
The independence of Tarski’s Euclidean axiom

T. J. M. Makarios

March 17, 2025

Abstract

Tarski’s axioms of plane geometry are formalized and, using the
standard real Cartesian model, shown to be consistent. A substantial
theory of the projective plane is developed. Building on this theory, the
Klein–Beltrami model of the hyperbolic plane is defined and shown to
satisfy all of Tarski’s axioms except his Euclidean axiom; thus Tarski’s
Euclidean axiom is shown to be independent of his other axioms of
plane geometry.

An earlier version of this work was the subject of the author’s MSc
thesis [2], which contains natural-language explanations of some of the
more interesting proofs.

Contents
1 Metric and semimetric spaces 2

2 Miscellaneous results 4

3 Tarski’s geometry 11
3.1 The axioms . 12
3.2 Semimetric spaces satisfy the first three axioms 12
3.3 Some consequences of the first three axioms 13
3.4 Some consequences of the first five axioms 17
3.5 Simple theorems about betweenness 18
3.6 Simple theorems about congruence and betweenness 20

4 Real Euclidean space and Tarski’s axioms 20
4.1 Real Euclidean space satisfies the first five axioms 20
4.2 Real Euclidean space also satisfies axioms 6, 7, and 11 25
4.3 Real Euclidean space satisfies the Euclidean axiom 30
4.4 The real Euclidean plane . 31
4.5 Special cases of theorems of Tarski’s geometry 35

5 Linear algebra 37
5.1 Matrices . 40

1

6 Right group actions 41

7 Projective geometry 42
7.1 Proportionality on non-zero vectors 43
7.2 Points of the real projective plane 45
7.3 Lines of the real projective plane 49
7.4 Collineations of the real projective plane 67

7.4.1 As a group . 71
7.4.2 As a group action . 74
7.4.3 Parts of some Statements from [1] 80

7.5 Cross ratios . 88
7.6 Cartesian subspace of the real projective plane 96

8 The hyperbolic plane and Tarski’s axioms 105
8.1 Characterizing a specific conic in the projective plane 105
8.2 Some specific points and lines of the projective plane 114
8.3 Definition of the Klein–Beltrami model of the hyperbolic plane119
8.4 K-isometries map the interior of the conic to itself 125
8.5 The K-isometries form a group action 140
8.6 The Klein–Beltrami model satisfies Tarski’s first three axioms 141
8.7 Some lemmas about betweenness 155
8.8 The Klein–Beltrami model satisfies axiom 4 162
8.9 More betweenness theorems 167
8.10 Perpendicularity . 177
8.11 Functions of distance . 190

8.11.1 A formula for a cross ratio involving a perpendicular
foot . 207

8.12 The Klein–Beltrami model satisfies axiom 5 210
8.13 The Klein–Beltrami model satisfies axioms 6, 7, and 11 . . . 216
8.14 The Klein–Beltrami model satisfies the dimension-specific ax-

ioms . 219
8.15 The Klein–Beltrami model violates the Euclidean axiom . . . 222

1 Metric and semimetric spaces
theory Metric
imports HOL−Analysis.Multivariate-Analysis
begin

locale semimetric =
fixes dist :: ′p ⇒ ′p ⇒ real
assumes nonneg [simp]: dist x y ≥ 0
and eq-0 [simp]: dist x y = 0 ←→ x = y
and symm: dist x y = dist y x

begin

2

lemma refl [simp]: dist x x = 0
by simp

end

locale metric =
fixes dist :: ′p ⇒ ′p ⇒ real
assumes [simp]: dist x y = 0 ←→ x = y
and triangle: dist x z ≤ dist y x + dist y z

sublocale metric < semimetric
proof

{ fix w
have dist w w = 0 by simp }

note [simp] = this
fix x y
show 0 ≤ dist x y
proof −

from triangle [of y y x] show 0 ≤ dist x y by simp
qed
show dist x y = 0 ←→ x = y by simp
show dist x y = dist y x
proof −

{ fix w z
have dist w z ≤ dist z w
proof −

from triangle [of w z z] show dist w z ≤ dist z w by simp
qed }

hence dist x y ≤ dist y x and dist y x ≤ dist x y by simp+
thus dist x y = dist y x by simp

qed
qed

definition norm-dist :: (′a::real-normed-vector) ⇒ ′a ⇒ real where
[simp]: norm-dist x y , norm (x − y)

interpretation norm-metric: metric norm-dist
proof

fix x y
show norm-dist x y = 0 ←→ x = y by simp
fix z
from norm-triangle-ineq [of x − y y − z] have

norm (x − z) ≤ norm (x − y) + norm (y − z) by simp
with norm-minus-commute [of x y] show

norm-dist x z ≤ norm-dist y x + norm-dist y z by simp
qed

end

3

2 Miscellaneous results
theory Miscellany
imports Metric
begin

lemma unordered-pair-element-equality:
assumes {p, q} = {r , s} and p = r
shows q = s
using assms by (auto simp: doubleton-eq-iff)

lemma unordered-pair-equality: {p, q} = {q, p}
by auto

lemma cosine-rule:
fixes a b c :: real ^ (′n::finite)
shows (norm-dist a c)2 =
(norm-dist a b)2 + (norm-dist b c)2 + 2 ∗ ((a − b) · (b − c))

proof −
have (a − b) + (b − c) = a − c by simp
with dot-norm [of a − b b − c]

have (a − b) · (b − c) =
((norm (a − c))2 − (norm (a − b))2 − (norm (b − c))2) / 2

by simp
thus ?thesis by simp

qed

lemma scalar-equiv: r ∗s x = r ∗R x
by vector

lemma norm-dist-dot: (norm-dist x y)2 = (x − y) · (x − y)
by (simp add: power2-norm-eq-inner)

definition dep2 :: ′a::real-vector ⇒ ′a ⇒ bool where
dep2 u v , ∃w r s. u = r ∗R w ∧ v = s ∗R w

lemma real2-eq:
fixes u v :: real^2
assumes u$1 = v$1 and u$2 = v$2
shows u = v
by (simp add: vec-eq-iff [of u v] forall-2 assms)

definition rotate2 :: real^2 ⇒ real^2 where
rotate2 x , vector [−x$2 , x$1]

declare vector-2 [simp]

lemma rotate2 [simp]:
(rotate2 x)$1 = −x$2

4

(rotate2 x)$2 = x$1
by (simp add: rotate2-def)+

lemma rotate2-rotate2 [simp]: rotate2 (rotate2 x) = −x
proof −

have (rotate2 (rotate2 x))$1 = −x$1 and (rotate2 (rotate2 x))$2 = −x$2
by simp+

with real2-eq show rotate2 (rotate2 x) = −x by simp
qed

lemma rotate2-dot [simp]: (rotate2 u) · (rotate2 v) = u · v
unfolding inner-vec-def
by (simp add: sum-2)

lemma rotate2-scaleR [simp]: rotate2 (k ∗R x) = k ∗R (rotate2 x)
proof −

have (rotate2 (k ∗R x))$1 = (k ∗R (rotate2 x))$1 and
(rotate2 (k ∗R x))$2 = (k ∗R (rotate2 x))$2 by simp+

with real2-eq show ?thesis by simp
qed

lemma rotate2-uminus [simp]: rotate2 (−x) = −(rotate2 x)
proof −

from scaleR-minus-left [of 1] have
−1 ∗R x = −x and −1 ∗R (rotate2 x) = −(rotate2 x) by auto

with rotate2-scaleR [of −1 x] show ?thesis by simp
qed

lemma rotate2-eq [iff]: rotate2 x = rotate2 y ←→ x = y
proof

assume x = y
thus rotate2 x = rotate2 y by simp

next
assume rotate2 x = rotate2 y
hence rotate2 (rotate2 x) = rotate2 (rotate2 y) by simp
hence −(−x) = −(−y) by simp
thus x = y by simp

qed

lemma dot2-rearrange-1 :
fixes u x :: real^2
assumes u · x = 0 and x$1 6= 0
shows u = (u$2 / x$1) ∗R (rotate2 x) (is u = ?u ′)

proof −
from ‹u · x = 0 › have u$1 ∗ x$1 = −(u$2) ∗ (x$2)

unfolding inner-vec-def
by (simp add: sum-2)

hence u$1 ∗ x$1 / x$1 = −u$2 / x$1 ∗ x$2 by simp
with ‹x$1 6= 0 › have u$1 = ?u ′$1 by simp

5

from ‹x$1 6= 0 › have u$2 = ?u ′$2 by simp
with ‹u$1 = ?u ′$1 › and real2-eq show u = ?u ′ by simp

qed

lemma dot2-rearrange-2 :
fixes u x :: real^2
assumes u · x = 0 and x$2 6= 0
shows u = −(u$1 / x$2) ∗R (rotate2 x) (is u = ?u ′)

proof −
from assms and dot2-rearrange-1 [of rotate2 u rotate2 x] have

rotate2 u = rotate2 ?u ′ by simp
thus u = ?u ′ by blast

qed

lemma dot2-rearrange:
fixes u x :: real^2
assumes u · x = 0 and x 6= 0
shows ∃ k. u = k ∗R (rotate2 x)

proof cases
assume x$1 = 0
with real2-eq [of x 0] and ‹x 6= 0 › have x$2 6= 0 by auto
with dot2-rearrange-2 and ‹u · x = 0 › show ?thesis by blast

next
assume x$1 6= 0
with dot2-rearrange-1 and ‹u · x = 0 › show ?thesis by blast

qed

lemma real2-orthogonal-dep2 :
fixes u v x :: real^2
assumes x 6= 0 and u · x = 0 and v · x = 0
shows dep2 u v

proof −
let ?w = rotate2 x
from dot2-rearrange and assms have
∃ r s. u = r ∗R ?w ∧ v = s ∗R ?w by simp

with dep2-def show ?thesis by auto
qed

lemma dot-left-diff-distrib:
fixes u v x :: real^ ′n
shows (u − v) · x = (u · x) − (v · x)

proof −
have (u · x) − (v · x) = (

∑
i∈UNIV . u$i ∗ x$i) − (

∑
i∈UNIV . v$i ∗ x$i)

unfolding inner-vec-def
by simp

also from sum-subtractf [of λ i. u$i ∗ x$i λ i. v$i ∗ x$i] have
. . . = (

∑
i∈UNIV . u$i ∗ x$i − v$i ∗ x$i) by simp

also from left-diff-distrib [where ′a = real] have
. . . = (

∑
i∈UNIV . (u$i − v$i) ∗ x$i) by simp

6

also have
. . . = (u − v) · x
unfolding inner-vec-def
by simp

finally show ?thesis ..
qed

lemma dot-right-diff-distrib:
fixes u v x :: real^ ′n
shows x · (u − v) = (x · u) − (x · v)

proof −
from inner-commute have x · (u − v) = (u − v) · x by auto
also from dot-left-diff-distrib [of u v x] have
. . . = u · x − v · x .

also from inner-commute [of x] have
. . . = x · u − x · v by simp

finally show ?thesis .
qed

lemma am-gm2 :
fixes a b :: real
assumes a ≥ 0 and b ≥ 0
shows sqrt (a ∗ b) ≤ (a + b) / 2
and sqrt (a ∗ b) = (a + b) / 2 ←→ a = b

proof −
have 0 ≤ (a − b) ∗ (a − b) and 0 = (a − b) ∗ (a − b) ←→ a = b by simp+
with right-diff-distrib [of a − b a b] and left-diff-distrib [of a b] have

0 ≤ a ∗ a − 2 ∗ a ∗ b + b ∗ b
and 0 = a ∗ a − 2 ∗ a ∗ b + b ∗ b ←→ a = b by auto

hence 4 ∗ a ∗ b ≤ a ∗ a + 2 ∗ a ∗ b + b ∗ b
and 4 ∗ a ∗ b = a ∗ a + 2 ∗ a ∗ b + b ∗ b ←→ a = b by auto

with distrib-right [of a + b a b] and distrib-left [of a b] have
4 ∗ a ∗ b ≤ (a + b) ∗ (a + b)
and 4 ∗ a ∗ b = (a + b) ∗ (a + b) ←→ a = b by (simp add: field-simps)+

with real-sqrt-le-mono [of 4 ∗ a ∗ b (a + b) ∗ (a + b)]
and real-sqrt-eq-iff [of 4 ∗ a ∗ b (a + b) ∗ (a + b)] have
sqrt (4 ∗ a ∗ b) ≤ sqrt ((a + b) ∗ (a + b))
and sqrt (4 ∗ a ∗ b) = sqrt ((a + b) ∗ (a + b)) ←→ a = b by simp+

with ‹a ≥ 0 › and ‹b ≥ 0 › have sqrt (4 ∗ a ∗ b) ≤ a + b
and sqrt (4 ∗ a ∗ b) = a + b ←→ a = b by simp+

with real-sqrt-abs2 [of 2] and real-sqrt-mult [of 4 a ∗ b] show
sqrt (a ∗ b) ≤ (a + b) / 2
and sqrt (a ∗ b) = (a + b) / 2 ←→ a = b by (simp add: ac-simps)+

qed

lemma refl-on-allrel: refl-on A (A × A)
unfolding refl-on-def
by simp

7

lemma refl-on-restrict:
assumes refl-on A r
shows refl-on (A ∩ B) (r ∩ B × B)

proof −
from ‹refl-on A r› and refl-on-allrel [of B] and refl-on-Int
show ?thesis by auto

qed

lemma sym-allrel: sym (A × A)
unfolding sym-def
by simp

lemma sym-restrict:
assumes sym r
shows sym (r ∩ A × A)

proof −
from ‹sym r› and sym-allrel and sym-Int
show ?thesis by auto

qed

lemma trans-allrel: trans (A × A)
unfolding trans-def
by simp

lemma equiv-Int:
assumes equiv A r and equiv B s
shows equiv (A ∩ B) (r ∩ s)

proof −
from assms and refl-on-Int [of A r B s] and sym-Int and trans-Int
show ?thesis

unfolding equiv-def
by auto

qed

lemma equiv-allrel: equiv A (A × A)
unfolding equiv-def
by (simp add: refl-on-allrel sym-allrel trans-allrel)

lemma equiv-restrict:
assumes equiv A r
shows equiv (A ∩ B) (r ∩ B × B)

proof −
from ‹equiv A r› and equiv-allrel [of B] and equiv-Int
show ?thesis by auto

qed

lemma invertible-times-eq-zero:
fixes x :: real^ ′n and A :: real^ ′n^ ′n
assumes invertible A and A ∗v x = 0

8

shows x = 0
using assms invertible-def matrix-left-invertible-ker by blast

lemma times-invertible-eq-zero:
fixes x :: real^ ′n and A :: real^ ′n^ ′n
assumes invertible A and x v∗ A = 0
shows x = 0
using transpose-invertible assms invertible-times-eq-zero by fastforce

lemma matrix-id-invertible:
invertible (mat 1 :: (′a::semiring-1)^ ′n^ ′n)
by (simp add: invertible-def)

lemma Image-refl-on-nonempty:
assumes refl-on A r and x ∈ A
shows x ∈ r‘‘{x}

proof
from ‹refl-on A r› and ‹x ∈ A› show (x, x) ∈ r

unfolding refl-on-def
by simp

qed

lemma quotient-element-nonempty:
assumes equiv A r and X ∈ A//r
shows ∃ x. x ∈ X
using assms in-quotient-imp-non-empty by fastforce

lemma zero-3 : (3 ::3) = 0
by simp

lemma card-suc-ge-insert:
fixes A and x
shows card A + 1 ≥ card (insert x A)
using card-insert-le-m1 by fastforce

lemma card-le-UNIV :
fixes A :: (′n::finite) set
shows card A ≤ CARD(′n)
by (simp add: card-mono)

lemma partition-Image-element:
assumes equiv A r and X ∈ A//r and x ∈ X
shows r‘‘{x} = X
by (metis Image-singleton-iff assms equiv-class-eq-iff quotientE)

lemma card-insert-ge: card (insert x A) ≥ card A
by (metis card.infinite card-insert-le zero-le)

lemma choose-1 :

9

assumes card S = 1
shows ∃ x. S = {x}
using ‹card S = 1 › and card-eq-SucD [of S 0]
by simp

lemma choose-2 :
assumes card S = 2
shows ∃ x y. S = {x,y}

proof −
from ‹card S = 2 › and card-eq-SucD [of S 1]
obtain x and T where S = insert x T and card T = 1 by auto
from ‹card T = 1 › and choose-1 obtain y where T = {y} by auto
with ‹S = insert x T › have S = {x,y} by simp
thus ∃ x y. S = {x,y} by auto

qed

lemma choose-3 :
assumes card S = 3
shows ∃ x y z. S = {x,y,z}

proof −
from ‹card S = 3 › and card-eq-SucD [of S 2]
obtain x and T where S = insert x T and card T = 2 by auto
from ‹card T = 2 › and choose-2 [of T] obtain y and z where T = {y,z} by

auto
with ‹S = insert x T › have S = {x,y,z} by simp
thus ∃ x y z. S = {x,y,z} by auto

qed

lemma card-gt-0-diff-singleton:
assumes card S > 0 and x ∈ S
shows card (S − {x}) = card S − 1

proof −
from ‹card S > 0 › have finite S by (rule card-ge-0-finite)
with ‹x ∈ S›
show card (S − {x}) = card S − 1 by (simp add: card-Diff-singleton)

qed

lemma eq-3-or-of-3 :
fixes j :: 4
shows j = 3 ∨ (∃ j ′::3 . j = of-int (Rep-bit1 j ′))

proof (induct j)
fix j-int :: int
assume 0 ≤ j-int
assume j-int < int CARD(4)
hence j-int ≤ 3 by simp

show of-int j-int = (3 ::4) ∨ (∃ j ′::3 . of-int j-int = of-int (Rep-bit1 j ′))
proof cases

assume j-int = 3

10

thus
of-int j-int = (3 ::4) ∨ (∃ j ′::3 . of-int j-int = of-int (Rep-bit1 j ′))
by simp

next
assume j-int 6= 3
with ‹j-int ≤ 3 › have j-int < 3 by simp
with ‹0 ≤ j-int› have j-int ∈ {0 ..<3} by simp
hence Rep-bit1 (Abs-bit1 j-int :: 3) = j-int

by (simp add: bit1 .Abs-inverse)
hence of-int j-int = of-int (Rep-bit1 (Abs-bit1 j-int :: 3)) by simp
thus

of-int j-int = (3 ::4) ∨ (∃ j ′::3 . of-int j-int = of-int (Rep-bit1 j ′))
by auto

qed
qed

lemma sgn-plus:
fixes x y :: ′a::linordered-idom
assumes sgn x = sgn y
shows sgn (x + y) = sgn x
by (simp add: assms same-sgn-sgn-add)

lemma sgn-div:
fixes x y :: ′a::linordered-field
assumes y 6= 0 and sgn x = sgn y
shows x / y > 0
using assms sgn-1-pos sgn-eq-0-iff by fastforce

lemma abs-plus:
fixes x y :: ′a::linordered-idom
assumes sgn x = sgn y
shows |x + y| = |x| + |y|
by (simp add: assms same-sgn-abs-add)

lemma sgn-plus-abs:
fixes x y :: ′a::linordered-idom
assumes |x| > |y|
shows sgn (x + y) = sgn x
by (cases x > 0) (use assms in auto)

end

3 Tarski’s geometry
theory Tarski

imports Complex-Main Miscellany Metric
begin

11

3.1 The axioms
The axioms, and all theorems beginning with th followed by a number, are
based on corresponding axioms and theorems in [3].
locale tarski-first3 =

fixes C :: ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ bool (‹- - ≡ - -› [99 ,99 ,99 ,99] 50)
assumes A1 : ∀ a b. a b ≡ b a
and A2 : ∀ a b p q r s. a b ≡ p q ∧ a b ≡ r s −→ p q ≡ r s
and A3 : ∀ a b c. a b ≡ c c −→ a = b

locale tarski-first5 = tarski-first3 +
fixes B :: ′p ⇒ ′p ⇒ ′p ⇒ bool
assumes A4 : ∀ q a b c. ∃ x. B q a x ∧ a x ≡ b c
and A5 : ∀ a b c d a ′ b ′ c ′ d ′. a 6= b ∧ B a b c ∧ B a ′ b ′ c ′

∧ a b ≡ a ′ b ′ ∧ b c ≡ b ′ c ′ ∧ a d ≡ a ′ d ′ ∧ b
d ≡ b ′ d ′

−→ c d ≡ c ′ d ′

locale tarski-absolute-space = tarski-first5 +
assumes A6 : ∀ a b. B a b a −→ a = b
and A7 : ∀ a b c p q. B a p c ∧ B b q c −→ (∃ x. B p x b ∧ B q x a)
and A11 : ∀X Y . (∃ a. ∀ x y. x ∈ X ∧ y ∈ Y −→ B a x y)

−→ (∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ B x b y)

locale tarski-absolute = tarski-absolute-space +
assumes A8 : ∃ a b c. ¬ B a b c ∧ ¬ B b c a ∧ ¬ B c a b
and A9 : ∀ p q a b c. p 6= q ∧ a p ≡ a q ∧ b p ≡ b q ∧ c p ≡ c q

−→ B a b c ∨ B b c a ∨ B c a b

locale tarski-space = tarski-absolute-space +
assumes A10 : ∀ a b c d t. B a d t ∧ B b d c ∧ a 6= d

−→ (∃ x y. B a b x ∧ B a c y ∧ B x t y)

locale tarski = tarski-absolute + tarski-space

3.2 Semimetric spaces satisfy the first three axioms
context semimetric
begin

definition smC :: ′p ⇒ ′p ⇒ ′p ⇒ ′p ⇒ bool (‹- - ≡sm - -› [99 ,99 ,99 ,99] 50)
where [simp]: a b ≡sm c d , dist a b = dist c d

end

sublocale semimetric < tarski-first3 smC
proof

from symm show ∀ a b. a b ≡sm b a by simp
show ∀ a b p q r s. a b ≡sm p q ∧ a b ≡sm r s −→ p q ≡sm r s by simp
show ∀ a b c. a b ≡sm c c −→ a = b by simp

qed

12

3.3 Some consequences of the first three axioms
context tarski-first3
begin

lemma A1 ′: a b ≡ b a
by (simp add: A1)

lemma A2 ′: [[a b ≡ p q; a b ≡ r s]] =⇒ p q ≡ r s
proof −

assume a b ≡ p q and a b ≡ r s
with A2 show ?thesis by blast

qed

lemma A3 ′: a b ≡ c c =⇒ a = b
by (simp add: A3)

theorem th2-1 : a b ≡ a b
proof −

from A2 ′ [of b a a b a b] and A1 ′ [of b a] show ?thesis by simp
qed

theorem th2-2 : a b ≡ c d =⇒ c d ≡ a b
proof −

assume a b ≡ c d
with A2 ′ [of a b c d a b] and th2-1 [of a b] show ?thesis by simp

qed

theorem th2-3 : [[a b ≡ c d; c d ≡ e f]] =⇒ a b ≡ e f
proof −

assume a b ≡ c d
with th2-2 [of a b c d] have c d ≡ a b by simp
assume c d ≡ e f
with A2 ′ [of c d a b e f] and ‹c d ≡ a b› show ?thesis by simp

qed

theorem th2-4 : a b ≡ c d =⇒ b a ≡ c d
proof −

assume a b ≡ c d
with th2-3 [of b a a b c d] and A1 ′ [of b a] show ?thesis by simp

qed

theorem th2-5 : a b ≡ c d =⇒ a b ≡ d c
proof −

assume a b ≡ c d
with th2-3 [of a b c d d c] and A1 ′ [of c d] show ?thesis by simp

qed

definition is-segment :: ′p set ⇒ bool where
is-segment X , ∃ x y. X = {x, y}

13

definition segments :: ′p set set where
segments = {X . is-segment X}

definition SC :: ′p set ⇒ ′p set ⇒ bool where
SC X Y , ∃w x y z. X = {w, x} ∧ Y = {y, z} ∧ w x ≡ y z

definition SC-rel :: (′p set × ′p set) set where
SC-rel = {(X , Y) | X Y . SC X Y }

lemma left-segment-congruence:
assumes {a, b} = {p, q} and p q ≡ c d
shows a b ≡ c d

proof cases
assume a = p
with unordered-pair-element-equality [of a b p q] and ‹{a, b} = {p, q}›

have b = q by simp
with ‹p q ≡ c d› and ‹a = p› show ?thesis by simp

next
assume a 6= p
with ‹{a, b} = {p, q}› have a = q by auto
with unordered-pair-element-equality [of a b q p] and ‹{a, b} = {p, q}›

have b = p by auto
with ‹p q ≡ c d› and ‹a = q› have b a ≡ c d by simp
with th2-4 [of b a c d] show ?thesis by simp

qed

lemma right-segment-congruence:
assumes {c, d} = {p, q} and a b ≡ p q
shows a b ≡ c d

proof −
from th2-2 [of a b p q] and ‹a b ≡ p q› have p q ≡ a b by simp
with left-segment-congruence [of c d p q a b] and ‹{c, d} = {p, q}›

have c d ≡ a b by simp
with th2-2 [of c d a b] show ?thesis by simp

qed

lemma C-SC-equiv: a b ≡ c d = SC {a, b} {c, d}
proof

assume a b ≡ c d
with SC-def [of {a, b} {c, d}] show SC {a, b} {c, d} by auto

next
assume SC {a, b} {c, d}
with SC-def [of {a, b} {c, d}]

obtain w x y z where {a, b} = {w, x} and {c, d} = {y, z} and w x ≡ y z
by blast

from left-segment-congruence [of a b w x y z] and
‹{a, b} = {w, x}› and
‹w x ≡ y z›

have a b ≡ y z by simp

14

with right-segment-congruence [of c d y z a b] and ‹{c, d} = {y, z}›
show a b ≡ c d by simp

qed

lemmas SC-refl = th2-1 [simplified]

lemma SC-rel-refl: refl-on segments SC-rel
proof −

note refl-on-def [of segments SC-rel]
moreover
{ fix Z

assume Z ∈ SC-rel
with SC-rel-def obtain X Y where Z = (X , Y) and SC X Y by auto
from ‹SC X Y › and SC-def [of X Y]

have ∃w x . X = {w, x} and ∃ y z . Y = {y, z} by auto
with is-segment-def [of X] and is-segment-def [of Y]

have is-segment X and is-segment Y by auto
with segments-def have X ∈ segments and Y ∈ segments by auto
with ‹Z = (X , Y)› have Z ∈ segments × segments by simp }

hence SC-rel ⊆ segments × segments by auto
moreover
{ fix X

assume X ∈ segments
with segments-def have is-segment X by auto
with is-segment-def [of X] obtain x y where X = {x, y} by auto
with SC-def [of X X] and SC-refl have SC X X by (simp add: C-SC-equiv)
with SC-rel-def have (X , X) ∈ SC-rel by simp }

hence ∀X . X ∈ segments −→ (X , X) ∈ SC-rel by simp
ultimately show ?thesis by simp

qed

lemma SC-sym:
assumes SC X Y
shows SC Y X

proof −
from SC-def [of X Y] and ‹SC X Y ›

obtain w x y z where X = {w, x} and Y = {y, z} and w x ≡ y z
by auto

from th2-2 [of w x y z] and ‹w x ≡ y z› have y z ≡ w x by simp
with SC-def [of Y X] and ‹X = {w, x}› and ‹Y = {y, z}›

show SC Y X by (simp add: C-SC-equiv)
qed

lemma SC-sym ′: SC X Y = SC Y X
proof

assume SC X Y
with SC-sym [of X Y] show SC Y X by simp

next
assume SC Y X

15

with SC-sym [of Y X] show SC X Y by simp
qed

lemma SC-rel-sym: sym SC-rel
proof −

{ fix X Y
assume (X , Y) ∈ SC-rel
with SC-rel-def have SC X Y by simp
with SC-sym ′ have SC Y X by simp
with SC-rel-def have (Y , X) ∈ SC-rel by simp }

with sym-def [of SC-rel] show ?thesis by blast
qed

lemma SC-trans:
assumes SC X Y and SC Y Z
shows SC X Z

proof −
from SC-def [of X Y] and ‹SC X Y ›

obtain w x y z where X = {w, x} and Y = {y, z} and w x ≡ y z
by auto

from SC-def [of Y Z] and ‹SC Y Z ›
obtain p q r s where Y = {p, q} and Z = {r , s} and p q ≡ r s by auto

from ‹Y = {y, z}› and ‹Y = {p, q}› and ‹p q ≡ r s›
have y z ≡ r s by (simp add: C-SC-equiv)

with th2-3 [of w x y z r s] and ‹w x ≡ y z› have w x ≡ r s by simp
with SC-def [of X Z] and ‹X = {w, x}› and ‹Z = {r , s}›

show SC X Z by (simp add: C-SC-equiv)
qed

lemma SC-rel-trans: trans SC-rel
proof −

{ fix X Y Z
assume (X , Y) ∈ SC-rel and (Y , Z) ∈ SC-rel
with SC-rel-def have SC X Y and SC Y Z by auto
with SC-trans [of X Y Z] have SC X Z by simp
with SC-rel-def have (X , Z) ∈ SC-rel by simp }

with trans-def [of SC-rel] show ?thesis by blast
qed

lemma A3-reversed:
assumes a a ≡ b c
shows b = c

proof −
from ‹a a ≡ b c› have b c ≡ a a by (rule th2-2)
thus b = c by (rule A3 ′)

qed

lemma equiv-segments-SC-rel: equiv segments SC-rel
by (simp add: equiv-def SC-rel-refl SC-rel-sym SC-rel-trans)

16

end

3.4 Some consequences of the first five axioms
context tarski-first5
begin

lemma A4 ′: ∃ x. B q a x ∧ a x ≡ b c
by (simp add: A4 [simplified])

theorem th2-8 : a a ≡ b b
proof −

from A4 ′ [of - a b b] obtain x where a x ≡ b b by auto
with A3 ′ [of a x b] have x = a by simp
with ‹a x ≡ b b› show ?thesis by simp

qed

definition OFS :: [′p, ′p, ′p, ′p, ′p, ′p, ′p, ′p] ⇒ bool where
OFS a b c d a ′ b ′ c ′ d ′ ,

B a b c ∧ B a ′ b ′ c ′ ∧ a b ≡ a ′ b ′ ∧ b c ≡ b ′ c ′ ∧ a d ≡ a ′ d ′ ∧ b d ≡ b ′ d ′

lemma A5 ′: [[OFS a b c d a ′ b ′ c ′ d ′; a 6= b]] =⇒ c d ≡ c ′ d ′

proof −
assume OFS a b c d a ′ b ′ c ′ d ′ and a 6= b
with A5 and OFS-def show ?thesis by blast

qed

theorem th2-11 :
assumes hypotheses:

B a b c
B a ′ b ′ c ′

a b ≡ a ′ b ′

b c ≡ b ′ c ′

shows a c ≡ a ′ c ′

proof cases
assume a = b
with ‹a b ≡ a ′ b ′› have a ′ = b ′ by (simp add: A3-reversed)
with ‹b c ≡ b ′ c ′› and ‹a = b› show ?thesis by simp

next
assume a 6= b
moreover

note A5 ′ [of a b c a a ′ b ′ c ′ a ′] and
unordered-pair-equality [of a c] and
unordered-pair-equality [of a ′ c ′]

moreover
from OFS-def [of a b c a a ′ b ′ c ′ a ′] and

hypotheses and
th2-8 [of a a ′] and
unordered-pair-equality [of a b] and

17

unordered-pair-equality [of a ′ b ′]
have OFS a b c a a ′ b ′ c ′ a ′ by (simp add: C-SC-equiv)

ultimately show ?thesis by (simp add: C-SC-equiv)
qed

lemma A4-unique:
assumes q 6= a and B q a x and a x ≡ b c
and B q a x ′ and a x ′ ≡ b c
shows x = x ′

proof −
from SC-sym ′ and SC-trans and C-SC-equiv and ‹a x ′ ≡ b c› and ‹a x ≡ b

c›
have a x ≡ a x ′ by blast

with th2-11 [of q a x q a x ′] and ‹B q a x› and ‹B q a x ′› and SC-refl
have q x ≡ q x ′ by simp

with OFS-def [of q a x x q a x x ′] and
‹B q a x› and
SC-refl and
‹a x ≡ a x ′›

have OFS q a x x q a x x ′ by simp
with A5 ′ [of q a x x q a x x ′] and ‹q 6= a› have x x ≡ x x ′ by simp
thus x = x ′ by (rule A3-reversed)

qed

theorem th2-12 :
assumes q 6= a
shows ∃ !x. B q a x ∧ a x ≡ b c
using ‹q 6= a› and A4 ′ and A4-unique
by blast

end

3.5 Simple theorems about betweenness
theorem (in tarski-first5) th3-1 : B a b b
proof −

from A4 [rule-format, of a b b b] obtain x where B a b x and b x ≡ b b by
auto

from A3 [rule-format, of b x b] and ‹b x ≡ b b› have b = x by simp
with ‹B a b x› show B a b b by simp

qed

context tarski-absolute-space
begin

lemma A6 ′:
assumes B a b a
shows a = b

proof −
from A6 and ‹B a b a› show a = b by simp

qed

18

lemma A7 ′:
assumes B a p c and B b q c
shows ∃ x. B p x b ∧ B q x a

proof −
from A7 and ‹B a p c› and ‹B b q c› show ?thesis by blast

qed

lemma A11 ′:
assumes ∀ x y. x ∈ X ∧ y ∈ Y −→ B a x y
shows ∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ B x b y

proof −
from assms have ∃ a. ∀ x y. x ∈ X ∧ y ∈ Y −→ B a x y by (rule exI)
thus ∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ B x b y by (rule A11 [rule-format])

qed

theorem th3-2 :
assumes B a b c
shows B c b a

proof −
from th3-1 have B b c c by simp
with A7 ′ and ‹B a b c› obtain x where B b x b and B c x a by blast
from A6 ′ and ‹B b x b› have x = b by auto
with ‹B c x a› show B c b a by simp

qed

theorem th3-4 :
assumes B a b c and B b a c
shows a = b

proof −
from ‹B a b c› and ‹B b a c› and A7 ′ [of a b c b a]
obtain x where B b x b and B a x a by auto
hence b = x and a = x by (simp-all add: A6 ′)
thus a = b by simp

qed

theorem th3-5-1 :
assumes B a b d and B b c d
shows B a b c

proof −
from ‹B a b d› and ‹B b c d› and A7 ′ [of a b d b c]
obtain x where B b x b and B c x a by auto
from ‹B b x b› have b = x by (rule A6 ′)
with ‹B c x a› have B c b a by simp
thus B a b c by (rule th3-2)

qed

theorem th3-6-1 :
assumes B a b c and B a c d

19

shows B b c d
proof −

from ‹B a c d› and ‹B a b c› and th3-2 have B d c a and B c b a by fast+
hence B d c b by (rule th3-5-1)
thus B b c d by (rule th3-2)

qed

theorem th3-7-1 :
assumes b 6= c and B a b c and B b c d
shows B a c d

proof −
from A4 ′ obtain x where B a c x and c x ≡ c d by fast
from ‹B a b c› and ‹B a c x› have B b c x by (rule th3-6-1)
have c d ≡ c d by (rule th2-1)
with ‹b 6= c› and ‹B b c x› and ‹c x ≡ c d› and ‹B b c d›
have x = d by (rule A4-unique)
with ‹B a c x› show B a c d by simp

qed

theorem th3-7-2 :
assumes b 6= c and B a b c and B b c d
shows B a b d

proof −
from ‹B b c d› and ‹B a b c› and th3-2 have B d c b and B c b a by fast+
with ‹b 6= c› and th3-7-1 [of c b d a] have B d b a by simp
thus B a b d by (rule th3-2)

qed
end

3.6 Simple theorems about congruence and betweenness
definition (in tarski-first5) Col :: ′p ⇒ ′p ⇒ ′p ⇒ bool where

Col a b c , B a b c ∨ B b c a ∨ B c a b

end

4 Real Euclidean space and Tarski’s axioms
theory Euclid-Tarski
imports Tarski
begin

4.1 Real Euclidean space satisfies the first five axioms
abbreviation

real-euclid-C :: [real^(′n::finite), real^(′n), real^(′n), real^(′n)] ⇒ bool
(‹- - ≡� - -› [99 ,99 ,99 ,99] 50) where

real-euclid-C , norm-metric.smC

20

definition real-euclid-B :: [real^(′n::finite), real^(′n), real^(′n)] ⇒ bool
(‹B� - - -› [99 ,99 ,99] 50) where

B� a b c , ∃ l. 0 ≤ l ∧ l ≤ 1 ∧ b − a = l ∗R (c − a)

interpretation real-euclid: tarski-first5 real-euclid-C real-euclid-B
proof

By virtue of being a semimetric space, real Euclidean space is already known
to satisfy the first three axioms.

{ fix q a b c
have ∃ x. B� q a x ∧ a x ≡� b c
proof cases

assume q = a
let ?x = a + c − b
have B� q a ?x
proof −

let ?l = 0 :: real
note real-euclid-B-def [of q a ?x]
moreover

have ?l ≥ 0 and ?l ≤ 1 by auto
moreover

from ‹q = a› have a − q = 0 by simp
hence a − q = ?l ∗R (?x − q) by simp

ultimately show ?thesis by auto
qed
moreover

have a − ?x = b − c by simp
hence a ?x ≡� b c by (simp add: field-simps)

ultimately show ?thesis by blast
next

assume q 6= a
hence norm-dist q a > 0 by simp
let ?k = norm-dist b c / norm-dist q a
let ?x = a + ?k ∗R (a − q)
have B� q a ?x
proof −

let ?l = 1 / (1 + ?k)
have ?l > 0 by (simp add: add-pos-nonneg)
note real-euclid-B-def [of q a ?x]
moreover

have ?l ≥ 0 and ?l ≤ 1 by (auto simp add: add-pos-nonneg)
moreover

from scaleR-left-distrib [of 1 ?k a − q]
have (1 + ?k) ∗R (a − q) = ?x − q by simp

hence ?l ∗R ((1 + ?k) ∗R (a − q)) = ?l ∗R (?x − q) by simp
with ‹?l > 0 › and scaleR-right-diff-distrib [of ?l ?x q]

have a − q = ?l ∗R (?x − q) by simp
ultimately show B� q a ?x by blast

qed
moreover

21

have a ?x ≡� b c
proof −

from norm-scaleR [of ?k a − q] have
norm-dist a ?x = |?k| ∗ norm (a − q) by simp

also have
. . . = ?k ∗ norm (a − q) by simp

also from norm-metric.symm [of q a] have
. . . = ?k ∗ norm-dist q a by simp

finally have
norm-dist a ?x = norm-dist b c / norm-dist q a ∗ norm-dist q a .

with ‹norm-dist q a > 0 › show a ?x ≡� b c by auto
qed

ultimately show ?thesis by blast
qed }

thus ∀ q a b c. ∃ x. B� q a x ∧ a x ≡� b c by auto
{ fix a b c d a ′ b ′ c ′ d ′

assume a 6= b and
B� a b c and
B� a ′ b ′ c ′ and
a b ≡� a ′ b ′ and
b c ≡� b ′ c ′ and
a d ≡� a ′ d ′ and
b d ≡� b ′ d ′

have c d ≡� c ′ d ′

proof −
{ fix m

fix p q r :: real^(′n::finite)
assume 0 ≤ m and

m ≤ 1 and
p 6= q and
q − p = m ∗R (r − p)

from ‹p 6= q› and ‹q − p = m ∗R (r − p)› have m 6= 0
proof −

{ assume m = 0
with ‹q − p = m ∗R (r − p)› have q − p = 0 by simp
with ‹p 6= q› have False by simp }

thus ?thesis ..
qed
with ‹m ≥ 0 › have m > 0 by simp
from ‹q − p = m ∗R (r − p)› and

scaleR-right-diff-distrib [of m r p]
have q − p = m ∗R r − m ∗R p by simp

hence q − p − q + p − m ∗R r =
m ∗R r − m ∗R p − q + p − m ∗R r

by simp
with scaleR-left-diff-distrib [of 1 m p] and

scaleR-left-diff-distrib [of 1 m q]
have (1 − m) ∗R p − (1 − m) ∗R q = m ∗R q − m ∗R r by auto

with scaleR-right-diff-distrib [of 1 − m p q] and

22

scaleR-right-diff-distrib [of m q r]
have (1 − m) ∗R (p − q) = m ∗R (q − r) by simp

with norm-scaleR [of 1 − m p − q] and norm-scaleR [of m q − r]
have |1 − m| ∗ norm (p − q) = |m| ∗ norm (q − r) by simp

with ‹m > 0 › and ‹m ≤ 1 ›
have norm (q − r) = (1 − m) / m ∗ norm (p − q) by simp

moreover from ‹p 6= q› have norm (p − q) 6= 0 by simp
ultimately

have norm (q − r) / norm (p − q) = (1 − m) / m by simp
with ‹m 6= 0 › have

norm-dist q r / norm-dist p q = (1 − m) / m and m 6= 0 by auto }
note linelemma = this
from real-euclid-B-def [of a b c] and ‹B� a b c›

obtain l where 0 ≤ l and l ≤ 1 and b − a = l ∗R (c − a) by auto
from real-euclid-B-def [of a ′ b ′ c ′] and ‹B� a ′ b ′ c ′›

obtain l ′ where0 ≤ l ′ and l ′ ≤ 1 and b ′ − a ′ = l ′ ∗R (c ′ − a ′) by auto
from ‹a 6= b› and ‹a b ≡� a ′ b ′› have a ′ 6= b ′ by auto
from linelemma [of l a b c] and

‹l ≥ 0 › and
‹l ≤ 1 › and
‹a 6= b› and
‹b − a = l ∗R (c − a)›

have l 6= 0 and (1 − l) / l = norm-dist b c / norm-dist a b by auto
from ‹(1 − l) / l = norm-dist b c / norm-dist a b› and

‹a b ≡� a ′ b ′› and
‹b c ≡� b ′ c ′›

have (1 − l) / l = norm-dist b ′ c ′ / norm-dist a ′ b ′ by simp
with linelemma [of l ′ a ′ b ′ c ′] and

‹l ′ ≥ 0 › and
‹l ′ ≤ 1 › and
‹a ′ 6= b ′› and
‹b ′ − a ′ = l ′ ∗R (c ′ − a ′)›

have l ′ 6= 0 and (1 − l) / l = (1 − l ′) / l ′ by auto
from ‹(1 − l) / l = (1 − l ′) / l ′›

have (1 − l) / l ∗ l ∗ l ′ = (1 − l ′) / l ′ ∗ l ∗ l ′ by simp
with ‹l 6= 0 › and ‹l ′ 6= 0 › have (1 − l) ∗ l ′ = (1 − l ′) ∗ l by simp
with left-diff-distrib [of 1 l l ′] and left-diff-distrib [of 1 l ′ l]

have l = l ′ by simp
{ fix m

fix p q r s :: real^(′n::finite)
assume m 6= 0 and

q − p = m ∗R (r − p)
with scaleR-scaleR have r − p = (1/m) ∗R (q − p) by simp
with cosine-rule [of r s p]

have (norm-dist r s)2 = (norm-dist r p)2 + (norm-dist p s)2 +
2 ∗ (((1/m) ∗R (q − p)) · (p − s))

by simp
also from inner-scaleR-left [of 1/m q − p p − s]

have . . . =

23

(norm-dist r p)2 + (norm-dist p s)2 + 2/m ∗ ((q − p) · (p − s))
by simp

also from ‹m 6= 0 › and cosine-rule [of q s p]
have . . . = (norm-dist r p)2 + (norm-dist p s)2 +

1/m ∗ ((norm-dist q s)2 − (norm-dist q p)2 − (norm-dist p s)2)
by simp

finally have (norm-dist r s)2 = (norm-dist r p)2 + (norm-dist p s)2 +
1/m ∗ ((norm-dist q s)2 − (norm-dist q p)2 − (norm-dist p s)2) .

moreover
{ from norm-dist-dot [of r p] and ‹r − p = (1/m) ∗R (q − p)›

have (norm-dist r p)2 = ((1/m) ∗R (q − p)) · ((1/m) ∗R (q − p))
by simp

also from inner-scaleR-left [of 1/m q − p] and
inner-scaleR-right [of - 1/m q − p]

have . . . = 1/m2 ∗ ((q − p) · (q − p))
by (simp add: power2-eq-square)

also from norm-dist-dot [of q p] have . . . = 1/m2 ∗ (norm-dist q p)2
by simp

finally have (norm-dist r p)2 = 1/m2 ∗ (norm-dist q p)2 . }
ultimately have
(norm-dist r s)2 = 1/m2 ∗ (norm-dist q p)2 + (norm-dist p s)2 +

1/m ∗ ((norm-dist q s)2 − (norm-dist q p)2 − (norm-dist p s)2)
by simp

with norm-metric.symm [of q p]
have (norm-dist r s)2 = 1/m2 ∗ (norm-dist p q)2 + (norm-dist p s)2 +

1/m ∗ ((norm-dist q s)2 − (norm-dist p q)2 − (norm-dist p s)2)
by simp }

note fiveseglemma = this
from fiveseglemma [of l b a c d] and ‹l 6= 0 › and ‹b − a = l ∗R (c − a)›

have (norm-dist c d)2 = 1/l2 ∗ (norm-dist a b)2 + (norm-dist a d)2 +
1/l ∗ ((norm-dist b d)2 − (norm-dist a b)2 − (norm-dist a d)2)

by simp
also from ‹l = l ′› and

‹a b ≡� a ′ b ′› and
‹a d ≡� a ′ d ′› and
‹b d ≡� b ′ d ′›

have . . . = 1/l ′2 ∗ (norm-dist a ′ b ′)2 + (norm-dist a ′ d ′)2 +
1/l ′ ∗ ((norm-dist b ′ d ′)2 − (norm-dist a ′ b ′)2 − (norm-dist a ′ d ′)2)

by simp
also from fiveseglemma [of l ′ b ′ a ′ c ′ d ′] and

‹l ′ 6= 0 › and
‹b ′ − a ′ = l ′ ∗R (c ′ − a ′)›

have . . . = (norm-dist c ′ d ′)2 by simp
finally have (norm-dist c d)2 = (norm-dist c ′ d ′)2 .
hence sqrt ((norm-dist c d)2) = sqrt ((norm-dist c ′ d ′)2) by simp
with real-sqrt-abs show c d ≡� c ′ d ′ by simp

qed }
thus ∀ a b c d a ′ b ′ c ′ d ′.

a 6= b ∧ B� a b c ∧ B� a ′ b ′ c ′ ∧

24

a b ≡� a ′ b ′ ∧ b c ≡� b ′ c ′ ∧ a d ≡� a ′ d ′ ∧ b d ≡� b ′ d ′ −→
c d ≡� c ′ d ′

by blast
qed

4.2 Real Euclidean space also satisfies axioms 6, 7, and 11
lemma rearrange-real-euclid-B:

fixes w y z :: real^(′n) and h
shows y − w = h ∗R (z − w) ←→ y = h ∗R z + (1 − h) ∗R w

proof
assume y − w = h ∗R (z − w)
hence y − w + w = h ∗R (z − w) + w by simp
hence y = h ∗R (z − w) + w by simp
with scaleR-right-diff-distrib [of h z w]

have y = h ∗R z + w − h ∗R w by simp
with scaleR-left-diff-distrib [of 1 h w]

show y = h ∗R z + (1 − h) ∗R w by simp
next

assume y = h ∗R z + (1 − h) ∗R w
with scaleR-left-diff-distrib [of 1 h w]

have y = h ∗R z + w − h ∗R w by simp
with scaleR-right-diff-distrib [of h z w]

have y = h ∗R (z − w) + w by simp
hence y − w + w = h ∗R (z − w) + w by simp
thus y − w = h ∗R (z − w) by simp

qed

interpretation real-euclid: tarski-absolute-space real-euclid-C real-euclid-B
proof

{ fix a b
assume B� a b a
with real-euclid-B-def [of a b a]

obtain l where b − a = l ∗R (a − a) by auto
hence a = b by simp }

thus ∀ a b. B� a b a −→ a = b by auto
{ fix a b c p q

assume B� a p c and B� b q c
from real-euclid-B-def [of a p c] and ‹B� a p c›

obtain i where i ≥ 0 and i ≤ 1 and p − a = i ∗R (c − a) by auto
have ∃ x. B� p x b ∧ B� q x a
proof cases

assume i = 0
with ‹p − a = i ∗R (c − a)› have p = a by simp
hence p − a = 0 ∗R (b − p) by simp
moreover have (0 ::real) ≥ 0 and (0 ::real) ≤ 1 by auto
moreover note real-euclid-B-def [of p a b]
ultimately have B� p a b by auto
moreover

25

{ have a − q = 1 ∗R (a − q) by simp
moreover have (1 ::real) ≥ 0 and (1 ::real) ≤ 1 by auto
moreover note real-euclid-B-def [of q a a]
ultimately have B� q a a by blast }

ultimately have B� p a b ∧ B� q a a by simp
thus ∃ x. B� p x b ∧ B� q x a by auto

next
assume i 6= 0
from real-euclid-B-def [of b q c] and ‹B� b q c›

obtain j where j ≥ 0 and j ≤ 1 and q − b = j ∗R (c − b) by auto
from ‹i ≥ 0 › and ‹i ≤ 1 ›

have 1 − i ≥ 0 and 1 − i ≤ 1 by auto
from ‹j ≥ 0 › and ‹1 − i ≥ 0 ›

have j ∗ (1 − i) ≥ 0 by auto
with ‹i ≥ 0 › and ‹i 6= 0 › have i + j ∗ (1 − i) > 0 by simp
hence i + j ∗ (1 − i) 6= 0 by simp
let ?l = j ∗ (1 − i) / (i + j ∗ (1 − i))
from diff-divide-distrib [of i + j ∗ (1 − i) j ∗ (1 − i) i + j ∗ (1 − i)] and

‹i + j ∗ (1 − i) 6= 0 ›
have 1 − ?l = i / (i + j ∗ (1 − i)) by simp

let ?k = i ∗ (1 − j) / (j + i ∗ (1 − j))
from right-diff-distrib [of i 1 j] and

right-diff-distrib [of j 1 i] and
mult.commute [of i j] and
add.commute [of i j]

have j + i ∗ (1 − j) = i + j ∗ (1 − i) by simp
with ‹i + j ∗ (1 − i) 6= 0 › have j + i ∗ (1 − j) 6= 0 by simp
with diff-divide-distrib [of j + i ∗ (1 − j) i ∗ (1 − j) j + i ∗ (1 − j)]

have 1 − ?k = j / (j + i ∗ (1 − j)) by simp
with ‹1 − ?l = i / (i + j ∗ (1 − i))› and

‹j + i ∗ (1 − j) = i + j ∗ (1 − i)› and
times-divide-eq-left [of - i + j ∗ (1 − i)] and
mult.commute [of i j]

have (1 − ?l) ∗ j = (1 − ?k) ∗ i by simp
moreover
{ from ‹1 − ?k = j / (j + i ∗ (1 − j))› and

‹j + i ∗ (1 − j) = i + j ∗ (1 − i)›
have ?l = (1 − ?k) ∗ (1 − i) by simp }

moreover
{ from ‹1 − ?l = i / (i + j ∗ (1 − i))› and

‹j + i ∗ (1 − j) = i + j ∗ (1 − i)›
have (1 − ?l) ∗ (1 − j) = ?k by simp }

ultimately
have ?l ∗R a + ((1 − ?l) ∗ j) ∗R c + ((1 − ?l) ∗ (1 − j)) ∗R b =

?k ∗R b + ((1 − ?k) ∗ i) ∗R c + ((1 − ?k) ∗ (1 − i)) ∗R a
by simp

with scaleR-scaleR
have ?l ∗R a + (1 − ?l) ∗R j ∗R c + (1 − ?l) ∗R (1 − j) ∗R b =

?k ∗R b + (1 − ?k) ∗R i ∗R c + (1 − ?k) ∗R (1 − i) ∗R a

26

by simp
with scaleR-right-distrib [of (1 − ?l) j ∗R c (1 − j) ∗R b] and

scaleR-right-distrib [of (1 − ?k) i ∗R c (1 − i) ∗R a] and
add.assoc [of ?l ∗R a (1 − ?l) ∗R j ∗R c (1 − ?l) ∗R (1 − j) ∗R b] and
add.assoc [of ?k ∗R b (1 − ?k) ∗R i ∗R c (1 − ?k) ∗R (1 − i) ∗R a]

have ?l ∗R a + (1 − ?l) ∗R (j ∗R c + (1 − j) ∗R b) =
?k ∗R b + (1 − ?k) ∗R (i ∗R c + (1 − i) ∗R a)

by arith
from ‹?l ∗R a + (1 − ?l) ∗R (j ∗R c + (1 − j) ∗R b) =

?k ∗R b + (1 − ?k) ∗R (i ∗R c + (1 − i) ∗R a)› and
‹p − a = i ∗R (c − a)› and
‹q − b = j ∗R (c − b)› and
rearrange-real-euclid-B [of p a i c] and
rearrange-real-euclid-B [of q b j c]

have ?l ∗R a + (1 − ?l) ∗R q = ?k ∗R b + (1 − ?k) ∗R p by simp
let ?x = ?l ∗R a + (1 − ?l) ∗R q
from rearrange-real-euclid-B [of ?x q ?l a]

have ?x − q = ?l ∗R (a − q) by simp
from ‹?x = ?k ∗R b + (1 − ?k) ∗R p› and

rearrange-real-euclid-B [of ?x p ?k b]
have ?x − p = ?k ∗R (b − p) by simp

from ‹i + j ∗ (1 − i) > 0 › and
‹j ∗ (1 − i) ≥ 0 › and
zero-le-divide-iff [of j ∗ (1 − i) i + j ∗ (1 − i)]

have ?l ≥ 0 by simp
from ‹i + j ∗ (1 − i) > 0 › and

‹i ≥ 0 › and
zero-le-divide-iff [of i i + j ∗ (1 − i)] and
‹1 − ?l = i / (i + j ∗ (1 − i))›

have 1 − ?l ≥ 0 by simp
hence ?l ≤ 1 by simp
with ‹?l ≥ 0 › and

‹?x − q = ?l ∗R (a − q)› and
real-euclid-B-def [of q ?x a]

have B� q ?x a by auto
from ‹j ≤ 1 › have 1 − j ≥ 0 by simp
with ‹1 − ?l ≥ 0 › and

‹(1 − ?l) ∗ (1 − j) = ?k› and
zero-le-mult-iff [of 1 − ?l 1 − j]

have ?k ≥ 0 by simp
from ‹j ≥ 0 › have 1 − j ≤ 1 by simp
from ‹?l ≥ 0 › have 1 − ?l ≤ 1 by simp
with ‹1 − j ≤ 1 › and

‹1 − j ≥ 0 › and
mult-mono [of 1 − ?l 1 1 − j 1] and
‹(1 − ?l) ∗ (1 − j) = ?k›

have ?k ≤ 1 by simp
with ‹?k ≥ 0 › and

‹?x − p = ?k ∗R (b − p)› and

27

real-euclid-B-def [of p ?x b]
have B� p ?x b by auto

with ‹B� q ?x a› show ?thesis by auto
qed }

thus ∀ a b c p q. B� a p c ∧ B� b q c −→ (∃ x. B� p x b ∧ B� q x a) by auto
{ fix X Y

assume ∃ a. ∀ x y. x ∈ X ∧ y ∈ Y −→ B� a x y
then obtain a where ∀ x y. x ∈ X ∧ y ∈ Y −→ B� a x y by auto
have ∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ B� x b y
proof cases

assume X ⊆ {a} ∨ Y = {}
let ?b = a
{ fix x y

assume x ∈ X and y ∈ Y
with ‹X ⊆ {a} ∨ Y = {}› have x = a by auto
from ‹∀ x y. x ∈ X ∧ y ∈ Y −→ B� a x y› and ‹x ∈ X› and ‹y ∈ Y ›

have B� a x y by simp
with ‹x = a› have B� x ?b y by simp }

hence ∀ x y. x ∈ X ∧ y ∈ Y −→ B� x ?b y by simp
thus ?thesis by auto

next
assume ¬(X ⊆ {a} ∨ Y = {})
hence X − {a} 6= {} and Y 6= {} by auto
from ‹X − {a} 6= {}› obtain c where c ∈ X and c 6= a by auto
from ‹c 6= a› have c − a 6= 0 by simp
{ fix y

assume y ∈ Y
with ‹∀ x y. x ∈ X ∧ y ∈ Y −→ B� a x y› and ‹c ∈ X›

have B� a c y by simp
with real-euclid-B-def [of a c y]

obtain l where l ≥ 0 and l ≤ 1 and c − a = l ∗R (y − a) by auto
from ‹c − a = l ∗R (y − a)› and ‹c − a 6= 0 › have l 6= 0 by simp
with ‹l ≥ 0 › have l > 0 by simp
with ‹c − a = l ∗R (y − a)› have y − a = (1/l) ∗R (c − a) by simp
from ‹l > 0 › and ‹l ≤ 1 › have 1/l ≥ 1 by simp
with ‹y − a = (1/l) ∗R (c − a)›

have ∃ j≥1 . y − a = j ∗R (c − a) by auto }
note ylemma = this
from ‹Y 6= {}› obtain d where d ∈ Y by auto
with ylemma [of d]

obtain jd where jd ≥ 1 and d − a = jd ∗R (c − a) by auto
{ fix x

assume x ∈ X
with ‹∀ x y. x ∈ X ∧ y ∈ Y −→ B� a x y› and ‹d ∈ Y ›

have B� a x d by simp
with real-euclid-B-def [of a x d]

obtain l where l ≥ 0 and x − a = l ∗R (d − a) by auto
from ‹x − a = l ∗R (d − a)› and

‹d − a = jd ∗R (c − a)› and

28

scaleR-scaleR
have x − a = (l ∗ jd) ∗R (c − a) by simp

hence ∃ i. x − a = i ∗R (c − a) by auto }
note xlemma = this
let ?S = {j. j ≥ 1 ∧ (∃ y∈Y . y − a = j ∗R (c − a))}
from ‹d ∈ Y › and ‹jd ≥ 1 › and ‹d − a = jd ∗R (c − a)›

have ?S 6= {} by auto
let ?k = Inf ?S
let ?b = ?k ∗R c + (1 − ?k) ∗R a
from rearrange-real-euclid-B [of ?b a ?k c]

have ?b − a = ?k ∗R (c − a) by simp
{ fix x y

assume x ∈ X and y ∈ Y
from xlemma [of x] and ‹x ∈ X›

obtain i where x − a = i ∗R (c − a) by auto
from ylemma [of y] and ‹y ∈ Y ›

obtain j where j ≥ 1 and y − a = j ∗R (c − a) by auto
with ‹y ∈ Y › have j ∈ ?S by auto
then have ?k ≤ j by (auto intro: cInf-lower)
{ fix h

assume h ∈ ?S
hence h ≥ 1 by simp
from ‹h ∈ ?S›

obtain z where z ∈ Y and z − a = h ∗R (c − a) by auto
from ‹∀ x y. x ∈ X ∧ y ∈ Y −→ B� a x y› and ‹x ∈ X› and ‹z ∈ Y ›

have B� a x z by simp
with real-euclid-B-def [of a x z]

obtain l where l ≤ 1 and x − a = l ∗R (z − a) by auto
with ‹z − a = h ∗R (c − a)› and scaleR-scaleR

have x − a = (l ∗ h) ∗R (c − a) by simp
with ‹x − a = i ∗R (c − a)›

have i ∗R (c − a) = (l ∗ h) ∗R (c − a) by auto
with scaleR-cancel-right and ‹c − a 6= 0 › have i = l ∗ h by blast
with ‹l ≤ 1 › and ‹h ≥ 1 › have i ≤ h by simp }

with ‹?S 6= {}› and cInf-greatest [of ?S] have i ≤ ?k by simp
have y − x = (y − a) − (x − a) by simp
with ‹y − a = j ∗R (c − a)› and ‹x − a = i ∗R (c − a)›

have y − x = j ∗R (c − a) − i ∗R (c − a) by simp
with scaleR-left-diff-distrib [of j i c − a]

have y − x = (j − i) ∗R (c − a) by simp
have ?b − x = (?b − a) − (x − a) by simp
with ‹?b − a = ?k ∗R (c − a)› and ‹x − a = i ∗R (c − a)›

have ?b − x = ?k ∗R (c − a) − i ∗R (c − a) by simp
with scaleR-left-diff-distrib [of ?k i c − a]

have ?b − x = (?k − i) ∗R (c − a) by simp
have B� x ?b y
proof cases

assume i = j
with ‹i ≤ ?k› and ‹?k ≤ j› have ?k = i by simp

29

with ‹?b − x = (?k − i) ∗R (c − a)› have ?b − x = 0 by simp
hence ?b − x = 0 ∗R (y − x) by simp
with real-euclid-B-def [of x ?b y] show B� x ?b y by auto

next
assume i 6= j
with ‹i ≤ ?k› and ‹?k ≤ j› have j − i > 0 by simp
with ‹y − x = (j − i) ∗R (c − a)› and scaleR-scaleR

have c − a = (1 / (j − i)) ∗R (y − x) by simp
with ‹?b − x = (?k − i) ∗R (c − a)› and scaleR-scaleR

have ?b − x = ((?k − i) / (j − i)) ∗R (y − x) by simp
let ?l = (?k − i) / (j − i)
from ‹?k ≤ j› have ?k − i ≤ j − i by simp
with ‹j − i > 0 › have ?l ≤ 1 by simp
from ‹i ≤ ?k› and ‹j − i > 0 › and pos-le-divide-eq [of j − i 0 ?k − i]

have ?l ≥ 0 by simp
with real-euclid-B-def [of x ?b y] and

‹?l ≤ 1 › and
‹?b − x = ?l ∗R (y − x)›

show B� x ?b y by auto
qed }

thus ∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ B� x b y by auto
qed }

thus ∀X Y . (∃ a. ∀ x y. x ∈ X ∧ y ∈ Y −→ B� a x y) −→
(∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ B� x b y)

by auto
qed

4.3 Real Euclidean space satisfies the Euclidean axiom
lemma rearrange-real-euclid-B-2 :

fixes a b c :: real^(′n::finite)
assumes l 6= 0
shows b − a = l ∗R (c − a) ←→ c = (1/l) ∗R b + (1 − 1/l) ∗R a

proof
from scaleR-right-diff-distrib [of 1/l b a]

have (1/l) ∗R (b − a) = c − a ←→ (1/l) ∗R b − (1/l) ∗R a + a = c by auto
also with scaleR-left-diff-distrib [of 1 1/l a]

have . . . ←→ c = (1/l) ∗R b + (1 − 1/l) ∗R a by auto
finally have eq:
(1/l) ∗R (b − a) = c − a ←→ c = (1/l) ∗R b + (1 − 1/l) ∗R a .

