
A Formal Development of a Polychronous Polytimed
Coordination Language

Hai Nguyen Van
hai.nguyenvan.phie@gmail.com

Frédéric Boulanger
frederic.boulanger@centralesupelec.fr

Burkhart Wolff
burkhart.wolff@lri.fr

March 17, 2025

mailto:hai.nguyenvan.phie@gmail.com
mailto:frederic.boulanger@centralesupelec.fr
mailto:burkhart.wolff@lri.fr

2

Contents

1 A Gentle Introduction to TESL 5
1.1 Context . 5
1.2 The TESL Language . 7

1.2.1 Instantaneous Causal Operators . 7
1.2.2 Temporal Operators . 7
1.2.3 Asynchronous Operators . 8

2 Core TESL: Syntax and Basics 9
2.1 Syntactic Representation . 9

2.1.1 Basic elements of a specification . 9
2.1.2 Operators for the TESL language . 9
2.1.3 Field Structure of the Metric Time Space 10

2.2 Defining Runs . 11

3 Denotational Semantics 13
3.1 Denotational interpretation for atomic TESL formulae 13
3.2 Denotational interpretation for TESL formulae 14

3.2.1 Image interpretation lemma . 14
3.2.2 Expansion law . 14

3.3 Equational laws for the denotation of TESL formulae 14
3.4 Decreasing interpretation of TESL formulae . 15
3.5 Some special cases . 16

4 Symbolic Primitives for Building Runs 17
4.0.1 Symbolic Primitives for Runs . 17

4.1 Semantics of Primitive Constraints . 18
4.1.1 Defining a method for witness construction 19

4.2 Rules and properties of consistence . 19
4.3 Major Theorems . 20

4.3.1 Interpretation of a context . 20
4.3.2 Expansion law . 20

4.4 Equations for the interpretation of symbolic primitives 20
4.4.1 General laws . 20
4.4.2 Decreasing interpretation of symbolic primitives 21

5 Operational Semantics 23
5.1 Operational steps . 23
5.2 Basic Lemmas . 25

3

4 CONTENTS

6 Semantics Equivalence 29
6.1 Stepwise denotational interpretation of TESL atoms 29
6.2 Coinduction Unfolding Properties . 31
6.3 Interpretation of configurations . 33

7 Main Theorems 35
7.1 Initial configuration . 35
7.2 Soundness . 35
7.3 Completeness . 36
7.4 Progress . 36
7.5 Local termination . 37

8 Properties of TESL 39
8.1 Stuttering Invariance . 39

8.1.1 Definition of stuttering . 39
8.1.2 Alternate definitions for counting ticks. 41
8.1.3 Stuttering Lemmas . 42
8.1.4 Lemmas used to prove the invariance by stuttering 42
8.1.5 Main Theorems . 50

Chapter 1

A Gentle Introduction to TESL

1.1 Context
The design of complex systems involves different formalisms for modeling their different parts or
aspects. The global model of a system may therefore consist of a coordination of concurrent sub-
models that use different paradigms such as differential equations, state machines, synchronous
data-flow networks, discrete event models and so on, as illustrated in Figure 1.1. This raises the
interest in architectural composition languages that allow for “bolting the respective sub-models
together”, along their various interfaces, and specifying the various ways of collaboration and
coordination [2].
We are interested in languages that allow for specifying the timed coordination of subsystems by
addressing the following conceptual issues:

• events may occur in different sub-systems at unrelated times, leading to polychronous sys-
tems, which do not necessarily have a common base clock,

• the behavior of the sub-systems is observed only at a series of discrete instants, and time
coordination has to take this discretization into account,

• the instants at which a system is observed may be arbitrary and should not change its
behavior (stuttering invariance),

• coordination between subsystems involves causality, so the occurrence of an event may
enforce the occurrence of other events, possibly after a certain duration has elapsed or an
event has occurred a given number of times,

• the domain of time (discrete, rational, continuous. . .) may be different in the subsystems,
leading to polytimed systems,

• the time frames of different sub-systems may be related (for instance, time in a GPS satellite
and in a GPS receiver on Earth are related although they are not the same).

consts dummyInfty :: ‹ ’a ⇒ ’a›
consts dummyTESLSTAR :: ‹ ’a›
consts dummyFUN :: ‹ ’a set ⇒ ’b set ⇒ ’c set›
consts dummyCLOCK :: ‹ ’a set›
consts dummyBOOL :: ‹ bool set›

5

6 CHAPTER 1. A GENTLE INTRODUCTION TO TESL

1

0

fby

fby
s add

∂Q
∂t

= ∂2s
∂t

+ 2 ∂r
∂x

∂Q
∂x

= ∂r
∂t∂x

− ∂s
∂x

Timed Finite State Machine

Lustre/SCADE Ordinary Differential Equations

Architectural glue

Figure 1.1: A Heterogeneous Timed System Model

consts dummyTIMES :: ‹ ’a set›
consts dummyLEQ :: ‹ ’a ⇒ ’a ⇒ bool›

notation dummyInfty (‹ (_∞)› [1000] 999)
notation dummyTESLSTAR (‹ TESL∗›)
notation dummyFUN (infixl ‹→› 100)
notation dummyCLOCK (‹K›)
notation dummyBOOL (‹�›)
notation dummyTIMES (‹T ›)
notation dummyLEQ (infixl ‹≤T › 100)

In order to tackle the heterogeneous nature of the subsystems, we abstract their behavior as
clocks. Each clock models an event, i.e., something that can occur or not at a given time. This
time is measured in a time frame associated with each clock, and the nature of time (integer,
rational, real, or any type with a linear order) is specific to each clock. When the event associated
with a clock occurs, the clock ticks. In order to support any kind of behavior for the subsystems,
we are only interested in specifying what we can observe at a series of discrete instants. There
are two constraints on observations: a clock may tick only at an observation instant, and the
time on any clock cannot decrease from an instant to the next one. However, it is always possible
to add arbitrary observation instants, which allows for stuttering and modular composition of
systems. As a consequence, the key concept of our setting is the notion of a clock-indexed Kripke
model: Σ∞ = � → K → (� × T), where K is an enumerable set of clocks, � is the set of
booleans – used to indicate that a clock ticks at a given instant – and T is a universal metric
time space for which we only assume that it is large enough to contain all individual time spaces
of clocks and that it is ordered by some linear ordering (≤T).

The elements of Σ∞ are called runs. A specification language is a set of operators that constrains
the set of possible monotonic runs. Specifications are composed by intersecting the denoted run
sets of constraint operators. Consequently, such specification languages do not limit the number
of clocks used to model a system (as long as it is finite) and it is always possible to add clocks
to a specification. Moreover, they are compositional by construction since the composition of
specifications consists of the conjunction of their constraints.

This work provides the following contributions:

1.2. THE TESL LANGUAGE 7

• defining the non-trivial language TESL∗ in terms of clock-indexed Kripke models,

• proving that this denotational semantics is stuttering invariant,

• defining an adapted form of symbolic primitives and presenting the set of operational
semantic rules,

• presenting formal proofs for soundness, completeness, and progress of the latter.

1.2 The TESL Language
The TESL language [1] was initially designed to coordinate the execution of heterogeneous com-
ponents during the simulation of a system. We define here a minimal kernel of operators that
will form the basis of a family of specification languages, including the original TESL language,
which is described at http://wdi.supelec.fr/software/TESL/.

1.2.1 Instantaneous Causal Operators
TESL has operators to deal with instantaneous causality, i.e., to react to an event occurrence in
the very same observation instant.

• c1 implies c2 means that at any instant where c1 ticks, c2 has to tick too.

• c1 implies not c2 means that at any instant where c1 ticks, c2 cannot tick.

• c1 kills c2 means that at any instant where c1 ticks, and at any future instant, c2
cannot tick.

1.2.2 Temporal Operators
TESL also has chronometric temporal operators that deal with dates and chronometric delays.

• c sporadic t means that clock c must have a tick at time t on its own time scale.

• c1 sporadic t on c2 means that clock c1 must have a tick at an instant where the time
on c2 is t.

• c1 time delayed by d on m implies c2 means that every time clock c1 ticks, c2 must
have a tick at the first instant where the time on m is d later than it was when c1 had ticked.
This means that every tick on c1 is followed by a tick on c2 after a delay d measured on
the time scale of clock m.

• time relation (c1, c2) in R means that at every instant, the current time on clocks c1
and c2 must be in relation R. By default, the time lines of different clocks are independent.
This operator allows us to link two time lines, for instance to model the fact that time
in a GPS satellite and time in a GPS receiver on Earth are not the same but are related.
Time being polymorphic in TESL, this can also be used to model the fact that the angular
position on the camshaft of an engine moves twice as fast as the angular position on the
crankshaft 1. We may consider only linear arithmetic relations to restrict the problem to
a domain where the resolution is decidable.

1See http://wdi.supelec.fr/software/TESL/GalleryEngine for more details

http://wdi.supelec.fr/software/TESL/
http://wdi.supelec.fr/software/TESL/GalleryEngine

8 CHAPTER 1. A GENTLE INTRODUCTION TO TESL

1.2.3 Asynchronous Operators
The last category of TESL operators allows the specification of asynchronous relations between
event occurrences. They do not specify the precise instants at which ticks have to occur, they
only put bounds on the set of instants at which they should occur.

• c1 weakly precedes c2 means that for each tick on c2, there must be at least one tick
on c1 at a previous or at the same instant. This can also be expressed by stating that at
each instant, the number of ticks since the beginning of the run must be lower or equal on
c2 than on c1.

• c1 strictly precedes c2 means that for each tick on c2, there must be at least one tick
on c1 at a previous instant. This can also be expressed by saying that at each instant, the
number of ticks on c2 from the beginning of the run to this instant, must be lower or equal
to the number of ticks on c1 from the beginning of the run to the previous instant.

Chapter 2

The Core of the TESL Language:
Syntax and Basics

theory TESL
imports Main

begin

2.1 Syntactic Representation
We define here the syntax of TESL specifications.

2.1.1 Basic elements of a specification
The following items appear in specifications:

• Clocks, which are identified by a name.

• Tag constants are just constants of a type which denotes the metric time space.

datatype clock = Clk ‹ string›
type_synonym instant_index = ‹ nat›

datatype ’τ tag_const = TConst (the_tag_const : ’τ) (‹ τcst›)

2.1.2 Operators for the TESL language
The type of atomic TESL constraints, which can be combined to form specifications.
datatype ’τ TESL_atomic =

SporadicOn ‹ clock› ‹ ’τ tag_const› ‹ clock› (‹ _ sporadic _ on _› 55)
| TagRelation ‹ clock› ‹ clock› ‹ (’τ tag_const × ’τ tag_const) ⇒ bool›

(‹ time-relation b_, _c ∈ _› 55)
| Implies ‹ clock› ‹ clock› (infixr ‹ implies› 55)
| ImpliesNot ‹ clock› ‹ clock› (infixr ‹ implies not› 55)
| TimeDelayedBy ‹ clock› ‹ ’τ tag_const› ‹ clock› ‹ clock›

(‹ _ time-delayed by _ on _ implies _› 55)

9

10 CHAPTER 2. CORE TESL: SYNTAX AND BASICS

| WeaklyPrecedes ‹ clock› ‹ clock› (infixr ‹ weakly precedes› 55)
| StrictlyPrecedes ‹ clock› ‹ clock› (infixr ‹ strictly precedes› 55)
| Kills ‹ clock› ‹ clock› (infixr ‹ kills› 55)

A TESL formula is just a list of atomic constraints, with implicit conjunction for the semantics.
type_synonym ’τ TESL_formula = ‹ ’τ TESL_atomic list›

We call positive atoms the atomic constraints that create ticks from nothing. Only sporadic
constraints are positive in the current version of TESL.
fun positive_atom :: ‹ ’τ TESL_atomic ⇒ bool› where

‹ positive_atom (_ sporadic _ on _) = True›
| ‹ positive_atom _ = False›

The NoSporadic function removes sporadic constraints from a TESL formula.
abbreviation NoSporadic :: ‹ ’τ TESL_formula ⇒ ’τ TESL_formula›
where

‹ NoSporadic f ≡ (List.filter (λfatom. case fatom of
_ sporadic _ on _ ⇒ False

| _ ⇒ True) f)›

2.1.3 Field Structure of the Metric Time Space
In order to handle tag relations and delays, tags must belong to a field. We show here that this
is the case when the type parameter of ’τ tag_const is itself a field.
instantiation tag_const ::(field)field
begin

fun inverse_tag_const
where ‹ inverse (τcst t) = τcst (inverse t)›

fun divide_tag_const
where ‹ divide (τcst t1) (τcst t2) = τcst (divide t1 t2)›

fun uminus_tag_const
where ‹ uminus (τcst t) = τcst (uminus t)›

fun minus_tag_const
where ‹ minus (τcst t1) (τcst t2) = τcst (minus t1 t2)›

definition ‹ one_tag_const ≡ τcst 1›

fun times_tag_const
where ‹ times (τcst t1) (τcst t2) = τcst (times t1 t2)›

definition ‹ zero_tag_const ≡ τcst 0›

fun plus_tag_const
where ‹ plus (τcst t1) (τcst t2) = τcst (plus t1 t2)›

instance 〈proof 〉

end

For comparing dates (which are represented by tags) on clocks, we need an order on tags.
instantiation tag_const :: (order)order
begin

2.2. DEFINING RUNS 11

inductive less_eq_tag_const :: ‹ ’a tag_const ⇒ ’a tag_const ⇒ bool›
where

Int_less_eq[simp]: ‹ n ≤ m =⇒ (TConst n) ≤ (TConst m)›

definition less_tag: ‹ (x::’a tag_const) < y ←→ (x ≤ y) ∧ (x 6= y)›

instance 〈proof 〉

end

For ensuring that time does never flow backwards, we need a total order on tags.
instantiation tag_const :: (linorder)linorder
begin

instance 〈proof 〉

end

end

2.2 Defining Runs
theory Run
imports TESL

begin

Runs are sequences of instants, and each instant maps a clock to a pair (h, t) where h indicates
whether the clock ticks or not, and t is the current time on this clock. The first element of the
pair is called the hamlet of the clock (to tick or not to tick), the second element is called the
time.
abbreviation hamlet where ‹ hamlet ≡ fst›
abbreviation time where ‹ time ≡ snd›

type_synonym ’τ instant = ‹ clock ⇒ (bool × ’τ tag_const)›

Runs have the additional constraint that time cannot go backwards on any clock in the sequence
of instants. Therefore, for any clock, the time projection of a run is monotonous.
typedef (overloaded) ’τ::linordered_field run =

