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Abstract

We mechanise the logic TLA∗ [8], an extension of Lamport’s Tem-
poral Logic of Actions (TLA) [5] for specifying and reasoning about
concurrent and reactive systems. Aiming at a framework for mechanis-
ing the verification of TLA (or TLA∗) specifications, this contribution
reuses some elements from a previous axiomatic encoding of TLA in
Isabelle/HOL by the second author [7], which has been part of the
Isabelle distribution. In contrast to that previous work, we give here
a shallow, definitional embedding, with the following highlights:

• a theory of infinite sequences, including a formalisation of the
concepts of stuttering invariance central to TLA and TLA*;

• a definition of the semantics of TLA*, which extends TLA by a
mutually-recursive definition of formulas and pre-formulas, gen-
eralising TLA action formulas;

• a substantial set of derived proof rules, including the TLA* ax-
ioms and Lamport’s proof rules for system verification;

• a set of examples illustrating the usage of Isabelle/TLA* for rea-
soning about systems.

Note that this work is unrelated to the ongoing development of a proof
system for the specification language TLA+, which includes an encod-
ing of TLA+ as a new Isabelle object logic [1].

A previous version of this embedding has been used heavily in the
work described in [4].

Contents
1 (Infinite) Sequences 3

1.1 Some operators on sequences . . . . . . . . . . . . . . . . . . 3
1.1.1 Properties of first and second . . . . . . . . . . . . . . 4
1.1.2 Properties of (|s) . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Properties of (##) . . . . . . . . . . . . . . . . . . . . 5

1.2 Finite and Empty Sequences . . . . . . . . . . . . . . . . . . 5
1.2.1 Properties of emptyseq . . . . . . . . . . . . . . . . . . 6

1



1.2.2 Properties of Sequence.last and laststate . . . . . . . . 7
1.3 Stuttering Invariance . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Properties of nonstutseq . . . . . . . . . . . . . . . . . 8
1.3.2 Properties of nextnat . . . . . . . . . . . . . . . . . . . 8
1.3.3 Properties of nextsuffix . . . . . . . . . . . . . . . . . 11
1.3.4 Properties of next . . . . . . . . . . . . . . . . . . . . 11
1.3.5 Properties of \ . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Similarity of Sequences . . . . . . . . . . . . . . . . . . . . . . 13
1.4.1 Properties of (≈) . . . . . . . . . . . . . . . . . . . . . 13

2 Representing Intensional Logic 19
2.1 Abstract Syntax and Definitions . . . . . . . . . . . . . . . . 20
2.2 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Lemmas and Tactics . . . . . . . . . . . . . . . . . . . . . . . 24

3 Semantics 26
3.1 Types of Formulas . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Semantics of TLA* . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . 27
3.3 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . 28
3.4 Properties of Operators . . . . . . . . . . . . . . . . . . . . . 29
3.5 Invariance Under Stuttering . . . . . . . . . . . . . . . . . . . 29

3.5.1 Properties of -stutinv . . . . . . . . . . . . . . . . . . . 30
3.5.2 Properties of -nstutinv . . . . . . . . . . . . . . . . . . 34
3.5.3 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . 35

4 Reasoning about PreFormulas 36
4.1 Lemmas about Unchanged . . . . . . . . . . . . . . . . . . . . 37
4.2 Lemmas about after . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Lemmas about before . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Some general properties . . . . . . . . . . . . . . . . . . . . . 39
4.5 Unlifting attributes and methods . . . . . . . . . . . . . . . . 39

5 A Proof System for TLA* 40
5.1 The Basic Axioms . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Derived Theorems . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Some other useful derived theorems . . . . . . . . . . . . . . . 46
5.4 Theorems about the eventually operator . . . . . . . . . . . . 52
5.5 Theorems about the leadsto operator . . . . . . . . . . . . . . 56
5.6 Lemmas about the next operator . . . . . . . . . . . . . . . . 63
5.7 Higher Level Derived Rules . . . . . . . . . . . . . . . . . . . 65

2



6 Liveness 67
6.1 Properties of -Enabled . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Fairness Properties . . . . . . . . . . . . . . . . . . . . . . . . 69
6.3 Stuttering Invariance . . . . . . . . . . . . . . . . . . . . . . . 75

7 Representing state in TLA* 75
7.1 Temporal Quantifiers . . . . . . . . . . . . . . . . . . . . . . . 78

8 A simple illustrative example 79

9 Lamport’s Inc example 80

10 Refining a Buffer Specification 93
10.1 Buffer specification . . . . . . . . . . . . . . . . . . . . . . . . 93
10.2 Properties of the buffer . . . . . . . . . . . . . . . . . . . . . 94
10.3 Two FIFO buffers in a row implement a buffer . . . . . . . . 98

1 (Infinite) Sequences
theory Sequence
imports Main
begin

Lamport’s Temporal Logic of Actions (TLA) is a linear-time temporal logic,
and its semantics is defined over infinite sequence of states, which we simply
represent by the type ′a seq, defined as an abbreviation for the type nat ⇒
′a, where ′a is the type of sequence elements.
This theory defines some useful notions about such sequences, and in par-
ticular concepts related to stuttering (finite repetitions of states), which
are important for the semantics of TLA. We identify a finite sequence with
an infinite sequence that ends in infinite stuttering. In this way, we avoid
the complications of having to handle both finite and infinite sequences of
states: see e.g. Devillers et al [2] who discuss several variants of representing
possibly infinite sequences in HOL, Isabelle and PVS.
type-synonym ′a seq = nat ⇒ ′a

1.1 Some operators on sequences

Some general functions on sequences are provided
definition first :: ′a seq ⇒ ′a
where first s ≡ s 0

definition second :: ( ′a seq) ⇒ ′a
where second s ≡ s 1
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definition suffix :: ′a seq ⇒ nat ⇒ ′a seq (infixl ‹|s› 60 )
where s |s i ≡ λ n. s (n+i)

definition tail :: ′a seq ⇒ ′a seq
where tail s ≡ s |s 1

definition
app :: ′a ⇒ ( ′a seq) ⇒ ( ′a seq) (infixl ‹##› 60 )

where
s ## σ ≡ λ n. if n=0 then s else σ (n − 1 )

s |s i returns the suffix of sequence s from index i. first returns the first
element of a sequence while second returns the second element. tail returns
the sequence starting at the second element. s ## σ prefixes the sequence
σ by element s.

1.1.1 Properties of first and second
lemma first-tail-second: first(tail s) = second s

by (simp add: first-def second-def tail-def suffix-def )

1.1.2 Properties of (|s)
lemma suffix-first: first (s |s n) = s n

by (auto simp add: suffix-def first-def )

lemma suffix-second: second (s |s n) = s (Suc n)
by (auto simp add: suffix-def second-def )

lemma suffix-plus: s |s n |s m = s |s (m + n)
by (simp add: suffix-def add.assoc)

lemma suffix-commute: ((s |s n) |s m) = ((s |s m) |s n)
by (simp add: suffix-plus add.commute)

lemma suffix-plus-com: s |s m |s n = s |s (m + n)
proof −

have s |s n |s m = s |s (m + n) by (rule suffix-plus)
thus s |s m |s n = s |s (m + n) by (simp add: suffix-commute)

qed

lemma suffix-zero[simp]: s |s 0 = s
by (simp add: suffix-def )

lemma suffix-tail: s |s 1 = tail s
by (simp add: tail-def )

lemma tail-suffix-suc: s |s (Suc n) = tail (s |s n)
by (simp add: suffix-def tail-def )
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1.1.3 Properties of (##)

lemma seq-app-second: (s ## σ) 1 = σ 0
by (simp add: app-def )

lemma seq-app-first: (s ## σ) 0 = s
by (simp add: app-def )

lemma seq-app-first-tail: (first s) ## (tail s) = s
proof (rule ext)

fix x
show (first s ## tail s) x = s x

by (simp add: first-def app-def suffix-def tail-def )
qed

lemma seq-app-tail: tail (x ## s) = s
by (simp add: app-def tail-def suffix-def )

lemma seq-app-greater-than-zero: n > 0 =⇒ (s ## σ) n = σ (n − 1 )
by (simp add: app-def )

1.2 Finite and Empty Sequences

We identify finite and empty sequences and prove lemmas about them.
definition fin :: ( ′a seq) ⇒ bool
where fin s ≡ ∃ i. ∀ j ≥ i. s j = s i

abbreviation inf :: ( ′a seq) ⇒ bool
where inf s ≡ ¬(fin s)

definition last :: ( ′a seq) ⇒ nat
where last s ≡ LEAST i. (∀ j ≥ i. s j = s i)

definition laststate :: ( ′a seq) ⇒ ′a
where laststate s ≡ s (last s)

definition emptyseq :: ( ′a seq) ⇒ bool
where emptyseq ≡ λ s. ∀ i. s i = s 0

abbreviation notemptyseq :: ( ′a seq) ⇒ bool
where notemptyseq s ≡ ¬(emptyseq s)

Predicate fin holds if there is an element in the sequence such that all sub-
sequent elements are identical, i.e. the sequence is finite. Sequence.last s
returns the smallest index from which on all elements of a finite sequence
s are identical. Note that if s is not finite then an arbitrary number is re-
turned. laststate returns the last element of a finite sequence. We assume
that the sequence is finite when using Sequence.last and laststate. Predicate
emptyseq identifies empty sequences – i.e. all states in the sequence are
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identical to the initial one, while notemptyseq holds if the given sequence is
not empty.

1.2.1 Properties of emptyseq
lemma empty-is-finite: assumes emptyseq s shows fin s

using assms by (auto simp: fin-def emptyseq-def )

lemma empty-suffix-is-empty: assumes H : emptyseq s shows emptyseq (s |s n)
proof (clarsimp simp: emptyseq-def )
fix i
from H have (s |s n) i = s 0 by (simp add: emptyseq-def suffix-def )
moreover
from H have (s |s n) 0 = s 0 by (simp add: emptyseq-def suffix-def )
ultimately
show (s |s n) i = (s |s n) 0 by simp

qed

lemma suc-empty: assumes H1 : emptyseq (s |s m) shows emptyseq (s |s (Suc
m))
proof −

from H1 have emptyseq ((s |s m) |s 1 ) by (rule empty-suffix-is-empty)
thus ?thesis by (simp add: suffix-plus)

qed

lemma empty-suffix-exteq: assumes H :emptyseq s shows (s |s n) m = s m
proof (unfold suffix-def )

from H have s (m+n) = s 0 by (simp add: emptyseq-def )
moreover
from H have s m = s 0 by (simp add: emptyseq-def )
ultimately show s (m + n) = s m by simp

qed

lemma empty-suffix-eq: assumes H : emptyseq s shows (s |s n) = s
proof (rule ext)

fix m
from H show (s |s n) m = s m by (rule empty-suffix-exteq)

qed

lemma seq-empty-all: assumes H : emptyseq s shows s i = s j
proof −

from H have s i = s 0 by (simp add: emptyseq-def )
moreover
from H have s j = s 0 by (simp add: emptyseq-def )
ultimately
show ?thesis by simp

qed
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1.2.2 Properties of Sequence.last and laststate
lemma fin-stut-after-last: assumes H : fin s shows ∀ j ≥ last s. s j = s (last s)
proof (clarify)

fix j
assume j: j ≥ last s
from H obtain i where ∀ j ≥ i. s j = s i (is ?P i) by (auto simp: fin-def )
hence ?P (last s) unfolding last-def by (rule LeastI )
with j show s j = s (last s) by blast

qed

1.3 Stuttering Invariance

This subsection provides functions for removing stuttering steps of sequences,
i.e. we formalise Lamports \ operator. Our formal definition is close to that
of Wahab in the PVS prover.
The key novelty with the Sequence theory, is the treatment of stuttering in-
variance, which enables verification of stuttering invariance of the operators
derived using it. Such proofs require comparing sequences up to stuttering.
Here, Lamport’s [5] method is used to mechanise the equality of sequences
up to stuttering: he defines the \ operator, which collapses a sequence by
removing all stuttering steps, except possibly infinite stuttering at the end
of the sequence. These are left unchanged.
definition nonstutseq :: ( ′a seq) ⇒ bool
where nonstutseq s ≡ ∀ i. s i = s (Suc i) −→ (∀ j > i. s i = s j)

definition stutstep :: ( ′a seq) ⇒ nat ⇒ bool
where stutstep s n ≡ (s n = s (Suc n))

definition nextnat :: ( ′a seq) ⇒ nat
where nextnat s ≡ if emptyseq s then 0 else LEAST i. s i 6= s 0

definition nextsuffix :: ( ′a seq) ⇒ ( ′a seq)
where nextsuffix s ≡ s |s (nextnat s)

fun next :: nat ⇒ ( ′a seq) ⇒ ( ′a seq) where
next 0 = id

| next (Suc n) = nextsuffix o (next n)

definition collapse :: ( ′a seq) ⇒ ( ′a seq) (‹\›)
where \ s ≡ λ n. (next n s) 0

Predicate nonstutseq identifies sequences without any stuttering steps – ex-
cept possibly for infinite stuttering at the end. Further, stutstep s n is a
predicate which holds if the element after s n is equal to s n, i.e. Suc n is
a stuttering step. \ s formalises Lamports \ operator. It returns the first
state of the result of next n s. next n s finds suffix of the nth change. Hence
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the first element, which \ s returns, is the state after the nth change. next n
s is defined by primitive recursion on n using function composition of func-
tion nextsuffix. E.g. next 3 s equals nextsuffix (nextsuffix (nextsuffix s)).
nextsuffix s returns the suffix of the sequence starting at the next changing
state. It uses nextnat to obtain this. All the real computation is done in this
function. Firstly, an empty sequence will obviously not contain any changes,
and 0 is therefore returned. In this case nextsuffix behaves like the identify
function. If the sequence is not empty then the smallest number i such that
s i is different from the initial state is returned. This is achieved by Least.

1.3.1 Properties of nonstutseq
lemma seq-empty-is-nonstut:

assumes H : emptyseq s shows nonstutseq s
using H by (auto simp: nonstutseq-def seq-empty-all)

lemma notempty-exist-nonstut:
assumes H : ¬ emptyseq (s |s m) shows ∃ i. s i 6= s m ∧ i > m

using H proof (auto simp: emptyseq-def suffix-def )
fix i
assume i: s (i + m) 6= s m
hence i 6= 0 by (intro notI , simp)
with i show ?thesis by auto

qed

1.3.2 Properties of nextnat
lemma nextnat-le-unch: assumes H : n < nextnat s shows s n = s 0
proof (cases emptyseq s)

assume emptyseq s
hence nextnat s = 0 by (simp add: nextnat-def )
with H show ?thesis by auto

next
assume ¬ emptyseq s
hence a1 : nextnat s = (LEAST i. s i 6= s 0 ) by (simp add: nextnat-def )
show ?thesis
proof (rule ccontr)

assume a2 : s n 6= s 0 (is ?P n)
hence (LEAST i. s i 6= s 0 ) ≤ n by (rule Least-le)
hence ¬(n < (LEAST i. s i 6= s 0 )) by auto
also from H a1 have n < (LEAST i. s i 6= s 0 ) by simp
ultimately show False by auto

qed
qed

lemma stutnempty:
assumes H : ¬ stutstep s n shows ¬ emptyseq (s |s n)

proof (unfold emptyseq-def suffix-def )
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from H have s (Suc n) 6= s n by (auto simp add: stutstep-def )
hence s (1+n) 6= s (0+n) by simp
thus ¬(∀ i. s (i+n) = s (0+n)) by blast

qed

lemma notstutstep-nexnat1 :
assumes H : ¬ stutstep s n shows nextnat (s |s n) = 1

proof −
from H have h ′: nextnat (s |s n) = (LEAST i. (s |s n) i 6= (s |s n) 0 )

by (auto simp add: nextnat-def stutnempty)
from H have s (Suc n) 6= s n by (auto simp add: stutstep-def )
hence (s |s n) 1 6= (s |s n) 0 (is ?P 1 ) by (auto simp add: suffix-def )
hence Least ?P ≤ 1 by (rule Least-le)
hence g1 : Least ?P = 0 ∨ Least ?P = 1 by auto
with h ′ have g1 ′: nextnat (s |s n) = 0 ∨ nextnat (s |s n) = 1 by auto
also have nextnat (s |s n) 6= 0
proof −

from H have ¬ emptyseq (s |s n) by (rule stutnempty)
then obtain i where (s |s n) i 6= (s |s n) 0 by (auto simp add: emptyseq-def )
hence (s |s n) (LEAST i. (s |s n) i 6= (s |s n) 0 ) 6= (s |s n) 0 by (rule LeastI )
with h ′ have g2 : (s |s n) (nextnat (s |s n)) 6= (s |s n) 0 by auto
show (nextnat (s |s n)) 6= 0
proof

assume (nextnat (s |s n)) = 0
with g2 show False by simp

qed
qed
ultimately show nextnat (s |s n) = 1 by auto

qed

lemma stutstep-notempty-notempty:
assumes h1 : emptyseq (s |s Suc n) (is emptyseq ?sn)

and h2 : stutstep s n
shows emptyseq (s |s n) (is emptyseq ?s)

proof (auto simp: emptyseq-def )
fix k
show ?s k = ?s 0
proof (cases k)

assume k = 0 thus ?thesis by simp
next

fix m
assume k: k = Suc m
hence ?s k = ?sn m by (simp add: suffix-def )
also from h1 have ... = ?sn 0 by (simp add: emptyseq-def )
also from h2 have ... = s n by (simp add: suffix-def stutstep-def )
finally show ?thesis by (simp add: suffix-def )

qed
qed
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lemma stutstep-empty-suc:
assumes stutstep s n
shows emptyseq (s |s Suc n) = emptyseq (s |s n)

using assms by (auto elim: stutstep-notempty-notempty suc-empty)

lemma stutstep-notempty-sucnextnat:
assumes h1 : ¬ emptyseq (s |s n) and h2 : stutstep s n
shows (nextnat (s |s n)) = Suc (nextnat (s |s (Suc n)))

proof −
from h2 have g1 : ¬(s (0+n) 6= s (Suc n)) (is ¬ ?P 0 ) by (auto simp add:

stutstep-def )
from h1 obtain i where s (i+n) 6= s n by (auto simp: emptyseq-def suffix-def )
with h2 have g2 : s (i+n) 6= s (Suc n) (is ?P i) by (simp add: stutstep-def )
from g2 g1 have (LEAST n. ?P n) = Suc (LEAST n. ?P (Suc n)) by (rule

Least-Suc)
from g2 g1 have (LEAST i. s (i+n) 6= s (Suc n)) = Suc (LEAST i. s ((Suc

i)+n) 6= s (Suc n))
by (rule Least-Suc)

hence G1 : (LEAST i. s (i+n) 6= s (Suc n)) = Suc (LEAST i. s (i+Suc n) 6= s
(Suc n)) by auto

from h1 h2 have ¬ emptyseq (s |s Suc n) by (simp add: stutstep-empty-suc)
hence nextnat (s |s Suc n) = (LEAST i. (s |s Suc n) i 6= (s |s Suc n) 0 )

by (auto simp add: nextnat-def )
hence g1 : nextnat (s |s Suc n) = (LEAST i. s (i+(Suc n)) 6= s (Suc n))

by (simp add: suffix-def )
from h1 have nextnat (s |s n) = (LEAST i. (s |s n) i 6= (s |s n) 0 )

by (auto simp add: nextnat-def )
hence g2 : nextnat (s |s n) = (LEAST i. s (i+n) 6= s n) by (simp add: suffix-def )
with h2 have g2 ′: nextnat (s |s n) = (LEAST i. s (i+n) 6= s (Suc n))

by (auto simp add: stutstep-def )
from G1 g1 g2 ′ show ?thesis by auto

qed

lemma nextnat-empty-neq: assumes H : ¬ emptyseq s shows s (nextnat s) 6= s 0
proof −

from H have a1 : nextnat s = (LEAST i. s i 6= s 0 ) by (simp add: nextnat-def )
from H obtain i where s i 6= s 0 by (auto simp: emptyseq-def )
hence s (LEAST i. s i 6= s 0 ) 6= s 0 by (rule LeastI )
with a1 show ?thesis by auto

qed

lemma nextnat-empty-gzero: assumes H : ¬ emptyseq s shows nextnat s > 0
proof −

from H have a1 : s (nextnat s) 6= s 0 by (rule nextnat-empty-neq)
have nextnat s 6= 0
proof

assume nextnat s = 0
with a1 show False by simp

qed
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thus nextnat s > 0 by simp
qed

1.3.3 Properties of nextsuffix
lemma empty-nextsuffix:

assumes H : emptyseq s shows nextsuffix s = s
using H by (simp add: nextsuffix-def nextnat-def )

lemma empty-nextsuffix-id:
assumes H : emptyseq s shows nextsuffix s = id s
using H by (simp add: empty-nextsuffix)

lemma notstutstep-nextsuffix1 :
assumes H : ¬ stutstep s n shows nextsuffix (s |s n) = s |s (Suc n)

proof (unfold nextsuffix-def )
show (s |s n |s (nextnat (s |s n))) = s |s (Suc n)
proof −

from H have nextnat (s |s n) = 1 by (rule notstutstep-nexnat1 )
hence (s |s n |s (nextnat (s |s n))) = s |s n |s 1 by auto
thus ?thesis by (simp add: suffix-def )

qed
qed

1.3.4 Properties of next
lemma next-suc-suffix: next (Suc n) s = nextsuffix (next n s)

by simp

lemma next-suffix-com: nextsuffix (next n s) = (next n (nextsuffix s))
by (induct n, auto)

lemma next-plus: next (m+n) s = next m (next n s)
by (induct m, auto)

lemma next-empty: assumes H : emptyseq s shows next n s = s
proof (induct n)

from H show next 0 s = s by auto
next

fix n
assume a1 : next n s = s
have next (Suc n) s = nextsuffix (next n s) by auto
with a1 have next (Suc n) s = nextsuffix s by simp
with H show next (Suc n) s = s

by (simp add: nextsuffix-def nextnat-def )
qed

lemma notempty-nextnotzero:
assumes H : ¬emptyseq s shows (next (Suc 0 ) s) 0 6= s 0

proof −
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from H have g1 : s (nextnat s) 6= s 0 by (rule nextnat-empty-neq)
have next (Suc 0 ) s = nextsuffix s by auto
hence (next (Suc 0 ) s) 0 = s (nextnat s) by (simp add: nextsuffix-def suffix-def )
with g1 show ?thesis by simp

qed

lemma next-ex-id: ∃ i. s i = (next m s) 0
proof −

have ∃ i. (s |s i) = (next m s)
proof (induct m)

have s |s 0 = next 0 s by simp
thus ∃ i. (s |s i) = (next 0 s) ..

next
fix m
assume a1 : ∃ i. (s |s i) = (next m s)
then obtain i where a1 ′: (s |s i) = (next m s) ..
have next (Suc m) s = nextsuffix (next m s) by auto
hence next (Suc m) s = (next m s) |s (nextnat (next m s)) by (simp add:

nextsuffix-def )
hence ∃ i. next (Suc m) s = (next m s) |s i ..
then obtain j where next (Suc m) s = (next m s) |s j ..
with a1 ′ have next (Suc m) s = (s |s i) |s j by simp
hence next (Suc m) s = (s |s (j+i)) by (simp add: suffix-plus)
hence (s |s (j+i)) = next (Suc m) s by simp
thus ∃ i. (s |s i) = (next (Suc m) s) ..

qed
then obtain i where (s |s i) = (next m s) ..
hence (s |s i) 0 = (next m s) 0 by auto
hence s i = (next m s) 0 by (auto simp add: suffix-def )
thus ?thesis ..

qed

1.3.5 Properties of \

lemma emptyseq-collapse-eq: assumes A1 : emptyseq s shows \ s = s
proof (unfold collapse-def , rule ext)

fix n
from A1 have next n s = s by (rule next-empty)
moreover
from A1 have s n = s 0 by (simp add: emptyseq-def )
ultimately
show (next n s) 0 = s n by simp

qed

lemma empty-collapse-empty:
assumes H : emptyseq s shows emptyseq (\ s)
using H by (simp add: emptyseq-collapse-eq)

lemma collapse-empty-empty:
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assumes H : emptyseq (\ s) shows emptyseq s
proof (rule ccontr)

assume a1 : ¬emptyseq s
from H have ∀ i. (next i s) 0 = s 0 by (simp add: collapse-def emptyseq-def )
moreover
from a1 have (next (Suc 0 ) s) 0 6= s 0 by (rule notempty-nextnotzero)
ultimately show False by blast

qed

lemma collapse-empty-iff-empty [simp]: emptyseq (\ s) = emptyseq s
by (auto elim: empty-collapse-empty collapse-empty-empty)

1.4 Similarity of Sequences

Since adding or removing stuttering steps does not change the validity of
a stuttering-invarant formula, equality is often too strong, and the weaker
equality up to stuttering is sufficient. This is often called similarity (≈) of
sequences in the literature, and is required to show that logical operators
are stuttering invariant. This is mechanised as:
definition seqsimilar :: ( ′a seq) ⇒ ( ′a seq) ⇒ bool (infixl ‹≈› 50 )
where σ ≈ τ ≡ (\ σ) = (\ τ)

1.4.1 Properties of (≈)

lemma seqsim-refl [iff ]: s ≈ s
by (simp add: seqsimilar-def )

lemma seqsim-sym: assumes H : s ≈ t shows t ≈ s
using H by (simp add: seqsimilar-def )

lemma seqeq-imp-sim: assumes H : s = t shows s ≈ t
using H by simp

lemma seqsim-trans [trans]: assumes h1 : s ≈ t and h2 : t ≈ z shows s ≈ z
using assms by (simp add: seqsimilar-def )

theorem sim-first: assumes H : s ≈ t shows first s = first t
proof −

from H have (\ s) 0 = (\ t) 0 by (simp add: seqsimilar-def )
thus ?thesis by (simp add: collapse-def first-def )

qed

lemmas sim-first2 = sim-first[unfolded first-def ]

lemma tail-sim-second: assumes H : tail s ≈ tail t shows second s = second t
proof −

from H have first (tail s) = first (tail t) by (simp add: sim-first)
thus second s = second t by (simp add: first-tail-second)

13



qed

lemma seqsimilarI :
assumes 1 : first s = first t and 2 : nextsuffix s ≈ nextsuffix t
shows s ≈ t
unfolding seqsimilar-def collapse-def

proof
fix n
show next n s 0 = next n t 0
proof (cases n)

assume n = 0
with 1 show ?thesis by (simp add: first-def )

next
fix m
assume m: n = Suc m
from 2 have next m (nextsuffix s) 0 = next m (nextsuffix t) 0

unfolding seqsimilar-def collapse-def by (rule fun-cong)
with m show ?thesis by (simp add: next-suffix-com)

qed
qed

lemma seqsim-empty-empty:
assumes H1 : s ≈ t and H2 : emptyseq s shows emptyseq t

proof −
from H2 have emptyseq (\ s) by simp
with H1 have emptyseq (\ t) by (simp add: seqsimilar-def )
thus ?thesis by simp

qed

lemma seqsim-empty-iff-empty:
assumes H : s ≈ t shows emptyseq s = emptyseq t

proof
assume emptyseq s with H show emptyseq t by (rule seqsim-empty-empty)

next
assume t: emptyseq t
from H have t ≈ s by (rule seqsim-sym)
from this t show emptyseq s by (rule seqsim-empty-empty)

qed

lemma seq-empty-eq:
assumes H1 : s 0 = t 0 and H2 : emptyseq s and H3 : emptyseq t
shows s = t

proof (rule ext)
fix n
from assms have t n = s n by (auto simp: emptyseq-def )
thus s n = t n by simp

qed

lemma seqsim-notstutstep:

14



assumes H : ¬ (stutstep s n) shows (s |s (Suc n)) ≈ nextsuffix (s |s n)
using H by (simp add: notstutstep-nextsuffix1 )

lemma stut-nextsuf-suc:
assumes H : stutstep s n shows nextsuffix (s |s n) = nextsuffix (s |s (Suc n))

proof (cases emptyseq (s |s n))
case True
hence g1 : nextsuffix (s |s n) = (s |s n) by (simp add: nextsuffix-def nextnat-def )
from True have g2 : nextsuffix (s |s Suc n) = (s |s Suc n)

by (simp add: suc-empty nextsuffix-def nextnat-def )
have (s |s n) = (s |s Suc n)
proof

fix x
from True have s (x + n) = s (0 + n) s (Suc x + n) = s (0 + n)

unfolding emptyseq-def suffix-def by (blast+)
thus (s |s n) x = (s |s Suc n) x by (simp add: suffix-def )

qed
with g1 g2 show ?thesis by auto

next
case False
with H have (nextnat (s |s n)) = Suc (nextnat (s |s Suc n))

by (simp add: stutstep-notempty-sucnextnat)
thus ?thesis

by (simp add: nextsuffix-def suffix-plus)
qed

lemma seqsim-suffix-seqsim:
assumes H : s ≈ t shows nextsuffix s ≈ nextsuffix t
unfolding seqsimilar-def collapse-def

proof
fix n
from H have (next (Suc n) s) 0 = (next (Suc n) t) 0

unfolding seqsimilar-def collapse-def by (rule fun-cong)
thus next n (nextsuffix s) 0 = next n (nextsuffix t) 0

by (simp add: next-suffix-com)
qed

lemma seqsim-stutstep:
assumes H : stutstep s n shows (s |s (Suc n)) ≈ (s |s n) (is ?sn ≈ ?s)
unfolding seqsimilar-def collapse-def

proof
fix m
show next m (s |s Suc n) 0 = next m (s |s n) 0
proof (cases m)

assume m=0
with H show ?thesis by (simp add: suffix-def stutstep-def )

next
fix k
assume m: m = Suc k
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with H have next m (s |s Suc n) = next k (nextsuffix (s |s n))
by (simp add: stut-nextsuf-suc next-suffix-com)

moreover from m have next m (s |s n) = next k (nextsuffix (s |s n))
by (simp add: next-suffix-com)

ultimately show next m (s |s Suc n) 0 = next m (s |s n) 0 by simp
qed

qed

lemma addfeqstut: stutstep ((first t) ## t) 0
by (simp add: first-def stutstep-def app-def suffix-def )

lemma addfeqsim: ((first t) ## t) ≈ t
proof −

have stutstep ((first t) ## t) 0 by (rule addfeqstut)
hence (((first t) ## t) |s (Suc 0 )) ≈ (((first t) ## t) |s 0 ) by (rule se-

qsim-stutstep)
hence tail ((first t) ## t) ≈ ((first t) ## t) by (simp add: suffix-def tail-def )
hence t ≈ ((first t) ## t) by (simp add: tail-def app-def suffix-def )
thus ?thesis by (rule seqsim-sym)

qed

lemma addfirststut:
assumes H : first s = second s shows s ≈ tail s

proof −
have g1 : (first s) ## (tail s) = s by (rule seq-app-first-tail)
from H have (first s) = first (tail s)

by (simp add: first-def second-def tail-def suffix-def )
hence (first s) ## (tail s) ≈ (tail s) by (simp add: addfeqsim)
with g1 show ?thesis by simp

qed

lemma app-seqsimilar :
assumes h1 : s ≈ t shows (x ## s) ≈ (x ## t)

proof (cases stutstep (x ## s) 0 )
case True
from h1 have first s = first t by (rule sim-first)
with True have a2 : stutstep (x ## t) 0

by (simp add: stutstep-def first-def app-def )
from True have ((x ## s) |s (Suc 0 )) ≈ ((x ## s) |s 0 ) by (rule seqsim-stutstep)
hence tail (x ## s) ≈ (x ## s) by (simp add: tail-def suffix-def )
hence g1 : s ≈ (x ## s) by (simp add: app-def tail-def suffix-def )
from a2 have ((x ## t) |s (Suc 0 )) ≈ ((x ## t) |s 0 ) by (rule seqsim-stutstep)
hence tail (x ## t) ≈ (x ## t) by (simp add: tail-def suffix-def )
hence g2 : t ≈ (x ## t) by (simp add: app-def tail-def suffix-def )
from h1 g2 have s ≈ (x ## t) by (rule seqsim-trans)
from this[THEN seqsim-sym] g1 show (x ## s) ≈ (x ## t)

by (rule seqsim-sym[OF seqsim-trans])
next

case False
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from h1 have first s = first t by (rule sim-first)
with False have a2 : ¬ stutstep (x ## t) 0

by (simp add: stutstep-def first-def app-def )
from False have ((x ## s) |s (Suc 0 )) ≈ nextsuffix ((x ## s) |s 0 )

by (rule seqsim-notstutstep)
hence (tail (x ## s)) ≈ nextsuffix (x ## s)

by (simp add: tail-def )
hence g1 : s ≈ nextsuffix (x ## s) by (simp add: seq-app-tail)
from a2 have ((x ## t) |s (Suc 0 )) ≈ nextsuffix ((x ## t) |s 0 )

by (rule seqsim-notstutstep)
hence (tail (x ## t)) ≈ nextsuffix (x ## t) by (simp add: tail-def )
hence g2 : t ≈ nextsuffix (x ## t) by (simp add: seq-app-tail)
with h1 have s ≈ nextsuffix (x ## t) by (rule seqsim-trans)
from this[THEN seqsim-sym] g1 have g3 : nextsuffix (x ## s) ≈ nextsuffix (x

## t)
by (rule seqsim-sym[OF seqsim-trans])

have first (x ## s) = first (x ## t) by (simp add: first-def app-def )
from this g3 show ?thesis by (rule seqsimilarI )

qed

If two sequences are similar then for any suffix of one of them there exists a
similar suffix of the other one. We will prove a stronger result below.
lemma simstep-disj1 : assumes H : s ≈ t shows ∃ m. ((s |s n) ≈ (t |s m))
proof (induct n)

from H have ((s |s 0 ) ≈ (t |s 0 )) by auto
thus ∃ m. ((s |s 0 ) ≈ (t |s m)) ..

next
fix n
assume ∃ m. ((s |s n) ≈ (t |s m))
then obtain m where a1 ′: (s |s n) ≈ (t |s m) ..
show ∃ m. ((s |s (Suc n)) ≈ (t |s m))
proof (cases stutstep s n)

case True
hence (s |s (Suc n)) ≈ (s |s n) by (rule seqsim-stutstep)
from this a1 ′ have ((s |s (Suc n)) ≈ (t |s m)) by (rule seqsim-trans)
thus ?thesis ..

next
case False
hence (s |s (Suc n)) ≈ nextsuffix (s |s n) by (rule seqsim-notstutstep)
moreover
from a1 ′ have nextsuffix (s |s n) ≈ nextsuffix (t |s m)

by (simp add: seqsim-suffix-seqsim)
ultimately have (s |s (Suc n)) ≈ nextsuffix (t |s m) by (rule seqsim-trans)
hence (s |s (Suc n)) ≈ t |s (m + (nextnat (t |s m)))

by (simp add: nextsuffix-def suffix-plus-com)
thus ∃ m. (s |s (Suc n)) ≈ t |s m ..

qed
qed
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lemma nextnat-le-seqsim:
assumes n: n < nextnat s shows s ≈ (s |s n)

proof (cases emptyseq s)
case True — case impossible
with n show ?thesis by (simp add: nextnat-def )

next
case False
from n show ?thesis
proof (induct n)

show s ≈ (s |s 0 ) by simp
next

fix n
assume a2 : n < nextnat s =⇒ s ≈ (s |s n) and a3 : Suc n < nextnat s
from a3 have g1 : s (Suc n) = s 0 by (rule nextnat-le-unch)
from a3 have a3 ′: n < nextnat s by simp
hence s n = s 0 by (rule nextnat-le-unch)
with g1 have stutstep s n by (simp add: stutstep-def )
hence g2 : (s |s n) ≈ (s |s (Suc n)) by (rule seqsim-stutstep[THEN seqsim-sym])
with a3 ′ a2 show s ≈ (s |s (Suc n)) by (auto elim: seqsim-trans)

qed
qed

lemma seqsim-prev-nextnat: s ≈ s |s ((nextnat s) − 1 )
proof (cases emptyseq s)

case True
hence s |s ((nextnat s)−(1 ::nat)) = s |s 0 by (simp add: nextnat-def )
thus ?thesis by simp

next
case False
hence nextnat s > 0 by (rule nextnat-empty-gzero)
thus ?thesis by (simp add: nextnat-le-seqsim)

qed

Given a suffix s |s n of some sequence s that is similar to some suffix t |s
m of sequence t, there exists some suffix t |s m ′ of t such that s |s n and t
|s m ′ are similar and also s |s (n+1 ) is similar to either t |s m ′ or to t |s
(m ′+1 ).
lemma seqsim-suffix-suc:

assumes H : s |s n ≈ t |s m
shows ∃m ′. s |s n ≈ t |s m ′ ∧ ((s |s Suc n ≈ t |s Suc m ′) ∨ (s |s Suc n ≈ t |s

m ′))
proof (cases stutstep s n)

case True
hence s |s Suc n ≈ s |s n by (rule seqsim-stutstep)
from this H have s |s Suc n ≈ t |s m by (rule seqsim-trans)
with H show ?thesis by blast

next
case False
hence ¬ emptyseq (s |s n) by (rule stutnempty)
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with H have a2 : ¬ emptyseq (t |s m) by (simp add: seqsim-empty-iff-empty)
hence g4 : nextsuffix (t |s m) = (t |s m) |s Suc (nextnat (t |s m) − 1 )

by (simp add: nextnat-empty-gzero nextsuffix-def )
have g3 : (t |s m) ≈ (t |s m) |s (nextnat (t |s m) − 1 )

by (rule seqsim-prev-nextnat)
with H have G1 : s |s n ≈ (t |s m) |s (nextnat (t |s m) − 1 )

by (rule seqsim-trans)
from False have G1 ′: (s |s Suc n) = nextsuffix (s |s n)

by (rule notstutstep-nextsuffix1 [THEN sym])
from H have nextsuffix (s |s n) ≈ nextsuffix (t |s m)

by (rule seqsim-suffix-seqsim)
with G1 G1 ′ g4
have s |s n ≈ t |s (m + (nextnat (t |s m) − 1 ))

∧ s |s (Suc n) ≈ t |s Suc (m + (nextnat (t |s m) − 1 ))
by (simp add: suffix-plus-com)

thus ?thesis by blast
qed

The following main result about similar sequences shows that if s ≈ t holds
then for any suffix s |s n of s there exists a suffix t |s m such that

• s |s n and t |s m are similar, and

• s |s (n+1 ) is similar to either t |s (m+1 ) or t |s m.

The idea is to pick the largest m such that s |s n ≈ t |s m (or some such m
if s |s n is empty).
theorem sim-step:

assumes H : s ≈ t
shows ∃ m. s |s n ≈ t |s m ∧

((s |s Suc n ≈ t |s Suc m) ∨ (s |s Suc n ≈ t |s m))
(is ∃m. ?Sim n m)

proof (induct n)
from H have s |s 0 ≈ t |s 0 by simp
thus ∃ m. ?Sim 0 m by (rule seqsim-suffix-suc)

next
fix n
assume ∃ m. ?Sim n m
hence ∃ k. s |s Suc n ≈ t |s k by blast
thus ∃ m. ?Sim (Suc n) m by (blast dest: seqsim-suffix-suc)

qed

end

2 Representing Intensional Logic
theory Intensional
imports Main
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begin

In higher-order logic, every proof rule has a corresponding tautology, i.e.
the deduction theorem holds. Isabelle/HOL implements this since object-
level implication (−→) and meta-level entailment (=⇒) commute, viz. the
proof rule impI : (?P =⇒ ?Q) =⇒ ?P −→ ?Q. However, the deduction
theorem does not hold for most modal and temporal logics [6, page 95][7].
For example A ` �A holds, meaning that if A holds in any world, then
it always holds. However, ` A −→ �A, stating that A always holds if it
initially holds, is not valid.
Merz [7] overcame this problem by creating an Intensional logic. It exploits
Isabelle’s axiomatic type class feature [9] by creating a type class world,
which provides Skolem constants to associate formulas with the world they
hold in. The class is trivial, not requiring any axioms.
class world

world is a type class of possible worlds. It is a subclass of all HOL types
type. No axioms are provided, since its only purpose is to avoid silly use of
the Intensional syntax.

2.1 Abstract Syntax and Definitions
type-synonym ( ′w, ′a) expr = ′w ⇒ ′a
type-synonym ′w form = ( ′w, bool) expr

The intention is that ′a will be used for unlifted types (class type), while ′w
is lifted (class world).
definition Valid :: ( ′w::world) form ⇒ bool

where Valid A ≡ ∀w. A w

definition const :: ′a ⇒ ( ′w::world, ′a) expr
where unl-con: const c w ≡ c

definition lift :: [ ′a ⇒ ′b, ( ′w::world, ′a) expr ] ⇒ ( ′w, ′b) expr
where unl-lift: lift f x w ≡ f (x w)

definition lift2 :: [ ′a ⇒ ′b ⇒ ′c, ( ′w::world, ′a) expr , ( ′w, ′b) expr ] ⇒ ( ′w, ′c) expr
where unl-lift2 : lift2 f x y w ≡ f (x w) (y w)

definition lift3 :: [ ′a ⇒ ′b => ′c ⇒ ′d, ( ′w::world, ′a) expr , ( ′w, ′b) expr , ( ′w, ′c)
expr ] ⇒ ( ′w, ′d) expr

where unl-lift3 : lift3 f x y z w ≡ f (x w) (y w) (z w)

definition lift4 :: [ ′a ⇒ ′b => ′c ⇒ ′d ⇒ ′e, ( ′w::world, ′a) expr , ( ′w, ′b) expr ,
( ′w, ′c) expr ,( ′w, ′d) expr ] ⇒ ( ′w, ′e) expr

where unl-lift4 : lift4 f x y z zz w ≡ f (x w) (y w) (z w) (zz w)
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Valid F asserts that the lifted formula F holds everywhere. const allows
lifting of a constant, while lift through lift4 allow functions with arity 1–4
to be lifted. (Note that there is no way to define a generic lifting operator
for functions of arbitrary arity.)
definition RAll :: ( ′a ⇒ ( ′w::world) form) ⇒ ′w form (binder ‹Rall › 10 )

where unl-Rall: (Rall x. A x) w ≡ ∀ x. A x w

definition REx :: ( ′a ⇒ ( ′w::world) form) ⇒ ′w form (binder ‹Rex › 10 )
where unl-Rex: (Rex x. A x) w ≡ ∃ x. A x w

definition REx1 :: ( ′a ⇒ ( ′w::world) form) ⇒ ′w form (binder ‹Rex! › 10 )
where unl-Rex1 : (Rex! x. A x) w ≡ ∃ !x. A x w

RAll, REx and REx1 introduces “rigid” quantification over values (of non-
world types) within “intensional” formulas. RAll is universal quantification,
REx is existential quantifcation. REx1 requires unique existence.

We declare the “unlifting rules” as rewrite rules that will be applied auto-
matically.
lemmas intensional-rews[simp] =

unl-con unl-lift unl-lift2 unl-lift3 unl-lift4
unl-Rall unl-Rex unl-Rex1

2.2 Concrete Syntax
nonterminal

lift and liftargs

The non-terminal lift represents lifted expressions. The idea is to use Is-
abelle’s macro mechanism to convert between the concrete and abstract
syntax.
syntax

:: id ⇒ lift (‹-›)
:: longid ⇒ lift (‹-›)
:: var ⇒ lift (‹-›)

-applC :: [lift, cargs] ⇒ lift (‹(1-/ -)› [1000 , 1000 ] 999 )
:: lift ⇒ lift (‹ ′(- ′)›)

-lambda :: [idts, ′a] ⇒ lift (‹(3%-./ -)› [0 , 3 ] 3 )
-constrain :: [lift, type] ⇒ lift (‹(-::-)› [4 , 0 ] 3 )

:: lift ⇒ liftargs (‹-›)
-liftargs :: [lift, liftargs] ⇒ liftargs (‹-,/ -›)
-Valid :: lift ⇒ bool (‹(` -)› 5 )
-holdsAt :: [ ′a, lift] ⇒ bool (‹(- |= -)› [100 ,10 ] 10 )

LIFT :: lift ⇒ ′a (‹LIFT -›)
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-const :: ′a ⇒ lift (‹(#-)› [1000 ] 999 )
-lift :: [ ′a, lift] ⇒ lift (‹(-<->)› [1000 ] 999 )
-lift2 :: [ ′a, lift, lift] ⇒ lift (‹(-<-,/ ->)› [1000 ] 999 )
-lift3 :: [ ′a, lift, lift, lift] ⇒ lift (‹(-<-,/ -,/ ->)› [1000 ] 999 )
-lift4 :: [ ′a, lift, lift, lift,lift] ⇒ lift (‹(-<-,/ -,/ -,/ ->)› [1000 ] 999 )

-liftEqu :: [lift, lift] ⇒ lift (‹(- =/ -)› [50 ,51 ] 50 )
-liftNeq :: [lift, lift] ⇒ lift (infixl ‹ 6=› 50 )
-liftNot :: lift ⇒ lift (‹¬ -› [90 ] 90 )
-liftAnd :: [lift, lift] ⇒ lift (infixr ‹∧› 35 )
-liftOr :: [lift, lift] ⇒ lift (infixr ‹∨› 30 )
-liftImp :: [lift, lift] ⇒ lift (infixr ‹−→› 25 )
-liftIf :: [lift, lift, lift] ⇒ lift (‹(if (-)/ then (-)/ else (-))› 10 )
-liftPlus :: [lift, lift] ⇒ lift (‹(- +/ -)› [66 ,65 ] 65 )
-liftMinus :: [lift, lift] ⇒ lift (‹(- −/ -)› [66 ,65 ] 65 )
-liftTimes :: [lift, lift] ⇒ lift (‹(- ∗/ -)› [71 ,70 ] 70 )
-liftDiv :: [lift, lift] ⇒ lift (‹(- div -)› [71 ,70 ] 70 )
-liftMod :: [lift, lift] ⇒ lift (‹(- mod -)› [71 ,70 ] 70 )
-liftLess :: [lift, lift] ⇒ lift (‹(-/ < -)› [50 , 51 ] 50 )
-liftLeq :: [lift, lift] ⇒ lift (‹(-/ ≤ -)› [50 , 51 ] 50 )
-liftMem :: [lift, lift] ⇒ lift (‹(-/ ∈ -)› [50 , 51 ] 50 )
-liftNotMem :: [lift, lift] ⇒ lift (‹(-/ /∈ -)› [50 , 51 ] 50 )
-liftFinset :: liftargs => lift (‹{(-)}›)

-liftPair :: [lift,liftargs] ⇒ lift (‹(1 ′(-,/ - ′))›)

-liftCons :: [lift, lift] ⇒ lift (‹(- #/ -)› [65 ,66 ] 65 )
-liftApp :: [lift, lift] ⇒ lift (‹(- @/ -)› [65 ,66 ] 65 )
-liftList :: liftargs ⇒ lift (‹[(-)]›)

-ARAll :: [idts, lift] ⇒ lift (‹(3 ! -./ -)› [0 , 10 ] 10 )
-AREx :: [idts, lift] ⇒ lift (‹(3? -./ -)› [0 , 10 ] 10 )
-AREx1 :: [idts, lift] ⇒ lift (‹(3?! -./ -)› [0 , 10 ] 10 )
-RAll :: [idts, lift] ⇒ lift (‹(3∀ -./ -)› [0 , 10 ] 10 )
-REx :: [idts, lift] ⇒ lift (‹(3∃ -./ -)› [0 , 10 ] 10 )
-REx1 :: [idts, lift] ⇒ lift (‹(3∃ !-./ -)› [0 , 10 ] 10 )

translations
-const 
 CONST const

translations
-lift 
 CONST lift
-lift2 
 CONST lift2
-lift3 
 CONST lift3
-lift4 
 CONST lift4
-Valid 
 CONST Valid
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translations
-RAll x A 
 Rall x. A
-REx x A 
 Rex x. A
-REx1 x A 
 Rex! x. A

translations
-ARAll ⇀ -RAll
-AREx ⇀ -REx
-AREx1 ⇀ -REx1

w |= A ⇀ A w
LIFT A ⇀ A::-⇒-

translations
-liftEqu 
 -lift2 (=)
-liftNeq u v 
 -liftNot (-liftEqu u v)
-liftNot 
 -lift (CONST Not)
-liftAnd 
 -lift2 (&)
-liftOr 
 -lift2 ((|) )
-liftImp 
 -lift2 (−−>)
-liftIf 
 -lift3 (CONST If )
-liftPlus 
 -lift2 (+)
-liftMinus 
 -lift2 (−)
-liftTimes 
 -lift2 (∗)
-liftDiv 
 -lift2 (div)

-liftMod 
 -lift2 (mod)
-liftLess 
 -lift2 (<)
-liftLeq 
 -lift2 (<=)
-liftMem 
 -lift2 (:)
-liftNotMem x xs 
 -liftNot (-liftMem x xs)

translations
-liftFinset (-liftargs x xs) 
 -lift2 (CONST insert) x (-liftFinset xs)
-liftFinset x 
 -lift2 (CONST insert) x (-const (CONST Set.empty))
-liftPair x (-liftargs y z) 
 -liftPair x (-liftPair y z)
-liftPair 
 -lift2 (CONST Pair)
-liftCons 
 -lift2 (CONST Cons)
-liftApp 
 -lift2 (@)
-liftList (-liftargs x xs) 
 -liftCons x (-liftList xs)
-liftList x 
 -liftCons x (-const [])

w |= ¬ A ↽ -liftNot A w
w |= A ∧ B ↽ -liftAnd A B w
w |= A ∨ B ↽ -liftOr A B w
w |= A −→ B ↽ -liftImp A B w
w |= u = v ↽ -liftEqu u v w
w |= ∀ x. A ↽ -RAll x A w
w |= ∃ x. A ↽ -REx x A w
w |= ∃ !x. A ↽ -REx1 x A w
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syntax (ASCII )
-Valid :: lift ⇒ bool (‹(|− -)› 5 )
-holdsAt :: [ ′a, lift] ⇒ bool (‹(- |= -)› [100 ,10 ] 10 )
-liftNeq :: [lift, lift] ⇒ lift (‹(- ∼=/ -)› [50 ,51 ] 50 )
-liftNot :: lift ⇒ lift (‹(∼ -)› [90 ] 90 )
-liftAnd :: [lift, lift] ⇒ lift (‹(- &/ -)› [36 ,35 ] 35 )
-liftOr :: [lift, lift] ⇒ lift (‹(- |/ -)› [31 ,30 ] 30 )
-liftImp :: [lift, lift] ⇒ lift (‹(- −−>/ -)› [26 ,25 ] 25 )
-liftLeq :: [lift, lift] ⇒ lift (‹(-/ <= -)› [50 , 51 ] 50 )
-liftMem :: [lift, lift] ⇒ lift (‹(-/ : -)› [50 , 51 ] 50 )
-liftNotMem :: [lift, lift] ⇒ lift (‹(-/ ∼: -)› [50 , 51 ] 50 )
-RAll :: [idts, lift] ⇒ lift (‹(3ALL -./ -)› [0 , 10 ] 10 )
-REx :: [idts, lift] ⇒ lift (‹(3EX -./ -)› [0 , 10 ] 10 )
-REx1 :: [idts, lift] ⇒ lift (‹(3EX ! -./ -)› [0 , 10 ] 10 )

2.3 Lemmas and Tactics
lemma intD[dest]: ` A =⇒ w |= A
proof −

assume a:` A
from a have ∀w. w |= A by (auto simp add: Valid-def )
thus ?thesis ..

qed

lemma intI [intro!]: assumes P1 :(
∧

w. w |= A) shows ` A
using assms by (auto simp: Valid-def )

Basic unlifting introduces a parameter w and applies basic rewrites, e.g ` F
= G becomes F w = G w and ` F −→ G becomes F w −→ G w.
method-setup int-unlift = ‹

Scan.succeed (fn ctxt => SIMPLE-METHOD ′

(resolve-tac ctxt @{thms intI} THEN ′ rewrite-goal-tac ctxt @{thms inten-
sional-rews}))
› method to unlift and followed by intensional rewrites

lemma inteq-reflection: assumes P1 : ` x=y shows (x ≡ y)
proof −

from P1 have P2 : ∀w. x w = y w by (unfold Valid-def unl-lift2 )
hence P3 :x=y by blast
thus x ≡ y by (rule eq-reflection)

qed

lemma int-simps:
` (x=x) = #True
` (¬ #True) = #False
` (¬ #False) = #True
` (¬¬ P) = P
` ((¬ P) = P) = #False
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` (P = (¬P)) = #False
` (P 6= Q) = (P = (¬ Q))
` (#True=P) = P
` (P=#True) = P
` (#True −→ P) = P
` (#False −→ P) = #True
` (P −→ #True) = #True
` (P −→ P) = #True
` (P −→ #False) = (¬P)
` (P −→ ∼P) = (¬P)
` (P ∧ #True) = P
` (#True ∧ P) = P
` (P ∧ #False) = #False
` (#False ∧ P) = #False
` (P ∧ P) = P
` (P ∧ ∼P) = #False
` (¬P ∧ P) = #False
` (P ∨ #True) = #True
` (#True ∨ P) = #True
` (P ∨ #False) = P
` (#False ∨ P) = P
` (P ∨ P) = P
` (P ∨ ¬P) = #True
` (¬P ∨ P) = #True
` (∀ x. P) = P
` (∃ x. P) = P
by auto

lemmas intensional-simps[simp] = int-simps[THEN inteq-reflection]

method-setup int-rewrite = ‹
Scan.succeed (fn ctxt => SIMPLE-METHOD ′ (rewrite-goal-tac ctxt @{thms in-

tensional-simps}))
› rewrite method at intensional level

lemma Not-Rall: ` (¬(∀ x. F x)) = (∃ x. ¬F x)
by auto

lemma Not-Rex: ` (¬(∃ x. F x)) = (∀ x. ¬F x)
by auto

lemma TrueW [simp]: ` #True
by auto

lemma int-eq: ` X = Y =⇒ X = Y
by (auto simp: inteq-reflection)

lemma int-iffI :
assumes ` F −→ G and ` G −→ F
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shows ` F = G
using assms by force

lemma int-iffD1 : assumes h: ` F = G shows ` F −→ G
using h by auto

lemma int-iffD2 : assumes h: ` F = G shows ` G −→ F
using h by auto

lemma lift-imp-trans:
assumes ` A −→ B and ` B −→ C
shows ` A −→ C
using assms by force

lemma lift-imp-neg: assumes ` A −→ B shows ` ¬B −→ ¬A
using assms by auto

lemma lift-and-com: ` (A ∧ B) = (B ∧ A)
by auto

end

3 Semantics
theory Semantics
imports Sequence Intensional
begin

This theory mechanises a shallow embedding of TLA∗ using the Sequence
and Intensional theories. A shallow embedding represents TLA∗ using Is-
abelle/HOL predicates, while a deep embedding would represent TLA∗ for-
mulas and pre-formulas as mutually inductive datatypes1. The choice of a
shallow over a deep embedding is motivated by the following factors: a shal-
low embedding is usually less involved, and existing Isabelle theories and
tools can be applied more directly to enhance automation; due to the lifting
in the Intensional theory, a shallow embedding can reuse standard logical
operators, whilst a deep embedding requires a different set of operators for
both formulas and pre-formulas. Finally, since our target is system verifi-
cation rather than proving meta-properties of TLA∗, which requires a deep
embedding, a shallow embedding is more fit for purpose.

3.1 Types of Formulas

To mechanise the TLA∗ semantics, the following type abbreviations are used:
type-synonym ( ′a, ′b) formfun = ′a seq ⇒ ′b

1See e.g. [10] for a discussion about deep vs. shallow embeddings in Isabelle/HOL.
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type-synonym ′a formula = ( ′a,bool) formfun
type-synonym ( ′a, ′b) stfun = ′a ⇒ ′b
type-synonym ′a stpred = ( ′a,bool) stfun

instance
fun :: (type,type) world ..

instance
prod :: (type,type) world ..

Pair and function are instantiated to be of type class world. This allows use
of the lifted intensional logic for formulas, and standard logical connectives
can therefore be used.

