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Abstract

Szemerédi’s regularity lemma [2] is a key result in the study of large
graphs. It asserts the existence an upper bound on the number of parts
the vertices of a graph need to be partitioned into such that the edges
between the parts are random in a certain sense. This bound depends
only on the desired precision and not on the graph itself, in the spirit
of Ramsey’s theorem. The formalisation follows online course notes
by Tim Gowers1 and Yufei Zhao2. Similar material is found in many
textbooks [1].
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1 Szemerédi’s Regularity Lemma
theory Szemeredi
imports HOL−Library.Disjoint-Sets Girth-Chromatic.Ugraphs HOL−Analysis.Convex

begin

We formalise Szemerédi’s Regularity Lemma, which is a major result in
the study of large graphs (extremal graph theory). We follow Yufei Zhao’s
notes “Graph Theory and Additive Combinatorics” (MIT), latest version
here: https://yufeizhao.com/gtacbook/ and W.T. Gowers’s notes “Topics
in Combinatorics” (University of Cambridge, Lent 2004, Chapter 3) https:
//www.dpmms.cam.ac.uk/~par31/notes/tic.pdf. We also used an earlier
version of Zhao’s book: https://yufeizhao.com/gtac/gtac.pdf.

1.1 Partitions
1.1.1 Partitions indexed by integers
definition finite-graph-partition :: [uvert set, uvert set set, nat] ⇒ bool

where finite-graph-partition V P n ≡ partition-on V P ∧ finite P ∧ card P = n

lemma finite-graph-partition-0 [iff ]:
finite-graph-partition V P 0 ←→ V = {} ∧ P = {}
〈proof 〉

lemma finite-graph-partition-empty [iff ]:
finite-graph-partition {} P n ←→ P = {} ∧ n = 0
〈proof 〉

lemma finite-graph-partition-equals:
finite-graph-partition V P n =⇒ (

⋃
P) = V

〈proof 〉

lemma finite-graph-partition-subset:
[[finite-graph-partition V P n; X ∈ P]] =⇒ X ⊆ V
〈proof 〉

lemma trivial-graph-partition-exists:
assumes V 6= {}
shows finite-graph-partition V {V } (Suc 0 )
〈proof 〉

lemma finite-graph-partition-finite:
assumes finite-graph-partition V P k finite V X ∈ P
shows finite X
〈proof 〉

lemma finite-graph-partition-gt0 :
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assumes finite-graph-partition V P k finite V X ∈ P
shows card X > 0
〈proof 〉

lemma card-finite-graph-partition:
assumes finite-graph-partition V P k finite V
shows (

∑
X∈P. card X) = card V

〈proof 〉

1.1.2 Tools to combine the refinements of the partition P i for
each i

These are needed to retain the “intuitive” idea of partitions as indexed by
integers.

1.2 Edges
All edges between two sets of vertices, X and Y, in a graph, G
definition all-edges-between :: nat set ⇒ nat set ⇒ nat set × nat set set ⇒ (nat
× nat) set

where all-edges-between X Y G ≡ {(x,y). x∈X ∧ y∈Y ∧ {x,y} ∈ uedges G}

lemma all-edges-between-subset: all-edges-between X Y G ⊆ X×Y
〈proof 〉

lemma max-all-edges-between:
assumes finite X finite Y
shows card (all-edges-between X Y G) ≤ card X ∗ card Y
〈proof 〉

lemma all-edges-between-empty [simp]:
all-edges-between {} Z G = {} all-edges-between Z {} G = {}
〈proof 〉

lemma all-edges-between-disjnt1 :
assumes disjnt X Y
shows disjnt (all-edges-between X Z G) (all-edges-between Y Z G)
〈proof 〉

lemma all-edges-between-disjnt2 :
assumes disjnt Y Z
shows disjnt (all-edges-between X Y G) (all-edges-between X Z G)
〈proof 〉

lemma all-edges-between-Un1 :
all-edges-between (X ∪ Y ) Z G = all-edges-between X Z G ∪ all-edges-between

