zero (proj2-pt v)
proof —
from proj2-pt-scalar
obtain ¢ where ¢ # 0 and proj2-rep (proj2-pt v) = ¢ xg (vector2-appendl v)
by auto
from «proj2-rep (proj2-pt v) = ¢ xg (vector2-appendl v)»
have (proj2-rep (proj2-pt v))$3 = ¢
unfolding vector2-appendi-def and vector-def

by simp
with <c # 0» show z-non-zero (proj2-pt v) by simp
qed

lemma cart2-appendl-proj2: cart2-appendl (proj2-pt v) = vector2-appendl v

98

proof —
from z-non-zero-proj2-pt
have cart2-append! (proj2-pt v) = vector2-appendl (cart2-pt (proj2-pt v))
by (simp add: cart2-appendl)
thus cart2-append! (proj2-pt v) = vector2-appendl v
by (simp add: cart2-proj2)
qed

lemma proj2-pt-inj: inj proj2-pt
by (simp add: inj-on-inversel [of UNIV cart2-pt proj2-pt| cart2-proj2)

lemma proj2-cart2:
assumes 2-non-zero p
shows proj2-pt (cart2-pt p) = p
proof —
from <z-non-zero p»
have (proj2-rep p)$3 xr vector2-appendl (cart2-pt p) = proj2-rep p
unfolding vector2-appendi-def and cart2-pt-def and vector-def
by (simp add: vec-eq-iff forall-3)
with <z-non-zero p»
and proj2-abs-mult [of (proj2-rep p)$3 vector2-appendl (cart2-pt p)]
have proj2-abs (vector2-appendl (cart2-pt p)) = proj2-abs (proj2-rep p)
by simp
thus proj2-pt (cart2-pt p) = p
by (unfold proj2-pt-def) (simp add: proj2-abs-rep)
qged

lemma cart2-injective:
assumes z-non-zero p and z-non-zero q¢ and cart2-pt p = cart2-pt q
shows p = ¢
proof —
from <z-non-zero p» and <z-non-zero q»
have proj2-pt (cart2-pt p) = p and proj2-pt (cart2-pt q) = q
by (simp-all add: proj2-cart2)

from «proj2-pt (cart2-pt p) = p> and <cart2-pt p = cart2-pt ¢
have proj2-pt (cart2-pt q) = p by simp
with <proj2-pt (cart2-pt q) = ¢» show p = ¢ by simp

qed

lemma proj2-Col-iff-euclid:
proj2-Col (proj2-pt a) (proj2-pt b) (proj2-pt ¢) +— real-euclid.Col a b ¢
(is proj2-Col ?p 2q 2r «— -)
proof
let ?a’ = vector2-appendl a
let 2b' = vector2-appendl b
let ?c’ = vector2-appendl c
let 2a’’ = proj2-rep ?p
let 2b" = proj2-rep ?q

99

let ?c’”" = proj2-rep or
from proj2-pt-scalar obtain ¢ and j and k& where
i # 0 and %0’ = i xg %a’
and j # 0 and ?b" = j xg ?b’
and k£ # 0 and ?¢" = k g ?c’
by metis
hence ?a’ = (1/i) g %a”
and ?b' = (1/4) *r 2"
and ¢’ = (1/k) *p 2c¢”
by simp-all

{ assume proj2-Col ?p ?q r
then obtain i’ and j’ and k’ where
i"*g ?0" + j' xr 20" + k' xg 2" = 0 and 'A0 V j'#0 V k'#0
unfolding proj2-Col-def
by auto

let 2" = ¢ % i’

let 2" = j * j’

let 2k =k = k'

from <i#£0> and <j#0> and <k#0> and i'#£0 V j'#£0 V k'#£0>
have %"£0 Vv 2j""#0 Vv 2k'#0 by simp

from i’ xg 20" + ' xp 26" + k' xg 2" = O»
and <%0’ = i xp %a’
and «?b" = j xg b’
and <?c” = k xp ?c)

have 2i" xp ?a’ + 2§ xp 2b' + 2k xp ?c' = 0
by (simp add: ac-simps)

hence (%" xg %a’ + 2j"" xp 20" + 2k' xp 2¢")$3 = 0
by simp

hence 2" + 2§ + 2" = 0
unfolding vector2-appendi-def and vector-def
by simp

have (%" xp %0’ + 2§ xg 20" + 2k" xg 2c")$1 =
(2" xp a + 2" xg b+ ?k" xp ¢)$1
and (%" xg %a’ + 2§ xg 7' + k" xg ?2c")$2 =
(2" xgp a + 2" xp b+ %" xg ¢)$2
unfolding vector2-append1-def and vector-def
by simp+
with «2" xp 20’ + 2§ xp 2b' + %k' xp ?2c' = 0>
have 2" xg a + 2" *xr b+ %k" xg c = 0
by (simp add: vec-eq-iff forall-2)

have dep2 (b — a) (¢ — a)
proof cases
assume %' = 0
with <%" + 2§ + 2k'" = 0> have 2" = —2{" by simp

100

with <240 v 2)""£0 v 2k"#0> and «?k” = 0> have 2" # 0 by simp

from <2 xp a + %" xgp b+ k' xg c = 0y
and «%k" = 0) and %" = — 2"
have %" % a + (= %" *r b) = 0 by simp
with <%" £ 0> have a = b by (simp add: algebra-simps)
hence b — a = 0 *g (¢ — a) by simp
moreover have ¢ — a = 1 xg (¢ — a) by simp
ultimately have 3 zts. b —a=t*xgprx ANc—a=s*px
by blast
thus dep2 (b — a) (¢ — a) unfolding dep2-def .
next
assume k' #£ 0
from «%" + 2§ + %k’ = 0> have %" = —(%j" + ?k"") by simp
with <2 xp a + 2§ xg b+ 2k' xg c = 0»
have — (%" + %k') xgp a + %" xr b + %k" xgr ¢ = 0 by simp
hence %" g (¢ — a) = — %" xg (b — a)
by (simp add: scaleR-left-distrib
scaleR-right-diff-distrib
scaleR-left-diff-distrib
algebra-simps)
hence (1/%2k") xg %" *r (¢ — a) = (=%") %") g (b — a)
by simp
with «?k" # 0> have ¢ — a = (= %" / 2%") xg (b — a) by simp
moreover have b — a = 1 xg (b — a) by simp
ultimately have 3 zts. b — a=t*gr x A ¢ — a = s xg x by blast
thus dep2 (b — a) (¢ — a) unfolding dep2-def .
qed
with Col-dep2 show real-euclid.Col a b ¢ by auto

}

{ assume real-euclid.Col a b ¢
with Col-dep2 have dep2 (b — a) (¢ — a) by auto
then obtain z and ¢t and s where b — a =t gz and ¢ — a = s xg x
unfolding dep2-def
by auto

show proj2-Col ?p %q %r
proof cases

assume t = (

with <b — a = t xg =» have a = b by simp

with proj2-Col-coincide show proj2-Col ?p ?q ?r by simp
next

assume ¢ # 0

from b — a=t*p 2> and <¢c — a = s *g

have s xg (b — a) = t *xg (¢ — a) by simp

hence (s — t) xp a + (—=s) *r b+t *r c = 0
by (simp add: scaleR-right-diff-distrib

101

scaleR-left-diff-distrib
algebra-simps)

hence ((s — t) *g %a’ 4+ (—s) *gr 2’ + t xp 7)1 = 0
and ((s — t) *xg %a’ + (=) *g 7'+ t xg 7¢))$2 =0
unfolding vector2-appendl-def and vector-def
by (simp-all add: vec-eq-iff)

moreover have ((s — t) xgr %a’ + (—s) *xp 0" + t xg 2¢)$3 = 0
unfolding vector2-appendi-def and vector-def
by simp

ultimately have (s — t) xg %0’ + (—3) % 7'+ t xg %c' =0
by (simp add: vec-eq-iff forall-8)

with %0’ = (1/i) xg %0’
and «?b' = (1/j) xr 20"
and <%c' = (1/k) =g %'

have ((s — t)/i) *g 20" + (=s/j) *r 20" + (t/k) xg 2¢"" =0
by simp

moreover from <t # () and <k # 0»> have t/k # 0 by simp

ultimately show proj2-Col ?p ?q ?r
unfolding proj2-Col-def
by blast

qed
}
qed

lemma proj2-Col-iff-euclid-cart2:
assumes z-non-zero p and z-non-zero q¢ and z-non-zero T
shows
proj2-Col p q v <— real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is - <— real-euclid.Col ?a ?b ?c)
proof —
from <z-non-zero p» and <z-non-zero ¢» and <z-non-zero
have proj2-pt ?a = p and proj2-pt ?b = q and proj2-pt %c = r
by (simp-all add: proj2-cart2)
with proj2-Col-iff-euclid [of ?a 2b ?¢]
show proj2-Col p q r <— real-euclid.Col ?a ?b ?c by simp
qed

lemma euclid-Col-cart2-incident:
assumes z-non-zero p and z-non-zero q¢ and z-non-zero r and p # q
and proj2-incident p | and proj2-incident q [
and real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is real-euclid.Col %cp ?cq ?cr)
shows proj2-incident r [
proof —
from <z-non-zero p» and <z-non-zero ¢» and <z-non-zero r»
and <real-euclid.Col ?cp ?cq Zcry
have proj2-Col p q r by (subst proj2-Col-iff-euclid-cart2, simp-all)
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
then obtain m where

102

proj2-incident p m and proj2-incident ¢ m and proj2-incident r m
by (unfold proj2-set-Col-def, auto)

from <p # ¢ and <proj2-incident p > and <proj2-incident q I
and <proj2-incident p m» and <proj2-incident ¢ m> and proj2-incident-unique
have | = m by auto
with «proj2-incident r m» show proj2-incident r | by simp
qed

lemma euclid-B-cart2-common-line:
assumes z-non-zero p and z-non-zero q and z-non-zero
and Br (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is Br ?%cp ?cq Pcr)
shows 3 [. proj2-incident p | N\ proj2-incident q I A proj2-incident r 1
proof —
from <z-non-zero p» and <z-non-zero ¢» and <z-non-zero r)
and <Br ?cp cq ?cry and proj2- Col-iff-euclid-cart2
have proj2-Col p q r by (unfold real-euclid.Col-def) simp
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
thus 3 [. proj2-incident p I N\ proj2-incident q | N\ proj2-incident r [
by (unfold proj2-set-Col-def) simp
qged

lemma cart2-append1-between:
assumes z-non-zero p and z-non-zero q¢ and z-non-zero r
shows Bg (cart2-pt p) (cart2-pt q) (cart2-pt r)
+—— (T k>0. k< 1
A cart2-appendl q = k xgp cart2-appendl r + (1 — k) xr cart2-appendl p)
proof —
let %cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?cpl = wvector2-appendl ?cp
let ?cql = vector2-appendl ?cq
let ?cri = vector2-appendl ?cr
from <z-non-zero p» and <z-non-zero ¢» and <z-non-zero r»
have ?cpl = cart2-appendl p
and ?cql = cart2-appendl q
and %crl = cart2-appendl r
by (simp-all add: cart2-appendl)

have V k. %cq — ?cp = k xg (cr — %cp) «+— Pcq =k xg %er + (1 — k) xg Zcp
by (simp add: algebra-simps)
hence V k. %cq — %cp = k =g (%er — %cp)
> %eql = k xg %erl + (1 — k) g Zepl
unfolding vector2-append1-def and vector-def
by (simp add: vec-eg-iff forall-2 forall-3)
with <?cpl = cart2-appendl p»
and <%cql = cart2-appendl ¢

103

and «?crl = cart2-appendl 1>

have V k. %cq — %cp = k xp (%cr — %cp)
> cart2-appendl q = k xgr cart2-appendl r + (1 — k) xg cart2-appendl p
by simp

thus Br (cart2-pt p) (cart2-pt q) (cart2-pt r)
+—— (Fk>0. k<1
A cart2-appendl q = k xgp cart2-appendl r + (1 — k) *r cart2-appendl p)
by (unfold real-euclid-B-def) simp

qed

lemma cart2-appendl-between-right-strict:
assumes z-non-zero p and z-non-zero q¢ and z-non-zero r
and Br (cart2-pt p) (cart2-pt q) (cart2-pt r) and q # r
shows 3 k>0. k < 1
A cart2-appendl ¢ = k xgr cart2-appendl r + (1 — k) *gr cart2-appendl p
proof —
from <z-non-zero p» and <z-non-zero ¢» and <z-non-zero r»
and <Bg (cart2-pt p) (cart2-pt q) (cart2-pt r)» and cart2-append1-between
obtain £ where kt > 0 and k£ < 1
and cart2-appendl q = k *xg cart2-appendl r + (1 — k) *gr cart2-append! p
by auto

have k # 1

proof
assume k£ = I
with <cart2-appendl q = k xg cart2-appendl r + (1 — k) xg cart2-appendl p»
have cart2-appendl q = cart2-appendl r by simp
with <z-non-zero ¢» have ¢ = r by (rule cart2-append1-inj)
with «¢ # > show Fulse ..

qed

with <k < 1) have k < 1 by simp

with <k > 0»
and <cart2-appendl q = k *xg cart2-appendl r + (1 — k) *r cart2-append! p»

show 3 k>0. k < 1
A cart2-appendl q = k xgr cart2-appendl r + (1 — k) xr cart2-appendl p
by (simp add: exI [of - k])

qed

lemma cart2-appendl-between-strict:
assumes z-non-zero p and z-non-zero q¢ and z-non-zero r
and Br (cart2-pt p) (cart2-pt q) (cart2-pt r) and ¢ # p and q # r
shows 3 k>0. k < 1
A cart2-appendl q = k xgr cart2-appendl r + (1 — k) xr cart2-appendl p
proof —
from <z-non-zero p» and <z-non-zero ¢» and <z-non-zero r»
and <Bg (cart2-pt p) (cart2-pt q) (cart2-pt r)> and <q #
and cart2-append1-between-right-strict [of p q 7]
obtain £ where &k > 0 and k < 1
and cart2-appendl q = k xg cart2-appendl r + (1 — k) *r cart2-appendl p

104

by auto

have k # 0
proof
assume k = 0
with <cart2-appendl q = k g cart2-appendl r + (1 — k) g cart2-appendl p»
have cart2-appendl q = cart2-appendl p by simp
with <z-non-zero ¢» have ¢ = p by (rule cart2-append1-inj)
with <q¢ # p> show Fulse ..
qged
with <k > 0> have k > 0 by simp
with <k < 1»
and <cart2-appendl q = k xg cart2-appendl v + (1 — k) *p cart2-appendl p
show 3 k>0. k < 1
A cart2-appendl q = k xgr cart2-appendl r + (1 — k) xr cart2-appendl p
by (simp add: ezl [of - k])
qed

end

8 The hyperbolic plane and Tarski’s axioms

theory Hyperbolic- Tarski
imports Fuclid-Tarski

Projective

HOL- Library. Quadratic- Discriminant
begin

8.1 Characterizing a specific conic in the projective plane

definition M :: real” 373 where
M £ vector [
vector |1, 0, 0],
vector [0, 1, 0],
vector [0, 0, —1]]

lemma M-symmatriz: symmatrizc M
unfolding symmatriz-def and transpose-def and M-def
by (simp add: vec-eq-iff forall-3 vector-3)

lemma M-self-inverse: M xx M = mat 1
unfolding M-def and matriz-matriz-mult-def and mat-def and vector-def
by (simp add: sum-8 vec-eg-iff forall-3)

lemma M-invertible: invertible M
unfolding invertible-def
using M-self-inverse
by auto

105

definition polar :: proj2 = proj2-line where
polar p & proj2-line-abs (M *v proj2-rep p)

definition pole :: proj2-line = proj2 where
pole | 2 proj2-abs (M xv proj2-line-rep 1)

lemma polar-abs:
assumes v # 0
shows polar (proj2-abs v) = proj2-line-abs (M v v)
proof —
from v # 0» and proj2-rep-abs2
obtain k£ where k # 0 and proj2-rep (proj2-abs v) = k xr v by auto
from <proj2-rep (proj2-abs v) = k xg v
have polar (proj2-abs v) = proj2-line-abs (k xg (M xv v))
unfolding polar-def
by (simp add: matriz-scaleR-vector-ac scaleR-matriz-vector-assoc)
with <k # 0> and proj2-line-abs-mult
show polar (proj2-abs v) = proj2-line-abs (M *v v) by simp
qed

lemma pole-abs:
assumes v % 0
shows pole (proj2-line-abs v) = proj2-abs (M *v v)
proof —
from (v # 0> and proj2-line-rep-abs
obtain k£ where k # 0 and proj2-line-rep (proj2-line-abs v) = k *g v
by auto
from «<proj2-line-rep (proj2-line-abs v) = k *p v
have pole (proj2-line-abs v) = proj2-abs (k xr (M *v v))
unfolding pole-def
by (simp add: matriz-scaleR-vector-ac scaleR-matriz-vector-assoc)
with ¢ # 0> and proj2-abs-mult
show pole (proj2-line-abs v) = proj2-abs (M xv v) by simp
qed

lemma polar-rep-non-zero: M xv proj2-rep p # 0
proof —

have proj2-rep p # 0 by (rule proj2-rep-non-zero)

with M-invertible

show M xv proj2-rep p # 0 by (rule invertible-times-non-zero)
qed

lemma pole-polar: pole (polar p) = p
proof —
from polar-rep-non-zero
have pole (polar p) = proj2-abs (M *v (M *v proj2-rep p))
unfolding polar-def
by (rule pole-abs)
with M-self-inverse

106

show pole (polar p) = p
by (simp add: matriz-vector-mul-assoc proj2-abs-rep)
qed

lemma pole-rep-non-zero: M *v proj2-line-rep | # 0
proof —

have proj2-line-rep | # 0 by (rule proj2-line-rep-non-zero)

with M-invertible

show M xv proj2-line-rep | # 0 by (rule invertible-times-non-zero)
qed

lemma polar-pole: polar (pole 1) =1
proof —
from pole-rep-non-zero
have polar (pole 1) = proj2-line-abs (M xv (M *v proj2-line-rep 1))
unfolding pole-def
by (rule polar-abs)
with M-self-inverse
show polar (pole 1) =1
by (simp add: matriz-vector-mul-assoc proj2-line-abs-rep
matriz-vector-mul-lid)
qged

lemma polar-ing:
assumes polar p = polar q
shows p = ¢
proof —
from <polar p = polar ¢» have pole (polar p) = pole (polar q) by simp
thus p = ¢ by (simp add: pole-polar)
qed

definition conic-sgn :: proj2 = real where
. A . .
conic-sgn p = sgn (proj2-rep p + (M v proj2-rep p))

lemma conic-sgn-abs:
assumes v # 0
shows conic-sgn (proj2-abs v) = sgn (v - (M *v v))
proof —
from v # 0» and proj2-rep-abs2
obtain j where j # 0 and proj2-rep (proj2-abs v) = j *r v by auto

from «proj2-rep (proj2-abs v) = j xg v
have conic-sgn (proj2-abs v) = sgn (52 * (v -+ (M *v v)))
unfolding conic-sgn-def
by (simp add:
matriz-scale R-vector-ac
scaleR-matriz-vector-assoc [symmetric]
dot-scaleR-mult
power2-eq-square

107

algebra-simps)
also have ... = sgn (j2) * sgn (v - (M xv v)) by (rule sgn-mult)
also from j # 0» have ... = sgn (v - (M *v v))
by (simp add: power2-eq-square sgn-mult)
finally show conic-sgn (proj2-abs v) = sgn (v - (M *v v)) .
qed

lemma sgn-conic-sgn: sgn (conic-sgn p) = conic-sgn p
by (unfold conic-sgn-def) simp

definition S :: proj2 set where
S & {p. conic-sgn p = 0}

definition K2 :: proj2 set where
K2 = {p. conic-sgn p < 0}

lemma S-K2-empty: S N K2 = {}
unfolding S-def and K2-def
by auto

lemma K2-abs:

assumes v % 0

shows proj2-abs v € K2 <— v+ (M v v) < 0
proof —

have proj2-abs v € K2 <— conic-sgn (proj2-abs v) < 0

by (simp add: K2-def)

with «v # 0> and conic-sgn-abs

show proj2-abs v € K2 +— v - (M xv v) < 0 by simp
qed

definition K2-centre = proj2-abs (vector [0,0,1])

lemma K2-centre-non-zero: vector [0,0,1] # (0 :: real”3)
by (unfold vector-def) (simp add: vec-eg-iff forall-8)

lemma K2-centre-in-K2: K2-centre € K2
proof —
from K2-centre-non-zero and proj2-rep-abs2
obtain & where k # 0 and proj2-rep K2-centre = k xgr vector [0,0,1]
by (unfold K2-centre-def) auto
from k # 0) have 0 < k? by simp
with «proj2-rep K2-centre = k xg vector [0,0,1]»
show K2-centre € K2
unfolding K2-def
and conic-sgn-def
and M-def
and matriz-vector-mult-def
and inner-vec-def
and vector-def

108

by (simp add: vec-eq-iff sum-3 power2-eq-square)
qed

lemma K2-imp-M-neg:
assumes v # 0 and proj2-abs v € K2
shows v - (M v v) < 0
using assms

by (simp add: K2-abs)

lemma M-neg-imp-z-squared-big:
assumes v - (M v v) < 0
shows (v$3)% > (v$1)? + (v$2)?
using v - (M *xv v) < 0>
unfolding matriz-vector-mult-def and M-def and vector-def
by (simp add: inner-vec-def sum-8 power2-eq-square)

lemma M-neg-imp-2-non-zero:
assumes v - (M xvv) < 0
shows v$3 # 0
proof —
have (v$1)? + (v$2)? > 0 by simp
with M-neg-imp-z-squared-big [of v] and v « (M xv v) < 0>
have (v$3)% > 0 by arith
thus v$3 # 0 by simp
qed

lemma M-neg-imp-K2:
assumes v - (M xvv) < 0
shows proj2-abs v € K2
proof —
from <v - (M xv v) < 0> have v$3 # 0 by (rule M-neg-imp-z-non-zero)
hence v # 0 by auto
with v - (M *v v) < 0> and K2-abs show proj2-abs v € K2 by simp
qed

lemma M-reverse: a - (M xvb) = b - (M v a)
unfolding matriz-vector-mult-def and M-def and vector-def
by (simp add: inner-vec-def sum-38)

lemma S-abs:
assumes v # 0
shows proj2-abs v € S «— v - (M *xvv) = 0
proof —
have proj2-abs v € S «— conic-sgn (proj2-abs v) = 0
unfolding S-def
by simp
also from «v # 0» and conic-sgn-abs
have ... «— sgn (v - (M *v v)) = 0 by simp
finally show proj2-abs v € S «— v - (M *v v) = 0 by (simp add: sgn-0-0)

109

qed

lemma S-alt-def: p € S <— proj2-rep p - (M *v proj2-rep p) = 0
proof —
have proj2-rep p # 0 by (rule proj2-rep-non-zero)
hence proj2-abs (proj2-rep p) € S +— proj2-rep p - (M *v proj2-rep p) = 0
by (rule S-abs)
thus p € S «+— proj2-rep p - (M *v proj2-rep p) = 0
by (simp add: proj2-abs-rep)
qed

lemma incident-polar:
proj2-incident p (polar q) <— proj2-rep p « (M v proj2-rep q) = 0
using polar-rep-non-zero
unfolding polar-def
by (rule proj2-incident-right-abs)

lemma incident-own-polar-in-S: proj2-incident p (polar p) «— p € S
using incident-polar and S-alt-def
by simp

lemma incident-polar-swap:
assumes proj2-incident p (polar q)
shows proj2-incident q (polar p)

proof —
from <proj2-incident p (polar q)»
have proj2-rep p - (M *v proj2-rep q) = 0 by (unfold incident-polar)
hence proj2-rep q « (M v proj2-rep p) = 0 by (simp add: M-reverse)
thus proj2-incident q (polar p) by (unfold incident-polar)

qed

lemma incident-pole-polar:

assumes proj2-incident p |

shows proj2-incident (pole) (polar p)
proof —

from <proj2-incident p >

have proj2-incident p (polar (pole 1)) by (subst polar-pole)

thus proj2-incident (pole 1) (polar p) by (rule incident-polar-swap)
qed

definition z-zero :: proj2-line where
z-zero = proj2-line-abs (vector [0,0,1])

lemma z-zero:
assumes (proj2-rep p)$3 = 0
shows proj2-incident p z-zero
proof —
from K2-centre-non-zero and proj2-line-rep-abs
obtain k& where proj2-line-rep z-zero = k *gr vector [0,0,1]

110

by (unfold z-zero-def) auto
with <(proj2-rep p)$3 = 0>
show proj2-incident p z-zero
unfolding proj2-incident-def and inner-vec-def and vector-def
by (simp add: sum-3)
qed

lemma z-zero-conic-sgn-1:
assumes proj2-incident p z-zero
shows conic-sgn p = 1
proof —
let v = proj2-rep p
have (vector [0,0,1] :: real™3) # 0
unfolding vector-def
by (simp add: vec-eq-iff)
with <proj2-incident p z-zero»
have ?v - vector [0,0,1] = 0
unfolding z-zero-def
by (simp add: proj2-incident-right-abs)
hence 7v$3 = 0
unfolding inner-vec-def and vector-def
by (simp add: sum-38)
hence ?v - (M xv %v) = (?v$1)% + (7v$2)?
unfolding inner-vec-def
and power2-eq-square
and matriz-vector-mult-def
and M-def
and vector-def
and sum-3
by simp

have %v #£ 0 by (rule proj2-rep-non-zero)
with <%v83 = 0» have 2v$1 # 0 vV %082 # 0 by (simp add: vec-eq-iff forall-3)
hence (?v$1)%2 > 0 V (?v$2)? > 0 by simp
with add-sign-intros [of (?v$1)? (7v$2)?]
have (7v$1)? + (?v$2)? > 0 by auto
with <%0 « (M xv ?v) = (208$1)? + (70$2)%
have %v - (M xv 2v) > 0 by simp
thus conic-sgn p = 1

unfolding conic-sgn-def

by simp

qged

lemma conic-sgn-not-1-z-non-zero:
assumes conic-sgn p # 1
shows z-non-zero p
proof —
from <conic-sgn p # 1»
have — proj2-incident p z-zero by (auto simp add: z-zero-conic-sgn-1)

111

thus z-non-zero p by (auto simp add: z-zero)

qed

lemma z-zero-not-in-S:
assumes proj2-incident p z-zero
shows p ¢ S
proof —
from «<proj2-incident p z-zero> have conic-sgn p = 1
by (rule z-zero-conic-sgn-1)
thus p ¢ S
unfolding S-def
by simp
qed

lemma line-incident-point-not-in-S: 3 p. p ¢ S A proj2-incident p 1
proof —

let ?p = proj2-intersection | z-zero

have proj2-incident ?p | and proj2-incident ?p z-zero

by (rule proj2-intersection-incident)+

from «proj2-incident ?p z-zero» have ?p ¢ S by (rule z-zero-not-in-S)

with <proj2-incident ?p I

show 3 p. p ¢ S A proj2-incident p | by auto
qed

lemma apply-clin2-abs-abs-in-S:
assumes v # 0 and invertible J
shows apply-cltn2 (proj2-abs v) (cltn2-abs J) € S
v+ (J xx M xx transpose J xv v) = 0
proof —
from (v # 0> and <invertible J»
have v vx J # 0 by (rule non-zero-mult-invertible-non-zero)

from <v # 0> and <invertible J»
have apply-cltn2 (proj2-abs v) (cltn2-abs J) = proj2-abs (v vx J)
by (rule apply-cltn2-abs)
also from v vx J # 0>
have ... € S +— (vuvx J) - (M v (v vx J)) = 0 by (rule S-abs)
finally show apply-cltn2 (proj2-abs v) (cltn2-abs J) € S
v+ (J xx M xx transpose J xv v) = 0
by (simp add: dot-lmul-matriz matriz-vector-mul-assoc [symmetric])
qed

lemma apply-cltn2-right-abs-in-S:

assumes invertible J

shows apply-cltn2 p (clin2-abs J) € S

> (proj2-rep p) - (J *x M xx transpose J xv (proj2-rep p)) = 0
proof —

have proj2-rep p # 0 by (rule proj2-rep-non-zero)

with <invertible J»

112

have apply-cltn2 (proj2-abs (proj2-rep p)) (cltn2-abs J) € S
> proj2-rep p - (J *x M xx transpose J xv proj2-rep p) = 0
by (simp add: apply-clin2-abs-abs-in-S)

thus apply-clin2 p (cltn2-abs J) € S
> proj2-rep p - (J xx M *x transpose J xv proj2-rep p) = 0
by (simp add: proj2-abs-rep)

qed

lemma apply-clin2-abs-in-S:
assumes v # 0
shows apply-cltn2 (proj2-abs v) C € S
+—— v+ (cltn2-rep C xx M *x transpose (cltn2-rep C) xv v) = 0
proof —
have invertible (cltn2-rep C) by (rule cltn2-rep-invertible)
with v # 0»
have apply-cltn2 (proj2-abs v) (cltn2-abs (cltn2-rep C)) € S
+— v+ (cltn2-rep C *xx M *x transpose (clin2-rep C) xv v) = 0
by (rule apply-cltn2-abs-abs-in-S)
thus apply-cltn2 (proj2-abs v) C € S
+— v - (cltn2-rep C *xx M xx transpose (cltn2-rep C) xv v) = 0
by (simp add: cltn2-abs-rep)
qged

lemma apply-cltn2-in-S:
apply-cltn2 p C € S
—— proj2-rep p - (cltn2-rep C' #x M xx transpose (cltn2-rep C) *xv proj2-rep p)
=90
proof —
have proj2-rep p # 0 by (rule proj2-rep-non-zero)
hence apply-clin2 (proj2-abs (proj2-rep p)) C € S
+— proj2-rep p - (cltn2-rep C xx M xx transpose (cltn2-rep C) xv proj2-rep p)
=0
by (rule apply-cltn2-abs-in-S)
thus apply-citn2p C € S
> proj2-rep p - (clin2-rep C xx M xx transpose (cltn2-rep C) v proj2-rep p)
=0
by (simp add: proj2-abs-rep)
qged
lemma norm-M: (vector2-appendl v) - (M *v vector2-appendl v) = (norm v)? —
1
proof —
have (norm v)? = (v$1)? + (v$2)?
unfolding norm-vec-def
and L2-set-def
by (simp add: sum-2)
thus (vector2-append1 v) + (M xv vector2-appendl v) = (norm v)? — 1
unfolding vector2-append1-def
and inner-vec-def

113

and matriz-vector-mult-def
and vector-def
and M-def
and power2-norm-eg-inner
by (simp add: sum-3 power2-eq-square)
qed

8.2 Some specific points and lines of the projective plane

definition east = proj2-abs (vector [1,0,1])
definition west = proj2-abs (vector [—1,0,1])
definition north = proj2-abs (vector [0,1,1])
definition south = proj2-abs (vector [0,—1,1])
definition far-north = proj2-abs (vector [0,1,0])

lemmas compass-defs = east-def west-def north-def south-def

lemma compass-non-zero:

shows vector [1,0,1] # (0 :: real”3)
and vector [—1,0,1] # (0 :: real™3)
and vector [0, 1,1] # (0 :: real”3)
and vector [0,—1,1] # (0 :: real”3)
and vector [0,1,0] # (0 :: real”3)
and vector [1,0,0] # (0 :: real”3)
unfolding vector-def

by (simp-all add: vec-eq-iff forall-3)

S

lemma east-west-distinct: east # west
proof
assume cast = west
with compass-non-zero
and proj2-abs-abs-mult [of vector [1,0,1] vector [—1,0,1]]
obtain k where (vector [1,0,1] :: real”3) = k xg vector [—1,0,1]
unfolding compass-defs
by auto
thus Fulse
unfolding vector-def
by (auto simp add: vec-eq-iff forall-3)
qed

lemma north-south-distinct: north # south
proof
assume north = south
with compass-non-zero
and proj2-abs-abs-mult [of vector [0,1,1] vector [0,—1,1]]
obtain k£ where (vector [0,1,1] :: real”3) = k xg vector [0,—1,1]
unfolding compass-defs
by auto
thus Fulse

114

unfolding vector-def
by (auto simp add: vec-eq-iff forall-3)
qed

lemma north-not-east-or-west: north ¢ {east, west}
proof
assume north € {east, west}
hence east = north V west = north by auto
with compass-non-zero
and proj2-abs-abs-mult [of - vector [0,1,1]]
obtain k£ where (vector [1,0,1] :: real”3) = k xg vector [0,1,1]
V (vector [—1,0,1] :: real”3) = k =g vector [0,1,1]
unfolding compass-defs
by auto
thus False
unfolding vector-def
by (simp add: vec-eq-iff forall-3)
qed

lemma compass-in-S:
shows east € S and west € S and north € S and south € S
using compass-non-zero and S-abs
unfolding compass-defs
and M-def
and inner-vec-def
and matriz-vector-mult-def
and vector-def
by (simp-all add: sum-3)

lemma east-west-tangents:
shows polar east = proj2-line-abs (vector [—1,0,1])
and polar west = proj2-line-abs (vector [1,0,1])
proof —
have M xv vector [1,0,1] = (—1) *g vector [—1,0,1]
and M xv vector [—1,0,1] = (—1) *g vector [1,0,1]
unfolding M-def and matriz-vector-mult-def and vector-def
by (simp-all add: vec-eq-iff sum-3)
with compass-non-zero and polar-abs
have polar east = proj2-line-abs ((—1) *g vector [—1,0,1])
and polar west = proj2-line-abs ((—1) *g vector [1,0,1])
unfolding compass-defs
by simp-all
with proj2-line-abs-mult [of —1]
show polar east = proj2-line-abs (vector [—1,0,1])
and polar west = proj2-line-abs (vector [1,0,1])
by simp-all
qed

lemma east-west-tangents-distinct: polar east # polar west

115

proof
assume polar east = polar west
hence east = west by (rule polar-inj)
with east-west-distinct show Fulse ..
qed

lemma east-west-tangents-incident-far-north:
shows proj2-incident far-north (polar east)
and proj2-incident far-north (polar west)
using compass-non-zero and proj2-incident-abs
unfolding far-north-def and east-west-tangents and inner-vec-def
by (simp-all add: sum-3 vector-3)

lemma east-west-tangents-far-north:
proj2-intersection (polar east) (polar west) = far-north
using east-west-tangents-distinct and east-west-tangents-incident-far-north
by (rule proj2-intersection-unique [symmetric])

instantiation proj2 :: zero

begin

definition proj2-zero-def: 0 = proj2-pt 0
instance ..

end

definition equator £ proj2-line-abs (vector [0,1,0])
definition meridian £ proj2-line-abs (vector [1,0,0])

lemma equator-meridian-distinct: equator # meridian
proof
assume cquator = meridian
with compass-non-zero
and proj2-line-abs-abs-mult [of vector [0,1,0] vector [1,0,0]]
obtain k£ where (vector [0,1,0] :: real”3) = k xg vector [1,0,0]
by (unfold equator-def meridian-def) auto
thus False by (unfold vector-def) (auto simp add: vec-eq-iff forall-8)
qed

lemma east-west-on-equator:
shows proj2-incident east equator and proj2-incident west equator
unfolding east-def and west-def and equator-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vec-def vector-def sum-3)

lemma north-far-north-distinct: north # far-north
proof
assume north = far-north
with compass-non-zero
and proj2-abs-abs-mult [of vector [0,1,1] vector [0,1,0]]
obtain k£ where (vector [0,1,1] :: real”3) = k xg vector [0,1,0]

116

by (unfold north-def far-north-def) auto
thus Fulse
unfolding vector-def
by (auto simp add: vec-eq-iff forall-3)
qed

lemma north-south-far-north-on-meridian:
shows proj2-incident north meridian and proj2-incident south meridian
and proj2-incident far-north meridian
unfolding compass-defs and far-north-def and meridian-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vec-def vector-def sum-3)

lemma K2-centre-on-equator-meridian:
shows proj2-incident K2-centre equator
and proj2-incident K2-centre meridian
unfolding K2-centre-def and equator-def and meridian-def
using K2-centre-non-zero and compass-non-zero
by (simp-all add: proj2-incident-abs inner-vec-def vector-def sum-3)

lemma on-equator-meridian-is-K2-centre:
assumes proj2-incident a equator and proj2-incident a meridian
shows a = K2-centre
using assms and K2-centre-on-equator-meridian and equator-meridian-distinct
and proj2-incident-unique
by auto

definition rep-equator-reflect = vector |
vector [1, 0,0],
vector [0,—1,0],
vector [0, 0,1]] :: real” 373
definition rep-meridian-reflect = vector |
vector [—1,0,0],
vector | 0,1,0],
vector [0,0,1]] = real 373
definition equator-reflect £ cltn2-abs rep-equator-reflect
definition meridian-reflect £ cltn2-abs rep-meridian-reflect

lemmas compass-reflect-defs = equator-refiect-def meridian-reflect-def
rep-equator-reflect-def rep-meridian-reflect-def

lemma compass-reflect-self-inverse:
shows rep-equator-reflect xx rep-equator-reflect = mat 1
and rep-meridian-reflect *x rep-meridian-reflect = mat 1
unfolding compass-reflect-defs matriz-matriz-mult-def mat-def
by (simp-all add: vec-eq-iff forall-3 sum-3 vector-3)

lemma compass-reflect-invertible:
shows invertible rep-equator-reflect and invertible rep-meridian-refiect

