Order Extension and Szpilrajn's Theorem

Peter Zeller and Lukas Stevens

March 17, 2025

We formalize a more general version of Szpilrajn's extension theorem [3], employing the terminology of Bossert and Suzumura [2]. We also formalize Theorem 2.7 of their book. Our extension theorem states that any preorder can be extended to a total preorder while maintaining its structure. The proof of the extension theorem follows the proof presented in the Wikipedia article [1].

1 Definitions

1.1 Symmetric and asymmetric factor of a relation

According to Bossert and Suzumura, every relation can be partitioned into its symmetric and asymmetric factor. The symmetric factor of a relation r contains all pairs $(x, y) \in r$ where $(y, x) \in r$. Conversely, the asymmetric factor contains all pairs where this is not the case. In terms of an order (\leq) , the asymmetric factor contains all $(x, y) \in \{(x, y) \mid x y. x \leq y\}$ where x < y

```
definition sym\text{-}factor :: 'a \ rel \Rightarrow 'a \ rel

where sym\text{-}factor \ r \equiv \{(x, y) \in r. \ (y, x) \in r\}

lemma sym\text{-}factor\text{-}def': sym\text{-}factor \ r = r \cap r^{-1}

unfolding sym\text{-}factor\text{-}def by fast

definition asym\text{-}factor :: 'a \ rel \Rightarrow 'a \ rel

where asym\text{-}factor \ r = \{(x, y) \in r. \ (y, x) \notin r\}
```

1.1.1 Properties of the symmetric factor

```
lemma sym-factorI[intro]: (x, y) \in r \Longrightarrow (y, x) \in r \Longrightarrow (x, y) \in sym-factor r unfolding sym-factor-def by blast
```

```
lemma sym-factorE[elim?]:
assumes (x, y) \in sym-factor r obtains (x, y) \in r (y, x) \in r
using assms[unfolded sym-factor-def] by blast
```

```
lemma sym-sym-factor[simp]: sym (sym-factor r)
 unfolding sym-factor-def
 by (auto intro!: symI)
lemma trans-sym-factor[simp]: trans r \Longrightarrow trans (sym-factor r)
 unfolding sym-factor-def' using trans-Int by force
lemma refl-on-sym-factor[simp]: refl-on A \ r \Longrightarrow refl-on \ A \ (sym-factor \ r)
 unfolding sym-factor-def
 by (auto intro!: refl-onI dest: refl-onD refl-onD1)
lemma sym-factor-absorb-if-sym[simp]: sym \ r \Longrightarrow sym-factor r = r
 unfolding sym-factor-def'
 by (simp add: sym-conv-converse-eq)
lemma sym-factor-idem[simp]: sym-factor (sym-factor r) = sym-factor r
 using sym-factor-absorb-if-sym[OF sym-sym-factor].
lemma sym-factor-reflc[simp]: sym-factor (r^{=}) = (sym\text{-factor } r)^{=}
 unfolding sym-factor-def by auto
lemma sym-factor-Restr[simp]: sym-factor (Restr r A) = Restr (sym-factor r) A
 unfolding sym-factor-def by blast
   In contrast to asym-factor, the sym-factor is monotone.
lemma sym-factor-mono: r \subseteq s \Longrightarrow sym-factor r \subseteq sym-factor s
 unfolding sym-factor-def by auto
1.1.2
         Properties of the asymmetric factor
lemma asym-factorI[intro]: (x, y) \in r \Longrightarrow (y, x) \notin r \Longrightarrow (x, y) \in asym-factor r
 unfolding asym-factor-def by blast
lemma asym-factorE[elim?]:
 assumes (x, y) \in asym\text{-}factor \ r \ \textbf{obtains} \ (x, y) \in r
 using assms unfolding asym-factor-def by blast
lemma refl-not-in-asym-factor[simp]: (x, x) \notin asym-factor r
 unfolding asym-factor-def by blast
lemma irrefl-asym-factor[simp]: irrefl (asym-factor r)
 unfolding asym-factor-def irrefl-def by fast
lemma asym-asym-factor[simp]: asym (asym-factor r)
 using irreft-asym-factor
 by (auto intro!: asymI simp: asym-factor-def)
lemma trans-asym-factor[simp]: trans <math>r \Longrightarrow trans \ (asym-factor \ r)
 unfolding asym-factor-def trans-def by fast
```

```
lemma asym-if-irrefl-trans: irrefl r \Longrightarrow trans \ r \Longrightarrow asym \ r
 by (intro asymI) (auto simp: irrefl-def trans-def)
lemma antisym-if-irrefl-trans: irrefl r \Longrightarrow trans \ r \Longrightarrow antisym \ r
 using antisym-def asym-if-irrefl-trans by (auto dest: asymD)
lemma asym-factor-asym-rel[simp]: asym\ r \Longrightarrow asym-factor r = r
  unfolding asym-factor-def
 by (auto\ dest:\ asym D)
lemma irrefl-trans-asym-factor-id[simp]: irrefl r \Longrightarrow trans \ r \Longrightarrow asym-factor \ r =
 using asym-factor-asym-rel[OF\ asym-if-irreft-trans].
\mathbf{lemma}\ asym\text{-}factor\text{-}id[simp]\text{:}\ asym\text{-}factor\ (asym\text{-}factor\ r) = asym\text{-}factor\ r
 using asym-factor-asym-rel[OF asym-asym-factor].
lemma asym-factor-rtrancl: asym-factor (r^*) = asym-factor (r^+)
 unfolding asym-factor-def
 by (auto simp add: rtrancl-eq-or-trancl)
lemma asym-factor-Restr[simp]: asym-factor (Restr r A) = Restr (asym-factor r)
 unfolding asym-factor-def by blast
lemma acyclic-asym-factor[simp]: acyclic <math>r \Longrightarrow acyclic (asym-factor r)
  unfolding asym-factor-def by (auto intro: acyclic-subset)
        Relations between symmetric and asymmetric factor
1.1.3
We prove that sym-factor and asym-factor partition the input relation.
lemma sym-asym-factor-Un: sym-factor r \cup asym-factor r = r
 unfolding sym-factor-def asym-factor-def by blast
lemma disjnt-sym-asym-factor[simp]: disjnt (sym-factor r) (asym-factor r)
  unfolding disjnt-def
 unfolding sym-factor-def asym-factor-def by blast
lemma Field-sym-asym-factor-Un:
  Field\ (sym\text{-}factor\ r)\cup Field\ (asym\text{-}factor\ r)=Field\ r
 \mathbf{using}\ \mathit{sym-asym-factor-Un}\ \mathit{Field-Un}\ \mathbf{by}\ \mathit{metis}
lemma asym-factor-tranclE:
 assumes (a, b) \in (asym\text{-}factor\ r)^+ shows (a, b) \in r^+
 using assms sym-asym-factor-Un
 by (metis UnCI subsetI trancl-mono)
```