3.2 Semantics of TLA*

The semantics of TLA∗ is defined.
definition always :: ( ′a::world) formula ⇒ ′a formula
where always F ≡ λ s. ∀ n. (s |s n) |= F

definition nexts :: ( ′a::world) formula ⇒ ′a formula
where nexts F ≡ λ s. (tail s) |= F

definition before :: ( ′a::world, ′b) stfun ⇒ ( ′a, ′b) formfun
where before f ≡ λ s. (first s) |= f

definition after :: ( ′a::world, ′b) stfun ⇒ ( ′a, ′b) formfun
where after f ≡ λ s. (second s) |= f

definition unch :: ( ′a::world, ′b) stfun ⇒ ′a formula
where unch v ≡ λ s. s |= (after v) = (before v)

definition action :: ( ′a::world) formula ⇒ ( ′a, ′b) stfun ⇒ ′a formula
where action P v ≡ λ s. ∀ i. ((s |s i) |= P) ∨ ((s |s i) |= unch v)

3.2.1 Concrete Syntax

This is the concrete syntax for the (abstract) operators above.
syntax
-always :: lift ⇒ lift (‹(�-)› [90 ] 90 )
-nexts :: lift ⇒ lift (‹(#-)› [90 ] 90 )
-action :: [lift,lift] ⇒ lift (‹(�[-] ′-(-))› [20 ,1000 ] 90 )
-before :: lift ⇒ lift (‹($-)› [100 ] 99 )
-after :: lift ⇒ lift (‹(-$)› [100 ] 99 )
-prime :: lift ⇒ lift (‹(-‘)› [100 ] 99 )
-unch :: lift ⇒ lift (‹(Unchanged -)› [100 ] 99 )
TEMP :: lift ⇒ ′b (‹(TEMP -)›)
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syntax (ASCII )
-always :: lift ⇒ lift (‹([]-)› [90 ] 90 )
-nexts :: lift ⇒ lift (‹(Next -)› [90 ] 90 )
-action :: [lift,lift] ⇒ lift (‹([][-] ′-(-))› [20 ,1000 ] 90 )

translations
-always 
 CONST always
-nexts 
 CONST nexts
-action 
 CONST action
-before 
 CONST before
-after 
 CONST after
-prime ⇀ CONST after
-unch 
 CONST unch
TEMP F ⇀ (F :: (nat ⇒ -) ⇒ -)

3.3 Abbreviations

Some standard temporal abbreviations, with their concrete syntax.
definition actrans :: ( ′a::world) formula ⇒ ( ′a, ′b) stfun ⇒ ′a formula
where actrans P v ≡ TEMP(P ∨ unch v)

definition eventually :: ( ′a::world) formula ⇒ ′a formula
where eventually F ≡ LIFT (¬�(¬F))

definition angle-action :: ( ′a::world) formula ⇒ ( ′a, ′b) stfun ⇒ ′a formula
where angle-action P v ≡ LIFT (¬�[¬P]-v)

definition angle-actrans :: ( ′a::world) formula ⇒ ( ′a, ′b) stfun ⇒ ′a formula
where angle-actrans P v ≡ TEMP (¬ actrans (LIFT (¬P)) v)

definition leadsto :: ( ′a::world) formula ⇒ ′a formula ⇒ ′a formula
where leadsto P Q ≡ LIFT �(P −→ eventually Q)

3.3.1 Concrete Syntax
syntax (ASCII )

-actrans :: [lift,lift] ⇒ lift (‹([-] ′-(-))› [20 ,1000 ] 90 )
-eventually :: lift ⇒ lift (‹(<>-)› [90 ] 90 )
-angle-action :: [lift,lift] ⇒ lift (‹(<><-> ′-(-))› [20 ,1000 ] 90 )
-angle-actrans :: [lift,lift] ⇒ lift (‹(<-> ′-(-))› [20 ,1000 ] 90 )
-leadsto :: [lift,lift] ⇒ lift (‹(- ∼> -)› [26 ,25 ] 25 )

syntax
-eventually :: lift ⇒ lift (‹(♦-)› [90 ] 90 )
-angle-action :: [lift,lift] ⇒ lift (‹(♦〈-〉 ′-(-))› [20 ,1000 ] 90 )
-angle-actrans :: [lift,lift] ⇒ lift (‹(〈-〉 ′-(-))› [20 ,1000 ] 90 )
-leadsto :: [lift,lift] ⇒ lift (‹(-  -)› [26 ,25 ] 25 )

translations
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-actrans 
 CONST actrans
-eventually 
 CONST eventually
-angle-action 
 CONST angle-action
-angle-actrans 
 CONST angle-actrans
-leadsto 
 CONST leadsto

3.4 Properties of Operators

The following lemmas show that these operators have the expected seman-
tics.
lemma eventually-defs: (w |= ♦ F) = (∃ n. (w |s n) |= F)

by (simp add: eventually-def always-def )

lemma angle-action-defs: (w |= ♦〈P〉-v) = (∃ i. ((w |s i) |= P) ∧ ((w |s i) |= v$
6= $v))

by (simp add: angle-action-def action-def unch-def )

lemma unch-defs: (w |= Unchanged v) = (((second w) |= v) = ((first w) |= v))
by (simp add: unch-def before-def nexts-def after-def tail-def suffix-def first-def

second-def )

lemma linalw:
assumes h1 : a ≤ b and h2 : (w |s a) |= �A
shows (w |s b) |= �A

proof (clarsimp simp: always-def )
fix n
from h1 obtain k where g1 : b = a + k by (auto simp: le-iff-add)
with h2 show (w |s b |s n) |= A by (auto simp: always-def suffix-plus ac-simps)

qed

3.5 Invariance Under Stuttering

A key feature of TLA∗ is that specification at different abstraction levels can
be compared. The soundness of this relies on the stuttering invariance of
formulas. Since the embedding is shallow, it cannot be shown that a generic
TLA∗ formula is stuttering invariant. However, this section will show that
each operator is stuttering invariant or preserves stuttering invariance in an
appropriate sense, which can be used to show stuttering invariance for given
specifications.
Formula F is stuttering invariant if for any two similar behaviours (i.e.,
sequences of states), F holds in one iff it holds in the other. The definition
is generalised to arbitrary expressions, and not just predicates.
definition stutinv :: ( ′a, ′b) formfun ⇒ bool
where stutinv F ≡ ∀ σ τ. σ ≈ τ −→ (σ |= F) = (τ |= F)

The requirement for stuttering invariance is too strong for pre-formulas. For
example, an action formula specifies a relation between the first two states
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of a behaviour, and will rarely be satisfied by a stuttering step. This is
why pre-formulas are “protected” by (square or angle) brackets in TLA∗:
the only place a pre-formula P can be used is inside an action: �[P]-v. To
show that �[P]-v is stuttering invariant, is must be shown that a slightly
weaker predicate holds for P. For example, if P contains a term of the form
##Q, then it is not a well-formed pre-formula, thus �[P]-v is not stuttering
invariant. This weaker version of stuttering invariance has been named near
stuttering invariance.
definition nstutinv :: ( ′a, ′b) formfun ⇒ bool
where nstutinv P ≡ ∀ σ τ. (first σ = first τ) ∧ (tail σ) ≈ (tail τ) −→ (σ |= P)
= (τ |= P)

syntax
-stutinv :: lift ⇒ bool (‹(STUTINV -)› [40 ] 40 )
-nstutinv :: lift ⇒ bool (‹(NSTUTINV -)› [40 ] 40 )

translations
-stutinv 
 CONST stutinv
-nstutinv 
 CONST nstutinv

Predicate STUTINV F formalises stuttering invariance for formula F. That
is if two sequences are similar s ≈ t (equal up to stuttering) then the validity
of F under both s and t are equivalent. Predicate NSTUTINV P should
be read as nearly stuttering invariant – and is required for some stuttering
invariance proofs.
lemma stutinv-strictly-stronger :

assumes h: STUTINV F shows NSTUTINV F
unfolding nstutinv-def

proof (clarify)
fix s t :: nat ⇒ ′a
assume a1 : first s = first t and a2 : (tail s) ≈ (tail t)
have s ≈ t
proof −

have tg1 : (first s) ## (tail s) = s by (rule seq-app-first-tail)
have tg2 : (first t) ## (tail t) = t by (rule seq-app-first-tail)
with a1 have tg2 ′: (first s) ## (tail t) = t by simp

from a2 have (first s) ## (tail s) ≈ (first s) ## (tail t) by (rule app-seqsimilar)
with tg1 tg2 ′ show ?thesis by simp

qed
with h show (s |= F) = (t |= F) by (simp add: stutinv-def )

qed

3.5.1 Properties of -stutinv

This subsection proves stuttering invariance, preservation of stuttering in-
variance and introduction of stuttering invariance for different formulas.
First, state predicates are stuttering invariant.
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theorem stut-before: STUTINV $F
proof (clarsimp simp: stutinv-def )

fix s t :: ′a seq
assume a1 : s ≈ t
hence (first s) = (first t) by (rule sim-first)
thus (s |= $F) = (t |= $F) by (simp add: before-def )

qed

lemma nstut-after : NSTUTINV F$
proof (clarsimp simp: nstutinv-def )

fix s t :: ′a seq
assume a1 : tail s ≈ tail t
thus (s |= F$) = (t |= F$) by (simp add: after-def tail-sim-second)

qed

The always operator preserves stuttering invariance.
theorem stut-always: assumes H :STUTINV F shows STUTINV �F
proof (clarsimp simp: stutinv-def )

fix s t :: ′a seq
assume a2 : s ≈ t
show (s |= (� F)) = (t |= (� F))
proof

assume a1 : t |= � F
show s |= � F
proof (clarsimp simp: always-def )

fix n
from a2 [THEN sim-step] obtain m where m: s |s n ≈ t |s m by blast
from a1 have (t |s m) |= F by (simp add: always-def )
with H m show (s |s n) |= F by (simp add: stutinv-def )

qed
next

assume a1 : s |= (� F)
show t |= (� F)
proof (clarsimp simp: always-def )

fix n
from a2 [THEN seqsim-sym, THEN sim-step] obtain m where m: t |s n ≈

s |s m by blast
from a1 have (s |s m) |= F by (simp add: always-def )
with H m show (t |s n) |= F by (simp add: stutinv-def )

qed
qed

qed

Assuming that formula P is nearly suttering invariant then �[P]-v will be
stuttering invariant.
lemma stut-action-lemma:

assumes H : NSTUTINV P and st: s ≈ t and P: t |= �[P]-v
shows s |= �[P]-v

proof (clarsimp simp: action-def )
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fix n
assume ¬ ((s |s n) |= Unchanged v)
hence v: v (s (Suc n)) 6= v (s n)

by (simp add: unch-defs first-def second-def suffix-def )
from st[THEN sim-step] obtain m where

a2 ′: s |s n ≈ t |s m
∧ (s |s Suc n ≈ t |s Suc m ∨ s |s Suc n ≈ t |s m) ..

hence g1 : (s |s n ≈ t |s m) by simp
hence g1 ′′: first (s |s n) = first (t |s m) by (simp add: sim-first)
hence g1 ′: s n = t m by (simp add: suffix-def first-def )
from a2 ′ have g2 : s |s Suc n ≈ t |s Suc m ∨ s |s Suc n ≈ t |s m by simp
from P have a1 ′: ((t |s m) |= P) ∨ ((t |s m) |= Unchanged v) by (simp add:

action-def )
from g2 show (s |s n) |= P
proof

assume s |s Suc n ≈ t |s m
hence first (s |s Suc n) = first (t |s m) by (simp add: sim-first)
hence s (Suc n) = t m by (simp add: suffix-def first-def )
with g1 ′ v show ?thesis by simp — by contradiction

next
assume a3 : s |s Suc n ≈ t |s Suc m
hence first (s |s Suc n) = first (t |s Suc m) by (simp add: sim-first)
hence a3 ′: s (Suc n) = t (Suc m) by (simp add: suffix-def first-def )
from a1 ′ show ?thesis
proof

assume (t |s m) |= Unchanged v
hence v (t (Suc m)) = v (t m)

by (simp add: unch-defs first-def second-def suffix-def )
with g1 ′ a3 ′ v show ?thesis by simp — again, by contradiction

next
assume a4 : (t |s m) |= P
from a3 have tail (s |s n) ≈ tail (t |s m) by (simp add: tail-def suffix-plus)
with H g1 ′′ a4 show ?thesis by (auto simp: nstutinv-def )

qed
qed

qed

theorem stut-action: assumes H : NSTUTINV P shows STUTINV �[P]-v
proof (clarsimp simp: stutinv-def )

fix s t :: ′a seq
assume st: s ≈ t
show (s |= �[P]-v) = (t |= �[P]-v)
proof

assume t |= �[P]-v
with H st show s |= �[P]-v by (rule stut-action-lemma)

next
assume s |= �[P]-v
with H st[THEN seqsim-sym] show t |= �[P]-v by (rule stut-action-lemma)

qed
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qed

The lemmas below shows that propositional and predicate operators preserve
stuttering invariance.
lemma stut-and: [[STUTINV F ;STUTINV G]] =⇒ STUTINV (F ∧ G)

by (simp add: stutinv-def )

lemma stut-or : [[STUTINV F ;STUTINV G]] =⇒ STUTINV (F ∨ G)
by (simp add: stutinv-def )

lemma stut-imp: [[STUTINV F ;STUTINV G]] =⇒ STUTINV (F −→ G)
by (simp add: stutinv-def )

lemma stut-eq: [[STUTINV F ;STUTINV G]] =⇒ STUTINV (F = G)
by (simp add: stutinv-def )

lemma stut-noteq: [[STUTINV F ;STUTINV G]] =⇒ STUTINV (F 6= G)
by (simp add: stutinv-def )

lemma stut-not: STUTINV F =⇒ STUTINV (¬ F)
by (simp add: stutinv-def )

lemma stut-all: (
∧

x. STUTINV (F x)) =⇒ STUTINV (∀ x. F x)
by (simp add: stutinv-def )

lemma stut-ex: (
∧

x. STUTINV (F x)) =⇒ STUTINV (∃ x. F x)
by (simp add: stutinv-def )

lemma stut-const: STUTINV #c
by (simp add: stutinv-def )

lemma stut-fun1 : STUTINV X =⇒ STUTINV (f <X>)
by (simp add: stutinv-def )

lemma stut-fun2 : [[STUTINV X ;STUTINV Y ]] =⇒ STUTINV (f <X ,Y>)
by (simp add: stutinv-def )

lemma stut-fun3 : [[STUTINV X ;STUTINV Y ;STUTINV Z ]] =⇒ STUTINV (f
<X ,Y ,Z>)

by (simp add: stutinv-def )

lemma stut-fun4 : [[STUTINV X ;STUTINV Y ;STUTINV Z ; STUTINV W ]] =⇒
STUTINV (f <X ,Y ,Z ,W>)

by (simp add: stutinv-def )

lemma stut-plus: [[STUTINV x;STUTINV y]] =⇒ STUTINV (x+y)
by (simp add: stutinv-def )
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3.5.2 Properties of -nstutinv

This subsection shows analogous properties about near stuttering invariance.
If a formula F is stuttering invariant then #F is nearly stuttering invariant.
lemma nstut-nexts: assumes H : STUTINV F shows NSTUTINV #F
using H by (simp add: stutinv-def nstutinv-def nexts-def )

The lemmas below shows that propositional and predicate operators pre-
serves near stuttering invariance.
lemma nstut-and: [[NSTUTINV F ;NSTUTINV G]] =⇒ NSTUTINV (F ∧ G)

by (auto simp: nstutinv-def )

lemma nstut-or : [[NSTUTINV F ;NSTUTINV G]] =⇒ NSTUTINV (F ∨ G)
by (auto simp: nstutinv-def )

lemma nstut-imp: [[NSTUTINV F ;NSTUTINV G]] =⇒ NSTUTINV (F −→ G)
by (auto simp: nstutinv-def )

lemma nstut-eq: [[NSTUTINV F ; NSTUTINV G]] =⇒ NSTUTINV (F = G)
by (force simp: nstutinv-def )

lemma nstut-not: NSTUTINV F =⇒ NSTUTINV (¬ F)
by (auto simp: nstutinv-def )

lemma nstut-noteq: [[NSTUTINV F ; NSTUTINV G]] =⇒ NSTUTINV (F 6= G)
by (simp add: nstut-eq nstut-not)

lemma nstut-all: (
∧

x. NSTUTINV (F x)) =⇒ NSTUTINV (∀ x. F x)
by (auto simp: nstutinv-def )

lemma nstut-ex: (
∧

x. NSTUTINV (F x)) =⇒ NSTUTINV (∃ x. F x)
by (auto simp: nstutinv-def )

lemma nstut-const: NSTUTINV #c
by (auto simp: nstutinv-def )

lemma nstut-fun1 : NSTUTINV X =⇒ NSTUTINV (f <X>)
by (force simp: nstutinv-def )

lemma nstut-fun2 : [[NSTUTINV X ; NSTUTINV Y ]] =⇒ NSTUTINV (f <X ,Y>)
by (force simp: nstutinv-def )

lemma nstut-fun3 : [[NSTUTINV X ; NSTUTINV Y ; NSTUTINV Z ]] =⇒ NSTUTINV
(f <X ,Y ,Z>)

by (force simp: nstutinv-def )

lemma nstut-fun4 : [[NSTUTINV X ; NSTUTINV Y ; NSTUTINV Z ; NSTUTINV
W ]] =⇒ NSTUTINV (f <X ,Y ,Z ,W>)

by (force simp: nstutinv-def )
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lemma nstut-plus: [[NSTUTINV x;NSTUTINV y]] =⇒ NSTUTINV (x+y)
by (simp add: nstut-fun2 )

3.5.3 Abbreviations

We show the obvious fact that the same properties holds for abbreviated
operators.
lemmas nstut-before = stut-before[THEN stutinv-strictly-stronger ]

lemma nstut-unch: NSTUTINV (Unchanged v)
proof (unfold unch-def )

have g1 : NSTUTINV v$ by (rule nstut-after)
have NSTUTINV $v by (rule stut-before[THEN stutinv-strictly-stronger ])
with g1 show NSTUTINV (v$ = $v) by (rule nstut-eq)

qed

Formulas [P]-v are not TLA∗ formulas by themselves, but we need to reason
about them when they appear wrapped inside �[−]-v. We only require that
it preserves nearly stuttering invariance. Observe that [P]-v trivially holds
for a stuttering step, so it cannot be stuttering invariant.
lemma nstut-actrans: NSTUTINV P =⇒ NSTUTINV [P]-v

by (simp add: actrans-def nstut-unch nstut-or)

lemma stut-eventually: STUTINV F =⇒ STUTINV ♦F
by (simp add: eventually-def stut-not stut-always)

lemma stut-leadsto: [[STUTINV F ; STUTINV G]] =⇒ STUTINV (F  G)
by (simp add: leadsto-def stut-always stut-eventually stut-imp)

lemma stut-angle-action: NSTUTINV P =⇒ STUTINV ♦〈P〉-v
by (simp add: angle-action-def nstut-not stut-action stut-not)

lemma nstut-angle-acttrans: NSTUTINV P =⇒ NSTUTINV 〈P〉-v
by (simp add: angle-actrans-def nstut-not nstut-actrans)

lemmas stutinvs = stut-before stut-always stut-action
stut-and stut-or stut-imp stut-eq stut-noteq stut-not
stut-all stut-ex stut-eventually stut-leadsto stut-angle-action stut-const
stut-fun1 stut-fun2 stut-fun3 stut-fun4

lemmas nstutinvs = nstut-after nstut-nexts nstut-actrans
nstut-unch nstut-and nstut-or nstut-imp nstut-eq nstut-noteq nstut-not
nstut-all nstut-ex nstut-angle-acttrans stutinv-strictly-stronger
nstut-fun1 nstut-fun2 nstut-fun3 nstut-fun4 stutinvs[THEN stutinv-strictly-stronger ]

lemmas bothstutinvs = stutinvs nstutinvs
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end

4 Reasoning about PreFormulas
theory PreFormulas
imports Semantics
begin

Semantic separation of formulas and pre-formulas requires a deep embed-
ding. We introduce a syntactically distinct notion of validity, written |∼ A,
for pre-formulas. Although it is semantically identical to ` A, it helps users
distinguish pre-formulas from formulas in TLA∗ proofs.
definition PreValid :: ( ′w::world) form ⇒ bool
where PreValid A ≡ ∀ w. w |= A

syntax
-PreValid :: lift ⇒ bool (‹(|∼ -)› 5 )

translations
-PreValid 
 CONST PreValid

lemma prefD[dest]: |∼ A =⇒ w |= A
by (simp add: PreValid-def )

lemma prefI [intro!]: (
∧

w. w |= A) =⇒ |∼ A
by (simp add: PreValid-def )

method-setup pref-unlift = ‹
Scan.succeed (fn ctxt => SIMPLE-METHOD ′

(resolve-tac ctxt @{thms prefI} THEN ′ rewrite-goal-tac ctxt @{thms inten-
sional-rews}))
› int-unlift for PreFormulas

lemma prefeq-reflection: assumes P1 : |∼ x=y shows (x ≡ y)
using P1 by (intro eq-reflection) force

lemma pref-True[simp]: |∼ #True
by auto

lemma pref-eq: |∼ X = Y =⇒ X = Y
by (auto simp: prefeq-reflection)

lemma pref-iffI :
assumes |∼ F −→ G and |∼ G −→ F
shows |∼ F = G
using assms by force

lemma pref-iffD1 : assumes |∼ F = G shows |∼ F −→ G
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using assms by auto

lemma pref-iffD2 : assumes |∼ F = G shows |∼ G −→ F
using assms by auto

lemma unl-pref-imp:
assumes |∼ F −→ G shows

∧
w. w |= F =⇒ w |= G

using assms by auto

lemma pref-imp-trans:
assumes |∼ F −→ G and |∼ G −→ H
shows |∼ F −→ H
using assms by force

4.1 Lemmas about Unchanged

Many of the TLA∗ axioms only require a state function witness which leaves
the state space unchanged. An obvious witness is the id function. The
lemmas require that the given formula is invariant under stuttering.
lemma pre-id-unch: assumes h: stutinv F

shows |∼ F ∧ Unchanged id −→ #F
proof (pref-unlift, clarify)

fix s
assume a1 : s |= F and a2 : s |= Unchanged id
from a2 have (id (second s) = id (first s)) by (simp add: unch-defs)
hence s ≈ (tail s) by (simp add: addfirststut)
with h a1 have (tail s) |= F by (simp add: stutinv-def )
thus s |= #F by (unfold nexts-def )

qed

lemma pre-ex-unch:
assumes h: stutinv F
shows ∃ (v:: ′a::world ⇒ ′a). ( |∼ F ∧ Unchanged v −→ #F)

using pre-id-unch[OF h] by blast

lemma unch-pair : |∼ Unchanged (x,y) = (Unchanged x ∧ Unchanged y)
by (auto simp: unch-def before-def after-def nexts-def )

lemmas unch-eq1 = unch-pair [THEN pref-eq]
lemmas unch-eq2 = unch-pair [THEN prefeq-reflection]

lemma angle-actrans-sem: |∼ 〈F〉-v = (F ∧ v$ 6= $v)
by (auto simp: angle-actrans-def actrans-def unch-def )

lemmas angle-actrans-sem-eq = angle-actrans-sem[THEN pref-eq]

4.2 Lemmas about after
lemma after-const: |∼ (#c)‘ = #c
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by (auto simp: nexts-def before-def after-def )

lemma after-fun1 : |∼ f<x>‘ = f<x‘>
by (auto simp: nexts-def before-def after-def )

lemma after-fun2 : |∼ f<x,y>‘ = f <x‘,y‘>
by (auto simp: nexts-def before-def after-def )

lemma after-fun3 : |∼ f<x,y,z>‘ = f <x‘,y‘,z‘>
by (auto simp: nexts-def before-def after-def )

lemma after-fun4 : |∼ f<x,y,z,zz>‘ = f <x‘,y‘,z‘,zz‘>
by (auto simp: nexts-def before-def after-def )

lemma after-forall: |∼ (∀ x. P x)‘ = (∀ x. (P x)‘)
by (auto simp: nexts-def before-def after-def )

lemma after-exists: |∼ (∃ x. P x)‘ = (∃ x. (P x)‘)
by (auto simp: nexts-def before-def after-def )

lemma after-exists1 : |∼ (∃ ! x. P x)‘ = (∃ ! x. (P x)‘)
by (auto simp: nexts-def before-def after-def )

lemmas all-after = after-const after-fun1 after-fun2 after-fun3 after-fun4
after-forall after-exists after-exists1

lemmas all-after-unl = all-after [THEN prefD]
lemmas all-after-eq = all-after [THEN prefeq-reflection]

4.3 Lemmas about before
lemma before-const: ` $(#c) = #c

by (auto simp: before-def )

lemma before-fun1 : ` $(f<x>) = f <$x>
by (auto simp: before-def )

lemma before-fun2 : ` $(f<x,y>) = f <$x,$y>
by (auto simp: before-def )

lemma before-fun3 : ` $(f<x,y,z>) = f <$x,$y,$z>
by (auto simp: before-def )

lemma before-fun4 : ` $(f<x,y,z,zz>) = f <$x,$y,$z,$zz>
by (auto simp: before-def )

lemma before-forall: ` $(∀ x. P x) = (∀ x. $(P x))
by (auto simp: before-def )
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lemma before-exists: ` $(∃ x. P x) = (∃ x. $(P x))
by (auto simp: before-def )

lemma before-exists1 : ` $(∃ ! x. P x) = (∃ ! x. $(P x))
by (auto simp: before-def )

lemmas all-before = before-const before-fun1 before-fun2 before-fun3 before-fun4
before-forall before-exists before-exists1

lemmas all-before-unl = all-before[THEN intD]
lemmas all-before-eq = all-before[THEN inteq-reflection]

4.4 Some general properties
lemma angle-actrans-conj: |∼ (〈F ∧ G〉-v) = (〈F〉-v ∧ 〈G〉-v)

by (auto simp: angle-actrans-def actrans-def unch-def )

lemma angle-actrans-disj: |∼ (〈F ∨ G〉-v) = (〈F〉-v ∨ 〈G〉-v)
by (auto simp: angle-actrans-def actrans-def unch-def )

lemma int-eq-true: ` P =⇒ ` P = #True
by auto

lemma pref-eq-true: |∼ P =⇒ |∼ P = #True
by auto

4.5 Unlifting attributes and methods

Attribute which unlifts an intensional formula or preformula
ML ‹
fun unl-rewr ctxt thm =

let
val unl = (thm RS @{thm intD}) handle THM - => (thm RS @{thm prefD})

handle THM - => thm
val rewr = rewrite-rule ctxt @{thms intensional-rews}

in
unl |> rewr

end;
›
attribute-setup unlifted = ‹

Scan.succeed (Thm.rule-attribute [] (unl-rewr o Context.proof-of ))
› unlift intensional formulas

attribute-setup unlift-rule = ‹
Scan.succeed
(Thm.rule-attribute []
(Context.proof-of #> (fn ctxt => Object-Logic.rulify ctxt o unl-rewr ctxt)))

› unlift and rulify intensional formulas
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Attribute which turns an intensional formula or preformula into a rewrite
rule. Formulas F that are not equalities are turned into F ≡ #True.
ML ‹
fun int-rewr thm =

(thm RS @{thm inteq-reflection})
handle THM - => (thm RS @{thm prefeq-reflection})
handle THM - => ((thm RS @{thm int-eq-true}) RS @{thm inteq-reflection})

handle THM - => ((thm RS @{thm pref-eq-true}) RS @{thm prefeq-reflection});
›

attribute-setup simp-unl = ‹
Attrib.add-del
(Thm.declaration-attribute
(fn th => Simplifier .map-ss (Simplifier .add-simp (int-rewr th))))

(K (NONE , NONE)) (∗ note only adding −− removing is ignored ∗)
› add thm unlifted from rewrites from intensional formulas or preformulas

attribute-setup int-rewrite = ‹Scan.succeed (Thm.rule-attribute [] (fn - => int-rewr))›
produce rewrites from intensional formulas or preformulas

end

5 A Proof System for TLA*
theory Rules
imports PreFormulas
begin

We prove soundness of the proof system of TLA∗, from which the system
verification rules from Lamport’s original TLA paper will be derived. This
theory is still state-independent, thus state-dependent enableness proofs,
required for proofs based on fairness assumptions, and flexible quantification,
are not discussed here.
The TLA∗ paper [8] suggest both a hetereogeneous and a homogenous proof
system for TLA∗. The homogeneous version eliminates the auxiliary def-
initions from the Preformula theory, creating a single provability relation.
This axiomatisation is based on the fact that a pre-formula can only be used
via the sq rule. In a nutshell, sq is applied to pax1 to pax5, and nex, pre
and pmp are changed to accommodate this. It is argued that while the het-
ereogenous version is easier to understand, the homogenous system avoids
the introduction of an auxiliary provability relation. However, the price to
pay is that reasoning about pre-formulas (in particular, actions) has to be
performed in the scope of temporal operators such as �[P]-v, which is no-
tationally quite heavy, We prefer here the heterogeneous approach, which
exposes the pre-formulas and lets us use standard HOL rules more directly.
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5.1 The Basic Axioms
theorem fmp: assumes ` F and ` F −→ G shows ` G

using assms[unlifted] by auto

theorem pmp: assumes |∼ F and |∼ F −→ G shows |∼ G
using assms[unlifted] by auto

theorem sq: assumes |∼ P shows ` �[P]-v
using assms[unlifted] by (auto simp: action-def )

theorem pre: assumes ` F shows |∼ F
using assms by auto

theorem nex: assumes h1 : ` F shows |∼ #F
using assms by (auto simp: nexts-def )

theorem ax0 : ` # True
by auto

theorem ax1 : ` �F −→ F
proof (clarsimp simp: always-def )

fix w
assume ∀n. (w |s n) |= F
hence (w |s 0 ) |= F ..
thus w |= F by simp

qed

theorem ax2 : ` �F −→ �[�F ]-v
by (auto simp: always-def action-def suffix-plus)

theorem ax3 :
assumes H : |∼ F ∧ Unchanged v −→ #F
shows ` �[F −→ #F ]-v −→ (F −→ �F)

proof (clarsimp simp: always-def )
fix w n
assume a1 : w |= �[F −→ #F ]-v and a2 : w |= F
show (w |s n) |= F
proof (induct n)

from a2 show (w |s 0 ) |= F by simp
next

fix m
assume a3 : (w |s m) |= F
with a1 H [unlifted] show (w |s (Suc m)) |= F

by (auto simp: nexts-def action-def tail-suffix-suc)
qed

qed

theorem ax4 : ` �[P −→ Q]-v −→ (�[P]-v −→ �[Q]-v)
by (force simp: action-def )
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theorem ax5 : ` �[v‘ 6= $v]-v
by (auto simp: action-def unch-def )

theorem pax0 : |∼ # True
by auto

theorem pax1 [simp-unl]: |∼ (#¬F) = (¬#F)
by (auto simp: nexts-def )

theorem pax2 : |∼ #(F −→ G) −→ (#F −→ #G)
by (auto simp: nexts-def )

theorem pax3 : |∼ �F −→ #�F
by (auto simp: always-def nexts-def tail-def suffix-plus)

theorem pax4 : |∼ �[P]-v = ([P]-v ∧ #�[P]-v)
proof (auto)

fix w
assume w |= �[P]-v
from this[unfolded action-def ] have ((w |s 0 ) |= P) ∨ ((w |s 0 ) |= Unchanged

v) ..
thus w |= [P]-v by (simp add: actrans-def )

next
fix w
assume w |= �[P]-v
thus w |= #�[P]-v by (auto simp: nexts-def action-def tail-def suffix-plus)

next
fix w
assume 1 : w |= [P]-v and 2 : w |= #�[P]-v
show w |= �[P]-v
proof (auto simp: action-def )

fix i
assume 3 : ¬ ((w |s i) |= Unchanged v)
show (w |s i) |= P
proof (cases i)

assume i = 0
with 1 3 show ?thesis by (simp add: actrans-def )

next
fix j
assume i = Suc j
with 2 3 show ?thesis by (auto simp: nexts-def action-def tail-def suffix-plus)

qed
qed

qed

theorem pax5 : |∼ #�F −→ �[#F ]-v
by (auto simp: nexts-def always-def action-def tail-def suffix-plus)

