
Szemerédi’s Regularity Lemma

Chelsea Edmonds, Angeliki Koutsoukou-Argyraki and Lawrence C. Paulson
Computer Laboratory, University of Cambridge CB3 0FD

{cle47,ak2110,lp15}@cam.ac.uk

March 17, 2025

Abstract

Szemerédi’s regularity lemma [2] is a key result in the study of large
graphs. It asserts the existence an upper bound on the number of parts
the vertices of a graph need to be partitioned into such that the edges
between the parts are random in a certain sense. This bound depends
only on the desired precision and not on the graph itself, in the spirit
of Ramsey’s theorem. The formalisation follows online course notes
by Tim Gowers1 and Yufei Zhao2. Similar material is found in many
textbooks [1].

Contents
1 Szemerédi’s Regularity Lemma 3

1.1 Partitions . 3
1.1.1 Partitions indexed by integers 3
1.1.2 Tools to combine the refinements of the partition P i

for each i . 4
1.2 Edges . 4
1.3 Edge Density and Regular Pairs 5
1.4 Energy of a Graph . 8
1.5 Partitioning and Energy . 10
1.6 Energy boost for partitions 16
1.7 The Regularity Proof Itself 23

Acknowledgements

The authors were supported by the ERC Advanced Grant ALEXANDRIA
(Project 742178) funded by the European Research Council.

1https://www.dpmms.cam.ac.uk/~par31/notes/tic.pdf
2https://yufeizhao.com/gtacbook/ and https://yufeizhao.com/gtac/gtac.pdf are

drafts of a textbook in preparation.

1

https://www.dpmms.cam.ac.uk/~par31/notes/tic.pdf
https://yufeizhao.com/gtacbook/
https://yufeizhao.com/gtac/gtac.pdf

References
[1] R. Diestel. Graph Theory. Springer, 2017.

[2] E. Szemerédi. Regular partitions of graphs. Technical Report STAN-CS-
75-489, Stanford University Computer Science Department, Apr. 1975.

2

1 Szemerédi’s Regularity Lemma
theory Szemeredi
imports HOL−Library.Disjoint-Sets Girth-Chromatic.Ugraphs HOL−Analysis.Convex

begin

We formalise Szemerédi’s Regularity Lemma, which is a major result in
the study of large graphs (extremal graph theory). We follow Yufei Zhao’s
notes “Graph Theory and Additive Combinatorics” (MIT), latest version
here: https://yufeizhao.com/gtacbook/ and W.T. Gowers’s notes “Topics
in Combinatorics” (University of Cambridge, Lent 2004, Chapter 3) https:
//www.dpmms.cam.ac.uk/~par31/notes/tic.pdf. We also used an earlier
version of Zhao’s book: https://yufeizhao.com/gtac/gtac.pdf.

1.1 Partitions
1.1.1 Partitions indexed by integers
definition finite-graph-partition :: [uvert set, uvert set set, nat] ⇒ bool

where finite-graph-partition V P n ≡ partition-on V P ∧ finite P ∧ card P = n

lemma finite-graph-partition-0 [iff]:
finite-graph-partition V P 0 ←→ V = {} ∧ P = {}
by (auto simp: finite-graph-partition-def partition-on-def)

lemma finite-graph-partition-empty [iff]:
finite-graph-partition {} P n ←→ P = {} ∧ n = 0
by (auto simp: finite-graph-partition-def partition-on-def)

lemma finite-graph-partition-equals:
finite-graph-partition V P n =⇒ (

⋃
P) = V

by (meson finite-graph-partition-def partition-on-def)

lemma finite-graph-partition-subset:
[[finite-graph-partition V P n; X ∈ P]] =⇒ X ⊆ V
using finite-graph-partition-equals by blast

lemma trivial-graph-partition-exists:
assumes V 6= {}
shows finite-graph-partition V {V } (Suc 0)
by (simp add: assms finite-graph-partition-def partition-on-space)

lemma finite-graph-partition-finite:
assumes finite-graph-partition V P k finite V X ∈ P
shows finite X
by (meson assms finite-graph-partition-subset infinite-super)

lemma finite-graph-partition-gt0 :

3

https://yufeizhao.com/gtacbook/
https://www.dpmms.cam.ac.uk/~par31/notes/tic.pdf
https://www.dpmms.cam.ac.uk/~par31/notes/tic.pdf
https://yufeizhao.com/gtac/gtac.pdf

assumes finite-graph-partition V P k finite V X ∈ P
shows card X > 0
by (metis assms card-0-eq finite-graph-partition-def finite-graph-partition-finite

gr-zeroI partition-on-def)

lemma card-finite-graph-partition:
assumes finite-graph-partition V P k finite V
shows (

∑
X∈P. card X) = card V

by (metis assms finite-graph-partition-def finite-graph-partition-finite product-partition)

1.1.2 Tools to combine the refinements of the partition P i for
each i

These are needed to retain the “intuitive” idea of partitions as indexed by
integers.

1.2 Edges
All edges between two sets of vertices, X and Y, in a graph, G
definition all-edges-between :: nat set ⇒ nat set ⇒ nat set × nat set set ⇒ (nat
× nat) set

where all-edges-between X Y G ≡ {(x,y). x∈X ∧ y∈Y ∧ {x,y} ∈ uedges G}

lemma all-edges-between-subset: all-edges-between X Y G ⊆ X×Y
by (auto simp: all-edges-between-def)

lemma max-all-edges-between:
assumes finite X finite Y
shows card (all-edges-between X Y G) ≤ card X ∗ card Y
by (metis assms card-mono finite-SigmaI all-edges-between-subset card-cartesian-product)

lemma all-edges-between-empty [simp]:
all-edges-between {} Z G = {} all-edges-between Z {} G = {}
by (auto simp: all-edges-between-def)

lemma all-edges-between-disjnt1 :
assumes disjnt X Y
shows disjnt (all-edges-between X Z G) (all-edges-between Y Z G)
using assms by (auto simp: all-edges-between-def disjnt-iff)

lemma all-edges-between-disjnt2 :
assumes disjnt Y Z
shows disjnt (all-edges-between X Y G) (all-edges-between X Z G)
using assms by (auto simp: all-edges-between-def disjnt-iff)

lemma all-edges-between-Un1 :
all-edges-between (X ∪ Y) Z G = all-edges-between X Z G ∪ all-edges-between

Y Z G

4

by (auto simp: all-edges-between-def)

lemma all-edges-between-Un2 :
all-edges-between X (Y ∪ Z) G = all-edges-between X Y G ∪ all-edges-between

X Z G
by (auto simp: all-edges-between-def)

lemma finite-all-edges-between:
assumes finite X finite Y
shows finite (all-edges-between X Y G)
by (meson all-edges-between-subset assms finite-cartesian-product finite-subset)