‹ { %::nat ⇒ ’τ instant. ∀ c. mono (λn. time (% n c)) }›
〈proof 〉

lemma Abs_run_inverse_rewrite:
‹∀ c. mono (λn. time (% n c)) =⇒ Rep_run (Abs_run %) = %›
〈proof 〉

A dense run is a run in which something happens (at least one clock ticks) at every instant.
definition ‹ dense_run % ≡ (∀ n. ∃ c. hamlet ((Rep_run %) n c))›

run_tick_count % K n counts the number of ticks on clock K in the interval [0, n] of run %.
fun run_tick_count :: ‹ (’τ::linordered_field) run ⇒ clock ⇒ nat ⇒ nat›

(‹ #≤ _ _ _›)
where

‹ (#≤ % K 0) = (if hamlet ((Rep_run %) 0 K)
then 1

12 CHAPTER 2. CORE TESL: SYNTAX AND BASICS

else 0)›
| ‹ (#≤ % K (Suc n)) = (if hamlet ((Rep_run %) (Suc n) K)

then 1 + (#≤ % K n)
else (#≤ % K n))›

run_tick_count_strictly % K n counts the number of ticks on clock K in the interval [0, n[
of run %.
fun run_tick_count_strictly :: ‹ (’τ::linordered_field) run ⇒ clock ⇒ nat ⇒ nat›

(‹ #< _ _ _›)
where

‹ (#< % K 0) = 0›
| ‹ (#< % K (Suc n)) = #≤ % K n›

first_time % K n τ tells whether instant n in run % is the first one where the time on clock K
reaches τ .
definition first_time :: ‹ ’a::linordered_field run ⇒ clock ⇒ nat ⇒ ’a tag_const

⇒ bool›
where

‹ first_time % K n τ ≡ (time ((Rep_run %) n K) = τ)
∧ (@ n’. n’ < n ∧ time ((Rep_run %) n’ K) = τ)›

The time on a clock is necessarily less than τ before the first instant at which it reaches τ .
lemma before_first_time:

assumes ‹ first_time % K n τ›
and ‹ m < n›

shows ‹ time ((Rep_run %) m K) < τ›
〈proof 〉

This leads to an alternate definition of first_time:
lemma alt_first_time_def:

assumes ‹∀ m < n. time ((Rep_run %) m K) < τ›
and ‹ time ((Rep_run %) n K) = τ›

shows ‹ first_time % K n τ›
〈proof 〉

end

Chapter 3

Denotational Semantics

theory Denotational
imports

TESL
Run

begin

The denotational semantics maps TESL formulae to sets of satisfying runs. Firstly, we define
the semantics of atomic formulae (basic constructs of the TESL language), then we define the
semantics of compound formulae as the intersection of the semantics of their components: a run
must satisfy all the individual formulae of a compound formula.

3.1 Denotational interpretation for atomic TESL formulae

fun TESL_interpretation_atomic
:: ‹ (’τ::linordered_field) TESL_atomic ⇒ ’τ run set› (‹ [[_]]T ESL›)

where
— K1 sporadic τ on K2 means that K1 should tick at an instant where the time on K2 is τ .

‹ [[K1 sporadic τ on K2]]T ESL =
{%. ∃ n::nat. hamlet ((Rep_run %) n K1) ∧ time ((Rep_run %) n K2) = τ}›

— time-relation bK1, K2c ∈ R means that at each instant, the time on K1 and the time on K2 are in relation R.
| ‹ [[time-relation bK1, K2c ∈ R]]T ESL =

{%. ∀ n::nat. R (time ((Rep_run %) n K1), time ((Rep_run %) n K2))}›
— master implies slave means that at each instant at which master ticks, slave also ticks.
| ‹ [[master implies slave]]T ESL =

{%. ∀ n::nat. hamlet ((Rep_run %) n master) −→ hamlet ((Rep_run %) n slave)}›
— master implies not slave means that at each instant at which master ticks, slave does not tick.
| ‹ [[master implies not slave]]T ESL =

{%. ∀ n::nat. hamlet ((Rep_run %) n master) −→ ¬hamlet ((Rep_run %) n slave)}›
— master time-delayed by δτ on measuring implies slave means that at each instant at which master ticks,

slave will tick after a delay δτ measured on the time scale of measuring.
| ‹ [[master time-delayed by δτ on measuring implies slave]]T ESL =

— When master ticks, let’s call t0 the current date on measuring. Then, at the first instant when the date on
measuring is t0 + δt, slave has to tick.

{%. ∀ n. hamlet ((Rep_run %) n master) −→
(let measured_time = time ((Rep_run %) n measuring) in
∀ m ≥ n. first_time % measuring m (measured_time + δτ)

13

14 CHAPTER 3. DENOTATIONAL SEMANTICS

−→ hamlet ((Rep_run %) m slave)
)

}›
— K1 weakly precedes K2 means that each tick on K2 must be preceded by or coincide with at least one tick

on K1. Therefore, at each instant n, the number of ticks on K2 must be less or equal to the number of ticks
on K1.

| ‹ [[K1 weakly precedes K2]]T ESL =
{%. ∀ n::nat. (run_tick_count % K2 n) ≤ (run_tick_count % K1 n)}›

— K1 strictly precedes K2 means that each tick on K2 must be preceded by at least one tick on K1 at a
previous instant. Therefore, at each instant n, the number of ticks on K2 must be less or equal to the number
of ticks on K1 at instant n - 1.

| ‹ [[K1 strictly precedes K2]]T ESL =
{%. ∀ n::nat. (run_tick_count % K2 n) ≤ (run_tick_count_strictly % K1 n)}›

— K1 kills K2 means that when K1 ticks, K2 cannot tick and is not allowed to tick at any further instant.
| ‹ [[K1 kills K2]]T ESL =

{%. ∀ n::nat. hamlet ((Rep_run %) n K1)
−→ (∀ m≥n. ¬ hamlet ((Rep_run %) m K2))}›

3.2 Denotational interpretation for TESL formulae
To satisfy a formula, a run has to satisfy the conjunction of its atomic formulae. Therefore, the
interpretation of a formula is the intersection of the interpretations of its components.
fun TESL_interpretation :: ‹ (’τ::linordered_field) TESL_formula ⇒ ’τ run set›

(‹ [[[[_]]]]T ESL›)
where

‹ [[[[[]]]]]T ESL = {_. True}›
| ‹ [[[[ϕ # Φ]]]]T ESL = [[ϕ]]T ESL ∩ [[[[Φ]]]]T ESL›

lemma TESL_interpretation_homo:
‹ [[ϕ]]T ESL ∩ [[[[Φ]]]]T ESL = [[[[ϕ # Φ]]]]T ESL›
〈proof 〉

3.2.1 Image interpretation lemma
theorem TESL_interpretation_image:

‹ [[[[Φ]]]]T ESL =
⋂

((λϕ. [[ϕ]]T ESL) ‘ set Φ)›
〈proof 〉

3.2.2 Expansion law
Similar to the expansion laws of lattices.
theorem TESL_interp_homo_append:

‹ [[[[Φ1 @ Φ2]]]]T ESL = [[[[Φ1]]]]T ESL ∩ [[[[Φ2]]]]T ESL›
〈proof 〉

3.3 Equational laws for the denotation of TESL formulae
lemma TESL_interp_assoc:

‹ [[[[(Φ1 @ Φ2) @ Φ3]]]]T ESL = [[[[Φ1 @ (Φ2 @ Φ3)]]]]T ESL›
〈proof 〉

lemma TESL_interp_commute:
shows ‹ [[[[Φ1 @ Φ2]]]]T ESL = [[[[Φ2 @ Φ1]]]]T ESL›
〈proof 〉

3.4. DECREASING INTERPRETATION OF TESL FORMULAE 15

lemma TESL_interp_left_commute:
‹ [[[[Φ1 @ (Φ2 @ Φ3)]]]]T ESL = [[[[Φ2 @ (Φ1 @ Φ3)]]]]T ESL›
〈proof 〉

lemma TESL_interp_idem:
‹ [[[[Φ @ Φ]]]]T ESL = [[[[Φ]]]]T ESL›
〈proof 〉

lemma TESL_interp_left_idem:
‹ [[[[Φ1 @ (Φ1 @ Φ2)]]]]T ESL = [[[[Φ1 @ Φ2]]]]T ESL›
〈proof 〉

lemma TESL_interp_right_idem:
‹ [[[[(Φ1 @ Φ2) @ Φ2]]]]T ESL = [[[[Φ1 @ Φ2]]]]T ESL›
〈proof 〉

lemmas TESL_interp_aci = TESL_interp_commute
TESL_interp_assoc
TESL_interp_left_commute
TESL_interp_left_idem

The empty formula is the identity element.
lemma TESL_interp_neutral1:

‹ [[[[[] @ Φ]]]]T ESL = [[[[Φ]]]]T ESL›
〈proof 〉

lemma TESL_interp_neutral2:
‹ [[[[Φ @ []]]]]T ESL = [[[[Φ]]]]T ESL›
〈proof 〉

3.4 Decreasing interpretation of TESL formulae
Adding constraints to a TESL formula reduces the number of satisfying runs.
lemma TESL_sem_decreases_head:

‹ [[[[Φ]]]]T ESL ⊇ [[[[ϕ # Φ]]]]T ESL›
〈proof 〉

lemma TESL_sem_decreases_tail:
‹ [[[[Φ]]]]T ESL ⊇ [[[[Φ @ [ϕ]]]]]T ESL›
〈proof 〉

Repeating a formula in a specification does not change the specification.
lemma TESL_interp_formula_stuttering:

assumes ‹ϕ ∈ set Φ›
shows ‹ [[[[ϕ # Φ]]]]T ESL = [[[[Φ]]]]T ESL›

〈proof 〉

Removing duplicate formulae in a specification does not change the specification.
lemma TESL_interp_remdups_absorb:

‹ [[[[Φ]]]]T ESL = [[[[remdups Φ]]]]T ESL›
〈proof 〉

Specifications that contain the same formulae have the same semantics.
lemma TESL_interp_set_lifting:

assumes ‹ set Φ = set Φ’›

16 CHAPTER 3. DENOTATIONAL SEMANTICS

shows ‹ [[[[Φ]]]]T ESL = [[[[Φ’]]]]T ESL›
〈proof 〉

The semantics of specifications is contravariant with respect to their inclusion.
theorem TESL_interp_decreases_setinc:

assumes ‹ set Φ ⊆ set Φ’›
shows ‹ [[[[Φ]]]]T ESL ⊇ [[[[Φ’]]]]T ESL›

〈proof 〉

lemma TESL_interp_decreases_add_head:
assumes ‹ set Φ ⊆ set Φ’›

shows ‹ [[[[ϕ # Φ]]]]T ESL ⊇ [[[[ϕ # Φ’]]]]T ESL›
〈proof 〉

lemma TESL_interp_decreases_add_tail:
assumes ‹ set Φ ⊆ set Φ’›

shows ‹ [[[[Φ @ [ϕ]]]]]T ESL ⊇ [[[[Φ’ @ [ϕ]]]]]T ESL›
〈proof 〉

lemma TESL_interp_absorb1:
assumes ‹ set Φ1 ⊆ set Φ2›

shows ‹ [[[[Φ1 @ Φ2]]]]T ESL = [[[[Φ2]]]]T ESL›
〈proof 〉

lemma TESL_interp_absorb2:
assumes ‹ set Φ2 ⊆ set Φ1›

shows ‹ [[[[Φ1 @ Φ2]]]]T ESL = [[[[Φ1]]]]T ESL›
〈proof 〉

3.5 Some special cases
lemma NoSporadic_stable [simp]:

‹ [[[[Φ]]]]T ESL ⊆ [[[[NoSporadic Φ]]]]T ESL›
〈proof 〉

lemma NoSporadic_idem [simp]:
‹ [[[[Φ]]]]T ESL ∩ [[[[NoSporadic Φ]]]]T ESL = [[[[Φ]]]]T ESL›
〈proof 〉

lemma NoSporadic_setinc:
‹ set (NoSporadic Φ) ⊆ set Φ›
〈proof 〉
end

Chapter 4

Symbolic Primitives for Building
Runs

theory SymbolicPrimitive
imports Run

begin

We define here the primitive constraints on runs, towards which we translate TESL specifications
in the operational semantics. These constraints refer to a specific symbolic run and can therefore
access properties of the run at particular instants (for instance, the fact that a clock ticks at
instant n of the run, or the time on a given clock at that instant).
In the previous chapters, we had no reference to particular instants of a run because the TESL
language should be invariant by stuttering in order to allow the composition of specifications:
adding an instant where no clock ticks to a run that satisfies a formula should yield another run
that satisfies the same formula. However, when constructing runs that satisfy a formula, we need
to be able to refer to the time or hamlet of a clock at a given instant.

Counter expressions are used to get the number of ticks of a clock up to (strictly or not) a given
instant index.
datatype cnt_expr =

TickCountLess ‹ clock› ‹ instant_index› (‹ #<›)
| TickCountLeq ‹ clock› ‹ instant_index› (‹ #≤›)

4.0.1 Symbolic Primitives for Runs
Tag values are used to refer to the time on a clock at a given instant index.
datatype tag_val =

TSchematic ‹ clock * instant_index› (‹ τvar›)

datatype ’τ constr =
— c ⇓ n @ τ constrains clock c to have time τ at instant n of the run.

Timestamp ‹ clock› ‹ instant_index› ‹ ’τ tag_const› (‹ _ ⇓ _ @ _›)
— m @ n ⊕ δt ⇒ s constrains clock s to tick at the first instant at which the time on m has increased by δt

from the value it had at instant n of the run.
| TimeDelay ‹ clock› ‹ instant_index› ‹ ’τ tag_const› ‹ clock› (‹ _ @ _ ⊕ _ ⇒ _›)
— c ⇑ n constrains clock c to tick at instant n of the run.