{ assume b − a = l ∗R (c − a)
with ‹l 6= 0 › have (1/l) ∗R (b − a) = c − a by simp
with eq show c = (1/l) ∗R b + (1 − 1/l) ∗R a .. }

{ assume c = (1/l) ∗R b + (1 − 1/l) ∗R a
with eq have (1/l) ∗R (b − a) = c − a ..
hence l ∗R (1/l) ∗R (b − a) = l ∗R (c − a) by simp
with ‹l 6= 0 › show b − a = l ∗R (c − a) by simp }

qed

30

interpretation real-euclid: tarski-space real-euclid-C real-euclid-B
proof

{ fix a b c d t
assume B� a d t and B� b d c and a 6= d
from real-euclid-B-def [of a d t] and ‹B� a d t›

obtain j where j ≥ 0 and j ≤ 1 and d − a = j ∗R (t − a) by auto
from ‹d − a = j ∗R (t − a)› and ‹a 6= d› have j 6= 0 by auto
with ‹d − a = j ∗R (t − a)› and rearrange-real-euclid-B-2

have t = (1/j) ∗R d + (1 − 1/j) ∗R a by auto
let ?x = (1/j) ∗R b + (1 − 1/j) ∗R a
let ?y = (1/j) ∗R c + (1 − 1/j) ∗R a
from ‹j 6= 0 › and rearrange-real-euclid-B-2 have

b − a = j ∗R (?x − a) and c − a = j ∗R (?y − a) by auto
with real-euclid-B-def and ‹j ≥ 0 › and ‹j ≤ 1 › have

B� a b ?x and B� a c ?y by auto
from real-euclid-B-def and ‹B� b d c› obtain k where

k ≥ 0 and k ≤ 1 and d − b = k ∗R (c − b) by blast
from ‹t = (1/j) ∗R d + (1 − 1/j) ∗R a› have

t − ?x = (1/j) ∗R d − (1/j) ∗R b by simp
also from scaleR-right-diff-distrib [of 1/j d b] have
. . . = (1/j) ∗R (d − b) by simp

also from ‹d − b = k ∗R (c − b)› have
. . . = k ∗R (1/j) ∗R (c − b) by simp

also from scaleR-right-diff-distrib [of 1/j c b] have
. . . = k ∗R (?y − ?x) by simp

finally have t − ?x = k ∗R (?y − ?x) .
with real-euclid-B-def and ‹k ≥ 0 › and ‹k ≤ 1 › have B� ?x t ?y by blast
with ‹B� a b ?x› and ‹B� a c ?y› have
∃ x y. B� a b x ∧ B� a c y ∧ B� x t y by auto }

thus ∀ a b c d t. B� a d t ∧ B� b d c ∧ a 6= d −→
(∃ x y. B� a b x ∧ B� a c y ∧ B� x t y)

by auto
qed

4.4 The real Euclidean plane
lemma Col-dep2 :

real-euclid.Col a b c ←→ dep2 (b − a) (c − a)
proof −

from real-euclid.Col-def have
real-euclid.Col a b c ←→ B� a b c ∨ B� b c a ∨ B� c a b by auto

moreover from dep2-def have
dep2 (b − a) (c − a) ←→ (∃w r s. b − a = r ∗R w ∧ c − a = s ∗R w)
by auto

moreover
{ assume B� a b c ∨ B� b c a ∨ B� c a b

moreover
{ assume B� a b c

with real-euclid-B-def obtain l where b − a = l ∗R (c − a) by blast

31

moreover have c − a = 1 ∗R (c − a) by simp
ultimately have ∃w r s. b − a = r ∗R w ∧ c − a = s ∗R w by blast }

moreover
{ assume B� b c a

with real-euclid-B-def obtain l where c − b = l ∗R (a − b) by blast
moreover have c − a = (c − b) − (a − b) by simp
ultimately have c − a = l ∗R (a − b) − (a − b) by simp
with scaleR-left-diff-distrib [of l 1 a − b] have

c − a = (l − 1) ∗R (a − b) by simp
moreover from scaleR-minus-left [of 1 a − b] have

b − a = (−1) ∗R (a − b) by simp
ultimately have ∃w r s. b − a = r ∗R w ∧ c − a = s ∗R w by blast }

moreover
{ assume B� c a b

with real-euclid-B-def obtain l where a − c = l ∗R (b − c) by blast
moreover have c − a = −(a − c) by simp
ultimately have c − a = −(l ∗R (b − c)) by simp
with scaleR-minus-left have c − a = (−l) ∗R (b − c) by simp
moreover have b − a = (b − c) + (c − a) by simp
ultimately have b − a = 1 ∗R (b − c) + (−l) ∗R (b − c) by simp
with scaleR-left-distrib [of 1 −l b − c] have

b − a = (1 + (−l)) ∗R (b − c) by simp
with ‹c − a = (−l) ∗R (b − c)› have
∃w r s. b − a = r ∗R w ∧ c − a = s ∗R w by blast }

ultimately have ∃w r s. b − a = r ∗R w ∧ c − a = s ∗R w by auto }
moreover
{ assume ∃w r s. b − a = r ∗R w ∧ c − a = s ∗R w

then obtain w r s where b − a = r ∗R w and c − a = s ∗R w by auto
have B� a b c ∨ B� b c a ∨ B� c a b
proof cases

assume s = 0
with ‹c − a = s ∗R w› have a = c by simp
with real-euclid.th3-1 have B� b c a by simp
thus ?thesis by simp

next
assume s 6= 0
with ‹c − a = s ∗R w› have w = (1/s) ∗R (c − a) by simp
with ‹b − a = r ∗R w› have b − a = (r/s) ∗R (c − a) by simp
have r/s < 0 ∨ (r/s ≥ 0 ∧ r/s ≤ 1) ∨ r/s > 1 by arith
moreover
{ assume r/s ≥ 0 ∧ r/s ≤ 1

with real-euclid-B-def and ‹b − a = (r/s) ∗R (c − a)› have B� a b c
by auto

hence ?thesis by simp }
moreover
{ assume r/s > 1

with ‹b − a = (r/s) ∗R (c − a)› have c − a = (s/r) ∗R (b − a) by auto
from ‹r/s > 1 › and le-imp-inverse-le [of 1 r/s] have

s/r ≤ 1 by simp

32

from ‹r/s > 1 › and inverse-positive-iff-positive [of r/s] have
s/r ≥ 0 by simp

with real-euclid-B-def
and ‹c − a = (s/r) ∗R (b − a)›
and ‹s/r ≤ 1 ›

have B� a c b by auto
with real-euclid.th3-2 have B� b c a by auto
hence ?thesis by simp }

moreover
{ assume r/s < 0

have b − c = (b − a) + (a − c) by simp
with ‹b − a = (r/s) ∗R (c − a)› have

b − c = (r/s) ∗R (c − a) + (a − c) by simp
have c − a = −(a − c) by simp
with scaleR-minus-right [of r/s a − c] have
(r/s) ∗R (c − a) = −((r/s) ∗R (a − c)) by arith

with ‹b − c = (r/s) ∗R (c − a) + (a − c)› have
b − c = −(r/s) ∗R (a − c) + (a − c) by simp

with scaleR-left-distrib [of −(r/s) 1 a − c] have
b − c = (−(r/s) + 1) ∗R (a − c) by simp

moreover from ‹r/s < 0 › have −(r/s) + 1 > 1 by simp
ultimately have a − c = (1 / (−(r/s) + 1)) ∗R (b − c) by auto
let ?l = 1 / (−(r/s) + 1)
from ‹−(r/s) + 1 > 1 › and le-imp-inverse-le [of 1 −(r/s) + 1] have

?l ≤ 1 by simp
from ‹−(r/s) + 1 > 1 ›

and inverse-positive-iff-positive [of −(r/s) + 1]
have

?l ≥ 0 by simp
with real-euclid-B-def and ‹?l ≤ 1 › and ‹a − c = ?l ∗R (b − c)› have

B� c a b by blast
hence ?thesis by simp }

ultimately show ?thesis by auto
qed }

ultimately show ?thesis by blast
qed

lemma non-Col-example:
¬(real-euclid.Col 0 (vector [1/2 ,0] :: real^2) (vector [0 ,1/2]))
(is ¬ (real-euclid.Col ?a ?b ?c))

proof −
{ assume dep2 (?b − ?a) (?c − ?a)

with dep2-def [of ?b − ?a ?c − ?a] obtain w r s where
?b − ?a = r ∗R w and ?c − ?a = s ∗R w by auto

have ?b$1 = 1/2 by simp
with ‹?b − ?a = r ∗R w› have r ∗ (w$1) = 1/2 by simp
hence w$1 6= 0 by auto
have ?c$1 = 0 by simp
with ‹?c − ?a = s ∗R w› have s ∗ (w$1) = 0 by simp

33

with ‹w$1 6= 0 › have s = 0 by simp
have ?c$2 = 1/2 by simp
with ‹?c − ?a = s ∗R w› have s ∗ (w$2) = 1/2 by simp
with ‹s = 0 › have False by simp }

hence ¬(dep2 (?b − ?a) (?c − ?a)) by auto
with Col-dep2 show ¬(real-euclid.Col ?a ?b ?c) by blast

qed

interpretation real-euclid:
tarski real-euclid-C ::([real^2 , real^2 , real^2 , real^2] ⇒ bool) real-euclid-B

proof
{ let ?a = 0 :: real^2

let ?b = vector [1/2 , 0] :: real^2
let ?c = vector [0 , 1/2] :: real^2
from non-Col-example and real-euclid.Col-def have
¬ B� ?a ?b ?c ∧ ¬ B� ?b ?c ?a ∧ ¬ B� ?c ?a ?b by auto }

thus ∃ a b c :: real^2 . ¬ B� a b c ∧ ¬ B� b c a ∧ ¬ B� c a b
by auto

{ fix p q a b c :: real^2
assume p 6= q and a p ≡� a q and b p ≡� b q and c p ≡� c q
let ?m = (1/2) ∗R (p + q)
from scaleR-right-distrib [of 1/2 p q] and

scaleR-right-diff-distrib [of 1/2 q p] and
scaleR-left-diff-distrib [of 1/2 1 p]

have ?m − p = (1/2) ∗R (q − p) by simp
with ‹p 6= q› have ?m − p 6= 0 by simp
from scaleR-right-distrib [of 1/2 p q] and

scaleR-right-diff-distrib [of 1/2 p q] and
scaleR-left-diff-distrib [of 1/2 1 q]

have ?m − q = (1/2) ∗R (p − q) by simp
with ‹?m − p = (1/2) ∗R (q − p)›

and scaleR-minus-right [of 1/2 q − p]
have ?m − q = −(?m − p) by simp
with norm-minus-cancel [of ?m − p] have
(norm (?m − q))2 = (norm (?m − p))2 by (simp only: norm-minus-cancel)

{ fix d
assume d p ≡� d q
hence (norm (d − p))2 = (norm (d − q))2 by simp
have (d − ?m) · (?m − p) = 0
proof −

have d + (−q) = d − q by simp
have d + (−p) = d − p by simp
with dot-norm [of d − ?m ?m − p] have
(d − ?m) · (?m − p) =
((norm (d − p))2 − (norm (d − ?m))2 − (norm(?m − p))2) / 2
by simp

also from ‹(norm (d − p))2 = (norm (d − q))2›
and ‹(norm (?m − q))2 = (norm (?m − p))2›

have

34

. . . = ((norm (d − q))2 − (norm (d − ?m))2 − (norm(?m − q))2) / 2
by simp

also from dot-norm [of d − ?m ?m − q]
and ‹d + (−q) = d − q›

have
. . . = (d − ?m) · (?m − q) by simp

also from inner-minus-right [of d − ?m ?m − p]
and ‹?m − q = −(?m − p)›

have
. . . = −((d − ?m) · (?m − p)) by (simp only: inner-minus-left)

finally have (d − ?m) · (?m − p) = −((d − ?m) · (?m − p)) .
thus (d − ?m) · (?m − p) = 0 by arith

qed }
note m-lemma = this
with ‹a p ≡� a q› have (a − ?m) · (?m − p) = 0 by simp
{ fix d

assume d p ≡� d q
with m-lemma have (d − ?m) · (?m − p) = 0 by simp
with dot-left-diff-distrib [of d − ?m a − ?m ?m − p]

and ‹(a − ?m) · (?m − p) = 0 ›
have (d − a) · (?m − p) = 0 by (simp add: inner-diff-left inner-diff-right) }

with ‹b p ≡� b q› and ‹c p ≡� c q› have
(b − a) · (?m − p) = 0 and (c − a) · (?m − p) = 0 by simp+

with real2-orthogonal-dep2 and ‹?m − p 6= 0 › have dep2 (b − a) (c − a)
by blast

with Col-dep2 have real-euclid.Col a b c by auto
with real-euclid.Col-def have B� a b c ∨ B� b c a ∨ B� c a b by auto }

thus ∀ p q a b c :: real^2 .
p 6= q ∧ a p ≡� a q ∧ b p ≡� b q ∧ c p ≡� c q −→

B� a b c ∨ B� b c a ∨ B� c a b
by blast

qed

4.5 Special cases of theorems of Tarski’s geometry
lemma real-euclid-B-disjunction:

assumes l ≥ 0 and b − a = l ∗R (c − a)
shows B� a b c ∨ B� a c b

proof cases
assume l ≤ 1
with ‹l ≥ 0 › and ‹b − a = l ∗R (c − a)›
have B� a b c by (unfold real-euclid-B-def) (simp add: exI [of - l])
thus B� a b c ∨ B� a c b ..

next
assume ¬ (l ≤ 1)
hence 1/l ≤ 1 by simp

from ‹l ≥ 0 › have 1/l ≥ 0 by simp

35

from ‹b − a = l ∗R (c − a)›
have (1/l) ∗R (b − a) = (1/l) ∗R (l ∗R (c − a)) by simp
with ‹¬ (l ≤ 1)› have c − a = (1/l) ∗R (b − a) by simp
with ‹1/l ≥ 0 › and ‹1/l ≤ 1 ›
have B� a c b by (unfold real-euclid-B-def) (simp add: exI [of - 1/l])
thus B� a b c ∨ B� a c b ..

qed

The following are true in Tarski’s geometry, but to prove this would
require much more development of it, so only the Euclidean case is proven
here.
theorem real-euclid-th5-1 :

assumes a 6= b and B� a b c and B� a b d
shows B� a c d ∨ B� a d c

proof −
from ‹B� a b c› and ‹B� a b d›
obtain l and m where l ≥ 0 and b − a = l ∗R (c − a)

and m ≥ 0 and b − a = m ∗R (d − a)
by (unfold real-euclid-B-def) auto

from ‹b − a = m ∗R (d − a)› and ‹a 6= b› have m 6= 0 by auto

from ‹l ≥ 0 › and ‹m ≥ 0 › have l/m ≥ 0 by (simp add: zero-le-divide-iff)

from ‹b − a = l ∗R (c − a)› and ‹b − a = m ∗R (d − a)›
have m ∗R (d − a) = l ∗R (c − a) by simp
hence (1/m) ∗R (m ∗R (d − a)) = (1/m) ∗R (l ∗R (c − a)) by simp
with ‹m 6= 0 › have d − a = (l/m) ∗R (c − a) by simp
with ‹l/m ≥ 0 › and real-euclid-B-disjunction
show B� a c d ∨ B� a d c by auto

qed

theorem real-euclid-th5-3 :
assumes B� a b d and B� a c d
shows B� a b c ∨ B� a c b

proof −
from ‹B� a b d› and ‹B� a c d›
obtain l and m where l ≥ 0 and b − a = l ∗R (d − a)

and m ≥ 0 and c − a = m ∗R (d − a)
by (unfold real-euclid-B-def) auto

show B� a b c ∨ B� a c b
proof cases

assume l = 0
with ‹b − a = l ∗R (d − a)› have b − a = l ∗R (c − a) by simp
with ‹l = 0 ›
have B� a b c by (unfold real-euclid-B-def) (simp add: exI [of - l])
thus B� a b c ∨ B� a c b ..

next
assume l 6= 0

36

from ‹l ≥ 0 › and ‹m ≥ 0 › have m/l ≥ 0 by (simp add: zero-le-divide-iff)

from ‹b − a = l ∗R (d − a)›
have (1/l) ∗R (b − a) = (1/l) ∗R (l ∗R (d − a)) by simp
with ‹l 6= 0 › have d − a = (1/l) ∗R (b − a) by simp
with ‹c − a = m ∗R (d − a)› have c − a = (m/l) ∗R (b − a) by simp
with ‹m/l ≥ 0 › and real-euclid-B-disjunction
show B� a b c ∨ B� a c b by auto

qed
qed

end

5 Linear algebra
theory Linear-Algebra2
imports Miscellany
begin

lemma exhaust-4 :
fixes x :: 4
shows x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4

proof (induct x)
case (of-int z)
hence 0 ≤ z and z < 4 by simp-all
hence z = 0 ∨ z = 1 ∨ z = 2 ∨ z = 3 by arith
thus ?case by auto

qed

lemma forall-4 : (∀ i::4 . P i) ←→ P 1 ∧ P 2 ∧ P 3 ∧ P 4
by (metis exhaust-4)

lemma UNIV-4 : (UNIV ::(4 set)) = {1 , 2 , 3 , 4}
using exhaust-4
by auto

lemma vector-4 :
fixes w :: ′a::zero
shows (vector [w, x, y, z] :: ′a^4)$1 = w
and (vector [w, x, y, z] :: ′a^4)$2 = x
and (vector [w, x, y, z] :: ′a^4)$3 = y
and (vector [w, x, y, z] :: ′a^4)$4 = z
unfolding vector-def
by simp-all

definition
is-basis :: (real^ ′n) set ⇒ bool where
is-basis S , independent S ∧ span S = UNIV

37

lemma card-finite:
assumes card S = CARD(′n::finite)
shows finite S

proof −
from ‹card S = CARD(′n)› have card S 6= 0 by simp
with card-eq-0-iff [of S] show finite S by simp

qed

lemma independent-is-basis:
fixes B :: (real^ ′n) set
shows independent B ∧ card B = CARD(′n) ←→ is-basis B

proof
assume L: independent B ∧ card B = CARD(′n)
then have card (Basis::(real^ ′n) set) = card B

by simp
with L show is-basis B
by (metis (no-types) card-eq-dim dim-UNIV independent-bound is-basis-def sub-

set-antisym top-greatest)
next

assume is-basis B
then show independent B ∧ card B = CARD(′n)
by (metis DIM-cart DIM-real basis-card-eq-dim dim-UNIV is-basis-def mult.right-neutral

top.extremum)
qed

lemma basis-finite:
fixes B :: (real^ ′n) set
assumes is-basis B
shows finite B

proof −
from independent-is-basis [of B] and ‹is-basis B› have card B = CARD(′n)

by simp
with card-finite [of B, where ′n = ′n] show finite B by simp

qed

lemma basis-expand:
assumes is-basis B
shows ∃ c. v = (

∑
w∈B. (c w) ∗R w)

proof −
from ‹is-basis B› have v ∈ span B unfolding is-basis-def by simp
from basis-finite [of B] and ‹is-basis B› have finite B by simp
with span-finite [of B] and ‹v ∈ span B›
show ∃ c. v = (

∑
w∈B. (c w) ∗R w) by (simp add: scalar-equiv) auto

qed

lemma not-span-independent-insert:
fixes v :: (′a::real-vector)^ ′n
assumes independent S and v /∈ span S

38

shows independent (insert v S)
by (simp add: assms independent-insert)

lemma orthogonal-sum:
fixes v :: real^ ′n
assumes

∧
w. w∈S =⇒ orthogonal v w

shows orthogonal v (
∑

w∈S . c w ∗s w)
by (metis (no-types, lifting) assms orthogonal-clauses(1 ,2) orthogonal-rvsum

scalar-equiv sum.infinite)

lemma orthogonal-self-eq-0 :
fixes v :: (′a::real-inner)^ ′n
assumes orthogonal v v
shows v = 0
using inner-eq-zero-iff [of v] and assms
unfolding orthogonal-def
by simp

lemma orthogonal-in-span-eq-0 :
fixes v :: real^ ′n
assumes v ∈ span S and

∧
w. w∈S =⇒ orthogonal v w

shows v = 0
using assms orthogonal-self orthogonal-to-span by blast

lemma orthogonal-independent:
fixes v :: real^ ′n
assumes independent S and v 6= 0 and

∧
w. w∈S =⇒ orthogonal v w

shows independent (insert v S)
using assms not-span-independent-insert orthogonal-in-span-eq-0 by blast

lemma dot-scaleR-mult:
shows (k ∗R a) · b = k ∗ (a · b) and a · (k ∗R b) = k ∗ (a · b)
by auto

lemma dependent-explicit-finite:
fixes S :: ((′a::{real-vector ,field})^ ′n) set
assumes finite S
shows dependent S ←→ (∃ u. (∃ v∈S . u v 6= 0) ∧ (

∑
v∈S . u v ∗R v) = 0)

by (simp add: assms dependent-finite)

lemma dependent-explicit-2 :
fixes v w :: (′a::{field,real-vector})^ ′n
assumes v 6= w
shows dependent {v, w} ←→ (∃ i j. (i 6= 0 ∨ j 6= 0) ∧ i ∗R v + j ∗R w = 0)

proof
let ?S = {v, w}
have finite ?S by simp

{ assume dependent ?S

39

with dependent-explicit-finite [of ?S] and ‹finite ?S› and ‹v 6= w›
show ∃ i j. (i 6= 0 ∨ j 6= 0) ∧ i ∗R v + j ∗R w = 0 by auto }

{ assume ∃ i j. (i 6= 0 ∨ j 6= 0) ∧ i ∗R v + j ∗R w = 0
then obtain i and j where i 6= 0 ∨ j 6= 0 and i ∗R v + j ∗R w = 0 by auto
let ?u = λ x. if x = v then i else j
from ‹i 6= 0 ∨ j 6= 0 › and ‹v 6= w› have ∃ x∈?S . ?u x 6= 0 by simp
from ‹i ∗R v + j ∗R w = 0 › and ‹v 6= w›
have (

∑
x∈?S . ?u x ∗R x) = 0 by simp

with dependent-explicit-finite [of ?S]
and ‹finite ?S› and ‹∃ x∈?S . ?u x 6= 0 ›

show dependent ?S by best }
qed

5.1 Matrices
lemma zero-not-invertible:
¬ (invertible (0 ::real^ ′n^ ′n))
using invertible-times-eq-zero matrix-vector-mult-0 by blast

Based on matrix-vector-column in HOL/Multivariate_Analysis/Euclidean_Space.thy
in Isabelle 2009-1:
lemma vector-matrix-row:

fixes x :: (′a::comm-semiring-1)^ ′m and A :: (′a^ ′n^ ′m)
shows x v∗ A = (

∑
i∈UNIV . (x$i) ∗s (A$i))

unfolding vector-matrix-mult-def
by (simp add: vec-eq-iff mult.commute)

lemma matrix-inv:
assumes invertible M
shows matrix-inv M ∗∗ M = mat 1
and M ∗∗ matrix-inv M = mat 1
using ‹invertible M › and someI-ex [of λ N . M ∗∗ N = mat 1 ∧ N ∗∗ M = mat

1]
unfolding invertible-def and matrix-inv-def
by simp-all

lemma matrix-inv-invertible:
assumes invertible M
shows invertible (matrix-inv M)
using ‹invertible M › and matrix-inv
unfolding invertible-def [of matrix-inv M]
by auto

lemma invertible-times-non-zero:
fixes M :: real^ ′n^ ′n
assumes invertible M and v 6= 0
shows M ∗v v 6= 0
using ‹invertible M › and ‹v 6= 0 › and invertible-times-eq-zero [of M v]

40

by auto

lemma matrix-right-invertible-ker :
fixes M :: real^(′m::finite)^ ′n
shows (∃ M ′. M ∗∗ M ′ = mat 1) ←→ (∀ x. x v∗ M = 0 −→ x = 0)
using left-invertible-transpose matrix-left-invertible-ker by force

lemma left-invertible-iff-invertible:
fixes M :: real^ ′n^ ′n
shows (∃ N . N ∗∗ M = mat 1) ←→ invertible M
by (simp add: invertible-def matrix-left-right-inverse)

lemma right-invertible-iff-invertible:
fixes M :: real^ ′n^ ′n
shows (∃ N . M ∗∗ N = mat 1) ←→ invertible M
by (simp add: invertible-def matrix-left-right-inverse)

definition symmatrix :: ′a^ ′n^ ′n ⇒ bool where
symmatrix M , transpose M = M

lemma symmatrix-preserve:
fixes M N :: (′a::comm-semiring-1)^ ′n^ ′n
assumes symmatrix M
shows symmatrix (N ∗∗ M ∗∗ transpose N)

proof −
have transpose (N ∗∗ M ∗∗ transpose N) = N ∗∗ (M ∗∗ transpose N)

by (metis (no-types) transpose-transpose assms matrix-transpose-mul symma-
trix-def)

then show ?thesis
by (simp add: matrix-mul-assoc symmatrix-def)

qed

lemma non-zero-mult-invertible-non-zero:
fixes M :: real^ ′n^ ′n
assumes v 6= 0 and invertible M
shows v v∗ M 6= 0
using ‹v 6= 0 › and ‹invertible M › and times-invertible-eq-zero
by auto

end

6 Right group actions
theory Action

imports HOL−Algebra.Group
begin

locale action = group +
fixes act :: ′b ⇒ ′a ⇒ ′b (infixl ‹<o› 69)

41

assumes id-act [simp]: b <o 1 = b
and act-act ′:
g ∈ carrier G ∧ h ∈ carrier G −→ (b <o g) <o h = b <o (g ⊗ h)

begin

lemma act-act:
assumes g ∈ carrier G and h ∈ carrier G
shows (b <o g) <o h = b <o (g ⊗ h)

proof −
from ‹g ∈ carrier G› and ‹h ∈ carrier G› and act-act ′

show (b <o g) <o h = b <o (g ⊗ h) by simp
qed

lemma act-act-inv [simp]:
assumes g ∈ carrier G
shows b <o g <o inv g = b

proof −
from ‹g ∈ carrier G› have inv g ∈ carrier G by (rule inv-closed)
with ‹g ∈ carrier G› have b <o g <o inv g = b <o g ⊗ inv g by (rule act-act)
with ‹g ∈ carrier G› show b <o g <o inv g = b by simp

qed

lemma act-inv-act [simp]:
assumes g ∈ carrier G
shows b <o inv g <o g = b
using ‹g ∈ carrier G› and act-act-inv [of inv g]
by simp

lemma act-inv-iff :
assumes g ∈ carrier G
shows b <o inv g = c ←→ b = c <o g

proof
assume b <o inv g = c
hence b <o inv g <o g = c <o g by simp
with ‹g ∈ carrier G› show b = c <o g by simp

next
assume b = c <o g
hence b <o inv g = c <o g <o inv g by simp
with ‹g ∈ carrier G› show b <o inv g = c by simp

qed

end

end

7 Projective geometry
theory Projective

imports Linear-Algebra2

42

Euclid-Tarski
Action

begin

7.1 Proportionality on non-zero vectors
context vector-space
begin

definition proportionality :: (′b × ′b) set where
proportionality , {(x, y). x 6= 0 ∧ y 6= 0 ∧ (∃ k. x = scale k y)}

definition non-zero-vectors :: ′b set where
non-zero-vectors , {x. x 6= 0}

lemma proportionality-refl-on: refl-on local.non-zero-vectors local.proportionality
proof −

have local.proportionality ⊆ local.non-zero-vectors × local.non-zero-vectors
unfolding proportionality-def non-zero-vectors-def
by auto

moreover have ∀ x∈local.non-zero-vectors. (x, x) ∈ local.proportionality
proof

fix x
assume x ∈ local.non-zero-vectors
hence x 6= 0 unfolding non-zero-vectors-def ..
moreover have x = scale 1 x by simp
ultimately show (x, x) ∈ local.proportionality

unfolding proportionality-def
by blast

qed
ultimately show refl-on local.non-zero-vectors local.proportionality

unfolding refl-on-def ..
qed

lemma proportionality-sym: sym local.proportionality
proof −

{ fix x y
assume (x, y) ∈ local.proportionality
hence x 6= 0 and y 6= 0 and ∃ k. x = scale k y

unfolding proportionality-def
by simp+

from ‹∃ k. x = scale k y› obtain k where x = scale k y by auto
with ‹x 6= 0 › have k 6= 0 by simp
with ‹x = scale k y› have y = scale (1/k) x by simp
with ‹x 6= 0 › and ‹y 6= 0 › have (y, x) ∈ local.proportionality

unfolding proportionality-def
by auto

}
thus sym local.proportionality

43

unfolding sym-def
by blast

qed

lemma proportionality-trans: trans local.proportionality
proof −

{ fix x y z
assume (x, y) ∈ local.proportionality and (y, z) ∈ local.proportionality
hence x 6= 0 and z 6= 0 and ∃ j. x = scale j y and ∃ k. y = scale k z

unfolding proportionality-def
by simp+

from ‹∃ j. x = scale j y› and ‹∃ k. y = scale k z›
obtain j and k where x = scale j y and y = scale k z by auto+
hence x = scale (j ∗ k) z by simp
with ‹x 6= 0 › and ‹z 6= 0 › have (x, z) ∈ local.proportionality

unfolding proportionality-def
by auto

}
thus trans local.proportionality

unfolding trans-def
by blast

qed

theorem proportionality-equiv: equiv local.non-zero-vectors local.proportionality
unfolding equiv-def
by (simp add:

proportionality-refl-on
proportionality-sym
proportionality-trans)

end

definition invertible-proportionality ::
((real^(′n::finite)^ ′n) × (real^ ′n^ ′n)) set where
invertible-proportionality ,
real-vector .proportionality ∩ (Collect invertible × Collect invertible)

lemma invertible-proportionality-equiv:
equiv (Collect invertible :: (real^(′n::finite)^ ′n) set)
invertible-proportionality
(is equiv ?invs -)

proof −
from zero-not-invertible
have real-vector .non-zero-vectors ∩ ?invs = ?invs

unfolding real-vector .non-zero-vectors-def
by auto

from equiv-restrict and real-vector .proportionality-equiv
have equiv (real-vector .non-zero-vectors ∩ ?invs) invertible-proportionality

unfolding invertible-proportionality-def

44

by auto
with ‹real-vector .non-zero-vectors ∩ ?invs = ?invs›
show equiv ?invs invertible-proportionality

by simp
qed

7.2 Points of the real projective plane
typedef proj2 = (real-vector .non-zero-vectors :: (real^3) set)//real-vector .proportionality
proof

have (axis 1 1 :: real^3) ∈ real-vector .non-zero-vectors
unfolding real-vector .non-zero-vectors-def
by (simp add: axis-def vec-eq-iff [where ′a=real])

thus real-vector .proportionality ‘‘ {axis 1 1} ∈ (real-vector .non-zero-vectors ::
(real^3) set)//real-vector .proportionality

unfolding quotient-def
by auto

qed

definition proj2-rep :: proj2 ⇒ real^3 where
proj2-rep x , ε v. v ∈ Rep-proj2 x

definition proj2-abs :: real^3 ⇒ proj2 where
proj2-abs v , Abs-proj2 (real-vector .proportionality ‘‘ {v})

lemma proj2-rep-in: proj2-rep x ∈ Rep-proj2 x
proof −

let ?v = proj2-rep x
from quotient-element-nonempty and

real-vector .proportionality-equiv and
Rep-proj2 [of x]

have ∃ w. w ∈ Rep-proj2 x
by auto

with someI-ex [of λ z. z ∈ Rep-proj2 x]
show ?v ∈ Rep-proj2 x

unfolding proj2-rep-def
by simp

qed

lemma proj2-rep-non-zero: proj2-rep x 6= 0
proof −

from
Union-quotient [of real-vector .non-zero-vectors real-vector .proportionality]
and real-vector .proportionality-equiv
and Rep-proj2 [of x] and proj2-rep-in [of x]

have proj2-rep x ∈ real-vector .non-zero-vectors
unfolding quotient-def
by auto

thus proj2-rep x 6= 0

45

unfolding real-vector .non-zero-vectors-def
by simp

qed

lemma proj2-rep-abs:
fixes v :: real^3
assumes v ∈ real-vector .non-zero-vectors
shows (v, proj2-rep (proj2-abs v)) ∈ real-vector .proportionality

proof −
from ‹v ∈ real-vector .non-zero-vectors›
have real-vector .proportionality ‘‘ {v} ∈ (real-vector .non-zero-vectors :: (real^3)

set)//real-vector .proportionality
unfolding quotient-def
by auto

with Abs-proj2-inverse
have Rep-proj2 (proj2-abs v) = real-vector .proportionality ‘‘ {v}

unfolding proj2-abs-def
by simp

with proj2-rep-in
have proj2-rep (proj2-abs v) ∈ real-vector .proportionality ‘‘ {v} by auto
thus (v, proj2-rep (proj2-abs v)) ∈ real-vector .proportionality by simp

qed

lemma proj2-abs-rep: proj2-abs (proj2-rep x) = x
proof −

from partition-Image-element
[of real-vector .non-zero-vectors

real-vector .proportionality
Rep-proj2 x
proj2-rep x]
and real-vector .proportionality-equiv
and Rep-proj2 [of x] and proj2-rep-in [of x]

have real-vector .proportionality ‘‘ {proj2-rep x} = Rep-proj2 x
by simp

with Rep-proj2-inverse show proj2-abs (proj2-rep x) = x
unfolding proj2-abs-def
by simp

qed

lemma proj2-abs-mult:
assumes c 6= 0
shows proj2-abs (c ∗R v) = proj2-abs v

proof cases
assume v = 0
thus proj2-abs (c ∗R v) = proj2-abs v by simp

next
assume v 6= 0
with ‹c 6= 0 ›
have (c ∗R v, v) ∈ real-vector .proportionality

46

and c ∗R v ∈ real-vector .non-zero-vectors
and v ∈ real-vector .non-zero-vectors
unfolding real-vector .proportionality-def

and real-vector .non-zero-vectors-def
by simp-all

with eq-equiv-class-iff
[of real-vector .non-zero-vectors

real-vector .proportionality
c ∗R v
v]
and real-vector .proportionality-equiv

have real-vector .proportionality ‘‘ {c ∗R v} =
real-vector .proportionality ‘‘ {v}
by simp

thus proj2-abs (c ∗R v) = proj2-abs v
unfolding proj2-abs-def
by simp

qed

lemma proj2-abs-mult-rep:
assumes c 6= 0
shows proj2-abs (c ∗R proj2-rep x) = x
using proj2-abs-mult and proj2-abs-rep and assms
by simp

lemma proj2-rep-inj: inj proj2-rep
by (simp add: inj-on-inverseI [of UNIV proj2-abs proj2-rep] proj2-abs-rep)

lemma proj2-rep-abs2 :
assumes v 6= 0
shows ∃ k. k 6= 0 ∧ proj2-rep (proj2-abs v) = k ∗R v

proof −
from proj2-rep-abs [of v] and ‹v 6= 0 ›
have (v, proj2-rep (proj2-abs v)) ∈ real-vector .proportionality

unfolding real-vector .non-zero-vectors-def
by simp

then obtain c where v = c ∗R proj2-rep (proj2-abs v)
unfolding real-vector .proportionality-def
by auto

with ‹v 6= 0 › have c 6= 0 by auto
hence 1/c 6= 0 by simp

from ‹v = c ∗R proj2-rep (proj2-abs v)›
have (1/c) ∗R v = (1/c) ∗R c ∗R proj2-rep (proj2-abs v)

by simp
with ‹c 6= 0 › have proj2-rep (proj2-abs v) = (1/c) ∗R v by simp

with ‹1/c 6= 0 › show ∃ k. k 6= 0 ∧ proj2-rep (proj2-abs v) = k ∗R v
by blast

47

qed

lemma proj2-abs-abs-mult:
assumes proj2-abs v = proj2-abs w and w 6= 0
shows ∃ c. v = c ∗R w

proof cases
assume v = 0
hence v = 0 ∗R w by simp
thus ∃ c. v = c ∗R w ..

next
assume v 6= 0
from ‹proj2-abs v = proj2-abs w›
have proj2-rep (proj2-abs v) = proj2-rep (proj2-abs w) by simp
with proj2-rep-abs2 and ‹w 6= 0 ›
obtain k where proj2-rep (proj2-abs v) = k ∗R w by auto
with proj2-rep-abs2 [of v] and ‹v 6= 0 ›
obtain j where j 6= 0 and j ∗R v = k ∗R w by auto
hence (1/j) ∗R j ∗R v = (1/j) ∗R k ∗R w by simp
with ‹j 6= 0 › have v = (k/j) ∗R w by simp
thus ∃ c. v = c ∗R w ..

qed

lemma dependent-proj2-abs:
assumes p 6= 0 and q 6= 0 and i 6= 0 ∨ j 6= 0 and i ∗R p + j ∗R q = 0
shows proj2-abs p = proj2-abs q

proof −
have i 6= 0
proof

assume i = 0
with ‹i 6= 0 ∨ j 6= 0 › have j 6= 0 by simp
with ‹i ∗R p + j ∗R q = 0 › and ‹q 6= 0 › have i ∗R p 6= 0 by auto
with ‹i = 0 › show False by simp

qed
with ‹p 6= 0 › and ‹i ∗R p + j ∗R q = 0 › have j 6= 0 by auto

from ‹i 6= 0 ›
have proj2-abs p = proj2-abs (i ∗R p) by (rule proj2-abs-mult [symmetric])
also from ‹i ∗R p + j ∗R q = 0 › and proj2-abs-mult [of −1 j ∗R q]
have . . . = proj2-abs (j ∗R q) by (simp add: algebra-simps [symmetric])
also from ‹j 6= 0 › have . . . = proj2-abs q by (rule proj2-abs-mult)
finally show proj2-abs p = proj2-abs q .

qed

lemma proj2-rep-dependent:
assumes i ∗R proj2-rep v + j ∗R proj2-rep w = 0
(is i ∗R ?p + j ∗R ?q = 0)
and i 6= 0 ∨ j 6= 0
shows v = w

proof −

48

have ?p 6= 0 and ?q 6= 0 by (rule proj2-rep-non-zero)+
with ‹i 6= 0 ∨ j 6= 0 › and ‹i ∗R ?p + j ∗R ?q = 0 ›
have proj2-abs ?p = proj2-abs ?q by (simp add: dependent-proj2-abs)
thus v = w by (simp add: proj2-abs-rep)

qed

lemma proj2-rep-independent:
assumes p 6= q
shows independent {proj2-rep p, proj2-rep q}

proof
let ?p ′ = proj2-rep p
let ?q ′ = proj2-rep q
let ?S = {?p ′, ?q ′}
assume dependent ?S
from proj2-rep-inj and ‹p 6= q› have ?p ′ 6= ?q ′

unfolding inj-on-def
by auto

with dependent-explicit-2 [of ?p ′ ?q ′] and ‹dependent ?S›
obtain i and j where i ∗R ?p ′ + j ∗R ?q ′ = 0 and i 6= 0 ∨ j 6= 0

by (simp add: scalar-equiv) auto
with proj2-rep-dependent have p = q by simp
with ‹p 6= q› show False ..

qed

7.3 Lines of the real projective plane
definition proj2-Col :: [proj2 , proj2 , proj2] ⇒ bool where

proj2-Col p q r ,
(∃ i j k. i ∗R proj2-rep p + j ∗R proj2-rep q + k ∗R proj2-rep r = 0
∧ (i 6=0 ∨ j 6=0 ∨ k 6=0))

lemma proj2-Col-abs:
assumes p 6= 0 and q 6= 0 and r 6= 0 and i 6= 0 ∨ j 6= 0 ∨ k 6= 0
and i ∗R p + j ∗R q + k ∗R r = 0
shows proj2-Col (proj2-abs p) (proj2-abs q) (proj2-abs r)
(is proj2-Col ?pp ?pq ?pr)

proof −
from ‹p 6= 0 › and proj2-rep-abs2
obtain i ′ where i ′ 6= 0 and proj2-rep ?pp = i ′ ∗R p (is ?rp = -) by auto
from ‹q 6= 0 › and proj2-rep-abs2
obtain j ′ where j ′ 6= 0 and proj2-rep ?pq = j ′ ∗R q (is ?rq = -) by auto
from ‹r 6= 0 › and proj2-rep-abs2
obtain k ′ where k ′ 6= 0 and proj2-rep ?pr = k ′ ∗R r (is ?rr = -) by auto
with ‹i ∗R p + j ∗R q + k ∗R r = 0 ›

and ‹i ′ 6= 0 › and ‹proj2-rep ?pp = i ′ ∗R p›
and ‹j ′ 6= 0 › and ‹proj2-rep ?pq = j ′ ∗R q›

have (i/i ′) ∗R ?rp + (j/j ′) ∗R ?rq + (k/k ′) ∗R ?rr = 0 by simp

from ‹i ′ 6= 0 › and ‹j ′ 6= 0 › and ‹k ′ 6= 0 › and ‹i 6= 0 ∨ j 6= 0 ∨ k 6= 0 ›

49

have i/i ′ 6= 0 ∨ j/j ′ 6= 0 ∨ k/k ′ 6= 0 by simp
with ‹(i/i ′) ∗R ?rp + (j/j ′) ∗R ?rq + (k/k ′) ∗R ?rr = 0 ›
show proj2-Col ?pp ?pq ?pr by (unfold proj2-Col-def , best)

qed

lemma proj2-Col-permute:
assumes proj2-Col a b c
shows proj2-Col a c b
and proj2-Col b a c

proof −
let ?a ′ = proj2-rep a
let ?b ′ = proj2-rep b
let ?c ′ = proj2-rep c
from ‹proj2-Col a b c›
obtain i and j and k where

i ∗R ?a ′ + j ∗R ?b ′ + k ∗R ?c ′ = 0
and i 6= 0 ∨ j 6= 0 ∨ k 6= 0
unfolding proj2-Col-def
by auto

from ‹i ∗R ?a ′ + j ∗R ?b ′ + k ∗R ?c ′ = 0 ›
have i ∗R ?a ′ + k ∗R ?c ′ + j ∗R ?b ′ = 0

and j ∗R ?b ′ + i ∗R ?a ′ + k ∗R ?c ′ = 0
by (simp-all add: ac-simps)

moreover from ‹i 6= 0 ∨ j 6= 0 ∨ k 6= 0 ›
have i 6= 0 ∨ k 6= 0 ∨ j 6= 0 and j 6= 0 ∨ i 6= 0 ∨ k 6= 0 by auto
ultimately show proj2-Col a c b and proj2-Col b a c

unfolding proj2-Col-def
by auto

qed

lemma proj2-Col-coincide: proj2-Col a a c
proof −

have 1 ∗R proj2-rep a + (−1) ∗R proj2-rep a + 0 ∗R proj2-rep c = 0
by simp

moreover have (1 ::real) 6= 0 by simp
ultimately show proj2-Col a a c

unfolding proj2-Col-def
by blast

qed

lemma proj2-Col-iff :
assumes a 6= r
shows proj2-Col a r t ←→
t = a ∨ (∃ i. t = proj2-abs (i ∗R (proj2-rep a) + (proj2-rep r)))

proof
let ?a ′ = proj2-rep a
let ?r ′ = proj2-rep r
let ?t ′ = proj2-rep t

50

{ assume proj2-Col a r t
then obtain h and j and k where

h ∗R ?a ′ + j ∗R ?r ′ + k ∗R ?t ′ = 0
and h 6= 0 ∨ j 6= 0 ∨ k 6= 0
unfolding proj2-Col-def
by auto

show t = a ∨ (∃ i. t = proj2-abs (i ∗R ?a ′ + ?r ′))
proof cases

assume j = 0
with ‹h 6= 0 ∨ j 6= 0 ∨ k 6= 0 › have h 6= 0 ∨ k 6= 0 by simp
with proj2-rep-dependent

and ‹h ∗R ?a ′ + j ∗R ?r ′ + k ∗R ?t ′ = 0 ›
and ‹j = 0 ›

have t = a by auto
thus t = a ∨ (∃ i. t = proj2-abs (i ∗R ?a ′ + ?r ′)) ..

next
assume j 6= 0
have k 6= 0
proof (rule ccontr)

assume ¬ k 6= 0
with proj2-rep-dependent

and ‹h ∗R ?a ′ + j ∗R ?r ′ + k ∗R ?t ′ = 0 ›
and ‹j 6= 0 ›

have a = r by simp
with ‹a 6= r› show False ..

qed

from ‹h ∗R ?a ′ + j ∗R ?r ′ + k ∗R ?t ′ = 0 ›
have h ∗R ?a ′ + j ∗R ?r ′ + k ∗R ?t ′ − k ∗R ?t ′ = −k ∗R ?t ′ by simp
hence h ∗R ?a ′ + j ∗R ?r ′ = −k ∗R ?t ′ by simp
with proj2-abs-mult-rep [of −k] and ‹k 6= 0 ›
have proj2-abs (h ∗R ?a ′ + j ∗R ?r ′) = t by simp
with proj2-abs-mult [of 1/j h ∗R ?a ′ + j ∗R ?r ′] and ‹j 6= 0 ›
have proj2-abs ((h/j) ∗R ?a ′ + ?r ′) = t

by (simp add: scaleR-right-distrib)
hence ∃ i. t = proj2-abs (i ∗R ?a ′ + ?r ′) by auto
thus t = a ∨ (∃ i. t = proj2-abs (i ∗R ?a ′ + ?r ′)) ..

qed
}

{ assume t = a ∨ (∃ i. t = proj2-abs (i ∗R ?a ′ + ?r ′))
show proj2-Col a r t
proof cases

assume t = a
with proj2-Col-coincide and proj2-Col-permute
show proj2-Col a r t by blast

next

51

assume t 6= a
with ‹t = a ∨ (∃ i. t = proj2-abs (i ∗R ?a ′ + ?r ′))›
obtain i where t = proj2-abs (i ∗R ?a ′ + ?r ′) by auto
from proj2-rep-dependent [of i a 1 r] and ‹a 6= r›
have i ∗R ?a ′ + ?r ′ 6= 0 by auto
with proj2-rep-abs2 and ‹t = proj2-abs (i ∗R ?a ′ + ?r ′)›
obtain j where ?t ′ = j ∗R (i ∗R ?a ′ + ?r ′) by auto
hence ?t ′ − ?t ′ = (j ∗ i) ∗R ?a ′ + j ∗R ?r ′ + (−1) ∗R ?t ′

by (simp add: scaleR-right-distrib)
hence (j ∗ i) ∗R ?a ′ + j ∗R ?r ′ + (−1) ∗R ?t ′ = 0 by simp
have ∃ h j k. h ∗R ?a ′ + j ∗R ?r ′ + k ∗R ?t ′ = 0
∧ (h 6= 0 ∨ j 6= 0 ∨ k 6= 0)

proof standard+
from ‹(j ∗ i) ∗R ?a ′ + j ∗R ?r ′ + (−1) ∗R ?t ′ = 0 ›
show (j ∗ i) ∗R ?a ′ + j ∗R ?r ′ + (−1) ∗R ?t ′ = 0 .
show j ∗ i 6= 0 ∨ j 6= 0 ∨ (−1 ::real) 6= 0 by simp

qed
thus proj2-Col a r t

unfolding proj2-Col-def .
qed

}
qed

definition proj2-Col-coeff :: proj2 ⇒ proj2 ⇒ proj2 ⇒ real where
proj2-Col-coeff a r t , ε i. t = proj2-abs (i ∗R proj2-rep a + proj2-rep r)

lemma proj2-Col-coeff :
assumes proj2-Col a r t and a 6= r and t 6= a
shows t = proj2-abs ((proj2-Col-coeff a r t) ∗R proj2-rep a + proj2-rep r)

proof −
from ‹a 6= r› and ‹proj2-Col a r t› and ‹t 6= a› and proj2-Col-iff
have ∃ i. t = proj2-abs (i ∗R proj2-rep a + proj2-rep r) by simp
thus t = proj2-abs ((proj2-Col-coeff a r t) ∗R proj2-rep a + proj2-rep r)

by (unfold proj2-Col-coeff-def) (rule someI-ex)
qed

lemma proj2-Col-coeff-unique ′:
assumes a 6= 0 and r 6= 0 and proj2-abs a 6= proj2-abs r
and proj2-abs (i ∗R a + r) = proj2-abs (j ∗R a + r)
shows i = j

proof −
from ‹a 6= 0 › and ‹r 6= 0 › and ‹proj2-abs a 6= proj2-abs r›

and dependent-proj2-abs [of a r - 1]
have i ∗R a + r 6= 0 and j ∗R a + r 6= 0 by auto
with proj2-rep-abs2 [of i ∗R a + r]

and proj2-rep-abs2 [of j ∗R a + r]
obtain k and l where k 6= 0

and proj2-rep (proj2-abs (i ∗R a + r)) = k ∗R (i ∗R a + r)
and proj2-rep (proj2-abs (j ∗R a + r)) = l ∗R (j ∗R a + r)

52

by auto
with ‹proj2-abs (i ∗R a + r) = proj2-abs (j ∗R a + r)›
have (k ∗ i) ∗R a + k ∗R r = (l ∗ j) ∗R a + l ∗R r

by (simp add: scaleR-right-distrib)
hence (k ∗ i − l ∗ j) ∗R a + (k − l) ∗R r = 0

by (simp add: algebra-simps vec-eq-iff)
with ‹a 6= 0 › and ‹r 6= 0 › and ‹proj2-abs a 6= proj2-abs r›

and dependent-proj2-abs [of a r k ∗ i − l ∗ j k − l]
have k ∗ i − l ∗ j = 0 and k − l = 0 by auto
from ‹k − l = 0 › have k = l by simp
with ‹k ∗ i − l ∗ j = 0 › have k ∗ i = k ∗ j by simp
with ‹k 6= 0 › show i = j by simp

qed

lemma proj2-Col-coeff-unique:
assumes a 6= r
and proj2-abs (i ∗R proj2-rep a + proj2-rep r)
= proj2-abs (j ∗R proj2-rep a + proj2-rep r)
shows i = j

proof −
let ?a ′ = proj2-rep a
let ?r ′ = proj2-rep r
have ?a ′ 6= 0 and ?r ′ 6= 0 by (rule proj2-rep-non-zero)+

from ‹a 6= r› have proj2-abs ?a ′ 6= proj2-abs ?r ′ by (simp add: proj2-abs-rep)
with ‹?a ′ 6= 0 › and ‹?r ′ 6= 0 ›

and ‹proj2-abs (i ∗R ?a ′ + ?r ′) = proj2-abs (j ∗R ?a ′ + ?r ′)›
and proj2-Col-coeff-unique ′

show i = j by simp
qed

datatype proj2-line = P2L proj2

definition L2P :: proj2-line ⇒ proj2 where
L2P l , case l of P2L p ⇒ p

lemma L2P-P2L [simp]: L2P (P2L p) = p
unfolding L2P-def
by simp

lemma P2L-L2P [simp]: P2L (L2P l) = l
by (induct l) simp

lemma L2P-inj [simp]:
assumes L2P l = L2P m
shows l = m
using P2L-L2P [of l] and assms
by simp

53

lemma P2L-to-L2P: P2L p = l ←→ p = L2P l
proof

assume P2L p = l
hence L2P (P2L p) = L2P l by simp
thus p = L2P l by simp

next
assume p = L2P l
thus P2L p = l by simp

qed

definition proj2-line-abs :: real^3 ⇒ proj2-line where
proj2-line-abs v , P2L (proj2-abs v)

definition proj2-line-rep :: proj2-line ⇒ real^3 where
proj2-line-rep l , proj2-rep (L2P l)

lemma proj2-line-rep-abs:
assumes v 6= 0
shows ∃ k. k 6= 0 ∧ proj2-line-rep (proj2-line-abs v) = k ∗R v
unfolding proj2-line-rep-def and proj2-line-abs-def
using proj2-rep-abs2 and ‹v 6= 0 ›
by simp

lemma proj2-line-abs-rep [simp]: proj2-line-abs (proj2-line-rep l) = l
unfolding proj2-line-abs-def and proj2-line-rep-def
by (simp add: proj2-abs-rep)

lemma proj2-line-rep-non-zero: proj2-line-rep l 6= 0
unfolding proj2-line-rep-def
using proj2-rep-non-zero
by simp

lemma proj2-line-rep-dependent:
assumes i ∗R proj2-line-rep l + j ∗R proj2-line-rep m = 0
and i 6= 0 ∨ j 6= 0
shows l = m
using proj2-rep-dependent [of i L2P l j L2P m] and assms
unfolding proj2-line-rep-def
by simp

lemma proj2-line-abs-mult:
assumes k 6= 0
shows proj2-line-abs (k ∗R v) = proj2-line-abs v
unfolding proj2-line-abs-def
using ‹k 6= 0 ›
by (subst proj2-abs-mult) simp-all

lemma proj2-line-abs-abs-mult:
assumes proj2-line-abs v = proj2-line-abs w and w 6= 0

54

shows ∃ k. v = k ∗R w
using assms
by (unfold proj2-line-abs-def) (simp add: proj2-abs-abs-mult)

definition proj2-incident :: proj2 ⇒ proj2-line ⇒ bool where
proj2-incident p l , (proj2-rep p) · (proj2-line-rep l) = 0

lemma proj2-points-define-line:
shows ∃ l. proj2-incident p l ∧ proj2-incident q l

proof −
let ?p ′ = proj2-rep p
let ?q ′ = proj2-rep q
let ?B = {?p ′, ?q ′}
from card-suc-ge-insert [of ?p ′ {?q ′}] have card ?B ≤ 2 by simp
with dim-le-card ′ [of ?B] have dim ?B < 3 by simp
with lowdim-subset-hyperplane [of ?B]
obtain l ′ where l ′ 6= 0 and span ?B ⊆ {x. l ′ · x = 0} by auto
let ?l = proj2-line-abs l ′
let ?l ′′ = proj2-line-rep ?l
from proj2-line-rep-abs and ‹l ′ 6= 0 ›
obtain k where ?l ′′ = k ∗R l ′ by auto

have ?p ′ ∈ ?B and ?q ′ ∈ ?B by simp-all
with span-superset [of ?B] and ‹span ?B ⊆ {x. l ′ · x = 0}›
have l ′ · ?p ′ = 0 and l ′ · ?q ′ = 0 by auto
hence ?p ′ · l ′ = 0 and ?q ′ · l ′ = 0 by (simp-all add: inner-commute)
with dot-scaleR-mult(2) [of - k l ′] and ‹?l ′′ = k ∗R l ′›
have proj2-incident p ?l ∧ proj2-incident q ?l

unfolding proj2-incident-def
by simp

thus ∃ l. proj2-incident p l ∧ proj2-incident q l by auto
qed

definition proj2-line-through :: proj2 ⇒ proj2 ⇒ proj2-line where
proj2-line-through p q , ε l. proj2-incident p l ∧ proj2-incident q l

lemma proj2-line-through-incident:
shows proj2-incident p (proj2-line-through p q)
and proj2-incident q (proj2-line-through p q)
unfolding proj2-line-through-def
using proj2-points-define-line

and someI-ex [of λ l. proj2-incident p l ∧ proj2-incident q l]
by simp-all

lemma proj2-line-through-unique:
assumes p 6= q and proj2-incident p l and proj2-incident q l
shows l = proj2-line-through p q

proof −
let ?l ′ = proj2-line-rep l

55

let ?m = proj2-line-through p q
let ?m ′ = proj2-line-rep ?m
let ?p ′ = proj2-rep p
let ?q ′ = proj2-rep q
let ?A = {?p ′, ?q ′}
let ?B = insert ?m ′ ?A
from proj2-line-through-incident
have proj2-incident p ?m and proj2-incident q ?m by simp-all
with ‹proj2-incident p l› and ‹proj2-incident q l›
have ortho:

∧
w. w∈?A =⇒ orthogonal ?m ′ w

∧
w. w∈?A =⇒ orthogonal ?l ′ w

unfolding proj2-incident-def and orthogonal-def
by (metis empty-iff inner-commute insert-iff)+

from proj2-rep-independent and ‹p 6= q› have independent ?A by simp
from proj2-line-rep-non-zero have ?m ′ 6= 0 by simp
with orthogonal-independent ‹independent ?A› ortho
have independent ?B by auto

from proj2-rep-inj and ‹p 6= q› have ?p ′ 6= ?q ′

unfolding inj-on-def
by auto

hence card ?A = 2 by simp
moreover have ?m ′ /∈ ?A

using ortho(1) orthogonal-self proj2-line-rep-non-zero by auto
ultimately have card ?B = 3 by simp
with independent-is-basis [of ?B] and ‹independent ?B›
have is-basis ?B by simp
with basis-expand obtain c where ?l ′ = (

∑
v∈?B. c v ∗R v) by auto

let ?l ′′ = ?l ′ − c ?m ′ ∗R ?m ′

from ‹?l ′ = (
∑

v∈?B. c v ∗R v)› and ‹?m ′ /∈ ?A›
have ?l ′′ = (

∑
v∈?A. c v ∗R v) by simp

with orthogonal-sum [of ?A] ortho
have orthogonal ?l ′ ?l ′′ and orthogonal ?m ′ ?l ′′

by (simp-all add: scalar-equiv)
from ‹orthogonal ?m ′ ?l ′′›
have orthogonal (c ?m ′ ∗R ?m ′) ?l ′′ by (simp add: orthogonal-clauses)
with ‹orthogonal ?l ′ ?l ′′›
have orthogonal ?l ′′ ?l ′′ by (simp add: orthogonal-clauses)
with orthogonal-self-eq-0 [of ?l ′′] have ?l ′′ = 0 by simp
with proj2-line-rep-dependent [of 1 l − c ?m ′ ?m] show l = ?m by simp

qed

lemma proj2-incident-unique:
assumes proj2-incident p l
and proj2-incident q l
and proj2-incident p m
and proj2-incident q m
shows p = q ∨ l = m

proof cases
assume p = q

56

thus p = q ∨ l = m ..
next

assume p 6= q
with ‹proj2-incident p l› and ‹proj2-incident q l›

and proj2-line-through-unique
have l = proj2-line-through p q by simp
moreover from ‹p 6= q› and ‹proj2-incident p m› and ‹proj2-incident q m›
have m = proj2-line-through p q by (rule proj2-line-through-unique)
ultimately show p = q ∨ l = m by simp

qed

lemma proj2-lines-define-point: ∃ p. proj2-incident p l ∧ proj2-incident p m
proof −

let ?l ′ = L2P l
let ?m ′ = L2P m
from proj2-points-define-line [of ?l ′ ?m ′]
obtain p ′ where proj2-incident ?l ′ p ′ ∧ proj2-incident ?m ′ p ′ by auto
hence proj2-incident (L2P p ′) l ∧ proj2-incident (L2P p ′) m

unfolding proj2-incident-def and proj2-line-rep-def
by (simp add: inner-commute)

thus ∃ p. proj2-incident p l ∧ proj2-incident p m by auto
qed

definition proj2-intersection :: proj2-line ⇒ proj2-line ⇒ proj2 where
proj2-intersection l m , L2P (proj2-line-through (L2P l) (L2P m))

lemma proj2-incident-switch:
assumes proj2-incident p l
shows proj2-incident (L2P l) (P2L p)
using assms
unfolding proj2-incident-def and proj2-line-rep-def
by (simp add: inner-commute)

lemma proj2-intersection-incident:
shows proj2-incident (proj2-intersection l m) l
and proj2-incident (proj2-intersection l m) m
using proj2-line-through-incident(1) [of L2P l L2P m]

and proj2-line-through-incident(2) [of L2P m L2P l]
and proj2-incident-switch [of L2P l]
and proj2-incident-switch [of L2P m]

unfolding proj2-intersection-def
by simp-all

lemma proj2-intersection-unique:
assumes l 6= m and proj2-incident p l and proj2-incident p m
shows p = proj2-intersection l m

proof −
from ‹l 6= m› have L2P l 6= L2P m by auto
from ‹proj2-incident p l› and ‹proj2-incident p m›

57

and proj2-incident-switch
have proj2-incident (L2P l) (P2L p) and proj2-incident (L2P m) (P2L p)

by simp-all
with ‹L2P l 6= L2P m› and proj2-line-through-unique
have P2L p = proj2-line-through (L2P l) (L2P m) by simp
thus p = proj2-intersection l m

unfolding proj2-intersection-def
by (simp add: P2L-to-L2P)

qed

lemma proj2-not-self-incident:
¬ (proj2-incident p (P2L p))
unfolding proj2-incident-def and proj2-line-rep-def
using proj2-rep-non-zero and inner-eq-zero-iff [of proj2-rep p]
by simp

lemma proj2-another-point-on-line:
∃ q. q 6= p ∧ proj2-incident q l

proof −
let ?m = P2L p
let ?q = proj2-intersection l ?m
from proj2-intersection-incident
have proj2-incident ?q l and proj2-incident ?q ?m by simp-all
from ‹proj2-incident ?q ?m› and proj2-not-self-incident have ?q 6= p by auto
with ‹proj2-incident ?q l› show ∃ q. q 6= p ∧ proj2-incident q l by auto

qed

lemma proj2-another-line-through-point:
∃ m. m 6= l ∧ proj2-incident p m

proof −
from proj2-another-point-on-line
obtain q where q 6= L2P l ∧ proj2-incident q (P2L p) by auto
with proj2-incident-switch [of q P2L p]
have P2L q 6= l ∧ proj2-incident p (P2L q) by auto
thus ∃ m. m 6= l ∧ proj2-incident p m ..

qed

lemma proj2-incident-abs:
assumes v 6= 0 and w 6= 0
shows proj2-incident (proj2-abs v) (proj2-line-abs w) ←→ v · w = 0

proof −
from ‹v 6= 0 › and proj2-rep-abs2
obtain j where j 6= 0 and proj2-rep (proj2-abs v) = j ∗R v by auto

from ‹w 6= 0 › and proj2-line-rep-abs
obtain k where k 6= 0

and proj2-line-rep (proj2-line-abs w) = k ∗R w
by auto

with ‹j 6= 0 › and ‹proj2-rep (proj2-abs v) = j ∗R v›

58

show proj2-incident (proj2-abs v) (proj2-line-abs w) ←→ v · w = 0
unfolding proj2-incident-def
by (simp add: dot-scaleR-mult)

qed

lemma proj2-incident-left-abs:
assumes v 6= 0
shows proj2-incident (proj2-abs v) l ←→ v · (proj2-line-rep l) = 0

proof −
have proj2-line-rep l 6= 0 by (rule proj2-line-rep-non-zero)
with ‹v 6= 0 › and proj2-incident-abs [of v proj2-line-rep l]
show proj2-incident (proj2-abs v) l ←→ v · (proj2-line-rep l) = 0 by simp

qed

lemma proj2-incident-right-abs:
assumes v 6= 0
shows proj2-incident p (proj2-line-abs v) ←→ (proj2-rep p) · v = 0

proof −
have proj2-rep p 6= 0 by (rule proj2-rep-non-zero)
with ‹v 6= 0 › and proj2-incident-abs [of proj2-rep p v]
show proj2-incident p (proj2-line-abs v) ←→ (proj2-rep p) · v = 0

by (simp add: proj2-abs-rep)
qed

definition proj2-set-Col :: proj2 set ⇒ bool where
proj2-set-Col S , ∃ l. ∀ p∈S . proj2-incident p l

lemma proj2-subset-Col:
assumes T ⊆ S and proj2-set-Col S
shows proj2-set-Col T
using ‹T ⊆ S› and ‹proj2-set-Col S›
by (unfold proj2-set-Col-def) auto

definition proj2-no-3-Col :: proj2 set ⇒ bool where
proj2-no-3-Col S , card S = 4 ∧ (∀ p∈S . ¬ proj2-set-Col (S − {p}))

lemma proj2-Col-iff-not-invertible:
proj2-Col p q r
←→ ¬ invertible (vector [proj2-rep p, proj2-rep q, proj2-rep r] :: real^3^3)
(is - ←→ ¬ invertible (vector [?u, ?v, ?w]))

proof −
let ?M = vector [?u,?v,?w] :: real^3^3
have proj2-Col p q r ←→ (∃ x. x 6= 0 ∧ x v∗ ?M = 0)
proof

assume proj2-Col p q r
then obtain i and j and k

where i 6= 0 ∨ j 6= 0 ∨ k 6= 0 and i ∗R ?u + j ∗R ?v + k ∗R ?w = 0
unfolding proj2-Col-def
by auto

59

let ?x = vector [i,j,k] :: real^3
from ‹i 6= 0 ∨ j 6= 0 ∨ k 6= 0 ›
have ?x 6= 0

unfolding vector-def
by (simp add: vec-eq-iff forall-3)

moreover {
from ‹i ∗R ?u + j ∗R ?v + k ∗R ?w = 0 ›
have ?x v∗ ?M = 0

unfolding vector-def and vector-matrix-mult-def
by (simp add: sum-3 vec-eq-iff algebra-simps) }

ultimately show ∃ x. x 6= 0 ∧ x v∗ ?M = 0 by auto
next

assume ∃ x. x 6= 0 ∧ x v∗ ?M = 0
then obtain x where x 6= 0 and x v∗ ?M = 0 by auto
let ?i = x$1
let ?j = x$2
let ?k = x$3
from ‹x 6= 0 › have ?i 6= 0 ∨ ?j 6= 0 ∨ ?k 6= 0 by (simp add: vec-eq-iff forall-3)
moreover {

from ‹x v∗ ?M = 0 ›
have ?i ∗R ?u + ?j ∗R ?v + ?k ∗R ?w = 0

unfolding vector-matrix-mult-def and sum-3 and vector-def
by (simp add: vec-eq-iff algebra-simps) }

ultimately show proj2-Col p q r
unfolding proj2-Col-def
by auto

qed
also from matrix-right-invertible-ker [of ?M]
have . . . ←→ ¬ (∃ M ′. ?M ∗∗ M ′ = mat 1) by auto
also from matrix-left-right-inverse
have . . . ←→ ¬ invertible ?M

unfolding invertible-def
by auto

finally show proj2-Col p q r ←→ ¬ invertible ?M .
qed

lemma not-invertible-iff-proj2-set-Col:
¬ invertible (vector [proj2-rep p, proj2-rep q, proj2-rep r] :: real^3^3)
←→ proj2-set-Col {p,q,r}
(is ¬ invertible ?M ←→ -)

proof −
from left-invertible-iff-invertible
have ¬ invertible ?M ←→ ¬ (∃ M ′. M ′ ∗∗ ?M = mat 1) by auto
also from matrix-left-invertible-ker [of ?M]
have . . . ←→ (∃ y. y 6= 0 ∧ ?M ∗v y = 0) by auto
also have . . . ←→ (∃ l. ∀ s∈{p,q,r}. proj2-incident s l)
proof

assume ∃ y. y 6= 0 ∧ ?M ∗v y = 0
then obtain y where y 6= 0 and ?M ∗v y = 0 by auto

60

let ?l = proj2-line-abs y
from ‹?M ∗v y = 0 ›
have ∀ s∈{p,q,r}. proj2-rep s · y = 0

unfolding vector-def
and matrix-vector-mult-def
and inner-vec-def
and sum-3

by (simp add: vec-eq-iff forall-3)
with ‹y 6= 0 › and proj2-incident-right-abs
have ∀ s∈{p,q,r}. proj2-incident s ?l by simp
thus ∃ l. ∀ s∈{p,q,r}. proj2-incident s l ..

next
assume ∃ l. ∀ s∈{p,q,r}. proj2-incident s l
then obtain l where ∀ s∈{p,q,r}. proj2-incident s l ..
let ?y = proj2-line-rep l
have ?y 6= 0 by (rule proj2-line-rep-non-zero)
moreover {

from ‹∀ s∈{p,q,r}. proj2-incident s l›
have ?M ∗v ?y = 0

unfolding vector-def
and matrix-vector-mult-def
and inner-vec-def
and sum-3
and proj2-incident-def

by (simp add: vec-eq-iff) }
ultimately show ∃ y. y 6= 0 ∧ ?M ∗v y = 0 by auto

qed
finally show ¬ invertible ?M ←→ proj2-set-Col {p,q,r}

unfolding proj2-set-Col-def .
qed

lemma proj2-Col-iff-set-Col:
proj2-Col p q r ←→ proj2-set-Col {p,q,r}
by (simp add: proj2-Col-iff-not-invertible

not-invertible-iff-proj2-set-Col)

lemma proj2-incident-Col:
assumes proj2-incident p l and proj2-incident q l and proj2-incident r l
shows proj2-Col p q r

proof −
from ‹proj2-incident p l› and ‹proj2-incident q l› and ‹proj2-incident r l›
have proj2-set-Col {p,q,r} by (unfold proj2-set-Col-def) auto
thus proj2-Col p q r by (subst proj2-Col-iff-set-Col)

qed

lemma proj2-incident-iff-Col:
assumes p 6= q and proj2-incident p l and proj2-incident q l
shows proj2-incident r l ←→ proj2-Col p q r

proof

61

assume proj2-incident r l
with ‹proj2-incident p l› and ‹proj2-incident q l›
show proj2-Col p q r by (rule proj2-incident-Col)

next
assume proj2-Col p q r
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
then obtain m where ∀ s∈{p,q,r}. proj2-incident s m

unfolding proj2-set-Col-def ..
hence proj2-incident p m and proj2-incident q m and proj2-incident r m

by simp-all
from ‹p 6= q› and ‹proj2-incident p l› and ‹proj2-incident q l›

and ‹proj2-incident p m› and ‹proj2-incident q m›
and proj2-incident-unique

have m = l by auto
with ‹proj2-incident r m› show proj2-incident r l by simp

qed

lemma proj2-incident-iff :
assumes p 6= q and proj2-incident p l and proj2-incident q l
shows proj2-incident r l
←→ r = p ∨ (∃ k. r = proj2-abs (k ∗R proj2-rep p + proj2-rep q))

proof −
from ‹p 6= q› and ‹proj2-incident p l› and ‹proj2-incident q l›
have proj2-incident r l ←→ proj2-Col p q r by (rule proj2-incident-iff-Col)
with ‹p 6= q› and proj2-Col-iff
show proj2-incident r l
←→ r = p ∨ (∃ k. r = proj2-abs (k ∗R proj2-rep p + proj2-rep q))
by simp

qed

lemma not-proj2-set-Col-iff-span:
assumes card S = 3
shows ¬ proj2-set-Col S ←→ span (proj2-rep ‘ S) = UNIV

proof −
from ‹card S = 3 › and choose-3 [of S]
obtain p and q and r where S = {p,q,r} by auto
let ?u = proj2-rep p
let ?v = proj2-rep q
let ?w = proj2-rep r
let ?M = vector [?u, ?v, ?w] :: real^3^3
from ‹S = {p,q,r}› and not-invertible-iff-proj2-set-Col [of p q r]
have ¬ proj2-set-Col S ←→ invertible ?M by auto
also from left-invertible-iff-invertible
have . . . ←→ (∃ N . N ∗∗ ?M = mat 1) ..
also from matrix-left-invertible-span-rows
have . . . ←→ span (rows ?M) = UNIV by auto
finally have ¬ proj2-set-Col S ←→ span (rows ?M) = UNIV .

have rows ?M = {?u, ?v, ?w}

62

proof
{ fix x

assume x ∈ rows ?M
then obtain i :: 3 where x = ?M $ i

unfolding rows-def and row-def
by (auto simp add: vec-lambda-beta vec-lambda-eta)

with exhaust-3 have x = ?u ∨ x = ?v ∨ x = ?w
unfolding vector-def
by auto

hence x ∈ {?u, ?v, ?w} by simp }
thus rows ?M ⊆ {?u, ?v, ?w} ..
{ fix x

assume x ∈ {?u, ?v, ?w}
hence x = ?u ∨ x = ?v ∨ x = ?w by simp
hence x = ?M $ 1 ∨ x = ?M $ 2 ∨ x = ?M $ 3

unfolding vector-def
by simp

hence x ∈ rows ?M
unfolding rows-def row-def vec-lambda-eta
by blast }

thus {?u, ?v, ?w} ⊆ rows ?M ..
qed
with ‹S = {p,q,r}›
have rows ?M = proj2-rep ‘ S

unfolding image-def
by auto

with ‹¬ proj2-set-Col S ←→ span (rows ?M) = UNIV ›
show ¬ proj2-set-Col S ←→ span (proj2-rep ‘ S) = UNIV by simp

qed

lemma proj2-no-3-Col-span:
assumes proj2-no-3-Col S and p ∈ S
shows span (proj2-rep ‘ (S − {p})) = UNIV

proof −
from ‹proj2-no-3-Col S› have card S = 4 unfolding proj2-no-3-Col-def ..
with ‹p ∈ S› and ‹card S = 4 › and card-gt-0-diff-singleton [of S p]
have card (S − {p}) = 3 by simp

from ‹proj2-no-3-Col S› and ‹p ∈ S›
have ¬ proj2-set-Col (S − {p})

unfolding proj2-no-3-Col-def
by simp

with ‹card (S − {p}) = 3 › and not-proj2-set-Col-iff-span
show span (proj2-rep ‘ (S − {p})) = UNIV by simp

qed

lemma fourth-proj2-no-3-Col:
assumes ¬ proj2-Col p q r
shows ∃ s. proj2-no-3-Col {s,r ,p,q}

63

proof −
from ‹¬ proj2-Col p q r› and proj2-Col-coincide have p 6= q by auto
hence card {p,q} = 2 by simp

from ‹¬ proj2-Col p q r› and proj2-Col-coincide and proj2-Col-permute
have r /∈ {p,q} by fast
with ‹card {p,q} = 2 › have card {r ,p,q} = 3 by simp

have finite {r ,p,q} by simp

let ?s = proj2-abs (
∑

t∈{r ,p,q}. proj2-rep t)
have ∃ j. (

∑
t∈{r ,p,q}. proj2-rep t) = j ∗R proj2-rep ?s

proof cases
assume (

∑
t∈{r ,p,q}. proj2-rep t) = 0

hence (
∑

t∈{r ,p,q}. proj2-rep t) = 0 ∗R proj2-rep ?s by simp
thus ∃ j. (

∑
t∈{r ,p,q}. proj2-rep t) = j ∗R proj2-rep ?s ..

next
assume (

∑
t∈{r ,p,q}. proj2-rep t) 6= 0

with proj2-rep-abs2
obtain k where k 6= 0

and proj2-rep ?s = k ∗R (
∑

t∈{r ,p,q}. proj2-rep t)
by auto

hence (1/k) ∗R proj2-rep ?s = (
∑

t∈{r ,p,q}. proj2-rep t) by simp
from this [symmetric]
show ∃ j. (

∑
t∈{r ,p,q}. proj2-rep t) = j ∗R proj2-rep ?s ..

qed
then obtain j where (

∑
t∈{r ,p,q}. proj2-rep t) = j ∗R proj2-rep ?s ..