Theorem to show that universal quantification distributes over the always
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operator. Since the TLA∗ paper only addresses the propositional fragment,
this theorem does not appear there.
theorem allT : ` (∀ x. �(F x)) = (�(∀ x. F x))

by (auto simp: always-def )

theorem allActT : ` (∀ x. �[F x]-v) = (�[(∀ x. F x)]-v)
by (force simp: action-def )

5.2 Derived Theorems

This section includes some derived theorems based on the axioms, taken from
the TLA∗ paper [8]. We mimic the proofs given there and avoid semantic
reasoning whenever possible.
The alw theorem of [8] states that if F holds in all worlds then it always
holds, i.e. F � �F . However, the derivation of this theorem (using the proof
rules above) relies on access of the set of free variables (FV), which is not
available in a shallow encoding.
However, we can prove a similar rule alw2 using an additional hypothesis
|∼ F ∧ Unchanged v −→ #F.
theorem alw2 :

assumes h1 : ` F and h2 : |∼ F ∧ Unchanged v −→ #F
shows ` �F

proof −
from h1 have g2 : |∼ #F by (rule nex)
hence g3 : |∼ F −→ #F by auto
hence g4 :` �[(F −→ #F)]-v by (rule sq)
from h2 have ` �[(F −→ #F)]-v −→ F −→ �F by (rule ax3 )
with g4 [unlifted] have g5 : ` F −→ �F by auto
with h1 [unlifted] show ?thesis by auto

qed

Similar theorem, assuming that F is stuttering invariant.
theorem alw3 :

assumes h1 : ` F and h2 : stutinv F
shows ` �F

proof −
from h2 have |∼ F ∧ Unchanged id −→ #F by (rule pre-id-unch)
with h1 show ?thesis by (rule alw2 )

qed

In a deep embedding, we could prove that all (proper) TLA∗ formulas are
stuttering invariant and then get rid of the second hypothesis of rule alw3.
In fact, the rule is even true for pre-formulas, as shown by the following rule,
whose proof relies on semantical reasoning.
theorem alw: assumes H1 : ` F shows ` �F

using H1 by (auto simp: always-def )

43



theorem alw-valid-iff-valid: (` �F) = (` F)
proof

assume ` �F
from this ax1 show ` F by (rule fmp)

qed (rule alw)

[8] proves the following theorem using the deduction theorem of TLA∗: (`
F =⇒ ` G) =⇒ ` []F −→ G, which can only be proved by induction on
the formula structure, in a deep embedding.
theorem T1 [simp-unl]: ` ��F = []F
proof (auto simp: always-def suffix-plus)

fix w n
assume ∀m k. (w |s (k+m)) |= F
hence (w |s (n+0 )) |= F by blast
thus (w |s n) |= F by simp

qed

theorem T2 [simp-unl]: ` ��[P]-v = �[P]-v
proof −

have 1 : |∼ �[P]-v −→ #�[P]-v using pax4 by force
hence ` �[�[P]-v −→ #�[P]-v]-v by (rule sq)
moreover
have ` �[ �[P]-v −→ #�[P]-v ]-v −→ �[P]-v −→ ��[P]-v

by (rule ax3 ) (auto elim: 1 [unlift-rule])
moreover
have ` ��[P]-v −→ �[P]-v by (rule ax1 )
ultimately show ?thesis by force

qed

theorem T3 [simp-unl]: ` �[[P]-v]-v = �[P]-v
proof −

have |∼ P −→ [P]-v by (auto simp: actrans-def )
hence ` �[(P −→ [P]-v)]-v by (rule sq)
with ax4 have ` �[P]-v −→ �[[P]-v]-v by force
moreover
have |∼ [P]-v −→ v‘6= $v −→ P by (auto simp: unch-def actrans-def )
hence ` �[[P]-v −→ v‘6= $v −→ P]-v by (rule sq)
with ax5 have ` �[[P]-v]-v −→ �[P]-v by (force intro: ax4 [unlift-rule])
ultimately show ?thesis by force

qed

theorem M2 :
assumes h: |∼ F −→ G
shows ` �[F ]-v −→ �[G]-v
using sq[OF h] ax4 by force

theorem N1 :
assumes h: ` F −→ G
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shows |∼ #F −→ #G
by (rule pmp[OF nex[OF h] pax2 ])

theorem T4 : ` �[P]-v −→ �[[P]-v]-w
proof −

have ` ��[P]-v −→ �[��[P]-v]-w by (rule ax2 )
moreover
from pax4 have |∼ ��[P]-v −→ [P]-v unfolding T2 [int-rewrite] by force
hence ` �[��[P]-v]-w −→ �[[P]-v]-w by (rule M2 )
ultimately show ?thesis unfolding T2 [int-rewrite] by (rule lift-imp-trans)

qed

theorem T5 : ` �[[P]-w]-v −→ �[[P]-v]-w
proof −

have |∼ [[P]-w]-v −→ [[P]-v]-w by (auto simp: actrans-def )
hence ` �[[[P]-w]-v]-w −→ �[[[P]-v]-w]-w by (rule M2 )
with T4 show ?thesis unfolding T3 [int-rewrite] by (rule lift-imp-trans)

qed

theorem T6 : ` �F −→ �[#F ]-v
proof −

from ax1 have |∼ #(�F −→ F) by (rule nex)
with pax2 have |∼ #�F −→ #F by force
with pax3 have |∼ �F −→ #F by (rule pref-imp-trans)
hence ` �[�F ]-v −→ �[#F ]-v by (rule M2 )
with ax2 show ?thesis by (rule lift-imp-trans)

qed

theorem T7 :
assumes h: |∼ F ∧ Unchanged v −→ #F
shows |∼ (F ∧ #�F) = �F

proof −
have ` �[#F −→ F −→ #F ]-v by (rule sq) auto
with ax4 have ` �[#F ]-v −→ �[(F −→ #F)]-v by force
with ax3 [OF h, unlifted] have ` �[#F ]-v −→ (F −→ �F) by force
with pax5 have |∼ F ∧ #�F −→ �F by force
with ax1 [of TEMP F ,unlifted] pax3 [of TEMP F ,unlifted] show ?thesis by force

qed

theorem T8 : |∼ #(F ∧ G) = (#F ∧ #G)
proof −

have |∼ #(F ∧ G) −→ #F by (rule N1 ) auto
moreover
have |∼ #(F ∧ G) −→ #G by (rule N1 ) auto
moreover
have ` F −→ G −→ F ∧ G by auto
from nex[OF this] have |∼ #F −→ #G −→ #(F ∧ G)

by (force intro: pax2 [unlift-rule])
ultimately show ?thesis by force
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qed

lemma T9 : |∼ �[A]-v −→ [A]-v
using pax4 by force

theorem H1 :
assumes h1 : ` �[P]-v and h2 : ` �[P −→ Q]-v
shows ` �[Q]-v
using assms ax4 [unlifted] by force

theorem H2 : assumes h1 : ` F shows ` �[F ]-v
using h1 by (blast dest: pre sq)

theorem H3 :
assumes h1 : ` �[P −→ Q]-v and h2 : ` �[Q −→ R]-v
shows ` �[P −→ R]-v

proof −
have |∼ (P −→ Q) −→ (Q −→ R) −→ (P −→ R) by auto
hence ` �[(P −→ Q) −→ (Q −→ R) −→ (P −→ R)]-v by (rule sq)
with h1 have ` �[(Q −→ R) −→ (P −→ R)]-v by (rule H1 )
with h2 show ?thesis by (rule H1 )

qed

theorem H4 : ` �[[P]-v −→ P]-v
proof −

have |∼ v‘ 6= $v −→ ([P]-v −→ P) by (auto simp: unch-def actrans-def )
hence ` �[v‘ 6= $v −→ ([P]-v −→ P)]-v by (rule sq)
with ax5 show ?thesis by (rule H1 )

qed

theorem H5 : ` �[�F −→ #�F ]-v
by (rule pax3 [THEN sq])

5.3 Some other useful derived theorems
theorem P1 : |∼ �F −→ #F
proof −

have |∼ #�F −→ #F by (rule N1 [OF ax1 ])
with pax3 show ?thesis by (rule pref-imp-trans)

qed

theorem P2 : |∼ �F −→ F ∧ #F
using ax1 [of F ] P1 [of F ] by force

theorem P4 : ` �F −→ �[F ]-v
proof −

have ` �[�F ]-v −→ �[F ]-v by (rule M2 [OF pre[OF ax1 ]])
with ax2 show ?thesis by (rule lift-imp-trans)

qed
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theorem P5 : ` �[P]-v −→ �[�[P]-v]-w
proof −

have ` ��[P]-v −→ �[�[P]-v]-w by (rule P4 )
thus ?thesis by (unfold T2 [int-rewrite])

qed

theorem M0 : ` �F −→ �[F −→ #F ]-v
proof −

from P1 have |∼ �F −→ F −→ #F by force
hence ` �[�F ]-v −→ �[F −→ #F ]-v by (rule M2 )
with ax2 show ?thesis by (rule lift-imp-trans)

qed

theorem M1 : ` �F −→ �[F ∧ #F ]-v
proof −

have |∼ �F −→ F ∧ #F by (rule P2 )
hence ` �[�F ]-v −→ �[F ∧ #F ]-v by (rule M2 )
with ax2 show ?thesis by (rule lift-imp-trans)

qed

theorem M3 : assumes h: ` F shows ` �[#F ]-v
using alw[OF h] T6 by (rule fmp)

lemma M4 : ` �[#(F ∧ G) = (#F ∧ #G)]-v
by (rule sq[OF T8 ])

theorem M5 : ` �[ �[P]-v −→ #�[P]-v ]-w
proof (rule sq)

show |∼ �[P]-v −→ #�[P]-v by (auto simp: pax4 [unlifted])
qed

theorem M6 : ` �[F ∧ G]-v −→ �[F ]-v ∧ �[G]-v
proof −

have ` �[F ∧ G]-v −→ �[F ]-v by (rule M2 ) auto
moreover
have ` �[F ∧ G]-v −→ �[G]-v by (rule M2 ) auto
ultimately show ?thesis by force

qed

theorem M7 : ` �[F ]-v ∧ �[G]-v −→ �[F ∧ G]-v
proof −

have |∼ F −→ G −→ F ∧ G by auto
hence ` �[F ]-v −→ �[G −→ F ∧ G]-v by (rule M2 )
with ax4 show ?thesis by force

qed

theorem M8 : ` �[F ∧ G]-v = (�[F ]-v ∧ �[G]-v)
by (rule int-iffI [OF M6 M7 ])
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theorem M9 : |∼ �F −→ F ∧ #�F
using pre[OF ax1 [of F ]] pax3 [of F ] by force

theorem M10 :
assumes h: |∼ F ∧ Unchanged v −→ #F
shows |∼ F ∧ #�F −→ �F
using T7 [OF h] by auto

theorem M11 :
assumes h: |∼ [A]-f −→ [B]-g
shows ` �[A]-f −→ �[B]-g

proof −
from h have ` �[[A]-f ]-g −→ �[[B]-g]-g by (rule M2 )
with T4 show ?thesis by force

qed

theorem M12 : ` (�[A]-f ∧ �[B]-g) = �[[A]-f ∧ [B]-g]-(f ,g)
proof −

have ` �[A]-f ∧ �[B]-g −→ �[[A]-f ∧ [B]-g]-(f ,g)
by (auto simp: M8 [int-rewrite] elim: T4 [unlift-rule])

moreover
have |∼ [[A]-f ∧ [B]-g]-(f ,g) −→ [A]-f

by (auto simp: actrans-def unch-def all-before-eq all-after-eq)
hence ` �[[A]-f ∧ [B]-g]-(f ,g) −→ �[A]-f by (rule M11 )
moreover
have |∼ [[A]-f ∧ [B]-g]-(f ,g) −→ [B]-g

by (auto simp: actrans-def unch-def all-before-eq all-after-eq)
hence ` �[[A]-f ∧ [B]-g]-(f ,g) −→ �[B]-g

by (rule M11 )
ultimately show ?thesis by force

qed

We now derive Lamport’s 6 simple temporal logic rules (STL1)-(STL6) [5].
Firstly, STL1 is the same as ` ?F =⇒ ` �?F derived above.
lemmas STL1 = alw

STL2 and STL3 have also already been derived.
lemmas STL2 = ax1

lemmas STL3 = T1

As with the derivation of ` ?F =⇒ ` �?F, a purely syntactic derivation
of (STL4) relies on an additional argument – either using Unchanged or
STUTINV.
theorem STL4-2 :

assumes h1 : ` F −→ G and h2 : |∼ G ∧ Unchanged v −→ #G
shows ` �F −→ �G

48



proof −
from ax1 [of F ] h1 have ` �F −→ G by (rule lift-imp-trans)
moreover
from h1 have |∼ #F −→ #G by (rule N1 )
hence |∼ #F −→ G −→ #G by auto
hence ` �[#F ]-v −→ �[G −→ #G]-v by (rule M2 )
with T6 have ` �F −→ �[G −→ #G]-v by (rule lift-imp-trans)
moreover
from h2 have ` �[G −→ #G]-v −→ G −→ �G by (rule ax3 )
ultimately
show ?thesis by force

qed

lemma STL4-3 :
assumes h1 : ` F −→ G and h2 : STUTINV G
shows ` �F −→ �G

using h1 h2 [THEN pre-id-unch] by (rule STL4-2 )

Of course, the original rule can be derived semantically
lemma STL4 : assumes h: ` F −→ G shows ` �F −→ �G

using h by (force simp: always-def )

Dual rule for ♦
lemma STL4-eve: assumes h: ` F −→ G shows ` ♦F −→ ♦G

using h by (force simp: eventually-defs)

Similarly, a purely syntactic derivation of (STL5) requires extra hypotheses.
theorem STL5-2 :

assumes h1 : |∼ F ∧ Unchanged f −→ #F
and h2 : |∼ G ∧ Unchanged g −→ #G

shows ` �(F ∧ G) = (�F ∧ �G)
proof (rule int-iffI )

have ` F ∧ G −→ F by auto
from this h1 have ` �(F ∧ G) −→ �F by (rule STL4-2 )
moreover
have ` F ∧ G −→ G by auto
from this h2 have ` �(F ∧ G) −→ �G by (rule STL4-2 )
ultimately show ` �(F ∧ G) −→ �F ∧ �G by force

next
have |∼ Unchanged (f ,g) −→ Unchanged f ∧ Unchanged g by (auto simp:

unch-defs)
with h1 [unlifted] h2 [unlifted] T8 [of F G, unlifted]
have h3 : |∼ (F ∧ G) ∧ Unchanged (f ,g) −→ #(F ∧ G) by force
from ax1 [of F ] ax1 [of G] have ` �F ∧ �G −→ F ∧ G by force
moreover
from ax2 [of F ] ax2 [of G] have ` �F ∧ �G −→ �[�F ]-(f ,g) ∧ �[�G]-(f ,g) by

force
with M8 have ` �F ∧ �G −→ �[�F ∧ �G]-(f ,g) by force
moreover
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from P1 [of F ] P1 [of G] have |∼ �F ∧ �G −→ F ∧ G −→ #(F ∧ G)
unfolding T8 [int-rewrite] by force

hence ` �[ �F ∧ �G ]-(f ,g) −→ �[F ∧ G −→ #(F ∧ G)]-(f ,g) by (rule M2 )
from this ax3 [OF h3 ] have ` �[ �F ∧ �G ]-(f ,g) −→ F ∧ G −→ �(F ∧ G)

by (rule lift-imp-trans)
ultimately show ` �F ∧ �G −→ �(F ∧ G) by force

qed

theorem STL5-21 :
assumes h1 : stutinv F and h2 : stutinv G
shows ` �(F ∧ G) = (�F ∧ �G)
using h1 [THEN pre-id-unch] h2 [THEN pre-id-unch] by (rule STL5-2 )

We also derive STL5 semantically.
lemma STL5 : ` �(F ∧ G) = (�F ∧ �G)

by (auto simp: always-def )

Elimination rule corresponding to STL5 in unlifted form.
lemma box-conjE :

assumes s |= �F and s |= �G and s |= �(F ∧ G) =⇒ P
shows P
using assms by (auto simp: STL5 [unlifted])

lemma box-thin:
assumes h1 : s |= �F and h2 : PROP W
shows PROP W
using h2 .

Finally, we derive STL6 (only semantically)
lemma STL6 : ` ♦�(F ∧ G) = (♦�F ∧ ♦�G)
proof auto

fix w
assume a1 : w |= ♦�F and a2 : w |= ♦�G
from a1 obtain nf where nf : (w |s nf ) |= �F by (auto simp: eventually-defs)
from a2 obtain ng where ng: (w |s ng) |= �G by (auto simp: eventually-defs)
let ?n = max nf ng
have nf ≤ ?n by simp
from this nf have (w |s ?n) |= �F by (rule linalw)
moreover
have ng ≤ ?n by simp
from this ng have (w |s ?n) |= �G by (rule linalw)
ultimately
have (w |s ?n) |= �(F ∧ G) by (rule box-conjE)
thus w |= ♦�(F ∧ G) by (auto simp: eventually-defs)

next
fix w
assume h: w |= ♦�(F ∧ G)
have ` F ∧ G −→ F by auto
hence ` ♦�(F ∧ G) −→ ♦�F by (rule STL4-eve[OF STL4 ])
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with h show w |= ♦�F by auto
next

fix w
assume h: w |= ♦�(F ∧ G)
have ` F ∧ G −→ G by auto
hence ` ♦�(F ∧ G) −→ ♦�G by (rule STL4-eve[OF STL4 ])
with h show w |= ♦�G by auto

qed

lemma MM0 : ` �(F −→ G) −→ �F −→ �G
proof −

have ` �(F ∧ (F −→ G)) −→ �G by (rule STL4 ) auto
thus ?thesis by (auto simp: STL5 [int-rewrite])

qed

lemma MM1 : assumes h: ` F = G shows ` �F = �G
by (auto simp: h[int-rewrite])

theorem MM2 : ` �A ∧ �(B −→ C ) −→ �(A ∧ B −→ C )
proof −

have ` �(A ∧ (B −→ C )) −→ �(A ∧ B −→ C ) by (rule STL4 ) auto
thus ?thesis by (auto simp: STL5 [int-rewrite])

qed

theorem MM3 : ` �¬A −→ �(A ∧ B −→ C )
by (rule STL4 ) auto

theorem MM4 [simp-unl]: ` �#F = #F
proof (cases F)

assume F
hence 1 : ` #F by auto
hence ` �#F by (rule alw)
with 1 show ?thesis by force

next
assume ¬F
hence 1 : ` ¬ #F by auto
from ax1 have ` ¬ #F −→ ¬ �#F by (rule lift-imp-neg)
with 1 show ?thesis by force

qed

theorem MM4b[simp-unl]: ` �¬#F = ¬#F
proof −

have ` ¬#F = #(¬F) by auto
hence ` �¬#F = �#(¬F) by (rule MM1 )
thus ?thesis by auto

qed

theorem MM5 : ` �F ∨ �G −→ �(F ∨ G)
proof −
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have ` �F −→ �(F ∨ G) by (rule STL4 ) auto
moreover
have ` �G −→ �(F ∨ G) by (rule STL4 ) auto
ultimately show ?thesis by force

qed

theorem MM6 : ` �F ∨ �G −→ �(�F ∨ �G)
proof −

have ` ��F ∨ ��G −→ �(�F ∨ �G) by (rule MM5 )
thus ?thesis by simp

qed

lemma MM10 :
assumes h: |∼ F = G shows ` �[F ]-v = �[G]-v
by (auto simp: h[int-rewrite])

lemma MM9 :
assumes h: ` F = G shows ` �[F ]-v = �[G]-v
by (rule MM10 [OF pre[OF h]])

theorem MM11 : ` �[¬(P ∧ Q)]-v −→ �[P]-v −→ �[P ∧ ¬Q]-v
proof −

have ` �[¬(P ∧ Q)]-v −→ �[P −→ P ∧ ¬Q]-v by (rule M2 ) auto
from this ax4 show ?thesis by (rule lift-imp-trans)

qed

theorem MM12 [simp-unl]: ` �[�[P]-v]-v = �[P]-v
proof (rule int-iffI )

have |∼ �[P]-v −→ [P]-v by (auto simp: pax4 [unlifted])
hence ` �[�[P]-v]-v −→ �[[P]-v]-v by (rule M2 )
thus ` �[�[P]-v]-v −→ �[P]-v by (unfold T3 [int-rewrite])

next
have ` ��[P]-v −→ �[��[P]-v]-v by (rule ax2 )
thus ` �[P]-v −→ �[�[P]-v]-v by auto

qed

5.4 Theorems about the eventually operator
theorem dualization:
` ¬�F = ♦¬F
` ¬♦F = �¬F
` ¬�[A]-v = ♦〈¬A〉-v
` ¬♦〈A〉-v = �[¬A]-v
unfolding eventually-def angle-action-def by simp-all

lemmas dualization-rew = dualization[int-rewrite]
lemmas dualization-unl = dualization[unlifted]

theorem E1 : ` ♦(F ∨ G) = (♦F ∨ ♦G)

52



proof −
have ` �¬(F ∨ G) = �(¬F ∧ ¬G) by (rule MM1 ) auto
thus ?thesis unfolding eventually-def STL5 [int-rewrite] by force

qed

theorem E3 : ` F −→ ♦F
unfolding eventually-def by (force dest: ax1 [unlift-rule])

theorem E4 : ` �F −→ ♦F
by (rule lift-imp-trans[OF ax1 E3 ])

theorem E5 : ` �F −→ �♦F
proof −

have ` ��F −→ �♦F by (rule STL4 [OF E4 ])
thus ?thesis by simp

qed

theorem E6 : ` �F −→ ♦�F
using E4 [of TEMP �F ] by simp

theorem E7 :
assumes h: |∼ ¬F ∧ Unchanged v −→ #¬F
shows |∼ ♦F −→ F ∨ #♦F

proof −
from h have |∼ ¬F ∧ #�¬F −→ �¬F by (rule M10 )
thus ?thesis by (auto simp: eventually-def )

qed

theorem E8 : ` ♦(F −→ G) −→ �F −→ ♦G
proof −

have ` �(F ∧ ¬G) −→ �¬(F −→ G) by (rule STL4 ) auto
thus ?thesis unfolding eventually-def STL5 [int-rewrite] by auto

qed

theorem E9 : ` �(F −→ G) −→ ♦F −→ ♦G
proof −

have ` �(F −→ G) −→ �(¬G −→ ¬F) by (rule STL4 ) auto
with MM0 [of TEMP ¬G TEMP ¬F ] show ?thesis unfolding eventually-def

by force
qed

theorem E10 [simp-unl]: ` ♦♦F = ♦F
by (simp add: eventually-def )

theorem E22 :
assumes h: ` F = G
shows ` ♦F = ♦G
by (auto simp: h[int-rewrite])
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theorem E15 [simp-unl]: ` ♦#F = #F
by (simp add: eventually-def )

theorem E15b[simp-unl]: ` ♦¬#F = ¬#F
by (simp add: eventually-def )

theorem E16 : ` ♦�F −→ ♦F
by (rule STL4-eve[OF ax1 ])

An action version of STL6
lemma STL6-act: ` ♦(�[F ]-v ∧ �[G]-w) = (♦�[F ]-v ∧ ♦�[G]-w)
proof −

have ` (♦�(�[F ]-v ∧ �[G]-w)) = ♦(��[F ]-v ∧ ��[G]-w) by (rule E22 [OF
STL5 ])

thus ?thesis by (auto simp: STL6 [int-rewrite])
qed

lemma SE1 : ` �F ∧ ♦G −→ ♦(�F ∧ G)
proof −

have ` �¬(�F ∧ G) −→ �(�F −→ ¬G) by (rule STL4 ) auto
with MM0 show ?thesis by (force simp: eventually-def )

qed

lemma SE2 : ` �F ∧ ♦G −→ ♦(F ∧ G)
proof −

have ` �F ∧ G −→ F ∧ G by (auto elim: ax1 [unlift-rule])
hence ` ♦(�F ∧ G) −→ ♦(F ∧ G) by (rule STL4-eve)
with SE1 show ?thesis by (rule lift-imp-trans)

qed

lemma SE3 : ` �F ∧ ♦G −→ ♦(G ∧ F)
proof −

have ` ♦(F ∧ G) −→ ♦(G ∧ F) by (rule STL4-eve) auto
with SE2 show ?thesis by (rule lift-imp-trans)

qed

lemma SE4 :
assumes h1 : s |= �F and h2 : s |= ♦G and h3 : ` �F ∧ G −→ H
shows s |= ♦H
using h1 h2 h3 [THEN STL4-eve] SE1 by force

theorem E17 : ` �♦�F −→ �♦F
by (rule STL4 [OF STL4-eve[OF ax1 ]])

theorem E18 : ` �♦�F −→ ♦�F
by (rule ax1 )

theorem E19 : ` ♦�F −→ �♦�F
proof −
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have ` (�F ∧ ¬�F) = #False by auto
hence ` ♦�(�F ∧ ¬�F) = ♦�#False by (rule E22 [OF MM1 ])
thus ?thesis unfolding STL6 [int-rewrite] by (auto simp: eventually-def )

qed

theorem E20 : ` ♦�F −→ �♦F
by (rule lift-imp-trans[OF E19 E17 ])

theorem E21 [simp-unl]: ` �♦�F = ♦�F
by (rule int-iffI [OF E18 E19 ])

theorem E27 [simp-unl]: ` ♦�♦F = �♦F
using E21 unfolding eventually-def by force

lemma E28 : ` ♦�F ∧ �♦G −→ �♦(F ∧ G)
proof −
have ` ♦�(�F ∧ ♦G) −→ ♦�♦(F ∧ G) by (rule STL4-eve[OF STL4 [OF SE2 ]])
thus ?thesis by (simp add: STL6 [int-rewrite])

qed

lemma E23 : |∼ #F −→ ♦F
using P1 by (force simp: eventually-def )

lemma E24 : ` ♦�Q −→ �[♦Q]-v
by (rule lift-imp-trans[OF E20 P4 ])

lemma E25 : ` ♦〈A〉-v −→ ♦A
using P4 by (force simp: eventually-def angle-action-def )

lemma E26 : ` �♦〈A〉-v −→ �♦A
by (rule STL4 [OF E25 ])

lemma allBox: (s |= �(∀ x. F x)) = (∀ x. s |= �(F x))
unfolding allT [unlifted] ..

lemma E29 : |∼ #♦F −→ ♦F
unfolding eventually-def using pax3 by force

lemma E30 :
assumes h1 : ` F −→ �F and h2 : ` ♦F
shows ` ♦�F
using h2 h1 [THEN STL4-eve] by (rule fmp)

lemma E31 : ` �(F −→ �F) ∧ ♦F −→ ♦�F
proof −

have ` �(F −→ �F) ∧ ♦F −→ ♦(�(F −→ �F) ∧ F) by (rule SE1 )
moreover
have ` �(F −→ �F) ∧ F −→ �F using ax1 [of TEMP F −→ �F ] by auto
hence ` ♦(�(F −→ �F) ∧ F) −→ ♦�F by (rule STL4-eve)
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ultimately show ?thesis by (rule lift-imp-trans)
qed

lemma allActBox: (s |= �[(∀ x. F x)]-v) = (∀ x. s |= �[(F x)]-v)
unfolding allActT [unlifted] ..

