
Order Extension and Szpilrajn’s Theorem

Peter Zeller and Lukas Stevens

March 17, 2025

We formalize a more general version of Szpilrajn’s extension theorem [3],
employing the terminology of Bossert and Suzumura [2]. We also formalize
Theorem 2.7 of their book. Our extension theorem states that any preorder
can be extended to a total preorder while maintaining its structure. The
proof of the extension theorem follows the proof presented in the Wikipedia
article [1].

1 Definitions
1.1 Symmetric and asymmetric factor of a relation
According to Bossert and Suzumura, every relation can be partitioned into
its symmetric and asymmetric factor. The symmetric factor of a relation r
contains all pairs (x, y) ∈ r where (y, x) ∈ r. Conversely, the asymmetric
factor contains all pairs where this is not the case. In terms of an order (≤),
the asymmetric factor contains all (x, y) ∈ {(x, y) |x y. x ≤ y} where x <
y.
definition sym-factor :: ′a rel ⇒ ′a rel

where sym-factor r ≡ {(x, y) ∈ r . (y, x) ∈ r}

lemma sym-factor-def ′: sym-factor r = r ∩ r−1

unfolding sym-factor-def by fast

definition asym-factor :: ′a rel ⇒ ′a rel
where asym-factor r = {(x, y) ∈ r . (y, x) /∈ r}

1.1.1 Properties of the symmetric factor
lemma sym-factorI [intro]: (x, y) ∈ r =⇒ (y, x) ∈ r =⇒ (x, y) ∈ sym-factor r

unfolding sym-factor-def by blast

lemma sym-factorE [elim?]:
assumes (x, y) ∈ sym-factor r obtains (x, y) ∈ r (y, x) ∈ r
using assms[unfolded sym-factor-def] by blast

1

lemma sym-sym-factor [simp]: sym (sym-factor r)
unfolding sym-factor-def
by (auto intro!: symI)

lemma trans-sym-factor [simp]: trans r =⇒ trans (sym-factor r)
unfolding sym-factor-def ′ using trans-Int by force

lemma refl-on-sym-factor [simp]: refl-on A r =⇒ refl-on A (sym-factor r)
unfolding sym-factor-def
by (auto intro!: refl-onI dest: refl-onD refl-onD1)

lemma sym-factor-absorb-if-sym[simp]: sym r =⇒ sym-factor r = r
unfolding sym-factor-def ′

by (simp add: sym-conv-converse-eq)

lemma sym-factor-idem[simp]: sym-factor (sym-factor r) = sym-factor r
using sym-factor-absorb-if-sym[OF sym-sym-factor] .

lemma sym-factor-reflc[simp]: sym-factor (r=) = (sym-factor r)=
unfolding sym-factor-def by auto

lemma sym-factor-Restr [simp]: sym-factor (Restr r A) = Restr (sym-factor r) A
unfolding sym-factor-def by blast

In contrast to asym-factor, the sym-factor is monotone.
lemma sym-factor-mono: r ⊆ s =⇒ sym-factor r ⊆ sym-factor s

unfolding sym-factor-def by auto

1.1.2 Properties of the asymmetric factor
lemma asym-factorI [intro]: (x, y) ∈ r =⇒ (y, x) /∈ r =⇒ (x, y) ∈ asym-factor r

unfolding asym-factor-def by blast

lemma asym-factorE [elim?]:
assumes (x, y) ∈ asym-factor r obtains (x, y) ∈ r
using assms unfolding asym-factor-def by blast

lemma refl-not-in-asym-factor [simp]: (x, x) /∈ asym-factor r
unfolding asym-factor-def by blast

lemma irrefl-asym-factor [simp]: irrefl (asym-factor r)
unfolding asym-factor-def irrefl-def by fast

lemma asym-asym-factor [simp]: asym (asym-factor r)
using irrefl-asym-factor
by (auto intro!: asymI simp: asym-factor-def)

lemma trans-asym-factor [simp]: trans r =⇒ trans (asym-factor r)
unfolding asym-factor-def trans-def by fast

2

lemma asym-if-irrefl-trans: irrefl r =⇒ trans r =⇒ asym r
by (intro asymI) (auto simp: irrefl-def trans-def)

lemma antisym-if-irrefl-trans: irrefl r =⇒ trans r =⇒ antisym r
using antisym-def asym-if-irrefl-trans by (auto dest: asymD)

lemma asym-factor-asym-rel[simp]: asym r =⇒ asym-factor r = r
unfolding asym-factor-def
by (auto dest: asymD)

lemma irrefl-trans-asym-factor-id[simp]: irrefl r =⇒ trans r =⇒ asym-factor r =
r

using asym-factor-asym-rel[OF asym-if-irrefl-trans] .

lemma asym-factor-id[simp]: asym-factor (asym-factor r) = asym-factor r
using asym-factor-asym-rel[OF asym-asym-factor] .