1.2 Extension of Orders

definition extends :: 'a $rel \Rightarrow$ 'a $rel \Rightarrow$ bool

We use the definition of Bossert and Suzumura for extends. The requirement $r \subseteq R$ is obvious. The second requirement asym-factor $r \subseteq asym-factor R$ enforces that the extension R maintains all strict preferences of r (viewing r as a preference relation).

```
where extends R \ r \equiv r \subseteq R \land asym\text{-factor } r \subseteq asym\text{-factor } R
         We define a stronger notion of extends where we also demand that
sym-factor R \subseteq (sym-factor r)<sup>=</sup>. This enforces that the extension does
not introduce preference cycles between previously unrelated pairs (x, y) \in
R-r.
definition strict-extends :: 'a rel <math>\Rightarrow 'a rel \Rightarrow bool
    where strict-extends R r \equiv extends R r \wedge sym-factor R \subseteq (sym-factor r)=
lemma extends I[intro]: r \subseteq R \Longrightarrow asym-factor r \subseteq asym-factor R \Longrightarrow extends R
    unfolding extends-def by (intro conjI)
lemma extendsE:
    assumes extends R r
   obtains r \subseteq R asym-factor r \subseteq asym-factor R
    using assms unfolding extends-def by blast
lemma trancl-subs-extends-if-trans: extends r-ext r \Longrightarrow trans \ r-ext \Longrightarrow r^+ \subseteq r-ext
    unfolding extends-def asym-factor-def
   by (metis subrelI trancl-id trancl-mono)
lemma extends-if-strict-extends: strict-extends r-ext ext \implies extends r-ext ext
    unfolding strict-extends-def by blast
lemma strict-extendsI[intro]:
   assumes r \subseteq R asym-factor r \subseteq asym-factor R sym-factor R \subseteq (sym-factor r)=
    shows strict-extends R r
    unfolding strict-extends-def using assms by (intro conjI extendsI)
lemma strict-extendsE:
    assumes strict-extends R r
   obtains r \subseteq R asym-factor r \subseteq asym-factor R sym-factor R \subseteq (sym-factor r)=
    using assms extendsE unfolding strict-extends-def by blast
lemma strict-extends-antisym-Restr:
    assumes strict-extends R r
    assumes antisym (Restr r A)
   shows antisym ((R-r) \cup Restr \ r \ A)
proof(rule antisymI, rule ccontr)
   fix x y assume (x, y) \in (R - r) \cup Restr \ r \ A \ (y, x) \in (R - r) \cup Restr \ r \ A \ x \neq Restr \ Restr \
```

```
with \langle strict\text{-}extends\ R\ r\rangle have (x,\ y)\in sym\text{-}factor\ R
   unfolding sym-factor-def by (auto elim!: strict-extendsE)
  with assms \langle x \neq y \rangle have (x, y) \in sym\text{-}factor r
   by (auto elim!: strict-extendsE)
  then have (x, y) \in r (y, x) \in r
   unfolding sym-factor-def by simp-all
  with \langle antisym\ (Restr\ r\ A)\rangle\ \langle x\neq y\rangle\ \langle (y,\ x)\in R-r\cup Restr\ r\ A\rangle show False
    using antisymD by fastforce
qed
    Here we prove that we have no preference cycles between previously
unrelated pairs.
lemma antisym-Diff-if-strict-extends:
 assumes strict-extends R r
 shows antisym (R-r)
 using strict-extends-antisym-Restr[OF assms, where ?A=\{\}] by simp
lemma strict-extends-antisym:
  assumes strict-extends R r
 assumes antisym r
 shows antisym R
 using assms strict-extends-antisym-Restr[OF assms(1), where ?A=UNIV]
 by (auto elim!: strict-extendsE simp: antisym-def)
{\bf lemma}\ strict\text{-}extends\text{-}if\text{-}strict\text{-}extends\text{-}reflc\text{:}
 assumes strict-extends r-ext (r^{=})
 shows strict-extends r-ext r
proof(intro\ strict-extendsI)
 from assms show r \subseteq r-ext
   by (auto elim: strict-extendsE)
  from assms \langle r \subseteq r\text{-}ext \rangle show asym\text{-}factor \ r \subseteq asym\text{-}factor \ r\text{-}ext
   unfolding strict-extends-def
   by (auto simp: asym-factor-def sym-factor-def)
 from assms show sym-factor r-ext \subseteq (sym-factor r)=
   by (auto simp: sym-factor-def strict-extends-def)
qed
lemma strict-extends-diff-Id:
 assumes irrefl r trans r