17

18 CHAPTER 4. SYMBOLIC PRIMITIVES FOR BUILDING RUNS

| Ticks ‹ clock› ‹ instant_index› (‹ _ ⇑ _›)
— c ¬⇑ n constrains clock c not to tick at instant n of the run.
| NotTicks ‹ clock› ‹ instant_index› (‹ _ ¬⇑ _›)
— c ¬⇑ < n constrains clock c not to tick before instant n of the run.
| NotTicksUntil ‹ clock› ‹ instant_index› (‹ _ ¬⇑ < _›)
— c ¬⇑ ≥ n constrains clock c not to tick at and after instant n of the run.
| NotTicksFrom ‹ clock› ‹ instant_index› (‹ _ ¬⇑ ≥ _›)
— bτ1, τ2c ∈ R constrains tag variables τ1 and τ2 to be in relation R.
| TagArith ‹ tag_val› ‹ tag_val› ‹ (’τ tag_const × ’τ tag_const) ⇒ bool› (‹ b_, _c ∈ _›)
— dk1, k2e ∈ R constrains counter expressions k1 and k2 to be in relation R.
| TickCntArith ‹ cnt_expr› ‹ cnt_expr› ‹ (nat × nat) ⇒ bool› (‹ d_, _e ∈ _›)
— k1 � k2 constrains counter expression k1 to be less or equal to counter expression k2.
| TickCntLeq ‹ cnt_expr› ‹ cnt_expr› (‹ _ � _›)

type_synonym ’τ system = ‹ ’τ constr list›

The abstract machine has configurations composed of:

• the past Γ, which captures choices that have already be made as a list of symbolic primitive
constraints on the run;

• the current index n, which is the index of the present instant;

• the present Ψ, which captures the formulae that must be satisfied in the current instant;

• the future Φ, which captures the constraints on the future of the run.

type_synonym ’τ config =
‹ ’τ system * instant_index * ’τ TESL_formula * ’τ TESL_formula›

4.1 Semantics of Primitive Constraints
The semantics of the primitive constraints is defined in a way similar to the semantics of TESL
formulae.
fun counter_expr_eval :: ‹ (’τ::linordered_field) run ⇒ cnt_expr ⇒ nat›

(‹ [[_ ` _]]cntexpr›)
where

‹ [[% ` #< clk indx]]cntexpr = run_tick_count_strictly % clk indx›
| ‹ [[% ` #≤ clk indx]]cntexpr = run_tick_count % clk indx›

fun symbolic_run_interpretation_primitive
::‹ (’τ::linordered_field) constr ⇒ ’τ run set› (‹ [[_]]prim›)

where
‹ [[K ⇑ n]]prim = {%. hamlet ((Rep_run %) n K) }›

| ‹ [[K @ n0 ⊕ δt ⇒ K’]]prim =
{%. ∀ n ≥ n0. first_time % K n (time ((Rep_run %) n0 K) + δt)

−→ hamlet ((Rep_run %) n K’)}›
| ‹ [[K ¬⇑ n]]prim = {%. ¬hamlet ((Rep_run %) n K) }›
| ‹ [[K ¬⇑ < n]]prim = {%. ∀ i < n. ¬ hamlet ((Rep_run %) i K)}›
| ‹ [[K ¬⇑ ≥ n]]prim = {%. ∀ i ≥ n. ¬ hamlet ((Rep_run %) i K) }›
| ‹ [[K ⇓ n @ τ]]prim = {%. time ((Rep_run %) n K) = τ }›
| ‹ [[bτvar(K1, n1), τvar(K2, n2)c ∈ R]]prim =

{ %. R (time ((Rep_run %) n1 K1), time ((Rep_run %) n2 K2)) }›

4.2. RULES AND PROPERTIES OF CONSISTENCE 19

| ‹ [[de1, e2e ∈ R]]prim = { %. R ([[% ` e1]]cntexpr, [[% ` e2]]cntexpr) }›
| ‹ [[cnt_e1 � cnt_e2]]prim = { %. [[% ` cnt_e1]]cntexpr ≤ [[% ` cnt_e2]]cntexpr }›

The composition of primitive constraints is their conjunction, and we get the set of satisfying
runs by intersection.

fun symbolic_run_interpretation
::‹ (’τ::linordered_field) constr list ⇒ (’τ::linordered_field) run set›
(‹ [[[[_]]]]prim›)

where
‹ [[[[[]]]]]prim = {%. True }›

| ‹ [[[[γ # Γ]]]]prim = [[γ]]prim ∩ [[[[Γ]]]]prim›

lemma symbolic_run_interp_cons_morph:
‹ [[γ]]prim ∩ [[[[Γ]]]]prim = [[[[γ # Γ]]]]prim›
〈proof 〉

definition consistent_context :: ‹ (’τ::linordered_field) constr list ⇒ bool›
where

‹ consistent_context Γ ≡ ([[[[Γ]]]]prim 6= {}) ›

4.1.1 Defining a method for witness construction

In order to build a run, we can start from an initial run in which no clock ticks and the time is
always 0 on any clock.

abbreviation initial_run :: ‹ (’τ::linordered_field) run› (‹ %�›) where
‹ %� ≡ Abs_run ((λ_ _. (False, τcst 0)) ::nat ⇒ clock ⇒ (bool × ’τ tag_const))›

To help avoiding that time flows backward, setting the time on a clock at a given instant sets it
for the future instants too.

fun time_update
:: ‹ nat ⇒ clock ⇒ (’τ::linordered_field) tag_const ⇒ (nat ⇒ ’τ instant)

⇒ (nat ⇒ ’τ instant)›
where

‹ time_update n K τ % = (λn’ K’. if K = K’ ∧ n ≤ n’
then (hamlet (% n K), τ)
else % n’ K’)›

4.2 Rules and properties of consistence
lemma context_consistency_preservationI:

‹ consistent_context ((γ::(’τ::linordered_field) constr)#Γ) =⇒ consistent_context Γ›
〈proof 〉
inductive context_independency

::‹ (’τ::linordered_field) constr ⇒ ’τ constr list ⇒ bool› (‹ _ ./ _›)
where

NotTicks_independency:
‹ (K ⇑ n) /∈ set Γ =⇒ (K ¬⇑ n) ./ Γ›

| Ticks_independency:
‹ (K ¬⇑ n) /∈ set Γ =⇒ (K ⇑ n) ./ Γ›

| Timestamp_independency:
‹ (@ τ’. τ’ = τ ∧ (K ⇓ n @ τ) ∈ set Γ) =⇒ (K ⇓ n @ τ) ./ Γ›

20 CHAPTER 4. SYMBOLIC PRIMITIVES FOR BUILDING RUNS

4.3 Major Theorems
4.3.1 Interpretation of a context
The interpretation of a context is the intersection of the interpretation of its components.
theorem symrun_interp_fixpoint:

‹
⋂

((λγ. [[γ]]prim) ‘ set Γ) = [[[[Γ]]]]prim›
〈proof 〉

4.3.2 Expansion law
Similar to the expansion laws of lattices
theorem symrun_interp_expansion:

‹ [[[[Γ1 @ Γ2]]]]prim = [[[[Γ1]]]]prim ∩ [[[[Γ2]]]]prim›
〈proof 〉

4.4 Equations for the interpretation of symbolic primitives
4.4.1 General laws
lemma symrun_interp_assoc:

‹ [[[[(Γ1 @ Γ2) @ Γ3]]]]prim = [[[[Γ1 @ (Γ2 @ Γ3)]]]]prim›
〈proof 〉

lemma symrun_interp_commute:
‹ [[[[Γ1 @ Γ2]]]]prim = [[[[Γ2 @ Γ1]]]]prim›
〈proof 〉

lemma symrun_interp_left_commute:
‹ [[[[Γ1 @ (Γ2 @ Γ3)]]]]prim = [[[[Γ2 @ (Γ1 @ Γ3)]]]]prim›
〈proof 〉

lemma symrun_interp_idem:
‹ [[[[Γ @ Γ]]]]prim = [[[[Γ]]]]prim›
〈proof 〉

lemma symrun_interp_left_idem:
‹ [[[[Γ1 @ (Γ1 @ Γ2)]]]]prim = [[[[Γ1 @ Γ2]]]]prim›
〈proof 〉

lemma symrun_interp_right_idem:
‹ [[[[(Γ1 @ Γ2) @ Γ2]]]]prim = [[[[Γ1 @ Γ2]]]]prim›
〈proof 〉

lemmas symrun_interp_aci = symrun_interp_commute
symrun_interp_assoc
symrun_interp_left_commute
symrun_interp_left_idem

— Identity element
lemma symrun_interp_neutral1:

‹ [[[[[] @ Γ]]]]prim = [[[[Γ]]]]prim›
〈proof 〉

lemma symrun_interp_neutral2:
‹ [[[[Γ @ []]]]]prim = [[[[Γ]]]]prim›

4.4. EQUATIONS FOR THE INTERPRETATION OF SYMBOLIC PRIMITIVES 21

〈proof 〉

4.4.2 Decreasing interpretation of symbolic primitives
Adding constraints to a context reduces the number of satisfying runs.
lemma TESL_sem_decreases_head:

‹ [[[[Γ]]]]prim ⊇ [[[[γ # Γ]]]]prim›
〈proof 〉

lemma TESL_sem_decreases_tail:
‹ [[[[Γ]]]]prim ⊇ [[[[Γ @ [γ]]]]]prim›
〈proof 〉

Adding a constraint that is already in the context does not change the interpretation of the
context.
lemma symrun_interp_formula_stuttering:

assumes ‹ γ ∈ set Γ›
shows ‹ [[[[γ # Γ]]]]prim = [[[[Γ]]]]prim›

〈proof 〉

Removing duplicate constraints from a context does not change the interpretation of the context.
lemma symrun_interp_remdups_absorb:

‹ [[[[Γ]]]]prim = [[[[remdups Γ]]]]prim›
〈proof 〉

Two identical sets of constraints have the same interpretation, the order in the context does not
matter.
lemma symrun_interp_set_lifting:

assumes ‹ set Γ = set Γ’›
shows ‹ [[[[Γ]]]]prim = [[[[Γ’]]]]prim›

〈proof 〉

The interpretation of contexts is contravariant with regard to set inclusion.
theorem symrun_interp_decreases_setinc:

assumes ‹ set Γ ⊆ set Γ’›
shows ‹ [[[[Γ]]]]prim ⊇ [[[[Γ’]]]]prim›

〈proof 〉

lemma symrun_interp_decreases_add_head:
assumes ‹ set Γ ⊆ set Γ’›

shows ‹ [[[[γ # Γ]]]]prim ⊇ [[[[γ # Γ’]]]]prim›
〈proof 〉

lemma symrun_interp_decreases_add_tail:
assumes ‹ set Γ ⊆ set Γ’›

shows ‹ [[[[Γ @ [γ]]]]]prim ⊇ [[[[Γ’ @ [γ]]]]]prim›
〈proof 〉

lemma symrun_interp_absorb1:
assumes ‹ set Γ1 ⊆ set Γ2›

shows ‹ [[[[Γ1 @ Γ2]]]]prim = [[[[Γ2]]]]prim›
〈proof 〉

lemma symrun_interp_absorb2:
assumes ‹ set Γ2 ⊆ set Γ1›

22 CHAPTER 4. SYMBOLIC PRIMITIVES FOR BUILDING RUNS

shows ‹ [[[[Γ1 @ Γ2]]]]prim = [[[[Γ1]]]]prim›
〈proof 〉

end

Chapter 5

Operational Semantics

theory Operational
imports

SymbolicPrimitive

begin

The operational semantics defines rules to build symbolic runs from a TESL specification (a set
of TESL formulae). Symbolic runs are described using the symbolic primitives presented in the
previous chapter. Therefore, the operational semantics compiles a set of constraints on runs, as
defined by the denotational semantics, into a set of symbolic constraints on the instants of the
runs. Concrete runs can then be obtained by solving the constraints at each instant.

5.1 Operational steps
We introduce a notation to describe configurations:

• Γ is the context, the set of symbolic constraints on past instants of the run;

• n is the index of the current instant, the present;

• Ψ is the TESL formula that must be satisfied at the current instant (present);

• Φ is the TESL formula that must be satisfied for the following instants (the future).

abbreviation uncurry_conf
::‹ (’τ::linordered_field) system ⇒ instant_index ⇒ ’τ TESL_formula ⇒ ’τ TESL_formula

⇒ ’τ config› (‹ _, _ ` _ . _› 80)
where

‹Γ, n ` Ψ . Φ ≡ (Γ, n, Ψ, Φ)›

The only introduction rule allows us to progress to the next instant when there are no more
constraints to satisfy for the present instant.
inductive operational_semantics_intro

::‹ (’τ::linordered_field) config ⇒ ’τ config ⇒ bool› (‹ _ ↪→i _› 70)
where

instant_i:

23

24 CHAPTER 5. OPERATIONAL SEMANTICS

‹ (Γ, n ` [] . Φ) ↪→i (Γ, Suc n ` Φ . [])›

The elimination rules describe how TESL formulae for the present are transformed into con-
straints on the past and on the future.
inductive operational_semantics_elim

::‹ (’τ::linordered_field) config ⇒ ’τ config ⇒ bool› (‹ _ ↪→e _› 70)
where

sporadic_on_e1:
— A sporadic constraint can be ignored in the present and rejected into the future.

‹ (Γ, n ` ((K1 sporadic τ on K2) # Ψ) . Φ)
↪→e (Γ, n ` Ψ . ((K1 sporadic τ on K2) # Φ))›

| sporadic_on_e2:
— It can also be handled in the present by making the clock tick and have the expected time. Once it has been

handled, it is no longer a constraint to satisfy, so it disappears from the future.
‹ (Γ, n ` ((K1 sporadic τ on K2) # Ψ) . Φ)

↪→e (((K1 ⇑ n) # (K2 ⇓ n @ τ) # Γ), n ` Ψ . Φ)›
| tagrel_e:
— A relation between time scales has to be obeyed at every instant.

‹ (Γ, n ` ((time-relation bK1, K2c ∈ R) # Ψ) . Φ)
↪→e (((bτvar(K1, n), τvar(K2, n)c ∈ R) # Γ), n

` Ψ . ((time-relation bK1, K2c ∈ R) # Φ))›
| implies_e1:
— An implication can be handled in the present by forbidding a tick of the master clock. The implication is

copied back into the future because it holds for the whole run.
‹ (Γ, n ` ((K1 implies K2) # Ψ) . Φ)

↪→e (((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 implies K2) # Φ))›
| implies_e2:
— It can also be handled in the present by making both the master and the slave clocks tick.