lemma asym-factor-rtrancl: asym-factor (r∗) = asym-factor (r+)
unfolding asym-factor-def
by (auto simp add: rtrancl-eq-or-trancl)

lemma asym-factor-Restr [simp]: asym-factor (Restr r A) = Restr (asym-factor r)
A

unfolding asym-factor-def by blast

lemma acyclic-asym-factor [simp]: acyclic r =⇒ acyclic (asym-factor r)
unfolding asym-factor-def by (auto intro: acyclic-subset)

1.1.3 Relations between symmetric and asymmetric factor

We prove that sym-factor and asym-factor partition the input relation.
lemma sym-asym-factor-Un: sym-factor r ∪ asym-factor r = r

unfolding sym-factor-def asym-factor-def by blast

lemma disjnt-sym-asym-factor [simp]: disjnt (sym-factor r) (asym-factor r)
unfolding disjnt-def
unfolding sym-factor-def asym-factor-def by blast

lemma Field-sym-asym-factor-Un:
Field (sym-factor r) ∪ Field (asym-factor r) = Field r
using sym-asym-factor-Un Field-Un by metis

lemma asym-factor-tranclE :
assumes (a, b) ∈ (asym-factor r)+ shows (a, b) ∈ r+

using assms sym-asym-factor-Un
by (metis UnCI subsetI trancl-mono)

3

1.2 Extension of Orders
We use the definition of Bossert and Suzumura for extends. The requirement
r ⊆ R is obvious. The second requirement asym-factor r ⊆ asym-factor R
enforces that the extension R maintains all strict preferences of r (viewing
r as a preference relation).
definition extends :: ′a rel ⇒ ′a rel ⇒ bool

where extends R r ≡ r ⊆ R ∧ asym-factor r ⊆ asym-factor R

We define a stronger notion of extends where we also demand that
sym-factor R ⊆ (sym-factor r)=. This enforces that the extension does
not introduce preference cycles between previously unrelated pairs (x, y) ∈
R − r.
definition strict-extends :: ′a rel ⇒ ′a rel ⇒ bool

where strict-extends R r ≡ extends R r ∧ sym-factor R ⊆ (sym-factor r)=

lemma extendsI [intro]: r ⊆ R =⇒ asym-factor r ⊆ asym-factor R =⇒ extends R
r

unfolding extends-def by (intro conjI)

lemma extendsE :
assumes extends R r
obtains r ⊆ R asym-factor r ⊆ asym-factor R
using assms unfolding extends-def by blast

lemma trancl-subs-extends-if-trans: extends r-ext r =⇒ trans r-ext =⇒ r+ ⊆ r-ext
unfolding extends-def asym-factor-def
by (metis subrelI trancl-id trancl-mono)

lemma extends-if-strict-extends: strict-extends r-ext ext =⇒ extends r-ext ext
unfolding strict-extends-def by blast

lemma strict-extendsI [intro]:
assumes r ⊆ R asym-factor r ⊆ asym-factor R sym-factor R ⊆ (sym-factor r)=
shows strict-extends R r
unfolding strict-extends-def using assms by (intro conjI extendsI)

lemma strict-extendsE :
assumes strict-extends R r
obtains r ⊆ R asym-factor r ⊆ asym-factor R sym-factor R ⊆ (sym-factor r)=
using assms extendsE unfolding strict-extends-def by blast

lemma strict-extends-antisym-Restr :
assumes strict-extends R r
assumes antisym (Restr r A)
shows antisym ((R − r) ∪ Restr r A)

proof(rule antisymI , rule ccontr)
fix x y assume (x, y) ∈ (R − r) ∪ Restr r A (y, x) ∈ (R − r) ∪ Restr r A x 6=

y

4

with ‹strict-extends R r› have (x, y) ∈ sym-factor R
unfolding sym-factor-def by (auto elim!: strict-extendsE)

with assms ‹x 6= y› have (x, y) ∈ sym-factor r
by (auto elim!: strict-extendsE)

then have (x, y) ∈ r (y, x) ∈ r
unfolding sym-factor-def by simp-all

with ‹antisym (Restr r A)› ‹x 6= y› ‹(y, x) ∈ R − r ∪ Restr r A› show False
using antisymD by fastforce

qed

Here we prove that we have no preference cycles between previously
unrelated pairs.
lemma antisym-Diff-if-strict-extends:

assumes strict-extends R r
shows antisym (R − r)
using strict-extends-antisym-Restr [OF assms, where ?A={}] by simp

lemma strict-extends-antisym:
assumes strict-extends R r
assumes antisym r
shows antisym R
using assms strict-extends-antisym-Restr [OF assms(1), where ?A=UNIV]
by (auto elim!: strict-extendsE simp: antisym-def)

lemma strict-extends-if-strict-extends-reflc:
assumes strict-extends r-ext (r=)
shows strict-extends r-ext r

proof(intro strict-extendsI)
from assms show r ⊆ r-ext

by (auto elim: strict-extendsE)

from assms ‹r ⊆ r-ext› show asym-factor r ⊆ asym-factor r-ext
unfolding strict-extends-def
by (auto simp: asym-factor-def sym-factor-def)

from assms show sym-factor r-ext ⊆ (sym-factor r)=
by (auto simp: sym-factor-def strict-extends-def)

qed

lemma strict-extends-diff-Id:
assumes irrefl r trans r
assumes strict-extends r-ext (r=)
shows strict-extends (r-ext − Id) r

proof(intro strict-extendsI)
from assms show r ⊆ r-ext − Id

by (auto elim: strict-extendsE simp: irrefl-def)

note antisym-r = antisym-if-irrefl-trans[OF assms(1 ,2)]
with assms strict-extends-if-strict-extends-reflc show asym-factor r ⊆ asym-factor