let ?c = λ t. if t = ?s then 1 − j else 1
from ‹p 6= q› have ?c p 6= 0 ∨ ?c q 6= 0 by simp

let ?d = λ t. if t = ?s then j else −1

let ?S = {?s,r ,p,q}

have ?s /∈ {r ,p,q}
proof

assume ?s ∈ {r ,p,q}

from ‹r /∈ {p,q}› and ‹p 6= q›
have ?c r ∗R proj2-rep r + ?c p ∗R proj2-rep p + ?c q ∗R proj2-rep q
= (

∑
t∈{r ,p,q}. ?c t ∗R proj2-rep t)

by (simp add: sum.insert [of - - λ t. ?c t ∗R proj2-rep t])
also from ‹finite {r ,p,q}› and ‹?s ∈ {r ,p,q}›
have . . . = ?c ?s ∗R proj2-rep ?s + (

∑
t∈{r ,p,q}−{?s}. ?c t ∗R proj2-rep t)

by (simp only:
sum.remove [of {r ,p,q} ?s λ t. ?c t ∗R proj2-rep t])

also have . . .
= −j ∗R proj2-rep ?s + (proj2-rep ?s + (

∑
t∈{r ,p,q}−{?s}. proj2-rep t))

by (simp add: algebra-simps)

64

also from ‹finite {r ,p,q}› and ‹?s ∈ {r ,p,q}›
have . . . = −j ∗R proj2-rep ?s + (

∑
t∈{r ,p,q}. proj2-rep t)

by (simp only:
sum.remove [of {r ,p,q} ?s λ t. proj2-rep t,symmetric])

also from ‹(
∑

t∈{r ,p,q}. proj2-rep t) = j ∗R proj2-rep ?s›
have . . . = 0 by simp
finally
have ?c r ∗R proj2-rep r + ?c p ∗R proj2-rep p + ?c q ∗R proj2-rep q = 0

.
with ‹?c p 6= 0 ∨ ?c q 6= 0 ›
have proj2-Col p q r

by (unfold proj2-Col-def) (auto simp add: algebra-simps)
with ‹¬ proj2-Col p q r› show False ..

qed
with ‹card {r ,p,q} = 3 › have card ?S = 4 by simp

from ‹¬ proj2-Col p q r› and proj2-Col-permute
have ¬ proj2-Col r p q by fast
hence ¬ proj2-set-Col {r ,p,q} by (subst proj2-Col-iff-set-Col [symmetric])

have ∀ u∈?S . ¬ proj2-set-Col (?S − {u})
proof

fix u
assume u ∈ ?S
with ‹card ?S = 4 › have card (?S − {u}) = 3 by simp
show ¬ proj2-set-Col (?S − {u})
proof cases

assume u = ?s
with ‹?s /∈ {r ,p,q}› have ?S − {u} = {r ,p,q} by simp
with ‹¬ proj2-set-Col {r ,p,q}› show ¬ proj2-set-Col (?S − {u}) by simp

next
assume u 6= ?s
hence insert ?s ({r ,p,q} − {u}) = ?S − {u} by auto

from ‹finite {r ,p,q}› have finite ({r ,p,q} − {u}) by simp

from ‹?s /∈ {r ,p,q}› have ?s /∈ {r ,p,q} − {u} by simp
hence ∀ t∈{r ,p,q}−{u}. ?d t = −1 by auto

from ‹u 6= ?s› and ‹u ∈ ?S› have u ∈ {r ,p,q} by simp
hence (

∑
t∈{r ,p,q}. proj2-rep t)

= proj2-rep u + (
∑

t∈{r ,p,q}−{u}. proj2-rep t)
by (simp add: sum.remove)

with ‹(
∑

t∈{r ,p,q}. proj2-rep t) = j ∗R proj2-rep ?s›
have proj2-rep u
= j ∗R proj2-rep ?s − (

∑
t∈{r ,p,q}−{u}. proj2-rep t)

by simp
also from ‹∀ t∈{r ,p,q}−{u}. ?d t = −1 ›
have . . . = j ∗R proj2-rep ?s + (

∑
t∈{r ,p,q}−{u}. ?d t ∗R proj2-rep t)

65

by (simp add: sum-negf)
also from ‹finite ({r ,p,q} − {u})› and ‹?s /∈ {r ,p,q} − {u}›
have . . . = (

∑
t∈insert ?s ({r ,p,q}−{u}). ?d t ∗R proj2-rep t)

by (simp add: sum.insert)
also from ‹insert ?s ({r ,p,q} − {u}) = ?S − {u}›
have . . . = (

∑
t∈?S−{u}. ?d t ∗R proj2-rep t) by simp

finally have proj2-rep u = (
∑

t∈?S−{u}. ?d t ∗R proj2-rep t) .
moreover
have ∀ t∈?S−{u}. ?d t ∗R proj2-rep t ∈ span (proj2-rep ‘ (?S − {u}))

by (simp add: span-clauses)
ultimately have proj2-rep u ∈ span (proj2-rep ‘ (?S − {u}))

by (metis (no-types, lifting) span-sum)

have ∀ t∈{r ,p,q}. proj2-rep t ∈ span (proj2-rep ‘ (?S − {u}))
proof

fix t
assume t ∈ {r ,p,q}
show proj2-rep t ∈ span (proj2-rep ‘ (?S − {u}))
proof cases

assume t = u
from ‹proj2-rep u ∈ span (image proj2-rep (?S − {u}))›
show proj2-rep t ∈ span (proj2-rep ‘ (?S − {u}))

by (subst ‹t = u›)
next

assume t 6= u
with ‹t ∈ {r ,p,q}›
have proj2-rep t ∈ proj2-rep ‘ (?S − {u}) by simp
with span-superset [of proj2-rep ‘ (?S − {u})]
show proj2-rep t ∈ span (proj2-rep ‘ (?S − {u})) by fast

qed
qed
hence proj2-rep ‘ {r ,p,q} ⊆ span (proj2-rep ‘ (?S − {u}))

by (simp only: image-subset-iff)
hence

span (proj2-rep ‘ {r ,p,q}) ⊆ span (span (proj2-rep ‘ (?S − {u})))
by (simp only: span-mono)

hence span (proj2-rep ‘ {r ,p,q}) ⊆ span (proj2-rep ‘ (?S − {u}))
by (simp only: span-span)

moreover
from ‹¬ proj2-set-Col {r ,p,q}›

and ‹card {r ,p,q} = 3 ›
and not-proj2-set-Col-iff-span

have span (proj2-rep ‘ {r ,p,q}) = UNIV by simp
ultimately have span (proj2-rep ‘ (?S − {u})) = UNIV by auto
with ‹card (?S − {u}) = 3 › and not-proj2-set-Col-iff-span
show ¬ proj2-set-Col (?S − {u}) by simp

qed
qed
with ‹card ?S = 4 ›

66

have proj2-no-3-Col ?S by (unfold proj2-no-3-Col-def) fast
thus ∃ s. proj2-no-3-Col {s,r ,p,q} ..

qed

lemma proj2-set-Col-expand:
assumes proj2-set-Col S and {p,q,r} ⊆ S and p 6= q and r 6= p
shows ∃ k. r = proj2-abs (k ∗R proj2-rep p + proj2-rep q)

proof −
from ‹proj2-set-Col S›
obtain l where ∀ t∈S . proj2-incident t l unfolding proj2-set-Col-def ..
with ‹{p,q,r} ⊆ S› and ‹p 6= q› and ‹r 6= p› and proj2-incident-iff [of p q l r]
show ∃ k. r = proj2-abs (k ∗R proj2-rep p + proj2-rep q) by simp

qed

7.4 Collineations of the real projective plane
typedef cltn2 =
(Collect invertible :: (real^3^3) set)//invertible-proportionality

proof
from matrix-id-invertible have (mat 1 :: real^3^3) ∈ Collect invertible

by simp
thus invertible-proportionality ‘‘ {mat 1} ∈
(Collect invertible :: (real^3^3) set)//invertible-proportionality
unfolding quotient-def
by auto

qed

definition cltn2-rep :: cltn2 ⇒ real^3^3 where
cltn2-rep A , ε B. B ∈ Rep-cltn2 A

definition cltn2-abs :: real^3^3 ⇒ cltn2 where
cltn2-abs B , Abs-cltn2 (invertible-proportionality ‘‘ {B})

definition cltn2-independent :: cltn2 set ⇒ bool where
cltn2-independent X , independent {cltn2-rep A | A. A ∈ X}

definition apply-cltn2 :: proj2 ⇒ cltn2 ⇒ proj2 where
apply-cltn2 x A , proj2-abs (proj2-rep x v∗ cltn2-rep A)

lemma cltn2-rep-in: cltn2-rep B ∈ Rep-cltn2 B
proof −

let ?A = cltn2-rep B
from quotient-element-nonempty and

invertible-proportionality-equiv and
Rep-cltn2 [of B]

have ∃ C . C ∈ Rep-cltn2 B
by auto

with someI-ex [of λ C . C ∈ Rep-cltn2 B]
show ?A ∈ Rep-cltn2 B

67

unfolding cltn2-rep-def
by simp

qed

lemma cltn2-rep-invertible: invertible (cltn2-rep A)
proof −

from
Union-quotient [of Collect invertible invertible-proportionality]
and invertible-proportionality-equiv
and Rep-cltn2 [of A] and cltn2-rep-in [of A]

have cltn2-rep A ∈ Collect invertible
unfolding quotient-def
by auto

thus invertible (cltn2-rep A)
unfolding invertible-proportionality-def
by simp

qed

lemma cltn2-rep-abs:
fixes A :: real^3^3
assumes invertible A
shows (A, cltn2-rep (cltn2-abs A)) ∈ invertible-proportionality

proof −
from ‹invertible A›
have invertible-proportionality ‘‘ {A} ∈ (Collect invertible :: (real^3^3) set)//invertible-proportionality

unfolding quotient-def
by auto

with Abs-cltn2-inverse
have Rep-cltn2 (cltn2-abs A) = invertible-proportionality ‘‘ {A}

unfolding cltn2-abs-def
by simp

with cltn2-rep-in
have cltn2-rep (cltn2-abs A) ∈ invertible-proportionality ‘‘ {A} by auto
thus (A, cltn2-rep (cltn2-abs A)) ∈ invertible-proportionality by simp

qed

lemma cltn2-rep-abs2 :
assumes invertible A
shows ∃ k. k 6= 0 ∧ cltn2-rep (cltn2-abs A) = k ∗R A

proof −
from ‹invertible A› and cltn2-rep-abs
have (A, cltn2-rep (cltn2-abs A)) ∈ invertible-proportionality by simp
then obtain c where A = c ∗R cltn2-rep (cltn2-abs A)

unfolding invertible-proportionality-def and real-vector .proportionality-def
by auto

with ‹invertible A› and zero-not-invertible have c 6= 0 by auto
hence 1/c 6= 0 by simp

let ?k = 1/c

68

from ‹A = c ∗R cltn2-rep (cltn2-abs A)›
have ?k ∗R A = ?k ∗R c ∗R cltn2-rep (cltn2-abs A) by simp
with ‹c 6= 0 › have cltn2-rep (cltn2-abs A) = ?k ∗R A by simp
with ‹?k 6= 0 ›
show ∃ k. k 6= 0 ∧ cltn2-rep (cltn2-abs A) = k ∗R A by blast

qed

lemma cltn2-abs-rep: cltn2-abs (cltn2-rep A) = A
proof −

from partition-Image-element
[of Collect invertible

invertible-proportionality
Rep-cltn2 A
cltn2-rep A]
and invertible-proportionality-equiv
and Rep-cltn2 [of A] and cltn2-rep-in [of A]

have invertible-proportionality ‘‘ {cltn2-rep A} = Rep-cltn2 A
by simp

with Rep-cltn2-inverse
show cltn2-abs (cltn2-rep A) = A

unfolding cltn2-abs-def
by simp

qed

lemma cltn2-abs-mult:
assumes k 6= 0 and invertible A
shows cltn2-abs (k ∗R A) = cltn2-abs A

proof −
from ‹k 6= 0 › and ‹invertible A› and scalar-invertible
have invertible (k ∗R A) by auto
with ‹invertible A›
have (k ∗R A, A) ∈ invertible-proportionality

unfolding invertible-proportionality-def
and real-vector .proportionality-def

by (auto simp add: zero-not-invertible)
with eq-equiv-class-iff
[of Collect invertible invertible-proportionality k ∗R A A]

and invertible-proportionality-equiv
and ‹invertible A› and ‹invertible (k ∗R A)›

have invertible-proportionality ‘‘ {k ∗R A}
= invertible-proportionality ‘‘ {A}
by simp

thus cltn2-abs (k ∗R A) = cltn2-abs A
unfolding cltn2-abs-def
by simp

qed

lemma cltn2-abs-mult-rep:
assumes k 6= 0

69

shows cltn2-abs (k ∗R cltn2-rep A) = A
using cltn2-rep-invertible and cltn2-abs-mult and cltn2-abs-rep and assms
by simp

lemma apply-cltn2-abs:
assumes x 6= 0 and invertible A
shows apply-cltn2 (proj2-abs x) (cltn2-abs A) = proj2-abs (x v∗ A)

proof −
from proj2-rep-abs2 and ‹x 6= 0 ›
obtain k where k 6= 0 and proj2-rep (proj2-abs x) = k ∗R x by auto

from cltn2-rep-abs2 and ‹invertible A›
obtain c where c 6= 0 and cltn2-rep (cltn2-abs A) = c ∗R A by auto

from ‹k 6= 0 › and ‹c 6= 0 › have k ∗ c 6= 0 by simp

from ‹proj2-rep (proj2-abs x) = k ∗R x› and ‹cltn2-rep (cltn2-abs A) = c ∗R A›
have proj2-rep (proj2-abs x) v∗ cltn2-rep (cltn2-abs A) = (k∗c) ∗R (x v∗ A)

by (simp add: scaleR-vector-matrix-assoc vector-scaleR-matrix-ac)
with ‹k ∗ c 6= 0 ›
show apply-cltn2 (proj2-abs x) (cltn2-abs A) = proj2-abs (x v∗ A)

unfolding apply-cltn2-def
by (simp add: proj2-abs-mult)

qed

lemma apply-cltn2-left-abs:
assumes v 6= 0
shows apply-cltn2 (proj2-abs v) C = proj2-abs (v v∗ cltn2-rep C)

proof −
have cltn2-abs (cltn2-rep C) = C by (rule cltn2-abs-rep)
with ‹v 6= 0 › and cltn2-rep-invertible and apply-cltn2-abs [of v cltn2-rep C]
show apply-cltn2 (proj2-abs v) C = proj2-abs (v v∗ cltn2-rep C)

by simp
qed

lemma apply-cltn2-right-abs:
assumes invertible M
shows apply-cltn2 p (cltn2-abs M) = proj2-abs (proj2-rep p v∗ M)

proof −
from proj2-rep-non-zero and ‹invertible M › and apply-cltn2-abs
have apply-cltn2 (proj2-abs (proj2-rep p)) (cltn2-abs M)
= proj2-abs (proj2-rep p v∗ M)
by simp

thus apply-cltn2 p (cltn2-abs M) = proj2-abs (proj2-rep p v∗ M)
by (simp add: proj2-abs-rep)

qed

lemma non-zero-mult-rep-non-zero:
assumes v 6= 0

70

shows v v∗ cltn2-rep C 6= 0
using ‹v 6= 0 › and cltn2-rep-invertible and times-invertible-eq-zero
by auto

lemma rep-mult-rep-non-zero: proj2-rep p v∗ cltn2-rep A 6= 0
using proj2-rep-non-zero
by (rule non-zero-mult-rep-non-zero)

definition cltn2-image :: proj2 set ⇒ cltn2 ⇒ proj2 set where
cltn2-image P A , {apply-cltn2 p A | p. p ∈ P}

7.4.1 As a group
definition cltn2-id :: cltn2 where

cltn2-id , cltn2-abs (mat 1)

definition cltn2-compose :: cltn2 ⇒ cltn2 ⇒ cltn2 where
cltn2-compose A B , cltn2-abs (cltn2-rep A ∗∗ cltn2-rep B)

definition cltn2-inverse :: cltn2 ⇒ cltn2 where
cltn2-inverse A , cltn2-abs (matrix-inv (cltn2-rep A))

lemma cltn2-compose-abs:
assumes invertible M and invertible N
shows cltn2-compose (cltn2-abs M) (cltn2-abs N) = cltn2-abs (M ∗∗ N)

proof −
from ‹invertible M › and ‹invertible N › and invertible-mult
have invertible (M ∗∗ N) by auto

from ‹invertible M › and ‹invertible N › and cltn2-rep-abs2
obtain j and k where j 6= 0 and k 6= 0

and cltn2-rep (cltn2-abs M) = j ∗R M
and cltn2-rep (cltn2-abs N) = k ∗R N
by blast

from ‹j 6= 0 › and ‹k 6= 0 › have j ∗ k 6= 0 by simp

from ‹cltn2-rep (cltn2-abs M) = j ∗R M › and ‹cltn2-rep (cltn2-abs N) = k ∗R
N ›

have cltn2-rep (cltn2-abs M) ∗∗ cltn2-rep (cltn2-abs N)
= (j ∗ k) ∗R (M ∗∗ N)
by (simp add: matrix-scalar-ac scalar-matrix-assoc [symmetric])

with ‹j ∗ k 6= 0 › and ‹invertible (M ∗∗ N)›
show cltn2-compose (cltn2-abs M) (cltn2-abs N) = cltn2-abs (M ∗∗ N)

unfolding cltn2-compose-def
by (simp add: cltn2-abs-mult)

qed

lemma cltn2-compose-left-abs:

71

assumes invertible M
shows cltn2-compose (cltn2-abs M) A = cltn2-abs (M ∗∗ cltn2-rep A)

proof −
from ‹invertible M › and cltn2-rep-invertible and cltn2-compose-abs
have cltn2-compose (cltn2-abs M) (cltn2-abs (cltn2-rep A))
= cltn2-abs (M ∗∗ cltn2-rep A)
by simp

thus cltn2-compose (cltn2-abs M) A = cltn2-abs (M ∗∗ cltn2-rep A)
by (simp add: cltn2-abs-rep)

qed

lemma cltn2-compose-right-abs:
assumes invertible M
shows cltn2-compose A (cltn2-abs M) = cltn2-abs (cltn2-rep A ∗∗ M)

proof −
from ‹invertible M › and cltn2-rep-invertible and cltn2-compose-abs
have cltn2-compose (cltn2-abs (cltn2-rep A)) (cltn2-abs M)
= cltn2-abs (cltn2-rep A ∗∗ M)
by simp

thus cltn2-compose A (cltn2-abs M) = cltn2-abs (cltn2-rep A ∗∗ M)
by (simp add: cltn2-abs-rep)

qed

lemma cltn2-abs-rep-abs-mult:
assumes invertible M and invertible N
shows cltn2-abs (cltn2-rep (cltn2-abs M) ∗∗ N) = cltn2-abs (M ∗∗ N)

proof −
from ‹invertible M › and ‹invertible N ›
have invertible (M ∗∗ N) by (simp add: invertible-mult)

from ‹invertible M › and cltn2-rep-abs2
obtain k where k 6= 0 and cltn2-rep (cltn2-abs M) = k ∗R M by auto
from ‹cltn2-rep (cltn2-abs M) = k ∗R M ›
have cltn2-rep (cltn2-abs M) ∗∗ N = k ∗R M ∗∗ N by simp
with ‹k 6= 0 › and ‹invertible (M ∗∗ N)› and cltn2-abs-mult
show cltn2-abs (cltn2-rep (cltn2-abs M) ∗∗ N) = cltn2-abs (M ∗∗ N)

by (simp add: scalar-matrix-assoc [symmetric])
qed

lemma cltn2-assoc:
cltn2-compose (cltn2-compose A B) C = cltn2-compose A (cltn2-compose B C)

proof −
let ?A ′ = cltn2-rep A
let ?B ′ = cltn2-rep B
let ?C ′ = cltn2-rep C
from cltn2-rep-invertible
have invertible ?A ′ and invertible ?B ′ and invertible ?C ′ by simp-all
with invertible-mult
have invertible (?A ′ ∗∗ ?B ′) and invertible (?B ′ ∗∗ ?C ′)

72

and invertible (?A ′ ∗∗ ?B ′ ∗∗ ?C ′)
by auto

from ‹invertible (?A ′ ∗∗ ?B ′)› and ‹invertible ?C ′› and cltn2-abs-rep-abs-mult
have cltn2-abs (cltn2-rep (cltn2-abs (?A ′ ∗∗ ?B ′)) ∗∗ ?C ′)
= cltn2-abs (?A ′ ∗∗ ?B ′ ∗∗ ?C ′)
by simp

from ‹invertible (?B ′ ∗∗ ?C ′)› and cltn2-rep-abs2 [of ?B ′ ∗∗ ?C ′]
obtain k where k 6= 0

and cltn2-rep (cltn2-abs (?B ′ ∗∗ ?C ′)) = k ∗R (?B ′ ∗∗ ?C ′)
by auto

from ‹cltn2-rep (cltn2-abs (?B ′ ∗∗ ?C ′)) = k ∗R (?B ′ ∗∗ ?C ′)›
have ?A ′ ∗∗ cltn2-rep (cltn2-abs (?B ′ ∗∗ ?C ′)) = k ∗R (?A ′ ∗∗ ?B ′ ∗∗ ?C ′)

by (simp add: matrix-scalar-ac matrix-mul-assoc scalar-matrix-assoc)
with ‹k 6= 0 › and ‹invertible (?A ′ ∗∗ ?B ′ ∗∗ ?C ′)›

and cltn2-abs-mult [of k ?A ′ ∗∗ ?B ′ ∗∗ ?C ′]
have cltn2-abs (?A ′ ∗∗ cltn2-rep (cltn2-abs (?B ′ ∗∗ ?C ′)))
= cltn2-abs (?A ′ ∗∗ ?B ′ ∗∗ ?C ′)
by simp

with ‹cltn2-abs (cltn2-rep (cltn2-abs (?A ′ ∗∗ ?B ′)) ∗∗ ?C ′)
= cltn2-abs (?A ′ ∗∗ ?B ′ ∗∗ ?C ′)›

show
cltn2-compose (cltn2-compose A B) C = cltn2-compose A (cltn2-compose B C)
unfolding cltn2-compose-def
by simp

qed

lemma cltn2-left-id: cltn2-compose cltn2-id A = A
proof −

let ?A ′ = cltn2-rep A
from cltn2-rep-invertible have invertible ?A ′ by simp
with matrix-id-invertible and cltn2-abs-rep-abs-mult [of mat 1 ?A ′]
have cltn2-compose cltn2-id A = cltn2-abs (cltn2-rep A)

unfolding cltn2-compose-def and cltn2-id-def
by (auto simp add: matrix-mul-lid)

with cltn2-abs-rep show cltn2-compose cltn2-id A = A by simp
qed

lemma cltn2-left-inverse: cltn2-compose (cltn2-inverse A) A = cltn2-id
proof −

let ?M = cltn2-rep A
let ?M ′ = matrix-inv ?M
from cltn2-rep-invertible have invertible ?M by simp
with matrix-inv-invertible have invertible ?M ′ by auto
with ‹invertible ?M › and cltn2-abs-rep-abs-mult
have cltn2-compose (cltn2-inverse A) A = cltn2-abs (?M ′ ∗∗ ?M)

unfolding cltn2-compose-def and cltn2-inverse-def
by simp

with ‹invertible ?M ›

73

show cltn2-compose (cltn2-inverse A) A = cltn2-id
unfolding cltn2-id-def
by (simp add: matrix-inv)

qed

lemma cltn2-left-inverse-ex:
∃ B. cltn2-compose B A = cltn2-id
using cltn2-left-inverse ..

interpretation cltn2 :
group (|carrier = UNIV , mult = cltn2-compose, one = cltn2-id|)
using cltn2-assoc and cltn2-left-id and cltn2-left-inverse-ex

and groupI [of (|carrier = UNIV , mult = cltn2-compose, one = cltn2-id|)]
by simp-all

lemma cltn2-inverse-inv [simp]:
inv(|carrier = UNIV , mult = cltn2-compose, one = cltn2-id|) A
= cltn2-inverse A
using cltn2-left-inverse [of A] and cltn2 .inv-equality
by simp

lemmas cltn2-inverse-id [simp] = cltn2 .inv-one [simplified]
and cltn2-inverse-compose = cltn2 .inv-mult-group [simplified]

7.4.2 As a group action
lemma apply-cltn2-id [simp]: apply-cltn2 p cltn2-id = p
proof −

from matrix-id-invertible and apply-cltn2-right-abs
have apply-cltn2 p cltn2-id = proj2-abs (proj2-rep p v∗ mat 1)

unfolding cltn2-id-def by blast
thus apply-cltn2 p cltn2-id = p

by (simp add: proj2-abs-rep)
qed

lemma apply-cltn2-compose:
apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (cltn2-compose A B)

proof −
from rep-mult-rep-non-zero and cltn2-rep-invertible and apply-cltn2-abs
have apply-cltn2 (apply-cltn2 p A) (cltn2-abs (cltn2-rep B))
= proj2-abs ((proj2-rep p v∗ cltn2-rep A) v∗ cltn2-rep B)
unfolding apply-cltn2-def [of p A]
by simp

hence apply-cltn2 (apply-cltn2 p A) B
= proj2-abs (proj2-rep p v∗ (cltn2-rep A ∗∗ cltn2-rep B))
by (simp add: cltn2-abs-rep vector-matrix-mul-assoc)

from cltn2-rep-invertible and invertible-mult
have invertible (cltn2-rep A ∗∗ cltn2-rep B) by auto

74

with apply-cltn2-right-abs
have apply-cltn2 p (cltn2-compose A B)
= proj2-abs (proj2-rep p v∗ (cltn2-rep A ∗∗ cltn2-rep B))
unfolding cltn2-compose-def
by simp

with ‹apply-cltn2 (apply-cltn2 p A) B
= proj2-abs (proj2-rep p v∗ (cltn2-rep A ∗∗ cltn2-rep B))›

show apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (cltn2-compose A B)
by simp

qed

interpretation cltn2 :
action (|carrier = UNIV , mult = cltn2-compose, one = cltn2-id|) apply-cltn2

proof
let ?G = (|carrier = UNIV , mult = cltn2-compose, one = cltn2-id|)
fix p
show apply-cltn2 p 1?G = p by simp
fix A B
have apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (A ⊗?G B)

by simp (rule apply-cltn2-compose)
thus A ∈ carrier ?G ∧ B ∈ carrier ?G
−→ apply-cltn2 (apply-cltn2 p A) B = apply-cltn2 p (A ⊗?G B)
..

qed

definition cltn2-transpose :: cltn2 ⇒ cltn2 where
cltn2-transpose A , cltn2-abs (transpose (cltn2-rep A))

definition apply-cltn2-line :: proj2-line ⇒ cltn2 ⇒ proj2-line where
apply-cltn2-line l A
, P2L (apply-cltn2 (L2P l) (cltn2-transpose (cltn2-inverse A)))

lemma cltn2-transpose-abs:
assumes invertible M
shows cltn2-transpose (cltn2-abs M) = cltn2-abs (transpose M)

proof −
from ‹invertible M › and transpose-invertible have invertible (transpose M) by

auto

from ‹invertible M › and cltn2-rep-abs2
obtain k where k 6= 0 and cltn2-rep (cltn2-abs M) = k ∗R M by auto

from ‹cltn2-rep (cltn2-abs M) = k ∗R M ›
have transpose (cltn2-rep (cltn2-abs M)) = k ∗R transpose M

by (simp add: transpose-scalar)
with ‹k 6= 0 › and ‹invertible (transpose M)›
show cltn2-transpose (cltn2-abs M) = cltn2-abs (transpose M)

unfolding cltn2-transpose-def
by (simp add: cltn2-abs-mult)

75

qed

lemma cltn2-transpose-compose:
cltn2-transpose (cltn2-compose A B)
= cltn2-compose (cltn2-transpose B) (cltn2-transpose A)

proof −
from cltn2-rep-invertible
have invertible (cltn2-rep A) and invertible (cltn2-rep B)

by simp-all
with transpose-invertible
have invertible (transpose (cltn2-rep A))

and invertible (transpose (cltn2-rep B))
by auto

from ‹invertible (cltn2-rep A)› and ‹invertible (cltn2-rep B)›
and invertible-mult

have invertible (cltn2-rep A ∗∗ cltn2-rep B) by auto
with ‹invertible (cltn2-rep A ∗∗ cltn2-rep B)› and cltn2-transpose-abs
have cltn2-transpose (cltn2-compose A B)
= cltn2-abs (transpose (cltn2-rep A ∗∗ cltn2-rep B))
unfolding cltn2-compose-def
by simp

also have . . . = cltn2-abs (transpose (cltn2-rep B) ∗∗ transpose (cltn2-rep A))
by (simp add: matrix-transpose-mul)

also from ‹invertible (transpose (cltn2-rep B))›
and ‹invertible (transpose (cltn2-rep A))›
and cltn2-compose-abs

have . . . = cltn2-compose (cltn2-transpose B) (cltn2-transpose A)
unfolding cltn2-transpose-def
by simp

finally show cltn2-transpose (cltn2-compose A B)
= cltn2-compose (cltn2-transpose B) (cltn2-transpose A) .

qed

lemma cltn2-transpose-transpose: cltn2-transpose (cltn2-transpose A) = A
proof −

from cltn2-rep-invertible have invertible (cltn2-rep A) by simp
with transpose-invertible have invertible (transpose (cltn2-rep A)) by auto
with cltn2-transpose-abs [of transpose (cltn2-rep A)]
have

cltn2-transpose (cltn2-transpose A) = cltn2-abs (transpose (transpose (cltn2-rep
A)))

unfolding cltn2-transpose-def [of A]
by simp

with cltn2-abs-rep and transpose-transpose [of cltn2-rep A]
show cltn2-transpose (cltn2-transpose A) = A by simp

qed

lemma cltn2-transpose-id [simp]: cltn2-transpose cltn2-id = cltn2-id

76

using cltn2-transpose-abs
unfolding cltn2-id-def
by (simp add: transpose-mat matrix-id-invertible)

lemma apply-cltn2-line-id [simp]: apply-cltn2-line l cltn2-id = l
unfolding apply-cltn2-line-def
by simp

lemma apply-cltn2-line-compose:
apply-cltn2-line (apply-cltn2-line l A) B
= apply-cltn2-line l (cltn2-compose A B)

proof −
have cltn2-compose
(cltn2-transpose (cltn2-inverse A)) (cltn2-transpose (cltn2-inverse B))
= cltn2-transpose (cltn2-inverse (cltn2-compose A B))
by (simp add: cltn2-transpose-compose cltn2-inverse-compose)

thus apply-cltn2-line (apply-cltn2-line l A) B
= apply-cltn2-line l (cltn2-compose A B)
unfolding apply-cltn2-line-def
by (simp add: apply-cltn2-compose)

qed

interpretation cltn2-line:
action
(|carrier = UNIV , mult = cltn2-compose, one = cltn2-id|)
apply-cltn2-line

proof
let ?G = (|carrier = UNIV , mult = cltn2-compose, one = cltn2-id|)
fix l
show apply-cltn2-line l 1?G = l by simp
fix A B
have apply-cltn2-line (apply-cltn2-line l A) B
= apply-cltn2-line l (A ⊗?G B)
by simp (rule apply-cltn2-line-compose)

thus A ∈ carrier ?G ∧ B ∈ carrier ?G
−→ apply-cltn2-line (apply-cltn2-line l A) B
= apply-cltn2-line l (A ⊗?G B)
..

qed

lemmas apply-cltn2-inv [simp] = cltn2 .act-act-inv [simplified]
lemmas apply-cltn2-line-inv [simp] = cltn2-line.act-act-inv [simplified]

lemma apply-cltn2-line-alt-def :
apply-cltn2-line l A
= proj2-line-abs (cltn2-rep (cltn2-inverse A) ∗v proj2-line-rep l)

proof −
have invertible (cltn2-rep (cltn2-inverse A)) by (rule cltn2-rep-invertible)
hence invertible (transpose (cltn2-rep (cltn2-inverse A)))

77

by (rule transpose-invertible)
hence

apply-cltn2 (L2P l) (cltn2-transpose (cltn2-inverse A))
= proj2-abs (proj2-rep (L2P l) v∗ transpose (cltn2-rep (cltn2-inverse A)))
unfolding cltn2-transpose-def
by (rule apply-cltn2-right-abs)

hence apply-cltn2 (L2P l) (cltn2-transpose (cltn2-inverse A))
= proj2-abs (cltn2-rep (cltn2-inverse A) ∗v proj2-line-rep l)
unfolding proj2-line-rep-def
by simp

thus apply-cltn2-line l A
= proj2-line-abs (cltn2-rep (cltn2-inverse A) ∗v proj2-line-rep l)
unfolding apply-cltn2-line-def and proj2-line-abs-def ..

qed

lemma rep-mult-line-rep-non-zero: cltn2-rep A ∗v proj2-line-rep l 6= 0
using proj2-line-rep-non-zero and cltn2-rep-invertible

and invertible-times-eq-zero
by auto

lemma apply-cltn2-incident:
proj2-incident p (apply-cltn2-line l A)
←→ proj2-incident (apply-cltn2 p (cltn2-inverse A)) l

proof −
have proj2-rep p v∗ cltn2-rep (cltn2-inverse A) 6= 0

by (rule rep-mult-rep-non-zero)
with proj2-rep-abs2
obtain j where j 6= 0

and proj2-rep (proj2-abs (proj2-rep p v∗ cltn2-rep (cltn2-inverse A)))
= j ∗R (proj2-rep p v∗ cltn2-rep (cltn2-inverse A))
by auto

let ?v = cltn2-rep (cltn2-inverse A) ∗v proj2-line-rep l
have ?v 6= 0 by (rule rep-mult-line-rep-non-zero)
with proj2-line-rep-abs [of ?v]
obtain k where k 6= 0

and proj2-line-rep (proj2-line-abs ?v) = k ∗R ?v
by auto

hence proj2-incident p (apply-cltn2-line l A)
←→ proj2-rep p · (cltn2-rep (cltn2-inverse A) ∗v proj2-line-rep l) = 0
unfolding proj2-incident-def and apply-cltn2-line-alt-def
by (simp add: dot-scaleR-mult)

also from dot-lmul-matrix [of proj2-rep p cltn2-rep (cltn2-inverse A)]
have
. . . ←→ (proj2-rep p v∗ cltn2-rep (cltn2-inverse A)) · proj2-line-rep l = 0
by simp

also from ‹j 6= 0 ›
and ‹proj2-rep (proj2-abs (proj2-rep p v∗ cltn2-rep (cltn2-inverse A)))
= j ∗R (proj2-rep p v∗ cltn2-rep (cltn2-inverse A))›

78

have . . . ←→ proj2-incident (apply-cltn2 p (cltn2-inverse A)) l
unfolding proj2-incident-def and apply-cltn2-def
by (simp add: dot-scaleR-mult)

finally show ?thesis .
qed

lemma apply-cltn2-preserve-incident [iff]:
proj2-incident (apply-cltn2 p A) (apply-cltn2-line l A)
←→ proj2-incident p l
by (simp add: apply-cltn2-incident)

lemma apply-cltn2-preserve-set-Col:
assumes proj2-set-Col S
shows proj2-set-Col {apply-cltn2 p C | p. p ∈ S}

proof −
from ‹proj2-set-Col S›
obtain l where ∀ p∈S . proj2-incident p l unfolding proj2-set-Col-def ..
hence ∀ q ∈ {apply-cltn2 p C | p. p ∈ S}.

proj2-incident q (apply-cltn2-line l C)
by auto

thus proj2-set-Col {apply-cltn2 p C | p. p ∈ S}
unfolding proj2-set-Col-def ..

qed

lemma apply-cltn2-injective:
assumes apply-cltn2 p C = apply-cltn2 q C
shows p = q

proof −
from ‹apply-cltn2 p C = apply-cltn2 q C ›
have apply-cltn2 (apply-cltn2 p C) (cltn2-inverse C)
= apply-cltn2 (apply-cltn2 q C) (cltn2-inverse C)
by simp

thus p = q by simp
qed

lemma apply-cltn2-line-injective:
assumes apply-cltn2-line l C = apply-cltn2-line m C
shows l = m

proof −
from ‹apply-cltn2-line l C = apply-cltn2-line m C ›
have apply-cltn2-line (apply-cltn2-line l C) (cltn2-inverse C)
= apply-cltn2-line (apply-cltn2-line m C) (cltn2-inverse C)
by simp

thus l = m by simp
qed

lemma apply-cltn2-line-unique:
assumes p 6= q and proj2-incident p l and proj2-incident q l
and proj2-incident (apply-cltn2 p C) m

79

and proj2-incident (apply-cltn2 q C) m
shows apply-cltn2-line l C = m

proof −
from ‹proj2-incident p l›
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line l C) by simp

from ‹proj2-incident q l›
have proj2-incident (apply-cltn2 q C) (apply-cltn2-line l C) by simp

from ‹p 6= q› and apply-cltn2-injective [of p C q]
have apply-cltn2 p C 6= apply-cltn2 q C by auto
with ‹proj2-incident (apply-cltn2 p C) (apply-cltn2-line l C)›

and ‹proj2-incident (apply-cltn2 q C) (apply-cltn2-line l C)›
and ‹proj2-incident (apply-cltn2 p C) m›
and ‹proj2-incident (apply-cltn2 q C) m›
and proj2-incident-unique

show apply-cltn2-line l C = m by fast
qed

lemma apply-cltn2-unique:
assumes l 6= m and proj2-incident p l and proj2-incident p m
and proj2-incident q (apply-cltn2-line l C)
and proj2-incident q (apply-cltn2-line m C)
shows apply-cltn2 p C = q

proof −
from ‹proj2-incident p l›
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line l C) by simp

from ‹proj2-incident p m›
have proj2-incident (apply-cltn2 p C) (apply-cltn2-line m C) by simp

from ‹l 6= m› and apply-cltn2-line-injective [of l C m]
have apply-cltn2-line l C 6= apply-cltn2-line m C by auto
with ‹proj2-incident (apply-cltn2 p C) (apply-cltn2-line l C)›

and ‹proj2-incident (apply-cltn2 p C) (apply-cltn2-line m C)›
and ‹proj2-incident q (apply-cltn2-line l C)›
and ‹proj2-incident q (apply-cltn2-line m C)›
and proj2-incident-unique

show apply-cltn2 p C = q by fast
qed

7.4.3 Parts of some Statements from [1]

All theorems with names beginning with statement are based on correspond-
ing theorems in [1].
lemma statement52-existence:

fixes a :: proj2^3 and a3 :: proj2
assumes proj2-no-3-Col (insert a3 (range (($) a)))
shows ∃ A. apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) A = a3 ∧

80

(∀ j. apply-cltn2 (proj2-abs (axis j 1)) A = a$j)
proof −

let ?v = proj2-rep a3
let ?B = proj2-rep ‘ range (($) a)

from ‹proj2-no-3-Col (insert a3 (range (($) a)))›
have card (insert a3 (range (($) a))) = 4 unfolding proj2-no-3-Col-def ..

from card-image-le [of UNIV ($) a]
have card (range (($) a)) ≤ 3 by simp
with card-insert-if [of range (($) a) a3]

and ‹card (insert a3 (range (($) a))) = 4 ›
have a3 /∈ range (($) a) by auto
hence (insert a3 (range (($) a))) − {a3} = range (($) a) by simp
with ‹proj2-no-3-Col (insert a3 (range (($) a)))›

and proj2-no-3-Col-span [of insert a3 (range (($) a)) a3]
have span ?B = UNIV by simp

from card-suc-ge-insert [of a3 range (($) a)]
and ‹card (insert a3 (range (($) a))) = 4 ›
and ‹card (range (($) a)) ≤ 3 ›

have card (range (($) a)) = 3 by simp
with card-image [of proj2-rep range (($) a)]

and proj2-rep-inj
and subset-inj-on

have card ?B = 3 by auto
hence finite ?B by simp
with ‹span ?B = UNIV › and span-finite [of ?B]
obtain c where (

∑
w ∈ ?B. (c w) ∗R w) = ?v

by (auto simp add: scalar-equiv) (metis (no-types, lifting) UNIV-I rangeE)
let ?C = χ i. c (proj2-rep (a$i)) ∗R (proj2-rep (a$i))
let ?A = cltn2-abs ?C

from proj2-rep-inj and ‹a3 /∈ range (($) a)› have ?v /∈ ?B
unfolding inj-on-def
by auto

have ∀ i. c (proj2-rep (a$i)) 6= 0
proof

fix i
let ?Bi = proj2-rep ‘ (range (($) a) − {a$i})

have a$i ∈ insert a3 (range (($) a)) by simp

have proj2-rep (a$i) ∈ ?B by auto

from image-set-diff [of proj2-rep] and proj2-rep-inj
have ?Bi = ?B − {proj2-rep (a$i)} by simp
with sum-diff1 [of ?B λ w. (c w) ∗R w]

81

and ‹finite ?B›
and ‹proj2-rep (a$i) ∈ ?B›

have (
∑

w ∈ ?Bi. (c w) ∗R w) =
(
∑

w ∈ ?B. (c w) ∗R w) − c (proj2-rep (a$i)) ∗R proj2-rep (a$i)
by simp

from ‹a3 /∈ range (($) a)› have a3 6= a$i by auto
hence insert a3 (range (($) a)) − {a$i} =

insert a3 (range (($) a) − {a$i}) by auto
hence proj2-rep ‘ (insert a3 (range (($) a)) − {a$i}) = insert ?v ?Bi

by simp
moreover from ‹proj2-no-3-Col (insert a3 (range (($) a)))›

and ‹a$i ∈ insert a3 (range (($) a))›
have span (proj2-rep ‘ (insert a3 (range (($) a)) − {a$i})) = UNIV

by (rule proj2-no-3-Col-span)
ultimately have span (insert ?v ?Bi) = UNIV by simp

from ‹?Bi = ?B − {proj2-rep (a$i)}›
and ‹proj2-rep (a$i) ∈ ?B›
and ‹card ?B = 3 ›

have card ?Bi = 2 by (simp add: card-gt-0-diff-singleton)
hence finite ?Bi by simp
with ‹card ?Bi = 2 › and dim-le-card ′ [of ?Bi] have dim ?Bi ≤ 2 by simp
hence dim (span ?Bi) ≤ 2 by (subst dim-span)
then have span ?Bi 6= UNIV

by clarify (auto simp: dim-UNIV)
with ‹span (insert ?v ?Bi) = UNIV › and span-redundant
have ?v /∈ span ?Bi by auto

{ assume c (proj2-rep (a$i)) = 0
with ‹(

∑
w ∈ ?Bi. (c w) ∗R w) =

(
∑

w ∈ ?B. (c w) ∗R w) − c (proj2-rep (a$i)) ∗R proj2-rep (a$i)›
and ‹(

∑
w ∈ ?B. (c w) ∗R w) = ?v›

have ?v = (
∑

w ∈ ?Bi. (c w) ∗R w)
by simp

with span-finite [of ?Bi] and ‹finite ?Bi›
have ?v ∈ span ?Bi by (simp add: scalar-equiv)
with ‹?v /∈ span ?Bi› have False .. }

thus c (proj2-rep (a$i)) 6= 0 ..
qed
hence ∀ w∈?B. c w 6= 0

unfolding image-def
by auto

have rows ?C = (λ w. (c w) ∗R w) ‘ ?B
unfolding rows-def

and row-def
and image-def

by (auto simp: vec-lambda-eta)

82

have ∀ x. x ∈ span (rows ?C)
proof

fix x :: real^3
from ‹finite ?B› and span-finite [of ?B] and ‹span ?B = UNIV ›
obtain ub where (

∑
w∈?B. (ub w) ∗R w) = x

by (auto simp add: scalar-equiv) (metis (no-types, lifting) UNIV-I rangeE)
have ∀ w∈?B. (ub w) ∗R w ∈ span (rows ?C)
proof

fix w
assume w ∈ ?B
with span-superset [of rows ?C] and ‹rows ?C = image (λ w. (c w) ∗R w)

?B›
have (c w) ∗R w ∈ span (rows ?C) by auto
with span-mul [of (c w) ∗R w rows ?C (ub w)/(c w)]
have ((ub w)/(c w)) ∗R ((c w) ∗R w) ∈ span (rows ?C)

by (simp add: scalar-equiv)
with ‹∀ w∈?B. c w 6= 0 › and ‹w ∈ ?B›
show (ub w) ∗R w ∈ span (rows ?C) by auto

qed
with span-sum [of ?B λ w. (ub w) ∗R w] and ‹finite ?B›
have (

∑
w∈?B. (ub w) ∗R w) ∈ span (rows ?C) by blast

with ‹(
∑

w∈?B. (ub w) ∗R w) = x› show x ∈ span (rows ?C) by simp
qed
hence span (rows ?C) = UNIV by auto
with matrix-left-invertible-span-rows [of ?C]
have ∃ C ′. C ′ ∗∗ ?C = mat 1 ..
with left-invertible-iff-invertible
have invertible ?C ..

have (vector [1 ,1 ,1] :: real^3) 6= 0
unfolding vector-def
by (simp add: vec-eq-iff forall-3)

with apply-cltn2-abs and ‹invertible ?C ›
have apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) ?A =

proj2-abs (vector [1 ,1 ,1] v∗ ?C)
by simp

from inj-on-iff-eq-card [of UNIV ($) a] and ‹card (range (($) a)) = 3 ›
have inj (($) a) by simp
from exhaust-3 have ∀ i::3 . (vector [1 ::real,1 ,1])$i = 1

unfolding vector-def
by auto

with vector-matrix-row [of vector [1 ,1 ,1] ?C]
have (vector [1 ,1 ,1]) v∗ ?C =
(
∑

i∈UNIV . (c (proj2-rep (a$i))) ∗R (proj2-rep (a$i)))
by simp

also from sum.reindex
[of ($) a UNIV λ x. (c (proj2-rep x)) ∗R (proj2-rep x)]

and ‹inj (($) a)›

83

have . . . = (
∑

x∈(range (($) a)). (c (proj2-rep x)) ∗R (proj2-rep x))
by simp

also from sum.reindex
[of proj2-rep range (($) a) λ w. (c w) ∗R w]

and proj2-rep-inj and subset-inj-on [of proj2-rep UNIV range (($) a)]
have . . . = (

∑
w∈?B. (c w) ∗R w) by simp

also from ‹(
∑

w ∈ ?B. (c w) ∗R w) = ?v› have . . . = ?v by simp
finally have (vector [1 ,1 ,1]) v∗ ?C = ?v .
with ‹apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) ?A =

proj2-abs (vector [1 ,1 ,1] v∗ ?C)›
have apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) ?A = proj2-abs ?v by simp
with proj2-abs-rep have apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) ?A = a3

by simp
have ∀ j. apply-cltn2 (proj2-abs (axis j 1)) ?A = a$j
proof

fix j :: 3
have ((axis j 1)::real^3) 6= 0 by (simp add: vec-eq-iff axis-def)
with apply-cltn2-abs and ‹invertible ?C ›
have apply-cltn2 (proj2-abs (axis j 1)) ?A = proj2-abs (axis j 1 v∗ ?C)

by simp

have ∀ i∈(UNIV−{j}).
((axis j 1)$i ∗ c (proj2-rep (a$i))) ∗R (proj2-rep (a$i)) = 0
by (simp add: axis-def)

with sum.mono-neutral-left [of UNIV {j}
λ i. ((axis j 1)$i ∗ c (proj2-rep (a$i))) ∗R (proj2-rep (a$i))]
and vector-matrix-row [of axis j 1 ?C]

have (axis j 1) v∗ ?C = ?C$j by (simp add: scalar-equiv)
hence (axis j 1) v∗ ?C = c (proj2-rep (a$j)) ∗R (proj2-rep (a$j)) by simp
with proj2-abs-mult-rep and ‹∀ i. c (proj2-rep (a$i)) 6= 0 ›

and ‹apply-cltn2 (proj2-abs (axis j 1)) ?A = proj2-abs (axis j 1 v∗ ?C)›
show apply-cltn2 (proj2-abs (axis j 1)) ?A = a$j

by simp
qed
with ‹apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) ?A = a3 ›
show ∃ A. apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) A = a3 ∧
(∀ j. apply-cltn2 (proj2-abs (axis j 1)) A = a$j)
by auto

qed

lemma statement53-existence:
fixes p :: proj2^4^2
assumes ∀ i. proj2-no-3-Col (range (($) (p$i)))
shows ∃ C . ∀ j. apply-cltn2 (p0j) C = p1j

proof −
let ?q = χ i. χ j::3 . p$i $ (of-int (Rep-bit1 j))
let ?D = χ i. ε D. apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) D = pi3
∧ (∀ j ′. apply-cltn2 (proj2-abs (axis j ′ 1)) D = ?qij ′)

have ∀ i. apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) (?D$i) = p$i$3

84

∧ (∀ j ′. apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$i) = ?q$i$j ′)
proof

fix i
have range (($) (p$i)) = insert (pi3) (range (($) (?q$i)))
proof

show range (($) (p$i)) ⊇ insert (pi3) (range (($) (?q$i))) by auto
show range (($) (p$i)) ⊆ insert (pi3) (range (($) (?q$i)))
proof

fix r
assume r ∈ range (($) (p$i))
then obtain j where r = pij by auto
with eq-3-or-of-3 [of j]
show r ∈ insert (pi3) (range (($) (?q$i))) by auto

qed
qed
moreover from ‹∀ i. proj2-no-3-Col (range (($) (p$i)))›
have proj2-no-3-Col (range (($) (p$i))) ..
ultimately have proj2-no-3-Col (insert (pi3) (range (($) (?q$i))))

by simp
hence ∃ D. apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) D = pi3
∧ (∀ j ′. apply-cltn2 (proj2-abs (axis j ′ 1)) D = ?qij ′)
by (rule statement52-existence)

with someI-ex [of λ D. apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) D = pi3
∧ (∀ j ′. apply-cltn2 (proj2-abs (axis j ′ 1)) D = ?qij ′)]

show apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) (?D$i) = p$i$3
∧ (∀ j ′. apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$i) = ?q$i$j ′)
by simp

qed
hence apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) (?D$0) = p$0$3

and apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) (?D$1) = p$1$3
and ∀ j ′. apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$0) = ?q$0$j ′
and ∀ j ′. apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$1) = ?q$1$j ′
by simp-all

let ?C = cltn2-compose (cltn2-inverse (?D$0)) (?D$1)
have ∀ j. apply-cltn2 (p0j) ?C = p1j
proof

fix j
show apply-cltn2 (p0j) ?C = p1j
proof cases

assume j = 3
with ‹apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) (?D$0) = p$0$3 ›

and cltn2 .act-inv-iff
have

apply-cltn2 (p0j) (cltn2-inverse (?D$0)) = proj2-abs (vector [1 ,1 ,1])
by simp

with ‹apply-cltn2 (proj2-abs (vector [1 ,1 ,1])) (?D$1) = p$1$3 ›
and ‹j = 3 ›
and cltn2 .act-act [of cltn2-inverse (?D$0) ?D$1 p0j]

85

show apply-cltn2 (p0j) ?C = p1j by simp
next

assume j 6= 3
with eq-3-or-of-3 obtain j ′ :: 3 where j = of-int (Rep-bit1 j ′)

by metis
with ‹∀ j ′. apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$0) = ?q$0$j ′›

and ‹∀ j ′. apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$1) = ?q$1$j ′›
have p0j = apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$0)

and p1j = apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$1)
by simp-all

from ‹p0j = apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$0)›
and cltn2 .act-inv-iff

have apply-cltn2 (p0j) (cltn2-inverse (?D$0)) = proj2-abs (axis j ′ 1)
by simp

with ‹p1j = apply-cltn2 (proj2-abs (axis j ′ 1)) (?D$1)›
and cltn2 .act-act [of cltn2-inverse (?D$0) ?D$1 p0j]

show apply-cltn2 (p0j) ?C = p1j by simp
qed

qed
thus ∃ C . ∀ j. apply-cltn2 (p0j) C = p1j by (rule exI [of - ?C])

qed

lemma apply-cltn2-linear :
assumes j ∗R v + k ∗R w 6= 0
shows j ∗R (v v∗ cltn2-rep C) + k ∗R (w v∗ cltn2-rep C) 6= 0
(is ?u 6= 0)
and apply-cltn2 (proj2-abs (j ∗R v + k ∗R w)) C
= proj2-abs (j ∗R (v v∗ cltn2-rep C) + k ∗R (w v∗ cltn2-rep C))

proof −
have ?u = (j ∗R v + k ∗R w) v∗ cltn2-rep C

by (simp only: vector-matrix-left-distrib scaleR-vector-matrix-assoc)
with ‹j ∗R v + k ∗R w 6= 0 › and non-zero-mult-rep-non-zero
show ?u 6= 0 by simp

from ‹?u = (j ∗R v + k ∗R w) v∗ cltn2-rep C ›
and ‹j ∗R v + k ∗R w 6= 0 ›
and apply-cltn2-left-abs

show apply-cltn2 (proj2-abs (j ∗R v + k ∗R w)) C = proj2-abs ?u
by simp

qed

lemma apply-cltn2-imp-mult:
assumes apply-cltn2 p C = q
shows ∃ k. k 6= 0 ∧ proj2-rep p v∗ cltn2-rep C = k ∗R proj2-rep q

proof −
have proj2-rep p v∗ cltn2-rep C 6= 0 by (rule rep-mult-rep-non-zero)

from ‹apply-cltn2 p C = q›
have proj2-abs (proj2-rep p v∗ cltn2-rep C) = q by (unfold apply-cltn2-def)

86

hence proj2-rep (proj2-abs (proj2-rep p v∗ cltn2-rep C)) = proj2-rep q
by simp

with ‹proj2-rep p v∗ cltn2-rep C 6= 0 › and proj2-rep-abs2 [of proj2-rep p v∗
cltn2-rep C]

have ∃ j. j 6= 0 ∧ proj2-rep q = j ∗R (proj2-rep p v∗ cltn2-rep C) by simp
then obtain j where j 6= 0

and proj2-rep q = j ∗R (proj2-rep p v∗ cltn2-rep C) by auto
hence proj2-rep p v∗ cltn2-rep C = (1/j) ∗R proj2-rep q

by (simp add: field-simps)
with ‹j 6= 0 ›
show ∃ k. k 6= 0 ∧ proj2-rep p v∗ cltn2-rep C = k ∗R proj2-rep q

by (simp add: exI [of - 1/j])
qed

lemma statement55 :
assumes p 6= q
and apply-cltn2 p C = q
and apply-cltn2 q C = p
and proj2-incident p l
and proj2-incident q l
and proj2-incident r l
shows apply-cltn2 (apply-cltn2 r C) C = r

proof cases
assume r = p
with ‹apply-cltn2 p C = q› and ‹apply-cltn2 q C = p›
show apply-cltn2 (apply-cltn2 r C) C = r by simp

next
assume r 6= p

from ‹apply-cltn2 p C = q› and apply-cltn2-imp-mult [of p C q]
obtain i where i 6= 0 and proj2-rep p v∗ cltn2-rep C = i ∗R proj2-rep q

by auto

from ‹apply-cltn2 q C = p› and apply-cltn2-imp-mult [of q C p]
obtain j where j 6= 0 and proj2-rep q v∗ cltn2-rep C = j ∗R proj2-rep p

by auto

from ‹p 6= q›
and ‹proj2-incident p l›
and ‹proj2-incident q l›
and ‹proj2-incident r l›
and proj2-incident-iff

have r = p ∨ (∃ k. r = proj2-abs (k ∗R proj2-rep p + proj2-rep q))
by fast

with ‹r 6= p›
obtain k where r = proj2-abs (k ∗R proj2-rep p + proj2-rep q) by auto

from ‹p 6= q› and proj2-rep-dependent [of k p 1 q]
have k ∗R proj2-rep p + proj2-rep q 6= 0 by auto

87

with ‹r = proj2-abs (k ∗R proj2-rep p + proj2-rep q)›
and apply-cltn2-linear [of k proj2-rep p 1 proj2-rep q]

have k ∗R (proj2-rep p v∗ cltn2-rep C) + proj2-rep q v∗ cltn2-rep C 6= 0
and apply-cltn2 r C
= proj2-abs
(k ∗R (proj2-rep p v∗ cltn2-rep C) + proj2-rep q v∗ cltn2-rep C)
by simp-all

with ‹proj2-rep p v∗ cltn2-rep C = i ∗R proj2-rep q›
and ‹proj2-rep q v∗ cltn2-rep C = j ∗R proj2-rep p›

have (k ∗ i) ∗R proj2-rep q + j ∗R proj2-rep p 6= 0
and apply-cltn2 r C
= proj2-abs ((k ∗ i) ∗R proj2-rep q + j ∗R proj2-rep p)
by simp-all

with apply-cltn2-linear
have apply-cltn2 (apply-cltn2 r C) C
= proj2-abs
((k ∗ i) ∗R (proj2-rep q v∗ cltn2-rep C)
+ j ∗R (proj2-rep p v∗ cltn2-rep C))
by simp

with ‹proj2-rep p v∗ cltn2-rep C = i ∗R proj2-rep q›
and ‹proj2-rep q v∗ cltn2-rep C = j ∗R proj2-rep p›

have apply-cltn2 (apply-cltn2 r C) C
= proj2-abs ((k ∗ i ∗ j) ∗R proj2-rep p + (j ∗ i) ∗R proj2-rep q)
by simp

also have . . . = proj2-abs ((i ∗ j) ∗R (k ∗R proj2-rep p + proj2-rep q))
by (simp add: algebra-simps)

also from ‹i 6= 0 › and ‹j 6= 0 › and proj2-abs-mult
have . . . = proj2-abs (k ∗R proj2-rep p + proj2-rep q) by simp
also from ‹r = proj2-abs (k ∗R proj2-rep p + proj2-rep q)›
have . . . = r by simp
finally show apply-cltn2 (apply-cltn2 r C) C = r .

qed

7.5 Cross ratios
definition cross-ratio :: proj2 ⇒ proj2 ⇒ proj2 ⇒ proj2 ⇒ real where

cross-ratio p q r s , proj2-Col-coeff p q s / proj2-Col-coeff p q r

definition cross-ratio-correct :: proj2 ⇒ proj2 ⇒ proj2 ⇒ proj2 ⇒ bool where
cross-ratio-correct p q r s ,
proj2-set-Col {p,q,r ,s} ∧ p 6= q ∧ r 6= p ∧ s 6= p ∧ r 6= q

lemma proj2-Col-coeff-abs:
assumes p 6= q and j 6= 0
shows proj2-Col-coeff p q (proj2-abs (i ∗R proj2-rep p + j ∗R proj2-rep q))
= i/j
(is proj2-Col-coeff p q ?r = i/j)

proof −
from ‹j 6= 0 ›

88

and proj2-abs-mult [of 1/j i ∗R proj2-rep p + j ∗R proj2-rep q]
have ?r = proj2-abs ((i/j) ∗R proj2-rep p + proj2-rep q)

by (simp add: scaleR-right-distrib)

from ‹p 6= q› and proj2-rep-dependent [of - p 1 q]
have (i/j) ∗R proj2-rep p + proj2-rep q 6= 0 by auto
with ‹?r = proj2-abs ((i/j) ∗R proj2-rep p + proj2-rep q)›

and proj2-rep-abs2
obtain k where k 6= 0

and proj2-rep ?r = k ∗R ((i/j) ∗R proj2-rep p + proj2-rep q)
by auto

hence (k∗i/j) ∗R proj2-rep p + k ∗R proj2-rep q − proj2-rep ?r = 0
by (simp add: scaleR-right-distrib)

hence ∃ l. (k∗i/j) ∗R proj2-rep p + k ∗R proj2-rep q + l ∗R proj2-rep ?r = 0
∧ (k∗i/j 6= 0 ∨ k 6= 0 ∨ l 6= 0)
by (simp add: exI [of - −1])

hence proj2-Col p q ?r by (unfold proj2-Col-def) auto

have ?r 6= p
proof

assume ?r = p
with ‹(k∗i/j) ∗R proj2-rep p + k ∗R proj2-rep q − proj2-rep ?r = 0 ›
have (k∗i/j − 1) ∗R proj2-rep p + k ∗R proj2-rep q = 0

by (simp add: algebra-simps)
with ‹k 6= 0 › and proj2-rep-dependent have p = q by simp
with ‹p 6= q› show False ..

qed
with ‹proj2-Col p q ?r› and ‹p 6= q›
have ?r = proj2-abs (proj2-Col-coeff p q ?r ∗R proj2-rep p + proj2-rep q)

by (rule proj2-Col-coeff)
with ‹p 6= q› and ‹?r = proj2-abs ((i/j) ∗R proj2-rep p + proj2-rep q)›

and proj2-Col-coeff-unique
show proj2-Col-coeff p q ?r = i/j by simp

qed

lemma proj2-set-Col-coeff :
assumes proj2-set-Col S and {p,q,r} ⊆ S and p 6= q and r 6= p
shows r = proj2-abs (proj2-Col-coeff p q r ∗R proj2-rep p + proj2-rep q)
(is r = proj2-abs (?i ∗R ?u + ?v))

proof −
from ‹{p,q,r} ⊆ S› and ‹proj2-set-Col S›
have proj2-set-Col {p,q,r} by (rule proj2-subset-Col)
hence proj2-Col p q r by (subst proj2-Col-iff-set-Col)
with ‹p 6= q› and ‹r 6= p› and proj2-Col-coeff
show r = proj2-abs (?i ∗R ?u + ?v) by simp

qed

lemma cross-ratio-abs:
fixes u v :: real^3 and i j k l :: real

89

assumes u 6= 0 and v 6= 0 and proj2-abs u 6= proj2-abs v
and j 6= 0 and l 6= 0
shows cross-ratio (proj2-abs u) (proj2-abs v)
(proj2-abs (i ∗R u + j ∗R v))
(proj2-abs (k ∗R u + l ∗R v))
= j ∗ k / (i ∗ l)
(is cross-ratio ?p ?q ?r ?s = -)

proof −
from ‹u 6= 0 › and proj2-rep-abs2
obtain g where g 6= 0 and proj2-rep ?p = g ∗R u by auto

from ‹v 6= 0 › and proj2-rep-abs2
obtain h where h 6= 0 and proj2-rep ?q = h ∗R v by auto
with ‹g 6= 0 › and ‹proj2-rep ?p = g ∗R u›
have ?r = proj2-abs ((i/g) ∗R proj2-rep ?p + (j/h) ∗R proj2-rep ?q)

and ?s = proj2-abs ((k/g) ∗R proj2-rep ?p + (l/h) ∗R proj2-rep ?q)
by (simp-all add: field-simps)

with ‹?p 6= ?q› and ‹h 6= 0 › and ‹j 6= 0 › and ‹l 6= 0 › and proj2-Col-coeff-abs
have proj2-Col-coeff ?p ?q ?r = h∗i/(g∗j)

and proj2-Col-coeff ?p ?q ?s = h∗k/(g∗l)
by simp-all

with ‹g 6= 0 › and ‹h 6= 0 ›
show cross-ratio ?p ?q ?r ?s = j∗k/(i∗l)

by (unfold cross-ratio-def) (simp add: field-simps)
qed

lemma cross-ratio-abs2 :
assumes p 6= q
shows cross-ratio p q
(proj2-abs (i ∗R proj2-rep p + proj2-rep q))
(proj2-abs (j ∗R proj2-rep p + proj2-rep q))
= j/i
(is cross-ratio p q ?r ?s = -)

proof −
let ?u = proj2-rep p
let ?v = proj2-rep q
have ?u 6= 0 and ?v 6= 0 by (rule proj2-rep-non-zero)+

have proj2-abs ?u = p and proj2-abs ?v = q by (rule proj2-abs-rep)+
with ‹?u 6= 0 › and ‹?v 6= 0 › and ‹p 6= q› and cross-ratio-abs [of ?u ?v 1 1 i j]
show cross-ratio p q ?r ?s = j/i by simp

qed

lemma cross-ratio-correct-cltn2 :
assumes cross-ratio-correct p q r s
shows cross-ratio-correct (apply-cltn2 p C) (apply-cltn2 q C)
(apply-cltn2 r C) (apply-cltn2 s C)
(is cross-ratio-correct ?pC ?qC ?rC ?sC)

proof −

90

from ‹cross-ratio-correct p q r s›
have proj2-set-Col {p,q,r ,s}

and p 6= q and r 6= p and s 6= p and r 6= q
by (unfold cross-ratio-correct-def) simp-all

have {apply-cltn2 t C | t. t ∈ {p,q,r ,s}} = {?pC ,?qC ,?rC ,?sC} by auto
with ‹proj2-set-Col {p,q,r ,s}›

and apply-cltn2-preserve-set-Col [of {p,q,r ,s} C]
have proj2-set-Col {?pC ,?qC ,?rC ,?sC} by simp

from ‹p 6= q› and ‹r 6= p› and ‹s 6= p› and ‹r 6= q› and apply-cltn2-injective
have ?pC 6= ?qC and ?rC 6= ?pC and ?sC 6= ?pC and ?rC 6= ?qC by fast+
with ‹proj2-set-Col {?pC ,?qC ,?rC ,?sC}›
show cross-ratio-correct ?pC ?qC ?rC ?sC

by (unfold cross-ratio-correct-def) simp
qed

lemma cross-ratio-cltn2 :
assumes proj2-set-Col {p,q,r ,s} and p 6= q and r 6= p and s 6= p
shows cross-ratio (apply-cltn2 p C) (apply-cltn2 q C)
(apply-cltn2 r C) (apply-cltn2 s C)
= cross-ratio p q r s
(is cross-ratio ?pC ?qC ?rC ?sC = -)

proof −
let ?u = proj2-rep p
let ?v = proj2-rep q
let ?i = proj2-Col-coeff p q r
let ?j = proj2-Col-coeff p q s
from ‹proj2-set-Col {p,q,r ,s}› and ‹p 6= q› and ‹r 6= p› and ‹s 6= p›

and proj2-set-Col-coeff
have r = proj2-abs (?i ∗R ?u + ?v) and s = proj2-abs (?j ∗R ?u + ?v)

by simp-all

let ?uC = ?u v∗ cltn2-rep C
let ?vC = ?v v∗ cltn2-rep C
have ?uC 6= 0 and ?vC 6= 0 by (rule rep-mult-rep-non-zero)+

have proj2-abs ?uC = ?pC and proj2-abs ?vC = ?qC
by (unfold apply-cltn2-def) simp-all

from ‹p 6= q› and apply-cltn2-injective have ?pC 6= ?qC by fast

from ‹p 6= q› and proj2-rep-dependent [of - p 1 q]
have ?i ∗R ?u + ?v 6= 0 and ?j ∗R ?u + ?v 6= 0 by auto
with ‹r = proj2-abs (?i ∗R ?u + ?v)› and ‹s = proj2-abs (?j ∗R ?u + ?v)›

and apply-cltn2-linear [of ?i ?u 1 ?v]
and apply-cltn2-linear [of ?j ?u 1 ?v]

have ?rC = proj2-abs (?i ∗R ?uC + ?vC)
and ?sC = proj2-abs (?j ∗R ?uC + ?vC)