‹ (Γ, n ` ((K1 implies K2) # Ψ) . Φ)
↪→e (((K1 ⇑ n) # (K2 ⇑ n) # Γ), n ` Ψ . ((K1 implies K2) # Φ))›

| implies_not_e1:
— A negative implication can be handled in the present by forbidding a tick of the master clock. The implication

is copied back into the future because it holds for the whole run.
‹ (Γ, n ` ((K1 implies not K2) # Ψ) . Φ)

↪→e (((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 implies not K2) # Φ))›
| implies_not_e2:
— It can also be handled in the present by making the master clock ticks and forbidding a tick on the slave

clock.
‹ (Γ, n ` ((K1 implies not K2) # Ψ) . Φ)

↪→e (((K1 ⇑ n) # (K2 ¬⇑ n) # Γ), n ` Ψ . ((K1 implies not K2) # Φ))›
| timedelayed_e1:
— A timed delayed implication can be handled by forbidding a tick on the master clock.

‹ (Γ, n ` ((K1 time-delayed by δτ on K2 implies K3) # Ψ) . Φ)
↪→e (((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 time-delayed by δτ on K2 implies K3) # Φ))›

| timedelayed_e2:
— It can also be handled by making the master clock tick and adding a constraint that makes the slave clock

tick when the delay has elapsed on the measuring clock.
‹ (Γ, n ` ((K1 time-delayed by δτ on K2 implies K3) # Ψ) . Φ)

↪→e (((K1 ⇑ n) # (K2 @ n ⊕ δτ ⇒ K3) # Γ), n
` Ψ . ((K1 time-delayed by δτ on K2 implies K3) # Φ))›

| weakly_precedes_e:
— A weak precedence relation has to hold at every instant.

‹ (Γ, n ` ((K1 weakly precedes K2) # Ψ) . Φ)
↪→e (((d#≤ K2 n, #≤ K1 ne ∈ (λ(x,y). x≤y)) # Γ), n

` Ψ . ((K1 weakly precedes K2) # Φ))›
| strictly_precedes_e:
— A strict precedence relation has to hold at every instant.

5.2. BASIC LEMMAS 25

‹ (Γ, n ` ((K1 strictly precedes K2) # Ψ) . Φ)
↪→e (((d#≤ K2 n, #< K1 ne ∈ (λ(x,y). x≤y)) # Γ), n

` Ψ . ((K1 strictly precedes K2) # Φ))›
| kills_e1:
— A kill can be handled by forbidding a tick of the triggering clock.

‹ (Γ, n ` ((K1 kills K2) # Ψ) . Φ)
↪→e (((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 kills K2) # Φ))›

| kills_e2:
— It can also be handled by making the triggering clock tick and by forbidding any further tick of the killed

clock.
‹ (Γ, n ` ((K1 kills K2) # Ψ) . Φ)

↪→e (((K1 ⇑ n) # (K2 ¬⇑ ≥ n) # Γ), n ` Ψ . ((K1 kills K2) # Φ))›

A step of the operational semantics is either the application of the introduction rule or the
application of an elimination rule.
inductive operational_semantics_step

::‹ (’τ::linordered_field) config ⇒ ’τ config ⇒ bool› (‹ _ ↪→ _› 70)
where

intro_part:
‹ (Γ1, n1 ` Ψ1 . Φ1) ↪→i (Γ2, n2 ` Ψ2 . Φ2)

=⇒ (Γ1, n1 ` Ψ1 . Φ1) ↪→ (Γ2, n2 ` Ψ2 . Φ2)›
| elims_part:

‹ (Γ1, n1 ` Ψ1 . Φ1) ↪→e (Γ2, n2 ` Ψ2 . Φ2)
=⇒ (Γ1, n1 ` Ψ1 . Φ1) ↪→ (Γ2, n2 ` Ψ2 . Φ2)›

We introduce notations for the reflexive transitive closure of the operational semantic step, its
transitive closure and its reflexive closure.
abbreviation operational_semantics_step_rtranclp

::‹ (’τ::linordered_field) config ⇒ ’τ config ⇒ bool› (‹ _ ↪→∗∗ _› 70)
where

‹ C1 ↪→∗∗ C2 ≡ operational_semantics_step∗∗ C1 C2›

abbreviation operational_semantics_step_tranclp
::‹ (’τ::linordered_field) config ⇒ ’τ config ⇒ bool› (‹ _ ↪→++ _› 70)

where
‹ C1 ↪→++ C2 ≡ operational_semantics_step++ C1 C2›

abbreviation operational_semantics_step_reflclp
::‹ (’τ::linordered_field) config ⇒ ’τ config ⇒ bool› (‹ _ ↪→== _› 70)

where
‹ C1 ↪→== C2 ≡ operational_semantics_step== C1 C2›

abbreviation operational_semantics_step_relpowp
::‹ (’τ::linordered_field) config ⇒ nat ⇒ ’τ config ⇒ bool› (‹ _ ↪→_ _› 70)

where
‹ C1 ↪→n C2 ≡ (operational_semantics_step ^^ n) C1 C2›

definition operational_semantics_elim_inv
::‹ (’τ::linordered_field) config ⇒ ’τ config ⇒ bool› (‹ _ ↪→e

← _› 70)
where

‹ C1 ↪→e
← C2 ≡ C2 ↪→e C1›

5.2 Basic Lemmas
If a configuration can be reached in m steps from a configuration that can be reached in n
steps from an original configuration, then it can be reached in n + m steps from the original

26 CHAPTER 5. OPERATIONAL SEMANTICS

configuration.
lemma operational_semantics_trans_generalized:

assumes ‹ C1 ↪→n C2›
assumes ‹ C2 ↪→m C3›

shows ‹ C1 ↪→n + m C3›
〈proof 〉

We consider the set of configurations that can be reached in one operational step from a given
configuration.
abbreviation Cnext_solve

::‹ (’τ::linordered_field) config ⇒ ’τ config set› (‹ Cnext _›)
where

‹ Cnext S ≡ { S’. S ↪→ S’ }›

Advancing to the next instant is possible when there are no more constraints on the current
instant.
lemma Cnext_solve_instant:

‹ (Cnext (Γ, n ` [] . Φ)) ⊇ { Γ, Suc n ` Φ . [] }›
〈proof 〉

The following lemmas state that the configurations produced by the elimination rules of the
operational semantics belong to the configurations that can be reached in one step.
lemma Cnext_solve_sporadicon:

‹ (Cnext (Γ, n ` ((K1 sporadic τ on K2) # Ψ) . Φ))
⊇ { Γ, n ` Ψ . ((K1 sporadic τ on K2) # Φ),

((K1 ⇑ n) # (K2 ⇓ n @ τ) # Γ), n ` Ψ . Φ }›
〈proof 〉

lemma Cnext_solve_tagrel:
‹ (Cnext (Γ, n ` ((time-relation bK1, K2c ∈ R) # Ψ) . Φ))
⊇ { ((bτvar(K1, n), τvar(K2, n)c ∈ R) # Γ),n

` Ψ . ((time-relation bK1, K2c ∈ R) # Φ) }›
〈proof 〉

lemma Cnext_solve_implies:
‹ (Cnext (Γ, n ` ((K1 implies K2) # Ψ) . Φ))
⊇ { ((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 implies K2) # Φ),

((K1 ⇑ n) # (K2 ⇑ n) # Γ), n ` Ψ . ((K1 implies K2) # Φ) }›
〈proof 〉

lemma Cnext_solve_implies_not:
‹ (Cnext (Γ, n ` ((K1 implies not K2) # Ψ) . Φ))
⊇ { ((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 implies not K2) # Φ),

((K1 ⇑ n) # (K2 ¬⇑ n) # Γ), n ` Ψ . ((K1 implies not K2) # Φ) }›
〈proof 〉

lemma Cnext_solve_timedelayed:
‹ (Cnext (Γ, n ` ((K1 time-delayed by δτ on K2 implies K3) # Ψ) . Φ))
⊇ { ((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 time-delayed by δτ on K2 implies K3) # Φ),

((K1 ⇑ n) # (K2 @ n ⊕ δτ ⇒ K3) # Γ), n
` Ψ . ((K1 time-delayed by δτ on K2 implies K3) # Φ) }›

〈proof 〉

lemma Cnext_solve_weakly_precedes:
‹ (Cnext (Γ, n ` ((K1 weakly precedes K2) # Ψ) . Φ))
⊇ { ((d#≤ K2 n, #≤ K1 ne ∈ (λ(x,y). x≤y)) # Γ), n

5.2. BASIC LEMMAS 27

` Ψ . ((K1 weakly precedes K2) # Φ) }›
〈proof 〉

lemma Cnext_solve_strictly_precedes:
‹ (Cnext (Γ, n ` ((K1 strictly precedes K2) # Ψ) . Φ))
⊇ { ((d#≤ K2 n, #< K1 ne ∈ (λ(x,y). x≤y)) # Γ), n

` Ψ . ((K1 strictly precedes K2) # Φ) }›
〈proof 〉

lemma Cnext_solve_kills:
‹ (Cnext (Γ, n ` ((K1 kills K2) # Ψ) . Φ))
⊇ { ((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 kills K2) # Φ),

((K1 ⇑ n) # (K2 ¬⇑ ≥ n) # Γ), n ` Ψ . ((K1 kills K2) # Φ) }›
〈proof 〉

An empty specification can be reduced to an empty specification for an arbitrary number of
steps.
lemma empty_spec_reductions:

‹ ([], 0 ` [] . []) ↪→k ([], k ` [] . [])›
〈proof 〉

end

28 CHAPTER 5. OPERATIONAL SEMANTICS

Chapter 6

Equivalence of the Operational
and Denotational Semantics

theory Corecursive_Prop
imports

SymbolicPrimitive
Operational
Denotational

begin

6.1 Stepwise denotational interpretation of TESL atoms
In order to prove the equivalence of the denotational and operational semantics, we need to be
able to ignore the past (for which the constraints are encoded in the context) and consider only
the satisfaction of the constraints from a given instant index. For this purpose, we define an
interpretation of TESL formulae for a suffix of a run. That interpretation is closely related to
the denotational semantics as defined in the preceding chapters.
fun TESL_interpretation_atomic_stepwise

:: ‹ (’τ::linordered_field) TESL_atomic ⇒ nat ⇒ ’τ run set› (‹ [[_]]T ESL
≥ _›)

where
‹ [[K1 sporadic τ on K2]]T ESL

≥ i =
{%. ∃ n≥i. hamlet ((Rep_run %) n K1) ∧ time ((Rep_run %) n K2) = τ}›

| ‹ [[time-relation bK1, K2c ∈ R]]T ESL
≥ i =

{%. ∀ n≥i. R (time ((Rep_run %) n K1), time ((Rep_run %) n K2))}›
| ‹ [[master implies slave]]T ESL

≥ i =
{%. ∀ n≥i. hamlet ((Rep_run %) n master) −→ hamlet ((Rep_run %) n slave)}›

| ‹ [[master implies not slave]]T ESL
≥ i =

{%. ∀ n≥i. hamlet ((Rep_run %) n master) −→ ¬ hamlet ((Rep_run %) n slave)}›
| ‹ [[master time-delayed by δτ on measuring implies slave]]T ESL

≥ i =
{%. ∀ n≥i. hamlet ((Rep_run %) n master) −→

(let measured_time = time ((Rep_run %) n measuring) in
∀ m ≥ n. first_time % measuring m (measured_time + δτ)

−→ hamlet ((Rep_run %) m slave)
)

}›
| ‹ [[K1 weakly precedes K2]]T ESL

≥ i =
{%. ∀ n≥i. (run_tick_count % K2 n) ≤ (run_tick_count % K1 n)}›

29

30 CHAPTER 6. SEMANTICS EQUIVALENCE

| ‹ [[K1 strictly precedes K2]]T ESL
≥ i =

{%. ∀ n≥i. (run_tick_count % K2 n) ≤ (run_tick_count_strictly % K1 n)}›
| ‹ [[K1 kills K2]]T ESL

≥ i =
{%. ∀ n≥i. hamlet ((Rep_run %) n K1) −→ (∀ m≥n. ¬ hamlet ((Rep_run %) m K2))}›

The denotational interpretation of TESL formulae can be unfolded into the stepwise interpreta-
tion.
lemma TESL_interp_unfold_stepwise_sporadicon:

‹ [[K1 sporadic τ on K2]]T ESL =
⋃

{Y. ∃ n::nat. Y = [[K1 sporadic τ on K2]]T ESL
≥ n}›

〈proof 〉

lemma TESL_interp_unfold_stepwise_tagrelgen:
‹ [[time-relation bK1, K2c ∈ R]]T ESL

=
⋂

{Y. ∃ n::nat. Y = [[time-relation bK1, K2c ∈ R]]T ESL
≥ n}›

〈proof 〉

lemma TESL_interp_unfold_stepwise_implies:
‹ [[master implies slave]]T ESL

=
⋂

{Y. ∃ n::nat. Y = [[master implies slave]]T ESL
≥ n}›

〈proof 〉

lemma TESL_interp_unfold_stepwise_implies_not:
‹ [[master implies not slave]]T ESL

=
⋂

{Y. ∃ n::nat. Y = [[master implies not slave]]T ESL
≥ n}›

〈proof 〉

lemma TESL_interp_unfold_stepwise_timedelayed:
‹ [[master time-delayed by δτ on measuring implies slave]]T ESL

=
⋂

{Y. ∃ n::nat.
Y = [[master time-delayed by δτ on measuring implies slave]]T ESL

≥ n}›
〈proof 〉

lemma TESL_interp_unfold_stepwise_weakly_precedes:
‹ [[K1 weakly precedes K2]]T ESL

=
⋂

{Y. ∃ n::nat. Y = [[K1 weakly precedes K2]]T ESL
≥ n}›

〈proof 〉

lemma TESL_interp_unfold_stepwise_strictly_precedes:
‹ [[K1 strictly precedes K2]]T ESL

=
⋂

{Y. ∃ n::nat. Y = [[K1 strictly precedes K2]]T ESL
≥ n}›

〈proof 〉

lemma TESL_interp_unfold_stepwise_kills:
‹ [[master kills slave]]T ESL =

⋂
{Y. ∃ n::nat. Y = [[master kills slave]]T ESL

≥ n}›
〈proof 〉

Positive atomic formulae (the ones that create ticks from nothing) are unfolded as the union of
the stepwise interpretations.
theorem TESL_interp_unfold_stepwise_positive_atoms:

assumes ‹ positive_atom ϕ›
shows ‹ [[ϕ::’τ::linordered_field TESL_atomic]]T ESL

=
⋃

{Y. ∃ n::nat. Y = [[ϕ]]T ESL
≥ n}›

〈proof 〉

Negative atomic formulae are unfolded as the intersection of the stepwise interpretations.
theorem TESL_interp_unfold_stepwise_negative_atoms:

assumes ‹¬ positive_atom ϕ›

6.2. COINDUCTION UNFOLDING PROPERTIES 31

shows ‹ [[ϕ]]T ESL =
⋂

{Y. ∃ n::nat. Y = [[ϕ]]T ESL
≥ n}›

〈proof 〉

Some useful lemmas for reasoning on properties of sequences.
lemma forall_nat_expansion:

‹ (∀ n ≥ (n0::nat). P n) = (P n0 ∧ (∀ n ≥ Suc n0. P n))›
〈proof 〉

lemma exists_nat_expansion:
‹ (∃ n ≥ (n0::nat). P n) = (P n0 ∨ (∃ n ≥ Suc n0. P n))›
〈proof 〉

lemma forall_nat_set_suc:‹ {x. ∀ m ≥ n. P x m} = {x. P x n} ∩ {x. ∀ m ≥ Suc n. P x m}›
〈proof 〉

lemma exists_nat_set_suc:‹ {x. ∃ m ≥ n. P x m} = {x. P x n} ∪ {x. ∃ m ≥ Suc n. P x m}›
〈proof 〉

6.2 Coinduction Unfolding Properties
The following lemmas show how to shorten a suffix, i.e. to unfold one instant in the construction
of a run. They correspond to the rules of the operational semantics.
lemma TESL_interp_stepwise_sporadicon_coind_unfold:

‹ [[K1 sporadic τ on K2]]T ESL
≥ n =

[[K1 ⇑ n]]prim ∩ [[K2 ⇓ n @ τ]]prim — rule sporadic_on_e2

∪ [[K1 sporadic τ on K2]]T ESL
≥ Suc n› — rule sporadic_on_e1

〈proof 〉

lemma TESL_interp_stepwise_tagrel_coind_unfold:
‹ [[time-relation bK1, K2c ∈ R]]T ESL

≥ n = — rule tagrel_e

[[bτvar(K1, n), τvar(K2, n)c ∈ R]]prim
∩ [[time-relation bK1, K2c ∈ R]]T ESL

≥ Suc n›
〈proof 〉

lemma TESL_interp_stepwise_implies_coind_unfold:
‹ [[master implies slave]]T ESL

≥ n =
([[master ¬⇑ n]]prim — rule implies_e1

∪ [[master ⇑ n]]prim ∩ [[slave ⇑ n]]prim) — rule implies_e2

∩ [[master implies slave]]T ESL
≥ Suc n›

〈proof 〉

lemma TESL_interp_stepwise_implies_not_coind_unfold:
‹ [[master implies not slave]]T ESL

≥ n =
([[master ¬⇑ n]]prim — rule implies_not_e1

∪ [[master ⇑ n]]prim ∩ [[slave ¬⇑ n]]prim) — rule implies_not_e2

∩ [[master implies not slave]]T ESL
≥ Suc n›

〈proof 〉

lemma TESL_interp_stepwise_timedelayed_coind_unfold:
‹ [[master time-delayed by δτ on measuring implies slave]]T ESL

≥ n =
([[master ¬⇑ n]]prim — rule timedelayed_e1

∪ ([[master ⇑ n]]prim ∩ [[measuring @ n ⊕ δτ ⇒ slave]]prim))
— rule timedelayed_e2

32 CHAPTER 6. SEMANTICS EQUIVALENCE

∩ [[master time-delayed by δτ on measuring implies slave]]T ESL
≥ Suc n›

〈proof 〉

lemma TESL_interp_stepwise_weakly_precedes_coind_unfold:
‹ [[K1 weakly precedes K2]]T ESL

≥ n = — rule weakly_precedes_e

[[(d#≤ K2 n, #≤ K1 ne ∈ (λ(x,y). x≤y))]]prim
∩ [[K1 weakly precedes K2]]T ESL

≥ Suc n›
〈proof 〉

lemma TESL_interp_stepwise_strictly_precedes_coind_unfold:
‹ [[K1 strictly precedes K2]]T ESL

≥ n = — rule strictly_precedes_e

[[(d#≤ K2 n, #< K1 ne ∈ (λ(x,y). x≤y))]]prim
∩ [[K1 strictly precedes K2]]T ESL

≥ Suc n›
〈proof 〉

lemma TESL_interp_stepwise_kills_coind_unfold:
‹ [[K1 kills K2]]T ESL

≥ n =
([[K1 ¬⇑ n]]prim — rule kills_e1

∪ [[K1 ⇑ n]]prim ∩ [[K2 ¬⇑ ≥ n]]prim) — rule kills_e2

∩ [[K1 kills K2]]T ESL
≥ Suc n›

〈proof 〉

The stepwise interpretation of a TESL formula is the intersection of the interpretation of its
atomic components.

fun TESL_interpretation_stepwise
::‹ ’τ::linordered_field TESL_formula ⇒ nat ⇒ ’τ run set›
(‹ [[[[_]]]]T ESL

≥ _›)
where

‹ [[[[[]]]]]T ESL
≥ n = {%. True}›

| ‹ [[[[ϕ # Φ]]]]T ESL
≥ n = [[ϕ]]T ESL

≥ n ∩ [[[[Φ]]]]T ESL
≥ n›

lemma TESL_interpretation_stepwise_fixpoint:
‹ [[[[Φ]]]]T ESL

≥ n =
⋂

((λϕ. [[ϕ]]T ESL
≥ n) ‘ set Φ)›

〈proof 〉

The global interpretation of a TESL formula is its interpretation starting at the first instant.

lemma TESL_interpretation_stepwise_zero:
‹ [[ϕ]]T ESL = [[ϕ]]T ESL

≥ 0›
〈proof 〉

lemma TESL_interpretation_stepwise_zero’:
‹ [[[[Φ]]]]T ESL = [[[[Φ]]]]T ESL

≥ 0›
〈proof 〉

lemma TESL_interpretation_stepwise_cons_morph:
‹ [[ϕ]]T ESL

≥ n ∩ [[[[Φ]]]]T ESL
≥ n = [[[[ϕ # Φ]]]]T ESL

≥ n›
〈proof 〉

theorem TESL_interp_stepwise_composition:
shows ‹ [[[[Φ1 @ Φ2]]]]T ESL

≥ n = [[[[Φ1]]]]T ESL
≥ n ∩ [[[[Φ2]]]]T ESL

≥ n›
〈proof 〉

6.3. INTERPRETATION OF CONFIGURATIONS 33

6.3 Interpretation of configurations
The interpretation of a configuration of the operational semantics abstract machine is the inter-
section of:

• the interpretation of its context (the past),

• the interpretation of its present from the current instant,

• the interpretation of its future from the next instant.

fun HeronConf_interpretation
::‹ ’τ::linordered_field config ⇒ ’τ run set› (‹ [[_]]conf ig› 71)

where
‹ [[Γ, n ` Ψ . Φ]]conf ig = [[[[Γ]]]]prim ∩ [[[[Ψ]]]]T ESL

≥ n ∩ [[[[Φ]]]]T ESL
≥ Suc n›

lemma HeronConf_interp_composition:
‹ [[Γ1, n ` Ψ1 . Φ1]]conf ig ∩ [[Γ2, n ` Ψ2 . Φ2]]conf ig

= [[(Γ1 @ Γ2), n ` (Ψ1 @ Ψ2) . (Φ1 @ Φ2)]]conf ig›
〈proof 〉

When there are no remaining constraints on the present, the interpretation of a configuration
is the same as the configuration at the next instant of its future. This corresponds to the
introduction rule of the operational semantics.
lemma HeronConf_interp_stepwise_instant_cases:

‹ [[Γ, n ` [] . Φ]]conf ig = [[Γ, Suc n ` Φ . []]]conf ig›
〈proof 〉

The following lemmas use the unfolding properties of the stepwise denotational semantics to give
rewriting rules for the interpretation of configurations that match the elimination rules of the
operational semantics.
lemma HeronConf_interp_stepwise_sporadicon_cases:

‹ [[Γ, n ` ((K1 sporadic τ on K2) # Ψ) . Φ]]conf ig

= [[Γ, n ` Ψ . ((K1 sporadic τ on K2) # Φ)]]conf ig

∪ [[((K1 ⇑ n) # (K2 ⇓ n @ τ) # Γ), n ` Ψ . Φ]]conf ig›
〈proof 〉

lemma HeronConf_interp_stepwise_tagrel_cases:
‹ [[Γ, n ` ((time-relation bK1, K2c ∈ R) # Ψ) . Φ]]conf ig

= [[((bτvar(K1, n), τvar(K2, n)c ∈ R) # Γ), n
` Ψ . ((time-relation bK1, K2c ∈ R) # Φ)]]conf ig›

〈proof 〉

lemma HeronConf_interp_stepwise_implies_cases:
‹ [[Γ, n ` ((K1 implies K2) # Ψ) . Φ]]conf ig

= [[((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 implies K2) # Φ)]]conf ig

∪ [[((K1 ⇑ n) # (K2 ⇑ n) # Γ), n ` Ψ . ((K1 implies K2) # Φ)]]conf ig›
〈proof 〉

lemma HeronConf_interp_stepwise_implies_not_cases:
‹ [[Γ, n ` ((K1 implies not K2) # Ψ) . Φ]]conf ig

= [[((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 implies not K2) # Φ)]]conf ig

∪ [[((K1 ⇑ n) # (K2 ¬⇑ n) # Γ), n ` Ψ . ((K1 implies not K2) # Φ)]]conf ig›
〈proof 〉

lemma HeronConf_interp_stepwise_timedelayed_cases:

34 CHAPTER 6. SEMANTICS EQUIVALENCE

‹ [[Γ, n ` ((K1 time-delayed by δτ on K2 implies K3) # Ψ) . Φ]]conf ig

= [[((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 time-delayed by δτ on K2 implies K3) # Φ)]]conf ig

∪ [[((K1 ⇑ n) # (K2 @ n ⊕ δτ ⇒ K3) # Γ), n
` Ψ . ((K1 time-delayed by δτ on K2 implies K3) # Φ)]]conf ig›

〈proof 〉

lemma HeronConf_interp_stepwise_weakly_precedes_cases:
‹ [[Γ, n ` ((K1 weakly precedes K2) # Ψ) . Φ]]conf ig

= [[((d#≤ K2 n, #≤ K1 ne ∈ (λ(x,y). x≤y)) # Γ), n
` Ψ . ((K1 weakly precedes K2) # Φ)]]conf ig›

〈proof 〉

lemma HeronConf_interp_stepwise_strictly_precedes_cases:
‹ [[Γ, n ` ((K1 strictly precedes K2) # Ψ) . Φ]]conf ig

= [[((d#≤ K2 n, #< K1 ne ∈ (λ(x,y). x≤y)) # Γ), n
` Ψ . ((K1 strictly precedes K2) # Φ)]]conf ig›

〈proof 〉

lemma HeronConf_interp_stepwise_kills_cases:
‹ [[Γ, n ` ((K1 kills K2) # Ψ) . Φ]]conf ig

= [[((K1 ¬⇑ n) # Γ), n ` Ψ . ((K1 kills K2) # Φ)]]conf ig

∪ [[((K1 ⇑ n) # (K2 ¬⇑ ≥ n) # Γ), n ` Ψ . ((K1 kills K2) # Φ)]]conf ig›
〈proof 〉

end

Chapter 7

Main Theorems

theory Hygge_Theory
imports

Corecursive_Prop

begin

Using the properties we have shown about the interpretation of configurations and the stepwise
unfolding of the denotational semantics, we can now prove several important results about the
construction of runs from a specification.

7.1 Initial configuration
The denotational semantics of a specification Ψ is the interpretation at the first instant of a
configuration which has Ψ as its present. This means that we can start to build a run that
satisfies a specification by starting from this configuration.
theorem solve_start:

shows ‹ [[[[Ψ]]]]T ESL = [[[], 0 ` Ψ . []]]conf ig›
〈proof 〉

7.2 Soundness
The interpretation of a configuration S2 that is a refinement of a configuration S1 is contained in
the interpretation of S1. This means that by making successive choices in building the instants of
a run, we preserve the soundness of the constructed run with regard to the original specification.
lemma sound_reduction:

assumes ‹ (Γ1, n1 ` Ψ1 . Φ1) ↪→ (Γ2, n2 ` Ψ2 . Φ2)›
shows ‹ [[[[Γ1]]]]prim ∩ [[[[Ψ1]]]]T ESL

≥ n1 ∩ [[[[Φ1]]]]T ESL
≥ Suc n1

⊇ [[[[Γ2]]]]prim ∩ [[[[Ψ2]]]]T ESL
≥ n2 ∩ [[[[Φ2]]]]T ESL

≥ Suc n2› (is ?P)
〈proof 〉

inductive_cases step_elim:‹S1 ↪→ S2›

lemma sound_reduction’:
assumes ‹S1 ↪→ S2›
shows ‹ [[S1]]conf ig ⊇ [[S2]]conf ig›
〈proof 〉

35

36 CHAPTER 7. MAIN THEOREMS

lemma sound_reduction_generalized:
assumes ‹S1 ↪→k S2›

shows ‹ [[S1]]conf ig ⊇ [[S2]]conf ig›
〈proof 〉

From the initial configuration, a configuration S obtained after any number k of reduction steps
denotes runs from the initial specification Ψ.
theorem soundness:

assumes ‹ ([], 0 ` Ψ . []) ↪→k S›
shows ‹ [[[[Ψ]]]]T ESL ⊇ [[S]]conf ig›
〈proof 〉

7.3 Completeness
We will now show that any run that satisfies a specification can be derived from the initial
configuration, at any number of steps.
We start by proving that any run that is denoted by a configuration S is necessarily denoted by
at least one of the configurations that can be reached from S.
lemma complete_direct_successors:

shows ‹ [[Γ, n ` Ψ . Φ]]conf ig ⊆ (
⋃

X∈Cnext (Γ, n ` Ψ . Φ). [[X]]conf ig)›
〈proof 〉

lemma complete_direct_successors’:
shows ‹ [[S]]conf ig ⊆ (

⋃
X∈Cnext S. [[X]]conf ig)›

〈proof 〉

Therefore, if a run belongs to a configuration, it necessarily belongs to a configuration derived
from it.
lemma branch_existence:

assumes ‹ % ∈ [[S1]]conf ig›
shows ‹∃S2. (S1 ↪→ S2) ∧ (% ∈ [[S2]]conf ig)›
〈proof 〉

lemma branch_existence’:
assumes ‹ % ∈ [[S1]]conf ig›
shows ‹∃S2. (S1 ↪→k S2) ∧ (% ∈ [[S2]]conf ig)›
〈proof 〉

Any run that belongs to the original specification Ψ has a corresponding configuration S at any
number k of reduction steps from the initial configuration. Therefore, any run that satisfies a
specification can be derived from the initial configuration at any level of reduction.
theorem completeness:

assumes ‹ % ∈ [[[[Ψ]]]]T ESL›
shows ‹∃S. (([], 0 ` Ψ . []) ↪→k S)

∧ % ∈ [[S]]conf ig›
〈proof 〉

7.4 Progress
Reduction steps do not guarantee that the construction of a run progresses in the sequence of
instants. We need to show that it is always possible to reach the next instant, and therefore any
future instant, through a number of steps.