1.3 Edge Density and Regular Pairs
The edge density between two sets of vertices, X and Y, in G. Authors
disagree on whether the sets are assumed to be disjoint!. Quite a few au-
thors assume disjointness, e.g. Malliaris and Shelah https://www.jstor.org/
stable/23813167.
definition edge-density X Y G ≡ card(all-edges-between X Y G) / (card X ∗ card
Y)

lemma edge-density-ge0 : edge-density X Y G ≥ 0
by (auto simp: edge-density-def)

lemma edge-density-le1 : edge-density K Y G ≤ 1
proof (cases finite K ∧ finite Y)

case True
then show ?thesis

using of-nat-mono [OF max-all-edges-between, of K Y]
by (fastforce simp add: edge-density-def divide-simps)

qed (auto simp: edge-density-def)

lemma all-edges-between-swap:
all-edges-between X Y G = (λ(x,y). (y,x)) ‘ (all-edges-between Y X G)
unfolding all-edges-between-def
by (auto simp add: insert-commute image-iff split: prod.split)

lemma card-all-edges-between-commute:
card (all-edges-between X Y G) = card (all-edges-between Y X G)

proof −
have inj-on (λ(x, y). (y, x)) A for A :: (nat∗nat)set

by (auto simp: inj-on-def)
then show ?thesis

by (simp add: all-edges-between-swap [of X Y] card-image)
qed

lemma edge-density-commute: edge-density X Y G = edge-density Y X G
by (simp add: edge-density-def card-all-edges-between-commute mult.commute)

5

https://www.jstor.org/stable/23813167
https://www.jstor.org/stable/23813167

ε-regular pairs, for two sets of vertices. Again, authors disagree on
whether the sets need to be disjoint, though it seems that overlapping sets
cause double-counting. Authors also disagree about whether or not to use
the strict subset relation here. The proofs below are easier if it is strict but
later proofs require the non-strict version. The two definitions can be proved
to be equivalent under fairly mild conditions, but even those conditions turn
out to be onerous.
definition regular-pair :: real ⇒ uvert set ⇒ uvert set ⇒ ugraph ⇒ bool

(‹-−regular ′-pair› [999]1000)
where ε−regular-pair X Y G ≡
∀A B. A ⊆ X ∧ B ⊆ Y ∧ (card A ≥ ε ∗ card X) ∧ (card B ≥ ε ∗ card Y) −→

|edge-density A B G − edge-density X Y G| ≤ ε for ε::real

lemma regular-pair-commute: ε−regular-pair X Y G ←→ ε−regular-pair Y X G
by (metis edge-density-commute regular-pair-def)

lemma edge-density-Un:
assumes disjnt X1 X2 finite X1 finite X2
shows edge-density (X1 ∪ X2) Y G = (edge-density X1 Y G ∗ card X1 +

edge-density X2 Y G ∗ card X2) / (card X1 + card X2)
proof (cases finite Y)

case True
with assms show ?thesis

by (simp add: edge-density-def all-edges-between-disjnt1 all-edges-between-Un1
finite-all-edges-between card-Un-disjnt card-ge-0-finite divide-simps)
qed (simp add: edge-density-def)

lemma edge-density-partition:
assumes finite-graph-partition U P n
shows edge-density U W G = (

∑
X∈P. edge-density X W G ∗ card X) / card U

proof (cases finite U)
case True
have finite P

using assms finite-graph-partition-def by blast
then show ?thesis

using True assms
proof (induction P arbitrary: n U)

case empty
then show ?case

by (simp add: edge-density-def finite-graph-partition-def partition-on-def)
next

case (insert X P)
then have n > 0

by (metis finite-graph-partition-0 gr-zeroI insert-not-empty)
with insert.prems insert.hyps
have UX : finite-graph-partition (U−X) P (n−1)
by (auto simp: finite-graph-partition-def partition-on-def disjnt-iff pairwise-insert)
then have finU : finite (

⋃
P)

6

by (simp add: finite-graph-partition-equals insert)
then have sumXP: card U = card X + card (

⋃
P)

by (metis UX card-finite-graph-partition finite-graph-partition-equals insert.hyps
insert.prems sum.insert)

have FUX : finite (U − X)
by (simp add: insert.prems)

have XUP: X ∪ (
⋃

P) = U
using finite-graph-partition-equals insert.prems(2) by auto

then have edge-density U W G = edge-density (X ∪
⋃

P) W G
by auto

also have . . . = (edge-density X W G ∗ card X + edge-density (
⋃

P) W G ∗
card (

⋃
P))

/ (card X + card (
⋃

P))
proof (rule edge-density-Un)

show disjnt X (
⋃

P)
using UX disjnt-iff finite-graph-partition-equals by auto

show finite X
using XUP ‹finite U › by blast

qed (use finU in auto)
also have . . . = (edge-density X W G ∗ card X + edge-density (U−X) W G ∗

card (
⋃

P))
/ card U

using UX card-finite-graph-partition finite-graph-partition-equals insert.prems(1)
insert.prems(2) sumXP by auto

also have . . . = (
∑

Y ∈ insert X P. edge-density Y W G ∗ card Y) / card U
using UX insert.prems insert.hyps

apply (simp add: insert.IH [OF FUX UX] divide-simps algebra-simps fi-
nite-graph-partition-equals)

by (metis (no-types, lifting) Diff-eq-empty-iff finite-graph-partition-empty
sum.empty)

finally show ?case .
qed

qed (simp add: edge-density-def)

Let P, Q be partitions of a set of vertices V. Then P refines Q if for all
A ∈ P there is B ∈ Q such that A ⊆ B.

For the sake of generality, and following Zhao’s Online Lecture https:
//www.youtube.com/watch?v=vcsxCFSLyP8&t=16s we do not impose dis-
jointness: we do not include i 6= j below.
definition irregular-set:: [real, ugraph, uvert set set] ⇒ (uvert set × uvert set) set
(‹-−irregular ′-set› [999]1000)
where ε−irregular-set ≡ λG P. {(R,S)|R S . R∈P ∧ S∈P ∧ ¬ ε−regular-pair R

S G}
for ε::real

A regular partition may contain a few irregular pairs as long as their
total size is bounded as follows.
definition regular-partition:: [real, ugraph, uvert set set] ⇒ bool

7

https://www.youtube.com/watch?v=vcsxCFSLyP8&t=16s
https://www.youtube.com/watch?v=vcsxCFSLyP8&t=16s

(‹-−regular ′-partition› [999]1000)
where
ε−regular-partition ≡ λG P .

partition-on (uverts G) P ∧
(
∑

(R,S) ∈ irregular-set ε G P. card R ∗ card S) ≤ ε ∗ (card (uverts G))2 for
ε::real

lemma irregular-set-subset: ε−irregular-set G P ⊆ P × P
by (auto simp: irregular-set-def)

lemma irregular-set-swap: (i,j) ∈ ε−irregular-set G P ←→ (j,i) ∈ ε−irregular-set
G P

by (auto simp add: irregular-set-def regular-pair-commute)

lemma finite-irregular-set [simp]: finite P =⇒ finite (ε−irregular-set G P)
by (metis finite-SigmaI finite-subset irregular-set-subset)

1.4 Energy of a Graph
Definition 3.7 (Energy), written q (U , W)

definition energy-graph-subsets:: [uvert set, uvert set, ugraph] ⇒ real where
energy-graph-subsets U W G ≡

card U ∗ card W ∗ (edge-density U W G)2 / (card (uverts G))2

Definition for partitions
definition energy-graph-partitions :: [ugraph, uvert set set, uvert set set] ⇒ real

where energy-graph-partitions G P Q ≡
∑

R∈P.
∑

S∈Q. energy-graph-subsets
R S G

lemma energy-graph-subsets-0 [simp]:
energy-graph-subsets {} B G = 0 energy-graph-subsets A {} G = 0

by (auto simp: energy-graph-subsets-def)

lemma energy-graph-subsets-ge0 [simp]:
energy-graph-subsets U W G ≥ 0
by (auto simp: energy-graph-subsets-def)

lemma energy-graph-partitions-ge0 [simp]:
energy-graph-partitions G U W ≥ 0
by (auto simp: sum-nonneg energy-graph-partitions-def)

lemma energy-graph-subsets-commute:
energy-graph-subsets U W G = energy-graph-subsets W U G
by (simp add: energy-graph-subsets-def edge-density-commute)

lemma energy-graph-partitions-commute:
energy-graph-partitions G W U = energy-graph-partitions G U W
by (simp add: energy-graph-partitions-def energy-graph-subsets-commute sum.swap