91

by simp-all
with ‹?uC 6= 0 › and ‹?vC 6= 0 › and ‹proj2-abs ?uC = ?pC ›

and ‹proj2-abs ?vC = ?qC › and ‹?pC 6= ?qC ›
and cross-ratio-abs [of ?uC ?vC 1 1 ?i ?j]

have cross-ratio ?pC ?qC ?rC ?sC = ?j/?i by simp
thus cross-ratio ?pC ?qC ?rC ?sC = cross-ratio p q r s

unfolding cross-ratio-def [of p q r s] .
qed

lemma cross-ratio-unique:
assumes cross-ratio-correct p q r s and cross-ratio-correct p q r t
and cross-ratio p q r s = cross-ratio p q r t
shows s = t

proof −
from ‹cross-ratio-correct p q r s› and ‹cross-ratio-correct p q r t›
have proj2-set-Col {p,q,r ,s} and proj2-set-Col {p,q,r ,t}

and p 6= q and r 6= p and r 6= q and s 6= p and t 6= p
by (unfold cross-ratio-correct-def) simp-all

let ?u = proj2-rep p
let ?v = proj2-rep q
let ?i = proj2-Col-coeff p q r
let ?j = proj2-Col-coeff p q s
let ?k = proj2-Col-coeff p q t
from ‹proj2-set-Col {p,q,r ,s}› and ‹proj2-set-Col {p,q,r ,t}›

and ‹p 6= q› and ‹r 6= p› and ‹s 6= p› and ‹t 6= p› and proj2-set-Col-coeff
have r = proj2-abs (?i ∗R ?u + ?v)

and s = proj2-abs (?j ∗R ?u + ?v)
and t = proj2-abs (?k ∗R ?u + ?v)
by simp-all

from ‹r 6= q› and ‹r = proj2-abs (?i ∗R ?u + ?v)›
have ?i 6= 0 by (auto simp add: proj2-abs-rep)
with ‹cross-ratio p q r s = cross-ratio p q r t›
have ?j = ?k by (unfold cross-ratio-def) simp
with ‹s = proj2-abs (?j ∗R ?u + ?v)› and ‹t = proj2-abs (?k ∗R ?u + ?v)›
show s = t by simp

qed

lemma cltn2-three-point-line:
assumes p 6= q and r 6= p and r 6= q
and proj2-incident p l and proj2-incident q l and proj2-incident r l
and apply-cltn2 p C = p and apply-cltn2 q C = q and apply-cltn2 r C = r
and proj2-incident s l
shows apply-cltn2 s C = s (is ?sC = s)

proof cases
assume s = p
with ‹apply-cltn2 p C = p› show ?sC = s by simp

next

92

assume s 6= p

let ?pC = apply-cltn2 p C
let ?qC = apply-cltn2 q C
let ?rC = apply-cltn2 r C

from ‹proj2-incident p l› and ‹proj2-incident q l› and ‹proj2-incident r l›
and ‹proj2-incident s l›

have proj2-set-Col {p,q,r ,s} by (unfold proj2-set-Col-def) auto
with ‹p 6= q› and ‹r 6= p› and ‹s 6= p› and ‹r 6= q›
have cross-ratio-correct p q r s by (unfold cross-ratio-correct-def) simp
hence cross-ratio-correct ?pC ?qC ?rC ?sC

by (rule cross-ratio-correct-cltn2)
with ‹?pC = p› and ‹?qC = q› and ‹?rC = r›
have cross-ratio-correct p q r ?sC by simp

from ‹proj2-set-Col {p,q,r ,s}› and ‹p 6= q› and ‹r 6= p› and ‹s 6= p›
have cross-ratio ?pC ?qC ?rC ?sC = cross-ratio p q r s

by (rule cross-ratio-cltn2)
with ‹?pC = p› and ‹?qC = q› and ‹?rC = r›
have cross-ratio p q r ?sC = cross-ratio p q r s by simp
with ‹cross-ratio-correct p q r ?sC › and ‹cross-ratio-correct p q r s›
show ?sC = s by (rule cross-ratio-unique)

qed

lemma cross-ratio-equal-cltn2 :
assumes cross-ratio-correct p q r s
and cross-ratio-correct (apply-cltn2 p C) (apply-cltn2 q C)
(apply-cltn2 r C) t
(is cross-ratio-correct ?pC ?qC ?rC t)
and cross-ratio (apply-cltn2 p C) (apply-cltn2 q C) (apply-cltn2 r C) t
= cross-ratio p q r s

shows t = apply-cltn2 s C (is t = ?sC)
proof −

from ‹cross-ratio-correct p q r s›
have cross-ratio-correct ?pC ?qC ?rC ?sC by (rule cross-ratio-correct-cltn2)

from ‹cross-ratio-correct p q r s›
have proj2-set-Col {p,q,r ,s} and p 6= q and r 6= p and s 6= p

by (unfold cross-ratio-correct-def) simp-all
hence cross-ratio ?pC ?qC ?rC ?sC = cross-ratio p q r s

by (rule cross-ratio-cltn2)
with ‹cross-ratio ?pC ?qC ?rC t = cross-ratio p q r s›
have cross-ratio ?pC ?qC ?rC t = cross-ratio ?pC ?qC ?rC ?sC by simp
with ‹cross-ratio-correct ?pC ?qC ?rC t›

and ‹cross-ratio-correct ?pC ?qC ?rC ?sC ›
show t = ?sC by (rule cross-ratio-unique)

qed

93

lemma proj2-Col-distinct-coeff-non-zero:
assumes proj2-Col p q r and p 6= q and r 6= p and r 6= q
shows proj2-Col-coeff p q r 6= 0

proof
assume proj2-Col-coeff p q r = 0

from ‹proj2-Col p q r› and ‹p 6= q› and ‹r 6= p›
have r = proj2-abs ((proj2-Col-coeff p q r) ∗R proj2-rep p + proj2-rep q)

by (rule proj2-Col-coeff)
with ‹proj2-Col-coeff p q r = 0 › have r = q by (simp add: proj2-abs-rep)
with ‹r 6= q› show False ..

qed

lemma cross-ratio-product:
assumes proj2-Col p q s and p 6= q and s 6= p and s 6= q
shows cross-ratio p q r s ∗ cross-ratio p q s t = cross-ratio p q r t

proof −
from ‹proj2-Col p q s› and ‹p 6= q› and ‹s 6= p› and ‹s 6= q›
have proj2-Col-coeff p q s 6= 0 by (rule proj2-Col-distinct-coeff-non-zero)
thus cross-ratio p q r s ∗ cross-ratio p q s t = cross-ratio p q r t

by (unfold cross-ratio-def) simp
qed

lemma cross-ratio-equal-1 :
assumes proj2-Col p q r and p 6= q and r 6= p and r 6= q
shows cross-ratio p q r r = 1

proof −
from ‹proj2-Col p q r› and ‹p 6= q› and ‹r 6= p› and ‹r 6= q›
have proj2-Col-coeff p q r 6= 0 by (rule proj2-Col-distinct-coeff-non-zero)
thus cross-ratio p q r r = 1 by (unfold cross-ratio-def) simp

qed

lemma cross-ratio-1-equal:
assumes cross-ratio-correct p q r s and cross-ratio p q r s = 1
shows r = s

proof −
from ‹cross-ratio-correct p q r s›
have proj2-set-Col {p,q,r ,s} and p 6= q and r 6= p and r 6= q

by (unfold cross-ratio-correct-def) simp-all

from ‹proj2-set-Col {p,q,r ,s}›
have proj2-set-Col {p,q,r}

by (simp add: proj2-subset-Col [of {p,q,r} {p,q,r ,s}])
with ‹p 6= q› and ‹r 6= p› and ‹r 6= q›
have cross-ratio-correct p q r r by (unfold cross-ratio-correct-def) simp

from ‹proj2-set-Col {p,q,r}›
have proj2-Col p q r by (subst proj2-Col-iff-set-Col)
with ‹p 6= q› and ‹r 6= p› and ‹r 6= q›

94

have cross-ratio p q r r = 1 by (simp add: cross-ratio-equal-1)
with ‹cross-ratio p q r s = 1 ›
have cross-ratio p q r r = cross-ratio p q r s by simp
with ‹cross-ratio-correct p q r r› and ‹cross-ratio-correct p q r s›
show r = s by (rule cross-ratio-unique)

qed

lemma cross-ratio-swap-34 :
shows cross-ratio p q s r = 1 / (cross-ratio p q r s)
by (unfold cross-ratio-def) simp

lemma cross-ratio-swap-13-24 :
assumes cross-ratio-correct p q r s and r 6= s
shows cross-ratio r s p q = cross-ratio p q r s

proof −
from ‹cross-ratio-correct p q r s›
have proj2-set-Col {p,q,r ,s} and p 6= q and r 6= p and s 6= p and r 6= q

by (unfold cross-ratio-correct-def , simp-all)

have proj2-rep p 6= 0 (is ?u 6= 0) and proj2-rep q 6= 0 (is ?v 6= 0)
by (rule proj2-rep-non-zero)+

have p = proj2-abs ?u and q = proj2-abs ?v
by (simp-all add: proj2-abs-rep)

with ‹p 6= q› have proj2-abs ?u 6= proj2-abs ?v by simp

let ?i = proj2-Col-coeff p q r
let ?j = proj2-Col-coeff p q s
from ‹proj2-set-Col {p,q,r ,s}› and ‹p 6= q› and ‹r 6= p› and ‹s 6= p›
have r = proj2-abs (?i ∗R ?u + ?v) (is r = proj2-abs ?w)

and s = proj2-abs (?j ∗R ?u + ?v) (is s = proj2-abs ?x)
by (simp-all add: proj2-set-Col-coeff)

with ‹r 6= s› have ?i 6= ?j by auto

from ‹?u 6= 0 › and ‹?v 6= 0 › and ‹proj2-abs ?u 6= proj2-abs ?v›
and dependent-proj2-abs [of ?u ?v - 1]

have ?w 6= 0 and ?x 6= 0 by auto

from ‹r = proj2-abs (?i ∗R ?u + ?v)› and ‹r 6= q›
have ?i 6= 0 by (auto simp add: proj2-abs-rep)

have ?w − ?x = (?i − ?j) ∗R ?u by (simp add: algebra-simps)
with ‹?i 6= ?j›
have p = proj2-abs (?w − ?x) by (simp add: proj2-abs-mult-rep)

have ?j ∗R ?w − ?i ∗R ?x = (?j − ?i) ∗R ?v by (simp add: algebra-simps)
with ‹?i 6= ?j›
have q = proj2-abs (?j ∗R ?w − ?i ∗R ?x) by (simp add: proj2-abs-mult-rep)
with ‹?w 6= 0 › and ‹?x 6= 0 › and ‹r 6= s› and ‹?i 6= 0 › and ‹r = proj2-abs

95

?w›
and ‹s = proj2-abs ?x› and ‹p = proj2-abs (?w − ?x)›
and cross-ratio-abs [of ?w ?x −1 −?i 1 ?j]

have cross-ratio r s p q = ?j / ?i by (simp add: algebra-simps)
thus cross-ratio r s p q = cross-ratio p q r s

by (unfold cross-ratio-def [of p q r s], simp)
qed

lemma cross-ratio-swap-12 :
assumes cross-ratio-correct p q r s and cross-ratio-correct q p r s
shows cross-ratio q p r s = 1 / (cross-ratio p q r s)

proof cases
assume r = s

from ‹cross-ratio-correct p q r s›
have proj2-set-Col {p,q,r ,s} and p 6= q and r 6= p and r 6= q

by (unfold cross-ratio-correct-def) simp-all

from ‹proj2-set-Col {p,q,r ,s}› and ‹r = s›
have proj2-Col p q r by (simp-all add: proj2-Col-iff-set-Col)
hence proj2-Col q p r by (rule proj2-Col-permute)
with ‹proj2-Col p q r› and ‹p 6= q› and ‹r 6= p› and ‹r 6= q› and ‹r = s›
have cross-ratio p q r s = 1 and cross-ratio q p r s = 1

by (simp-all add: cross-ratio-equal-1)
thus cross-ratio q p r s = 1 / (cross-ratio p q r s) by simp

next
assume r 6= s
with ‹cross-ratio-correct q p r s›
have cross-ratio q p r s = cross-ratio r s q p

by (simp add: cross-ratio-swap-13-24)
also have . . . = 1 / (cross-ratio r s p q) by (rule cross-ratio-swap-34)
also from ‹cross-ratio-correct p q r s› and ‹r 6= s›
have . . . = 1 / (cross-ratio p q r s) by (simp add: cross-ratio-swap-13-24)
finally show cross-ratio q p r s = 1 / (cross-ratio p q r s) .

qed

7.6 Cartesian subspace of the real projective plane
definition vector2-append1 :: real^2 ⇒ real^3 where

vector2-append1 v = vector [v$1 , v$2 , 1]

lemma vector2-append1-non-zero: vector2-append1 v 6= 0
proof −

have (vector2-append1 v)$3 6= 0$3
unfolding vector2-append1-def and vector-def
by simp

thus vector2-append1 v 6= 0 by auto
qed

96

definition proj2-pt :: real^2 ⇒ proj2 where
proj2-pt v , proj2-abs (vector2-append1 v)

lemma proj2-pt-scalar :
∃ c. c 6= 0 ∧ proj2-rep (proj2-pt v) = c ∗R vector2-append1 v
unfolding proj2-pt-def
by (simp add: proj2-rep-abs2 vector2-append1-non-zero)

abbreviation z-non-zero :: proj2 ⇒ bool where
z-non-zero p , (proj2-rep p)$3 6= 0

definition cart2-pt :: proj2 ⇒ real^2 where
cart2-pt p ,
vector [(proj2-rep p)$1 / (proj2-rep p)$3 , (proj2-rep p)$2 / (proj2-rep p)$3]

definition cart2-append1 :: proj2 ⇒ real^3 where
cart2-append1 p , (1 / ((proj2-rep p)$3)) ∗R proj2-rep p

lemma cart2-append1-z:
assumes z-non-zero p
shows (cart2-append1 p)$3 = 1
using ‹z-non-zero p›
by (unfold cart2-append1-def) simp

lemma cart2-append1-non-zero:
assumes z-non-zero p
shows cart2-append1 p 6= 0

proof −
from ‹z-non-zero p› have (cart2-append1 p)$3 = 1 by (rule cart2-append1-z)
thus cart2-append1 p 6= 0 by (simp add: vec-eq-iff exI [of - 3])

qed

lemma proj2-rep-cart2-append1 :
assumes z-non-zero p
shows proj2-rep p = ((proj2-rep p)$3) ∗R cart2-append1 p
using ‹z-non-zero p›
by (unfold cart2-append1-def) simp

lemma proj2-abs-cart2-append1 :
assumes z-non-zero p
shows proj2-abs (cart2-append1 p) = p

proof −
from ‹z-non-zero p›
have proj2-abs (cart2-append1 p) = proj2-abs (proj2-rep p)

by (unfold cart2-append1-def) (simp add: proj2-abs-mult)
thus proj2-abs (cart2-append1 p) = p by (simp add: proj2-abs-rep)

qed

lemma cart2-append1-inj:

97

assumes z-non-zero p and cart2-append1 p = cart2-append1 q
shows p = q

proof −
from ‹z-non-zero p› have (cart2-append1 p)$3 = 1 by (rule cart2-append1-z)
with ‹cart2-append1 p = cart2-append1 q›
have (cart2-append1 q)$3 = 1 by simp
hence z-non-zero q by (unfold cart2-append1-def) auto

from ‹cart2-append1 p = cart2-append1 q›
have proj2-abs (cart2-append1 p) = proj2-abs (cart2-append1 q) by simp
with ‹z-non-zero p› and ‹z-non-zero q›
show p = q by (simp add: proj2-abs-cart2-append1)

qed

lemma cart2-append1 :
assumes z-non-zero p
shows vector2-append1 (cart2-pt p) = cart2-append1 p
using ‹z-non-zero p›
unfolding vector2-append1-def

and cart2-append1-def
and cart2-pt-def
and vector-def

by (simp add: vec-eq-iff forall-3)

lemma cart2-proj2 : cart2-pt (proj2-pt v) = v
proof −

let ?v ′ = vector2-append1 v
let ?p = proj2-pt v
from proj2-pt-scalar
obtain c where c 6= 0 and proj2-rep ?p = c ∗R ?v ′ by auto
hence (cart2-pt ?p)$1 = v$1 and (cart2-pt ?p)$2 = v$2

unfolding cart2-pt-def and vector2-append1-def and vector-def
by simp+

thus cart2-pt ?p = v by (simp add: vec-eq-iff forall-2)
qed

lemma z-non-zero-proj2-pt: z-non-zero (proj2-pt v)
proof −

from proj2-pt-scalar
obtain c where c 6= 0 and proj2-rep (proj2-pt v) = c ∗R (vector2-append1 v)

by auto
from ‹proj2-rep (proj2-pt v) = c ∗R (vector2-append1 v)›
have (proj2-rep (proj2-pt v))$3 = c

unfolding vector2-append1-def and vector-def
by simp

with ‹c 6= 0 › show z-non-zero (proj2-pt v) by simp
qed

lemma cart2-append1-proj2 : cart2-append1 (proj2-pt v) = vector2-append1 v

98

proof −
from z-non-zero-proj2-pt
have cart2-append1 (proj2-pt v) = vector2-append1 (cart2-pt (proj2-pt v))

by (simp add: cart2-append1)
thus cart2-append1 (proj2-pt v) = vector2-append1 v

by (simp add: cart2-proj2)
qed

lemma proj2-pt-inj: inj proj2-pt
by (simp add: inj-on-inverseI [of UNIV cart2-pt proj2-pt] cart2-proj2)

lemma proj2-cart2 :
assumes z-non-zero p
shows proj2-pt (cart2-pt p) = p

proof −
from ‹z-non-zero p›
have (proj2-rep p)$3 ∗R vector2-append1 (cart2-pt p) = proj2-rep p

unfolding vector2-append1-def and cart2-pt-def and vector-def
by (simp add: vec-eq-iff forall-3)

with ‹z-non-zero p›
and proj2-abs-mult [of (proj2-rep p)$3 vector2-append1 (cart2-pt p)]

have proj2-abs (vector2-append1 (cart2-pt p)) = proj2-abs (proj2-rep p)
by simp

thus proj2-pt (cart2-pt p) = p
by (unfold proj2-pt-def) (simp add: proj2-abs-rep)

qed

lemma cart2-injective:
assumes z-non-zero p and z-non-zero q and cart2-pt p = cart2-pt q
shows p = q

proof −
from ‹z-non-zero p› and ‹z-non-zero q›
have proj2-pt (cart2-pt p) = p and proj2-pt (cart2-pt q) = q

by (simp-all add: proj2-cart2)

from ‹proj2-pt (cart2-pt p) = p› and ‹cart2-pt p = cart2-pt q›
have proj2-pt (cart2-pt q) = p by simp
with ‹proj2-pt (cart2-pt q) = q› show p = q by simp

qed

lemma proj2-Col-iff-euclid:
proj2-Col (proj2-pt a) (proj2-pt b) (proj2-pt c) ←→ real-euclid.Col a b c
(is proj2-Col ?p ?q ?r ←→ -)

proof
let ?a ′ = vector2-append1 a
let ?b ′ = vector2-append1 b
let ?c ′ = vector2-append1 c
let ?a ′′ = proj2-rep ?p
let ?b ′′ = proj2-rep ?q

99

let ?c ′′ = proj2-rep ?r
from proj2-pt-scalar obtain i and j and k where

i 6= 0 and ?a ′′ = i ∗R ?a ′

and j 6= 0 and ?b ′′ = j ∗R ?b ′

and k 6= 0 and ?c ′′ = k ∗R ?c ′

by metis
hence ?a ′ = (1/i) ∗R ?a ′′

and ?b ′ = (1/j) ∗R ?b ′′

and ?c ′ = (1/k) ∗R ?c ′′

by simp-all

{ assume proj2-Col ?p ?q ?r
then obtain i ′ and j ′ and k ′ where

i ′ ∗R ?a ′′ + j ′ ∗R ?b ′′ + k ′ ∗R ?c ′′ = 0 and i ′6=0 ∨ j ′6=0 ∨ k ′6=0
unfolding proj2-Col-def
by auto

let ?i ′′ = i ∗ i ′
let ?j ′′ = j ∗ j ′
let ?k ′′ = k ∗ k ′

from ‹i 6=0 › and ‹j 6=0 › and ‹k 6=0 › and ‹i ′6=0 ∨ j ′6=0 ∨ k ′6=0 ›
have ?i ′′6=0 ∨ ?j ′′6=0 ∨ ?k ′′6=0 by simp

from ‹i ′ ∗R ?a ′′ + j ′ ∗R ?b ′′ + k ′ ∗R ?c ′′ = 0 ›
and ‹?a ′′ = i ∗R ?a ′›
and ‹?b ′′ = j ∗R ?b ′›
and ‹?c ′′ = k ∗R ?c ′›

have ?i ′′ ∗R ?a ′ + ?j ′′ ∗R ?b ′ + ?k ′′ ∗R ?c ′ = 0
by (simp add: ac-simps)

hence (?i ′′ ∗R ?a ′ + ?j ′′ ∗R ?b ′ + ?k ′′ ∗R ?c ′)$3 = 0
by simp

hence ?i ′′ + ?j ′′ + ?k ′′ = 0
unfolding vector2-append1-def and vector-def
by simp

have (?i ′′ ∗R ?a ′ + ?j ′′ ∗R ?b ′ + ?k ′′ ∗R ?c ′)$1 =
(?i ′′ ∗R a + ?j ′′ ∗R b + ?k ′′ ∗R c)$1
and (?i ′′ ∗R ?a ′ + ?j ′′ ∗R ?b ′ + ?k ′′ ∗R ?c ′)$2 =
(?i ′′ ∗R a + ?j ′′ ∗R b + ?k ′′ ∗R c)$2
unfolding vector2-append1-def and vector-def
by simp+

with ‹?i ′′ ∗R ?a ′ + ?j ′′ ∗R ?b ′ + ?k ′′ ∗R ?c ′ = 0 ›
have ?i ′′ ∗R a + ?j ′′ ∗R b + ?k ′′ ∗R c = 0

by (simp add: vec-eq-iff forall-2)

have dep2 (b − a) (c − a)
proof cases

assume ?k ′′ = 0
with ‹?i ′′ + ?j ′′ + ?k ′′ = 0 › have ?j ′′ = −?i ′′ by simp

100

with ‹?i ′′6=0 ∨ ?j ′′6=0 ∨ ?k ′′6=0 › and ‹?k ′′ = 0 › have ?i ′′ 6= 0 by simp

from ‹?i ′′ ∗R a + ?j ′′ ∗R b + ?k ′′ ∗R c = 0 ›
and ‹?k ′′ = 0 › and ‹?j ′′ = −?i ′′›

have ?i ′′ ∗R a + (−?i ′′ ∗R b) = 0 by simp
with ‹?i ′′ 6= 0 › have a = b by (simp add: algebra-simps)
hence b − a = 0 ∗R (c − a) by simp
moreover have c − a = 1 ∗R (c − a) by simp
ultimately have ∃ x t s. b − a = t ∗R x ∧ c − a = s ∗R x

by blast
thus dep2 (b − a) (c − a) unfolding dep2-def .

next
assume ?k ′′ 6= 0
from ‹?i ′′ + ?j ′′ + ?k ′′ = 0 › have ?i ′′ = −(?j ′′ + ?k ′′) by simp
with ‹?i ′′ ∗R a + ?j ′′ ∗R b + ?k ′′ ∗R c = 0 ›
have −(?j ′′ + ?k ′′) ∗R a + ?j ′′ ∗R b + ?k ′′ ∗R c = 0 by simp
hence ?k ′′ ∗R (c − a) = − ?j ′′ ∗R (b − a)

by (simp add: scaleR-left-distrib
scaleR-right-diff-distrib
scaleR-left-diff-distrib
algebra-simps)

hence (1/?k ′′) ∗R ?k ′′ ∗R (c − a) = (−?j ′′ / ?k ′′) ∗R (b − a)
by simp

with ‹?k ′′ 6= 0 › have c − a = (−?j ′′ / ?k ′′) ∗R (b − a) by simp
moreover have b − a = 1 ∗R (b − a) by simp
ultimately have ∃ x t s. b − a = t ∗R x ∧ c − a = s ∗R x by blast
thus dep2 (b − a) (c − a) unfolding dep2-def .

qed
with Col-dep2 show real-euclid.Col a b c by auto

}

{ assume real-euclid.Col a b c
with Col-dep2 have dep2 (b − a) (c − a) by auto
then obtain x and t and s where b − a = t ∗R x and c − a = s ∗R x

unfolding dep2-def
by auto

show proj2-Col ?p ?q ?r
proof cases

assume t = 0
with ‹b − a = t ∗R x› have a = b by simp
with proj2-Col-coincide show proj2-Col ?p ?q ?r by simp

next
assume t 6= 0

from ‹b − a = t ∗R x› and ‹c − a = s ∗R x›
have s ∗R (b − a) = t ∗R (c − a) by simp
hence (s − t) ∗R a + (−s) ∗R b + t ∗R c = 0

by (simp add: scaleR-right-diff-distrib

101

scaleR-left-diff-distrib
algebra-simps)

hence ((s − t) ∗R ?a ′ + (−s) ∗R ?b ′ + t ∗R ?c ′)$1 = 0
and ((s − t) ∗R ?a ′ + (−s) ∗R ?b ′ + t ∗R ?c ′)$2 = 0
unfolding vector2-append1-def and vector-def
by (simp-all add: vec-eq-iff)

moreover have ((s − t) ∗R ?a ′ + (−s) ∗R ?b ′ + t ∗R ?c ′)$3 = 0
unfolding vector2-append1-def and vector-def
by simp

ultimately have (s − t) ∗R ?a ′ + (−s) ∗R ?b ′ + t ∗R ?c ′ = 0
by (simp add: vec-eq-iff forall-3)

with ‹?a ′ = (1/i) ∗R ?a ′′›
and ‹?b ′ = (1/j) ∗R ?b ′′›
and ‹?c ′ = (1/k) ∗R ?c ′′›

have ((s − t)/i) ∗R ?a ′′ + (−s/j) ∗R ?b ′′ + (t/k) ∗R ?c ′′ = 0
by simp

moreover from ‹t 6= 0 › and ‹k 6= 0 › have t/k 6= 0 by simp
ultimately show proj2-Col ?p ?q ?r

unfolding proj2-Col-def
by blast

qed
}

qed

lemma proj2-Col-iff-euclid-cart2 :
assumes z-non-zero p and z-non-zero q and z-non-zero r
shows
proj2-Col p q r ←→ real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is - ←→ real-euclid.Col ?a ?b ?c)

proof −
from ‹z-non-zero p› and ‹z-non-zero q› and ‹z-non-zero r›
have proj2-pt ?a = p and proj2-pt ?b = q and proj2-pt ?c = r

by (simp-all add: proj2-cart2)
with proj2-Col-iff-euclid [of ?a ?b ?c]
show proj2-Col p q r ←→ real-euclid.Col ?a ?b ?c by simp

qed

lemma euclid-Col-cart2-incident:
assumes z-non-zero p and z-non-zero q and z-non-zero r and p 6= q
and proj2-incident p l and proj2-incident q l
and real-euclid.Col (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is real-euclid.Col ?cp ?cq ?cr)
shows proj2-incident r l

proof −
from ‹z-non-zero p› and ‹z-non-zero q› and ‹z-non-zero r›

and ‹real-euclid.Col ?cp ?cq ?cr›
have proj2-Col p q r by (subst proj2-Col-iff-euclid-cart2 , simp-all)
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
then obtain m where

102

proj2-incident p m and proj2-incident q m and proj2-incident r m
by (unfold proj2-set-Col-def , auto)

from ‹p 6= q› and ‹proj2-incident p l› and ‹proj2-incident q l›
and ‹proj2-incident p m› and ‹proj2-incident q m› and proj2-incident-unique

have l = m by auto
with ‹proj2-incident r m› show proj2-incident r l by simp

qed

lemma euclid-B-cart2-common-line:
assumes z-non-zero p and z-non-zero q and z-non-zero r
and B� (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is B� ?cp ?cq ?cr)
shows ∃ l. proj2-incident p l ∧ proj2-incident q l ∧ proj2-incident r l

proof −
from ‹z-non-zero p› and ‹z-non-zero q› and ‹z-non-zero r›

and ‹B� ?cp ?cq ?cr› and proj2-Col-iff-euclid-cart2
have proj2-Col p q r by (unfold real-euclid.Col-def) simp
hence proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
thus ∃ l. proj2-incident p l ∧ proj2-incident q l ∧ proj2-incident r l

by (unfold proj2-set-Col-def) simp
qed

lemma cart2-append1-between:
assumes z-non-zero p and z-non-zero q and z-non-zero r
shows B� (cart2-pt p) (cart2-pt q) (cart2-pt r)
←→ (∃ k≥0 . k ≤ 1
∧ cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p)

proof −
let ?cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?cp1 = vector2-append1 ?cp
let ?cq1 = vector2-append1 ?cq
let ?cr1 = vector2-append1 ?cr
from ‹z-non-zero p› and ‹z-non-zero q› and ‹z-non-zero r›
have ?cp1 = cart2-append1 p

and ?cq1 = cart2-append1 q
and ?cr1 = cart2-append1 r
by (simp-all add: cart2-append1)

have ∀ k. ?cq − ?cp = k ∗R (?cr − ?cp) ←→ ?cq = k ∗R ?cr + (1 − k) ∗R ?cp
by (simp add: algebra-simps)

hence ∀ k. ?cq − ?cp = k ∗R (?cr − ?cp)
←→ ?cq1 = k ∗R ?cr1 + (1 − k) ∗R ?cp1
unfolding vector2-append1-def and vector-def
by (simp add: vec-eq-iff forall-2 forall-3)

with ‹?cp1 = cart2-append1 p›
and ‹?cq1 = cart2-append1 q›

103

and ‹?cr1 = cart2-append1 r›
have ∀ k. ?cq − ?cp = k ∗R (?cr − ?cp)
←→ cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p
by simp

thus B� (cart2-pt p) (cart2-pt q) (cart2-pt r)
←→ (∃ k≥0 . k ≤ 1
∧ cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p)
by (unfold real-euclid-B-def) simp

qed

lemma cart2-append1-between-right-strict:
assumes z-non-zero p and z-non-zero q and z-non-zero r
and B� (cart2-pt p) (cart2-pt q) (cart2-pt r) and q 6= r
shows ∃ k≥0 . k < 1
∧ cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p

proof −
from ‹z-non-zero p› and ‹z-non-zero q› and ‹z-non-zero r›

and ‹B� (cart2-pt p) (cart2-pt q) (cart2-pt r)› and cart2-append1-between
obtain k where k ≥ 0 and k ≤ 1

and cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p
by auto

have k 6= 1
proof

assume k = 1
with ‹cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p›
have cart2-append1 q = cart2-append1 r by simp
with ‹z-non-zero q› have q = r by (rule cart2-append1-inj)
with ‹q 6= r› show False ..

qed
with ‹k ≤ 1 › have k < 1 by simp
with ‹k ≥ 0 ›

and ‹cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p›
show ∃ k≥0 . k < 1
∧ cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p
by (simp add: exI [of - k])

qed

lemma cart2-append1-between-strict:
assumes z-non-zero p and z-non-zero q and z-non-zero r
and B� (cart2-pt p) (cart2-pt q) (cart2-pt r) and q 6= p and q 6= r
shows ∃ k>0 . k < 1
∧ cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p

proof −
from ‹z-non-zero p› and ‹z-non-zero q› and ‹z-non-zero r›

and ‹B� (cart2-pt p) (cart2-pt q) (cart2-pt r)› and ‹q 6= r›
and cart2-append1-between-right-strict [of p q r]

obtain k where k ≥ 0 and k < 1
and cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p

104

by auto

have k 6= 0
proof

assume k = 0
with ‹cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p›
have cart2-append1 q = cart2-append1 p by simp
with ‹z-non-zero q› have q = p by (rule cart2-append1-inj)
with ‹q 6= p› show False ..

qed
with ‹k ≥ 0 › have k > 0 by simp
with ‹k < 1 ›

and ‹cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p›
show ∃ k>0 . k < 1
∧ cart2-append1 q = k ∗R cart2-append1 r + (1 − k) ∗R cart2-append1 p
by (simp add: exI [of - k])

qed

end

8 The hyperbolic plane and Tarski’s axioms
theory Hyperbolic-Tarski
imports Euclid-Tarski

Projective
HOL−Library.Quadratic-Discriminant

begin

8.1 Characterizing a specific conic in the projective plane
definition M :: real^3^3 where

M , vector [
vector [1 , 0 , 0],
vector [0 , 1 , 0],
vector [0 , 0 , −1]]

lemma M-symmatrix: symmatrix M
unfolding symmatrix-def and transpose-def and M-def
by (simp add: vec-eq-iff forall-3 vector-3)

lemma M-self-inverse: M ∗∗ M = mat 1
unfolding M-def and matrix-matrix-mult-def and mat-def and vector-def
by (simp add: sum-3 vec-eq-iff forall-3)

lemma M-invertible: invertible M
unfolding invertible-def
using M-self-inverse
by auto

105

definition polar :: proj2 ⇒ proj2-line where
polar p , proj2-line-abs (M ∗v proj2-rep p)

definition pole :: proj2-line ⇒ proj2 where
pole l , proj2-abs (M ∗v proj2-line-rep l)

lemma polar-abs:
assumes v 6= 0
shows polar (proj2-abs v) = proj2-line-abs (M ∗v v)

proof −
from ‹v 6= 0 › and proj2-rep-abs2
obtain k where k 6= 0 and proj2-rep (proj2-abs v) = k ∗R v by auto
from ‹proj2-rep (proj2-abs v) = k ∗R v›
have polar (proj2-abs v) = proj2-line-abs (k ∗R (M ∗v v))

unfolding polar-def
by (simp add: matrix-scaleR-vector-ac scaleR-matrix-vector-assoc)

with ‹k 6= 0 › and proj2-line-abs-mult
show polar (proj2-abs v) = proj2-line-abs (M ∗v v) by simp

qed

lemma pole-abs:
assumes v 6= 0
shows pole (proj2-line-abs v) = proj2-abs (M ∗v v)

proof −
from ‹v 6= 0 › and proj2-line-rep-abs
obtain k where k 6= 0 and proj2-line-rep (proj2-line-abs v) = k ∗R v

by auto
from ‹proj2-line-rep (proj2-line-abs v) = k ∗R v›
have pole (proj2-line-abs v) = proj2-abs (k ∗R (M ∗v v))

unfolding pole-def
by (simp add: matrix-scaleR-vector-ac scaleR-matrix-vector-assoc)

with ‹k 6= 0 › and proj2-abs-mult
show pole (proj2-line-abs v) = proj2-abs (M ∗v v) by simp

qed

lemma polar-rep-non-zero: M ∗v proj2-rep p 6= 0
proof −

have proj2-rep p 6= 0 by (rule proj2-rep-non-zero)
with M-invertible
show M ∗v proj2-rep p 6= 0 by (rule invertible-times-non-zero)

qed

lemma pole-polar : pole (polar p) = p
proof −

from polar-rep-non-zero
have pole (polar p) = proj2-abs (M ∗v (M ∗v proj2-rep p))

unfolding polar-def
by (rule pole-abs)

with M-self-inverse

106

show pole (polar p) = p
by (simp add: matrix-vector-mul-assoc proj2-abs-rep)

qed

lemma pole-rep-non-zero: M ∗v proj2-line-rep l 6= 0
proof −

have proj2-line-rep l 6= 0 by (rule proj2-line-rep-non-zero)
with M-invertible
show M ∗v proj2-line-rep l 6= 0 by (rule invertible-times-non-zero)

qed

lemma polar-pole: polar (pole l) = l
proof −

from pole-rep-non-zero
have polar (pole l) = proj2-line-abs (M ∗v (M ∗v proj2-line-rep l))

unfolding pole-def
by (rule polar-abs)

with M-self-inverse
show polar (pole l) = l

by (simp add: matrix-vector-mul-assoc proj2-line-abs-rep
matrix-vector-mul-lid)

qed

lemma polar-inj:
assumes polar p = polar q
shows p = q

proof −
from ‹polar p = polar q› have pole (polar p) = pole (polar q) by simp
thus p = q by (simp add: pole-polar)

qed

definition conic-sgn :: proj2 ⇒ real where
conic-sgn p , sgn (proj2-rep p · (M ∗v proj2-rep p))

lemma conic-sgn-abs:
assumes v 6= 0
shows conic-sgn (proj2-abs v) = sgn (v · (M ∗v v))

proof −
from ‹v 6= 0 › and proj2-rep-abs2
obtain j where j 6= 0 and proj2-rep (proj2-abs v) = j ∗R v by auto

from ‹proj2-rep (proj2-abs v) = j ∗R v›
have conic-sgn (proj2-abs v) = sgn (j2 ∗ (v · (M ∗v v)))

unfolding conic-sgn-def
by (simp add:

matrix-scaleR-vector-ac
scaleR-matrix-vector-assoc [symmetric]
dot-scaleR-mult
power2-eq-square

107

algebra-simps)
also have . . . = sgn (j2) ∗ sgn (v · (M ∗v v)) by (rule sgn-mult)
also from ‹j 6= 0 › have . . . = sgn (v · (M ∗v v))

by (simp add: power2-eq-square sgn-mult)
finally show conic-sgn (proj2-abs v) = sgn (v · (M ∗v v)) .

qed

lemma sgn-conic-sgn: sgn (conic-sgn p) = conic-sgn p
by (unfold conic-sgn-def) simp

definition S :: proj2 set where
S , {p. conic-sgn p = 0}

definition K2 :: proj2 set where
K2 , {p. conic-sgn p < 0}

lemma S-K2-empty: S ∩ K2 = {}
unfolding S-def and K2-def
by auto

lemma K2-abs:
assumes v 6= 0
shows proj2-abs v ∈ K2 ←→ v · (M ∗v v) < 0

proof −
have proj2-abs v ∈ K2 ←→ conic-sgn (proj2-abs v) < 0

by (simp add: K2-def)
with ‹v 6= 0 › and conic-sgn-abs
show proj2-abs v ∈ K2 ←→ v · (M ∗v v) < 0 by simp

qed

definition K2-centre = proj2-abs (vector [0 ,0 ,1])

lemma K2-centre-non-zero: vector [0 ,0 ,1] 6= (0 :: real^3)
by (unfold vector-def) (simp add: vec-eq-iff forall-3)

lemma K2-centre-in-K2 : K2-centre ∈ K2
proof −

from K2-centre-non-zero and proj2-rep-abs2
obtain k where k 6= 0 and proj2-rep K2-centre = k ∗R vector [0 ,0 ,1]

by (unfold K2-centre-def) auto
from ‹k 6= 0 › have 0 < k2 by simp
with ‹proj2-rep K2-centre = k ∗R vector [0 ,0 ,1]›
show K2-centre ∈ K2

unfolding K2-def
and conic-sgn-def
and M-def
and matrix-vector-mult-def
and inner-vec-def
and vector-def

108

by (simp add: vec-eq-iff sum-3 power2-eq-square)
qed

lemma K2-imp-M-neg:
assumes v 6= 0 and proj2-abs v ∈ K2
shows v · (M ∗v v) < 0
using assms
by (simp add: K2-abs)

lemma M-neg-imp-z-squared-big:
assumes v · (M ∗v v) < 0
shows (v$3)2 > (v$1)2 + (v$2)2
using ‹v · (M ∗v v) < 0 ›
unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vec-def sum-3 power2-eq-square)

lemma M-neg-imp-z-non-zero:
assumes v · (M ∗v v) < 0
shows v$3 6= 0

proof −
have (v$1)2 + (v$2)2 ≥ 0 by simp
with M-neg-imp-z-squared-big [of v] and ‹v · (M ∗v v) < 0 ›
have (v$3)2 > 0 by arith
thus v$3 6= 0 by simp

qed

lemma M-neg-imp-K2 :
assumes v · (M ∗v v) < 0
shows proj2-abs v ∈ K2

proof −
from ‹v · (M ∗v v) < 0 › have v$3 6= 0 by (rule M-neg-imp-z-non-zero)
hence v 6= 0 by auto
with ‹v · (M ∗v v) < 0 › and K2-abs show proj2-abs v ∈ K2 by simp

qed

lemma M-reverse: a · (M ∗v b) = b · (M ∗v a)
unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vec-def sum-3)

lemma S-abs:
assumes v 6= 0
shows proj2-abs v ∈ S ←→ v · (M ∗v v) = 0

proof −
have proj2-abs v ∈ S ←→ conic-sgn (proj2-abs v) = 0

unfolding S-def
by simp

also from ‹v 6= 0 › and conic-sgn-abs
have . . . ←→ sgn (v · (M ∗v v)) = 0 by simp
finally show proj2-abs v ∈ S ←→ v · (M ∗v v) = 0 by (simp add: sgn-0-0)

109

qed

lemma S-alt-def : p ∈ S ←→ proj2-rep p · (M ∗v proj2-rep p) = 0
proof −

have proj2-rep p 6= 0 by (rule proj2-rep-non-zero)
hence proj2-abs (proj2-rep p) ∈ S ←→ proj2-rep p · (M ∗v proj2-rep p) = 0

by (rule S-abs)
thus p ∈ S ←→ proj2-rep p · (M ∗v proj2-rep p) = 0

by (simp add: proj2-abs-rep)
qed

lemma incident-polar :
proj2-incident p (polar q) ←→ proj2-rep p · (M ∗v proj2-rep q) = 0
using polar-rep-non-zero
unfolding polar-def
by (rule proj2-incident-right-abs)

lemma incident-own-polar-in-S : proj2-incident p (polar p) ←→ p ∈ S
using incident-polar and S-alt-def
by simp

lemma incident-polar-swap:
assumes proj2-incident p (polar q)
shows proj2-incident q (polar p)

proof −
from ‹proj2-incident p (polar q)›
have proj2-rep p · (M ∗v proj2-rep q) = 0 by (unfold incident-polar)
hence proj2-rep q · (M ∗v proj2-rep p) = 0 by (simp add: M-reverse)
thus proj2-incident q (polar p) by (unfold incident-polar)

qed

lemma incident-pole-polar :
assumes proj2-incident p l
shows proj2-incident (pole l) (polar p)

proof −
from ‹proj2-incident p l›
have proj2-incident p (polar (pole l)) by (subst polar-pole)
thus proj2-incident (pole l) (polar p) by (rule incident-polar-swap)

qed

definition z-zero :: proj2-line where
z-zero , proj2-line-abs (vector [0 ,0 ,1])

lemma z-zero:
assumes (proj2-rep p)$3 = 0
shows proj2-incident p z-zero

proof −
from K2-centre-non-zero and proj2-line-rep-abs
obtain k where proj2-line-rep z-zero = k ∗R vector [0 ,0 ,1]

110

by (unfold z-zero-def) auto
with ‹(proj2-rep p)$3 = 0 ›
show proj2-incident p z-zero

unfolding proj2-incident-def and inner-vec-def and vector-def
by (simp add: sum-3)

qed

lemma z-zero-conic-sgn-1 :
assumes proj2-incident p z-zero
shows conic-sgn p = 1

proof −
let ?v = proj2-rep p
have (vector [0 ,0 ,1] :: real^3) 6= 0

unfolding vector-def
by (simp add: vec-eq-iff)

with ‹proj2-incident p z-zero›
have ?v · vector [0 ,0 ,1] = 0

unfolding z-zero-def
by (simp add: proj2-incident-right-abs)

hence ?v$3 = 0
unfolding inner-vec-def and vector-def
by (simp add: sum-3)

hence ?v · (M ∗v ?v) = (?v$1)2 + (?v$2)2
unfolding inner-vec-def

and power2-eq-square
and matrix-vector-mult-def
and M-def
and vector-def
and sum-3

by simp

have ?v 6= 0 by (rule proj2-rep-non-zero)
with ‹?v$3 = 0 › have ?v$1 6= 0 ∨ ?v$2 6= 0 by (simp add: vec-eq-iff forall-3)
hence (?v$1)2 > 0 ∨ (?v$2)2 > 0 by simp
with add-sign-intros [of (?v$1)2 (?v$2)2]
have (?v$1)2 + (?v$2)2 > 0 by auto
with ‹?v · (M ∗v ?v) = (?v$1)2 + (?v$2)2›
have ?v · (M ∗v ?v) > 0 by simp
thus conic-sgn p = 1

unfolding conic-sgn-def
by simp

qed

lemma conic-sgn-not-1-z-non-zero:
assumes conic-sgn p 6= 1
shows z-non-zero p

proof −
from ‹conic-sgn p 6= 1 ›
have ¬ proj2-incident p z-zero by (auto simp add: z-zero-conic-sgn-1)

111

thus z-non-zero p by (auto simp add: z-zero)
qed

lemma z-zero-not-in-S :
assumes proj2-incident p z-zero
shows p /∈ S

proof −
from ‹proj2-incident p z-zero› have conic-sgn p = 1

by (rule z-zero-conic-sgn-1)
thus p /∈ S

unfolding S-def
by simp

qed

lemma line-incident-point-not-in-S : ∃ p. p /∈ S ∧ proj2-incident p l
proof −

let ?p = proj2-intersection l z-zero
have proj2-incident ?p l and proj2-incident ?p z-zero

by (rule proj2-intersection-incident)+
from ‹proj2-incident ?p z-zero› have ?p /∈ S by (rule z-zero-not-in-S)
with ‹proj2-incident ?p l›
show ∃ p. p /∈ S ∧ proj2-incident p l by auto

qed

lemma apply-cltn2-abs-abs-in-S :
assumes v 6= 0 and invertible J
shows apply-cltn2 (proj2-abs v) (cltn2-abs J) ∈ S
←→ v · (J ∗∗ M ∗∗ transpose J ∗v v) = 0

proof −
from ‹v 6= 0 › and ‹invertible J ›
have v v∗ J 6= 0 by (rule non-zero-mult-invertible-non-zero)

from ‹v 6= 0 › and ‹invertible J ›
have apply-cltn2 (proj2-abs v) (cltn2-abs J) = proj2-abs (v v∗ J)

by (rule apply-cltn2-abs)
also from ‹v v∗ J 6= 0 ›
have . . . ∈ S ←→ (v v∗ J) · (M ∗v (v v∗ J)) = 0 by (rule S-abs)
finally show apply-cltn2 (proj2-abs v) (cltn2-abs J) ∈ S
←→ v · (J ∗∗ M ∗∗ transpose J ∗v v) = 0
by (simp add: dot-lmul-matrix matrix-vector-mul-assoc [symmetric])

qed

lemma apply-cltn2-right-abs-in-S :
assumes invertible J
shows apply-cltn2 p (cltn2-abs J) ∈ S
←→ (proj2-rep p) · (J ∗∗ M ∗∗ transpose J ∗v (proj2-rep p)) = 0

proof −
have proj2-rep p 6= 0 by (rule proj2-rep-non-zero)
with ‹invertible J ›

112

have apply-cltn2 (proj2-abs (proj2-rep p)) (cltn2-abs J) ∈ S
←→ proj2-rep p · (J ∗∗ M ∗∗ transpose J ∗v proj2-rep p) = 0
by (simp add: apply-cltn2-abs-abs-in-S)

thus apply-cltn2 p (cltn2-abs J) ∈ S
←→ proj2-rep p · (J ∗∗ M ∗∗ transpose J ∗v proj2-rep p) = 0
by (simp add: proj2-abs-rep)

qed

lemma apply-cltn2-abs-in-S :
assumes v 6= 0
shows apply-cltn2 (proj2-abs v) C ∈ S
←→ v · (cltn2-rep C ∗∗ M ∗∗ transpose (cltn2-rep C) ∗v v) = 0

proof −
have invertible (cltn2-rep C) by (rule cltn2-rep-invertible)
with ‹v 6= 0 ›
have apply-cltn2 (proj2-abs v) (cltn2-abs (cltn2-rep C)) ∈ S
←→ v · (cltn2-rep C ∗∗ M ∗∗ transpose (cltn2-rep C) ∗v v) = 0
by (rule apply-cltn2-abs-abs-in-S)

thus apply-cltn2 (proj2-abs v) C ∈ S
←→ v · (cltn2-rep C ∗∗ M ∗∗ transpose (cltn2-rep C) ∗v v) = 0
by (simp add: cltn2-abs-rep)

qed

lemma apply-cltn2-in-S :
apply-cltn2 p C ∈ S
←→ proj2-rep p · (cltn2-rep C ∗∗ M ∗∗ transpose (cltn2-rep C) ∗v proj2-rep p)
= 0

proof −
have proj2-rep p 6= 0 by (rule proj2-rep-non-zero)
hence apply-cltn2 (proj2-abs (proj2-rep p)) C ∈ S
←→ proj2-rep p · (cltn2-rep C ∗∗ M ∗∗ transpose (cltn2-rep C) ∗v proj2-rep p)
= 0
by (rule apply-cltn2-abs-in-S)

thus apply-cltn2 p C ∈ S
←→ proj2-rep p · (cltn2-rep C ∗∗ M ∗∗ transpose (cltn2-rep C) ∗v proj2-rep p)
= 0
by (simp add: proj2-abs-rep)

qed

lemma norm-M : (vector2-append1 v) · (M ∗v vector2-append1 v) = (norm v)2 −
1
proof −

have (norm v)2 = (v$1)2 + (v$2)2
unfolding norm-vec-def

and L2-set-def
by (simp add: sum-2)

thus (vector2-append1 v) · (M ∗v vector2-append1 v) = (norm v)2 − 1
unfolding vector2-append1-def

and inner-vec-def

113

and matrix-vector-mult-def
and vector-def
and M-def
and power2-norm-eq-inner

by (simp add: sum-3 power2-eq-square)
qed

8.2 Some specific points and lines of the projective plane
definition east = proj2-abs (vector [1 ,0 ,1])
definition west = proj2-abs (vector [−1 ,0 ,1])
definition north = proj2-abs (vector [0 ,1 ,1])
definition south = proj2-abs (vector [0 ,−1 ,1])
definition far-north = proj2-abs (vector [0 ,1 ,0])

lemmas compass-defs = east-def west-def north-def south-def

lemma compass-non-zero:
shows vector [1 ,0 ,1] 6= (0 :: real^3)
and vector [−1 ,0 ,1] 6= (0 :: real^3)
and vector [0 ,1 ,1] 6= (0 :: real^3)
and vector [0 ,−1 ,1] 6= (0 :: real^3)
and vector [0 ,1 ,0] 6= (0 :: real^3)
and vector [1 ,0 ,0] 6= (0 :: real^3)
unfolding vector-def
by (simp-all add: vec-eq-iff forall-3)

lemma east-west-distinct: east 6= west
proof

assume east = west
with compass-non-zero

and proj2-abs-abs-mult [of vector [1 ,0 ,1] vector [−1 ,0 ,1]]
obtain k where (vector [1 ,0 ,1] :: real^3) = k ∗R vector [−1 ,0 ,1]

unfolding compass-defs
by auto

thus False
unfolding vector-def
by (auto simp add: vec-eq-iff forall-3)

qed

lemma north-south-distinct: north 6= south
proof

assume north = south
with compass-non-zero

and proj2-abs-abs-mult [of vector [0 ,1 ,1] vector [0 ,−1 ,1]]
obtain k where (vector [0 ,1 ,1] :: real^3) = k ∗R vector [0 ,−1 ,1]

unfolding compass-defs
by auto

thus False

114

unfolding vector-def
by (auto simp add: vec-eq-iff forall-3)

qed

lemma north-not-east-or-west: north /∈ {east, west}
proof

assume north ∈ {east, west}
hence east = north ∨ west = north by auto
with compass-non-zero

and proj2-abs-abs-mult [of - vector [0 ,1 ,1]]
obtain k where (vector [1 ,0 ,1] :: real^3) = k ∗R vector [0 ,1 ,1]
∨ (vector [−1 ,0 ,1] :: real^3) = k ∗R vector [0 ,1 ,1]
unfolding compass-defs
by auto

thus False
unfolding vector-def
by (simp add: vec-eq-iff forall-3)

qed

lemma compass-in-S :
shows east ∈ S and west ∈ S and north ∈ S and south ∈ S
using compass-non-zero and S-abs
unfolding compass-defs

and M-def
and inner-vec-def
and matrix-vector-mult-def
and vector-def

by (simp-all add: sum-3)

lemma east-west-tangents:
shows polar east = proj2-line-abs (vector [−1 ,0 ,1])
and polar west = proj2-line-abs (vector [1 ,0 ,1])

proof −
have M ∗v vector [1 ,0 ,1] = (−1) ∗R vector [−1 ,0 ,1]

and M ∗v vector [−1 ,0 ,1] = (−1) ∗R vector [1 ,0 ,1]
unfolding M-def and matrix-vector-mult-def and vector-def
by (simp-all add: vec-eq-iff sum-3)

with compass-non-zero and polar-abs
have polar east = proj2-line-abs ((−1) ∗R vector [−1 ,0 ,1])

and polar west = proj2-line-abs ((−1) ∗R vector [1 ,0 ,1])
unfolding compass-defs
by simp-all

with proj2-line-abs-mult [of −1]
show polar east = proj2-line-abs (vector [−1 ,0 ,1])

and polar west = proj2-line-abs (vector [1 ,0 ,1])
by simp-all

qed

lemma east-west-tangents-distinct: polar east 6= polar west

115

proof
assume polar east = polar west
hence east = west by (rule polar-inj)
with east-west-distinct show False ..

qed

lemma east-west-tangents-incident-far-north:
shows proj2-incident far-north (polar east)
and proj2-incident far-north (polar west)
using compass-non-zero and proj2-incident-abs
unfolding far-north-def and east-west-tangents and inner-vec-def
by (simp-all add: sum-3 vector-3)

lemma east-west-tangents-far-north:
proj2-intersection (polar east) (polar west) = far-north
using east-west-tangents-distinct and east-west-tangents-incident-far-north
by (rule proj2-intersection-unique [symmetric])

instantiation proj2 :: zero
begin
definition proj2-zero-def : 0 = proj2-pt 0
instance ..
end

definition equator , proj2-line-abs (vector [0 ,1 ,0])
definition meridian , proj2-line-abs (vector [1 ,0 ,0])

lemma equator-meridian-distinct: equator 6= meridian
proof

assume equator = meridian
with compass-non-zero

and proj2-line-abs-abs-mult [of vector [0 ,1 ,0] vector [1 ,0 ,0]]
obtain k where (vector [0 ,1 ,0] :: real^3) = k ∗R vector [1 ,0 ,0]

by (unfold equator-def meridian-def) auto
thus False by (unfold vector-def) (auto simp add: vec-eq-iff forall-3)

qed

lemma east-west-on-equator :
shows proj2-incident east equator and proj2-incident west equator
unfolding east-def and west-def and equator-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vec-def vector-def sum-3)

lemma north-far-north-distinct: north 6= far-north
proof

assume north = far-north
with compass-non-zero

and proj2-abs-abs-mult [of vector [0 ,1 ,1] vector [0 ,1 ,0]]
obtain k where (vector [0 ,1 ,1] :: real^3) = k ∗R vector [0 ,1 ,0]

116

by (unfold north-def far-north-def) auto
thus False

unfolding vector-def
by (auto simp add: vec-eq-iff forall-3)

qed

lemma north-south-far-north-on-meridian:
shows proj2-incident north meridian and proj2-incident south meridian
and proj2-incident far-north meridian
unfolding compass-defs and far-north-def and meridian-def
using compass-non-zero
by (simp-all add: proj2-incident-abs inner-vec-def vector-def sum-3)

lemma K2-centre-on-equator-meridian:
shows proj2-incident K2-centre equator
and proj2-incident K2-centre meridian
unfolding K2-centre-def and equator-def and meridian-def
using K2-centre-non-zero and compass-non-zero
by (simp-all add: proj2-incident-abs inner-vec-def vector-def sum-3)

lemma on-equator-meridian-is-K2-centre:
assumes proj2-incident a equator and proj2-incident a meridian
shows a = K2-centre
using assms and K2-centre-on-equator-meridian and equator-meridian-distinct

and proj2-incident-unique
by auto

definition rep-equator-reflect , vector [
vector [1 , 0 ,0],
vector [0 ,−1 ,0],
vector [0 , 0 ,1]] :: real^3^3

definition rep-meridian-reflect , vector [
vector [−1 ,0 ,0],
vector [0 ,1 ,0],
vector [0 ,0 ,1]] :: real^3^3

definition equator-reflect , cltn2-abs rep-equator-reflect
definition meridian-reflect , cltn2-abs rep-meridian-reflect

lemmas compass-reflect-defs = equator-reflect-def meridian-reflect-def
rep-equator-reflect-def rep-meridian-reflect-def

lemma compass-reflect-self-inverse:
shows rep-equator-reflect ∗∗ rep-equator-reflect = mat 1
and rep-meridian-reflect ∗∗ rep-meridian-reflect = mat 1
unfolding compass-reflect-defs matrix-matrix-mult-def mat-def
by (simp-all add: vec-eq-iff forall-3 sum-3 vector-3)

lemma compass-reflect-invertible:
shows invertible rep-equator-reflect and invertible rep-meridian-reflect

117

unfolding invertible-def
using compass-reflect-self-inverse
by auto

lemma compass-reflect-compass:
shows apply-cltn2 east meridian-reflect = west
and apply-cltn2 west meridian-reflect = east
and apply-cltn2 north meridian-reflect = north
and apply-cltn2 south meridian-reflect = south
and apply-cltn2 K2-centre meridian-reflect = K2-centre
and apply-cltn2 east equator-reflect = east
and apply-cltn2 west equator-reflect = west
and apply-cltn2 north equator-reflect = south
and apply-cltn2 south equator-reflect = north
and apply-cltn2 K2-centre equator-reflect = K2-centre

proof −
have (vector [1 ,0 ,1] :: real^3) v∗ rep-meridian-reflect = vector [−1 ,0 ,1]

and (vector [−1 ,0 ,1] :: real^3) v∗ rep-meridian-reflect = vector [1 ,0 ,1]
and (vector [0 ,1 ,1] :: real^3) v∗ rep-meridian-reflect = vector [0 ,1 ,1]
and (vector [0 ,−1 ,1] :: real^3) v∗ rep-meridian-reflect = vector [0 ,−1 ,1]
and (vector [0 ,0 ,1] :: real^3) v∗ rep-meridian-reflect = vector [0 ,0 ,1]
and (vector [1 ,0 ,1] :: real^3) v∗ rep-equator-reflect = vector [1 ,0 ,1]
and (vector [−1 ,0 ,1] :: real^3) v∗ rep-equator-reflect = vector [−1 ,0 ,1]
and (vector [0 ,1 ,1] :: real^3) v∗ rep-equator-reflect = vector [0 ,−1 ,1]
and (vector [0 ,−1 ,1] :: real^3) v∗ rep-equator-reflect = vector [0 ,1 ,1]
and (vector [0 ,0 ,1] :: real^3) v∗ rep-equator-reflect = vector [0 ,0 ,1]
unfolding rep-meridian-reflect-def and rep-equator-reflect-def

and vector-matrix-mult-def
by (simp-all add: vec-eq-iff forall-3 vector-3 sum-3)

with compass-reflect-invertible and compass-non-zero and K2-centre-non-zero
show apply-cltn2 east meridian-reflect = west

and apply-cltn2 west meridian-reflect = east
and apply-cltn2 north meridian-reflect = north
and apply-cltn2 south meridian-reflect = south
and apply-cltn2 K2-centre meridian-reflect = K2-centre
and apply-cltn2 east equator-reflect = east
and apply-cltn2 west equator-reflect = west
and apply-cltn2 north equator-reflect = south
and apply-cltn2 south equator-reflect = north
and apply-cltn2 K2-centre equator-reflect = K2-centre
unfolding compass-defs and K2-centre-def

and meridian-reflect-def and equator-reflect-def
by (simp-all add: apply-cltn2-abs)

qed

lemma on-equator-rep:
assumes z-non-zero a and proj2-incident a equator
shows ∃ x. a = proj2-abs (vector [x,0 ,1])

proof −

118

let ?ra = proj2-rep a
let ?ca1 = cart2-append1 a
let ?x = ?ca1$1
from compass-non-zero and ‹proj2-incident a equator›
have ?ra · vector [0 ,1 ,0] = 0

by (unfold equator-def) (simp add: proj2-incident-right-abs)
hence ?ra$2 = 0 by (unfold inner-vec-def vector-def) (simp add: sum-3)
hence ?ca1$2 = 0 by (unfold cart2-append1-def) simp
moreover
from ‹z-non-zero a› have ?ca1$3 = 1 by (rule cart2-append1-z)
ultimately
have ?ca1 = vector [?x,0 ,1]

by (unfold vector-def) (simp add: vec-eq-iff forall-3)
with ‹z-non-zero a›
have proj2-abs (vector [?x,0 ,1]) = a by (simp add: proj2-abs-cart2-append1)
thus ∃ x. a = proj2-abs (vector [x,0 ,1]) by (simp add: exI [of - ?x])

qed

lemma on-meridian-rep:
assumes z-non-zero a and proj2-incident a meridian
shows ∃ y. a = proj2-abs (vector [0 ,y,1])

proof −
let ?ra = proj2-rep a
let ?ca1 = cart2-append1 a
let ?y = ?ca1$2
from compass-non-zero and ‹proj2-incident a meridian›
have ?ra · vector [1 ,0 ,0] = 0

by (unfold meridian-def) (simp add: proj2-incident-right-abs)
hence ?ra$1 = 0 by (unfold inner-vec-def vector-def) (simp add: sum-3)
hence ?ca1$1 = 0 by (unfold cart2-append1-def) simp
moreover
from ‹z-non-zero a› have ?ca1$3 = 1 by (rule cart2-append1-z)
ultimately
have ?ca1 = vector [0 ,?y,1]

by (unfold vector-def) (simp add: vec-eq-iff forall-3)
with ‹z-non-zero a›
have proj2-abs (vector [0 ,?y,1]) = a by (simp add: proj2-abs-cart2-append1)
thus ∃ y. a = proj2-abs (vector [0 ,y,1]) by (simp add: exI [of - ?y])

qed

8.3 Definition of the Klein–Beltrami model of the hyperbolic
plane

abbreviation hyp2 == K2

typedef hyp2 = K2
using K2-centre-in-K2
by auto

119

definition hyp2-rep :: hyp2 ⇒ real^2 where
hyp2-rep p , cart2-pt (Rep-hyp2 p)

definition hyp2-abs :: real^2 ⇒ hyp2 where
hyp2-abs v = Abs-hyp2 (proj2-pt v)

lemma norm-lt-1-iff-in-hyp2 :
shows norm v < 1 ←→ proj2-pt v ∈ hyp2

proof −
let ?v ′ = vector2-append1 v
have ?v ′ 6= 0 by (rule vector2-append1-non-zero)

from real-less-rsqrt [of norm v 1]
and abs-square-less-1 [of norm v]

have norm v < 1 ←→ (norm v)2 < 1 by auto
hence norm v < 1 ←→ ?v ′ · (M ∗v ?v ′) < 0 by (simp add: norm-M)
with ‹?v ′ 6= 0 › have norm v < 1 ←→ proj2-abs ?v ′ ∈ K2 by (subst K2-abs)
thus norm v < 1 ←→ proj2-pt v ∈ hyp2 by (unfold proj2-pt-def)

qed

lemma norm-eq-1-iff-in-S :
shows norm v = 1 ←→ proj2-pt v ∈ S

proof −
let ?v ′ = vector2-append1 v
have ?v ′ 6= 0 by (rule vector2-append1-non-zero)

from real-sqrt-unique [of norm v 1]
have norm v = 1 ←→ (norm v)2 = 1 by auto
hence norm v = 1 ←→ ?v ′ · (M ∗v ?v ′) = 0 by (simp add: norm-M)
with ‹?v ′ 6= 0 › have norm v = 1 ←→ proj2-abs ?v ′ ∈ S by (subst S-abs)
thus norm v = 1 ←→ proj2-pt v ∈ S by (unfold proj2-pt-def)

qed

lemma norm-le-1-iff-in-hyp2-S :
norm v ≤ 1 ←→ proj2-pt v ∈ hyp2 ∪ S
using norm-lt-1-iff-in-hyp2 [of v] and norm-eq-1-iff-in-S [of v]
by auto

lemma proj2-pt-hyp2-rep: proj2-pt (hyp2-rep p) = Rep-hyp2 p
proof −

let ?p ′ = Rep-hyp2 p
let ?v = proj2-rep ?p ′

have ?v 6= 0 by (rule proj2-rep-non-zero)

have proj2-abs ?v = ?p ′ by (rule proj2-abs-rep)

have ?p ′ ∈ hyp2 by (rule Rep-hyp2)
with ‹?v 6= 0 › and ‹proj2-abs ?v = ?p ′›
have ?v · (M ∗v ?v) < 0 by (simp add: K2-imp-M-neg)

120

hence ?v$3 6= 0 by (rule M-neg-imp-z-non-zero)
hence proj2-pt (cart2-pt ?p ′) = ?p ′ by (rule proj2-cart2)
thus proj2-pt (hyp2-rep p) = ?p ′ by (unfold hyp2-rep-def)

qed

lemma hyp2-rep-abs:
assumes norm v < 1
shows hyp2-rep (hyp2-abs v) = v

proof −
from ‹norm v < 1 ›
have proj2-pt v ∈ hyp2 by (simp add: norm-lt-1-iff-in-hyp2)
hence Rep-hyp2 (Abs-hyp2 (proj2-pt v)) = proj2-pt v

by (simp add: Abs-hyp2-inverse)
hence hyp2-rep (hyp2-abs v) = cart2-pt (proj2-pt v)

by (unfold hyp2-rep-def hyp2-abs-def) simp
thus hyp2-rep (hyp2-abs v) = v by (simp add: cart2-proj2)

qed

lemma hyp2-abs-rep: hyp2-abs (hyp2-rep p) = p
by (unfold hyp2-abs-def) (simp add: proj2-pt-hyp2-rep Rep-hyp2-inverse)

lemma norm-hyp2-rep-lt-1 : norm (hyp2-rep p) < 1
proof −

have proj2-pt (hyp2-rep p) = Rep-hyp2 p by (rule proj2-pt-hyp2-rep)
hence proj2-pt (hyp2-rep p) ∈ hyp2 by (simp add: Rep-hyp2)
thus norm (hyp2-rep p) < 1 by (simp add: norm-lt-1-iff-in-hyp2)

qed

lemma hyp2-S-z-non-zero:
assumes p ∈ hyp2 ∪ S
shows z-non-zero p

proof −
from ‹p ∈ hyp2 ∪ S›
have conic-sgn p ≤ 0 by (unfold K2-def S-def) auto
hence conic-sgn p 6= 1 by simp
thus z-non-zero p by (rule conic-sgn-not-1-z-non-zero)

qed

lemma hyp2-S-not-equal:
assumes a ∈ hyp2 and p ∈ S
shows a 6= p
using assms and S-K2-empty
by auto

lemma hyp2-S-cart2-inj:
assumes p ∈ hyp2 ∪ S and q ∈ hyp2 ∪ S and cart2-pt p = cart2-pt q
shows p = q

proof −
from ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S›

121

have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt (cart2-pt p) = p and proj2-pt (cart2-pt q) = q

by (simp-all add: proj2-cart2)

from ‹cart2-pt p = cart2-pt q›
have proj2-pt (cart2-pt p) = proj2-pt (cart2-pt q) by simp
with ‹proj2-pt (cart2-pt p) = p› [symmetric] and ‹proj2-pt (cart2-pt q) = q›
show p = q by simp

qed

lemma on-equator-in-hyp2-rep:
assumes a ∈ hyp2 and proj2-incident a equator
shows ∃ x. |x| < 1 ∧ a = proj2-abs (vector [x,0 ,1])

proof −
from ‹a ∈ hyp2 › have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with ‹proj2-incident a equator› and on-equator-rep
obtain x where a = proj2-abs (vector [x,0 ,1]) (is a = proj2-abs ?v)

by auto

have ?v 6= 0 by (simp add: vec-eq-iff forall-3 vector-3)
with ‹a ∈ hyp2 › and ‹a = proj2-abs ?v›
have ?v · (M ∗v ?v) < 0 by (simp add: K2-abs)
hence x2 < 1

unfolding M-def matrix-vector-mult-def inner-vec-def
by (simp add: sum-3 vector-3 power2-eq-square)

with real-sqrt-abs [of x] and real-sqrt-less-iff [of x2 1]
have |x| < 1 by simp
with ‹a = proj2-abs ?v›
show ∃ x. |x| < 1 ∧ a = proj2-abs (vector [x,0 ,1])

by (simp add: exI [of - x])
qed

lemma on-meridian-in-hyp2-rep:
assumes a ∈ hyp2 and proj2-incident a meridian
shows ∃ y. |y| < 1 ∧ a = proj2-abs (vector [0 ,y,1])

proof −
from ‹a ∈ hyp2 › have z-non-zero a by (simp add: hyp2-S-z-non-zero)
with ‹proj2-incident a meridian› and on-meridian-rep
obtain y where a = proj2-abs (vector [0 ,y,1]) (is a = proj2-abs ?v)

by auto

have ?v 6= 0 by (simp add: vec-eq-iff forall-3 vector-3)
with ‹a ∈ hyp2 › and ‹a = proj2-abs ?v›
have ?v · (M ∗v ?v) < 0 by (simp add: K2-abs)
hence y2 < 1

unfolding M-def matrix-vector-mult-def inner-vec-def
by (simp add: sum-3 vector-3 power2-eq-square)

with real-sqrt-abs [of y] and real-sqrt-less-iff [of y2 1]
have |y| < 1 by simp

122

with ‹a = proj2-abs ?v›
show ∃ y. |y| < 1 ∧ a = proj2-abs (vector [0 ,y,1])

by (simp add: exI [of - y])
qed

definition hyp2-cltn2 :: hyp2 ⇒ cltn2 ⇒ hyp2 where
hyp2-cltn2 p A , Abs-hyp2 (apply-cltn2 (Rep-hyp2 p) A)

definition is-K2-isometry :: cltn2 ⇒ bool where
is-K2-isometry J , (∀ p. apply-cltn2 p J ∈ S ←→ p ∈ S)

lemma cltn2-id-is-K2-isometry: is-K2-isometry cltn2-id
unfolding is-K2-isometry-def
by simp

lemma J-M-J-transpose-K2-isometry:
assumes k 6= 0
and repJ ∗∗ M ∗∗ transpose repJ = k ∗R M (is ?N = -)
shows is-K2-isometry (cltn2-abs repJ) (is is-K2-isometry ?J)

proof −
from ‹?N = k ∗R M ›
have ?N ∗∗ ((1/k) ∗R M) = mat 1

by (simp add: matrix-scalar-ac ‹k 6= 0 › M-self-inverse)
with right-invertible-iff-invertible [of repJ]
have invertible repJ

by (simp add: matrix-mul-assoc
exI [of - M ∗∗ transpose repJ ∗∗ ((1/k) ∗R M)])

have ∀ t. apply-cltn2 t ?J ∈ S ←→ t ∈ S
proof

fix t :: proj2
have proj2-rep t · ((k ∗R M) ∗v proj2-rep t)
= k ∗ (proj2-rep t · (M ∗v proj2-rep t))
by (simp add: scaleR-matrix-vector-assoc [symmetric] dot-scaleR-mult)

with ‹?N = k ∗R M ›
have proj2-rep t · (?N ∗v proj2-rep t)
= k ∗ (proj2-rep t · (M ∗v proj2-rep t))
by simp

hence proj2-rep t · (?N ∗v proj2-rep t) = 0
←→ k ∗ (proj2-rep t · (M ∗v proj2-rep t)) = 0
by simp

with ‹k 6= 0 ›
have proj2-rep t · (?N ∗v proj2-rep t) = 0
←→ proj2-rep t · (M ∗v proj2-rep t) = 0
by simp

with ‹invertible repJ ›
have apply-cltn2 t ?J ∈ S ←→ proj2-rep t · (M ∗v proj2-rep t) = 0

by (simp add: apply-cltn2-right-abs-in-S)
thus apply-cltn2 t ?J ∈ S ←→ t ∈ S by (unfold S-alt-def)