117

unfolding invertible-def
using compass-reflect-self-inverse
by auto

lemma compass-reflect-compass:

shows apply-cltn2 east meridian-reflect = west

and apply-clin2 west meridian-reflect = east

and apply-cltn2 north meridian-reflect = north

and apply-clin2 south meridian-reflect = south

and apply-clin2 K2-centre meridian-reflect = K2-centre

and apply-clin2 east equator-reflect = east

and apply-clin2 west equator-reflect = west

and apply-cltn2 north equator-reflect = south

and apply-clin2 south equator-reflect = north

and apply-clin2 K2-centre equator-reflect = K2-centre
proof —

have (vector [1,0,1] :: real”3) vx rep-meridian-reflect = vector [—1,0,1]

and (vector [—1,0,1] :: real”3) v+ rep-meridian-reflect = vector [1,0,1]
and (vector [0,1,1] :: real”3) v+ rep-meridian-reflect = vector [0,1,1]
and (vector [0,—1,1] :: real”3) v+ rep-meridian-reflect = vector [0,—1,1]
and (vector [0,0,1] :: real”3) vx rep-meridian-reflect = vector [0,0,1]
and (vector [1,0,1] :: real”3) v+ rep-equator-reflect = vector [1,0,1]
and (vector [—1,0,1] :: real”3) vx rep-equator-reflect = vector [—1,0,1]
and (vector [0,1,1] :: real”3) v* rep-equator-reflect = vector [0,—1,1]
and (vector [0,—1,1] :: real”3) v+ rep-equator-reflect = vector [0,1,1]
and (vector [0,0,1] :: real”3) vx rep-equator-reflect = vector [0,0,1

unfolding rep-meridian-reflect-def and rep-equator-reflect-def
and vector-matriz-mult-def
by (simp-all add: vec-eq-iff forall-3 vector-3 sum-3)
with compass-reflect-invertible and compass-non-zero and K2-centre-non-zero
show apply-cltn?2 east meridian-reflect = west
and apply-clin2 west meridian-reflect = east
and apply-cltn2 north meridian-reflect = north
and apply-clin2 south meridian-reflect = south
and apply-cltn2 K2-centre meridian-reflect = K2-centre
and apply-clin2 east equator-reflect = east
and apply-clin2 west equator-reflect = west
and apply-clin2 north equator-reflect = south
and apply-clin2 south equator-reflect = north
and apply-cltn2 K2-centre equator-reflect = K2-centre
unfolding compass-defs and K2-centre-def
and meridian-reflect-def and equator-reflect-def
by (simp-all add: apply-cltn2-abs)
qed

lemma on-equator-rep:
assumes z-non-zero a and proj2-incident a equator
shows 3 z. a = proj2-abs (vector [x,0,1])

proof —

118

let ?ra = proj2-rep a
let ?cal = cart2-appendl! a
let %z = ?cal$1
from compass-non-zero and <proj2-incident a equator>
have ?ra - vector [0,1,0] = 0
by (unfold equator-def) (simp add: proj2-incident-right-abs)
hence ?ra$2 = 0 by (unfold inner-vec-def vector-def) (simp add: sum-3)
hence ?cal$2 = 0 by (unfold cart2-appendi-def) simp
moreover
from <z-non-zero a» have ?cal$3 = 1 by (rule cart2-appendl-z)
ultimately
have ?cal = vector [?2,0,1]
by (unfold vector-def) (simp add: vec-eq-iff forall-3)
with <z-non-zero a»
have proj2-abs (vector [?x,0,1]) = a by (simp add: proj2-abs-cart2-appendl)
thus 3 z. a = proj2-abs (vector [x,0,1]) by (simp add: exI [of - ?x])
qed

lemma on-meridian-rep:
assumes z-non-zero a and proj2-incident a meridian
shows 3 y. a = proj2-abs (vector [0,y,1])
proof —
let ?ra = proj2-rep a
let ?cal = cart2-appendl! a
let 2y = ?cal$2
from compass-non-zero and <proj2-incident a meridian»
have ?ra - vector [1,0,0] = 0
by (unfold meridian-def) (simp add: proj2-incident-right-abs)
hence ?ra$1 = 0 by (unfold inner-vec-def vector-def) (simp add: sum-3)
hence ?cal$1 = 0 by (unfold cart2-appendi-def) simp
moreover
from <z-non-zero a) have %ca1$3 = 1 by (rule cart2-append1-z)
ultimately
have ?cal = vector [0,%y,1]
by (unfold vector-def) (simp add: vec-eq-iff forall-3)
with «z-non-zero a»
have proj2-abs (vector [0,%y,1]) = a by (simp add: proj2-abs-cart2-appendl)
thus 3 y. a = proj2-abs (vector [0,y,1]) by (simp add: exI [of - ?y])
qed

8.3 Definition of the Klein—Beltrami model of the hyperbolic
plane

abbreviation hyp2 == K2
typedef hyp2 = K2

using K2-centre-in-K2
by auto

119

definition hyp2-rep :: hyp2 = real”2 where
hyp2-rep p = cart2-pt (Rep-hyp2 p)

definition hyp2-abs :: real 2 = hyp2 where
hyp2-abs v = Abs-hyp2 (proj2-pt v)

lemma norm-lt-1-iff-in-hyp2:

shows norm v < 1 <— proj2-pt v € hyp2
proof —

let ?v’ = vector2-appendl v

have ?v’ # 0 by (rule vector2-appendI-non-zero)

from real-less-rsqrt [of norm v 1]
and abs-square-less-1 [of norm v]
have norm v < 1 «+— (norm v)? < 1 by auto
hence norm v < 1 +— ' - (M xv 2v’) < 0 by (simp add: norm-M)
with %0’ # 0» have norm v < 1 <— proj2-abs ?v’' € K2 by (subst K2-abs)
thus norm v < 1 +— proj2-pt v € hyp2 by (unfold proj2-pt-def)
qed

lemma norm-eq-1-iff-in-S:
shows norm v = 1 <— proj2-pt v e S
proof —
let ?v’ = vector2-appendl v
have 2v’ # 0 by (rule vector2-append1-non-zero)

from real-sqrt-unique [of norm v 1]
have norm v = 1 +— (norm v)? = 1 by auto
hence norm v =1 +— %'+ (M *xv %v’) = 0 by (simp add: norm-M)
with «?v’ # 0» have norm v = 1 +— proj2-abs ?v’ € S by (subst S-abs)
thus norm v = 1 +— proj2-pt v € S by (unfold proj2-pt-def)

qed

lemma norm-le-1-iff-in-hyp2-S:
norm v < 1 <— proj2-pt v € hyp2 U S
using norm-lt-1-iff-in-hyp2 [of v] and norm-eq-1-iff-in-S [of v]
by auto

lemma proj2-pt-hyp2-rep: proj2-pt (hyp2-rep p) = Rep-hyp2 p
proof —

let ?p’ = Rep-hyp2 p

let ?v = proj2-rep ?p’

have %v #£ 0 by (rule proj2-rep-non-zero)

have proj2-abs ?v = ?p’ by (rule proj2-abs-rep)
have ?p’ € hyp2 by (rule Rep-hyp2)

with <%v #£ 0> and <proj2-abs v = ?p”
have ?v « (M xv %v) < 0 by (simp add: K2-imp-M-neg)

120

hence 7033 # 0 by (rule M-neg-imp-z-non-zero)

hence proj2-pt (cart2-pt ?p’) = ?p’ by (rule proj2-cart2)

thus proj2-pt (hyp2-rep p) = ?p’ by (unfold hyp2-rep-def)
qed

lemma hyp2-rep-abs:
assumes norm v < I
shows hyp2-rep (hyp2-abs v) = v
proof —
from <norm v < 1>
have proj2-pt v € hyp2 by (simp add: norm-lt-1-iff-in-hyp2)
hence Rep-hyp2 (Abs-hyp2 (proj2-pt v)) = proj2-pt v
by (simp add: Abs-hyp2-inverse)
hence hyp2-rep (hyp2-abs v) = cart2-pt (proj2-pt v)
by (unfold hyp2-rep-def hyp2-abs-def) simp
thus hyp2-rep (hyp2-abs v) = v by (simp add: cart2-proj2)
qed

lemma hyp2-abs-rep: hyp2-abs (hyp2-rep p) = p
by (unfold hyp2-abs-def) (simp add: proj2-pt-hyp2-rep Rep-hyp2-inverse)

lemma norm-hyp2-rep-lt-1: norm (hyp2-rep p) < 1
proof —
have proj2-pt (hyp2-rep p) = Rep-hyp2 p by (rule proj2-pt-hyp2-rep)
hence proj2-pt (hyp2-rep p) € hyp2 by (simp add: Rep-hyp2)
thus norm (hyp2-rep p) < 1 by (simp add: norm-lt-1-iff-in-hyp2)
qged

lemma hyp2-S-z-non-zero:
assumes p € hyp2 U S
shows z-non-zero p
proof —
from «p € hyp2 U S»
have conic-sgn p < 0 by (unfold K2-def S-def) auto
hence conic-sgn p # 1 by simp
thus z-non-zero p by (rule conic-sgn-not-1-z-non-zero)
qed

lemma hyp2-S-not-equal:
assumes a € hyp2 and p € S
shows a # p
using assms and S-K2-empty
by auto

lemma hyp2-S-cart2-ing:
assumes p € hyp2 U S and ¢ € hyp2 U S and cart2-pt p = cart2-pt q
shows p = ¢

proof —
from «p € hyp2 U S» and «q € hyp2 U S»

121

have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt (cart2-pt p) = p and proj2-pt (cart2-pt q) = q
by (simp-all add: proj2-cart2)

from <cart2-pt p = cart2-pt ¢
have proj2-pt (cart2-pt p) = proj2-pt (cart2-pt q) by simp
with <proj2-pt (cart2-pt p) = p» [symmetric] and <proj2-pt (cart2-pt q) = ¢
show p = ¢q by simp
qed

lemma on-equator-in-hyp2-rep:
assumes a € hyp2 and proj2-incident a equator
shows 3 z. |z] < I A a = proj2-abs (vector [z,0,1])
proof —
from <a € hyp2> have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with «<proj2-incident a equator> and on-equator-rep
obtain z where a = proj2-abs (vector [z,0,1]) (is a = proj2-abs ?v)
by auto

have v # 0 by (simp add: vec-eq-iff forall-3 vector-3)
with <a € hyp2> and <a = proj2-abs v
have ?v - (M *v %v) < 0 by (simp add: K2-abs)
hence z? < 1
unfolding M-def matriz-vector-mult-def inner-vec-def
by (simp add: sum-3 vector-8 power2-eq-square)
with real-sqrt-abs [of ¥] and real-sqrt-less-iff [of 2* 1]
have |z| < 1 by simp
with <a = proj2-abs ?v»
show 3 z. |z| < I A a = proj2-abs (vector [z,0,1])
by (simp add: ezl [of - z])
qed

lemma on-meridian-in-hyp2-rep:
assumes a € hyp2 and proj2-incident a meridian
shows 3 y. |y| < I A a = proj2-abs (vector [0,y,1])
proof —
from <a € hyp2s have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with <proj2-incident a meridiany and on-meridian-rep
obtain y where a = proj2-abs (vector [0,y,1]) (is a = proj2-abs ?v)
by auto

have v # 0 by (simp add: vec-eq-iff forall-3 vector-3)
with <a € hyp2> and <a = proj2-abs v
have ?v - (M *v %v) < 0 by (simp add: K2-abs)
hence ¢? < 1
unfolding M-def matriz-vector-mult-def inner-vec-def
by (simp add: sum-3 vector-8 power2-eq-square)
with real-sqrt-abs [of y] and real-sqrt-less-iff [of y* 1]
have |y| < 1 by simp

122

with <a = proj2-abs ?v»
show 3 y. |y| < I A a = proj2-abs (vector [0,y,1])
by (simp add: ezl [of - y])
qed

definition hyp2-cltn2 :: hyp2 = clin2 = hyp2 where
hyp2-cltn2 p A = Abs-hyp2 (apply-clin2 (Rep-hyp2 p) A)

definition is-K2-isometry :: cltn2 = bool where
is-K2-isometry J = (¥ p. apply-cltn2p J € S +— p € S)

lemma cltn2-id-is-K2-isometry: is-K2-isometry cltn2-id
unfolding is-K2-isometry-def
by simp

lemma J-M-J-transpose-K2-isometry:
assumes k # 0
and repJ sxx M xx transpose repJ = k xgp M (is ?N = -)
shows is-K2-isometry (cltn2-abs repJ) (is is-K2-isometry 2J)
proof —
from <?N = k xp M)
have ?N xx ((1/k) xg M) = mat 1
by (simp add: matriz-scalar-ac <k # 0> M-self-inverse)
with right-invertible-iff-invertible [of repJ]
have invertible repJ
by (simp add: matriz-mul-assoc
ezl [of - M sx transpose repJ ** ((1/k) xg M)])

have V t. apply-cltn2t 2J € S +— t € S
proof
fix t :: proj2
have proj2-rep t - ((k xg M) xv proj2-rep t)
=k x (proj2-rep t - (M *v proj2-rep t))
by (simp add: scaleR-matriz-vector-assoc [symmetric] dot-scaleR-mult)
with (N = k xp M)>
have proj2-rep t - (?N *v proj2-rep t)
=k * (proj2-rep t - (M *v proj2-rep t))
by simp
hence proj2-rep t - (¢N *v proj2-rep t) = 0
> k x (proj2-rep t - (M v proj2-rep t)) = 0
by simp
with &k # 0»
have proj2-rep t - (YN *v proj2-rep t) = 0
> proj2-rep t - (M xv proj2-rep t) = 0
by simp
with <invertible repJ»
have apply-cltn2 t 2J € S +— proj2-rep t - (M v proj2-rep t) = 0
by (simp add: apply-cltn2-right-abs-in-S)
thus apply-cltn2 t 2J € S +— t € S by (unfold S-alt-def)

123

qed
thus is-K2-isometry ?2J by (unfold is-K2-isometry-def)
qed

lemma equator-reflect-K2-isometry:
shows is-K2-isometry equator-reflect
unfolding compass-refiect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])
(simp-all add: M-def matriz-matriz-mult-def transpose-def
vec-eq-iff forall-3 sum-3 vector-3)

lemma meridian-reflect- K2-isometry:
shows is-K2-isometry meridian-reflect
unfolding compass-reflect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])
(simp-all add: M-def matriz-matriz-mult-def transpose-def
vec-eq-iff forall-3 sum-3 vector-3)

lemma cltn2-compose-is-K2-isometry:
assumes is-K2-isometry H and is-K2-isometry J
shows is-K2-isometry (cltn2-compose H J)
using (is-K2-isometry H» and <is-K2-isometry J»
unfolding is-K2-isometry-def
by (simp add: cltn2.act-act [simplified, symmetric])

lemma cltn2-inverse-is-K2-isometry:
assumes is-K2-isometry J
shows is-K2-isometry (cltn2-inverse J)
proof —
{fixp
from <is-K2-isometry J»
have apply-cltn2 p (cltn2-inverse J) € S
+— apply-cltn2 (apply-clin2 p (cltn2-inverse J)) J € S
unfolding is-K2-isometry-def
by simp
hence apply-clin2 p (cltn2-inverse J) € S +— p € S
by (simp add: cltn2.act-inv-act [simplified]) }
thus is-K2-isometry (cltn2-inverse J)
unfolding is-K2-isometry-def ..
qed

interpretation K2-isometry-subgroup: subgroup

Collect is-K2-isometry

(|carrier = UNIV, mult = cltn2-compose, one = cltn2-id|)

unfolding subgroup-def

by (simp add:
cltn2-id-is-K2-isometry
cltn2-compose-is- K 2-isometry
cltn2-inverse-is-K2-isometry)

124

interpretation K2-isometry: group
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
using cltn2.is-group and K2-isometry-subgroup.subgroup-is-group
by simp

lemma K2-isometry-inverse-inv [simp]:
assumes is-K2-isometry J

shows mv(|car7’ier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)

= cltn2-inverse J

using cltn2-left-inverse
and «<is-K2-isometry J»
and cltn2-inverse-is-K2-isometry
and K2-isometry.inv-equality

by simp

definition real-hyp2-C :: [hyp2, hyp2, hyp2, hyp2] = bool
(- - =k - - [99,99,99,99] 50) where
pPqQ=KTSs é
(3 A. is-K2-isometry A A hyp2-cltn2 p A = r A hyp2-cltn2 ¢ A = s)

definition real-hyp2-B :: [hyp2, hyp2, hyp2] = bool
(«Bg - - - [99,99,99] 50) where
Bk p g = Br (hyp2-rep p) (hyp2-rep q) (hyp2-rep r)

8.4 K-isometries map the interior of the conic to itself

lemma collinear-quadratic:
assumes t =7 *xg a + T
shows ¢t - (M xv t) =
(a- (M*va)*i>+2x(a-(Mx*vr))*i+r-(M=xvr)
proof —
from M-reverse have i x (a - (M v 1)) =i * (r - (M %v a)) by simp
with <t =i g a + ™
show t - (M xv t) =
(a+ (M *va)) i+ 2% (a-(Mxvr))*i+r-(Msx*vr)
by (simp add:
inner-add-left
matriz-vector-right-distrib
inner-add-right
matriz-scale R-vector-ac
inner-scaleR-right
scaleR-matriz-vector-assoc [symmetric]
M-reverse
power2-eg-square
algebra-simps)
qed

125

lemma S-quadratic’:
assumes p # 0 and g # 0 and proj2-abs p # proj2-abs q
shows proj2-abs (k xg p + q) € S
——p-Mxvp)xk>+p-(Mxvq)*2xk+q-(M=+vgqg) =0
proof —
let or = k*xg p+ ¢
from «p # 0> and <q # 0> and <proj2-abs p # proj2-abs ¢
and dependent-proj2-abs [of p q k 1]
have ?r # 0 by auto
hence proj2-abs ?r € S «— ?r - (M xv ?r) = 0 by (rule S-abs)
with collinear-quadratic [of ?r k p ¢
show proj2-abs ?r € S
s p-(Mxvp)x k2 +p-(Mxvq)*2xk+q-(M=*vgqg)=0
by (simp add: dot-lmul-matriz [symmetric] algebra-simps)
qed

lemma S-quadratic:
assumes p # ¢ and r = proj2-abs (k *g proj2-rep p + proj2-rep q)
shows r € §
< proj2-rep p - (M v proj2-rep p) * k?
+ proj2-rep p - (M *v proj2-rep q) * 2 * k
+ proj2-rep q « (M v proj2-rep q)
=0
proof —
let 2u = proj2-rep p
let ?v = proj2-rep q
let 2w =% *p %u + %v
have %u # 0 and %v # 0 by (rule proj2-rep-non-zero)+

from p # ¢ have proj2-abs ?u # proj2-abs ?v by (simp add: proj2-abs-rep)
with <%y # 0> and <%0 # 0> and «r = proj2-abs ?w»
show r € §
— Pu - (M xv 2u) * k2 4+ 2u - (M *v 20) % 2 x k + 20+ (M *v 20) = 0
by (simp add: S-quadratic’)
qed

definition quarter-discrim :: real”8 = real”3 = real where
quarter-discrim p ¢ = (p « (M xv q))? — p - (M *v p) * (¢ - (M *v q))

lemma quarter-discrim-invariant:
assumes t = i xgp a + 1
shows quarter-discrim a t = quarter-discrim a r
proof —
from <t = i *xg a + ™
have a - (M xvt) =i (a+ (M xva)) + a- (M *xvr)
by (simp add:
matriz-vector-right-distrib
inner-add-right
matriz-scaleR-vector-ac

126

scaleR-matriz-vector-assoc [symmetric])

hence (a - (M *v t))? =

(a - (M *v a))? * i +

2% (a-(Mx*va))*(a-(Mx*vr)) *i+

(a - (M *vr))?

by (simp add: power2-eq-square algebra-simps)
moreover from collinear-quadratic and <t = i xg a +
have a « (M xv a) * (¢t - (M xv t)) =

(a - (M *v a))? * % +

2% (a-(Mx*va))*(a-(Mx*vr)) *i+

a-(M=xva)x*(r-(Mx*vr))

by (simp add: power2-eq-square algebra-simps)
ultimately show quarter-discrim a t = quarter-discrim a r

by (unfold quarter-discrim-def, simp)

qed

lemma quarter-discrim-positive:
assumes p # 0 and ¢ # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2
shows quarter-discrim p ¢ > 0
proof —
let i = —q$3/p$3
let 2t = 2 xg p + ¢

from <p # 0> and «?pp € K2»

have p - (M *v p) < 0 by (subst K2-abs [symmetric])

hence p$3 # 0 by (rule M-neg-imp-z-non-zero)

hence ?7t$3 = 0 by simp

hence 7t - (M xv ?t) = (?t$1)% + (7t$2)?
unfolding matriz-vector-mult-def and M-def and vector-def
by (simp add: inner-vec-def sum-3 power2-eq-square)

from «p$3 # 0> have p # 0 by auto
with <q # 0> and «%pp # ?pg> and dependent-proj2-abs [of p q %i 1]
have ?t # 0 by auto
with «7t$3 = 0> have 2t$1 # 0 V 7t$2 # 0 by (simp add: vec-eg-iff forall-3)
hence (7t$1)? > 0 Vv (?7t$2)% > 0 by simp
moreover have (7t$2)? > 0 and (?t$1)? > 0 by simp-all
ultimately have (7t$1)? + (?t$2)? > 0 by arith
with <%t « (M v 7t) = (?t$1)% + (?t$2)% have ?t - (M *v ?t) > 0 by simp
with mult-neg-pos [of p - (M *v p)] and p - (M xv p) < O»
have p - (M *v p) x (%t - (M xv ?t)) < 0 by simp
moreover have (p - (M v ?t))? > 0 by simp
ultimately
have (p - (M v 2t))?> — p - (M *v p) x (2t - (M v ?t)) > 0 by arith
with quarter-discrim-invariant [of ?t ?i p q|
show quarter-discrim p g > 0 by (unfold quarter-discrim-def, simp)
qed

127

lemma quarter-discrim-self-zero:
assumes proj2-abs a = proj2-abs b
shows quarter-discrim a b = 0
proof cases
assume b = 0
thus quarter-discrim a b = 0 by (unfold quarter-discrim-def, simp)
next
assume b # 0
with «proj2-abs a = proj2-abs b> and proj2-abs-abs-mult
obtain k where a = k x b by auto
thus quarter-discrim a b = 0
unfolding quarter-discrim-def
by (simp add: power2-eg-square
matriz-scale R-vector-ac
scaleR-matriz-vector-assoc [symmetric])
qed

definition S-intersection-coeff1 :: real”8 = real”3 = real where
S-intersection-coeffl p q
A

£ (=p - (M xv q) + sqrt (quarter-discrim p q)) / (p - (M *v p))

definition S-intersection-coeff2 :: real 3 = real”3 = real where
S-intersection-coeff2 p q

A

£ (=p - (M *v q) — sqrt (quarter-discrim p q)) / (p - (M *v p))

definition S-intersectionl-rep :: real 3 = real”3 = real”3 where
S-intersectionl-rep p q = (S-intersection-coeffl p q) *xg p + q

definition S-intersection2-rep :: real”3 = real”8 = real”3 where
S-intersection2-rep p q = (S-intersection-coeff2 p q) xr p + ¢

definition S-intersection! :: real”3 = real”3 = proj2 where
S-intersectionl p q £ proj2-abs (S-intersectionl-rep p q)

definition S-intersection? :: real”3 = real”3 = proj2 where
S-intersection2 p q £ proj2-abs (S-intersection2-rep p q)

lemmas S-intersection-coeffs-defs =
S-intersection-coeff1-def S-intersection-coeff2-def

lemmas S-intersections-defs =
S-intersectionl-def S-intersection2-def
S-intersectionl-rep-def S-intersection2-rep-def

lemma S-intersection-coeffs-distinct:
assumes p # 0 and ¢ # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2
shows S-intersection-coeffl p q # S-intersection-coeff2 p q

proof —

128

from «p # 0> and < %pp € K2
have p « (M *v p) < 0 by (subst K2-abs [symmetric])

from assms have quarter-discrim p q¢ > 0 by (rule quarter-discrim-positive)
with «p - (M xv p) < O»
show S-intersection-coeffl p q # S-intersection-coeff2 p q
by (unfold S-intersection-coeffs-defs, simp)
qed

lemma S-intersections-distinct:
assumes p # 0 and ¢ # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2
shows S-intersectionl p q # S-intersection2 p q
proof—
from <p # 0> and <q # 0> and < ?pp # ?pg> and «?pp € K2»
have S-intersection-coeffl p q # S-intersection-coeff2 p q
by (rule S-intersection-coeffs-distinct)
with «<p # 0> and <q # 0> and < ?pp # ?pg> and proj2-Col-coeff-unique’
show S-intersectionl p q # S-intersection2 p q
by (unfold S-intersections-defs, auto)
qed

lemma S-intersections-in-S:
assumes p # 0 and ¢ # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-abs p € K2
shows S-intersectionl p q € S and S-intersection2 p q € S
proof —
let 9j = S-intersection-coeff1 p q
let 7k = S-intersection-coeff2 p q
let %a = p - (M *v p)
let 26 =2« (p - (M v q))
let ¢ = q - (M *v q)

from «p # 0> and «?pp € K2) have ?a < 0 by (subst K2-abs [symmetric])

have qd: discrim %a ?b ?c = j % quarter-discrim p q
unfolding discrim-def quarter-discrim-def
by (simp add: power2-eq-square)

with times-divide-times-eq [of
2 2 sqrt (quarter-discrim p q) — p - (M v q) ?a]
and times-divide-times-eq [of
22 —p - (M v q) — sqrt (quarter-discrim p q) %a]
and real-sqrt-mult and real-sqrt-abs [of 2]

have ?j = (—%b + sqrt (discrim %a b %c)) / (2 * %a)
and %k = (—%b — sqrt (discrim %a ?b ?c)) / (2 * %a)
by (unfold S-intersection-coeffs-defs, simp-all add: algebra-simps)

from assms have quarter-discrim p q¢ > 0 by (rule quarter-discrim-positive)
with gd

129

have discrim (p -+ (M *v p)) (2 * (p - (M *v q))) (g - (M xv q)) > 0
by simp

with <% = (—2b + sqrt (discrim %a 2b ?¢)) | (2 % %a)»
and «?k = (—?2b — sqrt (discrim %a 2b %?¢)) / (2 * ?a)»
and «?a < 0> and discriminant-nonneg [of ?a ?b ?c %]
and discriminant-nonneg [of ?a ?b ?c 2k]

have p - (M xvp) * 22 + 2% (p- (M xv q)) * 2§+ q- (M xv q) = 0
and p- (M *vp)* k%> + 2% (p- (M *vq) * %+ q-(Mx*vgq) =0
by (unfold S-intersection-coeffs-defs, auto)

with «<p # 0> and <q # 0) and < ?pp # ?pg> and S-quadratic’

show S-intersectionl p q € S and S-intersection2 p q € S
by (unfold S-intersections-defs, simp-all)

qed

lemma S-intersections-Col:
assumes p # 0 and ¢q # 0
shows proj2-Col (proj2-abs p) (proj2-abs q) (S-intersectionl p q)
(is proj2-Col ?pp ?pq ?pr)
and proj2-Col (proj2-abs p) (proj2-abs q) (S-intersection? p q)
(is proj2-Col ?pp ?pq ?ps)
proof —
{ assume ?pp = ?pq
hence proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (simp-all add: proj2-Col-coincide) }
moreover
{ assume ?pp # ?pq
with «p # 0> and «q # 0» and dependent-proj2-abs [of p q - 1]
have S-intersectioni-rep p q # 0 (is 9r # 0)
and S-intersection2-rep p q # 0 (is %s # 0)
by (unfold S-intersectioni-rep-def S-intersection2-rep-def, auto)
with «p # 0> and <q # 0»
and proj2-Col-abs [of p q ?r S-intersection-coeffl p ¢ 1 —1]
and proj2-Col-abs [of p q ?s S-intersection-coeff2 p q 1 —1]
have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (unfold S-intersections-defs, simp-all) }
ultimately show proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps by fast+
qed

lemma S-intersections-incident:
assumes p # 0 and ¢ # 0 and proj2-abs p # proj2-abs q (is ?pp # ?pq)
and proj2-incident (proj2-abs p) | and proj2-incident (proj2-abs q) 1
shows proj2-incident (S-intersectionl p q) 1 (is proj2-incident ?pr 1)
and proj2-incident (S-intersection2 p q) 1 (is proj2-incident ?ps 1)
proof —
from «p # 0> and <q # 0>
have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (rule S-intersections-Col)+
with <?pp # ?pg» and <proj2-incident ?pp Iy and <proj2-incident ?pq I
and proj2-incident-iff-Col

130

show proj2-incident ?pr | and proj2-incident ?ps | by fast+
qed

lemma K2-line-intersect-twice:

assumes ¢ € K2 and a # r

shows 3 su. sZuANse€SANueS A proj2-Colars A proj2-Col a ru
proof —

let ?a’ = proj2-rep a

let ?r’ = proj2-rep r

from proj2-rep-non-zero have ?a’ # 0 and ?r’ # 0 by simp-all

from <%a’ # 0y and K2-imp-M-neg and proj2-abs-rep and <a € K2
have ?a’ - (M *v ?a’) < 0 by simp

from <a # r have proj2-abs ?a’ # proj2-abs ?r’ by (simp add: proj2-abs-rep)

from <a € K2) have proj2-abs ?a’ € K2 by (simp add: proj2-abs-rep)

with <?a’ # 0> and «?r’ # 0) and <proj2-abs ?a’ # proj2-abs ?r’s

have S-intersectionl ?a’ ?r' # S-intersection2 %a’ ?r' (is 9s # ?u)
by (rule S-intersections-distinct)

from <%a’ # 0y and «?r’ # 0> and <proj2-abs ?a’ # proj2-abs ?r's
and <proj2-abs 7a’ € K2
have ?s € S and ?%u € S by (rule S-intersections-in-S)+

from <%a’ # 0> and «?r’ £ 0»

have proj2-Col (proj2-abs ?a’) (proj2-abs ?r') %s
and proj2-Col (proj2-abs ?a’) (proj2-abs ?r’) ?u
by (rule S-intersections-Col)+

hence proj2-Col a r ?s and proj2-Col a v ?u
by (simp-all add: proj2-abs-rep)

with «?s # %u» and <%s € S) and «%u € S»

show 3 su.s#ZuAse€ SAueS A proj2-Col ars A proj2-Col a ru
by auto

qed

lemma point-in-S-polar-is-tangent:
assumes p € S and ¢ € S and proj2-incident q (polar p)
shows ¢ = p
proof —
from «p € S have proj2-incident p (polar p)
by (subst incident-own-polar-in-S)

from line-incident-point-not-in-S

obtain r where r ¢ S and proj2-incident r (polar p) by auto

let %u = proj2-rep r

let ?v = proj2-rep p

from <r ¢ 5> and <p € S) and ¢<g € S> have r # p and ¢ # r by auto
with <proj2-incident p (polar p)»

131

and <proj2-incident q (polar p)»
and <proj2-incident r (polar p)»
and proj2-incident-iff [of r p polar p |
obtain £ where ¢ = proj2-abs (k xgr ?u + %v) by auto
with «<r # p» and «¢ € S» and S-quadratic
have 2u - (M *v ?u) x k% + 2u + (M xv 20) x 2 x k + 2v + (M xv 20) = 0
by simp
moreover from ¢p € S) have %v - (M xv %v) = 0 by (unfold S-alt-def)
moreover from <proj2-incident r (polar p)»
have ?u - (M xv %v) = 0 by (unfold incident-polar)
moreover from ¢r ¢ 5> have %u - (M xv 2u) # 0 by (unfold S-alt-def)
ultimately have k£ = 0 by simp
with <q = proj2-abs (k xr %u + %v)»
show ¢ = p by (simp add: proj2-abs-rep)
qed

lemma line-through-K2-intersect-S-twice:
assumes p € K2 and proj2-incident p [
shows 3 gr.q#r ANqgée S AreS A proj2-incident g1 N proj2-incident r [
proof —
from proj2-another-point-on-line
obtain s where s # p and proj2-incident s | by auto
from p € K2 and <s # p» and K2-line-intersect-twice [of p s
obtain ¢ and r where ¢ # rand ¢ € Sand r € S
and proj2-Col p s ¢ and proj2-Col p s r
by auto
with <s # p» and <proj2-incident p Iy and <proj2-incident s I»
and proj2-incident-iff-Col [of p s]
have proj2-incident q | and proj2-incident r | by fast+
with (¢ # m and «¢ € S» and <r € S
show 3 gr. ¢q#r ANge S ANreS A proj2-incident g 1 N\ proj2-incident r |
by auto
qed

lemma line-through-K2-intersect-S-again:
assumes p € K2 and proj2-incident p |
shows 3 r. r # g A r € S A proj2-incident r [
proof —
from «p € K2) and «proj2-incident p b
and line-through-K2-intersect-S-twice [of p
obtain s and ¢t where s # tand s € Sand t € S
and proj2-incident s | and proj2-incident t [
by auto
show 3 r. r £ g A r € S A proj2-incident r 1
proof cases
assume { = ¢
with <s # ©» and «s € §) and <proj2-incident s
have s # g A s € S A proj2-incident s | by simp
thus 3 r. r # ¢ A r € § A proj2-incident r [..