7.5. LOCAL TERMINATION 37

lemma instant_index_increase:
assumes ‹ % ∈ [[Γ, n ` Ψ . Φ]]conf ig›
shows ‹∃Γk Ψk Φk k. ((Γ, n ` Ψ . Φ) ↪→k (Γk, Suc n ` Ψk . Φk))

∧ % ∈ [[Γk, Suc n ` Ψk . Φk]]conf ig›
〈proof 〉

lemma instant_index_increase_generalized:
assumes ‹ n < nk›
assumes ‹ % ∈ [[Γ, n ` Ψ . Φ]]conf ig›
shows ‹∃Γk Ψk Φk k. ((Γ, n ` Ψ . Φ) ↪→k (Γk, nk ` Ψk . Φk))

∧ % ∈ [[Γk, nk ` Ψk . Φk]]conf ig›
〈proof 〉

Any run that belongs to a specification Ψ has a corresponding configuration that develops it up
to the nth instant.
theorem progress:

assumes ‹ % ∈ [[[[Ψ]]]]T ESL›
shows ‹∃ k Γk Ψk Φk. (([], 0 ` Ψ . []) ↪→k (Γk, n ` Ψk . Φk))

∧ % ∈ [[Γk, n ` Ψk . Φk]]conf ig›
〈proof 〉

7.5 Local termination
Here, we prove that the computation of an instant in a run always terminates. Since this
computation terminates when the list of constraints for the present instant becomes empty, we
introduce a measure for this formula.
primrec measure_interpretation :: ‹ ’τ::linordered_field TESL_formula ⇒ nat› (‹µ›)
where

‹µ [] = (0::nat)›
| ‹µ (ϕ # Φ) = (case ϕ of

_ sporadic _ on _ ⇒ 1 + µ Φ
| _ ⇒ 2 + µ Φ)›

fun measure_interpretation_config :: ‹ ’τ::linordered_field config ⇒ nat› (‹µconf ig›)
where

‹µconf ig (Γ, n ` Ψ . Φ) = µ Ψ›

We then show that the elimination rules make this measure decrease.
lemma elimation_rules_strictly_decreasing:

assumes ‹ (Γ1, n1 ` Ψ1 . Φ1) ↪→e (Γ2, n2 ` Ψ2 . Φ2)›
shows ‹µ Ψ1 > µ Ψ2›

〈proof 〉

lemma elimation_rules_strictly_decreasing_meas:
assumes ‹ (Γ1, n1 ` Ψ1 . Φ1) ↪→e (Γ2, n2 ` Ψ2 . Φ2)›

shows ‹ (Ψ2, Ψ1) ∈ measure µ›
〈proof 〉

lemma elimation_rules_strictly_decreasing_meas’:
assumes ‹S1 ↪→e S2›
shows ‹ (S2, S1) ∈ measure µconf ig›
〈proof 〉

Therefore, the relation made up of elimination rules is well-founded and the computation of an
instant terminates.

38 CHAPTER 7. MAIN THEOREMS

theorem instant_computation_termination:
‹ wfP (λ(S1::’a::linordered_field config) S2. (S1 ↪→e

← S2))›
〈proof 〉

end

Chapter 8

Properties of TESL

8.1 Stuttering Invariance
theory StutteringDefs

imports Denotational

begin

When composing systems into more complex systems, it may happen that one system has to
perform some action while the rest of the complex system does nothing. In order to support
the composition of TESL specifications, we want to be able to insert stuttering instants in a run
without breaking the conformance of a run to its specification. This is what we call the stuttering
invariance of TESL.

8.1.1 Definition of stuttering
We consider stuttering as the insertion of empty instants (instants at which no clock ticks) in a
run. We caracterize this insertion with a dilating function, which maps the instant indices of the
original run to the corresponding instant indices of the dilated run. The properties of a dilating
function are:

• it is strictly increasing because instants are inserted into the run,

• the image of an instant index is greater than it because stuttering instants can only delay
the original instants of the run,

• no instant is inserted before the first one in order to have a well defined initial date on each
clock,

• if n is not in the image of the function, no clock ticks at instant n and the date on the
clocks do not change.

definition dilating_fun
where

‹ dilating_fun (f::nat ⇒ nat) (r::’a::linordered_field run)
≡ strict_mono f ∧ (f 0 = 0) ∧ (∀ n. f n ≥ n
∧ ((@ n0. f n0 = n) −→ (∀ c. ¬(hamlet ((Rep_run r) n c))))

39

40 CHAPTER 8. PROPERTIES OF TESL

original
run

dilated
run

1

1

2

2

3

3

4

4

5

5

6

6

7

7

f g f g f
g

f
gg g g

instant of the original run stuttering instant (no tick)

Figure 8.1: Dilating and contracting functions

∧ ((@ n0. f n0 = (Suc n)) −→ (∀ c. time ((Rep_run r) (Suc n) c)
= time ((Rep_run r) n c)))

)›

A run r is a dilation of a run sub by function f if:

• f is a dilating function for r

• the time in r is the time in sub dilated by f

• the hamlet in r is the hamlet in sub dilated by f

definition dilating
where

‹ dilating f sub r ≡ dilating_fun f r
∧ (∀ n c. time ((Rep_run sub) n c) = time ((Rep_run r) (f n) c))
∧ (∀ n c. hamlet ((Rep_run sub) n c) = hamlet ((Rep_run r) (f n) c))›

A run is a subrun of another run if there exists a dilation between them.
definition is_subrun ::‹ ’a::linordered_field run ⇒ ’a run ⇒ bool› (infixl ‹�› 60)
where

‹ sub � r ≡ (∃ f. dilating f sub r)›

A contracting function is the reverse of a dilating fun, it maps an instant index of a dilated run
to the index of the last instant of a non stuttering run that precedes it. Since several successive
stuttering instants are mapped to the same instant of the non stuttering run, such a function is
monotonous, but not strictly. The image of the first instant of the dilated run is necessarily the
first instant of the non stuttering run, and the image of an instant index is less that this index
because we remove stuttering instants.
definition contracting_fun

where ‹ contracting_fun g ≡ mono g ∧ g 0 = 0 ∧ (∀ n. g n ≤ n)›

Figure 8.1 illustrates the relations between the instants of a run and the instants of a dilated
run, with the mappings by the dilating function f and the contracting function g:
consts dummyf :: ‹ nat ⇒ nat›

8.1. STUTTERING INVARIANCE 41

consts dummyg :: ‹ nat ⇒ nat›
consts dummytwo :: ‹ nat›
notation dummyf (‹ f›)
notation dummyg (‹ g›)
notation dummytwo (‹ 2›)

A function g is contracting with respect to the dilation of run sub into run r by the dilating
function f if:

• it is a contracting function ;

• (f ◦ g) n is the index of the last original instant before instant n in run r, therefore:

– (f ◦ g) n ≤ n

– the time does not change on any clock between instants (f ◦ g) n and n of run r;
– no clock ticks before n strictly after (f ◦ g) n in run r. See Figure 8.1 for a better

understanding. Notice that in this example, 2 is equal to (f ◦ g) 2, (f ◦ g) 3, and
(f ◦ g) 4.

definition contracting
where

‹ contracting g r sub f ≡ contracting_fun g
∧ (∀ n. f (g n) ≤ n)
∧ (∀ n c k. f (g n) ≤ k ∧ k ≤ n

−→ time ((Rep_run r) k c) = time ((Rep_run sub) (g n) c))
∧ (∀ n c k. f (g n) < k ∧ k ≤ n

−→ ¬ hamlet ((Rep_run r) k c))›

For any dilating function, we can build its inverse, as illustrated on Figure 8.1, which is a
contracting function:
definition ‹ dil_inverse f::(nat ⇒ nat) ≡ (λn. Max {i. f i ≤ n})›

8.1.2 Alternate definitions for counting ticks.
For proving the stuttering invariance of TESL specifications, we will need these alternate defini-
tions for counting ticks, which are based on sets.

tick_count r c n is the number of ticks of clock c in run r upto instant n.
definition tick_count :: ‹ ’a::linordered_field run ⇒ clock ⇒ nat ⇒ nat›
where

‹ tick_count r c n = card {i. i ≤ n ∧ hamlet ((Rep_run r) i c)}›

tick_count_strict r c n is the number of ticks of clock c in run r upto but excluding instant
n.
definition tick_count_strict :: ‹ ’a::linordered_field run ⇒ clock ⇒ nat ⇒ nat›
where

‹ tick_count_strict r c n = card {i. i < n ∧ hamlet ((Rep_run r) i c)}›

end

42 CHAPTER 8. PROPERTIES OF TESL

8.1.3 Stuttering Lemmas
theory StutteringLemmas

imports StutteringDefs

begin

In this section, we prove several lemmas that will be used to show that TESL specifications are
invariant by stuttering.
The following one will be useful in proving properties over a sequence of stuttering instants.
lemma bounded_suc_ind:

assumes ‹
∧

k. k < m =⇒ P (Suc (z + k)) = P (z + k)›
shows ‹ k < m =⇒ P (Suc (z + k)) = P z›

〈proof 〉

8.1.4 Lemmas used to prove the invariance by stuttering
Since a dilating function is strictly monotonous, it is injective.
lemma dilating_fun_injects:

assumes ‹ dilating_fun f r›
shows ‹ inj_on f A›
〈proof 〉

lemma dilating_injects:
assumes ‹ dilating f sub r›
shows ‹ inj_on f A›
〈proof 〉

If a clock ticks at an instant in a dilated run, that instant is the image by the dilating function
of an instant of the original run.
lemma ticks_image:

assumes ‹ dilating_fun f r›
and ‹ hamlet ((Rep_run r) n c)›
shows ‹∃ n0. f n0 = n›
〈proof 〉

lemma ticks_image_sub:
assumes ‹ dilating f sub r›
and ‹ hamlet ((Rep_run r) n c)›
shows ‹∃ n0. f n0 = n›
〈proof 〉

lemma ticks_image_sub’:
assumes ‹ dilating f sub r›
and ‹∃ c. hamlet ((Rep_run r) n c)›
shows ‹∃ n0. f n0 = n›
〈proof 〉

The image of the ticks in an interval by a dilating function is the interval bounded by the image
of the bounds of the original interval. This is proven for all 4 kinds of intervals:]m, n[, [m, n[,
]m, n] and [m, n].
lemma dilating_fun_image_strict:

assumes ‹ dilating_fun f r›
shows ‹ {k. f m < k ∧ k < f n ∧ hamlet ((Rep_run r) k c)}

8.1. STUTTERING INVARIANCE 43

= image f {k. m < k ∧ k < n ∧ hamlet ((Rep_run r) (f k) c)}›
(is ‹ ?IMG = image f ?SET›)
〈proof 〉

lemma dilating_fun_image_left:
assumes ‹ dilating_fun f r›
shows ‹ {k. f m ≤ k ∧ k < f n ∧ hamlet ((Rep_run r) k c)}

= image f {k. m ≤ k ∧ k < n ∧ hamlet ((Rep_run r) (f k) c)}›
(is ‹ ?IMG = image f ?SET›)
〈proof 〉

lemma dilating_fun_image_right:
assumes ‹ dilating_fun f r›
shows ‹ {k. f m < k ∧ k ≤ f n ∧ hamlet ((Rep_run r) k c)}

= image f {k. m < k ∧ k ≤ n ∧ hamlet ((Rep_run r) (f k) c)}›
(is ‹ ?IMG = image f ?SET›)
〈proof 〉

lemma dilating_fun_image:
assumes ‹ dilating_fun f r›
shows ‹ {k. f m ≤ k ∧ k ≤ f n ∧ hamlet ((Rep_run r) k c)}

= image f {k. m ≤ k ∧ k ≤ n ∧ hamlet ((Rep_run r) (f k) c)}›
(is ‹ ?IMG = image f ?SET›)
〈proof 〉

On any clock, the number of ticks in an interval is preserved by a dilating function.
lemma ticks_as_often_strict:

assumes ‹ dilating_fun f r›
shows ‹ card {p. n < p ∧ p < m ∧ hamlet ((Rep_run r) (f p) c)}

= card {p. f n < p ∧ p < f m ∧ hamlet ((Rep_run r) p c)}›
(is ‹ card ?SET = card ?IMG›)

〈proof 〉

lemma ticks_as_often_left:
assumes ‹ dilating_fun f r›
shows ‹ card {p. n ≤ p ∧ p < m ∧ hamlet ((Rep_run r) (f p) c)}

= card {p. f n ≤ p ∧ p < f m ∧ hamlet ((Rep_run r) p c)}›
(is ‹ card ?SET = card ?IMG›)

〈proof 〉

lemma ticks_as_often_right:
assumes ‹ dilating_fun f r›
shows ‹ card {p. n < p ∧ p ≤ m ∧ hamlet ((Rep_run r) (f p) c)}

= card {p. f n < p ∧ p ≤ f m ∧ hamlet ((Rep_run r) p c)}›
(is ‹ card ?SET = card ?IMG›)

〈proof 〉

lemma ticks_as_often:
assumes ‹ dilating_fun f r›
shows ‹ card {p. n ≤ p ∧ p ≤ m ∧ hamlet ((Rep_run r) (f p) c)}

= card {p. f n ≤ p ∧ p ≤ f m ∧ hamlet ((Rep_run r) p c)}›
(is ‹ card ?SET = card ?IMG›)

〈proof 〉

The date of an event is preserved by dilation.
lemma ticks_tag_image:

assumes ‹ dilating f sub r›
and ‹∃ c. hamlet ((Rep_run r) k c)›

44 CHAPTER 8. PROPERTIES OF TESL

and ‹ time ((Rep_run r) k c) = τ›
shows ‹∃ k0. f k0 = k ∧ time ((Rep_run sub) k0 c) = τ›
〈proof 〉

