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We formalize a more general version of Szpilrajn’s extension theorem [3],
employing the terminology of Bossert and Suzumura [2]. We also formalize
Theorem 2.7 of their book. Our extension theorem states that any preorder
can be extended to a total preorder while maintaining its structure. The
proof of the extension theorem follows the proof presented in the Wikipedia
article [1].

1 Definitions

1.1 Symmetric and asymmetric factor of a relation

According to Bossert and Suzumura, every relation can be partitioned into
its symmetric and asymmetric factor. The symmetric factor of a relation r
contains all pairs (z, y) € r where (y, ) € r. Conversely, the asymmetric
factor contains all pairs where this is not the case. In terms of an order (<),
the asymmetric factor contains all (z, y) € {(z, y) |z y. * < y} where z <

Y.

definition sym-factor :: 'a rel = 'a rel
where sym-factor r = {(z, y) € r. (y, x) € r}

lemma sym-factor-def’: sym-factor r = r N r—!
(proof)

definition asym-factor :: 'a rel = 'a rel
where asym-factor r = {(z, y) € r. (y, z) ¢ r}

1.1.1 Properties of the symmetric factor

lemma sym-factorl[introl: (z, y) € r = (y, z) € r = (z, y) € sym-factor r
(proof )

lemma sym-factorE[elim?):
assumes (z, y) € sym-factor r obtains (z, y) € r (y, ) € r
(proof)



lemma sym-sym-factor[simp|: sym (sym-factor r)
{proof )

lemma trans-sym-factor[simp): trans r => trans (sym-factor r)
(proof )

lemma refl-on-sym-factor[simpl: refl-on A r = refl-on A (sym-factor r)
(proof )

lemma sym-factor-absorb-if-sym[simp|: sym r = sym-factor r = r
(proof)

lemma sym-factor-idem[simpl: sym-factor (sym-factor r) = sym-factor r
(proof )

lemma sym-factor-refic[simpl: sym-factor (r=) = (sym-factor r)
(proof )

lemma sym-factor-Restr|simp|: sym-factor (Restr r A) = Restr (sym-factor r) A
(proof )
In contrast to asym-factor, the sym-factor is monotone.
lemma sym-factor-mono: r C s = sym-factor r C sym-factor s
(proof )
1.1.2 Properties of the asymmetric factor
lemma asym-factorl[intro]: (z, y) € r = (y, z) ¢ r = (z, y) € asym-factor r

{proof)

lemma asym-factorE|[elim?):
assumes (z, y) € asym-factor r obtains (z, y) € r
(proof)

lemma refl-not-in-asym-factor[simp): (z, x) ¢ asym-factor r
{proof)

lemma irrefl-asym-factor[simpl: irrefl (asym-factor r)
(proof )

lemma asym-asym-factor[simpl: asym (asym-factor r)
(proof )

lemma trans-asym-factor[simp|: trans r => trans (asym-factor r)
{proof)

lemma asym-if-irrefi-trans: irrefl r = trans r = asym r
(proof)

lemma antisym-if-irrefi-trans: irrefl r = trans r = antisym r



{proof)

lemma asym-factor-asym-rel[simp|: asym r => asym-factor r = r

{proof)

lemma irrefl-trans-asym-factor-id[simp)|: irrefl r => trans r = asym-factor r =
r

{proof)

lemma asym-factor-id[simp): asym-factor (asym-factor r) = asym-factor r
(proof )

lemma asym-factor-rirancl: asym-factor (r*) = asym-factor (r™)
(proof )

lemma asym-factor-Restr[simp]: asym-factor (Restr r A) = Restr (asym-factor r)

A
{proof)

lemma acyclic-asym-factor[simp: acyclic r => acyclic (asym-factor r)

(proof)

1.1.3 Relations between symmetric and asymmetric factor

We prove that sym-factor and asym-factor partition the input relation.

lemma sym-asym-factor-Un: sym-factor r U asym-factor r = r
(proof )

lemma disjnt-sym-asym-factor[simp]: disjnt (sym-factor r) (asym-factor r)

(proof)

lemma Field-sym-asym-factor-Un:
Field (sym-factor r) U Field (asym-factor r) = Field r
(proof)

lemma asym-factor-tranclE:
assumes (a, b) € (asym-factor r)* shows (a, b) € r*
(proof)

1.2 Extension of Orders

We use the definition of Bossert and Suzumura for extends. The requirement
r C R is obvious. The second requirement asym-factor r C asym-factor R
enforces that the extension R maintains all strict preferences of r (viewing
r as a preference relation).