[where A=W])

8

Definition 3.7 (Energy of a Partition), or following Gowers, mean square
density: a version of energy for a single partition of the vertex set.
abbreviation mean-square-density :: [ugraph, uvert set set] ⇒ real

where mean-square-density G P ≡ energy-graph-partitions G P P

lemma mean-square-density:
mean-square-density G U ≡

(
∑

R∈U .
∑

S∈U . card R ∗ card S ∗ (edge-density R S G)2) / (card (uverts
G))2

by (simp add: energy-graph-partitions-def energy-graph-subsets-def sum-divide-distrib)

Observation: the energy is between 0 and 1 because the edge density is
bounded above by 1.
lemma sum-partition-le:

assumes finite-graph-partition V P k finite V
shows (

∑
R∈P.

∑
S∈P. real (card R ∗ card S)) ≤ (real(card V))2

proof −
have finite P

using assms finite-graph-partition-def by blast
then show ?thesis

using assms
proof (induction P arbitrary: V k)

case (insert X P)
have [simp]: finite Y if Y ∈ insert X P for Y

by (meson finite-graph-partition-finite insert.prems that)
have C : card Y ≤ card V ifY ∈ insert X P for Y

by (meson card-mono finite-graph-partition-subset insert.prems that)
have D [simp]: (

∑
Y∈P. real (card Y)) = real (card V) − real (card X)

by (smt (verit) card-finite-graph-partition insert.hyps insert.prems of-nat-sum
sum.cong sum.insert)

have disjnt X (
⋃

P)
using insert.prems insert.hyps
by (auto simp add: finite-graph-partition-def disjnt-iff pairwise-insert parti-

tion-on-def)
with insert have ∗: (

∑
R∈P.

∑
S∈P. real (card R ∗ card S)) ≤ (real (card

(V − X)))2

unfolding finite-graph-partition-def
by (simp add: lessThan-Suc partition-on-insert disjoint-family-on-insert sum.distrib)
have [simp]: V ∩X = X

using finite-graph-partition-equals insert.prems by blast
have (

∑
R ∈ insert X P.

∑
S ∈ insert X P. real (card R ∗ card S))

= real (card X ∗ card X) + 2 ∗ (card V − card X) ∗ card X
+ (

∑
R∈P.

∑
S∈P. real (card R ∗ card S))

using ‹X /∈ P› ‹finite P›
by (simp add: C of-nat-diff sum.distrib algebra-simps flip: sum-distrib-right)

also have . . . ≤ real (card X ∗ card X) + 2 ∗ (card V − card X) ∗ card X +
(real (card (V − X)))2

using ∗ by linarith
also have . . . ≤ (real (card V))2

9

by (simp add: of-nat-diff C card-Diff-subset-Int algebra-simps power2-eq-square)
finally show ?case .

qed auto
qed

lemma mean-square-density-bounded:
assumes finite-graph-partition (uverts G) P k finite (uverts G)
shows mean-square-density G P ≤ 1

proof−
have (

∑
R∈P.

∑
S∈P. real (card R ∗ card S) ∗ (edge-density R S G)2)

≤ (
∑

R∈P.
∑

S∈P. real (card R ∗ card S))
by (intro sum-mono mult-right-le-one-le) (auto simp: abs-square-le-1 edge-density-ge0

edge-density-le1)
also have . . . ≤ (real(card (uverts G)))2

using sum-partition-le assms by blast
finally show ?thesis

by (simp add: mean-square-density divide-simps)
qed

1.5 Partitioning and Energy
See Gowers’s remark after Lemma 11. Further partitioning of subsets of
the vertex set cannot make the energy decrease. We follow Gowers’s proof,
which avoids the use of probability.
lemma sum-products-le:

fixes a :: ′a ⇒ real
assumes

∧
i. i ∈ I =⇒ a i ≥ 0

shows (
∑

i∈I . a i ∗ b i)2 ≤ (
∑

i∈I . a i) ∗ (
∑

i∈I . a i ∗ (b i)2) (is ?L ≤ ?R)
proof −

have ?L = (
∑

i∈I . sqrt (a i) ∗ (sqrt (a i) ∗ b i))2
by (smt (verit, ccfv-SIG) assms mult.assoc real-sqrt-mult-self sum.cong)

also have ... ≤ (
∑

i∈I . (sqrt (a i))2) ∗ (
∑

i∈I . (sqrt (a i) ∗ b i)2)
by (rule Cauchy-Schwarz-ineq-sum)

also have ... = ?R
by (smt (verit) assms mult.assoc mult.commute power2-eq-square real-sqrt-pow2

sum.cong)
finally show ?thesis .

qed

lemma energy-graph-partition-half :
assumes P: finite-graph-partition U P n
shows card U ∗ (edge-density U W G)2 ≤ (

∑
R∈P. card R ∗ (edge-density R W

G)2)
proof (cases finite U)

case True
have §: (

∑
R∈P. card R ∗ edge-density R W G)2

≤ (sum card P) ∗ (
∑

R∈P. card R ∗ (edge-density R W G)2)
by (simp add: sum-products-le)

have card U ∗ (edge-density U W G)2 = (
∑

R∈P. card R ∗ (edge-density U W

10

G)2)
by (metis ‹finite U › P sum-distrib-right card-finite-graph-partition of-nat-sum)

also have . . . = edge-density U W G ∗ (
∑

R∈P. edge-density U W G ∗ card R)
by (simp add: sum-distrib-left power2-eq-square mult-ac)

also have . . . = (
∑

R∈P. edge-density R W G ∗ real (card R)) ∗ edge-density U
W G

proof −
have edge-density U W G ∗ (

∑
R∈P. edge-density R W G ∗ card R)

= edge-density U W G ∗ (edge-density U W G ∗ (
∑

R∈P. card R))
using ‹finite U › assms card-finite-graph-partition by (auto simp: edge-density-partition

[OF P])
then show ?thesis

by (simp add: mult.commute sum-distrib-left)
qed
also have . . . = (

∑
R∈P. card R ∗ edge-density R W G) ∗ edge-density U W G

by (simp add: sum-distrib-left mult-ac)
also have . . . = (

∑
R∈P. card R ∗ edge-density R W G)2 / card U

using assms by (simp add: edge-density-partition [OF P] mult-ac flip: power2-eq-square)
also have . . . ≤ (

∑
R∈P. card R ∗ (edge-density R W G)2)

using § P card-finite-graph-partition ‹finite U ›
by (force simp add: mult-ac divide-simps simp flip: of-nat-sum)

finally show ?thesis .
qed (simp add: sum-nonneg)

proposition energy-graph-partition-increase:
assumes P: finite-graph-partition U P k and V : finite-graph-partition W Q l
shows energy-graph-partitions G P Q ≥ energy-graph-subsets U W G

proof −
have (card U ∗ card W) ∗ (edge-density U W G)2 = card W ∗ (card U ∗

(edge-density U W G)2)
by (simp add: mult-ac)

also have . . . ≤ card W ∗ (
∑

R∈P. card R ∗ (edge-density R W G)2)
by (intro mult-left-mono energy-graph-partition-half) (use assms in auto)

also have . . . = (
∑

R∈P. card R ∗ (card W ∗ (edge-density W R G)2))
by (simp add: sum-distrib-left edge-density-commute mult-ac)

also have . . . ≤ (
∑

R∈P. card R ∗ (
∑

S∈Q. card S ∗ (edge-density S R G)2))
by (intro mult-left-mono energy-graph-partition-half sum-mono) (use assms in

auto)
also have . . . ≤ (

∑
R∈P.