132

next
assume t # ¢
with «¢t € S) and «proj2-incident t I
have t # g AN t € § A proj2-incident t | by simp
thus 3 r. r # ¢ A r € § A proj2-incident r 1 ..
qed
qed

lemma line-through-K2-intersect-S:
assumes p € K2 and proj2-incident p [
shows 3 r. r € S A proj2-incident r 1
proof —
from assms
have 3 r. r # p A r € S A proj2-incident r 1
by (rule line-through-K2-intersect-S-again)
thus 3 r. r € S A proj2-incident r | by auto
qed

lemma line-intersect-S-at-most-twice:
d pq. V reS. proj2-incident rl — r=pVr=gq
proof —
from line-incident-point-not-in-S
obtain s where s ¢ S and proj2-incident s | by auto
let %v = proj2-rep s
from proj2-another-point-on-line
obtain ¢ where ¢ # s and proj2-incident t | by auto
let 2w = proj2-rep t
have %v # 0 and ?w # 0 by (rule proj2-rep-non-zero)+

let %a = %v - (M xv %v)
let 20 = 2 x (%0 - (M *v %w))
let ¢ = 2w - (M *v ?w)
from «s ¢ S» have %a # 0
unfolding S-def and conic-sgn-def
by auto
let 2§ = (—%b 4 sqrt (discrim ?a 2b ?¢)) / (2 * %a)
let %k = (—2b — sqrt (discrim ?a 2b ?¢)) | (2 x 2a)
let ?p = proj2-abs (%j *r 2v + %w)
let ?q = proj2-abs (%k xr %v + ?w)
have V reS. proj2-incident rl — r = %p V r = g
proof
fix r
assume 1 € S
with «s ¢ S) have r # s by auto
{ assume proj2-incident r |
with <t # s and «r # s> and <proj2-incident s [y and <proj2-incident t [
and proj2-incident-iff [of s t 1]
obtain ¢ where r = proj2-abs (i xg %v + ?w) by auto
with «r € §) and <t # s» and S-quadratic

133

have %a * i2 + 2b x i + ?c = 0 by simp
with «?a # 0) and discriminant-iff have ¢ = %j V i = %k by simp
with «r = proj2-abs (i xg v + ?w)> have r = ?p V r = ?¢q by auto }
thus proj2-incident rl — r = 2p vV r = %q ..
qed
thus 3 p ¢. V reS. proj2-incident rl — r = p V r = ¢q by auto
qed

lemma card-line-intersect-S:
assumes T C S and proj2-set-Col T
shows card T < 2
proof —
from «proj2-set-Col T
obtain [where V peT. proj2-incident p | unfolding proj2-set-Col-def ..
from line-intersect-S-at-most-twice [of]
obtain b and ¢ where V a€S. proj2-incident a | — a = bV a = ¢ by auto
with <V peT. proj2-incident p > and <T C S»
have T C {b,c} by auto
hence card T < card {b,c} by (simp add: card-mono)
also from card-suc-ge-insert [of b {c}] have ... < 2 by simp
finally show card T < 2 .
qed

lemma line-S-two-intersections-only:
assumes p# gand p€ Sand g€ Sand r € S
and proj2-incident p | and proj2-incident q | and proj2-incident r |
shows r=p VvV r=gq
proof —
from «p # ¢ have card {p,q} = 2 by simp

from «p € S) and (¢ € S» and «r € S» have {r,p,q} C S by simp-all

from «<proj2-incident p > and <proj2-incident q > and <proj2-incident r >
have proj2-set-Col {r,p,q}

by (unfold proj2-set-Col-def) (simp add: exI [of - 1))
with «{r,p,¢} C S» have card {r,p,q} < 2 by (rule card-line-intersect-S)

show r=p VvV r=gq

proof (rule ccontr)
assume - (r =pV r = q)
hence r ¢ {p,q} by simp
with «card {p,q} = 2> and card-insert-disjoint [of {p,q} 7]
have card {r,p,q} = 3 by simp
with <card {r,p,q} < 2> show False by simp

qed

qed

lemma line-through-K2-intersect-S-exactly-twice:
assumes p € K2 and proj2-incident p [

134

shows 3 gr.q#r ANqge€ S AreS A proj2-incident g1 N\ proj2-incident r |
A (V s€S. proj2-incident sl — s =qV s =71)
proof —
from <p € K2) and (proj2-incident p |
and line-through-K2-intersect-S-twice [of p]
obtain ¢ and r where ¢ # rand ¢ € Sand r € S
and proj2-incident q I and proj2-incident r |
by auto
with line-S-two-intersections-only
show 3 gr. ¢q#r ANqge S ANreS A proj2-incident g I N\ proj2-incident r |
A (V s€S. proj2-incident s | — s =qV s =)
by blast
qed

lemma tangent-not-through-K2:
assumes p € S and g € K2
shows — proj2-incident q (polar p)
proof
assume proj2-incident q (polar p)
with «¢ € K2 and line-through-K2-intersect-S-again [of q polar p p]
obtain r where r # p and r € § and proj2-incident r (polar p) by auto
from p € S) and «r € S and <proj2-incident r (polar p)»
have r = p by (rule point-in-S-polar-is-tangent)
with «r # p> show Fualse ..
qed

lemma outside-exists-line-not-intersect-S:
assumes conic-sgn p = 1
shows 3 [. proj2-incident p I A (V q. proj2-incident ¢l — q ¢ S)
proof —
let ?r = proj2-intersection (polar p) z-zero
have proj2-incident ?r (polar p) and proj2-incident r z-zero
by (rule proj2-intersection-incident)+
from «proj2-incident ?r z-zero»
have conic-sgn ¢r = 1 by (rule z-zero-conic-sgn-1)
with <conic-sgn p = 1»
have proj2-rep p - (M *v proj2-rep p) > 0
and proj2-rep ?r « (M xv proj2-rep ?r) > 0
by (unfold conic-sgn-def) (simp-all add: sgn-1-pos)

from «<proj2-incident ?r (polar p)»
have proj2-incident p (polar ?r) by (rule incident-polar-swap)
hence proj2-rep p - (M xv proj2-rep ?r) = 0 by (simp add: incident-polar)

have p # r

proof
assume p = 7r
with «proj2-incident ?r (polar p)» have proj2-incident p (polar p) by simp
hence proj2-rep p « (M xv proj2-rep p) = 0 by (simp add: incident-polar)

135

with <proj2-rep p + (M xv proj2-rep p) > 0> show False by simp
qed

let 21 = proj2-line-through p %r
have proj2-incident p ¢l and proj2-incident ?r 21
by (rule proj2-line-through-incident)+

have V q. proj2-incident ¢ 2l — q & S
proof
fix ¢
show proj2-incident q 91 — q¢ ¢ S
proof
assume proj2-incident q ?1
with <p # ?r and <proj2-incident p 2> and <proj2-incident ?r 2
have ¢ = p vV (3 k. ¢ = proj2-abs (k xg proj2-rep p + proj2-rep 2r))
by (simp add: proj2-incident-iff [of p ?r 21 q])

show ¢ ¢ S
proof cases
assume ¢ = p
with <conic-sgn p = 1» show ¢ ¢ S by (unfold S-def) simp
next
assume ¢ £ p
with <¢ = p vV (3 k. ¢ = proj2-abs (k xr proj2-rep p + proj2-rep 7))
obtain & where ¢ = proj2-abs (k xr proj2-rep p + proj2-rep ?r)
by auto
from <proj2-rep p - (M xv proj2-rep p) > 0»
have proj2-rep p - (M v proj2-rep p) * k* > 0
by simp
with <proj2-rep p « (M v proj2-rep ?r) = 0»
and «proj2-rep ?r - (M *v proj2-rep 2r) > 0
have proj2-rep p - (M v proj2-rep p) * k?
+ proj2-rep p - (M v proj2-rep ?r) x 2 x k
+ proj2-rep ?r - (M xv proj2-rep ?r)
> 0
by simp
with <p # ?r and <q = proj2-abs (k xr proj2-rep p + proj2-rep 2r)»
show ¢ ¢ S by (simp add: S-quadratic)
qed
qed
qed
with <proj2-incident p 2
show 3 . proj2-incident p I A (V¥ q. proj2-incident g 1 — q ¢)
by (simp add: exI [of - ?I])
qed

lemma lines-through-intersect-S-twice-in-K2:

assumes V [. proj2-incident p 1
— 3 qr.qg#rNqgeSAreS A proj2incident q 1 A proj2-incident r 1)

136

shows p € K2
proof (rule ccontr)
assume p ¢ K2
hence conic-sgn p > 0 by (unfold K2-def) simp

have - (V 1. proj2-incident p | — (3 ¢ .
g#rANqgeSATES A proj2-incident q I N proj2-incident r 1))
proof cases
assume conic-sgn p = 0
hence p € S unfolding S-def ..
hence proj2-incident p (polar p) by (simp add: incident-own-polar-in-S)
let 21 = polar p
have -~ (3 ¢ r.
g#rANqgeSAreS A proj2-incident q ?l A proj2-incident r ?1)
proof
assume 3 ¢ 7.
qg#r ANqgeSANreS A proj2-incident q ¢l N proj2-incident r ?1
then obtain ¢ and r where ¢ # rand ¢ € Sand r € S
and proj2-incident q 7l and proj2-incident r ?1
by auto
from <p € S) and <«q € S» and «<proj2-incident q ?»
and <r € S) and «(proj2-incident r 20
have ¢ = p and r = p by (simp add: point-in-S-polar-is-tangent)+
with ¢ # 7 show Fulse by simp
qed
with <proj2-incident p 21
show — (V 1. proj2-incident p | — (3 ¢ r.
q#rANqgeSANreS A proj2-incident gl N\ proj2-incident r 1))
by auto
next
assume conic-sgn p # 0
with <conic-sgn p > 0> have conic-sgn p > 0 by simp
hence sgn (conic-sgn p) = 1 by simp
hence conic-sgn p = 1 by (simp add: sgn-conic-sgn)
with outside-exists-line-not-intersect-S
obtain [where proj2-incident p | and V q. proj2-incident ¢l — q¢ ¢ S
by auto
have -~ (3 ¢ r.
qg#rANqgeSAreS A proj2-incident gl N\ proj2-incident r 1)
proof
assume 3 q r.
qgF#rNqgeSNreS A proj2-incident q I N\ proj2-incident r 1
then obtain ¢ where ¢ € S and proj2-incident q | by auto
from <proj2-incident q > and v gq. proj2-incident ¢l — q ¢ S»
have ¢ ¢ S by simp
with «¢ € S» show Fulse by simp
qed
with <proj2-incident p 1>
show — (V 1. proj2-incident p | — (3 ¢ r.

137

q#rANqgeSANreS A proj2-incident gl N proj2-incident r 1))
by auto
qed
with «V . proj2-incident p | — (3 ¢ r.
qg#rANqgeSAreS A proj2-incident q 1 A proj2-incident r 1)
show Fulse by simp
qed

lemma line-through-hyp2-pole-not-in-hyp2:
assumes a € hyp2 and proj2-incident a [
shows pole | ¢ hyp2
proof —
from assms and line-through-K2-intersect-S
obtain p where p € § and proj2-incident p | by auto

from <proj2-incident p
have proj2-incident (pole 1) (polar p) by (rule incident-pole-polar)
with (p € S»
show pole | ¢ hyp2
by (auto simp add: tangent-not-through-K2)
qed

lemma statement60-one-way:
assumes is-K2-isometry J and p € K2
shows apply-clin2 p J € K2 (is ?p’ € K2)
proof —
let 2J' = cltn2-inverse J

have V 1. proj2-incident ?p' I’ — (3 ¢’ r'.
g #r'Nqg €S AT €S A proj2-incident q' I N\ proj2-incident r' ')
proof
fix I’
let 21 = apply-clin2-line 1" 2J’
show proj2-incident ?p’ I’ — (3 ¢’ r’.
g #r'Nqg €S AT €S A proj2-incident ¢’ I’ A proj2-incident r' ')
proof
assume proj2-incident ?p’ I’
hence proj2-incident p ?I
by (simp add: apply-cltn2-incident [of p I" 2J]
cltn2.inv-inv [simplified)])
with «p € K2> and line-through-K2-intersect-S-twice [of p ?I]
obtain ¢ and r where ¢ # rand ¢ € Sand r € §
and proj2-incident q ¢l and proj2-incident r ?1
by auto
let ?¢' = apply-cltn2 q J
let ?r' = apply-cltn2 r J
from «q # m and apply-cltn2-injective [of ¢ J r] have ?q’ # 2r' by auto

from <¢ € S> and «r € S» and <is-K2-isometry J»

138

have ?¢’ € S and %' € S by (unfold is-K2-isometry-def) simp-all

from <proj2-incident q ?l> and <proj2-incident r 20>
have proj2-incident ?q’ I’ and proj2-incident ?r' 1’
by (simp-all add: apply-cltn2-incident [of - I’ 2.J]
cltn2 inv-inv [simplified))
with «?¢’ # %'y and <?¢’ € S» and «?r' € S)
show 3 ¢’ r'.
g #£r'Nqg €SN €S A proj2-incident q' I’ N proj2-incident r' I’
by auto
qed
qed
thus ?p’ € K2 by (rule lines-through-intersect-S-twice-in-K2)
qed

lemma is-K2-isometry-hyp2-S:
assumes p € hyp2 U S and is-K2-isometry J
shows apply-cltn2 p J € hyp2 U S
proof cases
assume p € hyp?2
with «<is-K2-isometry J»
have apply-cltn2 p J € hyp2 by (rule statement60-one-way)
thus apply-cltn2 p J € hyp2 U S ..
next
assume p ¢ hyp2
with <p € hyp2 U S> have p € S by simp
with «<is-K2-isometry J»
have apply-cltn2 p J € S by (unfold is-K2-isometry-def) simp
thus apply-cltn2 p J € hyp2 U S ..
qed

lemma is-K2-isometry-z-non-zero:
assumes p € hyp2 U S and is-K2-isometry J
shows z-non-zero (apply-cltn2 p J)
proof —
from «p € hyp2 U S» and «<is-K2-isometry J»
have apply-cltn2 p J € hyp2 U S by (rule is-K2-isometry-hyp2-S)
thus z-non-zero (apply-cltn2 p J) by (rule hyp2-S-z-non-zero)
qed

lemma cart2-append1-apply-clin2:
assumes p € hyp2 U S and is-K2-isometry J
shows 3 k. k #£ 0
A cart2-appendl p vx clitn2-rep J = k xg cart2-appendl (apply-cltn2 p J)
proof —
have cart2-append! p v+ cltn2-rep J
= (1 / (proj2-rep p)$3) xr (proj2-rep p v+ cltn2-rep J)
by (unfold cart2-append1-def) (simp add: scaleR-vector-matrixz-assoc)

139

from <p € hyp2 U S have (proj2-rep p)$38 # 0 by (rule hyp2-S-z-non-zero)

from apply-cltn2-imp-mult [of p J|

obtain j where j # 0
and proj2-rep p vk cltn2-rep J = j xr proj2-rep (apply-cltn2 p J)
by auto

from «p € hyp2 U S» and «<is-K2-isometry J»
have z-non-zero (apply-cltn2 p J) by (rule is-K2-isometry-z-non-zero)
hence proj2-rep (apply-cltn2 p J)
= (proj2-rep (apply-cltn2 p J))$3 xr cart2-appendl (apply-cltn2 p J)
by (rule proj2-rep-cart2-appendl)

let 2k = 1 / (proj2-rep p)$3 x j * (proj2-rep (apply-clin2 p J))$3
from «(proj2-rep p)$3 # 0> and <j # 0

and «(proj2-rep (apply-cltn2 p J))$3 # 0»
have %k # 0 by simp

from <cart2-appendl p vx cltn2-rep J

= (1 / (proj2-rep p)83) xr (proj2-rep p v+ cltn2-rep J)»

and «proj2-rep p vk cltn2-rep J = j xg proj2-rep (apply-cltn2 p J)»
have cart2-appendl p vx cltn2-rep J

= (1 / (proj2-rep p)$ 3 x j) *r proj2-rep (apply-cltn2 p J)

by simp

from «proj2-rep (apply-cltn2 p J)
= (proj2-rep (apply-cltn2 p J))$3 xr cart2-appendl (apply-cltn2 p J)»
have (1 / (proj2-rep p)$3 * j) *r proj2-rep (apply-cltn2 p J)
= (1 / (proj2-rep p)$3 * j) xr ((proj2-rep (apply-cltn2 p J))$3
xp cart2-appendl (apply-cltn2 p J))
by simp
with <cart2-appendl p vk cltn2-rep J
= (1 / (proj2-rep p)$ 3 * j) *g proj2-rep (apply-clin2 p J)»
have cart2-append! p v+ clin2-rep J = %k g cart2-append! (apply-cltn2 p J)
by simp
with <%k # 0
show 3 k. k #£ 0
A cart2-appendl p vk clin2-rep J = k xg cart2-appendl (apply-cltn2 p J)
by (simp add: exI [of - ?k])
qed

8.5 The K-isometries form a group action
lemma hyp2-cltn2-id [simpl: hyp2-cltn2 p cltn2-id = p
by (unfold hyp2-cltn2-def) (simp add: Rep-hyp2-inverse)

lemma apply-cltn2-Rep-hyp2:
assumes is-K2-isometry J
shows apply-clin2 (Rep-hyp2 p) J € hyp?2

140

proof —

from <is-K2-isometry J» and Rep-hyp2 [of p]

show apply-cltn2 (Rep-hyp2 p) J € K2 by (rule statement60-one-way)
qed

lemma Rep-hyp2-clin2:
assumes is-K2-isometry J
shows Rep-hyp2 (hyp2-clin2 p J) = apply-clin2 (Rep-hyp2 p) J
proof —
from <is-K2-isometry J»
have apply-cltn2 (Rep-hyp2 p) J € hyp2 by (rule apply-cltn2-Rep-hyp2)
thus Rep-hyp2 (hyp2-cltn2 p J) = apply-cltn2 (Rep-hyp2 p) J
by (unfold hyp2-clin2-def) (rule Abs-hyp2-inverse)
qed

lemma hyp2-cltn2-compose:

assumes is-K2-isometry H

shows hyp2-cltn2 (hyp2-cltn2 p H) J = hyp2-cltn2 p (cltn2-compose H J)
proof —

from «<is-K2-isometry H)

have apply-cltn2 (Rep-hyp2 p) H € hyp2 by (rule apply-clin2-Rep-hyp2)

thus hyp2-cltn2 (hyp2-cltn2 p H) J = hyp2-cltn2 p (cltn2-compose H J)

by (unfold hyp2-clin2-def) (simp add: Abs-hyp2-inverse apply-cltn2-compose)

qed

interpretation K2-isometry: action
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
hyp2-cltn2
proof
let G =
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id))
fix p
show hyp2-cltn2 p 1og = p
by (unfold hyp2-clin2-def) (simp add: Rep-hyp2-inverse)
fix HJ
show H € carrier 7G N\ J € carrier ?G
— hyp2-cltn2 (hyp2-cltn2 p H) J = hyp2-cltn2 p (H @9 J)
by (simp add: hyp2-cltn2-compose)
qed

8.6 The Klein—Beltrami model satisfies Tarski’s first three
axioms

lemma three-in-S-tangent-intersection-no-3-Col:
assumes p € Sand ¢ € Sand r € S
and p # g and r ¢ {p,q}
shows proj2-no-3-Col {proj2-intersection (polar p) (polar q),r,p,q}
(is proj2-no-3-Col {?s,r,p,q})
proof —

141

let ?T = {%s,r,p,q}

from «p # ¢ have card {p,q} = 2 by simp
with «r ¢ {p,¢}> have card {r,p,q} = 3 by simp

from (p € S) and «¢ € S) and «r € S) have {r,p,q} C S by simp

have proj2-incident ?s (polar p) and proj2-incident ?s (polar q)
by (rule proj2-intersection-incident)+

have %s ¢ S
proof
assume ?s € §
with <p € S) and «(proj2-incident ?s (polar p)»
and (¢ € S» and «proj2-incident ?s (polar q)»
have %s = p and ?%s = ¢ by (simp-all add: point-in-S-polar-is-tangent)
hence p = ¢ by simp
with «p # ¢ show Fulse ..
qed
with «{r,p,¢} C S» have ?s ¢ {r,p,q} by auto
with «card {r.,p,q} = 3> have card {?s,r,p,q} = 4 by simp

have V t€?T. = proj2-set-Col (¢T — {t})
proof standard+
fix t
assume t € ?T
assume proj2-set-Col (?T — {t})
then obtain [where V a € (¢T — {t}). proj2-incident a |
unfolding proj2-set-Col-def ..

from «proj2-set-Col (?T — {¢})
have proj2-set-Col (S N (¢T — {t}))

by (simp add: proj2-subset-Col [of (S N (?T — {t})) ?T — {t}])
hence card (S N (?T — {t})) < 2 by (simp add: card-line-intersect-S)

show Fulse
proof cases
assume ¢t = %s
with <%s ¢ {r,p,¢}»> have ¢T — {t} = {r,p,q} by simp
with «({r,p,q} C 5> have S N (¢T — {t}) = {r,p,q} by simp
with <card {r,p,q} = 8> and «card (S N (?T — {t})) < 2> show Fulse by
simp
next
assume t # %s
hence ?%s € ?T — {t} by simp
with <V a € (?T — {t}). proj2-incident a I» have proj2-incident ?s 1 ..

from «p # ¢ have {p,q} N ?T — {¢} # {} by auto
then obtain d where d € {p,q} and d € ?T — {t} by auto

142

from «d € ?T — {t} and vV a € (?T — {t}). proj2-incident a >
have proj2-incident d | by simp

from «d € {p,q}p
and «(proj2-incident ?s (polar p)»
and <proj2-incident ?s (polar q)»
have proj2-incident ?s (polar d) by auto

from «d € {p,q}> and {r,p,q} C S) have d € S by auto
hence proj2-incident d (polar d) by (unfold incident-own-polar-in-S)

from «d € S» and «%s ¢ S» have d # ?s by auto
with «proj2-incident ?s I
and <proj2-incident d I
and «(proj2-incident ?s (polar d)»
and <proj2-incident d (polar d)»
and proj2-incident-unique
have | = polar d by auto
with «<d € §» and point-in-S-polar-is-tangent
have V a€S. proj2-incident a | — a = d by simp
with <V a € (?T — {t}). proj2-incident a 1>
have S N (?T — {t}) C {d} by auto
with card-mono [of {d}] have card (S N (?T — {t})) < 1 by simp
hence card (S N ?T) — {t}) < 1 by (simp add: Int-Diff)

have S N 2T C insert t ((S N ?T) — {t}) by auto
with card-suc-ge-insert [of t (S N ?2T) — {t}]
and card-mono [of insert t ((S N ?T) — {t}) SN ?7T)
have card (S N ¢T) < card (S N ?T) — {t}) + 1 by simp
with «card (S N ?T) — {t}) < 1> have card (SN ?T) < 2 by simp

from «{r,p,q} C S» have {r,p,q} C SN ?T by simp
with <card {r,p,q} = 3> and card-mono [of S N ¢T {r,p,q}]
have card (S N ¢T) > 3 by simp
with (card (S N ?T) < 2> show Fualse by simp
qed
qged
with <card ?T = 4> show proj2-no-3-Col ?T unfolding proj2-no-3-Col-def ..
qed

lemma statement65-special-case:

assumes p € Sand ¢ € Sand r € S and p # g and r ¢ {p,q}

shows 3 J. is-K2-isometry J

A apply-cltn2 east J = p

A apply-clin2 west J = q

A apply-cltn2 north J = r

A apply-cltn2 far-north J = proj2-intersection (polar p) (polar q)
proof —

let %s = proj2-intersection (polar p) (polar q)

143

let 9t = wvector [vector [?s,r,p,q], vector [far-north, north, east, west]|
oproj2 472
have range ((3) (2t31)) = {%s, r, p, ¢}
unfolding image-def
by (auto simp add: UNIV-4 vector-4)
with <p € §> and <¢ € > and <r € S» and <p # ¢ and «r ¢ {p,¢}>
have proj2-no-3-Col (range (($) (2t$1)))
by (simp add: three-in-S-tangent-intersection-no-3-Col)
moreover have range ((3) (?t$32)) = {far-north, north, east, west}
unfolding image-def
by (auto simp add: UNIV-4 vector-4)
with compass-in-S and east-west-distinct and north-not-east-or-west
and east-west-tangents-far-north
and three-in-S-tangent-intersection-no-3-Col [of east west north)
have proj2-no-3-Col (range ((3) (?t$2))) by simp
ultimately have V i. proj2-no-3-Col (range (($) (7t$1)))
by (simp add: forall-2)
hence 3 J.V j. apply-cltn2 (?t$085) J = ?t$18j
by (rule statement53-existence)
moreover have (0 = (2::2) by simp
ultimately obtain J where V j. apply-cltn2 (7t$2%5) J = ?t$1$j by auto
hence apply-cltn2 (2t$2%1) J = %t$1$1

and apply-cltn2 (7t$2$2) J = 2t$1$2
and apply-cltn2 (2t$283) J = ?t$1$3
and apply-clin2 (71$2%4) J = 2t$1$/

by simp-all

hence apply-cltn2 east J = p
and apply-clin2 west J = q
and apply-cltn2 north J = r
and apply-cltn2 far-north J = ?s
by (simp-all add: vector-2 vector-4)

with compass-non-zero

have p = proj2-abs (vector [1,0,1] vx cltn2-rep J)
and ¢ = proj2-abs (vector [—1,0,1] vx cltn2-rep J)
and r = proj2-abs (vector [0,1 } vk cltn2-rep J)
and ?s = proj2-abs (vector [071,0] vk cltn2-rep J)
unfolding compass-defs and far-north-def
by (simp-all add: apply-clin2-left-abs)

let N = cltn2-rep J xx M xx transpose (cltn2-rep J)

from M-symmatriz have symmatriz ?N by (rule symmatriz-preserve)

hence ?N$2%1 = ?N$1$2 and ?N$3%1 = ?N31$3 and ?N$3$2 = ?N$2$3
unfolding symmatriz-def and transpose-def
by (simp-all add: vec-eq-iff)

from compass-non-zero and <apply-cltn2 east J = p> and <p € S»
and apply-cltn2-abs-in-S [of vector [1,0,1] J]

have (vector [1,0,1] :: real”3) - (?N *v vector [1,0,1]) = 0
unfolding east-def

144

by simp
hence ?N$181 + ?N$183 + ?N$3%1 + N$3%3 = 0
unfolding inner-vec-def and matriz-vector-mult-def
by (simp add: sum-3 vector-3)
with (?N$3%1 = ?N$1$3> have ?N$131 + 2 x (?N$1$3) + ?N$3%3 = 0 by
simp

from compass-non-zero and <apply-clin2 west J = ¢» and <q € S»
and apply-cltn2-abs-in-S [of vector [—1,0,1] J|
have (vector [—1,0,1] :: real”3) « (?N *v vector [—1,0,1]) = 0
unfolding west-def
by simp
hence ?N$181 — ?N$133 — ?N$3%1 + N$3%83 = 0
unfolding inner-vec-def and matriz-vector-mult-def
by (simp add: sum-3 vector-3)
with (?N$3%1 = ?N$1$3> have ?N$181 — 2 « (?N$1$3) + ?N$3%3 = 0 by
stmp
with (?N$1$1 + 2 x (?N$1383) + ?N$3%$3 = O»
have ?N$181 + 2 « (?N$1$3) + ?N$3%83 = ?N$1$1 — 2 x (?N$1%83) +
IN$53%3
by simp
hence ?N$1$3 = 0 by simp
with (?N$1871 + 2 « (?N$183) + ?N$3%3 = 0> have ?N$3$3 = — (?N$1$1)
by simp

from compass-non-zero and <apply-cltn2 north J = r» and <r € S»
and apply-cltn2-abs-in-S [of vector [0,1,1] J]
have (vector [0,1,1] :: real”3) - (?N *v vector [0,1,1]) = 0
unfolding north-def
by simp
hence ?N$23%2 + ?N$283 + ?N$3%$2 + ?N$3%83 = 0
unfolding inner-vec-def and matriz-vector-mult-def
by (simp add: sum-3 vector-3)
with (?N$3%2 = ?N$2$3> have ?N$232 + 2 x (?N$2$3) + ?N$3$3 = 0 by
simp

have proj2-incident ?s (polar p) and proj2-incident ?s (polar q)
by (rule proj2-intersection-incident)+

from compass-non-zero
have vector [1,0,1] vk cltn2-rep J # 0
and vector [—1,0,1] vx cltn2-rep J # 0
and vector [0,1,0] vx cltn2-rep J # 0
by (simp-all add: non-zero-mult-rep-non-zero)
from <wector [1,0,1] vk cltn2-rep J # 0>
and (vector [—1,0,1] vx cltn2-rep J # 0»
and «p = proj2-abs (vector [1,0,1] vx cltn2-rep J)»
and «q = proj2-abs (vector [—1,0,1] vk cltn2-rep J)»
have polar p = proj2-line-abs (M v (vector [1,0,1] vx cltn2-rep J))

145

and polar q = proj2-line-abs (M *v (vector [—1,0,1] v* cltn2-rep J))
by (simp-all add: polar-abs)

from «vector [1,0,1] vk cltn2-rep J # 0>
and «wvector [—1,0,1] vx cltn2-rep J # 0»
and M-invertible
have M v (vector [1,0,1] vx cltn2-rep J) # 0
and M v (vector [—1,0,1] vx cltn2-rep J) # 0
by (simp-all add: invertible-times-non-zero)
with «vector [0,1,0] vk cltn2-rep J # 0>
and «polar p = proj2-line-abs (M xv (vector [1,0,1] vk cltn2-rep J))»
and <polar ¢ = proj2-line-abs (M *v (vector [—1,0,1] vx cltn2-rep J))»
and <%s = proj2-abs (vector [0,1,0] vx cltn2-rep J)»
have proj2-incident ?s (polar p)
+— (vector [0,1,0] vx cltn2-rep J)
- (M xv (vector [1,0,1] vx cltn2-rep J)) = 0
and proj2-incident ?s (polar q)
< (vector [0,1,0] vx cltn2-rep J)
- (M *v (vector [—1,0,1] vk cltn2-rep J)) = 0
by (simp-all add: proj2-incident-abs)
with <proj2-incident ?s (polar p)» and <«proj2-incident ?s (polar q)»
have (vector [0,1,0] vx cltn2-rep J)
- (M v (vector [1,0,1] vx cltn2-rep J)) = 0
and (vector [0,1,0] vx cltn2-rep J)
- (M xv (vector [—1,0,1] vx cltn2-rep J)) = 0
by simp-all
hence vector [0,1,0] - (?N *v vector [1,0,1]) = 0
and vector [0,1,0] - (?N *v vector [—1,0,1]) = 0
by (simp-all add: dot-lmul-matriz matriz-vector-mul-assoc [symmetric])
hence ?N$281 + ?N$283 = 0 and —(?N$281) + ?N$288 = 0
unfolding inner-vec-def and matriz-vector-mult-def
by (simp-all add: sum-3 vector-3)
hence ?N$281 + ?N$283 = —(?N$2%1) + ?N$283 by simp
hence ?N$2$1 = 0 by simp
with (?N$2$81 + ?N$283 = 0> have ?N$2$3 = 0 by simp
with (?N$282 + 2 « (?N$283) + ?N$3$3 = 0> and «?N$3$3 = —(?N$1$1)
have ?N$2$2 = ?N$1$1 by simp
with <?N$1$3 = 0> and <?N$281 = ?N$1$2» and «?N$13%3 = 0»
and <?N$2%1 = 0» and «?N$282 = ?N$131» and (?N$283 = 0>
and (?N$3%1 = ?N$1$3> and (?N$3$2 = ?N$283) and (?N$3$3 =
—(N$1$1))
have ?N = (?N$181) xg M
unfolding M-def
by (simp add: vec-eq-iff vector-8 forall-3)

have invertible (cltn2-rep J) by (rule cltn2-rep-invertible)

with M-invertible

have invertible N by (simp add: invertible-mult transpose-invertible)
hence ?N # 0 by (auto simp add: zero-not-invertible)

146

with «(?N = (?N$1$1) xg M»> have ?N$1$1 # 0 by auto
with «(?N = (YN$1$1) xp M>
have is-K2-isometry (cltn2-abs (cltn2-rep J))

by (simp add: J-M-J-transpose-K2-isometry)
hence is-K2-isometry J by (simp add: cltn2-abs-rep)
with <apply-cltn2 east J = p»

and <apply-cltn2 west J = ¢

and <apply-cltn2 north J = r»

and <apply-cltn2 far-north J = %s)
show 3 J. is-K2-isometry J

A apply-cltn2 east J = p

A apply-cltn2 west J = q

A apply-cltn2 north J = r

A apply-cltn2 far-north J = ?s

by auto

qed

lemma statement66-ezistence:

assumes a! € K2 and a2 € K2 and p! € Sand p2 € S

shows 3 J. is-K2-isometry J A apply-clin2 al J = a2 N apply-cltn2 p1 J = p2
proof —

let %a = vector [al,a2] :: proj2~2

from <al € K2) and (a2 € K2) have V i. %a$i € K2 by (simp add: forall-2)

let ?p = wvector [p1,p2] :: proj2 2
from «p! € S» and «p2 € S» have V 4. ?p$i € S by (simp add: forall-2)

let 2l = x i. proj2-line-through (%a$i) (?p$i)

have V i. proj2-incident (?a$7) (71$7)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?a$1) (?1$1) and proj2-incident (?a$2) (21$2)
by fast+

have V i. proj2-incident (?p$7) (21$7)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?p$1) (?1$1) and proj2-incident (7p$2) (21$2)
by fast+

let 2¢ = x i. ¢ qi. qi # ?p$i A qi € S A proj2-incident qi (21$7)
have V i. 2¢$i # ?p$i A 29$i € S A proj2-incident (2q$i) (71%7)
proof

fix 7

from <V i. 2a$i € K2> have %a$i € K2 ..

from «V i. proj2-incident (?a$7) (21$7)>

have proj2-incident (?a$7) (21$7) ..

with <%a$i € K2)

have 3 q¢i. qi # ?p%i A qi € S A proj2-incident qi (21$7)
by (rule line-through-K2-intersect-S-again)

147

with somel-ex [of A qi. qi # ?p%i A qi € S A proj2-incident qi (21$7)]
show 2¢$i # ?p%i A 2¢$i € S A proj2-incident (%q$7) (?137) by simp
qed
hence ?¢$1 # ?p$1 and proj2-incident (?g$1) (?71$1)
and proj2-incident (2¢$2) (21$2)
by fast+

let ?r = x 4. proj2-intersection (polar (2q3%7)) (polar (?p$7))

let ?m = x i. proj2-line-through (?a$i) (7r8$7)

have V i. proj2-incident (?a$i) (?m$7)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?a$1) (?m$1) and proj2-incident (?a$2) (m$2)
by fast+

have V i. proj2-incident (7r$i) (?m$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (9r$1) (Ym$1) and proj2-incident (9r$2) (¥m$2)
by fast+

let s = x i. € si. si # ?2r8i A si € S A proj2-incident si (#m$7)
have V 4. 2s8i # 7r$i A 2s$i € S A proj2-incident (?s$7) (?m$7)
proof

fix ¢

from <V i. 2a%i € K2»> have %a$i € K2 ..

from <V i. proj2-incident (?a$7) (?m$i)»

have proj2-incident (?a$i) (?m$i) ..

with «Za$i € K2»

have 3 si. si # 9r$i A si € S A proj2-incident si (?m$7)

by (rule line-through-K2-intersect-S-again)

with somel-ex [of X si. si # ?2r$i A si € S A proj2-incident si (?m$7)]

show ?2s$i # 2r$i A 2s$i € S A proj2-incident (?s$i) (?m$i) by simp
qed
hence ?s$1 # ?r$1 and proj2-incident (7s$1) (Ym$1)

and proj2-incident (2s$2) (?m$2)

by fast+

have V i .V wu. proj2-incident u (?m$i) — — (u = p$i V u = 2¢8$i)
proof standard+

fix ¢:: 2

fix u :: proj2

assume proj2-incident u (?m$7)

assume u = p%i V u = 9q%i

from <V i. ?p%i € S» have %p%i € S ..
from «V i. 2¢%¢ # ?p%i A 2¢%i € S A proj2-incident (2q3%) (21$0)

have 2¢%i # ?p%i and 2¢$i € S
by simp-all

148

from «?p%i € S» and «%g$i € Sy and «u = p%i V u = 2¢%i>
have u € S by auto
hence proj2-incident u (polar u)

by (simp add: incident-own-polar-in-S)

have proj2-incident (9r$i) (polar (7p$i))

and proj2-incident (9r$i) (polar (2¢$7))

by (simp-all add: proj2-intersection-incident)
with <u = ?p$i V u = 2¢$0
have proj2-incident (2r$i) (polar u) by auto

from «V i. proj2-incident (7r$i) (?m$i)
have proj2-incident (?r$i) (?m$i) ..

from <V i. proj2-incident (?a$i) (?m$i)>
have proj2-incident (?a$7) (?m$i) ..

from «V ¢. 2a$i € K2)> have %a$i €¢ K2 ..

have u # ?r$i
proof
assume u = 7r$i
with «proj2-incident (?r$i) (polar (?p$7))>
and <proj2-incident (?r$i) (polar (?¢$i))>
have proj2-incident u (polar (?p$i))
and proj2-incident u (polar (2q$7))
by simp-all
with <u € S» and «?p$i € S» and «?¢$i € S»
have v = ?p$i and v = 7¢%$i
by (simp-all add: point-in-S-polar-is-tangent)
with «2¢$i # ?p$i) show False by simp
qed
with «proj2-incident (u) (polar u)»
and «proj2-incident (?r$i) (polar u)»
and <proj2-incident u (?m$i)
and <proj2-incident (?r$i) (?m$i)»
and proj2-incident-unique
have ?m$i = polar u by auto
with <proj2-incident (2a$i) (9m$i)>
have proj2-incident (?a$i) (polar u) by simp
with <u € Sy and «?a$i € K2»> and tangent-not-through-K2
show Fulse by simp
qed

let YH = x i. € Hi. is-K2-isometry Hi
A apply-cltn2 east Hi = 2q$i
A apply-cltn2 west Hi = ?p$i
A apply-cltn2 north Hi = ?s$i

149

A apply-cltn2 far-north Hi = r$i
have V i. is-K2-isometry (?7H$7)

A apply-cltn2 east (?HS$i) = 2¢%i

A apply-clin2 west (?HS$i) = ?p$i

A apply-cltn2 north (?HSi) = ?2s%i

A apply-clin2 far-north (?HS$i) = 9r$i
proof

fixi:2

from <V i. ?p$i € S» have 7p$i € S ..

from «V i. 2¢8i # ?p$i A 2¢%i € S A proj2-incident (2q$7) (21$0)
have 9¢%i # ?p%i and 2¢$i € S
by simp-all

from <V 4. 2587 £ 2r$i A 9580 € S A proj2-incident (?s$i) (m$i)>
have ?7s$i € S and proj2-incident (2s$i) (¢m$i) by simp-all
from «proj2-incident (?s$7) (?m$i)»
and vV 0.V u. proj2-incident u (Ym$i) — - (v = ?p$i V u = ?¢%i)»
have ?s$i ¢ {2¢$i, ?p%i} by fast
with «2¢$i € S» and «?p$i € S» and «?s$i € S» and (?q$i # 7p$i>
have 3 Hi. is-K2-isometry Hi
A apply-clin2 east Hi = 2q$i
A apply-clin2 west Hi = ?p$i
A apply-cltn2 north Hi = 2%
A apply-cltn2 far-north Hi = 2r$i
by (simp add: statement65-special-case)
with somel-ex [of A Hi. is-K2-isometry Hi
A apply-clin2 east Hi = 2q$i
A apply-clin2 west Hi = ?p$i
A apply-cltn2 north Hi = 2s%i
A apply-clin2 far-north Hi = 2r$i
show is-K2-isometry (7H$1)
A apply-clin2 east (?H$i) = 2¢$i
A apply-clin2 west (?H$i) = 7p$i
A apply-cltn2 north (?H3$i) = 7534
A apply-clin2 far-north (?H$i) = 2r$i
by simp
qed
hence is-K2-isometry (?H$1)
and apply-clin2 east (?H$1) = 2¢31
and apply-cltn2 west (?H$1) = 2p$1
and apply-clin2 north (?H$1) = 2s$1
and apply-cltn2 far-north (?H$1) = ?r$1
and is-K2-isometry (?H$2)
and apply-clin2 east (?H$2) = 7q$2
and apply-cltn2 west (?H$2) = 7p32
and apply-cltn2 north (?H$2) = 2582
and apply-cltn2 far-north (?H$2) = ?r$2
by fast+

