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We formalize a more general version of Szpilrajn’s extension theorem [3],
employing the terminology of Bossert and Suzumura [2]. We also formalize
Theorem 2.7 of their book. Our extension theorem states that any preorder
can be extended to a total preorder while maintaining its structure. The
proof of the extension theorem follows the proof presented in the Wikipedia
article [1].

1 Definitions
1.1 Symmetric and asymmetric factor of a relation
According to Bossert and Suzumura, every relation can be partitioned into
its symmetric and asymmetric factor. The symmetric factor of a relation r
contains all pairs (x, y) ∈ r where (y, x) ∈ r. Conversely, the asymmetric
factor contains all pairs where this is not the case. In terms of an order (≤),
the asymmetric factor contains all (x, y) ∈ {(x, y) |x y. x ≤ y} where x <
y.
definition sym-factor :: ′a rel ⇒ ′a rel

where sym-factor r ≡ {(x, y) ∈ r . (y, x) ∈ r}

lemma sym-factor-def ′: sym-factor r = r ∩ r−1

unfolding sym-factor-def by fast

definition asym-factor :: ′a rel ⇒ ′a rel
where asym-factor r = {(x, y) ∈ r . (y, x) /∈ r}

1.1.1 Properties of the symmetric factor
lemma sym-factorI [intro]: (x, y) ∈ r =⇒ (y, x) ∈ r =⇒ (x, y) ∈ sym-factor r

unfolding sym-factor-def by blast

lemma sym-factorE [elim?]:
assumes (x, y) ∈ sym-factor r obtains (x, y) ∈ r (y, x) ∈ r
using assms[unfolded sym-factor-def ] by blast
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lemma sym-sym-factor [simp]: sym (sym-factor r)
unfolding sym-factor-def
by (auto intro!: symI )

lemma trans-sym-factor [simp]: trans r =⇒ trans (sym-factor r)
unfolding sym-factor-def ′ using trans-Int by force

lemma refl-on-sym-factor [simp]: refl-on A r =⇒ refl-on A (sym-factor r)
unfolding sym-factor-def
by (auto intro!: refl-onI dest: refl-onD refl-onD1 )

lemma sym-factor-absorb-if-sym[simp]: sym r =⇒ sym-factor r = r
unfolding sym-factor-def ′

by (simp add: sym-conv-converse-eq)

lemma sym-factor-idem[simp]: sym-factor (sym-factor r) = sym-factor r
using sym-factor-absorb-if-sym[OF sym-sym-factor ] .

lemma sym-factor-reflc[simp]: sym-factor (r=) = (sym-factor r)=
unfolding sym-factor-def by auto

lemma sym-factor-Restr [simp]: sym-factor (Restr r A) = Restr (sym-factor r) A
unfolding sym-factor-def by blast

In contrast to asym-factor, the sym-factor is monotone.
lemma sym-factor-mono: r ⊆ s =⇒ sym-factor r ⊆ sym-factor s

unfolding sym-factor-def by auto

1.1.2 Properties of the asymmetric factor
lemma asym-factorI [intro]: (x, y) ∈ r =⇒ (y, x) /∈ r =⇒ (x, y) ∈ asym-factor r

unfolding asym-factor-def by blast

lemma asym-factorE [elim?]:
assumes (x, y) ∈ asym-factor r obtains (x, y) ∈ r
using assms unfolding asym-factor-def by blast

lemma refl-not-in-asym-factor [simp]: (x, x) /∈ asym-factor r
unfolding asym-factor-def by blast

lemma irrefl-asym-factor [simp]: irrefl (asym-factor r)
unfolding asym-factor-def irrefl-def by fast

lemma asym-asym-factor [simp]: asym (asym-factor r)
using irrefl-asym-factor
by (auto intro!: asymI simp: asym-factor-def )

lemma trans-asym-factor [simp]: trans r =⇒ trans (asym-factor r)
unfolding asym-factor-def trans-def by fast
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lemma asym-if-irrefl-trans: irrefl r =⇒ trans r =⇒ asym r
by (intro asymI ) (auto simp: irrefl-def trans-def )

lemma antisym-if-irrefl-trans: irrefl r =⇒ trans r =⇒ antisym r
using antisym-def asym-if-irrefl-trans by (auto dest: asymD)

lemma asym-factor-asym-rel[simp]: asym r =⇒ asym-factor r = r
unfolding asym-factor-def
by (auto dest: asymD)

lemma irrefl-trans-asym-factor-id[simp]: irrefl r =⇒ trans r =⇒ asym-factor r =
r

using asym-factor-asym-rel[OF asym-if-irrefl-trans] .

lemma asym-factor-id[simp]: asym-factor (asym-factor r) = asym-factor r
using asym-factor-asym-rel[OF asym-asym-factor ] .