Y Z G
〈proof 〉
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lemma all-edges-between-Un2 :
all-edges-between X (Y ∪ Z ) G = all-edges-between X Y G ∪ all-edges-between

X Z G
〈proof 〉

lemma finite-all-edges-between:
assumes finite X finite Y
shows finite (all-edges-between X Y G)
〈proof 〉

1.3 Edge Density and Regular Pairs
The edge density between two sets of vertices, X and Y, in G. Authors
disagree on whether the sets are assumed to be disjoint!. Quite a few au-
thors assume disjointness, e.g. Malliaris and Shelah https://www.jstor.org/
stable/23813167.
definition edge-density X Y G ≡ card(all-edges-between X Y G) / (card X ∗ card
Y )

lemma edge-density-ge0 : edge-density X Y G ≥ 0
〈proof 〉

lemma edge-density-le1 : edge-density K Y G ≤ 1
〈proof 〉

lemma all-edges-between-swap:
all-edges-between X Y G = (λ(x,y). (y,x)) ‘ (all-edges-between Y X G)
〈proof 〉

lemma card-all-edges-between-commute:
card (all-edges-between X Y G) = card (all-edges-between Y X G)
〈proof 〉

lemma edge-density-commute: edge-density X Y G = edge-density Y X G
〈proof 〉

ε-regular pairs, for two sets of vertices. Again, authors disagree on
whether the sets need to be disjoint, though it seems that overlapping sets
cause double-counting. Authors also disagree about whether or not to use
the strict subset relation here. The proofs below are easier if it is strict but
later proofs require the non-strict version. The two definitions can be proved
to be equivalent under fairly mild conditions, but even those conditions turn
out to be onerous.
definition regular-pair :: real ⇒ uvert set ⇒ uvert set ⇒ ugraph ⇒ bool

(‹-−regular ′-pair› [999 ]1000 )
where ε−regular-pair X Y G ≡
∀A B. A ⊆ X ∧ B ⊆ Y ∧ (card A ≥ ε ∗ card X) ∧ (card B ≥ ε ∗ card Y ) −→
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|edge-density A B G − edge-density X Y G| ≤ ε for ε::real

lemma regular-pair-commute: ε−regular-pair X Y G ←→ ε−regular-pair Y X G
〈proof 〉

lemma edge-density-Un:
assumes disjnt X1 X2 finite X1 finite X2
shows edge-density (X1 ∪ X2 ) Y G = (edge-density X1 Y G ∗ card X1 +

edge-density X2 Y G ∗ card X2 ) / (card X1 + card X2 )
〈proof 〉

lemma edge-density-partition:
assumes finite-graph-partition U P n
shows edge-density U W G = (

∑
X∈P. edge-density X W G ∗ card X) / card U

〈proof 〉

Let P, Q be partitions of a set of vertices V. Then P refines Q if for all
A ∈ P there is B ∈ Q such that A ⊆ B.

For the sake of generality, and following Zhao’s Online Lecture https:
//www.youtube.com/watch?v=vcsxCFSLyP8&t=16s we do not impose dis-
jointness: we do not include i 6= j below.
definition irregular-set:: [real, ugraph, uvert set set] ⇒ (uvert set × uvert set) set
(‹-−irregular ′-set› [999 ]1000 )
where ε−irregular-set ≡ λG P. {(R,S)|R S . R∈P ∧ S∈P ∧ ¬ ε−regular-pair R

S G}
for ε::real

A regular partition may contain a few irregular pairs as long as their
total size is bounded as follows.
definition regular-partition:: [real, ugraph, uvert set set] ⇒ bool

(‹-−regular ′-partition› [999 ]1000 )
where
ε−regular-partition ≡ λG P .