123

qed
thus is-K2-isometry ?J by (unfold is-K2-isometry-def)

qed

lemma equator-reflect-K2-isometry:
shows is-K2-isometry equator-reflect
unfolding compass-reflect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])

(simp-all add: M-def matrix-matrix-mult-def transpose-def
vec-eq-iff forall-3 sum-3 vector-3)

lemma meridian-reflect-K2-isometry:
shows is-K2-isometry meridian-reflect
unfolding compass-reflect-defs
by (rule J-M-J-transpose-K2-isometry [of 1])

(simp-all add: M-def matrix-matrix-mult-def transpose-def
vec-eq-iff forall-3 sum-3 vector-3)

lemma cltn2-compose-is-K2-isometry:
assumes is-K2-isometry H and is-K2-isometry J
shows is-K2-isometry (cltn2-compose H J)
using ‹is-K2-isometry H › and ‹is-K2-isometry J ›
unfolding is-K2-isometry-def
by (simp add: cltn2 .act-act [simplified, symmetric])

lemma cltn2-inverse-is-K2-isometry:
assumes is-K2-isometry J
shows is-K2-isometry (cltn2-inverse J)

proof −
{ fix p

from ‹is-K2-isometry J ›
have apply-cltn2 p (cltn2-inverse J) ∈ S
←→ apply-cltn2 (apply-cltn2 p (cltn2-inverse J)) J ∈ S
unfolding is-K2-isometry-def
by simp

hence apply-cltn2 p (cltn2-inverse J) ∈ S ←→ p ∈ S
by (simp add: cltn2 .act-inv-act [simplified]) }

thus is-K2-isometry (cltn2-inverse J)
unfolding is-K2-isometry-def ..

qed

interpretation K2-isometry-subgroup: subgroup
Collect is-K2-isometry
(|carrier = UNIV , mult = cltn2-compose, one = cltn2-id|)
unfolding subgroup-def
by (simp add:

cltn2-id-is-K2-isometry
cltn2-compose-is-K2-isometry
cltn2-inverse-is-K2-isometry)

124

interpretation K2-isometry: group
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
using cltn2 .is-group and K2-isometry-subgroup.subgroup-is-group
by simp

lemma K2-isometry-inverse-inv [simp]:
assumes is-K2-isometry J
shows inv(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)

J
= cltn2-inverse J
using cltn2-left-inverse

and ‹is-K2-isometry J ›
and cltn2-inverse-is-K2-isometry
and K2-isometry.inv-equality

by simp

definition real-hyp2-C :: [hyp2 , hyp2 , hyp2 , hyp2] ⇒ bool
(‹- - ≡K - -› [99 ,99 ,99 ,99] 50) where
p q ≡K r s ,
(∃ A. is-K2-isometry A ∧ hyp2-cltn2 p A = r ∧ hyp2-cltn2 q A = s)

definition real-hyp2-B :: [hyp2 , hyp2 , hyp2] ⇒ bool
(‹BK - - -› [99 ,99 ,99] 50) where

BK p q r , B� (hyp2-rep p) (hyp2-rep q) (hyp2-rep r)

8.4 K-isometries map the interior of the conic to itself
lemma collinear-quadratic:

assumes t = i ∗R a + r
shows t · (M ∗v t) =
(a · (M ∗v a)) ∗ i2 + 2 ∗ (a · (M ∗v r)) ∗ i + r · (M ∗v r)

proof −
from M-reverse have i ∗ (a · (M ∗v r)) = i ∗ (r · (M ∗v a)) by simp
with ‹t = i ∗R a + r›
show t · (M ∗v t) =
(a · (M ∗v a)) ∗ i2 + 2 ∗ (a · (M ∗v r)) ∗ i + r · (M ∗v r)
by (simp add:

inner-add-left
matrix-vector-right-distrib
inner-add-right
matrix-scaleR-vector-ac
inner-scaleR-right
scaleR-matrix-vector-assoc [symmetric]
M-reverse
power2-eq-square
algebra-simps)

qed

125

lemma S-quadratic ′:
assumes p 6= 0 and q 6= 0 and proj2-abs p 6= proj2-abs q
shows proj2-abs (k ∗R p + q) ∈ S
←→ p · (M ∗v p) ∗ k2 + p · (M ∗v q) ∗ 2 ∗ k + q · (M ∗v q) = 0

proof −
let ?r = k ∗R p + q
from ‹p 6= 0 › and ‹q 6= 0 › and ‹proj2-abs p 6= proj2-abs q›

and dependent-proj2-abs [of p q k 1]
have ?r 6= 0 by auto
hence proj2-abs ?r ∈ S ←→ ?r · (M ∗v ?r) = 0 by (rule S-abs)
with collinear-quadratic [of ?r k p q]
show proj2-abs ?r ∈ S
←→ p · (M ∗v p) ∗ k2 + p · (M ∗v q) ∗ 2 ∗ k + q · (M ∗v q) = 0
by (simp add: dot-lmul-matrix [symmetric] algebra-simps)

qed

lemma S-quadratic:
assumes p 6= q and r = proj2-abs (k ∗R proj2-rep p + proj2-rep q)
shows r ∈ S
←→ proj2-rep p · (M ∗v proj2-rep p) ∗ k2

+ proj2-rep p · (M ∗v proj2-rep q) ∗ 2 ∗ k
+ proj2-rep q · (M ∗v proj2-rep q)

= 0
proof −

let ?u = proj2-rep p
let ?v = proj2-rep q
let ?w = k ∗R ?u + ?v
have ?u 6= 0 and ?v 6= 0 by (rule proj2-rep-non-zero)+

from ‹p 6= q› have proj2-abs ?u 6= proj2-abs ?v by (simp add: proj2-abs-rep)
with ‹?u 6= 0 › and ‹?v 6= 0 › and ‹r = proj2-abs ?w›
show r ∈ S
←→ ?u · (M ∗v ?u) ∗ k2 + ?u · (M ∗v ?v) ∗ 2 ∗ k + ?v · (M ∗v ?v) = 0
by (simp add: S-quadratic ′)

qed

definition quarter-discrim :: real^3 ⇒ real^3 ⇒ real where
quarter-discrim p q , (p · (M ∗v q))2 − p · (M ∗v p) ∗ (q · (M ∗v q))

lemma quarter-discrim-invariant:
assumes t = i ∗R a + r
shows quarter-discrim a t = quarter-discrim a r

proof −
from ‹t = i ∗R a + r›
have a · (M ∗v t) = i ∗ (a · (M ∗v a)) + a · (M ∗v r)

by (simp add:
matrix-vector-right-distrib
inner-add-right
matrix-scaleR-vector-ac

126

scaleR-matrix-vector-assoc [symmetric])
hence (a · (M ∗v t))2 =
(a · (M ∗v a))2 ∗ i2 +
2 ∗ (a · (M ∗v a)) ∗ (a · (M ∗v r)) ∗ i +
(a · (M ∗v r))2
by (simp add: power2-eq-square algebra-simps)

moreover from collinear-quadratic and ‹t = i ∗R a + r›
have a · (M ∗v a) ∗ (t · (M ∗v t)) =
(a · (M ∗v a))2 ∗ i2 +
2 ∗ (a · (M ∗v a)) ∗ (a · (M ∗v r)) ∗ i +
a · (M ∗v a) ∗ (r · (M ∗v r))
by (simp add: power2-eq-square algebra-simps)

ultimately show quarter-discrim a t = quarter-discrim a r
by (unfold quarter-discrim-def , simp)

qed

lemma quarter-discrim-positive:
assumes p 6= 0 and q 6= 0 and proj2-abs p 6= proj2-abs q (is ?pp 6= ?pq)
and proj2-abs p ∈ K2
shows quarter-discrim p q > 0

proof −
let ?i = −q$3/p$3
let ?t = ?i ∗R p + q

from ‹p 6= 0 › and ‹?pp ∈ K2 ›
have p · (M ∗v p) < 0 by (subst K2-abs [symmetric])
hence p$3 6= 0 by (rule M-neg-imp-z-non-zero)
hence ?t$3 = 0 by simp
hence ?t · (M ∗v ?t) = (?t$1)2 + (?t$2)2

unfolding matrix-vector-mult-def and M-def and vector-def
by (simp add: inner-vec-def sum-3 power2-eq-square)

from ‹p$3 6= 0 › have p 6= 0 by auto
with ‹q 6= 0 › and ‹?pp 6= ?pq› and dependent-proj2-abs [of p q ?i 1]
have ?t 6= 0 by auto
with ‹?t$3 = 0 › have ?t$1 6= 0 ∨ ?t$2 6= 0 by (simp add: vec-eq-iff forall-3)
hence (?t$1)2 > 0 ∨ (?t$2)2 > 0 by simp
moreover have (?t$2)2 ≥ 0 and (?t$1)2 ≥ 0 by simp-all
ultimately have (?t$1)2 + (?t$2)2 > 0 by arith
with ‹?t · (M ∗v ?t) = (?t$1)2 + (?t$2)2› have ?t · (M ∗v ?t) > 0 by simp
with mult-neg-pos [of p · (M ∗v p)] and ‹p · (M ∗v p) < 0 ›
have p · (M ∗v p) ∗ (?t · (M ∗v ?t)) < 0 by simp
moreover have (p · (M ∗v ?t))2 ≥ 0 by simp
ultimately
have (p · (M ∗v ?t))2 − p · (M ∗v p) ∗ (?t · (M ∗v ?t)) > 0 by arith
with quarter-discrim-invariant [of ?t ?i p q]
show quarter-discrim p q > 0 by (unfold quarter-discrim-def , simp)

qed

127

lemma quarter-discrim-self-zero:
assumes proj2-abs a = proj2-abs b
shows quarter-discrim a b = 0

proof cases
assume b = 0
thus quarter-discrim a b = 0 by (unfold quarter-discrim-def , simp)

next
assume b 6= 0
with ‹proj2-abs a = proj2-abs b› and proj2-abs-abs-mult
obtain k where a = k ∗R b by auto
thus quarter-discrim a b = 0

unfolding quarter-discrim-def
by (simp add: power2-eq-square

matrix-scaleR-vector-ac
scaleR-matrix-vector-assoc [symmetric])

qed

definition S-intersection-coeff1 :: real^3 ⇒ real^3 ⇒ real where
S-intersection-coeff1 p q
, (−p · (M ∗v q) + sqrt (quarter-discrim p q)) / (p · (M ∗v p))

definition S-intersection-coeff2 :: real^3 ⇒ real^3 ⇒ real where
S-intersection-coeff2 p q
, (−p · (M ∗v q) − sqrt (quarter-discrim p q)) / (p · (M ∗v p))

definition S-intersection1-rep :: real^3 ⇒ real^3 ⇒ real^3 where
S-intersection1-rep p q , (S-intersection-coeff1 p q) ∗R p + q

definition S-intersection2-rep :: real^3 ⇒ real^3 ⇒ real^3 where
S-intersection2-rep p q , (S-intersection-coeff2 p q) ∗R p + q

definition S-intersection1 :: real^3 ⇒ real^3 ⇒ proj2 where
S-intersection1 p q , proj2-abs (S-intersection1-rep p q)

definition S-intersection2 :: real^3 ⇒ real^3 ⇒ proj2 where
S-intersection2 p q , proj2-abs (S-intersection2-rep p q)

lemmas S-intersection-coeffs-defs =
S-intersection-coeff1-def S-intersection-coeff2-def

lemmas S-intersections-defs =
S-intersection1-def S-intersection2-def
S-intersection1-rep-def S-intersection2-rep-def

lemma S-intersection-coeffs-distinct:
assumes p 6= 0 and q 6= 0 and proj2-abs p 6= proj2-abs q (is ?pp 6= ?pq)
and proj2-abs p ∈ K2
shows S-intersection-coeff1 p q 6= S-intersection-coeff2 p q

proof −

128

from ‹p 6= 0 › and ‹?pp ∈ K2 ›
have p · (M ∗v p) < 0 by (subst K2-abs [symmetric])

from assms have quarter-discrim p q > 0 by (rule quarter-discrim-positive)
with ‹p · (M ∗v p) < 0 ›
show S-intersection-coeff1 p q 6= S-intersection-coeff2 p q

by (unfold S-intersection-coeffs-defs, simp)
qed

lemma S-intersections-distinct:
assumes p 6= 0 and q 6= 0 and proj2-abs p 6= proj2-abs q (is ?pp 6= ?pq)
and proj2-abs p ∈ K2
shows S-intersection1 p q 6= S-intersection2 p q

proof−
from ‹p 6= 0 › and ‹q 6= 0 › and ‹?pp 6= ?pq› and ‹?pp ∈ K2 ›
have S-intersection-coeff1 p q 6= S-intersection-coeff2 p q

by (rule S-intersection-coeffs-distinct)
with ‹p 6= 0 › and ‹q 6= 0 › and ‹?pp 6= ?pq› and proj2-Col-coeff-unique ′

show S-intersection1 p q 6= S-intersection2 p q
by (unfold S-intersections-defs, auto)

qed

lemma S-intersections-in-S :
assumes p 6= 0 and q 6= 0 and proj2-abs p 6= proj2-abs q (is ?pp 6= ?pq)
and proj2-abs p ∈ K2
shows S-intersection1 p q ∈ S and S-intersection2 p q ∈ S

proof −
let ?j = S-intersection-coeff1 p q
let ?k = S-intersection-coeff2 p q
let ?a = p · (M ∗v p)
let ?b = 2 ∗ (p · (M ∗v q))
let ?c = q · (M ∗v q)

from ‹p 6= 0 › and ‹?pp ∈ K2 › have ?a < 0 by (subst K2-abs [symmetric])

have qd: discrim ?a ?b ?c = 4 ∗ quarter-discrim p q
unfolding discrim-def quarter-discrim-def
by (simp add: power2-eq-square)

with times-divide-times-eq [of
2 2 sqrt (quarter-discrim p q) − p · (M ∗v q) ?a]
and times-divide-times-eq [of
2 2 −p · (M ∗v q) − sqrt (quarter-discrim p q) ?a]
and real-sqrt-mult and real-sqrt-abs [of 2]

have ?j = (−?b + sqrt (discrim ?a ?b ?c)) / (2 ∗ ?a)
and ?k = (−?b − sqrt (discrim ?a ?b ?c)) / (2 ∗ ?a)
by (unfold S-intersection-coeffs-defs, simp-all add: algebra-simps)

from assms have quarter-discrim p q > 0 by (rule quarter-discrim-positive)
with qd

129

have discrim (p · (M ∗v p)) (2 ∗ (p · (M ∗v q))) (q · (M ∗v q)) > 0
by simp

with ‹?j = (−?b + sqrt (discrim ?a ?b ?c)) / (2 ∗ ?a)›
and ‹?k = (−?b − sqrt (discrim ?a ?b ?c)) / (2 ∗ ?a)›
and ‹?a < 0 › and discriminant-nonneg [of ?a ?b ?c ?j]
and discriminant-nonneg [of ?a ?b ?c ?k]

have p · (M ∗v p) ∗ ?j2 + 2 ∗ (p · (M ∗v q)) ∗ ?j + q · (M ∗v q) = 0
and p · (M ∗v p) ∗ ?k2 + 2 ∗ (p · (M ∗v q)) ∗ ?k + q · (M ∗v q) = 0
by (unfold S-intersection-coeffs-defs, auto)

with ‹p 6= 0 › and ‹q 6= 0 › and ‹?pp 6= ?pq› and S-quadratic ′

show S-intersection1 p q ∈ S and S-intersection2 p q ∈ S
by (unfold S-intersections-defs, simp-all)

qed

lemma S-intersections-Col:
assumes p 6= 0 and q 6= 0
shows proj2-Col (proj2-abs p) (proj2-abs q) (S-intersection1 p q)
(is proj2-Col ?pp ?pq ?pr)

and proj2-Col (proj2-abs p) (proj2-abs q) (S-intersection2 p q)
(is proj2-Col ?pp ?pq ?ps)

proof −
{ assume ?pp = ?pq

hence proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (simp-all add: proj2-Col-coincide) }

moreover
{ assume ?pp 6= ?pq

with ‹p 6= 0 › and ‹q 6= 0 › and dependent-proj2-abs [of p q - 1]
have S-intersection1-rep p q 6= 0 (is ?r 6= 0)

and S-intersection2-rep p q 6= 0 (is ?s 6= 0)
by (unfold S-intersection1-rep-def S-intersection2-rep-def , auto)

with ‹p 6= 0 › and ‹q 6= 0 ›
and proj2-Col-abs [of p q ?r S-intersection-coeff1 p q 1 −1]
and proj2-Col-abs [of p q ?s S-intersection-coeff2 p q 1 −1]

have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps
by (unfold S-intersections-defs, simp-all) }

ultimately show proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps by fast+
qed

lemma S-intersections-incident:
assumes p 6= 0 and q 6= 0 and proj2-abs p 6= proj2-abs q (is ?pp 6= ?pq)
and proj2-incident (proj2-abs p) l and proj2-incident (proj2-abs q) l
shows proj2-incident (S-intersection1 p q) l (is proj2-incident ?pr l)
and proj2-incident (S-intersection2 p q) l (is proj2-incident ?ps l)

proof −
from ‹p 6= 0 › and ‹q 6= 0 ›
have proj2-Col ?pp ?pq ?pr and proj2-Col ?pp ?pq ?ps

by (rule S-intersections-Col)+
with ‹?pp 6= ?pq› and ‹proj2-incident ?pp l› and ‹proj2-incident ?pq l›

and proj2-incident-iff-Col

130

show proj2-incident ?pr l and proj2-incident ?ps l by fast+
qed

lemma K2-line-intersect-twice:
assumes a ∈ K2 and a 6= r
shows ∃ s u. s 6= u ∧ s ∈ S ∧ u ∈ S ∧ proj2-Col a r s ∧ proj2-Col a r u

proof −
let ?a ′ = proj2-rep a
let ?r ′ = proj2-rep r
from proj2-rep-non-zero have ?a ′ 6= 0 and ?r ′ 6= 0 by simp-all

from ‹?a ′ 6= 0 › and K2-imp-M-neg and proj2-abs-rep and ‹a ∈ K2 ›
have ?a ′ · (M ∗v ?a ′) < 0 by simp

from ‹a 6= r› have proj2-abs ?a ′ 6= proj2-abs ?r ′ by (simp add: proj2-abs-rep)

from ‹a ∈ K2 › have proj2-abs ?a ′ ∈ K2 by (simp add: proj2-abs-rep)
with ‹?a ′ 6= 0 › and ‹?r ′ 6= 0 › and ‹proj2-abs ?a ′ 6= proj2-abs ?r ′›
have S-intersection1 ?a ′ ?r ′ 6= S-intersection2 ?a ′ ?r ′ (is ?s 6= ?u)

by (rule S-intersections-distinct)

from ‹?a ′ 6= 0 › and ‹?r ′ 6= 0 › and ‹proj2-abs ?a ′ 6= proj2-abs ?r ′›
and ‹proj2-abs ?a ′ ∈ K2 ›

have ?s ∈ S and ?u ∈ S by (rule S-intersections-in-S)+

from ‹?a ′ 6= 0 › and ‹?r ′ 6= 0 ›
have proj2-Col (proj2-abs ?a ′) (proj2-abs ?r ′) ?s

and proj2-Col (proj2-abs ?a ′) (proj2-abs ?r ′) ?u
by (rule S-intersections-Col)+

hence proj2-Col a r ?s and proj2-Col a r ?u
by (simp-all add: proj2-abs-rep)

with ‹?s 6= ?u› and ‹?s ∈ S› and ‹?u ∈ S›
show ∃ s u. s 6= u ∧ s ∈ S ∧ u ∈ S ∧ proj2-Col a r s ∧ proj2-Col a r u

by auto
qed

lemma point-in-S-polar-is-tangent:
assumes p ∈ S and q ∈ S and proj2-incident q (polar p)
shows q = p

proof −
from ‹p ∈ S› have proj2-incident p (polar p)

by (subst incident-own-polar-in-S)

from line-incident-point-not-in-S
obtain r where r /∈ S and proj2-incident r (polar p) by auto
let ?u = proj2-rep r
let ?v = proj2-rep p
from ‹r /∈ S› and ‹p ∈ S› and ‹q ∈ S› have r 6= p and q 6= r by auto
with ‹proj2-incident p (polar p)›

131

and ‹proj2-incident q (polar p)›
and ‹proj2-incident r (polar p)›
and proj2-incident-iff [of r p polar p q]

obtain k where q = proj2-abs (k ∗R ?u + ?v) by auto
with ‹r 6= p› and ‹q ∈ S› and S-quadratic
have ?u · (M ∗v ?u) ∗ k2 + ?u · (M ∗v ?v) ∗ 2 ∗ k + ?v · (M ∗v ?v) = 0

by simp
moreover from ‹p ∈ S› have ?v · (M ∗v ?v) = 0 by (unfold S-alt-def)
moreover from ‹proj2-incident r (polar p)›
have ?u · (M ∗v ?v) = 0 by (unfold incident-polar)
moreover from ‹r /∈ S› have ?u · (M ∗v ?u) 6= 0 by (unfold S-alt-def)
ultimately have k = 0 by simp
with ‹q = proj2-abs (k ∗R ?u + ?v)›
show q = p by (simp add: proj2-abs-rep)

qed

lemma line-through-K2-intersect-S-twice:
assumes p ∈ K2 and proj2-incident p l
shows ∃ q r . q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l

proof −
from proj2-another-point-on-line
obtain s where s 6= p and proj2-incident s l by auto
from ‹p ∈ K2 › and ‹s 6= p› and K2-line-intersect-twice [of p s]
obtain q and r where q 6= r and q ∈ S and r ∈ S

and proj2-Col p s q and proj2-Col p s r
by auto

with ‹s 6= p› and ‹proj2-incident p l› and ‹proj2-incident s l›
and proj2-incident-iff-Col [of p s]

have proj2-incident q l and proj2-incident r l by fast+
with ‹q 6= r› and ‹q ∈ S› and ‹r ∈ S›
show ∃ q r . q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l

by auto
qed

lemma line-through-K2-intersect-S-again:
assumes p ∈ K2 and proj2-incident p l
shows ∃ r . r 6= q ∧ r ∈ S ∧ proj2-incident r l

proof −
from ‹p ∈ K2 › and ‹proj2-incident p l›

and line-through-K2-intersect-S-twice [of p l]
obtain s and t where s 6= t and s ∈ S and t ∈ S

and proj2-incident s l and proj2-incident t l
by auto

show ∃ r . r 6= q ∧ r ∈ S ∧ proj2-incident r l
proof cases

assume t = q
with ‹s 6= t› and ‹s ∈ S› and ‹proj2-incident s l›
have s 6= q ∧ s ∈ S ∧ proj2-incident s l by simp
thus ∃ r . r 6= q ∧ r ∈ S ∧ proj2-incident r l ..

132

next
assume t 6= q
with ‹t ∈ S› and ‹proj2-incident t l›
have t 6= q ∧ t ∈ S ∧ proj2-incident t l by simp
thus ∃ r . r 6= q ∧ r ∈ S ∧ proj2-incident r l ..

qed
qed

lemma line-through-K2-intersect-S :
assumes p ∈ K2 and proj2-incident p l
shows ∃ r . r ∈ S ∧ proj2-incident r l

proof −
from assms
have ∃ r . r 6= p ∧ r ∈ S ∧ proj2-incident r l

by (rule line-through-K2-intersect-S-again)
thus ∃ r . r ∈ S ∧ proj2-incident r l by auto

qed

lemma line-intersect-S-at-most-twice:
∃ p q. ∀ r∈S . proj2-incident r l −→ r = p ∨ r = q

proof −
from line-incident-point-not-in-S
obtain s where s /∈ S and proj2-incident s l by auto
let ?v = proj2-rep s
from proj2-another-point-on-line
obtain t where t 6= s and proj2-incident t l by auto
let ?w = proj2-rep t
have ?v 6= 0 and ?w 6= 0 by (rule proj2-rep-non-zero)+

let ?a = ?v · (M ∗v ?v)
let ?b = 2 ∗ (?v · (M ∗v ?w))
let ?c = ?w · (M ∗v ?w)
from ‹s /∈ S› have ?a 6= 0

unfolding S-def and conic-sgn-def
by auto

let ?j = (−?b + sqrt (discrim ?a ?b ?c)) / (2 ∗ ?a)
let ?k = (−?b − sqrt (discrim ?a ?b ?c)) / (2 ∗ ?a)
let ?p = proj2-abs (?j ∗R ?v + ?w)
let ?q = proj2-abs (?k ∗R ?v + ?w)
have ∀ r∈S . proj2-incident r l −→ r = ?p ∨ r = ?q
proof

fix r
assume r ∈ S
with ‹s /∈ S› have r 6= s by auto
{ assume proj2-incident r l

with ‹t 6= s› and ‹r 6= s› and ‹proj2-incident s l› and ‹proj2-incident t l›
and proj2-incident-iff [of s t l r]

obtain i where r = proj2-abs (i ∗R ?v + ?w) by auto
with ‹r ∈ S› and ‹t 6= s› and S-quadratic

133

have ?a ∗ i2 + ?b ∗ i + ?c = 0 by simp
with ‹?a 6= 0 › and discriminant-iff have i = ?j ∨ i = ?k by simp
with ‹r = proj2-abs (i ∗R ?v + ?w)› have r = ?p ∨ r = ?q by auto }

thus proj2-incident r l −→ r = ?p ∨ r = ?q ..
qed
thus ∃ p q. ∀ r∈S . proj2-incident r l −→ r = p ∨ r = q by auto

qed

lemma card-line-intersect-S :
assumes T ⊆ S and proj2-set-Col T
shows card T ≤ 2

proof −
from ‹proj2-set-Col T ›
obtain l where ∀ p∈T . proj2-incident p l unfolding proj2-set-Col-def ..
from line-intersect-S-at-most-twice [of l]
obtain b and c where ∀ a∈S . proj2-incident a l −→ a = b ∨ a = c by auto
with ‹∀ p∈T . proj2-incident p l› and ‹T ⊆ S›
have T ⊆ {b,c} by auto
hence card T ≤ card {b,c} by (simp add: card-mono)
also from card-suc-ge-insert [of b {c}] have . . . ≤ 2 by simp
finally show card T ≤ 2 .

qed

lemma line-S-two-intersections-only:
assumes p 6= q and p ∈ S and q ∈ S and r ∈ S
and proj2-incident p l and proj2-incident q l and proj2-incident r l
shows r = p ∨ r = q

proof −
from ‹p 6= q› have card {p,q} = 2 by simp

from ‹p ∈ S› and ‹q ∈ S› and ‹r ∈ S› have {r ,p,q} ⊆ S by simp-all

from ‹proj2-incident p l› and ‹proj2-incident q l› and ‹proj2-incident r l›
have proj2-set-Col {r ,p,q}

by (unfold proj2-set-Col-def) (simp add: exI [of - l])
with ‹{r ,p,q} ⊆ S› have card {r ,p,q} ≤ 2 by (rule card-line-intersect-S)

show r = p ∨ r = q
proof (rule ccontr)

assume ¬ (r = p ∨ r = q)
hence r /∈ {p,q} by simp
with ‹card {p,q} = 2 › and card-insert-disjoint [of {p,q} r]
have card {r ,p,q} = 3 by simp
with ‹card {r ,p,q} ≤ 2 › show False by simp

qed
qed

lemma line-through-K2-intersect-S-exactly-twice:
assumes p ∈ K2 and proj2-incident p l

134

shows ∃ q r . q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l
∧ (∀ s∈S . proj2-incident s l −→ s = q ∨ s = r)

proof −
from ‹p ∈ K2 › and ‹proj2-incident p l›

and line-through-K2-intersect-S-twice [of p l]
obtain q and r where q 6= r and q ∈ S and r ∈ S

and proj2-incident q l and proj2-incident r l
by auto

with line-S-two-intersections-only
show ∃ q r . q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l
∧ (∀ s∈S . proj2-incident s l −→ s = q ∨ s = r)
by blast

qed

lemma tangent-not-through-K2 :
assumes p ∈ S and q ∈ K2
shows ¬ proj2-incident q (polar p)

proof
assume proj2-incident q (polar p)
with ‹q ∈ K2 › and line-through-K2-intersect-S-again [of q polar p p]
obtain r where r 6= p and r ∈ S and proj2-incident r (polar p) by auto
from ‹p ∈ S› and ‹r ∈ S› and ‹proj2-incident r (polar p)›
have r = p by (rule point-in-S-polar-is-tangent)
with ‹r 6= p› show False ..

qed

lemma outside-exists-line-not-intersect-S :
assumes conic-sgn p = 1
shows ∃ l. proj2-incident p l ∧ (∀ q. proj2-incident q l −→ q /∈ S)

proof −
let ?r = proj2-intersection (polar p) z-zero
have proj2-incident ?r (polar p) and proj2-incident ?r z-zero

by (rule proj2-intersection-incident)+
from ‹proj2-incident ?r z-zero›
have conic-sgn ?r = 1 by (rule z-zero-conic-sgn-1)
with ‹conic-sgn p = 1 ›
have proj2-rep p · (M ∗v proj2-rep p) > 0

and proj2-rep ?r · (M ∗v proj2-rep ?r) > 0
by (unfold conic-sgn-def) (simp-all add: sgn-1-pos)

from ‹proj2-incident ?r (polar p)›
have proj2-incident p (polar ?r) by (rule incident-polar-swap)
hence proj2-rep p · (M ∗v proj2-rep ?r) = 0 by (simp add: incident-polar)

have p 6= ?r
proof

assume p = ?r
with ‹proj2-incident ?r (polar p)› have proj2-incident p (polar p) by simp
hence proj2-rep p · (M ∗v proj2-rep p) = 0 by (simp add: incident-polar)

135

with ‹proj2-rep p · (M ∗v proj2-rep p) > 0 › show False by simp
qed

let ?l = proj2-line-through p ?r
have proj2-incident p ?l and proj2-incident ?r ?l

by (rule proj2-line-through-incident)+

have ∀ q. proj2-incident q ?l −→ q /∈ S
proof

fix q
show proj2-incident q ?l −→ q /∈ S
proof

assume proj2-incident q ?l
with ‹p 6= ?r› and ‹proj2-incident p ?l› and ‹proj2-incident ?r ?l›
have q = p ∨ (∃ k. q = proj2-abs (k ∗R proj2-rep p + proj2-rep ?r))

by (simp add: proj2-incident-iff [of p ?r ?l q])

show q /∈ S
proof cases

assume q = p
with ‹conic-sgn p = 1 › show q /∈ S by (unfold S-def) simp

next
assume q 6= p
with ‹q = p ∨ (∃ k. q = proj2-abs (k ∗R proj2-rep p + proj2-rep ?r))›
obtain k where q = proj2-abs (k ∗R proj2-rep p + proj2-rep ?r)

by auto
from ‹proj2-rep p · (M ∗v proj2-rep p) > 0 ›
have proj2-rep p · (M ∗v proj2-rep p) ∗ k2 ≥ 0

by simp
with ‹proj2-rep p · (M ∗v proj2-rep ?r) = 0 ›

and ‹proj2-rep ?r · (M ∗v proj2-rep ?r) > 0 ›
have proj2-rep p · (M ∗v proj2-rep p) ∗ k2

+ proj2-rep p · (M ∗v proj2-rep ?r) ∗ 2 ∗ k
+ proj2-rep ?r · (M ∗v proj2-rep ?r)
> 0
by simp

with ‹p 6= ?r› and ‹q = proj2-abs (k ∗R proj2-rep p + proj2-rep ?r)›
show q /∈ S by (simp add: S-quadratic)

qed
qed

qed
with ‹proj2-incident p ?l›
show ∃ l. proj2-incident p l ∧ (∀ q. proj2-incident q l −→ q /∈ S)

by (simp add: exI [of - ?l])
qed

lemma lines-through-intersect-S-twice-in-K2 :
assumes ∀ l. proj2-incident p l
−→ (∃ q r . q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l)

136

shows p ∈ K2
proof (rule ccontr)

assume p /∈ K2
hence conic-sgn p ≥ 0 by (unfold K2-def) simp

have ¬ (∀ l. proj2-incident p l −→ (∃ q r .
q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l))

proof cases
assume conic-sgn p = 0
hence p ∈ S unfolding S-def ..
hence proj2-incident p (polar p) by (simp add: incident-own-polar-in-S)
let ?l = polar p
have ¬ (∃ q r .

q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q ?l ∧ proj2-incident r ?l)
proof

assume ∃ q r .
q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q ?l ∧ proj2-incident r ?l

then obtain q and r where q 6= r and q ∈ S and r ∈ S
and proj2-incident q ?l and proj2-incident r ?l
by auto

from ‹p ∈ S› and ‹q ∈ S› and ‹proj2-incident q ?l›
and ‹r ∈ S› and ‹proj2-incident r ?l›

have q = p and r = p by (simp add: point-in-S-polar-is-tangent)+
with ‹q 6= r› show False by simp

qed
with ‹proj2-incident p ?l›
show ¬ (∀ l. proj2-incident p l −→ (∃ q r .

q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l))
by auto

next
assume conic-sgn p 6= 0
with ‹conic-sgn p ≥ 0 › have conic-sgn p > 0 by simp
hence sgn (conic-sgn p) = 1 by simp
hence conic-sgn p = 1 by (simp add: sgn-conic-sgn)
with outside-exists-line-not-intersect-S
obtain l where proj2-incident p l and ∀ q. proj2-incident q l −→ q /∈ S

by auto
have ¬ (∃ q r .

q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l)
proof

assume ∃ q r .
q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l

then obtain q where q ∈ S and proj2-incident q l by auto
from ‹proj2-incident q l› and ‹∀ q. proj2-incident q l −→ q /∈ S›
have q /∈ S by simp
with ‹q ∈ S› show False by simp

qed
with ‹proj2-incident p l›
show ¬ (∀ l. proj2-incident p l −→ (∃ q r .

137

q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l))
by auto

qed
with ‹∀ l. proj2-incident p l −→ (∃ q r .

q 6= r ∧ q ∈ S ∧ r ∈ S ∧ proj2-incident q l ∧ proj2-incident r l)›
show False by simp

qed

lemma line-through-hyp2-pole-not-in-hyp2 :
assumes a ∈ hyp2 and proj2-incident a l
shows pole l /∈ hyp2

proof −
from assms and line-through-K2-intersect-S
obtain p where p ∈ S and proj2-incident p l by auto

from ‹proj2-incident p l›
have proj2-incident (pole l) (polar p) by (rule incident-pole-polar)
with ‹p ∈ S›
show pole l /∈ hyp2

by (auto simp add: tangent-not-through-K2)
qed

lemma statement60-one-way:
assumes is-K2-isometry J and p ∈ K2
shows apply-cltn2 p J ∈ K2 (is ?p ′ ∈ K2)

proof −
let ?J ′ = cltn2-inverse J

have ∀ l ′. proj2-incident ?p ′ l ′ −→ (∃ q ′ r ′.
q ′ 6= r ′ ∧ q ′ ∈ S ∧ r ′ ∈ S ∧ proj2-incident q ′ l ′ ∧ proj2-incident r ′ l ′)

proof
fix l ′
let ?l = apply-cltn2-line l ′ ?J ′

show proj2-incident ?p ′ l ′ −→ (∃ q ′ r ′.
q ′ 6= r ′ ∧ q ′ ∈ S ∧ r ′ ∈ S ∧ proj2-incident q ′ l ′ ∧ proj2-incident r ′ l ′)

proof
assume proj2-incident ?p ′ l ′
hence proj2-incident p ?l

by (simp add: apply-cltn2-incident [of p l ′ ?J ′]
cltn2 .inv-inv [simplified])

with ‹p ∈ K2 › and line-through-K2-intersect-S-twice [of p ?l]
obtain q and r where q 6= r and q ∈ S and r ∈ S

and proj2-incident q ?l and proj2-incident r ?l
by auto

let ?q ′ = apply-cltn2 q J
let ?r ′ = apply-cltn2 r J
from ‹q 6= r› and apply-cltn2-injective [of q J r] have ?q ′ 6= ?r ′ by auto

from ‹q ∈ S› and ‹r ∈ S› and ‹is-K2-isometry J ›

138

have ?q ′ ∈ S and ?r ′ ∈ S by (unfold is-K2-isometry-def) simp-all

from ‹proj2-incident q ?l› and ‹proj2-incident r ?l›
have proj2-incident ?q ′ l ′ and proj2-incident ?r ′ l ′

by (simp-all add: apply-cltn2-incident [of - l ′ ?J ′]
cltn2 .inv-inv [simplified])

with ‹?q ′ 6= ?r ′› and ‹?q ′ ∈ S› and ‹?r ′ ∈ S›
show ∃ q ′ r ′.

q ′ 6= r ′ ∧ q ′ ∈ S ∧ r ′ ∈ S ∧ proj2-incident q ′ l ′ ∧ proj2-incident r ′ l ′
by auto

qed
qed
thus ?p ′ ∈ K2 by (rule lines-through-intersect-S-twice-in-K2)

qed

lemma is-K2-isometry-hyp2-S :
assumes p ∈ hyp2 ∪ S and is-K2-isometry J
shows apply-cltn2 p J ∈ hyp2 ∪ S

proof cases
assume p ∈ hyp2
with ‹is-K2-isometry J ›
have apply-cltn2 p J ∈ hyp2 by (rule statement60-one-way)
thus apply-cltn2 p J ∈ hyp2 ∪ S ..

next
assume p /∈ hyp2
with ‹p ∈ hyp2 ∪ S› have p ∈ S by simp
with ‹is-K2-isometry J ›
have apply-cltn2 p J ∈ S by (unfold is-K2-isometry-def) simp
thus apply-cltn2 p J ∈ hyp2 ∪ S ..

qed

lemma is-K2-isometry-z-non-zero:
assumes p ∈ hyp2 ∪ S and is-K2-isometry J
shows z-non-zero (apply-cltn2 p J)

proof −
from ‹p ∈ hyp2 ∪ S› and ‹is-K2-isometry J ›
have apply-cltn2 p J ∈ hyp2 ∪ S by (rule is-K2-isometry-hyp2-S)
thus z-non-zero (apply-cltn2 p J) by (rule hyp2-S-z-non-zero)

qed

lemma cart2-append1-apply-cltn2 :
assumes p ∈ hyp2 ∪ S and is-K2-isometry J
shows ∃ k. k 6= 0
∧ cart2-append1 p v∗ cltn2-rep J = k ∗R cart2-append1 (apply-cltn2 p J)

proof −
have cart2-append1 p v∗ cltn2-rep J
= (1 / (proj2-rep p)$3) ∗R (proj2-rep p v∗ cltn2-rep J)
by (unfold cart2-append1-def) (simp add: scaleR-vector-matrix-assoc)

139

from ‹p ∈ hyp2 ∪ S› have (proj2-rep p)$3 6= 0 by (rule hyp2-S-z-non-zero)

from apply-cltn2-imp-mult [of p J]
obtain j where j 6= 0

and proj2-rep p v∗ cltn2-rep J = j ∗R proj2-rep (apply-cltn2 p J)
by auto

from ‹p ∈ hyp2 ∪ S› and ‹is-K2-isometry J ›
have z-non-zero (apply-cltn2 p J) by (rule is-K2-isometry-z-non-zero)
hence proj2-rep (apply-cltn2 p J)
= (proj2-rep (apply-cltn2 p J))$3 ∗R cart2-append1 (apply-cltn2 p J)
by (rule proj2-rep-cart2-append1)

let ?k = 1 / (proj2-rep p)$3 ∗ j ∗ (proj2-rep (apply-cltn2 p J))$3
from ‹(proj2-rep p)$3 6= 0 › and ‹j 6= 0 ›

and ‹(proj2-rep (apply-cltn2 p J))$3 6= 0 ›
have ?k 6= 0 by simp

from ‹cart2-append1 p v∗ cltn2-rep J
= (1 / (proj2-rep p)$3) ∗R (proj2-rep p v∗ cltn2-rep J)›
and ‹proj2-rep p v∗ cltn2-rep J = j ∗R proj2-rep (apply-cltn2 p J)›

have cart2-append1 p v∗ cltn2-rep J
= (1 / (proj2-rep p)$ 3 ∗ j) ∗R proj2-rep (apply-cltn2 p J)
by simp

from ‹proj2-rep (apply-cltn2 p J)
= (proj2-rep (apply-cltn2 p J))$3 ∗R cart2-append1 (apply-cltn2 p J)›

have (1 / (proj2-rep p)$3 ∗ j) ∗R proj2-rep (apply-cltn2 p J)
= (1 / (proj2-rep p)$3 ∗ j) ∗R ((proj2-rep (apply-cltn2 p J))$3
∗R cart2-append1 (apply-cltn2 p J))
by simp

with ‹cart2-append1 p v∗ cltn2-rep J
= (1 / (proj2-rep p)$ 3 ∗ j) ∗R proj2-rep (apply-cltn2 p J)›

have cart2-append1 p v∗ cltn2-rep J = ?k ∗R cart2-append1 (apply-cltn2 p J)
by simp

with ‹?k 6= 0 ›
show ∃ k. k 6= 0
∧ cart2-append1 p v∗ cltn2-rep J = k ∗R cart2-append1 (apply-cltn2 p J)
by (simp add: exI [of - ?k])

qed

8.5 The K-isometries form a group action
lemma hyp2-cltn2-id [simp]: hyp2-cltn2 p cltn2-id = p

by (unfold hyp2-cltn2-def) (simp add: Rep-hyp2-inverse)

lemma apply-cltn2-Rep-hyp2 :
assumes is-K2-isometry J
shows apply-cltn2 (Rep-hyp2 p) J ∈ hyp2

140

proof −
from ‹is-K2-isometry J › and Rep-hyp2 [of p]
show apply-cltn2 (Rep-hyp2 p) J ∈ K2 by (rule statement60-one-way)

qed

lemma Rep-hyp2-cltn2 :
assumes is-K2-isometry J
shows Rep-hyp2 (hyp2-cltn2 p J) = apply-cltn2 (Rep-hyp2 p) J

proof −
from ‹is-K2-isometry J ›
have apply-cltn2 (Rep-hyp2 p) J ∈ hyp2 by (rule apply-cltn2-Rep-hyp2)
thus Rep-hyp2 (hyp2-cltn2 p J) = apply-cltn2 (Rep-hyp2 p) J

by (unfold hyp2-cltn2-def) (rule Abs-hyp2-inverse)
qed

lemma hyp2-cltn2-compose:
assumes is-K2-isometry H
shows hyp2-cltn2 (hyp2-cltn2 p H) J = hyp2-cltn2 p (cltn2-compose H J)

proof −
from ‹is-K2-isometry H ›
have apply-cltn2 (Rep-hyp2 p) H ∈ hyp2 by (rule apply-cltn2-Rep-hyp2)
thus hyp2-cltn2 (hyp2-cltn2 p H) J = hyp2-cltn2 p (cltn2-compose H J)

by (unfold hyp2-cltn2-def) (simp add: Abs-hyp2-inverse apply-cltn2-compose)
qed

interpretation K2-isometry: action
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)
hyp2-cltn2

proof
let ?G =
(|carrier = Collect is-K2-isometry, mult = cltn2-compose, one = cltn2-id|)

fix p
show hyp2-cltn2 p 1?G = p

by (unfold hyp2-cltn2-def) (simp add: Rep-hyp2-inverse)
fix H J
show H ∈ carrier ?G ∧ J ∈ carrier ?G
−→ hyp2-cltn2 (hyp2-cltn2 p H) J = hyp2-cltn2 p (H ⊗?G J)
by (simp add: hyp2-cltn2-compose)

qed

8.6 The Klein–Beltrami model satisfies Tarski’s first three
axioms

lemma three-in-S-tangent-intersection-no-3-Col:
assumes p ∈ S and q ∈ S and r ∈ S
and p 6= q and r /∈ {p,q}
shows proj2-no-3-Col {proj2-intersection (polar p) (polar q),r ,p,q}
(is proj2-no-3-Col {?s,r ,p,q})

proof −

141

let ?T = {?s,r ,p,q}

from ‹p 6= q› have card {p,q} = 2 by simp
with ‹r /∈ {p,q}› have card {r ,p,q} = 3 by simp

from ‹p ∈ S› and ‹q ∈ S› and ‹r ∈ S› have {r ,p,q} ⊆ S by simp

have proj2-incident ?s (polar p) and proj2-incident ?s (polar q)
by (rule proj2-intersection-incident)+

have ?s /∈ S
proof

assume ?s ∈ S
with ‹p ∈ S› and ‹proj2-incident ?s (polar p)›

and ‹q ∈ S› and ‹proj2-incident ?s (polar q)›
have ?s = p and ?s = q by (simp-all add: point-in-S-polar-is-tangent)
hence p = q by simp
with ‹p 6= q› show False ..

qed
with ‹{r ,p,q} ⊆ S› have ?s /∈ {r ,p,q} by auto
with ‹card {r ,p,q} = 3 › have card {?s,r ,p,q} = 4 by simp

have ∀ t∈?T . ¬ proj2-set-Col (?T − {t})
proof standard+

fix t
assume t ∈ ?T
assume proj2-set-Col (?T − {t})
then obtain l where ∀ a ∈ (?T − {t}). proj2-incident a l

unfolding proj2-set-Col-def ..

from ‹proj2-set-Col (?T − {t})›
have proj2-set-Col (S ∩ (?T − {t}))

by (simp add: proj2-subset-Col [of (S ∩ (?T − {t})) ?T − {t}])
hence card (S ∩ (?T − {t})) ≤ 2 by (simp add: card-line-intersect-S)

show False
proof cases

assume t = ?s
with ‹?s /∈ {r ,p,q}› have ?T − {t} = {r ,p,q} by simp
with ‹{r ,p,q} ⊆ S› have S ∩ (?T − {t}) = {r ,p,q} by simp
with ‹card {r ,p,q} = 3 › and ‹card (S ∩ (?T − {t})) ≤ 2 › show False by

simp
next

assume t 6= ?s
hence ?s ∈ ?T − {t} by simp
with ‹∀ a ∈ (?T − {t}). proj2-incident a l› have proj2-incident ?s l ..

from ‹p 6= q› have {p,q} ∩ ?T − {t} 6= {} by auto
then obtain d where d ∈ {p,q} and d ∈ ?T − {t} by auto

142

from ‹d ∈ ?T − {t}› and ‹∀ a ∈ (?T − {t}). proj2-incident a l›
have proj2-incident d l by simp

from ‹d ∈ {p,q}›
and ‹proj2-incident ?s (polar p)›
and ‹proj2-incident ?s (polar q)›

have proj2-incident ?s (polar d) by auto

from ‹d ∈ {p,q}› and ‹{r ,p,q} ⊆ S› have d ∈ S by auto
hence proj2-incident d (polar d) by (unfold incident-own-polar-in-S)

from ‹d ∈ S› and ‹?s /∈ S› have d 6= ?s by auto
with ‹proj2-incident ?s l›

and ‹proj2-incident d l›
and ‹proj2-incident ?s (polar d)›
and ‹proj2-incident d (polar d)›
and proj2-incident-unique

have l = polar d by auto
with ‹d ∈ S› and point-in-S-polar-is-tangent
have ∀ a∈S . proj2-incident a l −→ a = d by simp
with ‹∀ a ∈ (?T − {t}). proj2-incident a l›
have S ∩ (?T − {t}) ⊆ {d} by auto
with card-mono [of {d}] have card (S ∩ (?T − {t})) ≤ 1 by simp
hence card ((S ∩ ?T) − {t}) ≤ 1 by (simp add: Int-Diff)

have S ∩ ?T ⊆ insert t ((S ∩ ?T) − {t}) by auto
with card-suc-ge-insert [of t (S ∩ ?T) − {t}]

and card-mono [of insert t ((S ∩ ?T) − {t}) S ∩ ?T]
have card (S ∩ ?T) ≤ card ((S ∩ ?T) − {t}) + 1 by simp
with ‹card ((S ∩ ?T) − {t}) ≤ 1 › have card (S ∩ ?T) ≤ 2 by simp

from ‹{r ,p,q} ⊆ S› have {r ,p,q} ⊆ S ∩ ?T by simp
with ‹card {r ,p,q} = 3 › and card-mono [of S ∩ ?T {r ,p,q}]
have card (S ∩ ?T) ≥ 3 by simp
with ‹card (S ∩ ?T) ≤ 2 › show False by simp

qed
qed
with ‹card ?T = 4 › show proj2-no-3-Col ?T unfolding proj2-no-3-Col-def ..

qed

lemma statement65-special-case:
assumes p ∈ S and q ∈ S and r ∈ S and p 6= q and r /∈ {p,q}
shows ∃ J . is-K2-isometry J
∧ apply-cltn2 east J = p
∧ apply-cltn2 west J = q
∧ apply-cltn2 north J = r
∧ apply-cltn2 far-north J = proj2-intersection (polar p) (polar q)

proof −
let ?s = proj2-intersection (polar p) (polar q)

143

let ?t = vector [vector [?s,r ,p,q], vector [far-north, north, east, west]]
:: proj2^4^2

have range (($) (?t$1)) = {?s, r , p, q}
unfolding image-def
by (auto simp add: UNIV-4 vector-4)

with ‹p ∈ S› and ‹q ∈ S› and ‹r ∈ S› and ‹p 6= q› and ‹r /∈ {p,q}›
have proj2-no-3-Col (range (($) (?t$1)))

by (simp add: three-in-S-tangent-intersection-no-3-Col)
moreover have range (($) (?t$2)) = {far-north, north, east, west}

unfolding image-def
by (auto simp add: UNIV-4 vector-4)

with compass-in-S and east-west-distinct and north-not-east-or-west
and east-west-tangents-far-north
and three-in-S-tangent-intersection-no-3-Col [of east west north]

have proj2-no-3-Col (range (($) (?t$2))) by simp
ultimately have ∀ i. proj2-no-3-Col (range (($) (?t$i)))

by (simp add: forall-2)
hence ∃ J . ∀ j. apply-cltn2 (?t0j) J = ?t1j

by (rule statement53-existence)
moreover have 0 = (2 ::2) by simp
ultimately obtain J where ∀ j. apply-cltn2 (?t2j) J = ?t1j by auto
hence apply-cltn2 (?t$2$1) J = ?t$1$1

and apply-cltn2 (?t$2$2) J = ?t$1$2
and apply-cltn2 (?t$2$3) J = ?t$1$3
and apply-cltn2 (?t$2$4) J = ?t$1$4
by simp-all

hence apply-cltn2 east J = p
and apply-cltn2 west J = q
and apply-cltn2 north J = r
and apply-cltn2 far-north J = ?s
by (simp-all add: vector-2 vector-4)

with compass-non-zero
have p = proj2-abs (vector [1 ,0 ,1] v∗ cltn2-rep J)

and q = proj2-abs (vector [−1 ,0 ,1] v∗ cltn2-rep J)
and r = proj2-abs (vector [0 ,1 ,1] v∗ cltn2-rep J)
and ?s = proj2-abs (vector [0 ,1 ,0] v∗ cltn2-rep J)
unfolding compass-defs and far-north-def
by (simp-all add: apply-cltn2-left-abs)

let ?N = cltn2-rep J ∗∗ M ∗∗ transpose (cltn2-rep J)
from M-symmatrix have symmatrix ?N by (rule symmatrix-preserve)
hence ?N$2$1 = ?N$1$2 and ?N$3$1 = ?N$1$3 and ?N$3$2 = ?N$2$3

unfolding symmatrix-def and transpose-def
by (simp-all add: vec-eq-iff)

from compass-non-zero and ‹apply-cltn2 east J = p› and ‹p ∈ S›
and apply-cltn2-abs-in-S [of vector [1 ,0 ,1] J]

have (vector [1 ,0 ,1] :: real^3) · (?N ∗v vector [1 ,0 ,1]) = 0
unfolding east-def

144

by simp
hence ?N$1$1 + ?N$1$3 + ?N$3$1 + ?N$3$3 = 0

unfolding inner-vec-def and matrix-vector-mult-def
by (simp add: sum-3 vector-3)

with ‹?N$3$1 = ?N$1$3 › have ?N$1$1 + 2 ∗ (?N$1$3) + ?N$3$3 = 0 by
simp

from compass-non-zero and ‹apply-cltn2 west J = q› and ‹q ∈ S›
and apply-cltn2-abs-in-S [of vector [−1 ,0 ,1] J]

have (vector [−1 ,0 ,1] :: real^3) · (?N ∗v vector [−1 ,0 ,1]) = 0
unfolding west-def
by simp

hence ?N$1$1 − ?N$1$3 − ?N$3$1 + ?N$3$3 = 0
unfolding inner-vec-def and matrix-vector-mult-def
by (simp add: sum-3 vector-3)

with ‹?N$3$1 = ?N$1$3 › have ?N$1$1 − 2 ∗ (?N$1$3) + ?N$3$3 = 0 by
simp

with ‹?N$1$1 + 2 ∗ (?N$1$3) + ?N$3$3 = 0 ›
have ?N$1$1 + 2 ∗ (?N$1$3) + ?N$3$3 = ?N$1$1 − 2 ∗ (?N$1$3) +

?N$3$3
by simp

hence ?N$1$3 = 0 by simp
with ‹?N$1$1 + 2 ∗ (?N$1$3) + ?N$3$3 = 0 › have ?N$3$3 = − (?N$1$1)

by simp

from compass-non-zero and ‹apply-cltn2 north J = r› and ‹r ∈ S›
and apply-cltn2-abs-in-S [of vector [0 ,1 ,1] J]

have (vector [0 ,1 ,1] :: real^3) · (?N ∗v vector [0 ,1 ,1]) = 0
unfolding north-def
by simp

hence ?N$2$2 + ?N$2$3 + ?N$3$2 + ?N$3$3 = 0
unfolding inner-vec-def and matrix-vector-mult-def
by (simp add: sum-3 vector-3)

with ‹?N$3$2 = ?N$2$3 › have ?N$2$2 + 2 ∗ (?N$2$3) + ?N$3$3 = 0 by
simp

have proj2-incident ?s (polar p) and proj2-incident ?s (polar q)
by (rule proj2-intersection-incident)+

from compass-non-zero
have vector [1 ,0 ,1] v∗ cltn2-rep J 6= 0

and vector [−1 ,0 ,1] v∗ cltn2-rep J 6= 0
and vector [0 ,1 ,0] v∗ cltn2-rep J 6= 0
by (simp-all add: non-zero-mult-rep-non-zero)

from ‹vector [1 ,0 ,1] v∗ cltn2-rep J 6= 0 ›
and ‹vector [−1 ,0 ,1] v∗ cltn2-rep J 6= 0 ›
and ‹p = proj2-abs (vector [1 ,0 ,1] v∗ cltn2-rep J)›
and ‹q = proj2-abs (vector [−1 ,0 ,1] v∗ cltn2-rep J)›

have polar p = proj2-line-abs (M ∗v (vector [1 ,0 ,1] v∗ cltn2-rep J))

145

and polar q = proj2-line-abs (M ∗v (vector [−1 ,0 ,1] v∗ cltn2-rep J))
by (simp-all add: polar-abs)

from ‹vector [1 ,0 ,1] v∗ cltn2-rep J 6= 0 ›
and ‹vector [−1 ,0 ,1] v∗ cltn2-rep J 6= 0 ›
and M-invertible

have M ∗v (vector [1 ,0 ,1] v∗ cltn2-rep J) 6= 0
and M ∗v (vector [−1 ,0 ,1] v∗ cltn2-rep J) 6= 0
by (simp-all add: invertible-times-non-zero)

with ‹vector [0 ,1 ,0] v∗ cltn2-rep J 6= 0 ›
and ‹polar p = proj2-line-abs (M ∗v (vector [1 ,0 ,1] v∗ cltn2-rep J))›
and ‹polar q = proj2-line-abs (M ∗v (vector [−1 ,0 ,1] v∗ cltn2-rep J))›
and ‹?s = proj2-abs (vector [0 ,1 ,0] v∗ cltn2-rep J)›

have proj2-incident ?s (polar p)
←→ (vector [0 ,1 ,0] v∗ cltn2-rep J)
· (M ∗v (vector [1 ,0 ,1] v∗ cltn2-rep J)) = 0
and proj2-incident ?s (polar q)
←→ (vector [0 ,1 ,0] v∗ cltn2-rep J)
· (M ∗v (vector [−1 ,0 ,1] v∗ cltn2-rep J)) = 0
by (simp-all add: proj2-incident-abs)

with ‹proj2-incident ?s (polar p)› and ‹proj2-incident ?s (polar q)›
have (vector [0 ,1 ,0] v∗ cltn2-rep J)
· (M ∗v (vector [1 ,0 ,1] v∗ cltn2-rep J)) = 0
and (vector [0 ,1 ,0] v∗ cltn2-rep J)
· (M ∗v (vector [−1 ,0 ,1] v∗ cltn2-rep J)) = 0
by simp-all

hence vector [0 ,1 ,0] · (?N ∗v vector [1 ,0 ,1]) = 0
and vector [0 ,1 ,0] · (?N ∗v vector [−1 ,0 ,1]) = 0
by (simp-all add: dot-lmul-matrix matrix-vector-mul-assoc [symmetric])

hence ?N$2$1 + ?N$2$3 = 0 and −(?N$2$1) + ?N$2$3 = 0
unfolding inner-vec-def and matrix-vector-mult-def
by (simp-all add: sum-3 vector-3)

hence ?N$2$1 + ?N$2$3 = −(?N$2$1) + ?N$2$3 by simp
hence ?N$2$1 = 0 by simp
with ‹?N$2$1 + ?N$2$3 = 0 › have ?N$2$3 = 0 by simp
with ‹?N$2$2 + 2 ∗ (?N$2$3) + ?N$3$3 = 0 › and ‹?N$3$3 = −(?N$1$1)›
have ?N$2$2 = ?N$1$1 by simp
with ‹?N$1$3 = 0 › and ‹?N$2$1 = ?N$1$2 › and ‹?N$1$3 = 0 ›

and ‹?N$2$1 = 0 › and ‹?N$2$2 = ?N$1$1 › and ‹?N$2$3 = 0 ›
and ‹?N$3$1 = ?N$1$3 › and ‹?N$3$2 = ?N$2$3 › and ‹?N$3$3 =

−(?N$1$1)›
have ?N = (?N$1$1) ∗R M

unfolding M-def
by (simp add: vec-eq-iff vector-3 forall-3)

have invertible (cltn2-rep J) by (rule cltn2-rep-invertible)
with M-invertible
have invertible ?N by (simp add: invertible-mult transpose-invertible)
hence ?N 6= 0 by (auto simp add: zero-not-invertible)

146

with ‹?N = (?N$1$1) ∗R M › have ?N$1$1 6= 0 by auto
with ‹?N = (?N$1$1) ∗R M ›
have is-K2-isometry (cltn2-abs (cltn2-rep J))

by (simp add: J-M-J-transpose-K2-isometry)
hence is-K2-isometry J by (simp add: cltn2-abs-rep)
with ‹apply-cltn2 east J = p›

and ‹apply-cltn2 west J = q›
and ‹apply-cltn2 north J = r›
and ‹apply-cltn2 far-north J = ?s›

show ∃ J . is-K2-isometry J
∧ apply-cltn2 east J = p
∧ apply-cltn2 west J = q
∧ apply-cltn2 north J = r
∧ apply-cltn2 far-north J = ?s
by auto

qed

lemma statement66-existence:
assumes a1 ∈ K2 and a2 ∈ K2 and p1 ∈ S and p2 ∈ S
shows ∃ J . is-K2-isometry J ∧ apply-cltn2 a1 J = a2 ∧ apply-cltn2 p1 J = p2

proof −
let ?a = vector [a1 ,a2] :: proj2^2
from ‹a1 ∈ K2 › and ‹a2 ∈ K2 › have ∀ i. ?a$i ∈ K2 by (simp add: forall-2)

let ?p = vector [p1 ,p2] :: proj2^2
from ‹p1 ∈ S› and ‹p2 ∈ S› have ∀ i. ?p$i ∈ S by (simp add: forall-2)

let ?l = χ i. proj2-line-through (?a$i) (?p$i)
have ∀ i. proj2-incident (?a$i) (?l$i)

by (simp add: proj2-line-through-incident)
hence proj2-incident (?a$1) (?l$1) and proj2-incident (?a$2) (?l$2)

by fast+

have ∀ i. proj2-incident (?p$i) (?l$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?p$1) (?l$1) and proj2-incident (?p$2) (?l$2)
by fast+

let ?q = χ i. ε qi. qi 6= ?p$i ∧ qi ∈ S ∧ proj2-incident qi (?l$i)
have ∀ i. ?q$i 6= ?p$i ∧ ?q$i ∈ S ∧ proj2-incident (?q$i) (?l$i)
proof

fix i
from ‹∀ i. ?a$i ∈ K2 › have ?a$i ∈ K2 ..

from ‹∀ i. proj2-incident (?a$i) (?l$i)›
have proj2-incident (?a$i) (?l$i) ..
with ‹?a$i ∈ K2 ›
have ∃ qi. qi 6= ?p$i ∧ qi ∈ S ∧ proj2-incident qi (?l$i)

by (rule line-through-K2-intersect-S-again)

147

with someI-ex [of λ qi. qi 6= ?p$i ∧ qi ∈ S ∧ proj2-incident qi (?l$i)]
show ?q$i 6= ?p$i ∧ ?q$i ∈ S ∧ proj2-incident (?q$i) (?l$i) by simp

qed
hence ?q$1 6= ?p$1 and proj2-incident (?q$1) (?l$1)

and proj2-incident (?q$2) (?l$2)
by fast+

let ?r = χ i. proj2-intersection (polar (?q$i)) (polar (?p$i))
let ?m = χ i. proj2-line-through (?a$i) (?r$i)
have ∀ i. proj2-incident (?a$i) (?m$i)

by (simp add: proj2-line-through-incident)
hence proj2-incident (?a$1) (?m$1) and proj2-incident (?a$2) (?m$2)

by fast+

have ∀ i. proj2-incident (?r$i) (?m$i)
by (simp add: proj2-line-through-incident)

hence proj2-incident (?r$1) (?m$1) and proj2-incident (?r$2) (?m$2)
by fast+

let ?s = χ i. ε si. si 6= ?r$i ∧ si ∈ S ∧ proj2-incident si (?m$i)
have ∀ i. ?s$i 6= ?r$i ∧ ?s$i ∈ S ∧ proj2-incident (?s$i) (?m$i)
proof

fix i
from ‹∀ i. ?a$i ∈ K2 › have ?a$i ∈ K2 ..

from ‹∀ i. proj2-incident (?a$i) (?m$i)›
have proj2-incident (?a$i) (?m$i) ..
with ‹?a$i ∈ K2 ›
have ∃ si. si 6= ?r$i ∧ si ∈ S ∧ proj2-incident si (?m$i)

by (rule line-through-K2-intersect-S-again)
with someI-ex [of λ si. si 6= ?r$i ∧ si ∈ S ∧ proj2-incident si (?m$i)]
show ?s$i 6= ?r$i ∧ ?s$i ∈ S ∧ proj2-incident (?s$i) (?m$i) by simp

qed
hence ?s$1 6= ?r$1 and proj2-incident (?s$1) (?m$1)

and proj2-incident (?s$2) (?m$2)
by fast+

have ∀ i . ∀ u. proj2-incident u (?m$i) −→ ¬ (u = ?p$i ∨ u = ?q$i)
proof standard+

fix i :: 2
fix u :: proj2
assume proj2-incident u (?m$i)
assume u = ?p$i ∨ u = ?q$i

from ‹∀ i. ?p$i ∈ S› have ?p$i ∈ S ..

from ‹∀ i. ?q$i 6= ?p$i ∧ ?q$i ∈ S ∧ proj2-incident (?q$i) (?l$i)›
have ?q$i 6= ?p$i and ?q$i ∈ S

by simp-all

148

from ‹?p$i ∈ S› and ‹?q$i ∈ S› and ‹u = ?p$i ∨ u = ?q$i›
have u ∈ S by auto
hence proj2-incident u (polar u)

by (simp add: incident-own-polar-in-S)

have proj2-incident (?r$i) (polar (?p$i))
and proj2-incident (?r$i) (polar (?q$i))
by (simp-all add: proj2-intersection-incident)

with ‹u = ?p$i ∨ u = ?q$i›
have proj2-incident (?r$i) (polar u) by auto

from ‹∀ i. proj2-incident (?r$i) (?m$i)›
have proj2-incident (?r$i) (?m$i) ..

from ‹∀ i. proj2-incident (?a$i) (?m$i)›
have proj2-incident (?a$i) (?m$i) ..

from ‹∀ i. ?a$i ∈ K2 › have ?a$i ∈ K2 ..

have u 6= ?r$i
proof

assume u = ?r$i
with ‹proj2-incident (?r$i) (polar (?p$i))›

and ‹proj2-incident (?r$i) (polar (?q$i))›
have proj2-incident u (polar (?p$i))

and proj2-incident u (polar (?q$i))
by simp-all

with ‹u ∈ S› and ‹?p$i ∈ S› and ‹?q$i ∈ S›
have u = ?p$i and u = ?q$i

by (simp-all add: point-in-S-polar-is-tangent)
with ‹?q$i 6= ?p$i› show False by simp

qed
with ‹proj2-incident (u) (polar u)›

and ‹proj2-incident (?r$i) (polar u)›
and ‹proj2-incident u (?m$i)›
and ‹proj2-incident (?r$i) (?m$i)›
and proj2-incident-unique

have ?m$i = polar u by auto
with ‹proj2-incident (?a$i) (?m$i)›
have proj2-incident (?a$i) (polar u) by simp
with ‹u ∈ S› and ‹?a$i ∈ K2 › and tangent-not-through-K2
show False by simp

qed

let ?H = χ i. ε Hi. is-K2-isometry Hi
∧ apply-cltn2 east Hi = ?q$i
∧ apply-cltn2 west Hi = ?p$i
∧ apply-cltn2 north Hi = ?s$i

149

∧ apply-cltn2 far-north Hi = ?r$i
have ∀ i. is-K2-isometry (?H$i)
∧ apply-cltn2 east (?H$i) = ?q$i
∧ apply-cltn2 west (?H$i) = ?p$i
∧ apply-cltn2 north (?H$i) = ?s$i
∧ apply-cltn2 far-north (?H$i) = ?r$i

proof
fix i :: 2
from ‹∀ i. ?p$i ∈ S› have ?p$i ∈ S ..