lemma asym-factor-rtrancl: asym-factor (r∗) = asym-factor (r+)
unfolding asym-factor-def
by (auto simp add: rtrancl-eq-or-trancl)

lemma asym-factor-Restr [simp]: asym-factor (Restr r A) = Restr (asym-factor r)
A

unfolding asym-factor-def by blast

lemma acyclic-asym-factor [simp]: acyclic r =⇒ acyclic (asym-factor r)
unfolding asym-factor-def by (auto intro: acyclic-subset)

1.1.3 Relations between symmetric and asymmetric factor

We prove that sym-factor and asym-factor partition the input relation.
lemma sym-asym-factor-Un: sym-factor r ∪ asym-factor r = r

unfolding sym-factor-def asym-factor-def by blast

lemma disjnt-sym-asym-factor [simp]: disjnt (sym-factor r) (asym-factor r)
unfolding disjnt-def
unfolding sym-factor-def asym-factor-def by blast

lemma Field-sym-asym-factor-Un:
Field (sym-factor r) ∪ Field (asym-factor r) = Field r
using sym-asym-factor-Un Field-Un by metis

lemma asym-factor-tranclE :
assumes (a, b) ∈ (asym-factor r)+ shows (a, b) ∈ r+

using assms sym-asym-factor-Un
by (metis UnCI subsetI trancl-mono)
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1.2 Extension of Orders
We use the definition of Bossert and Suzumura for extends. The requirement
r ⊆ R is obvious. The second requirement asym-factor r ⊆ asym-factor R
enforces that the extension R maintains all strict preferences of r (viewing
r as a preference relation).
definition extends :: ′a rel ⇒ ′a rel ⇒ bool

where extends R r ≡ r ⊆ R ∧ asym-factor r ⊆ asym-factor R

We define a stronger notion of extends where we also demand that
sym-factor R ⊆ (sym-factor r)=. This enforces that the extension does
not introduce preference cycles between previously unrelated pairs (x, y) ∈
R − r.
definition strict-extends :: ′a rel ⇒ ′a rel ⇒ bool

where strict-extends R r ≡ extends R r ∧ sym-factor R ⊆ (sym-factor r)=

lemma extendsI [intro]: r ⊆ R =⇒ asym-factor r ⊆ asym-factor R =⇒ extends R
r

unfolding extends-def by (intro conjI )

lemma extendsE :
assumes extends R r
obtains r ⊆ R asym-factor r ⊆ asym-factor R
using assms unfolding extends-def by blast

lemma trancl-subs-extends-if-trans: extends r-ext r =⇒ trans r-ext =⇒ r+ ⊆ r-ext
unfolding extends-def asym-factor-def
by (metis subrelI trancl-id trancl-mono)

lemma extends-if-strict-extends: strict-extends r-ext ext =⇒ extends r-ext ext
unfolding strict-extends-def by blast

lemma strict-extendsI [intro]:
assumes r ⊆ R asym-factor r ⊆ asym-factor R sym-factor R ⊆ (sym-factor r)=
shows strict-extends R r
unfolding strict-extends-def using assms by (intro conjI extendsI )

lemma strict-extendsE :
assumes strict-extends R r
obtains r ⊆ R asym-factor r ⊆ asym-factor R sym-factor R ⊆ (sym-factor r)=
using assms extendsE unfolding strict-extends-def by blast

lemma strict-extends-antisym-Restr :
assumes strict-extends R r
assumes antisym (Restr r A)
shows antisym ((R − r) ∪ Restr r A)

proof(rule antisymI , rule ccontr)
fix x y assume (x, y) ∈ (R − r) ∪ Restr r A (y, x) ∈ (R − r) ∪ Restr r A x 6=

y
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with ‹strict-extends R r› have (x, y) ∈ sym-factor R
unfolding sym-factor-def by (auto elim!: strict-extendsE)

with assms ‹x 6= y› have (x, y) ∈ sym-factor r
by (auto elim!: strict-extendsE)

then have (x, y) ∈ r (y, x) ∈ r
unfolding sym-factor-def by simp-all

with ‹antisym (Restr r A)› ‹x 6= y› ‹(y, x) ∈ R − r ∪ Restr r A› show False
using antisymD by fastforce

qed

Here we prove that we have no preference cycles between previously
unrelated pairs.
lemma antisym-Diff-if-strict-extends:

assumes strict-extends R r
shows antisym (R − r)
using strict-extends-antisym-Restr [OF assms, where ?A={}] by simp

lemma strict-extends-antisym:
assumes strict-extends R r
assumes antisym r
shows antisym R
using assms strict-extends-antisym-Restr [OF assms(1 ), where ?A=UNIV ]
by (auto elim!: strict-extendsE simp: antisym-def )

lemma strict-extends-if-strict-extends-reflc:
assumes strict-extends r-ext (r=)
shows strict-extends r-ext r

proof(intro strict-extendsI )
from assms show r ⊆ r-ext

by (auto elim: strict-extendsE)