 assumes strict-extends r-ext (r^{=})
 shows strict-extends (r-ext - Id) r
proof(intro strict-extendsI)
  from assms show r \subseteq r\text{-}ext - Id
   by (auto elim: strict-extendsE simp: irrefl-def)
 note antisym-r = antisym-if-irrefl-trans[OF <math>assms(1,2)]
 with assms strict-extends-if-strict-extends-refle show asym-factor r \subseteq asym-factor
```

```
(r\text{-}ext - Id)
   unfolding asym-factor-def
   \mathbf{by}\ (auto\ intro:\ strict-extends-antisym[THEN\ antisymD]\ elim:\ strict-extendsE
transE)
 from assms antisym-r show sym-factor (r\text{-}ext - Id) \subseteq (sym\text{-}factor\ r)^{=}
   unfolding sym-factor-def
   by (auto intro: strict-extends-antisym[THEN antisymD])
qed
    Both extends and strict-extends form a partial order since they are re-
flexive, transitive, and antisymmetric.
lemma shows
   reflp-extends: reflp extends and
   transp-extends: transp extends and
   antisymp-extends: antisymp extends
  unfolding extends-def reflp-def transp-def antisymp-def
 by auto
lemma shows
   reflp\text{-}strict\text{-}extends: reflp strict\text{-}extends \ \mathbf{and}
   transp-strict-extends: transp strict-extends and
   antisymp-strict-extends: antisymp strict-extends
 using reflp-extends transp-extends antisymp-extends
 unfolding strict-extends-def reflp-def transp-def antisymp-def
 by auto
1.3
       Missing order definitions
lemma preorder-onD[dest?]:
 assumes preorder-on A r
 shows refl-on A r trans r
 using assms unfolding preorder-on-def by blast+
lemma preorder-onI[intro]: refl-on A r \Longrightarrow trans r \Longrightarrow preorder-on A r
  unfolding preorder-on-def by (intro conjI)
abbreviation preorder \equiv preorder-on UNIV
lemma preorder-rtrancl: preorder (r^*)
 by (intro preorder-onI refl-rtrancl trans-rtrancl)
definition total-preorder-on A r \equiv preorder-on A r \wedge total-on A r
abbreviation total-preorder r \equiv total-preorder-on UNIV r
lemma total-preorder-onI[intro]:
  refl-on A \ r \Longrightarrow trans \ r \Longrightarrow total-on A \ r \Longrightarrow total-preorder-on A \ r
  unfolding total-preorder-on-def by (intro conjI preorder-onI)
```

```
lemma total-preorder-onD[dest?]:
 assumes total-preorder-on A r
 shows refl-on A r trans r total-on A r
 using assms unfolding total-preorder-on-def preorder-on-def by blast+
definition strict-partial-order r \equiv trans \ r \land irrefl \ r
lemma strict-partial-orderI[intro]:
  trans \ r \Longrightarrow irrefl \ r \Longrightarrow strict\text{-partial-order} \ r
 unfolding strict-partial-order-def by blast
\mathbf{lemma}\ strict\text{-}partial\text{-}orderD[dest?]:
 {\bf assumes}\ strict\text{-}partial\text{-}order\ r
 shows trans r irrefl r
 using assms unfolding strict-partial-order-def by blast+
lemma strict-partial-order-acyclic:
 assumes strict-partial-order r
 shows acyclic r
 by (metis acyclic-irrefl assms strict-partial-order-def trancl-id)
abbreviation partial-order \equiv partial-order-on UNIV
lemma partial-order-onI[intro]:
  refl-on A \ r \Longrightarrow trans \ r \Longrightarrow antisym \ r \Longrightarrow partial-order-on \ A \ r
 using partial-order-on-def by blast
lemma linear-order-onI[intro]:
  refl-on\ A\ r \Longrightarrow trans\ r \Longrightarrow antisym\ r \Longrightarrow total-on\ A\ r \Longrightarrow linear-order-on\ A\ r
 using linear-order-on-def by blast
lemma linear-order-onD[dest?]:
 assumes linear-order-on A r
 shows refl-on A r trans r antisym r total-on A r
 using assms[unfolded linear-order-on-def] partial-order-onD by blast+
    A typical example is (\subset) on sets:
lemma strict-partial-order-subset:
  strict-partial-order \{(x,y).\ x \subset y\}
proof
 show trans \{(x,y).\ x \subset y\}
   by (auto simp add: trans-def)
 show irrefl \{(x, y). x \subset y\}
   by (simp add: irrefl-def)
qed
```

We already have a definition of a strict linear order in *strict-linear-order*.