definition extends :: ‘a rel = 'a rel = bool
where eztends R r = r C R A asym-factor r C asym-factor R



We define a stronger notion of extends where we also demand that
sym-factor R C (sym-factor r)=. This enforces that the extension does
not introduce preference cycles between previously unrelated pairs (z, y) €
R—r
definition strict-extends :: 'a rel = 'a rel = bool

where strict-extends R r = extends R r N\ sym-factor R C (sym-factor r)=

lemma extendsI[intro]: 1 C R = asym-factor r C asym-factor R = extends R
r

{proof)

lemma extendskE:
assumes extends R r
obtains r C R asym-factor r C asym-factor R

{proof)

lemma trancl-subs-extends-if-trans: extends r-ext r = trans r-ext = r+ C r-ext
(proof)

lemma extends-if-strict-extends: strict-extends r-ext ext = extends r-ext ext
(proof)

lemma strict-extendsI|introl:
assumes r C R asym-factor r C asym-factor R sym-factor R C (sym-factor r)=
shows strict-extends R r
(proof)

lemma strict-extendskE:
assumes strict-extends R r
obtains r C R asym-factor r C asym-factor R sym-factor R C (sym-factor r)=

{proof)

lemma strict-extends-antisym-Restr:
assumes strict-extends R r
assumes antisym (Restr r A)
shows antisym ((R — r) U Restr r A)

(proof)

Here we prove that we have no preference cycles between previously
unrelated pairs.

lemma antisym-Diff-if-strict-extends:
assumes strict-extends R r
shows antisym (R — r)
(proof )

lemma strict-extends-antisym:
assumes strict-extends R r
assumes antisym r
shows antisym R



{proof)

lemma strict-extends-if-strict-extends-refic:
assumes strict-extends r-ext (=)
shows strict-extends r-ext r

(proof)

lemma strict-extends-diff-1d:
assumes irrefl r trans r
assumes strict-extends r-ext (=)
shows strict-extends (r-ext — Id) r

(proof)

Both extends and strict-extends form a partial order since they are re-
flexive, transitive, and antisymmetric.

lemma shows
refip-extends: reflp extends and
transp-extends: transp extends and
antisymp-extends: antisymp extends

{proof)

lemma shows
refip-strict-extends: reflp strict-extends and
transp-strict-extends: transp strict-extends and
antisymp-strict-extends: antisymp strict-extends

{proof)

1.3 Missing order definitions

lemma preorder-onD|dest?):
assumes preorder-on A r
shows refl-on A r trans r

{proof)

lemma preorder-onl[intro|: refl-on A r = trans r = preorder-on A r
(proof )

abbreviation preorder = preorder-on UNIV

lemma preorder-rtrancl: preorder (r*)

(proof)

definition total-preorder-on A r = preorder-on A r A total-on A r
abbreviation total-preorder r = total-preorder-on UNIV r

lemma total-preorder-onl|[intro):
refl-on A r = trans r = total-on A r = total-preorder-on A r

{proof)



lemma total-preorder-onD[dest?):
assumes total-preorder-on A r
shows refi-on A r trans r total-on A r

(proof)

definition strict-partial-order r = trans r A irrefl r

lemma strict-partial-orderI[intro):
trans r = irrefl r = strict-partial-order r

(proof)

lemma strict-partial-orderD]dest?):
assumes strict-partial-order r
shows trans r irrefl r

(proof)

lemma strict-partial-order-acyclic:
assumes strict-partial-order r
shows acyclic r

(proof)

abbreviation partial-order = partial-order-on UNIV

lemma partial-order-onlI|intro]:
refl-on A r = trans r = antisym r = partial-order-on A r
(proof)

lemma linear-order-onl[introl:
refl-on A r = trans r = antisym r = total-on A r = linear-order-on A r

(proof)

lemma linear-order-onD[dest?):
assumes linear-order-on A r
shows refi-on A r trans r antisym r total-on A r

(proof)
A typical example is (C) on sets:

lemma strict-partial-order-subset:
strict-partial-order {(z,y). © C y}

(proof)

We already have a definition of a strict linear order in strict-linear-order.