TESL operators are invariant by dilation.
lemma ticks_sub:

assumes ‹ dilating f sub r›
shows ‹ hamlet ((Rep_run sub) n a) = hamlet ((Rep_run r) (f n) a)›
〈proof 〉

lemma no_tick_sub:
assumes ‹ dilating f sub r›
shows ‹ (@ n0. f n0 = n) −→ ¬hamlet ((Rep_run r) n a)›
〈proof 〉

Lifting a total function to a partial function on an option domain.
definition opt_lift::‹ (’a ⇒ ’a) ⇒ (’a option ⇒ ’a option)›
where

‹ opt_lift f ≡ λx. case x of None ⇒ None | Some y ⇒ Some (f y)›

The set of instants when a clock ticks in a dilated run is the image by the dilation function of
the set of instants when it ticks in the subrun.
lemma tick_set_sub:

assumes ‹ dilating f sub r›
shows ‹ {k. hamlet ((Rep_run r) k c)} = image f {k. hamlet ((Rep_run sub) k c)}›

(is ‹ ?R = image f ?S›)
〈proof 〉

Strictly monotonous functions preserve the least element.
lemma Least_strict_mono:

assumes ‹ strict_mono f›
and ‹∃ x ∈ S. ∀ y ∈ S. x ≤ y›
shows ‹ (LEAST y. y ∈ f ‘ S) = f (LEAST x. x ∈ S)›
〈proof 〉

A non empty set of nats has a least element.
lemma Least_nat_ex:

‹ (n::nat) ∈ S =⇒ ∃ x ∈ S. (∀ y ∈ S. x ≤ y)›
〈proof 〉

The first instant when a clock ticks in a dilated run is the image by the dilation function of the
first instant when it ticks in the subrun.
lemma Least_sub:

assumes ‹ dilating f sub r›
and ‹∃ k::nat. hamlet ((Rep_run sub) k c)›
shows ‹ (LEAST k. k ∈ {t. hamlet ((Rep_run r) t c)})

= f (LEAST k. k ∈ {t. hamlet ((Rep_run sub) t c)})›
(is ‹ (LEAST k. k ∈ ?R) = f (LEAST k. k ∈ ?S)›)

〈proof 〉

If a clock ticks in a run, it ticks in the subrun.
lemma ticks_imp_ticks_sub:

assumes ‹ dilating f sub r›
and ‹∃ k. hamlet ((Rep_run r) k c)›

8.1. STUTTERING INVARIANCE 45

shows ‹∃ k0. hamlet ((Rep_run sub) k0 c)›
〈proof 〉

Stronger version: it ticks in the subrun and we know when.
lemma ticks_imp_ticks_subk:

assumes ‹ dilating f sub r›
and ‹ hamlet ((Rep_run r) k c)›
shows ‹∃ k0. f k0 = k ∧ hamlet ((Rep_run sub) k0 c)›
〈proof 〉

A dilating function preserves the tick count on an interval for any clock.
lemma dilated_ticks_strict:

assumes ‹ dilating f sub r›
shows ‹ {i. f m < i ∧ i < f n ∧ hamlet ((Rep_run r) i c)}

= image f {i. m < i ∧ i < n ∧ hamlet ((Rep_run sub) i c)}›
(is ‹ ?RUN = image f ?SUB›)

〈proof 〉

lemma dilated_ticks_left:
assumes ‹ dilating f sub r›
shows ‹ {i. f m ≤ i ∧ i < f n ∧ hamlet ((Rep_run r) i c)}

= image f {i. m ≤ i ∧ i < n ∧ hamlet ((Rep_run sub) i c)}›
(is ‹ ?RUN = image f ?SUB›)

〈proof 〉

lemma dilated_ticks_right:
assumes ‹ dilating f sub r›
shows ‹ {i. f m < i ∧ i ≤ f n ∧ hamlet ((Rep_run r) i c)}

= image f {i. m < i ∧ i ≤ n ∧ hamlet ((Rep_run sub) i c)}›
(is ‹ ?RUN = image f ?SUB›)

〈proof 〉

lemma dilated_ticks:
assumes ‹ dilating f sub r›
shows ‹ {i. f m ≤ i ∧ i ≤ f n ∧ hamlet ((Rep_run r) i c)}

= image f {i. m ≤ i ∧ i ≤ n ∧ hamlet ((Rep_run sub) i c)}›
(is ‹ ?RUN = image f ?SUB›)

〈proof 〉

No tick can occur in a dilated run before the image of 0 by the dilation function.
lemma empty_dilated_prefix:

assumes ‹ dilating f sub r›
and ‹ n < f 0›

shows ‹¬ hamlet ((Rep_run r) n c)›
〈proof 〉

corollary empty_dilated_prefix’:
assumes ‹ dilating f sub r›
shows ‹ {i. f 0 ≤ i ∧ i ≤ f n ∧ hamlet ((Rep_run r) i c)}

= {i. i ≤ f n ∧ hamlet ((Rep_run r) i c)}›
〈proof 〉

corollary dilated_prefix:
assumes ‹ dilating f sub r›
shows ‹ {i. i ≤ f n ∧ hamlet ((Rep_run r) i c)}

= image f {i. i ≤ n ∧ hamlet ((Rep_run sub) i c)}›
〈proof 〉

46 CHAPTER 8. PROPERTIES OF TESL

corollary dilated_strict_prefix:
assumes ‹ dilating f sub r›
shows ‹ {i. i < f n ∧ hamlet ((Rep_run r) i c)}

= image f {i. i < n ∧ hamlet ((Rep_run sub) i c)}›
〈proof 〉

A singleton of nat can be defined with a weaker property.
lemma nat_sing_prop:

‹ {i::nat. i = k ∧ P(i)} = {i::nat. i = k ∧ P(k)}›
〈proof 〉

The set definition and the function definition of tick_count are equivalent.
lemma tick_count_is_fun[code]:‹ tick_count r c n = run_tick_count r c n›
〈proof 〉

To show that the set definition and the function definition of tick_count_strict are equivalent,
we first show that the strictness of tick_count_strict can be softened using Suc.
lemma tick_count_strict_suc:‹ tick_count_strict r c (Suc n) = tick_count r c n›
〈proof 〉

lemma tick_count_strict_is_fun[code]:
‹ tick_count_strict r c n = run_tick_count_strictly r c n›
〈proof 〉

This leads to an alternate definition of the strict precedence relation.
lemma strictly_precedes_alt_def1:

‹ { %. ∀ n::nat. (run_tick_count % K2 n) ≤ (run_tick_count_strictly % K1 n) }
= { %. ∀ n::nat. (run_tick_count_strictly % K2 (Suc n))

≤ (run_tick_count_strictly % K1 n) }›
〈proof 〉

The strict precedence relation can even be defined using only run_tick_count:
lemma zero_gt_all:

assumes ‹ P (0::nat)›
and ‹

∧
n. n > 0 =⇒ P n›

shows ‹ P n›
〈proof 〉

lemma strictly_precedes_alt_def2:
‹ { %. ∀ n::nat. (run_tick_count % K2 n) ≤ (run_tick_count_strictly % K1 n) }

= { %. (¬hamlet ((Rep_run %) 0 K2))
∧ (∀ n::nat. (run_tick_count % K2 (Suc n)) ≤ (run_tick_count % K1 n)) }›

(is ‹ ?P = ?P’›)
〈proof 〉

Some properties of run_tick_count, tick_count and Suc:
lemma run_tick_count_suc:

‹ run_tick_count r c (Suc n) = (if hamlet ((Rep_run r) (Suc n) c)
then Suc (run_tick_count r c n)
else run_tick_count r c n)›

〈proof 〉

corollary tick_count_suc:
‹ tick_count r c (Suc n) = (if hamlet ((Rep_run r) (Suc n) c)

8.1. STUTTERING INVARIANCE 47

then Suc (tick_count r c n)
else tick_count r c n)›

〈proof 〉

Some generic properties on the cardinal of sets of nat that we will need later.
lemma card_suc:

‹ card {i. i ≤ (Suc n) ∧ P i} = card {i. i ≤ n ∧ P i} + card {i. i = (Suc n) ∧ P i}›
〈proof 〉

lemma card_le_leq:
assumes ‹ m < n›

shows ‹ card {i::nat. m < i ∧ i ≤ n ∧ P i}
= card {i. m < i ∧ i < n ∧ P i} + card {i. i = n ∧ P i}›

〈proof 〉

lemma card_le_leq_0:
‹ card {i::nat. i ≤ n ∧ P i} = card {i. i < n ∧ P i} + card {i. i = n ∧ P i}›
〈proof 〉

lemma card_mnm:
assumes ‹ m < n›

shows ‹ card {i::nat. i < n ∧ P i}
= card {i. i ≤ m ∧ P i} + card {i. m < i ∧ i < n ∧ P i}›

〈proof 〉

lemma card_mnm’:
assumes ‹ m < n›

shows ‹ card {i::nat. i < n ∧ P i}
= card {i. i < m ∧ P i} + card {i. m ≤ i ∧ i < n ∧ P i}›

〈proof 〉

lemma nat_interval_union:
assumes ‹ m ≤ n›

shows ‹ {i::nat. i ≤ n ∧ P i}
= {i::nat. i ≤ m ∧ P i} ∪ {i::nat. m < i ∧ i ≤ n ∧ P i}›

〈proof 〉

lemma card_sing_prop:‹ card {i. i = n ∧ P i} = (if P n then 1 else 0)›
〈proof 〉

lemma card_prop_mono:
assumes ‹ m ≤ n›

shows ‹ card {i::nat. i ≤ m ∧ P i} ≤ card {i. i ≤ n ∧ P i}›
〈proof 〉

In a dilated run, no tick occurs strictly between two successive instants that are the images by
f of instants of the original run.
lemma no_tick_before_suc:

assumes ‹ dilating f sub r›
and ‹ (f n) < k ∧ k < (f (Suc n))›

shows ‹¬hamlet ((Rep_run r) k c)›
〈proof 〉

From this, we show that the number of ticks on any clock at f (Suc n) depends only on the
number of ticks on this clock at f n and whether this clock ticks at f (Suc n). All the instants
in between are stuttering instants.
lemma tick_count_fsuc:

48 CHAPTER 8. PROPERTIES OF TESL

assumes ‹ dilating f sub r›
shows ‹ tick_count r c (f (Suc n))

= tick_count r c (f n) + card {k. k = f (Suc n) ∧ hamlet ((Rep_run r) k c)}›
〈proof 〉

corollary tick_count_f_suc:
assumes ‹ dilating f sub r›

shows ‹ tick_count r c (f (Suc n))
= tick_count r c (f n) + (if hamlet ((Rep_run r) (f (Suc n)) c) then 1 else 0)›

〈proof 〉

corollary tick_count_f_suc_suc:
assumes ‹ dilating f sub r›

shows ‹ tick_count r c (f (Suc n)) = (if hamlet ((Rep_run r) (f (Suc n)) c)
then Suc (tick_count r c (f n))
else tick_count r c (f n))›

〈proof 〉

lemma tick_count_f_suc_sub:
assumes ‹ dilating f sub r›

shows ‹ tick_count r c (f (Suc n)) = (if hamlet ((Rep_run sub) (Suc n) c)
then Suc (tick_count r c (f n))
else tick_count r c (f n))›

〈proof 〉

The number of ticks does not progress during stuttering instants.
lemma tick_count_latest:

assumes ‹ dilating f sub r›
and ‹ f np < n ∧ (∀ k. f np < k ∧ k ≤ n −→ (@ k0. f k0 = k))›

shows ‹ tick_count r c n = tick_count r c (f np)›
〈proof 〉

We finally show that the number of ticks on any clock is preserved by dilation.
lemma tick_count_sub:

assumes ‹ dilating f sub r›
shows ‹ tick_count sub c n = tick_count r c (f n)›

〈proof 〉

corollary run_tick_count_sub:
assumes ‹ dilating f sub r›

shows ‹ run_tick_count sub c n = run_tick_count r c (f n)›
〈proof 〉

The number of ticks occurring strictly before the first instant is null.
lemma tick_count_strict_0:

assumes ‹ dilating f sub r›
shows ‹ tick_count_strict r c (f 0) = 0›

〈proof 〉

The number of ticks strictly before an instant does not progress during stuttering instants.
lemma tick_count_strict_stable:

assumes ‹ dilating f sub r›
assumes ‹ (f n) < k ∧ k < (f (Suc n))›
shows ‹ tick_count_strict r c k = tick_count_strict r c (f (Suc n))›
〈proof 〉

Finally, the number of ticks strictly before an instant is preserved by dilation.