from assms ‹r ⊆ r-ext› show asym-factor r ⊆ asym-factor r-ext
unfolding strict-extends-def
by (auto simp: asym-factor-def sym-factor-def )

from assms show sym-factor r-ext ⊆ (sym-factor r)=
by (auto simp: sym-factor-def strict-extends-def )

qed

lemma strict-extends-diff-Id:
assumes irrefl r trans r
assumes strict-extends r-ext (r=)
shows strict-extends (r-ext − Id) r

proof(intro strict-extendsI )
from assms show r ⊆ r-ext − Id

by (auto elim: strict-extendsE simp: irrefl-def )

note antisym-r = antisym-if-irrefl-trans[OF assms(1 ,2 )]
with assms strict-extends-if-strict-extends-reflc show asym-factor r ⊆ asym-factor
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(r-ext − Id)
unfolding asym-factor-def
by (auto intro: strict-extends-antisym[THEN antisymD] elim: strict-extendsE

transE)

from assms antisym-r show sym-factor (r-ext − Id) ⊆ (sym-factor r)=
unfolding sym-factor-def
by (auto intro: strict-extends-antisym[THEN antisymD])

qed

Both extends and strict-extends form a partial order since they are re-
flexive, transitive, and antisymmetric.
lemma shows

reflp-extends: reflp extends and
transp-extends: transp extends and
antisymp-extends: antisymp extends

unfolding extends-def reflp-def transp-def antisymp-def
by auto

lemma shows
reflp-strict-extends: reflp strict-extends and
transp-strict-extends: transp strict-extends and
antisymp-strict-extends: antisymp strict-extends

using reflp-extends transp-extends antisymp-extends
unfolding strict-extends-def reflp-def transp-def antisymp-def
by auto

1.3 Missing order definitions
lemma preorder-onD[dest?]:

assumes preorder-on A r
shows refl-on A r trans r
using assms unfolding preorder-on-def by blast+

lemma preorder-onI [intro]: refl-on A r =⇒ trans r =⇒ preorder-on A r
unfolding preorder-on-def by (intro conjI )

abbreviation preorder ≡ preorder-on UNIV

lemma preorder-rtrancl: preorder (r∗)
by (intro preorder-onI refl-rtrancl trans-rtrancl)

definition total-preorder-on A r ≡ preorder-on A r ∧ total-on A r

abbreviation total-preorder r ≡ total-preorder-on UNIV r

lemma total-preorder-onI [intro]:
refl-on A r =⇒ trans r =⇒ total-on A r =⇒ total-preorder-on A r
unfolding total-preorder-on-def by (intro conjI preorder-onI )
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lemma total-preorder-onD[dest?]:
assumes total-preorder-on A r
shows refl-on A r trans r total-on A r
using assms unfolding total-preorder-on-def preorder-on-def by blast+

definition strict-partial-order r ≡ trans r ∧ irrefl r

lemma strict-partial-orderI [intro]:
trans r =⇒ irrefl r =⇒ strict-partial-order r
unfolding strict-partial-order-def by blast

lemma strict-partial-orderD[dest?]:
assumes strict-partial-order r
shows trans r irrefl r
using assms unfolding strict-partial-order-def by blast+

lemma strict-partial-order-acyclic:
assumes strict-partial-order r
shows acyclic r
by (metis acyclic-irrefl assms strict-partial-order-def trancl-id)

abbreviation partial-order ≡ partial-order-on UNIV

lemma partial-order-onI [intro]:
refl-on A r =⇒ trans r =⇒ antisym r =⇒ partial-order-on A r
using partial-order-on-def by blast

lemma linear-order-onI [intro]:
refl-on A r =⇒ trans r =⇒ antisym r =⇒ total-on A r =⇒ linear-order-on A r
using linear-order-on-def by blast

lemma linear-order-onD[dest?]:
assumes linear-order-on A r
shows refl-on A r trans r antisym r total-on A r
using assms[unfolded linear-order-on-def ] partial-order-onD by blast+

A typical example is (⊂) on sets:
lemma strict-partial-order-subset:

strict-partial-order {(x,y). x ⊂ y}
proof

show trans {(x,y). x ⊂ y}
by (auto simp add: trans-def )

show irrefl {(x, y). x ⊂ y}
by (simp add: irrefl-def )

qed

We already have a definition of a strict linear order in strict-linear-order.
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2 Extending preorders to total preorders
We start by proving that a preorder with two incomparable elements x and
y can be strictly extended to a preorder where x < y.
lemma can-extend-preorder :

assumes preorder-on A r
and y ∈ A x ∈ A (y, x) /∈ r

shows
preorder-on A ((insert (x, y) r)+) strict-extends ((insert (x, y) r)+) r

proof −
note preorder-onD[OF ‹preorder-on A r›]
then have insert (x, y) r ⊆ A × A

using ‹y ∈ A› ‹x ∈ A› refl-on-domain by fast
with ‹refl-on A r› show preorder-on A ((insert (x, y) r)+)