5

(r-ext − Id)
unfolding asym-factor-def
by (auto intro: strict-extends-antisym[THEN antisymD] elim: strict-extendsE

transE)

from assms antisym-r show sym-factor (r-ext − Id) ⊆ (sym-factor r)=
unfolding sym-factor-def
by (auto intro: strict-extends-antisym[THEN antisymD])

qed

Both extends and strict-extends form a partial order since they are re-
flexive, transitive, and antisymmetric.
lemma shows

reflp-extends: reflp extends and
transp-extends: transp extends and
antisymp-extends: antisymp extends

unfolding extends-def reflp-def transp-def antisymp-def
by auto

lemma shows
reflp-strict-extends: reflp strict-extends and
transp-strict-extends: transp strict-extends and
antisymp-strict-extends: antisymp strict-extends

using reflp-extends transp-extends antisymp-extends
unfolding strict-extends-def reflp-def transp-def antisymp-def
by auto

1.3 Missing order definitions
lemma preorder-onD[dest?]:

assumes preorder-on A r
shows refl-on A r trans r
using assms unfolding preorder-on-def by blast+

lemma preorder-onI [intro]: refl-on A r =⇒ trans r =⇒ preorder-on A r
unfolding preorder-on-def by (intro conjI)

abbreviation preorder ≡ preorder-on UNIV

lemma preorder-rtrancl: preorder (r∗)
by (intro preorder-onI refl-rtrancl trans-rtrancl)

definition total-preorder-on A r ≡ preorder-on A r ∧ total-on A r

abbreviation total-preorder r ≡ total-preorder-on UNIV r

lemma total-preorder-onI [intro]:
refl-on A r =⇒ trans r =⇒ total-on A r =⇒ total-preorder-on A r
unfolding total-preorder-on-def by (intro conjI preorder-onI)

6

lemma total-preorder-onD[dest?]:
assumes total-preorder-on A r
shows refl-on A r trans r total-on A r
using assms unfolding total-preorder-on-def preorder-on-def by blast+

definition strict-partial-order r ≡ trans r ∧ irrefl r

lemma strict-partial-orderI [intro]:
trans r =⇒ irrefl r =⇒ strict-partial-order r
unfolding strict-partial-order-def by blast

lemma strict-partial-orderD[dest?]:
assumes strict-partial-order r
shows trans r irrefl r
using assms unfolding strict-partial-order-def by blast+

lemma strict-partial-order-acyclic:
assumes strict-partial-order r
shows acyclic r
by (metis acyclic-irrefl assms strict-partial-order-def trancl-id)

abbreviation partial-order ≡ partial-order-on UNIV

lemma partial-order-onI [intro]:
refl-on A r =⇒ trans r =⇒ antisym r =⇒ partial-order-on A r
using partial-order-on-def by blast

lemma linear-order-onI [intro]:
refl-on A r =⇒ trans r =⇒ antisym r =⇒ total-on A r =⇒ linear-order-on A r
using linear-order-on-def by blast

lemma linear-order-onD[dest?]:
assumes linear-order-on A r
shows refl-on A r trans r antisym r total-on A r
using assms[unfolded linear-order-on-def] partial-order-onD by blast+

A typical example is (⊂) on sets:
lemma strict-partial-order-subset:

strict-partial-order {(x,y). x ⊂ y}
proof

show trans {(x,y). x ⊂ y}
by (auto simp add: trans-def)

show irrefl {(x, y). x ⊂ y}
by (simp add: irrefl-def)

qed

We already have a definition of a strict linear order in strict-linear-order.

7

2 Extending preorders to total preorders
We start by proving that a preorder with two incomparable elements x and
y can be strictly extended to a preorder where x < y.
lemma can-extend-preorder :

assumes preorder-on A r
and y ∈ A x ∈ A (y, x) /∈ r

shows
preorder-on A ((insert (x, y) r)+) strict-extends ((insert (x, y) r)+) r

proof −
note preorder-onD[OF ‹preorder-on A r›]
then have insert (x, y) r ⊆ A × A

using ‹y ∈ A› ‹x ∈ A› refl-on-domain by fast
with ‹refl-on A r› show preorder-on A ((insert (x, y) r)+)

by (intro preorder-onI refl-onI trans-trancl)
(auto simp: trancl-subset-Sigma intro!: r-into-trancl ′ dest: refl-onD)