∑
S∈Q. (card R ∗ card S) ∗ (edge-density R S G)2)

by (simp add: sum-distrib-left edge-density-commute mult-ac)
finally
have (card U ∗ card W) ∗ (edge-density U W G)2

≤ (
∑

R∈P.
∑

S∈Q. (card R ∗ card S) ∗ (edge-density R S G)2) .
then show ?thesis

unfolding energy-graph-partitions-def energy-graph-subsets-def
by (simp add: divide-simps flip: sum-divide-distrib)

qed

The following is the fully general version of Gowers’s Lemma 11 Further
partitioning of subsets of the vertex set cannot make the energy decrease.

11

Note that V should be uverts G even though this more general version holds.
lemma energy-graph-partitions-increase-half :

assumes ref : refines V Q P and finite V and part-VP: partition-on V P
and U : {} /∈ U

shows energy-graph-partitions G Q U ≥ energy-graph-partitions G P U
(is ?egQ ≥ ?egP)

proof −
have ∃F . partition-on R F ∧ F = {S∈Q. S ⊆ R} if R∈P for R

using ref refines-obtains-subset that by blast
then obtain F where F :

∧
R. R ∈ P =⇒ partition-on R (F R) ∧ F R = {S∈Q.

S ⊆ R}
by fastforce

have injF : inj-on F P
by (metis F inj-on-inverseI partition-on-def)

have finite-P: finite R if R ∈ P for R
by (metis Union-upper ‹finite V › part-VP finite-subset partition-on-def that)

then have finite-F : finite (F R) if R ∈ P for R
using that by (simp add: F)

have dFP: disjoint (F ‘ P)
using part-VP
by (smt (verit, best) F Union-upper disjnt-iff disjointD le-inf-iff pairwise-imageI

partition-on-def subset-empty)
have F-ne: F R 6= {} if R ∈ P for R

by (metis F Sup-empty part-VP partition-on-def that)
have F-sums-Q: (

∑
R∈P.

∑
U∈F R. f U) = (

∑
S∈Q. f S) for f :: nat set ⇒

real
proof −

have Q = (
⋃

R ∈ P. F R)
using ref by (force simp add: refines-def dest: F)

then have (
∑

S∈Q. f S) = sum f (
⋃

R ∈ P. F R)
by blast

also have . . . = (sum ◦ sum) f (F ‘ P)
by (smt (verit, best) dFP disjnt-def finite-F image-iff pairwiseD sum.Union-disjoint)
also have . . . = (

∑
R ∈ P.

∑
U∈F R. f U)

unfolding comp-apply by (metis injF sum.reindex-cong)
finally show ?thesis

by simp
qed
have ?egP = (

∑
R ∈ P.

∑
T∈U . energy-graph-subsets R T G)

by (simp add: energy-graph-partitions-def)
also have . . . ≤ (

∑
R∈P.

∑
T∈U . energy-graph-partitions G (F R) {T})

proof −
have finite-graph-partition R (F R) (card (F R))

if R ∈ P for R
by (meson F finite-F finite-graph-partition-def that)

moreover have finite-graph-partition T {T} (Suc 0)
if T ∈ U for T
using U by (metis that trivial-graph-partition-exists)

ultimately show ?thesis

12

using finite-P by (intro sum-mono energy-graph-partition-increase) auto
qed
also have . . . = (

∑
R ∈ P.

∑
D ∈ F R.

∑
T∈U . energy-graph-subsets D T G)

by (simp add: energy-graph-partitions-def sum.swap [where B = U])
also have . . . = ?egQ

by (simp add: energy-graph-partitions-def F-sums-Q)
finally show ?thesis .

qed

proposition energy-graph-partitions-increase:
assumes refines V Q P refines V ′ Q ′ P ′

and finite V finite V ′

shows energy-graph-partitions G Q Q ′ ≥ energy-graph-partitions G P P ′

proof −
obtain {} /∈ P ′ {} /∈ Q

using assms unfolding refines-def partition-on-def by presburger
then show ?thesis

using assms unfolding refines-def
by (smt (verit, ccfv-SIG) assms energy-graph-partitions-commute energy-graph-partitions-increase-half)

qed

The original version of Gowers’s Lemma 11 (also in Zhao) is not general
enough to be used for anything.
corollary mean-square-density-increase:

assumes refines V Q P finite V
shows mean-square-density G Q ≥ mean-square-density G P
using assms energy-graph-partitions-increase by presburger

The Energy Boost Lemma says that an irregular partition increases the
energy substantially. We assume that U ⊆ uverts G and W ⊆ uverts G are
not irregular, as witnessed by their subsets U1 ⊆ U and W1 ⊆ W. The
proof follows Lemma 12 of Gowers.
definition part2 X Y ≡ if X ⊂ Y then {X ,Y−X} else {Y }

lemma card-part2 : card (part2 X Y) ≤ 2
by (simp add: part2-def card-insert-if)

lemma sum-part2 : [[X ⊆ Y ; f {} = 0]] =⇒ sum f (part2 X Y) = f X + f (Y−X)
by (force simp add: part2-def sum.insert-if)

lemma partition-part2 :
assumes A ⊆ B A 6= {}
shows partition-on B (part2 A B)
using assms by (auto simp add: partition-on-def part2-def disjnt-iff pairwise-insert)

proposition energy-boost:
fixes ε::real and U W G
defines alpha ≡ edge-density U W G
defines u ≡ λX Y . edge-density X Y G − alpha

13

assumes finite U finite W
and U ′ ⊆ U W ′ ⊆ W ε > 0
and U ′: card U ′ ≥ ε ∗ card U and W ′: card W ′ ≥ ε ∗ card W
and gt: |u U ′ W ′| > ε

shows (
∑

A ∈ part2 U ′ U .
∑

B ∈ part2 W ′ W . energy-graph-subsets A B G)
≥ energy-graph-subsets U W G + ε^4 ∗ (card U ∗ card W) / (card (uverts