by (intro preorder-onI refl-onI trans-trancl)
(auto simp: trancl-subset-Sigma intro!: r-into-trancl ′ dest: refl-onD)

show strict-extends ((insert (x, y) r)+) r
proof(intro strict-extendsI )

from preorder-onD(2 )[OF ‹preorder-on A r›] ‹(y, x) /∈ r›
show asym-factor r ⊆ asym-factor ((insert (x, y) r)+)

unfolding asym-factor-def trancl-insert
using rtranclD rtrancl-into-trancl1 r-r-into-trancl
by fastforce

from assms have (y, x) /∈ (insert (x, y) r)+
unfolding preorder-on-def trancl-insert
using refl-onD rtranclD by fastforce

with ‹trans r› show sym-factor ((insert (x, y) r)+) ⊆ (sym-factor r)=
unfolding trancl-insert sym-factor-def by (fastforce intro: rtrancl-trans)

qed auto
qed

With this, we can start the proof of our main extension theorem. For
this we will use a variant of Zorns Lemma, which only considers nonempty
chains:
lemma Zorns-po-lemma-nonempty:

assumes po: Partial-order r
and u:

∧
C . [[C ∈ Chains r ; C 6={}]] =⇒ ∃ u∈Field r . ∀ a∈C . (a, u) ∈ r

and r 6= {}
shows ∃m∈Field r . ∀ a∈Field r . (m, a) ∈ r −→ a = m

proof −
from ‹r 6= {}› obtain x where x ∈ Field r

using FieldI2 by fastforce
with assms show ?thesis

using Zorns-po-lemma by (metis empty-iff )
qed
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theorem strict-extends-preorder-on:
assumes preorder-on A base-r
shows ∃ r . total-preorder-on A r ∧ strict-extends r base-r

proof −

We define an order on the set of strict extensions of the base relation
base-r, where r ≤ s iff strict-extends r base-r and strict-extends s r :

define order-of-orders :: ( ′a rel) rel where order-of-orders =
Restr {(r , s). strict-extends r base-r ∧ strict-extends s r} {r . preorder-on A r}

We show that this order consists of those relations that are preorders
and that strictly extend the base relation base-r

have Field-order-of-orders: Field order-of-orders =
{r . preorder-on A r ∧ strict-extends r base-r}
using transp-strict-extends

proof(safe)
fix r assume preorder-on A r strict-extends r base-r
with reflp-strict-extends have
(r , r) ∈ {(r , s). strict-extends r base-r ∧ strict-extends s r}
by (auto elim!: reflpE)

with ‹preorder-on A r› show r ∈ Field order-of-orders
unfolding order-of-orders-def by (auto simp: Field-def )

qed (auto simp: order-of-orders-def Field-def elim: transpE)

We now show that this set has a maximum and that any maximum of
this set is a total preorder and as thus is one of the extensions we are looking
for. We begin by showing the existence of a maximal element using Zorn’s
lemma.

have ∃m ∈ Field order-of-orders.
∀ a ∈ Field order-of-orders. (m, a) ∈ order-of-orders −→ a = m

proof (rule Zorns-po-lemma-nonempty)

Zorn’s Lemma requires us to prove that our order-of-orders is a nonempty
partial order and that every nonempty chain has an upper bound. The par-
tial order property is trivial, since we used strict-extends for the relation,
which is a partial order as shown above.

from reflp-strict-extends transp-strict-extends
have Refl {(r , s). strict-extends r base-r ∧ strict-extends s r}

unfolding refl-on-def Field-def by (auto elim: transpE reflpE)
moreover have trans {(r , s). strict-extends r base-r ∧ strict-extends s r}

using transp-strict-extends by (auto elim: transpE intro: transI )
moreover have antisym {(r , s). strict-extends r base-r ∧ strict-extends s r}

using antisymp-strict-extends by (fastforce dest: antisympD intro: antisymI )

ultimately show Partial-order order-of-orders
unfolding order-of-orders-def order-on-defs
using Field-order-of-orders Refl-Restr trans-Restr antisym-Restr
by blast
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Also, our order is obviously not empty since it contains (base-r , base-r):
have (base-r , base-r) ∈ order-of-orders

unfolding order-of-orders-def
using assms reflp-strict-extends by (auto dest: reflpD)

thus order-of-orders 6= {} by force

Next we show that each chain has an upper bound. For the upper bound
we take the union of all relations in the chain.

show ∃ u ∈ Field order-of-orders. ∀ a ∈ C . (a, u) ∈ order-of-orders
if C-def : C ∈ Chains order-of-orders and C-nonempty: C 6= {}
for C

proof (rule bexI [where x=
⋃

C ])

Obviously each element in the chain is a strict extension of base-r by
definition and as such it is also a preorder.