150

let 2J = cltn2-compose (cltn2-inverse (?H$1)) (?HS$2)
from <is-K2-isometry (?H$1)» and <is-K2-isometry (?H$2)»
have is-K2-isometry ¢J
by (simp only: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)

from <apply-clin2 west (?H$1) = ?p$1»

have apply-cltn2 p1 (cltn2-inverse (?H$1)) = west
by (simp add: cltn2.act-inv-iff [simplified])

with <apply-cltn2 west (?HS$2) = 7p$2»

have apply-cltn2 p1 ?2J = p2
by (simp add: cltn2.act-act [simplified, symmetric])

from <apply-clin2 east (?H$1) = 2¢$1»

have apply-clin2 (9¢$1) (cltn2-inverse (?H$1)) = east
by (simp add: cltn2.act-inv-iff [simplified])

with <apply-clin2 east (?H$2) = 9q$2>

have apply-cltn2 (2¢$1) ?2J = 2¢$2
by (simp add: cltn2.act-act [simplified, symmetric])

with <2¢$1 # ?p$1)> and <apply-cltn2 pl 2J = p2»
and <proj2-incident (7p$1) (21$1)>
and <proj2-incident (9q$1) (21$1)>
and «proj2-incident (7p$2) (?1$2)>
and <proj2-incident (7¢$2) (21$2)»

have apply-cltn2-line (71$1) 2J = (?21$2)
by (simp add: apply-cltn2-line-unique)

moreover from <proj2-incident (?a$1) (?1$1)»

have proj2-incident (apply-cltn2 (?a$1) 2J) (apply-clin2-line (¢1$1) 2.J)
by simp

ultimately have proj2-incident (apply-cltn2 (%a$1) 2J) (?1$2) by simp

from <apply-clin2 north (?H$1) = ?s$1»

have apply-cltn2 (2s81) (cltn2-inverse (YHS$1)) = north
by (simp add: clin2.act-inv-iff [simplified])

with <apply-clin2 north (?H$2) = 2s$2»

have apply-cltn2 (9s$1) 2J = 2582
by (simp add: cltn2.act-act [simplified, symmetric])

from <apply-cltn?2 far-north (?H$1) = 2r$1»

have apply-clin2 (9r$1) (cltn2-inverse (?HS$1)) = far-north
by (simp add: cltn2.act-inv-iff [simplified])

with <apply-cltn2 far-north (?H$2) = 7r$2»

have apply-cltn2 (2r$1) 2J = 2r$2
by (simp add: cltn2.act-act [simplified, symmetric])

with «%s$1 # ?r$1» and <apply-clin2 (?s$1) ?2J = (2s$2)»
and <proj2-incident (9r$1) (?m$1)
and <proj2-incident (2s$1) (?m$1))
and <proj2-incident (7r$2) (?m$2)
and «proj2-incident (7s$2) (?m$2))

151

have apply-cltn2-line (?m$1) 2J = (Ym$2)
by (simp add: apply-clin2-line-unique)

moreover from <«proj2-incident (¢a$1) (?m$1)>

have proj2-incident (apply-cltn2 (2a$1) 2J) (apply-clin2-line (Ym$1) 2J)
by simp

ultimately have proj2-incident (apply-clin2 (2a$1) 2J) (¢m$2) by simp

from <V 7.V w. proj2-incident u (#m$i) — — (u = ?p$i V u = 2¢8$i)
have - proj2-incident (?p$2) (?m$2) by fast
with <proj2-incident (?p$2) (?132)> have ?m$2 # ?21$2 by auto
with «proj2-incident (?a$2) (?71$2)
and «proj2-incident (?a$2) (?m$2)»
and <proj2-incident (apply-cltn2 (%a$1) 2J) (21$2)»
and «proj2-incident (apply-cltn2 (?a$1) 2J) (?m$2)»
and proj2-incident-unique
have apply-cltn2 a1l ?J = a2 by auto
with «is-K2-isometry ?J> and <apply-cltn2 p1 ?2J = p2»
show 3 J. is-K2-isometry J A apply-cltn2 al J = a2 A apply-cltn2 p1 J = p2
by auto
qed

lemma K2-isometry-swap:

assumes a € hyp2 and b € hyp2

shows 3 J. is-K2-isometry J A apply-clin2 a J = b N\ apply-cltn2 b J = a
proof —

from <a € hyp2> and <b € hyp2>

have ¢ € K2 and b € K2 by simp-all

let ¢l = proj2-line-through a b
have proj2-incident a ?] and proj2-incident b ?1
by (rule proj2-line-through-incident)+
from <a € K2 and (proj2-incident a %I
and line-through- K 2-intersect-S-exactly-twice [of a ?I|
obtain p and ¢ where p # ¢
and pe Sand g € §
and proj2-incident p ?l and proj2-incident q ?I
and V reS. proj2-incident r 2l — r=pV r =gq
by auto
from (a € K2)> and <b € K2) and (p € S» and ¢ € S»
and statement66-ezistence [of a b p ¢]
obtain J where is-K2-isometry J and apply-cltn2 a J = b
and apply-clin2 p J = q
by auto
from <apply-cltn2 a J = b> and <apply-clin2 p J = ¢
and <proj2-incident b ?l> and <proj2-incident q 71>
have proj2-incident (apply-cltn2 a J) 2?1
and proj2-incident (apply-cltn2 p J) 21
by simp-all

152

from <a € K2> and «(p € S» have a # p

unfolding S-def and K2-def

by auto
with <proj2-incident a 21

and <proj2-incident p 2l

and <proj2-incident (apply-clin2 a J) ?D

and <proj2-incident (apply-clin2 p J) D
have apply-cltn2-line 91 J = ¢l by (simp add: apply-clin2-line-unique)
with «proj2-incident q ?l> and apply-clin2-preserve-incident [of q J ?l]
have proj2-incident (apply-cltn2 q J) ?1 by simp

from <«¢ € S) and «<is-K2-isometry J»
have apply-cltn2 q J € S by (unfold is-K2-isometry-def) simp
with «proj2-incident (apply-cltn2 q J) 2D
and <Y reS. proj2-incident r 2l — r=pV r = ¢
have apply-cltn2 q J = p V apply-cltn2 q J = q by simp

have apply-clin2 q J # q
proof
assume apply-cltn2 q J = q
with <apply-cltn2 p J = ¢
have apply-cltn2 p J = apply-clin2 q J by simp
hence p = ¢q by (rule apply-cltn2-injective [of p J q])
with <p # ¢ show Fulse ..
qed
with <apply-cltn2 ¢ J = p V apply-cltn2 q J = ¢
have apply-cltn2 q J = p by simp
with p # ¢
and <apply-cltn2 p J = ¢
and <proj2-incident p ?l»
and <proj2-incident q ?I>
and <proj2-incident a 2l
and statement55
have apply-cltn2 (apply-cltn2 a J) J = a by simp
with <apply-clitn2 o J = b> have apply-clin2 b J = a by simp
with <is-K2-isometry J» and <apply-cltn2 a J = b
show 3 J. is-K2-isometry J A apply-clin2 a J = b N\ apply-cltn2 b J = a
by (simp add: exI [of - J])
qed

theorem hyp2-axiomi1:V a b. a b =g ba
proof standard+
fix a b
let ?a’ = Rep-hyp2 a
let b’ = Rep-hyp2 b
from Rep-hyp2 and K2-isometry-swap [of ?a’ ?b)
obtain J where is-K2-isometry J and apply-cltn2 ?a’ J = 2b’
and apply-cltn2 2b’' J = %a’
by auto

153

from <apply-clin2 ?a’ J = 2b’y and <apply-clin2 20" J = ?a’
have hyp2-cltn2 a J = b and hyp2-cltn2 b J = a
unfolding hyp2-cltn2-def by (simp-all add: Rep-hyp2-inverse)
with «<is-K2-isometry J»
show a b= b a
by (unfold real-hyp2-C-def) (simp add: exI [of - J])
qed

theorem hyp2-aziom2:V abpqgrs.ab=x pqgNab=xrs—pq=k s
proof standard+
fixabpqgrs
assume a b= pqgANab=g rs
then obtain G and H where is-K2-isometry G and is-K2-isometry H
and hyp2-cltn2 a G = p and hyp2-cltn2 b G = q
and hyp2-cltn2 a H = r and hyp2-clin2 b H = s
by (unfold real-hyp2-C-def) auto
let 2J = cltn2-compose (cltn2-inverse G) H
from <is-K2-isometry G» have is-K2-isometry (cltn2-inverse G)
by (rule cltn2-inverse-is-K2-isometry)
with <is-K2-isometry H)»
have is-K2-isometry 2J by (simp only: cltn2-compose-is-K2-isometry)

from <is-K2-isometry G» and <hyp2-cltn2 a G = p» and <hyp2-cltn2 b G = ¢
and K2-isometry.act-inv-iff

have hyp2-cltn2 p (cltn2-inverse G) = a
and hyp2-cltn2 q (cltn2-inverse G) = b
by simp-all

with <hyp2-cltn2 a H = r» and <hyp2-cltn2 b H = s
and <is-K2-isometry (clin2-inverse G)» and «<is-K2-isometry H»
and K2-isometry.act-act [symmetric]

have hyp2-cltn2 p ¢?J = r and hyp2-cltn2 q ¢J = s by simp-all

with «is-K2-isometry 2J»

show p g =k 1 s
by (unfold real-hyp2-C-def) (simp add: exI [of - 2J])

qed

theorem hyp2-aziom3:V abc.ab=g cc— a=b
proof standard+
fixabc
assume a b =g c ¢
then obtain J where is-K2-isometry J
and hyp2-cltn2 a J = ¢ and hyp2-cltn2 b J = ¢
by (unfold real-hyp2-C-def) auto
from <hyp2-clin2 a J = ¢ and <hyp2-cltn2 b J = ¢
have hyp2-cltn2 a J = hyp2-cltn2 b J by simp

from <is-K2-isometry J»
have apply-cltn2 (Rep-hyp2 a) J € hyp2

154

and apply-clin2 (Rep-hyp2 b) J € hyp2
by (rule apply-cltn2-Rep-hyp2)+
with <hyp2-cltn2 a J = hyp2-cltn2 b J»
have apply-cltn2 (Rep-hyp2 a) J = apply-clin2 (Rep-hyp2 b) J
by (unfold hyp2-cltn2-def) (simp add: Abs-hyp2-inject)
hence Rep-hyp2 a = Rep-hyp2 b by (rule apply-cltn2-injective)
thus ¢ = b by (simp add: Rep-hyp2-inject)
qed

interpretation hyp2: tarski-first3 real-hyp2-C
using hyp2-axioml and hyp2-ariom2 and hyp2-axiom3
by unfold-locales

8.7 Some lemmas about betweenness

lemma S-at-edge:
assumes p € S and g € hyp2 U S and r € hyp2 U S and proj2-Col p q r
shows Bg (cart2-pt p) (cart2-pt q) (cart2-pt r)
V' Br (cart2-pt p) (cart2-pt r) (cart2-pt q)
(is Br %cp ?cq Zer V o-)
proof —
from (p € S» and <q € hyp2 U S» and «r € hyp2 U S»
have z-non-zero p and z-non-zero ¢ and z-non-zero r
by (simp-all add: hyp2-S-z-non-zero)
with «proj2-Col p q r»
have real-euclid.Col ?cp ?cq ?cr by (simp add: proj2-Col-iff-euclid-cart2)

with <z-non-zero p» and <z-non-zero ¢ and <z-non-zero r»

have proj2-pt ?cp = p and proj2-pt ?cq = q and proj2-pt ?cr = r
by (simp-all add: proj2-cart2)

from «proj2-pt ?cp = p» and <p € S»

have norm ?cp = 1 by (simp add: norm-eq-1-iff-in-S)

from <proj2-pt ?cq = ¢» and <proj2-pt ?cr = >
and «q € hyp2 U S» and «r € hyp2 U S»
have norm ?cq < 1 and norm ?cr < 1
by (simp-all add: norm-le-1-iff-in-hyp2-S)

show BRr %cp ?cq ?cr V Br ?cp ?cr ?cq
proof cases
assume Br Zcr Zcp %cq
then obtain £ where £ > 0 and k£ < 1
and %cp — Per =k xp (%cq — Per)
by (unfold real-euclid-B-def) auto
from «?cp — Per = k xg (%cq — %er)
have ?cp = k xg %cq + (1 — k) *r ?cr by (simp add: algebra-simps)
with <norm ?cp = 1) have norm (k xr %cq + (1 — k) xg %cr) = 1 by simp
with norm-triangle-ineq [of k xr 2cq (1 — k) *p %cr]
have norm (k xr ?cq) + norm ((1 — k) *r %cr) > 1 by simp

155

from <k > 0> and <k < 1>
have norm (k xg ?cq) + norm ((1 — k) xr %cr)
=k x norm ?cq + (I — k) * norm %cr
by simp
with norm (k xg ?cq) + norm ((1 — k) xg %er) > 1»
have k x norm %cq + (1 — k) * norm %cr > 1 by simp

from «norm %cq < 1y and <k > 0> and mult-mono [of k k norm %cq 1]
have k * norm %cq < k by simp

from <norm %cr < 1) and <k < 1)
and mult-mono [of 1 — k1 — k norm %cr 1]

have (1 — k) * norm %cr < 1 — k by simp

with <k x norm %cq < k>

have k x norm ?cq + (1 — k) * norm %cr < 1 by simp

with <k x norm %cq + (1 — k) x norm %cr > 1>

have k x norm %cq + (1 — k) * norm %cr = 1 by simp

with <k x norm ?cq < k> have (1 — k) x norm %cr > 1 — k by simp

with «(1 — k) x norm %cr < 1 — k> have (1 — k) * norm %cr = 1 — k by
stmp

with <k x norm %cq + (1 — k) * norm ?cr = 1) have k x norm %cq = k by
simp

have %cp = %cq V %cq = %cr vV Zer = Zep
proof cases
assume k=0 V k=1
with <%cp = k xg %cq + (1 — k) xr Zer
show 2cp = %¢q V %cq = %er V Zer = Zep by auto
next
assume - (k=0V k=1)
hence k£ # 0 and k # 1 by simp-all
with <k x norm %cq = k> and (1 — k) * norm %cr = 1 — k»
have norm ?cq = 1 and norm ?cr = 1 by simp-all
with «proj2-pt ?cq = ¢ and <proj2-pt ?cr = 1>
have ¢ € S and r € S by (simp-all add: norm-eq-1-iff-in-5)
with «p € S» have {p,q,r} C S by simp

from «<proj2-Col p q
have proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
with «{p,q,r} C S have card {p,q,r} < 2 by (rule card-line-intersect-S)

havep=gqVvVg=rvr=p
proof (rule ccontr)
assume = (p=qV g=rV T =D))
hence p # g and q # r and r # p by simp-all
from «q # r have card {q,r} = 2 by simp
with «p # ¢» and <r # p» have card {p,q,r} = 3 by simp
with <card {p,q,r} < 2> show False by simp

156

qed
thus %cp = %cq V %cq = %cr V 2cr = 2ep by auto
qed
thus Br 7cp %cq ?cr vV Br %cp %cr %cq
by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)
next
assume — Br Zcr %cp Pcq
with «<real-euclid.Col ?cp ?cq ?cr»
show Bgr Zcp ?cq ?cr V Br %cp ?cr ?cq
unfolding real-euclid. Col-def
by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)
qed
qed

lemma hyp2-in-middle:

assumes p € Sand g € S and r € hyp2 U S and proj2-Colp q r

and p # ¢

shows Bg (cart2-pt p) (cart2-pt r) (cart2-pt q) (is Br %cp cr ?eq)
proof (rule ccontr)

assume - BR cp “cr Ycq

hence - Br ?cq ?cr Zcp

by (auto simp add: real-euclid.th3-2 [of ?cq ?er Zcp])

from (p € S» and ¢<¢q € S» and «r € hyp2 U S» and «proj2-Col p q r»
have Br ?cp ?cq ?cr V Br %cp ?er Zeq by (simp add: S-at-edge)
with <= Br Zcp ?cr ?cq) have Br %cp ?cq ?cr by simp

from «proj2-Col p q r» and proj2-Col-permute have proj2-Col q p r by fast
with (¢ € S> and <p € §) and «r € hyp2 U S

have Br ?cq %cp ?cr V Br ?cq ?cr Zep by (simp add: S-at-edge)

with <— Br ?cq ?cr ?cpy have Br %cq 7cp ?cr by simp

with <Br ?cp ?cq ?cry have ?cp = 2¢q by (rule real-euclid.th3-4)

hence proj2-pt ?cp = proj2-pt ?cq by simp

from <p € S» and ¢ € S»
have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt ?cq = q by (simp-all add: proj2-cart2)
with <proj2-pt ?cp = proj2-pt ?cq> have p = q by simp
with (p # ¢ show Fulse ..

qed

lemma hyp2-incident-in-middle:
assumes p# gand p € Sand ¢ € Sand a € hyp2 U S
and proj2-incident p | and proj2-incident q [and proj2-incident a 1
shows Bg (cart2-pt p) (cart2-pt a) (cart2-pt q)

proof —
from <proj2-incident p I> and <proj2-incident q > and <proj2-incident a >
have proj2-Col p q a by (rule proj2-incident-Col)
from (p € Sy and ¢<¢q € S» and <a € hyp2 U Sy and this and <p # ¢

157

show Br (cart2-pt p) (cart2-pt a) (cart2-pt q)
by (rule hyp2-in-middle)
qed

lemma extend-to-S:
assumes p € hyp2 U S and ¢ € hyp2 U S
shows 3 reS. Br (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is 3 reS. Br %cp ?cq (cart2-pt 1))
proof cases
assume g € S

have Br ?%cp ?cq ?cq by (rule real-euclid.th3-1)

with <q € S» show 3 reS. Br %cp ?cq (cart2-pt v) by auto
next

assume ¢ ¢ S

with <¢ € hyp2 U S> have ¢ € K2 by simp

let ¢l = proj2-line-through p q

have proj2-incident p ¢l and proj2-incident q ?1
by (rule proj2-line-through-incident)+

from «q € K2» and <proj2-incident q %1
and line-through-K2-intersect-S-twice [of q 2]

obtain s and ¢t where s # t and s € Sand ¢t € S
and proj2-incident s ?l and proj2-incident t 71
by auto

let ?cs = cart2-pt s

let ?ct = cart2-pt t

from «proj2-incident s 21
and <proj2-incident t 21>
and <proj2-incident p ?l»
and <proj2-incident q 2l
have proj2-Col s p q and proj2-Col t p q and proj2-Col s t q
by (simp-all add: proj2-incident-Col)
from «proj2-Col s p ¢ and «proj2-Col t p ¢
and <s € §> and <t €) and <p € hyp2 U S» and «q € hyp2 U S»
have Br ?cs ?cp ?cq V Br ?cs ?cq ?cp and Br ?ct 2cp ?cq V Br Zct ?cq Zep
by (simp-all add: S-at-edge)
with real-euclid.th3-2
have Br ?cq ?cp ?cs V Br ?cp ?cq ?cs and Br ?cq Zcp ?ct V Br ?cp Peq et
by fast+

from «s € S» and «t €) and «¢q € hyp2 U S» and <proj2-Col s t ¢» and <s #
i

have Br ?%cs ?cq ?ct by (rule hyp2-in-middle)

hence Br ?ct ?cq ?cs by (rule real-euclid.th3-2)

have Br %cp ?cq ?cs V Br Zcp Pcq ?ct
proof (rule ccontr)

158

assume — (Br %cp ?cq %cs V Br fep Peq Yct)
hence — Br %cp ?cq ?cs and — Br ?cp ?cq ?ct by simp-all
with <Br ?cq ?cp ?cs V Br ?cp ?cq %cs)
and <Br ?cq 7cp ?ct V Br Zcp Ycq Pty
have Br ?cq ?cp ?cs and Br ?cq ?cp ?ct by simp-all
from = Br ?cp ?cq ?csy and <Br fcq ?cp csy have ?cp # ?cq by auto
with <Br ?cq ?cp ?csy and «Br ?cq ?cp ?cty
have Br ?cq ?cs ?ct V Br ?cq ?ct Zcs
by (simp add: real-euclid-th5-1 [of ?cq Zcp cs ?ct])
with <Br %cs ?cq ?cty and <Br ?ct ?cq ?cs»
have %cq = %cs V 2cq = ?ct by (auto simp add: real-euclid.th3-4)
with <¢ € hyp2 U S) and ¢<s € S) and <t € S»
have ¢ = s V ¢ = t by (auto simp add: hyp2-S-cart2-inj)
with <s € S)» and <t €) have ¢ € S by auto
with «¢ ¢ S» show Fualse ..
qged
with <s €) and <t € S» show 3 reS. Br %cp ?cq (cart2-pt r) by auto
qed

definition endpoint-in-S :: proj2 = proj2 = proj2 where
endpoint-in-S a b
£ ¢ p. p€S A Br (cart2-pt a) (cart2-pt b) (cart2-pt p)

lemma endpoint-in-S:
assumes a € hyp2 U S and b € hyp2 U S
shows endpoint-in-S a b € S (is ?p € 5)
and Br (cart2-pt a) (cart2-pt b) (cart2-pt (endpoint-in-S a b))
(is Br ?ca 2cb %cp)
proof —
from <a € hyp2 U S» and <b € hyp2 U Sy and extend-to-S
have 3 p. p € S A Br ?ca ?cb (cart2-pt p) by auto
hence ?p € S A Br ?ca ?cb ?cp
by (unfold endpoint-in-S-def) (rule somel-ex)
thus ?p € S and Bgr ?ca ?cb ?cp by simp-all
qed

lemma endpoint-in-S-swap:

assumes ¢ # band a € hyp2 U S and b € hyp2 U S

shows endpoint-in-S a b # endpoint-in-S b a (is ?p # %q)
proof

let ?ca = cart2-pt a

let ?cb = cart2-pt b

let ?cp = cart2-pt ?p

let ?cq = cart2-pt ?q

from <a # b and <a € hyp2 U Sy and <b € hyp2 U S»

have Br ?ca ?cb ?cp and Br %cb ?ca ?cq

by (simp-all add: endpoint-in-S)

assume ?p = ?q

159

with <Br ?cb ?ca ?cqy> have Br ?cb ?ca ?cp by simp
with <Br ?ca ?cb ?cpy have ?ca = ?cb by (rule real-euclid.th3-4)
with <a € hyp2 U S» and <b € hyp2 U S» have a = b by (rule hyp2-S-cart2-inj)
with <a # b> show Fulse ..
qed

lemma endpoint-in-S-incident:
assumes a # band a € hyp2 U S and b € hyp2 U S
and proj2-incident a | and proj2-incident b [
shows proj2-incident (endpoint-in-S a b) 1 (is proj2-incident ?p 1)
proof —
from <a € hyp2 U S» and <b € hyp2 U S»
have ?p € S and Br (cart2-pt a) (cart2-pt b) (cart2-pt ?p)
(is Br %ca ?cb Zcp)
by (rule endpoint-in-S)+

from <a € hyp2 U S> and <b € hyp2 U S» and «%p € S
have z-non-zero a and z-non-zero b and z-non-zero ?p
by (simp-all add: hyp2-S-z-non-zero)

from «Br %ca ?cb Zcp»
have real-euclid.Col ?ca ?cb ?cp unfolding real-euclid. Col-def ..
with (z-non-zero ay and <z-non-zero by and <z-non-zero ?p> and <a # b
and <proj2-incident a > and <proj2-incident b [»
show proj2-incident ?p | by (rule euclid-Col-cart2-incident)
qged

lemma endpoints-in-S-incident-unique:
assumes a # band a € hyp2 U Sand b € hyp2 U Sand p € S
and proj2-incident a | and proj2-incident b | and proj2-incident p [
shows p = endpoint-in-S a b V p = endpoint-in-S b a
(isp= 9% Vp=7?r)

proof —
from <a # b and <a € hyp2 U S» and <b € hyp2 U S»
have ?q # ?r by (rule endpoint-in-S-swap)

from <a € hyp2 U S» and <b € hyp2 U S»
have ?¢ € S and ?r € S by (simp-all add: endpoint-in-S)

from <a # b and <a € hyp2 U Sy and <b € hyp2 U S»
and <(proj2-incident a > and <proj2-incident b 1>
have proj2-incident ?q | and proj2-incident ?r [
by (simp-all add: endpoint-in-S-incident)
with «?q # ?r and <?g € S> and «?r € S» and «p € S» and <¢proj2-incident p
Iy
show p = %¢ V p = ?r by (simp add: line-S-two-intersections-only)
qed

lemma endpoint-in-S-unique:

160

assumes a # band a € hyp2 U Sand b € hyp2 U S and p € §
and Br (cart2-pt a) (cart2-pt b) (cart2-pt p) (is Br ?ca 2cb ?cp)
shows p = endpoint-in-S a b (is p = %q)
proof (rule ccontr)
from <a € hyp2 U S» and <b € hyp2 U S» and «p € S»
have z-non-zero a and z-non-zero b and z-non-zero p
by (simp-all add: hyp2-S-z-non-zero)
with (Br ?ca ?c¢b ?cpy and euclid-B-cart2-common-line [of a b p]
obtain [where
proj2-incident o | and proj2-incident b | and proj2-incident p [
by auto
with <a # b and <a € hyp2 U S» and b € hyp2 U S» and p € S»
have p = %¢ V p = endpoint-in-S b a (is p = %9V p = ?r)
by (rule endpoints-in-S-incident-unique)

assume p # ?q
with <p = %¢ V p = 9ry have p = ?r by simp
with b € hyp2 U S» and <a € hyp2 U S»
have Br ?cb ?ca ?cp by (simp add: endpoint-in-S)
with (Br ?ca ?cb ?cp» have ?ca = ?cb by (rule real-euclid.th3-4)
with <a € hyp2 U S» and <b € hyp2 U S» have a = b by (rule hyp2-S-cart2-inj)
with «a # b show Fulse ..
qed

lemma between-hyp2-S:
assumes p € hyp2 U Sand r € hyp2 U Sand k > 0 and k£ < [
shows proj2-pt (k xg (cart2-pt r) + (1 — k) xr (cart2-pt p)) € hyp2 U S
(is proj2-pt ?cq € -)
proof —
let %cp = cart2-pt p
let ?cr = cart2-pt r
let ?q = proj2-pt cq
from «p € hyp2 U S» and «r € hyp2 U S»
have z-non-zero p and z-non-zero r by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt %cr = r by (simp-all add: proj2-cart?2)
with <p € hyp2 U S) and <r € hyp2 U S»
have norm ?cp < 1 and norm ?cr < 1
by (simp-all add: norm-le-1-iff-in-hyp2-S)

from k& > 0> and <k < 1>
and norm-triangle-ineq [of k xr Per (1 — k) xg ?cp
have norm %cq < k x norm ?cr + (1 — k) * norm ?cp by simp

from <k > 0> and <norm %cr < 1» and mult-mono [of k k norm ?cr 1]
have k * norm ?cr < k by simp

from <k < 1) and <norm ?cp < 1)

and mult-mono [of I — k 1 — k norm %cp 1]
have (1 — k) * norm %cp < 1 — k by simp

161

with <norm ?cq < k x norm ?cr + (1 — k) x norm ?cpy and <k * norm Zcr <
k>

have norm ?cq < 1 by simp

thus ?q € hyp2 U S by (simp add: norm-le-1-iff-in-hyp2-5)
qed

8.8 The Klein—Beltrami model satisfies axiom 4

definition ezpansion-factor :: proj2 = cltn2 = real where
expansion-factor p J £ (cart2-appendl p vx cltn2-rep J)$3

lemma expansion-factor:
assumes p € hyp2 U S and is-K2-isometry J
shows expansion-factor p J # 0
and cart2-appendl p vx cltn2-rep J
= expansion-factor p J xg cart2-appendl (apply-cltn2 p J)
proof —
from <p € hyp2 U S» and «(is-K2-isometry J»
have z-non-zero (apply-cltn2 p J) by (rule is-K2-isometry-z-non-zero)

from <p € hyp2 U S» and «(is-K2-isometry J»
and cart2-appendl-apply-clin2
obtain k where k # 0
and cart2-appendl p vx cltn2-rep J = k xgr cart2-appendl (apply-clin2 p J)
by auto
from <cart2-appendl p v+ clin2-rep J = k *r cart2-append! (apply-clin2 p J)»
and <z-non-zero (apply-cltn2 p J)»
have expansion-factor p J = k
by (unfold expansion-factor-def) (simp add: cart2-appendl-z)
with <k £ 0»
and <cart2-appendl p vx cltn2-rep J = k xr cart2-appendl (apply-cltn2 p J)»
show expansion-factor p J # 0
and cart2-appendl p vx cltn2-rep J
= expansion-factor p J g cart2-append! (apply-cltn2 p J)
by simp-all
qed

lemma expansion-factor-linear-apply-clin2:
assumes p € hyp2 U S and ¢ € hyp2 U S and r € hyp2 U S
and is-K2-isometry J
and cart2-pt r = k xg cart2-pt p + (1 — k) *g cart2-pt q
shows expansion-factor r J xg cart2-appendl (apply-cltn2 r J)
= (k * expansion-factor p J) g cart2-appendl (apply-cltn2 p J)
+ ((1 — k) = expansion-factor q J) g cart2-appendl (apply-cltn2 q J)
(is %er xg - = (k x %ep) *xr - + ((I — k) * ?eq) *g -)

proof —
let %cp = cart2-pt p
let ?cq = cart2-pt q
let %cr = cart2-pt r

162

let ?cpl = cart2-appendl p
let ?cql = cart2-appendl q
let %crl = cart2-appendl r
let ?repJ = cltn2-rep J
from «p € hyp2 U S» and «q € hyp2 U S» and «r € hyp2 U S»
have z-non-zero p and z-non-zero ¢ and z-non-zero r
by (simp-all add: hyp2-S-z-non-zero)

from <%cr = k g %ep + (1 — k) xp Zeg
have vector2-appendl ?cr
= k *g vector2-appendl ?cp + (1 — k) xg vector2-appendl ?cq
by (unfold vector2-appendl1-def vector-def) (simp add: vec-eq-iff)
with <z-non-zero p» and <z-non-zero ¢ and <z-non-zero r»
have ?crl = k xg %cpl + (1 — k) *r ?cql by (simp add: cart2-appendl)
hence Zcrl v ?repJ = k *g (%cpl v+ Zrepd) + (1 — k) *g (%cql v+ PrepJ)
by (simp add: vector-matriz-left-distrib scaleR-vector-matriz-assoc [symmetric])
with <p € hyp2 U S> and «¢q € hyp2 U S> and «r € hyp2 U S»
and <is-K2-isometry J»
show ?er xp cart2-appendl (apply-cltn2 r J)
= (k x %ep) =g cart2-appendl (apply-cltn2 p J)
+ ((1 — k) = %eq) g cart2-appendl (apply-cltn2 q J)
by (simp add: expansion-factor)
qed

lemma expansion-factor-linear:
assumes p € hyp2 U S and ¢ € hyp2 U S and r € hyp2 U S
and is-K2-isometry J
and cart2-pt r = k xg cart2-pt p + (1 — k) *g cart2-pt q
shows expansion-factor r J
= k * expansion-factor p J + (1 — k) % expansion-factor q J
(is Zer =k = Zep + (1 — k) = 2eq)
proof —
from p € hyp2 U S» and «q € hyp2 U S» and «r € hyp2 U S»
and <is-K2-isometry J»
have z-non-zero (apply-clin2 p J)
and z-non-zero (apply-clin2 q J)
and z-non-zero (apply-clin2 r J)
by (simp-all add: is-K2-isometry-z-non-zero)

from «p € hyp2 U S» and «q € hyp2 U S» and «r € hyp2 U S»
and <is-K2-isometry J»
and <cart2-pt r = k xg cart2-pt p + (1 — k) *g cart2-pt ¢
have ?er xg cart2-appendl (apply-cltn2 r J)
= (k * 2ep) xr cart2-appendl (apply-cltn2 p J)
+ ((1 = k) x %eq) xr cart2-appendl (apply-cltn2 q J)
by (rule expansion-factor-linear-apply-cltn2)
hence (?er xp cart2-appendl (apply-clin2 r J))$3
= ((k * ?ep) xr cart2-appendl (apply-cltn2 p J)
+ ((1 — k) % ?eq) *r cart2-appendl (apply-clin2 q J))$3

163

by simp
with <z-non-zero (apply-cltn2 p J)»
and <z-non-zero (apply-clin2 q J)»
and «z-non-zero (apply-cltn2 r J)»
show Zer = k x Zep + (1 — k) x %eq by (simp add: cart2-appendl-z)
qed

lemma expansion-factor-sgn-invariant:
assumes p € hyp2 U S and ¢ € hyp2 U S and is-K2-isometry J
shows sgn (expansion-factor p J) = sgn (expansion-factor q J)
(is sgn %ep = sgn %eq)

proof (rule ccontr)
assume sgn ?ep # sgn Zeq

from <p € hyp2 U S» and «q € hyp2 U S» and «<is-K2-isometry J»
have ?ep # 0 and ?eq # 0 by (simp-all add: expansion-factor)
hence sgn %ep € {—1,1} and sgn %eq € {—1,1}
by (simp-all add: sgn-real-def)
with <sgn ?ep # sgn Zeq> have sgn ?ep = — sgn ?eq by auto
hence sgn ?ep = sgn (—%eq) by (subst sgn-minus)
with sgn-plus [of ?ep — ?eq]
have sgn (%ep — ?eq) = sgn ?ep by (simp add: algebra-simps)
with <sgn Zep € {—1,1}» have %ep — ?eq # 0 by (auto simp add: sgn-real-def)

let %k = —%eq /| (%ep — ?eq)

from «sgn (?ep — ?eq) = sgn Zepy and <sgn Zep = sgn (— ?eq)»
have sgn (%ep — ?eq) = sgn (—%eq) by simp

with <%ep — 2eq # 0 and sgn-div [of %ep — Peq — Peq|

have %k > 0 by simp

from <%ep — %eq # 0>

have 1 — % = %ep | (?ep — %eq) by (simp add: field-simps)
with <sgn (%ep — %eq) = sgn ?epy and «%ep — Zeq # 0>
have 1 — %k > 0 by (simp add: sgn-div)

hence %k < 1 by simp

let 2cp = cart2-pt p

let ?cq = cart2-pt q

let %cr = 2k xp %cp + (1 — %2k) xr Ycq

let 9r = proj2-pt ?cr

let ?er = expansion-factor ?r J

have cart2-pt ?r = %cr by (rule cart2-proj2)

from «p € hyp2 U S» and «q € hyp2 U S» and <%k > 0> and <% < 1>
and between-hyp2-S [of q p 7k]

have ?r € hyp2 U S by simp

with <p € hyp2 U S) and <q € hyp2 U S» and <is-K2-isometry J»
and <cart2-pt ?r = %cr»
and expansion-factor-linear [of p q 9r J %k]

164

have %er = 2k * %ep + (1 — %) * %eq by simp
with <%ep — Zeq # 0> have %er = 0 by (simp add: field-simps)
with «?r € hyp2 U S» and «<is-K2-isometry J»
show Fulse by (simp add: expansion-factor)
qed

lemma statement-63:
assumes p € hyp2 U S and ¢ € hyp2 U S and r € hyp2 U S
and is-K2-isometry J and Bgr (cart2-pt p) (cart2-pt q) (cart2-pt r)
shows Bg
(cart2-pt (apply-cltn2 p J))
(cart2-pt (apply-clin2 q J))
(cart2-pt (apply-clin2 r J))
proof —
let ?cp = cart2-pt p
let ?cq = cart2-pt q
let %cr = cart2-pt r
let %ep = expansion-factor p J
let %eq = expansion-factor q J
let ?er = expansion-factor r J
from <«¢ € hyp2 U S» and <is-K2-isometry J»
have ?eq # 0 by (rule expansion-factor)

from «p € hyp2 U S» and «q € hyp2 U S» and «r € hyp2 U S»
and <is-K2-isometry J» and expansion-factor-sgn-invariant

have sgn ?ep = sgn ?eq and sgn ?er = sgn ?eq by fast+

with «?eq # 0»

have %ep / %eq > 0 and ?er / %eq > 0 by (simp-all add: sgn-div)

from <BRr “cp %cq ?cr»
obtain k£ where k > 0 and k < I and %cq = k xg ?cr + (1 — k) xg %cp
by (unfold real-euclid-B-def) (auto simp add: algebra-simps)

let %c =k % %er | %eq
from <k > 0> and «?er / ?eq > 0» and mult-nonneg-nonneg [of k ?er | ?eq]|
have ?c > 0 by simp

from «r € hyp2 U S> and «p € hyp2 U S» and <«q € hyp2 U S»
and <is-K2-isometry J> and <%cq = k xp %cr + (1 — k) xg Zcp
have %eq = k % %er + (1 — k) x Zep by (rule expansion-factor-linear)
with «?eq # 0> have 1 — ?c = (1 — k) * ?ep / ?eq by (simp add: field-simps)
with <k < 1) and <%ep / %eq > 0>
and mult-nonneg-nonneg [of 1 — k %ep | %eq]
have ?c < 1 by simp

let ?pJ = apply-clin2 p J
let ?qJ = apply-cltn2 q J
let ?rJ = apply-cltn2 r J
let ?cpJ = cart2-pt ?pJ