show strict-extends ((insert (x, y) r)+) r
proof(intro strict-extendsI)

from preorder-onD(2)[OF ‹preorder-on A r›] ‹(y, x) /∈ r›
show asym-factor r ⊆ asym-factor ((insert (x, y) r)+)

unfolding asym-factor-def trancl-insert
using rtranclD rtrancl-into-trancl1 r-r-into-trancl
by fastforce

from assms have (y, x) /∈ (insert (x, y) r)+
unfolding preorder-on-def trancl-insert
using refl-onD rtranclD by fastforce

with ‹trans r› show sym-factor ((insert (x, y) r)+) ⊆ (sym-factor r)=
unfolding trancl-insert sym-factor-def by (fastforce intro: rtrancl-trans)

qed auto
qed

With this, we can start the proof of our main extension theorem. For
this we will use a variant of Zorns Lemma, which only considers nonempty
chains:
lemma Zorns-po-lemma-nonempty:

assumes po: Partial-order r
and u:

∧
C . [[C ∈ Chains r ; C 6={}]] =⇒ ∃ u∈Field r . ∀ a∈C . (a, u) ∈ r

and r 6= {}
shows ∃m∈Field r . ∀ a∈Field r . (m, a) ∈ r −→ a = m

proof −
from ‹r 6= {}› obtain x where x ∈ Field r

using FieldI2 by fastforce
with assms show ?thesis

using Zorns-po-lemma by (metis empty-iff)
qed

8

theorem strict-extends-preorder-on:
assumes preorder-on A base-r
shows ∃ r . total-preorder-on A r ∧ strict-extends r base-r

proof −

We define an order on the set of strict extensions of the base relation
base-r, where r ≤ s iff strict-extends r base-r and strict-extends s r :

define order-of-orders :: (′a rel) rel where order-of-orders =
Restr {(r , s). strict-extends r base-r ∧ strict-extends s r} {r . preorder-on A r}

We show that this order consists of those relations that are preorders
and that strictly extend the base relation base-r

have Field-order-of-orders: Field order-of-orders =
{r . preorder-on A r ∧ strict-extends r base-r}
using transp-strict-extends

proof(safe)
fix r assume preorder-on A r strict-extends r base-r
with reflp-strict-extends have
(r , r) ∈ {(r , s). strict-extends r base-r ∧ strict-extends s r}
by (auto elim!: reflpE)

with ‹preorder-on A r› show r ∈ Field order-of-orders
unfolding order-of-orders-def by (auto simp: Field-def)

qed (auto simp: order-of-orders-def Field-def elim: transpE)

We now show that this set has a maximum and that any maximum of
this set is a total preorder and as thus is one of the extensions we are looking
for. We begin by showing the existence of a maximal element using Zorn’s
lemma.

have ∃m ∈ Field order-of-orders.
∀ a ∈ Field order-of-orders. (m, a) ∈ order-of-orders −→ a = m

proof (rule Zorns-po-lemma-nonempty)

Zorn’s Lemma requires us to prove that our order-of-orders is a nonempty
partial order and that every nonempty chain has an upper bound. The par-
tial order property is trivial, since we used strict-extends for the relation,
which is a partial order as shown above.

from reflp-strict-extends transp-strict-extends
have Refl {(r , s). strict-extends r base-r ∧ strict-extends s r}

unfolding refl-on-def Field-def by (auto elim: transpE reflpE)
moreover have trans {(r , s). strict-extends r base-r ∧ strict-extends s r}

using transp-strict-extends by (auto elim: transpE intro: transI)
moreover have antisym {(r , s). strict-extends r base-r ∧ strict-extends s r}

using antisymp-strict-extends by (fastforce dest: antisympD intro: antisymI)

ultimately show Partial-order order-of-orders
unfolding order-of-orders-def order-on-defs
using Field-order-of-orders Refl-Restr trans-Restr antisym-Restr
by blast

9

Also, our order is obviously not empty since it contains (base-r , base-r):
have (base-r , base-r) ∈ order-of-orders

unfolding order-of-orders-def
using assms reflp-strict-extends by (auto dest: reflpD)

thus order-of-orders 6= {} by force

Next we show that each chain has an upper bound. For the upper bound
we take the union of all relations in the chain.

show ∃ u ∈ Field order-of-orders. ∀ a ∈ C . (a, u) ∈ order-of-orders
if C-def : C ∈ Chains order-of-orders and C-nonempty: C 6= {}
for C

proof (rule bexI [where x=
⋃

C])

Obviously each element in the chain is a strict extension of base-r by
definition and as such it is also a preorder.

have preorder-r : preorder-on A r and extends-r : strict-extends r base-r if r
∈ C for r

using that C-def [unfolded order-of-orders-def Chains-def] by blast+

Because a chain is partially ordered, the union of the chain is reflexive
and transitive.