have preorder-r : preorder-on A r and extends-r : strict-extends r base-r if r
∈ C for r

using that C-def [unfolded order-of-orders-def Chains-def ] by blast+

Because a chain is partially ordered, the union of the chain is reflexive
and transitive.

have total-subs-C : r ⊆ s ∨ s ⊆ r if r ∈ C and s ∈ C for r s
using C-def that
unfolding Chains-def order-of-orders-def strict-extends-def extends-def
by blast

have preorder-UnC : preorder-on A (
⋃

C )
proof(intro preorder-onI )

show refl-on A (
⋃

C )
using preorder-onD(1 )[OF preorder-r ] C-nonempty
unfolding refl-on-def by auto

from total-subs-C show trans (
⋃

C )
using chain-subset-trans-Union[unfolded chain-subset-def ]
by (metis preorder-onD(2 )[OF preorder-r ])

qed

We show that
⋃

C strictly extends the base relation.
have strict-extends-UnC : strict-extends (

⋃
C ) base-r

proof(intro strict-extendsI )
note extends-r-unfolded = extends-r [unfolded extends-def strict-extends-def ]

show base-r ⊆ (
⋃

C )
using C-nonempty extends-r-unfolded
by blast

then show asym-factor base-r ⊆ asym-factor (
⋃

C )
using extends-r-unfolded
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unfolding asym-factor-def by auto

show sym-factor (
⋃

C ) ⊆ (sym-factor base-r)=
proof(safe)

fix x y assume (x, y) ∈ sym-factor (
⋃

C ) (x, y) /∈ sym-factor base-r
then have (x, y) ∈

⋃
C (y, x) ∈

⋃
C

unfolding sym-factor-def by blast+

with extends-r obtain c where c ∈ C (x, y) ∈ c (y, x) ∈ c
strict-extends c base-r
using total-subs-C by blast

then have (x, y) ∈ sym-factor c
unfolding sym-factor-def by blast

with ‹strict-extends c base-r› ‹(x, y) /∈ sym-factor base-r›
show x = y

unfolding strict-extends-def by blast
qed

qed

from preorder-UnC strict-extends-UnC show (
⋃

C ) ∈ Field order-of-orders
unfolding Field-order-of-orders by simp

Lastly, we prove by contradiction that
⋃

C is an upper bound for the
chain.

show ∀ a ∈ C . (a,
⋃

C ) ∈ order-of-orders
proof(rule ccontr)

presume ∃ a ∈ C . (a,
⋃

C ) /∈ order-of-orders
then obtain m where m: m ∈ C (m,

⋃
C ) /∈ order-of-orders

by blast

hence strict-extends-m: strict-extends m base-r preorder-on A m
using extends-r preorder-r by blast+

with m have ¬ strict-extends (
⋃

C ) m
using preorder-UnC unfolding order-of-orders-def by blast

from m have m ⊆
⋃

C
by blast

moreover
have sym-factor (

⋃
C ) ⊆ (sym-factor m)=

proof(safe)
fix a b
assume (a, b) ∈ sym-factor (

⋃
C ) (a, b) /∈ sym-factor m

then have (a, b) ∈ sym-factor base-r ∨ (a, b) ∈ Id
using strict-extends-UnC [unfolded strict-extends-def ] by blast

with ‹(a, b) /∈ sym-factor m› strict-extends-m(1 ) show a = b
by (auto elim: strict-extendsE simp: sym-factor-mono[THEN in-mono])

qed
ultimately
have ¬ asym-factor m ⊆ asym-factor (

⋃
C )
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using ‹¬ strict-extends (
⋃

C ) m› unfolding strict-extends-def extends-def
by blast

then obtain x y where
(x, y) ∈ m (y, x) /∈ m (x, y) ∈ asym-factor m (x, y) /∈ asym-factor (

⋃
C )

unfolding asym-factor-def by blast

then obtain w where w ∈ C (y, x) ∈ w
unfolding asym-factor-def using ‹m ∈ C › by auto

with ‹(y, x) /∈ m› have ¬ extends m w
unfolding extends-def by auto

moreover
from ‹(x, y) ∈ m› have ¬ extends w m
proof(cases (x, y) ∈ w)

case True
with ‹(y, x) ∈ w› have (x, y) /∈ asym-factor w

unfolding asym-factor-def by simp
with ‹(x, y) ∈ asym-factor m› show ¬ extends w m

unfolding extends-def by auto
qed (auto simp: extends-def )

ultimately show False
using ‹m ∈ C › ‹w ∈ C ›
using C-def [unfolded Chains-def order-of-orders-def strict-extends-def ]
by auto

qed blast
qed

qed

Let our maximal element be named max:
from this obtain max

where max-field: max ∈ Field order-of-orders
and is-max:
∀ a∈Field order-of-orders. (max, a) ∈ order-of-orders −→ a = max

by auto

from max-field have max-extends-base: preorder-on A max strict-extends max
base-r

using Field-order-of-orders by blast+

We still have to show, that max is a strict linear order, meaning that it
is also a total order:

have total-on A max
proof

fix x y :: ′a
assume x 6= y x ∈ A y ∈ A

show (x, y) ∈ max ∨ (y, x) ∈ max
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proof (rule ccontr)