G))2

(is ?lhs ≥ ?rhs)
proof −

define UF where UF ≡ part2 U ′ U
define WF where WF ≡ part2 W ′ W
obtain [simp]: finite U finite W

using assms by (meson finite-subset)
obtain card ′: card U ′ > 0 card W ′ > 0

using gt ‹ε > 0 › U ′ W ′

by (force simp: u-def alpha-def edge-density-def mult-le-0-iff zero-less-mult-iff)
then obtain card: card U > 0 card W > 0

using assms by fastforce
then obtain [simp]: finite U ′ finite W ′

by (meson card ′ card-ge-0-finite)
obtain [simp]: W ′ 6= W − W ′ U ′ 6= U − U ′

by (metis DiffD2 card ′ all-not-in-conv card.empty less-irrefl)
have UF-ne: card x 6= 0 if x ∈ UF for x

using card ′ assms that by (auto simp: UF-def part2-def split: if-split-asm)
have WF-ne: card x 6= 0 if x ∈ WF for x

using card ′ assms that by (auto simp: WF-def part2-def split: if-split-asm)
have cardUW : card U = card U ′ + card(U − U ′) card W = card W ′ + card(W
− W ′)

using card card ′ ‹U ′ ⊆ U › ‹W ′ ⊆ W ›
by (metis card-eq-0-iff card-Diff-subset card-mono le-add-diff-inverse less-le)+

have U = (U − U ′) ∪ U ′ disjnt (U − U ′) U ′

using ‹U ′ ⊆ U › by (force simp: disjnt-iff)+
then have CU : card (all-edges-between U Z G)

= card (all-edges-between (U − U ′) Z G) + card (all-edges-between U ′ Z
G)

if finite Z for Z
by (metis ‹finite U ′› all-edges-between-Un1 all-edges-between-disjnt1 ‹finite U ›

card-Un-disjnt finite-Diff finite-all-edges-between that)

have W = (W − W ′) ∪ W ′ disjnt (W − W ′) W ′

using ‹W ′ ⊆ W › by (force simp: disjnt-iff)+
then have CW : card (all-edges-between Z W G)

= card (all-edges-between Z (W − W ′) G) + card (all-edges-between Z
W ′ G)

if finite Z for Z
by (metis ‹finite W ′› all-edges-between-Un2 all-edges-between-disjnt2 ‹finite

W ›
card-Un-disjnt finite-Diff2 finite-all-edges-between that)

14

have ∗: (
∑

X∈UF .
∑

Y∈WF . real (card (all-edges-between X Y G)))
= card (all-edges-between U W G)

by (simp add: UF-def WF-def cardUW CU CW sum-part2 ‹U ′ ⊆ U › ‹W ′ ⊆
W ›)

have ∗∗: real (card U) ∗ real (card W) = (
∑

X∈UF .
∑

Y∈WF . card X ∗ card
Y)

by (simp add: UF-def WF-def cardUW sum-part2 ‹U ′ ⊆ U › ‹W ′ ⊆ W › alge-
bra-simps)

let ?S =
∑

X∈UF .
∑

Y∈WF . (card X ∗ card Y) / (card U ∗ card W) ∗
(edge-density X Y G)2

define T where T ≡ (
∑

X∈UF .
∑

Y∈WF . (card X ∗ card Y) / (card U ∗
card W) ∗ (edge-density X Y G))

have §: 2 ∗ T = alpha + alpha ∗ (
∑

X∈UF .
∑

Y∈WF . (card X ∗ card Y) /
(card U ∗ card W))

unfolding alpha-def T-def
by (simp add: ∗ ∗∗ edge-density-def divide-simps sum-part2 ‹U ′ ⊆ U › ‹W ′ ⊆

W › UF-ne WF-ne flip: sum-divide-distrib)
have ε ∗ ε ≤ u U ′ W ′ ∗ u U ′ W ′

by (metis abs-ge-zero abs-mult-self-eq ‹ε > 0 › gt less-le mult-mono)
then have (ε∗ε)∗(ε∗ε) ≤ (card U ′ ∗ card W ′) / (card U ∗ card W) ∗ (u U ′

W ′)2

using card mult-mono [OF U ′ W ′] ‹ε > 0 ›
apply (simp add: divide-simps eval-nat-numeral)
by (smt (verit, del-insts) mult.assoc mult.commute mult-mono ′ of-nat-0-le-iff

zero-le-mult-iff)
also have . . . ≤ (

∑
X∈UF .

∑
Y∈WF . (card X ∗ card Y) / (card U ∗ card W)

∗ (u X Y)2)
by (simp add: UF-def WF-def sum-part2 ‹U ′ ⊆ U › ‹W ′ ⊆ W ›)

also have . . . = ?S − 2 ∗ T ∗ alpha
+ alpha2 ∗ (

∑
X∈UF .

∑
Y∈WF . (card X ∗ card Y) / (card U ∗

card W))
by (simp add: u-def T-def power2-diff mult-ac ring-distribs divide-simps

sum-distrib-left sum-distrib-right sum-subtractf sum.distrib flip: sum-divide-distrib)
also have . . . = ?S − alpha2

using § by (simp add: power2-eq-square algebra-simps)
finally have 12 : alpha2 + ε^4 ≤ ?S

by (simp add: eval-nat-numeral)
have ?rhs = (alpha2 + ε^4) ∗ (card U ∗ card W / (card (uverts G))2)

unfolding alpha-def energy-graph-subsets-def
by (simp add: ring-distribs divide-simps power2-eq-square)

also have . . . ≤ ?S ∗ (card U ∗ card W / (card (uverts G))2)
by (rule mult-right-mono [OF 12]) auto

also have . . . = ?lhs
using card unfolding energy-graph-subsets-def UF-def WF-def
by (auto simp add: algebra-simps sum-part2 ‹U ′ ⊆ U › ‹W ′ ⊆ W ›)

finally show ?thesis .
qed

15

1.6 Energy boost for partitions
We can always find a refinement that increases the energy by a certain
amount.

A necessary lemma for the tower of exponentials in the result. Angeliki’s
proof
lemma le-tower-2 : k ∗ (2 ^ Suc k) ≤ 2^(2^k)
proof (induction k rule: less-induct)

case (less k)
show ?case
proof (cases k ≤ Suc (Suc 0))

case False
define j where j = k − Suc 0
have kj: k = Suc j

using False j-def by force
with False have §: (2^j + 3) ≤ (2 ::nat) ^ k

by (simp add: Suc-leI le-less-trans not-less-eq-eq numeral-3-eq-3)
have k ∗ (2 ^ Suc k) ≤ 6 ∗ j ∗ 2^j

using False by (simp add: kj)
also have . . . ≤ 6 ∗ 2^(2^j)

using kj less.IH by force
also have . . . < 2^(2^j + 3)

by (simp add: power-add)
also have . . . ≤ 2^2^k

by (simp add: §)
finally show ?thesis

by simp
qed (auto simp: le-Suc-eq)

qed

The bound 2k+1 comes from a different source by Zhao: “Graph The-
ory and Additive Combinatorics”, https://yufeizhao.com/gtacbook/. It’s
needed because our regular-partition includes the diagonal; otherwise, k2k
would work. Gowers’ version has a flatly incorrect bound.
proposition exists-refinement:

assumes fgp: finite-graph-partition (uverts G) P k and finite (uverts G)
and irreg: ¬ ε−regular-partition G P and ε > 0

obtains Q where refines (uverts G) Q P
mean-square-density G Q ≥ mean-square-density G P + ε^5∧

R. R∈P =⇒ card {S∈Q. S ⊆ R} ≤ 2 ^ Suc k
card Q ≤ k ∗ 2 ^ Suc k

proof −
define sum-pp where sum-pp ≡ (

∑
(R,S) ∈ ε−irregular-set G P. card R ∗ card

S)
have cardP: card P = k

using fgp finite-graph-partition-def by force
then have k 6= 0
using assms unfolding regular-partition-def irregular-set-def finite-graph-partition-def