2 Extending preorders to total preorders

lemma can-extend-preorder:

We start by proving that a preorder with two incomparable elements x and y can be strictly extended to a preorder where x < y.

```
assumes preorder-on A r
   and y \in A \ x \in A \ (y, x) \notin r
   preorder-on A ((insert (x, y) r)^+) strict-extends ((insert (x, y) r)^+) r
proof -
  note preorder-onD[OF \land preorder-on A r \rangle]
  then have insert (x, y) r \subseteq A \times A
   using \langle y \in A \rangle \langle x \in A \rangle refl-on-domain by fast
  with \langle refl\text{-}on \ A \ r \rangle show preorder-on A \ ((insert \ (x, \ y) \ r)^+)
   by (intro preorder-onI refl-onI trans-trancl)
       (auto simp: trancl-subset-Sigma intro!: r-into-trancl' dest: refl-onD)
  show strict-extends ((insert\ (x,\ y)\ r)^+)\ r
  proof(intro\ strict-extendsI)
   from preorder-onD(2)[OF \land preorder-on A r \land] \land (y, x) \notin r \land
   show asym-factor r \subseteq asym-factor ((insert (x, y) r)^+)
       unfolding asym-factor-def trancl-insert
       using rtranclD rtrancl-into-trancl1 r-r-into-trancl
       by fastforce
    from assms have (y, x) \notin (insert (x, y) r)^+
       unfolding preorder-on-def trancl-insert
       using refl-onD rtranclD by fastforce
    with \langle trans \ r \rangle show sym-factor ((insert \ (x, \ y) \ r)^+) \subseteq (sym\text{-factor } r)^=
       unfolding trancl-insert sym-factor-def by (fastforce intro: rtrancl-trans)
  ged auto
qed
    With this, we can start the proof of our main extension theorem. For
this we will use a variant of Zorns Lemma, which only considers nonempty
chains:
lemma Zorns-po-lemma-nonempty:
 assumes po: Partial-order r
   \textbf{and} \ u : \bigwedge C. \ \llbracket C \in \textit{Chains} \ r; \ C \neq \{\} \rrbracket \Longrightarrow \exists \ u \in \textit{Field} \ r. \ \forall \ a \in C. \ (a, \ u) \in r \}
   and r \neq \{\}
  shows \exists m \in Field \ r. \ \forall a \in Field \ r. \ (m, a) \in r \longrightarrow a = m
proof -
  from \langle r \neq \{\} \rangle obtain x where x \in Field \ r
   using FieldI2 by fastforce
  with assms show ?thesis
   using Zorns-po-lemma by (metis empty-iff)
qed
```

```
theorem strict-extends-preorder-on:

assumes preorder-on A base-r

shows \exists r. total-preorder-on A r \land strict-extends r base-r

proof -
```

We define an order on the set of strict extensions of the base relation base-r, where $r \leq s$ iff strict-extends r base-r and strict-extends s r:

```
define order-of-orders :: ('a rel) rel where order-of-orders = Restr \{(r, s). strict-extends r base-r \land strict-extends s r\} \{r. preorder-on A r\}
```

We show that this order consists of those relations that are preorders and that strictly extend the base relation base-r

```
have Field-order-of-orders: Field order-of-orders = \{r.\ preorder-on\ A\ r\ \land\ strict-extends\ r\ base-r\} using transp-strict-extends proof(safe) fix r assume preorder-on A\ r strict-extends r base-r with reflp-strict-extends have (r,\ r)\in\{(r,\ s).\ strict-extends\ r\ base-r\ \land\ strict-extends\ s\ r\} by (auto elim!: reflpE) with (r,\ r) show r\in Field\ order-of-orders unfolding order-of-orders-def by (auto simp: Field-def) qed (auto simp: order-of-orders-def Field-def elim: transpE)
```

We now show that this set has a maximum and that any maximum of this set is a total preorder and as thus is one of the extensions we are looking for. We begin by showing the existence of a maximal element using Zorn's lemma.

```
have \exists m \in Field \ order\text{-}of\text{-}orders.

\forall a \in Field \ order\text{-}of\text{-}orders. \ (m, a) \in order\text{-}of\text{-}orders \longrightarrow a = m

proof (rule \ Zorns\text{-}po\text{-}lemma\text{-}nonempty)
```

Zorn's Lemma requires us to prove that our *order-of-orders* is a nonempty partial order and that every nonempty chain has an upper bound. The partial order property is trivial, since we used *strict-extends* for the relation, which is a partial order as shown above.

```
from reflp-strict-extends transp-strict-extends
have Refl \{(r, s). strict-extends \ r \ base-r \land strict-extends \ s \ r\}
unfolding refl-on-def Field-def by (auto elim: transpE reflpE)
moreover have trans \{(r, s). strict-extends \ r \ base-r \land strict-extends \ s \ r\}
using transp-strict-extends by (auto elim: transpE intro: transI)
moreover have antisym \{(r, s). strict-extends \ r \ base-r \land strict-extends \ s \ r\}
using antisymp-strict-extends by (fastforce dest: antisympD intro: antisymI)
ultimately show Partial-order order-of-orders
unfolding order-of-orders-def order-on-defs
using Field-order-of-orders Refl-Restr trans-Restr antisym-Restr
by blast
```

```
Also, our order is obviously not empty since it contains (base-r, base-r):
```

```
have (base-r, base-r) \in order-of-orders
unfolding order-of-orders-def
using assms\ reflp-strict-extends by (auto\ dest:\ reflpD)
thus order-of-orders \neq \{\} by force
```

Next we show that each chain has an upper bound. For the upper bound we take the union of all relations in the chain.

```
show \exists u \in Field \ order-of-orders. \ \forall a \in C. \ (a, u) \in order-of-orders if C-def: C \in C hains order-of-orders and C-nonempty: C \neq \{\} for C proof (rule \ bexI[\mathbf{where} \ x=\bigcup C])
```

Obviously each element in the chain is a strict extension of base-r by definition and as such it is also a preorder.

```
have preorder-r: preorder-on A r and extends-r: strict-extends r base-r if r \in C for r
```

```
using that C-def[unfolded order-of-orders-def Chains-def] by blast+
```