165

let ?cqJ = cart2-pt 2qJ

let ?crJ = cart2-pt ?rJ

let %cpJ1 = cart2-appendl ?pJ

let ?cqJ1 = cart2-appendl ?qJ

let ?crJ1 = cart2-appendl rJ

from p € hyp2 U S» and «q € hyp2 U S» and «r € hyp2 U S»
and «<is-K2-isometry J»

have z-non-zero ?pJ and z-non-zero ?qJ and z-non-zero ?rJ
by (simp-all add: is-K2-isometry-z-non-zero)

from «r € hyp2 U S> and «p € hyp2 U S» and «q € hyp2 U S»
and <is-K2-isometry J> and <%cq = k xp %cr + (1 — k) xg Zcp»
have ?eq xg ?cqJ1 = (k x %er) xg PerJl + ((1 — k) * ?ep) xp 2cpJi
by (rule expansion-factor-linear-apply-cltn2)
hence (1 / %eq) xg (%eq xg 7cqJ1)
= (1 / %eq) *r ((k x %er) xg ?crJl + ((1 — k) % %ep) xg ZcpJ1) by simp
with <1 — %c = (1 — k) * %ep / ?eqp and «Zeq # 0)
have ?cqJ1 = ¢ xg %erJl + (1 — ?¢) xg ZcpJi
by (simp add: scaleR-right-distrib)
with <z-non-zero ?pJy and <z-non-zero ?qJ> and <z-non-zero ?rJ»
have vector2-appendl ?cqJ
= %c xp vector2-appendl fcrd + (1 — ?2¢) xr vector2-appendl 2cpJ
by (simp add: cart2-appendl)
hence ?cqJ = %c xg ?crd + (1 — %¢) g Zcpd
unfolding vector2-appendl-def and vector-def
by (simp add: vec-eq-iff forall-2 forall-3)
with «?c > 0» and (%c < 1»
show Bgr ?cpJ Zcq Zerd
by (unfold real-euclid-B-def) (simp add: algebra-simps exI [of - %c])
qed

theorem hyp2-aziom4:V qabec. 3 . Bk qaz Nax =g bc
proof (rule alll)+
fix ga b c:: hyp2
let ?pq = Rep-hyp?2 q
let ?pa = Rep-hyp2 a
let ?pb = Rep-hyp2 b
let ?pc = Rep-hyp2 c
have ?pg € hyp2 and %pa € hyp2 and ?pb € hyp2 and ?pc € hyp2
by (rule Rep-hyp2)+
let ?cq = cart2-pt ?pq
let ?ca = cart2-pt ?pa
let ?cb = cart2-pt ?pb
let ?cc = cart2-pt ?pc
let %pp =€ p. p € S A Br ?cb ?cc (cart2-pt p)
let %cp = cart2-pt ?pp
from «?pb € hyp2> and < ?pc € hyp2> and extend-to-S [of ?pb ?pc]
and somel-ex [of A p. p € S A Br ?cb ?cc (cart2-pt p)]
have ?pp € S and Bgr ?cb ?cc ?cp by auto

166

let %pr =€ r.r € S A Br ?cq ?ca (cart2-pt r)

let ?cr = cart2-pt ?pr

from «?pg € hyp2> and <%pa € hyp2> and extend-to-S [of ?pq ?pal
and somel-ex [of A r. 7 € S AN Br ?cq ?ca (cart2-pt r)]

have ?pr € S and Br ?cq ?ca ?cr by auto

from «?pb € hyp2> and «?pa € hyp2> and «?pp € S» and «%pr € S»
and statement66-existence [of ?pb ?pa ?pp ?pr]

obtain J where is-K2-isometry J
and apply-cltn2 ?pb J = ?pa and apply-cltn2 ?pp J = ?pr
by auto

let ?pr = apply-clin2 ?pc J

let ?cx = cart2-pt ?px

let 2z = Abs-hyp2 ?px

from «<is-K2-isometry J» and < ?pc € hyp2>»

have ?pz € hyp2 by (rule statement60-one-way)

hence Rep-hyp2 %z = ?px by (rule Abs-hyp2-inverse)

from «?pb € hyp2» and (?pc € hyp2) and «?pp € S» and «is-K2-isometry J>
and <Br ?cb ?cc ?cpy and statement-63

have Br (cart2-pt (apply-cltn2 ?pb J)) ?cx (cart2-pt (apply-clin2 ?pp J))
by simp

with <apply-clin2 ?pb J = ?pay and <apply-cltn2 ?pp J = pr>

have Br ?ca ?cx ?cr by simp

with <Br ?cq ?ca ?cry have Br %cq ?ca ?cx by (rule real-euclid.th3-5-1)

with (Rep-hyp2 %z = px>

have Bg q a %x
unfolding real-hyp2-B-def and hyp2-rep-def
by simp

have Abs-hyp2 ?pa = a by (rule Rep-hyp2-inverse)
with <apply-cltn2 ?pb J = pa>
have hyp2-cltn2 b J = a by (unfold hyp2-clitn2-def) simp

have hyp2-cltn2 ¢ J = %x unfolding hyp2-cltn2-def ..

with <is-K2-isometry Jy and <hyp2-cltn2 b J = w

have b ¢ =g a %z

by (unfold real-hyp2-C-def) (simp add: exI [of - J])

hence a %z =k b ¢ by (rule hyp2.th2-2)

with (Bg ¢ a 7>

show 3 z. Bk qaz A ax =g bc by (simp add: ex] [of - ?z])
qed

8.9 More betweenness theorems

lemma hyp2-S-points-fiz-line:
assumes a € hyp2 and p € S and is-K2-isometry J
and apply-clin2 a J = a (is %aJ = a)

167

and apply-clin2 p J = p (is %pJ = p)
and proj2-incident a | and proj2-incident p | and proj2-incident b 1
shows apply-cltin2 b J = b (is 7bJ = b)
proof —
let ?lJ = apply-cltn2-line | J
from <proj2-incident a > and <proj2-incident p [»
have proj2-incident ?aJ ?1J and proj2-incident ?pJ ?lJ by simp-all
with <%aJ = o) and <?pJ = p»
have proj2-incident a ?lJ and proj2-incident p ?lJ by simp-all

from <a € hyp2) <proj2-incident o I» and line-through-K2-intersect-S-again [of
all

obtain ¢ where ¢ # p and ¢ € S and proj2-incident q | by auto

let ?qJ = apply-cltn2 q J

from <a € hyp2> and ¢<p € S» and «q € S»
have a # p and a # ¢ by (simp-all add: hyp2-S-not-equal)

from <a # p» and (proj2-incident a) and <proj2-incident p I
and <proj2-incident a ?lJ> and <proj2-incident p ?1J>
and proj2-incident-unique

have ?1J = [by auto

from <proj2-incident q I» have proj2-incident ?qJ ?1J by simp
with «?2lJ = > have proj2-incident ?qJ | by simp

from «¢ € S) and «<is-K2-isometry J»

have ?¢J € S by (unfold is-K2-isometry-def) simp

with «¢ # p> and <p € S) and <q € S» and «proj2-incident p I
and <proj2-incident q I» and <proj2-incident ?qJ >
and line-S-two-intersections-only

have ?¢J = p V %qJ = q by simp

have ?¢J = ¢

proof (rule ccontr)
assume 7¢J # ¢
with «?qJ = p V %¢J = ¢» have ?¢J = p by simp
with <?pJ = p» have ?¢J = ?pJ by simp
with apply-clin2-injective have ¢ = p by fast
with ¢ # p» show Fulse ..

qed

with <¢ # p» and <a # p» and <a # ¢» and <proj2-incident p |
and <proj2-incident q Iy and <proj2-incident a >
and «?pJ = p» and «%aJ = @ and <proj2-incident b I
and cltn2-three-point-line [of p q a 1 J b

show ?bJ = b by simp

qed

lemma K2-isometry-endpoint-in-S:

168

assumes a # band a € hyp2 U S and b € hyp2 U S and is-K2-isometry J
shows apply-clin2 (endpoint-in-S a b) J
= endpoint-in-S (apply-clin2 a J) (apply-clin2 b J)
(is ?pJ = endpoint-in-S ?aJ ?bJ)
proof —
let ?p = endpoint-in-S a b

from <a # b and apply-cltn2-injective have ?aJ # ?bJ by fast

from <a € hyp2 U S» and «b € hyp2 U S» and «is-K2-isometry J»
and is-K2-isometry-hyp2-S
have ?aJ € hyp2 U S and ?bJ € hyp2 U S by simp-all

let ?ca = cart2-pt a

let ?cb = cart2-pt b

let ?cp = cart2-pt ?p

from <a € hyp2 U S» and b € hyp2 U S»

have ?p € S and Br %ca ?cb ?cp by (rule endpoint-in-S)+

from «?p € S» and «<is-K2-isometry J»
have ?pJ € S by (unfold is-K2-isometry-def) simp

let ?caJ = cart2-pt ?aJ

let ?cbJ = cart2-pt 2bJ

let ?cpJ = cart2-pt ?pJ

from <a € hyp2 U Sy and b € hyp2 U S) and «%p € S» and <is-K2-isometry
I

and <Br ?ca ?cb ?cpy and statement-63

have Bgr ?caJ ?cbJ ?cpJ by simp

with «?aJ # ?bJy and <%aJ € hyp2 U S) and «%bJ € hyp2 U S» and «?pJ €
Sy

show ?pJ = endpoint-in-S ?aJ ?bJ by (rule endpoint-in-S-unique)
qed

lemma between-endpoint-in-S:
assumes ¢ # b and b # ¢
and a € hyp2 U Sand b € hyp2 U Sand ¢ € hyp2 U S
and Bg (cart2-pt a) (cart2-pt b) (cart2-pt c¢) (is Br ?ca ?cb ?cc)
shows endpoint-in-S a b = endpoint-in-S b ¢ (is ?p = ?q)
proof —
from <b # ¢ and <b € hyp2 U S» and <c € hyp2 U S» and hyp2-S-cart2-inj
have ?cb # ?cc by auto

let ?cq = cart2-pt ?q
from b € hyp2 U S» and <c € hyp2 U S»
have ?¢ € S and Br %cb ?cc ?cq by (rule endpoint-in-S)+

from «?ch # %cey and <Bgr ?ca ?cb ?cey and «Br Zcb e Yeqy
have Br ?ca ?cb ?cq by (rule real-euclid.th3-7-2)

169

with <a # b» and <a € hyp2 U S» and b € hyp2 U S» and <?%¢g € S»
have ?¢ = %p by (rule endpoint-in-S-unique)
thus %p = ?¢ ..

qed

lemma hyp2-extend-segment-unique:
assumes o # band Bg abcand Bx abdand b c =g bd
shows ¢ = d
proof cases
assume b = ¢
with <b ¢ =k b d> show ¢ = d by (simp add: hyp2.AS3-reversed)
next
assume b # ¢

have b # d

proof (rule ccontr)
assume — b # d
hence b = d by simp
with <b ¢ = b d> have b ¢ = b b by simp
hence b = ¢ by (rule hyp2.A3")
with «b # ¢» show Fulse ..

qed

with <a # b and b # o

have Rep-hyp2 a # Rep-hyp2 b (is ?pa # ?pb)
and Rep-hyp2 b # Rep-hyp2 ¢ (is ?pb # ?pc)
and Rep-hyp2 b # Rep-hyp2 d (is ?pb # ?pd)
by (simp-all add: Rep-hyp2-inject)

have ?pa € hyp2 and ?pb € hyp2 and ?pc € hyp2 and ?pd € hyp?2
by (rule Rep-hyp2)+

let ?pp = endpoint-in-S ?pb ?pc

let ?ca = cart2-pt ?pa

let ?cb = cart2-pt ?pb

let Ycc = cart2-pt ?pc

let ?cd = cart2-pt ?pd

let ?cp = cart2-pt ?pp

from «?pb € hyp2> and «?pc € hyp2»

have ?pp € S and Br ?cb ?cc ?cp by (simp-all add: endpoint-in-S)

from <bc =g b d>

obtain J where is-K2-isometry J
and hyp2-cltn2 b J = b and hyp2-clin2 ¢ J = d
by (unfold real-hyp2-C-def) auto

from <hyp2-clin2 b J = b> and <hyp2-clin2 ¢ J = d»
have Rep-hyp2 (hyp2-cltn2 b J) = ?pb

and Rep-hyp2 (hyp2-clin2 ¢ J) = ?pd

by simp-all

170

with («is-K2-isometry J»
have apply-cltn2 ?pb J = ?pb and apply-cltn2 ?pc J = ?pd
by (simp-all add: Rep-hyp2-cltn2)

from <Bx a b ¢» and <Bgk a b d»
have Br “ca ?cb ?cc and Br %ca ?cb ?cd
unfolding real-hyp2-B-def and hyp2-rep-def .

from < ?pb # ?pcy and < ?pb € hyp2> and «?pc € hyp2> and <is-K2-isometry J»
have apply-cltn2 ?pp J

= endpoint-in-S (apply-cltn2 ?pb J) (apply-cltn2 ?pc J)

by (simp add: K2-isometry-endpoint-in-S)
also from <apply-cltn2 ?pb J = ?pby and <apply-cltn2 ?pc J = ?pd>
have ... = endpoint-in-S ?pb ?pd by simp
also from «%pa # ?pby and «?pb # ?pd>

and «%pa € hyp2> and <?pb € hyp2> and < ?pd € hyp2) and «Br ?ca ?cb ?cd>
have ... = endpoint-in-S ?pa ?pb by (simp add: between-endpoint-in-S)
also from «?pa # ?pby and «?pb # ?pc»

and «?pa € hyp2> and < ?pb € hyp2> and < ?pc € hyp2> and <Br ?ca ?cb ?cc)
have ... = endpoint-in-S ?pb ?pc by (simp add: between-endpoint-in-S)
finally have apply-cltn2 ?pp J = %pp .

from «?pb € hyp2» and < ?pc € hyp2> and «?pp € S»

have z-non-zero ?pb and z-non-zero ?pc and z-non-zero ?pp
by (simp-all add: hyp2-S-z-non-zero)

with «Br ?cb ?cc ?cpy and euclid-B-cart2-common-line [of ?pb ?pc ?pp

obtain [where proj2-incident ?pb | and proj2-incident ?pp 1
and proj2-incident ?pc |
by auto

with «?pb € hyp2> and <%pp € S) and (is-K2-isometry J»
and <apply-cltn2 ?pb J = ?pby and <apply-clin2 ?pp J = ?pp>

have apply-cltn2 ?pc J = ?pc by (rule hyp2-S-points-fiz-line)

with <apply-clin2 ?pc J = ?pd> have ?pc = ?pd by simp

thus ¢ = d by (subst Rep-hyp2-inject [symmetric])

qed

lemma line-S-match-intersections:
assumes p # gand r # sand p€ Sand g€ Sand r € Sand s € S
and proj2-set-Col {p,q,r,s}
shows (p=rAg=s)V(g=rAp=s)
proof —
from «<proj2-set-Col {p,q,r,s}h
obtain [where proj2-incident p | and proj2-incident q |
and proj2-incident r | and proj2-incident s [
by (unfold proj2-set-Col-def) auto
with «r £ s> and <p € §> and <¢ € S» and ¢<r € S» and (s € S
have p=rVvVp=sandg=1rV q¢=s
by (simp-all add: line-S-two-intersections-only)

171

show (p=rAg=8)V(g=rAp=2y9)
proof cases
assume p = r
with «(p #@p and «g=rV q¢=
show (p=rAqg=3s)V(¢g=r1Ap=3s) by simp
next
assume p # r
with <p = r V p = s» have p = s by simp
with<p# @ and«g=1V ¢g= s
show (p=rAqg=3s)V(g=rAp=3s) by simp
qed
qed

definition are-endpoints-in-S :: [proj2, proj2, proj2, proj2] = bool where
are-endpoints-in-S p q a b
Ep#qgApESANGESNAachyp2 Abe hyp2 A proj2-set-Col {p,q,a,b}

lemma are-endpoints-in-S':
assumes p # gand a # band p € Sand g € Sand a € hyp2 U S
and b € hyp2 U S and proj2-set-Col {p,q,a,b}
shows (p = endpoint-in-S a b A\ ¢ = endpoint-in-S b a)
V (g = endpoint-in-S a b A p = endpoint-in-S b a)
(is(p=9%rNg="9)V(g= 9% Np=7s))
proof —
from <a # b and <a € hyp2 U S» and <b € hyp2 U S»
have ?r # %s by (simp add: endpoint-in-S-swap)

from <a € hyp2 U S» and <b € hyp2 U S»
have ?r € S and ?%s € S by (simp-all add: endpoint-in-S)

from «proj2-set-Col {p,q,a,b}»

obtain [where proj2-incident p | and proj2-incident q 1
and proj2-incident a | and proj2-incident b [
by (unfold proj2-set-Col-def) auto

from <a # b and <a € hyp2 U S» and <b € hyp2 U S» and <proj2-incident a >
and <proj2-incident b I»
have proj2-incident ?r | and proj2-incident ?s 1
by (simp-all add: endpoint-in-S-incident)
with «<proj2-incident p Iy and <proj2-incident q I»
have proj2-set-Col {p,q,?r,?s}
by (unfold proj2-set-Col-def) (simp add: exI [of - 1])
with <p # ¢ and <%r # ?s» and «p € S» and «¢ € S» and «?r € S» and «¥%s
es
show (p=2r ANgq= %)V (g= r ANp=7s)
by (rule line-S-match-intersections)
qed

lemma are-endpoints-in-S:

172

assumes a # b and are-endpoints-in-S p q a b

shows (p = endpoint-in-S a b A\ ¢ = endpoint-in-S b a)

V (g = endpoint-in-S a b A p = endpoint-in-S b a)

using assms

by (unfold are-endpoints-in-S-def) (simp add: are-endpoints-in-S”)

lemma S-intersections-endpoints-in-S:
assumes ¢ # 0 and b # 0 and proj2-abs a # proj2-abs b (is ?pa # ?pb)
and proj2-abs a € hyp2 and proj2-abs b € hyp2 U S
shows (S-intersectionl a b = endpoint-in-S ?pa ?pb
A S-intersection2 a b = endpoint-in-S ?pb ?pa)
V (S-intersection2 a b = endpoint-in-S ?pa ?pb
A S-intersectionl a b = endpoint-in-S ?pb ?pa)
(is (Ppp = #pr A ?pq = ?ps) V (¥pq = ?pr A Zpp = ?ps))
proof —
from <a # 0» and <b # 0> and < ?pa # ?pb> and <?pa € hyp2>
have ?pp # ?pg by (simp add: S-intersections-distinct)

from <a # 0> and b # 0> and «?pa # ?pb> and <proj2-abs a € hyp2»
have ?pp € S and ?pqg € S
by (simp-all add: S-intersections-in-S)

let ¢l = proj2-line-through ?pa ?pb
have proj2-incident ?pa ?l and proj2-incident ?pb ?1
by (rule proj2-line-through-incident)+
with <a # 0> and <b # 0> and «?pa # ?pb»
have proj2-incident ?pp 21 and proj2-incident ?pq ?1
by (rule S-intersections-incident)+
with <proj2-incident ?pa ?l> and <proj2-incident ?pb 2l
have proj2-set-Col { ?pp, ?pq,?pa, ?pb}
by (unfold proj2-set-Col-def) (simp add: exI [of - ?1))
with «?pp # ?pg> and «?pa # ?pby and <?pp € S» and <?pq € S» and «?pa €
hyp2>»
and <?pb € hyp2 U S»
show (%pp = %pr A %pq = ?ps) V (%pqg = ?pr N ?pp = ?ps)
by (simp add: are-endpoints-in-S”)
qed

lemma between-endpoints-in-S:
assumes a # band a € hyp2 U S and b € hyp2 U S
shows Bg
(cart2-pt (endpoint-in-S a b)) (cart2-pt a) (cart2-pt (endpoint-in-S b a))
(is Br %cp ?ca ?cq)
proof —
let ?cb = cart2-pt b
from b € hyp2 U S» and <a € hyp2 U S) and <a # b
have ?cb # %ca by (auto simp add: hyp2-S-cart2-inj)

from <a € hyp2 U S» and b € hyp2 U S»

173

have Br ?ca %cb ?cp and Br ?cb ?ca ?cq by (simp-all add: endpoint-in-S)

from (Br ?ca ?cb ?cpy have Br Zcp ?cb Zca by (rule real-euclid.th3-2)
with «%cb # ?ca> and «Br ?cb ?ca Zcqy
show BRr ?cp ?ca ?cq by (simp add: real-euclid.th3-7-1)

qed

lemma S-hyp2-S-cart2-appendl:

assumes p # gand p € S and ¢ € S and a € hyp?2

and proj2-incident p | and proj2-incident q | and proj2-incident a 1

shows 3 k. k> 0Nk < 1

A cart2-appendl a = k g cart2-appendl ¢ + (1 — k) *r cart2-append! p
proof —

from (p € S» and ¢<¢q € 5> and <a € hyp2>»

have z-non-zero p and z-non-zero ¢ and z-non-zero a

by (simp-all add: hyp2-S-z-non-zero)

from assms
have Br (cart2-pt p) (cart2-pt a) (cart2-pt q) (is Br %cp ?ca ?cq)
by (simp add: hyp2-incident-in-middle)

from «<p € S» and <¢ € S» and <a € hyp2>
have a # p and a # ¢ by (simp-all add: hyp2-S-not-equal)

with <z-non-zero p» and <z-non-zero a» and <z-non-zero ¢
and «Br %cp %ca eq>
show 3 k. k>0 ANk < 1
A cart2-appendl a = k g cart2-appendl q + (1 — k) *r cart2-appendl p
by (rule cart2-append1-between-strict)
qed

lemma are-endpoints-in-S-swap-34:

assumes are-endpoints-in-S p q a b

shows are-endpoints-in-S p g b a
proof —

have {p,q,b,a} = {p,q,a,b} by auto

with <are-endpoints-in-S p q a b

show are-endpoints-in-S p q b a by (unfold are-endpoints-in-S-def) simp
qed

lemma proj2-set-Col-endpoints-in-S:
assumes a # band ¢ € hyp2 U S and b € hyp2 U S
shows proj2-set-Col {endpoint-in-S a b, endpoint-in-S b a, a, b}
(is proj2-set-Col {%p,?q,a,b})
proof —
let ¢l = proj2-line-through a b
have proj2-incident a ?] and proj2-incident b 21
by (rule proj2-line-through-incident)+
with <a # b and <a € hyp2 U S) and <b € hyp2 U S»

174

have proj2-incident ?p ?l and proj2-incident ?q ?1
by (simp-all add: endpoint-in-S-incident)
with <proj2-incident a ?0> and <proj2-incident b ?0>
show proj2-set-Col {?p,?q,a,b}
by (unfold proj2-set-Col-def) (simp add: exI [of - ?1])
qed

lemma endpoints-in-S-are-endpoints-in-S:
assumes a # b and a € hyp2 and b € hyp2
shows are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-S b a) a b
(is are-endpoints-in-S ?p ?q a b)
proof —
from <a # b and <a € hyp2> and <b € hyp2>
have ?p # ?q by (simp add: endpoint-in-S-swap)

from <a € hyp2> and b € hyp2>
have ?p € S and ?q € S by (simp-all add: endpoint-in-S)

from assms

have proj2-set-Col {?p,%q,a,b} by (simp add: proj2-set-Col-endpoints-in-S)

with «%p #£ ?¢> and «?p € S) and «?¢g € S) and «a € hyp2> and b € hyp2»

show are-endpoints-in-S ?p ?q a b by (unfold are-endpoints-in-S-def) simp
qed

lemma endpoint-in-S-S-hyp2-distinct:
assumes p € Sand a € hyp2 U S and p # a
shows endpoint-in-S p a # p
proof
from «p # @ and <p € S» and <a € hyp2 U S»
have Bg (cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a))
by (simp add: endpoint-in-S)

assume endpoint-in-S p a = p
with «Br (cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a))»
have cart2-pt p = cart2-pt a by (simp add: real-euclid. A6”)
with «p € S» and <a € hyp2 U S» have p = a by (simp add: hyp2-S-cart2-inj)
with (p # a» show Fulse ..
qged

lemma endpoint-in-S-S-strict-hyp2-distinct:

assumes p € S and a € hyp2

shows endpoint-in-S p a # p
proof —

from <a € hyp2) and p € S»

have p # a by (rule hyp2-S-not-equal [symmetric])

with assms

show endpoint-in-S p a # p by (simp add: endpoint-in-S-S-hyp2-distinct)
qed

175

lemma end-and-opposite-are-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and p € S
and proj2-incident a | and proj2-incident b | and proj2-incident p 1
shows are-endpoints-in-S p (endpoint-in-S p b) a b
(is are-endpoints-in-S p ?q a b)
proof —
from <p € S» and b € hyp2>
have p # ?q by (rule endpoint-in-S-S-strict-hyp2-distinct [symmetric])

from ¢p € S) and b € hyp2> have ?q € S by (simp add: endpoint-in-S)

from <b € hyp2> and p € S»
have p # b by (rule hyp2-S-not-equal [symmetric])
with <p € Sy and <b € hyp2> and (proj2-incident p > and <proj2-incident b I
have proj2-incident ?q | by (simp add: endpoint-in-S-incident)
with «<proj2-incident p Iy and <proj2-incident a > and <proj2-incident b [
have proj2-set-Col {p,?q,a,b}
by (unfold proj2-set-Col-def) (simp add: exI [of - 1])
with (p # ?¢» and <p € S) and «?¢ € S» and «a € hyp2> and b € hyp2>»
show are-endpoints-in-S p ?q a b by (unfold are-endpoints-in-S-def) simp
qed

lemma real-hyp2-B-hyp2-cltn2:
assumes is-K2-isometry J and Bg a b ¢
shows Bg (hyp2-cltn2 a J) (hyp2-cltn2 b J) (hyp2-cltn2 ¢ J)
(is Bx %aJ 2bJ %cJ)
proof —
from «Bg a b ¢
have Br (hyp2-rep a) (hyp2-rep b) (hyp2-rep c) by (unfold real-hyp2-B-def)
with <is-K2-isometry J»
have Bg (cart2-pt (apply-cltn2 (Rep-hyp2 a) J))
(cart2-pt (apply-cltn2 (Rep-hyp2 b) J))
(cart2-pt (apply-cltn2 (Rep-hyp2 c) J))
by (unfold hyp2-rep-def) (simp add: Rep-hyp2 statement-63)
moreover from «(is-K2-isometry J»
have apply-cltn2 (Rep-hyp2 a) J € hyp?2
and apply-cltn2 (Rep-hyp2 b) J € hyp2
and apply-cltn2 (Rep-hyp2 c¢) J € hyp2
by (rule apply-cltn2-Rep-hyp2)+
ultimately show By (hyp2-cltn2 a J) (hyp2-clin2 b J) (hyp2-clin2 ¢ J)
unfolding hyp2-clin2-def and real-hyp2-B-def and hyp2-rep-def
by (simp add: Abs-hyp2-inverse)
qed

lemma real-hyp2-C-hyp2-clin2:
assumes is-K2-isometry J
shows a b = (hyp2-cltn2 a J) (hyp2-cltn2 b J) (is a b =x ?aJ 2bJ)
using assms by (unfold real-hyp2-C-def) (simp add: exI [of - J])

176

8.10 Perpendicularity

definition M-perp :: proj2-line = proj2-line = bool where
M-perp | m = proj2-incident (pole 1) m

lemma M-perp-sym:
assumes M-perp I m
shows M-perp m [

proof —
from «M-perp I m» have proj2-incident (pole l) m by (unfold M-perp-def)
hence proj2-incident (pole m) (polar (pole 1)) by (rule incident-pole-polar)
hence proj2-incident (pole m) I by (simp add: polar-pole)
thus M-perp m | by (unfold M-perp-def)

qed

lemma M-perp-to-compass:
assumes M-perp [m and a € hyp2 and proj2-incident a 1
and b € hyp2 and proj2-incident b m
shows 3 J. is-K2-isometry J
A apply-cltn2-line equator J = | A apply-cltn2-line meridian J = m
proof —
from <a € K2) and «proj2-incident a I
and line-through-K2-intersect-S-twice [of a]
obtain p and ¢ where p # ¢gand p € Sand ¢ € §
and proj2-incident p | and proj2-incident q [
by auto

have 3 r.r € S A r ¢ {p,q} A proj2-incident r m
proof cases
assume proj2-incident p m

from b € K2» and «<proj2-incident b m»
and line-through-K2-intersect-S-again [of b m]
obtain r where r € S and r # p and proj2-incident r m by auto

have r ¢ {p,q}
proof

assume 7 € {p,q}
with «r # p» have r = ¢ by simp
with «proj2-incident r m» have proj2-incident ¢ m by simp
with <proj2-incident p > and <proj2-incident q 1>
and <proj2-incident p m> and <proj2-incident ¢ m> and <p # ¢
and proj2-incident-unique [of p | ¢ m]
have [= m by simp
with «M-perp | m» have M-perp | | by simp
hence proj2-incident (pole l) 1 (is proj2-incident ?s l)
by (unfold M-perp-def)
hence proj2-incident ?s (polar ?s) by (subst polar-pole)
hence %s € S by (simp add: incident-own-polar-in-S)
with <p € S» and <¢q € S» and <proj2-incident p I» and <proj2-incident q 1>

177

and point-in-S-polar-is-tangent [of ?s]
have p = %s and ¢ = %s by (auto simp add: polar-pole)
with <p # ¢ show Fulse by simp
qed
with <r € Sy and «<proj2-incident r m»
show 3 r.r € S A r ¢ {pq} A proj2-incident r m
by (simp add: exI [of - 7])
next
assume — proj2-incident p m

from b € K2» and «<proj2-incident b m»
and line-through-K2-intersect-S-again [of b m]
obtain r where r € S and r # ¢ and proj2-incident r m by auto

from <= proj2-incident p m» and <proj2-incident r m> have r # p by auto
with <r € Sy and «r # ¢ and <proj2-incident r m»
show 3 r.r € S A r ¢ {pq} A proj2-incident r m
by (simp add: exI [of - 7])
qed
then obtain r where r € S and r ¢ {p,q} and proj2-incident r m by auto

from (p € S and (¢ € S> and «r € S) and <p # ¢ and r ¢ {p,q}
and statement65-special-case [of p q 7]

obtain J where is-K2-isometry J and apply-cltn2 east J = p
and apply-cltn2 west J = q and apply-cltn2 north J = r
and apply-cltn2 far-north J = proj2-intersection (polar p) (polar q)
by auto

from <apply-clin2 east J = p» and <apply-clin2 west J = ¢
and <(proj2-incident p I> and <proj2-incident q l»
have proj2-incident (apply-cltn2 east J) 1
and proj2-incident (apply-cltn2 west J) 1
by simp-all
with east-west-distinct and east-west-on-equator
have apply-cltn2-line equator J = | by (rule apply-clin2-line-unique)

from <apply-cltn2 north J = ry and <proj2-incident r m»
have proj2-incident (apply-cltn2 north J) m by simp

from «p # ¢» and polar-inj have polar p # polar q by fast

from <proj2-incident p I> and <proj2-incident q >
have proj2-incident (pole 1) (polar p)
and proj2-incident (pole 1) (polar q)
by (simp-all add: incident-pole-polar)
with <polar p # polar ¢
have pole | = proj2-intersection (polar p) (polar q)
by (rule proj2-intersection-unique)
with <apply-clin2 far-north J = proj2-intersection (polar p) (polar q)»

178

have apply-cltn2 far-north J = pole | by simp
with «M-perp | m»
have proj2-incident (apply-clin2 far-north J) m by (unfold M-perp-def) simp
with north-far-north-distinct and north-south-far-north-on-meridian
and «proj2-incident (apply-cltn2 north J) m»
have apply-cltn2-line meridian J = m by (simp add: apply-clin2-line-unique)
with «<is-K2-isometry J» and <apply-cltn2-line equator J = I
show 3 J. is-K2-isometry J
A apply-clin2-line equator J = I A apply-clin2-line meridian J = m
by (simp add: exI [of - J])
qged

definition drop-perp :: proj2 = proj2-line = proj2-line where
drop-perp p | = proj2-line-through p (pole 1)

lemma drop-perp-incident: proj2-incident p (drop-perp p 1)
by (unfold drop-perp-def) (rule proj2-line-through-incident)

lemma drop-perp-perp: M-perp 1 (drop-perp p 1)
by (unfold drop-perp-def M-perp-def) (rule proj2-line-through-incident)

definition perp-foot :: proj2 = proj2-line = proj2 where
A . . .
perp-foot p I = proj2-intersection | (drop-perp p 1)

lemma perp-foot-incident:
shows proj2-incident (perp-foot p 1) 1
and proj2-incident (perp-foot p 1) (drop-perp p 1)
by (unfold perp-foot-def) (rule proj2-intersection-incident)+

lemma M-perp-hyp2:
assumes M-perp [m and a € hyp2 and proj2-incident a [and b € hyp2
and proj2-incident b m and proj2-incident ¢ | and proj2-incident ¢ m
shows ¢ € hyp2
proof —
from «(M-perp | m» and <a € hyp2) and <proj2-incident a I» and <b € hyp2»
and «proj2-incident b m> and M-perp-to-compass [of | m a b]
obtain J where is-K2-isometry J and apply-clin2-line equator J =1
and apply-cltn2-line meridian J = m
by auto

from <is-K2-isometry J» and K2-centre-in-K2
have apply-cltn2 K2-centre J € hyp2
by (rule statement60-one-way)

from (proj2-incident ¢ > and <apply-clin2-line equator J = 1
and <(proj2-incident ¢ m» and <apply-cltn2-line meridian J = m»
have proj2-incident ¢ (apply-cltn2-line equator J)
and proj2-incident ¢ (apply-cltn2-line meridian J)
by simp-all

179

with equator-meridian-distinct and K2-centre-on-equator-meridian
have apply-cltn2 K2-centre J = ¢ by (rule apply-clin2-unique)

with <apply-cltn2 K2-centre J € hyp2> show ¢ € hyp2 by simp
qed

lemma perp-foot-hyp2:
assumes a € hyp2 and proj2-incident a | and b € hyp2
shows perp-foot b 1 € hyp2
using drop-perp-perp [of | b] and <a € hyp2> and <proj2-incident a 1)
and «b € hyp2> and drop-perp-incident [of b]
and perp-foot-incident [of b]
by (rule M-perp-hyp2)

definition perp-up :: proj2 = proj2-line = proj2 where
perp-up a l

A

if proj2-incident a I then € p. p € S A proj2-incident p (drop-perp a l)
else endpoint-in-S (perp-foot a l) a

lemma perp-up-degenerate-in-S-incident:
assumes a € hyp2 and proj2-incident a [
shows perp-up al € S (is %p € 5)

and proj2-incident (perp-up a 1) (drop-perp a l)
proof —

from «(proj2-incident a

have ?p = (e p. p € S A proj2-incident p (drop-perp a l))
by (unfold perp-up-def) simp

from <a € hyp2» and drop-perp-incident [of a l]

have 3 p. p € S A proj2-incident p (drop-perp a)
by (rule line-through-K2-intersect-S)

hence ?p € S A proj2-incident ?p (drop-perp a 1)

unfolding <%p = (¢ p. p € S A proj2-incident p (drop-perp a l))»
by (rule somel-ex)

thus ?p € S and proj2-incident ?p (drop-perp a l) by simp-all
qed

lemma perp-up-non-degenerate-in-S-at-end:

assumes a € hyp2 and b € hyp2 and proj2-incident b [
and — proj2-incident a 1

shows perp-up al € S

and Br (cart2-pt (perp-foot a 1)) (cart2-pt a) (cart2-pt (perp-up a l))
proof —

from <= proj2-incident a b
have perp-up a | = endpoint-in-S (perp-foot a l) a
by (unfold perp-up-def) simp

from <b € hyp2> and <proj2-incident b I> and <a € hyp2>

have perp-foot a | € hyp2 by (rule perp-foot-hyp2)
with <a € hyp2>

180

show perp-up al € S
and Bg (cart2-pt (perp-foot a 1)) (cart2-pt a) (cart2-pt (perp-up a l))
unfolding <perp-up a | = endpoint-in-S (perp-foot a l) a»
by (simp-all add: endpoint-in-S)
qed

lemma perp-up-in-S:

assumes a € hyp2 and b € hyp2 and proj2-incident b [

shows perp-up al € S
proof cases

assume proj2-incident a |

with <a € hyp2>

show perp-up a | € S by (rule perp-up-degenerate-in-S-incident)
next

assume — proj2-incident a |

with assms

show perp-up a |l € S by (rule perp-up-non-degenerate-in-S-at-end)
qed

lemma perp-up-incident:

assumes a € hyp2 and b € hyp2 and proj2-incident b |

shows proj2-incident (perp-up a 1) (drop-perp a l)

(is proj2-incident ?p ?m)
proof cases

assume proj2-incident a |

with <a € hyp2>

show proj2-incident ?p ?m by (rule perp-up-degenerate-in-S-incident)
next

assume — proj2-incident a 1

hence ?p = endpoint-in-S (perp-foot a l) a (is ?p = endpoint-in-S ?c a)

by (unfold perp-up-def) simp

from perp-foot-incident [of a l] and «— proj2-incident a 1)
have ?c # a by auto

from <b € hyp2> and <proj2-incident b I> and <a € hyp2>
have ?c € hyp2 by (rule perp-foot-hyp2)
with «?c # a» and <a € hyp2> and drop-perp-incident [of a]
and perp-foot-incident [of a]
show proj2-incident ?p ?m
by (unfold «?p = endpoint-in-S ?c a>) (simp add: endpoint-in-S-incident)
qged

lemma drop-perp-same-line-pole-in-S:
assumes drop-perp p | =1
shows pole [€ S
proof —
from <drop-perp p 1 = D
have | = proj2-line-through p (pole 1) by (unfold drop-perp-def) simp