16

https://yufeizhao.com/gtacbook/

by fastforce
with assms have G-nonempty: 0 < card (uverts G)

by (metis card-gt-0-iff finite-graph-partition-empty)
have part-GP: partition-on (uverts G) P

using fgp finite-graph-partition-def by blast
then have finP: finite R R 6= {} if R∈P for R

using assms that partition-onD3 finite-graph-partition-finite by blast+
have spp: sum-pp > ε ∗ (card (uverts G))2

by (metis irreg not-le part-GP regular-partition-def sum-pp-def)
then have sum-irreg-pos: sum-pp > 0

using ‹ε > 0 › G-nonempty less-asym by fastforce
have ∃X⊆R. ∃Y⊆S . ε ∗ card R ≤ card X ∧ ε ∗ card S ≤ card Y ∧

|edge-density X Y G − edge-density R S G| > ε
if (R,S) ∈ ε−irregular-set G P for R S
using that fgp finite-graph-partition-subset by (simp add: irregular-set-def reg-

ular-pair-def not-le)
then obtain X0 Y0

where XY0-psub-P:
∧

R S . [[(R,S) ∈ ε−irregular-set G P]] =⇒ X0 R S ⊆ R ∧
Y0 R S ⊆ S

and XY0-eps:∧
R S . (R,S) ∈ ε−irregular-set G P
=⇒ ε ∗ card R ≤ card (X0 R S) ∧ ε ∗ card S ≤ card (Y0 R S) ∧
|edge-density (X0 R S) (Y0 R S) G − edge-density R S G| > ε

by metis
obtain iP where iP: bij-betw iP P {..<k}

by (metis fgp finite-graph-partition-def to-nat-on-finite cardP)
define X where X ≡ λR S . if iP R < iP S then Y0 S R else X0 R S
define Y where Y ≡ λR S . if iP R < iP S then X0 S R else Y0 R S
have XY-psub-P:

∧
R S . [[(R,S) ∈ ε−irregular-set G P]] =⇒ X R S ⊆ R ∧ Y R

S ⊆ S
using XY0-psub-P by (force simp: X-def Y-def irregular-set-swap)

have XY-eps:∧
R S . (R,S) ∈ ε−irregular-set G P
=⇒ ε ∗ card R ≤ card (X R S) ∧ ε ∗ card S ≤ card (Y R S) ∧
|edge-density (X R S) (Y R S) G − edge-density R S G| > ε

using XY0-eps by (force simp: X-def Y-def edge-density-commute irregu-
lar-set-swap)

have card-elem-P: card R > 0 if R∈P for R
by (metis card-eq-0-iff finP neq0-conv that)

have XY-nonempty: X R S 6= {} Y R S 6= {} if (R,S) ∈ ε−irregular-set G P
for R S

using XY-eps [OF that] that ‹ε > 0 › card-elem-P [of R] card-elem-P [of S]
by (auto simp: irregular-set-def mult-le-0-iff)

By the assumption that our partition is irregular, there are many ir-
regular pairs. For each irregular pair, find pairs of subsets that witness
irregularity.

define XP where XP R ≡ ((λS . part2 (X R S) R) ‘ {S . (R,S) ∈ ε−irregular-set
G P}) for R

17

define YP where YP S ≡ ((λR. part2 (Y R S) S) ‘ {R. (R,S) ∈ ε−irregular-set
G P}) for S

include degenerate partition to ensure it works whether or not there’s
an irregular pair

define PP where PP ≡ λR. insert {R} (XP R ∪ YP R)
define QS where QS R ≡ common-refinement (PP R) for R
define r where r R ≡ card (QS R) for R
have finite P

using fgp finite-graph-partition-def by blast
then have finPP: finite (PP R) for R

by (simp add: PP-def XP-def YP-def irregular-set-def)
have inPP-fin: P ∈ PP R =⇒ finite P for P R

by (auto simp: PP-def XP-def YP-def part2-def)
have finite-QS : finite (QS R) for R

by (simp add: QS-def finPP finite-common-refinement inPP-fin)

have part-QS : partition-on R (QS R) if R ∈ P for R
unfolding QS-def

proof (intro partition-on-common-refinement partition-onI)
show

∧
A. A ∈ PP R =⇒ {} /∈ A

using that XY-nonempty XY-psub-P finP
by (fastforce simp add: PP-def XP-def YP-def part2-def)

qed (auto simp: disjnt-iff PP-def XP-def YP-def part2-def dest: XY-psub-P)

have part-P-QS : finite-graph-partition R (QS R) (r R) if R∈P for R
by (simp add: finite-QS finite-graph-partition-def part-QS r-def that)

then have fin-SQ [simp]: finite (QS R) if R∈P for R
using QS-def finite-QS by force

have QS-ne: {} /∈ QS R if R∈P for R
using QS-def part-QS partition-onD3 that by blast

have QS-subset-P: q ∈ QS R =⇒ q ⊆ R if R∈P for R q
by (meson finite-graph-partition-subset part-P-QS that)

then have QS-inject: R = R ′

if R∈P R ′∈P q ∈ QS R q ∈ QS R ′ for R R ′ q
by (metis UnionI disjnt-iff equals0I pairwiseD part-GP part-QS partition-on-def

that)
define Q where Q ≡ (

⋃
R∈P. QS R)

define m where m ≡
∑

R∈P. r R
show thesis
proof

show ref-QP: refines (uverts G) Q P
unfolding refines-def

proof (intro conjI strip part-GP)
fix X
assume X ∈ Q
then show ∃Y∈P. X ⊆ Y

by (metis QS-subset-P Q-def UN-iff)
next

18

show partition-on (uverts G) Q
proof (intro conjI partition-onI)

show
⋃

Q = uverts G
proof

show
⋃

Q ⊆ uverts G
using QS-subset-P Q-def fgp finite-graph-partition-equals by fastforce

show uverts G ⊆
⋃

Q
by (metis Q-def Sup-least UN-upper Union-mono part-GP part-QS

partition-onD1)
qed
show disjnt p q if p ∈ Q and q ∈ Q and p 6= q for p q
proof −

from that
obtain R S where R∈P S∈P

and ∗: p ∈ QS R q ∈ QS S
by (auto simp: Q-def QS-def)

show ?thesis
proof (cases R=S)

case True
then show ?thesis

using part-QS [of R]
by (metis ‹R ∈ P› ∗ pairwiseD partition-on-def ‹p 6= q›)

next
case False
with ∗ show ?thesis

by (metis QS-subset-P ‹R ∈ P› ‹S ∈ P› disjnt-iff pairwiseD part-GP
partition-on-def subsetD)

qed
qed
show {} /∈ Q

using QS-ne Q-def by blast
qed

qed
have disj-QSP: disjoint-family-on QS P

unfolding disjoint-family-on-def by (metis Int-emptyI QS-inject)
let ?PP = P × P
let ?REG = ?PP − ε−irregular-set G P
define sum-eps where sum-eps ≡ (

∑
(R,S) ∈ ε−irregular-set G P. ε^4 ∗ (card

R ∗ card S) / (card (uverts G))2)
have A: energy-graph-subsets R S G + ε^4 ∗ (card R ∗ card S) / (card (uverts

G))2

≤ energy-graph-partitions G (part2 (X R S) R) (part2 (Y R S) S)
(is ?L ≤ ?R)
if ∗: (R,S) ∈ ε−irregular-set G P for R S

proof −
have R∈P S∈P

using ∗ by (auto simp: irregular-set-def)
have ?L ≤ (

∑
A ∈ part2 (X R S) R.