partition-on (uverts G) P ∧
(
∑

(R,S) ∈ irregular-set ε G P. card R ∗ card S) ≤ ε ∗ (card (uverts G))2 for
ε::real

lemma irregular-set-subset: ε−irregular-set G P ⊆ P × P
〈proof 〉

lemma irregular-set-swap: (i,j) ∈ ε−irregular-set G P ←→ (j,i) ∈ ε−irregular-set
G P
〈proof 〉

lemma finite-irregular-set [simp]: finite P =⇒ finite (ε−irregular-set G P)
〈proof 〉
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1.4 Energy of a Graph
Definition 3.7 (Energy), written q (U , W )

definition energy-graph-subsets:: [uvert set, uvert set, ugraph] ⇒ real where
energy-graph-subsets U W G ≡

card U ∗ card W ∗ (edge-density U W G)2 / (card (uverts G))2

Definition for partitions
definition energy-graph-partitions :: [ugraph, uvert set set, uvert set set] ⇒ real

where energy-graph-partitions G P Q ≡
∑

R∈P.
∑

S∈Q. energy-graph-subsets
R S G

lemma energy-graph-subsets-0 [simp]:
energy-graph-subsets {} B G = 0 energy-graph-subsets A {} G = 0

〈proof 〉

lemma energy-graph-subsets-ge0 [simp]:
energy-graph-subsets U W G ≥ 0
〈proof 〉

lemma energy-graph-partitions-ge0 [simp]:
energy-graph-partitions G U W ≥ 0
〈proof 〉

lemma energy-graph-subsets-commute:
energy-graph-subsets U W G = energy-graph-subsets W U G
〈proof 〉

lemma energy-graph-partitions-commute:
energy-graph-partitions G W U = energy-graph-partitions G U W
〈proof 〉

Definition 3.7 (Energy of a Partition), or following Gowers, mean square
density: a version of energy for a single partition of the vertex set.
abbreviation mean-square-density :: [ugraph, uvert set set] ⇒ real

where mean-square-density G P ≡ energy-graph-partitions G P P

lemma mean-square-density:
mean-square-density G U ≡

(
∑

R∈U .
∑

S∈U . card R ∗ card S ∗ (edge-density R S G)2) / (card (uverts
G))2

〈proof 〉

Observation: the energy is between 0 and 1 because the edge density is
bounded above by 1.
lemma sum-partition-le:

assumes finite-graph-partition V P k finite V
shows (

∑
R∈P.

∑
S∈P. real (card R ∗ card S)) ≤ (real(card V ))2

〈proof 〉
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lemma mean-square-density-bounded:
assumes finite-graph-partition (uverts G) P k finite (uverts G)
shows mean-square-density G P ≤ 1
〈proof 〉

1.5 Partitioning and Energy
See Gowers’s remark after Lemma 11. Further partitioning of subsets of
the vertex set cannot make the energy decrease. We follow Gowers’s proof,
which avoids the use of probability.
lemma sum-products-le:

fixes a :: ′a ⇒ real
assumes

∧
i. i ∈ I =⇒ a i ≥ 0

shows (
∑

i∈I . a i ∗ b i)2 ≤ (
∑

i∈I . a i) ∗ (
∑

i∈I . a i ∗ (b i)2) (is ?L ≤ ?R)
〈proof 〉

lemma energy-graph-partition-half :
assumes P: finite-graph-partition U P n
shows card U ∗ (edge-density U W G)2 ≤ (

∑
R∈P. card R ∗ (edge-density R W

G)2)
〈proof 〉

proposition energy-graph-partition-increase:
assumes P: finite-graph-partition U P k and V : finite-graph-partition W Q l
shows energy-graph-partitions G P Q ≥ energy-graph-subsets U W G
〈proof 〉

The following is the fully general version of Gowers’s Lemma 11 Further
partitioning of subsets of the vertex set cannot make the energy decrease.
Note that V should be uverts G even though this more general version holds.
lemma energy-graph-partitions-increase-half :

assumes ref : refines V Q P and finite V and part-VP: partition-on V P
and U : {} /∈ U

shows energy-graph-partitions G Q U ≥ energy-graph-partitions G P U
(is ?egQ ≥ ?egP)