from ‹∀ i. ?q$i 6= ?p$i ∧ ?q$i ∈ S ∧ proj2-incident (?q$i) (?l$i)›
have ?q$i 6= ?p$i and ?q$i ∈ S

by simp-all

from ‹∀ i. ?s$i 6= ?r$i ∧ ?s$i ∈ S ∧ proj2-incident (?s$i) (?m$i)›
have ?s$i ∈ S and proj2-incident (?s$i) (?m$i) by simp-all
from ‹proj2-incident (?s$i) (?m$i)›

and ‹∀ i. ∀ u. proj2-incident u (?m$i) −→ ¬ (u = ?p$i ∨ u = ?q$i)›
have ?s$i /∈ {?q$i, ?p$i} by fast
with ‹?q$i ∈ S› and ‹?p$i ∈ S› and ‹?s$i ∈ S› and ‹?q$i 6= ?p$i›
have ∃ Hi. is-K2-isometry Hi
∧ apply-cltn2 east Hi = ?q$i
∧ apply-cltn2 west Hi = ?p$i
∧ apply-cltn2 north Hi = ?s$i
∧ apply-cltn2 far-north Hi = ?r$i
by (simp add: statement65-special-case)

with someI-ex [of λ Hi. is-K2-isometry Hi
∧ apply-cltn2 east Hi = ?q$i
∧ apply-cltn2 west Hi = ?p$i
∧ apply-cltn2 north Hi = ?s$i
∧ apply-cltn2 far-north Hi = ?r$i]

show is-K2-isometry (?H$i)
∧ apply-cltn2 east (?H$i) = ?q$i
∧ apply-cltn2 west (?H$i) = ?p$i
∧ apply-cltn2 north (?H$i) = ?s$i
∧ apply-cltn2 far-north (?H$i) = ?r$i
by simp

qed
hence is-K2-isometry (?H$1)

and apply-cltn2 east (?H$1) = ?q$1
and apply-cltn2 west (?H$1) = ?p$1
and apply-cltn2 north (?H$1) = ?s$1
and apply-cltn2 far-north (?H$1) = ?r$1
and is-K2-isometry (?H$2)
and apply-cltn2 east (?H$2) = ?q$2
and apply-cltn2 west (?H$2) = ?p$2
and apply-cltn2 north (?H$2) = ?s$2
and apply-cltn2 far-north (?H$2) = ?r$2
by fast+

150

let ?J = cltn2-compose (cltn2-inverse (?H$1)) (?H$2)
from ‹is-K2-isometry (?H$1)› and ‹is-K2-isometry (?H$2)›
have is-K2-isometry ?J

by (simp only: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)

from ‹apply-cltn2 west (?H$1) = ?p$1 ›
have apply-cltn2 p1 (cltn2-inverse (?H$1)) = west

by (simp add: cltn2 .act-inv-iff [simplified])
with ‹apply-cltn2 west (?H$2) = ?p$2 ›
have apply-cltn2 p1 ?J = p2

by (simp add: cltn2 .act-act [simplified, symmetric])

from ‹apply-cltn2 east (?H$1) = ?q$1 ›
have apply-cltn2 (?q$1) (cltn2-inverse (?H$1)) = east

by (simp add: cltn2 .act-inv-iff [simplified])
with ‹apply-cltn2 east (?H$2) = ?q$2 ›
have apply-cltn2 (?q$1) ?J = ?q$2

by (simp add: cltn2 .act-act [simplified, symmetric])
with ‹?q$1 6= ?p$1 › and ‹apply-cltn2 p1 ?J = p2 ›

and ‹proj2-incident (?p$1) (?l$1)›
and ‹proj2-incident (?q$1) (?l$1)›
and ‹proj2-incident (?p$2) (?l$2)›
and ‹proj2-incident (?q$2) (?l$2)›

have apply-cltn2-line (?l$1) ?J = (?l$2)
by (simp add: apply-cltn2-line-unique)

moreover from ‹proj2-incident (?a$1) (?l$1)›
have proj2-incident (apply-cltn2 (?a$1) ?J) (apply-cltn2-line (?l$1) ?J)

by simp
ultimately have proj2-incident (apply-cltn2 (?a$1) ?J) (?l$2) by simp

from ‹apply-cltn2 north (?H$1) = ?s$1 ›
have apply-cltn2 (?s$1) (cltn2-inverse (?H$1)) = north

by (simp add: cltn2 .act-inv-iff [simplified])
with ‹apply-cltn2 north (?H$2) = ?s$2 ›
have apply-cltn2 (?s$1) ?J = ?s$2

by (simp add: cltn2 .act-act [simplified, symmetric])

from ‹apply-cltn2 far-north (?H$1) = ?r$1 ›
have apply-cltn2 (?r$1) (cltn2-inverse (?H$1)) = far-north

by (simp add: cltn2 .act-inv-iff [simplified])
with ‹apply-cltn2 far-north (?H$2) = ?r$2 ›
have apply-cltn2 (?r$1) ?J = ?r$2

by (simp add: cltn2 .act-act [simplified, symmetric])
with ‹?s$1 6= ?r$1 › and ‹apply-cltn2 (?s$1) ?J = (?s$2)›

and ‹proj2-incident (?r$1) (?m$1)›
and ‹proj2-incident (?s$1) (?m$1)›
and ‹proj2-incident (?r$2) (?m$2)›
and ‹proj2-incident (?s$2) (?m$2)›

151

have apply-cltn2-line (?m$1) ?J = (?m$2)
by (simp add: apply-cltn2-line-unique)

moreover from ‹proj2-incident (?a$1) (?m$1)›
have proj2-incident (apply-cltn2 (?a$1) ?J) (apply-cltn2-line (?m$1) ?J)

by simp
ultimately have proj2-incident (apply-cltn2 (?a$1) ?J) (?m$2) by simp

from ‹∀ i. ∀ u. proj2-incident u (?m$i) −→ ¬ (u = ?p$i ∨ u = ?q$i)›
have ¬ proj2-incident (?p$2) (?m$2) by fast
with ‹proj2-incident (?p$2) (?l$2)› have ?m$2 6= ?l$2 by auto
with ‹proj2-incident (?a$2) (?l$2)›

and ‹proj2-incident (?a$2) (?m$2)›
and ‹proj2-incident (apply-cltn2 (?a$1) ?J) (?l$2)›
and ‹proj2-incident (apply-cltn2 (?a$1) ?J) (?m$2)›
and proj2-incident-unique

have apply-cltn2 a1 ?J = a2 by auto
with ‹is-K2-isometry ?J › and ‹apply-cltn2 p1 ?J = p2 ›
show ∃ J . is-K2-isometry J ∧ apply-cltn2 a1 J = a2 ∧ apply-cltn2 p1 J = p2

by auto
qed

lemma K2-isometry-swap:
assumes a ∈ hyp2 and b ∈ hyp2
shows ∃ J . is-K2-isometry J ∧ apply-cltn2 a J = b ∧ apply-cltn2 b J = a

proof −
from ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have a ∈ K2 and b ∈ K2 by simp-all

let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l

by (rule proj2-line-through-incident)+
from ‹a ∈ K2 › and ‹proj2-incident a ?l›

and line-through-K2-intersect-S-exactly-twice [of a ?l]
obtain p and q where p 6= q

and p ∈ S and q ∈ S
and proj2-incident p ?l and proj2-incident q ?l
and ∀ r∈S . proj2-incident r ?l −→ r = p ∨ r = q
by auto

from ‹a ∈ K2 › and ‹b ∈ K2 › and ‹p ∈ S› and ‹q ∈ S›
and statement66-existence [of a b p q]

obtain J where is-K2-isometry J and apply-cltn2 a J = b
and apply-cltn2 p J = q
by auto

from ‹apply-cltn2 a J = b› and ‹apply-cltn2 p J = q›
and ‹proj2-incident b ?l› and ‹proj2-incident q ?l›

have proj2-incident (apply-cltn2 a J) ?l
and proj2-incident (apply-cltn2 p J) ?l
by simp-all

152

from ‹a ∈ K2 › and ‹p ∈ S› have a 6= p
unfolding S-def and K2-def
by auto

with ‹proj2-incident a ?l›
and ‹proj2-incident p ?l›
and ‹proj2-incident (apply-cltn2 a J) ?l›
and ‹proj2-incident (apply-cltn2 p J) ?l›

have apply-cltn2-line ?l J = ?l by (simp add: apply-cltn2-line-unique)
with ‹proj2-incident q ?l› and apply-cltn2-preserve-incident [of q J ?l]
have proj2-incident (apply-cltn2 q J) ?l by simp

from ‹q ∈ S› and ‹is-K2-isometry J ›
have apply-cltn2 q J ∈ S by (unfold is-K2-isometry-def) simp
with ‹proj2-incident (apply-cltn2 q J) ?l›

and ‹∀ r∈S . proj2-incident r ?l −→ r = p ∨ r = q›
have apply-cltn2 q J = p ∨ apply-cltn2 q J = q by simp

have apply-cltn2 q J 6= q
proof

assume apply-cltn2 q J = q
with ‹apply-cltn2 p J = q›
have apply-cltn2 p J = apply-cltn2 q J by simp
hence p = q by (rule apply-cltn2-injective [of p J q])
with ‹p 6= q› show False ..

qed
with ‹apply-cltn2 q J = p ∨ apply-cltn2 q J = q›
have apply-cltn2 q J = p by simp
with ‹p 6= q›

and ‹apply-cltn2 p J = q›
and ‹proj2-incident p ?l›
and ‹proj2-incident q ?l›
and ‹proj2-incident a ?l›
and statement55

have apply-cltn2 (apply-cltn2 a J) J = a by simp
with ‹apply-cltn2 a J = b› have apply-cltn2 b J = a by simp
with ‹is-K2-isometry J › and ‹apply-cltn2 a J = b›
show ∃ J . is-K2-isometry J ∧ apply-cltn2 a J = b ∧ apply-cltn2 b J = a

by (simp add: exI [of - J])
qed

theorem hyp2-axiom1 : ∀ a b. a b ≡K b a
proof standard+

fix a b
let ?a ′ = Rep-hyp2 a
let ?b ′ = Rep-hyp2 b
from Rep-hyp2 and K2-isometry-swap [of ?a ′ ?b ′]
obtain J where is-K2-isometry J and apply-cltn2 ?a ′ J = ?b ′

and apply-cltn2 ?b ′ J = ?a ′

by auto

153

from ‹apply-cltn2 ?a ′ J = ?b ′› and ‹apply-cltn2 ?b ′ J = ?a ′›
have hyp2-cltn2 a J = b and hyp2-cltn2 b J = a

unfolding hyp2-cltn2-def by (simp-all add: Rep-hyp2-inverse)
with ‹is-K2-isometry J ›
show a b ≡K b a

by (unfold real-hyp2-C-def) (simp add: exI [of - J])
qed

theorem hyp2-axiom2 : ∀ a b p q r s. a b ≡K p q ∧ a b ≡K r s −→ p q ≡K r s
proof standard+

fix a b p q r s
assume a b ≡K p q ∧ a b ≡K r s
then obtain G and H where is-K2-isometry G and is-K2-isometry H

and hyp2-cltn2 a G = p and hyp2-cltn2 b G = q
and hyp2-cltn2 a H = r and hyp2-cltn2 b H = s
by (unfold real-hyp2-C-def) auto

let ?J = cltn2-compose (cltn2-inverse G) H
from ‹is-K2-isometry G› have is-K2-isometry (cltn2-inverse G)

by (rule cltn2-inverse-is-K2-isometry)
with ‹is-K2-isometry H ›
have is-K2-isometry ?J by (simp only: cltn2-compose-is-K2-isometry)

from ‹is-K2-isometry G› and ‹hyp2-cltn2 a G = p› and ‹hyp2-cltn2 b G = q›
and K2-isometry.act-inv-iff

have hyp2-cltn2 p (cltn2-inverse G) = a
and hyp2-cltn2 q (cltn2-inverse G) = b
by simp-all

with ‹hyp2-cltn2 a H = r› and ‹hyp2-cltn2 b H = s›
and ‹is-K2-isometry (cltn2-inverse G)› and ‹is-K2-isometry H ›
and K2-isometry.act-act [symmetric]

have hyp2-cltn2 p ?J = r and hyp2-cltn2 q ?J = s by simp-all
with ‹is-K2-isometry ?J ›
show p q ≡K r s

by (unfold real-hyp2-C-def) (simp add: exI [of - ?J])
qed

theorem hyp2-axiom3 : ∀ a b c. a b ≡K c c −→ a = b
proof standard+

fix a b c
assume a b ≡K c c
then obtain J where is-K2-isometry J

and hyp2-cltn2 a J = c and hyp2-cltn2 b J = c
by (unfold real-hyp2-C-def) auto

from ‹hyp2-cltn2 a J = c› and ‹hyp2-cltn2 b J = c›
have hyp2-cltn2 a J = hyp2-cltn2 b J by simp

from ‹is-K2-isometry J ›
have apply-cltn2 (Rep-hyp2 a) J ∈ hyp2

154

and apply-cltn2 (Rep-hyp2 b) J ∈ hyp2
by (rule apply-cltn2-Rep-hyp2)+

with ‹hyp2-cltn2 a J = hyp2-cltn2 b J ›
have apply-cltn2 (Rep-hyp2 a) J = apply-cltn2 (Rep-hyp2 b) J

by (unfold hyp2-cltn2-def) (simp add: Abs-hyp2-inject)
hence Rep-hyp2 a = Rep-hyp2 b by (rule apply-cltn2-injective)
thus a = b by (simp add: Rep-hyp2-inject)

qed

interpretation hyp2 : tarski-first3 real-hyp2-C
using hyp2-axiom1 and hyp2-axiom2 and hyp2-axiom3
by unfold-locales

8.7 Some lemmas about betweenness
lemma S-at-edge:

assumes p ∈ S and q ∈ hyp2 ∪ S and r ∈ hyp2 ∪ S and proj2-Col p q r
shows B� (cart2-pt p) (cart2-pt q) (cart2-pt r)
∨ B� (cart2-pt p) (cart2-pt r) (cart2-pt q)
(is B� ?cp ?cq ?cr ∨ -)

proof −
from ‹p ∈ S› and ‹q ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›
have z-non-zero p and z-non-zero q and z-non-zero r

by (simp-all add: hyp2-S-z-non-zero)
with ‹proj2-Col p q r›
have real-euclid.Col ?cp ?cq ?cr by (simp add: proj2-Col-iff-euclid-cart2)

with ‹z-non-zero p› and ‹z-non-zero q› and ‹z-non-zero r›
have proj2-pt ?cp = p and proj2-pt ?cq = q and proj2-pt ?cr = r

by (simp-all add: proj2-cart2)
from ‹proj2-pt ?cp = p› and ‹p ∈ S›
have norm ?cp = 1 by (simp add: norm-eq-1-iff-in-S)

from ‹proj2-pt ?cq = q› and ‹proj2-pt ?cr = r›
and ‹q ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›

have norm ?cq ≤ 1 and norm ?cr ≤ 1
by (simp-all add: norm-le-1-iff-in-hyp2-S)

show B� ?cp ?cq ?cr ∨ B� ?cp ?cr ?cq
proof cases

assume B� ?cr ?cp ?cq
then obtain k where k ≥ 0 and k ≤ 1

and ?cp − ?cr = k ∗R (?cq − ?cr)
by (unfold real-euclid-B-def) auto

from ‹?cp − ?cr = k ∗R (?cq − ?cr)›
have ?cp = k ∗R ?cq + (1 − k) ∗R ?cr by (simp add: algebra-simps)
with ‹norm ?cp = 1 › have norm (k ∗R ?cq + (1 − k) ∗R ?cr) = 1 by simp
with norm-triangle-ineq [of k ∗R ?cq (1 − k) ∗R ?cr]
have norm (k ∗R ?cq) + norm ((1 − k) ∗R ?cr) ≥ 1 by simp

155

from ‹k ≥ 0 › and ‹k ≤ 1 ›
have norm (k ∗R ?cq) + norm ((1 − k) ∗R ?cr)
= k ∗ norm ?cq + (1 − k) ∗ norm ?cr
by simp

with ‹norm (k ∗R ?cq) + norm ((1 − k) ∗R ?cr) ≥ 1 ›
have k ∗ norm ?cq + (1 − k) ∗ norm ?cr ≥ 1 by simp

from ‹norm ?cq ≤ 1 › and ‹k ≥ 0 › and mult-mono [of k k norm ?cq 1]
have k ∗ norm ?cq ≤ k by simp

from ‹norm ?cr ≤ 1 › and ‹k ≤ 1 ›
and mult-mono [of 1 − k 1 − k norm ?cr 1]

have (1 − k) ∗ norm ?cr ≤ 1 − k by simp
with ‹k ∗ norm ?cq ≤ k›
have k ∗ norm ?cq + (1 − k) ∗ norm ?cr ≤ 1 by simp
with ‹k ∗ norm ?cq + (1 − k) ∗ norm ?cr ≥ 1 ›
have k ∗ norm ?cq + (1 − k) ∗ norm ?cr = 1 by simp
with ‹k ∗ norm ?cq ≤ k› have (1 − k) ∗ norm ?cr ≥ 1 − k by simp
with ‹(1 − k) ∗ norm ?cr ≤ 1 − k› have (1 − k) ∗ norm ?cr = 1 − k by

simp
with ‹k ∗ norm ?cq + (1 − k) ∗ norm ?cr = 1 › have k ∗ norm ?cq = k by

simp

have ?cp = ?cq ∨ ?cq = ?cr ∨ ?cr = ?cp
proof cases

assume k = 0 ∨ k = 1
with ‹?cp = k ∗R ?cq + (1 − k) ∗R ?cr›
show ?cp = ?cq ∨ ?cq = ?cr ∨ ?cr = ?cp by auto

next
assume ¬ (k = 0 ∨ k = 1)
hence k 6= 0 and k 6= 1 by simp-all
with ‹k ∗ norm ?cq = k› and ‹(1 − k) ∗ norm ?cr = 1 − k›
have norm ?cq = 1 and norm ?cr = 1 by simp-all
with ‹proj2-pt ?cq = q› and ‹proj2-pt ?cr = r›
have q ∈ S and r ∈ S by (simp-all add: norm-eq-1-iff-in-S)
with ‹p ∈ S› have {p,q,r} ⊆ S by simp

from ‹proj2-Col p q r›
have proj2-set-Col {p,q,r} by (simp add: proj2-Col-iff-set-Col)
with ‹{p,q,r} ⊆ S› have card {p,q,r} ≤ 2 by (rule card-line-intersect-S)

have p = q ∨ q = r ∨ r = p
proof (rule ccontr)

assume ¬ (p = q ∨ q = r ∨ r = p)
hence p 6= q and q 6= r and r 6= p by simp-all
from ‹q 6= r› have card {q,r} = 2 by simp
with ‹p 6= q› and ‹r 6= p› have card {p,q,r} = 3 by simp
with ‹card {p,q,r} ≤ 2 › show False by simp

156

qed
thus ?cp = ?cq ∨ ?cq = ?cr ∨ ?cr = ?cp by auto

qed
thus B� ?cp ?cq ?cr ∨ B� ?cp ?cr ?cq

by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)
next

assume ¬ B� ?cr ?cp ?cq
with ‹real-euclid.Col ?cp ?cq ?cr›
show B� ?cp ?cq ?cr ∨ B� ?cp ?cr ?cq

unfolding real-euclid.Col-def
by (auto simp add: real-euclid.th3-1 real-euclid.th3-2)

qed
qed

lemma hyp2-in-middle:
assumes p ∈ S and q ∈ S and r ∈ hyp2 ∪ S and proj2-Col p q r
and p 6= q
shows B� (cart2-pt p) (cart2-pt r) (cart2-pt q) (is B� ?cp ?cr ?cq)

proof (rule ccontr)
assume ¬ B� ?cp ?cr ?cq
hence ¬ B� ?cq ?cr ?cp

by (auto simp add: real-euclid.th3-2 [of ?cq ?cr ?cp])

from ‹p ∈ S› and ‹q ∈ S› and ‹r ∈ hyp2 ∪ S› and ‹proj2-Col p q r›
have B� ?cp ?cq ?cr ∨ B� ?cp ?cr ?cq by (simp add: S-at-edge)
with ‹¬ B� ?cp ?cr ?cq› have B� ?cp ?cq ?cr by simp

from ‹proj2-Col p q r› and proj2-Col-permute have proj2-Col q p r by fast
with ‹q ∈ S› and ‹p ∈ S› and ‹r ∈ hyp2 ∪ S›
have B� ?cq ?cp ?cr ∨ B� ?cq ?cr ?cp by (simp add: S-at-edge)
with ‹¬ B� ?cq ?cr ?cp› have B� ?cq ?cp ?cr by simp
with ‹B� ?cp ?cq ?cr› have ?cp = ?cq by (rule real-euclid.th3-4)
hence proj2-pt ?cp = proj2-pt ?cq by simp

from ‹p ∈ S› and ‹q ∈ S›
have z-non-zero p and z-non-zero q by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt ?cq = q by (simp-all add: proj2-cart2)
with ‹proj2-pt ?cp = proj2-pt ?cq› have p = q by simp
with ‹p 6= q› show False ..

qed

lemma hyp2-incident-in-middle:
assumes p 6= q and p ∈ S and q ∈ S and a ∈ hyp2 ∪ S
and proj2-incident p l and proj2-incident q l and proj2-incident a l
shows B� (cart2-pt p) (cart2-pt a) (cart2-pt q)

proof −
from ‹proj2-incident p l› and ‹proj2-incident q l› and ‹proj2-incident a l›
have proj2-Col p q a by (rule proj2-incident-Col)
from ‹p ∈ S› and ‹q ∈ S› and ‹a ∈ hyp2 ∪ S› and this and ‹p 6= q›

157

show B� (cart2-pt p) (cart2-pt a) (cart2-pt q)
by (rule hyp2-in-middle)

qed

lemma extend-to-S :
assumes p ∈ hyp2 ∪ S and q ∈ hyp2 ∪ S
shows ∃ r∈S . B� (cart2-pt p) (cart2-pt q) (cart2-pt r)
(is ∃ r∈S . B� ?cp ?cq (cart2-pt r))

proof cases
assume q ∈ S

have B� ?cp ?cq ?cq by (rule real-euclid.th3-1)
with ‹q ∈ S› show ∃ r∈S . B� ?cp ?cq (cart2-pt r) by auto

next
assume q /∈ S
with ‹q ∈ hyp2 ∪ S› have q ∈ K2 by simp

let ?l = proj2-line-through p q
have proj2-incident p ?l and proj2-incident q ?l

by (rule proj2-line-through-incident)+
from ‹q ∈ K2 › and ‹proj2-incident q ?l›

and line-through-K2-intersect-S-twice [of q ?l]
obtain s and t where s 6= t and s ∈ S and t ∈ S

and proj2-incident s ?l and proj2-incident t ?l
by auto

let ?cs = cart2-pt s
let ?ct = cart2-pt t

from ‹proj2-incident s ?l›
and ‹proj2-incident t ?l›
and ‹proj2-incident p ?l›
and ‹proj2-incident q ?l›

have proj2-Col s p q and proj2-Col t p q and proj2-Col s t q
by (simp-all add: proj2-incident-Col)

from ‹proj2-Col s p q› and ‹proj2-Col t p q›
and ‹s ∈ S› and ‹t ∈ S› and ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S›

have B� ?cs ?cp ?cq ∨ B� ?cs ?cq ?cp and B� ?ct ?cp ?cq ∨ B� ?ct ?cq ?cp
by (simp-all add: S-at-edge)

with real-euclid.th3-2
have B� ?cq ?cp ?cs ∨ B� ?cp ?cq ?cs and B� ?cq ?cp ?ct ∨ B� ?cp ?cq ?ct

by fast+

from ‹s ∈ S› and ‹t ∈ S› and ‹q ∈ hyp2 ∪ S› and ‹proj2-Col s t q› and ‹s 6=
t›

have B� ?cs ?cq ?ct by (rule hyp2-in-middle)
hence B� ?ct ?cq ?cs by (rule real-euclid.th3-2)

have B� ?cp ?cq ?cs ∨ B� ?cp ?cq ?ct
proof (rule ccontr)

158

assume ¬ (B� ?cp ?cq ?cs ∨ B� ?cp ?cq ?ct)
hence ¬ B� ?cp ?cq ?cs and ¬ B� ?cp ?cq ?ct by simp-all
with ‹B� ?cq ?cp ?cs ∨ B� ?cp ?cq ?cs›

and ‹B� ?cq ?cp ?ct ∨ B� ?cp ?cq ?ct›
have B� ?cq ?cp ?cs and B� ?cq ?cp ?ct by simp-all
from ‹¬ B� ?cp ?cq ?cs› and ‹B� ?cq ?cp ?cs› have ?cp 6= ?cq by auto
with ‹B� ?cq ?cp ?cs› and ‹B� ?cq ?cp ?ct›
have B� ?cq ?cs ?ct ∨ B� ?cq ?ct ?cs

by (simp add: real-euclid-th5-1 [of ?cq ?cp ?cs ?ct])
with ‹B� ?cs ?cq ?ct› and ‹B� ?ct ?cq ?cs›
have ?cq = ?cs ∨ ?cq = ?ct by (auto simp add: real-euclid.th3-4)
with ‹q ∈ hyp2 ∪ S› and ‹s ∈ S› and ‹t ∈ S›
have q = s ∨ q = t by (auto simp add: hyp2-S-cart2-inj)
with ‹s ∈ S› and ‹t ∈ S› have q ∈ S by auto
with ‹q /∈ S› show False ..

qed
with ‹s ∈ S› and ‹t ∈ S› show ∃ r∈S . B� ?cp ?cq (cart2-pt r) by auto

qed

definition endpoint-in-S :: proj2 ⇒ proj2 ⇒ proj2 where
endpoint-in-S a b
, ε p. p∈S ∧ B� (cart2-pt a) (cart2-pt b) (cart2-pt p)

lemma endpoint-in-S :
assumes a ∈ hyp2 ∪ S and b ∈ hyp2 ∪ S
shows endpoint-in-S a b ∈ S (is ?p ∈ S)
and B� (cart2-pt a) (cart2-pt b) (cart2-pt (endpoint-in-S a b))
(is B� ?ca ?cb ?cp)

proof −
from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› and extend-to-S
have ∃ p. p ∈ S ∧ B� ?ca ?cb (cart2-pt p) by auto
hence ?p ∈ S ∧ B� ?ca ?cb ?cp

by (unfold endpoint-in-S-def) (rule someI-ex)
thus ?p ∈ S and B� ?ca ?cb ?cp by simp-all

qed

lemma endpoint-in-S-swap:
assumes a 6= b and a ∈ hyp2 ∪ S and b ∈ hyp2 ∪ S
shows endpoint-in-S a b 6= endpoint-in-S b a (is ?p 6= ?q)

proof
let ?ca = cart2-pt a
let ?cb = cart2-pt b
let ?cp = cart2-pt ?p
let ?cq = cart2-pt ?q
from ‹a 6= b› and ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›
have B� ?ca ?cb ?cp and B� ?cb ?ca ?cq

by (simp-all add: endpoint-in-S)

assume ?p = ?q

159

with ‹B� ?cb ?ca ?cq› have B� ?cb ?ca ?cp by simp
with ‹B� ?ca ?cb ?cp› have ?ca = ?cb by (rule real-euclid.th3-4)
with ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› have a = b by (rule hyp2-S-cart2-inj)
with ‹a 6= b› show False ..

qed

lemma endpoint-in-S-incident:
assumes a 6= b and a ∈ hyp2 ∪ S and b ∈ hyp2 ∪ S
and proj2-incident a l and proj2-incident b l
shows proj2-incident (endpoint-in-S a b) l (is proj2-incident ?p l)

proof −
from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›
have ?p ∈ S and B� (cart2-pt a) (cart2-pt b) (cart2-pt ?p)
(is B� ?ca ?cb ?cp)
by (rule endpoint-in-S)+

from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› and ‹?p ∈ S›
have z-non-zero a and z-non-zero b and z-non-zero ?p

by (simp-all add: hyp2-S-z-non-zero)

from ‹B� ?ca ?cb ?cp›
have real-euclid.Col ?ca ?cb ?cp unfolding real-euclid.Col-def ..
with ‹z-non-zero a› and ‹z-non-zero b› and ‹z-non-zero ?p› and ‹a 6= b›

and ‹proj2-incident a l› and ‹proj2-incident b l›
show proj2-incident ?p l by (rule euclid-Col-cart2-incident)

qed

lemma endpoints-in-S-incident-unique:
assumes a 6= b and a ∈ hyp2 ∪ S and b ∈ hyp2 ∪ S and p ∈ S
and proj2-incident a l and proj2-incident b l and proj2-incident p l
shows p = endpoint-in-S a b ∨ p = endpoint-in-S b a
(is p = ?q ∨ p = ?r)

proof −
from ‹a 6= b› and ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›
have ?q 6= ?r by (rule endpoint-in-S-swap)

from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›
have ?q ∈ S and ?r ∈ S by (simp-all add: endpoint-in-S)

from ‹a 6= b› and ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›
and ‹proj2-incident a l› and ‹proj2-incident b l›

have proj2-incident ?q l and proj2-incident ?r l
by (simp-all add: endpoint-in-S-incident)

with ‹?q 6= ?r› and ‹?q ∈ S› and ‹?r ∈ S› and ‹p ∈ S› and ‹proj2-incident p
l›

show p = ?q ∨ p = ?r by (simp add: line-S-two-intersections-only)
qed

lemma endpoint-in-S-unique:

160

assumes a 6= b and a ∈ hyp2 ∪ S and b ∈ hyp2 ∪ S and p ∈ S
and B� (cart2-pt a) (cart2-pt b) (cart2-pt p) (is B� ?ca ?cb ?cp)
shows p = endpoint-in-S a b (is p = ?q)

proof (rule ccontr)
from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› and ‹p ∈ S›
have z-non-zero a and z-non-zero b and z-non-zero p

by (simp-all add: hyp2-S-z-non-zero)
with ‹B� ?ca ?cb ?cp› and euclid-B-cart2-common-line [of a b p]
obtain l where

proj2-incident a l and proj2-incident b l and proj2-incident p l
by auto

with ‹a 6= b› and ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› and ‹p ∈ S›
have p = ?q ∨ p = endpoint-in-S b a (is p = ?q ∨ p = ?r)

by (rule endpoints-in-S-incident-unique)

assume p 6= ?q
with ‹p = ?q ∨ p = ?r› have p = ?r by simp
with ‹b ∈ hyp2 ∪ S› and ‹a ∈ hyp2 ∪ S›
have B� ?cb ?ca ?cp by (simp add: endpoint-in-S)
with ‹B� ?ca ?cb ?cp› have ?ca = ?cb by (rule real-euclid.th3-4)
with ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› have a = b by (rule hyp2-S-cart2-inj)
with ‹a 6= b› show False ..

qed

lemma between-hyp2-S :
assumes p ∈ hyp2 ∪ S and r ∈ hyp2 ∪ S and k ≥ 0 and k ≤ 1
shows proj2-pt (k ∗R (cart2-pt r) + (1 − k) ∗R (cart2-pt p)) ∈ hyp2 ∪ S
(is proj2-pt ?cq ∈ -)

proof −
let ?cp = cart2-pt p
let ?cr = cart2-pt r
let ?q = proj2-pt ?cq
from ‹p ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›
have z-non-zero p and z-non-zero r by (simp-all add: hyp2-S-z-non-zero)
hence proj2-pt ?cp = p and proj2-pt ?cr = r by (simp-all add: proj2-cart2)
with ‹p ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›
have norm ?cp ≤ 1 and norm ?cr ≤ 1

by (simp-all add: norm-le-1-iff-in-hyp2-S)

from ‹k ≥ 0 › and ‹k ≤ 1 ›
and norm-triangle-ineq [of k ∗R ?cr (1 − k) ∗R ?cp]

have norm ?cq ≤ k ∗ norm ?cr + (1 − k) ∗ norm ?cp by simp

from ‹k ≥ 0 › and ‹norm ?cr ≤ 1 › and mult-mono [of k k norm ?cr 1]
have k ∗ norm ?cr ≤ k by simp

from ‹k ≤ 1 › and ‹norm ?cp ≤ 1 ›
and mult-mono [of 1 − k 1 − k norm ?cp 1]

have (1 − k) ∗ norm ?cp ≤ 1 − k by simp

161

with ‹norm ?cq ≤ k ∗ norm ?cr + (1 − k) ∗ norm ?cp› and ‹k ∗ norm ?cr ≤
k›

have norm ?cq ≤ 1 by simp
thus ?q ∈ hyp2 ∪ S by (simp add: norm-le-1-iff-in-hyp2-S)

qed

8.8 The Klein–Beltrami model satisfies axiom 4
definition expansion-factor :: proj2 ⇒ cltn2 ⇒ real where

expansion-factor p J , (cart2-append1 p v∗ cltn2-rep J)$3

lemma expansion-factor :
assumes p ∈ hyp2 ∪ S and is-K2-isometry J
shows expansion-factor p J 6= 0
and cart2-append1 p v∗ cltn2-rep J
= expansion-factor p J ∗R cart2-append1 (apply-cltn2 p J)

proof −
from ‹p ∈ hyp2 ∪ S› and ‹is-K2-isometry J ›
have z-non-zero (apply-cltn2 p J) by (rule is-K2-isometry-z-non-zero)

from ‹p ∈ hyp2 ∪ S› and ‹is-K2-isometry J ›
and cart2-append1-apply-cltn2
obtain k where k 6= 0

and cart2-append1 p v∗ cltn2-rep J = k ∗R cart2-append1 (apply-cltn2 p J)
by auto

from ‹cart2-append1 p v∗ cltn2-rep J = k ∗R cart2-append1 (apply-cltn2 p J)›
and ‹z-non-zero (apply-cltn2 p J)›

have expansion-factor p J = k
by (unfold expansion-factor-def) (simp add: cart2-append1-z)

with ‹k 6= 0 ›
and ‹cart2-append1 p v∗ cltn2-rep J = k ∗R cart2-append1 (apply-cltn2 p J)›

show expansion-factor p J 6= 0
and cart2-append1 p v∗ cltn2-rep J
= expansion-factor p J ∗R cart2-append1 (apply-cltn2 p J)
by simp-all

qed

lemma expansion-factor-linear-apply-cltn2 :
assumes p ∈ hyp2 ∪ S and q ∈ hyp2 ∪ S and r ∈ hyp2 ∪ S
and is-K2-isometry J
and cart2-pt r = k ∗R cart2-pt p + (1 − k) ∗R cart2-pt q
shows expansion-factor r J ∗R cart2-append1 (apply-cltn2 r J)
= (k ∗ expansion-factor p J) ∗R cart2-append1 (apply-cltn2 p J)
+ ((1 − k) ∗ expansion-factor q J) ∗R cart2-append1 (apply-cltn2 q J)
(is ?er ∗R - = (k ∗ ?ep) ∗R - + ((1 − k) ∗ ?eq) ∗R -)

proof −
let ?cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r

162

let ?cp1 = cart2-append1 p
let ?cq1 = cart2-append1 q
let ?cr1 = cart2-append1 r
let ?repJ = cltn2-rep J
from ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›
have z-non-zero p and z-non-zero q and z-non-zero r

by (simp-all add: hyp2-S-z-non-zero)

from ‹?cr = k ∗R ?cp + (1 − k) ∗R ?cq›
have vector2-append1 ?cr
= k ∗R vector2-append1 ?cp + (1 − k) ∗R vector2-append1 ?cq
by (unfold vector2-append1-def vector-def) (simp add: vec-eq-iff)

with ‹z-non-zero p› and ‹z-non-zero q› and ‹z-non-zero r›
have ?cr1 = k ∗R ?cp1 + (1 − k) ∗R ?cq1 by (simp add: cart2-append1)
hence ?cr1 v∗ ?repJ = k ∗R (?cp1 v∗ ?repJ) + (1 − k) ∗R (?cq1 v∗ ?repJ)
by (simp add: vector-matrix-left-distrib scaleR-vector-matrix-assoc [symmetric])

with ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›
and ‹is-K2-isometry J ›

show ?er ∗R cart2-append1 (apply-cltn2 r J)
= (k ∗ ?ep) ∗R cart2-append1 (apply-cltn2 p J)
+ ((1 − k) ∗ ?eq) ∗R cart2-append1 (apply-cltn2 q J)
by (simp add: expansion-factor)

qed

lemma expansion-factor-linear :
assumes p ∈ hyp2 ∪ S and q ∈ hyp2 ∪ S and r ∈ hyp2 ∪ S
and is-K2-isometry J
and cart2-pt r = k ∗R cart2-pt p + (1 − k) ∗R cart2-pt q
shows expansion-factor r J
= k ∗ expansion-factor p J + (1 − k) ∗ expansion-factor q J
(is ?er = k ∗ ?ep + (1 − k) ∗ ?eq)

proof −
from ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›

and ‹is-K2-isometry J ›
have z-non-zero (apply-cltn2 p J)

and z-non-zero (apply-cltn2 q J)
and z-non-zero (apply-cltn2 r J)
by (simp-all add: is-K2-isometry-z-non-zero)

from ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›
and ‹is-K2-isometry J ›
and ‹cart2-pt r = k ∗R cart2-pt p + (1 − k) ∗R cart2-pt q›

have ?er ∗R cart2-append1 (apply-cltn2 r J)
= (k ∗ ?ep) ∗R cart2-append1 (apply-cltn2 p J)
+ ((1 − k) ∗ ?eq) ∗R cart2-append1 (apply-cltn2 q J)
by (rule expansion-factor-linear-apply-cltn2)

hence (?er ∗R cart2-append1 (apply-cltn2 r J))$3
= ((k ∗ ?ep) ∗R cart2-append1 (apply-cltn2 p J)
+ ((1 − k) ∗ ?eq) ∗R cart2-append1 (apply-cltn2 q J))$3

163

by simp
with ‹z-non-zero (apply-cltn2 p J)›

and ‹z-non-zero (apply-cltn2 q J)›
and ‹z-non-zero (apply-cltn2 r J)›

show ?er = k ∗ ?ep + (1 − k) ∗ ?eq by (simp add: cart2-append1-z)
qed

lemma expansion-factor-sgn-invariant:
assumes p ∈ hyp2 ∪ S and q ∈ hyp2 ∪ S and is-K2-isometry J
shows sgn (expansion-factor p J) = sgn (expansion-factor q J)
(is sgn ?ep = sgn ?eq)

proof (rule ccontr)
assume sgn ?ep 6= sgn ?eq

from ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S› and ‹is-K2-isometry J ›
have ?ep 6= 0 and ?eq 6= 0 by (simp-all add: expansion-factor)
hence sgn ?ep ∈ {−1 ,1} and sgn ?eq ∈ {−1 ,1}

by (simp-all add: sgn-real-def)
with ‹sgn ?ep 6= sgn ?eq› have sgn ?ep = − sgn ?eq by auto
hence sgn ?ep = sgn (−?eq) by (subst sgn-minus)
with sgn-plus [of ?ep −?eq]
have sgn (?ep − ?eq) = sgn ?ep by (simp add: algebra-simps)
with ‹sgn ?ep ∈ {−1 ,1}› have ?ep − ?eq 6= 0 by (auto simp add: sgn-real-def)

let ?k = −?eq / (?ep − ?eq)
from ‹sgn (?ep − ?eq) = sgn ?ep› and ‹sgn ?ep = sgn (−?eq)›
have sgn (?ep − ?eq) = sgn (−?eq) by simp
with ‹?ep − ?eq 6= 0 › and sgn-div [of ?ep − ?eq −?eq]
have ?k > 0 by simp

from ‹?ep − ?eq 6= 0 ›
have 1 − ?k = ?ep / (?ep − ?eq) by (simp add: field-simps)
with ‹sgn (?ep − ?eq) = sgn ?ep› and ‹?ep − ?eq 6= 0 ›
have 1 − ?k > 0 by (simp add: sgn-div)
hence ?k < 1 by simp

let ?cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = ?k ∗R ?cp + (1 − ?k) ∗R ?cq
let ?r = proj2-pt ?cr
let ?er = expansion-factor ?r J
have cart2-pt ?r = ?cr by (rule cart2-proj2)

from ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S› and ‹?k > 0 › and ‹?k < 1 ›
and between-hyp2-S [of q p ?k]

have ?r ∈ hyp2 ∪ S by simp
with ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S› and ‹is-K2-isometry J ›

and ‹cart2-pt ?r = ?cr›
and expansion-factor-linear [of p q ?r J ?k]

164

have ?er = ?k ∗ ?ep + (1 − ?k) ∗ ?eq by simp
with ‹?ep − ?eq 6= 0 › have ?er = 0 by (simp add: field-simps)
with ‹?r ∈ hyp2 ∪ S› and ‹is-K2-isometry J ›
show False by (simp add: expansion-factor)

qed

lemma statement-63 :
assumes p ∈ hyp2 ∪ S and q ∈ hyp2 ∪ S and r ∈ hyp2 ∪ S
and is-K2-isometry J and B� (cart2-pt p) (cart2-pt q) (cart2-pt r)
shows B�
(cart2-pt (apply-cltn2 p J))
(cart2-pt (apply-cltn2 q J))
(cart2-pt (apply-cltn2 r J))

proof −
let ?cp = cart2-pt p
let ?cq = cart2-pt q
let ?cr = cart2-pt r
let ?ep = expansion-factor p J
let ?eq = expansion-factor q J
let ?er = expansion-factor r J
from ‹q ∈ hyp2 ∪ S› and ‹is-K2-isometry J ›
have ?eq 6= 0 by (rule expansion-factor)

from ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›
and ‹is-K2-isometry J › and expansion-factor-sgn-invariant

have sgn ?ep = sgn ?eq and sgn ?er = sgn ?eq by fast+
with ‹?eq 6= 0 ›
have ?ep / ?eq > 0 and ?er / ?eq > 0 by (simp-all add: sgn-div)

from ‹B� ?cp ?cq ?cr›
obtain k where k ≥ 0 and k ≤ 1 and ?cq = k ∗R ?cr + (1 − k) ∗R ?cp

by (unfold real-euclid-B-def) (auto simp add: algebra-simps)

let ?c = k ∗ ?er / ?eq
from ‹k ≥ 0 › and ‹?er / ?eq > 0 › and mult-nonneg-nonneg [of k ?er / ?eq]
have ?c ≥ 0 by simp

from ‹r ∈ hyp2 ∪ S› and ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S›
and ‹is-K2-isometry J › and ‹?cq = k ∗R ?cr + (1 − k) ∗R ?cp›

have ?eq = k ∗ ?er + (1 − k) ∗ ?ep by (rule expansion-factor-linear)
with ‹?eq 6= 0 › have 1 − ?c = (1 − k) ∗ ?ep / ?eq by (simp add: field-simps)
with ‹k ≤ 1 › and ‹?ep / ?eq > 0 ›

and mult-nonneg-nonneg [of 1 − k ?ep / ?eq]
have ?c ≤ 1 by simp

let ?pJ = apply-cltn2 p J
let ?qJ = apply-cltn2 q J
let ?rJ = apply-cltn2 r J
let ?cpJ = cart2-pt ?pJ

165

let ?cqJ = cart2-pt ?qJ
let ?crJ = cart2-pt ?rJ
let ?cpJ1 = cart2-append1 ?pJ
let ?cqJ1 = cart2-append1 ?qJ
let ?crJ1 = cart2-append1 ?rJ
from ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S› and ‹r ∈ hyp2 ∪ S›

and ‹is-K2-isometry J ›
have z-non-zero ?pJ and z-non-zero ?qJ and z-non-zero ?rJ

by (simp-all add: is-K2-isometry-z-non-zero)

from ‹r ∈ hyp2 ∪ S› and ‹p ∈ hyp2 ∪ S› and ‹q ∈ hyp2 ∪ S›
and ‹is-K2-isometry J › and ‹?cq = k ∗R ?cr + (1 − k) ∗R ?cp›

have ?eq ∗R ?cqJ1 = (k ∗ ?er) ∗R ?crJ1 + ((1 − k) ∗ ?ep) ∗R ?cpJ1
by (rule expansion-factor-linear-apply-cltn2)

hence (1 / ?eq) ∗R (?eq ∗R ?cqJ1)
= (1 / ?eq) ∗R ((k ∗ ?er) ∗R ?crJ1 + ((1 − k) ∗ ?ep) ∗R ?cpJ1) by simp

with ‹1 − ?c = (1 − k) ∗ ?ep / ?eq› and ‹?eq 6= 0 ›
have ?cqJ1 = ?c ∗R ?crJ1 + (1 − ?c) ∗R ?cpJ1

by (simp add: scaleR-right-distrib)
with ‹z-non-zero ?pJ › and ‹z-non-zero ?qJ › and ‹z-non-zero ?rJ ›
have vector2-append1 ?cqJ
= ?c ∗R vector2-append1 ?crJ + (1 − ?c) ∗R vector2-append1 ?cpJ
by (simp add: cart2-append1)

hence ?cqJ = ?c ∗R ?crJ + (1 − ?c) ∗R ?cpJ
unfolding vector2-append1-def and vector-def
by (simp add: vec-eq-iff forall-2 forall-3)

with ‹?c ≥ 0 › and ‹?c ≤ 1 ›
show B� ?cpJ ?cqJ ?crJ

by (unfold real-euclid-B-def) (simp add: algebra-simps exI [of - ?c])
qed

theorem hyp2-axiom4 : ∀ q a b c. ∃ x. BK q a x ∧ a x ≡K b c
proof (rule allI)+

fix q a b c :: hyp2
let ?pq = Rep-hyp2 q
let ?pa = Rep-hyp2 a
let ?pb = Rep-hyp2 b
let ?pc = Rep-hyp2 c
have ?pq ∈ hyp2 and ?pa ∈ hyp2 and ?pb ∈ hyp2 and ?pc ∈ hyp2

by (rule Rep-hyp2)+
let ?cq = cart2-pt ?pq
let ?ca = cart2-pt ?pa
let ?cb = cart2-pt ?pb
let ?cc = cart2-pt ?pc
let ?pp = ε p. p ∈ S ∧ B� ?cb ?cc (cart2-pt p)
let ?cp = cart2-pt ?pp
from ‹?pb ∈ hyp2 › and ‹?pc ∈ hyp2 › and extend-to-S [of ?pb ?pc]

and someI-ex [of λ p. p ∈ S ∧ B� ?cb ?cc (cart2-pt p)]
have ?pp ∈ S and B� ?cb ?cc ?cp by auto

166

let ?pr = ε r . r ∈ S ∧ B� ?cq ?ca (cart2-pt r)
let ?cr = cart2-pt ?pr
from ‹?pq ∈ hyp2 › and ‹?pa ∈ hyp2 › and extend-to-S [of ?pq ?pa]

and someI-ex [of λ r . r ∈ S ∧ B� ?cq ?ca (cart2-pt r)]
have ?pr ∈ S and B� ?cq ?ca ?cr by auto

from ‹?pb ∈ hyp2 › and ‹?pa ∈ hyp2 › and ‹?pp ∈ S› and ‹?pr ∈ S›
and statement66-existence [of ?pb ?pa ?pp ?pr]

obtain J where is-K2-isometry J
and apply-cltn2 ?pb J = ?pa and apply-cltn2 ?pp J = ?pr
by auto

let ?px = apply-cltn2 ?pc J
let ?cx = cart2-pt ?px
let ?x = Abs-hyp2 ?px
from ‹is-K2-isometry J › and ‹?pc ∈ hyp2 ›
have ?px ∈ hyp2 by (rule statement60-one-way)
hence Rep-hyp2 ?x = ?px by (rule Abs-hyp2-inverse)

from ‹?pb ∈ hyp2 › and ‹?pc ∈ hyp2 › and ‹?pp ∈ S› and ‹is-K2-isometry J ›
and ‹B� ?cb ?cc ?cp› and statement-63

have B� (cart2-pt (apply-cltn2 ?pb J)) ?cx (cart2-pt (apply-cltn2 ?pp J))
by simp

with ‹apply-cltn2 ?pb J = ?pa› and ‹apply-cltn2 ?pp J = ?pr›
have B� ?ca ?cx ?cr by simp
with ‹B� ?cq ?ca ?cr› have B� ?cq ?ca ?cx by (rule real-euclid.th3-5-1)
with ‹Rep-hyp2 ?x = ?px›
have BK q a ?x

unfolding real-hyp2-B-def and hyp2-rep-def
by simp

have Abs-hyp2 ?pa = a by (rule Rep-hyp2-inverse)
with ‹apply-cltn2 ?pb J = ?pa›
have hyp2-cltn2 b J = a by (unfold hyp2-cltn2-def) simp

have hyp2-cltn2 c J = ?x unfolding hyp2-cltn2-def ..
with ‹is-K2-isometry J › and ‹hyp2-cltn2 b J = a›
have b c ≡K a ?x

by (unfold real-hyp2-C-def) (simp add: exI [of - J])
hence a ?x ≡K b c by (rule hyp2 .th2-2)
with ‹BK q a ?x›
show ∃ x. BK q a x ∧ a x ≡K b c by (simp add: exI [of - ?x])

qed

8.9 More betweenness theorems
lemma hyp2-S-points-fix-line:

assumes a ∈ hyp2 and p ∈ S and is-K2-isometry J
and apply-cltn2 a J = a (is ?aJ = a)

167

and apply-cltn2 p J = p (is ?pJ = p)
and proj2-incident a l and proj2-incident p l and proj2-incident b l
shows apply-cltn2 b J = b (is ?bJ = b)

proof −
let ?lJ = apply-cltn2-line l J
from ‹proj2-incident a l› and ‹proj2-incident p l›
have proj2-incident ?aJ ?lJ and proj2-incident ?pJ ?lJ by simp-all
with ‹?aJ = a› and ‹?pJ = p›
have proj2-incident a ?lJ and proj2-incident p ?lJ by simp-all

from ‹a ∈ hyp2 › ‹proj2-incident a l› and line-through-K2-intersect-S-again [of
a l]

obtain q where q 6= p and q ∈ S and proj2-incident q l by auto
let ?qJ = apply-cltn2 q J

from ‹a ∈ hyp2 › and ‹p ∈ S› and ‹q ∈ S›
have a 6= p and a 6= q by (simp-all add: hyp2-S-not-equal)

from ‹a 6= p› and ‹proj2-incident a l› and ‹proj2-incident p l›
and ‹proj2-incident a ?lJ › and ‹proj2-incident p ?lJ ›
and proj2-incident-unique

have ?lJ = l by auto

from ‹proj2-incident q l› have proj2-incident ?qJ ?lJ by simp
with ‹?lJ = l› have proj2-incident ?qJ l by simp

from ‹q ∈ S› and ‹is-K2-isometry J ›
have ?qJ ∈ S by (unfold is-K2-isometry-def) simp
with ‹q 6= p› and ‹p ∈ S› and ‹q ∈ S› and ‹proj2-incident p l›

and ‹proj2-incident q l› and ‹proj2-incident ?qJ l›
and line-S-two-intersections-only

have ?qJ = p ∨ ?qJ = q by simp

have ?qJ = q
proof (rule ccontr)

assume ?qJ 6= q
with ‹?qJ = p ∨ ?qJ = q› have ?qJ = p by simp
with ‹?pJ = p› have ?qJ = ?pJ by simp
with apply-cltn2-injective have q = p by fast
with ‹q 6= p› show False ..

qed
with ‹q 6= p› and ‹a 6= p› and ‹a 6= q› and ‹proj2-incident p l›

and ‹proj2-incident q l› and ‹proj2-incident a l›
and ‹?pJ = p› and ‹?aJ = a› and ‹proj2-incident b l›
and cltn2-three-point-line [of p q a l J b]

show ?bJ = b by simp
qed

lemma K2-isometry-endpoint-in-S :

168

assumes a 6= b and a ∈ hyp2 ∪ S and b ∈ hyp2 ∪ S and is-K2-isometry J
shows apply-cltn2 (endpoint-in-S a b) J
= endpoint-in-S (apply-cltn2 a J) (apply-cltn2 b J)
(is ?pJ = endpoint-in-S ?aJ ?bJ)

proof −
let ?p = endpoint-in-S a b

from ‹a 6= b› and apply-cltn2-injective have ?aJ 6= ?bJ by fast

from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› and ‹is-K2-isometry J ›
and is-K2-isometry-hyp2-S

have ?aJ ∈ hyp2 ∪ S and ?bJ ∈ hyp2 ∪ S by simp-all

let ?ca = cart2-pt a
let ?cb = cart2-pt b
let ?cp = cart2-pt ?p
from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›
have ?p ∈ S and B� ?ca ?cb ?cp by (rule endpoint-in-S)+

from ‹?p ∈ S› and ‹is-K2-isometry J ›
have ?pJ ∈ S by (unfold is-K2-isometry-def) simp

let ?caJ = cart2-pt ?aJ
let ?cbJ = cart2-pt ?bJ
let ?cpJ = cart2-pt ?pJ
from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› and ‹?p ∈ S› and ‹is-K2-isometry

J ›
and ‹B� ?ca ?cb ?cp› and statement-63

have B� ?caJ ?cbJ ?cpJ by simp
with ‹?aJ 6= ?bJ › and ‹?aJ ∈ hyp2 ∪ S› and ‹?bJ ∈ hyp2 ∪ S› and ‹?pJ ∈

S›
show ?pJ = endpoint-in-S ?aJ ?bJ by (rule endpoint-in-S-unique)

qed

lemma between-endpoint-in-S :
assumes a 6= b and b 6= c
and a ∈ hyp2 ∪ S and b ∈ hyp2 ∪ S and c ∈ hyp2 ∪ S
and B� (cart2-pt a) (cart2-pt b) (cart2-pt c) (is B� ?ca ?cb ?cc)
shows endpoint-in-S a b = endpoint-in-S b c (is ?p = ?q)

proof −
from ‹b 6= c› and ‹b ∈ hyp2 ∪ S› and ‹c ∈ hyp2 ∪ S› and hyp2-S-cart2-inj
have ?cb 6= ?cc by auto

let ?cq = cart2-pt ?q
from ‹b ∈ hyp2 ∪ S› and ‹c ∈ hyp2 ∪ S›
have ?q ∈ S and B� ?cb ?cc ?cq by (rule endpoint-in-S)+

from ‹?cb 6= ?cc› and ‹B� ?ca ?cb ?cc› and ‹B� ?cb ?cc ?cq›
have B� ?ca ?cb ?cq by (rule real-euclid.th3-7-2)

169

with ‹a 6= b› and ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› and ‹?q ∈ S›
have ?q = ?p by (rule endpoint-in-S-unique)
thus ?p = ?q ..

qed

lemma hyp2-extend-segment-unique:
assumes a 6= b and BK a b c and BK a b d and b c ≡K b d
shows c = d

proof cases
assume b = c
with ‹b c ≡K b d› show c = d by (simp add: hyp2 .A3-reversed)

next
assume b 6= c

have b 6= d
proof (rule ccontr)

assume ¬ b 6= d
hence b = d by simp
with ‹b c ≡K b d› have b c ≡K b b by simp
hence b = c by (rule hyp2 .A3 ′)
with ‹b 6= c› show False ..

qed
with ‹a 6= b› and ‹b 6= c›
have Rep-hyp2 a 6= Rep-hyp2 b (is ?pa 6= ?pb)

and Rep-hyp2 b 6= Rep-hyp2 c (is ?pb 6= ?pc)
and Rep-hyp2 b 6= Rep-hyp2 d (is ?pb 6= ?pd)
by (simp-all add: Rep-hyp2-inject)

have ?pa ∈ hyp2 and ?pb ∈ hyp2 and ?pc ∈ hyp2 and ?pd ∈ hyp2
by (rule Rep-hyp2)+

let ?pp = endpoint-in-S ?pb ?pc
let ?ca = cart2-pt ?pa
let ?cb = cart2-pt ?pb
let ?cc = cart2-pt ?pc
let ?cd = cart2-pt ?pd
let ?cp = cart2-pt ?pp
from ‹?pb ∈ hyp2 › and ‹?pc ∈ hyp2 ›
have ?pp ∈ S and B� ?cb ?cc ?cp by (simp-all add: endpoint-in-S)

from ‹b c ≡K b d›
obtain J where is-K2-isometry J

and hyp2-cltn2 b J = b and hyp2-cltn2 c J = d
by (unfold real-hyp2-C-def) auto

from ‹hyp2-cltn2 b J = b› and ‹hyp2-cltn2 c J = d›
have Rep-hyp2 (hyp2-cltn2 b J) = ?pb

and Rep-hyp2 (hyp2-cltn2 c J) = ?pd
by simp-all

170

with ‹is-K2-isometry J ›
have apply-cltn2 ?pb J = ?pb and apply-cltn2 ?pc J = ?pd

by (simp-all add: Rep-hyp2-cltn2)

from ‹BK a b c› and ‹BK a b d›
have B� ?ca ?cb ?cc and B� ?ca ?cb ?cd

unfolding real-hyp2-B-def and hyp2-rep-def .

from ‹?pb 6= ?pc› and ‹?pb ∈ hyp2 › and ‹?pc ∈ hyp2 › and ‹is-K2-isometry J ›
have apply-cltn2 ?pp J
= endpoint-in-S (apply-cltn2 ?pb J) (apply-cltn2 ?pc J)
by (simp add: K2-isometry-endpoint-in-S)

also from ‹apply-cltn2 ?pb J = ?pb› and ‹apply-cltn2 ?pc J = ?pd›
have . . . = endpoint-in-S ?pb ?pd by simp
also from ‹?pa 6= ?pb› and ‹?pb 6= ?pd›

and ‹?pa ∈ hyp2 › and ‹?pb ∈ hyp2 › and ‹?pd ∈ hyp2 › and ‹B� ?ca ?cb ?cd›
have . . . = endpoint-in-S ?pa ?pb by (simp add: between-endpoint-in-S)
also from ‹?pa 6= ?pb› and ‹?pb 6= ?pc›

and ‹?pa ∈ hyp2 › and ‹?pb ∈ hyp2 › and ‹?pc ∈ hyp2 › and ‹B� ?ca ?cb ?cc›
have . . . = endpoint-in-S ?pb ?pc by (simp add: between-endpoint-in-S)
finally have apply-cltn2 ?pp J = ?pp .

from ‹?pb ∈ hyp2 › and ‹?pc ∈ hyp2 › and ‹?pp ∈ S›
have z-non-zero ?pb and z-non-zero ?pc and z-non-zero ?pp

by (simp-all add: hyp2-S-z-non-zero)
with ‹B� ?cb ?cc ?cp› and euclid-B-cart2-common-line [of ?pb ?pc ?pp]
obtain l where proj2-incident ?pb l and proj2-incident ?pp l

and proj2-incident ?pc l
by auto

with ‹?pb ∈ hyp2 › and ‹?pp ∈ S› and ‹is-K2-isometry J ›
and ‹apply-cltn2 ?pb J = ?pb› and ‹apply-cltn2 ?pp J = ?pp›

have apply-cltn2 ?pc J = ?pc by (rule hyp2-S-points-fix-line)
with ‹apply-cltn2 ?pc J = ?pd› have ?pc = ?pd by simp
thus c = d by (subst Rep-hyp2-inject [symmetric])

qed

lemma line-S-match-intersections:
assumes p 6= q and r 6= s and p ∈ S and q ∈ S and r ∈ S and s ∈ S
and proj2-set-Col {p,q,r ,s}
shows (p = r ∧ q = s) ∨ (q = r ∧ p = s)

proof −
from ‹proj2-set-Col {p,q,r ,s}›
obtain l where proj2-incident p l and proj2-incident q l

and proj2-incident r l and proj2-incident s l
by (unfold proj2-set-Col-def) auto

with ‹r 6= s› and ‹p ∈ S› and ‹q ∈ S› and ‹r ∈ S› and ‹s ∈ S›
have p = r ∨ p = s and q = r ∨ q = s

by (simp-all add: line-S-two-intersections-only)

171

show (p = r ∧ q = s) ∨ (q = r ∧ p = s)
proof cases

assume p = r
with ‹p 6= q› and ‹q = r ∨ q = s›
show (p = r ∧ q = s) ∨ (q = r ∧ p = s) by simp

next
assume p 6= r
with ‹p = r ∨ p = s› have p = s by simp
with ‹p 6= q› and ‹q = r ∨ q = s›
show (p = r ∧ q = s) ∨ (q = r ∧ p = s) by simp

qed
qed

definition are-endpoints-in-S :: [proj2 , proj2 , proj2 , proj2] ⇒ bool where
are-endpoints-in-S p q a b
, p 6= q ∧ p ∈ S ∧ q ∈ S ∧ a ∈ hyp2 ∧ b ∈ hyp2 ∧ proj2-set-Col {p,q,a,b}

lemma are-endpoints-in-S ′:
assumes p 6= q and a 6= b and p ∈ S and q ∈ S and a ∈ hyp2 ∪ S
and b ∈ hyp2 ∪ S and proj2-set-Col {p,q,a,b}
shows (p = endpoint-in-S a b ∧ q = endpoint-in-S b a)
∨ (q = endpoint-in-S a b ∧ p = endpoint-in-S b a)
(is (p = ?r ∧ q = ?s) ∨ (q = ?r ∧ p = ?s))

proof −
from ‹a 6= b› and ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›
have ?r 6= ?s by (simp add: endpoint-in-S-swap)

from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›
have ?r ∈ S and ?s ∈ S by (simp-all add: endpoint-in-S)

from ‹proj2-set-Col {p,q,a,b}›
obtain l where proj2-incident p l and proj2-incident q l

and proj2-incident a l and proj2-incident b l
by (unfold proj2-set-Col-def) auto

from ‹a 6= b› and ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S› and ‹proj2-incident a l›
and ‹proj2-incident b l›

have proj2-incident ?r l and proj2-incident ?s l
by (simp-all add: endpoint-in-S-incident)

with ‹proj2-incident p l› and ‹proj2-incident q l›
have proj2-set-Col {p,q,?r ,?s}

by (unfold proj2-set-Col-def) (simp add: exI [of - l])
with ‹p 6= q› and ‹?r 6= ?s› and ‹p ∈ S› and ‹q ∈ S› and ‹?r ∈ S› and ‹?s
∈ S›

show (p = ?r ∧ q = ?s) ∨ (q = ?r ∧ p = ?s)
by (rule line-S-match-intersections)

qed

lemma are-endpoints-in-S :

172

assumes a 6= b and are-endpoints-in-S p q a b
shows (p = endpoint-in-S a b ∧ q = endpoint-in-S b a)
∨ (q = endpoint-in-S a b ∧ p = endpoint-in-S b a)
using assms
by (unfold are-endpoints-in-S-def) (simp add: are-endpoints-in-S ′)

lemma S-intersections-endpoints-in-S :
assumes a 6= 0 and b 6= 0 and proj2-abs a 6= proj2-abs b (is ?pa 6= ?pb)
and proj2-abs a ∈ hyp2 and proj2-abs b ∈ hyp2 ∪ S
shows (S-intersection1 a b = endpoint-in-S ?pa ?pb
∧ S-intersection2 a b = endpoint-in-S ?pb ?pa)
∨ (S-intersection2 a b = endpoint-in-S ?pa ?pb
∧ S-intersection1 a b = endpoint-in-S ?pb ?pa)

(is (?pp = ?pr ∧ ?pq = ?ps) ∨ (?pq = ?pr ∧ ?pp = ?ps))
proof −

from ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa 6= ?pb› and ‹?pa ∈ hyp2 ›
have ?pp 6= ?pq by (simp add: S-intersections-distinct)

from ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa 6= ?pb› and ‹proj2-abs a ∈ hyp2 ›
have ?pp ∈ S and ?pq ∈ S

by (simp-all add: S-intersections-in-S)

let ?l = proj2-line-through ?pa ?pb
have proj2-incident ?pa ?l and proj2-incident ?pb ?l

by (rule proj2-line-through-incident)+
with ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa 6= ?pb›
have proj2-incident ?pp ?l and proj2-incident ?pq ?l

by (rule S-intersections-incident)+
with ‹proj2-incident ?pa ?l› and ‹proj2-incident ?pb ?l›
have proj2-set-Col {?pp,?pq,?pa,?pb}

by (unfold proj2-set-Col-def) (simp add: exI [of - ?l])
with ‹?pp 6= ?pq› and ‹?pa 6= ?pb› and ‹?pp ∈ S› and ‹?pq ∈ S› and ‹?pa ∈

hyp2 ›
and ‹?pb ∈ hyp2 ∪ S›

show (?pp = ?pr ∧ ?pq = ?ps) ∨ (?pq = ?pr ∧ ?pp = ?ps)
by (simp add: are-endpoints-in-S ′)

qed

lemma between-endpoints-in-S :
assumes a 6= b and a ∈ hyp2 ∪ S and b ∈ hyp2 ∪ S
shows B�
(cart2-pt (endpoint-in-S a b)) (cart2-pt a) (cart2-pt (endpoint-in-S b a))
(is B� ?cp ?ca ?cq)

proof −
let ?cb = cart2-pt b
from ‹b ∈ hyp2 ∪ S› and ‹a ∈ hyp2 ∪ S› and ‹a 6= b›
have ?cb 6= ?ca by (auto simp add: hyp2-S-cart2-inj)

from ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›

173

have B� ?ca ?cb ?cp and B� ?cb ?ca ?cq by (simp-all add: endpoint-in-S)

from ‹B� ?ca ?cb ?cp› have B� ?cp ?cb ?ca by (rule real-euclid.th3-2)
with ‹?cb 6= ?ca› and ‹B� ?cb ?ca ?cq›
show B� ?cp ?ca ?cq by (simp add: real-euclid.th3-7-1)

qed

lemma S-hyp2-S-cart2-append1 :
assumes p 6= q and p ∈ S and q ∈ S and a ∈ hyp2
and proj2-incident p l and proj2-incident q l and proj2-incident a l
shows ∃ k. k > 0 ∧ k < 1
∧ cart2-append1 a = k ∗R cart2-append1 q + (1 − k) ∗R cart2-append1 p

proof −
from ‹p ∈ S› and ‹q ∈ S› and ‹a ∈ hyp2 ›
have z-non-zero p and z-non-zero q and z-non-zero a

by (simp-all add: hyp2-S-z-non-zero)

from assms
have B� (cart2-pt p) (cart2-pt a) (cart2-pt q) (is B� ?cp ?ca ?cq)

by (simp add: hyp2-incident-in-middle)

from ‹p ∈ S› and ‹q ∈ S› and ‹a ∈ hyp2 ›
have a 6= p and a 6= q by (simp-all add: hyp2-S-not-equal)

with ‹z-non-zero p› and ‹z-non-zero a› and ‹z-non-zero q›
and ‹B� ?cp ?ca ?cq›

show ∃ k. k > 0 ∧ k < 1
∧ cart2-append1 a = k ∗R cart2-append1 q + (1 − k) ∗R cart2-append1 p
by (rule cart2-append1-between-strict)

qed

lemma are-endpoints-in-S-swap-34 :
assumes are-endpoints-in-S p q a b
shows are-endpoints-in-S p q b a

proof −
have {p,q,b,a} = {p,q,a,b} by auto
with ‹are-endpoints-in-S p q a b›
show are-endpoints-in-S p q b a by (unfold are-endpoints-in-S-def) simp

qed

lemma proj2-set-Col-endpoints-in-S :
assumes a 6= b and a ∈ hyp2 ∪ S and b ∈ hyp2 ∪ S
shows proj2-set-Col {endpoint-in-S a b, endpoint-in-S b a, a, b}
(is proj2-set-Col {?p,?q,a,b})

proof −
let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l

by (rule proj2-line-through-incident)+
with ‹a 6= b› and ‹a ∈ hyp2 ∪ S› and ‹b ∈ hyp2 ∪ S›

174

have proj2-incident ?p ?l and proj2-incident ?q ?l
by (simp-all add: endpoint-in-S-incident)

with ‹proj2-incident a ?l› and ‹proj2-incident b ?l›
show proj2-set-Col {?p,?q,a,b}

by (unfold proj2-set-Col-def) (simp add: exI [of - ?l])
qed

lemma endpoints-in-S-are-endpoints-in-S :
assumes a 6= b and a ∈ hyp2 and b ∈ hyp2
shows are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-S b a) a b
(is are-endpoints-in-S ?p ?q a b)

proof −
from ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have ?p 6= ?q by (simp add: endpoint-in-S-swap)

from ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have ?p ∈ S and ?q ∈ S by (simp-all add: endpoint-in-S)

from assms
have proj2-set-Col {?p,?q,a,b} by (simp add: proj2-set-Col-endpoints-in-S)
with ‹?p 6= ?q› and ‹?p ∈ S› and ‹?q ∈ S› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
show are-endpoints-in-S ?p ?q a b by (unfold are-endpoints-in-S-def) simp

qed

lemma endpoint-in-S-S-hyp2-distinct:
assumes p ∈ S and a ∈ hyp2 ∪ S and p 6= a
shows endpoint-in-S p a 6= p

proof
from ‹p 6= a› and ‹p ∈ S› and ‹a ∈ hyp2 ∪ S›
have B� (cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a))

by (simp add: endpoint-in-S)

assume endpoint-in-S p a = p
with ‹B� (cart2-pt p) (cart2-pt a) (cart2-pt (endpoint-in-S p a))›
have cart2-pt p = cart2-pt a by (simp add: real-euclid.A6 ′)
with ‹p ∈ S› and ‹a ∈ hyp2 ∪ S› have p = a by (simp add: hyp2-S-cart2-inj)
with ‹p 6= a› show False ..