Because a chain is partially ordered, the union of the chain is reflexive and transitive.

```
have total-subs-C: r \subseteq s \lor s \subseteq r if r \in C and s \in C for r s
  using C-def that
  unfolding Chains-def order-of-orders-def strict-extends-def extends-def
  by blast
have preorder-UnC: preorder-on A (\bigcup C)
proof(intro preorder-onI)
  show refl-on A (\bigcup C)
    using preorder-onD(1)[OF preorder-r] C-nonempty
    unfolding refl-on-def by auto
  from total-subs-C show trans (\bigcup C)
    using chain-subset-trans-Union[unfolded chain-subset-def]
    by (metis\ preorder-onD(2)[OF\ preorder-r])
We show that \bigcup C strictly extends the base relation.
have strict-extends-UnC: strict-extends (\bigcup C) base-r
proof(intro strict-extendsI)
 note extends-r-unfolded = extends-r[unfolded extends-def strict-extends-def]
  show base-r \subseteq (\bigcup C)
    using C-nonempty extends-r-unfolded
    by blast
  then show asym-factor base-r \subseteq asym-factor (\bigcup C)
    using extends-r-unfolded
```

```
unfolding asym-factor-def by auto
        show sym-factor (\bigcup C) \subseteq (sym\text{-factor base-}r)^{=}
        \mathbf{proof}(safe)
          fix x \ y assume (x, y) \in sym\text{-}factor (\bigcup C)(x, y) \notin sym\text{-}factor base-r
          then have (x, y) \in \bigcup C(y, x) \in \bigcup C
            \mathbf{unfolding} \ \mathit{sym-factor-def} \ \mathbf{by} \ \mathit{blast} +
          with extends-r obtain c where c \in C(x, y) \in c(y, x) \in c
            strict-extends c base-r
            using total-subs-C by blast
          then have (x, y) \in sym-factor c
            unfolding sym-factor-def by blast
          with \langle strict\text{-}extends\ c\ base\text{-}r \rangle\ \langle (x,\ y) \notin sym\text{-}factor\ base\text{-}r \rangle
          show x = y
            unfolding strict-extends-def by blast
        qed
      qed
      from preorder-UnC strict-extends-UnC show (| | C) \in Field \ order-of-orders
        unfolding Field-order-of-orders by simp
    Lastly, we prove by contradiction that \bigcup C is an upper bound for the
chain.
      show \forall a \in C. (a, \bigcup C) \in order\text{-}of\text{-}orders
      proof(rule\ ccontr)
        presume \exists a \in C. (a, \bigcup C) \notin order\text{-}of\text{-}orders
        then obtain m where m: m \in C (m, \bigcup C) \notin order\text{-}of\text{-}orders
          \mathbf{by} blast
        hence strict-extends-m: strict-extends m base-r preorder-on A m
          using extends-r preorder-r by blast+
        with m have \neg strict-extends (\bigcup C) m
          using preorder-UnC unfolding order-of-orders-def by blast
        from m have m \subseteq \bigcup C
          \mathbf{by} blast
        moreover
        have sym-factor (\bigcup C) \subseteq (sym\text{-factor } m)^=
        proof(safe)
          \mathbf{fix} \ a \ b
          assume (a, b) \in sym\text{-}factor (\bigcup C) (a, b) \notin sym\text{-}factor m
          then have (a, b) \in sym\text{-}factor\ base\text{-}r \lor (a, b) \in Id
            using strict-extends-UnC[unfolded\ strict-extends-def] by blast
          with \langle (a, b) \notin sym\text{-}factor \ m \rangle \ strict\text{-}extends\text{-}m(1) \ \textbf{show} \ a = b
            by (auto elim: strict-extendsE simp: sym-factor-mono[THEN in-mono])
        qed
        ultimately
        have \neg asym-factor m \subseteq asym-factor (\bigcup C)
```

```
using \langle \neg strict\text{-}extends \mid (\bigcup C) \mid m \rangle unfolding strict-extends-def extends-def
\mathbf{by} blast
       then obtain x y where
         (x, y) \in m(y, x) \notin m(x, y) \in asym-factor m(x, y) \notin asym-factor(\bigcup C)
         unfolding asym-factor-def by blast
       then obtain w where w \in C(y, x) \in w
         unfolding asym-factor-def using \langle m \in C \rangle by auto
       with \langle (y, x) \notin m \rangle have \neg extends m w
         unfolding extends-def by auto
       moreover
       from \langle (x, y) \in m \rangle have \neg extends w m
       \mathbf{proof}(cases\ (x,\ y)\in w)
         case True
         with \langle (y, x) \in w \rangle have (x, y) \notin asym\text{-}factor w
           unfolding asym-factor-def by simp
         with \langle (x, y) \in asym\text{-}factor \ m \rangle show \neg \ extends \ w \ m
           unfolding extends-def by auto
       qed (auto simp: extends-def)
       ultimately show False
         using \langle m \in C \rangle \langle w \in C \rangle
         using C-def[unfolded Chains-def order-of-orders-def strict-extends-def]
         by auto
     qed blast
   qed
  qed
    Let our maximal element be named max:
  from this obtain max
   where max-field: max \in Field \ order-of-orders
     and is-max:
       \forall a \in Field \ order \text{-} of \text{-} orders. \ (max, a) \in order \text{-} of \text{-} orders \longrightarrow a = max
   by auto
  from max-field have max-extends-base: preorder-on A max strict-extends max
base-r
   using Field-order-of-orders by blast+
    We still have to show, that max is a strict linear order, meaning that it
is also a total order:
  have total-on A max
  proof
   \mathbf{fix} \ x \ y :: 'a
   assume x \neq y \ x \in A \ y \in A
   show (x, y) \in max \lor (y, x) \in max
```

```
proof (rule ccontr)
    Assume that max is not total, and x and y are incomparable. Then we
can extend max by setting x < y:
     presume (x, y) \notin max and (y, x) \notin max
     let ?max' = (insert(x, y) max)^+
     note max'-extends-max = can-extend-preorder[OF]
        \langle preorder\text{-}on\ A\ max\rangle\ \langle y\in A\rangle\ \langle x\in A\rangle\ \langle (y,x)\notin max\rangle]
     hence max'-extends-base: strict-extends ?max' base-r
          using (strict-extends max base-r) transp-strict-extends by (auto elim:
transpE)
    The extended relation is greater than max, which is a contradiction.
     have (max, ?max') \in order-of-orders
       using max'-extends-base max'-extends-max max-extends-base
       unfolding order-of-orders-def by simp
       using FieldI2 \langle (x, y) \notin max \rangle is-max by fastforce
   qed simp-all
 qed
  with \langle preorder\text{-}on \ A \ max \rangle have total\text{-}preorder\text{-}on \ A \ max
   unfolding total-preorder-on-def by simp
  with (strict-extends max base-r) show ?thesis by blast
qed
    With this extension theorem, we can easily prove Szpilrajn's theorem
and its equivalent for partial orders.
corollary partial-order-extension:
 assumes partial-order-on A r
 shows \exists r\text{-}ext. linear\text{-}order\text{-}on\ A\ r\text{-}ext \land r \subseteq r\text{-}ext
proof -
  from assms strict-extends-preorder-on obtain r-ext where r-ext:
   total-preorder-on A r-ext strict-extends r-ext r
   unfolding partial-order-on-def by blast
  with assms have antisym r-ext
   unfolding partial-order-on-def using strict-extends-antisym by blast
  with assms r-ext have linear-order-on A r-ext \land r \subseteq r-ext
   unfolding total-preorder-on-def order-on-defs strict-extends-def extends-def
   by blast
  then show ?thesis ..
qed
corollary Szpilrajn:
```

```
assumes strict-partial-order r
  shows \exists r\text{-}ext. strict\text{-}linear\text{-}order r\text{-}ext \land r \subseteq r\text{-}ext
proof -
  from assms have partial-order (r^{=})
   by (auto simp: antisym-if-irrefl-trans strict-partial-order-def)
 from partial-order-extension OF this obtain r-ext where linear-order r-ext (r^{=})
\subseteq r-ext
   by blast
  with assms have r \subseteq r\text{-}ext - Id strict-linear-order (r\text{-}ext - Id)
  by (auto simp: irrefl-def strict-linear-order-on-diff-Id dest: strict-partial-orderD(2))
  then show ?thesis by blast
qed
corollary acyclic-order-extension:
  assumes acyclic r
  shows \exists r\text{-}ext. strict\text{-}linear\text{-}order r\text{-}ext \land r \subseteq r\text{-}ext
proof -
  from assms have strict-partial-order (r^+)
   unfolding strict-partial-order-def using acyclic-irreft trans-trancl by blast
  thus ?thesis
   by (meson Szpilrajn r-into-trancl' subset-iff)
\mathbf{qed}
```