have total-subs-C : r ⊆ s ∨ s ⊆ r if r ∈ C and s ∈ C for r s
using C-def that
unfolding Chains-def order-of-orders-def strict-extends-def extends-def
by blast

have preorder-UnC : preorder-on A (
⋃

C)
proof(intro preorder-onI)

show refl-on A (
⋃

C)
using preorder-onD(1)[OF preorder-r] C-nonempty
unfolding refl-on-def by auto

from total-subs-C show trans (
⋃

C)
using chain-subset-trans-Union[unfolded chain-subset-def]
by (metis preorder-onD(2)[OF preorder-r])

qed

We show that
⋃

C strictly extends the base relation.
have strict-extends-UnC : strict-extends (

⋃
C) base-r

proof(intro strict-extendsI)
note extends-r-unfolded = extends-r [unfolded extends-def strict-extends-def]

show base-r ⊆ (
⋃

C)
using C-nonempty extends-r-unfolded
by blast

then show asym-factor base-r ⊆ asym-factor (
⋃

C)
using extends-r-unfolded

10

unfolding asym-factor-def by auto

show sym-factor (
⋃

C) ⊆ (sym-factor base-r)=
proof(safe)

fix x y assume (x, y) ∈ sym-factor (
⋃

C) (x, y) /∈ sym-factor base-r
then have (x, y) ∈

⋃
C (y, x) ∈

⋃
C

unfolding sym-factor-def by blast+

with extends-r obtain c where c ∈ C (x, y) ∈ c (y, x) ∈ c
strict-extends c base-r
using total-subs-C by blast

then have (x, y) ∈ sym-factor c
unfolding sym-factor-def by blast

with ‹strict-extends c base-r› ‹(x, y) /∈ sym-factor base-r›
show x = y

unfolding strict-extends-def by blast
qed

qed

from preorder-UnC strict-extends-UnC show (
⋃

C) ∈ Field order-of-orders
unfolding Field-order-of-orders by simp

Lastly, we prove by contradiction that
⋃

C is an upper bound for the
chain.

show ∀ a ∈ C . (a,
⋃

C) ∈ order-of-orders
proof(rule ccontr)

presume ∃ a ∈ C . (a,
⋃

C) /∈ order-of-orders
then obtain m where m: m ∈ C (m,

⋃
C) /∈ order-of-orders

by blast

hence strict-extends-m: strict-extends m base-r preorder-on A m
using extends-r preorder-r by blast+

with m have ¬ strict-extends (
⋃

C) m
using preorder-UnC unfolding order-of-orders-def by blast

from m have m ⊆
⋃

C
by blast

moreover
have sym-factor (

⋃
C) ⊆ (sym-factor m)=

proof(safe)
fix a b
assume (a, b) ∈ sym-factor (

⋃
C) (a, b) /∈ sym-factor m

then have (a, b) ∈ sym-factor base-r ∨ (a, b) ∈ Id
using strict-extends-UnC [unfolded strict-extends-def] by blast

with ‹(a, b) /∈ sym-factor m› strict-extends-m(1) show a = b
by (auto elim: strict-extendsE simp: sym-factor-mono[THEN in-mono])

qed
ultimately
have ¬ asym-factor m ⊆ asym-factor (

⋃
C)

11

using ‹¬ strict-extends (
⋃

C) m› unfolding strict-extends-def extends-def
by blast

then obtain x y where
(x, y) ∈ m (y, x) /∈ m (x, y) ∈ asym-factor m (x, y) /∈ asym-factor (

⋃
C)

unfolding asym-factor-def by blast

then obtain w where w ∈ C (y, x) ∈ w
unfolding asym-factor-def using ‹m ∈ C › by auto

with ‹(y, x) /∈ m› have ¬ extends m w
unfolding extends-def by auto

moreover
from ‹(x, y) ∈ m› have ¬ extends w m
proof(cases (x, y) ∈ w)

case True
with ‹(y, x) ∈ w› have (x, y) /∈ asym-factor w

unfolding asym-factor-def by simp
with ‹(x, y) ∈ asym-factor m› show ¬ extends w m

unfolding extends-def by auto
qed (auto simp: extends-def)

ultimately show False
using ‹m ∈ C › ‹w ∈ C ›
using C-def [unfolded Chains-def order-of-orders-def strict-extends-def]
by auto

qed blast
qed

qed

Let our maximal element be named max:
from this obtain max

where max-field: max ∈ Field order-of-orders
and is-max:
∀ a∈Field order-of-orders. (max, a) ∈ order-of-orders −→ a = max

by auto

from max-field have max-extends-base: preorder-on A max strict-extends max
base-r

using Field-order-of-orders by blast+

We still have to show, that max is a strict linear order, meaning that it
is also a total order:

have total-on A max
proof

fix x y :: ′a
assume x 6= y x ∈ A y ∈ A

show (x, y) ∈ max ∨ (y, x) ∈ max

12

proof (rule ccontr)