qed

lemma endpoint-in-S-S-strict-hyp2-distinct:
assumes p ∈ S and a ∈ hyp2
shows endpoint-in-S p a 6= p

proof −
from ‹a ∈ hyp2 › and ‹p ∈ S›
have p 6= a by (rule hyp2-S-not-equal [symmetric])
with assms
show endpoint-in-S p a 6= p by (simp add: endpoint-in-S-S-hyp2-distinct)

qed

175

lemma end-and-opposite-are-endpoints-in-S :
assumes a ∈ hyp2 and b ∈ hyp2 and p ∈ S
and proj2-incident a l and proj2-incident b l and proj2-incident p l
shows are-endpoints-in-S p (endpoint-in-S p b) a b
(is are-endpoints-in-S p ?q a b)

proof −
from ‹p ∈ S› and ‹b ∈ hyp2 ›
have p 6= ?q by (rule endpoint-in-S-S-strict-hyp2-distinct [symmetric])

from ‹p ∈ S› and ‹b ∈ hyp2 › have ?q ∈ S by (simp add: endpoint-in-S)

from ‹b ∈ hyp2 › and ‹p ∈ S›
have p 6= b by (rule hyp2-S-not-equal [symmetric])
with ‹p ∈ S› and ‹b ∈ hyp2 › and ‹proj2-incident p l› and ‹proj2-incident b l›
have proj2-incident ?q l by (simp add: endpoint-in-S-incident)
with ‹proj2-incident p l› and ‹proj2-incident a l› and ‹proj2-incident b l›
have proj2-set-Col {p,?q,a,b}

by (unfold proj2-set-Col-def) (simp add: exI [of - l])
with ‹p 6= ?q› and ‹p ∈ S› and ‹?q ∈ S› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
show are-endpoints-in-S p ?q a b by (unfold are-endpoints-in-S-def) simp

qed

lemma real-hyp2-B-hyp2-cltn2 :
assumes is-K2-isometry J and BK a b c
shows BK (hyp2-cltn2 a J) (hyp2-cltn2 b J) (hyp2-cltn2 c J)
(is BK ?aJ ?bJ ?cJ)

proof −
from ‹BK a b c›
have B� (hyp2-rep a) (hyp2-rep b) (hyp2-rep c) by (unfold real-hyp2-B-def)
with ‹is-K2-isometry J ›
have B� (cart2-pt (apply-cltn2 (Rep-hyp2 a) J))
(cart2-pt (apply-cltn2 (Rep-hyp2 b) J))
(cart2-pt (apply-cltn2 (Rep-hyp2 c) J))
by (unfold hyp2-rep-def) (simp add: Rep-hyp2 statement-63)

moreover from ‹is-K2-isometry J ›
have apply-cltn2 (Rep-hyp2 a) J ∈ hyp2

and apply-cltn2 (Rep-hyp2 b) J ∈ hyp2
and apply-cltn2 (Rep-hyp2 c) J ∈ hyp2
by (rule apply-cltn2-Rep-hyp2)+

ultimately show BK (hyp2-cltn2 a J) (hyp2-cltn2 b J) (hyp2-cltn2 c J)
unfolding hyp2-cltn2-def and real-hyp2-B-def and hyp2-rep-def
by (simp add: Abs-hyp2-inverse)

qed

lemma real-hyp2-C-hyp2-cltn2 :
assumes is-K2-isometry J
shows a b ≡K (hyp2-cltn2 a J) (hyp2-cltn2 b J) (is a b ≡K ?aJ ?bJ)
using assms by (unfold real-hyp2-C-def) (simp add: exI [of - J])

176

8.10 Perpendicularity
definition M-perp :: proj2-line ⇒ proj2-line ⇒ bool where

M-perp l m , proj2-incident (pole l) m

lemma M-perp-sym:
assumes M-perp l m
shows M-perp m l

proof −
from ‹M-perp l m› have proj2-incident (pole l) m by (unfold M-perp-def)
hence proj2-incident (pole m) (polar (pole l)) by (rule incident-pole-polar)
hence proj2-incident (pole m) l by (simp add: polar-pole)
thus M-perp m l by (unfold M-perp-def)

qed

lemma M-perp-to-compass:
assumes M-perp l m and a ∈ hyp2 and proj2-incident a l
and b ∈ hyp2 and proj2-incident b m
shows ∃ J . is-K2-isometry J
∧ apply-cltn2-line equator J = l ∧ apply-cltn2-line meridian J = m

proof −
from ‹a ∈ K2 › and ‹proj2-incident a l›

and line-through-K2-intersect-S-twice [of a l]
obtain p and q where p 6= q and p ∈ S and q ∈ S

and proj2-incident p l and proj2-incident q l
by auto

have ∃ r . r ∈ S ∧ r /∈ {p,q} ∧ proj2-incident r m
proof cases

assume proj2-incident p m

from ‹b ∈ K2 › and ‹proj2-incident b m›
and line-through-K2-intersect-S-again [of b m]

obtain r where r ∈ S and r 6= p and proj2-incident r m by auto

have r /∈ {p,q}
proof

assume r ∈ {p,q}
with ‹r 6= p› have r = q by simp
with ‹proj2-incident r m› have proj2-incident q m by simp
with ‹proj2-incident p l› and ‹proj2-incident q l›

and ‹proj2-incident p m› and ‹proj2-incident q m› and ‹p 6= q›
and proj2-incident-unique [of p l q m]

have l = m by simp
with ‹M-perp l m› have M-perp l l by simp
hence proj2-incident (pole l) l (is proj2-incident ?s l)

by (unfold M-perp-def)
hence proj2-incident ?s (polar ?s) by (subst polar-pole)
hence ?s ∈ S by (simp add: incident-own-polar-in-S)
with ‹p ∈ S› and ‹q ∈ S› and ‹proj2-incident p l› and ‹proj2-incident q l›

177

and point-in-S-polar-is-tangent [of ?s]
have p = ?s and q = ?s by (auto simp add: polar-pole)
with ‹p 6= q› show False by simp

qed
with ‹r ∈ S› and ‹proj2-incident r m›
show ∃ r . r ∈ S ∧ r /∈ {p,q} ∧ proj2-incident r m

by (simp add: exI [of - r])
next

assume ¬ proj2-incident p m

from ‹b ∈ K2 › and ‹proj2-incident b m›
and line-through-K2-intersect-S-again [of b m]

obtain r where r ∈ S and r 6= q and proj2-incident r m by auto

from ‹¬ proj2-incident p m› and ‹proj2-incident r m› have r 6= p by auto
with ‹r ∈ S› and ‹r 6= q› and ‹proj2-incident r m›
show ∃ r . r ∈ S ∧ r /∈ {p,q} ∧ proj2-incident r m

by (simp add: exI [of - r])
qed
then obtain r where r ∈ S and r /∈ {p,q} and proj2-incident r m by auto

from ‹p ∈ S› and ‹q ∈ S› and ‹r ∈ S› and ‹p 6= q› and ‹r /∈ {p,q}›
and statement65-special-case [of p q r]

obtain J where is-K2-isometry J and apply-cltn2 east J = p
and apply-cltn2 west J = q and apply-cltn2 north J = r
and apply-cltn2 far-north J = proj2-intersection (polar p) (polar q)
by auto

from ‹apply-cltn2 east J = p› and ‹apply-cltn2 west J = q›
and ‹proj2-incident p l› and ‹proj2-incident q l›

have proj2-incident (apply-cltn2 east J) l
and proj2-incident (apply-cltn2 west J) l
by simp-all

with east-west-distinct and east-west-on-equator
have apply-cltn2-line equator J = l by (rule apply-cltn2-line-unique)

from ‹apply-cltn2 north J = r› and ‹proj2-incident r m›
have proj2-incident (apply-cltn2 north J) m by simp

from ‹p 6= q› and polar-inj have polar p 6= polar q by fast

from ‹proj2-incident p l› and ‹proj2-incident q l›
have proj2-incident (pole l) (polar p)

and proj2-incident (pole l) (polar q)
by (simp-all add: incident-pole-polar)

with ‹polar p 6= polar q›
have pole l = proj2-intersection (polar p) (polar q)

by (rule proj2-intersection-unique)
with ‹apply-cltn2 far-north J = proj2-intersection (polar p) (polar q)›

178

have apply-cltn2 far-north J = pole l by simp
with ‹M-perp l m›
have proj2-incident (apply-cltn2 far-north J) m by (unfold M-perp-def) simp
with north-far-north-distinct and north-south-far-north-on-meridian

and ‹proj2-incident (apply-cltn2 north J) m›
have apply-cltn2-line meridian J = m by (simp add: apply-cltn2-line-unique)
with ‹is-K2-isometry J › and ‹apply-cltn2-line equator J = l›
show ∃ J . is-K2-isometry J
∧ apply-cltn2-line equator J = l ∧ apply-cltn2-line meridian J = m
by (simp add: exI [of - J])

qed

definition drop-perp :: proj2 ⇒ proj2-line ⇒ proj2-line where
drop-perp p l , proj2-line-through p (pole l)

lemma drop-perp-incident: proj2-incident p (drop-perp p l)
by (unfold drop-perp-def) (rule proj2-line-through-incident)

lemma drop-perp-perp: M-perp l (drop-perp p l)
by (unfold drop-perp-def M-perp-def) (rule proj2-line-through-incident)

definition perp-foot :: proj2 ⇒ proj2-line ⇒ proj2 where
perp-foot p l , proj2-intersection l (drop-perp p l)

lemma perp-foot-incident:
shows proj2-incident (perp-foot p l) l
and proj2-incident (perp-foot p l) (drop-perp p l)
by (unfold perp-foot-def) (rule proj2-intersection-incident)+

lemma M-perp-hyp2 :
assumes M-perp l m and a ∈ hyp2 and proj2-incident a l and b ∈ hyp2
and proj2-incident b m and proj2-incident c l and proj2-incident c m
shows c ∈ hyp2

proof −
from ‹M-perp l m› and ‹a ∈ hyp2 › and ‹proj2-incident a l› and ‹b ∈ hyp2 ›

and ‹proj2-incident b m› and M-perp-to-compass [of l m a b]
obtain J where is-K2-isometry J and apply-cltn2-line equator J = l

and apply-cltn2-line meridian J = m
by auto

from ‹is-K2-isometry J › and K2-centre-in-K2
have apply-cltn2 K2-centre J ∈ hyp2

by (rule statement60-one-way)

from ‹proj2-incident c l› and ‹apply-cltn2-line equator J = l›
and ‹proj2-incident c m› and ‹apply-cltn2-line meridian J = m›

have proj2-incident c (apply-cltn2-line equator J)
and proj2-incident c (apply-cltn2-line meridian J)
by simp-all

179

with equator-meridian-distinct and K2-centre-on-equator-meridian
have apply-cltn2 K2-centre J = c by (rule apply-cltn2-unique)
with ‹apply-cltn2 K2-centre J ∈ hyp2 › show c ∈ hyp2 by simp

qed

lemma perp-foot-hyp2 :
assumes a ∈ hyp2 and proj2-incident a l and b ∈ hyp2
shows perp-foot b l ∈ hyp2
using drop-perp-perp [of l b] and ‹a ∈ hyp2 › and ‹proj2-incident a l›

and ‹b ∈ hyp2 › and drop-perp-incident [of b l]
and perp-foot-incident [of b l]

by (rule M-perp-hyp2)

definition perp-up :: proj2 ⇒ proj2-line ⇒ proj2 where
perp-up a l
, if proj2-incident a l then ε p. p ∈ S ∧ proj2-incident p (drop-perp a l)
else endpoint-in-S (perp-foot a l) a

lemma perp-up-degenerate-in-S-incident:
assumes a ∈ hyp2 and proj2-incident a l
shows perp-up a l ∈ S (is ?p ∈ S)
and proj2-incident (perp-up a l) (drop-perp a l)

proof −
from ‹proj2-incident a l›
have ?p = (ε p. p ∈ S ∧ proj2-incident p (drop-perp a l))

by (unfold perp-up-def) simp

from ‹a ∈ hyp2 › and drop-perp-incident [of a l]
have ∃ p. p ∈ S ∧ proj2-incident p (drop-perp a l)

by (rule line-through-K2-intersect-S)
hence ?p ∈ S ∧ proj2-incident ?p (drop-perp a l)

unfolding ‹?p = (ε p. p ∈ S ∧ proj2-incident p (drop-perp a l))›
by (rule someI-ex)

thus ?p ∈ S and proj2-incident ?p (drop-perp a l) by simp-all
qed

lemma perp-up-non-degenerate-in-S-at-end:
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident b l
and ¬ proj2-incident a l
shows perp-up a l ∈ S
and B� (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up a l))

proof −
from ‹¬ proj2-incident a l›
have perp-up a l = endpoint-in-S (perp-foot a l) a

by (unfold perp-up-def) simp

from ‹b ∈ hyp2 › and ‹proj2-incident b l› and ‹a ∈ hyp2 ›
have perp-foot a l ∈ hyp2 by (rule perp-foot-hyp2)
with ‹a ∈ hyp2 ›

180

show perp-up a l ∈ S
and B� (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up a l))
unfolding ‹perp-up a l = endpoint-in-S (perp-foot a l) a›
by (simp-all add: endpoint-in-S)

qed

lemma perp-up-in-S :
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident b l
shows perp-up a l ∈ S

proof cases
assume proj2-incident a l
with ‹a ∈ hyp2 ›
show perp-up a l ∈ S by (rule perp-up-degenerate-in-S-incident)

next
assume ¬ proj2-incident a l
with assms
show perp-up a l ∈ S by (rule perp-up-non-degenerate-in-S-at-end)

qed

lemma perp-up-incident:
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident b l
shows proj2-incident (perp-up a l) (drop-perp a l)
(is proj2-incident ?p ?m)

proof cases
assume proj2-incident a l
with ‹a ∈ hyp2 ›
show proj2-incident ?p ?m by (rule perp-up-degenerate-in-S-incident)

next
assume ¬ proj2-incident a l
hence ?p = endpoint-in-S (perp-foot a l) a (is ?p = endpoint-in-S ?c a)

by (unfold perp-up-def) simp

from perp-foot-incident [of a l] and ‹¬ proj2-incident a l›
have ?c 6= a by auto

from ‹b ∈ hyp2 › and ‹proj2-incident b l› and ‹a ∈ hyp2 ›
have ?c ∈ hyp2 by (rule perp-foot-hyp2)
with ‹?c 6= a› and ‹a ∈ hyp2 › and drop-perp-incident [of a l]

and perp-foot-incident [of a l]
show proj2-incident ?p ?m

by (unfold ‹?p = endpoint-in-S ?c a›) (simp add: endpoint-in-S-incident)
qed

lemma drop-perp-same-line-pole-in-S :
assumes drop-perp p l = l
shows pole l ∈ S

proof −
from ‹drop-perp p l = l›
have l = proj2-line-through p (pole l) by (unfold drop-perp-def) simp

181

with proj2-line-through-incident [of pole l p]
have proj2-incident (pole l) l by simp
hence proj2-incident (pole l) (polar (pole l)) by (subst polar-pole)
thus pole l ∈ S by (unfold incident-own-polar-in-S)

qed

lemma hyp2-drop-perp-not-same-line:
assumes a ∈ hyp2
shows drop-perp a l 6= l

proof
assume drop-perp a l = l
hence pole l ∈ S by (rule drop-perp-same-line-pole-in-S)
with ‹a ∈ hyp2 ›
have ¬ proj2-incident a (polar (pole l))

by (simp add: tangent-not-through-K2)
with ‹drop-perp a l = l›
have ¬ proj2-incident a (drop-perp a l) by (simp add: polar-pole)
with drop-perp-incident [of a l] show False by simp

qed

lemma hyp2-incident-perp-foot-same-point:
assumes a ∈ hyp2 and proj2-incident a l
shows perp-foot a l = a

proof −
from ‹a ∈ hyp2 ›
have drop-perp a l 6= l by (rule hyp2-drop-perp-not-same-line)
with perp-foot-incident [of a l] and ‹proj2-incident a l›

and drop-perp-incident [of a l] and proj2-incident-unique
show perp-foot a l = a by fast

qed

lemma perp-up-at-end:
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident b l
shows B� (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up a l))

proof cases
assume proj2-incident a l
with ‹a ∈ hyp2 ›
have perp-foot a l = a by (rule hyp2-incident-perp-foot-same-point)
thus B� (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up a l))

by (simp add: real-euclid.th3-1 real-euclid.th3-2)
next

assume ¬ proj2-incident a l
with assms
show B� (cart2-pt (perp-foot a l)) (cart2-pt a) (cart2-pt (perp-up a l))

by (rule perp-up-non-degenerate-in-S-at-end)
qed

definition perp-down :: proj2 ⇒ proj2-line ⇒ proj2 where
perp-down a l , endpoint-in-S (perp-up a l) a

182

lemma perp-down-in-S :
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident b l
shows perp-down a l ∈ S

proof −
from assms have perp-up a l ∈ S by (rule perp-up-in-S)
with ‹a ∈ hyp2 ›
show perp-down a l ∈ S by (unfold perp-down-def) (simp add: endpoint-in-S)

qed

lemma perp-down-incident:
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident b l
shows proj2-incident (perp-down a l) (drop-perp a l)

proof −
from assms have perp-up a l ∈ S by (rule perp-up-in-S)
with ‹a ∈ hyp2 › have perp-up a l 6= a by (rule hyp2-S-not-equal [symmetric])

from assms
have proj2-incident (perp-up a l) (drop-perp a l) by (rule perp-up-incident)
with ‹perp-up a l 6= a› and ‹perp-up a l ∈ S› and ‹a ∈ hyp2 ›

and drop-perp-incident [of a l]
show proj2-incident (perp-down a l) (drop-perp a l)

by (unfold perp-down-def) (simp add: endpoint-in-S-incident)
qed

lemma perp-up-down-distinct:
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident b l
shows perp-up a l 6= perp-down a l

proof −
from assms have perp-up a l ∈ S by (rule perp-up-in-S)
with ‹a ∈ hyp2 ›
show perp-up a l 6= perp-down a l

unfolding perp-down-def
by (simp add: endpoint-in-S-S-strict-hyp2-distinct [symmetric])

qed

lemma perp-up-down-foot-are-endpoints-in-S :
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident b l
shows are-endpoints-in-S (perp-up a l) (perp-down a l) (perp-foot a l) a

proof −
from ‹b ∈ hyp2 › and ‹proj2-incident b l› and ‹a ∈ hyp2 ›
have perp-foot a l ∈ hyp2 by (rule perp-foot-hyp2)

from assms have perp-up a l ∈ S by (rule perp-up-in-S)

from assms
have proj2-incident (perp-up a l) (drop-perp a l) by (rule perp-up-incident)
with ‹perp-foot a l ∈ hyp2 › and ‹a ∈ hyp2 › and ‹perp-up a l ∈ S›

and perp-foot-incident(2) [of a l] and drop-perp-incident [of a l]

183

show are-endpoints-in-S (perp-up a l) (perp-down a l) (perp-foot a l) a
by (unfold perp-down-def) (rule end-and-opposite-are-endpoints-in-S)

qed

lemma perp-foot-opposite-endpoint-in-S :
assumes a ∈ hyp2 and b ∈ hyp2 and c ∈ hyp2 and a 6= b
shows
endpoint-in-S (endpoint-in-S a b) (perp-foot c (proj2-line-through a b))
= endpoint-in-S b a
(is endpoint-in-S ?p ?d = endpoint-in-S b a)

proof −
let ?q = endpoint-in-S ?p ?d

from ‹a ∈ hyp2 › and ‹b ∈ hyp2 › have ?p ∈ S by (simp add: endpoint-in-S)

let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l

by (rule proj2-line-through-incident)+
with ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have proj2-incident ?p ?l

by (simp-all add: endpoint-in-S-incident)

from ‹a ∈ hyp2 › and ‹proj2-incident a ?l› and ‹c ∈ hyp2 ›
have ?d ∈ hyp2 by (rule perp-foot-hyp2)
with ‹?p ∈ S› have ?q 6= ?p by (rule endpoint-in-S-S-strict-hyp2-distinct)

from ‹?p ∈ S› and ‹?d ∈ hyp2 › have ?q ∈ S by (simp add: endpoint-in-S)

from ‹?d ∈ hyp2 › and ‹?p ∈ S›
have ?p 6= ?d by (rule hyp2-S-not-equal [symmetric])
with ‹?p ∈ S› and ‹?d ∈ hyp2 › and ‹proj2-incident ?p ?l›

and perp-foot-incident(1) [of c ?l]
have proj2-incident ?q ?l by (simp add: endpoint-in-S-incident)
with ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹?q ∈ S›

and ‹proj2-incident a ?l› and ‹proj2-incident b ?l›
have ?q = ?p ∨ ?q = endpoint-in-S b a

by (simp add: endpoints-in-S-incident-unique)
with ‹?q 6= ?p› show ?q = endpoint-in-S b a by simp

qed

lemma endpoints-in-S-perp-foot-are-endpoints-in-S :
assumes a ∈ hyp2 and b ∈ hyp2 and c ∈ hyp2 and a 6= b
and proj2-incident a l and proj2-incident b l
shows are-endpoints-in-S
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c l)

proof −
define p q d

where p = endpoint-in-S a b
and q = endpoint-in-S b a

184

and d = perp-foot c l

from ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have p 6= q by (unfold p-def q-def) (simp add: endpoint-in-S-swap)

from ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have p ∈ S and q ∈ S by (unfold p-def q-def) (simp-all add: endpoint-in-S)

from ‹a ∈ hyp2 › and ‹proj2-incident a l› and ‹c ∈ hyp2 ›
have d ∈ hyp2 by (unfold d-def) (rule perp-foot-hyp2)

from ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹proj2-incident a l›
and ‹proj2-incident b l›

have proj2-incident p l and proj2-incident q l
by (unfold p-def q-def) (simp-all add: endpoint-in-S-incident)

with ‹proj2-incident a l› and perp-foot-incident(1) [of c l]
have proj2-set-Col {p,q,a,d}

by (unfold d-def proj2-set-Col-def) (simp add: exI [of - l])
with ‹p 6= q› and ‹p ∈ S› and ‹q ∈ S› and ‹a ∈ hyp2 › and ‹d ∈ hyp2 ›
show are-endpoints-in-S p q a d by (unfold are-endpoints-in-S-def) simp

qed

definition right-angle :: proj2 ⇒ proj2 ⇒ proj2 ⇒ bool where
right-angle p a q
, p ∈ S ∧ q ∈ S ∧ a ∈ hyp2
∧ M-perp (proj2-line-through p a) (proj2-line-through a q)

lemma perp-foot-up-right-angle:
assumes p ∈ S and a ∈ hyp2 and b ∈ hyp2 and proj2-incident p l
and proj2-incident b l
shows right-angle p (perp-foot a l) (perp-up a l)

proof −
define c where c = perp-foot a l
define q where q = perp-up a l
from ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹proj2-incident b l›
have q ∈ S by (unfold q-def) (rule perp-up-in-S)

from ‹b ∈ hyp2 › and ‹proj2-incident b l› and ‹a ∈ hyp2 ›
have c ∈ hyp2 by (unfold c-def) (rule perp-foot-hyp2)
with ‹p ∈ S› and ‹q ∈ S› have c 6= p and c 6= q

by (simp-all add: hyp2-S-not-equal)

from ‹c 6= p› [symmetric] and ‹proj2-incident p l›
and perp-foot-incident(1) [of a l]

have l = proj2-line-through p c
by (unfold c-def) (rule proj2-line-through-unique)

define m where m = drop-perp a l
from ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹proj2-incident b l›

185

have proj2-incident q m by (unfold q-def m-def) (rule perp-up-incident)
with ‹c 6= q› and perp-foot-incident(2) [of a l]
have m = proj2-line-through c q

by (unfold c-def m-def) (rule proj2-line-through-unique)
with ‹p ∈ S› and ‹q ∈ S› and ‹c ∈ hyp2 › and drop-perp-perp [of l a]

and ‹l = proj2-line-through p c›
show right-angle p (perp-foot a l) (perp-up a l)

by (unfold right-angle-def q-def c-def m-def) simp
qed

lemma M-perp-unique:
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident a l
and proj2-incident b m and proj2-incident b n and M-perp l m
and M-perp l n
shows m = n

proof −
from ‹a ∈ hyp2 › and ‹proj2-incident a l›
have pole l /∈ hyp2 by (rule line-through-hyp2-pole-not-in-hyp2)
with ‹b ∈ hyp2 › have b 6= pole l by auto
with ‹proj2-incident b m› and ‹M-perp l m› and ‹proj2-incident b n›

and ‹M-perp l n› and proj2-incident-unique
show m = n by (unfold M-perp-def) auto

qed

lemma perp-foot-eq-implies-drop-perp-eq:
assumes a ∈ hyp2 and b ∈ hyp2 and proj2-incident a l
and perp-foot b l = perp-foot c l
shows drop-perp b l = drop-perp c l

proof −
from ‹a ∈ hyp2 › and ‹proj2-incident a l› and ‹b ∈ hyp2 ›
have perp-foot b l ∈ hyp2 by (rule perp-foot-hyp2)

from ‹perp-foot b l = perp-foot c l›
have proj2-incident (perp-foot b l) (drop-perp c l)

by (simp add: perp-foot-incident)
with ‹a ∈ hyp2 › and ‹perp-foot b l ∈ hyp2 › and ‹proj2-incident a l›

and perp-foot-incident(2) [of b l] and drop-perp-perp [of l]
show drop-perp b l = drop-perp c l by (simp add: M-perp-unique)

qed

lemma right-angle-to-compass:
assumes right-angle p a q
shows ∃ J . is-K2-isometry J ∧ apply-cltn2 p J = east
∧ apply-cltn2 a J = K2-centre ∧ apply-cltn2 q J = north

proof −
from ‹right-angle p a q›
have p ∈ S and q ∈ S and a ∈ hyp2

and M-perp (proj2-line-through p a) (proj2-line-through a q)
(is M-perp ?l ?m)

186

by (unfold right-angle-def) simp-all

have proj2-incident p ?l and proj2-incident a ?l
and proj2-incident q ?m and proj2-incident a ?m
by (rule proj2-line-through-incident)+

from ‹M-perp ?l ?m› and ‹a ∈ hyp2 › and ‹proj2-incident a ?l›
and ‹proj2-incident a ?m› and M-perp-to-compass [of ?l ?m a a]

obtain J ′′i where is-K2-isometry J ′′i
and apply-cltn2-line equator J ′′i = ?l
and apply-cltn2-line meridian J ′′i = ?m
by auto

let ?J ′′ = cltn2-inverse J ′′i

from ‹apply-cltn2-line equator J ′′i = ?l›
and ‹apply-cltn2-line meridian J ′′i = ?m›
and ‹proj2-incident p ?l› and ‹proj2-incident a ?l›
and ‹proj2-incident q ?m› and ‹proj2-incident a ?m›

have proj2-incident (apply-cltn2 p ?J ′′) equator
and proj2-incident (apply-cltn2 a ?J ′′) equator
and proj2-incident (apply-cltn2 q ?J ′′) meridian
and proj2-incident (apply-cltn2 a ?J ′′) meridian
by (simp-all add: apply-cltn2-incident [symmetric])

from ‹proj2-incident (apply-cltn2 a ?J ′′) equator›
and ‹proj2-incident (apply-cltn2 a ?J ′′) meridian›

have apply-cltn2 a ?J ′′ = K2-centre
by (rule on-equator-meridian-is-K2-centre)

from ‹is-K2-isometry J ′′i›
have is-K2-isometry ?J ′′ by (rule cltn2-inverse-is-K2-isometry)
with ‹p ∈ S› and ‹q ∈ S›
have apply-cltn2 p ?J ′′ ∈ S and apply-cltn2 q ?J ′′ ∈ S

by (unfold is-K2-isometry-def) simp-all
with east-west-distinct and north-south-distinct and compass-in-S

and east-west-on-equator and north-south-far-north-on-meridian
and ‹proj2-incident (apply-cltn2 p ?J ′′) equator›
and ‹proj2-incident (apply-cltn2 q ?J ′′) meridian›

have apply-cltn2 p ?J ′′ = east ∨ apply-cltn2 p ?J ′′ = west
and apply-cltn2 q ?J ′′ = north ∨ apply-cltn2 q ?J ′′ = south
by (simp-all add: line-S-two-intersections-only)

have ∃ J ′. is-K2-isometry J ′ ∧ apply-cltn2 p J ′ = east
∧ apply-cltn2 a J ′ = K2-centre
∧ (apply-cltn2 q J ′ = north ∨ apply-cltn2 q J ′ = south)

proof cases
assume apply-cltn2 p ?J ′′ = east
with ‹is-K2-isometry ?J ′′› and ‹apply-cltn2 a ?J ′′ = K2-centre›

and ‹apply-cltn2 q ?J ′′ = north ∨ apply-cltn2 q ?J ′′ = south›

187

show ∃ J ′. is-K2-isometry J ′ ∧ apply-cltn2 p J ′ = east
∧ apply-cltn2 a J ′ = K2-centre
∧ (apply-cltn2 q J ′ = north ∨ apply-cltn2 q J ′ = south)
by (simp add: exI [of - ?J ′′])

next
assume apply-cltn2 p ?J ′′ 6= east
with ‹apply-cltn2 p ?J ′′ = east ∨ apply-cltn2 p ?J ′′ = west›
have apply-cltn2 p ?J ′′ = west by simp

let ?J ′ = cltn2-compose ?J ′′ meridian-reflect
from ‹is-K2-isometry ?J ′′› and meridian-reflect-K2-isometry
have is-K2-isometry ?J ′ by (rule cltn2-compose-is-K2-isometry)
moreover
from ‹apply-cltn2 p ?J ′′ = west› and ‹apply-cltn2 a ?J ′′ = K2-centre›

and ‹apply-cltn2 q ?J ′′ = north ∨ apply-cltn2 q ?J ′′ = south›
and compass-reflect-compass

have apply-cltn2 p ?J ′ = east and apply-cltn2 a ?J ′ = K2-centre
and apply-cltn2 q ?J ′ = north ∨ apply-cltn2 q ?J ′ = south
by (auto simp add: cltn2 .act-act [simplified, symmetric])

ultimately
show ∃ J ′. is-K2-isometry J ′ ∧ apply-cltn2 p J ′ = east
∧ apply-cltn2 a J ′ = K2-centre
∧ (apply-cltn2 q J ′ = north ∨ apply-cltn2 q J ′ = south)
by (simp add: exI [of - ?J ′])

qed
then obtain J ′ where is-K2-isometry J ′ and apply-cltn2 p J ′ = east

and apply-cltn2 a J ′ = K2-centre
and apply-cltn2 q J ′ = north ∨ apply-cltn2 q J ′ = south
by auto

show ∃ J . is-K2-isometry J ∧ apply-cltn2 p J = east
∧ apply-cltn2 a J = K2-centre ∧ apply-cltn2 q J = north

proof cases
assume apply-cltn2 q J ′ = north
with ‹is-K2-isometry J ′› and ‹apply-cltn2 p J ′ = east›

and ‹apply-cltn2 a J ′ = K2-centre›
show ∃ J . is-K2-isometry J ∧ apply-cltn2 p J = east
∧ apply-cltn2 a J = K2-centre ∧ apply-cltn2 q J = north
by (simp add: exI [of - J ′])

next
assume apply-cltn2 q J ′ 6= north
with ‹apply-cltn2 q J ′ = north ∨ apply-cltn2 q J ′ = south›
have apply-cltn2 q J ′ = south by simp

let ?J = cltn2-compose J ′ equator-reflect
from ‹is-K2-isometry J ′› and equator-reflect-K2-isometry
have is-K2-isometry ?J by (rule cltn2-compose-is-K2-isometry)
moreover
from ‹apply-cltn2 p J ′ = east› and ‹apply-cltn2 a J ′ = K2-centre›

188

and ‹apply-cltn2 q J ′ = south› and compass-reflect-compass
have apply-cltn2 p ?J = east and apply-cltn2 a ?J = K2-centre

and apply-cltn2 q ?J = north
by (auto simp add: cltn2 .act-act [simplified, symmetric])

ultimately
show ∃ J . is-K2-isometry J ∧ apply-cltn2 p J = east
∧ apply-cltn2 a J = K2-centre ∧ apply-cltn2 q J = north
by (simp add: exI [of - ?J])

qed
qed

lemma right-angle-to-right-angle:
assumes right-angle p a q and right-angle r b s
shows ∃ J . is-K2-isometry J
∧ apply-cltn2 p J = r ∧ apply-cltn2 a J = b ∧ apply-cltn2 q J = s

proof −
from ‹right-angle p a q› and right-angle-to-compass [of p a q]
obtain H where is-K2-isometry H and apply-cltn2 p H = east

and apply-cltn2 a H = K2-centre and apply-cltn2 q H = north
by auto

from ‹right-angle r b s› and right-angle-to-compass [of r b s]
obtain K where is-K2-isometry K and apply-cltn2 r K = east

and apply-cltn2 b K = K2-centre and apply-cltn2 s K = north
by auto

let ?Ki = cltn2-inverse K
let ?J = cltn2-compose H ?Ki
from ‹is-K2-isometry H › and ‹is-K2-isometry K ›
have is-K2-isometry ?J

by (simp add: cltn2-inverse-is-K2-isometry cltn2-compose-is-K2-isometry)

from ‹apply-cltn2 r K = east› and ‹apply-cltn2 b K = K2-centre›
and ‹apply-cltn2 s K = north›

have apply-cltn2 east ?Ki = r and apply-cltn2 K2-centre ?Ki = b
and apply-cltn2 north ?Ki = s
by (simp-all add: cltn2 .act-inv-iff [simplified])

with ‹apply-cltn2 p H = east› and ‹apply-cltn2 a H = K2-centre›
and ‹apply-cltn2 q H = north›

have apply-cltn2 p ?J = r and apply-cltn2 a ?J = b
and apply-cltn2 q ?J = s
by (simp-all add: cltn2 .act-act [simplified,symmetric])

with ‹is-K2-isometry ?J ›
show ∃ J . is-K2-isometry J
∧ apply-cltn2 p J = r ∧ apply-cltn2 a J = b ∧ apply-cltn2 q J = s
by (simp add: exI [of - ?J])

qed

189

8.11 Functions of distance
definition exp-2dist :: proj2 ⇒ proj2 ⇒ real where

exp-2dist a b
, if a = b
then 1
else cross-ratio (endpoint-in-S a b) (endpoint-in-S b a) a b

definition cosh-dist :: proj2 ⇒ proj2 ⇒ real where
cosh-dist a b , (sqrt (exp-2dist a b) + sqrt (1 / (exp-2dist a b))) / 2

lemma exp-2dist-formula:
assumes a 6= 0 and b 6= 0 and proj2-abs a ∈ hyp2 (is ?pa ∈ hyp2)
and proj2-abs b ∈ hyp2 (is ?pb ∈ hyp2)
shows exp-2dist (proj2-abs a) (proj2-abs b)
= (a · (M ∗v b) + sqrt (quarter-discrim a b))
/ (a · (M ∗v b) − sqrt (quarter-discrim a b))

∨ exp-2dist (proj2-abs a) (proj2-abs b)
= (a · (M ∗v b) − sqrt (quarter-discrim a b))
/ (a · (M ∗v b) + sqrt (quarter-discrim a b))

(is ?e2d = (?aMb + ?sqd) / (?aMb − ?sqd)
∨ ?e2d = (?aMb − ?sqd) / (?aMb + ?sqd))

proof cases
assume ?pa = ?pb
hence ?e2d = 1 by (unfold exp-2dist-def , simp)

from ‹?pa = ?pb›
have quarter-discrim a b = 0 by (rule quarter-discrim-self-zero)
hence ?sqd = 0 by simp

from ‹proj2-abs a = proj2-abs b› and ‹b 6= 0 › and proj2-abs-abs-mult
obtain k where a = k ∗R b by auto

from ‹b 6= 0 › and ‹proj2-abs b ∈ hyp2 ›
have b · (M ∗v b) < 0 by (subst K2-abs [symmetric])
with ‹a 6= 0 › and ‹a = k ∗R b› have ?aMb 6= 0 by simp
with ‹?e2d = 1 › and ‹?sqd = 0 ›
show ?e2d = (?aMb + ?sqd) / (?aMb − ?sqd)
∨ ?e2d = (?aMb − ?sqd) / (?aMb + ?sqd)
by simp

next
assume ?pa 6= ?pb
let ?l = proj2-line-through ?pa ?pb
have proj2-incident ?pa ?l and proj2-incident ?pb ?l

by (rule proj2-line-through-incident)+
with ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa 6= ?pb›
have proj2-incident (S-intersection1 a b) ?l (is proj2-incident ?Si1 ?l)

and proj2-incident (S-intersection2 a b) ?l (is proj2-incident ?Si2 ?l)
by (rule S-intersections-incident)+

with ‹proj2-incident ?pa ?l› and ‹proj2-incident ?pb ?l›

190

have proj2-set-Col {?pa,?pb,?Si1 ,?Si2} by (unfold proj2-set-Col-def , auto)

have {?pa,?pb,?Si2 ,?Si1} = {?pa,?pb,?Si1 ,?Si2} by auto

from ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa 6= ?pb› and ‹?pa ∈ hyp2 ›
have ?Si1 ∈ S and ?Si2 ∈ S

by (simp-all add: S-intersections-in-S)
with ‹?pa ∈ hyp2 › and ‹?pb ∈ hyp2 ›
have ?Si1 6= ?pa and ?Si2 6= ?pa and ?Si1 6= ?pb and ?Si2 6= ?pb

by (simp-all add: hyp2-S-not-equal [symmetric])
with ‹proj2-set-Col {?pa,?pb,?Si1 ,?Si2}› and ‹?pa 6= ?pb›
have cross-ratio-correct ?pa ?pb ?Si1 ?Si2

and cross-ratio-correct ?pa ?pb ?Si2 ?Si1
unfolding cross-ratio-correct-def
by (simp-all add: ‹{?pa,?pb,?Si2 ,?Si1} = {?pa,?pb,?Si1 ,?Si2}›)

from ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa 6= ?pb› and ‹?pa ∈ hyp2 ›
have ?Si1 6= ?Si2 by (simp add: S-intersections-distinct)
with ‹cross-ratio-correct ?pa ?pb ?Si1 ?Si2 ›

and ‹cross-ratio-correct ?pa ?pb ?Si2 ?Si1 ›
have cross-ratio ?Si1 ?Si2 ?pa ?pb = cross-ratio ?pa ?pb ?Si1 ?Si2

and cross-ratio ?Si2 ?Si1 ?pa ?pb = cross-ratio ?pa ?pb ?Si2 ?Si1
by (simp-all add: cross-ratio-swap-13-24)

from ‹a 6= 0 › and ‹proj2-abs a ∈ hyp2 ›
have a · (M ∗v a) < 0 by (subst K2-abs [symmetric])
with ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa 6= ?pb› and cross-ratio-abs [of a b 1 1]
have cross-ratio ?pa ?pb ?Si1 ?Si2 = (−?aMb − ?sqd) / (−?aMb + ?sqd)

by (unfold S-intersections-defs S-intersection-coeffs-defs, simp)
with times-divide-times-eq [of −1 −1 −?aMb − ?sqd −?aMb + ?sqd]
have cross-ratio ?pa ?pb ?Si1 ?Si2 = (?aMb + ?sqd) / (?aMb − ?sqd) by (simp

add: ac-simps)
with ‹cross-ratio ?Si1 ?Si2 ?pa ?pb = cross-ratio ?pa ?pb ?Si1 ?Si2 ›
have cross-ratio ?Si1 ?Si2 ?pa ?pb = (?aMb + ?sqd) / (?aMb − ?sqd) by simp

from ‹cross-ratio ?pa ?pb ?Si1 ?Si2 = (?aMb + ?sqd) / (?aMb − ?sqd)›
and cross-ratio-swap-34 [of ?pa ?pb ?Si2 ?Si1]

have cross-ratio ?pa ?pb ?Si2 ?Si1 = (?aMb − ?sqd) / (?aMb + ?sqd) by simp
with ‹cross-ratio ?Si2 ?Si1 ?pa ?pb = cross-ratio ?pa ?pb ?Si2 ?Si1 ›
have cross-ratio ?Si2 ?Si1 ?pa ?pb = (?aMb − ?sqd) / (?aMb + ?sqd) by simp

from ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa 6= ?pb› and ‹?pa ∈ hyp2 › and ‹?pb ∈
hyp2 ›

have (?Si1 = endpoint-in-S ?pa ?pb ∧ ?Si2 = endpoint-in-S ?pb ?pa)
∨ (?Si2 = endpoint-in-S ?pa ?pb ∧ ?Si1 = endpoint-in-S ?pb ?pa)
by (simp add: S-intersections-endpoints-in-S)

with ‹cross-ratio ?Si1 ?Si2 ?pa ?pb = (?aMb + ?sqd) / (?aMb − ?sqd)›
and ‹cross-ratio ?Si2 ?Si1 ?pa ?pb = (?aMb − ?sqd) / (?aMb + ?sqd)›
and ‹?pa 6= ?pb›

191

show ?e2d = (?aMb + ?sqd) / (?aMb − ?sqd)
∨ ?e2d = (?aMb − ?sqd) / (?aMb + ?sqd)
by (unfold exp-2dist-def , auto)

qed

lemma cosh-dist-formula:
assumes a 6= 0 and b 6= 0 and proj2-abs a ∈ hyp2 (is ?pa ∈ hyp2)
and proj2-abs b ∈ hyp2 (is ?pb ∈ hyp2)
shows cosh-dist (proj2-abs a) (proj2-abs b)
= |a · (M ∗v b)| / sqrt (a · (M ∗v a) ∗ (b · (M ∗v b)))
(is cosh-dist ?pa ?pb = |?aMb| / sqrt (?aMa ∗ ?bMb))

proof −
let ?qd = quarter-discrim a b
let ?sqd = sqrt ?qd
let ?e2d = exp-2dist ?pa ?pb
from assms
have ?e2d = (?aMb + ?sqd) / (?aMb − ?sqd)
∨ ?e2d = (?aMb − ?sqd) / (?aMb + ?sqd)
by (rule exp-2dist-formula)

hence cosh-dist ?pa ?pb
= (sqrt ((?aMb + ?sqd) / (?aMb − ?sqd))
+ sqrt ((?aMb − ?sqd) / (?aMb + ?sqd)))
/ 2
by (unfold cosh-dist-def , auto)

have ?qd ≥ 0
proof cases

assume ?pa = ?pb
thus ?qd ≥ 0 by (simp add: quarter-discrim-self-zero)

next
assume ?pa 6= ?pb
with ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa ∈ hyp2 ›
have ?qd > 0 by (simp add: quarter-discrim-positive)
thus ?qd ≥ 0 by simp

qed
with real-sqrt-pow2 [of ?qd] have ?sqd2 = ?qd by simp
hence (?aMb + ?sqd) ∗ (?aMb − ?sqd) = ?aMa ∗ ?bMb

by (unfold quarter-discrim-def , simp add: algebra-simps power2-eq-square)

from times-divide-times-eq [of
?aMb + ?sqd ?aMb + ?sqd ?aMb + ?sqd ?aMb − ?sqd]

have (?aMb + ?sqd) / (?aMb − ?sqd)
= (?aMb + ?sqd)2 / ((?aMb + ?sqd) ∗ (?aMb − ?sqd))
by (simp add: power2-eq-square)

with ‹(?aMb + ?sqd) ∗ (?aMb − ?sqd) = ?aMa ∗ ?bMb›
have (?aMb + ?sqd) / (?aMb − ?sqd) = (?aMb + ?sqd)2 / (?aMa ∗ ?bMb) by

simp
hence sqrt ((?aMb + ?sqd) / (?aMb − ?sqd))
= |?aMb + ?sqd| / sqrt (?aMa ∗ ?bMb)

192

by (simp add: real-sqrt-divide)

from times-divide-times-eq [of
?aMb + ?sqd ?aMb − ?sqd ?aMb − ?sqd ?aMb − ?sqd]

have (?aMb − ?sqd) / (?aMb + ?sqd)
= (?aMb − ?sqd)2 / ((?aMb + ?sqd) ∗ (?aMb − ?sqd))
by (simp add: power2-eq-square)

with ‹(?aMb + ?sqd) ∗ (?aMb − ?sqd) = ?aMa ∗ ?bMb›
have (?aMb − ?sqd) / (?aMb + ?sqd) = (?aMb − ?sqd)2 / (?aMa ∗ ?bMb) by

simp
hence sqrt ((?aMb − ?sqd) / (?aMb + ?sqd))
= |?aMb − ?sqd| / sqrt (?aMa ∗ ?bMb)
by (simp add: real-sqrt-divide)

from ‹a 6= 0 › and ‹b 6= 0 › and ‹?pa ∈ hyp2 › and ‹?pb ∈ hyp2 ›
have ?aMa < 0 and ?bMb < 0

by (simp-all add: K2-imp-M-neg)
with ‹(?aMb + ?sqd) ∗ (?aMb − ?sqd) = ?aMa ∗ ?bMb›
have (?aMb + ?sqd) ∗ (?aMb − ?sqd) > 0 by (simp add: mult-neg-neg)
hence ?aMb + ?sqd 6= 0 and ?aMb − ?sqd 6= 0 by auto
hence sgn (?aMb + ?sqd) ∈ {−1 ,1} and sgn (?aMb − ?sqd) ∈ {−1 ,1}

by (simp-all add: sgn-real-def)

from ‹(?aMb + ?sqd) ∗ (?aMb − ?sqd) > 0 ›
have sgn ((?aMb + ?sqd) ∗ (?aMb − ?sqd)) = 1 by simp
hence sgn (?aMb + ?sqd) ∗ sgn (?aMb − ?sqd) = 1 by (simp add: sgn-mult)
with ‹sgn (?aMb + ?sqd) ∈ {−1 ,1}› and ‹sgn (?aMb − ?sqd) ∈ {−1 ,1}›
have sgn (?aMb + ?sqd) = sgn (?aMb − ?sqd) by auto
with abs-plus [of ?aMb + ?sqd ?aMb − ?sqd]
have |?aMb + ?sqd| + |?aMb − ?sqd| = 2 ∗ |?aMb| by simp
with ‹sqrt ((?aMb + ?sqd) / (?aMb − ?sqd))
= |?aMb + ?sqd| / sqrt (?aMa ∗ ?bMb)›
and ‹sqrt ((?aMb − ?sqd) / (?aMb + ?sqd))
= |?aMb − ?sqd| / sqrt (?aMa ∗ ?bMb)›
and add-divide-distrib [of
|?aMb + ?sqd| |?aMb − ?sqd| sqrt (?aMa ∗ ?bMb)]

have sqrt ((?aMb + ?sqd) / (?aMb − ?sqd))
+ sqrt ((?aMb − ?sqd) / (?aMb + ?sqd))
= 2 ∗ |?aMb| / sqrt (?aMa ∗ ?bMb)
by simp

with ‹cosh-dist ?pa ?pb
= (sqrt ((?aMb + ?sqd) / (?aMb − ?sqd))
+ sqrt ((?aMb − ?sqd) / (?aMb + ?sqd)))
/ 2 ›

show cosh-dist ?pa ?pb = |?aMb| / sqrt (?aMa ∗ ?bMb) by simp
qed

lemma cosh-dist-perp-special-case:
assumes |x| < 1 and |y| < 1

193

shows cosh-dist (proj2-abs (vector [x,0 ,1])) (proj2-abs (vector [0 ,y,1]))
= (cosh-dist K2-centre (proj2-abs (vector [x,0 ,1])))
∗ (cosh-dist K2-centre (proj2-abs (vector [0 ,y,1])))
(is cosh-dist ?pa ?pb = (cosh-dist ?po ?pa) ∗ (cosh-dist ?po ?pb))

proof −
have vector [x,0 ,1] 6= (0 ::real^3) (is ?a 6= 0)

and vector [0 ,y,1] 6= (0 ::real^3) (is ?b 6= 0)
by (unfold vector-def , simp-all add: vec-eq-iff forall-3)

have ?a · (M ∗v ?a) = x2 − 1 (is ?aMa = x2 − 1)
and ?b · (M ∗v ?b) = y2 − 1 (is ?bMb = y2 − 1)
unfolding vector-def and M-def and inner-vec-def

and matrix-vector-mult-def
by (simp-all add: sum-3 power2-eq-square)

with ‹|x| < 1 › and ‹|y| < 1 ›
have ?aMa < 0 and ?bMb < 0 by (simp-all add: abs-square-less-1)
hence ?pa ∈ hyp2 and ?pb ∈ hyp2

by (simp-all add: M-neg-imp-K2)
with ‹?a 6= 0 › and ‹?b 6= 0 ›
have cosh-dist ?pa ?pb = |?a · (M ∗v ?b)| / sqrt (?aMa ∗ ?bMb)
(is cosh-dist ?pa ?pb = |?aMb| / sqrt (?aMa ∗ ?bMb))
by (rule cosh-dist-formula)

also from ‹?aMa = x2 − 1 › and ‹?bMb = y2 − 1 ›
have . . . = |?aMb| / sqrt ((x2 − 1) ∗ (y2 − 1)) by simp
finally have cosh-dist ?pa ?pb = 1 / sqrt ((1 − x2) ∗ (1 − y2))

unfolding vector-def and M-def and inner-vec-def
and matrix-vector-mult-def

by (simp add: sum-3 algebra-simps)

let ?o = vector [0 ,0 ,1]
let ?oMa = ?o · (M ∗v ?a)
let ?oMb = ?o · (M ∗v ?b)
let ?oMo = ?o · (M ∗v ?o)
from K2-centre-non-zero and ‹?a 6= 0 › and ‹?b 6= 0 ›

and K2-centre-in-K2 and ‹?pa ∈ hyp2 › and ‹?pb ∈ hyp2 ›
and cosh-dist-formula [of ?o]

have cosh-dist ?po ?pa = |?oMa| / sqrt (?oMo ∗ ?aMa)
and cosh-dist ?po ?pb = |?oMb| / sqrt (?oMo ∗ ?bMb)
by (unfold K2-centre-def , simp-all)

hence cosh-dist ?po ?pa = 1 / sqrt (1 − x2)
and cosh-dist ?po ?pb = 1 / sqrt (1 − y2)
unfolding vector-def and M-def and inner-vec-def

and matrix-vector-mult-def
by (simp-all add: sum-3 power2-eq-square)

with ‹cosh-dist ?pa ?pb = 1 / sqrt ((1 − x2) ∗ (1 − y2))›
show cosh-dist ?pa ?pb = cosh-dist ?po ?pa ∗ cosh-dist ?po ?pb

by (simp add: real-sqrt-mult)
qed

194

lemma K2-isometry-cross-ratio-endpoints-in-S :
assumes a ∈ hyp2 and b ∈ hyp2 and is-K2-isometry J and a 6= b
shows cross-ratio (apply-cltn2 (endpoint-in-S a b) J)
(apply-cltn2 (endpoint-in-S b a) J) (apply-cltn2 a J) (apply-cltn2 b J)
= cross-ratio (endpoint-in-S a b) (endpoint-in-S b a) a b
(is cross-ratio ?pJ ?qJ ?aJ ?bJ = cross-ratio ?p ?q a b)

proof −
let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l

by (rule proj2-line-through-incident)+
with ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have proj2-incident ?p ?l and proj2-incident ?q ?l

by (simp-all add: endpoint-in-S-incident)
with ‹proj2-incident a ?l› and ‹proj2-incident b ?l›
have proj2-set-Col {?p,?q,a,b}

by (unfold proj2-set-Col-def) (simp add: exI [of - ?l])

from ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have ?p 6= ?q by (simp add: endpoint-in-S-swap)

from ‹a ∈ hyp2 › and ‹b ∈ hyp2 › have ?p ∈ S by (simp add: endpoint-in-S)
with ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have a 6= ?p and b 6= ?p by (simp-all add: hyp2-S-not-equal)
with ‹proj2-set-Col {?p,?q,a,b}› and ‹?p 6= ?q›
show cross-ratio ?pJ ?qJ ?aJ ?bJ = cross-ratio ?p ?q a b

by (rule cross-ratio-cltn2)
qed

lemma K2-isometry-exp-2dist:
assumes a ∈ hyp2 and b ∈ hyp2 and is-K2-isometry J
shows exp-2dist (apply-cltn2 a J) (apply-cltn2 b J) = exp-2dist a b
(is exp-2dist ?aJ ?bJ = -)

proof cases
assume a = b
thus exp-2dist ?aJ ?bJ = exp-2dist a b by (unfold exp-2dist-def) simp

next
assume a 6= b
with apply-cltn2-injective have ?aJ 6= ?bJ by fast

let ?p = endpoint-in-S a b
let ?q = endpoint-in-S b a
let ?aJ = apply-cltn2 a J

and ?bJ = apply-cltn2 b J
and ?pJ = apply-cltn2 ?p J
and ?qJ = apply-cltn2 ?q J

from ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹is-K2-isometry J ›
have endpoint-in-S ?aJ ?bJ = ?pJ and endpoint-in-S ?bJ ?aJ = ?qJ

by (simp-all add: K2-isometry-endpoint-in-S)

195

from assms and ‹a 6= b›
have cross-ratio ?pJ ?qJ ?aJ ?bJ = cross-ratio ?p ?q a b

by (rule K2-isometry-cross-ratio-endpoints-in-S)
with ‹endpoint-in-S ?aJ ?bJ = ?pJ › and ‹endpoint-in-S ?bJ ?aJ = ?qJ ›

and ‹a 6= b› and ‹?aJ 6= ?bJ ›
show exp-2dist ?aJ ?bJ = exp-2dist a b by (unfold exp-2dist-def) simp

qed

lemma K2-isometry-cosh-dist:
assumes a ∈ hyp2 and b ∈ hyp2 and is-K2-isometry J
shows cosh-dist (apply-cltn2 a J) (apply-cltn2 b J) = cosh-dist a b
using assms
by (unfold cosh-dist-def) (simp add: K2-isometry-exp-2dist)

lemma cosh-dist-perp:
assumes M-perp l m and a ∈ hyp2 and b ∈ hyp2 and c ∈ hyp2
and proj2-incident a l and proj2-incident b l
and proj2-incident b m and proj2-incident c m
shows cosh-dist a c = cosh-dist b a ∗ cosh-dist b c

proof −
from ‹M-perp l m› and ‹b ∈ hyp2 › and ‹proj2-incident b l›

and ‹proj2-incident b m› and M-perp-to-compass [of l m b b]
obtain J where is-K2-isometry J and apply-cltn2-line equator J = l

and apply-cltn2-line meridian J = m
by auto

let ?Ji = cltn2-inverse J
let ?aJi = apply-cltn2 a ?Ji
let ?bJi = apply-cltn2 b ?Ji
let ?cJi = apply-cltn2 c ?Ji
from ‹apply-cltn2-line equator J = l› and ‹apply-cltn2-line meridian J = m›

and ‹proj2-incident a l› and ‹proj2-incident b l›
and ‹proj2-incident b m› and ‹proj2-incident c m›

have proj2-incident ?aJi equator and proj2-incident ?bJi equator
and proj2-incident ?bJi meridian and proj2-incident ?cJi meridian
by (auto simp add: apply-cltn2-incident)

from ‹is-K2-isometry J ›
have is-K2-isometry ?Ji by (rule cltn2-inverse-is-K2-isometry)
with ‹a ∈ hyp2 › and ‹c ∈ hyp2 ›
have ?aJi ∈ hyp2 and ?cJi ∈ hyp2

by (simp-all add: statement60-one-way)

from ‹?aJi ∈ hyp2 › and ‹proj2-incident ?aJi equator›
and on-equator-in-hyp2-rep

obtain x where |x| < 1 and ?aJi = proj2-abs (vector [x,0 ,1]) by auto
moreover
from ‹?cJi ∈ hyp2 › and ‹proj2-incident ?cJi meridian›

and on-meridian-in-hyp2-rep

196

obtain y where |y| < 1 and ?cJi = proj2-abs (vector [0 ,y,1]) by auto
moreover
from ‹proj2-incident ?bJi equator› and ‹proj2-incident ?bJi meridian›
have ?bJi = K2-centre by (rule on-equator-meridian-is-K2-centre)
ultimately
have cosh-dist ?aJi ?cJi = cosh-dist ?bJi ?aJi ∗ cosh-dist ?bJi ?cJi

by (simp add: cosh-dist-perp-special-case)
with ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹c ∈ hyp2 › and ‹is-K2-isometry ?Ji›
show cosh-dist a c = cosh-dist b a ∗ cosh-dist b c

by (simp add: K2-isometry-cosh-dist)
qed

lemma are-endpoints-in-S-ordered-cross-ratio:
assumes are-endpoints-in-S p q a b
and B� (cart2-pt a) (cart2-pt b) (cart2-pt p) (is B� ?ca ?cb ?cp)
shows cross-ratio p q a b ≥ 1

proof −
from ‹are-endpoints-in-S p q a b›
have p 6= q and p ∈ S and q ∈ S and a ∈ hyp2 and b ∈ hyp2

and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹p ∈ S› and ‹q ∈ S›
have z-non-zero a and z-non-zero b and z-non-zero p and z-non-zero q

by (simp-all add: hyp2-S-z-non-zero)
hence proj2-abs (cart2-append1 p) = p (is proj2-abs ?cp1 = p)

and proj2-abs (cart2-append1 q) = q (is proj2-abs ?cq1 = q)
and proj2-abs (cart2-append1 a) = a (is proj2-abs ?ca1 = a)
and proj2-abs (cart2-append1 b) = b (is proj2-abs ?cb1 = b)
by (simp-all add: proj2-abs-cart2-append1)

from ‹b ∈ hyp2 › and ‹p ∈ S› have b 6= p by (rule hyp2-S-not-equal)
with ‹z-non-zero a› and ‹z-non-zero b› and ‹z-non-zero p›

and ‹B� ?ca ?cb ?cp› and cart2-append1-between-right-strict [of a b p]
obtain j where j ≥ 0 and j < 1 and ?cb1 = j ∗R ?cp1 + (1−j) ∗R ?ca1

by auto

from ‹proj2-set-Col {p,q,a,b}›
obtain l where proj2-incident q l and proj2-incident p l

and proj2-incident a l
by (unfold proj2-set-Col-def) auto

with ‹p 6= q› and ‹q ∈ S› and ‹p ∈ S› and ‹a ∈ hyp2 ›
and S-hyp2-S-cart2-append1 [of q p a l]

obtain k where k > 0 and k < 1 and ?ca1 = k ∗R ?cp1 + (1−k) ∗R ?cq1
by auto

from ‹z-non-zero p› and ‹z-non-zero q›
have ?cp1 6= 0 and ?cq1 6= 0 by (simp-all add: cart2-append1-non-zero)

197

from ‹p 6= q› and ‹proj2-abs ?cp1 = p› and ‹proj2-abs ?cq1 = q›
have proj2-abs ?cp1 6= proj2-abs ?cq1 by simp

from ‹k < 1 › have 1−k 6= 0 by simp
with ‹j < 1 › have (1−j)∗(1−k) 6= 0 by simp

from ‹j < 1 › and ‹k > 0 › have (1−j)∗k > 0 by simp

from ‹?cb1 = j ∗R ?cp1 + (1−j) ∗R ?ca1 ›
have ?cb1 = (j+(1−j)∗k) ∗R ?cp1 + ((1−j)∗(1−k)) ∗R ?cq1

by (unfold ‹?ca1 = k ∗R ?cp1 + (1−k) ∗R ?cq1 ›) (simp add: algebra-simps)
with ‹?ca1 = k ∗R ?cp1 + (1−k) ∗R ?cq1 ›
have proj2-abs ?ca1 = proj2-abs (k ∗R ?cp1 + (1−k) ∗R ?cq1)

and proj2-abs ?cb1
= proj2-abs ((j+(1−j)∗k) ∗R ?cp1 + ((1−j)∗(1−k)) ∗R ?cq1)
by simp-all

with ‹proj2-abs ?ca1 = a› and ‹proj2-abs ?cb1 = b›
have a = proj2-abs (k ∗R ?cp1 + (1−k) ∗R ?cq1)

and b = proj2-abs ((j+(1−j)∗k) ∗R ?cp1 + ((1−j)∗(1−k)) ∗R ?cq1)
by simp-all

with ‹proj2-abs ?cp1 = p› and ‹proj2-abs ?cq1 = q›
have cross-ratio p q a b
= cross-ratio (proj2-abs ?cp1) (proj2-abs ?cq1)
(proj2-abs (k ∗R ?cp1 + (1−k) ∗R ?cq1))
(proj2-abs ((j+(1−j)∗k) ∗R ?cp1 + ((1−j)∗(1−k)) ∗R ?cq1))
by simp

also from ‹?cp1 6= 0 › and ‹?cq1 6= 0 › and ‹proj2-abs ?cp1 6= proj2-abs ?cq1 ›
and ‹1−k 6= 0 › and ‹(1−j)∗(1−k) 6= 0 ›

have . . . = (1−k)∗(j+(1−j)∗k) / (k∗((1−j)∗(1−k))) by (rule cross-ratio-abs)
also from ‹1−k 6= 0 › have . . . = (j+(1−j)∗k) / ((1−j)∗k) by simp
also from ‹j ≥ 0 › and ‹(1−j)∗k > 0 › have . . . ≥ 1 by simp
finally show cross-ratio p q a b ≥ 1 .

qed

lemma cross-ratio-S-S-hyp2-hyp2-positive:
assumes are-endpoints-in-S p q a b
shows cross-ratio p q a b > 0

proof cases
assume B� (cart2-pt p) (cart2-pt b) (cart2-pt a)
hence B� (cart2-pt a) (cart2-pt b) (cart2-pt p)

by (rule real-euclid.th3-2)
with assms have cross-ratio p q a b ≥ 1

by (rule are-endpoints-in-S-ordered-cross-ratio)
thus cross-ratio p q a b > 0 by simp

next
assume ¬ B� (cart2-pt p) (cart2-pt b) (cart2-pt a) (is ¬ B� ?cp ?cb ?ca)

from ‹are-endpoints-in-S p q a b›
have are-endpoints-in-S p q b a by (rule are-endpoints-in-S-swap-34)

198

from ‹are-endpoints-in-S p q a b›
have p ∈ S and a ∈ hyp2 and b ∈ hyp2 and proj2-set-Col {p,q,a,b}

by (unfold are-endpoints-in-S-def) simp-all

from ‹proj2-set-Col {p,q,a,b}›
have proj2-set-Col {p,a,b}

by (simp add: proj2-subset-Col [of {p,a,b} {p,q,a,b}])
hence proj2-Col p a b by (subst proj2-Col-iff-set-Col)
with ‹p ∈ S› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have B� ?cp ?ca ?cb ∨ B� ?cp ?cb ?ca by (simp add: S-at-edge)
with ‹¬ B� ?cp ?cb ?ca› have B� ?cp ?ca ?cb by simp
hence B� ?cb ?ca ?cp by (rule real-euclid.th3-2)
with ‹are-endpoints-in-S p q b a›
have cross-ratio p q b a ≥ 1

by (rule are-endpoints-in-S-ordered-cross-ratio)
thus cross-ratio p q a b > 0 by (subst cross-ratio-swap-34) simp

qed

lemma cosh-dist-general:
assumes are-endpoints-in-S p q a b
shows cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2

proof −
from ‹are-endpoints-in-S p q a b›
have p 6= q and p ∈ S and q ∈ S and a ∈ hyp2 and b ∈ hyp2

and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹p ∈ S› and ‹q ∈ S›
have a 6= p and a 6= q and b 6= p and b 6= q

by (simp-all add: hyp2-S-not-equal)

show cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2

proof cases
assume a = b
hence cosh-dist a b = 1 by (unfold cosh-dist-def exp-2dist-def) simp

from ‹proj2-set-Col {p,q,a,b}›
have proj2-Col p q a by (unfold ‹a = b›) (simp add: proj2-Col-iff-set-Col)
with ‹p 6= q› and ‹a 6= p› and ‹a 6= q›
have cross-ratio p q a b = 1 by (simp add: ‹a = b› cross-ratio-equal-1)
hence (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2
= 1
by simp

with ‹cosh-dist a b = 1 ›
show cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2

199

by simp
next

assume a 6= b

let ?r = endpoint-in-S a b
let ?s = endpoint-in-S b a
from ‹a 6= b›
have exp-2dist a b = cross-ratio ?r ?s a b by (unfold exp-2dist-def) simp

from ‹a 6= b› and ‹are-endpoints-in-S p q a b›
have (p = ?r ∧ q = ?s) ∨ (q = ?r ∧ p = ?s) by (rule are-endpoints-in-S)

show cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2

proof cases
assume p = ?r ∧ q = ?s
with ‹exp-2dist a b = cross-ratio ?r ?s a b›
have exp-2dist a b = cross-ratio p q a b by simp
thus cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2
by (unfold cosh-dist-def) (simp add: real-sqrt-divide)

next
assume ¬ (p = ?r ∧ q = ?s)
with ‹(p = ?r ∧ q = ?s) ∨ (q = ?r ∧ p = ?s)›
have q = ?r and p = ?s by simp-all
with ‹exp-2dist a b = cross-ratio ?r ?s a b›
have exp-2dist a b = cross-ratio q p a b by simp

have {q,p,a,b} = {p,q,a,b} by auto
with ‹proj2-set-Col {p,q,a,b}› and ‹p 6= q› and ‹a 6= p› and ‹b 6= p›

and ‹a 6= q› and ‹b 6= q›
have cross-ratio-correct p q a b and cross-ratio-correct q p a b

by (unfold cross-ratio-correct-def) simp-all
hence cross-ratio q p a b = 1 / (cross-ratio p q a b)

by (rule cross-ratio-swap-12)
with ‹exp-2dist a b = cross-ratio q p a b›
have exp-2dist a b = 1 / (cross-ratio p q a b) by simp
thus cosh-dist a b
= (sqrt (cross-ratio p q a b) + 1 / sqrt (cross-ratio p q a b)) / 2
by (unfold cosh-dist-def) (simp add: real-sqrt-divide)

qed
qed

qed

lemma exp-2dist-positive:
assumes a ∈ hyp2 and b ∈ hyp2
shows exp-2dist a b > 0

proof cases
assume a = b

200

thus exp-2dist a b > 0 by (unfold exp-2dist-def) simp
next

assume a 6= b

let ?p = endpoint-in-S a b
let ?q = endpoint-in-S b a
from ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have are-endpoints-in-S ?p ?q a b

by (rule endpoints-in-S-are-endpoints-in-S)
hence cross-ratio ?p ?q a b > 0 by (rule cross-ratio-S-S-hyp2-hyp2-positive)
with ‹a 6= b› show exp-2dist a b > 0 by (unfold exp-2dist-def) simp

qed

lemma cosh-dist-at-least-1 :
assumes a ∈ hyp2 and b ∈ hyp2
shows cosh-dist a b ≥ 1

proof −
from assms have exp-2dist a b > 0 by (rule exp-2dist-positive)
with am-gm2 (1) [of sqrt (exp-2dist a b) sqrt (1 / exp-2dist a b)]
show cosh-dist a b ≥ 1

by (unfold cosh-dist-def) (simp add: real-sqrt-mult [symmetric])
qed

lemma cosh-dist-positive:
assumes a ∈ hyp2 and b ∈ hyp2
shows cosh-dist a b > 0

proof −
from assms have cosh-dist a b ≥ 1 by (rule cosh-dist-at-least-1)
thus cosh-dist a b > 0 by simp

qed

lemma cosh-dist-perp-divide:
assumes M-perp l m and a ∈ hyp2 and b ∈ hyp2 and c ∈ hyp2
and proj2-incident a l and proj2-incident b l and proj2-incident b m
and proj2-incident c m
shows cosh-dist b c = cosh-dist a c / cosh-dist b a

proof −
from ‹b ∈ hyp2 › and ‹a ∈ hyp2 ›
have cosh-dist b a > 0 by (rule cosh-dist-positive)

from assms
have cosh-dist a c = cosh-dist b a ∗ cosh-dist b c by (rule cosh-dist-perp)
with ‹cosh-dist b a > 0 ›
show cosh-dist b c = cosh-dist a c / cosh-dist b a by simp

qed

lemma real-hyp2-C-cross-ratio-endpoints-in-S :
assumes a 6= b and a b ≡K c d
shows cross-ratio (endpoint-in-S (Rep-hyp2 a) (Rep-hyp2 b))