∑
B ∈ part2 (Y R S) S . en-

ergy-graph-subsets A B G)

19

using XY-psub-P [OF ∗] XY-eps [OF ∗] assms
by (intro energy-boost ‹R ∈ P› ‹S ∈ P› finP ‹ε>0 ›) auto

also have . . . ≤ ?R
by (simp add: energy-graph-partitions-def)

finally show ?thesis .
qed
have B: energy-graph-partitions G (part2 (X R S) R) (part2 (Y R S) S)

≤ energy-graph-partitions G (QS R) (QS S)
if (R,S) ∈ ε−irregular-set G P for R S

proof −
have R∈P S∈P using that by (auto simp: irregular-set-def)
have [simp]: ¬ X R S ⊂ R ←→ X R S = R ¬ Y R S ⊂ S ←→ Y R S = S

using XY-psub-P that by blast+
have XPX : part2 (X R S) R ∈ PP R

using that by (simp add: PP-def XP-def)
have I : partition-on R (QS R)

using QS-def ‹R ∈ P› part-QS by force
moreover have ∀ q ∈ QS R. ∃ b ∈ part2 (X R S) R. q ⊆ b

using common-refinement-exists [OF - XPX] by (simp add: QS-def)
ultimately have ref-XP: refines R (QS R) (part2 (X R S) R)

by (simp add: refines-def XY-nonempty XY-psub-P that partition-part2)
have YPY : part2 (Y R S) S ∈ PP S

using that by (simp add: PP-def YP-def)
have J : partition-on S (QS S)

using QS-def ‹S ∈ P› part-QS by force
moreover have ∀ q ∈ QS S . ∃ b ∈ part2 (Y R S) S . q ⊆ b

using common-refinement-exists [OF - YPY] by (simp add: QS-def)
ultimately have ref-YP: refines S (QS S) (part2 (Y R S) S)

by (simp add: XY-nonempty XY-psub-P that partition-part2 refines-def)
show ?thesis

using ‹R ∈ P› ‹S ∈ P›
by (simp add: finP energy-graph-partitions-increase [OF ref-XP ref-YP])

qed
have mean-square-density G P + ε^5 ≤ mean-square-density G P + sum-eps
proof −

have ε^5 = (ε ∗ (card (uverts G))2) ∗ (ε^4 / (card (uverts G))2)
using G-nonempty by (simp add: field-simps eval-nat-numeral)

also have . . . ≤ sum-pp ∗ (sum-eps / sum-pp)
proof (rule mult-mono)

show ε^4 / real ((card (uverts G))2) ≤ sum-eps / sum-pp
using sum-irreg-pos sum-eps-def sum-pp-def
by (auto simp add: case-prod-unfold sum.neutral simp flip: sum-distrib-left

sum-divide-distrib of-nat-sum of-nat-mult)
qed (use spp sum-nonneg in auto)
also have . . . ≤ sum-eps

by (simp add: sum-irreg-pos)
finally show ?thesis by simp

qed
also have . . . = (

∑
(i,j) ∈ ?REG. energy-graph-subsets i j G)

20

+ (
∑

(i,j) ∈ ε−irregular-set G P. energy-graph-subsets i j G) +
sum-eps

by (simp add: ‹finite P› energy-graph-partitions-def sum.cartesian-product
irregular-set-subset sum.subset-diff)

also have . . . ≤ (
∑

(i,j) ∈ ?REG. energy-graph-subsets i j G)
+ (

∑
(i,j) ∈ ε−irregular-set G P. energy-graph-partitions G (part2

(X i j) i) (part2 (Y i j) j))
using A unfolding sum-eps-def case-prod-unfold
by (force intro: sum-mono simp flip: sum.distrib)

also have . . . ≤ (
∑

(i,j) ∈ ?REG. energy-graph-partitions G (QS i) (QS j))
+ (

∑
(i,j) ∈ ε−irregular-set G P. energy-graph-partitions G (part2

(X i j) i) (part2 (Y i j) j))
by (auto intro!: part-P-QS sum-mono energy-graph-partition-increase)

also have . . . ≤ (
∑

(i,j) ∈ ?REG. energy-graph-partitions G (QS i) (QS j))
+ (

∑
(i,j) ∈ ε−irregular-set G P. energy-graph-partitions G (QS i)

(QS j))
using B

proof (intro sum-mono add-mono ordered-comm-monoid-add-class.sum-mono2)
qed (auto split: prod.split)
also have . . . = (

∑
(i,j) ∈ ?PP. energy-graph-partitions G (QS i) (QS j))

by (metis (no-types, lifting) ‹finite P› finite-SigmaI irregular-set-subset sum.subset-diff)
also have . . . = (

∑
i∈P.

∑
j∈P. energy-graph-partitions G (QS i) (QS j))

by (simp flip: sum.cartesian-product)
also have . . . = (

∑
A ∈ Q.

∑
B ∈ Q. energy-graph-subsets A B G)

unfolding energy-graph-partitions-def Q-def
by (simp add: disj-QSP ‹finite P› sum.UNION-disjoint-family sum.swap [of

- P QS -])
also have . . . = mean-square-density G Q
by (simp add: mean-square-density energy-graph-subsets-def sum-divide-distrib)
finally show mean-square-density G P + ε ^ 5 ≤ mean-square-density G Q .

define QinP where QinP ≡ λi. {j∈Q. j ⊆ i}
show card-QP: card (QinP i) ≤ 2 ^ Suc k

if i ∈ P for i
proof −

have less-cardP: iP i < k
using iP bij-betwE that by blast

have card-cr : card (QS i) ≤ 2 ^ Suc k
proof −

have card (QS i) ≤ prod card (PP i)
by (simp add: QS-def card-common-refinement finPP inPP-fin)

also have . . . = prod card (XP i ∪ YP i)
using finPP by (simp add: PP-def prod.insert-if)

also have . . . ≤ 2 ^ Suc k
proof (rule prod-le-power)
define XS where XS ≡ (

⋃
R ∈ {R∈P. iP R ≤ iP i}. {part2 (X0 i R) i})

define YS where YS ≡ (
⋃

R ∈ {R∈P. iP R ≥ iP i}. {part2 (Y0 R i) i})
have 1 : {R ∈ P. iP R ≤ iP i} ⊆ iP −‘ {..iP i} ∩ P

by auto

21

have card XS ≤ card {R ∈ P. iP R ≤ iP i}
by (force simp add: XS-def ‹finite P› intro: order-trans [OF card-UN-le])

also have . . . ≤ card (iP −‘ {..iP i} ∩ P)
using 1 by (simp add: ‹finite P› card-mono)

also have . . . ≤ Suc (iP i)
by (metis card-vimage-inj-on-le bij-betw-def card-atMost finite-atMost iP)
finally have cXS : card XS ≤ Suc (iP i) .
have 2 : {R ∈ P. iP R ≥ iP i} ⊆ iP −‘ {iP i..<k} ∩ P