theorem exEE : ` (∃ x. ♦(F x)) = ♦(∃ x. F x)
proof −

have ` ¬(∃ x. ♦(F x)) = ¬♦(∃ x. F x)
by (auto simp: eventually-def Not-Rex[int-rewrite] allBox)

thus ?thesis by force
qed

theorem exActE : ` (∃ x. ♦〈F x〉-v) = ♦〈(∃ x. F x)〉-v
proof −

have ` ¬(∃ x. ♦〈F x〉-v) = ¬♦〈(∃ x. F x)〉-v
by (auto simp: angle-action-def Not-Rex[int-rewrite] allActBox)

thus ?thesis by force
qed

5.5 Theorems about the leadsto operator
theorem LT1 : ` F  F

unfolding leadsto-def by (rule alw[OF E3 ])

theorem LT2 : assumes h: ` F −→ G shows ` F −→ ♦G
by (rule lift-imp-trans[OF h E3 ])

theorem LT3 : assumes h: ` F −→ G shows ` F  G
unfolding leadsto-def by (rule alw[OF LT2 [OF h]])

theorem LT4 : ` F −→ (F  G) −→ ♦G
unfolding leadsto-def using ax1 [of TEMP F −→ ♦G] by auto

theorem LT5 : ` �(F −→ ♦G) −→ ♦F −→ ♦G
using E9 [of F TEMP ♦G] by simp

theorem LT6 : ` ♦F −→ (F  G) −→ ♦G
unfolding leadsto-def using LT5 [of F G] by auto

theorem LT9 [simp-unl]: ` �(F  G) = (F  G)
by (auto simp: leadsto-def )

theorem LT7 : ` �♦F −→ (F  G) −→ �♦G
proof −

have ` �♦F −→ �((F  G) −→ ♦G) by (rule STL4 [OF LT6 ])
from lift-imp-trans[OF this MM0 ] show ?thesis by simp

qed

56



theorem LT8 : ` �♦G −→ (F  G)
unfolding leadsto-def by (rule STL4 ) auto

theorem LT13 : ` (F  G) −→ (G  H ) −→ (F  H )
proof −

have ` ♦G −→ (G  H ) −→ ♦H by (rule LT6 )
hence ` �(F −→ ♦G) −→ �((G  H ) −→ (F −→ ♦H )) by (intro STL4 ) auto
from lift-imp-trans[OF this MM0 ] show ?thesis by (simp add: leadsto-def )

qed

theorem LT11 : ` (F  G) −→ (F  (G ∨ H ))
proof −

have ` G  (G ∨ H ) by (rule LT3 ) auto
with LT13 [of F G TEMP (G ∨ H )] show ?thesis by force

qed

theorem LT12 : ` (F  H ) −→ (F  (G ∨ H ))
proof −

have ` H  (G ∨ H ) by (rule LT3 ) auto
with LT13 [of F H TEMP (G ∨ H )] show ?thesis by force

qed

theorem LT14 : ` ((F ∨ G)  H ) −→ (F  H )
unfolding leadsto-def by (rule STL4 ) auto

theorem LT15 : ` ((F ∨ G)  H ) −→ (G  H )
unfolding leadsto-def by (rule STL4 ) auto

theorem LT16 : ` (F  H ) −→ (G  H ) −→ ((F ∨ G)  H )
proof −

have ` �(F −→ ♦H ) −→ �((G −→ ♦H ) −→ (F ∨ G −→ ♦H )) by (rule STL4 )
auto

from lift-imp-trans[OF this MM0 ] show ?thesis by (unfold leadsto-def )
qed

theorem LT17 : ` ((F ∨ G)  H ) = ((F  H ) ∧ (G  H ))
by (auto elim: LT14 [unlift-rule] LT15 [unlift-rule]

LT16 [unlift-rule])

theorem LT10 :
assumes h: ` (F ∧ ¬G)  G
shows ` F  G

proof −
from h have ` ((F ∧ ¬G) ∨ G)  G

by (auto simp: LT17 [int-rewrite] LT1 [int-rewrite])
moreover
have ` F  ((F ∧ ¬G) ∨ G) by (rule LT3 , auto)
ultimately
show ?thesis by (force elim: LT13 [unlift-rule])
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qed

theorem LT18 : ` (A  (B ∨ C )) −→ (B  D) −→ (C  D) −→ (A  D)
proof −

have ` (B  D) −→ (C  D) −→ ((B ∨ C )  D) by (rule LT16 )
thus ?thesis by (force elim: LT13 [unlift-rule])

qed

theorem LT19 : ` (A  (D ∨ B)) −→ (B  D) −→ (A  D)
using LT18 [of A D B D] LT1 [of D] by force

theorem LT20 : ` (A  (B ∨ D)) −→ (B  D) −→ (A  D)
using LT18 [of A B D D] LT1 [of D] by force

theorem LT21 : ` ((∃ x. F x)  G) = (∀ x. (F x  G))
proof −

have ` �((∃ x. F x) −→ ♦G) = �(∀ x. (F x −→ ♦G)) by (rule MM1 ) auto
thus ?thesis by (unfold leadsto-def allT [int-rewrite])

qed

theorem LT22 : ` (F  (G ∨ H )) −→ �¬G −→ (F  H )
proof −

have ` �¬G −→ (G  H ) unfolding leadsto-def by (rule STL4 ) auto
thus ?thesis by (force elim: LT20 [unlift-rule])

qed

lemma LT23 : |∼ (P −→ #Q) −→ (P −→ ♦Q)
by (auto dest: E23 [unlift-rule])

theorem LT24 : ` �I −→ ((P ∧ I )  Q) −→ P  Q
proof −

have ` �I −→ �((P ∧ I −→ ♦Q) −→ (P −→ ♦Q)) by (rule STL4 ) auto
from lift-imp-trans[OF this MM0 ] show ?thesis by (unfold leadsto-def )

qed

theorem LT25 [simp-unl]: ` (F  #False) = �¬F
unfolding leadsto-def proof (rule MM1 )

show ` (F −→ ♦#False) = ¬F by simp
qed

lemma LT28 :
assumes h: |∼ P −→ #P ∨ #Q
shows |∼ (P −→ #P) ∨ ♦Q
using h E23 [of Q] by force

lemma LT29 :
assumes h1 : |∼ P −→ #P ∨ #Q and h2 : |∼ P ∧ Unchanged v −→ #P
shows ` P −→ �P ∨ ♦Q

proof −

58



from h1 [THEN LT28 ] have |∼ �¬Q −→ (P −→ #P) unfolding eventually-def
by auto

hence ` �[�¬Q]-v −→ �[P −→ #P]-v by (rule M2 )
moreover
have ` ¬♦Q −→ �[�¬Q]-v unfolding dualization-rew by (rule ax2 )
moreover
note ax3 [OF h2 ]
ultimately
show ?thesis by force

qed

lemma LT30 :
assumes h: |∼ P ∧ N −→ #P ∨ #Q
shows |∼ N −→ (P −→ #P) ∨ ♦Q
using h E23 by force

lemma LT31 :
assumes h1 : |∼ P ∧ N −→ #P ∨ #Q and h2 : |∼ P ∧ Unchanged v −→ #P
shows` �N −→ P −→ �P ∨ ♦Q

proof −
from h1 [THEN LT30 ] have |∼ N −→ �¬Q −→ P −→ #P unfolding eventu-

ally-def by auto
hence ` �[N −→ �¬Q −→ P −→ #P]-v by (rule sq)
hence ` �[N ]-v −→ �[�¬Q]-v −→ �[P −→ #P]-v

by (force intro: ax4 [unlift-rule])
with P4 have ` �N −→ �[�¬Q]-v −→ �[P −→ #P]-v by (rule lift-imp-trans)
moreover
have ` ¬♦Q −→ �[�¬Q]-v unfolding dualization-rew by (rule ax2 )
moreover
note ax3 [OF h2 ]
ultimately
show ?thesis by force

qed

lemma LT33 : ` ((#P ∧ F)  G) = (#P −→ (F  G))
by (cases P, auto simp: leadsto-def )

lemma AA1 : ` �[#False]-v −→ ¬♦〈Q〉-v
unfolding dualization-rew by (rule M2 ) auto

lemma AA2 : ` �[P]-v ∧ ♦〈Q〉-v −→ ♦〈P ∧ Q〉-v
proof −

have ` �[P −→ ∼(P ∧ Q) −→ ¬Q]-v by (rule sq) (auto simp: actrans-def )
hence ` �[P]-v −→ �[∼(P ∧ Q)]-v −→ �[¬Q]-v

by (force intro: ax4 [unlift-rule])
thus ?thesis by (auto simp: angle-action-def )

qed

lemma AA3 : ` �P ∧ �[P −→ Q]-v ∧ ♦〈A〉-v −→ ♦Q
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proof −
have ` �P ∧ �[P −→ Q]-v −→ �[P ∧ (P −→ Q)]-v

by (auto dest: P4 [unlift-rule] simp: M8 [int-rewrite])
moreover
have ` �[P ∧ (P −→ Q)]-v −→ �[Q]-v by (rule M2 ) auto
ultimately have ` �P ∧ �[P −→ Q]-v −→ �[Q]-v by (rule lift-imp-trans)
moreover
have ` ♦(Q ∧ A) −→ ♦Q by (rule STL4-eve) auto
hence ` ♦〈Q ∧ A〉-v −→ ♦Q by (force dest: E25 [unlift-rule])
with AA2 have ` �[Q]-v ∧ ♦〈A〉-v −→ ♦Q by (rule lift-imp-trans)
ultimately show ?thesis by force

qed

lemma AA4 : ` ♦〈〈A〉-v〉-w −→ ♦〈〈A〉-w〉-v
unfolding angle-action-def angle-actrans-def using T5 by force

lemma AA7 : assumes h: |∼ F −→ G shows ` ♦〈F〉-v −→ ♦〈G〉-v
proof −

from h have ` �[¬G]-v −→ �[¬F ]-v by (intro M2 ) auto
thus ?thesis unfolding angle-action-def by force

qed

lemma AA6 : ` �[P −→ Q]-v ∧ ♦〈P〉-v −→ ♦〈Q〉-v
proof −

have ` ♦〈(P −→ Q) ∧ P〉-v −→ ♦〈Q〉-v by (rule AA7 ) auto
with AA2 show ?thesis by (rule lift-imp-trans)

qed

lemma AA8 : ` �[P]-v ∧ ♦〈A〉-v −→ ♦〈�[P]-v ∧ A〉-v
proof −

have ` �[�[P]-v]-v ∧ ♦〈A〉-v −→ ♦〈�[P]-v ∧ A〉-v by (rule AA2 )
with P5 show ?thesis by force

qed

lemma AA9 : ` �[P]-v ∧ ♦〈A〉-v −→ ♦〈[P]-v ∧ A〉-v
proof −

have ` �[[P]-v]-v ∧ ♦〈A〉-v −→ ♦〈[P]-v ∧ A〉-v by (rule AA2 )
thus ?thesis by simp

qed

lemma AA10 : ` ¬(�[P]-v ∧ ♦〈¬P〉-v)
unfolding angle-action-def by auto

lemma AA11 : ` ¬♦〈v$ = $v〉-v
unfolding dualization-rew by (rule ax5 )

lemma AA15 : ` ♦〈P ∧ Q〉-v −→ ♦〈P〉-v
by (rule AA7 ) auto
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lemma AA16 : ` ♦〈P ∧ Q〉-v −→ ♦〈Q〉-v
by (rule AA7 ) auto

lemma AA13 : ` ♦〈P〉-v −→ ♦〈v$ 6= $v〉-v
proof −

have ` �[v$ 6= $v]-v ∧ ♦〈P〉-v −→ ♦〈v$ 6= $v ∧ P〉-v by (rule AA2 )
hence ` ♦〈P〉-v −→ ♦〈v$ 6= $v ∧ P〉-v by (simp add: ax5 [int-rewrite])
from this AA15 show ?thesis by (rule lift-imp-trans)

qed

lemma AA14 : ` ♦〈P ∨ Q〉-v = (♦〈P〉-v ∨ ♦〈Q〉-v)
proof −

have ` �[¬(P ∨ Q)]-v = �[¬P ∧ ¬Q]-v by (rule MM10 ) auto
hence ` �[¬(P ∨ Q)]-v = (�[¬P]-v ∧ �[¬Q]-v) by (unfold M8 [int-rewrite])
thus ?thesis unfolding angle-action-def by auto

qed

lemma AA17 : ` ♦〈[P]-v ∧ A〉-v −→ ♦〈P ∧ A〉-v
proof −

have ` �[v$ 6= $v ∧ ¬(P ∧ A)]-v −→ �[¬([P]-v ∧ A)]-v
by (rule M2 ) (auto simp: actrans-def unch-def )

with ax5 [of v] show ?thesis
unfolding angle-action-def M8 [int-rewrite] by force

qed

lemma AA19 : ` �P ∧ ♦〈A〉-v −→ ♦〈P ∧ A〉-v
using P4 by (force intro: AA2 [unlift-rule])

lemma AA20 :
assumes h1 : |∼ P −→ #P ∨ #Q

and h2 : |∼ P ∧ A −→ #Q
and h3 : |∼ P ∧ Unchanged w −→ #P

shows ` �(�P −→ ♦〈A〉-v) −→ (P  Q)
proof −

from h2 E23 have |∼ P ∧ A −→ ♦Q by force
hence ` ♦〈P ∧ A〉-v −→ ♦〈♦Q〉-v by (rule AA7 )
with E25 [of TEMP ♦Q v] have ` ♦〈P ∧ A〉-v −→ ♦Q by force
with AA19 have ` �P ∧ ♦〈A〉-v −→ ♦Q by (rule lift-imp-trans)
with LT29 [OF h1 h3 ] have ` (�P −→ ♦〈A〉-v) −→ (P −→ ♦Q) by force
thus ?thesis unfolding leadsto-def by (rule STL4 )

qed

lemma AA21 : |∼ ♦〈#F〉-v −→ #♦F
using pax5 [of TEMP ¬F v] unfolding angle-action-def eventually-def by auto

theorem AA24 [simp-unl]: ` ♦〈〈P〉-f 〉-f = ♦〈P〉-f
unfolding angle-action-def angle-actrans-def by simp

lemma AA22 :
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assumes h1 : |∼ P ∧ N −→ #P ∨ #Q
and h2 : |∼ P ∧ N ∧ 〈A〉-v −→ #Q
and h3 : |∼ P ∧ Unchanged w −→ #P

shows ` �N ∧ �(�P −→ ♦〈A〉-v) −→ (P  Q)
proof −
from h2 have |∼ 〈(N ∧ P) ∧ A〉-v −→ #Q by (auto simp: angle-actrans-sem[int-rewrite])
from pref-imp-trans[OF this E23 ] have ` ♦〈〈(N ∧ P) ∧ A〉-v〉-v −→ ♦〈♦Q〉-v

by (rule AA7 )
hence ` ♦〈(N ∧ P) ∧ A〉-v −→ ♦Q by (force dest: E25 [unlift-rule])
with AA19 have ` �(N ∧ P) ∧ ♦〈A〉-v −→ ♦Q by (rule lift-imp-trans)
hence ` �N ∧ �P ∧ ♦〈A〉-v −→ ♦Q by (auto simp: STL5 [int-rewrite])
with LT31 [OF h1 h3 ] have ` �N ∧ (�P −→ ♦〈A〉-v) −→ (P −→ ♦Q) by force
hence ` �(�N ∧ (�P −→ ♦〈A〉-v)) −→ �(P −→ ♦Q) by (rule STL4 )
thus ?thesis by (simp add: leadsto-def STL5 [int-rewrite])

qed

lemma AA23 :
assumes |∼ P ∧ N −→ #P ∨ #Q

and |∼ P ∧ N ∧ 〈A〉-v −→ #Q
and |∼ P ∧ Unchanged w −→ #P

shows ` �N ∧ �♦〈A〉-v −→ (P  Q)
proof −

have ` �♦〈A〉-v −→ �(�P −→ ♦〈A〉-v) by (rule STL4 ) auto
with AA22 [OF assms] show ?thesis by force

qed

lemma AA25 :
assumes h: |∼ 〈P〉-v −→ 〈Q〉-w
shows ` ♦〈P〉-v −→ ♦〈Q〉-w

proof −
from h have ` ♦〈〈P〉-v〉-v −→ ♦〈〈P〉-w〉-v

by (intro AA7 ) (auto simp: angle-actrans-def actrans-def )
with AA4 have ` ♦〈P〉-v −→ ♦〈〈P〉-v〉-w by force
from this AA7 [OF h] have ` ♦〈P〉-v −→ ♦〈〈Q〉-w〉-w by (rule lift-imp-trans)
thus ?thesis by simp

qed

lemma AA26 :
assumes h: |∼ 〈A〉-v = 〈B〉-w
shows ` ♦〈A〉-v = ♦〈B〉-w

proof −
from h have |∼ 〈A〉-v −→ 〈B〉-w by auto
hence ` ♦〈A〉-v −→ ♦〈B〉-w by (rule AA25 )
moreover
from h have |∼ 〈B〉-w −→ 〈A〉-v by auto
hence ` ♦〈B〉-w −→ ♦〈A〉-v by (rule AA25 )
ultimately
show ?thesis by force

qed
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theorem AA28 [simp-unl]: ` ♦♦〈A〉-v = ♦〈A〉-v
unfolding eventually-def angle-action-def by simp

theorem AA29 : ` �[N ]-v ∧ �♦〈A〉-v −→ �♦〈N ∧ A〉-v
proof −

have ` �(�[N ]-v ∧ ♦〈A〉-v) −→ �♦〈N ∧ A〉-v by (rule STL4 [OF AA2 ])
thus ?thesis by (simp add: STL5 [int-rewrite])

qed

theorem AA30 [simp-unl]: ` ♦〈♦〈P〉-f 〉-f = ♦〈P〉-f
unfolding angle-action-def by simp

theorem AA31 : ` ♦〈#F〉-v −→ ♦F
using pref-imp-trans[OF AA21 E29 ] by auto

lemma AA32 [simp-unl]: ` �♦�[A]-v = ♦�[A]-v
using E21 [of TEMP �[A]-v] by simp

lemma AA33 [simp-unl]: ` ♦�♦〈A〉-v = �♦〈A〉-v
using E27 [of TEMP ♦〈A〉-v] by simp

5.6 Lemmas about the next operator
lemma N2 : assumes h: ` F = G shows |∼ #F = #G

by (simp add: h[int-rewrite])

lemmas next-and = T8

lemma next-or : |∼ #(F ∨ G) = (#F ∨ #G)
proof (rule pref-iffI )

have |∼ #((F ∨ G) ∧ ¬F) −→ #G by (rule N1 ) auto
thus |∼ #(F ∨ G) −→ #F ∨ #G by (auto simp: T8 [int-rewrite])

next
have |∼ #F −→ #(F ∨ G) by (rule N1 ) auto
moreover have |∼ #G −→ #(F ∨ G) by (rule N1 ) auto
ultimately show |∼ #F ∨ #G −→ #(F ∨ G) by force

qed

lemma next-imp: |∼ #(F −→ G) = (#F −→ #G)
proof (rule pref-iffI )

have |∼ #G −→ #(F −→ G) by (rule N1 ) auto
moreover have |∼ #¬F −→ #(F −→ G) by (rule N1 ) auto
ultimately show |∼ (#F −→ #G) −→ #(F −→ G) by force

qed (rule pax2 )

lemmas next-not = pax1

lemma next-eq: |∼ #(F = G) = (#F = #G)
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proof −
have |∼ #(F = G) = #((F −→ G) ∧ (G −→ F)) by (rule N2 ) auto
from this[int-rewrite] show ?thesis

by (auto simp: next-and[int-rewrite] next-imp[int-rewrite])
qed

lemma next-noteq: |∼ #(F 6= G) = (#F 6= #G)
by (simp add: next-eq[int-rewrite])

lemma next-const[simp-unl]: |∼ ##P = #P
proof (cases P)

assume P
hence 1 : ` #P by auto
hence |∼ ##P by (rule nex)
with 1 show ?thesis by force

next
assume ¬P
hence 1 : ` ¬#P by auto
hence |∼ #¬#P by (rule nex)
with 1 show ?thesis by force

qed

The following are proved semantically because they are essentially first-order
theorems.
lemma next-fun1 : |∼ #f<x> = f<#x>

by (auto simp: nexts-def )

lemma next-fun2 : |∼ #f<x,y> = f<#x,#y>
by (auto simp: nexts-def )

lemma next-fun3 : |∼ #f<x,y,z> = f<#x,#y,#z>
by (auto simp: nexts-def )

lemma next-fun4 : |∼ #f<x,y,z,zz> = f<#x,#y,#z,#zz>
by (auto simp: nexts-def )

lemma next-forall: |∼ #(∀ x. P x) = (∀ x. # P x)
by (auto simp: nexts-def )

lemma next-exists: |∼ #(∃ x. P x) = (∃ x. # P x)
by (auto simp: nexts-def )

lemma next-exists1 : |∼ #(∃ ! x. P x) = (∃ ! x. # P x)
by (auto simp: nexts-def )

Rewrite rules to push the “next” operator inward over connectives. (Note
that axiom pax1 and theorem next-const are anyway active as rewrite rules.)
lemmas next-commutes[int-rewrite] =

next-and next-or next-imp next-eq

64



next-fun1 next-fun2 next-fun3 next-fun4
next-forall next-exists next-exists1

lemmas ifs-eq[int-rewrite] = after-fun3 next-fun3 before-fun3

lemmas next-always = pax3

lemma t1 : |∼ #$x = x$
by (simp add: before-def after-def nexts-def first-tail-second)

Theorem next-eventually should not be used "blindly".
lemma next-eventually:

assumes h: stutinv F
shows |∼ ♦F −→ ¬F −→ #♦F

proof −
from h have 1 : stutinv (TEMP ¬F) by (rule stut-not)
have |∼ �¬F = (¬F ∧ #�¬F) unfolding T7 [OF pre-id-unch[OF 1 ], int-rewrite]

by simp
thus ?thesis by (auto simp: eventually-def )

qed

lemma next-action: |∼ �[P]-v −→ #�[P]-v
using pax4 [of P v] by auto

5.7 Higher Level Derived Rules

In most verification tasks the low-level rules discussed above are not used
directly. Here, we derive some higher-level rules more suitable for verifica-
tion. In particular, variants of Lamport’s rules TLA1, TLA2, INV1 and
INV2 are derived, where |∼ is used where appropriate.
theorem TLA1 :

assumes H : |∼ P ∧ Unchanged f −→ #P
shows ` �P = (P ∧ �[P −→ #P]-f )

proof (rule int-iffI )
from ax1 [of P] M0 [of P f ] show ` �P −→ P ∧ �[P −→ #P]-f by force

next
from ax3 [OF H ] show ` P ∧ �[P −→ #P]-f −→ �P by auto

qed

theorem TLA2 :
assumes h1 : ` P −→ Q

and h2 : |∼ P ∧ #P ∧ [A]-f −→ [B]-g
shows ` �P ∧ �[A]-f −→ �Q ∧ �[B]-g

proof −
from h2 have ` �[P ∧ #P ∧ [A]-f ]-g −→ �[[B]-g]-g by (rule M2 )
hence ` �[P ∧ #P]-g ∧ �[[A]-f ]-g −→ �[B]-g by (auto simp add: M8 [int-rewrite])
with M1 [of P g] T4 [of A f g] have ` �P ∧ �[A]-f −→ �[B]-g by force
with h1 [THEN STL4 ] show ?thesis by force
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qed

theorem INV1 :
assumes H : |∼ I ∧ [N ]-f −→ #I
shows ` I ∧ �[N ]-f −→ �I

proof −
from H have |∼ [N ]-f −→ I −→ #I by auto
hence ` �[[N ]-f ]-f −→ �[I −→ #I ]-f by (rule M2 )
moreover
from H have |∼ I ∧ Unchanged f −→ #I by (auto simp: actrans-def )
hence ` �[I −→ #I ]-f −→ I −→ �I by (rule ax3 )
ultimately show ?thesis by force

qed

theorem INV2 : ` �I −→ �[N ]-f = �[N ∧ I ∧ #I ]-f
proof −

from M1 [of I f ] have ` �I −→ (�[N ]-f = �[N ]-f ∧ �[I ∧ #I ]-f ) by auto
thus ?thesis by (auto simp: M8 [int-rewrite])

qed

lemma R1 :
assumes H : |∼ Unchanged w −→ Unchanged v
shows ` �[F ]-w −→ �[F ]-v

proof −
from H have |∼ [F ]-w −→ [F ]-v by (auto simp: actrans-def )
thus ?thesis by (rule M11 )

qed

theorem invmono:
assumes h1 : ` I −→ P

and h2 : |∼ P ∧ [N ]-f −→ #P
shows ` I ∧ �[N ]-f −→ �P
using h1 INV1 [OF h2 ] by force

theorem preimpsplit:
assumes |∼ I ∧ N −→ Q

and |∼ I ∧ Unchanged v −→ Q
shows |∼ I ∧ [N ]-v −→ Q
using assms[unlift-rule] by (auto simp: actrans-def )

theorem refinement1 :
assumes h1 : ` P −→ Q

and h2 : |∼ I ∧ #I ∧ [A]-f −→ [B]-g
shows ` P ∧ �I ∧ �[A]-f −→ Q ∧ �[B]-g

proof −
have ` I −→ #True by simp
from this h2 have ` �I ∧ �[A]-f −→ �#True ∧ �[B]-g by (rule TLA2 )
with h1 show ?thesis by force

qed
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theorem inv-join:
assumes ` P −→ �Q and ` P −→ �R
shows ` P −→ �(Q ∧ R)
using assms[unlift-rule] unfolding STL5 [int-rewrite] by force

lemma inv-cases: ` �(A −→ B) ∧ �(¬A −→ B) −→ �B
proof −

have ` �((A −→ B) ∧ (¬A −→ B)) −→ �B by (rule STL4 ) auto
thus ?thesis by (simp add: STL5 [int-rewrite])

qed

end

6 Liveness
theory Liveness
imports Rules
begin

This theory derives proof rules for liveness properties.
definition enabled :: ′a formula ⇒ ′a formula
where enabled F ≡ λ s. ∃ t. ((first s) ## t) |= F

syntax -Enabled :: lift ⇒ lift (‹(Enabled -)› [90 ] 90 )

translations -Enabled 
 CONST enabled

definition WeakF :: ( ′a::world) formula ⇒ ( ′a, ′b) stfun ⇒ ′a formula
where WeakF F v ≡ TEMP ♦�Enabled 〈F〉-v −→ �♦〈F〉-v

definition StrongF :: ( ′a::world) formula ⇒ ( ′a, ′b) stfun ⇒ ′a formula
where StrongF F v ≡ TEMP �♦Enabled 〈F〉-v −→ �♦〈F〉-v

Lamport’s TLA defines the above notions for actions. In TLA∗, (pre-)for-
mulas generalise TLA’s actions and the above definition is the natural gen-
eralisation of enabledness to pre-formulas. In particular, we have chosen
to define enabled such that it yields itself a temporal formula, although its
value really just depends on the first state of the sequence it is evaluated
over. Then, the definitions of weak and strong fairness are exactly as in
TLA.
syntax
-WF :: [lift,lift] ⇒ lift (‹(WF ′(- ′) ′-(-))› [20 ,1000 ] 90 )
-SF :: [lift,lift] ⇒ lift (‹(SF ′(- ′) ′-(-))› [20 ,1000 ] 90 )
-WFsp :: [lift,lift] ⇒ lift (‹(WF ′(- ′) ′-(-))› [20 ,1000 ] 90 )
-SFsp :: [lift,lift] ⇒ lift (‹(SF ′(- ′) ′-(-))› [20 ,1000 ] 90 )

translations
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-WF 
 CONST WeakF
-SF 
 CONST StrongF
-WFsp ⇀ CONST WeakF
-SFsp ⇀ CONST StrongF