Assume that max is not total, and x and y are incomparable. Then we
can extend max by setting x < y:

presume (x, y) /∈ max and (y, x) /∈ max
let ?max ′ = (insert (x, y) max)+

note max ′-extends-max = can-extend-preorder [OF
‹preorder-on A max› ‹y ∈ A› ‹x ∈ A› ‹(y, x) /∈ max›]

hence max ′-extends-base: strict-extends ?max ′ base-r
using ‹strict-extends max base-r› transp-strict-extends by (auto elim:

transpE)

The extended relation is greater than max, which is a contradiction.
have (max, ?max ′) ∈ order-of-orders

using max ′-extends-base max ′-extends-max max-extends-base
unfolding order-of-orders-def by simp

thus False
using FieldI2 ‹(x, y) /∈ max› is-max by fastforce

qed simp-all
qed

with ‹preorder-on A max› have total-preorder-on A max
unfolding total-preorder-on-def by simp

with ‹strict-extends max base-r› show ?thesis by blast
qed

With this extension theorem, we can easily prove Szpilrajn’s theorem
and its equivalent for partial orders.
corollary partial-order-extension:

assumes partial-order-on A r
shows ∃ r-ext. linear-order-on A r-ext ∧ r ⊆ r-ext

proof −
from assms strict-extends-preorder-on obtain r-ext where r-ext:

total-preorder-on A r-ext strict-extends r-ext r
unfolding partial-order-on-def by blast

with assms have antisym r-ext
unfolding partial-order-on-def using strict-extends-antisym by blast

with assms r-ext have linear-order-on A r-ext ∧ r ⊆ r-ext
unfolding total-preorder-on-def order-on-defs strict-extends-def extends-def
by blast

then show ?thesis ..
qed

corollary Szpilrajn:
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assumes strict-partial-order r
shows ∃ r-ext. strict-linear-order r-ext ∧ r ⊆ r-ext

proof −
from assms have partial-order (r=)

by (auto simp: antisym-if-irrefl-trans strict-partial-order-def )
from partial-order-extension[OF this] obtain r-ext where linear-order r-ext (r=)
⊆ r-ext

by blast
with assms have r ⊆ r-ext − Id strict-linear-order (r-ext − Id)
by (auto simp: irrefl-def strict-linear-order-on-diff-Id dest: strict-partial-orderD(2 ))

then show ?thesis by blast
qed

corollary acyclic-order-extension:
assumes acyclic r
shows ∃ r-ext. strict-linear-order r-ext ∧ r ⊆ r-ext

proof −
from assms have strict-partial-order (r+)

unfolding strict-partial-order-def using acyclic-irrefl trans-trancl by blast
thus ?thesis

by (meson Szpilrajn r-into-trancl ′ subset-iff )
qed

3 Consistency
As a weakening of transitivity, Suzumura introduces the notion of consis-
tency which rules out all preference cycles that contain at least one strict
preference. Consistency characterises those order relations which can be
extended (in terms of extends) to a total order relation.
definition consistent :: ′a rel ⇒ bool

where consistent r = (∀ (x, y) ∈ r+. (y, x) /∈ asym-factor r)

lemma consistentI : (
∧

x y. (x, y) ∈ r+ =⇒ (y, x) /∈ asym-factor r) =⇒ consistent
r

unfolding consistent-def by blast

lemma consistent-if-preorder-on[simp]:
preorder-on A r =⇒ consistent r
unfolding preorder-on-def consistent-def asym-factor-def by auto

lemma consistent-asym-factor [simp]: consistent r =⇒ consistent (asym-factor r)
unfolding consistent-def
using asym-factor-tranclE by fastforce

lemma acyclic-asym-factor-if-consistent[simp]: consistent r =⇒ acyclic (asym-factor
r)

unfolding consistent-def acyclic-def
using asym-factor-tranclE by (metis case-prodD trancl.simps)
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lemma consistent-Restr [simp]: consistent r =⇒ consistent (Restr r A)
unfolding consistent-def asym-factor-def
using trancl-mono by fastforce