〈proof 〉

proposition energy-graph-partitions-increase:
assumes refines V Q P refines V ′ Q ′ P ′

and finite V finite V ′

shows energy-graph-partitions G Q Q ′ ≥ energy-graph-partitions G P P ′

〈proof 〉

The original version of Gowers’s Lemma 11 (also in Zhao) is not general
enough to be used for anything.
corollary mean-square-density-increase:

assumes refines V Q P finite V
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shows mean-square-density G Q ≥ mean-square-density G P
〈proof 〉

The Energy Boost Lemma says that an irregular partition increases the
energy substantially. We assume that U ⊆ uverts G and W ⊆ uverts G are
not irregular, as witnessed by their subsets U1 ⊆ U and W1 ⊆ W. The
proof follows Lemma 12 of Gowers.
definition part2 X Y ≡ if X ⊂ Y then {X ,Y−X} else {Y }

lemma card-part2 : card (part2 X Y ) ≤ 2
〈proof 〉

lemma sum-part2 : [[X ⊆ Y ; f {} = 0 ]] =⇒ sum f (part2 X Y ) = f X + f (Y−X)
〈proof 〉

lemma partition-part2 :
assumes A ⊆ B A 6= {}
shows partition-on B (part2 A B)
〈proof 〉

proposition energy-boost:
fixes ε::real and U W G
defines alpha ≡ edge-density U W G
defines u ≡ λX Y . edge-density X Y G − alpha
assumes finite U finite W

and U ′ ⊆ U W ′ ⊆ W ε > 0
and U ′: card U ′ ≥ ε ∗ card U and W ′: card W ′ ≥ ε ∗ card W
and gt: |u U ′ W ′| > ε

shows (
∑

A ∈ part2 U ′ U .
∑

B ∈ part2 W ′ W . energy-graph-subsets A B G)
≥ energy-graph-subsets U W G + ε^4 ∗ (card U ∗ card W ) / (card (uverts

G))2

(is ?lhs ≥ ?rhs)
〈proof 〉

1.6 Energy boost for partitions
We can always find a refinement that increases the energy by a certain
amount.

A necessary lemma for the tower of exponentials in the result. Angeliki’s
proof
lemma le-tower-2 : k ∗ (2 ^ Suc k) ≤ 2^(2^k)
〈proof 〉

The bound 2k+1 comes from a different source by Zhao: “Graph The-
ory and Additive Combinatorics”, https://yufeizhao.com/gtacbook/. It’s
needed because our regular-partition includes the diagonal; otherwise, k2k
would work. Gowers’ version has a flatly incorrect bound.
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proposition exists-refinement:
assumes fgp: finite-graph-partition (uverts G) P k and finite (uverts G)

and irreg: ¬ ε−regular-partition G P and ε > 0
obtains Q where refines (uverts G) Q P

mean-square-density G Q ≥ mean-square-density G P + ε^5∧
R. R∈P =⇒ card {S∈Q. S ⊆ R} ≤ 2 ^ Suc k

card Q ≤ k ∗ 2 ^ Suc k
〈proof 〉

1.7 The Regularity Proof Itself
We start with a trivial partition (one part). If it is already ε-regular, we
are done. If not, we refine it by applying lemma exists-refinement above,
which increases the energy. We can repeat this step, but it cannot increase
forever: by mean-square-density-bounded it cannot exceed 1. This defines an
algorithm that must stop after at most ε−5 steps, resulting in an ε-regular
partition.
theorem Szemeredi-Regularity-Lemma:

assumes ε > 0
obtains M where

∧
G. card (uverts G) > 0 =⇒ ∃P. ε−regular-partition G P

∧ card P ≤ M
〈proof 〉

The actual value of the bound is visible above: a tower of exponentials
of height 2(1 + ε−5).
end
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