6.1 Properties of -Enabled
theorem enabledI : ` F −→ Enabled F
proof (clarsimp)

fix w
assume w |= F
with seq-app-first-tail[of w] have ((first w) ## tail w) |= F by simp
thus w |= Enabled F by (auto simp: enabled-def )

qed

theorem enabledE :
assumes s |= Enabled F and

∧
u. (first s ## u) |= F =⇒ Q

shows Q
using assms unfolding enabled-def by blast

lemma enabled-mono:
assumes w |= Enabled F and ` F −→ G
shows w |= Enabled G
using assms[unlifted] unfolding enabled-def by blast

lemma Enabled-disj1 : ` Enabled F −→ Enabled (F ∨ G)
by (auto simp: enabled-def )

lemma Enabled-disj2 : ` Enabled F −→ Enabled (G ∨ F)
by (auto simp: enabled-def )

lemma Enabled-conj1 : ` Enabled (F ∧ G) −→ Enabled F
by (auto simp: enabled-def )

lemma Enabled-conj2 : ` Enabled (G ∧ F) −→ Enabled F
by (auto simp: enabled-def )

lemma Enabled-disjD: ` Enabled (F ∨ G) −→ Enabled F ∨ Enabled G
by (auto simp: enabled-def )

lemma Enabled-disj: ` Enabled (F ∨ G) = (Enabled F ∨ Enabled G)
by (auto simp: enabled-def )

lemmas enabled-disj-rew = Enabled-disj[int-rewrite]

lemma Enabled-ex: ` Enabled (∃ x. F x) = (∃ x. Enabled (F x))
by (force simp: enabled-def )
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6.2 Fairness Properties
lemma WF-alt: ` WF(A)-v = (�♦¬Enabled 〈A〉-v ∨ �♦〈A〉-v)
proof −

have ` WF(A)-v = (¬♦� Enabled 〈A〉-v ∨ �♦〈A〉-v) by (auto simp: WeakF-def )
thus ?thesis by (simp add: dualization-rew)

qed

lemma SF-alt: ` SF(A)-v = (♦�¬Enabled 〈A〉-v ∨ �♦〈A〉-v)
proof −
have ` SF(A)-v = (¬�♦ Enabled 〈A〉-v ∨ �♦〈A〉-v) by (auto simp: StrongF-def )
thus ?thesis by (simp add: dualization-rew)

qed

lemma alwaysWFI : ` WF(A)-v −→ �WF(A)-v
unfolding WF-alt[int-rewrite] by (rule MM6 )

theorem WF-always[simp-unl]: ` �WF(A)-v = WF(A)-v
by (rule int-iffI [OF ax1 alwaysWFI ])

theorem WF-eventually[simp-unl]: ` ♦WF(A)-v = WF(A)-v
proof −

have 1 : ` ¬WF(A)-v = (♦�Enabled 〈A〉-v ∧ ¬ �♦〈A〉-v)
by (auto simp: WeakF-def )

have ` �¬WF(A)-v = ¬WF(A)-v
by (simp add: 1 [int-rewrite] STL5 [int-rewrite] dualization-rew)

thus ?thesis
by (auto simp: eventually-def )

qed

lemma alwaysSFI : ` SF(A)-v −→ �SF(A)-v
proof −

have ` �♦�¬Enabled 〈A〉-v ∨ �♦〈A〉-v −→ �(�♦�¬Enabled 〈A〉-v ∨ �♦〈A〉-v)
by (rule MM6 )

thus ?thesis unfolding SF-alt[int-rewrite] by simp
qed

theorem SF-always[simp-unl]: ` �SF(A)-v = SF(A)-v
by (rule int-iffI [OF ax1 alwaysSFI ])

theorem SF-eventually[simp-unl]: ` ♦SF(A)-v = SF(A)-v
proof −

have 1 : ` ¬SF(A)-v = (�♦Enabled 〈A〉-v ∧ ¬ �♦〈A〉-v)
by (auto simp: StrongF-def )

have ` �¬SF(A)-v = ¬SF(A)-v
by (simp add: 1 [int-rewrite] STL5 [int-rewrite] dualization-rew)

thus ?thesis
by (auto simp: eventually-def )

qed
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theorem SF-imp-WF : ` SF (A)-v −→ WF (A)-v
unfolding WeakF-def StrongF-def by (auto dest: E20 [unlift-rule])

lemma enabled-WFSF : ` �Enabled 〈F〉-v −→ (WF(F)-v = SF(F)-v)
proof −

have ` �Enabled 〈F〉-v −→ ♦�Enabled 〈F〉-v by (rule E3 )
hence ` �Enabled 〈F〉-v −→ WF(F)-v −→ SF(F)-v by (auto simp: WeakF-def

StrongF-def )
moreover
have ` �Enabled 〈F〉-v −→ �♦Enabled 〈F〉-v by (rule STL4 [OF E3 ])
hence ` �Enabled 〈F〉-v −→ SF(F)-v −→ WF(F)-v by (auto simp: WeakF-def

StrongF-def )
ultimately show ?thesis by force

qed

theorem WF1-general:
assumes h1 : |∼ P ∧ N −→ #P ∨ #Q

and h2 : |∼ P ∧ N ∧ 〈A〉-v −→ #Q
and h3 : ` P ∧ N −→ Enabled 〈A〉-v
and h4 : |∼ P ∧ Unchanged w −→ #P

shows ` �N ∧ WF(A)-v −→ (P  Q)
proof −

have ` �(�N ∧ WF(A)-v) −→ �(�P −→ ♦〈A〉-v)
proof (rule STL4 )

have ` �(P ∧ N ) −→ ♦�Enabled 〈A〉-v by (rule lift-imp-trans[OF h3 [THEN
STL4 ] E3 ])

hence ` �P ∧ �N ∧ WF(A)-v −→ �♦〈A〉-v by (auto simp: WeakF-def
STL5 [int-rewrite])

with ax1 [of TEMP ♦〈A〉-v] show ` �N ∧ WF(A)-v −→ �P −→ ♦〈A〉-v by
force

qed
hence ` �N ∧ WF(A)-v −→ �(�P −→ ♦〈A〉-v)

by (simp add: STL5 [int-rewrite])
with AA22 [OF h1 h2 h4 ] show ?thesis by force

qed

Lamport’s version of the rule is derived as a special case.
theorem WF1 :

assumes h1 : |∼ P ∧ [N ]-v −→ #P ∨ #Q
and h2 : |∼ P ∧ 〈N ∧ A〉-v −→ #Q
and h3 : ` P −→ Enabled 〈A〉-v
and h4 : |∼ P ∧ Unchanged v −→ #P

shows ` �[N ]-v ∧ WF(A)-v −→ (P  Q)
proof −

have ` ��[N ]-v ∧ WF(A)-v −→ (P  Q)
proof (rule WF1-general)

from h1 T9 [of N v] show |∼ P ∧ �[N ]-v −→ #P ∨ #Q by force
next

from T9 [of N v] have |∼ P ∧ �[N ]-v ∧ 〈A〉-v −→ P ∧ 〈N ∧ A〉-v
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by (auto simp: actrans-def angle-actrans-def )
from this h2 show |∼ P ∧ �[N ]-v ∧ 〈A〉-v −→ #Q by (rule pref-imp-trans)

next
from h3 T9 [of N v] show ` P ∧ �[N ]-v −→ Enabled 〈A〉-v by force

qed (rule h4 )
thus ?thesis by simp

qed

The corresponding rule for strong fairness has an additional hypothesis �F,
which is typically a conjunction of other fairness properties used to prove
that the helpful action eventually becomes enabled.
theorem SF1-general:

assumes h1 : |∼ P ∧ N −→ #P ∨ #Q
and h2 : |∼ P ∧ N ∧ 〈A〉-v −→ #Q
and h3 : ` �P ∧ �N ∧ �F −→ ♦Enabled 〈A〉-v
and h4 : |∼ P ∧ Unchanged w −→ #P

shows ` �N ∧ SF(A)-v ∧ �F −→ (P  Q)
proof −

have ` �(�N ∧ SF(A)-v ∧ �F) −→ �(�P −→ ♦〈A〉-v)
proof (rule STL4 )

have ` �(�P ∧ �N ∧ �F) −→ �♦Enabled 〈A〉-v by (rule STL4 [OF h3 ])
hence ` �P ∧ �N ∧ �F ∧ SF(A)-v −→ �♦〈A〉-v by (auto simp: StrongF-def

STL5 [int-rewrite])
with ax1 [of TEMP ♦〈A〉-v] show ` �N ∧ SF(A)-v ∧ �F −→ �P −→ ♦〈A〉-v

by force
qed
hence ` �N ∧ SF(A)-v ∧ �F −→ �(�P −→ ♦〈A〉-v)

by (simp add: STL5 [int-rewrite])
with AA22 [OF h1 h2 h4 ] show ?thesis by force

qed

theorem SF1 :
assumes h1 : |∼ P ∧ [N ]-v −→ #P ∨ #Q

and h2 : |∼ P ∧ 〈N ∧ A〉-v −→ #Q
and h3 : ` �P ∧ �[N ]-v ∧ �F −→ ♦Enabled 〈A〉-v
and h4 : |∼ P ∧ Unchanged v −→ #P

shows ` �[N ]-v ∧ SF(A)-v ∧ �F −→ (P  Q)
proof −

have ` ��[N ]-v ∧ SF(A)-v ∧ �F −→ (P  Q)
proof (rule SF1-general)

from h1 T9 [of N v] show |∼ P ∧ �[N ]-v −→ #P ∨ #Q by force
next

from T9 [of N v] have |∼ P ∧ �[N ]-v ∧ 〈A〉-v −→ P ∧ 〈N ∧ A〉-v
by (auto simp: actrans-def angle-actrans-def )

from this h2 show |∼ P ∧ �[N ]-v ∧ 〈A〉-v −→ #Q by (rule pref-imp-trans)
next

from h3 show ` �P ∧ ��[N ]-v ∧ �F −→ ♦Enabled 〈A〉-v by simp
qed (rule h4 )
thus ?thesis by simp
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qed

Lamport proposes the following rule as an introduction rule for WF formu-
las.
theorem WF2 :

assumes h1 : |∼ 〈N ∧ B〉-f −→ 〈M 〉-g
and h2 : |∼ P ∧ #P ∧ 〈N ∧ A〉-f −→ B
and h3 : ` P ∧ Enabled 〈M 〉-g −→ Enabled 〈A〉-f
and h4 : ` �[N ∧ ¬B]-f ∧ WF(A)-f ∧ �F ∧ ♦�Enabled 〈M 〉-g −→ ♦�P

shows ` �[N ]-f ∧ WF(A)-f ∧ �F −→ WF(M )-g
proof −
have ` �[N ]-f ∧ WF(A)-f ∧ �F ∧ ♦�Enabled 〈M 〉-g ∧ ¬�♦〈M 〉-g −→ �♦〈M 〉-g
proof −

have 1 : ` �[N ]-f ∧ WF(A)-f ∧ �F ∧ ♦�Enabled 〈M 〉-g ∧ ¬�♦〈M 〉-g −→
♦�P

proof −
have A: ` �[N ]-f ∧ WF(A)-f ∧ �F ∧ ♦�Enabled 〈M 〉-g ∧ ¬�♦〈M 〉-g −→

�(�[N ]-f ∧ WF(A)-f ∧ �F) ∧ ♦�(♦�Enabled 〈M 〉-g ∧ �[¬M ]-g)
unfolding STL6 [int-rewrite]
by (auto simp: STL5 [int-rewrite] dualization-rew)

have B: ` �(�[N ]-f ∧ WF(A)-f ∧ �F) ∧ ♦�(♦�Enabled 〈M 〉-g ∧ �[¬M ]-g)
−→

♦((�[N ]-f ∧ WF(A)-f ∧ �F) ∧ �(♦�Enabled 〈M 〉-g ∧ �[¬M ]-g))
by (rule SE2 )

from lift-imp-trans[OF A B]
have ` �[N ]-f ∧ WF(A)-f ∧ �F ∧ ♦�Enabled 〈M 〉-g ∧ ¬�♦〈M 〉-g −→

♦((�[N ]-f ∧ WF(A)-f ∧ �F) ∧ (♦�Enabled 〈M 〉-g ∧ �[¬M ]-g))
by (simp add: STL5 [int-rewrite])

moreover
from h1 have |∼ [N ]-f −→ [¬M ]-g −→ [N ∧ ¬B]-f by (auto simp: actrans-def

angle-actrans-def )
hence ` �[[N ]-f ]-f −→ �[[¬M ]-g −→ [N ∧ ¬B]-f ]-f by (rule M2 )
from lift-imp-trans[OF this ax4 ] have ` �[N ]-f ∧ �[¬M ]-g −→ �[N ∧ ¬B]-f

by (force intro: T4 [unlift-rule])
with h4 have ` (�[N ]-f ∧ WF(A)-f ∧ �F) ∧ (♦�Enabled 〈M 〉-g ∧ �[¬M ]-g)

−→ ♦�P
by force

from STL4-eve[OF this]
have ` ♦((�[N ]-f ∧ WF(A)-f ∧ �F) ∧ (♦�Enabled 〈M 〉-g ∧ �[¬M ]-g)) −→

♦�P by simp
ultimately
show ?thesis by (rule lift-imp-trans)

qed
have 2 : ` �[N ]-f ∧ WF(A)-f ∧ ♦�Enabled 〈M 〉-g ∧ ♦�P −→ �♦〈M 〉-g
proof −

have A: ` ♦�P ∧ ♦�Enabled 〈M 〉-g ∧ WF(A)-f −→ �♦〈A〉-f
using h3 [THEN STL4 , THEN STL4-eve] by (auto simp: STL6 [int-rewrite]

WeakF-def )
have B: ` �[N ]-f ∧ ♦�P ∧ �♦〈A〉-f −→ �♦〈M 〉-g
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proof −
from M1 [of P f ] have ` �P ∧ �♦〈N ∧ A〉-f −→ �♦〈(P ∧ #P) ∧ (N ∧

A)〉-f
by (force intro: AA29 [unlift-rule])

hence ` ♦�(�P ∧ �♦〈N ∧ A〉-f ) −→ ♦��♦〈(P ∧ #P) ∧ (N ∧ A)〉-f
by (rule STL4-eve[OF STL4 ])

hence ` ♦�P ∧ �♦〈N ∧ A〉-f −→ �♦〈(P ∧ #P) ∧ (N ∧ A)〉-f
by (simp add: STL6 [int-rewrite])

with AA29 [of N f A]
have B1 : ` �[N ]-f ∧ ♦�P ∧ �♦〈A〉-f −→ �♦〈(P ∧ #P) ∧ (N ∧ A)〉-f

by force
from h2 have |∼ 〈(P ∧ #P) ∧ (N ∧ A)〉-f −→ 〈N ∧ B〉-f

by (auto simp: angle-actrans-sem[unlifted])
from B1 this[THEN AA25 , THEN STL4 ] have ` �[N ]-f ∧ ♦�P ∧ �♦〈A〉-f

−→ �♦〈N ∧ B〉-f
by (rule lift-imp-trans)

moreover
have ` �♦〈N ∧ B〉-f −→ �♦〈M 〉-g by (rule h1 [THEN AA25 , THEN

STL4 ])
ultimately show ?thesis by (rule lift-imp-trans)

qed
from A B show ?thesis by force

qed
from 1 2 show ?thesis by force

qed
thus ?thesis by (auto simp: WeakF-def )

qed

Lamport proposes an analogous theorem for introducing strong fairness, and
its proof is very similar, in fact, it was obtained by copy and paste, with
minimal modifications.
theorem SF2 :

assumes h1 : |∼ 〈N ∧ B〉-f −→ 〈M 〉-g
and h2 : |∼ P ∧ #P ∧ 〈N ∧ A〉-f −→ B
and h3 : ` P ∧ Enabled 〈M 〉-g −→ Enabled 〈A〉-f
and h4 : ` �[N ∧ ¬B]-f ∧ SF(A)-f ∧ �F ∧ �♦Enabled 〈M 〉-g −→ ♦�P

shows ` �[N ]-f ∧ SF(A)-f ∧ �F −→ SF(M )-g
proof −
have ` �[N ]-f ∧ SF(A)-f ∧ �F ∧ �♦Enabled 〈M 〉-g ∧ ¬�♦〈M 〉-g −→ �♦〈M 〉-g
proof −

have 1 : ` �[N ]-f ∧ SF(A)-f ∧ �F ∧ �♦Enabled 〈M 〉-g ∧ ¬�♦〈M 〉-g −→
♦�P

proof −
have A: ` �[N ]-f ∧ SF(A)-f ∧ �F ∧ �♦Enabled 〈M 〉-g ∧ ¬�♦〈M 〉-g −→

�(�[N ]-f ∧ SF(A)-f ∧ �F) ∧ ♦�(�♦Enabled 〈M 〉-g ∧ �[¬M ]-g)
unfolding STL6 [int-rewrite]
by (auto simp: STL5 [int-rewrite] dualization-rew)

have B: ` �(�[N ]-f ∧ SF(A)-f ∧ �F) ∧ ♦�(�♦Enabled 〈M 〉-g ∧ �[¬M ]-g)
−→
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♦((�[N ]-f ∧ SF(A)-f ∧ �F) ∧ �(�♦Enabled 〈M 〉-g ∧ �[¬M ]-g))
by (rule SE2 )

from lift-imp-trans[OF A B]
have ` �[N ]-f ∧ SF(A)-f ∧ �F ∧ �♦Enabled 〈M 〉-g ∧ ¬�♦〈M 〉-g −→

♦((�[N ]-f ∧ SF(A)-f ∧ �F) ∧ (�♦Enabled 〈M 〉-g ∧ �[¬M ]-g))
by (simp add: STL5 [int-rewrite])

moreover
from h1 have |∼ [N ]-f −→ [¬M ]-g −→ [N ∧ ¬B]-f by (auto simp: actrans-def

angle-actrans-def )
hence ` �[[N ]-f ]-f −→ �[[¬M ]-g −→ [N ∧ ¬B]-f ]-f by (rule M2 )
from lift-imp-trans[OF this ax4 ] have ` �[N ]-f ∧ �[¬M ]-g −→ �[N ∧ ¬B]-f

by (force intro: T4 [unlift-rule])
with h4 have ` (�[N ]-f ∧ SF(A)-f ∧ �F) ∧ (�♦Enabled 〈M 〉-g ∧ �[¬M ]-g)

−→ ♦�P
by force

from STL4-eve[OF this]
have ` ♦((�[N ]-f ∧ SF(A)-f ∧ �F) ∧ (�♦Enabled 〈M 〉-g ∧ �[¬M ]-g)) −→

♦�P by simp
ultimately
show ?thesis by (rule lift-imp-trans)

qed
have 2 : ` �[N ]-f ∧ SF(A)-f ∧ �♦Enabled 〈M 〉-g ∧ ♦�P −→ �♦〈M 〉-g
proof −

have ` �♦(P ∧ Enabled 〈M 〉-g) ∧ SF(A)-f −→ �♦〈A〉-f
using h3 [THEN STL4-eve, THEN STL4 ] by (auto simp: StrongF-def )

with E28 have A: ` ♦�P ∧ �♦Enabled 〈M 〉-g ∧ SF(A)-f −→ �♦〈A〉-f
by force

have B: ` �[N ]-f ∧ ♦�P ∧ �♦〈A〉-f −→ �♦〈M 〉-g
proof −

from M1 [of P f ] have ` �P ∧ �♦〈N ∧ A〉-f −→ �♦〈(P ∧ #P) ∧ (N ∧
A)〉-f

by (force intro: AA29 [unlift-rule])
hence ` ♦�(�P ∧ �♦〈N ∧ A〉-f ) −→ ♦��♦〈(P ∧ #P) ∧ (N ∧ A)〉-f

by (rule STL4-eve[OF STL4 ])
hence ` ♦�P ∧ �♦〈N ∧ A〉-f −→ �♦〈(P ∧ #P) ∧ (N ∧ A)〉-f

by (simp add: STL6 [int-rewrite])
with AA29 [of N f A]
have B1 : ` �[N ]-f ∧ ♦�P ∧ �♦〈A〉-f −→ �♦〈(P ∧ #P) ∧ (N ∧ A)〉-f

by force
from h2 have |∼ 〈(P ∧ #P) ∧ (N ∧ A)〉-f −→ 〈N ∧ B〉-f

by (auto simp: angle-actrans-sem[unlifted])
from B1 this[THEN AA25 , THEN STL4 ] have ` �[N ]-f ∧ ♦�P ∧ �♦〈A〉-f

−→ �♦〈N ∧ B〉-f
by (rule lift-imp-trans)

moreover
have ` �♦〈N ∧ B〉-f −→ �♦〈M 〉-g by (rule h1 [THEN AA25 , THEN

STL4 ])
ultimately show ?thesis by (rule lift-imp-trans)

qed
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from A B show ?thesis by force
qed
from 1 2 show ?thesis by force

qed
thus ?thesis by (auto simp: StrongF-def )

qed

This is the lattice rule from TLA
theorem wf-leadsto:

assumes h1 : wf r
and h2 :

∧
x. ` F x  (G ∨ (∃ y. #((y,x) ∈ r) ∧ F y))

shows ` F x  G
using h1
proof (rule wf-induct)

fix x
assume ih: ∀ y. (y, x) ∈ r −→ (` F y  G)
show ` F x  G
proof −

from ih have ` (∃ y. #((y,x) ∈ r) ∧ F y)  G
by (force simp: LT21 [int-rewrite] LT33 [int-rewrite])

with h2 show ?thesis by (force intro: LT19 [unlift-rule])
qed

qed

6.3 Stuttering Invariance
theorem stut-Enabled: STUTINV Enabled 〈F〉-v

by (auto simp: enabled-def stutinv-def dest!: sim-first)

theorem stut-WF : NSTUTINV F =⇒ STUTINV WF(F)-v
by (auto simp: WeakF-def stut-Enabled bothstutinvs)

theorem stut-SF : NSTUTINV F =⇒ STUTINV SF(F)-v
by (auto simp: StrongF-def stut-Enabled bothstutinvs)

lemmas livestutinv = stut-WF stut-SF stut-Enabled

end

7 Representing state in TLA*
theory State
imports Liveness
begin

We adopt the hidden state appraoch, as used in the existing Isabelle/HOL
TLA embedding [7]. This approach is also used in [3]. Here, a state space is
defined by its projections, and everything else is unknown. Thus, a variable
is a projection of the state space, and has the same type as a state function.
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Moreover, strong typing is achieved, since the projection function may have
any result type. To achieve this, the state space is represented by an un-
defined type, which is an instance of the world class to enable use with the
Intensional theory.
typedecl state

instance state :: world ..

type-synonym ′a statefun = (state, ′a) stfun
type-synonym statepred = bool statefun
type-synonym ′a tempfun = (state, ′a) formfun
type-synonym temporal = state formula

Formalizing type state would require formulas to be tagged with their un-
derlying state space and would result in a system that is much harder to use.
(Unlike Hoare logic or Unity, TLA has quantification over state variables,
and therefore one usually works with different state spaces within a single
specification.) Instead, state is just an anonymous type whose only purpose
is to provide Skolem constants. Moreover, we do not define a type of state
variables separate from that of arbitrary state functions, again in order to
simplify the definition of flexible quantification later on. Nevertheless, we
need to distinguish state variables, mainly to define the enabledness of ac-
tions. The user identifies (tuples of) “base” state variables in a specification
via the “meta predicate” basevars, which is defined here.
definition stvars :: ′a statefun ⇒ bool
where basevars-def : stvars ≡ surj

syntax
PRED :: lift ⇒ ′a (‹PRED -›)
-stvars :: lift ⇒ bool (‹basevars -›)

translations
PRED P ⇀ (P::state => -)
-stvars 
 CONST stvars

Base variables may be assigned arbitrary (type-correct) values. In the fol-
lowing lemma, note that vs may be a tuple of variables. The correct iden-
tification of base variables is up to the user who must take care not to
introduce an inconsistency. For example, basevars (x, x) would definitely be
inconsistent.
lemma basevars: basevars vs =⇒ ∃ u. vs u = c
proof (unfold basevars-def surj-def )

assume ∀ y. ∃ x. y = vs x
then obtain x where c = vs x by blast
thus ∃ u. vs u = c by blast

qed
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lemma baseE :
assumes H1 : basevars v and H2 :

∧
x. v x = c =⇒ Q

shows Q
using H1 [THEN basevars] H2 by auto

A variant written for sequences rather than single states.
lemma first-baseE :

assumes H1 : basevars v and H2 :
∧

x. v (first x) = c =⇒ Q
shows Q
using H1 [THEN basevars] H2 by (force simp: first-def )

lemma base-pair1 :
assumes h: basevars (x,y)
shows basevars x

proof (auto simp: basevars-def )
fix c
from h[THEN basevars] obtain s where (LIFT (x,y)) s = (c, arbitrary) by

auto
thus c ∈ range x by auto

qed

lemma base-pair2 :
assumes h: basevars (x,y)
shows basevars y

proof (auto simp: basevars-def )
fix d
from h[THEN basevars] obtain s where (LIFT (x,y)) s = (arbitrary, d) by

auto
thus d ∈ range y by auto

qed

lemma base-pair : basevars (x,y) =⇒ basevars x ∧ basevars y
by (auto elim: base-pair1 base-pair2 )

Since the unit type has just one value, any state function of unit type satisfies
the predicate basevars. The following theorem can sometimes be useful
because it gives a trivial solution for basevars premises.
lemma unit-base: basevars (v::state ⇒ unit)

by (auto simp: basevars-def )

A pair of the form (x,x) will generally not satisfy the predicate basevars –
except for pathological cases such as x::unit.
lemma

fixes x :: state ⇒ bool
assumes h1 : basevars (x,x)
shows False

proof −
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from h1 have ∃ u. (LIFT (x,x)) u = (False,True) by (rule basevars)
thus False by auto

qed

lemma
fixes x :: state ⇒ nat
assumes h1 : basevars (x,x)
shows False

proof −
from h1 have ∃ u. (LIFT (x,x)) u = (0 ,1 ) by (rule basevars)
thus False by auto

qed

The following theorem reduces the reasoning about the existence of a state
sequence satisfiyng an enabledness predicate to finding a suitable value c at
the successor state for the base variables of the specification. This rule is
intended for reasoning about standard TLA specifications, where Enabled is
applied to actions, not arbitrary pre-formulas.
lemma base-enabled:

assumes h1 : basevars vs
and h2 :

∧
u. vs (first u) = c =⇒ ((first s) ## u) |= F

shows s |= Enabled F
using h1 proof (rule first-baseE)

fix t
assume vs (first t) = c
hence ((first s) ## t) |= F by (rule h2 )
thus s |= Enabled F unfolding enabled-def by blast

qed

7.1 Temporal Quantifiers

In [5], Lamport gives a stuttering invariant definition of quantification over
(flexible) variables. It relies on similarity of two sequences (as supported in
our TLA.Sequence theory), and equivalence of two sequences up to a variable
(the bound variable). However, sequence equaivalence up to a variable,
requires state equaivalence up to a variable. Our state representation above
does not support this, hence we cannot encode Lamport’s definition in our
theory. Thus, we need to axiomatise quantification over (flexible) variables.
Note that with a state representation supporting this, our theory should
allow such an encoding.
consts

EEx :: ( ′a statefun ⇒ temporal) ⇒ temporal (binder ‹Eex › 10 )
AAll :: ( ′a statefun ⇒ temporal) ⇒ temporal (binder ‹Aall › 10 )

syntax
-EEx :: [idts, lift] => lift (‹(3∃∃ -./ -)› [0 ,10 ] 10 )
-AAll :: [idts, lift] => lift (‹(3∀∀ -./ -)› [0 ,10 ] 10 )
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translations
-EEx v A == Eex v. A
-AAll v A == Aall v. A

axiomatization where
eexI : ` F x −→ (∃∃ x. F x)

and eexE : [[s |= (∃∃ x. F x) ; basevars vs; (!! x. [[ basevars (x,vs); s |= F x ]] =⇒
s |= G)]]

=⇒ (s |= G)
and all-def : ` (∀∀ x. F x) = (¬(∃∃ x. ¬(F x)))
and eexSTUT : STUTINV F x =⇒ STUTINV (∃∃ x. F x)
and history: ` (I ∧ �[A]-v) = (∃∃ h. ($h = ha) ∧ I ∧ �[A ∧ h$=hb]-(h,v))

lemmas eexI-unl = eexI [unlift-rule] — w |= F x =⇒ w |= (∃∃ x. F x)

tla-defs can be used to unfold TLA definitions into lowest predicate level.
This is particularly useful for reasoning about enabledness of formulas.
lemmas tla-defs = unch-def before-def after-def first-def second-def suffix-def

tail-def nexts-def app-def angle-actrans-def actrans-def

end

8 A simple illustrative example
theory Even
imports State
begin

A trivial example illustrating invariant proofs in the logic, and how Is-
abelle/HOL can help with specification. It proves that x is always even
in a program where x is initialized as 0 and always incremented by 2.
inductive-set

Even :: nat set
where

even-zero: 0 ∈ Even
| even-step: n ∈ Even =⇒ Suc (Suc n) ∈ Even

locale Program =
fixes x :: state ⇒ nat
and init :: temporal
and act :: temporal
and phi :: temporal
defines init ≡ TEMP $x = # 0
and act ≡ TEMP x‘ = Suc<Suc<$x>>
and phi ≡ TEMP init ∧ �[act]-x
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lemma (in Program) stutinvprog: STUTINV phi
by (auto simp: phi-def init-def act-def stutinvs nstutinvs)

lemma (in Program) inveven: ` phi −→ �($x ∈ # Even)
unfolding phi-def

proof (rule invmono)
show ` init −→ $x ∈ #Even

by (auto simp: init-def even-zero)
next

show |∼ $x ∈ #Even ∧ [act]-x −→ #($x ∈ #Even)
by (auto simp: act-def even-step tla-defs)

qed

end

9 Lamport’s Inc example
theory Inc
imports State
begin

This example illustrates use of the embedding by mechanising the running
example of Lamports original TLA paper [5].
datatype pcount = a | b | g

locale Firstprogram =
fixes x :: state ⇒ nat
and y :: state ⇒ nat
and init :: temporal
and m1 :: temporal
and m2 :: temporal
and phi :: temporal
and Live :: temporal
defines init ≡ TEMP $x = # 0 ∧ $y = # 0
and m1 ≡ TEMP x‘ = Suc<$x> ∧ y‘ = $y
and m2 ≡ TEMP y‘ = Suc<$y> ∧ x‘ = $x
and Live ≡ TEMP WF(m1 )-(x,y) ∧ WF(m2 )-(x,y)
and phi ≡ TEMP (init ∧ �[m1 ∨ m2 ]-(x,y) ∧ Live)
assumes bvar : basevars (x,y)

lemma (in Firstprogram) STUTINV phi
by (auto simp: phi-def init-def m1-def m2-def Live-def stutinvs nstutinvs lives-

tutinv)

lemma (in Firstprogram) enabled-m1 : ` Enabled 〈m1 〉-(x,y)
proof (clarify)

fix s
show s |= Enabled 〈m1 〉-(x,y)
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by (rule base-enabled[OF bvar ]) (auto simp: m1-def tla-defs)
qed

lemma (in Firstprogram) enabled-m2 : ` Enabled 〈m2 〉-(x,y)
proof (clarify)

fix s
show s |= Enabled 〈m2 〉-(x,y)

by (rule base-enabled[OF bvar ]) (auto simp: m2-def tla-defs)
qed

locale Secondprogram = Firstprogram +
fixes sem :: state ⇒ nat
and pc1 :: state ⇒ pcount
and pc2 :: state ⇒ pcount
and vars
and initPsi :: temporal
and alpha1 :: temporal
and alpha2 :: temporal
and beta1 :: temporal
and beta2 :: temporal
and gamma1 :: temporal
and gamma2 :: temporal
and n1 :: temporal
and n2 :: temporal
and Live2 :: temporal
and psi :: temporal
and I :: temporal
defines vars ≡ LIFT (x,y,sem,pc1 ,pc2 )
and initPsi ≡ TEMP $pc1 = # a ∧ $pc2 = # a ∧ $x = # 0 ∧ $y = # 0 ∧