This corresponds to Theorem 2.2 [2].
theorem trans-if-refl-total-consistent:

assumes refl r total r and consistent r
shows trans r

proof
fix x y z assume (x, y) ∈ r (y, z) ∈ r

from ‹(x, y) ∈ r› ‹(y, z) ∈ r› have (x, z) ∈ r+

by simp
hence (z, x) /∈ asym-factor r

using ‹consistent r› unfolding consistent-def by blast
hence x 6= z =⇒ (x, z) ∈ r

unfolding asym-factor-def using ‹total r›
by (auto simp: total-on-def )

then show (x, z) ∈ r
apply(cases x = z)
using refl-onD[OF ‹refl r›] by blast+

qed

lemma order-extension-if-consistent:
assumes consistent r
obtains r-ext where extends r-ext r total-preorder r-ext

proof −
from assms have extends: extends (r∗) r

unfolding extends-def consistent-def asym-factor-def
using rtranclD by (fastforce simp: Field-def )

have preorder : preorder (r∗)
unfolding preorder-on-def using refl-on-def trans-def by fastforce

from strict-extends-preorder-on[OF preorder ] extends obtain r-ext where
total-preorder r-ext extends r-ext r
using transpE [OF transp-extends] unfolding strict-extends-def by blast

then show thesis using that by blast
qed

lemma consistent-if-extends-trans:
assumes extends r-ext r trans r-ext
shows consistent r

proof(rule consistentI , standard)
fix x y assume ∗: (x, y) ∈ r+ (y, x) ∈ asym-factor r
with assms have (x, y) ∈ r-ext

using trancl-subs-extends-if-trans[OF assms] by blast
moreover from ∗ assms have (x, y) /∈ r-ext
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unfolding extends-def asym-factor-def by auto
ultimately show False by blast

qed

With Theorem 2.6 [2], we show that consistent characterises the existence
of order extensions.
corollary order-extension-iff-consistent:
(∃ r-ext. extends r-ext r ∧ total-preorder r-ext) ←→ consistent r
using order-extension-if-consistent consistent-if-extends-trans
by (metis total-preorder-onD(2 ))

The following theorem corresponds to Theorem 2.7 [2]. Bossert and
Suzumura claim that this theorem generalises Szpilrajn’s theorem; however,
we cannot use the theorem to strictly extend a given order Q. Therefore, it
is not strong enough to extend a strict partial order to a strict linear order.
It works for total preorders (called orderings by Bossert and Suzumura).
Unfortunately, we were not able to generalise the theorem to allow for strict
extensions.
theorem general-order-extension-iff-consistent:

assumes
∧

x y. [[ x ∈ S ; y ∈ S ; x 6= y ]] =⇒ (x, y) /∈ Q+

assumes total-preorder-on S Ord
shows (∃Ext. extends Ext Q ∧ total-preorder Ext ∧ Restr Ext S = Ord)
←→ consistent Q (is ?ExExt ←→ -)

proof
assume ?ExExt
then obtain Ext where

extends Ext Q
refl Ext trans Ext total Ext
Restr Ext S = Restr Ord S
using total-preorder-onD by fast

show consistent Q
proof(rule consistentI )

fix x y assume (x, y) ∈ Q+

with ‹extends Ext Q› ‹trans Ext› have (x, y) ∈ Ext
unfolding extends-def by (metis trancl-id trancl-mono)

then have (y, x) /∈ asym-factor Ext
unfolding asym-factor-def by blast

with ‹extends Ext Q› show (y, x) /∈ asym-factor Q
unfolding extends-def asym-factor-def by blast

qed
next

assume consistent Q

define Q ′ where Q ′ ≡ Q∗ ∪ Ord ∪ Ord O Q∗ ∪ Q∗ O Ord ∪ (Q∗ O Ord) O
Q∗

have refl (Q∗) trans (Q∗) refl-on S Ord trans Ord total-on S Ord
using refl-rtrancl trans-rtrancl total-preorder-onD[OF ‹total-preorder-on S Ord›]
by − assumption
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have preorder-Q ′: preorder Q ′

proof
show refl Q ′

unfolding Q ′-def refl-on-def by auto

from ‹trans (Q∗)› ‹refl-on S Ord› ‹trans Ord› show trans Q ′

unfolding Q ′-def [simplified]
apply(safe intro!: transI )
unfolding relcomp.simps
by (metis assms(1 ) refl-on-domain rtranclD transD)+

qed

have consistent Q ′

using consistent-if-preorder-on preorder-Q ′ by blast

have extends Q ′ Q
proof(rule extendsI )

have Q ⊆ Restr (Q∗) (Field Q)
by (auto intro: FieldI1 FieldI2 )

then show Q ⊆ Q ′

unfolding Q ′-def by blast

from ‹consistent Q› have consistentD: (x, y) ∈ Q+ =⇒ (y, x) ∈ Q =⇒ (x, y)
∈ Q for x y

unfolding consistent-def asym-factor-def using rtranclD by fastforce
have refl-on-domainE : [[ (x, y) ∈ Ord; x ∈ S =⇒ y ∈ S =⇒ P ]] =⇒ P for x

y P
using refl-on-domain[OF ‹refl-on S Ord›] by blast

show asym-factor Q ⊆ asym-factor Q ′

unfolding Q ′-def asym-factor-def Field-def
apply(safe)
using assms(1 ) consistentD refl-on-domainE
by (metis r-into-rtrancl rtranclD rtrancl-trancl-trancl)+