181

with proj2-line-through-incident [of pole 1 p]
have proj2-incident (pole 1) | by simp
hence proj2-incident (pole 1) (polar (pole 1)) by (subst polar-pole)
thus pole | € S by (unfold incident-own-polar-in-S)
qed

lemma hyp2-drop-perp-not-same-line:
assumes a € hyp?2
shows drop-perp a | # 1
proof
assume drop-perp a |l =1
hence pole | € S by (rule drop-perp-same-line-pole-in-S)
with <a € hyp2»
have — proj2-incident a (polar (pole 1))
by (simp add: tangent-not-through-K2)
with «drop-perp a | = Iy
have — proj2-incident a (drop-perp a) by (simp add: polar-pole)
with drop-perp-incident [of a l] show False by simp
qed

lemma hyp2-incident-perp-foot-same-point:
assumes a € hyp2 and proj2-incident a [
shows perp-foot a l = a
proof —
from <a € hyp2»
have drop-perp a | # 1 by (rule hyp2-drop-perp-not-same-line)
with perp-foot-incident [of a l] and <proj2-incident a 1>
and drop-perp-incident [of a [| and proj2-incident-unique
show perp-foot a | = a by fast
qed

lemma perp-up-at-end:
assumes a € hyp2 and b € hyp2 and proj2-incident b |
shows Br (cart2-pt (perp-foot a 1)) (cart2-pt a) (cart2-pt (perp-up a l))
proof cases
assume proj2-incident a |
with <a € hyp2>
have perp-foot a | = a by (rule hyp2-incident-perp-foot-same-point)
thus Br (cart2-pt (perp-foot a 1)) (cart2-pt a) (cart2-pt (perp-up a l))
by (simp add: real-euclid.th3-1 real-euclid.th3-2)
next
assume - proj2-incident a |
with assms
show Br (cart2-pt (perp-foot a 1)) (cart2-pt a) (cart2-pt (perp-up a l))
by (rule perp-up-non-degenerate-in-S-at-end)
qed

definition perp-down :: proj2 = proj2-line = proj2 where
perp-down a 1 £ endpoint-in-S (perp-up a 1) a

182

lemma perp-down-in-S:

assumes a € hyp2 and b € hyp2 and proj2-incident b [

shows perp-down a l € S
proof —

from assms have perp-up a | € S by (rule perp-up-in-S)

with <a € hyp2»

show perp-down a | € S by (unfold perp-down-def) (simp add: endpoint-in-S)
qed

lemma perp-down-incident:
assumes a € hyp2 and b € hyp2 and proj2-incident b [
shows proj2-incident (perp-down a l) (drop-perp a l)
proof —
from assms have perp-up a | € S by (rule perp-up-in-S)
with <a € hyp2> have perp-up a | # a by (rule hyp2-S-not-equal [symmetric))

from assms
have proj2-incident (perp-up a 1) (drop-perp a 1) by (rule perp-up-incident)
with <perp-up a | # a> and <perp-up a l € S» and <a € hyp2>
and drop-perp-incident [of a]
show proj2-incident (perp-down a 1) (drop-perp a l)
by (unfold perp-down-def) (simp add: endpoint-in-S-incident)
qed

lemma perp-up-down-distinct:
assumes a € hyp2 and b € hyp2 and proj2-incident b |
shows perp-up a | # perp-down a 1
proof —
from assms have perp-up a | € S by (rule perp-up-in-S)
with <a € hyp2»
show perp-up a | # perp-down a l
unfolding perp-down-def
by (simp add: endpoint-in-S-S-strict-hyp2-distinct [symmetric])
qed

lemma perp-up-down-foot-are-endpoints-in-S:

assumes a € hyp2 and b € hyp2 and proj2-incident b [

shows are-endpoints-in-S (perp-up a 1) (perp-down a l) (perp-foot a l) a
proof —

from <b € hyp2> and <proj2-incident b I> and <a € hyp2>

have perp-foot a I € hyp2 by (rule perp-foot-hyp2)

from assms have perp-up a | € S by (rule perp-up-in-S)
from assms
have proj2-incident (perp-up a 1) (drop-perp a l) by (rule perp-up-incident)

with «<perp-foot a | € hyp2) and <a € hyp2> and <perp-up a Il € S»
and perp-foot-incident(2) [of a l] and drop-perp-incident [of a]

183

show are-endpoints-in-S (perp-up a l) (perp-down a 1) (perp-foot a l) a
by (unfold perp-down-def) (rule end-and-opposite-are-endpoints-in-S)
qed

lemma perp-foot-opposite-endpoint-in-S':
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
shows
endpoint-in-S (endpoint-in-S a b) (perp-foot ¢ (proj2-line-through a b))
= endpoint-in-S b a
(is endpoint-in-S ?p ?2d = endpoint-in-S b a)
proof —
let ?q = endpoint-in-S ?p 2d

from <a € hyp2) and b € hyp2> have ?p € S by (simp add: endpoint-in-S)

let ¢l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?1
by (rule proj2-line-through-incident)+
with <a # b and <a € hyp2> and <b € hyp2»
have proj2-incident ?p 71
by (simp-all add: endpoint-in-S-incident)

from <a € hyp2> and <proj2-incident o ?> and <c € hyp2»
have ?d € hyp2 by (rule perp-foot-hyp2)
with <?p € S» have ?q # ?p by (rule endpoint-in-S-S-strict-hyp2-distinct)

from «?p € S) and «?d € hyp2> have ?q € S by (simp add: endpoint-in-S)

from «?d € hyp2) and <?%p € S»

have ?p # ?d by (rule hyp2-S-not-equal [symmetric])

with «%p € S) and «?d € hyp2> and <proj2-incident ?p 2l
and perp-foot-incident(1) [of ¢ ?I]

have proj2-incident ?q ?l by (simp add: endpoint-in-S-incident)

with <a # b and <a € hyp2> and <b € hyp2) and «%q € S»
and <proj2-incident a ?l> and <proj2-incident b 21

have ?¢ = ?p V ?q = endpoint-in-S b a
by (simp add: endpoints-in-S-incident-unique)

with <?q # ?p> show ?¢ = endpoint-in-S b a by simp

qed

lemma endpoints-in-S-perp-foot-are-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
and proj2-incident a | and proj2-incident b |
shows are-endpoints-in-S
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c 1)
proof —
define p q d
where p = endpoint-in-S a b
and g = endpoint-in-S b a

184

and d = perp-foot c |

from <a # b» and <a € hyp2> and <b € hyp2»
have p # ¢ by (unfold p-def ¢-def) (simp add: endpoint-in-S-swap)

from <a € hyp2> and b € hyp2>»
have p € S and ¢ € S by (unfold p-def ¢-def) (simp-all add: endpoint-in-S)

from <a € hyp2> and <proj2-incident o > and <c € hyp2>
have d € hyp2 by (unfold d-def) (rule perp-foot-hyp2)

from <a # b and <a € hyp2> and b € hyp2> and <proj2-incident a b
and <proj2-incident b I»
have proj2-incident p | and proj2-incident q [
by (unfold p-def g-def) (simp-all add: endpoint-in-S-incident)
with «proj2-incident a 1> and perp-foot-incident(1) [of ¢]
have proj2-set-Col {p,q,a,d}
by (unfold d-def proj2-set-Col-def) (simp add: exI [of -])
with (p # ¢» and <p € S» and «¢ € S» and <a € hyp2) and «d € hyp2»
show are-endpoints-in-S p q a d by (unfold are-endpoints-in-S-def) simp
qed

definition right-angle :: proj2 = proj2 = proj2 = bool where
right-angle p a q
2peSANqgeSAachy2
A M-perp (proj2-line-through p a) (proj2-line-through a q)

lemma perp-foot-up-right-angle:
assumes p € S and a € hyp2 and b € hyp2 and proj2-incident p 1
and proj2-incident b |
shows right-angle p (perp-foot a 1) (perp-up a l)
proof —
define ¢ where ¢ = perp-foot a |
define ¢ where ¢ = perp-up a |
from <a € hyp2> and «b € hyp2) and <proj2-incident b I
have ¢ € S by (unfold g¢-def) (rule perp-up-in-S)

from «b € hyp2> and <proj2-incident b I> and <a € hyp2>
have ¢ € hyp2 by (unfold c-def) (rule perp-foot-hyp2)
with (p € S» and <¢ € S) have ¢ # p and ¢ # ¢

by (simp-all add: hyp2-S-not-equal)

from <c # p» [symmetric] and <proj2-incident p
and perp-foot-incident(1) [of a l]

have [= proj2-line-through p c
by (unfold c-def) (rule proj2-line-through-unique)

define m where m = drop-perp a l
from <a € hyp2> and <b € hyp2> and <proj2-incident b I

185

have proj2-incident ¢ m by (unfold g-def m-def) (rule perp-up-incident)

with <¢ # ¢ and perp-foot-incident(2) [of a]

have m = proj2-line-through c q
by (unfold c-def m-def) (rule proj2-line-through-unique)

with «p € S» and «¢ € S» and <c € hyp2> and drop-perp-perp [of | a]
and <l = proj2-line-through p ¢

show right-angle p (perp-foot a 1) (perp-up a l)
by (unfold right-angle-def q-def c-def m-def) simp

qed

lemma M-perp-unique:
assumes a € hyp2 and b € hyp2 and proj2-incident a 1
and proj2-incident b m and proj2-incident b n and M-perp [m
and M-perp I n
shows m = n
proof —
from <a € hyp2> and <proj2-incident a 1>
have pole [¢ hyp2 by (rule line-through-hyp2-pole-not-in-hyp2)
with b € hyp2> have b # pole | by auto
with «proj2-incident b m» and «M-perp [m» and <proj2-incident b n»
and «M-perp | ny and proj2-incident-unique
show m = n by (unfold M-perp-def) auto
qed

lemma perp-foot-eq-implies-drop-perp-eq:
assumes a € hyp2 and b € hyp2 and proj2-incident a |
and perp-foot b | = perp-foot c |
shows drop-perp b | = drop-perp c |

proof —
from <a € hyp2> and <proj2-incident o > and <b € hyp2>»
have perp-foot b | € hyp2 by (rule perp-foot-hyp2)

from <perp-foot b | = perp-foot c I»
have proj2-incident (perp-foot b 1) (drop-perp ¢ l)
by (simp add: perp-foot-incident)
with <a € hyp2> and <perp-foot b | € hyp2> and <proj2-incident a >
and perp-foot-incident(2) [of b I] and drop-perp-perp [of 1]
show drop-perp b 1 = drop-perp ¢ | by (simp add: M-perp-unique)
qed

lemma right-angle-to-compass:
assumes right-angle p a q
shows 3 J. is-K2-isometry J A apply-clin2 p J = east
A apply-cltn2 a J = K2-centre A apply-cltn2 q J = north
proof —
from <right-angle p a ¢»
have p € Sand g € S and a € hyp2
and M-perp (proj2-line-through p a) (proj2-line-through a q)
(is M-perp 2?1 ?m)

186

by (unfold right-angle-def) simp-all

have proj2-incident p ?1 and proj2-incident a ?1
and proj2-incident q¢ ?m and proj2-incident a ¢m
by (rule proj2-line-through-incident)+

from «M-perp ?1 ?m» and <a € hyp2> and <proj2-incident a 21>
and «proj2-incident a ?m»> and M-perp-to-compass [of ?l ?m a a]
obtain J''i where is-K2-isometry J''i
and apply-cltn2-line equator J'i = 21
and apply-cltn2-line meridian J''i = ?m
by auto
let 2J" = cltn2-inverse J''i

from <apply-cltn2-line equator J''i = 2l
and <apply-cltn2-line meridian J''i = ?m)»
and <proj2-incident p ?> and <proj2-incident a 2l
and <proj2-incident q ?m> and <proj2-incident a ?m»
have proj2-incident (apply-clin2 p 2J"") equator
and proj2-incident (apply-cltn2 a 2J"') equator
and proj2-incident (apply-clin2 q 2J"") meridian
and proj2-incident (apply-cltn2 a 2J'") meridian
by (simp-all add: apply-clin2-incident [symmetric])

from «proj2-incident (apply-cltn2 a 2J") equators
and «proj2-incident (apply-cltn2 a 2J"') meridian»
have apply-cltn2 a ?J" = K2-centre
by (rule on-equator-meridian-is-K2-centre)

from «is-K2-isometry J''i
have is-K2-isometry 2J" by (rule cltn2-inverse-is-K2-isometry)
with <p € S» and ¢ € S»
have apply-cltin2 p 2J" € S and apply-cltn2 q ?J" € S
by (unfold is-K2-isometry-def) simp-all
with east-west-distinct and north-south-distinct and compass-in-S
and east-west-on-equator and north-south-far-north-on-meridian
and «proj2-incident (apply-cltn2 p 2J") equators
and <proj2-incident (apply-clin2 q 2J"") meridian>
have apply-cltn2 p 2J" = east V apply-cltn2 p 2J" = west
and apply-clin2 q ?J" = north V apply-clin2 q 2J" = south
by (simp-all add: line-S-two-intersections-only)

have 3 J'. is-K2-isometry J' A apply-clin2 p J' = east
A apply-cltn2 a J' = K2-centre
A (apply-clin2 q J' = north V apply-cltn2 q J' = south)
proof cases
assume apply-cltn2 p 2J" = east
with <is-K2-isometry 2J"y and <apply-clin2 a ?J" = K2-centres
and <apply-cltn2 q ?J" = north V apply-cltn2 q ?J" = souths

187

show 3 J'. is-K2-isometry J' A apply-clin2 p J' = east
A apply-clin2 a J' = K2-centre
A (apply-clin2 q J' = north V apply-clin2 q J' = south)
by (simp add: exI [of - 2J""])

next

assume apply-cltn2 p 27" # east

with <apply-cltn2 p 2J" = east V apply-cltn2 p 2J" = west»

have apply-cltn2 p ?J" = west by simp

let 27’ = cltn2-compose 2J'" meridian-reflect
from «<is-K2-isometry 2J'"y and meridian-reflect-K2-isometry
have is-K2-isometry ?2J' by (rule cltn2-compose-is-K2-isometry)
moreover
from <apply-cltn2 p 2J" = west) and <apply-cltn2 a ?J'" = K2-centre)
and <apply-cltn2 q ?J" = north \V apply-cltn2 q ?J" = south>
and compass-reflect-compass
have apply-cltn2 p ?2J' = east and apply-clin2 a ?J’ = K2-centre
and apply-cltn2 q ?J’ = north V apply-cltn2 q 2J' = south
by (auto simp add: clin2.act-act [simplified, symmetric])
ultimately
show 3 J'. is-K2-isometry J' A apply-cltn2 p J' = east
A apply-clin2 a J' = K2-centre
A (apply-clin2 q J' = north V apply-clin2 q J' = south)
by (simp add: exI [of - 2J])
qed
then obtain J’ where is-K2-isometry J' and apply-cltn2 p J' = east
and apply-cltn2 a J' = K2-centre
and apply-clin2 q J' = north V apply-clin2 q J' = south
by auto

show 3 J. is-K2-isometry J A apply-clin2 p J = east
A apply-cltn2 a J = K2-centre A apply-clin2 q J = north
proof cases
assume apply-cltn2 q J' = north
with <is-K2-isometry J'» and <apply-cltn2 p J' = east>
and <apply-cltn2 a J' = K2-centre»
show 3 J. is-K2-isometry J A apply-clin2 p J = east
A apply-clin2 a J = K2-centre N\ apply-clin2 q J = north
by (simp add: ezl [of - J'])
next
assume apply-cltn2 q J' # north
with <apply-cltn2 q J' = north V apply-cltn2 q J' = south>
have apply-cltn2 q J' = south by simp

let ?J = cltn2-compose J' equator-reflect

from <is-K2-isometry J'» and equator-reflect-K2-isometry

have is-K2-isometry ?J by (rule cltn2-compose-is-K2-isometry)
moreover

from <apply-cltn2 p J' = easty and <apply-clin2 a J' = K2-centre»

188

and <apply-clin2 q J' = southy and compass-reflect-compass
have apply-clin2 p ?J = east and apply-clin2 a ?J = K2-centre
and apply-cltn2 q ¢J = north
by (auto simp add: clin2.act-act [simplified, symmetric])
ultimately
show 3 J. is-K2-isometry J A apply-clin2 p J = east
A apply-cltn2 a J = K2-centre N apply-clin2 q J = north
by (simp add: exI [of - 2J])
qed
qged

lemma right-angle-to-right-angle:
assumes right-angle p a q and right-angle r b s
shows 3 J. is-K2-isometry J
A apply-cltn2 p J = r A apply-clin2 a J = b A apply-cltn2 q J = s
proof —
from <right-angle p a ¢ and right-angle-to-compass [of p a q|
obtain H where is-K2-isometry H and apply-clin2 p H = east
and apply-clin2 a H = K2-centre and apply-clin2 ¢ H = north
by auto

from <right-angle r b s» and right-angle-to-compass [of r b s]

obtain K where is-K2-isometry K and apply-cltn2 r K = east
and apply-clin2 b K = K2-centre and apply-cltn2 s K = north
by auto

let ?Ki = cltn2-inverse K
let ¢J = cltn2-compose H ?Ki
from «(is-K2-isometry H» and (is-K2-isometry K>
have is-K2-isometry 7.J
by (simp add: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)

from <apply-cltn2 r K = easty and <apply-clin2 b K = K2-centre»
and <apply-cltn2 s K = north)

have apply-cltn2 east ?Ki = r and apply-cltn2 K2-centre ?Ki = b
and apply-cltn2 north ?Ki = s
by (simp-all add: cltn2.act-inv-iff [simplified])

with <apply-cltn2 p H = east> and <apply-cltn2 a H = K2-centre»
and <apply-clin2 ¢ H = north»

have apply-cltn2 p ?J = r and apply-clin2 a ?J = b
and apply-clin2 q ?J = s
by (simp-all add: cltn2.act-act [simplified,symmetric])

with <is-K2-isometry 2J»

show 3 J. is-K2-isometry J
A apply-cltn2 p J = r A apply-cltn2 a J = b N apply-cltn2 q J = s
by (simp add: exI [of - 2J])

qed

189

8.11 Functions of distance

definition exp-2dist :: proj2 = proj2 = real where
exp-2dist a b
L2ifa=0
then 1
else cross-ratio (endpoint-in-S a b) (endpoint-in-S b a) a b

definition cosh-dist :: proj2 = proj2 = real where
cosh-dist a b = (sqrt (exp-2dist a b) + sqrt (1 / (exp-2dist a b))) / 2

lemma exp-2dist-formula:
assumes ¢ # 0 and b # 0 and proj2-abs a € hyp2 (is ?pa € hyp2)
and proj2-abs b € hyp2 (is ?pb € hyp2)
shows exp-2dist (proj2-abs a) (proj2-abs b)
= (a - (M *v b) + sqrt (quarter-discrim a b))
/ (a+ (M xv b) — sqrt (quarter-discrim a b))
V exp-2dist (proj2-abs a) (proj2-abs b)
= (a - (M *xv b) — sqrt (quarter-discrim a b))
/ (a - (M xv b) + sqrt (quarter-discrim a b))
(is ?e2d = (2aMb + %sqd) | (2aMb — ?sqd)
V %e2d = (2aMb — ?sqd) | (2aMb + ?sqd))
proof cases
assume ?pa = ?pb
hence ?e2d = 1 by (unfold exp-2dist-def, simp)

from «%pa = ?pb»
have quarter-discrim a b = 0 by (rule quarter-discrim-self-zero)
hence ?sqd = 0 by simp

from <proj2-abs a = proj2-abs by and <b # 0> and proj2-abs-abs-mult
obtain k& where a = k xg b by auto

from b # 0> and «<proj2-abs b € hyp2>»

have b - (M xv b) < 0 by (subst K2-abs [symmetric])

with <a # 0> and <a = k *xg b> have 2aMb # 0 by simp

with <?e2d = 1> and «%sqd = 0>

show ?e2d = (2aMb + %sqd) / (?aMb — %sqd)
V %e2d = (2aMb — %sqd) | (2aMb 4+ ?sqd)
by simp

next

assume ?pa # ?pb

let ¢l = proj2-line-through ?pa ?pb

have proj2-incident ?pa ?l and proj2-incident ?pb 2?1
by (rule proj2-line-through-incident)+

with <a # 0» and <b # 0> and < ?%pa # ?pb>

have proj2-incident (S-intersectionl a b) ?1 (is proj2-incident 2Si1 ?1)
and proj2-incident (S-intersection2 a b) ?l (is proj2-incident 25i2 ?1)
by (rule S-intersections-incident)+

with <proj2-incident ?pa ?l> and <proj2-incident ?pb 2l

190

have proj2-set-Col {%pa,?pb,?S5i1,25i2} by (unfold proj2-set-Col-def, auto)
have { ?pa, ?pb, 25i2,25i1} = {?pa, ?pb,?Si1,72Si2} by auto

from <a # 0» and <b # 0> and < ?pa # ?pb> and «?pa € hyp2>
have ?5i1 € S and ?5i2 € S
by (simp-all add: S-intersections-in-S)
with <%pa € hyp2> and < ?pb € hyp2»
have ?25i1 # ?pa and ?25i2 # ?pa and ?S5i1 # ?pb and ?S5i2 # %pb
by (simp-all add: hyp2-S-not-equal [symmetric])
with «proj2-set-Col { ?pa,?pb,?5i1,25i2}> and «?pa # ?pb
have cross-ratio-correct ?pa ?pb 25i1 25i2
and cross-ratio-correct ?pa ?pb 2512 ?25i1
unfolding cross-ratio-correct-def
by (simp-all add: «{ ?pa,?pb,?5i2,25i1} = {?pa, ?pb,?Sil,?Si2}>)

from <a # 0> and b # 0> and «?pa # ?pby and «%pa € hyp2»

have ?5i1 # 25i2 by (simp add: S-intersections-distinct)

with <cross-ratio-correct ?pa ?pb ?Si1 25i2)
and <cross-ratio-correct ?pa ?pb ?5i2 ?25i1>

have cross-ratio 25i1 2512 ?pa ?pb = cross-ratio ?pa ?pb ?S5il ?S5i2
and cross-ratio 2512 25il ?pa ?pb = cross-ratio ?pa ?pb 2512 ?5il
by (simp-all add: cross-ratio-swap-13-24)

from <a # 0> and <proj2-abs a € hyp2»

have a - (M *v a) < 0 by (subst K2-abs [symmetric])

with <a # 0> and b # 0> and «?pa # ?pby and cross-ratio-abs [of a b 1 1]

have cross-ratio ?pa ?pb 2S5i1 25i2 = (—?%aMb — %sqd) | (—?aMb + %sqd)

by (unfold S-intersections-defs S-intersection-coeffs-defs, simp)

with times-divide-times-eq [of —1 —1 —%aMb — ?sqd —?aMb + ?sqd]

have cross-ratio ?pa ?pb 2Si1 2Si2 = (2aMb + ?sqd) | (?aMb — ?sqd) by (simp
add: ac-simps)

with <cross-ratio 25i1 25i2 ?pa ?pb = cross-ratio ?pa ?pb 2Si1 25i2»

have cross-ratio 25i1 2Si2 ?pa ?pb = (2aMb + ?sqd) / (2aMb — %sqd) by simp

from «<cross-ratio ?pa ?pb ?Sil 25i2 = (PaMb + %sqd) [/ (2aMb — ?sqd)»
and cross-ratio-swap-34 [of ?pa ?pb 25i2 2Sil]
have cross-ratio ?pa ?pb 2512 2Sil = (2aMb — ?sqd) / (2aMb + ?sqd) by simp
with <cross-ratio 25i2 25i1 ?pa ?pb = cross-ratio ?pa ?pb 25i2 ?Sil)»
have cross-ratio 252 2Si1 ?pa ?pb = (2aMb — ?sqd) / (2aMb + %sqd) by simp

from <a # 0» and <b # 0> and <?%pa # ?pb> and <?%pa € hyp2> and «?pb €
hyp2)»
have (95i1 = endpoint-in-S ?pa ?pb A 25i2 = endpoint-in-S ?pb pa)
V (2512 = endpoint-in-S ?pa ?pb A 2Si1 = endpoint-in-S ?pb ?pa)
by (simp add: S-intersections-endpoints-in-S)
with <cross-ratio ?S5i1 25i2 ?pa ?pb = (?aMb + ?sqd) / (?aMb — ?sqd)»
and <cross-ratio ?5i2 2Si1 ?pa ?pb = (YaMb — %sqd) | (2aMb + ?sqd)
and < %pa # ?pb>

191

show ?e2d = (?aMb + ?sqd) / (?aMb — %sqd)
V %e2d = (2aMb — %sqd) | (2aMb + ?sqd)
by (unfold exp-2dist-def, auto)
qed

lemma cosh-dist-formula:
assumes ¢ # 0 and b # 0 and proj2-abs a € hyp2 (is ?pa € hyp2)
and proj2-abs b € hyp2 (is ?pb € hyp2)
shows cosh-dist (proj2-abs a) (proj2-abs b)
=la- (M *vb)|/ sqrt (a- (M xva)x (b (M =vbd)))
(is cosh-dist ?pa ?pb = |2aMb| / sqrt (?aMa x 2bMb))
proof —
let ?qd = quarter-discrim a b
let ?sqd = sqrt ?qd
let ?e2d = exp-2dist ?pa ?pb
from assms
have ?e2d = (YaMb + %sqd) / (?aMb — ?sqd)
V %e2d = (2aMb — ?sqd) | (2aMb + ?sqd)
by (rule exp-2dist-formula)
hence cosh-dist ?pa ?pb
= (sqrt ((2aMb + ?sqd) / (?aMb — ?sqd))
+ sqrt ((2aMb — %sqd) / (2aMb + %sqd)))
/ 2
by (unfold cosh-dist-def, auto)

have %qd > 0
proof cases
assume ?pa = ?pb
thus %¢d > 0 by (simp add: quarter-discrim-self-zero)
next
assume ?pa # ?pb
with <a # 0» and b # 0> and < ?pa € hyp2»
have ?qd > 0 by (simp add: quarter-discrim-positive)
thus ?gd > 0 by simp
qed
with real-sqrt-pow2 [of ?qd] have ?sqd® = ?qd by simp
hence (aMb 4+ %sqd) * (2aMb — ?sqd) = 2aMa * 2bMb
by (unfold quarter-discrim-def, simp add: algebra-simps power2-eq-square)

from times-divide-times-eq [of
2aMb + ?sqd 2aMb + ?sqd 2aMb + ?sqd 2aMb — ?sqd]
have (2aMb + ?sqd) / (?aMb — ?sqd)
= (2aMb + ?sqd)? | ((?aMb + ?sqd) * (2aMb — ?sqd))
by (simp add: power2-eq-square)
with <(%aMb + ?sqd) * (2aMb — ?sqd) = 2aMa x 26Mb>
have (?aMb + ?sqd) / (?aMb — %sqd) = (?aMb + ?sqd)? / (?aMa * ?bMb) by
simp
hence sqrt ((2aMb + ?sqd) / (?aMb — ?sqd))
= |%aMb + %sqd| / sqrt (?aMa * 2bMb)

192

by (simp add: real-sqrt-divide)

from times-divide-times-eq [of
2aMb + ?sqd 2aMb — ?sqd 2aMb — ?sqd 2aMb — ?sqd]
have (?aMb — ?sqd) / (2aMb + ?sqd)
= (?2aMb — ?sqd)? | ((?aMb + ?sqd) * (?aMb — ?sqd))
by (simp add: power2-eq-square)
with <(%aMb + ?sqd) x (2aMb — ?sqd) = 2aMa x 2bMb>
have (?aMb — ?sqd) / (?aMb + ?sqd) = (?aMb — ?sqd)? / (?aMa * ?bMb) by
simp
hence sqrt ((2aMb — ?sqd) / (2aMb + ?sqd))
= |2aMb — %sqd| / sqrt (?aMa * 2bMD)
by (simp add: real-sqrt-divide)

from <a # 0> and «b # 0> and <?%pa € hyp2> and < ?pb € hyp2»

have ?aMa < 0 and ?0Mb < 0
by (simp-all add: K2-imp-M-neg)

with <(%aMb + ?sqd) * (2aMb — ?sqd) = 2aMa x 2bMb>

have (?2aMb + ?sqd) * (?aMb — ?sqd) > 0 by (simp add: mult-neg-neg)

hence ?2aMb + ?sqd # 0 and 2aMb — ?sqd # 0 by auto

hence sgn (2aMb + ?sqd) € {—1,1} and sgn (?aMb — ?sqd) € {—1,1}
by (simp-all add: sgn-real-def)

from «(%aMb + ?sqd) x (aMb — ?sqd) > 0>
have sgn ((?aMb + ?sqd) * (?aMb — %sqd)) = 1 by simp
hence sgn (2aMb + ?sqd) x sgn (?aMb — %sqd) = 1 by (simp add: sgn-mult)
with <sgn (?aMb + ?sqd) € {—1,1}» and «sgn (?aMb — %sqd) € {—1,1}
have sgn (?aMb + ?sqd) = sgn (?aMb — %sqd) by auto
with abs-plus [of 2aMb + ?sqd ?aMb — ?sqd]
have |?aMb + ?sqd| + |?aMb — %sqd| = 2 x |2aMb| by simp
with <sqrt ((?aMb + ?sqd) / (?aMb — ?sqd))

= |?2aMb + %sqd| / sqrt (?aMa x ?bMb)>

and <sgrt ((2aMb — ?sqd) | (2aMb + ?sqd))

= |2aMb — ?sqd| / sqrt (?aMa * 2bMb)>

and add-divide-distrib [of

[2aMb + ?sqd| |2aMb — ?sqd| sqrt (?aMa = 7bMD))
have sqrt ((?aMb + ?sqd) / (?aMb — ?sqd))

+ sqrt ((2aMb — %sqd) / (2aMb + %sqd))

= 2 x |2aMb| / sqrt (?aMa * ?bMD)

by simp
with <cosh-dist ?pa ?pb

= (sqrt ((2aMb + ?sqd) / (?aMb — ?sqd))

+ sqrt ((2aMb — ?sqd) / (?aMb + ?sqd)))

/ 2
show cosh-dist ?pa ?pb = |%aMb| / sqrt (?aMa x ?bMb) by simp

qed

lemma cosh-dist-perp-special-case:
assumes |z| < I and |y| < I

193

shows cosh-dist (proj2-abs (vector [z,0,1])) (proj2-abs (vector [0,y,1]))
= (cosh-dist K2-centre (proj2-abs (vector [z,0,1])))
* (cosh-dist K2-centre (proj2-abs (vector [0,y,1])))
(is cosh-dist ?pa ?pb = (cosh-dist ?po ?pa) * (cosh-dist ?po ?pb))
proof —
have vector [x,0,1] # (0::real”3) (is %a # 0)
and vector [0,y,1] # (0::real”3) (is 7b # 0)
by (unfold vector-def, simp-all add: vec-eq-iff forall-3)

have ?a « (M v %a) = 2® — 1 (is ?aMa = 2% — 1)
and ?b - (M *v 2b) = y* — 1 (is 2bMb = y? — 1)
unfolding vector-def and M-def and inner-vec-def
and matriz-vector-mult-def
by (simp-all add: sum-3 power2-eq-square)
with «|z| < 1> and «(|y| < I»
have ?aMa < 0 and ?0Mb < 0 by (simp-all add: abs-square-less-1)
hence ?pa € hyp2 and ?pb € hyp?2
by (simp-all add: M-neg-imp-K2)
with «?a # 0)> and <%b # 0»
have cosh-dist ?pa ?pb = |%a - (M v 2b)| / sqrt (?aMa * ?bMD)
(is cosh-dist ?pa ?pb = |?aMb| / sqrt (?aMa x ?bMD))
by (rule cosh-dist-formula)
also from (%aMa = 22 — 1) and <2bMb = y> — 1»
have ... = [?aMb| / sqrt ((z*> — 1) * (y* — 1)) by simp
finally have cosh-dist ?pa ?pb = 1 / sqrt ((1 — 2°) * (1 — y?))
unfolding vector-def and M-def and inner-vec-def
and matriz-vector-mult-def
by (simp add: sum-38 algebra-simps)

let 20 = vector [0,0,1]
let 0Ma = %0 - (M *v %a)
let 20Mb = %0 - (M *v 2b)
let 20Mo = %0 - (M xv %0)
from K2-centre-non-zero and <%a # 0> and «?b # 0>
and K2-centre-in-K2 and < %pa € hyp2> and «?pb € hyp2»
and cosh-dist-formula [of ?0]
have cosh-dist ?po ?pa = |20Ma| / sqrt (?0Mo % ?aMa)
and cosh-dist ?po ?pb = |20Mb| /| sqrt (?oMo * 2bMb)
by (unfold K2-centre-def, simp-all)
hence cosh-dist ?po ?pa = 1 / sqrt (1 — x?)
and cosh-dist ?po ?pb = 1 | sqrt (1 — y?)
unfolding vector-def and M-def and inner-vec-def
and matriz-vector-mult-def
by (simp-all add: sum-3 power2-eq-square)
with <cosh-dist ?pa ?pb = 1 / sqrt ((1 — 2°) * (1 — y*))»
show cosh-dist ?pa ?pb = cosh-dist ?po ?pa * cosh-dist ?po ?pb
by (simp add: real-sqrt-mult)
qed

194

lemma K2-isometry-cross-ratio-endpoints-in-S:
assumes a € hyp2 and b € hyp2 and is-K2-isometry J and a # b
shows cross-ratio (apply-cltn2 (endpoint-in-S a b) J)
(apply-cltn2 (endpoint-in-S b a) J) (apply-clin2 a J) (apply-clin2 b J)
= cross-ratio (endpoint-in-S a b) (endpoint-in-S b a) a b
(is cross-ratio ?pJ 2qJ 2aJ ?bJ = cross-ratio ?p ?q a b)
proof —
let ¢l = proj2-line-through a b
have proj2-incident a ?I and proj2-incident b 21
by (rule proj2-line-through-incident)+
with <a # b and (a € hyp2> and (b € hyp2>
have proj2-incident ?p ?l and proj2-incident ?q ?1
by (simp-all add: endpoint-in-S-incident)
with <proj2-incident a ?l> and <proj2-incident b ?0>
have proj2-set-Col { ?p,?q,a,b}
by (unfold proj2-set-Col-def) (simp add: exI [of - ?1])

from <a # b and <a € hyp2> and <b € hyp2>
have ?p # ?q by (simp add: endpoint-in-S-swap)

from <a € hyp2) and b € hyp2> have ?p € S by (simp add: endpoint-in-S)
with <a € hyp2> and b € hyp2>
have a # %p and b # ?p by (simp-all add: hyp2-S-not-equal)
with <proj2-set-Col {?p,%q,a,b}» and «%p # ?¢»
show cross-ratio ?pJ ?qJ ?aJ ?bJ = cross-ratio ?p ?q a b
by (rule cross-ratio-cltn2)
qged

lemma K2-isometry-exp-2dist:
assumes a € hyp2 and b € hyp2 and is-K2-isometry J
shows exp-2dist (apply-clin2 a J) (apply-cltn2 b J) = exp-2dist a b
(is exp-2dist ?aJ 7bJ = -)
proof cases
assume a = b
thus ezp-2dist ?aJ ?bJ = exp-2dist a b by (unfold exp-2dist-def) simp
next
assume a # b
with apply-clin2-injective have ?aJ # ?bJ by fast

let ?p = endpoint-in-S a b
let ?q = endpoint-in-S b a
let ?aJ = apply-cltn2 a J
and ?bJ = apply-cltn2 b J
and ?pJ = apply-clin2 ?p J
and ?qJ = apply-cltn2 ?q J
from <a # b and <a € hyp2> and <b € hyp2> and <is-K2-isometry J»
have endpoint-in-S ?aJ ?bJ = ?pJ and endpoint-in-S ?bJ ?aJ = 2qJ
by (simp-all add: K2-isometry-endpoint-in-S)

195

from assms and <a # by
have cross-ratio ?pJ ?qJ ?aJ ?bJ = cross-ratio ?p ?q a b
by (rule K2-isometry-cross-ratio-endpoints-in-S)
with <endpoint-in-S %aJ ?bJ = ?pJy and <endpoint-in-S ?bJ %aJ = ?qJ>
and <a # b» and <?aJ # ?bJ>
show exp-2dist ?aJ ?bJ = exp-2dist a b by (unfold exp-2dist-def) simp
qed

lemma K2-isometry-cosh-dist:
assumes a € hyp2 and b € hyp2 and is-K2-isometry J
shows cosh-dist (apply-cltn2 a J) (apply-cltn2 b J) = cosh-dist a b
using assms

by (unfold cosh-dist-def) (simp add: K2-isometry-exp-2dist)

lemma cosh-dist-perp:
assumes M-perp I m and a € hyp2 and b € hyp2 and ¢ € hyp?2
and proj2-incident a | and proj2-incident b 1
and proj2-incident b m and proj2-incident ¢ m
shows cosh-dist a ¢ = cosh-dist b a % cosh-dist b c
proof —
from «M-perp I m» and <b € hyp2> and <proj2-incident b 1)
and <proj2-incident b m» and M-perp-to-compass [of I m b b]
obtain J where is-K2-isometry J and apply-clin2-line equator J =1
and apply-cltn2-line meridian J = m
by auto

let 2Ji = cltn2-inverse J
let ?aJi = apply-cltn2 a 2.Ji
let ?bJi = apply-clin2 b 2Ji
let ?cJi = apply-clin2 ¢ ?2Ji
from <apply-clin2-line equator J = Iy and <apply-clitn2-line meridian J = m»
and <proj2-incident a > and <proj2-incident b [»
and <proj2-incident b m» and <proj2-incident ¢ m»
have proj2-incident ?aJi equator and proj2-incident ?bJi equator
and proj2-incident ?bJi meridian and proj2-incident ?cJi meridian
by (auto simp add: apply-cltn2-incident)

from <is-K2-isometry J»
have is-K2-isometry 2Ji by (rule cltn2-inverse-is-K2-isometry)
with <a € hyp2> and <«c € hyp2>
have ?aJi € hyp2 and ?cJi € hyp2
by (simp-all add: statement60-one-way)

from <«?aJi € hyp2> and <proj2-incident ?aJi equator>
and on-equator-in-hyp2-rep
obtain z where |z| < I and ?aJi = proj2-abs (vector [z,0,1]) by auto
moreover
from «?cJi € hyp2> and <proj2-incident ?cJi meridian)
and on-meridian-in-hyp2-rep