by clarsimp (meson bij-betw-apply iP lessThan-iff nat-less-le)
have card YS ≤ card {R ∈ P. iP R ≥ iP i}
by (force simp add: YS-def ‹finite P› intro: order-trans [OF card-UN-le])

also have . . . ≤ card (iP −‘ {iP i..<k} ∩ P)
using 2 by (simp add: ‹finite P› card-mono)

also have . . . ≤ card {iP i..<k}
by (meson bij-betw-def card-vimage-inj-on-le finite-atLeastLessThan iP)

finally have card YS ≤ k − iP i
by simp

with less-cardP cXS have k ′: card XS + card YS ≤ Suc k
by linarith

have finXYS : finite (XS ∪ YS)
unfolding XS-def YS-def using ‹finite P› by (auto intro: finite-vimageI)

have XP i ∪ YP i ⊆ XS ∪ YS
apply (simp add: XP-def X-def YP-def Y-def XS-def YS-def irregu-

lar-set-def image-def subset-iff)
by (metis insert-iff linear not-le)

then have card (XP i ∪ YP i) ≤ card XS + card YS
by (meson card-Un-le card-mono finXYS order-trans)

then show card (XP i ∪ YP i) ≤ Suc k
using k ′ le-trans by blast

fix x
assume x ∈ XP i ∪ YP i
then show 0 ≤ card x ∧ card x ≤ 2

using XP-def YP-def card-part2 by force
qed auto
finally show ?thesis .

qed
have i ′ = i if q ⊆ i i ′∈P q ∈ QS i ′ for i ′ q

by (metis QS-ne QS-subset-P ‹i ∈ P› disjnt-iff equals0I pairwiseD part-GP
partition-on-def subset-eq that)

then have QinP i ⊆ QS i
by (auto simp: QinP-def Q-def)

then have card (QinP i) ≤ card (QS i)
by (simp add: card-mono that)

also have . . . ≤ 2 ^ Suc k
using QS-def card-cr by presburger

finally show ?thesis .
qed
have card Q ≤ card (

⋃
i∈P. QinP i)

22

unfolding Q-def
proof (rule card-mono)

show (
⋃

(QS ‘ P)) ⊆ (
⋃

i∈P. QinP i)
using ref-QP QS-subset-P Q-def QinP-def by blast

show finite (
⋃

i∈P. QinP i)
by (simp add: Q-def QinP-def ‹finite P›)

qed
also have . . . ≤ (

∑
i∈P. 2 ^ Suc k)

by (smt (verit) ‹finite P› card-QP card-UN-le order-trans sum-mono)
finally show card Q ≤ k ∗ 2 ^ Suc k

by (simp add: cardP)
qed

qed

1.7 The Regularity Proof Itself
We start with a trivial partition (one part). If it is already ε-regular, we
are done. If not, we refine it by applying lemma exists-refinement above,
which increases the energy. We can repeat this step, but it cannot increase
forever: by mean-square-density-bounded it cannot exceed 1. This defines an
algorithm that must stop after at most ε−5 steps, resulting in an ε-regular
partition.
theorem Szemeredi-Regularity-Lemma:

assumes ε > 0
obtains M where

∧
G. card (uverts G) > 0 =⇒ ∃P. ε−regular-partition G P

∧ card P ≤ M
proof

fix G
assume card (uverts G) > 0
then obtain finG: finite (uverts G) and nonempty: uverts G 6= {}

by (simp add: card-gt-0-iff)
define Φ where Φ ≡ λQ P. refines (uverts G) Q P ∧

mean-square-density G Q ≥ mean-square-density G P +
ε^5 ∧

card Q ≤ card P ∗ 2 ^ Suc (card P)
define nxt where nxt ≡ λP. if ε−regular-partition G P then P else SOME Q.

Φ Q P
define iter where iter ≡ λi. (nxt ^^ i) {uverts G}
define last where last ≡ Suc (natd1 / ε ^ 5 e)
have iter-Suc [simp]: iter (Suc i) = nxt (iter i) for i

by (simp add: iter-def)
have Φ: Φ (nxt P) P

if Pk: partition-on (uverts G) P and irreg: ¬ ε−regular-partition G P for P
proof −

have finite-graph-partition (uverts G) P (card P)
by (meson Pk finG finite-elements finite-graph-partition-def)

then show ?thesis
using that exists-refinement [OF - finG irreg assms] irreg Pk

23

unfolding Φ-def nxt-def by (smt (verit) someI)
qed
have partition-on: partition-on (uverts G) (iter i) for i
proof (induction i)

case 0
then show ?case
by (simp add: iter-def nonempty trivial-graph-partition-exists partition-on-space)

next
case (Suc i)
with Φ show ?case

by (metis Φ-def iter-Suc nxt-def refines-def)
qed
have False if irreg:

∧
i. i≤last =⇒ ¬ ε−regular-partition G (iter i)

proof −
have Φ-loop: Φ (nxt (iter i)) (iter i) if i≤last for i

using Φ irreg partition-on that by blast
have iter-grow: mean-square-density G (iter i) ≥ i ∗ ε^5 if i≤last for i

using that
proof (induction i)

case (Suc i)
then show ?case

by (clarsimp simp: algebra-simps) (smt (verit, best) Suc-leD Φ-def Φ-loop)
qed (auto simp: iter-def)
have last ∗ ε^5 ≤ mean-square-density G (iter last)

by (simp add: iter-grow)
also have . . . ≤ 1
by (meson finG finite-elements finite-graph-partition-def mean-square-density-bounded

partition-on)
finally have real last ∗ ε ^ 5 ≤ 1 .
with assms show False
unfolding last-def by (meson lessI natceiling-lessD not-less pos-divide-less-eq

zero-less-power)
qed
then obtain i where i ≤ last and ε−regular-partition G (iter i)

by force
then have reglar : ε−regular-partition G (iter (i + d)) for d

by (induction d) (auto simp add: nxt-def)
define tower where tower ≡ λk. (power(2 ::nat) ^^ k) 2
have [simp]: tower (Suc k) = 2 ^ tower k for k

by (simp add: tower-def)
have iter-tower : card (iter i) ≤ tower (2∗i) for i
proof (induction i)

case (Suc i)
then have Qm: card (iter i) ≤ tower (2 ∗ i)

by simp
then have ∗: card (nxt (iter i)) ≤ card (iter i) ∗ 2 ^ Suc (card (iter i))

using Φ by (simp add: Φ-def nxt-def partition-on)
also have . . . ≤ 2 ^ 2 ^ tower (2 ∗ i)

by (metis One-nat-def Suc.IH le-tower-2 lessI numeral-2-eq-2 order .trans

24

power-increasing-iff)
finally show ?case

by (simp add: Qm)
qed (auto simp: iter-def tower-def)
then show ∃P. ε−regular-partition G P ∧ card P ≤ tower(2 ∗ last)

by (metis ‹i ≤ last› nat-le-iff-add reglar)
qed

The actual value of the bound is visible above: a tower of exponentials
of height 2(1 + ε−5).
end

25

	Szemerédi's Regularity Lemma
	Partitions
	Partitions indexed by integers
	Tools to combine the refinements of the partition 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P i for each 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 i

	Edges
	Edge Density and Regular Pairs
	Energy of a Graph
	Partitioning and Energy
	Energy boost for partitions
	The Regularity Proof Itself