8.1. STUTTERING INVARIANCE 49

lemma tick_count_strict_sub:
assumes ‹ dilating f sub r›

shows ‹ tick_count_strict sub c n = tick_count_strict r c (f n)›
〈proof 〉

The tick count on any clock can only increase.
lemma mono_tick_count:

‹ mono (λ k. tick_count r c k)›
〈proof 〉

In a dilated run, for any stuttering instant, there is an instant which is the image of an instant
in the original run, and which is the latest one before the stuttering instant.
lemma greatest_prev_image:

assumes ‹ dilating f sub r›
shows ‹ (@ n0. f n0 = n) =⇒ (∃ np. f np < n ∧ (∀ k. f np < k ∧ k ≤ n −→ (@ k0. f k0 = k)))›

〈proof 〉

If a strictly monotonous function on nat increases only by one, its argument was increased only
by one.
lemma strict_mono_suc:

assumes ‹ strict_mono f›
and ‹ f sn = Suc (f n)›

shows ‹ sn = Suc n›
〈proof 〉

Two successive non stuttering instants of a dilated run are the images of two successive instants
of the original run.
lemma next_non_stuttering:

assumes ‹ dilating f sub r›
and ‹ f np < n ∧ (∀ k. f np < k ∧ k ≤ n −→ (@ k0. f k0 = k))›
and ‹ f sn0 = Suc n›

shows ‹ sn0 = Suc np›
〈proof 〉

The order relation between tick counts on clocks is preserved by dilation.
lemma dil_tick_count:

assumes ‹ sub � r›
and ‹∀ n. run_tick_count sub a n ≤ run_tick_count sub b n›

shows ‹ run_tick_count r a n ≤ run_tick_count r b n›
〈proof 〉

Time does not progress during stuttering instants.
lemma stutter_no_time:

assumes ‹ dilating f sub r›
and ‹

∧
k. f n < k ∧ k ≤ m =⇒ (@ k0. f k0 = k)›

and ‹ m > f n›
shows ‹ time ((Rep_run r) m c) = time ((Rep_run r) (f n) c)›

〈proof 〉

lemma time_stuttering:
assumes ‹ dilating f sub r›

and ‹ time ((Rep_run sub) n c) = τ›
and ‹

∧
k. f n < k ∧ k ≤ m =⇒ (@ k0. f k0 = k)›

and ‹ m > f n›
shows ‹ time ((Rep_run r) m c) = τ›

50 CHAPTER 8. PROPERTIES OF TESL

〈proof 〉

The first instant at which a given date is reached on a clock is preserved by dilation.
lemma first_time_image:

assumes ‹ dilating f sub r›
shows ‹ first_time sub c n t = first_time r c (f n) t›

〈proof 〉

The first instant of a dilated run is necessarily the image of the first instant of the original run.
lemma first_dilated_instant:

assumes ‹ strict_mono f›
and ‹ f (0::nat) = (0::nat)›

shows ‹ Max {i. f i ≤ 0} = 0›
〈proof 〉

For any instant n of a dilated run, let n0 be the last instant before n that is the image of an
original instant. All instants strictly after n0 and before n are stuttering instants.
lemma not_image_stut:

assumes ‹ dilating f sub r›
and ‹ n0 = Max {i. f i ≤ n}›
and ‹ f n0 < k ∧ k ≤ n›

shows ‹ @ k0. f k0 = k›
〈proof 〉

For any dilating function f, dil_inverse f is a contracting function.
lemma contracting_inverse:

assumes ‹ dilating f sub r›
shows ‹ contracting (dil_inverse f) r sub f›

〈proof 〉

The only possible contracting function toward a dense run (a run with no empty instants) is the
inverse of the dilating function as defined by dil_inverse.
lemma dense_run_dil_inverse_only:

assumes ‹ dilating f sub r›
and ‹ contracting g r sub f›
and ‹ dense_run sub›

shows ‹ g = (dil_inverse f)›
〈proof 〉

end

8.1.5 Main Theorems
theory Stuttering
imports StutteringLemmas

begin

Using the lemmas of the previous section about the invariance by stuttering of various prop-
erties of TESL specifications, we can now prove that the atomic formulae that compose TESL
specifications are invariant by stuttering.

Sporadic specifications are preserved in a dilated run.
lemma sporadic_sub:

assumes ‹ sub � r›

8.1. STUTTERING INVARIANCE 51

and ‹ sub ∈ [[c sporadic τ on c’]]T ESL›
shows ‹ r ∈ [[c sporadic τ on c’]]T ESL›

〈proof 〉

Implications are preserved in a dilated run.
theorem implies_sub:

assumes ‹ sub � r›
and ‹ sub ∈ [[c1 implies c2]]T ESL›

shows ‹ r ∈ [[c1 implies c2]]T ESL›
〈proof 〉

theorem implies_not_sub:
assumes ‹ sub � r›

and ‹ sub ∈ [[c1 implies not c2]]T ESL›
shows ‹ r ∈ [[c1 implies not c2]]T ESL›

〈proof 〉

Precedence relations are preserved in a dilated run.
theorem weakly_precedes_sub:

assumes ‹ sub � r›
and ‹ sub ∈ [[c1 weakly precedes c2]]T ESL›

shows ‹ r ∈ [[c1 weakly precedes c2]]T ESL›
〈proof 〉

theorem strictly_precedes_sub:
assumes ‹ sub � r›

and ‹ sub ∈ [[c1 strictly precedes c2]]T ESL›
shows ‹ r ∈ [[c1 strictly precedes c2]]T ESL›

〈proof 〉

Time delayed relations are preserved in a dilated run.
theorem time_delayed_sub:

assumes ‹ sub � r›
and ‹ sub ∈ [[a time-delayed by δτ on ms implies b]]T ESL›

shows ‹ r ∈ [[a time-delayed by δτ on ms implies b]]T ESL›
〈proof 〉

Time relations are preserved through dilation of a run.
lemma tagrel_sub’:

assumes ‹ sub � r›
and ‹ sub ∈ [[time-relation bc1,c2c ∈ R]]T ESL›

shows ‹ R (time ((Rep_run r) n c1), time ((Rep_run r) n c2))›
〈proof 〉

corollary tagrel_sub:
assumes ‹ sub � r›

and ‹ sub ∈ [[time-relation bc1,c2c ∈ R]]T ESL›
shows ‹ r ∈ [[time-relation bc1,c2c ∈ R]]T ESL›

〈proof 〉

Time relations are also preserved by contraction
lemma tagrel_sub_inv:

assumes ‹ sub � r›
and ‹ r ∈ [[time-relation bc1, c2c ∈ R]]T ESL›

shows ‹ sub ∈ [[time-relation bc1, c2c ∈ R]]T ESL›
〈proof 〉

52 CHAPTER 8. PROPERTIES OF TESL

Kill relations are preserved in a dilated run.
theorem kill_sub:

assumes ‹ sub � r›
and ‹ sub ∈ [[c1 kills c2]]T ESL›

shows ‹ r ∈ [[c1 kills c2]]T ESL›
〈proof 〉

lemmas atomic_sub_lemmas = sporadic_sub tagrel_sub implies_sub implies_not_sub
time_delayed_sub weakly_precedes_sub
strictly_precedes_sub kill_sub

We can now prove that all atomic specification formulae are preserved by the dilation of runs.
lemma atomic_sub:

assumes ‹ sub � r›
and ‹ sub ∈ [[ϕ]]T ESL›

shows ‹ r ∈ [[ϕ]]T ESL›
〈proof 〉

Finally, any TESL specification is invariant by stuttering.
theorem TESL_stuttering_invariant:

assumes ‹ sub � r›
shows ‹ sub ∈ [[[[S]]]]T ESL =⇒ r ∈ [[[[S]]]]T ESL›

〈proof 〉

end
theory Config_Morphisms

imports Hygge_Theory
begin

TESL morphisms change the time on clocks, preserving the ticks.
consts morphism :: ‹ ’a ⇒ (’τ::linorder ⇒ ’τ::linorder) ⇒ ’a› (infixl ‹

⊗
› 100)

Applying a TESL morphism to a tag simply changes its value.
overloading morphism_tagconst ≡ ‹ morphism :: ’τ tag_const ⇒ (’τ::linorder ⇒ ’τ) ⇒ ’τ tag_const›

begin
definition morphism_tagconst :

‹ (x::’τ tag_const)
⊗

(f::(’τ::linorder ⇒ ’τ)) = (τcst o f)(the_tag_const x) ›
end

Applying a TESL morphism to an atomic formula only changes the dates.
overloading morphism_TESL_atomic ≡

‹ morphism :: ’τ TESL_atomic ⇒ (’τ::linorder ⇒ ’τ) ⇒ ’τ TESL_atomic›
begin
definition morphism_TESL_atomic :

‹ (Ψ::’τ TESL_atomic)
⊗

(f::(’τ::linorder ⇒ ’τ)) =
(case Ψ of

(C sporadic t on C’) ⇒ (C sporadic (t
⊗

f) on C’)
| (time-relation bC, C’c∈R)⇒ (time-relation bC, C’c ∈ (λ(t, t’). R(t

⊗
f,t’

⊗
f)))

| (C implies C’) ⇒ (C implies C’)
| (C implies not C’) ⇒ (C implies not C’)
| (C time-delayed by t on C’ implies C’’)

⇒ (C time-delayed by t
⊗

f on C’ implies C’’)
| (C weakly precedes C’) ⇒ (C weakly precedes C’)
| (C strictly precedes C’) ⇒ (C strictly precedes C’)
| (C kills C’) ⇒ (C kills C’))›

8.1. STUTTERING INVARIANCE 53

end

Applying a TESL morphism to a formula amounts to apply it to each atomic formula.
overloading morphism_TESL_formula ≡

‹ morphism :: ’τ TESL_formula ⇒ (’τ::linorder ⇒ ’τ) ⇒ ’τ TESL_formula›
begin
definition morphism_TESL_formula :

‹ (Ψ::’τ TESL_formula)
⊗

(f::(’τ::linorder ⇒ ’τ)) = map (λx. x
⊗

f) Ψ›
end

Applying a TESL morphism to a configuration amounts to apply it to the present and future
formulae. The past (in the context Γ) is not changed.
overloading morphism_TESL_config ≡

‹ morphism :: (’τ::linordered_field) config ⇒ (’τ ⇒ ’τ) ⇒ ’τ config›
begin
fun morphism_TESL_config

where ‹ ((Γ, n ` Ψ . Φ)::(’τ::linordered_field) config)
⊗

(f::(’τ ⇒ ’τ)) =
(Γ, n ` (Ψ

⊗
f) . (Φ

⊗
f))›

end

A TESL formula is called consistent if it possesses Kripke-models in its denotational interpreta-
tion.
definition consistent :: ‹ (’τ::linordered_field) TESL_formula ⇒ bool›

where ‹ consistent Ψ ≡ [[[[Ψ]]]]T ESL 6= {}›

If we can derive a consistent finite context from a TESL formula, the formula is consistent.
theorem consistency_finite :

assumes start : ‹ ([], 0 ` Ψ . []) ↪→∗∗ (Γ1, n1 ` [] . [])›
and init_invariant : ‹ consistent_context Γ1›

shows ‹ consistent Ψ›
〈proof 〉

Snippets on runs

A run with no ticks and constant time for all clocks.
definition const_nontick_run :: ‹ (clock ⇒ ’τ tag_const) ⇒ (’τ::linordered_field) run › (‹�_› 80)

where ‹�f ≡ Abs_run(λn c. (False, f c))›

Ensure a clock ticks in a run at a given instant.
definition set_tick :: ‹ (’τ::linordered_field) run ⇒ nat ⇒ clock ⇒ (’τ) run›

where ‹ set_tick r k c = Abs_run(λn c. if k = n
then (True , time(Rep_run r k c))
else Rep_run r k c) ›

Ensure a clock does not tick in a run at a given instant.
definition unset_tick :: ‹ (’τ::linordered_field) run ⇒ nat ⇒ clock ⇒ (’τ) run›

where ‹ unset_tick r k c = Abs_run(λn c. if k = n
then (False , time(Rep_run r k c))
else Rep_run r k c) ›

Replace all instants after k in a run with the instants from another run. Warning: the result may
not be a proper run since time may not be monotonous from instant k to instant k+1.
definition patch :: ‹ (’τ::linordered_field) run ⇒ nat ⇒ ’τ run ⇒ ’τ run› (‹ _ �_ _› 80)

54 CHAPTER 8. PROPERTIES OF TESL

where ‹ r �kr’ ≡ Abs_run(λn c. if n ≤ k then Rep_run (r) n c else Rep_run (r’) n c)›

For some infinite cases, the idea for a proof scheme looks as follows: if we can derive from the
initial configuration [], 0 ` Ψ . [] a start-point of a lasso Γ1, n1 ` Ψ1 . Φ1, and if we can
traverse the lasso one time Γ1, n1 ` Ψ1 . Φ1 ↪→++ Γ2, n2 ` Ψ2 . Φ2 to isomorphic one,
we can always always make a derivation along the lasso. If the entry point of the lasso had traces
with prefixes consistent to Γ1, then there exist traces consisting of this prefix and repetitions of
the delta-prefix of the lasso which are consistent with Ψ which implies the logical consistency of
Ψ.
So far the idea. Remains to prove it. Why does one symbolic run along a lasso generalises to
arbitrary runs ?
theorem consistency_coinduct :

assumes start : ‹ ([], 0 ` Ψ . []) ↪→∗∗ (Γ1, n1 ` Ψ1 . Φ1)›
and loop : ‹ (Γ1, n1 ` Ψ1 . Φ1) ↪→++ (Γ2, n2 ` Ψ2 . Φ2)›
and init_invariant : ‹ consistent_context Γ1›
and post_invariant : ‹ consistent_context Γ2›
and retract_condition : ‹ (Γ2, n2 ` Ψ2 . Φ2)

⊗
(f::’τ ⇒ ’τ) = (Γ1, n1 ` Ψ1 . Φ1) ›

shows ‹ consistent (Ψ :: (’τ :: linordered_field)TESL_formula)›
〈proof 〉

end

Bibliography

[1] F. Boulanger, C. Jacquet, C. Hardebolle, and I. Prodan. TESL: a language for reconciling
heterogeneous execution traces. In Twelfth ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE 2014), pages 114–123, Lausanne, Switzer-
land, Oct 2014.

[2] H. Nguyen Van, T. Balabonski, F. Boulanger, C. Keller, B. Valiron, and B. Wolff. A symbolic
operational semantics for TESL with an application to heterogeneous system testing. In
Formal Modeling and Analysis of Timed Systems, 15th International Conference FORMATS
2017, volume 10419 of LNCS. Springer, Sep 2017.

55

	A Gentle Introduction to TESL
	Context
	The TESL Language
	Instantaneous Causal Operators
	Temporal Operators
	Asynchronous Operators

	Core TESL: Syntax and Basics
	Syntactic Representation
	Basic elements of a specification
	Operators for the TESL language
	Field Structure of the Metric Time Space

	Defining Runs

	Denotational Semantics
	Denotational interpretation for atomic TESL formulae
	Denotational interpretation for TESL formulae
	Image interpretation lemma
	Expansion law

	Equational laws for the denotation of TESL formulae
	Decreasing interpretation of TESL formulae
	Some special cases

	Symbolic Primitives for Building Runs
	Symbolic Primitives for Runs
	Semantics of Primitive Constraints
	Defining a method for witness construction

	Rules and properties of consistence
	Major Theorems
	Interpretation of a context
	Expansion law

	Equations for the interpretation of symbolic primitives
	General laws
	Decreasing interpretation of symbolic primitives

	Operational Semantics
	Operational steps
	Basic Lemmas

	Semantics Equivalence
	Stepwise denotational interpretation of TESL atoms
	Coinduction Unfolding Properties
	Interpretation of configurations

	Main Theorems
	Initial configuration
	Soundness
	Completeness
	Progress
	Local termination

	Properties of TESL
	Stuttering Invariance
	Definition of stuttering
	Alternate definitions for counting ticks.
	Stuttering Lemmas
	Lemmas used to prove the invariance by stuttering
	Main Theorems