3 Consistency

As a weakening of transitivity, Suzumura introduces the notion of consistency which rules out all preference cycles that contain at least one strict preference. Consistency characterises those order relations which can be extended (in terms of *extends*) to a total order relation.

```
definition consistent :: 'a rel \Rightarrow bool where consistent r = (\forall (x, y) \in r^+. (y, x) \notin asym-factor r)

lemma consistentI: (\bigwedge x \ y. (x, y) \in r^+ \implies (y, x) \notin asym-factor r) \implies consistent r unfolding consistent-def by blast

lemma consistent-if-preorder-on[simp]: preorder-on A \ r \implies consistent \ r unfolding preorder-on-def consistent-def asym-factor-def by auto

lemma consistent-asym-factor[simp]: consistent r \implies consistent (asym-factor r) unfolding consistent-def using asym-factor-tranclE by fastforce

lemma acyclic-asym-factor-if-consistent[simp]: consistent r \implies acyclic (asym-factor r) unfolding consistent-def acyclic-def using asym-factor-tranclE by (metis case-prodD trancl.simps)
```

```
lemma consistent-Restr[simp]: consistent r \Longrightarrow consistent \ (Restr \ r \ A)
 unfolding consistent-def asym-factor-def
  using trancl-mono by fastforce
    This corresponds to Theorem 2.2 [2].
theorem trans-if-refl-total-consistent:
  assumes refl\ r\ total\ r\ and\ consistent\ r
 shows trans r
proof
  fix x y z assume (x, y) \in r (y, z) \in r
 from \langle (x, y) \in r \rangle \langle (y, z) \in r \rangle have (x, z) \in r^+
   by simp
 hence (z, x) \notin asym\text{-}factor r
   using \langle consistent \ r \rangle unfolding consistent-def by blast
 hence x \neq z \Longrightarrow (x, z) \in r
   unfolding asym-factor-def using (total r)
   by (auto simp: total-on-def)
  then show (x, z) \in r
   apply(cases x = z)
   using refl-onD[OF \langle refl \ r \rangle] by blast+
qed
lemma order-extension-if-consistent:
 assumes consistent r
 obtains r-ext where extends r-ext r total-preorder r-ext
proof -
  from assms have extends: extends (r^*) r
   unfolding extends-def consistent-def asym-factor-def
   using rtranclD by (fastforce simp: Field-def)
 have preorder: preorder (r^*)
   unfolding preorder-on-def using refl-on-def trans-def by fastforce
 from strict-extends-preorder-on[OF preorder] extends obtain r-ext where
   total-preorder r-ext extends r-ext r
   using transpE[OF transp-extends] unfolding strict-extends-def by blast
  then show thesis using that by blast
qed
lemma consistent-if-extends-trans:
 assumes extends r-ext r trans r-ext
 shows consistent r
proof(rule consistentI, standard)
 fix x y assume *: (x, y) \in r^+ (y, x) \in asym-factor r
  with assms have (x, y) \in r-ext
   using trancl-subs-extends-if-trans[OF assms] by blast
 moreover from * assms have (x, y) \notin r-ext
```

```
unfolding extends-def asym-factor-def by auto
ultimately show False by blast
qed
```