2 Extending preorders to total preorders

We start by proving that a preorder with two incomparable elements x and
y can be strictly extended to a preorder where z < y.



lemma can-extend-preorder:
assumes preorder-on A r
andyec Az e Ay, z)¢r
shows
preorder-on A ((insert (z, y) r)*%) strict-extends ((insert (z, y) r)7) r

(proof)

With this, we can start the proof of our main extension theorem. For
this we will use a variant of Zorns Lemma, which only considers nonempty
chains:

lemma Zorns-po-lemma-nonempty:
assumes po: Partial-order r
and u: AC. [C € Chains r; C#{}] = Ju€Field r. VacC. (a, u) € r

and r # {}

shows ImeField r. VacField r. (m,a) €Er — a=m

(proof)

theorem strict-extends-preorder-on:
assumes preorder-on A base-r
shows dr. total-preorder-on A r A strict-extends r base-r

(proof)

With this extension theorem, we can easily prove Szpilrajn’s theorem
and its equivalent for partial orders.

corollary partial-order-extension:
assumes partial-order-on A r
shows Jr-ext. linear-order-on A r-ext A v C r-ext

(proof)

corollary Szpilrajn:
assumes strict-partial-order r
shows dr-ext. strict-linear-order r-ext A r C r-ext

(proof)

corollary acyclic-order-extension:
assumes acyclic r
shows dr-ext. strict-linear-order r-ext A r C r-ext

(proof)

3 Consistency

As a weakening of transitivity, Suzumura introduces the notion of consis-
tency which rules out all preference cycles that contain at least one strict
preference. Consistency characterises those order relations which can be
extended (in terms of extends) to a total order relation.

definition consistent :: 'a rel = bool



where consistent r = (V(z, y) € r*. (y, z) ¢ asym-factor r)

lemma consistentl: (N\z y. (z, y) € rt = (y, ) ¢ asym-factor r) = consistent
r

(proof)

lemma consistent-if-preorder-on[simpl:
preorder-on A r = consistent r

{proof)

lemma consistent-asym-factor[simp]: consistent r = consistent (asym-factor r)
(proof )

lemma acyclic-asym-factor-if-consistent[simp]: consistent r = acyclic (asym-factor
r)

(proof)

lemma consistent-Restr[simp|: consistent r = consistent (Restr r A)
{proof)

This corresponds to Theorem 2.2 [2].

theorem trans-if-refi-total-consistent:
assumes refl r total r and consistent r
shows trans r

(proof)

lemma order-extension-if-consistent:
assumes consistent r
obtains r-ext where extends r-ext r total-preorder r-ext

(proof)

lemma consistent-if-extends-trans:
assumes extends r-ext r trans r-ext
shows consistent r

(proof)

With Theorem 2.6 [2], we show that consistent characterises the existence
of order extensions.

corollary order-extension-iff-consistent:
(3 r-ext. extends r-ext r A total-preorder r-ext) «— consistent r

(proof)

The following theorem corresponds to Theorem 2.7 [2]. Bossert and
Suzumura claim that this theorem generalises Szpilrajn’s theorem; however,
we cannot use the theorem to strictly extend a given order ). Therefore, it
is not strong enough to extend a strict partial order to a strict linear order.
It works for total preorders (called orderings by Bossert and Suzumura).
Unfortunately, we were not able to generalise the theorem to allow for strict



extensions.

theorem general-order-extension-iff-consistent:
assumes \zy. [z€ S;ye S;x#y] = (2, y) ¢ QF
assumes total-preorder-on S Ord
shows (3 Ext. extends Ext Q A total-preorder Ext N\ Restr Ext S = Ord)
+— consistent Q (is ?ExExt +— -)

(proof)

4 Strong consistency

We define a stronger version of consistent which requires that the relation
does not contain hidden preference cycles, i.e. if there is a preference cycle
then all the elements in the cycle should already be related (in both direc-
tions). In contrast to consistency which characterises relations that can be
extended, strong consistency characterises relations that can be extended
strictly (cf. strict-extends).

definition strongly-consistent r = sym-factor (r*) C sym-factor (r=)

lemma consistent-if-strongly-consistent: strongly-consistent 1 = consistent r
(proof)

lemma strongly-consistentl: sym-factor (r™) C sym-factor (r=) = strongly-consistent
r

(proof)

lemma strongly-consistent-if-trans-strict-extension:
assumes strict-extends r-ext r
assumes trans r-ext
shows strongly-consistent r

(proof)

lemma strict-order-extension-if-consistent:
assumes strongly-consistent r
obtains r-ext where strict-extends r-ext r total-preorder r-ext

(proof)

experiment begin
We can instantiate the above theorem to get Szpilrajn’s theorem.

lemma
assumes strict-partial-order r
shows 3 r-ext. strict-linear-order r-ext N r C r-ext

(proof)

end
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