Assume that max is not total, and x and y are incomparable. Then we
can extend max by setting x < y:

presume (x, y) /∈ max and (y, x) /∈ max
let ?max ′ = (insert (x, y) max)+

note max ′-extends-max = can-extend-preorder [OF
‹preorder-on A max› ‹y ∈ A› ‹x ∈ A› ‹(y, x) /∈ max›]

hence max ′-extends-base: strict-extends ?max ′ base-r
using ‹strict-extends max base-r› transp-strict-extends by (auto elim:

transpE)

The extended relation is greater than max, which is a contradiction.
have (max, ?max ′) ∈ order-of-orders

using max ′-extends-base max ′-extends-max max-extends-base
unfolding order-of-orders-def by simp

thus False
using FieldI2 ‹(x, y) /∈ max› is-max by fastforce

qed simp-all
qed

with ‹preorder-on A max› have total-preorder-on A max
unfolding total-preorder-on-def by simp

with ‹strict-extends max base-r› show ?thesis by blast
qed

With this extension theorem, we can easily prove Szpilrajn’s theorem
and its equivalent for partial orders.
corollary partial-order-extension:

assumes partial-order-on A r
shows ∃ r-ext. linear-order-on A r-ext ∧ r ⊆ r-ext

proof −
from assms strict-extends-preorder-on obtain r-ext where r-ext:

total-preorder-on A r-ext strict-extends r-ext r
unfolding partial-order-on-def by blast

with assms have antisym r-ext
unfolding partial-order-on-def using strict-extends-antisym by blast

with assms r-ext have linear-order-on A r-ext ∧ r ⊆ r-ext
unfolding total-preorder-on-def order-on-defs strict-extends-def extends-def
by blast

then show ?thesis ..
qed

corollary Szpilrajn:

13

assumes strict-partial-order r
shows ∃ r-ext. strict-linear-order r-ext ∧ r ⊆ r-ext

proof −
from assms have partial-order (r=)

by (auto simp: antisym-if-irrefl-trans strict-partial-order-def)
from partial-order-extension[OF this] obtain r-ext where linear-order r-ext (r=)
⊆ r-ext

by blast
with assms have r ⊆ r-ext − Id strict-linear-order (r-ext − Id)
by (auto simp: irrefl-def strict-linear-order-on-diff-Id dest: strict-partial-orderD(2))

then show ?thesis by blast
qed

corollary acyclic-order-extension:
assumes acyclic r
shows ∃ r-ext. strict-linear-order r-ext ∧ r ⊆ r-ext

proof −
from assms have strict-partial-order (r+)

unfolding strict-partial-order-def using acyclic-irrefl trans-trancl by blast
thus ?thesis

by (meson Szpilrajn r-into-trancl ′ subset-iff)
qed

3 Consistency
As a weakening of transitivity, Suzumura introduces the notion of consis-
tency which rules out all preference cycles that contain at least one strict
preference. Consistency characterises those order relations which can be
extended (in terms of extends) to a total order relation.
definition consistent :: ′a rel ⇒ bool

where consistent r = (∀ (x, y) ∈ r+. (y, x) /∈ asym-factor r)

lemma consistentI : (
∧

x y. (x, y) ∈ r+ =⇒ (y, x) /∈ asym-factor r) =⇒ consistent
r

unfolding consistent-def by blast

lemma consistent-if-preorder-on[simp]:
preorder-on A r =⇒ consistent r
unfolding preorder-on-def consistent-def asym-factor-def by auto

lemma consistent-asym-factor [simp]: consistent r =⇒ consistent (asym-factor r)
unfolding consistent-def
using asym-factor-tranclE by fastforce

lemma acyclic-asym-factor-if-consistent[simp]: consistent r =⇒ acyclic (asym-factor
r)

unfolding consistent-def acyclic-def
using asym-factor-tranclE by (metis case-prodD trancl.simps)

14

lemma consistent-Restr [simp]: consistent r =⇒ consistent (Restr r A)
unfolding consistent-def asym-factor-def
using trancl-mono by fastforce

This corresponds to Theorem 2.2 [2].
theorem trans-if-refl-total-consistent:

assumes refl r total r and consistent r
shows trans r

proof
fix x y z assume (x, y) ∈ r (y, z) ∈ r

from ‹(x, y) ∈ r› ‹(y, z) ∈ r› have (x, z) ∈ r+

by simp
hence (z, x) /∈ asym-factor r

using ‹consistent r› unfolding consistent-def by blast
hence x 6= z =⇒ (x, z) ∈ r

unfolding asym-factor-def using ‹total r›
by (auto simp: total-on-def)

then show (x, z) ∈ r
apply(cases x = z)
using refl-onD[OF ‹refl r›] by blast+

qed

lemma order-extension-if-consistent:
assumes consistent r
obtains r-ext where extends r-ext r total-preorder r-ext

proof −
from assms have extends: extends (r∗) r

unfolding extends-def consistent-def asym-factor-def
using rtranclD by (fastforce simp: Field-def)

have preorder : preorder (r∗)
unfolding preorder-on-def using refl-on-def trans-def by fastforce

from strict-extends-preorder-on[OF preorder] extends obtain r-ext where
total-preorder r-ext extends r-ext r
using transpE [OF transp-extends] unfolding strict-extends-def by blast

then show thesis using that by blast
qed

lemma consistent-if-extends-trans:
assumes extends r-ext r trans r-ext
shows consistent r

proof(rule consistentI , standard)
fix x y assume ∗: (x, y) ∈ r+ (y, x) ∈ asym-factor r
with assms have (x, y) ∈ r-ext

using trancl-subs-extends-if-trans[OF assms] by blast
moreover from ∗ assms have (x, y) /∈ r-ext