201

(endpoint-in-S (Rep-hyp2 b) (Rep-hyp2 a)) (Rep-hyp2 a) (Rep-hyp2 b)
= cross-ratio (endpoint-in-S (Rep-hyp2 c) (Rep-hyp2 d))
(endpoint-in-S (Rep-hyp2 d) (Rep-hyp2 c)) (Rep-hyp2 c) (Rep-hyp2 d)
(is cross-ratio ?p ?q ?a ′ ?b ′ = cross-ratio ?r ?s ?c ′ ?d ′)

proof −
from ‹a 6= b› and ‹a b ≡K c d› have c 6= d by (auto simp add: hyp2 .A3 ′)
with ‹a 6= b› have ?a ′ 6= ?b ′ and ?c ′ 6= ?d ′ by (unfold Rep-hyp2-inject)

from ‹a b ≡K c d›
obtain J where is-K2-isometry J and hyp2-cltn2 a J = c

and hyp2-cltn2 b J = d
by (unfold real-hyp2-C-def) auto

hence apply-cltn2 ?a ′ J = ?c ′ and apply-cltn2 ?b ′ J = ?d ′

by (simp-all add: Rep-hyp2-cltn2 [symmetric])
with ‹?a ′ 6= ?b ′› and ‹is-K2-isometry J ›
have apply-cltn2 ?p J = ?r and apply-cltn2 ?q J = ?s

by (simp-all add: Rep-hyp2 K2-isometry-endpoint-in-S)

from ‹?a ′ 6= ?b ′›
have proj2-set-Col {?p,?q,?a ′,?b ′}

by (simp add: Rep-hyp2 proj2-set-Col-endpoints-in-S)

from ‹?a ′ 6= ?b ′› have ?p 6= ?q by (simp add: Rep-hyp2 endpoint-in-S-swap)

have ?p ∈ S by (simp add: Rep-hyp2 endpoint-in-S)
hence ?a ′ 6= ?p and ?b ′ 6= ?p by (simp-all add: Rep-hyp2 hyp2-S-not-equal)
with ‹proj2-set-Col {?p,?q,?a ′,?b ′}› and ‹?p 6= ?q›
have cross-ratio ?p ?q ?a ′ ?b ′

= cross-ratio (apply-cltn2 ?p J) (apply-cltn2 ?q J)
(apply-cltn2 ?a ′ J) (apply-cltn2 ?b ′ J)
by (rule cross-ratio-cltn2 [symmetric])

with ‹apply-cltn2 ?p J = ?r› and ‹apply-cltn2 ?q J = ?s›
and ‹apply-cltn2 ?a ′ J = ?c ′› and ‹apply-cltn2 ?b ′ J = ?d ′›

show cross-ratio ?p ?q ?a ′ ?b ′ = cross-ratio ?r ?s ?c ′ ?d ′ by simp
qed

lemma real-hyp2-C-exp-2dist:
assumes a b ≡K c d
shows exp-2dist (Rep-hyp2 a) (Rep-hyp2 b)
= exp-2dist (Rep-hyp2 c) (Rep-hyp2 d)
(is exp-2dist ?a ′ ?b ′ = exp-2dist ?c ′ ?d ′)

proof −
from ‹a b ≡K c d›
obtain J where is-K2-isometry J and hyp2-cltn2 a J = c

and hyp2-cltn2 b J = d
by (unfold real-hyp2-C-def) auto

hence apply-cltn2 ?a ′ J = ?c ′ and apply-cltn2 ?b ′ J = ?d ′

by (simp-all add: Rep-hyp2-cltn2 [symmetric])

202

from Rep-hyp2 [of a] and Rep-hyp2 [of b] and ‹is-K2-isometry J ›
have exp-2dist (apply-cltn2 ?a ′ J) (apply-cltn2 ?b ′ J) = exp-2dist ?a ′ ?b ′

by (rule K2-isometry-exp-2dist)
with ‹apply-cltn2 ?a ′ J = ?c ′› and ‹apply-cltn2 ?b ′ J = ?d ′›
show exp-2dist ?a ′ ?b ′ = exp-2dist ?c ′ ?d ′ by simp

qed

lemma real-hyp2-C-cosh-dist:
assumes a b ≡K c d
shows cosh-dist (Rep-hyp2 a) (Rep-hyp2 b)
= cosh-dist (Rep-hyp2 c) (Rep-hyp2 d)
using assms
by (unfold cosh-dist-def) (simp add: real-hyp2-C-exp-2dist)

lemma cross-ratio-in-terms-of-cosh-dist:
assumes are-endpoints-in-S p q a b
and B� (cart2-pt a) (cart2-pt b) (cart2-pt p)
shows cross-ratio p q a b
= 2 ∗ (cosh-dist a b)2 + 2 ∗ cosh-dist a b ∗ sqrt ((cosh-dist a b)2 − 1) − 1
(is ?pqab = 2 ∗ ?ab2 + 2 ∗ ?ab ∗ sqrt (?ab2 − 1) − 1)

proof −
from ‹are-endpoints-in-S p q a b›
have ?ab = (sqrt ?pqab + 1 / sqrt ?pqab) / 2 by (rule cosh-dist-general)
hence sqrt ?pqab − 2 ∗ ?ab + 1 / sqrt ?pqab = 0 by simp
hence sqrt ?pqab ∗ (sqrt ?pqab − 2 ∗ ?ab + 1 / sqrt ?pqab) = 0 by simp
moreover from assms
have ?pqab ≥ 1 by (rule are-endpoints-in-S-ordered-cross-ratio)
ultimately have ?pqab − 2 ∗ ?ab ∗ (sqrt ?pqab) + 1 = 0

by (simp add: algebra-simps real-sqrt-mult [symmetric])
with ‹?pqab ≥ 1 › and discriminant-iff [of 1 sqrt ?pqab − 2 ∗ ?ab 1]
have sqrt ?pqab = (2 ∗ ?ab + sqrt (4 ∗ ?ab2 − 4)) / 2
∨ sqrt ?pqab = (2 ∗ ?ab − sqrt (4 ∗ ?ab2 − 4)) / 2
unfolding discrim-def
by (simp add: real-sqrt-mult [symmetric] power2-eq-square)

moreover have sqrt (4 ∗ ?ab2 − 4) = sqrt (4 ∗ (?ab2 − 1)) by simp
hence sqrt (4 ∗ ?ab2 − 4) = 2 ∗ sqrt (?ab2 − 1)

by (unfold real-sqrt-mult) simp
ultimately have sqrt ?pqab = 2 ∗ (?ab + sqrt (?ab2 − 1)) / 2
∨ sqrt ?pqab = 2 ∗ (?ab − sqrt (?ab2 − 1)) / 2
by simp

hence sqrt ?pqab = ?ab + sqrt (?ab2 − 1)
∨ sqrt ?pqab = ?ab − sqrt (?ab2 − 1)
by (simp only: nonzero-mult-div-cancel-left [of 2])

from ‹are-endpoints-in-S p q a b›
have a ∈ hyp2 and b ∈ hyp2 by (unfold are-endpoints-in-S-def) simp-all
hence ?ab ≥ 1 by (rule cosh-dist-at-least-1)
hence ?ab2 ≥ 1 by simp
hence sqrt (?ab2 − 1) ≥ 0 by simp

203

hence sqrt (?ab2 − 1) ∗ sqrt (?ab2 − 1) = ?ab2 − 1
by (simp add: real-sqrt-mult [symmetric])

hence (?ab + sqrt (?ab2 − 1)) ∗ (?ab − sqrt (?ab2 − 1)) = 1
by (simp add: algebra-simps power2-eq-square)

have ?ab − sqrt (?ab2 − 1) ≤ 1
proof (rule ccontr)

assume ¬ (?ab − sqrt (?ab2 − 1) ≤ 1)
hence 1 < ?ab − sqrt (?ab2 − 1) by simp
also from ‹sqrt (?ab2 − 1) ≥ 0 ›
have . . . ≤ ?ab + sqrt (?ab2 − 1) by simp
finally have 1 < ?ab + sqrt (?ab2 − 1) by simp
with ‹1 < ?ab − sqrt (?ab2 − 1)›

and mult-strict-mono ′ [of
1 ?ab + sqrt (?ab2 − 1) 1 ?ab − sqrt (?ab2 − 1)]

have 1 < (?ab + sqrt (?ab2 − 1)) ∗ (?ab − sqrt (?ab2 − 1)) by simp
with ‹(?ab + sqrt (?ab2 − 1)) ∗ (?ab − sqrt (?ab2 − 1)) = 1 ›
show False by simp

qed

have sqrt ?pqab = ?ab + sqrt (?ab2 − 1)
proof (rule ccontr)

assume sqrt ?pqab 6= ?ab + sqrt (?ab2 − 1)
with ‹sqrt ?pqab = ?ab + sqrt (?ab2 − 1)
∨ sqrt ?pqab = ?ab − sqrt (?ab2 − 1)›

have sqrt ?pqab = ?ab − sqrt (?ab2 − 1) by simp
with ‹?ab − sqrt (?ab2 − 1) ≤ 1 › have sqrt ?pqab ≤ 1 by simp
with ‹?pqab ≥ 1 › have sqrt ?pqab = 1 by simp
with ‹sqrt ?pqab = ?ab − sqrt (?ab2 − 1)›

and ‹(?ab + sqrt (?ab2 − 1)) ∗ (?ab − sqrt (?ab2 − 1)) = 1 ›
have ?ab + sqrt (?ab2 − 1) = 1 by simp
with ‹sqrt ?pqab = 1 › have sqrt ?pqab = ?ab + sqrt (?ab2 − 1) by simp
with ‹sqrt ?pqab 6= ?ab + sqrt (?ab2 − 1)› show False ..

qed
moreover from ‹?pqab ≥ 1 › have ?pqab = (sqrt ?pqab)2 by simp
ultimately have ?pqab = (?ab + sqrt (?ab2 − 1))2 by simp
with ‹sqrt (?ab2 − 1) ∗ sqrt (?ab2 − 1) = ?ab2 − 1 ›
show ?pqab = 2 ∗ ?ab2 + 2 ∗ ?ab ∗ sqrt (?ab2 − 1) − 1

by (simp add: power2-eq-square algebra-simps)
qed

lemma are-endpoints-in-S-cross-ratio-correct:
assumes are-endpoints-in-S p q a b
shows cross-ratio-correct p q a b

proof −
from ‹are-endpoints-in-S p q a b›
have p 6= q and p ∈ S and q ∈ S and a ∈ hyp2 and b ∈ hyp2

and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

204

from ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹p ∈ S› and ‹q ∈ S›
have a 6= p and b 6= p and a 6= q by (simp-all add: hyp2-S-not-equal)
with ‹proj2-set-Col {p,q,a,b}› and ‹p 6= q›
show cross-ratio-correct p q a b by (unfold cross-ratio-correct-def) simp

qed

lemma endpoints-in-S-cross-ratio-correct:
assumes a 6= b and a ∈ hyp2 and b ∈ hyp2
shows cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b

proof −
from assms
have are-endpoints-in-S (endpoint-in-S a b) (endpoint-in-S b a) a b

by (rule endpoints-in-S-are-endpoints-in-S)
thus cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b

by (rule are-endpoints-in-S-cross-ratio-correct)
qed

lemma endpoints-in-S-perp-foot-cross-ratio-correct:
assumes a ∈ hyp2 and b ∈ hyp2 and c ∈ hyp2 and a 6= b
and proj2-incident a l and proj2-incident b l
shows cross-ratio-correct
(endpoint-in-S a b) (endpoint-in-S b a) a (perp-foot c l)
(is cross-ratio-correct ?p ?q a ?d)

proof −
from assms
have are-endpoints-in-S ?p ?q a ?d

by (rule endpoints-in-S-perp-foot-are-endpoints-in-S)
thus cross-ratio-correct ?p ?q a ?d

by (rule are-endpoints-in-S-cross-ratio-correct)
qed

lemma cosh-dist-unique:
assumes a ∈ hyp2 and b ∈ hyp2 and c ∈ hyp2 and p ∈ S
and B� (cart2-pt a) (cart2-pt b) (cart2-pt p) (is B� ?ca ?cb ?cp)
and B� (cart2-pt a) (cart2-pt c) (cart2-pt p) (is B� ?ca ?cc ?cp)
and cosh-dist a b = cosh-dist a c (is ?ab = ?ac)
shows b = c

proof −
let ?q = endpoint-in-S p a

from ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹c ∈ hyp2 › and ‹p ∈ S›
have z-non-zero a and z-non-zero b and z-non-zero c and z-non-zero p

by (simp-all add: hyp2-S-z-non-zero)
with ‹B� ?ca ?cb ?cp› and ‹B� ?ca ?cc ?cp›
have ∃ l. proj2-incident a l ∧ proj2-incident b l ∧ proj2-incident p l

and ∃ m. proj2-incident a m ∧ proj2-incident c m ∧ proj2-incident p m
by (simp-all add: euclid-B-cart2-common-line)

then obtain l and m where

205

proj2-incident a l and proj2-incident b l and proj2-incident p l
and proj2-incident a m and proj2-incident c m and proj2-incident p m
by auto

from ‹a ∈ hyp2 › and ‹p ∈ S› have a 6= p by (rule hyp2-S-not-equal)
with ‹proj2-incident a l› and ‹proj2-incident p l›

and ‹proj2-incident a m› and ‹proj2-incident p m› and proj2-incident-unique
have l = m by fast
with ‹proj2-incident c m› have proj2-incident c l by simp
with ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹c ∈ hyp2 › and ‹p ∈ S›

and ‹proj2-incident a l› and ‹proj2-incident b l› and ‹proj2-incident p l›
have are-endpoints-in-S p ?q b a and are-endpoints-in-S p ?q c a

by (simp-all add: end-and-opposite-are-endpoints-in-S)
with are-endpoints-in-S-swap-34
have are-endpoints-in-S p ?q a b and are-endpoints-in-S p ?q a c by fast+
hence cross-ratio-correct p ?q a b and cross-ratio-correct p ?q a c

by (simp-all add: are-endpoints-in-S-cross-ratio-correct)
moreover
from ‹are-endpoints-in-S p ?q a b› and ‹are-endpoints-in-S p ?q a c›

and ‹B� ?ca ?cb ?cp› and ‹B� ?ca ?cc ?cp›
have cross-ratio p ?q a b = 2 ∗ ?ab2 + 2 ∗ ?ab ∗ sqrt (?ab2 − 1) − 1

and cross-ratio p ?q a c = 2 ∗ ?ac2 + 2 ∗ ?ac ∗ sqrt (?ac2 − 1) − 1
by (simp-all add: cross-ratio-in-terms-of-cosh-dist)

with ‹?ab = ?ac› have cross-ratio p ?q a b = cross-ratio p ?q a c by simp
ultimately show b = c by (rule cross-ratio-unique)

qed

lemma cosh-dist-swap:
assumes a ∈ hyp2 and b ∈ hyp2
shows cosh-dist a b = cosh-dist b a

proof −
from assms and K2-isometry-swap
obtain J where is-K2-isometry J and apply-cltn2 a J = b

and apply-cltn2 b J = a
by auto

from ‹b ∈ hyp2 › and ‹a ∈ hyp2 › and ‹is-K2-isometry J ›
have cosh-dist (apply-cltn2 b J) (apply-cltn2 a J) = cosh-dist b a

by (rule K2-isometry-cosh-dist)
with ‹apply-cltn2 a J = b› and ‹apply-cltn2 b J = a›
show cosh-dist a b = cosh-dist b a by simp

qed

lemma exp-2dist-1-equal:
assumes a ∈ hyp2 and b ∈ hyp2 and exp-2dist a b = 1
shows a = b

proof (rule ccontr)
assume a 6= b
with ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›

206

have cross-ratio-correct (endpoint-in-S a b) (endpoint-in-S b a) a b
(is cross-ratio-correct ?p ?q a b)
by (simp add: endpoints-in-S-cross-ratio-correct)

moreover
from ‹a 6= b›
have exp-2dist a b = cross-ratio ?p ?q a b by (unfold exp-2dist-def) simp
with ‹exp-2dist a b = 1 › have cross-ratio ?p ?q a b = 1 by simp
ultimately have a = b by (rule cross-ratio-1-equal)
with ‹a 6= b› show False ..

qed

8.11.1 A formula for a cross ratio involving a perpendicular foot
lemma described-perp-foot-cross-ratio-formula:

assumes a 6= b and c ∈ hyp2 and are-endpoints-in-S p q a b
and proj2-incident p l and proj2-incident q l and M-perp l m
and proj2-incident d l and proj2-incident d m and proj2-incident c m
shows cross-ratio p q d a
= (cosh-dist b c ∗ sqrt (cross-ratio p q a b) − cosh-dist a c)
/ (cosh-dist a c ∗ cross-ratio p q a b
− cosh-dist b c ∗ sqrt (cross-ratio p q a b))

(is ?pqda = (?bc ∗ sqrt ?pqab − ?ac) / (?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab))
proof −

let ?da = cosh-dist d a
let ?db = cosh-dist d b
let ?dc = cosh-dist d c
let ?pqdb = cross-ratio p q d b

from ‹are-endpoints-in-S p q a b›
have p 6= q and p ∈ S and q ∈ S and a ∈ hyp2 and b ∈ hyp2

and proj2-set-Col {p,q,a,b}
by (unfold are-endpoints-in-S-def) simp-all

from ‹proj2-set-Col {p,q,a,b}›
obtain l ′ where proj2-incident p l ′ and proj2-incident q l ′

and proj2-incident a l ′ and proj2-incident b l ′
by (unfold proj2-set-Col-def) auto

from ‹p 6= q› and ‹proj2-incident p l ′› and ‹proj2-incident q l ′›
and ‹proj2-incident p l› and ‹proj2-incident q l› and proj2-incident-unique

have l ′ = l by fast
with ‹proj2-incident a l ′› and ‹proj2-incident b l ′›
have proj2-incident a l and proj2-incident b l by simp-all

from ‹M-perp l m› and ‹a ∈ hyp2 › and ‹proj2-incident a l› and ‹c ∈ hyp2 ›
and ‹proj2-incident c m› and ‹proj2-incident d l› and ‹proj2-incident d m›

have d ∈ hyp2 by (rule M-perp-hyp2)
with ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹c ∈ hyp2 ›
have ?bc > 0 and ?da > 0 and ?ac > 0

207

by (simp-all add: cosh-dist-positive)

from ‹proj2-incident p l› and ‹proj2-incident q l› and ‹proj2-incident d l›
and ‹proj2-incident a l› and ‹proj2-incident b l›

have proj2-set-Col {p,q,d,a} and proj2-set-Col {p,q,d,b}
and proj2-set-Col {p,q,a,b}
by (unfold proj2-set-Col-def) (simp-all add: exI [of - l])

with ‹p 6= q› and ‹p ∈ S› and ‹q ∈ S› and ‹d ∈ hyp2 › and ‹a ∈ hyp2 ›
and ‹b ∈ hyp2 ›

have are-endpoints-in-S p q d a and are-endpoints-in-S p q d b
and are-endpoints-in-S p q a b
by (unfold are-endpoints-in-S-def) simp-all

hence ?pqda > 0 and ?pqdb > 0 and ?pqab > 0
by (simp-all add: cross-ratio-S-S-hyp2-hyp2-positive)

from ‹proj2-incident p l› and ‹proj2-incident q l› and ‹proj2-incident a l›
have proj2-Col p q a by (rule proj2-incident-Col)

from ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹p ∈ S› and ‹q ∈ S›
have a 6= p and a 6= q and b 6= p by (simp-all add: hyp2-S-not-equal)

from ‹proj2-Col p q a› and ‹p 6= q› and ‹a 6= p› and ‹a 6= q›
have ?pqdb = ?pqda ∗ ?pqab by (rule cross-ratio-product [symmetric])

from ‹M-perp l m› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 › and ‹c ∈ hyp2 › and ‹d ∈
hyp2 ›

and ‹proj2-incident a l› and ‹proj2-incident b l› and ‹proj2-incident d l›
and ‹proj2-incident d m› and ‹proj2-incident c m›
and cosh-dist-perp-divide [of l m - d c]

have ?dc = ?ac / ?da and ?dc = ?bc / ?db by fast+
hence ?ac / ?da = ?bc / ?db by simp
with ‹?bc > 0 › and ‹?da > 0 ›
have ?ac / ?bc = ?da / ?db by (simp add: field-simps)
also from ‹are-endpoints-in-S p q d a› and ‹are-endpoints-in-S p q d b›
have . . .
= 2 ∗ (sqrt ?pqda + 1 / (sqrt ?pqda))
/ (2 ∗ (sqrt ?pqdb + 1 / (sqrt ?pqdb)))
by (simp add: cosh-dist-general)

also
have . . . = (sqrt ?pqda + 1 / (sqrt ?pqda)) / (sqrt ?pqdb + 1 / (sqrt ?pqdb))

by (simp only: mult-divide-mult-cancel-left-if) simp
also have . . .
= sqrt ?pqdb ∗ (sqrt ?pqda + 1 / (sqrt ?pqda))
/ (sqrt ?pqdb ∗ (sqrt ?pqdb + 1 / (sqrt ?pqdb)))
by simp

also from ‹?pqdb > 0 ›
have . . . = (sqrt (?pqdb ∗ ?pqda) + sqrt (?pqdb / ?pqda)) / (?pqdb + 1)

by (simp add: real-sqrt-mult [symmetric] real-sqrt-divide algebra-simps)
also from ‹?pqdb = ?pqda ∗ ?pqab› and ‹?pqda > 0 › and real-sqrt-pow2

208

have . . . = (?pqda ∗ sqrt ?pqab + sqrt ?pqab) / (?pqda ∗ ?pqab + 1)
by (simp add: real-sqrt-mult power2-eq-square)

finally
have ?ac / ?bc = (?pqda ∗ sqrt ?pqab + sqrt ?pqab) / (?pqda ∗ ?pqab + 1) .

from ‹?pqda > 0 › and ‹?pqab > 0 ›
have ?pqda ∗ ?pqab + 1 > 0 by (simp add: add-pos-pos)
with ‹?bc > 0 ›

and ‹?ac / ?bc = (?pqda ∗ sqrt ?pqab + sqrt ?pqab) / (?pqda ∗ ?pqab + 1)›
have ?ac ∗ (?pqda ∗ ?pqab + 1) = ?bc ∗ (?pqda ∗ sqrt ?pqab + sqrt ?pqab)

by (simp add: field-simps)
hence ?pqda ∗ (?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab) = ?bc ∗ sqrt ?pqab − ?ac

by (simp add: algebra-simps)

from ‹proj2-set-Col {p,q,a,b}› and ‹p 6= q› and ‹a 6= p› and ‹a 6= q›
and ‹b 6= p›

have cross-ratio-correct p q a b by (unfold cross-ratio-correct-def) simp

have ?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab 6= 0
proof

assume ?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab = 0
with ‹?pqda ∗ (?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab) = ?bc ∗ sqrt ?pqab − ?ac›
have ?bc ∗ sqrt ?pqab − ?ac = 0 by simp
with ‹?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab = 0 › and ‹?ac > 0 ›
have ?pqab = 1 by simp
with ‹cross-ratio-correct p q a b›
have a = b by (rule cross-ratio-1-equal)
with ‹a 6= b› show False ..

qed
with ‹?pqda ∗ (?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab) = ?bc ∗ sqrt ?pqab − ?ac›
show ?pqda = (?bc ∗ sqrt ?pqab − ?ac) / (?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab)

by (simp add: field-simps)
qed

lemma perp-foot-cross-ratio-formula:
assumes a ∈ hyp2 and b ∈ hyp2 and c ∈ hyp2 and a 6= b
shows cross-ratio (endpoint-in-S a b) (endpoint-in-S b a)

(perp-foot c (proj2-line-through a b)) a
= (cosh-dist b c ∗ sqrt (exp-2dist a b) − cosh-dist a c)
/ (cosh-dist a c ∗ exp-2dist a b − cosh-dist b c ∗ sqrt (exp-2dist a b))

(is cross-ratio ?p ?q ?d a
= (?bc ∗ sqrt ?pqab − ?ac) / (?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab))

proof −
from ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have are-endpoints-in-S ?p ?q a b

by (rule endpoints-in-S-are-endpoints-in-S)

let ?l = proj2-line-through a b
have proj2-incident a ?l and proj2-incident b ?l

209

by (rule proj2-line-through-incident)+
with ‹a 6= b› and ‹a ∈ hyp2 › and ‹b ∈ hyp2 ›
have proj2-incident ?p ?l and proj2-incident ?q ?l

by (simp-all add: endpoint-in-S-incident)

let ?m = drop-perp c ?l
have M-perp ?l ?m by (rule drop-perp-perp)

have proj2-incident ?d ?l and proj2-incident ?d ?m
by (rule perp-foot-incident)+

have proj2-incident c ?m by (rule drop-perp-incident)
with ‹a 6= b› and ‹c ∈ hyp2 › and ‹are-endpoints-in-S ?p ?q a b›

and ‹proj2-incident ?p ?l› and ‹proj2-incident ?q ?l› and ‹M-perp ?l ?m›
and ‹proj2-incident ?d ?l› and ‹proj2-incident ?d ?m›

have cross-ratio ?p ?q ?d a
= (?bc ∗ sqrt (cross-ratio ?p ?q a b) − ?ac)
/ (?ac ∗ (cross-ratio ?p ?q a b) − ?bc ∗ sqrt (cross-ratio ?p ?q a b))
by (rule described-perp-foot-cross-ratio-formula)

with ‹a 6= b›
show cross-ratio ?p ?q ?d a
= (?bc ∗ sqrt ?pqab − ?ac) / (?ac ∗ ?pqab − ?bc ∗ sqrt ?pqab)
by (unfold exp-2dist-def) simp

qed

8.12 The Klein–Beltrami model satisfies axiom 5
lemma statement69 :

assumes a b ≡K a ′ b ′ and b c ≡K b ′ c ′ and a c ≡K a ′ c ′

shows ∃ J . is-K2-isometry J
∧ hyp2-cltn2 a J = a ′ ∧ hyp2-cltn2 b J = b ′ ∧ hyp2-cltn2 c J = c ′

proof cases
assume a = b
with ‹a b ≡K a ′ b ′› have a ′ = b ′ by (simp add: hyp2 .A3-reversed)
with ‹a = b› and ‹b c ≡K b ′ c ′›
show ∃ J . is-K2-isometry J
∧ hyp2-cltn2 a J = a ′ ∧ hyp2-cltn2 b J = b ′ ∧ hyp2-cltn2 c J = c ′

by (unfold real-hyp2-C-def) simp
next

assume a 6= b
with ‹a b ≡K a ′ b ′›
have a ′ 6= b ′ by (auto simp add: hyp2 .A3 ′)

let ?pa = Rep-hyp2 a
and ?pb = Rep-hyp2 b
and ?pc = Rep-hyp2 c
and ?pa ′ = Rep-hyp2 a ′

and ?pb ′ = Rep-hyp2 b ′

and ?pc ′ = Rep-hyp2 c ′

210

define pp pq l pp ′ pq ′ l ′
where pp = endpoint-in-S ?pa ?pb

and pq = endpoint-in-S ?pb ?pa
and l = proj2-line-through ?pa ?pb
and pp ′ = endpoint-in-S ?pa ′ ?pb ′

and pq ′ = endpoint-in-S ?pb ′ ?pa ′

and l ′ = proj2-line-through ?pa ′ ?pb ′

define pd ps m pd ′ ps ′ m ′

where pd = perp-foot ?pc l
and ps = perp-up ?pc l
and m = drop-perp ?pc l
and pd ′ = perp-foot ?pc ′ l ′
and ps ′ = perp-up ?pc ′ l ′
and m ′ = drop-perp ?pc ′ l ′

have pp ∈ S and pp ′ ∈ S and pq ∈ S and pq ′ ∈ S
unfolding pp-def and pp ′-def and pq-def and pq ′-def
by (simp-all add: Rep-hyp2 endpoint-in-S)

from ‹a 6= b› and ‹a ′ 6= b ′›
have ?pa 6= ?pb and ?pa ′ 6= ?pb ′ by (unfold Rep-hyp2-inject)
moreover
have proj2-incident ?pa l and proj2-incident ?pb l

and proj2-incident ?pa ′ l ′ and proj2-incident ?pb ′ l ′
by (unfold l-def l ′-def) (rule proj2-line-through-incident)+

ultimately have proj2-incident pp l and proj2-incident pp ′ l ′
and proj2-incident pq l and proj2-incident pq ′ l ′
unfolding pp-def and pp ′-def and pq-def and pq ′-def
by (simp-all add: Rep-hyp2 endpoint-in-S-incident)

from ‹pp ∈ S› and ‹pp ′ ∈ S› and ‹proj2-incident pp l›
and ‹proj2-incident pp ′ l ′› and ‹proj2-incident ?pa l›
and ‹proj2-incident ?pa ′ l ′›

have right-angle pp pd ps and right-angle pp ′ pd ′ ps ′

unfolding pd-def and ps-def and pd ′-def and ps ′-def
by (simp-all add: Rep-hyp2

perp-foot-up-right-angle [of pp ?pc ?pa l]
perp-foot-up-right-angle [of pp ′ ?pc ′ ?pa ′ l ′])

with right-angle-to-right-angle [of pp pd ps pp ′ pd ′ ps ′]
obtain J where is-K2-isometry J and apply-cltn2 pp J = pp ′

and apply-cltn2 pd J = pd ′ and apply-cltn2 ps J = ps ′

by auto

let ?paJ = apply-cltn2 ?pa J
and ?pbJ = apply-cltn2 ?pb J
and ?pcJ = apply-cltn2 ?pc J
and ?pdJ = apply-cltn2 pd J
and ?ppJ = apply-cltn2 pp J
and ?pqJ = apply-cltn2 pq J

211

and ?psJ = apply-cltn2 ps J
and ?lJ = apply-cltn2-line l J
and ?mJ = apply-cltn2-line m J

have proj2-incident pd l and proj2-incident pd ′ l ′
and proj2-incident pd m and proj2-incident pd ′ m ′

by (unfold pd-def pd ′-def m-def m ′-def) (rule perp-foot-incident)+

from ‹proj2-incident pp l› and ‹proj2-incident pq l›
and ‹proj2-incident pd l› and ‹proj2-incident ?pa l›
and ‹proj2-incident ?pb l›

have proj2-set-Col {pp,pq,pd,?pa} and proj2-set-Col {pp,pq,?pa,?pb}
by (unfold pd-def proj2-set-Col-def) (simp-all add: exI [of - l])

from ‹?pa 6= ?pb› and ‹?pa ′ 6= ?pb ′›
have pp 6= pq and pp ′ 6= pq ′

unfolding pp-def and pq-def and pp ′-def and pq ′-def
by (simp-all add: Rep-hyp2 endpoint-in-S-swap)

from ‹proj2-incident ?pa l› and ‹proj2-incident ?pa ′ l ′›
have pd ∈ hyp2 and pd ′ ∈ hyp2

unfolding pd-def and pd ′-def
by (simp-all add: Rep-hyp2 perp-foot-hyp2 [of ?pa l ?pc]

perp-foot-hyp2 [of ?pa ′ l ′ ?pc ′])

from ‹proj2-incident ?pa l› and ‹proj2-incident ?pa ′ l ′›
have ps ∈ S and ps ′ ∈ S

unfolding ps-def and ps ′-def
by (simp-all add: Rep-hyp2 perp-up-in-S [of ?pc ?pa l]

perp-up-in-S [of ?pc ′ ?pa ′ l ′])

from ‹pd ∈ hyp2 › and ‹pp ∈ S› and ‹ps ∈ S›
have pd 6= pp and ?pa 6= pp and ?pb 6= pp and pd 6= ps

by (simp-all add: Rep-hyp2 hyp2-S-not-equal)

from ‹is-K2-isometry J › and ‹pq ∈ S›
have ?pqJ ∈ S by (unfold is-K2-isometry-def) simp

from ‹pd 6= pp› and ‹proj2-incident pd l› and ‹proj2-incident pp l›
and ‹proj2-incident pd ′ l ′› and ‹proj2-incident pp ′ l ′›

have ?lJ = l ′
unfolding ‹?pdJ = pd ′› [symmetric] and ‹?ppJ = pp ′› [symmetric]
by (rule apply-cltn2-line-unique)

from ‹proj2-incident pq l› and ‹proj2-incident ?pa l›
and ‹proj2-incident ?pb l›

have proj2-incident ?pqJ l ′ and proj2-incident ?paJ l ′
and proj2-incident ?pbJ l ′
by (unfold ‹?lJ = l ′› [symmetric]) simp-all

212

from ‹?pa ′ 6= ?pb ′› and ‹?pqJ ∈ S› and ‹proj2-incident ?pa ′ l ′›
and ‹proj2-incident ?pb ′ l ′› and ‹proj2-incident ?pqJ l ′›

have ?pqJ = pp ′ ∨ ?pqJ = pq ′

unfolding pp ′-def and pq ′-def
by (simp add: Rep-hyp2 endpoints-in-S-incident-unique)

moreover
from ‹pp 6= pq› and apply-cltn2-injective
have pp ′ 6= ?pqJ by (unfold ‹?ppJ = pp ′› [symmetric]) fast
ultimately have ?pqJ = pq ′ by simp

from ‹?pa ′ 6= ?pb ′›
have cross-ratio pp ′ pq ′ pd ′ ?pa ′

= (cosh-dist ?pb ′ ?pc ′ ∗ sqrt (exp-2dist ?pa ′ ?pb ′) − cosh-dist ?pa ′ ?pc ′)
/ (cosh-dist ?pa ′ ?pc ′ ∗ exp-2dist ?pa ′ ?pb ′

− cosh-dist ?pb ′ ?pc ′ ∗ sqrt (exp-2dist ?pa ′ ?pb ′))
unfolding pp ′-def and pq ′-def and pd ′-def and l ′-def
by (simp add: Rep-hyp2 perp-foot-cross-ratio-formula)

also from assms
have . . . = (cosh-dist ?pb ?pc ∗ sqrt (exp-2dist ?pa ?pb) − cosh-dist ?pa ?pc)
/ (cosh-dist ?pa ?pc ∗ exp-2dist ?pa ?pb
− cosh-dist ?pb ?pc ∗ sqrt (exp-2dist ?pa ?pb))

by (simp add: real-hyp2-C-exp-2dist real-hyp2-C-cosh-dist)
also from ‹?pa 6= ?pb›
have . . . = cross-ratio pp pq pd ?pa

unfolding pp-def and pq-def and pd-def and l-def
by (simp add: Rep-hyp2 perp-foot-cross-ratio-formula)

also from ‹proj2-set-Col {pp,pq,pd,?pa}› and ‹pp 6= pq› and ‹pd 6= pp›
and ‹?pa 6= pp›

have . . . = cross-ratio ?ppJ ?pqJ ?pdJ ?paJ by (simp add: cross-ratio-cltn2)
also from ‹?ppJ = pp ′› and ‹?pqJ = pq ′› and ‹?pdJ = pd ′›
have . . . = cross-ratio pp ′ pq ′ pd ′ ?paJ by simp
finally
have cross-ratio pp ′ pq ′ pd ′ ?paJ = cross-ratio pp ′ pq ′ pd ′ ?pa ′ by simp

from ‹is-K2-isometry J ›
have ?paJ ∈ hyp2 and ?pbJ ∈ hyp2 and ?pcJ ∈ hyp2

by (rule apply-cltn2-Rep-hyp2)+

from ‹proj2-incident pp ′ l ′› and ‹proj2-incident pq ′ l ′›
and ‹proj2-incident pd ′ l ′› and ‹proj2-incident ?paJ l ′›
and ‹proj2-incident ?pa ′ l ′› and ‹proj2-incident ?pbJ l ′›
and ‹proj2-incident ?pb ′ l ′›

have proj2-set-Col {pp ′,pq ′,pd ′,?paJ} and proj2-set-Col {pp ′,pq ′,pd ′,?pa ′}
and proj2-set-Col {pp ′,pq ′,?pa ′,?pbJ}
and proj2-set-Col {pp ′,pq ′,?pa ′,?pb ′}
by (unfold proj2-set-Col-def) (simp-all add: exI [of - l ′])

with ‹pp ′ 6= pq ′› and ‹pp ′ ∈ S› and ‹pq ′ ∈ S› and ‹pd ′ ∈ hyp2 ›
and ‹?paJ ∈ hyp2 › and ‹?pbJ ∈ hyp2 ›

have are-endpoints-in-S pp ′ pq ′ pd ′ ?paJ

213

and are-endpoints-in-S pp ′ pq ′ pd ′ ?pa ′

and are-endpoints-in-S pp ′ pq ′ ?pa ′ ?pbJ
and are-endpoints-in-S pp ′ pq ′ ?pa ′ ?pb ′

by (unfold are-endpoints-in-S-def) (simp-all add: Rep-hyp2)
hence cross-ratio-correct pp ′ pq ′ pd ′ ?paJ

and cross-ratio-correct pp ′ pq ′ pd ′ ?pa ′

and cross-ratio-correct pp ′ pq ′ ?pa ′ ?pbJ
and cross-ratio-correct pp ′ pq ′ ?pa ′ ?pb ′

by (simp-all add: are-endpoints-in-S-cross-ratio-correct)

from ‹cross-ratio-correct pp ′ pq ′ pd ′ ?paJ ›
and ‹cross-ratio-correct pp ′ pq ′ pd ′ ?pa ′›
and ‹cross-ratio pp ′ pq ′ pd ′ ?paJ = cross-ratio pp ′ pq ′ pd ′ ?pa ′›

have ?paJ = ?pa ′ by (simp add: cross-ratio-unique)
with ‹?ppJ = pp ′› and ‹?pqJ = pq ′›
have cross-ratio pp ′ pq ′ ?pa ′ ?pbJ = cross-ratio ?ppJ ?pqJ ?paJ ?pbJ by simp
also from ‹proj2-set-Col {pp,pq,?pa,?pb}› and ‹pp 6= pq› and ‹?pa 6= pp›

and ‹?pb 6= pp›
have . . . = cross-ratio pp pq ?pa ?pb by (rule cross-ratio-cltn2)
also from ‹a 6= b› and ‹a b ≡K a ′ b ′›
have . . . = cross-ratio pp ′ pq ′ ?pa ′ ?pb ′

unfolding pp-def pq-def pp ′-def pq ′-def
by (rule real-hyp2-C-cross-ratio-endpoints-in-S)

finally have cross-ratio pp ′ pq ′ ?pa ′ ?pbJ = cross-ratio pp ′ pq ′ ?pa ′ ?pb ′ .
with ‹cross-ratio-correct pp ′ pq ′ ?pa ′ ?pbJ ›

and ‹cross-ratio-correct pp ′ pq ′ ?pa ′ ?pb ′›
have ?pbJ = ?pb ′ by (rule cross-ratio-unique)

let ?cc = cart2-pt ?pc
and ?cd = cart2-pt pd
and ?cs = cart2-pt ps
and ?cc ′ = cart2-pt ?pc ′

and ?cd ′ = cart2-pt pd ′

and ?cs ′ = cart2-pt ps ′

and ?ccJ = cart2-pt ?pcJ
and ?cdJ = cart2-pt ?pdJ
and ?csJ = cart2-pt ?psJ

from ‹proj2-incident ?pa l› and ‹proj2-incident ?pa ′ l ′›
have B� ?cd ?cc ?cs and B� ?cd ′ ?cc ′ ?cs ′

unfolding pd-def and ps-def and pd ′-def and ps ′-def
by (simp-all add: Rep-hyp2 perp-up-at-end [of ?pc ?pa l]

perp-up-at-end [of ?pc ′ ?pa ′ l ′])

from ‹pd ∈ hyp2 › and ‹ps ∈ S› and ‹is-K2-isometry J ›
and ‹B� ?cd ?cc ?cs›

have B� ?cdJ ?ccJ ?csJ by (simp add: Rep-hyp2 statement-63)
hence B� ?cd ′ ?ccJ ?cs ′ by (unfold ‹?pdJ = pd ′› ‹?psJ = ps ′›)

214

from ‹?paJ = ?pa ′› have cosh-dist ?pa ′ ?pcJ = cosh-dist ?paJ ?pcJ by simp
also from ‹is-K2-isometry J ›
have . . . = cosh-dist ?pa ?pc by (simp add: Rep-hyp2 K2-isometry-cosh-dist)
also from ‹a c ≡K a ′ c ′›
have . . . = cosh-dist ?pa ′ ?pc ′ by (rule real-hyp2-C-cosh-dist)
finally have cosh-dist ?pa ′ ?pcJ = cosh-dist ?pa ′ ?pc ′ .

have M-perp l ′ m ′ by (unfold m ′-def) (rule drop-perp-perp)

have proj2-incident ?pc m and proj2-incident ?pc ′ m ′

by (unfold m-def m ′-def) (rule drop-perp-incident)+

from ‹proj2-incident ?pa l› and ‹proj2-incident ?pa ′ l ′›
have proj2-incident ps m and proj2-incident ps ′ m ′

unfolding ps-def and m-def and ps ′-def and m ′-def
by (simp-all add: Rep-hyp2 perp-up-incident [of ?pc ?pa l]

perp-up-incident [of ?pc ′ ?pa ′ l ′])
with ‹pd 6= ps› and ‹proj2-incident pd m› and ‹proj2-incident pd ′ m ′›
have ?mJ = m ′

unfolding ‹?pdJ = pd ′› [symmetric] and ‹?psJ = ps ′› [symmetric]
by (simp add: apply-cltn2-line-unique)

from ‹proj2-incident ?pc m›
have proj2-incident ?pcJ m ′ by (unfold ‹?mJ = m ′› [symmetric]) simp
with ‹M-perp l ′ m ′› and Rep-hyp2 [of a ′] and ‹pd ′ ∈ hyp2 › and ‹?pcJ ∈ hyp2 ›

and Rep-hyp2 [of c ′] and ‹proj2-incident ?pa ′ l ′›
and ‹proj2-incident pd ′ l ′› and ‹proj2-incident pd ′ m ′›
and ‹proj2-incident ?pc ′ m ′›

have cosh-dist pd ′ ?pcJ = cosh-dist ?pa ′ ?pcJ / cosh-dist pd ′ ?pa ′

and cosh-dist pd ′ ?pc ′ = cosh-dist ?pa ′ ?pc ′ / cosh-dist pd ′ ?pa ′

by (simp-all add: cosh-dist-perp-divide)
with ‹cosh-dist ?pa ′ ?pcJ = cosh-dist ?pa ′ ?pc ′›
have cosh-dist pd ′ ?pcJ = cosh-dist pd ′ ?pc ′ by simp
with ‹pd ′ ∈ hyp2 › and ‹?pcJ ∈ hyp2 › and ‹?pc ′ ∈ hyp2 › and ‹ps ′ ∈ S›

and ‹B� ?cd ′ ?ccJ ?cs ′› and ‹B� ?cd ′ ?cc ′ ?cs ′›
have ?pcJ = ?pc ′ by (rule cosh-dist-unique)
with ‹?paJ = ?pa ′› and ‹?pbJ = ?pb ′›
have hyp2-cltn2 a J = a ′ and hyp2-cltn2 b J = b ′ and hyp2-cltn2 c J = c ′

by (unfold hyp2-cltn2-def) (simp-all add: Rep-hyp2-inverse)
with ‹is-K2-isometry J ›
show ∃ J . is-K2-isometry J
∧ hyp2-cltn2 a J = a ′ ∧ hyp2-cltn2 b J = b ′ ∧ hyp2-cltn2 c J = c ′

by (simp add: exI [of - J])
qed

theorem hyp2-axiom5 :
∀ a b c d a ′ b ′ c ′ d ′.
a 6= b ∧ BK a b c ∧ BK a ′ b ′ c ′ ∧ a b ≡K a ′ b ′ ∧ b c ≡K b ′ c ′

∧ a d ≡K a ′ d ′ ∧ b d ≡K b ′ d ′

−→ c d ≡K c ′ d ′

215

proof standard+
fix a b c d a ′ b ′ c ′ d ′

assume a 6= b ∧ BK a b c ∧ BK a ′ b ′ c ′ ∧ a b ≡K a ′ b ′ ∧ b c ≡K b ′ c ′

∧ a d ≡K a ′ d ′ ∧ b d ≡K b ′ d ′

hence a 6= b and BK a b c and BK a ′ b ′ c ′ and a b ≡K a ′ b ′

and b c ≡K b ′ c ′ and a d ≡K a ′ d ′ and b d ≡K b ′ d ′

by simp-all

from ‹a b ≡K a ′ b ′› and ‹b d ≡K b ′ d ′› and ‹a d ≡K a ′ d ′› and statement69
[of a b a ′ b ′ d d ′]

obtain J where is-K2-isometry J and hyp2-cltn2 a J = a ′

and hyp2-cltn2 b J = b ′ and hyp2-cltn2 d J = d ′

by auto

let ?aJ = hyp2-cltn2 a J
and ?bJ = hyp2-cltn2 b J
and ?cJ = hyp2-cltn2 c J
and ?dJ = hyp2-cltn2 d J

from ‹a 6= b› and ‹a b ≡K a ′ b ′›
have a ′ 6= b ′ by (auto simp add: hyp2 .A3 ′)

from ‹is-K2-isometry J › and ‹BK a b c›
have BK ?aJ ?bJ ?cJ by (rule real-hyp2-B-hyp2-cltn2)
hence BK a ′ b ′ ?cJ by (unfold ‹?aJ = a ′› ‹?bJ = b ′›)

from ‹is-K2-isometry J ›
have b c ≡K ?bJ ?cJ by (rule real-hyp2-C-hyp2-cltn2)
hence b c ≡K b ′ ?cJ by (unfold ‹?bJ = b ′›)
from this and ‹b c ≡K b ′ c ′› have b ′ ?cJ ≡K b ′ c ′ by (rule hyp2 .A2 ′)
with ‹a ′ 6= b ′› and ‹BK a ′ b ′ ?cJ › and ‹BK a ′ b ′ c ′›
have ?cJ = c ′ by (rule hyp2-extend-segment-unique)
from ‹is-K2-isometry J ›
show c d ≡K c ′ d ′

unfolding ‹?cJ = c ′› [symmetric] and ‹?dJ = d ′› [symmetric]
by (rule real-hyp2-C-hyp2-cltn2)

qed

interpretation hyp2 : tarski-first5 real-hyp2-C real-hyp2-B
using hyp2-axiom4 and hyp2-axiom5
by unfold-locales

8.13 The Klein–Beltrami model satisfies axioms 6, 7, and 11
theorem hyp2-axiom6 : ∀ a b. BK a b a −→ a = b
proof standard+

fix a b
let ?ca = cart2-pt (Rep-hyp2 a)

and ?cb = cart2-pt (Rep-hyp2 b)

216

assume BK a b a
hence B� ?ca ?cb ?ca by (unfold real-hyp2-B-def hyp2-rep-def)
hence ?ca = ?cb by (rule real-euclid.A6 ′)
hence Rep-hyp2 a = Rep-hyp2 b by (simp add: Rep-hyp2 hyp2-S-cart2-inj)
thus a = b by (unfold Rep-hyp2-inject)

qed

lemma between-inverse:
assumes B� (hyp2-rep p) v (hyp2-rep q)
shows hyp2-rep (hyp2-abs v) = v

proof −
let ?u = hyp2-rep p
let ?w = hyp2-rep q
have norm ?u < 1 and norm ?w < 1 by (rule norm-hyp2-rep-lt-1)+

from ‹B� ?u v ?w›
obtain l where l ≥ 0 and l ≤ 1 and v − ?u = l ∗R (?w − ?u)

by (unfold real-euclid-B-def) auto
from ‹v − ?u = l ∗R (?w − ?u)›
have v = l ∗R ?w + (1 − l) ∗R ?u by (simp add: algebra-simps)
hence norm v ≤ norm (l ∗R ?w) + norm ((1 − l) ∗R ?u)

by (simp only: norm-triangle-ineq [of l ∗R ?w (1 − l) ∗R ?u])
with ‹l ≥ 0 › and ‹l ≤ 1 ›
have norm v ≤ l ∗R norm ?w + (1 − l) ∗R norm ?u by simp

have norm v < 1
proof cases

assume l = 0
with ‹v = l ∗R ?w + (1 − l) ∗R ?u›
have v = ?u by simp
with ‹norm ?u < 1 › show norm v < 1 by simp

next
assume l 6= 0
with ‹norm ?w < 1 › and ‹l ≥ 0 › have l ∗R norm ?w < l by simp

with ‹norm ?u < 1 › and ‹l ≤ 1 ›
and mult-mono [of 1 − l 1 − l norm ?u 1]

have (1 − l) ∗R norm ?u ≤ 1 − l by simp
with ‹l ∗R norm ?w < l›
have l ∗R norm ?w + (1 − l) ∗R norm ?u < 1 by simp
with ‹norm v ≤ l ∗R norm ?w + (1 − l) ∗R norm ?u›
show norm v < 1 by simp

qed
thus hyp2-rep (hyp2-abs v) = v by (rule hyp2-rep-abs)

qed

lemma between-switch:
assumes B� (hyp2-rep p) v (hyp2-rep q)
shows BK p (hyp2-abs v) q

217

proof −
from assms have hyp2-rep (hyp2-abs v) = v by (rule between-inverse)
with assms show BK p (hyp2-abs v) q by (unfold real-hyp2-B-def) simp

qed

theorem hyp2-axiom7 :
∀ a b c p q. BK a p c ∧ BK b q c −→ (∃ x. BK p x b ∧ BK q x a)

proof auto
fix a b c p q
let ?ca = hyp2-rep a

and ?cb = hyp2-rep b
and ?cc = hyp2-rep c
and ?cp = hyp2-rep p
and ?cq = hyp2-rep q

assume BK a p c and BK b q c
hence B� ?ca ?cp ?cc and B� ?cb ?cq ?cc by (unfold real-hyp2-B-def)
with real-euclid.A7 ′ [of ?ca ?cp ?cc ?cb ?cq]
obtain cx where B� ?cp cx ?cb and B� ?cq cx ?ca by auto
hence BK p (hyp2-abs cx) b and BK q (hyp2-abs cx) a

by (simp-all add: between-switch)
thus ∃ x. BK p x b ∧ BK q x a by (simp add: exI [of - hyp2-abs cx])

qed

theorem hyp2-axiom11 :
∀ X Y . (∃ a. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK a x y)
−→ (∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK x b y)

proof (rule allI)+
fix X Y :: hyp2 set
show (∃ a. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK a x y)
−→ (∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK x b y)

proof cases
assume X = {} ∨ Y = {}
thus (∃ a. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK a x y)
−→ (∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK x b y) by auto

next
assume ¬ (X = {} ∨ Y = {})
hence X 6= {} and Y 6= {} by simp-all
then obtain w and z where w ∈ X and z ∈ Y by auto

show (∃ a. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK a x y)
−→ (∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK x b y)

proof
assume ∃ a. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK a x y
then obtain a where ∀ x y. x ∈ X ∧ y ∈ Y −→ BK a x y ..

let ?cX = hyp2-rep ‘ X
and ?cY = hyp2-rep ‘ Y
and ?ca = hyp2-rep a
and ?cw = hyp2-rep w

218

and ?cz = hyp2-rep z

from ‹∀ x y. x ∈ X ∧ y ∈ Y −→ BK a x y›
have ∀ cx cy. cx ∈ ?cX ∧ cy ∈ ?cY −→ B� ?ca cx cy

by (unfold real-hyp2-B-def) auto
with real-euclid.A11 ′ [of ?cX ?cY ?ca]
obtain cb where ∀ cx cy. cx ∈ ?cX ∧ cy ∈ ?cY −→ B� cx cb cy by auto
with ‹w ∈ X› and ‹z ∈ Y › have B� ?cw cb ?cz by simp
hence hyp2-rep (hyp2-abs cb) = cb (is hyp2-rep ?b = cb)

by (rule between-inverse)
with ‹∀ cx cy. cx ∈ ?cX ∧ cy ∈ ?cY −→ B� cx cb cy›
have ∀ x y. x ∈ X ∧ y ∈ Y −→ BK x ?b y

by (unfold real-hyp2-B-def) simp
thus ∃ b. ∀ x y. x ∈ X ∧ y ∈ Y −→ BK x b y by (rule exI)

qed
qed

qed

interpretation tarski-absolute-space real-hyp2-C real-hyp2-B
using hyp2-axiom6 and hyp2-axiom7 and hyp2-axiom11
by unfold-locales

8.14 The Klein–Beltrami model satisfies the dimension-specific
axioms

lemma hyp2-rep-abs-examples:
shows hyp2-rep (hyp2-abs 0) = 0 (is hyp2-rep ?a = ?ca)
and hyp2-rep (hyp2-abs (vector [1/2 ,0])) = vector [1/2 ,0]
(is hyp2-rep ?b = ?cb)
and hyp2-rep (hyp2-abs (vector [0 ,1/2])) = vector [0 ,1/2]
(is hyp2-rep ?c = ?cc)
and hyp2-rep (hyp2-abs (vector [1/4 ,1/4])) = vector [1/4 ,1/4]
(is hyp2-rep ?d = ?cd)
and hyp2-rep (hyp2-abs (vector [1/2 ,1/2])) = vector [1/2 ,1/2]
(is hyp2-rep ?t = ?ct)

proof −
have norm ?ca < 1 and norm ?cb < 1 and norm ?cc < 1 and norm ?cd < 1

and norm ?ct < 1
by (unfold norm-vec-def L2-set-def) (simp-all add: sum-2 power2-eq-square)

thus hyp2-rep ?a = ?ca and hyp2-rep ?b = ?cb and hyp2-rep ?c = ?cc
and hyp2-rep ?d = ?cd and hyp2-rep ?t = ?ct
by (simp-all add: hyp2-rep-abs)

qed

theorem hyp2-axiom8 : ∃ a b c. ¬ BK a b c ∧ ¬ BK b c a ∧ ¬ BK c a b
proof −

let ?ca = 0 :: real^2
and ?cb = vector [1/2 ,0] :: real^2
and ?cc = vector [0 ,1/2] :: real^2

219

let ?a = hyp2-abs ?ca
and ?b = hyp2-abs ?cb
and ?c = hyp2-abs ?cc

from hyp2-rep-abs-examples and non-Col-example
have ¬ (hyp2 .Col ?a ?b ?c)

by (unfold hyp2 .Col-def real-euclid.Col-def real-hyp2-B-def) simp
thus ∃ a b c. ¬ BK a b c ∧ ¬ BK b c a ∧ ¬ BK c a b

unfolding hyp2 .Col-def
by simp (rule exI)+

qed

theorem hyp2-axiom9 :
∀ p q a b c. p 6= q ∧ a p ≡K a q ∧ b p ≡K b q ∧ c p ≡K c q
−→ BK a b c ∨ BK b c a ∨ BK c a b

proof (rule allI)+
fix p q a b c
show p 6= q ∧ a p ≡K a q ∧ b p ≡K b q ∧ c p ≡K c q
−→ BK a b c ∨ BK b c a ∨ BK c a b

proof
assume p 6= q ∧ a p ≡K a q ∧ b p ≡K b q ∧ c p ≡K c q
hence p 6= q and a p ≡K a q and b p ≡K b q and c p ≡K c q by simp-all

let ?pp = Rep-hyp2 p
and ?pq = Rep-hyp2 q
and ?pa = Rep-hyp2 a
and ?pb = Rep-hyp2 b
and ?pc = Rep-hyp2 c

define l where l = proj2-line-through ?pp ?pq
define m ps pt stpq

where m = drop-perp ?pa l
and ps = endpoint-in-S ?pp ?pq
and pt = endpoint-in-S ?pq ?pp
and stpq = exp-2dist ?pp ?pq

from ‹p 6= q› have ?pp 6= ?pq by (simp add: Rep-hyp2-inject)

from Rep-hyp2
have stpq > 0 by (unfold stpq-def) (simp add: exp-2dist-positive)
hence sqrt stpq ∗ sqrt stpq = stpq

by (simp add: real-sqrt-mult [symmetric])

from Rep-hyp2 and ‹?pp 6= ?pq›
have stpq 6= 1 by (unfold stpq-def) (auto simp add: exp-2dist-1-equal)

have z-non-zero ?pa and z-non-zero ?pb and z-non-zero ?pc
by (simp-all add: Rep-hyp2 hyp2-S-z-non-zero)

have ∀ pd ∈ {?pa,?pb,?pc}.
cross-ratio ps pt (perp-foot pd l) ?pp = 1 / (sqrt stpq)

220

proof
fix pd
assume pd ∈ {?pa,?pb,?pc}
with Rep-hyp2 have pd ∈ hyp2 by auto

define pe x
where pe = perp-foot pd l

and x = cosh-dist ?pp pd

from ‹pd ∈ {?pa,?pb,?pc}› and ‹a p ≡K a q› and ‹b p ≡K b q›
and ‹c p ≡K c q›

have cosh-dist pd ?pp = cosh-dist pd ?pq
by (auto simp add: real-hyp2-C-cosh-dist)

with ‹pd ∈ hyp2 › and Rep-hyp2
have x = cosh-dist ?pq pd by (unfold x-def) (simp add: cosh-dist-swap)

from Rep-hyp2 [of p] and ‹pd ∈ hyp2 › and cosh-dist-positive [of ?pp pd]
have x 6= 0 by (unfold x-def) simp

from Rep-hyp2 and ‹pd ∈ hyp2 › and ‹?pp 6= ?pq›
have cross-ratio ps pt pe ?pp
= (cosh-dist ?pq pd ∗ sqrt stpq − cosh-dist ?pp pd)
/ (cosh-dist ?pp pd ∗ stpq − cosh-dist ?pq pd ∗ sqrt stpq)
unfolding ps-def and pt-def and pe-def and l-def and stpq-def
by (simp add: perp-foot-cross-ratio-formula)

also from x-def and ‹x = cosh-dist ?pq pd›
have . . . = (x ∗ sqrt stpq − x) / (x ∗ stpq − x ∗ sqrt stpq) by simp
also from ‹sqrt stpq ∗ sqrt stpq = stpq›
have . . . = (x ∗ sqrt stpq − x) / ((x ∗ sqrt stpq − x) ∗ sqrt stpq)

by (simp add: algebra-simps)
also from ‹x 6= 0 › and ‹stpq 6= 1 › have . . . = 1 / sqrt stpq by simp
finally show cross-ratio ps pt pe ?pp = 1 / sqrt stpq .

qed
hence cross-ratio ps pt (perp-foot ?pa l) ?pp = 1 / sqrt stpq by simp

have ∀ pd ∈ {?pa,?pb,?pc}. proj2-incident pd m
proof

fix pd
assume pd ∈ {?pa,?pb,?pc}
with Rep-hyp2 have pd ∈ hyp2 by auto
with Rep-hyp2 and ‹?pp 6= ?pq› and proj2-line-through-incident
have cross-ratio-correct ps pt ?pp (perp-foot pd l)

and cross-ratio-correct ps pt ?pp (perp-foot ?pa l)
unfolding ps-def and pt-def and l-def
by (simp-all add: endpoints-in-S-perp-foot-cross-ratio-correct)

from ‹pd ∈ {?pa,?pb,?pc}›
and ‹∀ pd ∈ {?pa,?pb,?pc}.
cross-ratio ps pt (perp-foot pd l) ?pp = 1 / (sqrt stpq)›

221

have cross-ratio ps pt (perp-foot pd l) ?pp = 1 / sqrt stpq by auto
with ‹cross-ratio ps pt (perp-foot ?pa l) ?pp = 1 / sqrt stpq›
have cross-ratio ps pt (perp-foot pd l) ?pp
= cross-ratio ps pt (perp-foot ?pa l) ?pp
by simp

hence cross-ratio ps pt ?pp (perp-foot pd l)
= cross-ratio ps pt ?pp (perp-foot ?pa l)
by (simp add: cross-ratio-swap-34 [of ps pt - ?pp])

with ‹cross-ratio-correct ps pt ?pp (perp-foot pd l)›
and ‹cross-ratio-correct ps pt ?pp (perp-foot ?pa l)›

have perp-foot pd l = perp-foot ?pa l by (rule cross-ratio-unique)
with Rep-hyp2 [of p] and ‹pd ∈ hyp2 ›

and proj2-line-through-incident [of ?pp ?pq]
and perp-foot-eq-implies-drop-perp-eq [of ?pp pd l ?pa]

have drop-perp pd l = m by (unfold m-def l-def) simp
with drop-perp-incident [of pd l] show proj2-incident pd m by simp

qed
hence proj2-set-Col {?pa,?pb,?pc}

by (unfold proj2-set-Col-def) (simp add: exI [of - m])
hence proj2-Col ?pa ?pb ?pc by (simp add: proj2-Col-iff-set-Col)
with ‹z-non-zero ?pa› and ‹z-non-zero ?pb› and ‹z-non-zero ?pc›
have real-euclid.Col (hyp2-rep a) (hyp2-rep b) (hyp2-rep c)

by (unfold hyp2-rep-def) (simp add: proj2-Col-iff-euclid-cart2)
thus BK a b c ∨ BK b c a ∨ BK c a b

by (unfold real-hyp2-B-def real-euclid.Col-def)
qed

qed

interpretation hyp2 : tarski-absolute real-hyp2-C real-hyp2-B
using hyp2-axiom8 and hyp2-axiom9
by unfold-locales

8.15 The Klein–Beltrami model violates the Euclidean ax-
iom

theorem hyp2-axiom10-false:
shows ¬ (∀ a b c d t. BK a d t ∧ BK b d c ∧ a 6= d
−→ (∃ x y. BK a b x ∧ BK a c y ∧ BK x t y))

proof
assume ∀ a b c d t. BK a d t ∧ BK b d c ∧ a 6= d
−→ (∃ x y. BK a b x ∧ BK a c y ∧ BK x t y)

let ?ca = 0 :: real^2
and ?cb = vector [1/2 ,0] :: real^2
and ?cc = vector [0 ,1/2] :: real^2
and ?cd = vector [1/4 ,1/4] :: real^2
and ?ct = vector [1/2 ,1/2] :: real^2

let ?a = hyp2-abs ?ca
and ?b = hyp2-abs ?cb

222

and ?c = hyp2-abs ?cc
and ?d = hyp2-abs ?cd
and ?t = hyp2-abs ?ct

have ?cd = (1/2) ∗R ?ct and ?cd − ?cb = (1/2) ∗R (?cc − ?cb)
by (unfold vector-def) (simp-all add: vec-eq-iff)

hence B� ?ca ?cd ?ct and B� ?cb ?cd ?cc
by (unfold real-euclid-B-def) (simp-all add: exI [of - 1/2])

hence BK ?a ?d ?t and BK ?b ?d ?c
by (unfold real-hyp2-B-def) (simp-all add: hyp2-rep-abs-examples)

have ?a 6= ?d
proof

assume ?a = ?d
hence hyp2-rep ?a = hyp2-rep ?d by simp
hence ?ca = ?cd by (simp add: hyp2-rep-abs-examples)
thus False by (simp add: vec-eq-iff forall-2)

qed
with ‹BK ?a ?d ?t› and ‹BK ?b ?d ?c›

and ‹∀ a b c d t. BK a d t ∧ BK b d c ∧ a 6= d
−→ (∃ x y. BK a b x ∧ BK a c y ∧ BK x t y)›

obtain x and y where BK ?a ?b x and BK ?a ?c y and BK x ?t y
by blast

let ?cx = hyp2-rep x
and ?cy = hyp2-rep y

from ‹BK ?a ?b x› and ‹BK ?a ?c y› and ‹BK x ?t y›
have B� ?ca ?cb ?cx and B� ?ca ?cc ?cy and B� ?cx ?ct ?cy

by (unfold real-hyp2-B-def) (simp-all add: hyp2-rep-abs-examples)

from ‹B� ?ca ?cb ?cx› and ‹B� ?ca ?cc ?cy› and ‹B� ?cx ?ct ?cy›
obtain j and k and l where ?cb − ?ca = j ∗R (?cx − ?ca)

and ?cc − ?ca = k ∗R (?cy − ?ca)
and l ≥ 0 and l ≤ 1 and ?ct − ?cx = l ∗R (?cy − ?cx)
by (unfold real-euclid-B-def) fast

from ‹?cb − ?ca = j ∗R (?cx − ?ca)› and ‹?cc − ?ca = k ∗R (?cy − ?ca)›
have j 6= 0 and k 6= 0 by (auto simp add: vec-eq-iff forall-2)
with ‹?cb − ?ca = j ∗R (?cx − ?ca)› and ‹?cc − ?ca = k ∗R (?cy − ?ca)›
have ?cx = (1/j) ∗R ?cb and ?cy = (1/k) ∗R ?cc by simp-all
hence ?cx$2 = 0 and ?cy$1 = 0 by simp-all

from ‹?ct − ?cx = l ∗R (?cy − ?cx)›
have ?ct = (1 − l) ∗R ?cx + l ∗R ?cy by (simp add: algebra-simps)
with ‹?cx$2 = 0 › and ‹?cy$1 = 0 ›
have ?ct$1 = (1 − l) ∗ (?cx$1) and ?ct$2 = l ∗ (?cy$2) by simp-all
hence l ∗ (?cy$2) = 1/2 and (1 − l) ∗ (?cx$1) = 1/2 by simp-all

have ?cx$1 ≤ |?cx$1 | by simp

223

also have . . . ≤ norm ?cx by (rule component-le-norm-cart)
also have . . . < 1 by (rule norm-hyp2-rep-lt-1)
finally have ?cx$1 < 1 .
with ‹l ≤ 1 › and mult-less-cancel-left [of 1 − l ?cx$1 1]
have (1 − l) ∗ ?cx$1 ≤ 1 − l by auto
with ‹(1 − l) ∗ (?cx$1) = 1/2 › have l ≤ 1/2 by simp

have ?cy$2 ≤ |?cy$2 | by simp
also have . . . ≤ norm ?cy by (rule component-le-norm-cart)
also have . . . < 1 by (rule norm-hyp2-rep-lt-1)
finally have ?cy$2 < 1 .
with ‹l ≥ 0 › and mult-less-cancel-left [of l ?cy$2 1]
have l ∗ ?cy$2 ≤ l by auto
with ‹l ∗ (?cy$2) = 1/2 › have l ≥ 1/2 by simp
with ‹l ≤ 1/2 › have l = 1/2 by simp
with ‹l ∗ (?cy$2) = 1/2 › have ?cy$2 = 1 by simp
with ‹?cy$2 < 1 › show False by simp

qed

theorem hyp2-not-tarski: ¬ (tarski real-hyp2-C real-hyp2-B)
using hyp2-axiom10-false
by (unfold tarski-def tarski-space-def tarski-space-axioms-def) simp

Therefore axiom 10 is independent.
end

References
[1] K. Borsuk and W. Szmielew. Foundations of Geometry: Euclidean and

Bolyai-Lobachevskian Geometry; Projective Geometry. North-Holland
Publishing Company, 1960. Translated from Polish by Erwin Marquit.

[2] T. J. M. Makarios. A mechanical verification of the independence of
Tarski’s Euclidean axiom. Master’s thesis, Victoria University of Welling-
ton, New Zealand, 2012. http://researcharchive.vuw.ac.nz/handle/
10063/2315.

[3] W. Schwabhäuser, W. Szmielew, and A. Tarski. Metamathematische
Methoden in der Geometrie. Springer-Verlag, 1983.

224

http://researcharchive.vuw.ac.nz/handle/10063/2315
http://researcharchive.vuw.ac.nz/handle/10063/2315

	Metric and semimetric spaces
	Miscellaneous results
	Tarski's geometry
	The axioms
	Semimetric spaces satisfy the first three axioms
	Some consequences of the first three axioms
	Some consequences of the first five axioms
	Simple theorems about betweenness
	Simple theorems about congruence and betweenness

	Real Euclidean space and Tarski's axioms
	Real Euclidean space satisfies the first five axioms
	Real Euclidean space also satisfies axioms 6, 7, and 11
	Real Euclidean space satisfies the Euclidean axiom
	The real Euclidean plane
	Special cases of theorems of Tarski's geometry

	Linear algebra
	Matrices

	Right group actions
	Projective geometry
	Proportionality on non-zero vectors
	Points of the real projective plane
	Lines of the real projective plane
	Collineations of the real projective plane
	As a group
	As a group action
	Parts of some Statements from borsuk

	Cross ratios
	Cartesian subspace of the real projective plane

	The hyperbolic plane and Tarski's axioms
	Characterizing a specific conic in the projective plane
	Some specific points and lines of the projective plane
	Definition of the Klein–Beltrami model of the hyperbolic plane
	K-isometries map the interior of the conic to itself
	The K-isometries form a group action
	The Klein–Beltrami model satisfies Tarski's first three axioms
	Some lemmas about betweenness
	The Klein–Beltrami model satisfies axiom 4
	More betweenness theorems
	Perpendicularity
	Functions of distance
	A formula for a cross ratio involving a perpendicular foot

	The Klein–Beltrami model satisfies axiom 5
	The Klein–Beltrami model satisfies axioms 6, 7, and 11
	The Klein–Beltrami model satisfies the dimension-specific axioms
	The Klein–Beltrami model violates the Euclidean axiom