With Theorem 2.6 [2], we show that *consistent* characterises the existence of order extensions.

```
corollary order-extension-iff-consistent:

(\exists r\text{-}ext. \ extends \ r\text{-}ext \ r \land total\text{-}preorder \ r\text{-}ext) \longleftrightarrow consistent \ r

using order-extension-if-consistent consistent-if-extends-trans

by (metis total-preorder-onD(2))
```

The following theorem corresponds to Theorem 2.7 [2]. Bossert and Suzumura claim that this theorem generalises Szpilrajn's theorem; however, we cannot use the theorem to strictly extend a given order Q. Therefore, it is not strong enough to extend a strict partial order to a strict linear order. It works for total preorders (called orderings by Bossert and Suzumura). Unfortunately, we were not able to generalise the theorem to allow for strict extensions.

```
theorem general-order-extension-iff-consistent:
      assumes \bigwedge x \ y. \llbracket \ x \in S; \ y \in S; \ x \neq y \ \rrbracket \Longrightarrow (x, y) \notin Q^+
      assumes total-preorder-on S Ord
      shows (\exists Ext. extends Ext Q \land total-preorder Ext \land Restr Ext S = Ord)
                \longleftrightarrow consistent \ Q \ (is ?ExExt \longleftrightarrow -)
proof
       assume ?ExExt
       then obtain Ext where
              extends Ext Q
             refl Ext trans Ext total Ext
             Restr\ Ext\ S = Restr\ Ord\ S
             using total-preorder-onD by fast
      show consistent Q
      proof(rule consistentI)
            fix x y assume (x, y) \in Q^+
             with \langle extends \ Ext \ Q \rangle \langle trans \ Ext \rangle have (x, y) \in Ext
                    unfolding extends-def by (metis trancl-id trancl-mono)
             then have (y, x) \notin asym\text{-}factor\ Ext
                    unfolding asym-factor-def by blast
             with \langle extends \ Ext \ Q \rangle show (y, x) \notin asym-factor Q
                    unfolding extends-def asym-factor-def by blast
      qed
next
      assume consistent Q
       define Q' where Q' \equiv Q^* \cup Ord \cup Ord \cup Q^* \cup Q^* \cup Ord \cup (Q^* \cup Ord) \cup Ord \cup O
  Q^*
      have refl (Q^*) trans (Q^*) refl-on S Ord trans Ord total-on S Ord
         using refl-rtrancl trans-rtrancl total-preorder-onD[OF \land total-preorder-on S Ord \land]
             \mathbf{by} - assumption
```

```
have preorder-Q': preorder Q'
 proof
   show refl Q'
     unfolding Q'-def refl-on-def by auto
   from \langle trans (Q^*) \rangle \langle refl-on S Ord \rangle \langle trans Ord \rangle show trans Q'
     unfolding Q'-def[simplified]
     apply(safe\ intro!:\ transI)
     {\bf unfolding} \ relcomp.simps
     by (metis assms(1) refl-on-domain rtranclD transD)+
 qed
 have consistent Q'
   using consistent-if-preorder-on preorder-Q' by blast
 have extends Q' Q
 proof(rule extendsI)
   have Q \subseteq Restr(Q^*) (Field Q)
     by (auto intro: FieldI1 FieldI2)
   then show Q \subseteq Q'
     unfolding Q'-def by blast
   from \langle consistent Q \rangle have consistent D: (x, y) \in Q^+ \Longrightarrow (y, x) \in Q \Longrightarrow (x, y)
\in Q \text{ for } x y
     unfolding consistent-def asym-factor-def using rtranclD by fastforce
   have refl-on-domainE: [(x, y) \in Ord; x \in S \Longrightarrow y \in S \Longrightarrow P] \Longrightarrow P for x \in S
     using refl-on-domain[OF \langle refl-on S Ord \rangle] by blast
   show asym-factor Q \subseteq asym-factor Q'
     unfolding Q'-def asym-factor-def Field-def
     apply(safe)
     using assms(1) consistentD refl-on-domainE
     by (metis r-into-rtrancl rtranclD rtrancl-trancl-trancl)+
 qed
  with strict-extends-preorder-on[OF \langle preorder Q' \rangle]
  obtain Ext where Ext: extends Ext Q' extends Ext Q total-preorder Ext
   unfolding strict-extends-def
   by (metis transpE transp-extends)
 have not-in-Q': x \in S \Longrightarrow y \in S \Longrightarrow (x, y) \notin Ord \Longrightarrow (x, y) \notin Q' for x y
   using assms(1) unfolding Q'-def
   apply(safe)
   by (metis \langle refl-on\ S\ Ord \rangle\ refl-on-def\ refl-on-domain\ rtrancl D)+
 have Restr\ Ext\ S = Ord
 proof
```

```
from \langle extends \ Ext \ Q' \rangle have Ord \subseteq Ext
      unfolding Q'-def extends-def by auto
    with \langle refl\text{-}on \ S \ Ord \rangle show Ord \subseteq Restr \ Ext \ S
      using refl-on-domain by fast
  next
    have (x, y) \in Ord if x \in S and y \in S and (x, y) \in Ext for x y
    proof(rule ccontr)
      assume (x, y) \notin Ord
      with that not-in-Q' have (x, y) \notin Q'
        by blast
      with \langle refl-on \ S \ Ord \rangle \langle total-on \ S \ Ord \rangle \langle x \in S \rangle \langle y \in S \rangle \langle (x, y) \notin Ord \rangle
      have (y, x) \in Ord
        unfolding refl-on-def total-on-def by fast
      hence (y, x) \in Q'
        unfolding Q'-def by blast
      with \langle (x, y) \notin Q' \rangle \langle (y, x) \in Q' \rangle \langle extends \ Ext \ Q' \rangle
      have (x, y) \notin Ext
        unfolding extends-def asym-factor-def by auto
      with \langle (x, y) \in Ext \rangle show False by blast
    qed
    then show Restr\ Ext\ S\subseteq Ord
      by blast
  qed
  with Ext show ?ExExt by blast
qed
```