196

obtain y where |y| < 1 and %cJi = proj2-abs (vector [0,y,1]) by auto
moreover
from <proj2-incident ?bJi equatory and <proj2-incident ?bJi meridians
have ?bJi = K2-centre by (rule on-equator-meridian-is-K2-centre)
ultimately
have cosh-dist ?aJi ?cJi = cosh-dist ?bJi ?aJi x cosh-dist ?bJi ?cJi

by (simp add: cosh-dist-perp-special-case)
with <a € hyp2) and <b € hyp2> and <c € hyp2) and <is-K2-isometry 2Ji>
show cosh-dist a ¢ = cosh-dist b a * cosh-dist b c

by (simp add: K2-isometry-cosh-dist)

qged

lemma are-endpoints-in-S-ordered-cross-ratio:
assumes are-endpoints-in-S p q a b
and Br (cart2-pt a) (cart2-pt b) (cart2-pt p) (is Br ?ca cb ?cp)
shows cross-ratio p g a b > 1
proof —
from <are-endpoints-in-S p q a by
have p # gand p € Sand ¢ € S and a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from <a € hyp2> and b € hyp2) and <p € S> and ¢ € S»

have z-non-zero a and z-non-zero b and z-non-zero p and z-non-zero q
by (simp-all add: hyp2-S-z-non-zero)

hence proj2-abs (cart2-appendl p) = p (is proj2-abs ?cpl = p)
and proj2-abs (cart2-append! q) = q (is proj2-abs ?cql = q)
and proj2-abs (cart2-append! a) = a (is proj2-abs ?cal = a)
and proj2-abs (cart2-appendl b) = b (is proj2-abs ?cb1 = b)
by (simp-all add: proj2-abs-cart2-appendl)

from <b € hyp2> and <p € S» have b # p by (rule hyp2-S-not-equal)
with <z-non-zero a> and <z-non-zero by and <z-non-zero p»
and <Bgr ?ca ?cb ?cpy and cart2-appendl-between-right-strict [of a b p]
obtain j where j > 0 and j < 1 and ?%cbl = j g %cpl + (1—j) g Pcal
by auto

from <proj2-set-Col {p,q,a,b}
obtain [where proj2-incident q [and proj2-incident p 1
and proj2-incident a 1
by (unfold proj2-set-Col-def) auto
with <p # ¢ and <¢ € Sy and «p € S» and <a € hyp2>
and S-hyp2-S-cart2-appendl [of ¢ p al]
obtain k£ where k > 0 and k < 1 and %cal =k xp %cpl + (1—k) g Zcql
by auto

from <z-non-zero p» and <z-non-zero ¢
have ?cpl # 0 and ?cql # 0 by (simp-all add: cart2-append1-non-zero)

197

from «p # ¢» and <proj2-abs ?cpl = py and <proj2-abs ?cql = ¢
have proj2-abs ?cpl # proj2-abs ?cql by simp

from <k < 1> have 1—Fk # 0 by simp
with «j < 1» have (1—j)x(1—k) # 0 by simp

from ¢j < 1y and <k > 0» have (1—j)«xk > 0 by simp

from «?cbl = j xg %cpl + (1—j) *g Zcals
have 7cb1 = (j+(1—j)xk) *r 2epl + ((1—5)x(1—k)) *r Zcql
by (unfold <%cal = k xr Zcpl + (1—Fk) xg 2eqly) (simp add: algebra-simps)
with <%cal = k xg %cpl + (1—Fk) xg Peql>
have proj2-abs ?cal = proj2-abs (k xr Zcpl + (1—k) xg Zcql)
and proj2-abs ?cb1
= proj2-abs ((j+(1—j)*k) xg Zcpl + ((1—5)x(1—k)) *g Zcql)
by simp-all
with <proj2-abs ?cal = a» and <proj2-abs ?cbl = b»
have a = proj2-abs (k xg %cpl + (1—k) *r ?cql)
and b = proj2-abs ((j+(1—7)*k) *r Zepl + ((1—5)*%(1—k)) *r ?cql)
by simp-all
with «proj2-abs ?cpl = p)» and (proj2-abs ?cql = ¢
have cross-ratio p g a b
= cross-ratio (proj2-abs ?cpl) (proj2-abs ?cql)
(proj2-abs (k xg %cpl + (1—k) *p %cql))
(proj2-abs ((j+(1—7)xk) *r %epl + ((1—j)*(1—k)) *r Pcql))
by simp
also from «?cpl # 0> and «?cql # 0> and «proj2-abs ?cpl # proj2-abs ?cql>
and «I—k # 0> and «(1—j)x(1—k) # 0»
have ... = (1-k)x(j+(1—j)xk) / (kx((1—7)*(1—k))) by (rule cross-ratio-abs)
also from <1 —k # 0» have ... = (j+(I—j5)xk) / ((1—7)*k) by simp
also from <j > 0)> and «(1—j)xk > 0» have ... > 1 by simp
finally show cross-ratiop qa b > 1.
qed

lemma cross-ratio-S-S-hyp2-hyp2-positive:
assumes are-endpoints-in-S p q a b
shows cross-ratio p g a b > 0
proof cases
assume Br (cart2-pt p) (cart2-pt b) (cart2-pt a)
hence Br (cart2-pt a) (cart2-pt b) (cart2-pt p)
by (rule real-euclid.th3-2)
with assms have cross-ratiop qa b > 1
by (rule are-endpoints-in-S-ordered-cross-ratio)
thus cross-ratio p g a b > 0 by simp
next
assume - Bg (cart2-pt p) (cart2-pt b) (cart2-pt a) (is = Br %cp ?cb %ca)

from <are-endpoints-in-S p q a by
have are-endpoints-in-S p q b a by (rule are-endpoints-in-S-swap-34)

198

from <are-endpoints-in-S p q a by
have p € S and a € hyp2 and b € hyp2 and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from <proj2-set-Col {p,q,a,b}
have proj2-set-Col {p,a,b}
by (simp add: proj2-subset-Col [of {p,a,b} {p,q,a,b}])
hence proj2-Col p a b by (subst proj2-Col-iff-set-Col)
with <p € S» and <a € hyp2> and b € hyp2>
have Br %cp ?ca 2cb V Br Zcp ?cb 2ca by (simp add: S-at-edge)
with <— Br ?cp ?cb ?ca> have Br “cp ?ca ?cb by simp
hence Br ?cb ?ca ?cp by (rule real-euclid.th3-2)
with <are-endpoints-in-S p q b a>
have cross-ratio p ¢ b a > 1
by (rule are-endpoints-in-S-ordered-cross-ratio)
thus cross-ratio p ¢ a b > 0 by (subst cross-ratio-swap-34) simp
qed

lemma cosh-dist-general:
assumes are-endpoints-in-S p q a b
shows cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2
proof —
from <are-endpoints-in-S p q a b
have p # gand p € S and ¢ € S and a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from <a € hyp2> and b € hyp2> and <p € S» and g € S
have a # pand a # gqand b # p and b # ¢
by (simp-all add: hyp2-S-not-equal)

show cosh-dist a b

= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2
proof cases

assume a = b

hence cosh-dist a b = 1 by (unfold cosh-dist-def exp-2dist-def) simp

from <proj2-set-Col {p,q,a,b}»
have proj2-Col p q a by (unfold <a = b>) (simp add: proj2-Col-iff-set-Col)
with <p # ¢ and <a # p» and <a # @
have cross-ratio p g a b = 1 by (simp add: <a = by cross-ratio-equal-1)
hence (sqrt (cross-ratio p g a b) + 1 / sqrt (cross-ratio p q a b)) / 2
=1
by simp
with <cosh-dist a b = 1)
show cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p ¢ a b)) / 2

199

by simp
next
assume a # b

let 2r = endpoint-in-S a b

let ?s = endpoint-in-S b a

from <a # b

have exp-2dist a b = cross-ratio ?r ?s a b by (unfold exp-2dist-def) simp

from <a # by and <are-endpoints-in-S p q a b»
have (p= 2r A g = %)V (¢ = %r A p = ?s) by (rule are-endpoints-in-S)

show cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p g a b)) / 2
proof cases
assume p = r A g = %s
with <exp-2dist a b = cross-ratio ?r ?s a b
have exp-2dist a b = cross-ratio p q a b by simp
thus cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2
by (unfold cosh-dist-def) (simp add: real-sqrt-divide)
next
assume - (p = r A ¢ = ?s)
with «(p=2rANqg=25)V (¢g= 9" ANp= %)
have ¢ = %r and p = ?s by simp-all
with <exp-2dist a b = cross-ratio ?r ?s a by
have exp-2dist a b = cross-ratio q p a b by simp

have {¢,p,a,b} = {p,q,a,b} by auto
with «proj2-set-Col {p,q,a,b}> and <p # ¢ and <a # p)> and b # p
and <a # ¢ and b # ¢
have cross-ratio-correct p q a b and cross-ratio-correct ¢ p a b
by (unfold cross-ratio-correct-def) simp-all
hence cross-ratio g p a b = 1 / (cross-ratio p q a b)
by (rule cross-ratio-swap-12)
with <exp-2dist a b = cross-ratio ¢ p a b
have exp-2dist a b = 1 / (cross-ratio p q a b) by simp
thus cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2
by (unfold cosh-dist-def) (simp add: real-sqrt-divide)
qed
qed

qged

lemma exp-2dist-positive:

assumes a € hyp2 and b € hyp?2
shows exp-2dist a b > 0

proof cases
assume a = b

200

thus ezp-2dist a b > 0 by (unfold exp-2dist-def) simp
next
assume a # b

let ?p = endpoint-in-S a b
let ?q = endpoint-in-S b a
from <a # b and <a € hyp2> and b € hyp2>
have are-endpoints-in-S ?p ?q a b
by (rule endpoints-in-S-are-endpoints-in-S)

hence cross-ratio ?p ?q a b > 0 by (rule cross-ratio-S-S-hyp2-hyp2-positive)

with <a # b show exp-2dist a b > 0 by (unfold exp-2dist-def) simp
qed

lemma cosh-dist-at-least-1:
assumes a € hyp2 and b € hyp?2
shows cosh-dist a b > 1
proof —
from assms have exp-2dist a b > 0 by (rule exp-2dist-positive)
with am-gm2(1) [of sqrt (exp-2dist a b) sqrt (1 |/ exp-2dist a b))
show cosh-dist a b > 1
by (unfold cosh-dist-def) (simp add: real-sqrt-mult [symmetric])
qged

lemma cosh-dist-positive:
assumes a € hyp2 and b € hyp?2
shows cosh-dist a b > 0
proof —
from assms have cosh-dist a b > 1 by (rule cosh-dist-at-least-1)
thus cosh-dist a b > 0 by simp
qed

lemma cosh-dist-perp-divide:
assumes M-perp [m and a € hyp2 and b € hyp2 and c € hyp2
and proj2-incident a | and proj2-incident b | and proj2-incident b m
and proj2-incident ¢ m
shows cosh-dist b ¢ = cosh-dist a ¢ / cosh-dist b a

proof —
from b € hyp2> and <a € hyp2>
have cosh-dist b a > 0 by (rule cosh-dist-positive)

from assms
have cosh-dist a ¢ = cosh-dist b a * cosh-dist b ¢ by (rule cosh-dist-perp)
with <cosh-dist b a > 0>
show cosh-dist b ¢ = cosh-dist a ¢ | cosh-dist b a by simp
qed

lemma real-hyp2- C-cross-ratio-endpoints-in-S:

assumes a # band a b =g c d
shows cross-ratio (endpoint-in-S (Rep-hyp2 a) (Rep-hyp2 b))

201

(endpoint-in-S (Rep-hyp2 b) (Rep-hyp2 a)) (Rep-hyp2 a) (Rep-hyp2 b)
= cross-ratio (endpoint-in-S (Rep-hyp2 c) (Rep-hyp2 d))
(endpoint-in-S (Rep-hyp2 d) (Rep-hyp2 c)) (Rep-hyp2 c) (Rep-hyp2 d)
(is cross-ratio ?p ?q 2a’ 2b' = cross-ratio ?r ?s ?c’ ?d’)
proof —
from <a # b and have ¢ # d by (auto simp add: hyp2.A3")
with <a # b» have %a’ # ?b' and ?¢c’ # ?d’ by (unfold Rep-hyp2-inject)

from

obtain J where is-K2-isometry J and hyp2-cltn2 a J = ¢
and hyp2-cltn2 b J = d
by (unfold real-hyp2-C-def) auto

hence apply-clin2 ?a’ J = ?¢’ and apply-clin2 20" J = 2d’
by (simp-all add: Rep-hyp2-clin2 [symmetric])

with <%a’ # b’y and <is-K2-isometry J»

have apply-cltn2 ?p J = ?r and apply-cltn2 ?2q J = %s
by (simp-all add: Rep-hyp2 K2-isometry-endpoint-in-S)

from <?a’ # 2b"
have proj2-set-Col {?p,%q,%a’,2b"}
by (simp add: Rep-hyp2 proj2-set-Col-endpoints-in-S)

from <%a’ # %0y have ?p # ?q by (simp add: Rep-hyp2 endpoint-in-S-swap)

have ?p € S by (simp add: Rep-hyp2 endpoint-in-S)
hence ?a’ # ?p and ?b' # ?p by (simp-all add: Rep-hyp2 hyp2-S-not-equal)
with «proj2-set-Col {?p,%q,%a’,2b'}y and <%p # ?¢»
have cross-ratio ?p ?q ?a’ ?b’

= cross-ratio (apply-cltn2 ?p J) (apply-cltn2 ?q J)

(apply-cltn2 2a’ J) (apply-clin2 2b" J)

by (rule cross-ratio-cltn2 [symmetric])
with <apply-cltn2 ?p J = %ry and <apply-cltn2 ?2q J = ?s»

and <apply-cltn2 ?a’ J = ?¢’y and <apply-cltn2 2b’ J = 2d"
show cross-ratio ?p ?q ?a’ 2b’ = cross-ratio ?r s ?c¢’ 2d’' by simp

qed

lemma real-hyp2-C-exp-2dist:
assumes a b =g ¢ d
shows exp-2dist (Rep-hyp2 a) (Rep-hyp2 b)
= exp-2dist (Rep-hyp2 c¢) (Rep-hyp2 d)
(is exp-2dist ?a’ ?b' = exp-2dist ?¢’ ?d’)
proof —
from <a b =g ¢ d»
obtain J where is-K2-isometry J and hyp2-cltn2 a J = ¢
and hyp2-cltn2 b J = d
by (unfold real-hyp2-C-def) auto
hence apply-cltn2 ?a’ J = ?¢’ and apply-cltn2 2b’ J = 2d’
by (simp-all add: Rep-hyp2-clin2 [symmetric])

202

from Rep-hyp2 [of a] and Rep-hyp2 [of b] and «<is-K2-isometry J»
have exp-2dist (apply-clin2 ?a’ J) (apply-clin2 2b’ J) = exp-2dist ?a’ ?b’
by (rule K2-isometry-exp-2dist)
with <apply-cltn2 ?a’ J = ?c¢’s and <apply-cltn2 2b’ J = 2d"
show ezp-2dist ?a’ ?b' = exp-2dist ?c’ ?d’' by simp
qed

lemma real-hyp2-C-cosh-dist:
assumes a b =g ¢ d
shows cosh-dist (Rep-hyp2 a) (Rep-hyp2 b)
= cosh-dist (Rep-hyp2 c¢) (Rep-hyp2 d)
using assms

by (unfold cosh-dist-def) (simp add: real-hyp2-C-exp-2dist)

lemma cross-ratio-in-terms-of-cosh-dist:
assumes are-endpoints-in-S p q a b
and Br (cart2-pt a) (cart2-pt b) (cart2-pt p)
shows cross-ratio p q a b
= 2 x (cosh-dist a b)® + 2 x cosh-dist a b * sqrt ((cosh-dist a b)*> — 1) — 1
(is ?pgab = 2 * 2ab® + 2 * ?2ab * sqrt (%ab®> — 1) — 1)
proof —
from <are-endpoints-in-S p q a by
have ?%ab = (sqrt ?pqab + 1 / sqrt ?pqab) / 2 by (rule cosh-dist-general)
hence sqrt ?pgab — 2 x %ab + 1 / sqrt ?pqab = 0 by simp
hence sqrt ?pgab * (sqrt ?pgab — 2 * 2ab + 1 / sqrt ?pqab) = 0 by simp
moreover from assms
have ?pgab > 1 by (rule are-endpoints-in-S-ordered-cross-ratio)
ultimately have ?pgab — 2 x %ab * (sqrt ?pqab) + 1 = 0
by (simp add: algebra-simps real-sqrt-mult [symmetric])
with «?pgab > 1y and discriminant-iff [of 1 sqrt ?pqab — 2 * 2ab 1]
have sqrt ?pgab = (2 * Zab + sqrt (4 * 2ab®> — 4)) / 2
V sqrt ?pgab = (2 * 2ab — sqrt (4 * 2ab®> — 4)) / 2
unfolding discrim-def
by (simp add: real-sqrt-mult [symmetric] power2-eq-square)
moreover have sqrt (4 * ?ab®> — /) = sqrt (4 * (?ab®> — 1)) by simp
hence sqrt (4 * ?ab*> — 4) = 2 * sqrt (?ab® — 1)
by (unfold real-sqrt-mult) simp
ultimately have sqrt ?pgab = 2 x (?ab + sqrt (?ab®> — 1)) / 2
V sqrt ?pgab = 2 x (%ab — sqrt (?ab®> — 1)) / 2
by simp
hence sqrt ?pgab = ?ab + sqrt (2ab® — 1)
V sqrt ?pgab = Pab — sqrt (?ab® — 1)
by (simp only: nonzero-mult-div-cancel-left [of 2])

from <are-endpoints-in-S p q a b»

have a € hyp2 and b € hyp2 by (unfold are-endpoints-in-S-def) simp-all
hence ?ab > 1 by (rule cosh-dist-at-least-1)

hence ?ab? > 1 by simp

hence sqrt (?ab®> — 1) > 0 by simp

203

hence sqrt (?ab®> — 1) * sqrt (?ab®> — 1) = 2ab® — 1
by (simp add: real-sqrt-mult [symmetric])

hence (?ab + sqrt (?ab?> — 1)) x (2ab — sqrt (?ab® — 1)) = 1
by (simp add: algebra-simps power2-eq-square)

have ?Zab — sqrt (?ab® — 1) < 1
proof (rule ccontr)
assume — (?ab — sqrt (%ab® — 1) < 1)
hence 1 < ?ab — sqrt (?ab®> — 1) by simp
also from «sqrt (?ab* — 1) > 0»
have ... < %ab + sqrt (?ab®> — 1) by simp
finally have 1 < ?ab + sqrt (?ab®> — 1) by simp
with 1 < fab — sqrt (?ab®> — 1)»
and mult-strict-mono’ [of
1 %ab + sqrt (2ab® — 1) 1 2ab — sqrt (?ab® — 1))
have 1 < (Zab + sqrt (2ab® — 1)) * (2ab — sqrt (?ab®> — 1)) by simp
with «(2ab + sqrt (?ab? — 1)) * (?ab — sqrt (?ab®> — 1)) = 1>
show Fulse by simp
qed

have sqrt ?pqab = ?ab + sqrt (?ab®> — 1)
proof (rule ccontr)
assume sqrt ?pgab # ?ab + sqrt (?ab® — 1)
with <sqrt ?pgab = ?2ab + sqrt (?ab®> — 1)
V sqrt ?pqab = 2ab — sqrt (?ab® — 1)
have sqrt ?pqab = ?ab — sqrt (?ab®> — 1) by simp
with «?ab — sqrt (?ab®> — 1) < 1) have sqrt ?pgab < 1 by simp
with <?pgab > 1) have sqrt ?pqab = 1 by simp
with <sqrt ?pgab = ?ab — sqrt (2ab® — 1))
and «(?ab + sqrt (?ab®> — 1)) * (?ab — sqrt (?ab®> — 1)) = 1»
have ?ab + sqrt (?ab® — 1) = 1 by simp
with «sqrt ?pgab = 1> have sqrt ?pqab = ?ab + sqrt (?ab® — 1) by simp
with «sqrt ?pqab # ?ab + sqrt (?ab® — 1)) show Fualse ..
qed
moreover from <?pgab > 1) have ?pgab = (sqrt ?pqab)? by simp
ultimately have ?pgab = (?ab + sqrt (?ab®> — 1))? by simp
with «sqrt (?ab® — 1) * sqrt (2ab® — 1) = 2ab® — 1»
show ?pqab = 2 * Zab® + 2 x Zab * sqrt (?ab®> — 1) — 1
by (simp add: power2-eq-square algebra-simps)
qed

lemma are-endpoints-in-S-cross-ratio-correct:
assumes are-endpoints-in-S p q a b
shows cross-ratio-correct p q a b
proof —
from <are-endpoints-in-S p q a b
have p # gand p € S and ¢ € S and a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

204

from <a € hyp2> and <b € hyp2> and <p € S» and «q € S

have a # p and b # p and a # ¢ by (simp-all add: hyp2-S-not-equal)

with «proj2-set-Col {p,q,a,b}> and <p # ¢

show cross-ratio-correct p q a b by (unfold cross-ratio-correct-def) simp
qed

lemma endpoints-in-S-cross-ratio-correct:
assumes a # b and a € hyp2 and b € hyp2
shows cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b
proof —
from assms
have are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-S b a) a b
by (rule endpoints-in-S-are-endpoints-in-S)
thus cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b
by (rule are-endpoints-in-S-cross-ratio-correct)
qed

lemma endpoints-in-S-perp-foot-cross-ratio-correct:
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
and proj2-incident a | and proj2-incident b |
shows cross-ratio-correct
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c 1)
(is cross-ratio-correct ?p ?q a %d)
proof —
from assms
have are-endpoints-in-S ?p ?q a ?d
by (rule endpoints-in-S-perp-foot-are-endpoints-in-S)
thus cross-ratio-correct ?p ?q a ?d
by (rule are-endpoints-in-S-cross-ratio-correct)
qed

lemma cosh-dist-unique:
assumes a € hyp2 and b € hyp2 and c € hyp2 and p € §
and Br (cart2-pt a) (cart2-pt b) (cart2-pt p) (is Br “ca 2cb ?cp)
and Br (cart2-pt a) (cart2-pt ¢) (cart2-pt p) (is Br ?ca ?cc ?cp)
and cosh-dist a b = cosh-dist a ¢ (is ?ab = %ac)
shows b = ¢

proof —
let ¢ = endpoint-in-S p a

from <a € hyp2> and «b € hyp2) and <c € hyp2> and <p € S»

have z-non-zero a and z-non-zero b and z-non-zero ¢ and z-non-zero p
by (simp-all add: hyp2-S-z-non-zero)

with <Br ?ca ?cb ?cpy and «Br ?ca ?cc Zcp»

have 3 [. proj2-incident a |l N\ proj2-incident b Il N\ proj2-incident p [
and 3 m. proj2-incident a m A proj2-incident ¢ m A proj2-incident p m
by (simp-all add: euclid-B-cart2-common-line)

then obtain [and m where

205

proj2-incident o | and proj2-incident b | and proj2-incident p [
and proj2-incident a m and proj2-incident ¢ m and proj2-incident p m
by auto

from <a € hyp2) and «p € S» have a # p by (rule hyp2-S-not-equal)
with <proj2-incident a > and <proj2-incident p I
and <proj2-incident a m) and <proj2-incident p m» and proj2-incident-unique
have [= m by fast
with «proj2-incident ¢ m» have proj2-incident c | by simp
with <a € hyp2) and <b € hyp2> and <c € hyp2) and p € S»
and <proj2-incident a > and <proj2-incident b [y and <proj2-incident p >
have are-endpoints-in-S p ?q b a and are-endpoints-in-S p ?q ¢ a
by (simp-all add: end-and-opposite-are-endpoints-in-S)
with are-endpoints-in-S-swap-34
have are-endpoints-in-S p ?q a b and are-endpoints-in-S p ?q a ¢ by fast+
hence cross-ratio-correct p ?q a b and cross-ratio-correct p ?q a ¢
by (simp-all add: are-endpoints-in-S-cross-ratio-correct)
moreover
from <are-endpoints-in-S p ?q a by and <are-endpoints-in-S p ?q a ¢
and <Br ?ca ?cb ?cpy and «Br Zca ?cc Yepy
have cross-ratio p ?q a b = 2 * 2ab® + 2 x Zab x sqrt (?ab®> — 1) — 1
and cross-ratio p g a ¢ = 2 * fac® + 2 * %ac x sqrt (%ac® — 1) — 1
by (simp-all add: cross-ratio-in-terms-of-cosh-dist)
with <%ab = ?ac> have cross-ratio p ?q a b = cross-ratio p ?q a ¢ by simp
ultimately show b = ¢ by (rule cross-ratio-unique)
qged

lemma cosh-dist-swap:
assumes a € hyp2 and b € hyp2
shows cosh-dist a b = cosh-dist b a
proof —
from assms and K2-isometry-swap
obtain J where is-K2-isometry J and apply-cltn2 a J = b
and apply-clin2 b J = a
by auto

from «b € hyp2)> and <a € hyp2> and «is-K2-isometry J»
have cosh-dist (apply-clin2 b J) (apply-clin2 a J) = cosh-dist b a
by (rule K2-isometry-cosh-dist)
with <apply-cltn2 o J = b> and <apply-cltn2 b J = w»
show cosh-dist a b = cosh-dist b a by simp
qged

lemma exp-2dist-1-equal:
assumes a € hyp2 and b € hyp2 and exp-2dist a b = 1
shows a = b
proof (rule ccontr)
assume a # b
with «a € hyp2> and <b € hyp2»

206

have cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b
(is cross-ratio-correct ?p ?q a b)
by (simp add: endpoints-in-S-cross-ratio-correct)
moreover
from <a # b
have exp-2dist a b = cross-ratio ?p ?q a b by (unfold exp-2dist-def) simp
with <exp-2dist a b = 1> have cross-ratio ?p ?q a b = 1 by simp
ultimately have a = b by (rule cross-ratio-1-equal)
with <a # b> show Fulse ..
qed

8.11.1 A formula for a cross ratio involving a perpendicular foot

lemma described-perp-foot-cross-ratio-formula:

assumes a # b and ¢ € hyp2 and are-endpoints-in-Sp q a b

and proj2-incident p | and proj2-incident q [and M-perp I m

and proj2-incident d | and proj2-incident d m and proj2-incident ¢ m

shows cross-ratio p q d a

= (cosh-dist b ¢ * sqrt (cross-ratio p q a b) — cosh-dist a ¢)
/ (cosh-dist a ¢ * cross-ratio p ¢ a b
— cosh-dist b ¢ x sqrt (cross-ratio p q a b))

(is ?pgda = (2bc * sqrt ?pqab — 2ac) / (Pac x Zpgab — %bc * sqrt ?pqab))
proof —

let ?da = cosh-dist d a

let ?db = cosh-dist d b

let ?dc = cosh-dist d c

let ?pqdb = cross-ratio p q d b

from <are-endpoints-in-S p q a b»

have p # gand p € Sand ¢ € S and a € hyp2 and b € hyp2
and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from <proj2-set-Col {p,q,a,b}»

obtain [’ where proj2-incident p I’ and proj2-incident q I’
and proj2-incident a I’ and proj2-incident b 1’
by (unfold proj2-set-Col-def) auto

from <p # ¢ and <proj2-incident p 1"y and (proj2-incident q 1"
and <(proj2-incident p I> and <proj2-incident q I» and proj2-incident-unique
have I’ = | by fast
with «proj2-incident a I’y and <proj2-incident b 1
have proj2-incident a | and proj2-incident b [by simp-all

from «(M-perp | m» and <a € hyp2) and <proj2-incident a I» and <c € hyp2»
and (proj2-incident ¢ m» and <proj2-incident d > and <proj2-incident d m»

have d € hyp2 by (rule M-perp-hyp2)

with <a € hyp2> and <b € hyp2> and <c € hyp2»

have ?bc > 0 and ?da > 0 and %ac > 0

207

by (simp-all add: cosh-dist-positive)

from «(proj2-incident p I> and <proj2-incident q > and <proj2-incident d 1>
and <(proj2-incident a > and <proj2-incident b [»
have proj2-set-Col {p,q,d,a} and proj2-set-Col {p,q,d,b}
and proj2-set-Col {p,q,a,b}
by (unfold proj2-set-Col-def) (simp-all add: ezl [of - I])
with (p # ¢» and <p € S» and «¢ € S» and «d € hyp2> and <a € hyp2»
and b € hyp2»
have are-endpoints-in-S p q d a and are-endpoints-in-S p q d b
and are-endpoints-in-S p q a b
by (unfold are-endpoints-in-S-def) simp-all
hence ?pgda > 0 and ?pgdb > 0 and ?pqab > 0
by (simp-all add: cross-ratio-S-S-hyp2-hyp2-positive)

from <proj2-incident p I> and <proj2-incident q > and <proj2-incident a >
have proj2-Col p q a by (rule proj2-incident-Col)

from <a € hyp2> and <b € hyp2> and <p € S» and g € S
have a # p and a # ¢ and b # p by (simp-all add: hyp2-S-not-equal)

from «proj2-Col p q > and <p # ¢ and <a # p> and <a # ¢
have ?pqdb = ?pgda * ?pqab by (rule cross-ratio-product [symmetric])

from <M-perp Il m» and <a € hyp2> and <b € hyp2) and <c € hyp2) and «d €
hyp2)»
and <proj2-incident a > and <proj2-incident b [y and <proj2-incident d >
and <proj2-incident d m» and <proj2-incident ¢ m»
and cosh-dist-perp-divide [of I m - d (]
have ?dc = %ac / ?da and ?dc = ?bc / ?db by fast+
hence ?ac / ?da = %bc / ?db by simp
with «?bc > 0> and <?da > 0>
have %ac / %bc = 2da / ?db by (simp add: field-simps)
also from «<are-endpoints-in-S p q d a> and <are-endpoints-in-S p q d b
have ...
= 2 x (sqrt ?pgda + 1 / (sqrt ?pqda))
/ (2 % (sqrt ?pqdb + 1 / (sqrt ?pqdb)))
by (simp add: cosh-dist-general)
also
have ... = (sqrt ?pgda + 1 / (sqrt ?pgda)) / (sqrt ?pqdb + 1] (sqrt ?pqdb))
by (simp only: mult-divide-mult-cancel-left-if) simp
also have ...
= sqrt ?pqdb x (sqrt ?pgda + 1 / (sqrt ?pqda))
/ (sqrt ?pqdb = (sqrt ?pgdb + 1 / (sqrt ?pqdb)))

by simp
also from <« %pqdb > 0>
have ... = (sqrt (?pgdb * ?pqda) + sqrt (?pgdb / ?pqda)) / (?pgdb + 1)

by (simp add: real-sqrt-mult [symmetric| real-sqrt-divide algebra-simps)
also from < ?pqdb = ?pgda * ?pgaby and < ?pgda > 0> and real-sqrt-pow?2

208

have ... = (?pgda * sqrt ?pgab + sqrt ?pqabd) / (?pgda * ?pgab + 1)
by (simp add: real-sqrt-mult power2-eg-square)
finally
have Zac / ?bc = (?pqda * sqrt ?pgab + sqrt ?pgab) / (?pgda * ?pgab + 1) .

from «?pgda > 0» and < ?pqab > 0>

have ?pgda x ?pgab + 1 > 0 by (simp add: add-pos-pos)

with «?bc > 0»
and «?ac / ?bc = (?pgda * sqrt ?pgab + sqrt ?pqab) / (?pgda * ?pgab + 1)»

have Zac x (pqda x ?pqab + 1) = %bc * (?pgda * sqrt ?pqab + sqrt ?pqab)
by (simp add: field-simps)

hence ?pgda * (fac * ?pgab — ?bc x sqrt ?pgab) = ?bc x sqrt ?pgab — %ac
by (simp add: algebra-simps)

from «proj2-set-Col {p,q,a,b}> and <p # ¢ and <a # p> and <a # @
and <b # p

have cross-ratio-correct p ¢ a b by (unfold cross-ratio-correct-def) simp

have Zac x ?pgab — ?bc *x sqrt ?pqab # 0
proof
assume Zac * ?pgab — ?bc * sqrt ?pgab = 0
with < %pgda * (ac * ?pqab — ?bc x sqrt ?pgab) = ?bc x sqrt ?pgab — %ac
have ?bc x sqrt ?pgab — ?ac = 0 by simp
with <%2ac * ?pgab — ?bc * sqrt ?pgab = 0> and <%ac > 0>
have ?pgab = 1 by simp
with <cross-ratio-correct p q a b»
have a = b by (rule cross-ratio-1-equal)
with <a # b show Fulse ..
qed
with «?pgda * (%ac * ?pgab — ?bc x sqrt ?pgab) = %bc * sqrt ?pgab — %ac)
show ?pgda = (?bc * sqrt ?pgab — %ac) / (Pac x ?pgab — ?bc x sqrt ?pgab)
by (simp add: field-simps)
qed

lemma perp-foot-cross-ratio-formula:
assumes a € hyp2 and b € hyp2 and ¢ € hyp2 and a # b
shows cross-ratio (endpoint-in-S a b) (endpoint-in-S b a)
(perp-foot ¢ (proj2-line-through a b)) a
= (cosh-dist b ¢ * sqrt (exp-2dist a b) — cosh-dist a c)
/ (cosh-dist a ¢ * exp-2dist a b — cosh-dist b ¢ % sqrt (exp-2dist a b))
(is cross-ratio ?p ?q ?d a
= (?bc * sqrt ?pgab — ?2ac) | (Zac x Zpqab — ?bc * sqrt ?pqab))
proof —
from <a # b and <a € hyp2> and b € hyp2>
have are-endpoints-in-S ?p ?q a b
by (rule endpoints-in-S-are-endpoints-in-S)

let ¢l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?1

209

by (rule proj2-line-through-incident)+
with <a # b and <a € hyp2> and <b € hyp2»
have proj2-incident ?p ?l and proj2-incident ?q ?1
by (simp-all add: endpoint-in-S-incident)

let ?m = drop-perp ¢ ¢l
have M-perp ?l m by (rule drop-perp-perp)

have proj2-incident ?d ?l and proj2-incident ?d ?m
by (rule perp-foot-incident)+

have proj2-incident ¢ m by (rule drop-perp-incident)

with <a # b and <«c € hyp2)> and <are-endpoints-in-S ?p ?q a b
and <proj2-incident ?p 21y and <(proj2-incident ?q ?l> and <M-perp ?l ?m)»
and <proj2-incident ?d ?l> and <proj2-incident ?d ?m)

have cross-ratio ?p ?q ?d a
= (2bc * sqrt (cross-ratio ?p ?q a b) — ?ac)
/ (%ac x (cross-ratio ?p ?q a b) — %bc * sqrt (cross-ratio ?p ?q a b))
by (rule described-perp-foot-cross-ratio-formula)

with «a # b

show cross-ratio ?p ?q ?d a
= (2bc * sqrt ?pqab — ?2ac) |/ (Pac x ?pgab — %bc * sqrt ?pqab)
by (unfold exp-2dist-def) simp

qed

8.12 The Klein—Beltrami model satisfies axiom 5

lemma statement69:
assumes a b= a’'b'and bc =g b ¢’and a c =, a’ ¢’
shows 3 J. is-K2-isometry J
A hyp2-clin2 a J = a’' N\ hyp2-clin2 b J = b’ A hyp2-clin2 ¢ J = ¢’
proof cases
assume a = b
with ¢ b =k o’ b have o’ = b’ by (simp add: hyp2.AS-reversed)
with <a = b» and (b ¢ =g b’ ¢’
show 3 J. is-K2-isometry J
A hyp2-cltn2 a J = a’ A hyp2-cltn2 b J = b’ A hyp2-clin2 ¢ J = ¢’
by (unfold real-hyp2-C-def) simp
next
assume a # b
with <a b =g a’ b
have o’ # b’ by (auto simp add: hyp2.A3")

let ?pa = Rep-hyp2 a
and ?pb = Rep-hyp2 b
and ?pc = Rep-hyp2 c
and ?pa’ = Rep-hyp2 o’
and ?pb’ = Rep-hyp2 b’
and ?pc’ = Rep-hyp2 ¢’