$sem = # 1
and alpha1 ≡ TEMP $pc1 =#a ∧ # 0 < $sem ∧ pc1$ = #b ∧ sem$ = $sem

− # 1 ∧ Unchanged (x,y,pc2 )
and alpha2 ≡ TEMP $pc2 =#a ∧ # 0 < $sem ∧ pc2‘ = #b ∧ sem$ = $sem

− # 1 ∧ Unchanged (x,y,pc1 )
and beta1 ≡ TEMP $pc1 =#b ∧ pc1‘ = #g ∧ x‘ = Suc<$x> ∧ Unchanged

(y,sem,pc2 )
and beta2 ≡ TEMP $pc2 =#b ∧ pc2‘ = #g ∧ y‘ = Suc<$y> ∧ Unchanged

(x,sem,pc1 )
and gamma1 ≡ TEMP $pc1 =#g ∧ pc1‘ = #a ∧ sem‘ = Suc<$sem> ∧ Un-

changed (x,y,pc2 )
and gamma2 ≡ TEMP $pc2 =#g ∧ pc2‘ = #a ∧ sem‘ = Suc<$sem> ∧ Un-

changed (x,y,pc1 )
and n1 ≡ TEMP (alpha1 ∨ beta1 ∨ gamma1 )
and n2 ≡ TEMP (alpha2 ∨ beta2 ∨ gamma2 )
and Live2 ≡ TEMP SF(n1 )-vars ∧ SF(n2 )-vars
and psi ≡ TEMP (initPsi ∧ �[n1 ∨ n2 ]-vars ∧ Live2 )
and I ≡ TEMP ($sem = # 1 ∧ $pc1 = #a ∧ $pc2 = # a)

∨ ($sem = # 0 ∧ (($pc1 = #a ∧ $pc2 ∈ {#b , #g})
∨ ($pc2 = #a ∧ $pc1 ∈ {#b , #g})))
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assumes bvar2 : basevars vars

lemmas (in Secondprogram) Sact2-defs = n1-def n2-def alpha1-def beta1-def gamma1-def
alpha2-def beta2-def gamma2-def

Proving invariants is the basis of every effort of system verification. We
show that I is an inductive invariant of specification psi.
lemma (in Secondprogram) psiI : ` psi −→ �I
proof −

have init: ` initPsi −→ I by (auto simp: initPsi-def I-def )
have |∼ I ∧ Unchanged vars −→ #I by (auto simp: I-def vars-def tla-defs)
moreover
have |∼ I ∧ n1 −→ #I by (auto simp: I-def Sact2-defs tla-defs)
moreover
have |∼ I ∧ n2 −→ #I by (auto simp: I-def Sact2-defs tla-defs)
ultimately have step: |∼ I ∧ [n1 ∨ n2 ]-vars −→ #I by (force simp: actrans-def )
from init step have goal: ` initPsi ∧ �[n1 ∨ n2 ]-vars −→ �I by (rule invmono)
have ` initPsi ∧ �[n1 ∨ n2 ]-vars ∧ Live2 ==> ` initPsi ∧ �[n1 ∨ n2 ]-vars
by auto

with goal show ?thesis unfolding psi-def by auto
qed

Using this invariant we now prove step simulation, i.e. the safety part of the
refinement proof.
theorem (in Secondprogram) step-simulation: ` psi −→ init ∧ �[m1 ∨ m2 ]-(x,y)
proof −

have ` initPsi ∧ �I ∧ �[n1 ∨ n2 ]-vars −→ init ∧ �[m1 ∨ m2 ]-(x,y)
proof (rule refinement1 )

show ` initPsi −→ init by (auto simp: initPsi-def init-def )
next

show |∼ I ∧ #I ∧ [n1 ∨ n2 ]-vars −→ [m1 ∨ m2 ]-(x,y)
by (auto simp: I-def m1-def m2-def vars-def Sact2-defs tla-defs)

qed
with psiI show ?thesis unfolding psi-def by force

qed

Liveness proofs require computing the enabledness conditions of actions.
The first lemma below shows that all steps are visible, i.e. they change at
least one variable.
lemma (in Secondprogram) n1-ch: |∼ 〈n1 〉-vars = n1
proof −

have |∼ n1 −→ 〈n1 〉-vars by (auto simp: Sact2-defs tla-defs vars-def )
thus ?thesis by (auto simp: angle-actrans-sem[int-rewrite])

qed

lemma (in Secondprogram) enab-alpha1 : ` $pc1 = #a −→ # 0 < $sem −→
Enabled alpha1
proof (clarsimp simp: tla-defs)
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fix s :: state seq
assume pc1 (s 0 ) = a and 0 < sem (s 0 )
thus s |= Enabled alpha1

by (intro base-enabled[OF bvar2 ]) (auto simp: Sact2-defs tla-defs vars-def )
qed

lemma (in Secondprogram) enab-beta1 : ` $pc1 = #b −→ Enabled beta1
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc1 (s 0 ) = b
thus s |= Enabled beta1

by (intro base-enabled[OF bvar2 ]) (auto simp: Sact2-defs tla-defs vars-def )
qed

lemma (in Secondprogram) enab-gamma1 : ` $pc1 = #g −→ Enabled gamma1
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc1 (s 0 ) = g
thus s |= Enabled gamma1

by (intro base-enabled[OF bvar2 ]) (auto simp: Sact2-defs tla-defs vars-def )
qed

lemma (in Secondprogram) enab-n1 :
` Enabled 〈n1 〉-vars = ($pc1 = #a −→ # 0 < $sem)

unfolding n1-ch[int-rewrite] proof (rule int-iffI )
show ` Enabled n1 −→ $pc1 = #a −→ # 0 < $sem

by (auto elim!: enabledE simp: Sact2-defs tla-defs)
next

show ` ($pc1 = #a −→ # 0 < $sem) −→ Enabled n1
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc1 (s 0 ) = a −→ 0 < sem (s 0 )
thus s |= Enabled n1

using enab-alpha1 [unlift-rule]
enab-beta1 [unlift-rule]
enab-gamma1 [unlift-rule]

by (cases pc1 (s 0 )) (force simp: n1-def Enabled-disj[int-rewrite] tla-defs)+
qed

qed

The analogous properties for the second process are obtained by copy and
paste.
lemma (in Secondprogram) n2-ch: |∼ 〈n2 〉-vars = n2
proof −

have |∼ n2 −→ 〈n2 〉-vars by (auto simp: Sact2-defs tla-defs vars-def )
thus ?thesis by (auto simp: angle-actrans-sem[int-rewrite])

qed

lemma (in Secondprogram) enab-alpha2 : ` $pc2 = #a −→ # 0 < $sem −→
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Enabled alpha2
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc2 (s 0 ) = a and 0 < sem (s 0 )
thus s |= Enabled alpha2

by (intro base-enabled[OF bvar2 ]) (auto simp: Sact2-defs tla-defs vars-def )
qed

lemma (in Secondprogram) enab-beta2 : ` $pc2 = #b −→ Enabled beta2
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc2 (s 0 ) = b
thus s |= Enabled beta2

by (intro base-enabled[OF bvar2 ]) (auto simp: Sact2-defs tla-defs vars-def )
qed

lemma (in Secondprogram) enab-gamma2 : ` $pc2 = #g −→ Enabled gamma2
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc2 (s 0 ) = g
thus s |= Enabled gamma2

by (intro base-enabled[OF bvar2 ]) (auto simp: Sact2-defs tla-defs vars-def )
qed

lemma (in Secondprogram) enab-n2 :
` Enabled 〈n2 〉-vars = ($pc2 = #a −→ # 0 < $sem)

unfolding n2-ch[int-rewrite] proof (rule int-iffI )
show ` Enabled n2 −→ $pc2 = #a −→ # 0 < $sem

by (auto elim!: enabledE simp: Sact2-defs tla-defs)
next

show ` ($pc2 = #a −→ # 0 < $sem) −→ Enabled n2
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc2 (s 0 ) = a −→ 0 < sem (s 0 )
thus s |= Enabled n2

using enab-alpha2 [unlift-rule]
enab-beta2 [unlift-rule]
enab-gamma2 [unlift-rule]

by (cases pc2 (s 0 )) (force simp: n2-def Enabled-disj[int-rewrite] tla-defs)+
qed

qed

We use rule SF2 to prove that psi implements strong fairness for the abstract
action m1. Since strong fairness implies weak fairness, it follows that psi
refines the liveness condition of phi.
lemma (in Secondprogram) psi-fair-m1 : ` psi −→ SF(m1 )-(x,y)
proof −
have ` �[n1 ∨ n2 ]-vars ∧ SF(n1 )-vars ∧ �(I ∧ SF(n2 )-vars) −→ SF(m1 )-(x,y)
proof (rule SF2 )
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Rule SF2 requires us to choose a helpful action (whose effect implies 〈m1 〉-(x,y))
and a persistent condition, which will eventually remain true if the helpful action is
never executed. In our case, the helpful action is beta1 and the persistent condition
is pc1 = b.

show |∼ 〈(n1 ∨ n2 ) ∧ beta1 〉-vars −→ 〈m1 〉-(x,y)
by (auto simp: beta1-def m1-def vars-def tla-defs)

next
show |∼ $pc1 = #b ∧ #($pc1 = #b) ∧ 〈(n1 ∨ n2 ) ∧ n1 〉-vars −→ beta1

by (auto simp: n1-def alpha1-def beta1-def gamma1-def tla-defs)
next

show ` $pc1 = #b ∧ Enabled 〈m1 〉-(x, y) −→ Enabled 〈n1 〉-vars
unfolding enab-n1 [int-rewrite] by auto

next

The difficult part of the proof is showing that the persistent condition will eventually
always be true if the helpful action is never executed. We show that (1) whenever
the condition becomes true it remains so and (2) eventually the condition must be
true.

show ` �[(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars
∧ SF(n1 )-vars ∧ �(I ∧ SF(n2 )-vars) ∧ �♦Enabled 〈m1 〉-(x, y)
−→ ♦�($pc1 = #b)

proof −
have ` ��[(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars −→ �($pc1 = #b −→ �($pc1 = #b))
proof (rule STL4 )

have |∼ $pc1 = #b ∧ [(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars −→ #($pc1 = #b)
by (auto simp: Sact2-defs vars-def tla-defs)

from this[THEN INV1 ]
show ` �[(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars −→ $pc1 = #b −→ �($pc1 = #b)

by auto
qed
hence 1 : ` �[(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars −→ ♦($pc1 = #b) −→ ♦�($pc1 =

#b)
by (force intro: E31 [unlift-rule])

have ` �[(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars ∧ SF(n1 )-vars ∧ �(I ∧ SF(n2 )-vars)
−→ ♦($pc1 = #b)

proof −

The plan of the proof is to show that from any state where pc1 = g one eventually
reaches pc1 = a, from where one eventually reaches pc1 = b. The result follows by
combining leadsto properties.

let ?F = LIFT (�[(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars ∧ SF(n1 )-vars ∧ �(I ∧
SF(n2 )-vars))

Showing that pc1 = g leads to pc1 = a is a simple application of rule SF1 because
the first process completely controls this transition.

have ga: ` ?F −→ ($pc1 = #g  $pc1 = #a)
proof (rule SF1 )

show |∼ $pc1 = #g ∧ [(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars −→ #($pc1 = #g) ∨
#($pc1 = #a)
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by (auto simp: Sact2-defs vars-def tla-defs)
next

show |∼ $pc1 = #g ∧ 〈((n1 ∨ n2 ) ∧ ¬ beta1 ) ∧ n1 〉-vars −→ #($pc1 =
#a)

by (auto simp: Sact2-defs vars-def tla-defs)
next

show |∼ $pc1 = #g ∧ Unchanged vars −→ #($pc1 = #g)
by (auto simp: vars-def tla-defs)

next
have ` $pc1 = #g −→ Enabled 〈n1 〉-vars

unfolding enab-n1 [int-rewrite] by (auto simp: tla-defs)
hence ` �($pc1 = #g) −→ Enabled 〈n1 〉-vars

by (rule lift-imp-trans[OF ax1 ])
hence ` �($pc1 = #g) −→ ♦Enabled 〈n1 〉-vars

by (rule lift-imp-trans[OF - E3 ])
thus ` �($pc1 = #g) ∧ �[(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars ∧ �(I ∧ SF(n2 )-vars)

−→ ♦Enabled 〈n1 〉-vars
by auto

qed

The proof that pc1 = a leads to pc1 = b follows the same basic schema. However,
showing that n1 is eventually enabled requires reasoning about the second process,
which must liberate the critical section.

have ab: ` ?F −→ ($pc1 = #a  $pc1 = #b)
proof (rule SF1 )

show |∼ $pc1 = #a ∧ [(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars −→ #($pc1 = #a) ∨
#($pc1 = #b)

by (auto simp: Sact2-defs vars-def tla-defs)
next
show |∼ $pc1 = #a ∧ 〈((n1 ∨ n2 ) ∧ ¬ beta1 ) ∧ n1 〉-vars −→ #($pc1 =

#b)
by (auto simp: Sact2-defs vars-def tla-defs)

next
show |∼ $pc1 = #a ∧ Unchanged vars −→ #($pc1 = #a)

by (auto simp: vars-def tla-defs)
next

We establish a suitable leadsto-chain.

let ?G = LIFT �[(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars ∧ SF(n2 )-vars ∧ �($pc1 =
#a ∧ I )

have ` ?G −→ ♦($pc2 = #a ∧ $pc1 = #a ∧ I )
proof −

Rule SF1 takes us from pc2 = b to pc2 = g.

have bg2 : ` ?G −→ ($pc2 = #b  $pc2 = #g)
proof (rule SF1 )

show |∼ $pc2 = #b ∧ [(n1 ∨ n2 ) ∧ ¬beta1 ]-vars −→ #($pc2 = #b)
∨ #($pc2 = #g)

by (auto simp: Sact2-defs vars-def tla-defs)
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next
show |∼ $pc2 = #b ∧ 〈((n1 ∨ n2 ) ∧ ¬beta1 ) ∧ n2 〉-vars −→ #($pc2

= #g)
by (auto simp: Sact2-defs vars-def tla-defs)

next
show |∼ $pc2 = #b ∧ Unchanged vars −→ #($pc2 = #b)

by (auto simp: vars-def tla-defs)
next

have ` $pc2 = #b −→ Enabled 〈n2 〉-vars
unfolding enab-n2 [int-rewrite] by (auto simp: tla-defs)

hence ` �($pc2 = #b) −→ Enabled 〈n2 〉-vars
by (rule lift-imp-trans[OF ax1 ])

hence ` �($pc2 = #b) −→ ♦Enabled 〈n2 〉-vars
by (rule lift-imp-trans[OF - E3 ])

thus ` �($pc2 = #b) ∧ �[(n1 ∨ n2 ) ∧ ¬beta1 ]-vars ∧ �($pc1 = #a
∧ I )

−→ ♦Enabled 〈n2 〉-vars
by auto

qed

Similarly, pc2 = b leads to pc2 = g.

have ga2 : ` ?G −→ ($pc2 = #g  $pc2 = #a)
proof (rule SF1 )

show |∼ $pc2 = #g ∧ [(n1 ∨ n2 ) ∧ ¬beta1 ]-vars −→ #($pc2 = #g)
∨ #($pc2 = #a)

by (auto simp: Sact2-defs vars-def tla-defs)
next

show |∼ $pc2 = #g ∧ 〈((n1 ∨ n2 ) ∧ ¬beta1 ) ∧ n2 〉-vars −→ #($pc2
= #a)

by (auto simp: n2-def alpha2-def beta2-def gamma2-def vars-def
tla-defs)

next
show |∼ $pc2 = #g ∧ Unchanged vars −→ #($pc2 = #g)

by (auto simp: vars-def tla-defs)
next

have ` $pc2 = #g −→ Enabled 〈n2 〉-vars
unfolding enab-n2 [int-rewrite] by (auto simp: tla-defs)

hence ` �($pc2 = #g) −→ Enabled 〈n2 〉-vars
by (rule lift-imp-trans[OF ax1 ])

hence ` �($pc2 = #g) −→ ♦Enabled 〈n2 〉-vars
by (rule lift-imp-trans[OF - E3 ])

thus ` �($pc2 = #g) ∧ �[(n1 ∨ n2 ) ∧ ¬beta1 ]-vars ∧ �($pc1 = #a
∧ I )

−→ ♦Enabled 〈n2 〉-vars
by auto

qed
with bg2 have ` ?G −→ ($pc2 = #b  $pc2 = #a)

by (force elim: LT13 [unlift-rule])
with ga2 have ` ?G −→ ($pc2 = #a ∨ $pc2 = #b ∨ $pc2 = #g)  
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($pc2 = #a)
unfolding LT17 [int-rewrite] LT1 [int-rewrite] by force

moreover
have ` $pc2 = #a ∨ $pc2 = #b ∨ $pc2 = #g
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc2 (s 0 ) 6= a and pc2 (s 0 ) 6= g
thus pc2 (s 0 ) = b by (cases pc2 (s 0 )) auto

qed
hence ` (($pc2 = #a ∨ $pc2 = #b ∨ $pc2 = #g)  $pc2 = #a) −→

♦($pc2 = #a)
by (rule fmp[OF - LT4 ])

ultimately
have ` ?G −→ ♦($pc2 = #a) by force
thus ?thesis by (auto intro!: SE3 [unlift-rule])

qed
moreover
have ` ♦($pc2 = #a ∧ $pc1 = #a ∧ I ) −→ ♦Enabled 〈n1 〉-vars

unfolding enab-n1 [int-rewrite] by (rule STL4-eve) (auto simp: I-def
tla-defs)

ultimately
show ` �($pc1 = #a) ∧ �[(n1 ∨ n2 ) ∧ ¬ beta1 ]-vars ∧ �(I ∧ SF(n2 )-vars)

−→ ♦Enabled 〈n1 〉-vars
by (force simp: STL5 [int-rewrite])

qed
from ga ab have ` ?F −→ ($pc1 = #g  $pc1 = #b)

by (force elim: LT13 [unlift-rule])
with ab have ` ?F −→ (($pc1 = #a ∨ $pc1 = #b ∨ $pc1 = #g)  $pc1

= #b)
unfolding LT17 [int-rewrite] LT1 [int-rewrite] by force

moreover
have ` $pc1 = #a ∨ $pc1 = #b ∨ $pc1 = #g
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc1 (s 0 ) 6= a and pc1 (s 0 ) 6= g
thus pc1 (s 0 ) = b by (cases pc1 (s 0 ), auto)

qed
hence ` (($pc1 = #a ∨ $pc1 = #b ∨ $pc1 = #g)  $pc1 = #b) −→

♦($pc1 = #b)
by (rule fmp[OF - LT4 ])

ultimately show ?thesis by (rule lift-imp-trans)
qed
with 1 show ?thesis by force

qed
qed
with psiI show ?thesis unfolding psi-def Live2-def STL5 [int-rewrite] by force

qed

In the same way we prove that psi implements strong fairness for the abstract
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action m1. The proof is obtained by copy and paste from the previous one.
lemma (in Secondprogram) psi-fair-m2 : ` psi −→ SF(m2 )-(x,y)
proof −
have ` �[n1 ∨ n2 ]-vars ∧ SF(n2 )-vars ∧ �(I ∧ SF(n1 )-vars) −→ SF(m2 )-(x,y)
proof (rule SF2 )

Rule SF2 requires us to choose a helpful action (whose effect implies 〈m2 〉-(x,y))
and a persistent condition, which will eventually remain true if the helpful action is
never executed. In our case, the helpful action is beta2 and the persistent condition
is pc2 = b.

show |∼ 〈(n1 ∨ n2 ) ∧ beta2 〉-vars −→ 〈m2 〉-(x,y)
by (auto simp: beta2-def m2-def vars-def tla-defs)

next
show |∼ $pc2 = #b ∧ #($pc2 = #b) ∧ 〈(n1 ∨ n2 ) ∧ n2 〉-vars −→ beta2

by (auto simp: n2-def alpha2-def beta2-def gamma2-def tla-defs)
next

show ` $pc2 = #b ∧ Enabled 〈m2 〉-(x, y) −→ Enabled 〈n2 〉-vars
unfolding enab-n2 [int-rewrite] by auto

next

The difficult part of the proof is showing that the persistent condition will eventually
always be true if the helpful action is never executed. We show that (1) whenever
the condition becomes true it remains so and (2) eventually the condition must be
true.

show ` �[(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars
∧ SF(n2 )-vars ∧ �(I ∧ SF(n1 )-vars) ∧ �♦Enabled 〈m2 〉-(x, y)
−→ ♦�($pc2 = #b)

proof −
have ` ��[(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars −→ �($pc2 = #b −→ �($pc2 = #b))
proof (rule STL4 )

have |∼ $pc2 = #b ∧ [(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars −→ #($pc2 = #b)
by (auto simp: Sact2-defs vars-def tla-defs)

from this[THEN INV1 ]
show ` �[(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars −→ $pc2 = #b −→ �($pc2 = #b)

by auto
qed
hence 1 : ` �[(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars −→ ♦($pc2 = #b) −→ ♦�($pc2 =

#b)
by (force intro: E31 [unlift-rule])

have ` �[(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars ∧ SF(n2 )-vars ∧ �(I ∧ SF(n1 )-vars)
−→ ♦($pc2 = #b)

proof −

The plan of the proof is to show that from any state where pc2 = g one eventually
reaches pc2 = a, from where one eventually reaches pc2 = b. The result follows by
combining leadsto properties.

let ?F = LIFT (�[(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars ∧ SF(n2 )-vars ∧ �(I ∧
SF(n1 )-vars))
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Showing that pc2 = g leads to pc2 = a is a simple application of rule SF1 because
the second process completely controls this transition.

have ga: ` ?F −→ ($pc2 = #g  $pc2 = #a)
proof (rule SF1 )

show |∼ $pc2 = #g ∧ [(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars −→ #($pc2 = #g) ∨
#($pc2 = #a)

by (auto simp: Sact2-defs vars-def tla-defs)
next

show |∼ $pc2 = #g ∧ 〈((n1 ∨ n2 ) ∧ ¬ beta2 ) ∧ n2 〉-vars −→ #($pc2 =
#a)

by (auto simp: n2-def alpha2-def beta2-def gamma2-def vars-def tla-defs)
next

show |∼ $pc2 = #g ∧ Unchanged vars −→ #($pc2 = #g)
by (auto simp: vars-def tla-defs)

next
have ` $pc2 = #g −→ Enabled 〈n2 〉-vars

unfolding enab-n2 [int-rewrite] by (auto simp: tla-defs)
hence ` �($pc2 = #g) −→ Enabled 〈n2 〉-vars

by (rule lift-imp-trans[OF ax1 ])
hence ` �($pc2 = #g) −→ ♦Enabled 〈n2 〉-vars

by (rule lift-imp-trans[OF - E3 ])
thus ` �($pc2 = #g) ∧ �[(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars ∧ �(I ∧ SF(n1 )-vars)

−→ ♦Enabled 〈n2 〉-vars
by auto

qed

The proof that pc2 = a leads to pc2 = b follows the same basic schema. However,
showing that n2 is eventually enabled requires reasoning about the second process,
which must liberate the critical section.

have ab: ` ?F −→ ($pc2 = #a  $pc2 = #b)
proof (rule SF1 )

show |∼ $pc2 = #a ∧ [(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars −→ #($pc2 = #a) ∨
#($pc2 = #b)

by (auto simp: Sact2-defs vars-def tla-defs)
next
show |∼ $pc2 = #a ∧ 〈((n1 ∨ n2 ) ∧ ¬ beta2 ) ∧ n2 〉-vars −→ #($pc2 =

#b)
by (auto simp: n2-def alpha2-def beta2-def gamma2-def vars-def tla-defs)

next
show |∼ $pc2 = #a ∧ Unchanged vars −→ #($pc2 = #a)

by (auto simp: vars-def tla-defs)
next

We establish a suitable leadsto-chain.
let ?G = LIFT �[(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars ∧ SF(n1 )-vars ∧ �($pc2 =

#a ∧ I )
have ` ?G −→ ♦($pc1 = #a ∧ $pc2 = #a ∧ I )
proof −

Rule SF1 takes us from pc1 = b to pc1 = g.
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have bg1 : ` ?G −→ ($pc1 = #b  $pc1 = #g)
proof (rule SF1 )

show |∼ $pc1 = #b ∧ [(n1 ∨ n2 ) ∧ ¬beta2 ]-vars −→ #($pc1 = #b)
∨ #($pc1 = #g)

by (auto simp: Sact2-defs vars-def tla-defs)
next

show |∼ $pc1 = #b ∧ 〈((n1 ∨ n2 ) ∧ ¬beta2 ) ∧ n1 〉-vars −→ #($pc1
= #g)

by (auto simp: n1-def alpha1-def beta1-def gamma1-def vars-def
tla-defs)

next
show |∼ $pc1 = #b ∧ Unchanged vars −→ #($pc1 = #b)

by (auto simp: vars-def tla-defs)
next

have ` $pc1 = #b −→ Enabled 〈n1 〉-vars
unfolding enab-n1 [int-rewrite] by (auto simp: tla-defs)

hence ` �($pc1 = #b) −→ Enabled 〈n1 〉-vars
by (rule lift-imp-trans[OF ax1 ])

hence ` �($pc1 = #b) −→ ♦Enabled 〈n1 〉-vars
by (rule lift-imp-trans[OF - E3 ])

thus ` �($pc1 = #b) ∧ �[(n1 ∨ n2 ) ∧ ¬beta2 ]-vars ∧ �($pc2 = #a
∧ I )

−→ ♦Enabled 〈n1 〉-vars
by auto

qed

Similarly, pc1 = b leads to pc1 = g.

have ga1 : ` ?G −→ ($pc1 = #g  $pc1 = #a)
proof (rule SF1 )

show |∼ $pc1 = #g ∧ [(n1 ∨ n2 ) ∧ ¬beta2 ]-vars −→ #($pc1 = #g)
∨ #($pc1 = #a)

by (auto simp: Sact2-defs vars-def tla-defs)
next

show |∼ $pc1 = #g ∧ 〈((n1 ∨ n2 ) ∧ ¬beta2 ) ∧ n1 〉-vars −→ #($pc1
= #a)

by (auto simp: n1-def alpha1-def beta1-def gamma1-def vars-def
tla-defs)

next
show |∼ $pc1 = #g ∧ Unchanged vars −→ #($pc1 = #g)

by (auto simp: vars-def tla-defs)
next

have ` $pc1 = #g −→ Enabled 〈n1 〉-vars
unfolding enab-n1 [int-rewrite] by (auto simp: tla-defs)

hence ` �($pc1 = #g) −→ Enabled 〈n1 〉-vars
by (rule lift-imp-trans[OF ax1 ])

hence ` �($pc1 = #g) −→ ♦Enabled 〈n1 〉-vars
by (rule lift-imp-trans[OF - E3 ])

thus ` �($pc1 = #g) ∧ �[(n1 ∨ n2 ) ∧ ¬beta2 ]-vars ∧ �($pc2 = #a
∧ I )
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−→ ♦Enabled 〈n1 〉-vars
by auto

qed
with bg1 have ` ?G −→ ($pc1 = #b  $pc1 = #a)

by (force elim: LT13 [unlift-rule])
with ga1 have ` ?G −→ ($pc1 = #a ∨ $pc1 = #b ∨ $pc1 = #g)  

($pc1 = #a)
unfolding LT17 [int-rewrite] LT1 [int-rewrite] by force

moreover
have ` $pc1 = #a ∨ $pc1 = #b ∨ $pc1 = #g
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc1 (s 0 ) 6= a and pc1 (s 0 ) 6= g
thus pc1 (s 0 ) = b by (cases pc1 (s 0 )) auto

qed
hence ` (($pc1 = #a ∨ $pc1 = #b ∨ $pc1 = #g)  $pc1 = #a) −→

♦($pc1 = #a)
by (rule fmp[OF - LT4 ])

ultimately
have ` ?G −→ ♦($pc1 = #a) by force
thus ?thesis by (auto intro!: SE3 [unlift-rule])

qed
moreover
have ` ♦($pc1 = #a ∧ $pc2 = #a ∧ I ) −→ ♦Enabled 〈n2 〉-vars

unfolding enab-n2 [int-rewrite] by (rule STL4-eve) (auto simp: I-def
tla-defs)

ultimately
show ` �($pc2 = #a) ∧ �[(n1 ∨ n2 ) ∧ ¬ beta2 ]-vars ∧ �(I ∧ SF(n1 )-vars)

−→ ♦Enabled 〈n2 〉-vars
by (force simp: STL5 [int-rewrite])

qed
from ga ab have ` ?F −→ ($pc2 = #g  $pc2 = #b)

by (force elim: LT13 [unlift-rule])
with ab have ` ?F −→ (($pc2 = #a ∨ $pc2 = #b ∨ $pc2 = #g)  $pc2

= #b)
unfolding LT17 [int-rewrite] LT1 [int-rewrite] by force

moreover
have ` $pc2 = #a ∨ $pc2 = #b ∨ $pc2 = #g
proof (clarsimp simp: tla-defs)

fix s :: state seq
assume pc2 (s 0 ) 6= a and pc2 (s 0 ) 6= g
thus pc2 (s 0 ) = b by (cases pc2 (s 0 )) auto

qed
hence ` (($pc2 = #a ∨ $pc2 = #b ∨ $pc2 = #g)  $pc2 = #b) −→

♦($pc2 = #b)
by (rule fmp[OF - LT4 ])

ultimately show ?thesis by (rule lift-imp-trans)
qed
with 1 show ?thesis by force
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qed
qed
with psiI show ?thesis unfolding psi-def Live2-def STL5 [int-rewrite] by force

qed

We can now prove the main theorem, which states that psi implements phi.
theorem (in Secondprogram) impl: ` psi −→ phi

unfolding phi-def Live-def
by (auto dest: step-simulation[unlift-rule]

lift-imp-trans[OF psi-fair-m1 SF-imp-WF , unlift-rule]
lift-imp-trans[OF psi-fair-m2 SF-imp-WF , unlift-rule])

end

10 Refining a Buffer Specification
theory Buffer
imports State
begin

We specify a simple FIFO buffer and prove that two FIFO buffers in a row
implement a FIFO buffer.