4 Strong consistency

We define a stronger version of *consistent* which requires that the relation does not contain hidden preference cycles, i.e. if there is a preference cycle then all the elements in the cycle should already be related (in both directions). In contrast to consistency which characterises relations that can be extended, strong consistency characterises relations that can be extended strictly (cf. *strict-extends*).

```
definition strongly-consistent r \equiv sym\text{-}factor\ (r^+) \subseteq sym\text{-}factor\ (r^=)

lemma consistent-if-strongly-consistent: strongly-consistent r \Longrightarrow consistent\ r

unfolding strongly-consistent-def consistent-def

by (auto simp: sym-factor-def asym-factor-def)
```

```
lemma strongly-consistentI: sym-factor (r^+) \subseteq sym-factor (r^=) \Longrightarrow strongly-consistent r unfolding strongly-consistent-def by blast
```

lemma strongly-consistent-if-trans-strict-extension: assumes strict-extends r-ext r assumes trans r-ext

```
shows strongly-consistent r
\mathbf{proof}(unfold\ strongly\text{-}consistent\text{-}def,\ standard)
 fix x assume x \in sym\text{-}factor\ (r^+)
  then show x \in sym\text{-}factor\ (r^{=})
   using assms trancl-subs-extends-if-trans[OF extends-if-strict-extends]
   by (metis sym-factor-mono strict-extendsE subsetD sym-factor-reflc)
qed
\mathbf{lemma} \ \mathit{strict}\text{-}\mathit{order}\text{-}\mathit{extension}\text{-}\mathit{if}\text{-}\mathit{consistent}\text{:}
 assumes strongly-consistent r
 obtains r-ext where strict-extends r-ext r total-preorder r-ext
 from assms have strict-extends (r^+) r
   unfolding strongly-consistent-def strict-extends-def extends-def asym-factor-def
sym-factor-def
   by (auto simp: Field-def dest: tranclD)
 moreover have strict-extends (r^*) (r^+)
   unfolding strict-extends-def extends-def
   by (auto simp: asym-factor-rtrancl sym-factor-def dest: rtranclD)
  ultimately have extends: strict-extends (r^*) r
   using transpE[OF\ transp-strict-extends] by blast
  have preorder (r^*)
   unfolding preorder-on-def using refl-on-def trans-def by fastforce
  from strict-extends-preorder-on[OF this] extends obtain r-ext where
    total-preorder r-ext strict-extends r-ext r
   using transpE[OF\ transp-strict-extends] by blast
  then show thesis using that by blast
qed
experiment begin
    We can instantiate the above theorem to get Szpilrajn's theorem.
lemma
 assumes strict-partial-order r
 shows \exists r\text{-}ext. strict\text{-}linear\text{-}order r\text{-}ext \land r \subseteq r\text{-}ext
 from assms[unfolded\ strict-partial-order-def] have strongly-consistent\ r\ antisym
   unfolding strongly-consistent-def by (simp-all add: antisym-if-irrefl-trans)
 from strict-order-extension-if-consistent [OF this (1)] obtain r-ext
   where strict-extends r-ext r total-preorder r-ext
   by blast
  with assms[unfolded strict-partial-order-def]
 have trans (r\text{-}ext - Id) irrefl (r\text{-}ext - Id) total (r\text{-}ext - Id) r \subseteq (r\text{-}ext - Id)
```

by (auto simp: irrefl-def elim: strict-extendsE intro: trans-diff-Id dest: to-

using strict-extends-antisym $[OF - \langle antisym \ r \rangle]$

tal-preorder-onD)

```
then show ?thesis
unfolding strict-linear-order-on-def by blast
qed
end
```

References

- [1] Wikipedia: Szpilrajn extension theorem. https://en.wikipedia.org/wiki/Szpilrajn_extension_theorem. Accessed: 2019-07-27.
- [2] W. Bossert and K. Suzumura. *Consistency, Choice, and Rationality*. Harvard University Press, 2010.
- [3] E. Szpilrajn. Sur l'extension de l'ordre partiel. Fundamenta Mathematicae, 16:386–389, 1930.