15

unfolding extends-def asym-factor-def by auto
ultimately show False by blast

qed

With Theorem 2.6 [2], we show that consistent characterises the existence
of order extensions.
corollary order-extension-iff-consistent:
(∃ r-ext. extends r-ext r ∧ total-preorder r-ext) ←→ consistent r
using order-extension-if-consistent consistent-if-extends-trans
by (metis total-preorder-onD(2))

The following theorem corresponds to Theorem 2.7 [2]. Bossert and
Suzumura claim that this theorem generalises Szpilrajn’s theorem; however,
we cannot use the theorem to strictly extend a given order Q. Therefore, it
is not strong enough to extend a strict partial order to a strict linear order.
It works for total preorders (called orderings by Bossert and Suzumura).
Unfortunately, we were not able to generalise the theorem to allow for strict
extensions.
theorem general-order-extension-iff-consistent:

assumes
∧

x y. [[x ∈ S ; y ∈ S ; x 6= y]] =⇒ (x, y) /∈ Q+

assumes total-preorder-on S Ord
shows (∃Ext. extends Ext Q ∧ total-preorder Ext ∧ Restr Ext S = Ord)
←→ consistent Q (is ?ExExt ←→ -)

proof
assume ?ExExt
then obtain Ext where

extends Ext Q
refl Ext trans Ext total Ext
Restr Ext S = Restr Ord S
using total-preorder-onD by fast

show consistent Q
proof(rule consistentI)

fix x y assume (x, y) ∈ Q+

with ‹extends Ext Q› ‹trans Ext› have (x, y) ∈ Ext
unfolding extends-def by (metis trancl-id trancl-mono)

then have (y, x) /∈ asym-factor Ext
unfolding asym-factor-def by blast

with ‹extends Ext Q› show (y, x) /∈ asym-factor Q
unfolding extends-def asym-factor-def by blast

qed
next

assume consistent Q

define Q ′ where Q ′ ≡ Q∗ ∪ Ord ∪ Ord O Q∗ ∪ Q∗ O Ord ∪ (Q∗ O Ord) O
Q∗

have refl (Q∗) trans (Q∗) refl-on S Ord trans Ord total-on S Ord
using refl-rtrancl trans-rtrancl total-preorder-onD[OF ‹total-preorder-on S Ord›]
by − assumption

16

have preorder-Q ′: preorder Q ′

proof
show refl Q ′

unfolding Q ′-def refl-on-def by auto

from ‹trans (Q∗)› ‹refl-on S Ord› ‹trans Ord› show trans Q ′

unfolding Q ′-def [simplified]
apply(safe intro!: transI)
unfolding relcomp.simps
by (metis assms(1) refl-on-domain rtranclD transD)+

qed

have consistent Q ′

using consistent-if-preorder-on preorder-Q ′ by blast

have extends Q ′ Q
proof(rule extendsI)

have Q ⊆ Restr (Q∗) (Field Q)
by (auto intro: FieldI1 FieldI2)

then show Q ⊆ Q ′

unfolding Q ′-def by blast

from ‹consistent Q› have consistentD: (x, y) ∈ Q+ =⇒ (y, x) ∈ Q =⇒ (x, y)
∈ Q for x y

unfolding consistent-def asym-factor-def using rtranclD by fastforce
have refl-on-domainE : [[(x, y) ∈ Ord; x ∈ S =⇒ y ∈ S =⇒ P]] =⇒ P for x

y P
using refl-on-domain[OF ‹refl-on S Ord›] by blast

show asym-factor Q ⊆ asym-factor Q ′

unfolding Q ′-def asym-factor-def Field-def
apply(safe)
using assms(1) consistentD refl-on-domainE
by (metis r-into-rtrancl rtranclD rtrancl-trancl-trancl)+

qed

with strict-extends-preorder-on[OF ‹preorder Q ′›]
obtain Ext where Ext: extends Ext Q ′ extends Ext Q total-preorder Ext

unfolding strict-extends-def
by (metis transpE transp-extends)

have not-in-Q ′: x ∈ S =⇒ y ∈ S =⇒ (x, y) /∈ Ord =⇒ (x, y) /∈ Q ′ for x y
using assms(1) unfolding Q ′-def
apply(safe)
by (metis ‹refl-on S Ord› refl-on-def refl-on-domain rtranclD)+