10.1 Buffer specification

The following definitions all take three parameters: a state function rep-
resenting the input channel of the FIFO buffer, another representing the
internal queue, and a third one representing the output channel. These
parameters will be instantiated later in the definition of the double FIFO.
definition BInit :: ′a statefun ⇒ ′a list statefun ⇒ ′a statefun ⇒ temporal
where BInit ic q oc ≡ TEMP $q = #[]

∧ $ic = $oc — initial condition of buffer

definition Enq :: ′a statefun ⇒ ′a list statefun ⇒ ′a statefun ⇒ temporal
where Enq ic q oc ≡ TEMP ic$ 6= $ic

∧ q$ = $q @ [ ic$ ]
∧ oc$ = $oc — enqueue a new value

definition Deq :: ′a statefun ⇒ ′a list statefun ⇒ ′a statefun ⇒ temporal
where Deq ic q oc ≡ TEMP # 0 < length<$q>

∧ oc$ = hd<$q>
∧ q$ = tl<$q>
∧ ic$ = $ic — dequeue value at front

definition Nxt :: ′a statefun ⇒ ′a list statefun ⇒ ′a statefun ⇒ temporal
where Nxt ic q oc ≡ TEMP (Enq ic q oc ∨ Deq ic q oc)
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— internal specification with buffer visible
definition ISpec :: ′a statefun ⇒ ′a list statefun ⇒ ′a statefun ⇒ temporal
where ISpec ic q oc ≡ TEMP BInit ic q oc

∧ �[Nxt ic q oc]-(ic,q,oc)
∧ WF(Deq ic q oc)-(ic,q,oc)

— external specification: buffer hidden
definition Spec :: ′a statefun ⇒ ′a statefun ⇒ temporal
where Spec ic oc == TEMP (∃∃ q. ISpec ic q oc)

10.2 Properties of the buffer

The buffer never enqueues the same element twice. We therefore have the
following invariant:

• any two subsequent elements in the queue are different, and the last
element in the queue is different from the value of the output channel,

• if the queue is non-empty then the last element in the queue is the
value that appears on the input channel,

• if the queue is empty then the values on the output and input channels
are equal.

The following auxiliary predicate noreps is true if no two subsequent ele-
ments in a list are identical.
definition noreps :: ′a list ⇒ bool
where noreps xs ≡ ∀ i < length xs − 1 . xs!i 6= xs!(Suc i)

definition BInv :: ′a statefun ⇒ ′a list statefun ⇒ ′a statefun ⇒ temporal
where BInv ic q oc ≡ TEMP List.last<$oc # $q> = $ic ∧ noreps<$oc # $q>

lemmas buffer-defs = BInit-def Enq-def Deq-def Nxt-def
ISpec-def Spec-def BInv-def

lemma ISpec-stutinv: STUTINV (ISpec ic q oc)
unfolding buffer-defs by (simp add: bothstutinvs livestutinv)

lemma Spec-stutinv: STUTINV Spec ic oc
unfolding buffer-defs by (simp add: bothstutinvs livestutinv eexSTUT )

A lemma about lists that is useful in the following
lemma tl-self-iff-empty[simp]: (tl xs = xs) = (xs = [])
proof

assume 1 : tl xs = xs
show xs = []
proof (rule ccontr)

assume xs 6= [] with 1 show False

94



by (auto simp: neq-Nil-conv)
qed

qed (auto)

lemma tl-self-iff-empty ′[simp]: (xs = tl xs) = (xs = [])
proof

assume 1 : xs = tl xs
show xs = []
proof (rule ccontr)

assume xs 6= [] with 1 show False
by (auto simp: neq-Nil-conv)

qed
qed (auto)

lemma Deq-visible:
assumes v: ` Unchanged v −→ Unchanged q
shows |∼ <Deq ic q oc>-v = Deq ic q oc

proof (auto simp: tla-defs)
fix w
assume deq: w |= Deq ic q oc and unch: v (w (Suc 0 )) = v (w 0 )
from unch v[unlifted] have q (w (Suc 0 )) = q (w 0 )

by (auto simp: tla-defs)
with deq show False by (auto simp: Deq-def tla-defs)

qed

lemma Deq-enabledE : ` Enabled <Deq ic q oc>-(ic,q,oc) −→ $q ∼= #[]
by (auto elim!: enabledE simp: Deq-def tla-defs)

We now prove that BInv is an invariant of the Buffer specification.
We need several lemmas about noreps that are used in the invariant proof.
lemma noreps-empty [simp]: noreps []

by (auto simp: noreps-def )

lemma noreps-singleton: noreps [x] — special case of following lemma
by (auto simp: noreps-def )

lemma noreps-cons [simp]:
noreps (x # xs) = (noreps xs ∧ (xs = [] ∨ x 6= hd xs))

proof (auto simp: noreps-singleton)
assume cons: noreps (x # xs)
show noreps xs
proof (auto simp: noreps-def )

fix i
assume i: i < length xs − Suc 0 and eq: xs!i = xs!(Suc i)
from i have Suc i < length (x#xs) − 1 by auto
moreover
from eq have (x#xs)!(Suc i) = (x#xs)!(Suc (Suc i)) by auto
moreover
note cons
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ultimately show False by (auto simp: noreps-def )
qed

next
assume 1 : noreps (hd xs # xs) and 2 : xs 6= []
from 2 obtain x xxs where xs = x # xxs by (cases xs, auto)
with 1 show False by (auto simp: noreps-def )

next
assume 1 : noreps xs and 2 : x 6= hd xs
show noreps (x # xs)
proof (auto simp: noreps-def )

fix i
assume i: i < length xs and eq: (x # xs)!i = xs!i
from i obtain y ys where xs: xs = y # ys by (cases xs, auto)
show False
proof (cases i)

assume i = 0
with eq 2 xs show False by auto

next
fix k
assume k: i = Suc k
with i eq xs 1 show False by (auto simp: noreps-def )

qed
qed

qed

lemma noreps-append [simp]:
noreps (xs @ ys) =
(noreps xs ∧ noreps ys ∧ (xs = [] ∨ ys = [] ∨ List.last xs 6= hd ys))

proof auto
assume 1 : noreps (xs @ ys)
show noreps xs
proof (auto simp: noreps-def )

fix i
assume i: i < length xs − Suc 0 and eq: xs!i = xs!(Suc i)
from i have i < length (xs @ ys) − Suc 0 by auto
moreover
from i eq have (xs @ ys)!i = (xs@ys)!(Suc i) by (auto simp: nth-append)
moreover note 1
ultimately show False by (auto simp: noreps-def )

qed
next

assume 1 : noreps (xs @ ys)
show noreps ys
proof (auto simp: noreps-def )

fix i
assume i: i < length ys − Suc 0 and eq: ys!i = ys!(Suc i)
from i have i + length xs < length (xs @ ys) − Suc 0 by auto
moreover
from i eq have (xs @ ys)!(i+length xs) = (xs@ys)!(Suc (i + length xs))
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by (auto simp: nth-append)
moreover note 1
ultimately show False by (auto simp: noreps-def )

qed
next

assume 1 : noreps (xs @ ys) and 2 : xs 6= [] and 3 : ys 6= []
and 4 : List.last xs = hd ys

from 2 obtain x xxs where xs: xs = x # xxs by (cases xs, auto)
from 3 obtain y yys where ys: ys = y # yys by (cases ys, auto)
from xs ys have 5 : length xxs < length (xs @ ys) − 1 by auto
from 4 xs ys have (xs @ ys) ! (length xxs) = (xs @ ys) ! (Suc (length xxs))

by (auto simp: nth-append last-conv-nth)
with 5 1 show False by (auto simp: noreps-def )

next
assume 1 : noreps xs and 2 : noreps ys and 3 : List.last xs 6= hd ys
show noreps (xs @ ys)
proof (cases xs = [] ∨ ys = [])

case True
with 1 2 show ?thesis by auto

next
case False
then obtain x xxs where xs: xs = x # xxs by (cases xs, auto)
from False obtain y yys where ys: ys = y # yys by (cases ys, auto)
show ?thesis
proof (auto simp: noreps-def )

fix i
assume i: i < length xs + length ys − Suc 0

and eq: (xs @ ys)!i = (xs @ ys)!(Suc i)
show False
proof (cases i < length xxs)

case True
hence i < length (x # xxs) by simp
hence xsi: ((x # xxs) @ ys)!i = (x # xxs)!i

unfolding nth-append by simp
from True have (xxs @ ys)!i = xxs!i by (auto simp: nth-append)
with True xsi eq 1 xs show False by (auto simp: noreps-def )

next
assume i2 : ¬(i < length xxs)
show False
proof (cases i = length xxs)

case True
with xs have xsi: (xs @ ys)!i = List.last xs

by (auto simp: nth-append last-conv-nth)
from True xs ys have (xs @ ys)!(Suc i) = y

by (auto simp: nth-append)
with 3 ys eq xsi show False by simp

next
case False
with i2 xs have xsi: ¬(i < length xs) by auto
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hence (xs @ ys)!i = ys!(i − length xs)
by (simp add: nth-append)

moreover
from xsi have Suc i − length xs = Suc (i − length xs) by auto
with xsi have (xs @ ys)!(Suc i) = ys!(Suc (i − length xs))

by (simp add: nth-append)
moreover
from i xsi have i − length xs < length ys − 1 by auto
with 2 have ys!(i − length xs) 6= ys!(Suc (i − length xs))

by (auto simp: noreps-def )
moreover
note eq
ultimately show False by simp

qed
qed

qed
qed

qed

lemma ISpec-BInv-lemma:
` BInit ic q oc ∧ �[Nxt ic q oc]-(ic,q,oc) −→ �(BInv ic q oc)

proof (rule invmono)
show ` BInit ic q oc −→ BInv ic q oc

by (auto simp: BInit-def BInv-def )
next

have enq: |∼ Enq ic q oc −→ BInv ic q oc −→ #(BInv ic q oc)
by (auto simp: Enq-def BInv-def tla-defs)

have deq: |∼ Deq ic q oc −→ BInv ic q oc −→ #(BInv ic q oc)
by (auto simp: Deq-def BInv-def tla-defs neq-Nil-conv)

have unch: |∼ Unchanged (ic,q,oc) −→ BInv ic q oc −→ #(BInv ic q oc)
by (auto simp: BInv-def tla-defs)

show |∼ BInv ic q oc ∧ [Nxt ic q oc]-(ic, q, oc) −→ #(BInv ic q oc)
by (auto simp: Nxt-def actrans-def

elim: enq[unlift-rule] deq[unlift-rule] unch[unlift-rule])
qed

theorem ISpec-BInv: ` ISpec ic q oc −→ �(BInv ic q oc)
by (auto simp: ISpec-def intro: ISpec-BInv-lemma[unlift-rule])

10.3 Two FIFO buffers in a row implement a buffer
locale DBuffer =

fixes inp :: ′a statefun — input channel for double FIFO
and mid :: ′a statefun — channel linking the two buffers
and out :: ′a statefun — output channel for double FIFO
and q1 :: ′a list statefun — inner queue of first FIFO
and q2 :: ′a list statefun — inner queue of second FIFO
and vars

defines vars ≡ LIFT (inp,mid,out,q1 ,q2 )
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assumes DB-base: basevars vars
begin

We need to specify the behavior of two FIFO buffers in a row. Intuitively,
that specification is just the conjunction of two buffer specifications, where
the first buffer has input channel inp and output channel mid whereas the
second one receives from mid and outputs on out. However, this conjunc-
tion allows a simultaneous enqueue action of the first buffer and dequeue of
the second one. It would not implement the previous buffer specification,
which excludes such simultaneous enqueueing and dequeueing (it is written
in “interleaving style”). We could relax the specification of the FIFO buffer
above, which is esthetically pleasant, but non-interleaving specifications are
usually hard to get right and to understand. We therefore impose an inter-
leaving constraint on the specification of the double buffer, which requires
that enqueueing and dequeueing do not happen simultaneously.

definition DBSpec
where DBSpec ≡ TEMP ISpec inp q1 mid

∧ ISpec mid q2 out
∧ �[¬(Enq inp q1 mid ∧ Deq mid q2 out)]-vars

The proof rules of TLA are geared towards specifications of the form Init ∧
�[Next]-vars ∧ L, and we prove that DBSpec corresponds to a specification
in this form, which we now define.

definition FullInit
where FullInit ≡ TEMP (BInit inp q1 mid ∧ BInit mid q2 out)

definition FullNxt
where FullNxt ≡ TEMP (Enq inp q1 mid ∧ Unchanged (q2 ,out)

∨ Deq inp q1 mid ∧ Enq mid q2 out
∨ Deq mid q2 out ∧ Unchanged (inp,q1 ))

definition FullSpec
where FullSpec ≡ TEMP FullInit

∧ �[FullNxt]-vars
∧ WF(Deq inp q1 mid)-vars
∧ WF(Deq mid q2 out)-vars

The concatenation of the two queues will serve as the refinement mapping.
definition qc :: ′a list statefun
where qc ≡ LIFT (q2 @ q1 )

lemmas db-defs = buffer-defs DBSpec-def FullInit-def FullNxt-def FullSpec-def
qc-def vars-def

lemma DBSpec-stutinv: STUTINV DBSpec
unfolding db-defs by (simp add: bothstutinvs livestutinv)
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lemma FullSpec-stutinv: STUTINV FullSpec
unfolding db-defs by (simp add: bothstutinvs livestutinv)

We prove that DBSpec implies FullSpec. (The converse implication also
holds but is not needed for our implementation proof.)

The following lemma is somewhat more bureaucratic than we’d like it to
be. It shows that the conjunction of the next-state relations, together with
the invariant for the first queue, implies the full next-state relation of the
combined queues.

lemma DBNxt-then-FullNxt:
` �BInv inp q1 mid

∧ �[Nxt inp q1 mid]-(inp,q1 ,mid)
∧ �[Nxt mid q2 out]-(mid,q2 ,out)
∧ �[¬(Enq inp q1 mid ∧ Deq mid q2 out)]-vars
−→ �[FullNxt]-vars

(is ` �?inv ∧ ?nxts −→ �[FullNxt]-vars)
proof −

have ` �[Nxt inp q1 mid]-(inp,q1 ,mid)
∧ �[Nxt mid q2 out]-(mid,q2 ,out)
−→ �[ [Nxt inp q1 mid]-(inp,q1 ,mid)

∧ [Nxt mid q2 out]-(mid,q2 ,out)]-((inp,q1 ,mid),(mid,q2 ,out))
(is ` ?tmp −→ �[?b1b2 ]-?vs)
by (auto simp: M12 [int-rewrite])

moreover
have ` �[?b1b2 ]-?vs −→ �[?b1b2 ]-vars

by (rule R1 , auto simp: vars-def tla-defs)
ultimately
have 1 : ` �[Nxt inp q1 mid]-(inp,q1 ,mid)

∧ �[Nxt mid q2 out]-(mid,q2 ,out)
−→ �[ [Nxt inp q1 mid]-(inp,q1 ,mid)

∧ [Nxt mid q2 out]-(mid,q2 ,out) ]-vars
by force

have 2 : ` �[?b1b2 ]-vars ∧ �[¬(Enq inp q1 mid ∧ Deq mid q2 out)]-vars
−→ �[?b1b2 ∧ ¬(Enq inp q1 mid ∧ Deq mid q2 out)]-vars

(is ` ?tmp2 −→ �[?mid]-vars)
by (simp add: M8 [int-rewrite])

have ` ?inv −→ #True by auto
moreover
have |∼ ?inv ∧ #?inv ∧ [?mid]-vars −→ [FullNxt]-vars
proof −

have |∼ ?inv ∧ ?mid −→ [FullNxt]-vars
proof −

have A: |∼ Nxt inp q1 mid
−→ [Nxt mid q2 out]-(mid,q2 ,out)
−→ ¬(Enq inp q1 mid ∧ Deq mid q2 out)
−→ ?inv
−→ FullNxt
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proof −
have enq: |∼ Enq inp q1 mid

∧ [Nxt mid q2 out]-(mid,q2 ,out)
∧ ¬(Deq mid q2 out)
−→ Unchanged (q2 ,out)

by (auto simp: db-defs tla-defs)
have deq1 : |∼ Deq inp q1 mid −→ ?inv −→ mid$ 6= $mid

by (auto simp: Deq-def BInv-def )
have deq2 : |∼ Deq mid q2 out −→ mid$ = $mid

by (auto simp: Deq-def )
have deq: |∼ Deq inp q1 mid

∧ [Nxt mid q2 out]-(mid,q2 ,out)
∧ ?inv
−→ Enq mid q2 out

by (force simp: Nxt-def tla-defs
dest: deq1 [unlift-rule] deq2 [unlift-rule])

with enq show ?thesis by (force simp: Nxt-def FullNxt-def )
qed
have B: |∼ Nxt mid q2 out

−→ Unchanged (inp,q1 ,mid)
−→ FullNxt

by (auto simp: db-defs tla-defs)
have C : ` Unchanged (inp,q1 ,mid)

−→ Unchanged (mid,q2 ,out)
−→ Unchanged vars

by (auto simp: vars-def tla-defs)
show ?thesis

by (force simp: actrans-def
dest: A[unlift-rule] B[unlift-rule] C [unlift-rule])

qed
thus ?thesis by (auto simp: tla-defs)

qed
ultimately
have ` �?inv ∧ �[?mid]-vars −→ �#True ∧ �[FullNxt]-vars

by (rule TLA2 )
with 1 2 show ?thesis by force

qed

It is now easy to show that DBSpec refines FullSpec.
theorem DBSpec-impl-FullSpec: ` DBSpec −→ FullSpec
proof −

have 1 : ` DBSpec −→ FullInit
by (auto simp: DBSpec-def FullInit-def ISpec-def )

have 2 : ` DBSpec −→ �[FullNxt]-vars
proof −

have ` DBSpec −→ �(BInv inp q1 mid)
by (auto simp: DBSpec-def intro: ISpec-BInv[unlift-rule])

moreover have ` DBSpec ∧ �(BInv inp q1 mid) −→ �[FullNxt]-vars
by (auto simp: DBSpec-def ISpec-def
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intro: DBNxt-then-FullNxt[unlift-rule])
ultimately show ?thesis by force

qed
have 3 : ` DBSpec −→ WF(Deq inp q1 mid)-vars
proof −

have 31 : ` Unchanged vars −→ Unchanged q1
by (auto simp: vars-def tla-defs)

have 32 : ` Unchanged (inp,q1 ,mid) −→ Unchanged q1
by (auto simp: tla-defs)

have deq: |∼ 〈Deq inp q1 mid〉-vars = 〈Deq inp q1 mid〉-(inp,q1 ,mid)
by (simp add: Deq-visible[OF 31 , int-rewrite]

Deq-visible[OF 32 , int-rewrite])
show ?thesis

by (auto simp: DBSpec-def ISpec-def WeakF-def
deq[int-rewrite] deq[THEN AA26 ,int-rewrite])

qed
have 4 : ` DBSpec −→ WF(Deq mid q2 out)-vars
proof −

have 41 : ` Unchanged vars −→ Unchanged q2
by (auto simp: vars-def tla-defs)

have 42 : ` Unchanged (mid,q2 ,out) −→ Unchanged q2
by (auto simp: tla-defs)

have deq: |∼ 〈Deq mid q2 out〉-vars = 〈Deq mid q2 out〉-(mid,q2 ,out)
by (simp add: Deq-visible[OF 41 , int-rewrite]

Deq-visible[OF 42 , int-rewrite])
show ?thesis

by (auto simp: DBSpec-def ISpec-def WeakF-def
deq[int-rewrite] deq[THEN AA26 ,int-rewrite])

qed
show ?thesis

by (auto simp: FullSpec-def
elim: 1 [unlift-rule] 2 [unlift-rule] 3 [unlift-rule]

4 [unlift-rule])
qed

We now prove that two FIFO buffers in a row (as specified by formula Full-
Spec) implement a FIFO buffer whose internal queue is the concatenation
of the two buffers. We start by proving step simulation.

lemma FullInit: ` FullInit −→ BInit inp qc out
by (auto simp: db-defs tla-defs)

lemma Full-step-simulation:
|∼ [FullNxt]-vars −→ [Nxt inp qc out]-(inp,qc,out)
by (auto simp: db-defs tla-defs)

The liveness condition requires that the combined buffer eventually performs
a Deq action on the output channel if it contains some element. The idea
is to use the fairness hypothesis for the first buffer to prove that in that
case, eventually the queue of the second buffer will be non-empty, and that
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it must therefore eventually dequeue some element.
The first step is to establish the enabledness conditions for the two Deq
actions of the implementation.

lemma Deq1-enabled: ` Enabled 〈Deq inp q1 mid〉-vars = ($q1 6= #[])
proof −

have 1 : |∼ 〈Deq inp q1 mid〉-vars = Deq inp q1 mid
by (rule Deq-visible, auto simp: vars-def tla-defs)

have ` Enabled (Deq inp q1 mid) = ($q1 6= #[])
by (force simp: Deq-def tla-defs vars-def

intro: base-enabled[OF DB-base] elim!: enabledE)
thus ?thesis by (simp add: 1 [int-rewrite])

qed

lemma Deq2-enabled: ` Enabled 〈Deq mid q2 out〉-vars = ($q2 6= #[])
proof −

have 1 : |∼ 〈Deq mid q2 out〉-vars = Deq mid q2 out
by (rule Deq-visible, auto simp: vars-def tla-defs)

have ` Enabled (Deq mid q2 out) = ($q2 6= #[])
by (force simp: Deq-def tla-defs vars-def

intro: base-enabled[OF DB-base] elim!: enabledE)
thus ?thesis by (simp add: 1 [int-rewrite])

qed

We now use rule WF2 to prove that the combined buffer (behaving according
to specification FullSpec) implements the fairness condition of the single
buffer under the refinement mapping.

lemma Full-fairness:
` �[FullNxt]-vars ∧ WF(Deq mid q2 out)-vars ∧ �WF(Deq inp q1 mid)-vars

−→ WF(Deq inp qc out)-(inp,qc,out)
proof (rule WF2 )

— the helpful action is the Deq action of the second queue
show |∼ 〈FullNxt ∧ Deq mid q2 out〉-vars −→ 〈Deq inp qc out〉-(inp,qc,out)

by (auto simp: db-defs tla-defs)
next

— the helpful condition is the second queue being non-empty
show |∼ ($q2 6= #[]) ∧ #($q2 6= #[]) ∧ 〈FullNxt ∧ Deq mid q2 out〉-vars

−→ Deq mid q2 out
by (auto simp: tla-defs)

next
show ` $q2 6= #[] ∧ Enabled 〈Deq inp qc out〉-(inp, qc, out)

−→ Enabled 〈Deq mid q2 out〉-vars
unfolding Deq2-enabled[int-rewrite] by auto

next

The difficult part of the proof is to show that the helpful condition will eventually
always be true provided that the combined dequeue action is eventually always
enabled and that the helpful action is never executed. We prove that (1) the
helpful condition persists and (2) that it must eventually become true.
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have ` ��[FullNxt ∧ ¬(Deq mid q2 out)]-vars
−→ �($q2 6= #[] −→ �($q2 6= #[]))

proof (rule STL4 )
have |∼ $q2 6= #[] ∧ [FullNxt ∧ ¬(Deq mid q2 out)]-vars

−→ #($q2 6= #[])
by (auto simp: db-defs tla-defs)

from this[THEN INV1 ]
show ` �[FullNxt ∧ ¬ Deq mid q2 out]-vars

−→ ($q2 6= #[] −→ �($q2 6= #[]))
by auto

qed
hence 1 : ` �[FullNxt ∧ ¬(Deq mid q2 out)]-vars

−→ ♦($q2 6= #[]) −→ ♦�($q2 6= #[])
by (force intro: E31 [unlift-rule])

have 2 : ` �[FullNxt ∧ ¬(Deq mid q2 out)]-vars
∧ WF(Deq inp q1 mid)-vars
−→ (Enabled 〈Deq inp qc out〉-(inp, qc, out)  $q2 6= #[])

proof −
have qc: ` ($qc 6= #[]) = ($q1 6= #[] ∨ $q2 6= #[])

by (auto simp: qc-def tla-defs)
have ` �[FullNxt ∧ ¬(Deq mid q2 out)]-vars ∧ WF(Deq inp q1 mid)-vars

−→ ($q1 6= #[]  $q2 6= #[])
proof (rule WF1 )

show |∼ $q1 6= #[] ∧ [FullNxt ∧ ¬ Deq mid q2 out]-vars
−→ #($q1 6= #[]) ∨ #($q2 6= #[])

by (auto simp: db-defs tla-defs)
next

show |∼ $q1 6= #[]
∧ 〈(FullNxt ∧ ¬ Deq mid q2 out) ∧ Deq inp q1 mid〉-vars −→
#($q2 6= #[])

by (auto simp: db-defs tla-defs)
next

show ` $q1 6= #[] −→ Enabled 〈Deq inp q1 mid〉-vars
by (simp add: Deq1-enabled[int-rewrite])

next
show |∼ $q1 6= #[] ∧ Unchanged vars −→ #($q1 6= #[])

by (auto simp: vars-def tla-defs)
qed
hence ` �[FullNxt ∧ ¬(Deq mid q2 out)]-vars

∧ WF(Deq inp q1 mid)-vars
−→ ($qc 6= #[]  $q2 6= #[])

by (auto simp: qc[int-rewrite] LT17 [int-rewrite] LT1 [int-rewrite])
moreover
have ` Enabled 〈Deq inp qc out〉-(inp, qc, out)  $qc 6= #[]

by (rule Deq-enabledE [THEN LT3 ])
ultimately show ?thesis by (force elim: LT13 [unlift-rule])

qed
with LT6
have ` �[FullNxt ∧ ¬(Deq mid q2 out)]-vars

104



∧ WF(Deq inp q1 mid)-vars
∧ ♦Enabled 〈Deq inp qc out〉-(inp, qc, out)
−→ ♦($q2 6= #[])

by force
with 1 E16
show ` �[FullNxt ∧ ¬(Deq mid q2 out)]-vars

∧ WF(Deq mid q2 out)-vars
∧ �WF(Deq inp q1 mid)-vars
∧ ♦� Enabled 〈Deq inp qc out〉-(inp, qc, out)
−→ ♦�($q2 6= #[])

by force
qed

Putting everything together, we obtain that FullSpec refines the Buffer spec-
ification under the refinement mapping.

theorem FullSpec-impl-ISpec: ` FullSpec −→ ISpec inp qc out
unfolding FullSpec-def ISpec-def
using FullInit Full-step-simulation[THEN M11 ] Full-fairness
by force

theorem FullSpec-impl-Spec: ` FullSpec −→ Spec inp out
unfolding Spec-def using FullSpec-impl-ISpec
by (force intro: eexI [unlift-rule])

By transitivity, two buffers in a row also implement a single buffer.
theorem DBSpec-impl-Spec: ` DBSpec −→ Spec inp out

by (rule lift-imp-trans[OF DBSpec-impl-FullSpec FullSpec-impl-Spec])

end — locale DBuffer

end
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