qed

with strict-extends-preorder-on[OF ‹preorder Q ′›]
obtain Ext where Ext: extends Ext Q ′ extends Ext Q total-preorder Ext

unfolding strict-extends-def
by (metis transpE transp-extends)

have not-in-Q ′: x ∈ S =⇒ y ∈ S =⇒ (x, y) /∈ Ord =⇒ (x, y) /∈ Q ′ for x y
using assms(1 ) unfolding Q ′-def
apply(safe)
by (metis ‹refl-on S Ord› refl-on-def refl-on-domain rtranclD)+

have Restr Ext S = Ord
proof
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from ‹extends Ext Q ′› have Ord ⊆ Ext
unfolding Q ′-def extends-def by auto

with ‹refl-on S Ord› show Ord ⊆ Restr Ext S
using refl-on-domain by fast

next
have (x, y) ∈ Ord if x ∈ S and y ∈ S and (x, y) ∈ Ext for x y
proof(rule ccontr)

assume (x, y) /∈ Ord
with that not-in-Q ′ have (x, y) /∈ Q ′

by blast
with ‹refl-on S Ord› ‹total-on S Ord› ‹x ∈ S› ‹y ∈ S› ‹(x, y) /∈ Ord›
have (y, x) ∈ Ord

unfolding refl-on-def total-on-def by fast
hence (y, x) ∈ Q ′

unfolding Q ′-def by blast
with ‹(x, y) /∈ Q ′› ‹(y, x) ∈ Q ′› ‹extends Ext Q ′›
have (x, y) /∈ Ext

unfolding extends-def asym-factor-def by auto
with ‹(x, y) ∈ Ext› show False by blast

qed
then show Restr Ext S ⊆ Ord

by blast
qed

with Ext show ?ExExt by blast
qed

4 Strong consistency
We define a stronger version of consistent which requires that the relation
does not contain hidden preference cycles, i.e. if there is a preference cycle
then all the elements in the cycle should already be related (in both direc-
tions). In contrast to consistency which characterises relations that can be
extended, strong consistency characterises relations that can be extended
strictly (cf. strict-extends).
definition strongly-consistent r ≡ sym-factor (r+) ⊆ sym-factor (r=)

lemma consistent-if-strongly-consistent: strongly-consistent r =⇒ consistent r
unfolding strongly-consistent-def consistent-def
by (auto simp: sym-factor-def asym-factor-def )

lemma strongly-consistentI : sym-factor (r+) ⊆ sym-factor (r=) =⇒ strongly-consistent
r

unfolding strongly-consistent-def by blast

lemma strongly-consistent-if-trans-strict-extension:
assumes strict-extends r-ext r
assumes trans r-ext
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shows strongly-consistent r
proof(unfold strongly-consistent-def , standard)

fix x assume x ∈ sym-factor (r+)
then show x ∈ sym-factor (r=)

using assms trancl-subs-extends-if-trans[OF extends-if-strict-extends]
by (metis sym-factor-mono strict-extendsE subsetD sym-factor-reflc)

qed

lemma strict-order-extension-if-consistent:
assumes strongly-consistent r
obtains r-ext where strict-extends r-ext r total-preorder r-ext

proof −
from assms have strict-extends (r+) r

unfolding strongly-consistent-def strict-extends-def extends-def asym-factor-def
sym-factor-def

by (auto simp: Field-def dest: tranclD)
moreover have strict-extends (r∗) (r+)

unfolding strict-extends-def extends-def
by (auto simp: asym-factor-rtrancl sym-factor-def dest: rtranclD)

ultimately have extends: strict-extends (r∗) r
using transpE [OF transp-strict-extends] by blast

have preorder (r∗)
unfolding preorder-on-def using refl-on-def trans-def by fastforce

from strict-extends-preorder-on[OF this] extends obtain r-ext where
total-preorder r-ext strict-extends r-ext r
using transpE [OF transp-strict-extends] by blast

then show thesis using that by blast
qed

experiment begin

We can instantiate the above theorem to get Szpilrajn’s theorem.
lemma

assumes strict-partial-order r
shows ∃ r-ext. strict-linear-order r-ext ∧ r ⊆ r-ext

proof −
from assms[unfolded strict-partial-order-def ] have strongly-consistent r antisym

r
unfolding strongly-consistent-def by (simp-all add: antisym-if-irrefl-trans)

from strict-order-extension-if-consistent[OF this(1 )] obtain r-ext
where strict-extends r-ext r total-preorder r-ext
by blast

with assms[unfolded strict-partial-order-def ]
have trans (r-ext − Id) irrefl (r-ext − Id) total (r-ext − Id) r ⊆ (r-ext − Id)

using strict-extends-antisym[OF - ‹antisym r›]
by (auto simp: irrefl-def elim: strict-extendsE intro: trans-diff-Id dest: to-

tal-preorder-onD)

19



then show ?thesis
unfolding strict-linear-order-on-def by blast

qed

end
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