210

define pp pq I pp’ pqg’ I
where pp = endpoint-in-S ?pa ?pb
and pg = endpoint-in-S ?pb ?pa
and [= proj2-line-through ?pa ?pb
and pp’ = endpoint-in-S ?pa’ ?pb’
and pqg’ = endpoint-in-S ?pb’ ?pa’
and I’ = proj2-line-through ?pa’ ?pb’
define pd ps m pd’ ps’ m’
where pd = perp-foot ?pc |
and ps = perp-up ?pc |
and m = drop-perp ?pc 1
and pd’ = perp-foot ?pc’ 1’
and ps’ = perp-up ?pc’ 1’
and m' = drop-perp ?pc’ 1’

have pp € S and pp’ € S and pg € S and pg’ € S
unfolding pp-def and pp’-def and pq-def and pq’-def
by (simp-all add: Rep-hyp2 endpoint-in-S)

from <a # b and <a’ # b
have ?pa # ?pb and ?pa’ # ?pb’ by (unfold Rep-hyp2-inject)
moreover
have proj2-incident ?pa | and proj2-incident ?pb |
and proj2-incident ?pa’ I’ and proj2-incident ?pb’ I’
by (unfold I-def l’-def) (rule proj2-line-through-incident)+
ultimately have proj2-incident pp | and proj2-incident pp' 1’
and proj2-incident pg | and proj2-incident pq’ 1’
unfolding pp-def and pp’-def and pg-def and pq’-def
by (simp-all add: Rep-hyp2 endpoint-in-S-incident)

from <pp € S» and «pp’ € Sy and <proj2-incident pp
and «proj2-incident pp’ 'y and <proj2-incident ?pa Iy
and «proj2-incident ?pa’ 1’
have right-angle pp pd ps and right-angle pp’ pd’ ps’
unfolding pd-def and ps-def and pd’-def and ps’-def
by (simp-all add: Rep-hyp2
perp-foot-up-right-angle [of pp ?pc ?pa]
perp-foot-up-right-angle [of pp’ ?pc’ ?pa’ 1))
with right-angle-to-right-angle [of pp pd ps pp’ pd’ ps]
obtain J where is-K2-isometry J and apply-clin2 pp J = pp’
and apply-cltn2 pd J = pd’ and apply-cltn2 ps J = ps’
by auto

let ?paJ = apply-clin2 ?pa J
and ?%pbJ = apply-cltn2 ?pb J
and ?pcJ = apply-cltn2 ?pc J
and ?pdJ = apply-clin2 pd J
and ?ppJ = apply-cltn2 pp J
and ?pqJ = apply-cltn2 pq J

211

and ?psJ = apply-cltn2 ps J
and ?1J = apply-cltn2-line | J
and ?mJ = apply-cltn2-line m J

have proj2-incident pd | and proj2-incident pd’ I’
and proj2-incident pd m and proj2-incident pd’' m
by (unfold pd-def pd’-def m-def m'-def) (rule perp-foot-incident)+

!

from <proj2-incident pp 1> and <proj2-incident pq 1>
and <proj2-incident pd > and <proj2-incident ?pa 1>
and <proj2-incident ?pb I

have proj2-set-Col {pp,pq,pd,?pa} and proj2-set-Col {pp,pq,?pa,?pb}
by (unfold pd-def proj2-set-Col-def) (simp-all add: exI [of - I])

from < ?pa # ?pb> and «?pa’ £ ?pb’

have pp # pg and pp’ # pq’
unfolding pp-def and pq-def and pp’-def and pq’-def
by (simp-all add: Rep-hyp2 endpoint-in-S-swap)

from <proj2-incident ?pa |y and <proj2-incident ?pa’ 1’
have pd € hyp2 and pd’ € hyp2
unfolding pd-def and pd’-def
by (simp-all add: Rep-hyp2 perp-foot-hyp2 [of ?pa | ?pc]
perp-foot-hyp2 [of ?pa’ I’ ?pc’])

from <proj2-incident ?pa |y and <proj2-incident ?pa’ 1’
have ps € S and ps’' € S
unfolding ps-def and ps’-def
by (simp-all add: Rep-hyp2 perp-up-in-S [of ?pc ?pa |
perp-up-in-S [of ?pc’ ?pa’ 1'])

from «pd € hyp2> and (pp € S) and ps € S»

have pd # pp and ?pa # pp and ?pb # pp and pd # ps
by (simp-all add: Rep-hyp2 hyp2-S-not-equal)

from «(is-K2-isometry J» and <pqg € S»
have ?pqJ € S by (unfold is-K2-isometry-def) simp

from «pd # pp> and <proj2-incident pd > and <proj2-incident pp b
and «proj2-incident pd’ 'y and <proj2-incident pp’ 1"

have ?1J = I’
unfolding «?pdJ = pd"» [symmetric] and «?ppJ = pp" [symmetric]
by (rule apply-cltn2-line-unique)

from «proj2-incident pq I» and <proj2-incident ?pa >
and <proj2-incident ?pb I

have proj2-incident ?pqJ 1’ and proj2-incident ?paJ 1’
and proj2-incident ?pbJ I’
by (unfold <?1J = 1y [symmetric]) simp-all

212

from <%pa’ # ?pb’y and «?pqJ € S» and «proj2-incident ?pa’ I’y
and «proj2-incident ?pb’ I’y and «proj2-incident ?pqJ 1>
have ?pqJ = pp’ V ?pqJ = pq’
unfolding pp’-def and pq’-def
by (simp add: Rep-hyp2 endpoints-in-S-incident-unique)
moreover
from «pp # pg> and apply-clin2-injective
have pp’ # ?pqJ by (unfold «?ppJ = pp”y [symmetric]) fast
ultimately have ?pqJ = pq’ by simp

from <?pa’ # ?pb’s
have cross-ratio pp’ pq’ pd’ ?pa’
= (cosh-dist ?pb’ ?pc’ * sqrt (exp-2dist ?pa’ ?pb’) — cosh-dist ?pa’ ?pc’)
/ (cosh-dist ?pa’ ?pc’ = exp-2dist ?pa’ ?pb’
— cosh-dist ?pb’ ?pc’ * sqrt (exp-2dist ?pa’ ?pb’))
unfolding pp’-def and pq’-def and pd’-def and I’-def
by (simp add: Rep-hyp2 perp-foot-cross-ratio-formula)
also from assms
have ... = (cosh-dist ?pb ?pc x sqrt (exp-2dist ?pa ?pb) — cosh-dist ?pa ?pc)
/ (cosh-dist ?pa ?pc x exp-2dist ?pa ?pb
— cosh-dist ?pb ?pc x sqrt (exp-2dist ?pa ?pb))
by (simp add: real-hyp2-C-exp-2dist real-hyp2-C-cosh-dist)
also from «%pa # ?pb»
have ... = cross-ratio pp pq pd ?pa
unfolding pp-def and pq-def and pd-def and I-def
by (simp add: Rep-hyp2 perp-foot-cross-ratio-formula)
also from <proj2-set-Col {pp,pq,pd, ?pa}> and <pp # pg> and <pd # pp
and < ?pa # pp>

have ... = cross-ratio ?ppJ ?pqJ ?pdJ ?paJ by (simp add: cross-ratio-clin2)
also from «?ppJ = pp”» and <?pqJ = pq’y and «?pdJ = pd”

have ... = cross-ratio pp’ pq’ pd’ ?paJ by simp

finally

have cross-ratio pp’ pq’ pd’ ?paJ = cross-ratio pp’ pq’ pd’ ?pa’ by simp

from «(is-K2-isometry J»
have ?paJ € hyp2 and ?pbJ € hyp2 and ?pcJ € hyp2
by (rule apply-cltn2-Rep-hyp2)+

from <proj2-incident pp’ Iy and <proj2-incident pq’ 1>
and «proj2-incident pd’ 'y and <proj2-incident ?paJ 1’
and «proj2-incident ?pa’ 1’y and <proj2-incident ?pbJ 1’
and «proj2-incident ?pb’ ">
have proj2-set-Col {pp’,pq’,pd’, ?pa} and proj2-set-Col {pp’,pq’,pd’, ?pa’}
and proj2-set-Col {pp’,pq’, ?pa’, ?pbJ }
and proj2-set-Col {pp’,pq’,?pa’, ?pb’}
by (unfold proj2-set-Col-def) (simp-all add: exI [of - 1'])
with «pp’ # pq’» and «pp’ € S» and «pq’ € S» and <pd’ € hyp2»
and <?paJ € hyp2) and «?pbJ € hyp2»
have are-endpoints-in-S pp’ pq’ pd’ ?paJ

213

and are-endpoints-in-S pp’ pq' pd’ ?pa’

and are-endpoints-in-S pp’ pq’ ?pa’ ?pbJ

and are-endpoints-in-S pp’ pq’ ?pa’ ?pb’

by (unfold are-endpoints-in-S-def) (simp-all add: Rep-hyp2)
hence cross-ratio-correct pp’ pq’ pd’ ?paJ

and cross-ratio-correct pp’ pq’ pd’ ?pa’

and cross-ratio-correct pp’ pq’ ?pa’ ?pbJ

and cross-ratio-correct pp’ pq’ ?pa’ ?pb’

by (simp-all add: are-endpoints-in-S-cross-ratio-correct)

from <cross-ratio-correct pp’ pq’ pd’ ?paJ>
and <cross-ratio-correct pp’ pq’ pd’ ?pa’s
and <cross-ratio pp’ pq’ pd’ ?paJ = cross-ratio pp’ pq’ pd’ ?pa’s
have ?paJ = ?pa’ by (simp add: cross-ratio-unique)
with «?ppJ = pp"» and «?pqJ = pq”
have cross-ratio pp’ pq’ ?pa’ ?pbJ = cross-ratio ?ppJ ?pqJ ?paJ ?pbJ by simp
also from <proj2-set-Col {pp,pq, ?pa,?pb}> and <pp # pg> and «?pa # pp>
and < ?pb # pp>

have ... = cross-ratio pp pq ?pa ?pb by (rule cross-ratio-cltn2)
also from (a # b and <a b = a’ b
have ... = cross-ratio pp’ pq’ ?pa’ ?pb’

unfolding pp-def pg-def pp'-def pq’-def

by (rule real-hyp2-C-cross-ratio-endpoints-in-S)
finally have cross-ratio pp’ pq’ ?pa’ ?pbJ = cross-ratio pp’ pq’ ?pa’ ?pb’ .
with «cross-ratio-correct pp’ pq’ ?pa’ ?pbJ>

and <cross-ratio-correct pp’ pq’ ?pa’ ?pb’s
have ?pbJ = ?pb’ by (rule cross-ratio-unique)

let ?cc = cart2-pt ?pc

and ?cd = cart2-pt pd
and ?cs = cart2-pt ps
and ?cc’ = cart2-pt ?pc’
and ?cd’ = cart2-pt pd’
and ?cs’ = cart2-pt ps’
and %ccJ = cart2-pt ?pcJ
and ?cdJ = cart2-pt ?pdJ
and ZcsJ = cart2-pt ?psJ

from <proj2-incident ?pa l> and <proj2-incident ?pa’ 1’
have Br %cd ?cc ?cs and Br Zcd’ 2cc’ ?cs’
unfolding pd-def and ps-def and pd’-def and ps’-def
by (simp-all add: Rep-hyp2 perp-up-at-end [of ?pc ?pa]
perp-up-at-end [of ?pc’ ?pa’ 1))

from «pd € hyp2> and «ps € S» and «(is-K2-isometry J»

and <Br Zcd ?ce ?cs»
have Br ?cdJ ?ccJ ?cs] by (simp add: Rep-hyp2 statement-63)
hence Br ?cd’ ?ced ?cs’ by (unfold «?pdJ = pd’s «?psJ = ps)

214

from < ?paJ = ?pa’y have cosh-dist ?pa’ ?pcJ = cosh-dist ?paJ ?pcJ by simp
also from «<is-K2-isometry J»

have ... = cosh-dist ?pa ?pc by (simp add: Rep-hyp2 K2-isometry-cosh-dist)
also from <a ¢ =g a’ ¢
have ... = cosh-dist ?pa’ ?pc’ by (rule real-hyp2-C-cosh-dist)

finally have cosh-dist ?pa’ ?pcJ = cosh-dist ?pa’ ?pc’ .
have M-perp I’ m’ by (unfold m’-def) (rule drop-perp-perp)

have proj2-incident ?pc m and proj2-incident ?pc’ m’
by (unfold m-def m’-def) (rule drop-perp-incident)+

from <proj2-incident ?pa |y and <proj2-incident ?pa’ 1’

have proj2-incident ps m and proj2-incident ps’ m’
unfolding ps-def and m-def and ps’-def and m'-def
by (simp-all add: Rep-hyp2 perp-up-incident [of ?pc ?pa]

perp-up-incident [of ?pc’ ?pa’ 1)

with <pd # ps» and <proj2-incident pd m»> and <proj2-incident pd’ m’

have ?mJ = m’
unfolding «?pdJ = pd"» [symmetric] and <?ps] = ps’s [symmetric]
by (simp add: apply-clin2-line-unique)

from «proj2-incident ?pc m»

have proj2-incident ?pcJ m’ by (unfold <?mJ = m’ [symmetric]) simp

with «M-perp I’ m”y and Rep-hyp2 [of a’] and <pd’ € hyp2> and «?pcJ € hyp2»
and Rep-hyp2 [of ¢'| and <proj2-incident ?pa’ 1"
and «proj2-incident pd’ 1’y and <proj2-incident pd’ m’s
and <proj2-incident ?pc’ m”

have cosh-dist pd’ ?pcJ = cosh-dist ?pa’ ?pcJ | cosh-dist pd’ ?pa’
and cosh-dist pd’ ?pc’ = cosh-dist ?pa’ ?pc’ | cosh-dist pd’ ?pa’
by (simp-all add: cosh-dist-perp-divide)

with <cosh-dist ?pa’ ?pcJ = cosh-dist ?pa’ ?pc’y

have cosh-dist pd’ ?pcJ = cosh-dist pd’ ?pc’ by simp

with «pd’ € hyp2> and «?pcJ € hyp2> and (?pc’ € hyp2> and <ps’ € S»
and «Br %cd’ 2ceJ ?cs’y and «Br %ed’ ?cc’ Pcs’y

have ?pcJ = ?pc’ by (rule cosh-dist-unique)

with <%paJ = ?pa’y and <?pbJ = ?pb’

have hyp2-clin2 a J = o’ and hyp2-cltn2 b J = b’ and hyp2-cltn2 ¢ J = ¢’
by (unfold hyp2-clin2-def) (simp-all add: Rep-hyp2-inverse)

with «<is-K2-isometry J»

show 3 J. is-K2-isometry J
A hyp2-cltn2 a J = a’ N\ hyp2-cltn2 b J = b’ A hyp2-cltn2 ¢ J = ¢’
by (simp add: exI [of - J])

qged

theorem hyp2-azioms:

Vabcda b c'd.
a#bANBgabcANBga' bc'Nab=g a" b’ ANbc=g b c
ANad=ga d Nbd=xg b d

— cd=g c'd

215

proof standard+

fixabcda' b ¢ d

assume a # bA Bgx abc AN Bga'b'c’Nab=g a"b’ANbc=g b c
ANad=ga d Nbd=g b d

hence a # band Bx abcand Bg a’ b/ ¢c’and a b =k a’ b’
and bc=g b/ c’and ad =k o’ d' and b d =, b’ d’
by simp-all

from (a b = o’ b and b d = b’ d» and <a d = a’ d"» and statement69
[of aba’ b dd
obtain J where is-K2-isometry J and hyp2-cltn2 a J = a’
and hyp2-cltn2 b J = b’ and hyp2-cltn2 d J = d’
by auto

let ?aJ = hyp2-cltn2 a J
and ?bJ = hyp2-cltn2 b J
and ?cJ = hyp2-cltn2 ¢ J
and ?dJ = hyp2-cltn2 d J

from <a # b and <a b =k a’ b"
have o’ # b’ by (auto simp add: hyp2.A3")

from «(is-K2-isometry J> and <Bg a b ¢
have By ?aJ 2bJ ?cJ by (rule real-hyp2-B-hyp2-clin2)
hence By a’ b’ ?¢J by (unfold <?aJ = a’» <2bJ = b")

from <is-K2-isometry J»

have b ¢ =k ?bJ ?cJ by (rule real-hyp2-C-hyp2-clin2)

hence b ¢ = b’ 2¢J by (unfold <?bJ = b")

from this and <b ¢ =k b’ ¢/» have b’ ?cJ =k b’ ¢/ by (rule hyp2.A2")

with <a’ # b» and «Bg a’ b’ ?cJy and «Bg a’ b’ ¢’

have ?cJ = ¢’ by (rule hyp2-extend-segment-unique)

from <is-K2-isometry J»

show cd =g ¢’ d’
unfolding «?cJ = ¢’ [symmetric] and <?dJ = d’y [symmetric]
by (rule real-hyp2-C-hyp2-cltn2)

qed

interpretation hyp2: tarski-firsts real-hyp2-C' real-hyp2-B
using hyp2-axioms and hyp2-aziomd
by unfold-locales

8.13 The Klein—Beltrami model satisfies axioms 6, 7, and 11

theorem hyp2-aziom6:V a b. Bk aba — a =0
proof standard+
fix abd
let ?ca = cart2-pt (Rep-hyp2 a)
and %cb = cart2-pt (Rep-hyp2 b)

216

assume Bg a b a
hence Br ?ca ?cb ?ca by (unfold real-hyp2-B-def hyp2-rep-def)
hence ?ca = 2cb by (rule real-euclid. A6")
hence Rep-hyp2 a = Rep-hyp2 b by (simp add: Rep-hyp2 hyp2-S-cart2-inj)
thus a = b by (unfold Rep-hyp2-inject)
qed

lemma between-inverse:
assumes B (hyp2-rep p) v (hyp2-rep q)
shows hyp2-rep (hyp2-abs v) = v
proof —
let u = hyp2-rep p
let Yw = hyp2-rep q
have norm ?u < 1 and norm ?w < 1 by (rule norm-hyp2-rep-lt-1)+

from <Br Zu v ?w)
obtain [where [> 0 and [< I and v — %u = [xp (%w — %u)
by (unfold real-euclid-B-def) auto
from «v — 2u =l xg (Pw — %u)
have v = [xg %w + (I — 1) *xg ?u by (simp add: algebra-simps)
hence norm v < norm (I xg ?w) + norm ((1 — 1) *g %u)
by (simp only: norm-triangle-ineq [of | xg fw (1 — 1) xg %ul)
with <[> 0» and < < 1)
have norm v < Il xg norm %w + (1 — I) xg norm ?u by simp

have norm v < 1
proof cases
assume [= (
with <«v =1 xp %w + (I — 1) xgp w
have v = %u by simp
with <norm %u < 1) show norm v < 1 by simp
next
assume [# 0
with <norm ?w < 1> and <l > 0> have [xg norm ?w < | by simp

with (norm 2u < 1> and <« < 1)
and mult-mono [of 1 — 11 — I norm %u 1]
have (1 — 1) g norm %u < 1 — | by simp
with <[xg norm 2w < Iy
have [xp norm ?w + (1 — 1) xg norm %u < 1 by simp
with <norm v < I xg norm 2w + (1 — 1) *g norm ?u
show norm v < 1 by simp
qed
thus hyp2-rep (hyp2-abs v) = v by (rule hyp2-rep-abs)
qed

lemma between-switch:

assumes Br (hyp2-rep p) v (hyp2-rep q)
shows Bg p (hyp2-abs v) q

217

proof —
from assms have hyp2-rep (hyp2-abs v) = v by (rule between-inverse)
with assms show Bk p (hyp2-abs v) q by (unfold real-hyp2-B-def) simp
qed

theorem hyp2-aziom7:
Vabepgqg Bk ape NBxkbge— (3 2. Bk pxbA Bg qza)
proof auto
fixabcpqg
let ?ca = hyp2-rep a
and ?cb = hyp2-rep b
and ?cc = hyp2-rep ¢
and ?cp = hyp2-rep p
and ?cq = hyp2-rep q
assume Bg ap cand Bg b g c
hence Br ?ca ?cp ?cc and Br %cb ?cq ?cc by (unfold real-hyp2-B-def)
with real-euclid. A7’ [of ?ca ?cp Pcc ?cb ?cq]
obtain cx where Br ?cp cx ?cb and Br ?cq cx ?ca by auto
hence By p (hyp2-abs cz) b and By q (hyp2-abs cz) a
by (simp-all add: between-switch)
thus 3 z. Bk p 2 b A Bg q z a by (simp add: ex] [of - hyp2-abs cz])
qged

theorem hyp2-aziom11:
VXY JaVzyzeXNyeY — Bgazy)
— (3 bVzyrzeXANyeY — Bgaby)
proof (rule alll)+
fix X Y :: hyp2 set
show (3 a.Vzyze XANyeY — Bgazxy)
— 3 bVzyzeXANyeY — Bgzby)
proof cases
assume X = {} VYV = {}
thus (3 a.Vzy2ze XANyeY — Bgazxy)
— 3 bVzyzeXANyeY — Bk zby) by auto
next
assume - (X ={} VY ={})
hence X # {} and Y # {} by simp-all
then obtain w and z where w € X and z € Y by auto

show (3 a.Vzyze X ANyeY — Bgazxy)

— 3 bVzyzeXANyeY — Bgaby)

proof

assume 3 a.Vzy. 2 € XAyeY — Bgazxy

then obtain ¢« whereV zy. 2 € X ANye Y — Bgazy..

let ?cX = hyp2-rep * X
and ?cY = hyp2-rep ‘' Y
and %ca = hyp2-rep a
and ?cw = hyp2-rep w

218

and %cz = hyp2-rep z

from vV zy.z€e X NyeY — Bgazy
have V cx cy. cx € ?cX N cy € ?cY — Br %ca cx cy
by (unfold real-hyp2-B-def) auto
with real-euclid. A11’ [of ?¢X 2¢Y ?ca]
obtain cb where V cz cy. cx € 2cX A cy € 2cY — Br czx ¢b cy by auto
with «<w € X» and <z € Y) have Br ?cw cb ?cz by simp
hence hyp2-rep (hyp2-abs cb) = c¢b (is hyp2-rep ?b = cb)
by (rule between-inverse)
with <V cz cy. cx € 2¢X N cy € 2¢Y — Br cz cb cy»
haveV zy. € X ANyeY — Bz ?y
by (unfold real-hyp2-B-def) simp
thus 3 b.Vzy.z€ X ANy€ Y — By z by by (rule ex])
qed
qged
qed

interpretation tarski-absolute-space real-hyp2-C real-hyp2-B
using hyp2-axiom6 and hyp2-axiom7 and hyp2-axioml11
by unfold-locales

8.14 The Klein—Beltrami model satisfies the dimension-specific
axioms

lemma hyp2-rep-abs-examples:
shows hyp2-rep (hyp2-abs 0) = 0 (is hyp2-rep %a = %ca)
and hyp2-rep (hyp2-abs (vector [1/2,0])) = vector [1/2,0]
(is hyp2-rep 2b = %cb)
and hyp2-rep (hyp2-abs (vector [0,1/2])) = vector [0,1/2]
(is hyp2-rep ?c = %cc)
and hyp2-rep (hyp2-abs (vector [1/4,1/4])) = vector [1/4,1/4]
(is hyp2-rep 2d = %cd)
and hyp2-rep (hyp2-abs (vector [1/2,1/2])) = vector [1/2,1/2]
(is hyp2-rep 2t = ?ct)
proof —
have norm %ca < 1 and norm ?cb < 1 and norm ¢cc < 1 and norm %cd < 1
and norm ?ct < 1
by (unfold norm-vec-def L2-set-def) (simp-all add: sum-2 power2-eq-square)
thus hyp2-rep ?a = ?ca and hyp2-rep ?b = ?cb and hyp2-rep 7c = %cc
and hyp2-rep ?d = %cd and hyp2-rep ¢t = “ct
by (simp-all add: hyp2-rep-abs)
qed

theorem hyp2-axiom8: 3 abc. - Bk abcAN—-BgbcaAN—-Bgcab
proof —
let ?ca = 0 :: real”2
and ?cb = vector [1/2,0] :: real™2
and ?Zcc = vector [0,1/2] :: real 2

219

let ?a = hyp2-abs ?ca
and ?b = hyp2-abs ?cb
and ?c = hyp2-abs ?cc
from hyp2-rep-abs-examples and non-Col-example
have — (hyp2.Col ?a ?b ?c)
by (unfold hyp2.Col-def real-euclid. Col-def real-hyp2-B-def) simp
thus 3 abc. "~ BgabecAN—-BgbcaN—-Bgcabd
unfolding hyp2.Col-def
by simp (rule exl)+
qed

theorem hyp2-aziom9:
Vpgabeptqhap=x aqANbp=g bqgAcp=kgcq
— BgabecV BgbcaV Bgcabd
proof (rule alll)+
fixpgabc
show p £ ¢gANap=xg aqNbp=g bgqANcp=kg cq
—> BgabcV BgbcaV Bgcabd
proof
assume p £ AN ap=K a qNDPp=K bqgANcp=k cq
hence p# qand a p = agand b p = b ¢ and ¢ p =k ¢ q by simp-all

let ?pp = Rep-hyp2 p
and ?pq = Rep-hyp?2 q
and ?pa = Rep-hyp2 a
and ?pb = Rep-hyp2 b
and ?pc = Rep-hyp2 c
define | where [= proj2-line-through ?pp ?pq
define m ps pt stpg
where m = drop-perp ?pa |
and ps = endpoint-in-S ?pp ?pq
and pt = endpoint-in-S ?pq Zpp
and stpq = exp-2dist ?pp ?pq

from <p # ¢ have ?pp # ?pq by (simp add: Rep-hyp2-inject)
from Rep-hyp2
have stpg > 0 by (unfold stpg-def) (simp add: exp-2dist-positive)
hence sqrt stpg * sqrt stpg = stpq

by (simp add: real-sqrt-mult [symmetric])

from Rep-hyp2 and < ?%pp # ?pg>
have stpq # 1 by (unfold stpg-def) (auto simp add: exp-2dist-1-equal)

have z-non-zero ?pa and z-non-zero ?pb and z-non-zero ?pc
by (simp-all add: Rep-hyp2 hyp2-S-z-non-zero)

have V pd € {?pa,?pb, ?pc}.
cross-ratio ps pt (perp-foot pd 1) ?pp = 1 | (sqrt stpq)

220

proof
fix pd
assume pd € {?pa, ?pb, ?pc}
with Rep-hyp2 have pd € hyp2 by auto

define pe x
where pe = perp-foot pd [
and z = cosh-dist ?pp pd

from «pd € {?pa,?pb,?pc}> and <a p =x a ¢ and <bp =g b ¢
and <cp =g ¢ @
have cosh-dist pd ?pp = cosh-dist pd ?pq
by (auto simp add: real-hyp2-C-cosh-dist)
with <pd € hyp2)> and Rep-hyp2
have z = cosh-dist ?pq pd by (unfold xz-def) (simp add: cosh-dist-swap)

from Rep-hyp2 [of p] and <pd € hyp2> and cosh-dist-positive [of ?pp pd]
have = # 0 by (unfold z-def) simp

from Rep-hyp2 and <pd € hyp2> and «?pp # ?pq>

have cross-ratio ps pt pe ?pp
= (cosh-dist ?pq pd * sqrt stpq — cosh-dist ?pp pd)
/ (cosh-dist ?pp pd = stpq — cosh-dist ?pq pd * sqrt stpq)
unfolding ps-def and pt-def and pe-def and I-def and stpg-def
by (simp add: perp-foot-cross-ratio-formula)

also from z-def and <x = cosh-dist ?pq pd>

have ... = (z x sqrt stpq — z) / (z * stpg — x * sqrt stpq) by simp
also from <sqrt stpq x sqrt stpqg = stpg
have ... = (z x sqrt stpq — z) | ((z * sqrt stpg — x) * sqrt stpq)
by (simp add: algebra-simps)
also from <z # 0» and <stpg # 1» have ... = 1 / sqrt stpg by simp
finally show cross-ratio ps pt pe ?pp = 1 | sqrt stpq .
qed

hence cross-ratio ps pt (perp-foot ?pa l) ?pp = 1 / sqrt stpq by simp

have V pd € {?pa,?pb,?pc}. proj2-incident pd m
proof
fix pd
assume pd € {?pa,?pb,?pc}
with Rep-hyp2 have pd € hyp2 by auto
with Rep-hyp2 and «%pp # ?pg> and proj2-line-through-incident
have cross-ratio-correct ps pt ?pp (perp-foot pd 1)
and cross-ratio-correct ps pt ?pp (perp-foot ?pa 1)
unfolding ps-def and pi-def and I-def
by (simp-all add: endpoints-in-S-perp-foot-cross-ratio-correct)

from «pd € {?pa,?pb, ?pc}>

and <V pd € {?pa,?pb,?pc}.
cross-ratio ps pt (perp-foot pd 1) ?pp = 1 / (sqrt stpq)»

221

have cross-ratio ps pt (perp-foot pd 1) ?pp = 1 / sqrt stpg by auto
with <cross-ratio ps pt (perp-foot ?pa 1) %pp = 1 / sqrt stpg
have cross-ratio ps pt (perp-foot pd 1) ?pp
= cross-ratio ps pt (perp-foot ?pa 1) ?pp
by simp
hence cross-ratio ps pt ?pp (perp-foot pd 1)
= cross-ratio ps pt ?pp (perp-foot ?pa 1)
by (simp add: cross-ratio-swap-34 [of ps pt - ?pp])
with (cross-ratio-correct ps pt ?pp (perp-foot pd 1)
and <cross-ratio-correct ps pt ?pp (perp-foot ?pa 1)
have perp-foot pd | = perp-foot ?pa I by (rule cross-ratio-unique)
with Rep-hyp2 [of p] and <pd € hyp2»
and proj2-line-through-incident [of ?pp ?pq]
and perp-foot-eg-implies-drop-perp-eq [of ?pp pd | ?pa)
have drop-perp pd | = m by (unfold m-def I-def) simp
with drop-perp-incident [of pd I] show proj2-incident pd m by simp
qed
hence proj2-set-Col { ?pa, ?pb, ?pc}
by (unfold proj2-set-Col-def) (simp add: exI [of - m])
hence proj2-Col ?pa ?pb ?pc by (simp add: proj2-Col-iff-set-Col)
with <z-non-zero ?pay and (z-non-zero ?pby and <z-non-zero ?pc»
have real-euclid. Col (hyp2-rep a) (hyp2-rep b) (hyp2-rep c)
by (unfold hyp2-rep-def) (simp add: proj2-Col-iff-euclid-cart2)
thus B abcV Bk bcaV Bx cabd
by (unfold real-hyp2-B-def real-euclid. Col-def)
qged
qged

interpretation hyp2: tarski-absolute real-hyp2-C real-hyp2-B
using hyp2-axiom8 and hyp2-aziom9
by unfold-locales

8.15 The Klein—Beltrami model violates the Euclidean ax-
iom

theorem hyp2-aziom10-false:

shows = (V abcdt. Bk adt ANBgkbdecANa#d
— (Fzy. Bk abx ABg acy AN Bg zty))

proof

assumeV abcdt. Bk adt NBg bdcANa#d
— (3 zy. Bkabz ABgacyN Bgxty)

let %ca = 0 :: real™2
and ?cb = vector [1/2,0] :: real™2
and ?cc = vector [0,1/2] :: real™2
and ?ed = vector [1/4,1/4] :: real™2
and ?ct = vector [1/2,1/2] :: real™2
let a = hyp2-abs ?ca
and ?b = hyp2-abs ?cb

222

and ?c = hyp2-abs ?cc
and ?d = hyp2-abs ?cd
and %t = hyp2-abs ?ct

have %cd = (1/2) *p %ct and %cd — 2cb = (1/2) xr (Pcc — ?cb)
by (unfold vector-def) (simp-all add: vec-eq-iff)
hence Br ?ca ?cd ?ct and Br “cb ?cd ?ce
by (unfold real-euclid-B-def) (simp-all add: exI [of - 1/2])
hence Br ?a ?d %t and Bg 2b 2d ?c
by (unfold real-hyp2-B-def) (simp-all add: hyp2-rep-abs-examples)

have ?a # 2d
proof
assume 0 = ?d
hence hyp2-rep ?a = hyp2-rep ?d by simp
hence ?ca = %cd by (simp add: hyp2-rep-abs-examples)
thus False by (simp add: vec-eq-iff forall-2)
qed
with (Bg 2a ?d 2t and <Bg b 2d ?c¢»
and <Y abcdt. Bk adt NBgbdcANAas#d
— (J zy. Bk abx ANBk acy AN Bk xty)
obtain z and y where Bx ?a ?b x and Bk %a ?c y and Bg = 7t y
by blast

let ?cx = hyp2-rep x
and Zcy = hyp2-rep y
from «Bg ?a ?b x> and (B ?a ?c i and <Bg x 7t y»
have Br ?ca ?cb ?cx and Br ?ca ?cc ?cy and Br fcx ?ct Zcy
by (unfold real-hyp2-B-def) (simp-all add: hyp2-rep-abs-examples)

from (BR “ca ?cb ?cxy and <Br ?ca ?cc ?cy> and <Br Zcx ?ct Ycy»
obtain j and k and [where %cb — ?ca = j xg (?cz — %ca)

and %cc — %ca = k xg (Ycy — Zca)

and | > 0 and | < [and %ct — %cx = | xp (Pcy — %cx)

by (unfold real-euclid-B-def) fast

from «?cb — %ca = j xp (Zcx — Pca)y and «Pcc — Pca = k xg (Pcy — Pca)
have j # 0 and k # 0 by (auto simp add: vec-eq-iff forall-2)

with <%chb — %ca = j *p (Ycx — %ca)y and «Pcc — %ca = k xg (Pcy — %ca)
have %cx = (1/§) xg ?cb and ?cy = (1/k) *xr ?cc by simp-all

hence ?cz$2 = 0 and ?cy$1 = 0 by simp-all

from <%ct — %cx = | xg (Ycy — Zcx)

have ?ct = (1 — 1) g %cx + 1l xg ?cy by (simp add: algebra-simps)
with «?cz$2 = 0> and «?cy$1 = 0

have ?7ct$1 = (1 — 1) * (%2cz$1) and ?2ct$2 = | x (2cy$2) by simp-all
hence [x (?2cy$2) = 1/2 and (1 — 1) * (?cz$1) = 1/2 by simp-all

have ?cz$1 < |%cx$1| by simp

223

also have ... < norm ?cx by (rule component-le-norm-cart)
also have ... < I by (rule norm-hyp2-rep-lt-1)

finally have ?cz$1 < I .

with « < 1» and mult-less-cancel-left [of 1 — 1 ?ca$1 1]
have (1 — I) % ?ca$1 < 1 — [by auto

with «(1 — 1) % (?c2$1) = 1/2> have | < 1/2 by simp

have ?cy$2 < |?cy$2| by simp
also have ... < norm ?cy by (rule component-le-norm-cart)
also have ... < I by (rule norm-hyp2-rep-it-1)
finally have ?cy$2 < 1 .
with <l > 0> and mult-less-cancel-left [of | Zcy$2 1]
have | x ?cy$2 < | by auto
with « x (2cy$2) = 1/2»> have | > 1/2 by simp
with «/ < 1/2) have [= 1/2 by simp
with « % (?cy$2) = 1/2» have ?cy$2 = 1 by simp
with «?cy$2 < 1) show False by simp

qed

theorem hyp2-not-tarski: — (tarski real-hyp2-C' real-hyp2-B)
using hyp2-axiom10-false
by (unfold tarski-def tarski-space-def tarski-space-axioms-def) simp
Therefore axiom 10 is independent.

end

References

[1] K. Borsuk and W. Szmielew. Foundations of Geometry: Fuclidean and
Bolyai-Lobachevskian Geometry; Projective Geometry. North-Holland
Publishing Company, 1960. Translated from Polish by Erwin Marquit.

[2] T. J. M. Makarios. A mechanical verification of the independence of
Tarski’s Euclidean axiom. Master’s thesis, Victoria University of Welling-
ton, New Zealand, 2012. http://researcharchive.vuw.ac.nz/handle/
10063/2315.

[3] W. Schwabhduser, W. Szmielew, and A. Tarski. Metamathematische
Methoden in der Geometrie. Springer-Verlag, 1983.

224

http://researcharchive.vuw.ac.nz/handle/10063/2315
http://researcharchive.vuw.ac.nz/handle/10063/2315

	Metric and semimetric spaces
	Miscellaneous results
	Tarski's geometry
	The axioms
	Semimetric spaces satisfy the first three axioms
	Some consequences of the first three axioms
	Some consequences of the first five axioms
	Simple theorems about betweenness
	Simple theorems about congruence and betweenness

	Real Euclidean space and Tarski's axioms
	Real Euclidean space satisfies the first five axioms
	Real Euclidean space also satisfies axioms 6, 7, and 11
	Real Euclidean space satisfies the Euclidean axiom
	The real Euclidean plane
	Special cases of theorems of Tarski's geometry

	Linear algebra
	Matrices

	Right group actions
	Projective geometry
	Proportionality on non-zero vectors
	Points of the real projective plane
	Lines of the real projective plane
	Collineations of the real projective plane
	As a group
	As a group action
	Parts of some Statements from borsuk

	Cross ratios
	Cartesian subspace of the real projective plane

	The hyperbolic plane and Tarski's axioms
	Characterizing a specific conic in the projective plane
	Some specific points and lines of the projective plane
	Definition of the Klein–Beltrami model of the hyperbolic plane
	K-isometries map the interior of the conic to itself
	The K-isometries form a group action
	The Klein–Beltrami model satisfies Tarski's first three axioms
	Some lemmas about betweenness
	The Klein–Beltrami model satisfies axiom 4
	More betweenness theorems
	Perpendicularity
	Functions of distance
	A formula for a cross ratio involving a perpendicular foot

	The Klein–Beltrami model satisfies axiom 5
	The Klein–Beltrami model satisfies axioms 6, 7, and 11
	The Klein–Beltrami model satisfies the dimension-specific axioms
	The Klein–Beltrami model violates the Euclidean axiom