have Restr Ext S = Ord
proof

17

from ‹extends Ext Q ′› have Ord ⊆ Ext
unfolding Q ′-def extends-def by auto

with ‹refl-on S Ord› show Ord ⊆ Restr Ext S
using refl-on-domain by fast

next
have (x, y) ∈ Ord if x ∈ S and y ∈ S and (x, y) ∈ Ext for x y
proof(rule ccontr)

assume (x, y) /∈ Ord
with that not-in-Q ′ have (x, y) /∈ Q ′

by blast
with ‹refl-on S Ord› ‹total-on S Ord› ‹x ∈ S› ‹y ∈ S› ‹(x, y) /∈ Ord›
have (y, x) ∈ Ord

unfolding refl-on-def total-on-def by fast
hence (y, x) ∈ Q ′

unfolding Q ′-def by blast
with ‹(x, y) /∈ Q ′› ‹(y, x) ∈ Q ′› ‹extends Ext Q ′›
have (x, y) /∈ Ext

unfolding extends-def asym-factor-def by auto
with ‹(x, y) ∈ Ext› show False by blast

qed
then show Restr Ext S ⊆ Ord

by blast
qed

with Ext show ?ExExt by blast
qed

4 Strong consistency
We define a stronger version of consistent which requires that the relation
does not contain hidden preference cycles, i.e. if there is a preference cycle
then all the elements in the cycle should already be related (in both direc-
tions). In contrast to consistency which characterises relations that can be
extended, strong consistency characterises relations that can be extended
strictly (cf. strict-extends).
definition strongly-consistent r ≡ sym-factor (r+) ⊆ sym-factor (r=)

lemma consistent-if-strongly-consistent: strongly-consistent r =⇒ consistent r
unfolding strongly-consistent-def consistent-def
by (auto simp: sym-factor-def asym-factor-def)

lemma strongly-consistentI : sym-factor (r+) ⊆ sym-factor (r=) =⇒ strongly-consistent
r

unfolding strongly-consistent-def by blast

lemma strongly-consistent-if-trans-strict-extension:
assumes strict-extends r-ext r
assumes trans r-ext

18

shows strongly-consistent r
proof(unfold strongly-consistent-def , standard)

fix x assume x ∈ sym-factor (r+)
then show x ∈ sym-factor (r=)

using assms trancl-subs-extends-if-trans[OF extends-if-strict-extends]
by (metis sym-factor-mono strict-extendsE subsetD sym-factor-reflc)

qed

lemma strict-order-extension-if-consistent:
assumes strongly-consistent r
obtains r-ext where strict-extends r-ext r total-preorder r-ext

proof −
from assms have strict-extends (r+) r

unfolding strongly-consistent-def strict-extends-def extends-def asym-factor-def
sym-factor-def

by (auto simp: Field-def dest: tranclD)
moreover have strict-extends (r∗) (r+)

unfolding strict-extends-def extends-def
by (auto simp: asym-factor-rtrancl sym-factor-def dest: rtranclD)

ultimately have extends: strict-extends (r∗) r
using transpE [OF transp-strict-extends] by blast

have preorder (r∗)
unfolding preorder-on-def using refl-on-def trans-def by fastforce

from strict-extends-preorder-on[OF this] extends obtain r-ext where
total-preorder r-ext strict-extends r-ext r
using transpE [OF transp-strict-extends] by blast

then show thesis using that by blast
qed

experiment begin

We can instantiate the above theorem to get Szpilrajn’s theorem.
lemma

assumes strict-partial-order r
shows ∃ r-ext. strict-linear-order r-ext ∧ r ⊆ r-ext

proof −
from assms[unfolded strict-partial-order-def] have strongly-consistent r antisym

r
unfolding strongly-consistent-def by (simp-all add: antisym-if-irrefl-trans)

from strict-order-extension-if-consistent[OF this(1)] obtain r-ext
where strict-extends r-ext r total-preorder r-ext
by blast

with assms[unfolded strict-partial-order-def]
have trans (r-ext − Id) irrefl (r-ext − Id) total (r-ext − Id) r ⊆ (r-ext − Id)

using strict-extends-antisym[OF - ‹antisym r›]
by (auto simp: irrefl-def elim: strict-extendsE intro: trans-diff-Id dest: to-

tal-preorder-onD)

19

then show ?thesis
unfolding strict-linear-order-on-def by blast

qed

end

References
[1] Wikipedia: Szpilrajn extension theorem. https://en.wikipedia.org/wiki/

Szpilrajn_extension_theorem. Accessed: 2019-07-27.

[2] W. Bossert and K. Suzumura. Consistency, Choice, and Rationality.
Harvard University Press, 2010.

[3] E. Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathemat-
icae, 16:386–389, 1930.

20

https://en.wikipedia.org/wiki/Szpilrajn_extension_theorem
https://en.wikipedia.org/wiki/Szpilrajn_extension_theorem

	Definitions
	Symmetric and asymmetric factor of a relation
	Properties of the symmetric factor
	Properties of the asymmetric factor
	Relations between symmetric and asymmetric factor

	Extension of Orders
	Missing order definitions

	Extending preorders to total preorders
	Consistency
	Strong consistency

